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Foreword

The publication of this Handbook, bringing together game theory and industrial organi-
zation, is an occasion worth celebrating. After all, industrial organization (IO) – the study 
of how firms in a given market behave – was game theory’s first systematic application to 
economics, and the success of that application had much to do with giving game-theoretic 
ideas the prominent place they now have in the economics profession more generally.

Before game theory remade industrial organization in the 1970s, most IO analyses 
focused on two extreme but simple kinds of markets: perfectly competitive and monopo-
listic. In a perfectly competitive market, there are many small sellers (all selling the same 
kind of good) and many small buyers (“small” here means that the quantities sold by a 
seller and bought by a buyer are tiny compared with the totals for the market). One might 
guess that large numbers of traders would make analysis complicated, but they actually 
simplify matters. If  each seller is small relative to the market, its own behavior can’t affect 
other sellers appreciably. So when figuring out what it should do, it needn’t worry about 
how the others anticipate it might behave – their anticipations aren’t relevant. In other 
words, a seller doesn’t have to be strategic (symmetrically, neither does a buyer). And 
consequently an economic analyst has a relatively easy job predicting the seller’s behavior 
as the solution to a simple profit-maximization problem. Indeed, because the seller is 
selling the same sort of good as all its competitors, it will take the good’s market price as 
given (if  it chooses a higher price, it will have no customers – since they can get a perfect 
substitute for less; and it will be overwhelmed by customers if  it chooses a lower price). 
In other words, the seller has no market power.

In a monopolistic market, by contrast, there is just one seller (I shall continue to assume 
throughout that there are many small buyers). Thus, as with perfect competition, the seller 
doesn’t have to worry about what other sellers are thinking about it – this time because 
there are no other sellers. And so, again, the seller’s optimization exercise as well as the 
analyst’s prediction exercise are quite straightforward (although the seller now does have 
market power; its own behavior determines the market price).

However, the intermediate case, oligopoly – where there is more than one seller, but 
not so many that a single seller has no effect on competitors – is more difficult. Think 
of  the American automobile industry as it used to be, consisting primarily of  General 
Motors (GM), Ford, and Chrysler. When GM worked out which models to manufacture, 
how many units of  each model to produce, and what prices to set, it had to take into 
account what it anticipated Ford and Chrysler would do, and their actions depended 
on their forecasts about GM. Clearly, grappling with these anticipatory interactions 
between firms is essential to understanding the automobile industry. Yet such interac-
tions are potentially very complex. Specifically, when an oligopolistic firm A tries to 
predict what its rival, firm B, will do, it must anticipate what B anticipates A will do, 
and what B anticipates A anticipates B will do, and so on. That’s why Nash equilibrium 
(Nash, 1950) was such a breakthrough: it cuts through this potentially infinite sequence 
of  mutual anticipations.
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x  Handbook of game theory and industrial organization: theory

 A situation like the automobile industry can be modeled as a game (more precisely, a 
“non-cooperative” game) in which the firms are players, a rule for how a player behaves 
constitutes its strategy, and players’ strategy choices jointly determine their payoffs. Nash 
proposed that a good prediction for how players will behave in such a game is that they 
will choose Nash equilibrium strategies: a configuration of strategies from which no indi-
vidual player gains by deviating. If  each player chooses a strategy to maximize its payoff 
given its anticipation of others’ strategies, then a Nash equilibrium is simply a fixed point 
of these optimizations. That is, in equilibrium, players’ anticipations about other players 
are correct and thus the infinite sequence of anticipations is circumvented.

Nash equilibrium was, without doubt, the central foundation on which the game-theo-
retic literature in industrial organization (and, later, other fields in economics) was erected 
(and it was for this contribution that John Nash shared the 1994 Nobel Memorial Prize in 
Economics). Nevertheless, Nash’s work had at least two important economic precursors.

First, Cournot (1838) and Bertrand (1883) analyzed particular instances of duopoly 
(an oligopoly in which there are just two firms in the industry) in a game-theoretic way, 
even though game theory wasn’t to be developed formally until the twentieth century. 
Indeed, both Cournot and Bertrand used what amounted to Nash equilibrium to make 
their predictions of how firms will behave. Still, remarkable though they are, Cournot’s 
and Bertrand’s highly stylized analyses lacked Nash’s great generality. Thus, the fact that 
they had far less influence than Nash (1950) is quite understandable.

The other notable pre-Nash development was monopolistic competition, whose lit-
erature was initiated by Chamberlin (1933) and Robinson (1933). Like an oligopoly, a 
monopolistically competitive market is intermediate between monopoly and perfect com-
petition. And like an oligopolist, a monopolistically competitive firm has market power 
(normally because the good it sells is not a perfect substitute for other sellers’ goods). 
However, the firm is presumed to be too small to affect its rivals’ behavior, and so the 
strategic interactions of oligopoly are absent.

It may seem surprising that Nash’s work, rather than von Neumann and Morgenstern’s 
foundational volume, Theory of Games and Economic Behavior, published six years before 
Nash (1950), had the primary impact on the industrial organization literature. I suspect 
that von Neumann and Morgenstern (1944) failed to make much of a dent in econom-
ics because it is largely devoted to cooperative game theory, which studies games where 
players can enter into binding coalitions and which normally presumes that the coalition 
of all players (the grand coalition) forms. This sort of theory is, unfortunately, unsuited 
to most real-life markets, where typically the grand coalition does not form. Indeed, even 
if  it does arise (the OPEC cartel in the oil market may have been a reasonable approxima-
tion of a grand coalition), IO theorists want to understand why this happens and how the 
coalition sustains itself; they do not usually take the grand coalition for granted, contrary 
to the presumption of cooperative game theory.

Another surprise is that once Nash’s paper appeared, another 20 years passed for 
game-theoretic work in any economic field – let alone in industrial organization – to 
take off; there was remarkably little game theory in economics in the 1950s and 1960s 
(one important exception was Schelling’s, 1960, use of game-theoretic ideas to illuminate 
international relations). Here again, I can only speculate on the reasons, but I conjec-
ture that two important extensions of Nash – Harsanyi’s (1968) treatment of games of 
incomplete information (in particular, his concept of Bayesian equilibrium) and Selten’s 
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Foreword  xi

(1965)  treatment of intertemporal games (in particular, his concept of subgame perfect 
equilibrium) – needed to be understood and digested by economists before they could 
make good use of game theory in their work.

In any event, the big game-theoretic applications to IO in the 1970s generally involved 
multiple periods and/or incomplete information; there was a flood of papers on topics 
such as tacit collusion by oligopolists, market entry by new firms, and limit pricing and 
predation by incumbent firms, all of which drew heavily on innovations by Harsanyi 
(1968) and Selten (1965) (who both shared the 1994 Nobel with Nash).

By the early 1980s, game theory had been such a success in industrial organization 
that it started being used in political economy, international economics, finance, and 
other areas of economic theory. And at the close of that decade, there was scarcely a 
self-respecting economics department that didn’t offer game theory as an important 
component of its curriculum.

Industrial organization and game theory together led a revolution in economics. I am 
truly delighted that there is now a Handbook devoted to this transformative partnership.
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1. Introduction
Luis C. Corchón and Marco A. Marini

Game theory lies at the heart of modern industrial organization. Over the second half of the
last century, it has provided a sound foundation to the main equilibrium concepts adopted
in classical industrial economics, as in the Cournot, Bertrand and Stackelberg models. It has
also enabled the development of new and rigorous conceptual frameworks for many industrial
organization topics, such as product differentiation, predation, delegation, mergers, collusion
and R&D in imperfectly competitive markets. Finally, and perhaps most importantly, over
the years, game theory has constantly continued to inspire new research areas in the field of
industrial organization, which, in some cases, have gone far beyond the scope of the discipline.
This occurred, for instance, in the development of dynamic and incomplete information games
or in the recent applications of game theory to law and economics, networks, digital economy,
auctions, experiments, health economics, intellectual property rights, contests and corruption,
just to cite a few. Furthermore, it should be stressed that the relationship between game theory
and industrial organization has never been unidirectional.1

Thus, it is no exaggeration to say that game theory has become the common language of
industrial organization.2 In particular, the adoption of a sound mathematical language has
allowed industrial organization to steadily progress towards new and unexplored fields. As an
example, the recent use of experimental game theory in industrial economics has opened the
door to behavioral models for the explanation of the bias of consumers and sellers in the
market.3

Due to the strong and increasing interlink between game theory and industrial organization,
the current volume aims to provide a solid introduction to the main topics lying at the
crossroads between these two disciplines. In managing such a – seemingly arduous – task,
our major contribution as editors was mainly to attract an impressive array of renowned
economists to the challenge of producing up-to-date surveys for the volume. As a final result,
and especially thanks to the outstanding quality of the contributors, the current Handbook
appears suitable for both established researchers as well as for graduate and advanced
undergraduate students.

Given the wide heterogeneity of topics being at the boundary between game theory and
industrial organization, our primary aim in assembling the book was to give a rational structure
to the great amount of material gathered for its preparation. In our final plan for the Handbook,

1 As observed by Bagwell and Wolinsky (2002): “First, the needs of industrial organization fed back and exerted
a general influence on the agenda of game theory. Second, specific ideas that grew out of problems in industrial
organization gained independent importance as game theoretic topics in their own right. Third, it is mostly through
industrial organization that game theory was brought on large scale into economics and achieved its current standing
as a fundamental branch of economic theory” (Bagwell and Wolinsky, 2002, p. 1852).

2 This is confirmed, if ever needed, by Fudenberg and Tirole’s long survey contained in the Handbook of
Industrial Economics (1989), actually encompassing most of the relevant topics in non-cooperative game theory.

3 See the survey on “Experimental Industrial Organization” by Brandts and Potters in Chapter 17, Volume 2 of
this Handbook.

1
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2 Handbook of game theory and industrial organization: theory

we judged it appropriate to divide the book into two volumes where, while this first volume
is mainly devoted to presenting the major game-theoretic modeling tools currently in use in
modern industrial organization, the second is specifically aimed at applying those tools to a
wide range of industrial organization topics.

More specifically, the first volume is organized into four parts corresponding to four
distinct topics: (I) Basic Games in Industrial Organization; (II) Dynamic Games in Industrial
Organization; (III) Games of Collusion in Industrial Organization; and (IV) Information
Games. Part I of this first volume of the Handbook aims at providing an overview of the
basic game-theoretic tools currently used in modern industrial organization, such as lattice
techniques, aggregative games, monopolistic competition models, oligopoly models with
product differentiation, welfare analysis and contest theory. Part II introduces the state of the
art in the literature, applying dynamic games to well-known dynamic industrial organization
topics such as Stackelberg, entry, and evolutionary games. Part III aims at surveying the main
cooperative and non-cooperative games commonly adopted for the analysis of horizontal
mergers and collusion. Finally, Part IV provides an overview of some important classes of
models dealing with informational issues in imperfectly competitive markets, such as trading
under asymmetric information, principal–agent under moral hazard, learning in markets and
information sharing in oligopoly. In the next sections we describe in more detail the content
of each chapter comprising the Handbook.

PART I BASIC GAMES IN INDUSTRIAL ORGANIZATION

In Chapter 2 on strategic complementarities in oligopoly, Xavier Vives provides a detailed
overview of many recent results obtained by applying the techniques of supermodular games
to the analysis of firm behavior in imperfect competitive markets. Besides offering an
excellent introduction to the recent lattice-theoretic methods, the chapter reviews the results
obtained in the existence and comparative statics of the Cournot, Bertrand, R&D, advertising,
multidimensional and multimarket competition models. In addition, it introduces the use of
supermodularity for the analysis of well-known classes of two-stage dynamic games such
as entry, dynamic strategic incentives and both Markov and incomplete information games
applied to voluntary disclosures and auctions.

In Chapter 3 on Cournot and Bertrand oligopolies and the theory of supermodular games,
Rabah Amir surveys two important strands of literature in oligopoly theory, one dealing with
the existence of Cournot equilibrium in the general asymmetric and symmetric cases and the
other with the effects of exogenous entry on market performance in a Cournot industry. This
chapter emphasizes that these two strands of literature share one important unifying common
feature: both are achieved via the application of lattice-theoretic methods. This also provides
a bridge to the previous chapter.

In Chapter 4 on aggregative games, Martin Kaae Jensen nicely complements the first two
chapters by introducing three important classes of widely used aggregative games: (1) linearly
aggregative games; (2) generalized aggregative games; and (3) quasi-aggregative games.
These games are very useful in industrial organization since they drastically simplify the
analysis of the existence, comparative statics and uniqueness of Nash equilibria and unify a
vast amount of literature since they apply to a wide array of models like Cournot and Bertrand
oligopoly, tournaments, work in teams, contests, patent races and network games.
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Introduction 3

In Chapter 5 on monopolistic competition without apology, Jacques-François Thisse and
Philip Ushchev review what has been accomplished under the heading of monopolistic
competition in industrial organization and in other closely related economic fields. Among
other things, the authors argue that monopolistic competition is a market structure in its own
right, which encompasses a much broader setup than the celebrated constant elasticity of
substitution (CES) model. Also, although oligopolistic and monopolistic competition compete
for adherents within the economics profession, the authors explain how such dichotomy is, to
a large extent, unwarranted, in that both models are complements rather than substitutes.

In Chapter 6 on oligopoly and product differentiation, Jean J. Gabszewicz and Ornella
Tarola overview old and new oligopoly models on product differentiation characterized by
local competition. Starting from the microeconomic theory of consumer demand based on
characteristics, as introduced by Gorman (1956 and 1980) and then popularized by Lancaster
(1966), they present horizontal product differentiation as based on Hotelling (1929) and
vertical product differentiation as based on Gabszewicz and Thisse (1979). Finally, they
review the model nesting both horizontal and vertical product differentiation and propose
two applications of this approach, one based on network externalities and the other on
environmental economics.

In Chapter 7 on oligopolistic competition and welfare, Robert A. Ritz nicely reviews the
recent developments in the study of social welfare in oligopoly markets. In particular, the
chapter covers the usefulness of the rate of cost pass-through for the analysis of market perfor-
mance and includes a careful analysis of welfare losses due to market power in various widely
used models (with symmetric and asymmetric firms, and with or without endogenous entry).

PART II DYNAMIC GAMES IN INDUSTRIAL ORGANIZATION

This second part of the book offers a collection of chapters focusing on the use of dynamic
games in a set of well-known industrial organization issues.

Chapter 8 by Klaus Ritzberger on dynamic games sets the scene by introducing three
alternative definitions of game trees and extensive forms and also discussing in detail their
pros and cons. In the following sections, the author returns to the normal form associated with
the extensive form and explains the concept of perfect recall and its significance for economic
applications.

In Chapter 9 on strategic refinements, Carlos Pimienta examines the classical literature on
equilibrium refinements. Starting with Nash’s definition of equilibrium, the chapter presents
a comprehensive review of the most successful equilibrium concepts adopted in economic
applications as well as the most recent contributions to the subject. The chapter explains in
detail how a few decision-theoretic criteria – admissibility, backwards induction, forward
induction and invariance – shape the definition of stable sets of equilibria and how they
translate into their corresponding mathematical formulation.

In Chapter 10 on Stackelberg games, Ludovic Julien introduces three classes of determin-
istic non-cooperative Stackelberg games with increasing levels of generality. The first is the
basic duopoly game. The second is the oligopoly multiple leader–follower game. The third
extends the multiple leader–follower setup within the framework of bilateral oligopoly to
describe a multicommodity market. In each case, the author defines and characterizes the
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4 Handbook of game theory and industrial organization: theory

equilibrium and the welfare consequences of market power. The chapter also considers the
issues of endogenous timing, merging and free entry.

In Chapter on 11 entry games and free entry equilibria, Michele Polo reviews how a wide
range of symmetric oligopoly models share some common comparative statics properties.
Individual profits and quantities decrease in the number of firms, and tend to competitive
or monopolistic competitive equilibria when the number of firms increases indefinitely.
The maximum number of firms sustainable in a symmetric long-run equilibrium is shown
to depend on technology (economies of scale), preferences (market size) and strategies
(toughness of price competition). On the normative side, in homogeneous product markets
the business-stealing effect drives the result of excessive entry, whereas adding product
differentiation and the utility from variety may reverse this result. In addition, the author
considers asymmetric free-entry equilibria using the aggregative nature of many oligopoly
models as we noted before. Finally, he discusses the issue of endogenous sunk costs, persistent
concentration and frictionless entry in contestable markets.

In Chapter 12 on evolutionary oligopoly games with heterogeneous adaptive players,
Gian Italo Bischi, Fabio Lamantia and Davide Radi analyze the properties of evolutionary
switching models in oligopoly games, where boundedly rational agents can follow different
behavioral rules (or heuristics) to update their production through repeated adaptive decisions.
In particular, they focus on well-known heuristics such as best replies with naive expectations,
local monopolistic approximation and gradient dynamics on marginal profits. Hence, the
chapter examines some specific examples of evolutionary systems where the coexistence of
heterogeneous behaviors and of oscillatory time patterns are obtained as possible outcomes.

PART III GAMES OF COLLUSION IN INDUSTRIAL ORGANIZATION

In this part of the volume we gather two theoretical contributions on collusion and mergers
in oligopolies. In the first chapter, Chapter 13, on coalitions and networks in oligopolies,
Francis Bloch reviews the models on endogenous formation of coalitions and networks in
oligopolies. It weaves together a literature in game theory on cooperation and a literature in
industrial organization on the formation of groups of oligopolistic firms. The discussion of
cooperation in oligopolies starts with a brief presentation of the game-theoretic models used
to predict the formation of coalitions and networks. Two different forms of cooperation are
considered: (1) cartels and horizontal mergers; and (2) strategic alliances, which encompass
both research joint ventures and information exchange platforms.

In Chapter 14 on transferable utility (TU) oligopoly games and industrial cooperation,
Jingang Zhao surveys the existing results on TU cooperative games applied to oligopolies
and lists nine promising future areas for TU oligopoly games. On the theoretical side,
TU oligopoly games are shown to make advances on the refinements and applications of
the core, one of the most important solution concepts in cooperative game theory. On the
empirical side, the author shows how cooperative games can enable the analysis of industrial
cooperation and, hence, the understanding of all forces at work behind industrial changes
with and without regulatory policies.
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Introduction 5

PART IV INFORMATION GAMES

The final part of the Volume I of the Handbook looks at the various effects occurring in
markets when relaxing the assumption of symmetric information.

In Chapter 15 on trading under asymmetric information: positive and normative impli-
cations, Andrea Attar and Claude d’Aspremont mainly focus their attention on screening
models. They divide the chapter into two sections. The first section adopts a simple
mechanism design approach with only one mechanism designer. When the mechanism
designer is an outsider (say a public authority), all traders may have private information and
play simultaneously. When the mechanism designer is an insider (a principal, buyer or seller),
he or she is uninformed and has no private information. Three illustrative applications are
taken into account: bilateral trade, auctions and insurance. In the second part of the chapter
these models are extended to the case of several principals who are uninformed and have no
private information but compete by designing mechanisms.

In Chapter 16 on moral hazard: base models and two extensions, Inés Macho-Stadler
and David Pérez-Castrillo analyze first the optimal contracts in static moral hazard situ-
ations, where the agent’s effort is not verifiable. Then, they present the main trade-offs
of the principal–agent model. Furthermore, they cover in detail the trade-off of incentives
(motivation) vs risk-sharing (efficiency), incentives vs rents (when the agent is protected by
limited liability), incentives to a task vs incentives to another (in a multitask situation), and
incentives to the agent vs incentives to the principal (when both exert a non-verifiable effort).
Finally, they discuss how the predictions of the classical moral hazard model are affected
when: (1) there are behavioral biases of individuals; and (2) in presence of a matching market.

In Chapter 17 on learning in markets, Amparo Urbano surveys the problem of market
learning as well as that of experimentation (or active market learning) in dynamic models
incorporating a Bayesian expectation revision mechanism. Through the lens of this perspec-
tive, she reviews the extensive literature on this topic. The experimentation literature has
by and large focused on broadly defined bandit models, and thus the starting point is the
monopolist experimentation with the classic two-armed bandit problem. The chapter extends
to surveying the impact of price competition on experimentation, the role of externalities in
social learning and learning in experience good markets.

In Chapter 18 on information sharing in oligopoly, Sergio Currarini and Francesco Feri
review the theoretical literature on information sharing in oligopoly and discuss some recent
contributions extending the traditional multilateral model to encompass the possibility of
bilateral sharing agreements. In the first part of the survey the authors revisit the early insights
of the literature, stressing the role of quantity vs price competition and of common vs private
values. In the second part, following some more recent contributions, they discuss the bilateral
model of information sharing, stressing the role of signals’ correlation for the emergence
of information sharing in equilibrium and its effect on the architecture of sharing networks.
Finally, they conclude the analysis by discussing the emergence of core–periphery networks
when firms possess asymmetric information.
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2. Strategic complementarities in oligopoly
Xavier Vives∗

1 INTRODUCTION

Oligopoly theory is closely connected with game theory. Indeed, oligopoly competition is
the leading example of strategic interaction and it should suffice to mention that Cournot’s
equilibrium concept is just the modern Nash equilibrium. Modeling strategic interaction
presents formidable problems as the founders of oligopoly theory (Cournot, Bertrand,
Edgeworth, Chamberlin, Robinson and Hotelling) made clear. The oligopoly problem was
to establish where prices would settle when market conditions were neither monopoly nor
perfect competition. Technical problems in the analysis include lack of quasi-concavity and
smoothness of payoffs, indivisibilities, and complex strategy spaces. A Nash equilibrium
may not exist, at least in pure strategies. Or, instead, there may be multiple equilibria: How
do players coordinate on one of them? How can policy intervention ensure that changing
a parameter will have the desired effect? Classical comparative statics analysis provides
ambiguous results in the presence of multiple equilibria and imposes strong regularity
conditions. These regularity conditions become particularly strong when applied to games
with complex functional strategy spaces, such as dynamic or Bayesian games.

Complementarities are intimately linked to multiple equilibria and have a deep connection
with strategic situations, and the concept of strategic complementarity is at the center stage
of game-theoretic analyses. Examples abound from price games with differentiated products,
R&D races, technology adoption, and store and brand location.

Lattice-theoretic methods provide the appropriate toolbox to deal with the problems
encountered in oligopoly theory, in particular when complementarities are involved. The
theory of monotone comparative statics and supermodular games exploits both order and
monotonicity properties (Topkis, 1978, 1979 and further developed and applied to economics
by Vives, 1985a, 1990a and Milgrom and Roberts, 1990). By now it has proved useful not
only in oligopoly theory but also in all fields of economics from macroeconomics and finance
to development and international trade. It continues to be extended at the frontier of research –
for example, to dynamic games and games of incomplete information.

Monotone comparative statics analysis provides conditions under which optimal solutions
to optimization problems move monotonically with a parameter. This approach exploits order
and monotonicity properties, in contrast to classical convex analysis. A central focus of
attention are games of strategic complementarities, where the best response of a player to
the actions of rivals is increasing in their level, and monotone comparative statics results
that allow the extension of the approach to more general games. In this chapter I provide an

∗ This chapter draws from my previous work on the topic, in particular the book Oligopoly Pricing (1999) and the
surveys in Vives (2005a, 2005b). I am grateful to project CECO2015-63711-P of the Spanish Ministry of Economy
and Competitiveness for support.
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10 Handbook of game theory and industrial organization: theory

introduction to this methodology and then apply it to the study of strategic interaction in the
presence of complementarities in oligopoly games.

The achievements of this approach are as follows. First, it provides a framework for
thinking rigorously about complementarities, identifying key parameters in the environment
(e.g., what are the critical properties of the payoffs and action spaces?). Second, it simplifies
the analysis, clarifying the drivers of the results (e.g., what regularity conditions are really
needed to obtain the desired comparative static results?). Third, it encompasses the analysis of
multiple equilibria situations by ranking equilibria and helping us to understand how potential
equilibria move with the parameters of interest. Finally, it easily incorporates complex strategy
spaces, including indivisibilities and functional spaces, such as those arising in dynamic
games and games of incomplete information. More specifically, the approach:

● ensures the existence of equilibrium in pure strategies (without requiring quasi-
concavity of payoffs or smoothness assumptions) in games of strategic complemen-
tarities and beyond;

● allows a global analysis of the equilibrium set, which has an order structure with
largest and smallest elements, equilibrium has useful stability properties, and there is
an algorithm to compute extremal equilibria;

● permits the use of monotone comparative statics analysis with minimal assumptions by
either focusing on extremal equilibria or considering best-response dynamics after the
perturbation; and

● extends results beyond the class of games with strategic complementarities.

However, we should be aware also that the lattice-theoretic approach is not a panacea and
cannot be applied to everything. Indeed, the approach builds on a set of assumptions.

The chapter provides an introduction to the tools of supermodular games and a range
of applications to industrial organization. Section 2 provides an introduction to the theory
and basic results. Section 3 provides applications to oligopoly and comparative statics in
the context of Cournot, Bertrand, R&D, advertising, multidimensional and multimarket
competition. Section 4 deals with dynamic games, studying entry, and characterizing strategic
incentives in two-stage and Markov games. Applications to menu and adjustment costs are
provided. Section 5 studies games of incomplete information, characterizing equilibria in
pure strategies and comparative statics properties, with applications (among others) to games
of voluntary disclosure and auctions. The Appendix provides a brief recollection of the most
important definitions and results of the lattice-theoretic method.

2 THE FRAMEWORK: SUPERMODULAR GAMES AND MONOTONE
COMPARATIVE STATICS

In this section we provide a brief introduction to the tools and main results of the theory
of monotone comparative statics and supermodular games. Those tools are based on lattice-
theoretic results that exploit order and monotonicity properties of action sets and payoffs.
Assumptions are put on strategy sets and payoffs so that best responses are increasing and
move monotonically with the parameters under study (following Topkis, 1978). Tarski’s
(1955) fixed-point theorem delivers the existence of equilibrium and orders properties of
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Strategic complementarities in oligopoly 11

the equilibrium set. This section provides the background to the rest of the chapter and the
Appendix contains technical definitions and intermediate results.1

For simplicity, I provide a definition of a supermodular game in a smooth context. Consider
a game (Ai,πi; i ∈ N), where N is the set of players, i = 1, . . . , n; for player i ∈ N , Ai is
the strategy set, a compact cube in Euclidean space, ai ∈ Ai, and πi his payoff (defined on
the cross-product of the strategy spaces of the players A). Let a−i denote the strategy profile
(a1, . . . , an) excepting the ith element, a−i ∈ ∏j �=i Aj . Let aih denote the hth component of the
strategy ai of player i. The game (Ai,πi; i ∈ N) is smooth supermodular if, for all i, πi (ai, a−i)

is twice continuously differentiable:

1. supermodular in ai for fixed a−i or ∂2πi/∂aih∂aik ≥ 0 for all k �= h; and
2. with increasing differences in (ai, a−i) or ∂2πi/∂aih∂ajk ≥ 0 for all j �= i and for all h

and k.

The game is smooth strictly supermodular if the inequality in (2) is strict. Condition (1) is a
complementarity property in own strategies: the marginal payoff to any strategy of player i is
increasing in the other strategies of the player. Condition (2) is a strategic complementarity
property in rivals’ strategies a−i: the marginal payoff to any strategy of player i is increasing
in any strategy of any rival player.

In a supermodular game, general strategy spaces can be allowed, including indivisibilities
as well as functional strategy spaces, such as those arising in dynamic or Bayesian games
(as we will see in Sections 4.3 and 5). Regularity conditions (such as concavity and interior
solutions) can be dispensed with.2

In a supermodular game each player i has a largest,� i (a−i) = sup�i (a−i), and a smallest,
� i (a−i) = inf�i (a−i), best reply and they are increasing in the strategies of the other players.
If the game is strictly supermodular, then any selection from the best-reply correspondence is
increasing.3

The (weaker) concept of game of strategic complementarities (GSC), under our maintained
assumptions, is a game where: (a) strategy sets are compact cubes (or “complete lattices”);
(b) the best reply of any player has extremal (largest and smallest) elements; and (c) those
extremal elements are increasing in the strategies of rivals. Similarly, a game of strict strategic
complementarities would have, in addition, that any selection from the best reply of any player
is increasing in the strategies of the rivals.4 The results stated below will hold, replacing
(strictly) supermodular game by GSC (game of strict SC).

The following results in Sections 2.1–2.4 hold in a supermodular game. Let � =(
�1, . . . ,�n

)
and � = (

�1, . . . ,�n

)
denote the extremal best-reply maps. Consider as a

maintained example a Bertrand oligopoly with differentiated gross substitutable products,
with each firm producing a different variety and constant marginal costs.

1 See Chapter 2 of Vives (1999) and Topkis (1998) for a more thorough treatment.
2 In the general formulation of a supermodular game, strategy spaces need only be “complete lattices,” only

continuity (not differentiability) of payoffs is needed, and properties (1) and (2) are stated in non-differential terms.
A continuity requirement is needed to ensure the existence of best replies. See the Appendix for the general definitions
of lattices, supermodularity, increasing differences, and supermodular game.

3 The basic monotone comparative statics result states that the set of optimizers of a function u(x, t) that is
parameterized by t, supermodular in x, and with increasing differences in x and t has a largest and a smallest element
and that both are increasing in t. See Lemma 1 in the Appendix for a precise statement of the result.

4 This definition was used in Vives (1985a). See the Appendix for a more formal definition along those lines.
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2.1 Existence and Characterization of the Equilibrium Set

There always exist extremal equilibria in a supermodular game: a largest equilibrium a =
sup

{
a ∈ A : � (a) ≥ a

}
and a smallest equilibrium a = inf

{
a ∈ A : � (a) ≤ a

}
of the

equilibrium set (Topkis, 1979).5

In the Bertrand oligopoly when the payoffs fulfill the complementary conditions (to be
discussed in Section 3.1) then it follows that extremal price equilibria do exist.

Symmetric games Consider a symmetric supermodular game (exchangeable against permu-
tations of the players), then:6

● The extremal equilibria a and a are symmetric. Hence, if there is a unique symmetric
equilibrium then the equilibrium is unique (since a = a). This result proves useful,
for example, to show uniqueness in standard versions of symmetric Bertrand oligopoly
models.

● All equilibria are symmetric equilibria if the game is strictly supermodular and the
strategy spaces of the players are one-dimensional (or, more generally, completely
ordered).

Welfare In a supermodular game, if the payoff to a player has positive spillovers (i.e., it is
increasing in the strategies of the other players) then the largest (resp., smallest) equilibrium
point is the Pareto best (resp., worst) equilibrium. This is at the basis of finding equilibria that
can be Pareto ranked in games with strategic complementarities (Milgrom and Roberts, 1990,
Vives, 1990a). For example, in the Bertrand oligopoly case, the profits associated with the
largest price equilibrium are also the highest for every firm.

2.2 Stability and Rationalizability

In a supermodular game with continuous payoffs:

1. Simultaneous response best-reply dynamics (Vives, 1990a):

– approach the “box”
[
a, a

]
defined by the smallest and the largest equilibrium points of

the game;
– converge monotonically downward (upward) to an equilibrium when starting at any

point in the intersection of the upper (lower) contour sets of the largest (smallest) best
replies of the players A+ ≡ {

a ∈ A : � (a) ≤ a
}

(A− ≡ {
a ∈ A : � (a) ≥ a

}
).

2. The extremal equilibria a and a correspond to the largest and smallest serially undomi-
nated strategies (Milgrom and Roberts, 1990).

5 The result is shown by applying Tarski’s fixed-point theorem (which implies that an increasing function from a
compact cube into itself has a largest and a smallest fixed point; see Appendix) to the extremal selections of the best-
reply map� and�, which are monotone by the strategic complementarity assumptions. There is no reliance on quasi-
concave payoffs and convex strategy sets to deliver convex-valued best replies, as is required when showing existence
using Kakutani’s fixed-point theorem. Furthermore, the equilibrium set of a supermodular game is a complete lattice
(see Vives, 1985a, 1990a, Problem 2.5 in Vives, 1999, and Zhou, 1994).

6 See Vives (1985a, 1999).
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Strategic complementarities in oligopoly 13

This result implies that all relevant strategic action is happening in the box
[
a, a

]
defined by the

smallest and largest equilibrium points.7 Results extend to a large class of adaptive dynamics,
of which best-reply dynamics are a particular case. A corollary is that if the equilibrium is
unique then it is globally stable and dominance solvable. An example is the Bertrand oligopoly
market with linear, constant elasticity, or logit demands, where the equilibrium is unique.

2.3 Comparative Statics

Consider an n-player supermodular oligopoly game with payoff for firm i, πi (ai, a−i; t),
parameterized by a vector t = (t1, . . . , tn). If πi has increasing differences in (ai, t) (i.e.,
∂2πi/∂aih∂tj ≥ 0 for all h and j ) then with an increase in t:

(i) the largest and smallest equilibrium points increase; and
(ii) starting from any equilibrium, best-reply dynamics lead to a (weakly) larger equilibrium

following the parameter change.8

Increasing actions by one player reinforce the desire of all other players to increase their
actions, and the increases are mutually reinforcing (i.e., they exhibit positive feedback). We
can think in terms of multiplier effects as pointed out in Vives (2005a). Indeed, a multiplier
effect in the parameter tj obtains if the equilibrium reaction of each player to a change in the
parameter is strictly larger than the reaction of the player keeping the strategies of the other
players constant. This will happen, for example, in a smooth strictly supermodular game with
one-dimensional strategy spaces for which ∂2πi/∂ai∂tj ≥ 0 with strict inequality for at least
one firm if we consider extremal equilibria (or following best-reply adjustment dynamics after
a parameter change).9

As an example consider the Bertrand oligopoly fulfilling the complementarity conditions.
There, extremal equilibrium price vectors will be increasing in an excise tax t since
∂2πi/∂pi∂t > 0 whenever demand is strictly downward sloping.

Multiplier effects can be related to the LeChatelier-Samuelson principle in a strategic
environment. This principle states that the response of an agent to a shock will be smaller in
the short run than in the long run when other related actions can also be adjusted. Alexandrov
and Bedre-Defolie (2017) show, indeed, that the principle holds for extremal equilibria of
supermodular games as in the result both for idiosyncratic and common shocks; and in other
games under more restrictive conditions for idiosyncratic shocks.10

In games with strategic complementarities, we have a multidimensional global version of
Samuelson’s (1979) correspondence principle. This principle links unambiguous comparative
statics with stable equilibria and is obtained with standard calculus methods applied to interior
and stable one-dimensional models. In GSC, unambiguous monotone comparative statics
obtain if we concentrate on stable equilibria.

7 For example, rationalizable outcomes (Bernheim, 1984, Pearce, 1984) and supports of mixed-strategy and
correlated equilibria must lie in the box

[
a, a

]
.

8 The result holds for a class of adaptive dynamics, including fictitious play and gradient dynamics. Furthermore,
continuous equilibrium selections that do not increase monotonically with t predict unstable equilibria (Echenique,
2002). The comparative statics result is generalized in Milgrom and Shannon (1994).

9 See Peitz (2000) for sufficient conditions for a price game to display multiplier effects.
10 See also Milgrom and Roberts (1996).

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

14 Handbook of game theory and industrial organization: theory

2.4 Duopoly with Strategic Substitutability

Consider a duopoly (n = 2) where there is (a) strategic complementarity in own strategies,
with πi supermodular in ai or ∂2πi/∂aih∂aik ≥ 0 for all k �= h, and (b) strategic substitutability
in rivals’ strategies, with πi with decreasing differences in

(
ai, aj

)
or ∂2πi/∂aih∂ajk ≤ 0 for all

j �= i and for all h and k. Then the transformed game with new strategies s1 = a1 and s2 = −a2
is (smooth) supermodular (Vives, 1990a). It follows that all the results stated previously apply
to this duopoly game as well. However, the extension to the strategic substitutability case for
n players does not apply since the transformation does not work for n > 2.

A typical example is a Cournot duopoly with gross substitutes, where typically – but not
always – best replies are decreasing. In this case, if for some players payoffs are increasing in
the strategies of rivals and for other players they are decreasing, then the largest equilibrium
is best for the former and worst for the latter. We have that the preferred equilibrium for a firm
is the one in which its output is largest and the output of the rival lowest.

2.5 Extensions to Non-supermodular Games

Totally ordered strategy spaces For totally ordered strategy spaces (e.g., one-dimensional,
say a subset of the real line) existence of symmetric equilibrium in n-player games can
be obtained, relaxing the monotonicity requirement of best responses (which characterizes
supermodular games). The result follows from Tarski’s intersection point theorem11 between
a quasi-increasing function and a quasi-decreasing function when they both have the same
domains and ranges (which are totally ordered) and the first starts above and ends below the
second. A quasi-increasing function cannot have jumps down and, under the assumptions,
will necessarily have an intersection with a quasi-decreasing function (which cannot have
jumps up). The result can be used to show existence of symmetric Cournot equilibrium since
the identity function (the 45o line) is quasi-decreasing (the theorem is then a fixed-point
theorem for quasi-increasing functions). The first result has been successively rediscovered in
economics to show existence of equilibrium in a class of symmetric Cournot games starting
with the work of McManus (1962, 1964), Roberts and Sonnenschein (1976), and Milgrom
and Roberts (1994).

The result can also be used to show existence of equilibrium in two-player asymmetric
games by applying the fixed-point theorem to the composition of the best replies assuming
one is quasi-increasing and the other continuous and increasing (noting that the composition
of the two functions will be itself quasi-increasing). This situation, where one player
displays continuous strategic complementarity and the other limited strategic substitutability,
is considered by Amir and De Castro (2017).12

Aggregative games Results can be extended to aggregative games where the payoff to a
player depends on his strategy and an aggregator (typically an additive separable function)
of the strategies of all the players. A key tool is the cumulative best reply (or backwards
response correspondence) of a player introduced by Selten (1970) and used by Bamon and

11 Tarski (1955). See the Appendix and Section 2.3.1 in Vives (1999).
12 The results also apply to the dual case where the best reply of one player is continuous and decreasing and of

the other quasi-decreasing.
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Strategic complementarities in oligopoly 15

Frayssé (1985) and Novshek (1985) to show existence of a Cournot equilibrium when outputs
are strategic substitutes and best-reply correspondences are decreasing (see Theorem 2.7 in
Section 2.3.2 of Vives, 1999, Kukushkin, 1994, and Chapter 4 by Jensen in this Handbook).
For example, consider a symmetric n-player game where for each player the strategy space
is a compact interval of the realms and the payoff depends only on his own strategy and
the aggregate strategy of the rivals. Then if the best reply of a player has no jumps down,
symmetric equilibria exist.13 In this approach uniqueness of equilibrium is obtained with
the requirement that best-reply correspondences (depending on a linear aggregate of the
strategies of rivals) have slopes strictly larger than −1 (see Theorem 2.8 in Section 2.3.2
of Vives, 1999). Under smoothness and regularity conditions (“nice aggregative games”,
see Jensen, Chapter 4 in this Handbook, which require concavity assumptions) existence of
equilibrium and monotone comparative statics results are obtained without substitutability or
complementarity requirements.

Large games The results obtained so far apply also to large games (e.g., non-atomic
games with a continuum of players) with some technical caveats. In this case existence of
equilibrium can be shown under standard continuity and compactness requirements without
requiring quasi-concavity or supermodularity of payoffs because of the convexifying effect
of the continuum of players, formulation (see Schmediler, 1973). For example, consider our
definition of a GSC and note that it applies to games with an infinite number of players (be it
countable or uncountable).

2.6 The Scope of the Theory

If not everything is a game of strategic complementarities, where are the bounds of the theory?
If we take the view that the order of the strategy spaces is part of the description of the game or
that there is a “natural” order in the strategy spaces, then there are many games that are not of
strategic complementarities (as we will see in the next section). In many games, best responses
are non-monotone, e.g., they are increasing in a part of the strategy space and decreasing in
another. However, if we take the view that the order of the strategy sets of the players is
a modeling choice at the convenience of the researcher (and this is what we have done to
extend the reach of the theory to duopolies with strategic substitutes) the answer may be
different. In fact, if we allow the construction of this order ex post, with knowledge of the
equilibria of the game, then most games are of strategic complementarities. To put it another
way, complementarities alone, in the weak stated sense, do not have much predictive power
unless coupled with additional structure (Echenique, 2004a). However, this procedure, with a
priori knowledge of the equilibria and the defined order, may not be “natural.”

13 The argument is simple. Let πi (ai, a−i) = π
(

ai,
∑

j�=i aj

)
for any i, as in a Cournot game with homogeneous

product and identical cost functions. Existence of symmetric equilibria follows then from the stated result if the best-
reply �i of a player (identical for all i due to symmetry) has no jumps down. This is in fact true if costs are convex

in the Cournot game. Symmetric equilibria are given by the intersection of the graph of ai = �i

(∑
j�=i

)
aj with the

line ai =
(∑

j�=i aj

)
/ (n − 1).
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16 Handbook of game theory and industrial organization: theory

3 STATIC OLIGOPOLY GAMES AND COMPARATIVE STATICS

This section provides a brief review of some of the basic applications to static models
of oligopoly competition. It surveys Cournot and Bertrand markets, including comparative
statics results, patent races, and multidimensional competition (including extensions of the
methods to games that do not display global complementarities). The analysis highlights
the power and applicability of the approach.

3.1 Cournot and Bertrand Markets

Leading oligopoly models fit, in natural but not universal specifications, the assumptions
made in supermodular games. This is the case for a Cournot oligopoly with complementary
products. In this case, the strategy sets are compact intervals of quantities and the comple-
mentarity assumptions are natural. A second case is a Bertrand oligopoly with differentiated
substitutable products, with each firm producing a different variety. The demand for variety i
is given by Di (pi, p−i), where pi is the price of firm i and p−i denotes the vector of the prices
charged by the other firms. A linear demand system with gross substitutes will satisfy the
complementarity assumptions.

Considering increasing transformations of the payoffs the application of the theory is
extended (since this operation does not change the equilibrium set of the game). The game
is log-supermodular if πi ≥ 0 and if logπi fulfills the complementarity conditions (1) and
(2) of Section 2. In the Bertrand oligopoly example, πi = (pi − ci)Di (pi, p−i), where ci is
the constant marginal cost, is log-supermodular in (pi, p−i) whenever ∂2 log Di/∂pi∂pj ≥ 0.
This holds when the own-price elasticity of demand ηi is decreasing in p−i, as with constant
elasticity, logit, or constant expenditure demand systems.14 However, not all Bertrand games
with product differentiation are supermodular games. Examples include games with payoffs
that are not single-peaked as well as with avoidable fixed costs, and the Hotelling model
where firms are located close to each other. In those cases, at some point best replies jump
down and a price equilibrium (in pure strategies) fails to exist.15 Even with goods that are
gross substitutes, prices may not be strategic complements since the own-price elasticity of
demand need not decrease in the prices charged by rivals.16 An instance where strategic price
substitutability among prices may arise is in the presence of strong network externalities.17

Furthermore, even a linear Bertrand oligopoly game with continuous best replies and more
than two firms need not be supermodular or satisfy single-crossing conditions when demands
have kinks and some firms may not produce.18

14 See Chapter 6 of Vives (1999).
15 See Roberts and Sonnenschein (1977), Friedman (1983), and Vives (1999, Sec. 6.2). However, in the modified

Hotelling game in Thisse and Vives (1992) best responses may be discontinuous but are increasing.
16 A price increase by rival j may lead to an increase in the own-price elasticity of demand for firm i because

it makes consumers of brand i who do not have a strong preference for any product – that is, who are more price
sensitive – more willing to switch brands (see Berry, Levinsohn, and Pakes, 1999 for some empirical support for this
effect).

17 For example, in the logit model with network externalities (Anderson, De Palma, and Thisse, 1992, Ch. 7),
increasing the price set by a rival raises the value for consumers of the network of firm i, so it may pay this firm to
cut prices in order to increase this lead if network externalities are large enough.

18 See Cumbul and Virág (2014).
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Strategic complementarities in oligopoly 17

The lattice-theoretic methods can be further extended to non-supermodular price games.
Consider, for example, a Bertrand duopoly with differentiated gross substitute products where
firm 1 has concave costs (increasing returns) and supermodularity fails with competition being
of the “strategic quasi-substitutability” type (that is, demands are such that the best reply of
firm 2 is continuous and decreasing, and that of firm 1 is quasi-decreasing). In this case an
equilibrium exists using Tarski’s intersection point theorem (see Appendix). Another example
is provided by the mixed price–quantity duopoly of Singh and Vives (1984) where firm 1 is
a price setter and firm 2 a quantity setter. Assume constant marginal costs and suppose that
demands are such that the payoff of firm 1 in quantities is submodular and the payoff of firm
2 in prices is supermodular and quasi-concave in own price. Then the mixed duopoly displays
“strategic quasi-complementarity” (with the best reply of firm 1 quasi-increasing and the best
reply of firm 2 continuous and increasing), and an equilibrium exists (generalizing the results
of Singh and Vives, 1984 with continuous best replies).19

3.1.1 Comparison of Cournot and Bertrand equilibria
Consider the n-firm Bertrand oligopoly case with firm i producing qi of variety i at cost Ci (qi).
In the Bertrand game firms compete in prices and πi = piDi (pi, p−i)−Ci (Di (pi, p−i)). If firms
compete in quantities in the same market then profits for firm i are given by Pi (qi, q−i) qi −
Ci (qi), where Pi (qi, q−i) is the inverse demand for firm i. The lattice-theoretical approach
makes precise in what sense Bertrand equilibria are more competitive than Cournot equilibria
and what drives the result. With gross substitute, or complementary products, if the price
game is supermodular and quasi-concave (that is, πi is quasi-concave in pi for all i) then
at any interior Cournot equilibrium prices are higher than the smallest Bertrand equilibrium
price vector. A dual result holds also. With gross substitute, or complementary, products,
if the quantity game is supermodular and quasi-concave, then at any interior Bertrand
equilibrium outputs are higher than the smallest Cournot equilibrium quantity vector (Vives,
1985b, 1990a).

3.1.2 Comparative statics in Cournot markets
The standard Cournot game displays strategic substitutability and, therefore, the game is
supermodular only in the duopoly case (by changing the sign of the strategy space of
one player), as discussed in Section 2.4. We can also obtain results with n firms with the
lattice-theoretic approach even if the game is not supermodular. The standard approach
(Dixit, 1986) assumes quasi-concavity of payoffs, downward-sloping best replies, and that the
equilibrium analyzed is unique and stable to derive comparative statics results. The classical
approach has several problems. First of all, it requires unnecessary regularity conditions
to deliver results. Second, it is silent when payoffs are not quasi-concave. Third, it is
problematic for comparative static analysis when there are multiple equilibria. For example,
if the uniqueness condition for symmetric equilibria does not hold and there are multiple
symmetric equilibria, changing n may either cause the equilibrium considered to disappear or
introduce more equilibria.20

19 See Section 2.5 and Amir and De Castro (2017).
20 See Amir (1996a), Vives (1999), Amir and Lambson (2000) and Chapter 3 by Amir in this Handbook for the

results.
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18 Handbook of game theory and industrial organization: theory

3.1.3 Monopolistic competition
Monopolistic competition is characterized by firms that are negligible with respect to the
overall market but still retain market power on the differentiated product supplied. The
appropriate modeling of such a situation is with a continuum of firms each supplying a
product. Whenever the complementarity assumptions are fulfilled the price game will be
supermodular and the results of Section 2 will apply (and, indeed, even with heterogeneous
firms, e.g., Yang and Qi, 2014). It is worth noting that in monopolistic competition, and with
no uncertainty, Cournot and Bertrand equilibria deliver the same outcome (that is, quantity or
price competition are equivalent; see Section 6.6 in Vives, 1999).21

3.2 Patent Races

Consider an n-firm oligopoly engaged in a memoryless patent race. All firms have access
to the same R&D technology. An innovating firm obtains prize V and losers obtain nothing.
If a firm spends x continuously then the (instantaneous) probability of innovating is given by
h (x) (where h is a smooth concave function with h (0) = 0, and h′ > 0, limx→∞ h′ (x) = 0,
h′ (0) = ∞, a region of increasing returns for small x may be allowed). With no innovation, the
normalized profit of firms is null. We have then that the expected discounted profits (at rate r)
of firm i investing xi if rival j invests xj is

πi = h (xi)V − xi

h (xi)+
∑

j �=i h
(
xj
)+ r

.

The best response of a firm by xi = R
(∑

j �=i h(xj)+ r
)

is well defined under the assumptions.

Restricting attention to symmetric Nash equilibria of the game, under a stability condition
at a symmetric equilibrium x∗, R′ ((n − 1) h (x∗)) (n − 1) h′ (x∗) < 1, x∗ increases with n
(Lee and Wilde, 1980). However, this approach requires assumptions to ensure a unique and
stable symmetric equilibrium and cannot rule out the existence of asymmetric equilibria.
Alternatively, the following mild assumptions, h (0) = 0 and h is strictly increasing in
[0, x], with h (x)V − x < 0 for x ≥ x > 0, ensure that the game is strictly log-supermodular.
It follows then from Section 2.1 that equilibria exist and are symmetric. It follows that at
extremal equilibria the expenditure intensity x∗ is increasing in n (strictly if h is smooth with
h′ > 0 and h′ (0) = ∞). Furthermore, starting at any equilibrium, an increase in n will raise
the research intensity, with out-of-equilibrium adjustment according to best-reply dynamics.
This will be so even if some equilibria disappear or new ones appear as a result of increasing n.

3.3 Multidimensional Competition

The lattice-theoretic approach can readily handle multidimensional strategy spaces. I consider
Cournot competition with cost reduction, advertising and pricing, and multimarket oligopoly.

21 See Thisse and Uschev, Chapter 5 in this Handbook for a survey of monopolistic competition models. Vives
(1985b) and Gabaix, Laibson, and Li (2016) provide approximations of margins in large monopolistically competitive
markets.
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Strategic complementarities in oligopoly 19

3.3.1 Cournot competition with cost reduction
Consider an n-firm Cournot market for a homogeneous product with smooth inverse demand
P (·), P′ < 0. Firm i can invest zi to reduce its constant marginal cost of production ci

according to a smooth function ci = c (zi) with c (z) > 0, c′ (z) < 0, and c′′ (z) > 0 for
all z > 0. The profit to firm i is given by

πi = P (Q) qi − c (zi) qi − zi,

where qi is the output of the firm and Q is total output. Firms simultaneously choose output
and cost-reduction effort. Using lattice-theoretic methods we do not need to invoke regularity
conditions to obtain the existence of equilibrium and comparative statics results on the number
of firms, as long as we restrict attention to extremal equilibria. Under the assumptions plus
some mild boundary conditions interior extremal equilibria (q∗, z∗) exist and q∗ and z∗ are
strictly decreasing (increasing) in n if Cournot best replies are strictly decreasing (increasing)
(Vives, 2008a).

3.3.2 Advertising, prices, and quantities
I examine complementarities between advertising and other strategic variables, considering
first a price game and then a quantity and cost-reduction game, both with differentiated
products.

In the price game the demand of firm i Di (p; ti) increases on advertising effort ti, ∂Di/

∂ti > 0 with cost Fi (ti) and F′
i > 0, so that πi = (pi − ci)Di (p; ti) − Fi (ti). Suppose that

goods are gross substitutes, ∂Di/∂pj ≥ 0 for j �= i, and that demand is downward sloping,
∂Di/∂pi < 0. The action of the firm is ai = (pi, ti), lying in a compact rectangle. A sufficient
condition for πi to be strictly supermodular in ai is that ∂2Di/∂pi∂ti ≥ 0 since

∂2πi

∂pi∂ti
= (pi − ci)

∂2Di

∂pi∂ti
+ ∂Di

∂ti
> 0.

The condition requires advertising to increase customers’ willingness to pay. If ∂2Di/

∂pi∂pj ≥ 0 for j �= i (noting that ∂Di/∂pi∂tj = 0, j �= i), πi has increasing differences
in ((pi, ti) , (p−i, t−i)). Under these assumptions, the game is supermodular and the largest
(smallest) equilibrium displays high (low) prices and high (low) advertising levels. In a sym-
metric model and with a linear demand system, multiple equilibria obtain, with ti increasing
the demand intercept if F′ is concave enough. Under these conditions high advertising levels
are associated with high prices.

Immordino (2009) considers a Cournot oligopoly with differentiated product launching.
Consumers become aware of the products via advertising and firms decide simultaneously
on production, advertising expenditure and cost-reducing investment. It is assumed that
consumers with higher willingness to pay are more likely to be receptive to advertising; that
marginal consumer awareness is increasing in advertising effort; that the consumer awareness
of product i decreases in the intensity of advertising of firm j, and the marginal effectiveness
of the advertising of firm i is decreasing in the advertising effort of firm j. Furthermore, the
marginal cost of advertising is decreasing by using more specialized media. It is shown that
in a strategic substitutes duopoly where firm i benefits from the improvements in advertising
technology, but not firm j, all strategic variables at extremal equilibria increase in targeted
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20 Handbook of game theory and industrial organization: theory

advertising for firm i and decrease for firm j. In an oligopoly with complementary products
(and where consumer awareness of product i increases in the intensity of advertising of firm
j, and the marginal effectiveness of the advertising of firm i is increasing in the advertising
effort of firm j) and strategic complements, all variables at extremal equilibria increase with a
move towards targeted advertising.

3.3.3 Multimarket oligopoly
The approach allows the study of multiproduct firms and even of price games that are neither
supermodular nor log-supermodular. I provide three applications: multimarket oligopoly
pricing, two-sided markets, and the pricing of components.

Multimarket oligopoly In a standard multiproduct logit oligopoly pricing model best
responses are increasing and there is a unique Bertrand equilibrium despite the fact that pay-
offs are single-peaked (not quasi-concave) and neither supermodular nor log-supermodular
in own actions or prices (Spady, 1984). However, strategic complementarity across prices of
different firms holds. A similar, and more general, result is obtained by Nocke and Schutz
(2015) who, using a discrete/continuous choice framework with independent and identically
distributed (IID) type 1 extreme-value taste shocks, introduce a class of demand systems
for multiproduct firms that nests the cases of multinomial logit and constant elasticity of
substitution (CES).22 The demand for product k ∈ N, where N is the set of differentiated

products, is given by Dk (p) = −h′
i(pi)∑

j∈N hj(pj)
where p ∈ RN++, h′

j < 0 and hj is log convex. The

set of firms is a partition N. Suppose that firm i produces goods in the set Ni. With constant
(and positive) marginal costs this defines an aggregative pricing game since the profit of firm
i depends only on (pk)k∈Ni

and on H ≡ ∑
j∈N hj

(
pj
)
. Under the assumption that the relative

degree of convexity of hj is non-decreasing in price23 a Bertrand equilibrium exists (and it is
unique under stronger conditions). The result is obtained even though profits are not quasi-
concave in own prices, but they are single-peaked, and the price game is not supermodular.
Monotone comparative static results can be derived at extremal equilibria (with largest and
smallest H). For example, with an increasing outside option H0 at extremal equilibria, profits
and prices of all firms decrease and consumer surplus increases (with expansion of the
set of products sold). With CES demands, an algorithm to compute the price equilibrium
with multiproduct firms is provided. The results allow the characterization of the dynamic
optimality of myopic merger policy.

A multimarket mixed oligopoly featuring products demand complements within the firm
and substitutes across firms provides another example. This situation obtains in two-sided
markets, where two groups of market participants benefit from interaction via a platform or
intermediary, or when final products are combinations of components.

22 The authors also show that these demand systems are integrable with quasi-linear preferences.
23 In the monopolistic competition case where H is taken as given this corresponds to a non-decreasing perceived

price elasticity of demand.
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Strategic complementarities in oligopoly 21

Two-sided exclusive intermediation Consider two groups of participants in platforms24

where each participant joins one of the two existing intermediaries. The utility derived by
a member of a group from joining a particular intermediary is increasing in the number
of members of the other group joining the same intermediary. With linear demands arising
from Hotelling-type preferences for the intermediaries, we have that prices charged by
intermediaries are strategic complements across firms but strategic substitutes within the
firm. The multimarket oligopoly game is therefore not a supermodular game. However, best
replies will be increasing as long as the demand complementarity among the products of the
same platform/intermediary is not very strong. With linear demands and small and symmetric
network effects, best replies are increasing and there is a unique symmetric equilibrium.

Pricing of components Consider now a situation where each of a finite set of end products
uses one or more components and where no two products share a component. Each component
is produced by a separate monopolist who sets its price, and the price of a product is the sum
of the prices of its components. The price game is not supermodular since the prices of the
different components are strategic substitutes. However, Quint (2014) provides conditions on
the distribution of consumer valuations for a discrete-choice demand system to yield demand
for each product that is log-concave in price, and has log-increasing differences in own and
another product’s price. This leads to the consideration of an auxiliary game in product prices,
with an equilibrium directly linked to the equilibrium of the pricing components game, which
is supermodular and from which we can derive comparative static properties in terms of costs,
qualities and entry of new products, as well as derive the effects of mergers between firms.
The results apply to retail competition, licensing of intellectual property, and patent pools.

4 DYNAMIC GAMES

This section examines dynamic games, building on the stated comparative statics results.
I examine entry, a generalization of the taxonomy of strategic behavior of Fudenberg
and Tirole (1985), conditions under which increasing or decreasing dominance occurs
in oligopoly, and Markov games and Markov perfect equilibria (MPE). I characterize
conditions for dynamic strategic complementarity and the link between static and dynamic
complementarities, and the existence of MPE.

4.1 Entry

Consider a two-stage game where first firms decide whether to enter or not in the market,
paying an entry cost, and then compete in quantities, and study subgame-perfect equilibria.
Amir, De Castro, and Koutsougeras (2014) extend the Mankiw and Whinston (1986) excess

24 Examples are numerous and include readers/viewers and advertisers in media markets, cardholders/consumers
and merchants/retailers in payment systems such as credit cards, consumers and shops in shopping malls, authors
and readers in academic journals, borrowers and depositors in banking, “subscription to a network” and “number
of calls made to a network” in telecom markets, and in general buyers and sellers put together with the help of
intermediaries (in real estate, financial products, or auction markets). The interaction between the two sides gives rise
to complementarities or externalities between groups that are not internalized by end users. See Armstrong (2006)
for a survey of two-sided competition.
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22 Handbook of game theory and industrial organization: theory

entry results in symmetric Cournot oligopoly with free entry to allow for limited increasing
returns to scale using lattice-theoretic methods. The authors assume that inverse demand is
downward sloping (P′ < 0) and costs are strictly increasing (C′ > 0), and both smooth,
with −P′ + C′′ > 0, and price is below average cost for high enough outputs. Under the
assumptions, Cournot extremal equilibria exist for any n and the authors show that there is
excessive entry in the sense that at most there is one firm too few in the market solution (with
respect to the structural second best where the number of firms is decided by the planner)
whenever there is business stealing. This is always the case when outputs are globally strategic
substitutes. When −P′ + C′′ < 0 then only one firm should enter but the market solution will
allow entry (weakly) more and with no entry cost it would allow entry of an infinite number
of firms.

Anderson, Erkal, and Piccinin (2016) study free entry in aggregative oligopoly games with
potentially asymmetric firms (including potential asymmetric entry costs).25 They make the
observation that a Bertrand pricing game is aggregative if demands satisfy the independence of
irrelevant alternatives (IIA) property, e.g., CES or logit (the converse assertion is not true). The
authors derive neutrality results (where the aggregate stays the same) across market structures
and the corresponding policy implications for merger analysis.

Mrazova and Neary (2016) study selection effects with heterogeneous firms in the decision
of whether and how to enter a market using lattice-theoretic methods. They find that
“first-order” selection effects (in terms of firms entering or not) are very robust while “second-
order” effects (in terms of the entry mode, exporting or foreign direct investment [FDI],
conditional on entry) are much less so. More efficient firms select the entry mode with lower
market-access costs if firms’ profits are supermodular in production and market-access costs
but need not do so otherwise. The authors derive microfoundations for supermodularity to
hold in a range of standard models and show how supermodularity may fail with FDI when
demands are less convex than CES, with fixed costs increasing with productivity, and with
threshold effects in R&D (that is, when the average cost function is first convex and then
concave in investment).

4.2 Taxonomy of Strategic Behavior

The taxonomy of strategic behavior provided by Fudenberg and Tirole (1984) in the context
of a two-stage game between an incumbent (firm 1) and an entrant (firm 2) illustrates the use
of the approach. At the first stage the incumbent can make an observable investment t. The
incumbent can influence the market outcome at the second stage by affecting the equilibrium
behavior of the rival at the second stage. At the (market) stage payoffs are, respectively,
π1 (a1, a2; t) and π2 (a1, a2) where ai is the market action of firm i. We want to sign the
strategic effect, taking as benchmark behavior where the incumbent when deciding about t
only takes into account the direct effect of the investment on his payoff. This corresponds
to the open-loop equilibrium of the two-stage game, which is equivalent to the game with
simultaneous choice by the incumbent of t and a1.

The standard approach assumes that at the second stage there are well-defined best-response
functions for both firms, and that there is a unique and (locally) stable Nash equilibrium that
depends smoothly on t, a∗ (t). A taxonomy of strategic behavior (see Table 2.1) can be

25 See Corchón (1994) for an early analysis and Chapter 11 by Polo in this Handbook.
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Strategic complementarities in oligopoly 23

Table 2.1 Taxonomy of strategic behavior

Investment makes player 1:

Tough Soft

Strategic Substitutes Overinvest (top dog) Underinvest (lean and hungry)
Strategic Complements Underinvest (puppy dog) Overinvest (fat cat)

provided depending on whether competition is of the strategic substitutes
(
∂2π2
∂a1∂a2

< 0
)

or complements
(
∂2π2
∂a1∂a2

> 0
)

variety and on whether investment makes firm 1 soft(
∂π1
∂a2

∂2π1
∂t∂a1

> 0
)

or tough
(
∂π1
∂a2

∂2π1
∂t∂a1

< 0
)

.26 The top dog strategy obtains if competition

is of the strategic substitutes type and investment makes firm 1 tough, then the incumbent
wants to overinvest to push the entrant down his best-response curve. Cournot competition and
investment in cost reduction are an example. The puppy dog strategy obtains if competition
is of the strategic complements type and investment makes firm 1 tough, then the incumbent
wants to underinvest to move the entrant up his best-response curve. Price competition with
differentiated products and investment in cost reduction provide an example. We can define
similarly the strategies “lean and hungry” and “fat cat”.

The taxonomy follows from minimal assumptions, the character of competition and
investment, as applied to extremal equilibria in the lattice-theoretic version of the result
(Section 7.4.3, Vives, 1999) with no need to impose strong restrictions to obtain a unique
and stable equilibrium at the market stage. Indeed, if the market game is supermodular and
∂2π1/∂a1∂t ≥ 0 then extremal equilibria are increasing in t. If the game is of strategic
substitutes (submodular) then extremal duopoly equilibrium strategies for firm 1(2) are
increasing(decreasing) in t if ∂2π1/∂a1∂t ≥ 0 . The results are reversed if ∂2π1/∂a1∂t ≤ 0.

The taxonomy follows for extremal equilibria: sign
∂a∗

2
∂t = sign

(
∂2π2
∂a1∂a2

∂2π1
∂t∂a1

)
when a∗

2 is

an extremal equilibrium. What if at the market stage firms are sitting on a non-extremal
equilibrium? Then if out of equilibrium adjustment is governed by best-reply dynamics the
sign of the impact of a change in t is the same as with an extremal equilibrium.

4.3 Markov Games

We explore in this section dynamic complementarities and their relation to static ones in
discrete-time Markov games. A Markov strategy depends only on state variables that condense
the direct effect of the past on the current payoff. Denote by πi (x, y) the current payoff of
player i, where x is the current action profile vector and y is the state that evolves according to
the law of motion y = f (x−, y−), with x− and y− (respectively) the lagged action profile vector
and the lagged state. A Markov perfect equilibrium (MPE) is a subgame-perfect equilibrium
in Markov strategies. That is, an MPE is a set of strategies optimal for any firm, and for any
state of system, given the strategies of rivals.

26 Indeed, if ∂πi
∂aj

< 0, j �= i, an increase in the market action of firm j hurts firm i, and if ∂2π1
∂t∂a1

> 0 an increase in
t will shift the best-response function of firm 1 out and this will represent an aggressive move.
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24 Handbook of game theory and industrial organization: theory

Let us speak of “contemporaneous” strategic complementarity (SC) when the value func-
tion at an MPE Vi (y) displays SC (Vi has increasing differences in (yi, y−i)). “Intertemporal”
SC obtains when a player raising her state variable today increases the state variable of her
rival tomorrow. “Intertemporal” strategic substitutability (SS) obtains when a player raising
her state variable today decreases the state variable of her rival tomorrow. I restrict attention
to a class of simple dynamic Markov games that admits two-stage games, simultaneous move
games with adjustment costs, and alternating moves games. Consider an n-player game in
which the actions of player i in any period lie in Ai, a compact cube of Euclidean space;
πi (x, y) is the current payoff for player i, continuous in both y ∈ A, the action profile in the
previous period (state variables) and in x ∈ A, the current action profile.

I take in turn the issues of contemporaneous SC in two-stage games and intertemporal SC
or SS in infinite-horizon games. I end the section with results on the existence of MPE in
stochastic games.

4.3.1 Two-stage games
Let y ∈ A be the action profile in the first stage and x ∈ A the action profile in the second
stage. The contemporaneous SC property obtains under two conditions: (a) if at the second
stage, for any actions y in the first stage, payoffs πi (x, y) display SC and (b) if the SC property
is preserved when payoffs are folded back at the first stage in a subgame-perfect equilibrium.
Suppose that πi (x, y) displays increasing differences (or is supermodular) in any pair of
variables. Let x∗ (y) be an extremal equilibrium in the second stage (they exist at the second
stage for any y because the second-stage game is supermodular). Vi (y) ≡ πi (x∗ (y) , y) is the
first-period reduced-form payoff for player i. Vives (2009) shows that Vi (y) is supermodular
in y provided that for any player i: πi is increasing and convex in each component of xj, j �= i,
and each component of x∗

j (y) is supermodular in y. The result can be generalized to Markov
finite-horizon multistage games with observable actions (e.g., Fudenberg and Tirole, 1991),
where the payoff to each player displays increasing differences in any two variables.27

An example of the result is provided by the linear demand Bertrand oligopoly with
advertising when advertising levels are chosen in a first stage and are observable. Under
the assumptions made (Section 3.3.2), profits are supermodular in any pair of arguments,
and the first-stage value function at extremal equilibria is supermodular (that is, advertising
expenditures are strategic complements). Indeed, the assumptions are fulfilled in the classical
linear gross substitutes products Bertrand competition model with constant marginal costs
when either advertising or investment in product quality raises the demand intercept of the
firm exerting the effort (Vives, 1985a) or increases the willingness to pay for the product of
the firm by lowering the absolute value of the slope of demand |∂Di /∂pi| (Vives, 1990b).
In this case, for a given advertising effort there is a unique price equilibrium at the second
stage.28

The result can be extended to a duopoly case in which, for all i, πi (x, y) has increasing
differences in

(
xi, −xj

)
,
(
yi, −yj

)
, and

(
xi,
(
yi, −yj

))
, j �= i. An example is provided by a

linear demand and cost Cournot duopoly in which outputs are strategic substitutes and yi is
the cost-reduction effort by firm i. Let πi = Pi(x1, x2)xi − Ci (xi, yi) with ∂2Ci/∂xi∂yi ≤ 0.

27 Nonetheless, the result cannot be extended to the case where each payoff function πi (x, y) fulfills the ordinal
complementarity conditions or the single-crossing property in any pair of variables (Echenique, 2004b).

28 If firms invest in cost reduction, the second-stage SC is transformed into a first-stage SS. The same happens
with investments in models of vertical quality differentiation when the market is covered (Shaked and Sutton, 1982).
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Strategic complementarities in oligopoly 25

Then the assumptions are fulfilled because ∂2πi/∂xi∂yi ≥ 0, and ∂2πi/∂xi∂yj =
∂2πi/∂yi∂yj = 0 for j �= i. We then have that cost-reduction investments are strategic
substitutes at the first stage.29

With some further restrictions we can find conditions for increasing or decreasing
dominance, that is, whether an initial dominance is reinforced by subsequent market
actions (Athey and Schmutzler, 2001). Examples are provided by the Bertrand differentiated
oligopoly model with learning by doing or, alternatively, with production adjustment costs, or
even with switching costs. Similar results can be obtained in the Cournot model with network
demand externalities (Katz and Shapiro, 1986).

4.3.2 Infinite-horizon games
Consider an infinite-horizon simultaneous move game with discount factor δ, and let Vi (y) be
the continuous value function associated to player i at a stationary MPE. Player i solves

max
xi

{πi (x, y)+ δVi (x)} .

Assume x∗ (y) is the unique contemporaneous Nash equilibrium given y. We have that x∗ (y) is
increasing in y (i.e., we have intertemporal SC: x∗

i increases with yj for j �= i) if for all i:

1. πi (x, y)+ δVi (x) has increasing differences in (xi, x−i); and
2. πi has increasing differences in (xi, y).

In order for (1) to hold it is sufficient that both πi and Vi have increasing differences in (xi, x−i).
Similarly, we have the corresponding result for a duopoly with strategic substitutability.

We have that x∗
i increases in

(
yi, −yj

)
(i.e., we have intertemporal SS: x∗

i decreases with yj for
j �= i) if for all i:

1. πi (x, y)+ δVi (x) has increasing differences in
(
xi, −xj

)
, j �= i; and

2. πi has increasing differences in
(
xi,
(
yi, −yj

))
.

We check the fulfillment of the conditions in an adjustment cost model (see Vives, 2005a for
the alternating move duopoly). With simultaneous moves and adjustment costs, the payoff to
player i is given by

πi (x, y) = ui(x)− Fi (x, y) ,

where ui(x) is the current profit in the period and Fi (x, y) is the convex adjustment cost
in going from past actions (y) to current actions (x) with Fi (x, x) = 0, i = 1, 2; that is,
when actions are not changed, there is no adjustment cost. We can interpret actions as either
prices or quantities and correspondingly let price or production bear the adjustment cost.
Models with price adjustment costs, or “menu costs,” are commonly used in macroeconomics.

29 With linear demand there is a unique equilibrium at the second stage (see Vives, 1990b for a computed example
where investment reduces the slope of marginal costs and for a reinterpretation in terms of firms that invest in
expanding their own market).
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Our conditions are fulfilled in a linear-quadratic specification. With price competition (and
static SC) and menu costs, the marginal profit for firm i is increasing in the price yi

charged by the firm in the previous period and is independent of the price yj charged by the
rival in the previous period. Furthermore, the value function Vi displays SC. With quantity
competition (static SS) and production adjustment costs, the marginal profit for firm i is
increasing in the production yi of the firm in the previous period and independent of the
production yj of the rival in the previous period. The value function displays SS in the
duopoly case.

In these two cases, static SC or SS is transformed into intertemporal SC or SS. However, this
need not be always the case. Jun and Vives (2004) fully characterize the linear and stable MPE
in a symmetric differentiated duopoly model with quadratic payoffs and adjustment costs in
a continuous time infinite-horizon differential game. They also find that contemporaneous
(dynamic) SC or SS are inherited from static SC or SS but intertemporal SC or SS obtains
depending on what variable bears the adjustment cost. If production is costly to adjust then
intertemporal SS obtains, whereas if price is costly to adjust then intertemporal SC obtains.
In particular, for the mixed case of price competition with production adjustment costs, the
static SC is transformed into intertemporal SS.30 Having intertemporal SC or SS matters
because it governs strategic incentives at the MPE with respect to non-strategic behavior at
the open-loop equilibrium. Indeed, with intertemporal SC (SS), steady-state prices at the MPE
are above (below) the stationary open-loop equilibrium prices. This provides a generalization
of the taxonomy of strategic behavior in two-stage games of Section 4.2 to the full-blown
infinite-horizon game.

4.3.3 Existence of MPE in stochastic games
Existence of MPE in deterministic dynamic games has been shown only in particular models
such as the linear-quadratic, and general results in stochastic games have been difficult to
come by and rely on strong assumptions (particularly on transition probabilities) precluding
deterministic transitions when actions spaces are uncountably infinite.31 Lattice-theoretic
methods are of help when there is enough monotonicity in the problem under study.

The existence of (stationary) MPE of stochastic games with complementarities in discrete
time and infinite horizon is studied by Curtat (1996) under strong assumptions. He considers
multidimensional action spaces and a multidimensional state evolving according to a tran-
sition probability as a function of the current state and action profile. Payoffs are smooth
and display per-period complementarities and positive spillovers (the payoff to a player
is increasing in the actions of rivals and the state); the transition distribution function is
smooth, displays complementarities, and is stochastically increasing in actions and states.
Furthermore, the payoff to a player as well as the transition distribution function fulfill a
strict dominant diagonal condition.32 These assumptions allow the collapse of the multiperiod

30 The reason – as in the learning curve model with price competition – is that a firm wants to make the rival
small today in order to induce it to price softly tomorrow. A cut in price today will therefore bring a price increase by
the rival tomorrow.

31 See the discussion of the literature in Duggan (2012).
32 The continuity assumptions on the transition probability are akin to Amir (1996b) and Nowak (2007) who also

proved the existence of stationary MPE in games possessing strategic complementarities with uncountable state and
action spaces.

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

Strategic complementarities in oligopoly 27

problem to a reduced-form static game (with continuation value functions increasing in the
state variable), which can be shown to be supermodular. An equilibrium can then be found
with value functions increasing in the state. An example fulfilling the assumptions is a
dynamic version of a Cournot oligopoly with complementary products and learning by doing,
where a high level of accumulated output by one firm yields stochastically higher levels of
cumulated experience and lower production costs to the firm (learning by doing) and to the
rivals (spillovers).

Balbus, Reffett, and Wozny (2014) consider an n-player discounted infinite-horizon
stochastic game in discrete time. They allow for multidimensional action spaces and a
multidimensional state (compact cube in Euclidean space with smallest point at 0) evolving
according to a transition probability as a function of the current state and action profile.
Payoffs are continuous and display per-period complementarities and positive spillovers (the
payoff to a player is increasing in the actions of rivals); the transition distribution function
is continuous, displays complementarities and is stochastically increasing in actions, and
fulfills a strong mixing assumption, with a positive probability of setting the state to zero.
The authors show existence of a largest and a smallest stationary Markov-Nash equilibrium.
The assumptions relax smoothness (Lipschitz continuity) conditions of Curtat (1996) as well
as the increasing differences assumptions between actions and states. That is, they do not
require monotone Markov equilibrium to obtain existence. The results can be applied to
studying supermodular price competition with durable goods (and convex costs). Here the
state is a demand shock and the assumptions on transition probabilities mean that there
is a positive probability that the market disappears and that high prices today result in
a high probability of future positive demand, and there is no need for the monotonicity
assumption at a high demand state today to translate stochastically into a high demand
state tomorrow. Under the assumptions extremal strategies display intertemporal strategic
complementarity.

Sleet (2001) considers a version of the adjustment cost model of the previous section in
an infinite-horizon discrete game with a continuum of heterogeneous players and symmetric
payoffs. This a dynamic monopolistic competition model with menu costs where firms interact
repeatedly over an infinite horizon and each firm receives an idiosyncratic demand or cost
shock every period. The demand for the product of a firm may depend on the average
price charged in the market or on a price index. The assumptions are fulfilled with linear
or constant elasticity demands, quadratic or constant elasticity production costs (subject to a
multiplicative shock), and quadratic costs of price adjustment.

5 UNCERTAINTY AND PRIVATE INFORMATION: BAYESIAN
OLIGOPOLY GAMES

The lattice-theoretical approach allows for general strategy spaces and payoff functions and
therefore is apt for games of incomplete information. I present in this section a framework for
Bayesian games and three approaches to characterize equilibria in pure strategies together
with applications: supermodular games (Vives, 1990a), single-crossing properties (Athey,
2001), and “monotone supermodular” games (Van Zandt and Vives, 2007). The last two
approaches deliver conditions for equilibria to be monotone in type, a desirable property in
applications.
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5.1 A Framework for Bayesian Games

Let Ti be the set of possible types ti of player i, a subset of Euclidean space. The types of
the players are drawn from a common prior distribution μ on T = ∏n

i=0 Ti , where T0 is
interpreted as unobserved residual uncertainty. In a game of incomplete information, the type
of a player embodies all the decision-relevant private information. The action space of player
i is a compact cube of Euclidean space Ai, and his payoff is given by the (measurable and
bounded) function πi : A × T → R. The (ex post) payoff to firm i when the profile of actions
is a = (a1, . . . , an) and the realized types t = (t1, . . . , tn) is thus πi (a; t). Action spaces,
payoff functions, type sets, and the prior distribution are common knowledge. The Bayesian
game is fully described by (Ai, Ti,πi; i ∈ N).

A (pure) strategy for player i is a (measurable) function σi : Ti → Ai that assigns an
action to every possible type of the player. Let �i denote the strategy space of player i
(and identify strategies σi and τi if they are equal with probability 1). Denote the expected
payoff to player i, when agent j uses strategy σj, by Ui (σ ) = Eπi (σ1 (t1) , . . . , σn (tn) ; t)
where σ = (σ1, . . . , σn). A Bayesian Nash equilibrium is a Nash equilibrium of the game
(�i, Ui, i ∈ N)where the strategy space and payoff function of player i are denoted�i and Ui,
respectively.33

The formulation of the Bayesian game encompasses common and private values as well
as perfect or imperfect signals. With pure private values, allowing for correlated types, say
costs of firms, we have πi (a; ti). With a common value case, say a demand shock where
firm i observes component ti only, we may have that πi (a; t) = vi(a;�iti). For an example of
imperfect signals, suppose firms observe with noise their cost parameters. In this case t0 could
represent the n-vector of firms’ cost parameters and ti the private cost estimate of firm i, allow-
ing for correlation among the cost parameters as well as the error terms in the private signals.

5.2 Equilibrium Existence in Pure Strategies

To show existence of pure-strategy equilibria in games of incomplete information with a
continuum of types and/or actions has proved difficult. Known sufficient conditions for
existence include typically conditionally independent types, finite action spaces, and atomless
distributions for types.34 Under these assumptions existence of mixed strategy equilibria
is shown first and then equilibria are purified. The lattice-theoretic approach has provided
results:

1. for supermodular games with general action and type spaces (Vives, 1990a);
2. for games satisfying single-crossing properties in which each player uses a strategy that

is monotone (increasing) in type in response to monotone (increasing) strategies of rivals
(Athey, 2001, McAdams, 2003, 2006, Reny, 2011); and

3. for “monotone” supermodular games with general action and type spaces (Van Zandt and
Vives, 2007).

33 Denote by βi : �−i → �i player i’s best-reply correspondence in terms of strategies. Then a Bayesian Nash
equilibrium is a strategy profile σ such that σi ∈ βi(σ−i) for i ∈ N. We can define a natural order in the strategy space
�i : σi ≤ σ ′

i if σi (ti) ≤ σ ′
i (ti), in the usual component-wise order, with probability 1 on Ti.

34 See Radner and Rosenthal (1982) and Milgrom and Weber (1985). Khan and Sun (1995) show existence of
pure-strategy equilibria when types are independent, payoffs continuous, and action sets countable.
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Strategic complementarities in oligopoly 29

In the first approach, existence of pure-strategy Bayesian equilibria follows directly from
supermodularity of the underlying family of games defined with the ex post payoffs for given
realizations of the types of the players. A key observation is that supermodularity of this
underlying family of games is inherited by the Bayesian game.35 Existence of extremal pure
strategy Bayesian equilibria then follows from the general versions of the results in Section 2
(see also Vives, 1990a, 1999, Sec. 2.7.3). This existence result holds for multidimensional
action spaces and requires no distributional restrictions. Applications of this approach can
be found beyond oligopoly games in Diamond’s (1982) search model, and natural resource
exploration games with private information (Hendricks and Kovenock, 1989 and Milgrom and
Roberts, 1990).

5.2.1 Single-crossing properties
In this approach, conditions are imposed so that an equilibrium in monotone increasing
strategies in types can be found. Suppose that both action Ai and type sets Ti for any
player i are compact subsets of the real line and that types have a joint density μ that
is bounded, atomless, and log-supermodular (i.e., types are affiliated). Suppose also that
πi (a, t) is continuous and supermodular in ai and has increasing differences in (ai, a−i) and
(ai, t) or, alternatively, that πi (a, t) is non-negative and log-supermodular in (a, t). Then the
Bayesian game has a pure-strategy equilibrium in increasing strategies (Athey, 2001). Note
that under the assumptions the first approach outlined already delivers existence of a pure-
strategy equilibrium.36 An example of the result in the differentiated Bertrand oligopoly has
firm i with random marginal cost ti with both Di(pi, p−i) and the joint density of (t1, . . . , tn)
log-supermodular. Then if the strategies of rivals, pj (·), j �= i, are increasing in types,
E(πi | ti) = (pi − ti)E(Di(pi, p−i(t−i)) | ti) is log-supermodular in (pi, ti) and the best-reply
map of player i is increasing in ti.

The approach can also be used in games that are not of strategic complementarities
and with discontinuous payoffs. The existence of monotone equilibria in pure strategies
can be shown for first-price auctions with heterogeneous (weakly) risk-averse bidders
characterized by private affiliated values or common value and conditionally independent
signals (Athey, 2001), as well as for uniform-price auctions featuring multiunit demand,
interdependent values and independent types (McAdams, 2003, 2006).37 Reny (2011) extends
those results using a fixed-point theorem by Eilenberg and Montgomery (1946) that replaces
the requirement in Kakutani or Glicksberg of convex-valued correspondences used by Athey

35 Let πi be supermodular in ai and have increasing differences in (ai, a−i). Then Ui(σ ) is supermodular in
σi and has increasing differences in (σi, σ−i), because supermodularity and increasing differences are preserved
by integration. Furthermore, strategy spaces in the Bayesian game �i can be shown to have the appropriate order
structure (i.e., they are complete lattices). Then the game (�i, Ui, i ∈ N) is a GSC and for all σ−i ∈ �−i, βi(σ−i)

contains extremal elements β̄i(σ−i) and β
i
(σ−i).

36 The proof of these results relies on the standard Kakutani fixed-point theorem, based on convex-valued corre-
spondences since with discrete action spaces and under the prevailing assumptions, best-response correspondences
are convex valued. A key step in the proof is to show that if the rivals of player i use increasing strategies then
the payoff to player i fulfills an appropriate single-crossing property (e.g., is log-supermodular or has increasing
differences) in action and type. This ensures that a player uses a strategy that is increasing in his type as a best
response to increasing strategies of rivals. The existence result for discrete action spaces can then be used to show
existence with a continuum of actions via a purification argument.

37 McAdams (2006) uses a discrete bid space and atomless types to show existence of monotone equilibria with
risk-neutral bidders checking that the single-crossing condition in Athey (2001) used in the single-object case extends
to multiunit auctions.
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(2001) by contractible-valued ones.38 Reny (2011) weakens previous conditions on interim
payoff functions for the monotone best-reply condition to hold. The conditions allow for
infinite-dimensional type and action spaces, general joint distributions over types, general
partial orders on both action and type spaces (this is useful since single crossing may fail for
one partial order but hold for another), and dispense with single crossing (although it remains
very useful).

The results are applied to prove existence of monotone equilibrium in uniform-price
multiunit auctions with weakly risk-averse bidders and interdependent values (and where bids
are restricted to a finite grid) and to oligopoly pricing using judicious partial orders over
types. The oligopoly application considers n firms competing with differentiated products
with random constant marginal costs and random demand. The firms are partitioned into two
groups with goods being substitutes within each group. Firms have private information about
both cost and demand conditions and marginal costs are affiliated and information about
demand may be correlated across firms. It is shown that a pure-strategy price equilibrium
exists with prices monotone in costs (which is the coordinate in which strict single crossing
holds, and also in the demand signal according to the defined partial order).

5.2.2 Monotone supermodular games
For “monotone” supermodular games with multidimensional action spaces, and type spaces, a
strong result is provided by Van Zandt and Vives (2007). Let �(T−i) be the set of probability
distributions on T−i and let player i’s posteriors be given by the (measurable) function
pi : Ti → �(T−i), consistent with the prior μ. The following properties define a monotone
supermodular game:

1. supermodularity and complementarity between action and type with πi supermodular in
ai, and with increasing differences in (ai, a−i) and in (ai, t);

2. monotone posteriors with pi : Ti → �(T−i) increasing with respect to the partial order
on �(T−i) of first-order stochastic dominance (a sufficient but not necessary condition is
that μ be affiliated).

The result is that in a monotone supermodular game there is a largest and a smallest Bayesian
equilibrium and each one is in monotone strategies. There might be other equilibria that are
in non-monotone strategies but, if so, they will be “sandwiched” between the largest and
the smallest ones. Furthermore, extremal equilibria are increasing in posteriors (according to
first-order stochastic dominance) and can be obtained through the iterative application of the
best-reply map β.

The assumptions on action and type spaces can be considerably weakened (beyond
Euclidean spaces), and there is no need to assume a common prior, but the result cannot

38 A set is contractible if, within itself, it can be continuously deformed to a single point. Convex sets are,
indeed, contractible but the converse is not true. The author finds conditions for the existence of a monotone
(pure) equilibrium whenever monotone (pure) best replies are non-empty and join-closed in response to rivals using
monotone best replies. Those conditions require, among other technical conditions, payoffs to be bounded, jointly
measurable in actions and types, continuous in actions for every type, and the marginal distribution of types to be
atomless.
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Strategic complementarities in oligopoly 31

be extended to log-supermodular payoffs. Yang and Qi (2014) provide an extension of the
results to non-atomic games.39

Monotone supermodular games fit a variety of problems.40 We provide here applications to
strategic information revelation and endogenous information acquisition.

Comparative statics and strategic information revelation If payoffs display positive
spillovers (πi is increasing in a−i), then increasing the posteriors increases the equilibrium
expected payoffs. This is a consequence of extremal equilibria being increasing in posteriors
and it implies that the expected payoff of each player in an extremal equilibrium is
increasing in the posteriors of the other players. The result can easily be strengthened to
“strictly increasing” under certain regularity assumptions (including some smooth strict
complementary conditions and requiring πi to be strictly increasing in aj).

Okuno-Fujiwara, Postlewaite, and Suzumura (1990) have provided conditions under which
fully revealing equilibria obtain in duopoly games of voluntary disclosure of information
when information is verifiable. The conditions involve regularity assumptions such as one-
dimensional actions, concavity of payoffs, uniqueness and interiority of equilibrium, and
independent types for the players.41 Once we realize that their framework is within the
realm of monotone supermodular games, it is only necessary that the marginal payoff
of an action of a player is strictly increasing in the actions of rivals and in the types
of players. The results extend to n-player GSC games and to a duopoly with strategic
substitutability, multidimensional actions, affiliated types, and possibly multiple non-interior
extremal equilibria. Mensch (2016) provides an extension of the existence of monotone
equilibrium results in Reny (2011) to dynamic games (such as stopping games) and uses them
to weaken the assumptions to obtain a full separating equilibrium in voluntary disclosure
games.42

Endogenous information acquisition Amir and Lazzati (2016) study covert endogenous
information acquisition in the framework of common-value monotone supermodular games.
The authors use the supermodular stochastic order to arrange the information structures (joint
distribution of state of the world and signals) and show that better information increases
expected payoffs. If a convexity assumption is added, implying that increasing the quality
of information raises informativeness with increasing returns, then the value of information
for a player is convex in its quality. This leads to extreme behavior of agents with choices
of a highest- or a lowest-quality signal. The results contrast with models with linear-
quadratic payoffs and Gaussian information structures with concave values of information
(Vives, 2008b).43

39 Under their assumptions monotone equilibria form a complete lattice.
40 Van Zandt and Vives (2007) present an application to the discrete setup of an adoption game on a graph with

local network effects, and so-called “global games” are typically monotone supermodular (see Section 7.2 in Vives,
2005a).

41 The basic intuition for the result is that in equilibrium inferences are skeptical: if a player reports a set of types,
others believe the worst (i.e., others believe that the player is of the most unfavorable type in the reported set). This
unravels the information.

42 The author constructs an auxiliary static game to deal with the endogeneity of beliefs in the dynamic game
preserving at the same time the continuity of payoffs. Then he uses the methods in Athey (2001) and Reny (2011) to
show that there exist monotone best replies to monotone strategies by rivals.

43 Myatt and Wallace (2016) provide an analysis of information use and acquisition in a strategic complements
price-setting oligopoly with differentiated products with a continuum of goods, where a finite number of suppliers
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5.3 Complementarities in Uniform-price Divisible Good Auctions
and Behavioral Traders

Progress in the characterization of equilibria in uniform-price divisible good auctions when
there is incomplete information and market power has been made in a linear-Gaussian
specification. Kyle (1989) considers a Gaussian model of a divisible good double auction
where some bidders are privately informed and others are uninformed. Vives (2011) shows
how increased correlation in the values of the traders increases their market power and
how private information generates market power over and above the full information level.
Bergemann, Heumann, and Morris (2015) generalize the information structure in Vives
(2011), keeping the symmetry assumption. Rostek and Weretka (2012) partially relax the
symmetry assumption in Vives (2011) and replace it with a weaker “equicommonality”
assumption on the matrix correlation among the agents’ values. Manzano and Vives (2016)
consider the case of two types of bidders.

Consider the case of supply function competition to fix ideas. This corresponds to
competition in the wholesale market for electricity in many countries. It is worth noting that
restricting attention to linear supply functions and with complete information there is strategic
complementarity in the supply slopes (e.g., Klemperer and Meyer, 1989 and Akgün, 2004)
despite the game not being supermodular. The reason is that if rivals of a firm increase the
slope of supply then the residual demand left for the firm becomes steeper and induces this
firm to also set a steeper supply. Interestingly, with uncertainty and incomplete information
where prices convey information (say about an uncertain common cost component), there is
an inference effect that moderates, and may even reverse, the strategic complementarity in
slopes. This is so since when costs are positively correlated, the inference effect moderates
the reaction to the price (a high price means high costs), the more so, the more rivals react to
the price. The reason is that a higher reaction to the price by rivals induces a trader to also give
a higher weight to the price in the estimation of his cost and hence it increases the magnitude
of the inference effect. However, the equilibrium happens at a point where there are strategic
complementarities in slopes (see Bayona, Brandts, and Vives, 2016).

When traders or firms have trouble retrieving the information from the price, be it because
they neglect the correlation between random variables or because of other types of bounded
rationality, then the outcome is more competitive since high prices are not interpreted as
signals of high costs. If there is a proportion of such naive traders in the market then
sophisticated traders, who take into account information in prices as well as the presence
of naive traders who bid relatively flat supply schedules, will respond also with flatter
supply schedules and the outcome will be more competitive than predicted by the Bayesian
equilibrium in supply functions with fully rational traders. This is in fact what happens in the
experiment conducted in Bayona et al. (2016) and that leads to the similar behavior of naive
and sophisticated sellers being not so distinct. The general phenomenon was first noted by
Camerer and Fehr (2006) in the context of games characterized by strategic complementarities
and in the presence of sophisticated and boundedly rational subjects. When actions are
strategic complements then sophisticated players align their actions with those of naive

have access to multiple sources of information about the uncertain common demand level. Myatt and Wallace (2015)
examine similar issues in the context of a Cournot model. Bonatti, Cisternas, and Toikka (2016) examine learning
and signaling in a dynamic Cournot game with firms having private information on costs and observing the (noisy)
market price.
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players, and the former do not provide a check on the effects of naive strategies on outcomes.
Instead, when actions are strategic substitutes then sophisticated players counteract the actions
of naive ones on aggregate behavior. The result is that under strategic substitutes a small
proportion of sophisticated agents may be sufficient to lead to aggregate outcomes not far from
the equilibrium predictions with fully rational agents, while under strategic complements, a
not so large proportion of naive agents may generate outcomes far from the rational agent
equilibrium predictions. This means that rational agent equilibrium analysis in games of
strategic complementarities may be less robust than in games of strategic substitutability.

6 CONCLUDING REMARKS

In this chapter I have provided a selective survey of the theory and applications of the lattice-
theoretic approach in the study of oligopoly games. The approach has proved fruitful well
beyond the domain of games of strategic complementarities. Indeed, in many situations,
patterns of complementarity and substitutability are present but still the approach is useful
and delivers existence and characterization of equilibrium results as well as comparative
statics analysis. In fact, the approach has proved useful in all domains of economic theory
and is being progressively incorporated in the standard toolbox of economics, including
empirical studies. The research agenda ahead is challenging in terms of continuing to push
the frontiers of the theory with a view toward applications including heterogeneous agents
and fully dynamic games with incomplete information, as well as developing the empirical
analysis more fully.44
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APPENDIX: BRIEF SUMMARY OF LATTICE-THEORETIC METHODS45

Definitions

A binary relation ≥ on a non-empty set X is a partial order if ≥ is reflexive, transitive, and
anti-symmetric. An upper bound on a subset A ⊂ X is z ∈ X such that z ≥ x for all x ∈ A.
A greatest element of A is an element of A that is also an upper bound on A. Lower bounds
and least elements are defined analogously. The greatest and least elements of A, when they
exist, are denoted max A and min A, respectively. A supremum (resp., infimum) of A is a least
upper bound (resp., greatest lower bound); it is denoted sup A (resp., inf A).

A lattice is a partially ordered set (X, ≥) in which any two elements have a supremum and
an infimum. A lattice (X, ≥) is complete if every non-empty subset has a supremum and an
infimum. A subset L of the lattice X is a sublattice of X if the supremum and infimum of any
two elements of L belong also to L.

Let (X, ≥) and (T, ≥) be partially ordered sets. A function f : X → T is increasing if, for
x, y in X, x ≥ y implies that f (x) ≥ f (y).

A function g : X → R on a lattice X is supermodular if all x, y in X, g(inf(x, y)) +
g(sup(x, y)) ≥ g(x) + g(y). It is strictly supermodular if the inequality is strict for all pairs
x, y in X that cannot be compared with respect to ≥ (i.e., neither x ≥ y nor y ≥ x holds).
A function f is (strictly) submodular if −f is (strictly) supermodular; a function f is (strictly)
log-supermodular if log f is (strictly) supermodular.

Let X be a lattice and T a partially ordered set. The function g : X × T → R has (strictly)
increasing differences in (x, t) if g(x′, t) − g(x, t) is (strictly) increasing in t for x′ > x or,
equivalently, if g(x, t′) − g(x, t) is (strictly) increasing in x for t′ > t. Decreasing differences
are defined analogously. If X is a convex subset of Rn and if g : X → R is twice-continuously
differentiable, then g has increasing differences in (xi, xj) if and only if ∂2g(x)/∂xi∂xj ≥ 0 for
all x and i �= j.

Results

Supermodularity is a stronger property than increasing differences: if T is also a lattice and
if g is (strictly) supermodular on X × T, then g has (strictly) increasing differences in (x, t).
The two concepts coincide on the product of linearly ordered sets: if X is such a lattice, then
a function g : X → R is supermodular if and only if it has increasing differences in any pair
of variables.

The complementarity properties are robust in the sense that they are preserved under
addition or integration, pointwise limits, and maximization (with respect to a subset of
variables, preserving supermodularity for the remaining variables).46

45 More complete treatments can be found in Vives (1999, Ch. 2) and Topkis (1998).
46 Supermodularity and increasing differences can be weakened to define an “ordinal supermodular” game,

relaxing supermodularity to the weaker concept of quasi-supermodularity and increasing differences to a single-
crossing property (see Milgrom and Shannon, 1994). However, such properties (unlike supermodularity and
increasing differences) have no differential characterization and need not be preserved under addition or partial
maximization operations.
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Lemma 1 Monotonicity of optimal solutions Let X be a compact lattice and let T be
a partially ordered set. Let u : X × T → R be a function that (a) is supermodular and
continuous on the lattice X for each t ∈ T and (b) has increasing differences in (x, t). Let
ϕ(t) = arg maxx∈X u(x, t). Then:

1. ϕ(t) is a non-empty compact sublattice for all t;
2. ϕ is increasing in the sense that, for t′ > t and for x′ ∈ ϕ(t′) and x ∈ ϕ(t), we have

sup(x′, x) ∈ ϕ(t′) and inf(x′, x) ∈ ϕ(t); and
3. t �→ maxφ(t) and t �→ minφ(t) are well-defined increasing functions.

Remark If u has strictly increasing differences in (x, t), then all selections of ϕ are increasing.

Remark If X ⊂ R
m, solutions are interior, and ∂u/∂xi is strictly increasing in t for some i,

then all selections of ϕ are strictly increasing (Edlin and Shannon, 1998).

Theorem 2 (Tarski, 1955) Let A be a complete lattice (e.g., a compact cube in R
m). Then

an increasing function f : A → A has a largest sup {a ∈ A : f (a) ≥ a} and a smallest
inf {a ∈ A : a ≥ f (a)} fixed point.

Supermodular game The game (Ai,πi; i ∈ N) is supermodular if, for all i, the following
statements hold:

● Ai is a compact lattice.
● πi (ai, a−i) is continuous:

1. is supermodular in ai; and
2. has increasing differences in (ai, a−i).

Game of strategic complementarities Given a set of players N, strategy spaces Ai, and
(non-empty) best-reply maps �i, i = 1, . . . , n, we define a game of strategic complemen-
tarities (GSC) as one in which, for each i, Ai is a complete lattice and �i is increasing and has
well-defined extremal elements.

Let X ⊂ R. A function f : X → R is quasi-increasing if for every x ∈ X, lim sup
y↑x

f (y) ≤
f (x) ≤ lim inf

y↓x
f (y); f is quasi-decreasing if −f is quasi-increasing. The following is a real-

valued version of Theorem 3 in Tarski (1955).

Theorem 3 (Tarski’s intersection point theorem) If f : [a, b] −→ R is quasi-increasing,
g : [a, b] −→ R is quasi-decreasing, f (a) ≥ g (a) and f (b) ≤ g (b), then the set
{x ∈ [a, b] : f (x) = g (x)} is non-empty, and has as largest element sup {x ∈ [a, b] : f (x) ≥ g (x)}
and as smallest element inf {x ∈ [a, b] : f (x) ≤ g (x)}.

Corollary Let X = [a, b]. Then a quasi-increasing function f : X → X has a largest x ≡
sup {x ∈ X : f (x) ≥ x} and a smallest x ≡ inf {x ∈ X : x ≥ f (x)} fixed point.
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The result is easy to grasp considering a function f : [0, 1] → [0, 1] which when discontinuous
jumps up but not down. The function must then cross the 45◦ line at some point. Indeed,
suppose that it starts above the 45◦ line (otherwise, 0 is a fixed point); then it either stays
above it (and then 1 is a fixed point) or it crosses the 45◦ line.

Comparative statics analysis is trivial when the function f is (strictly) increasing in a
parameter t (for t in a partially ordered set T ). Then x(t) and x(t) are (strictly) increasing
in t. This follows since x(t) = sup {x ∈ X: f(x; t) ≥ x } , x(t) = inf {x ∈ X: f(x; t) ≤ x }, and
f is (strictly) increasing in t. It is worth remarking that as t varies, the number of equilibria
may change, but still the largest and the smallest equilibrium will be increasing in t.
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3. On the Cournot and Bertrand oligopolies
and the theory of supermodular games∗
Rabah Amir

1 INTRODUCTION

After Cournot’s (1838) path-breaking work, and Bertrand’s (1883) well-known critical book
review, the field of oligopoly theory remained largely dormant for a long time. This survey
will trace its rebirth to studies starting in the 1960s, but will focus mostly on the more recent
developments associated with the birth of modern industrial organization theory in the 1980s,
in particular on the literature linking Cournot oligopoly to the theory of supermodular games.

These games, also known as the class of games with strategic complementarities, turn out
to encompass many of the commonly studied games in industrial organization and applied
micro-economics, often under broadly satisfied and economically meaningful assumptions
on the primitives of these models.1 The class of supermodular games has played an important
unifying role at the interface between applied game theory and industrial organization. Among
the important general properties of such games are first the existence of pure-strategy Nash
equilibrium, and the lattice structure of the equilibrium set, in particular the existence of
minimal and maximal equilibrium points.2 The latter extremal bounds also determine the
range of equilibrium behavior for such games according to several solution concepts, such
as mixed-strategy Nash equilibrium, correlated equilibrium, and rationalizable strategies.
Another property is that the same bounds determine the relevant interval for the convergence
of a wide class of adaptive learning algorithms, including best-reply Cournot dynamics
and fictitious play. Finally, for parametrized classes of supermodular games, a simple
additional complementarity assumption leads to clear-cut comparative statics properties of
Nash equilibrium strategies with respect to parameters.3 Early on, industrial economists
understood the importance of the nature of strategic interaction, expressed in terms of
relationships of strategic complementarity or substitutability, in many representative problems
of industrial organization (see e.g., Bulow, Geanakoplos, and Klemperer, 1985, and Fudenberg
and Tirole, 1984).

Under a broad set of economically meaningful assumptions, the Bertrand oligopoly is
a game of strategic complements (or a supermodular game). On the other hand, Cournot

∗ It is a pleasure to acknowledge helpful conversations over the years on the theory of oligopoly, broadly
construed, with Claude d’Aspremont, Francis Bloch, Rodolphe Dos Santos Ferreira, Jacques Dreze, David Encaoua,
Christian Ewerhart, Jean Gabszewicz, Val Lambson, Yassine Lefouili, Laurent Linnemer, Diego Moreno, Jean-
François Mertens, Heracles Polemarchakis, Jacques Thisse, and Xavier Vives.

1 Introduced by Topkis (1978, 1979), this class of games was subsequently thoroughly investigated by Vives
(1990), Milgrom and Roberts (1990, 1994) and Milgrom and Shannon (1994). There are also book treatments by
Topkis (1998) and Vives (1999), as well as general surveys by Amir (2005) and Vives (2005a, 2005b).

2 In addition, mixed-strategy Nash equilbria of supermodular games are unstable under a broad class of learning
dynamics (Edlin and Echenique, 2004), just as is the case for general coordination games (e.g., Battle of the Sexes).

3 This comparative statics result forms the basis for the modern treatment of the correspondence principle that
goes back to Samuelson (1947): see Echenique (2002) for details.
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oligopoly is instead a game of strategic substitutes (or a submodular game) under broad
conditions, such as the log-concavity of inverse demand. Unfortunately, the class of games
of strategic substitutes need not possess any of the aforementioned strong properties of
supermodular games. In particular, even the existence of pure-strategy Nash equilibrium is
not guaranteed. Fortunately, the Cournot game is also an aggregative game, in the sense that a
firm’s payoff depends only on its actions and on the sum of all rivals’ actions. The conjunction
of the aggregation and strategic substitutes properties is sufficient to guarantee existence of
Cournot equilibrium, via a construction that goes back to Selten (1970) and Szidarovszki
(1970). For the special case of duopoly, the Cournot game may be viewed as a supermodular
game, with the added benefit that all the nice properties then apply directly. However, this
special property of the duopoly case does not extend to n-firm oligopoly in general.

As the existence results dealing with the Cournot game as a game of strategic substitutes
were developed sequentially, the presentation of the results follows the same chronological
manner. At the same time, we shed light on the connections between them to the greatest
extent.

The other strand of literature on Cournot oligopoly reviewed here deals with the effects
of entry on equilibrium prices and profits. The main question is to investigate, in as much
generality as possible, when more competition in the sense of more identical firms entering
the market leads to lower or higher Cournot equilibrium prices. It turns out that the attending
existence question for symmetric Cournot equilibria is of interest in its own right here, in
light of the fact that the key property that governs the said comparative statics question is
whether the slopes of the reaction curve of a firm are globally lower than −1. The same
issue arises naturally when one tries to settle the associated existence question in as much
generality as possible. Thus for this part, the key properties of strategic substitutes and
strategic complements do not play a role in the analysis.

Recently, new attention has been devoted to the broad class of aggregative games, often
satisfying strategic substitutes as well. These are games with the property that a player’s payoff
depends on own action and on just an aggregate of other players’ actions.4 Since this class
of games includes Cournot oligopoly, some of the results extend and unify those derived for
Cournot oligopoly. Nevertheless, this strand of literature is beyond the scope of this survey.

For Bertrand competition with differentiated products, supermodularity of the game follows
under the conditions of convex costs and log-supermodular demand. The latter condition
enjoys the exact economic interpretation that the price elasticity of demand for one good
is increasing in the price of any other good. Under these natural assumptions, the Bertrand
model satisfies all the general properties of supermodular games.

We investigate the connection between the relationship of the differentiated products
(gross substitutes or complements) on the one hand, and the strategic complementarity or
substitutability of the associated Bertrand game on the other. Recall that in the common
special case of linear demand, gross substitute goods translate exactly to a game of strategic
complements while gross complements are equivalent to the game of strategic substitutes
(e.g., Singh and Vives, 1984). However, for non-linear demand, this one-to-one connection

4 See Corchón (1994), Anderson and Renault (2003), Dubey, Haimanko, and Zapelchelnyuk (2006), Acemoglu
and Jensen (2009), Jensen (2010), Amir, Garcia, and Knauff (2010), Cornes and Hartley (2012), Roy and Sabarwal
(2012) and Anderson, Erkal, and Piccinin (2014), among others.
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need not hold. It is then natural to explore the extent to which, say, gross complements could
be compatible with strategic complements.

This survey is organized as follows. In Section 2, we begin with a basic review of the
main tools of supermodular optimization in a simplified setting adapted to the needs of this
review. In Section 3, we summarize the main existence results for general Cournot oligopoly.
In Section 4, the comparative statics of entry and the existence of symmetric equilibrium
are tackled together. Section 5 is devoted to the Bertrand model. A brief conclusion forms
Section 6.

2 A SIMPLIFIED VERSION OF TOPKIS’S MONOTONICITY
THEOREM

This section provides a simplified exposition of Topkis’s framework in the special case where
both the parameter and the decision sets are real intervals. While this is a very special case of
the general theory, it will result in substantial gains in accessibility of this material to a wide
readership, while at the same time covering our oligopoly applications.

Topkis considered the following parametrized family of constrained optimization prob-
lems,5 where As ⊂ A, with the intent of deriving sufficient conditions on the objective and
constraint set that yield monotone optimal solutions:

a∗(s) = arg max{F(s, a) : a ∈ A(s)}. (3.1)

For our purposes, we shall consider S (the parameter set) and A (the action set) as real intervals.
A function f : S × A → R has (strictly) increasing differences in (s, a) if

f (s, a)− f (s, a ′)(>) ≥ f (s ′, a)− f (s ′, a ′), ∀a > a ′, s > s ′ (3.2)

or in other words if the difference f (·, a) − f (·, a ′) is an increasing function.6 If f is smooth,
(3.2) is equivalent to ∂2f (a)/∂a∂s ≥ 0. There are no restrictions on partials of the form
∂2f (a)/∂a2

i .
Increasing differences are interpreted as formalizing the notion of (Edgeworth) comple-

mentarity, i.e., higher values in any subset of the decisions or of the parameters, respectively,
increase the marginal returns to higher values in the remaining decisions.

A version of Topkis’s Monotonicity theorem is now given. Though a special case of the
original result, it is adequate for the applications covered here.

Topkis’s theorem Assume that:

(i) F has increasing differences in (s, a); and
(ii) A(s) = [hi(s), gi(s)] where hi, gi : S → R are increasing functions with hi ≤ gi.

5 It is assumed throughout that F is upper semi-continuous in a, so the maximum in (3.1) is attained.
6 Throughout this chapter, a function f : S → R is increasing (strictly increasing) if x ≥ y ⇒ f (x) ≥ (>)f (y).

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�
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Then the maximal and minimal selections7 of a∗(s) are increasing functions.
Furthermore, if (i) is strict, then every selection of a∗(s) is increasing.

Proof Let a be the maximal selection of a∗ and assume it is not increasing. Then for some
s > s ′, a(s) < a(s ′). Consider, as (ii) implies that a(s) ∈ A(s) and a(s ′) ∈ A(s ′),

0 ≥ F[s, a(s ′)] − F[s, a(s)], since a(s) ∈ a∗(s)

≥ F[s ′, a(s ′)] − F[s ′, a(s)], by increasing differences

≥ 0 , since a(s ′) ∈ a∗(s ′).

This implies that equality holds throughout, and thus that a(s ′) ∈ a∗(s). This contradicts
the fact that a(s) is the largest argmax at s. Hence, a(s) ≥ a(s ′). If (i) is strict, the middle
inequality above is strict, yielding a contradiction (as this shows 0 > 0). A similar argument
works for the minimal selection a(s). �

Thus, in the one-dimensional case with smoothness, it is sufficient for monotone compara-
tive statics that the objective satisfy ∂2F(s, a)/∂a∂s ≥ 0 and the constraint set be a compact
interval whose end points increase in the parameter.

The main advantages over the classical method, based on applying the implicit function
theorem to the first-order conditions, are that (a) no form of concavity is required, and (b)
the argmax may switch between a boundary and an interior solution without prejudice to its
global monotonicity.

There is an order-dual to Topkis’s theorem: if one changes only “increasing differences” to
“decreasing differences” and hi and gi to decreasing functions in Topkis’s theorem, then the
conclusion is that the extremal selections of a∗(s) are decreasing functions.8 Likewise, the
same duality applies to the strict statement in Topkis’s theorem.

A further strengthening that is useful below is proved in Amir (1996b) and Edlin and
Shannon (1998). If one adds that F(s, a) is C1 in a, and changes “increasing differences” to
the condition that ∂F(s, a)/∂a is strictly increasing in s, then the conclusion is that, if interior,
every selection of a∗(s) is strictly increasing.

An alternative way to think of the dual statements is that it can be derived from the original
statement simply by considering the parameter to be −s instead of s. In other words, increasing
in −s is the same as decreasing in s. This connection will prove useful in some applications
below.

The fixed-point result used to prove existence of pure-strategy Nash equilibrium, once
monotonicity of the best-response mapping is established via Topkis’s theorem, is due to
Tarski (1955):

Tarski’s theorem Let F be an increasing mapping from Xn
i=1[ai, bi] to itself. Then the set of

fixed points of F is a non-empty complete lattice.

7 These are a∗(s) � max {a∗(s)} and a∗(s) � min{a∗(s)} and are always well defined when F is u.s.c. (upper
semi-continuous) in a.

8 Writing in the tradition of the operations research literature, Topkis (1978) actually considered the problem of
minimizing a submodular objective (one with decreasing differences).
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3 THE COURNOT OLIGOPOLY

This section provides an overview of the literature on Cournot oligopoly, with an emphasis
on results on existence, the submodularity of Cournot oligopoly, and properties of Cournot
equilibrium as they relate to the theory of supermodular games.

3.1 The Basic Model

Consider a market for a homogeneous product characterized by an inverse demand function
P(Q), where Q is the total output of the n firms that serve this market. Firm i produces output
level qi with a cost function Ci(qi), and Q = ∑n

i=1 qi. Let Q−i denote the total output of the
firms other than firm i, i.e., Q−i = Q − qi.

The profit function of firm i is

�i(qi, Q−i) = qiP(qi + Q−i)− Ci(qi). (3.3)

Standard assumptions The following are in effect throughout this section:

(A1) P (·) is twice continuously differentiable and P
′
(·) < 0.

(A2) C (·) is lower semi-continuous and increasing on (0, ∞).

We shall assume throughout that firm i chooses an output qi ∈ [0, Ki], either due to a produc-
tion capacity or a boundedness property of P (relative to Ci). While some results rely on this
boundedness assumption for convenience, it is redundant for the main existence results.9 The
reaction correspondence of firm i is defined by ri(Q−i) � arg max {�i(qi, Q−i) : qi ∈ [0, Ki]} .

Although we assume smoothness of the inverse demand function throughout, we stress that
this is only for convenience and ease of interpretation of the needed sufficient conditions.

3.2 A Brief Early Literature Review

Starting with Hahn (1962) and Frank and Quandt (1963), a rich literature has developed
over the years dedicated to the existence of Cournot equilibrium in the general case (with
asymmetric firms), and to related issues of uniqueness or characterization of equilibrium as
well. All the studies that comprise the early literature derived existence from the classical
topological approach based on fitting the assumptions of the Brouwer/Kakutani fixed-point
theorem. In other words, the assumptions on the primitives of the Cournot oligopoly model
included some version of concavity of either inverse demand or the revenue function, and
convexity of the cost functions, together with some condition that guarantees bounded outputs.
Under such assumptions, the best-response mapping is continuous and existence follows
directly from the Brouwer/Kakutani fixed-point theorem. This approach to existence and
uniqueness of pure-strategy Nash equilibrium for general strategic games with real action
sets was pioneered by Rosen (1965).

A list of the studies that are part of this literature on Cournot oligopoly include Frank
and Quandt (1963), Szidarovszky (1970), Szidarovszky and Yakowitz (1977, 1982), Novshek

9 See Ewerhart (2014) for more details on this point.
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On the Cournot and Bertrand oligopolies 45

(1980, 1984), and Roberts and Sonnenschein (1977), among others.10 The literature dealing
more specifically with existence and the comparative statics of entry in the symmetric case
is discussed in the next section. Finally, several surveys and books offer some treatment of
related issues in oligopoly theory: see Friedman (1977, 1982), Shapiro (1989), and Vives
(2005a, 2005b).

3.3 Existence of Cournot Equilibrium in the General Case

The first existence result, due to Novshek (1985), can be viewed as being directly based on
the supermodular approach, even though the author was then unaware of these methods, and
thus had to derive all the needed results from first principles.11

Proposition 1 Assume that inverse demand satisfies

P ′(Q)+ QP ′′(Q) ≤ 0 for all Q ≥ 0. (3.4)

Then the Cournot game is a game of strategic substitutes and a Cournot equilibrium exists.

Proof Using the smooth characterization of decreasing differences, �i(qi, Q−i) has this
property if and only if

∂2�i(qi, Q−i)/∂qi∂Q−i = P ′(qi + Q−i)+ qiP
′′(qi + Q−i) ≤ 0 for all qi, Q−i ≥ 0 (3.5)

Since with P ′ ≤ 0, it is easy to see that (3.5) holds if and only if (3.4) holds. It follows that
the game is submodular if (3.4) holds. This also holds in the n-firm case, for all n.

In addition to being a submodular game, the Cournot model is an aggregative game, i.e.,
each firm’s profit depends only on its output and on the aggregate output of the rivals. These
two properties together imply existence of a Cournot equilibrium, via a well-known result
(see Novshek, 1985, or Kukushkin, 1994). �

In terms of economic interpretation, Condition (3.5) says that a firm’s marginal revenue
decreases with rivals’ aggregate output. This is quite a natural condition for Cournot
competition.

Condition (3.4) has been widely used in the literature, and is quite general. Nevertheless, an
important class that does not satisfy this condition is the class of hyperbolic inverse demands

P(Q) = a

Qα
, for a > 0,α > 0. (3.6)

10 Szidarovszky and Okuguchi (2008) deal with existence in a generalized version of a standard Tullock rent-
seeking game, but this is closely related to the Cournot model.

11 Novshek’s work represents one of the early instances where an author of an important advance in economic
theory discovers the powerful results from the theory of supermodular games in a specific context, independently
of the work of Topkis on parametric monotonicity. Another example is the theory of convex (coalitional) games
(Shapley, 1971).
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Importantly, there is no requirement whatsoever on the cost functions, besides lower semi-
continuity. (The latter is needed only to ensure that the profit functions are upper semi-
continuous so that the reaction correspondences are non-empty valued.) This irrelevance of the
nature of returns to scale in production to the existence of Cournot equilibria underscores the
most important of the novel benefits of using the lattice-theoretic approach over the standard
topological approach. Indeed, the latter typically requires convex costs.

It is worth recalling here that, in contrast to supermodular games, in general, a submodular
game, or a game of strategic substitutes, need not possess a pure-stategy Nash equilibrium.
In other words, the aggregation property mentioned in the proof above is critically needed, in
conjunction with the submodularity of the Cournot game to guarantee existence.

This special argument, exploiting the special structure of the Cournot model, has a
long history. Novshek (1985) rediscovered an argument that exploits the aggregation and
submodular properties to establish existence of a Cournot oligopoly, originally given in Selten
(1970) and Szidarovszky (1970); also see Bamon and Fraysse (1985). For a more formal proof
in the form of a fixed-point theorem, see Kukushkin (1994).12

A noteworthy special case is duopoly or n = 2. For any two-player submodular game,
the existence of a pure-strategy Nash equilibrium is guaranteed via Tarski’s fixed-point
theorem applied to the composition (of the largest selections, say) of the two reaction curves
(Vives, 1990). The argument is as follows. Since both reaction curves are decreasing, their
composition is increasing. Its fixed points are easily seen to be Nash equilibria.13 In addition,
if one reverses the order on (say) firm 2’s decision, i.e., if one thinks of its action as being −q2
instead of q2, then under (3.4), the Cournot duopoly becomes a supermodular game. This
“order-reversing” trick does not work for three or more firms, i.e., in general, a submodular
n-player game is not a supermodular game if n ≥ 3. It follows that it is only for the special case
of two players that the Cournot duopoly under Condition (3.4) enjoys all the strong properties
of supermodular games.14

The next result is due to Amir (1996a):

Proposition 2 Assume that inverse demand P(Q) is log-concave or satisfies

P(Q)P ′′(Q)− P ′2(Q) ≤ 0 for all Q ≥ 0. (3.7)

Then the Cournot game is a game of strategic substitutes and a Cournot equilibrium exists.

The proof, given in the Appendix, shows that Condition (3.7) is sufficient for the Cournot
game to be of strategic substitutes, by showing that each firm’s profit function satisfies the
dual single-crossing condition in own and rivals’ outputs.15 Existence of PSNE then follows

12 Dubey et al. (2008) use another argument and arrive at the same existence result.
13 This argument applies to Cournot duopoly in particular.
14 These include the fact that uniqueness of pure-strategy Nash equilibrium (PSNE) implies its coincidence with

the mixed-strategy Nash equilibrium (MSNE) set and the correlated equilibrium set, the convergence of a wide class
of learning models to the PSNE set, etc.

15 Partly as a reflection of the absence of any convenient differential test, the single-crossing property can often
be quite tedious to prove even in simple settings. The proof that log-concavity of inverse demand implies downward-
sloping reaction curves is an elementary proof, but nevertheless one that has inspired similar proofs in other contexts
(see e.g., Quah and Strulovici, 2012, and Amir and Lazzati, 2011). It is given here for the sake of completeness and
as an illustration of how a proof of the single-crossing property might look.
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On the Cournot and Bertrand oligopolies 47

from the conjunction of the strategic substitutes and the aggregation properties of the Cournot
oligopoly.

The economic interpretation of Condition (3.7) is that a firm’s price elasticity of demand
decreases with rivals’ aggregate output. This is also a natural and general condition for
Cournot competition. Like Condition (3.4), it includes as special cases the common linear
inverse demand, concave inverse demand, and even allows for limited forms of convexity of
inverse demand. Nevertheless, the class of hyperbolic inverse demands also fails Condition
(3.7). In fact, these demands satisfy the opposite property of log-convexity, which (under
smoothness) is equivalent to

P(Q)P ′′(Q)− P ′2(Q) ≥ 0 for all Q ≥ 0. (3.8)

It is natural to wonder whether Conditions (3.7) and (3.4) are nested. The answer is
negative. Indeed, P(Q) = min{− log Q, 0}, Q ≥ 0, satisfies (3.4) but not (3.7), and P(Q) =
e−Q, Q ≥ 0, satisfies (3.7) but not (3.4). The latter inverse demand also constitutes the limit
case for the property of log-concavity, since it is log-linear. We shall return to this point
below.

Finally, while the two previous results provide alternative sufficient conditions on inverse
demand alone that ensure strategic substitutability for the Cournot game, another condition
on costs (strong concavity) can lead to the same outcome, as will be seen in the next section.

3.4 Some Extensions

In addition to the central question of existence via the property of strategic substitutes, Amir
(1996a) addressed a number of other issues of some interest, which are summarized next.

3.4.1 Cournot oligopoly as a game of strategic complements
The first of these issues is whether n-player Cournot oligopoly could ever be a game of
strategic complements (in the original order on the output sets). The answer is clearly negative
if one uses the cardinal condition of increasing differences. Indeed, the latter condition would
entail that Condition (3.5) holds with the reverse sign, which is impossible (to see this, simply
let qi = 0 in (3.5)). Nevertheless, the following result still holds:

Proposition 3 Assume that inverse demand is log-convex or satisfies (3.8), and that
Ci(qi) ≡ 0 for all i. Then the Cournot game is a game of strategic complements and a
Cournot equilibrium exists.

Proof Since log�i(qi, Q−i) = log qi + log P(qi + Q−i), it is easy to see that log�i(qi, Q−i)

has increasing differences in (qi, Q−i) if and only if log P(·) is convex.16 �

Log-convexity is a very restrictive condition for an inverse demand function, though one
that is nevertheless satisfied by the subclass of hyperbolic demand functions (3.6).

A very strong requirement here is the absence of (non-trivial) production costs. To see why
this restriction is needed, consider the following two observations, made in the context of

16 A formal proof of this simple fact appears in Amir (1996c).
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linear costs (for simplicity), Ci(qi) = ciqi. First, P(·)− ci can never be a log-convex function
when ci > 0.17 Second, when facing aggregate output Q−i by its rivals, for firm i, the outputs
outside [0, P−1(ci)− Q−i] are easily seen to be dominated strategies (by the 0 output choice).
Since one may view the firm as facing the constraint set [0, P−1(ci) − Q−i] when choosing
its output, and since this constraint set is descending in Q−i, firm i’s reaction curve cannot be
globally increasing (or, it would hit the constraint and be decreasing thereafter).

In other words, the presence of non-trivial production costs always pushes in favor of the
Cournot game having strategic substitutes. If c = 0, there is a complete duality in the way
log-concavity and log-convexity assumptions on inverse demand translate into a decreasing
and an increasing reaction curve, respectively. However, whenever c > 0, this duality breaks
down, with costs always introducing a bias in favor of downward-sloping reactions. Indeed,
P(·) − c is log-concave whenever P(·) is log-concave while the converse need not hold. In
fact, P(·)− c may be globally log-concave even when P(·) is globally log-convex.

Here is a simple instructive example:

Remark 1 The inverse demand P(Q) = ae−Q, a > 0, Q ≥ 0, is log-linear, thus both log-
concave and log-convex. It follows from the two propositions above that, if a firm has zero
costs, its reaction curve will be both increasing and decreasing, and hence constant. Indeed,
it can be verified via a simple computation that the reaction curve is constant at 1; in other
words, each firm has a dominant strategy to produce one unit.

We close with a simple reformulation of the previous result. The idea here is to bring
production costs back into the picture, but limit the effective joint action space in such a
way that the failure of global strategic complementarity ceases to be binding:

Proposition 4 Assume that each firm’s cost function is linear, or Ci(qi) = ciqi, for i =
1, 2, . . . , n, and that inverse demand is such that P(·) − maxi ci is a log-convex function on[
0,
∑n

i=1 Ki
]
. Then the Cournot game is a game of strategic complements and a Cournot

equilibrium exists.

Although it is certainly of interest to know that the n-firm Cournot oligopoly can be a game of
strategic complements in the original order on the output sets, the sufficient conditions leading
to this case are quite restrictive. This is so for the restrictiveness of the log-convexity of inverse
demand, and in particular by the absence of non-trivial costs. When the assumptions do hold,
the Cournot game satisfies all the strong properties that characterize the class of supermodular
games.

An ancillary benefit of the foregoing analysis is that it provides a precise sense in which
the oft-expressed view, that Cournot oligopoly is naturally a game of strategic substitutes, is
justified.

3.4.2 Taking monotone transformations
Since taking strictly monotone transformations of a payoff function will not change the
reaction correspondence, it is natural to explore the scope of complementarity that can be

17 Indeed, log P(·) − ci convex amounts to
[
P(Q)− ci)P ′′(Q)− P ′2(Q)

] ≥ 0 for all Q ≥ 0, which cannot hold
(to see this, let Q = P−1(ci)).
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spanned by taking suitably chosen transforms of a Cournot profit function. Amir (2005)
considers the effects of the following choices of transformations:

xα/α,α ∈ R; log(ax + b), a > 0, b > 0; − e−ax, a > 0; and ax + logx, a > 0.

The main idea is easily conveyed via an example:

Example 1 Consider a Cournot firm with C(q) = 0 and

P(Q) = 10e−Q + 3 − Q, for Q ≤ 3.35 and P(Q) = 0 for Q > 3.35.

Then �i(qi, Q−i) = 10qi
[
e−(qi+Q−i) + 3 − qi − Q−i

]
. It is easy to verify that

P ′(Q)+ QP ′′(Q) = 10(x − 1)e−Q − 1 > 0 if and only if 1.41 < Q < 2.99

and

P(Q)P ′′(Q)− P ′2(Q) = −10(x − 1)e−Q − 1 > 0 if and only if Q < 0.783.

Hence, we conclude that Conditions (3.7) and (3.4) both fail to hold globally, so we cannot
conclude that the reaction curve is downward-sloping.

Next apply the transformation h(x) = x + logx to �i(qi, Q−i), and take the cross-partial
to get

∂2h ◦�i(qi, Q−i)

∂qi∂Q−i
= 10(x − 1)e−Q − 1 − 10(x − 1)e−Q − 1 = −2 < 0.

Since h ◦ �i(qi, Q−i) has decreasing differences, we conclude that �i(qi, Q−i) has the dual
single-crossing property, and therefore, from Topkis’s theorem, that the reaction curve is
decreasing.

3.4.3 The special case of linear costs
The reason Conditions (3.7) and (3.4) are not nested is that they are both imposed globally,
i.e., for all possible total outputs. Yet in general, along a firm’s optimal response, not all
total outputs will be reachable. Exploring this observation for the the case of linear costs (for
simplicity), one arrives at a necessary and sufficient condition for strategic substitutes for
Cournot oligopoly (Amir, 2005):

Proposition 5 Assume that each firm’s cost function is linear, or Ci(qi) = ciqi, for i =
1, 2, . . . , n. Then the Cournot game is a game of strategic substitutes if and only if inverse
demand is such that P(·)− mini ci is a log-concave function on

[
qm

i , +∞ ), for all i, where qm
i

denotes firm i’s optimal monopoly output.
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A formal proof is omitted here (see Amir, 2005), but the main idea behind the proof is
provided next.18 The reason that total outputs in the interval [0, qm

i ) are not reachable along
a firm’s best response is that the reaction curves have all their slopes larger than −1, which
implies that ri(Q−i) + Q−i is increasing in Q−i and the smallest reachable total output is
then ri(Q−i) = qm

i . We shall return to this property as it plays a key role in the analysis of
symmetric Cournot oligopoly in the next section.

We close with a simple closed-form illustrative example of how the shape of a reaction
curve depends on the size of the firm’s unit cost:

Example 2 Let P(Q) = 1
Q+1 and Ci(qi) = ciqi.

If ci = 0, since P is log-convex, the reaction curve ri is increasing. As ci is increased, ri

is increasing up to some value of Q−i > 0, but is decreasing thereafter. For ci = 1/4, the
reaction curve is easily computed to be

ri(Q−i) = 2(Q−i + 1)1/2 − Q−i − 1 if Q−i ≤ 3 and ri(Q−i) = 0 if Q−i > 3.

It is easy to see that ri(Q−i) is globally decreasing. (In fact, 1/4 is the smallest value of ci for
which the reaction curve is decreasing. All higher values of ci will keep ri(Q−i) decreasing.)

The key point for understanding this outcome is that P(Q)− 1/4 is a log-concave function
of Q on (qm

i , ∞), even though P(Q) is a log-convex function. Indeed, to verify, note that
qm

i = arg max{qi/(qi + 1)− qi/4} = 1 here, and

[
P(Q)− 1

4

]
P ′′(Q)− P ′2(Q) = (1 − Q)

2(Q + 1)4
< 0 for Q > 1 = qm

i .

3.5 Generalized Concavity

Introduced into oligopoly theory with product differentiation by Caplin and Nalebuff (1991)
and Dierker and Podczek (1992) as a way to model consumer heterogeneity, generalized
concavity turned out to be relevant to the existence of Cournot equilibrium. Ewerhart (2014)
shows that this notion can be used fruitfully to derive a significant extension of the previous
existence results based on the lattice-theoretic approach, for general cost functions.

We begin with the definition of the general notion of generalized concavity. With
ϕα(x) = xα/α being a class of monotone transformations as α varies, an inverse demand
function P(Q) is (α, β) bi-concave if the mapping from ϕβ(Q) to ϕα(P(Q)) is concave,19 or
dϕα(P(Q))/dϕβ(Q) is decreasing, or, for all Q ≥ 0,

�α,β(Q) � (α − 1)P ′2(Q)+ QP(Q)P ′′(Q)+ (1 − β)P(Q)P ′(Q) ≤ 0. (3.9)

Several of the known conditions in the literature on existence of Cournot equilibrium can be
nested in (3.9).

18 Actually, one can write a simple proof of this characterization using the implicit function theorem and the
first-order conditions along standard lines.

19 In words, bi-concavity means that inverse demand becomes concave once the quantity and the price axis are
scaled by the transformations ϕβ and ϕα .
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The main existence result in Ewerhart (2014) is as follows:

Proposition 6 Let P(Q) be (α, 1 − α)-bi-concave for some α ∈ [0, 1]. Then the Cournot
oligopoly has strategic substitutes and a Cournot equilibrium exists.

The proof makes use of the scaling maps ϕα on the price axis and ϕβ on the quantity axis, and
works with the revenue function directly to show that (α, 1 − α)-bi-concavity of P(·) leads to
a profit function that satisfies the dual single-crossing property, provided the cost function is
increasing. It follows that the reaction correspondence then has a decreasing minimal selection
(see Ewerhart, 2014, p. 45 for details).

It is straightforward to verify that this result generalizes previous existence results on
existence (based on strategic substitutes). In particular, Conditions (3.4) and (3.7) can be seen
to amount to (1, 0) and (0, 1) bi-concavity respectively.

We close this section with a simple class of examples illustrating the value added of this
existence result:

Example 3 Let P(Q) = (1 − Qδ)1/γ for Q ≤ 1 and 0 for Q > 1.
It can be shown (numerically) via the sign of �α,β(Q) for this inverse demand function

that P(Q) is (α, β) bi-concave if and only if α ≤ γ and β ≤ δ. However, Conditions (3.4)
and (3.7) can be seen not to hold if δ and γ are less than, but very close to, 1. Nevertheless,
according to the proposition, the reaction curve is downward-sloping here.

For this example, a closed-form solution for the reaction curve is not possible in general.

3.6 On Uniqueness of Cournot Equilibrium

Many of the papers on Cournot oligopoly offered some insights on uniqueness of Cournot
equilibrium. Kolstad and Mathiesen (1987) restricted attention to interior and regular Cournot
equilibria and use degree theory to derive conditions for uniqueness (see Gaudet and Salant,
1991, for a reformulation). As a summary of the main result by Kolstad and Mathiesen
(1987), the uniqueness condition amounts to signing the determinant of the Jacobian of
marginal profit, which reduces to the key condition that, at all candidate Cournot equilibria,
and including firms with a positive output, one has (with Ci assumed smooth)

[
1 −

∑
i

P ′ + qiP ′′

C ′′
i − P ′

]
�n

i=1(C
′′
i − P ′) > 0.

Integrating generalized concavity with the supermodularity approach, Ewerhart (2014)
provides an alternative approach and result on uniqueness, making use of the Selten-Novshek
aggregation argument again.

4 SYMMETRIC COURNOT OLIGOPOLY AND ENTRY

In this section, we consider the special case of symmetric Cournot oligopoly and consider the
twin questions of existence of a Cournot equilibrium and the comparative statics of exogenous
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entry of firms. For the latter issue, we investigate how industry price and per-firm profit vary
with the number of firms in the industry. This amounts to conducting equilibrium comparative
statics, the exogenous parameter being the integer number of firms.

4.1 A Brief Literature Review

The problem of existence of symmetric Cournot equilibrium has a long history. McManus
(1962, 1964) proved existence of such equilibria assuming only that the cost function is
convex. Without any type of concavity assumption, he showed that the reaction curve has all
its slopes larger than −1, a property that rules out any downward jumps, but allows upward
jumps as well as upward or downward-sloping continuous parts of the graph. He then shows
that this property is sufficient for the existence of symmetric Cournot equilibrium in n-firm
oligopoly. Unaware of McManus’s work, Roberts and Sonnenschein (1976) provided a (more
rigorous) version of the same result under the assumption of a linear cost function.

As noted in Vives (1990), the essence for this existence result is another theorem by Tarski
(1955), one that was not known to the above authors at the time they were writing, and that has
remained less known than Tarski’s fixed-point theorem for a long time. Amir and Lambson
(2000) used the full lattice-theoretic machinery explicitly to come up with a somewhat more
general version of the result, exposited below in some detail. Hoernig (2003) extended their
analysis to accommodate product differentiation in quantity competition.

As to the problem of the effects of exogenous entry on market performance, there is an
extensive literature in oligopoly theory, in line with the question being such a central and
historical part of the overall theory of markets, in particular in partial equilibrium analysis. A
limited list of studies dealing specifically with the Cournot model would include McManus
(1962, 1964), Frank (1965), Okuguchi (1973), Ruffin (1971), Seade (1980), Szidarovsky
and Yakowitz (1982), and Quirmbach (1988), among many others. In addition, Dixit (1986)
and Corchón (1994) address similar questions of comparative statics of equilibria in broader
settings that include the Cournot model.20

The reason the issues of existence and comparative statics of symmetric Cournot equilibria
are addressed together in this survey is that, with the lattice-theoretic approach, the minimal
assumptions needed to derive definite conclusions about these two issues naturally lead to two
distinct cases of analysis: an intuitive case where more competition leads to a lower industry
price, and a counter-intuitive case where the opposite happens.21

4.2 The Basic Set-up

Since firms are identical, we write C(qi) for the cost function (assumed smooth here), and
r (Q−i) , for the reaction correspondence of firm i. At equilibrium, these quantities will be
indexed by the underlying number of firms n. We explicitly deal with the (possible) non-
uniqueness of Cournot equilibria by considering extremal equilibria. Denote the maximal and
minimal points of any equilibrium set by an upper and a lower bar, respectively. Thus, for
instance, Qn and Q

n
are the highest and lowest total equilibrium outputs, with corresponding

20 The problem of endogenous entry deals with somewhat different issues; see Mankiw and Whinston (1986),
Suzumura and Kiyono (1987) and Amir, Koutsougeras, and De Castro (2014).

21 De Meza (1985) provides an example indicating that simply signing the derivative of price with respect to the
number of firms (treated as a real number) can lead to ambiguous outcomes.
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On the Cournot and Bertrand oligopolies 53

equilibrium prices p
n

and pn, and per-firm profits πn and πn, respectively. A priori, our
comparative statics conclusions refer to the extremal equilibria, but they may be extended
to what are called regular equilibria in Amir et al. (2014).22

Instead of the profit function (3.3), one may think of firm i as choosing total output Q = qi+
Q−i, given the other firms’ cumulative output Q−i, in which case its profit can be rewritten as

�̃i (Q, Q−i) = �(Q − Q−i, Q−i) = (Q − Q−i)P (Q)− C (Q − Q−i) . (3.10)

Its augmented reaction curve is then

Ri(Q−i) � arg max
{
�̃i (Q, Q−i) : Q ≥ Q−i

}
.

The argmax’s in (3.3) and (3.10) are always related by Ri(Q−i) = ri(Q−i) + Q−i. It follows
that Ri(Q−i) is increasing (decreasing) in Q−i if and only if ri(Q−i) has slopes ≥ (≤)1. This
is a key observation in what follows.

A key determinant for both the existence and the comparative statics issues is the sign of
� (Q, Q−i), which denotes the cross-partial derivative of �̃ with respect to Q and Q−i, i.e.,

�(Q, Q−i) �
∂2�̃i (Q, Q−i)

∂Q∂Q−i
= −P

′
(Q)+ C

′′
(Q − Q−i) .

Both �̃ and � are defined on (the lattice) ϕ
∧= {(Q, Q−i) : Q−i ≥ 0, Q ≥ Q−i}.

The following cumulative best-response mapping is the key object of study for both the
existence and the comparative statics questions. Define

Bn : [0, (n − 1)K] −→ 2[0,(n−1)K]

y −→ (n−1)
n [ri(Q−i)+ Q−i]

The qualitative nature of both the existence and the comparative statics results hinges
entirely on the global sign of �, so that we will distinguish two main cases: � > 0 and
� < 0.23

4.3 The � > 0 Case

As convexity of the cost function implies that � > 0, this corresponds to the standard case
commonly studied in the oligopoly literature. Indeed, the effects of entry on price and profit
will be seen to correspond to standard intuition. Exploiting the symmetry assumption, both
existence and regular comparative statics properties rest only on the one key assumption that
� > 0. Importantly, the upcoming analysis does not rely on the Cournot game being of
strategic substitutes or complements. Yet the lattice-theoretic approach is crucial to the results
below.

22 This issue comes up naturally in any formal treatment or discussion of the correspondence principle
(Samuelson, 1947 and Echenique, 2002).

23 The condition � > 0 has a long history in the oligopoly literature, going back to at least Hahn (1962).
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We begin with a simple existence result, which generalizes older work by McManus (1962,
1964) and Roberts and Sonnenschein (1976). The latter results assumed either linear or convex
costs, while the condition � = −P

′
(Q) + C

′′
(Q − Q−i) > 0 makes it apparent that it can

accommodate some limited increasing returns to scale, even of a global sort, as illustrated in
an example below. In terms of economic interpretation, the key condition � > (<)0 is quite
transparent; it holds that price decreases faster (slower) than marginal cost at all possible
output levels.

Proposition 7 When � > 0, there exists at least one symmetric Cournot equilibrium and no
asymmetric ones.

Proof Since � (Q, Q−i) > 0, by a strengthening of Topkis’s theorem given in Amir (1996b),
every selection of R(Q−i) is strictly increasing in Q−i. By Tarski’s fixed-point theorem applied
(say) to the maximal selection Ri, we conclude that Ri has a fixed point y, which is easily seen
to correspond to a symmetric Cournot equilibrium, since B(y) = (n−1)

n [r(y)+ y] implies that

r(y) = y
n−1 , which characterizes symmetric Cournot equilibria.

To see that no asymmetric Cournot equilibrium is possible here, recall that the symmetry
of the game ensures that permutations of such an equilibrium are also equilibria. Hence, for
some i, ri must have a slope equal to 1, which implies a slope of 0 for Ri, a contradiction to
the fact that Ri(Q−i) is strictly increasing in Q−i. �

It is remarkable that both the existence and the intuitive comparative statics below entirely
hinge on the fact that � > 0 :

Proposition 8 When� > 0, as n increases exogenously, for the extremal Cournot equilibria,

(i) Pn decreases;
(ii) πn decreases.

Proof (i) As n increases, the fraction n−1
n increases, and hence the (maximal selection)

mapping B(y) = min{Bn(y)} shifts up (as a function of y). Hence the maximal fixed point, yn,
increases in n. Since the largest equilibrium output Qn = Ri(yn) = ri(yn) + yn and Ri(·)
is increasing, Qn also increases in n. A similar proof applies to the minimal equilibrium
output Qn.

(ii) Let qn be the maximal Cournot equilibrium per-firm output, and consider

πn = qnP(nqn)− C(qn)

≥ qn+1P
[
qn+1 + (n − 1)qn

]− C(qn+1)

≥ qn+1
{
P
[
qn+1 + nqn+1

]− C(qn+1)
}

= qn+1
{
P
[
(n + 1)qn+1

]− C(qn+1)
}

= πn+1

where the first inequality follows from the Cournot equilibrium property, the second from the
facts that P is decreasing and nxn ≤ (n + 1)xn+1 since � > 0.�
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On the Cournot and Bertrand oligopolies 55

Example 4 Let P(Q) = 2 − Q, Q ≤ 2, and C(q) = log(q + 1). Even though C is globally
concave, we have, on the relevant range 0 ≤ Q−i ≤ Q ≤ 2,

�(Q, Q−i) = −P ′(Q)+ C ′′(Q − Q−i) = 2 − (1/(Q − Q−i + 1)2) > 0.

A simple calculation shows that

r(Q−i) = 1

4

[
−Q−i +

√
Q2

−i − 8Q−i + 8

]
for Q−i ≤ 1 and 0 for Q−i > 1

It is easily checked that r(Q−i) > −1 for Q−i ≤ 1, and that the unique equilibrium has

Qn = n
2(n+1)

[
1 − n + √

n2 + 2n + 5
]
, which is increasing in n (so price is decreasing in n).

Hence, this case fits the usual situation indeed.
We next consider the counter-intuitive case.

4.4 The � < 0 Case

The condition � < 0 clearly requires the cost function to be strongly concave, and is thus
quite restrictive. This case has generally been neglected in the oligopoly literature.

A key property of the reaction curve follows from Topkis’s theorem: the augmented reaction
curves Ri(Q−i) is decreasing, which is the same as saying that, while interior, r satisfies

r(Q ′
−i)− r(Q−i)

Q ′
−i − Q−i

< −1, for all Q ′
−i, Q−i (3.11)

has all its slopes < −1. It follows that ri is strongly decreasing, so the Cournot game here is
of strategic substitutes.

The existence issue is quite distinct from the � > 0 case. The same argument used in the
previous section (Novshek, 1985, Kukushkin, 1994) shows abstractly that Cournot equilibria
exist here. However, one can be far more explicit here and exhibit an important specific
Cournot equilibrium: the monopoly outcome (qm, 0, 0, . . . , 0). Indeed, this follows directly
from the facts that ri(0) = qm, and ri(qm) = 0, with the latter being a direct consequence
of (3.11).

As to the possible existence of other equilibria, since (3.11) is consistent with ri having
downward jumps, there may be none if all that is assumed is � < 0. To see this, it helps
to think of symmetric equilibria in the n-firm case as intersections of ri(·) with the line
Q−i/(n − 1). A downward jump of ri may well lead to the absence of such intersection.

To restore existence of a symmetric equilibrium for every n, one needs to assume that
�i(qi, Q−i) is strictly quasi-concave in qi, so that ri is a continuous function. Then it is
easily shown that the symmetric equilibrium is unique for every n, since they are intersections
of ri(·) with the line Q−i/(n − 1). Furthermore, the only other equilibria are of the form
(qm, qm, . . . , qm, 0, 0, .., 0) for any m < n. In other words, each equilibrium of the latter sort
involves some number of inactive firms and symmetric behavior among the active firms.
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In light of the structure of the two types of equilibria here, as far as comparative statics
properties are concerned, we can without loss of generality confine attention to the symmetric
equilibria:

Proposition 9 When � < 0, as n increases, for the unique symmetric Cournot equilibrium,

(i) Pn increases;
(ii) πn decreases.

Proof (i) We first argue that, since � = ∂2�̃i (Q, Q−i)/∂Q∂Q−i < 0, a combination of
Topkis’s theorem and an additional argument using the structure of the Cournot model implies
that Ri(·) is decreasing and thus that ri(·) has all slopes < −1, while interior, and that ri(·)
remains at zero once it reaches there (for key details needed because the feasible set Q ∈
[Q−i, ∞) is ascending, instead of descending, and thus Topkis’s theorem is not applicable (see
Amir and Lambson 2000, Lemma 3.1, p. 250). The same argument as in the previous result
leads to the fixed point, yn, which is unique here, being increasing in n. Hence, the equilibrium
total output Qn = Ri(yn), Qn is decreasing in n, and the price Pn is increasing in n.

(ii) The proof that πn decreases in n is the same as in the previous proposition. �

In light of the fact that � < 0 requires the cost function to be strongly concave, the quasi-
concavity of each profit function in own output becomes a very restrictive condition. Indeed,
in the literature on Cournot oligopoly, the latter assumption typically entails convexity of
costs. Nevertheless, it is easy to check that the two assumptions are actually compatible, as
can also be confirmed by many examples (see Amir and Lambson, 2000).

As previously noted, without the quasi-concavity assumption of each profit function in
own output, existence of symmetric Cournot equilibrium may fail for some values of n.
Nevertheless, the comparative statics results will hold for those values of n for which said
existence holds.

Here is an illustrative example of the � < 0 case:

Example 5 Let P(Q) = 4 − 6Q, Q ≤ 2/3, and C(q) = 3q − 3q2 − 3q3, q ≤ K = 1/3. We
have, on the relevant range 0 ≤ Q−i ≤ Q ≤ 2/3,

�(Q, Q−i) = −18(Q − Q−i) ≤ 0.

A simple calculation shows that r(Q−i) = 1
3

[
1 − √

6Q−i
]

for Q−i ≤ 1/6, and 0 for Q−i >

1/6. It is easily checked that r(Q−i) < −1 for Q−i ≤ 1/6, and that the unique symmetric

equilibrium has total output Qn = n
3

(
n − √

n2 − 1
)

, which is decreasing in n (so price is

increasing in n).

The conclusion that more competition increases price in a global sense is certainly one
of the most provocative propositions in economics. Yet, it is also quite in line with basic
economic intuition. Indeed, as n increases, each firm must produce much less at the new
equilibrium (since r(·) falls steeply), and since the average cost curve falls very sharply
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On the Cournot and Bertrand oligopolies 57

(when � < 0), more competition leads to a sharp decline in production efficiency. Since
firms must pass this on to consumers at a Cournot equilibrium, the end result is an increase in
price.

Perhaps not surprisingly, the case of a concave cost function has been generally avoided in
much of the literature. Yet, this case is certainly of some economic interest. For instance, the
� < 0 case may be viewed as an alternative definition of natural monopoly, based on both
supply side and market considerations. The well-known alternative defines natural monopoly
as an industry with a sub-additive cost function, which is based purely on the production side
of an industry; see Baumol, Panzar, and Willig (1982). This suggests that the latter definition
might be appropriate for regulated monopoly, while the present one would suit unregulated
monopoly.

5 BERTRAND COMPETITION WITH DIFFERENTIATED PRODUCTS

This section considers a general model of Bertrand competition with differentiated products,
and derives general conditions under which the game satisfies strategic complementarity (see
Vives, 1990, and Milgrom and Roberts, 1990). This property is broadly thought as a natural
one for price competition to satisfy. In addition, this section explores the general connection
between the strategic complementarity (resp, substitutability) of the Bertrand game, and the
nature of the inter-product relationship (gross substitutes and gross complements).24

An important assumption for the game to be well defined is that each firm is committed to
satisfy whatever demand might be forthcoming at the prices quoted by the firms. Thus, even
in cases where this results in a loss, firms simply cannot turn consumers away. In other words,
some plays of the game might well lead to negative payoffs for some of the firms, but this is
obviously an off-equilibrium possibility only.25 One advantage of this formulation is that it
dispenses with the need to specify a rationing scheme, thereby avoiding the possibility that
key results might depend on this specification.

Consider an industry consisting of n single-product firms, with the demand for the good
produced by firm i denoted Di(p1, p2, . . . , pn), i = 1, 2, . . . , n. Firm i is assumed to have a
cost function Ci(·).

Since firm i’s sales correspond to its demand, the profit function of firm i is defined as
usual by

�i(pi, p−i) = piDi(pi, p−i)− Ci
[
Di(pi, p−i)

]

and its reaction correspondence is

ri(p−i) = arg max
pi
�i(pi, p−i).

24 Recall that when demands are linear, strategic complementarity (resp, substitutability) of the Bertrand game is
equivalent to the products being gross substitutes (resp., gross complements): see e.g., Singh and Vives (1984). This
is not true for general demand functions.

25 This is one of the two commonly used models of price competition. The other model, wherein firms have
bounded capacities and equilibrium is in mixed strategies, is the so-called Bertrand-Edgeworth model. This is beyond
the scope of the present survey (for a fairly recent treatment, see e.g., Deneckere and Kovenock, 1996).
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We will say that the Bertrand oligopoly is symmetric if the demand functions are symmetric
and c1 = c2 = . . . = cn � c.

We define the effective overall price space as Si �
{
(p1, p2, . . . , pn) ∈ Rn+ | Di(p1, p2, . . . ,

pn) > 0
}
.

Standard assumptions The following are in effect throughout this section:

B1 Di and Ci are twice continuously differentiable on Si, i = 1, 2, .., n.

B2
∂Di

∂pi
< 0, and C ′

i > 0.

B3
∑n

k=1
∂Di(p1, p2, . . . , pn)

∂pk
< 0 over the set Si.

B4
∑n

k=1
∂2Di(p1, p2, . . . , pn)

∂pi∂pk
< 0 over the set Si.

These conditions are quite general, and are commonly invoked for differentiated-good demand
systems. They have the following meanings and economic interpretations. For B2, part (i) is
just the ordinary law of demand, and part (ii) says that goods i and j are substitutes.

As to B3, it is a strict dominant diagonal condition for the Jacobian matrix of the demand
system (see e.g., Vives, 1999). It says that own price effect on demand exceeds the total cross-
price effects. In a similar vein, B4 says that each demand satisfies a strict dominant diagonal
condition for the Hessian matrix of the demand system (see e.g., Vives, 1985, 1999). The
usual interpretation is again that own effects of price changes dominate cross-effects, but for
the slope of demand.

5.1 The Case of Substitute Goods

The main case considered here will be that of goods that are gross substitutes, defined by the
condition ∂Di

∂pj
> 0 for all i = 1, 2, .., n. This says that an increase in the price of one good leads

to an increase in the demand for the other good.
The following proposition provides sufficient conditions for the strategic complementarity

of the Bertrand game (Vives, 1990):

Proposition 10 Under assumptions B1–B2, assume that Ci is a convex function and that,
over the set Si

∂ log Di

∂pj
+ pi

∂2 log Di

∂pj∂pi
≥ 0, for j �= i. (3.12)

Then the Bertrand game is of strategic complements, and hence has a Bertrand equilibrium.

Proof The cross-partial of �i(pi, p−i) with respect to pj and pi is

∂2�i(pi, p−i)

∂pj∂pi
= ∂Di

∂pj
+ (pi − C ′

i )
∂2Di

∂pj∂pi
− C ′′

i
∂Di

∂pi

∂Di

∂pj
,
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which is easily seen to be ≥ 0, provided one restricts attention to the region in price space
where prices lie above marginal costs.

This then implies that the game is supermodular and that a Bertrand equilibrium exists (by
Tarski’s theorem). �

Alternative sufficient conditions for the strategic complementarity of the Bertrand game are
as follows (Milgrom and Roberts, 1990, Milgrom and Shannon, 1994).

Proposition 11 Under Assumptions B1–B2, assume that Ci is a convex function and that,
over the set Si,

Di
∂2Di

∂pj∂pi
− ∂Di

∂pj

∂Di

∂pi
≥ 0, for j �= i. (3.13)

Then the Bertrand game is of strategic complements, and hence has a Bertrand equilibrium.

Proof Milgrom and Shannon (1994) show that �i(pi, p−i) satisfies the single-crossing
property in (pi, pj) for any j �= i. This then implies that the game has strategic complements,
and that a Bertrand equilibrium exists (by Tarski’s theorem). �

A natural question about these two sufficient conditions for the Bertrand game to satisfy
strategic complementarity is whether they are nested or otherwise closely related. The two
conditions can be seen by inspection to be quite similar, and quite general when the goods are
substitutes (so ∂Di

∂pj
> 0). Both conditions rule out cases where the demand function is very

submodular (i.e., has a very large and negative cross-partial derivative with respect to own
price and any rival’s price).26

Nevertheless, by way of examples, Amir and Grilo (2003) demonstrate that Conditions
(3.12) and (3.13) are not nested. Indeed, the demand function D1(p1, p2) = e−p1 + p2/p1
satisfies Condition (3.12) but not Condition (3.13), while the demand function D1(p1, p2) =
e(p2−p1) satisfies the latter but not the former (the verification details are left out). The reason
that Conditions (3.12) and (3.13) are not nested is that both conditions are assumed to hold
globally, including at prices that may not be reached along a best response.

Condition (3.13) has an exact economic interpretation: that the price elasticity of demand
with respect to one good is increasing in the price of the other good. This is a very intuitive
condition for price competition. In addition, it is seen by inspection that this condition treats
the goods i and j symmetrically (in the sense that it holds for the two goods (i, j ) if and only if
it holds for the two goods ( j, i)). In contrast, in order to guarantee that Condition (3.12) also
treats the goods i and j symmetrically, one needs to assume that, as is commonly done, the
demand functions are derived from maximizing the utility of a representative consumer (so
that one necessarily has ∂Di

∂pj
= ∂Dj

∂pi
).

26 Some insight into the role of convexity of the cost function for the profit function to have increasing differences
can be gleaned from Dierker and Dierker (1999).
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It is worth noting that Conditions (3.12) and (3.13) are not necessary for the conclusion that
the reaction curve is increasing. To see this, consider the following example from Amir and
Grilo (2003):

Example 6 Consider the following demand function: D1(p1, p2) = 10e p2−p1 + 2 − p1, and
assume production costs are zero. Then

D1
p1

= −10e p2−p1 − 1, D1
p2

= 10e p2−p1 and D1
p1p2

= −10e p2−p1

It is easy to verify that neither Condition (3.12) nor (3.13) holds globally for this demand
function. More specifically, we have

∂D1

∂p2
+ p1

∂2D1

∂p1∂p2
= 10(p1 − 1)e p2−p1 ≥ 0 if and only if p1 ≤ 1

and

D1
∂2D1

∂p1∂p2
− ∂D1

∂p2

∂D1

∂p1
= 10(1 − p1)e

p2−p1 ≥ 0 if and only if p1 ≥ 1.

Therefore, according to the two propositions above, we cannot conclude that the reaction
curve here is upward-sloping.

Next consider the monotone transformation h(x) = log(ax + b), applied to �1(p1, p2) =
p1D1(p1, p2). By direct calculation, we have that

∂2h ◦�1(p1, p2)

∂p1∂p2
has the same sign as 10e p2−p1

[
(p1 + 1)(p1 − 1)2

]
, which is ≥ 0.

Therefore, by Topkis’s theorem applied to h ◦�1(p1, p2), we conclude that h ◦�1(p1, p2) has
increasing differences, and therefore that �1(p1, p2) has the single-crossing property.

From the supermodularity of the Bertrand game, one obtains at once that all the general
properties of such games are satisfied by price competition, including in particular the partial
coincidence of the usual solution concepts in terms of extremal bounds, the convergence of a
wide class of adaptive learning algorithms to the same bounds, and the clear-cut comparative
statics properties of Nash equilibrium strategies.

As to uniqueness, a standard dominant-diagonal argument on each firm’s profit function
follows directly from the approach pioneered by Rosen (1965). The result is as follows (see
e.g., Vives, 1985, and Milgrom and Roberts, 1990, for more on this approach):

Proposition 12 In addition to Assumptions B1–B4, assume that each cost function Ci is
linear. Then there exists a unique Bertrand equilibrium.

This proposition was used for instance in Amir, Encaoua, and Lefouili (2014), as a preparation
for a comparative statics exercise on prices and profit as the common unit cost increases
exogenously.
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5.2 The Case of Complementary Goods

This subsection provides a summary of the analogous results concerning the case of
complementary products. The duality between the two cases, initially brought to light in Singh
and Vives (1984) for the special case of linear demand, is discussed in some detail.

As usual, we say that two goods i and j are gross complements, or simply complements,
when the condition ∂Di

∂pj
< 0 holds, i.e., when an increase in the price of one good leads to a

decrease in the demand for the other good.
For complementary goods, the typical configuration for price competition is that the

associated oligopoly game has strategic substitutes. The following result is the natural dual of
the two propositions in the previous subsection:

Proposition 13 When goods are complements, the Bertrand game has strategic substitutes if
either of the following conditions holds:

(i)
∂Di

∂pj
+ (

pi − C ′
i

) ∂2Di

∂pj∂pi
− C ′′

i
∂Di

∂pi

∂Di

∂pj
≤ 0, over the set Si;

(ii) Di
∂2Di

∂pj∂pi
− ∂Di

∂pj

∂Di

∂pi
≤ 0, over the set Si.

Combining with the previous subsection, this suggests that, in the typical situation, a Bertrand
oligopoly game will have strategic complements (resp., substitutes) when the goods are
substitutes (resp., complements).27 For the special case of linear demand, this association
and its dual version hold perfectly well, as highlighted in Singh and Vives (1984) and others.

However, for general non-linear demands, this connection need not hold. In other words,
it is possible for the game to have strategic complements (i.e., Conditions (3.12) or (3.13)
to hold) when goods are complements, and for the previous result to hold for goods that are
substitutes. Clearly, the conditions needed then become quite restrictive, but robust classes of
such can easily be found. Here is an illustrative example of such, somewhat restrictive but
nevertheless robust, cases:

Example 7 Consider the following two-good demand system:

D1(p1, p2) = 1

(p1 + 1)2
+ (p2 + 1)e−p1 and D2(p1, p2) = a − e−p1 − p2, a > 0.

It is easily verified that ∂D1(p1, p2)/∂p2 = ∂D2(p1, p2)/∂p1, so that this demand can
be derived via utility maximization (of a representative consumer). Partial differentiation
yields that

D1
∂2D1

∂p1∂p2
− ∂D1

∂p2

∂D1

∂p1
= −e−2p1

(p1 + 1)3
< 0

27 The opposite holds for Cournot oligopoly with differentiated products, namely strategic substitutes goes with
substitutes and strategic complements goes with complements.
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and

D2
∂2D2

∂p1∂p2
− ∂D2

∂p2

∂D2

∂p1
= e−p1 > 0.

From the signs of the two expressions and the above results, we conclude that the reaction
curve is downward-sloping although, for demand D1, the two goods are substitutes. On
the other hand, for demand D2, the two goods are complements but the reaction curve is
upward-sloping.

6 CONCLUSION

This survey provides a thorough account of the literature on the existence and comparative
statics of equilibria in Cournot and Bertrand oligopoly. The main focus is on the more
recent literature on these topics, which is largely based on the methodology of supermodular
optimization and games, also often called the lattice-theoretic approach.

The first strand of literature covered in some detail is that dealing with the existence of
Cournot equilibrium in general asymmetric settings for the homogeneous good case. Due to
the fact that Cournot oligopoly is an aggregative game, as understood by the literature in the
1970s already, existence of Cournot equilibrium hinges completely on the central property of
strategic substitutes.

The second strand of literature deals with the comparative statics of symmetric Cournot
equilibria with respect to the entry of new firms, and includes its own results regarding the
existence of symmetric equilibrium. The latter are distinct from the general existence results,
and are governed by the same key assumption, of limited scale economies, as the comparative
statics of entry. For this part, the key property that delineates the two relevant cases of analysis
is neither strategic substitutes nor strategic complements.

As to Bertrand competition with differentiated products, the literature reviewed covers
much fewer studies and is far more recent. The main question deals with natural conditions
on the demand and cost functions that lead such Bertrand games to be games of strategic
complements. Existence of Bertrand equilibrium then follows directly, as do all the powerful
properties of supermodular games. The relationship between the strategic complementarity
of the game and the gross substitute/complements properties of the products for non-linear
demand functions is also clarified.
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APPENDIX

Proofs

We provide the proof of Proposition 2, omitted in the text.

Proof of Proposition 2 We need to show that for any q ′
i > qi and Q ′

−i > Q−i,

q ′
i P(q ′

i + Q−i)− Ci(q
′
i ) ≤ qiP(qi + Q−i)− Ci(qi) ⇒

q ′
i P(q ′

i + Q ′
−i)− Ci(q

′
i ) < qiP(qi + Q ′

−i)− Ci(qi). (3.14)

Log-concavity of P(·) is equivalent to log-submodularity of P(qi + Q−i) in (qi, Q−i), i.e.,

log P(q ′
i + Q ′

−i)+ log P(qi + Q−i) ≤ log P(q ′
i + Q−i)+ log P(qi + Q ′

−i),

or

P(q ′
i + Q ′

−i)P(qi + Q−i) ≤ P(q ′
i + Q−i)P(qi + Q ′

−i). (3.15)

With the LHS of (3.14) as starting point,

q ′
i P(q ′

i + Q−i)− Ci(q
′
i ) ≤ qiP(qi + Q−i)− Ci(qi) ≤ qi

P(q ′
i + Q−i)P(qi + Q ′

−i)

P(q ′
i + Q ′

−i)
− Ci(qi)

(3.16)
multiply across by P(q ′

i + Q ′
−i)/P(q

′
i + Q−i),

q ′
i P(q ′

i + Q ′
−i)−

P(q ′
i + Q ′

−i)

P(q ′
i + Q−i)

Ci(q
′
i ) ≤ qiP(qi + q ′

−i)− P(q ′
i + Q ′

−i)

P(q ′
i + Q−i)

Ci(qi).

Since Ci(q ′
i ) > Ci(qi) and P(q ′

i + Q ′
−i) < P(q ′

i + Q−i), it follows that

q ′
i P(q ′

i + Q ′
−i)− Ci(q

′
i ) < qiP(qi + Q ′

−i)− Ci(qi). (3.17)

Since (3.16) implies (3.17), (3.14) holds. �
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4. Aggregative games
Martin Kaae Jensen∗

1 INTRODUCTION AND OVERVIEW

The machinery of aggregative games has a proven track-record of applications in game theory
and industrial organization (IO). This chapter’s aim is to survey the literature with a firm focus
on usefulness: to show when the methods apply, what they can be used to establish, and why
they are usually simpler and more powerful than any alternative (when an alternative exists,
which is not always the case).

To begin with the when, consider what is perhaps the oldest and most familiar model
from industrial organization, namely the Cournot model. An oligopolist i has profit function
πi(s1, . . . , sI) = siP(si + ∑

j �=i sj) − Ci(si) where P is the inverse demand function and Ci

the cost function. The objective is to maximize profits with respect to the firm’s output si,
taking the other firms’ outputs (sj)j �=i as given. When all firms i ∈ {1, . . . , I} maximize profits
given other firms’ outputs, we have a Cournot equilibrium. What makes this game aggregative
is the fact that profit functions can be expressed as a function of firms’ own outputs and an
aggregate, here aggregate output g(s) = ∑

j sj:

πi(s1, . . . , si) = siP(g(s))− ci(si).

As we shall see when we define generalized and quasi-aggregative games in Section 2, this
definition generalizes substantially so that, for example, g may take other functional forms
than the linear sum. Examples of aggregative games abound in the literature: public good
provision games, tournaments, teamwork games, contests, patent races, Bertrand oligopoly,
many network games, etc., etc. are all aggregative games.

As for what aggregative games are useful for, the answer is that aggregative games
methodology is useful for addressing nearly all of the questions one typically seeks to
answer in applied work. Here most of the focus will be on pure-strategy Nash equilibria and
their comparative statics (Section 4), existence (Section 3), and uniqueness (Section 6). But
issues such as stability (Section 7.5), computation and algorithms (Sections 3.2, 7.2), entry
(Section 7.3) will be briefly surveyed as well. Extensions, including games with a continuum
of agents (large games/mean-field games, Section 7.1) and alternative equilibrium concepts
(e.g., evolutionary stable states; Section 7.4) will also be introduced.

Since the main focus is on existence, comparative statics, and uniqueness, a brief discussion
is called for. Beginning with existence, one issue that “plagued” industrial economics until
well into the 1980s (Novshek 1985) is that to prove existence of a Cournot equilibrium by the
usual route via Kakutani’s fixed-point theorem, one will have to assume that profit functions
are concave or at least quasi-concave. This may sit poorly with the spirit of oligopolistic

∗ I would like to thank Dario Bauso and Parise Francesca for helpful comments and suggestions. All remaining
errors are my responsibility.
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competition where, arguably, the fact that firms are large enough relative to the market to
constitute an oligopoly in the first place could be due to non-convexities such as entry costs,
or increasing returns. Luckily, quasi-concavity is in fact not necessary for existence when
the game exhibits strategic substitutes, i.e., when increased output of other firms leads to
decreased production for the firm at hand. And this is hardly an assumption that will raise any
eyebrows in the Cournot model (as well as in many other models of imperfect competition).
Formulating and generalizing this result will occupy Section 3. Note that to this day, the
aggregative games methodology is the only known way to establish such existence without
quasi-concavity in games with strategic substitutes.

While existence is of course critical, comparative statics is the backbone of predictions.
In aggregative games, the study of comparative statics was initiated by Corchón (1994),
and the topic has recently received a lot of attention, leading to a kind of “merger” with
the monotone comparative statics literature of Topkis (1978), Milgrom and Roberts (1994),
Milgrom and Shannon (1994), and Quah (2007), among others. Aggregative games are able
to offer general and robust comparative statics results when all other methods fail – including
the monotone methods just mentioned – an example being games of strategic substitutes with
payoff functions that are not quasi-concave (cf., the Cournot model discussed in the previous
paragraph). There are several approaches: one can work directly with so-called backward-
response correspondences, or one can use general comparative statics theorems. Either way,
the simplicity far outpaces any direct application on the implicit function theorem even when
the implicit function theorem applies. This is the topic of Section 4.

Concerning uniqueness of equilibrium, the situation mirrors that of comparative statics.
One is able to derive very powerful uniqueness results by use of the aggregative games
methodology. And importantly, the results are straight forward to apply. This should be
contrasted with a direct approach to uniqueness, which is, in general, extremely challenging
(see e.g., Vives, 2000 for an overview).

Finally, a caveat. The reader should be aware that this survey has somewhat of a bias
towards my own work and interests. In an attempt to counter this, quite a long section
(Section 7) surveys applications and extensions in a number of different directions, which
will, at the very least, allow interested readers to read in other directions.

2 BASIC DEFINITIONS

Aggregative games form a subset of pure-strategy non-cooperative games. This section
defines three classes of aggregative games, each of which increases generality a notch: linearly
aggregative, generalized aggregative, and quasi-aggregative games respectively. We consider
games with scalar aggregates and a finite set of players I ∈ N players and postpone discussion
of games with a continuum of agents and multi-dimensional aggregates for later (Section 7.1).
Throughout, the notation is fixed as follows: Agent i ∈ {1, . . . , I} has strategy set Si with
typical element si. A (joint) strategy is denoted s = (s1, . . . , sI) ∈ S ≡ ∏I

i=1 Si, and for a
fixed player i, a vector of opponents’ strategies is denoted s−i = (s1, . . . , si−1, si+1, . . . , sI) ∈
S−i ≡ ∏

j �=i Sj. Agent i’s payoff function is �i : S → R. Finally, s∗ is a (pure-strategy Nash)
equilibrium if:

�i(s
∗) ≥ �i(si, s∗

−i) for all si ∈ Si, i = 1, . . . , I. (4.1)
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Before we begin, a “warning”: this section is entirely “assumption free”. This simplifies
the exposition tremendously but, of course, it means that in all cases, the objects defined
may be empty sets and/or encompass all games (depending on interpretation and the specific
situation). In later sections when results are presented, assumptions are introduced as they are
needed.

2.1 Linearly Aggregative Games

The original and simplest definition of an aggregative game is due to Selten (1970). It will here
be called a linearly aggregative game to avoid confusion. We have already seen an example
in the Introduction, namely the Cournot oligopoly.

Definition 1 (Linearly Aggregative Games) A non-cooperative game (Si,�i)i=1,...,I where
Si ⊆ R for all i is linearly aggregative if for every agent i ∈ {1, . . . , I} there exists a function
πi : Si × R → R (the reduced payoff function) such that:

�i(s) = πi

⎛
⎝si,

∑
j

sj

⎞
⎠ for all s ∈ S. (4.2)

The function g(s) = ∑
j sj is called the aggregator and a value in the range of g,

∑
j sj ∈ X ≡{∑

j sj : sj ∈ Sj for j = 1, . . . , I
}

is called an aggregate. If (s∗
1, . . . , s∗

i ) is a (pure-strategy
Nash) equilibrium for the game,

∑
j s∗

j is called an equilibrium aggregate.

For a long list of specific examples, see e.g., Alos-Ferrer and Ania (2005). In the Cournot

model where firm i’s profit function is �i(s) = siP
(∑

j sj

)
− Ci(si), (4.2) will be satisfied

since πi(si, Q) = siP(Q) − ci(si). Note the “Q-notation” used here (and repeatedly in what
follows): whenever the reader sees a Q, this denotes an aggregate. Replacing Q with the
aggregator, here g(s) = ∑

j sj, then leads to the satisfaction of the relevant conditions (here
(4.2)). Getting used to this notation will serve us well later on.

2.2 Generalized Aggregative Games

The extension from linearly to generalized aggregative games proceeds by relaxing the
requirement that the aggregator g(s) = ∑

j sj from Definition 1 is linear. Instead, g is
allowed to be any additively separable function (Gorman, 1968) which means that g(s) =
H(
∑I

i=1 hi(si)), s ∈ S where H : R → R and hi : Si → R, i = 1, . . . , I are strictly increasing
functions. Note that while a linearly aggregative game must have real-valued strategy sets
(Si ⊆ R all i), a generalized aggregative game allows for multi-dimensional strategy sets
although the aggregator must still be scalar valued. Thus the generalization from a linear
aggregator to an additively separable aggregator leads to a substantial generalization in the
dimensionality of the game.1

1 As discussed in Section 7.1 there is nothing in the way of allowing strategy sets to be subsets of more general
spaces than R

n.
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Aggregative games 69

Definition 2 (Generalized Aggregative Games) A non-cooperative game (Si,�i)i=1,...,I
where Si ⊆ R

n for all i is generalized aggregative if there exists an additively separable
function g : S → R (the aggregator) and functions πi : Si × R → R (the reduced payoff
functions) such that:

�i(s) = πi(si, g(s)) for all s ∈ S, i = 1, . . . , I. (4.3)

A value in the range of g, g(s) ∈ X ≡ {g(s) : sj ∈ Sj for j = 1, . . . , I} is called an aggregate,
and an equilibrium aggregate if s∗ is a (pure-strategy) Nash equilibrium for the game.

Of course, g(s) = ∑
i si is additively separable. Hence any linearly aggregative game is

generalized aggregative. The mean g(s) = I−1∑I
i=1 si is an equally obvious example, and

in fact all of the standard means, including the harmonic mean, the geometric mean, and the
power means are additive separable functions (Jensen, 2010, Section 2.3.2). Two other useful
examples are g(s) = (α1sβ1 + . . .+αIs

β
I )

1/β , S ⊆ R
N+, and g(s) = ∏

i∈I sαi
i , S ⊆ R

N++, where
β,α1, . . . ,αI > 0, which are, respectively, a constant elasticity of substitution (CES) function
and a Cobb-Douglas function.2

Examples of generalized aggregative games abound in the literature (see, for example,
Jensen, 2010 for an extensive list). One such game that has received much attention is the
contests (see the Chapters 6 and 7 in Volume II of this Handbook as well as Section 7.6
below). Let agent (contender) i have payoff function,

�i (si, s−i) = Vi · hi (si)

R +∑I
j=1 hj

(
sj
) − ci (si) , (4.4)

where si ∈ Si ⊆ R+ denotes effort, ci : R+ → R+ is the agent’s cost function, and Vi > 0
the valuation of the prize. The strictly increasing functions h1, . . . , hI : R+ → R+ and the
constant R ≥ 0 determine the contest success functions hi(si)

R+∑I
j=1 hj(sj)

, i ∈ I , which map a

given profile of efforts s = (s1, . . . , sI) into the agents’ winning probabilities. It is clear that if
we define,

g(s) =
I∑

j=1

hj
(
sj
)

,

then this is a generalized aggregative game with aggregator g and reduced payoff functions:

πi (si, Q) = Vi · hi (si)

R + Q
− ci (si) , i = 1, . . . , I. (4.5)

Note that here we have again used the “Q-notation” mentioned at the end of the previous
subsection.

2 In the first case hi(si) = αis
β
i (with si ≥ 0) and H(z) = z1/β . In the second hi(si) = αi log(si) and H(z) = exp(z)

(with si > 0).
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2.3 Quasi-aggregative Games

To ease our way into quasi-aggregative games, consider the following special case that directly
relates to linearly and generalized aggregative games:

Definition 3 (Quasi-aggregative Games I) A non-cooperative game (Si,�i)i=1,..., I where
Si ⊆ R

n for all i is quasi-aggregative with aggregator g : S → R if there exist functions
πi : Si × R → R (the reduced payoff functions) such that

�i(s) = πi(si, g(s)) for all s ∈ S, i = 1, . . . , I, (4.6)

as well as continuous functions Fi : R×Si → R (the shift functions), and σi : S−i → X−i ⊆ R,
i ∈ I (the interaction functions), such that:

g(s) = Fi(si, σi(s−i)), for all s ∈ S and all i ∈ I . (4.7)

Any generalized aggregative game is quasi-aggregative since a function g is additively
separable if and only if the functional equations (4.7) hold for strictly increasing functions
Fi and σi, i = 1, . . . , I (Gorman, 1968). Of course, the converse is false: if Fi and/or σi is not
strictly increasing for some i, then g will not be additively separable and the quasi-aggregative
game will therefore not be generalized aggregative.3 The simplest example of a game that
satisfies Definition 3 but is not generalized aggregative is that of a game with aggregator
g(s) = ∏

j sj (here Fi(si, x−i) = si · x−i and σi(s−i) = ∏
j �=i sj) when Si ⊆ R+. Indeed, g is not

strictly increasing (take si = 0 for some i), hence g is not additively separable.
Now, if one “plugs” (4.7) into (4.6),

�i(s) = πi(si, g(s)) = πi(si, Fi(si, σi(s−i))),

it is seen that the payoff of player i always depends on the player’s own strategy and the
interaction term σi(s−i) determined by the interaction function σi : S−i → R. The standard
definition of a quasi-aggregative game allows for this increased level of generality:

Definition 4 (Quasi-aggregative Games) The game (Si,�i)i∈I is said to be a quasi-
aggregative game with aggregator g : S → R, if there exist continuous functions Fi : R×Si →
R (the shift functions), and σi : S−i → X−i ⊆ R, i ∈ I (the interaction functions) such that
each of the payoff functions i ∈ I can be written:

�i(s) = πi(si, σi(s−i)), (4.8)

where πi : X−i × Si → R, and:

g(s) = Fi(si, σi(s−i)), for all s ∈ S and all i ∈ I . (4.9)

3 Needless to say, one must assume something about the functional forms involved so as to not “drown” in the
generality. See Section 3. The example that follows satisfies all of the assumptions of that section.
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Aggregative games 71

One further generalization turns out to be useful:

Definition 5 (Generalized Quasi-aggregative Games) The game (Si,�i)i∈I is said to be
a generalized quasi-aggregative game with aggregator g : S → R if it satisfies Definition 4
with (4.9) replaced by the weaker set of conditions,

g(s) = Fi(si, σi(s−i))+ νi(s−i), for all s ∈ S and all i ∈ I , (4.10)

where ν1, . . . , νI may be arbitrary real-valued functions.

As is clear from the definition, a quasi-aggregative game is an ordinal concept, i.e., all
functions involved are only determined up to a strictly monotonic transformation (which
may be either strictly increasing or strictly decreasing).4 We shall return to some non-trivial
examples of (generalized) quasi-aggregative games in section 3 when we discuss network
games and potentials.

It was already mentioned above that (4.9) will be satisfied for strictly monotonic functions
Fi and σi provided that g is additively separable (Gorman, 1968). If one’s starting point is
payoff functions in the form (4.2) where g is additively separable, the game is consequently
quasi-aggregative. The converse is true as well: if (4.9) holds for strictly monotonic functions
Fi and σi, then g will be additively separable. It is important to stress, then, that standard
results on (generalized) quasi-aggregative games do not require that Fi and σi are monotonic
(see Section 3).

3 EQUILIBRIUM AGGREGATES AND THE BACKWARD-RESPONSE
CORRESPONDENCE

In this section, attention is restricted to generalized aggregative games. The analysis of such
games can be reduced to studying fixed points of a correspondence from R into R called the
aggregate backward-response correspondence. This reduced the dimensionality from a fixed-
point problem of dimension I × n (where I is the number of players and n the dimension of
the strategy sets) to dimension 1 – which very substantially simplifies the analysis and allows
for a wealth of strong results on existence, uniqueness, comparative statics, etc.

3.1 The Backward-response Correspondence

To begin we must define the so-called backward-response function, or more generally, the
backward-response correspondence. This function/correspondence is the most basic tool in
the analysis of aggregative games up until the generality afforded by generalized aggregative

4 Hence the term quasi-aggregative. The observation is trivial for the interaction functions. It is also clear that
(4.9) will hold for functions g and Fi, i ∈ I if and only if it holds for g̃ = h ◦ g and F̃i = h ◦ Fi, i ∈ I where
h : R → R is either strictly increasing or strictly decreasing.
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72 Handbook of game theory and industrial organization: theory

games, after which potentials take over as the main tool (Section 3). The construction dates
back, once again, to Selten (1970).5

The definition of the backward-response correspondence is particularly simple in the case
of linearly aggregative games, so we shall begin with this case. When a game is linearly
aggregative, player i’s best-response correspondence ri : S → 2Si ∪ ∅ is given by,

ri(s−i) = arg max
si∈Si

�i(si,
∑

j

sj) = arg max
si∈Si

�i(si, si +
∑
j �=i

sj). (4.11)

Regardless of the exact structure of the (reduced) payoff function, agent i’s best responses
can, as seen, only ever depend on the sum of the opponents’ strategies,

∑
j �=i sj. For this

reason, we may define the reduced best-response correspondence, Ri : R → 2Si ∪ ∅, which
gives the best responses for any value of the sum of the opponents’ strategies x−i ∈ X−i ={∑

j �=i sj : sj ∈ Sj for all j �= i
}

⊆ R,

Ri(x−i) = arg max
si∈Si

�i(si, si + x−i). (4.12)

Now fix a real number Q ∈ X ≡
{∑

j sj : sj ∈ Sj all j
}

⊆ R, which should be interpreted as

a value that the sum of all agents’ strategies (i.e., the aggregate) could take. Given Q as well
as (4.12) now go “one step backwards” and ask which best responses are compatible with Q
being the aggregate in the first place:

Bi(Q) = {si ∈ Si : si ∈ Ri(Q − si)}. (4.13)

Definition 6 (Backward-response Correspondence, Linearly Aggregative Games) In a
linearly aggregative game, the backward-response correspondence of an agent i is the set-
valued mapping Bi : X → 2Si ∪ ∅ defined in (4.13). The aggregate backward-response
correspondence Z : R → 2R ∪ ∅ is,

Z(Q) =
⎧⎨
⎩
∑

j

sj : sj ∈ Bj(Q) for all j = 1, . . . , I

⎫⎬
⎭ . (4.14)

The previous construction goes through step-by-step for generalized aggregative games, the
only added complexity involving notation. Since any generalized aggregative game (Defini-
tion 2) can be summarized by the tuple {(πi, Si)i=1,...,I , g} the best-response correspondence
of a player i is given by,

ri(s−i) = arg max
si∈Si

�i(si, g(s)) = arg max
si∈Si

�i

⎛
⎝si, H

⎛
⎝hi(si)+

∑
j �=i

hj(sj)

⎞
⎠
⎞
⎠ . (4.15)

5 Selten called it the “Einpassungsfunktion”, which roughly translates into the “fitting-in function”, which is
an alternative name sometimes encountered (e.g., Phlips, 1995). Yet another name for it is “replacement function”
(Cornes and Hartley, 2005). The term “backward- (best-) response function” is due to Novshek (1985).
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Aggregative games 73

Comparing with (4.11), we see that the appropriate aggregate of opponents’ strategies
is now

∑
j �=i hj(sj) and once we realize this we can define the reduced best-response

correspondence:

Ri(x−i) = arg max
si∈Si

�i (si, H (hi(si)+ x−i)) . (4.16)

Note that, by construction, ri(s−i) = Ri

(∑
j �=i hj(sj)

)
for all s ∈ S. Now fix an aggregate

Q ∈ X ≡ {g(s) : s ∈ S}; and note that Q = g(s)⇔∑
j �=i hj(sj) = H−1(Q)− hi(si). Hence we

have:

Definition 7 (Backward-response Correspondence, Generalized Aggregative Game)
Let {(�i, Si)i=1,..., I , g} be a generalized aggregative game:

● The backward-response correspondence of agent i, Bi : X → 2Si ∪ ∅, is:

Bi(Q) ≡ {si ∈ Si : si ∈ Ri(H
−1(Q)− hi(si))}, (4.17)

where Ri was given in (4.16).
● The aggregate backwards-response correspondence, Z : X → 2X ∪ ∅ is,

Z(Q) ≡ {g(s) ∈ X : si ∈ Bi(Q) for all i ∈ I } (4.18)

Proposition 1 An aggregate Q ∈ X is an equilibrium aggregate if and only if it is a fixed
point of the aggregate backward-response correspondence,

Q ∈ Z(Q). (4.19)

Note that if Q is an equilibrium aggregate then any (s∗
1, . . . , s∗

I ) ∈ B1(Q) × . . .× BI(Q) with
g(s∗) = Q must necessarily be a (pure-strategy) Nash equilibrium. Thus we have established a
direct correspondence between the set of equilibria on the one hand, and the set of equilibrium
aggregates on the other.

To investigate a generalized aggregative game’s equilibria we may therefore proceed
by computing Z and solve the simple one-dimensional fixed-point problem (4.19). By
Proposition 1 we would be assured that any fixed-point Q determines a pure-strategy Nash
equilibrium. This allows us to shift our attention entirely to the one-dimensional problem
expressed via Z, which reduces the complexity enormously. To this should be added that, in
many situations, the aggregate is actually more interesting from an applied perspective than
the individual strategies. We return to this theme in Section 4.

3.2 Nice Aggregative Games, Computation

Quite a large literature, of which Selten (1970) is most definitely a part, directly compute
(or at least characterize) the aggregate backward-response correspondence and then employ
Proposition 1 to address various questions. For an illustration, see Cornes and Hartley 2005
who study asymmetric contests and in the case of linear technologies directly compute the
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74 Handbook of game theory and industrial organization: theory

backward-reply function (Equation (6), p. 927) which they then use to establish uniqueness
of equilibrium and put bounds on rent dissipation (Theorems 1–2, pp. 929–930). For a
more abstract illustration, see Novshek (1985) who characterizes the aggregate backward-
response correspondence in a linearly aggregative game and uses this to prove existence of
an equilibrium when the game exhibits strategic substitutes. We return to this in Section 3.
Like Cornes and Hartley, (2005) but unlike Novshek (1985), the current section focuses on
cases where the backward-response correspondence can be computed directly via first-order
conditions.

In order to be able to compute backward-response correspondences directly and without
too much fuss, one needs first-order conditions to be necessary and sufficient for optimality.
Conditions for this are, of course, well known and indeed are imposed in studies such as Selten
(1970) and Cornes and Hartley (2005) mentioned a moment ago. Nonetheless, let us for later
purposes single out a fairly general class where first-order conditions convey all information
about agents’ optimal behavior. To this end, recall first that a differentiable function πi is
pseudo-concave (Mangasarian, 1965) in si if for all si, s′

i ∈ Si:

(s′
i − si)

TDsiπi(si, s−i) ≤ 0 ⇒ πi(s
′
i, s−i) ≤ πi(si, s−i).

Naturally, any concave function is pseudo-concave.6

Definition 8 (Nice Aggregative Games) A generalized aggregative game
(
(�i, Si)

I
i=1, g

)
is

a nice aggregative game if:

1. the aggregator g is twice continuously differentiable;

2. each strategy set Si is compact and convex, and every payoff function πi(s, t) =
�i(si, g(s)) is twice continuously differentiable, and pseudo-concave in the player’s
own strategies;

3. for each player, the first-order conditions hold whenever a boundary strategy is a
(local) best response, i.e., Dsi�i(si, g(s)) = 0 whenever si ∈ ∂Si and (v − si)

T

Dsi�i(si, g(s)) ≤ 0 for all v ∈ Si.

Condition (3) ensures that if a best response lies at the boundary of the strategy set, then
it is captured by the first-order conditions too. It can be replaced with an Inada condition
(since under Inada conditions no optimal strategy lies on the boundary). Alternatively, one
could work with Kuhn-Tucker conditions or even more advanced tools from optimization
theory/convex analysis and modify what follows accordingly. None of this poses any real
difficulties, so here we stick to the simplest case. Also, in many situations (3) can be removed
altogether (see Section 4) so generalizing it here is somewhat of a wasteful effort.

6 A quasi-concave function is not necessarily pseudo-concave. Not surprisingly so, since first-order conditions
are not sufficient for an interior optimum of a quasi-concave function (to see this just consider the function f (x) = x3).
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Aggregative games 75

Write the marginal payoff for player i in terms of the reduced payoff function:

Dsiπi(s, t) = D1�i(si, g(s))+ D2�i(si, g(s))H′(H−1(g(s))Dhi(si), (4.20)

where Dm�i(si, g(s)) ≡ Dxm�i(x1, x2)|(x1,x2)=(si,g(s)), m = 1, 2.
The thing to note is that the marginal payoff is a function of the player’s own strategy si

and the aggregate g(s) only. A game with this feature is called fully aggregative in Cornes
and Hartley (2012), who go on to show that when I ≥ 3 and all involved functions are at
least twice continuously differentiable, (4.20) implies that g must be additively separable
(Cornes and Hartley, 2012, Proposition 1). To put it differently, Cornes and Hartley (2012)
show that, under the mentioned conditions, a game is fully aggregative if and only if it is
generalized aggregative. This result is very significant because it shows, in effect, that any
analysis based on backward-response correspondences is “immune” to generalizations beyond
generalized aggregative games (in particular, it cannot apply to quasi-aggregative games in
general).

After this detour, let us return to (4.20). As mentioned, payoffs depend on own strategies
and the aggregate only. We may define a function 	i : Si × X → R

N that makes this feature
explicit,7

	i(si, Q) ≡ D1�i(si, Q)+ D2�i(si, Q)H′(H−1(Q))Dhi(si). (4.21)

In linearly aggregative games,	i is precisely the function used by Corchón (1994) to establish
comparative statics results in linearly aggregative games (Corchon denotes this function
by Ti). And we shall return to 	i when we consider comparative statics in Section 4 and
also when we turn to uniqueness in Section 6.

Proposition 2 In a nice aggregative game,

si ∈ Bi(Q) ⇔ 	i(si, Q) = 0 . (4.22)

In particular, one can for any given Q ∈ X =
{∑

j sj : sj ∈ Sj for j = 1, . . . , I
}

compute Bi(Q)

by solving the n equations 	i(si, Q) = 0.8

Throughout this survey, we shall again and again encounter applications of the relationship in
(4.22). But already considering what has been said so far, it is clear that using Proposition 2
one can compute every backward-response correspondence, and thus the aggregate backward-
response correspondence Z. It is in this step, then, that the dimensionality of the problem
reduces from n × I to 1. Then one can use Proposition 1 to conclude that the fixed points of Z
correspond to the equilibria of the original game.

7 Here the variables si and Q are independent arguments in 	i, so that Q is kept fixed when taking the derivative
of 	i. Hence, e.g., Dsi	i(si, Q) = ∂	i(x1 ,x2)

∂x1 |(x1 ,x2)=(si ,Q)
when N = 1.

8 Recall here that n is the dimension of Si, in particular there is just a single equation to solve if Si is one-
dimensional.
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4 COMPARATIVE STATICS

We are going to focus in this section on the class of generalized aggregative games
(Section 2.2). To set the stage, consider a generalized aggregative game just as in Section 2.2
but allow now for the explicit consideration of exogenous parameters:


t ≡ {(�i, Si)i=1,...,I , g, t}

So the game is 
t and it explicitly depends on the parameter t, which we are going to assume
lives in a set T ⊆ R. While Si ⊆ R

n (agent i’s strategy set) and the additively separable
aggregator g : S → X ⊆ R are just as before, we now allow the reduced payoff functions to
depend on a parameter �i : Si × X × {t} → R, i = 1, . . . , I.9 In the Cournot model, say, we

might have �i(si, g(s), t) = siP
(∑

j sj

)
− tsi, which is to say that the parameter t is the unit

cost of production.
Let E(t) denote the (at this point possibly empty) set of equilibria:

E(t) = {s∗ ∈ S : �i(s
∗
i , g(s∗), t) ≥ �i(si, g(si, s∗

−i), t) for all si ∈ Si; i = 1, . . . , I} (4.23)

The fundamental equilibrium comparative statics question, stated here as abstractly (but also
as generally) as possibly, is this:

Imagine that the parameter t is changed from t′ to t′′ say. Then how is the set of equilibria
going to change, i.e., how does E(t′′) compare to E(t′)?

This question is difficult because it involves the comparative statics of equilibria. One situation
where we can deal with it very generally is when a game exhibits strategic complementarities
(Bulow, Geanakoplos and Klemperer 1985, Vives, 1990), i.e., if agents’ strategies are non-
decreasing in opponents’ strategies.10 An example is a Bertrand oligopoly where each price-
setting firm will, under standard assumptions, choose to raise its price if one or more of the
competitors raise their prices. Roughly speaking, one can in this situation conclude that if best
responses are increasing in t, then the set of equilibria E(t) will also be increasing in t; where
increasing in both instances is in the set-valued sense of the strong set order (Topkis, 1998).11

Such results carry over ipso facto if a game is also aggregative.
As we shall see below in Section 4.2, the aggregative games framework allows us to also

derive general results in games of strategic substitutes.12 But as we will see to begin with,
neither of the two (strategic complements or substitutes) are required if we are within the
setting of the nice games of Section 3.2. See also Roy and Saberwal (2010, 2012).

9 Note that there is really no problem extending existing results to allow strategy sets to depend on the exogenous
parameter also. We are not going to pursue the issue here though.

10 For a lengthy treatment of this case, the reader is referred to Vives (2000). See also Milgrom and Roberts
(1990).

11 If best responses are always unique (strong concavity), and E(t) is always a singleton (uniqueness of
equilibrium), the statement reduces to saying that if t increases, t′ < t′′, all strategies in E(t′′) will be coordinate-wise
greater than or equal to the strategies in E(t′).

12 In Section 3 we shall see that a similar statement applies to existence of equilibrium where strategic
complementarities also allow for very general results.
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Aggregative games 77

4.1 Nice Aggregative Games

A game is now a tuple
(
(�i, Si)

I
i=1, g, t

)
where t ∈ T ⊆ R is an exogenous parameter. The

definition of a nice game (Definition 8) carries over to the parameterized setting as long
as we require that it holds for all t ∈ T. This shall be the framework of the rest of this
section. Acemoglu and Jensen (2013) (Theorem 5, p. 36) establish the existence of equilibrium
in nice aggregative games, i.e., that E(t) �= ∅ in terms of the current notation. Given an
equilibrium s(t) ∈ E(t), let Q(t) = g(s(t)) denote the associated equilibrium aggregate (cf.
Definition 2 and Proposition 1). The theorem in Acemoglu and Jensen just referred to, goes
on to show that there exist a smallest and a largest equilibrium aggregate, Q∗(t) and Q∗(t)
and that the functions of t thus defined are, respectively, lower semi-continuous and upper
semi-continuous.13 Note that, intuitively, all equilibrium aggregates “live” in the interval
[Q∗(t), Q∗(t)] and so if both Q∗(t) and Q∗(t) increase with t, the set of equilibria increases
up to the ambiguity of multiplicity. If the equilibrium is unique (Section 6), such ambiguity
disappears of course, since then Q∗(t) = Q∗(t).

Next, recall the function	i defined in equation (4.24), which when an exogenous parameter
t explicitly is allowed for reads,

	i(si, Q, t) ≡ D1�i(si, Q, t)+ D2�i(si, Q, t)H′(H−1(Q))Dhi(si). (4.24)

If we fix Q and t and differentiate 	i with respect to si, we get an N × N matrix

Dsi	i(si, Q, t) ∈ R
N×N .

The determinant of this matrix is denoted by |Dsi	i(si, Q, t)| ∈ R. If strategy sets are
one-dimensional, the determinant coincides with the derivative: |Dsi	i(si, Q, t)| =
Dsi	i(si, Q, t) ∈ R.

Consider now the following conditions, which, as one easily sees, become increasingly
stringent:

Definition 9 (Local Solvability) Player i ∈ I is said to satisfy the local solvability condition
if 	i(si, Q, t) = 0 ⇒ |Dsi	i(si, Q, t)| �= 0 for all si ∈ Si, Q ∈ X, and t ∈ T.

Definition 10 (Uniform Local Solvability) When Si ⊆ R, player i ∈ I is said to satisfy the
uniform local solvability condition if 	i(si, Q, t) = 0 ⇒ Dsi	i(si, Q, t) < 0 for all si ∈ Si,
Q ∈ X, and t ∈ T.

Definition 11 (Strong Concavity) When Si ⊆ R, player i ∈ I is said to satisfy the strong
concavity condition if Dsi	i(si, Q, t) < 0 and DQ	i(si, Q, t) < 0 for all si ∈ Si, Q ∈ X, and
t ∈ T.

13 That Q∗(t) is the smallest equilibrium aggregate simply means that for any s(t) ∈ E(t), we have g(s(t)) ≥ Q∗(t).
The largest equilibrium aggregate is defined similarly by reversing the inequality.
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Local solvability and uniform local solvability were introduced in Acemoglu and Jensen
(2013), while strong concavity is due to Corchón (1994). As we shall see in a moment,
either of these conditions provide robust comparative statics results. Before getting to that
an example is in order. Note that this example is taken directly from Acemoglu and Jensen
(2013) where more examples can also be found:

Example 1 Take the Cournot model where �i(s) = siP(
∑

j sj) − ci(si) and so 	i(si, Q) =
P(Q)+ siP′(Q)− c′

i(si) (suppressing here exogenous parameters). Hence the local solvability
condition will hold if either Dsi	i(si, Q) = P′(Q) − c′′

i (si) < 0 or Dsi	i(si, Q) = P′(Q) −
c′′

i (si) > 0 whenever P(Q) + siP′(Q) − c′
i(si) = 0. If the first of the two holds whenever

P(Q)+ siP′(Q)− c′
i(si) = 0, the uniform local solvability condition is satisfied. For example,

this will be the case when costs are convex and inverse demand is strictly decreasing (these
conditions are clearly not necessary).

Before we get to the results, we need to consider conditions on how the exogenous
parameter enters the payoff function. If strategy sets are one-dimensional (Si ⊆ R for all i),
and more generally if strategy sets are lattices and payoff functions supermodular in own
strategies, we can define positive shocks in the standard way known from games with strategic
complementarities (see e.g., Vives, 2000). Recall again that if t ∈ T ⊆ R

M , M > 1, then an
increase in t means that at least one of t’s coordinates increases.

Definition 12 (Positive Shocks) Consider the payoff functions πi(s, t) = �i(si, g(s), t). Then
an increase in t is a positive shock if each Si is a lattice, and πi is supermodular in si and
exhibits increasing differences in si and t. In particular, if Si ⊆ R for all i, then t is a positive
shock if each πi exhibits increasing differences in si and t.

Note that in a linearly aggregative game where πi(s, t) = �i(si,
∑

j sj, t), an increase in t is a

positive shock if D2
sit�i(si, Q, t)+ D2

Qt�i(si, Q, t) ≥ 0:

Theorem 1 (Aggregate Comparative Statics) Consider a nice aggregative game where each
player’s payoff function satisfies the local solvability condition. Then a positive shock t ∈ T
leads to an increase in the smallest and largest equilibrium aggregates, i.e., the functions
Q∗(t) and Q∗(t) will be increasing in t. When strategy sets are one-dimensional and each
player’s payoff function satisfies the uniform local solvability condition, the result remains
valid without imposing the boundary condition (3) of Definition 8.

In industrial organization, it is often of great interest what happens when additional agents
(typically, additional firms) enter a market. The next result, also from Acemoglu and Jensen
(2013) answers this question. For a related, albeit weaker result that instead is based on strong
concavity, see Corchón (1994).

Theorem 2 (Entry) Under the conditions of Theorem 1 entry of an additional player
increases the smallest and largest equilibrium aggregates, i.e., if Q∗(I) and Q∗(I) denote
the smallest and largest equilibrium aggregates in a game with I ∈ N players then Q∗(I) ≤
Q∗(I + 1) and Q∗(I) ≤ Q∗(I + 1) for all I ∈ N. The previous inequalities will be strict if the
entrant does not choose the “inaction” strategy inf SI+1.

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

Aggregative games 79

The previous results both predict how the aggregate changes in equilibrium. Acemoglu
and Jensen (2013) also consider a different type of shock that roughly speaking “hits the
aggregator directly” and derives parallel results. In many situations, results that predict how
the aggregate changes with exogenous parameters are sufficient. In some situations (such
as when the conditions below do not hold) it may also be that there are simply no more
results to be found; in other words, the equilibrium aggregate may respond predictably to
a change in an exogenous parameter, but nothing can be said in general about individual
strategies.14

Theorem 3 (Individual Comparative Statics) Let the conditions of Theorem 1 be satisfied
and consider player i’s equilibrium strategy s∗

i (t) associated with the smallest (or largest)
equilibrium aggregate at some equilibrium s∗ = s∗(t) given t ∈ T. Assume that the
equilibrium s∗ lies in the interior of S and that t is a positive shock. Then the following results
hold:

● s∗
i (t) is (coordinate-wise) locally increasing in t provided that

−[Dsi	i(s
∗
i , g(s∗), t)]−1DQ	i(s

∗
i , g(s∗), t) ≥ 0.

● Suppose that the shock t does not directly affect player i (i.e., πi = πi(s)). Then the
sign of each element of the vector Dts∗

i (t) is equal to the sign of each element of the
vector −[Dsi	i(s∗

i , g(s∗))]−1DQ	i(s∗
i , g(s∗)). In particular, s∗

i (t) will be (coordinate-
wise) locally decreasing in t whenever:

−[Dsi	i(s
∗
i , g(s∗))]−1DQ	i(s

∗
i , g(s∗)) ≤ 0.

4.2 Strategic Substitutes

In this section, the following assumption will be in force throughout:

Assumption 1 The component functions of the aggregator H, h1, . . . , hI are all continuous,
and for each agent i = 1, . . . , I, the strategy set Si ⊆ R is compact and the reduced payoff
function � is continuous on Si × X × T.

Note that the restriction to one-dimensional strategy sets is for convenience only.15

Definition 13 (Strategic Substitutes) Consider the payoff functions πi(s, t) = �i(si, g(s), t),
i = 1, . . . , I. The game is a game of strategic substitutes if each πi exhibits decreasing
differences in si and sj for all j �= i.

14 See Acemoglu and Jensen (2015) for a lengthy discussion of this issue and its economic significance.
15 With multi-dimensional strategy sets, strategy sets must be lattices and payoff functions must be supermodular

in own strategies. All results then go through if Si ⊆ R
n (see Acemoglu and Jensen, 2013).
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80 Handbook of game theory and industrial organization: theory

It should be mentioned that all that is required to get results is that the least and greatest
selections from the reduced best-response correspondence Ri(·, t) are non-increasing. This
will hold if πi satisfies the reverse single-crossing property in si and x−i (Milgrom and
Shannon, 1994). Decreasing differences has the advantage of being simple to characterize
when�i is sufficiently smooth, and this will in turn allow us to compare various results in the
existing literature. To be precise, if �i and g are twice differentiable, decreasing differences
in si and sj holds if and only if:

∂2�i(si, g(s), t)

∂si∂sj
≤ 0. (4.25)

If the game is linearly aggregative (g(s) = ∑
j sj), this holds if and only if for all si ∈ Si,

Q = ∑
j sj and t ∈ T,

DQ	i(si, Q, t) = D2
12�i(si, Q, t)+ D2

22�i(si, Q, t) ≤ 0. (4.26)

Note that (4.26) is implied by strong concavity (Definition 11). Strong concavity thus implies
uniform local solvability (Definition 10) as well as strategic substitutes. It is of some interest
to note, then, that strong concavity is equivalent to the very familiar Hahn (1962) conditions
of the Cournot model (see Corchón, 1994, p. 156, and also Vives, 2000).

We say that an increase in t is a positive idiosyncratic shock to agent i, if the shock is a
positive shock (Definition 12) and the parameter/variable t affects only the payoff function of
player i, i.e.,

�i = �i(si, g(s), t) and �j = �j(sj, g(s)) for all j �= i. (4.27)

Note that the literature usually denotes a parameter that affects only one of the agents by the
agent’s index. So we would normally denote the parameter t by ti and write �i(si, g(s), ti) in
place of �i(si, g(s), t) in (4.27).

Theorem 4 (The Comparative Statics of Idiosyncratic Shocks) A positive idiosyncratic
shock to player i will increase the smallest and largest equilibrium strategies for player i,
and decrease the associated aggregates of the remaining players (which are, respectively, the
largest and smallest such aggregates).

Corollary 1 (Payoff Effects) Assume in addition to the conditions of Theorem 4 that all
payoff functions are decreasing [respectively, increasing] in opponents’ strategies and that
player i’s payoff function is increasing [respectively, decreasing] in the idiosyncratic shock ti.
Then an increase in ti increases [respectively, decreases] player i’s payoff in equilibrium and
decreases [respectively, increases] the payoff of at least one other player.

Theorem 5 (The Comparative Statics of Entry) In an aggregative game with strategic
substitutes, entry of an additional player leads to a decrease in the smallest and largest
aggregates of the existing players in equilibrium.
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Aggregative games 81

5 EXISTENCE AND BEST-RESPONSE POTENTIALS

When faced with an aggregative game, whether linearly, generalized, or quasi-aggregative,
the standard routes to existence of an equilibrium apply:

● If payoff functions are quasi-concave and upper semi-continuous in own strategies,
continuous in opponents’ strategies, and strategy sets are compact and convex, existence
can be proved by a standard application of Kakutani’s fixed-point theorem. In particular,
any nice game (Definition 8) has an equilibrium.

● If the game exhibits strategic complementarities (see the beginning of Section 4), one
can instead prove existence of equilibrium via Tarski’s (1955) fixed-point theorem or a
set-valued version of this result. For details see Topkis (1998) or Vives (2000).

Now, as discussed in the introduction, neither of the two cases above necessarily sit
particularly well with certain applications — not least if we are thinking of applications to
industrial organization. To see why, it suffices to look at the Cournot model, which does
not exhibit strategic complementarities except for a few rather special cases (Amir, 2005),
and where it may not be satisfactory to assume quasi-concavity because monopolistic firms
arguably could be characterized by profit functions that violate quasi-concavity due to returns
to scale, fixed costs, etc. The Cournot model does exhibit strategic substitutes under fairly
weak conditions, however, and this can be exploited in aggregative games.

In light of what we know about comparative statics, the gap is equally evident: we
have existence as well as robust comparative statics results for nice games and games
of strategic complementarities. We also have robust comparative statics results for games
of strategic substitutes. The purpose of what follows is to establish existence at a level of
generality sufficient to include the setting of Section 4.2, i.e., without assuming convexity of
strategy sets and/or quasi-concavity of payoff functions.

The presentation chosen here is different from that of the other sections where simplicity
was always favored over generality. Here we go in the opposite direction and firstly present a
very general existence result. This is then used to state existence in a number of special cases
as corollaries. For even more general conditions – in fact, conditions that are likely to exhaust
the topic – the interested reader is referred to Kukushkin (2016). The following result is taken
from Jensen (2010), which in turn builds on earlier contributions by Dubey et al. (2006) and
Kukushkin (2005):

Proposition 3 A generalized quasi-aggregative game (Definition 5) has a pure-strategy Nash
equilibrium under the following conditions:

1. For each agent i = 1, . . . , I, the strategy set Si ⊆ R is compact and the reduced
payoff function � = πi(si, x−i) is upper semi-continuous in si ∈ Si and continuous in
x−i ∈ X−i.

2. For all i = 1, . . . , I, the interaction function σi : S−i → X−i is continuous, and the
shift-function Fi : Si × X−i → R is continuously differentiable and (possibly after a
monotone transformation) exhibits strictly increasing differences in si and x−i.16

16 Since X−i ⊆ R and Fi is continuously differentiable, the strictly increasing differences condition will hold if
and only if Dx−i Fi(si, x−i) is (strictly) increasing in every coordinate of si. When Si ⊆ R and Fi is twice differentiable,
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82 Handbook of game theory and industrial organization: theory

3. Each of the reduced best-response correspondences Ri : X−i → 2Si has a decreasing
selection, i.e., for every i = 1, . . . , I, there exists a function r̂i : X−i → Si with r̂i(x−i) ∈
Ri(x−i) for all x−i ∈ X−i such that r̂i(x̃−i) ≥ r̂i(x−i) whenever x̃−i ≤ x−i.

It should be emphasized that Proposition 3 does not assume that strategy sets are convex
and/or that payoff functions are quasi-concave in own strategies. The reader who is interested
in an application that uses the previous proposition directly is referred to Shirai (2010) who
establishes the existence of Cournot-Walras equilibria in the standard model of monopolistic
competition. Here we are going to focus on a number of special cases.

Corollary 2 (Novshek, 1985, Kukushkin, 1994) Let (�i, Si)
I
i=1 be a linearly aggregative

game of strategic substitutes that satisfies (1) of Proposition 3. Then there exists an
equilibrium.

Proof The game is generalized quasi-aggregative with νi = 0, Fi(si, x−i) = si + x−i,
and σi(s−i) = ∑

j �=i sj, for i = 1, . . . , I. All conditions are immediately satisfied with the
exception of Fi exhibiting strictly increasing differences (in fact it does not!). A monotone
transformation of Fi does exhibit strictly increasing differences, namely h ◦ Fi(si, x−i) =
exp(Fi(si, x−i)). �

Corollary 3 Let (�i, Si)
I
i=1 be a generalized aggregative game with a continuous aggregator

g that exhibits strategic substitutes and satisfies Condition (1) of Proposition 3. Then there
exists an equilibrium.

Proof The game is generalized quasi-aggregative with νi = 0, Fi(si, x−i) = H(hi(si) + x−i)

and σi = hi where H, h1, . . . , hI are the strictly increasing component functions of the
additively separable function g. All conditions are immediately satisfied, in particular, the
transformation h ◦ Fi = exp ◦H−1 ◦ Fi exhibits strictly increasing differences. �

Definition 14 (Reciprocal Interactions) A game is said to be a game with reciprocal
interactions, if �i(s) = πi(si, σi(s−i)) for all i, where the σi’s are real-valued, continuously
differentiable interaction functions that satisfy:

∂σi(s−i)

∂sj
= ∂σj(s−j)

∂si
, for all i, j ∈ I and all s ∈ Ŝ, (4.28)

where Ŝ is an open, convex subset of RI that contains S.

Specific instances of games with reciprocal interactions are studied in Dubey et al. (2006)
and the general class was defined by Kukushkin (2005) (the name is due to Kukushkin). A
particularly interesting example of a game with reciprocal interactions is a linearly aggregative
game where players’ payoff functions only depend on subsets of opponents’ strategies, i.e.,

increasing differences is equivalent to having D2
six−i

Fi(si, x−i) > 0. Note that since monotone transformations of Fi
are allowed, each of the previous statements actually apply to such a monotone transformation (if one is needed), but
the notation gets too messy to justify its writing!
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Aggregative games 83

where agents are positioned in a symmetric network. Then we have�i(s) = πi(si,
∑

j∈N(i) sj)

for all i where N(i) ⊆ {1, . . . , I} and j ∈ N(i) ⇔ i ∈ N(j) (symmetry). For example, we might
have four firms who established along a circle and are only influenced by their neighbors
in an otherwise standard (linearly) aggregative game: �1(s) = π1(s1, s2 + s4), �2(s) =
π2(s2, s1 + s3), �3(s) = π3(s3, s2 + s4), and �4(s) = π4(s4, s1 + s3). It is easily seen that
(4.28) is satisfied.

Corollary 4 (Dubey et al., 2006, Kukushkin, 2005) Let (�i, Si)
I
i=1 be a game with

reciprocal interactions where each σi is either strictly increasing or strictly decreasing in
s−i ∈ S−i and let (1) and (3) of Proposition 3 be satisfied. Then the game is generalized
quasi-aggregative and there exists an equilibrium.17

Proof The proof consists in showing that the game is generalized aggregative with associated
functions g, Fi, νi, i = 1, . . . , I that satisfy condition (2) of Proposition 3 (since then
Proposition 2 applies). The interested reader is referred to Jensen, 2010, Section 2.3.2. �

Let ⊥i = mins−i∈S−i σi(s−i), �i = maxs−i∈S−i σi(s−i). Since Fi is continuously differen-
tiable, the following function is well-defined:18

PR(si, s−i) =
∑

i

[∫ �i

⊥i

min{D2Fi(si, τ), D2Fi(r̂i(τ ), τ)} dτ + Fi(si, ⊥i)

]
− g(si, s−i).

(4.29)

Since PR is a continuous function, ν = maxs∈S PR(s) − mins∈S PR(s) + 1 > 1 is well-
defined. Now define:

P(s) = PR(s)+
∑

i

χi(si), (4.30)

where χi(si) = ν if si ∈ {si : si ∈ Ri(σi(s−i)) for some s−i ∈ S−i} and χi(si) = 0 otherwise. It
is proved in Jensen, 2010 that P is an upper semi-continuous pseudo best-response potential
under the conditions of Proposition 3.19 That P is a pseudo best-response potential means that
if we maximize it with respect to si ∈ Si for any i, then we get best responses as optimizers:

arg max
si∈Si

P(s) ⊆ arg max
si∈Si

πi(s) for i = 1, . . . , I. (4.31)

17 To be accurate, Dubey et al. (2006) and Kukushkin (2005) prove existence. The statement on the quasi-
aggregative structure of such games is found in Jensen, 2010.

18 Note that we are skipping a technicality here related to the domain of r̂i which may – since we have not assumed
that strategy sets are convex – have to be extended from a subset of [⊥i, �i] to the entire set. See Jensen, 2010, proof
of Theorem 1 for details.

19 There is one case when the potential PR applies directly (and in particular, the potential will then be a continuous
function since so is PR). This is when the selection r̂i of Proposition 3 is continuous. Such a selection will map onto
an interval, which allows one to extend the domain of the reduced best-reply selections and take Ŝi = Si for all i
above (see Dubey et al., 2006, p. 82, l.6-8 for details). This clearly works whether the aggregator is linear, as in that
treatment, or not.
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It is clear then that any global maximum for P, i.e., any,

s∗ ∈ arg max
s∈S

P(s),

must be an equilibrium (since at a global maximum all agents must be choosing best
responses given opponents’ strategies). Existence then follows from upper hemi-continuity
of P, compactness of S, and Weierstrass’s theorem.

If Condition (3) of Proposition 3 is strengthened to require that every selection from Ri

is decreasing, then the game will in fact be a best-response potential game in the sense of
Voorneveld (2000), which means that we get to put equality signs in (4.31):

arg max
si∈Si

P(s) = arg max
si∈Si

πi(s) for i = 1, . . . , I. (4.32)

Note that potentials are important for two reasons. First, the proof of existence just
described is substantially simpler than using backward-response correspondences to prove
existence. And, second, backward-response correspondences exist only up until the generality
afforded by generalized aggregative games as discussed in Section 3.1. So whether for
existence, as considered here, or for any other question of interest, one cannot use backward-
response correspondences if one has, say, a network as the one described after Definition 14,
or a teamwork game as described in Dubey et al. (2006) or Jensen, 2010.

And to be sure, it would be possible to address comparative statics as well as uniqueness
(Section 6) using potentials. For example, if (4.32) holds and P is strictly concave, the
equilibrium must be unique. This belongs to the realm of future research, however. Any
contribution in this direction, whether to address uniqueness or comparative statics, would
greatly expand the applicability of the aggregative games methodology.

6 UNIQUENESS

The state of the art on uniqueness in aggregative games exploits the backward-reply
correspondence of Section 3.1 and so applies only to generalized aggregative games (see the
discussion following (4.20)). As discussed at the end of Section 3, there is reason to believe
that parallel results can be developed for more general classes of aggregative games using
best-response potentials instead of backward-response correspondences. But currently this
remains an open question.

In order to proceed we must first of all ensure that the aggregate backward-response
correspondence is single-valued (a function). To the best of this author’s knowledge, the most
general known result that ensures this outcome is the following:20

20 As discussed in Section 3.1, the conditions of nice games can of course be replaced with anything that ensures
that first-order conditions characterize optimality. One can also move over to Kuhn-Tucker or related conditions
in which case best responses are characterized by an equivalence of the type si ∈ Bi(Q) ⇔ 	i(si, Q) ≥ 0. Such
extensions will not be pursued here.
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Proposition 4 Consider a nice (generalized) aggregative game {(�i, Si)i=1,...,I , g} with one-
dimensional strategy sets, Si ⊆ R all i. Then the backward-reply correspondences are single-
valued if the uniform local solvability condition (Definition 10) holds for all agents.

Proof The uniform local solvability condition says that 	i(si, Q) = 0 ⇒ Dsi	i(si, Q) < 0
for all si ∈ Si and Q ∈ X. Since si ∈ Bi(Q)⇔ 	i(si, Q) = 0 in a nice game, the result follows
directly from the continuity of 	i (if the continuous function 	i(·, Q) is strictly decreasing
whenever it crosses the first axis, it can cross it at most once). �

When the backward response correspondence is in fact a function, denote it by bi : X → Si,
and from it the aggregate backward-reply function:

z(Q) = g
(
(bi(Q))i=1,...,I

)
. (4.33)

It follows from Proposition 1 in Section 3.1 that Q∗ is an equilibrium aggregate if and only if

Q∗ = z(Q∗). (4.34)

If (4.34) has a unique solution, the game necessarily has a unique equilibrium, namely s∗ =
(b1(Q∗), . . . , bI(Q∗)). The uniqueness question thus reduces to a particularly simple one-
dimensional question. In specific applications, it is definitely possible to attack this question
straight on by computing, or at least characterizing z. But even then, an additional step has
turned out to be exceptionally useful in applications. Define the share function (see e.g.,
Cornes and Hartley, 2005a) by dividing the backward-response function with the aggregate:

ρ(Q) = z(Q)

Q
. (4.35)

Note that the share function is only defined for Q �= 0. Say that an equilibrium aggregate
is non-trivial if it is different from zero. Obviously, Q is then a non-trivial equilibrium
aggregate if and only if ρ(Q) = 1 (to see this simply divide (4.34) through with Q and call
on Proposition 1). In most applications, the fact that the share function cannot be defined for
Q = 0 is not a major problem since we have Si ⊆ R+ and g(s) = 0 ⇔ s = 0 (note that
because g is additively separable, this in turn implies that g : S → R+). One must of course
take care then to either rule out that s = 0 is an equilibrium, or alternatively, be content with
interpreting the following result as telling us that there is a unique “non-trivial” equilibrium:

Theorem 6 Consider a generalized aggregative game {(�i, Si)i=1,...,I , g} with Si ⊆ R+ and
g : S → R+. Then if the share function ρ is a continuous function that is strictly decreasing
in the neighborhood of any point where it equals 1, there exists at most one non-trivial
equilibrium. In particular, there is a unique equilibrium if an equilibrium exists and s = 0
is not an equilibrium.

Proof Since ρ is continuous, the fact that it strictly decreases when ρ(Q) = 1, Q > 0 implies
that ρ(Q̃) < 1 for all Q̃ > Q since for there to exist a Q̃ > Q with ρ(Q̃) = 1 we would
necessarily have ρ not strictly decreasing at Q̃. �
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Just to be clear, Theorem 6 is a fairly straightforward extension of the method developed
and exploited in e.g., Cornes and Hartley, (2005). For an application that uses the previous
result’s full generality, see Jensen (2016) who proves uniqueness of an equilibrium in a general
class of contests that, in particular, includes patent races (Jensen, 2016, Theorem 1). In many
applications, the share function is everywhere strictly decreasing (and the proof of Theorem
6 is then trivial). An example is Cornes and Hartley (2005) (Proposition 3) who show that the
share function must be strictly decreasing in asymmetric contests.

7 MISCELLANEOUS APPLICATIONS AND EXTENSIONS

7.1 Large Aggregative Games, Mean-field Games

In the previous treatment, it was assumed that the set of players is finite. A large and rapidly
growing literature considers so-called large aggregative games that are populated by a non-
atomic measure space of agents. Large aggregative games are closely related to so-called
mean-field games (Lasry and Lions, 2007, Huang, Caines, and Malhame, 2007), which have
attracted great interest from the mathematics and engineering community (see below).

Now, if we are considering the definitions of Section 2, there is in each case nothing in the
way of allowing the set of agents to be, say, the unit interval with the Lebesgue measure and
Borel algebra. Also, there is no inherent difficulty in allowing strategies to be chosen from
more general sets than subsets of R

n. For example, strategy sets could be compact metric
spaces, which is general enough to include Bayesian games. In both cases, the question that
arises is how to suitably extend the notion of an aggregator. With i ∈ [0, 1], say, linearly
aggregative games have a direct extension to a large aggregative game taking,

g(s) =
∫ 1

0
s(i) di.

More generally, one can easily allow for additively separable aggregators also in the infinite
dimensional case (see Vind and Grodal, 2003 for the relevant definitions). When strategies are
random variables so that the integral defining the aggregator would “integrate across random
variables”, such integrals must be carefully defined with reference to some law of large
numbers. If all of this is done with care, one effectively recovers the deterministic aggregates
considered everywhere above. For details of the more technical issues and further references,
the reader is referred to Acemoglu and Jensen (2010) who establish robust comparative statics
results similar in spirit to the results of Section 4. Notably, Acemoglu and Jensen, 2010 also
allow for multi-dimensional aggregates, i.e., situations where g maps joint strategies into R

N

where N may be greater than 1.
When an aggregative game is large, agents’ influence on the aggregate becomes infinitesi-

mal, which simplifies the analysis very considerably.21 To put it in simple terms, agents will
take the aggregate as given so agents do not have to consider their own effect on the aggregate

21 This statement comes with a caveat of course, namely that one instead faces issues with integration and the law
of large numbers.
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when choosing strategies.22 At the same time, large games can be seen as approximating
games with a finite but large set of players (see again Acemoglu and Jensen, 2010 as well as,
for example, Adlakha and Johari, 2013). Mean-field games mentioned above take precisely
this route: a mean-field game is a linearly aggregative game populated by a finite set of agents
but one that is large enough for the large game limit to be a good approximation. Generally,
mean-field games allow for multi-dimensional strategy sets that with linear aggregators
implies multi-dimensional aggregates, g(s) = ∑

i si where si ∈ Si ⊆ R
n. As is clear, there are

more similarities than differences between large aggregative games and mean-field games (or,
at least, the large limit of mean-field games), and future research will no doubt lead to further
integration.

To mention a few studies within this literature, Camacho, Kamihigashi, and Saglam (2016)
establish robust comparative statics results in large aggregative games that extend the result of
Acemoglu and Jensen (2010) to changes in distributions of parameters across agents. This
allows them to study inequality in a simple model of income distribution (for the reader
who is interested in the comparative statics of changing distributions more generally, see
also Jensen, 2015). Babichenko’s (2013) studies best-response dynamics in large aggregative
games. As for the literature on mean-field games, this literature is as mentioned, very large.
Parise et al. (2015b) and Grammatico et al. (2015) study control and convergence in mean-
field games. Adlakha and Johari (2013) study stochastic mean-field games with strategic
complementarities where agents react to the long-run average state of other players. The
interested reader may consult these papers for further references.

7.2 Wireless Networks, Smart Grids, Games on Graphs, and Algorithms

There is a growing literature not just in economics but also in engineering and physics that
uses aggregative games to model various problems related to network interaction between
optimizing agents. Da Costa et al. (2009) study wireless spectrum sharing among so-called
C-cells, which are autonomous units capable of configuring their spectrum allocation. This
leads to the study of Nash equilibrium in an aggregative game of strategic substitutes (see
Sections 4.2 and 3). The Nash equilibrium in Da Costa et al. (2009) is the fully distributed
competitive solution to the spectrum-sharing problem. Chen et al. (2014) take an explicit
aggregative games approach to the study of demand-side management in a smart grid,
i.e., an electricity network where consumers are able to schedule their energy consumption
profiles. Consumers’ objective is to minimize costs, which leads to a standard strategic form
aggregative game (see Section II.A in Chen et al., 2014). Koshal, Nedik, and Shanbhag
(2012) study aggregative games on graphs and so consider an explicit (abstract) network
structure. The focus is on a gossip-based algorithm for the distribution across the network
(for computational algorithms see also Kukushkin, 2014). Given the importance for practical
(real-world) applications of such algorithmic approaches, these certainly deserve to be studied
more within the setting of aggregative games. As discussed before and after Proposition 4
in Section 3, games with reciprocal interactions and generalized quasi-aggregative games
more generally produce explicit potential functions for the modeling of aggregative games

22 See Section 7.4 for a setting where agents likewise take the aggregate as given – without there being a continuum
of agents.
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played on graphs/networks. Not only does this lead to existence proofs, it also points the
way on how to deal with uniqueness, comparative statics, stability, and other topics. See
also Parise et al. (2015a) who study networks in quasi-aggregative games and establish
distributed algorithms whose implementation steer best responses to Nash equilibrium (see
also Parise et al., 2015c).23 Closer to economics and industrial organization are of course
studies that look at (imperfect) competition between firms with a specific location structure.
An example here is Harks and Klimm (2015) who study what they call aggregative location
games where oligopolistic firms each can supply only a single market out of a set of markets.
Firms must then choose quantities as well as location, which leads to some very interesting
observations.

7.3 Entry and Free-entry Games

It has been known for many years that entry of additional players (typically firms in an
IO setting) is a topic particularly amendable to aggregative games methodology. See, for
example, Corchón (1994) (Proposition 1, p. 158) who presents a result on entry in games of
strategic substitutes (that result is generalized by Proposition 5 in Section 4). See also Seade
(1980) for an early treatment of entry. Aggregative games are particularly well suited for the
study of entry (and exit) because “adding an additional agent” has a very clear and natural
interpretation. One basically adds a player to the game by adding her strategy to the existing
aggregate – so there is no ambiguity about how new players’ strategies enter existing players’
payoff function.24 It is this feature that also makes aggregative games a particularly natural
setting for evolutionary game theory, as returned to in Section 7.4. And to be sure, some of
the papers described in that section (e.g., Alos-Ferrer and Ania, 2005) are very closely related
to IO studies of entry. This feature is also what makes a statement such as “a large aggregative
game is the limit of a finite agent aggregative game as I → ∞” (where I is the number of
players) meaningful. See Section 7.1 above.

Now, there are settings where adding more players will not naturally lead to a large game
limit with “aggregate-taking behavior” but rather, will lead to the endogenous determination
of certain number of agents, all of whom still have a non-infinitesimal influence on the
aggregate. We are speaking, of course, of monopolistic competition with free entry. In the
most basic example, firms have start-up costs and upon entry earn (supernormal) profits. As
the number of firms increase, profits decrease. At a free-entry equilibrium, the number of firms
has adjusted so that firms earn zero profits, which then discourages additional entry. Okumura
(2015) establishes existence of a subgame perfect equilibrium in a free-entry aggregative game
and also provides an algorithm to compute the equilibrium. Anderson, Erkan, and Piccinin
(2015) study aggregative oligopoly games with entry. That paper is particularly relevant for
IO, providing an aggregative games “toolkit” for IO, and establishing an array of interesting
results related to mergers, market structure, and surplus/welfare.

23 Note that these papers allow for multi-dimensional aggregates and so are only quasi-aggregative in the sense of
Section 2.3 when strategy sets are one-dimensional.

24 In a game that is not aggregative, it is not at all clear what it means to add an additional player. In particular,
one will in general have to replace all players’ payoff functions with new ones with different domains if the set of
agent changes.
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7.4 Evolutionary Games

Aggregative games have come to play an increasingly important role in evolutionary game
theory and a number of results have been established. The reason aggregative games are
well suited for studies on evolution is that one can very naturally think of adding agents,
removing agents, and selecting subsets of agents once an aggregator has been fixed (see the
related discussion in Section 7.3). Many evolutionary games are also either games of strategic
substitutes or complements, making the results presented in the previous sections particularly
relevant.

Possajennikov (2015) studies the evolutionary stability of players’ beliefs about the
aggregate in both (infinite population) random matching and finite population playing-the-
field. He shows, in particular, that evolutionary stability in aggregative games dictates that
agents must believe that their actions have no effect on the aggregate. This is reminiscent of
price-taking/Walrasian behavior, studied in aggregative games in Alos-Ferrer and Ania (2005)
and Possajennikov (2003) among others. Basically, these papers show that “aggregate-taking
behavior” – already encountered in large games in Section 7.1 – is evolutionarily stable. Note
that much of this literature overlaps with basic IO questions. See the previous papers for
further references, as well as Schipper (2004).

7.5 Dynamics and Stability

Aggregative games that admit a best response potential (Section 3) have very nice stability
properties under iterative best-response dynamics where players move in turn and to a best
response. Note that such best-response improvement dynamics, is nothing but the Cournot
tatonnement taught in first-year modules extended to many players and general payoff
functions. Jensen, 2010 shows that if best responses are single-valued, any generalized quasi-
aggregative game that satisfies the conditions of Proposition 3 have Cournot tatonnements
that converge to equilibria. The method of proof in Jensen, 2010 owes everything to early
contributions on this topic by Nikolai Kukushkin (2004, 2005); see also Kukushkin (2015,
2016) for more recent treatments. For different stability concepts than Cournot tatonnement
see Dindosa and Mezzetti (2006) as well as Paccagnan, Kamgarpour, and Lygeros (2016).25

While aggregative games that admit best-response potentials are particularly amenable to
stability analysis, the structure of aggregative games naturally lends itself to stability analysis
more generally (in which should be included algorithmic computation of Nash equilibrium).
Babichenko’s (2013) analysis of stability in large aggregative games was already mentioned
above (Section 7.1), and several of the referred papers in that section as well as Section 7.2
specifically deal with stability in one form or another.

7.6 Contests and Public Good Provision Games

Contests as well as patent races are generalized aggregative games and so the full aggregative
games machinery applies to such games. The study dates back to Loury (1979) and Tullock
(1980) and the literature is both voluminous and active. For a recent survey see Corchón

25 The latter of the two studies aggregative as well as mean-field games (Section 7.1) and consider “gradient-like”
updates using tools from distributed optimization and variational inequalities.
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(2007). Since Chapter 6 by Corchón and Serena, and Chapter 7 by Hoffman and Rota-Preziosi,
Volume II of this Handbook are devoted to contests, a few comments will suffice here.

Contests (as well as patent races) are neither games of strategic substitutes or complements.
However, they satisfy the uniform local solvability condition (Definition 10) under standard
conditions and so uniqueness and comparative statics results can be established at a very high
level of generality using the results of Section 4.1 and 6 (see Acemoglu and Jensen, 2013,
Jensen, 2016).26 See also Szidarovszky and Okuguchi (1997) and Cornes and Hartley (2005).
For some recent contributions that make active use of the aggregative games methodology to
push the setting forward see Kelsey and Melkonyan (2014) who study ambiguity in contest,
and Dietl et al. (2015) who investigate how promotion and relegation in sports leagues affect
the strength of the divisions.

While contests are neither games of strategic substitutes nor complements, public good
provision models are aggregative and if the public good is a normal good, also a game
of strategic substitutes (Acemoglu and Jensen, 2013, Section 5.1). Just like in the case of
contests, there is a large literature on public good provision. Examples that explicitly use
an aggregative games approach include Cornes and Hartley (2007), Kotchen (2007), and the
study of clubs in public good provision of Al-Nowaihi and Fraser (2012).
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5. Monopolistic competition without apology
Jacques-François Thisse and Philip Ushchev ∗

1 INTRODUCTION

The absence of a general equilibrium model of oligopolistic competition unintentionally
paved the way for the success of the constant elasticity of substitution (CES) model of
monopolistic competition. This model, developed by Dixit and Stiglitz (1977), has been used
in so many economic fields that a large number of scholars view it as virtually the model of
monopolistic competition. The main thrust of this chapter is that monopolistic competition is
a market structure in its own right, which encompasses a much broader set-up than what most
economists believe it to be.

According to Chamberlin (1933), monopolistic competition is defined as a market environ-
ment in which a firm has no impact on its competitors (as in perfect competition) but is free
to choose the output (or price) that maximizes its profits (as a monopolist). In other words,
although one firm is negligible to the market, it is endowed with market power because it sells
a differentiated product. For this to hold true, each firm must compete against the market as a
whole or, to use Triffin’s (1940) formulation, the cross-elasticity between any two varieties has
to be negligible. According to the “folk theorem of competitive markets,” perfect competition
almost holds when firms are small relative to the size of the market. Hence, for a long time,
economists debated heatedly whether Chamberlin’s assumptions make sense. We will make
no attempt to summarize this debate. Nevertheless, a few contributors raised fundamental
questions that will be discussed later on.

We choose to focus on the two main approaches that have been developed to study
monopolistic competition and explore the conditions under which these approaches lead to
similar results. In the first, we consider an oligopolistic game in which firms compete in
quantity (Cournot) or price (Bertrand). We then ask whether the sequence of Nash equilibria of
these games converges to a competitive outcome when the number of firms grows indefinitely.
If not, monopolistic competition may be viewed as approximating a market in which strategic
interactions among firms are weak.

The second approach builds on Aumann (1964) who shows that the distribution of agents
must be non-atomic for each agent to be negligible to the market. The same idea is applied to
firms to account for Chamberlin’s idea that a firm’s action has no impact on its competitors.
In other words, the supply side of the market is described by a continuum of firms whose
mass is pinned down by the zero-profit condition. The next step is to check whether the Nash
equilibria of these non-atomic games are identical to the competitive equilibria. When the

∗ We are especially grateful to a referee, and readers C. Arkolakis and S. Redding for an impressive list of
stimulating comments and suggestions. We thank M. Parenti for long and fruitful discussions on the subject matter.
We also thank S. Anderson, D. Connolly, L. Corchón, F. Di Comite, P. Fajgelbaum, A. Osharin, F. Robert-Nicoud,
A. Tarasov, H. Vandenbussche, and X. Vives for insightful discussions and remarks. The study has been funded by
the Russian Academic Excellence Project ‘5–100’.
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answer is negative, monopolistic competition may be considered as a market structure per se.
To put it differently, monopolistic competition is the equilibrium outcome of a non-atomic
game with an endogenous mass of players.

Modeling monopolistic competition as a non-atomic game yields a framework easier to
handle than standard oligopoly models while coping with general equilibrium effects, a task
that is hard to accomplish in oligopoly theory (Hart, 1985a). Furthermore, even though firms
do not compete strategically, general models of monopolistic competition are able to mimic
oligopolistic markets with free entry within a general equilibrium framework. This is in
accordance with Mas-Colell (1984, p. 19) for whom “the theory of monopolistic competition
derives its theoretical importance not from being a realistic complication of the theory of
perfect competition, but from being a simplified, tractable limit of oligopoly theory.”

How product differentiation and consumer preferences are modeled has far-reaching
implications for what is meant by monopolistic competition. In an influential review of
Chamberlin’s book, Kaldor (1935) objects to the idea that each firm is able to compete directly
with all the others. According to Kaldor, firms are rooted in specific places. As a consequence,
they have competitors that are close while the others are remote. Regardless of the number
of firms in total, the number of firms competing for any particular consumer is small, so a
decision made by one firm has a sizable impact only on the neighboring firms. Under these
circumstances, monopolistic competition would not make sense. This argument is similar to
the ideas developed by Hotelling (1929) and later on by Beckmann (1972) and Salop (1979).
For these authors, competition is localized, meaning that a firm faces a limited number of
direct competitors that operate in its vicinity. Building on Hotelling’s intuition, Lancaster
(1979) puts forward the same idea in the context of a characteristics space where products are
positioned while consumers have their own ideal varieties forming a constellation of points
that belong to the very same space. These various strands of literature have given rise to a
model of spatial competition with free entry. This model remains in the tradition of oligopoly
theory: firm behavior is strategic because competition is localized while its global impact is
diffused among firms through chain effects that link any two firms belonging to the same
industry.

In contrast, if consumers have a love of variety, Kaldor’s criticism ceases to be relevant.
In this context, firms all compete together as they all strive to attract the entire population
of consumers. This is why Chamberlin’s model of monopolistic competition is henceforth
associated with consumers who aim to consume many varieties, rather than consuming their
ideal variety. After having attracted a great deal of attention in the 1930s, Chamberlin’s ideas
languished until Spence (1976) and, above all, Dixit and Stiglitz (1977) brought them back
onto the scientific stage by proposing a model capable of being used in various economic
fields. Spence developed a partial equilibrium setting, whereas the Dixit-Stiglitz model places
itself in a general equilibrium context. Both modeling strategies are used in the literature.
The former is more popular in industrial organization, whereas the latter is the workhorse of
new trade and growth theories. This justifies our choice not to take a stance on choosing one
particular strategy, but rather to deal with both.

On the production side, Chamberlin remained in the Marshallian tradition by assuming
that firms face the U-shaped average cost curves. Since firms face downward-sloping demand
schedules and profits vanish under free entry, each firm produces at the tangency point of the
demand and average cost curves. As a result, the equilibrium output level is smaller than
the one that minimizes its unit costs, a claim dubbed the “excess capacity theorem.” Under
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the severe conditions of the Great Depression, this was viewed as evidence that competition
may generate a waste of resources. However, this argument overlooks the fact that, when
consumers value product differentiation, a wider product range generates welfare gains that
must be taken into account when assessing the (in)efficiency of monopolistic competition.
Under these circumstances, there is a trade-off between scale economies associated with
the production of varieties and the range of available varieties. This suggests the following
question: does the market over- or under-provide variety?

This chapter reflects those various lines of research. However, its main emphasis will
be on the models whose origin lies in the pioneering work of Dixit and Stiglitz (1977).
Modeling monopolistic competition as a non-atomic game makes the corresponding market
structure different from those studied in industrial organization. The upshot of the matter is
that monopolistic competition encapsulates increasing returns and imperfect competition in a
general equilibrium setting. Such a combination leads to a wide range of findings that may
differ greatly from those obtained in a general competitive analysis, while permitting the study
of issues that are hard to tackle within an oligopoly framework (Matsuyama, 1995).

The remainder of the chapter is organized as follows. First of all, there is a lot to learn
from early contributions that are often disregarded in the modern literature. For this reason,
Section 2 is devoted to those contributions, but we make no attempt to provide a detailed
survey of what has been accomplished. In doing this, we follow the tradition of oligopoly
theory and focus on partial equilibrium. Section 3 highlights the role of the negligibility
hypothesis in the CES and linear-quadratic (LQ) models. Being negligible to the market,
each firm treats parametrically market aggregates, which relaxes substantially the technical
difficulties of working with imperfect competition in general equilibrium. In Section 4,
we discuss a general set-up under the negligibility hypothesis and the “heroic assumption”
that both demand and cost curves are symmetric (Chamberlin, 1933, p. 82). The focus
is now on a variable elasticity of substitution (VES), which depends upon the individual
consumption and mass of varieties. Under these circumstances, the VES model encompasses
the whole family of models with symmetric preferences. Furthermore, the VES model of
monopolistic competition is able to mimic key results of oligopoly theory. To a certain
extent, we therefore find the dichotomy between oligopolistic and monopolistic competition
unwarranted.

In Section 5, we make less heroic assumptions by recognizing that firms are heterogeneous.
The literature on heterogeneous firms is huge and therefore we are content to provide an
overview of the main findings (Redding, 2011). In the spirit of the preceding sections, we
depart from the CES, which has taken center stage ever since Melitz’s (2003) pioneering
contribution. Section 6 is devoted to the classical question: does the market provide too many
or too few varieties? As anticipated by Spence (1976), the numerous effects at work leave
little hope of coming up with robust results, the reason being that the answer depends on the
demand-side properties. As a consequence, there is no need to discuss this question at length.
Note, however, that the variety of welfare results casts some doubt on prescriptions derived
from quantitative models that use CES preferences. Section 7 concludes and proposes a short
research agenda.

A final comment is in order. This chapter is about the theory of monopolistic competition.
This does not reflect any prejudice on our part, but dealing with econometric and applied
issues would take us way beyond the scope of this chapter. We refer to De Loecker and
Goldberg (2014) for a detailed survey of this literature.
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2 MONOPOLISTIC COMPETITION AS THE LIMIT
OF OLIGOPOLISTIC COMPETITION

There are (at least) three ways to model preferences for differentiated products. In the first,
consumers are endowed with a utility U(x) defined on the set X of potential varieties,
which is continuous and strictly quasi-concave in x (see, e.g., Vives, 1999). It is well known
that the convexity of preferences describes variety-seeking behavior. When preferences are
symmetric, the convexity of preferences implies that a consumer has a love for variety, that is,
she strictly prefers to consume the whole range of available varieties than any subset.

In the second approach, every consumer has one ideal variety and different consumers have
different ideal varieties. In the spatial metaphor proposed by Hotelling (1929), a consumer’s
ideal variety is represented by her location in some geographical space (Main Street), while
the variety provided by a firm is the location of this firm in the same space. Formally, the
set X of varieties is defined by a metric space, such as a compact interval or a circle. Using
a metric space allows one to measure the “distance” between any two locations, while the
utility loss incurred by a consumer for not consuming her ideal variety is interpreted as
the transport cost this consumer must bear to visit a firm, which increases with distance.
Regardless of the number of available varieties, a consumer purchases a single variety. In
this event, preferences are no longer convex, making it problematic to prove the existence
of an equilibrium. However, ever since Hotelling (1929), it is well known that this difficulty
may be obviated when there is a large number (formally, a continuum) of heterogeneous
consumers.

A third approach was developed to account for taste heterogeneity, as in spatial models, but
in a set-up that shares some basic features of symmetric models. This is achieved using the
random utility model developed in psychology and applied to econometrics by McFadden
(1974). Interestingly, this approach looks at first sight like the second approach, but is
isomorphic at the aggregate level to the first approach. Although discrete choice models
have not been developed to study monopolistic competition per se, the results obtained under
oligopoly can be used to study the market outcome when the number of firms is arbitrarily
large.

The literature is diverse and, therefore, difficult to integrate within a single framework.
In addition, some papers are technically difficult. In what follows, we use simple models to
discuss under which conditions each of these three approaches leads to perfect or monopolistic
competition when the number of firms grows indefinitely.

2.1 Variety-seeking Consumers

2.1.1 Additive aggregate
There are two goods, a differentiated good and a homogeneous good. The homogeneous good
x0 is unproduced and used as the numéraire. The differentiated good is made available under
the form of a finite number n ≥ 2 of varieties, which are strong gross substitutes. Throughout
this chapter, unless stated otherwise, each variety is produced by a single firm because firms
seek to avoid the negative consequences of face-to-face competition, while each firm produces
a single variety because there are no scope economies. Producing xi units of variety i =
1, . . . , n requires cxi units of the numéraire where the marginal cost c > 0 is constant.
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There is a unit mass of identical consumers or, equivalently, a representative consumer
who are each endowed with one unit of the numéraire. Like in mainstream oligopoly theory,
consumers have quasi-linear preferences given by

U(x) = ϕ (X(x))+ x0, (5.1)

where ϕ is twice continuously differentiable, strictly increasing, strictly concave over R+,
and such that ϕ(0) = 0, while the sub-utility X(x) maps the consumption profile x =
(x1, . . . , xn) ∈ R

n+ into R+. The utility ϕ measures the desirability of the differentiated good
relative to the numéraire. The concavity of ϕ(·) implies that the marginal utility of X decreases,
and thus the marginal rate of substitution between X and x0 decreases with X.

The sub-utility X(x) is supposed to be symmetric and additive:

X(x) ≡
n∑

i=1

u(xi), (5.2)

where u is thrice continuously differentiable, strictly increasing, strictly concave over R+,
and u(0) = 0. The concavity of u(·) amounts to assuming that consumers are variety-
seekers: rather than concentrating their consumption on a small mass of varieties, they prefer
to spread it over the whole range of available varieties. As a consequence, the elasticity
of the sub-utility with respect to the per variety consumption level does not exceed one:
Exi(u) ≡ xiu ′(xi)/u(xi) ≤ 1. The behavior of this elasticity plays a major role in shaping the
welfare properties of monopolistic competition (see Dhingra and Morrow, 2018, and Section 6
of this chapter). Furthermore, it should be clear that the symmetry of lower-tier utility (14.27)
means that the utility level is unaffected if varieties are renumbered.

Following Zhelobodko et al. (2012), we define the relative love for variety (RLV) as
follows:

ru(x) ≡ −xu ′′(x)
u ′(x)

,

which is strictly positive for all x > 0. Very much like the Arrow-Pratt relative risk aversion,
the RLV is a local measure of love for variety. Consumers do not care about variety when
u(xi) = xi, which means ru(x) ≡ 0 for all x > 0. As the value of ru(x) grows, the consumer has
a stronger love for variety. Therefore, how the RLV changes with the per variety consumption
is crucial for the analysis of the equilibrium. Under the CES, we have u(x) = x(σ−1)/σ where
σ , the elasticity of substitution between any two varieties, is a constant larger than 1; the RLV
is given by 1/σ . Other examples of additive preferences include the constant absolute risk
aversion (CARA) (Behrens and Murata, 2007) and the addilog (Simonovska, 2015).

Let p = (p1, . . . , pn) be a price vector. Utility maximization yields the inverse demand for
variety i:

pi (xi, x−i) = ϕ ′(X(x)) · u ′(xi). (5.3)
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The Marshallian demands xi(p) are obtained by solving the following system of equations:

pi = ϕ ′(X(x)) · u ′(xi), i = 1, . . . , n. (5.4)

Combining (14.27) and (5.4) yields the Marshallian demand for variety i:

xi(pi, p−i) = ξ

(
pi

P(p)

)
, (5.5)

where ξ(·) ≡ (
u ′)−1

(·), while P(p) is the unique solution to the equation:

P = ϕ ′
⎡
⎣

n∑
j=1

u
(
ξ
(pj

P

))⎤⎦ . (5.6)

Clearly, a price cut by firm i draws demand equally from all the other firms, which reflects
the symmetry of preferences, while P plays the role of the Lagrange multiplier when the
budget constraint is binding.

Bertrand competition We consider a non-cooperative game in which the players are firms.
The strategy of firm i is given by its price pi and its payoff by its profits given by

�B
i (p) = (pi − c)xi(p) = (pi − c)ξ

(
pi

P(p)

)
, i = 1, . . . , n. (5.7)

A Nash equilibrium p ∗ = (p ∗
1 , . . . , p ∗

n ) of this game is called a Bertrand equilibrium,
which is symmetric if p ∗

i = pB(n ) for all i = 1, . . . , n. It follows from (5.7) that �B
i (p) is a

function of pi and P(p) only. Therefore, the Bertrand game under additive preferences is an
aggregative game in which P(p) is the market statistic.

In the remainder of this chapter, we denote by Ez(f ) the elasticity of a function f (z) with
respect to z. Differentiating (5.5) with respect to pi and using (5.4) yields the price elasticity
of the demand for variety i:

Epi(xi) = 1 − Epi(P)

ru
[
ξ(pi/P)

] . (5.8)

Since firm i’s profit-maximizing markup is given by mB
i = 1/Epi(xi), (5.8) implies that firm

i’s Bertrand-markup may be written as follows:

mB
i = 1

1 − Epi(P)
· ru

[
ξ
(pi

P

)]
, (5.9)

where 0 < Epi(P) < 1 is shown to hold in Appendix.
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Assume that firms treat P parametrically, so that Epi(P) = 0. In this case, (5.9) boils down
to mB

i = ru(xi) > 0. Hence, even when firms are not aware that they can manipulate P, they
price above marginal cost because their varieties are differentiated. When firms understand
that they can manipulate P (Epi(P ) > 0), we have 1/

[
1 − Epi(P )

]
> 1. This new effect stems

from the strategic interactions among firms through the market statistic P, which allows them
to hold back their sales and to raise their profit. In summary, (5.9) highlights the existence of
two sources of market power: monopoly power (ru(x) > 0) and strategic power (Epi(P) > 0).

We now show that the strategic power of firms vanishes as the number of firms unboundedly
grows. Consider a symmetric Bertrand equilibrium p ∗

i = pB(n ) and find the equilibrium
consumption xB(n ), which is the unique solution to:

ϕ ′ [nu(x)] · u ′(x) = pB(n ).

The expression (A.1) in the Appendix implies that

lim
n→∞ Epi(P)

∣∣
pi=pB(n ) = 0,

which means that strategic interactions vanish at the limit.
How does the monopoly term ru

[
xB(n )

]
behave when n grows unboundedly? To check

this, note that the budget constraint, together with pB(n ) ≥ c, implies that xB(n ) ≤ 1/cn.
Therefore, when n tends to infinity, xB(n ) converges to zero. Combining this with (5.9), we
obtain:

lim
n→∞ mB(N ) = lim

n→∞
1

1 − Epi(P)
∣∣
pi=pB(n )

· lim
n→∞ ru

[
xB(n )

] = ru(0).

Cournot competition Firm i’s profit function is now given by

�C
i (x) = [

pi(xi, x−i)− c
]

xi = [
ϕ ′(X(x)) · u ′(xi)− c

]
xi,

A Cournot equilibrium is a vector x ∗= (x ∗
1 , . . . , x ∗

n ) such that each strategy x ∗
i is firm i’s

best reply to the strategies x ∗
−i chosen by the other firms. This equilibrium is symmetric if

x ∗
i = xC(n) for all i = 1, . . . , n. Using (5.3), we may restate firm i’s Cournot-markup as

follows:

mC
i = ru(xi)+ rϕ(X )Exi(X ), (5.10)

where X is the market statistic (14.27).
As in the Bertrand game, there are two sources of market power, that is, strategic power and

monopoly power. Under Cournot, the decomposition is additive, whereas the decomposition
is multiplicative under Bertrand (see (5.9)). Despite this difference, both (5.9) and (5.10) show
the importance of product differentiation for consumers through the value of the RLV.

Assume for simplicity that rϕ(X ) is bounded from above by a positive constant K; this
property holds for the logarithmic and power functions. Since

Exi(X ) = Exi(u) ·
u(xi)

X
,
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and 0 < Exi(u) < 1 for all xi > 0, it must be that

lim
n→∞ rϕ(X )Exi(X )

∣∣
xi=xC(n ) ≤ lim

n→∞
K

n
= 0.

Therefore, as in the Bertrand game, strategic power is diluted in an ocean of small firms
selling differentiated varieties. As for the monopoly term in (5.10), the argument developed
in the Bertrand case applies. It then follows from (5.10) that

lim
n→∞ mC(n ) = lim

n→∞ ru

[
xC(n )

]
+ lim

n→∞ rϕ(X )Exi(X )
∣∣
xi=xC(n ) = ru(0).

The limit of Bertrand and Cournot competition The following proposition comprises a
summary:

Proposition 1 If there is n0 ≥ 2 such that a symmetric equilibrium exists under Cournot and
Bertrand for all n > n0, then

lim
n→∞ mB(n ) = lim

n→∞ mC(n ) = ru(0).

Since the strategic terms Epi(P) and Exi(X ) converge to 0 when n goes to infinity, whether
the limit of Bertrand and Cournot competition is perfectly competitive or monopolistically
competitive is the same under both regimes and hinges on the value of ru(0). When ru(0) > 0,
a very large number of firms whose size is small relative to the market is consistent with the
idea that firms retain enough market power to have a positive markup. To be precise, even
when individuals face a very large number of varieties and consume very little of each variety,
they still value diversity. It then follows from (5.8), that the price elasticity of a firm’s demand
is finite, which allows firms to retain monopoly power and to sustain a positive markup. On the
other hand, when ru(0) = 0, a growing number of firms always leads to a perfectly competitive
outcome. Since both sources of market power vanish at the limit, the price elasticity of a
firm’s demand is infinite. Intuitively, consumers no longer care about diversity because their
per variety consumption is too low. In brief, the love for variety must be sufficiently strong for
monopolistic competition to emerge.

2.1.2 Linear-quadratic preferences
In the case of two varieties, the LQ utility is given by:

U(x1, x2) = α(x1 + x2)− β

2
(x2

1 + x2
2)− γ x1x2 + x0, (5.11)

where α, β and γ are three positive constants such that γ < β. In the case of n > 2 varieties,
there are at least two different specifications of the LQ utility, which each reduces to (5.11)
when n = 2:

U(x) = α

n∑
i=1

xi − β

2

n∑
i=1

x2
i − γ

n∑
i=1

n∑
j 
=i

xixj + x0, (5.12)
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or

U(x) = α

n∑
i=1

xi − β

2

n∑
i=1

x2
i − γ

n − 1

n∑
i=1

n∑
j 
=i

xixj + x0, (5.13)

where 	ix2
i is the Herfindahl-Hirschman index measuring the dispersion of the consumption

profile x, so that β measures the intensity of love for variety; α is the willingness-to-pay for
the differentiated product, while γ is an inverse measure of the degree of differentiation across
varieties.

It is readily verified that under (5.12) the equilibrium markup tends to 0 when n goes to
infinity, whereas the equilibrium markup is constant and positive under (5.13). In other words,
(5.12) leads to perfect competition and (5.13) to monopolistic competition.

To sum up, whether the limit of oligopolistic competition is monopolistic or perfect
competition hinges on preferences (see also Vives, 1985, Proposition 3). For example, under
CARA or the LQ (5.12), we have ru(0) = 0, and thus the limit of oligopolistic competition is
perfect competition. In contrast, under the CES, we have ru(0) = 1/σ > 0; the limit of the
CES oligopoly model may thus be viewed as a “true” model of monopolistic competition.

2.2 Heterogeneous Consumers: The Spatial Approach

In his review of Chamberlin’s book, Kaldor (1935) argues forcefully that product locations in
characteristics space, or firms’ locations in the geographical space, mold market competition
in a very specific way: whatever the total number of firms in the industry, each one competes
more vigorously with its immediate neighbors than with more distant firms. Or, in the words of
Kaldor (1935, p. 390): “the different producers’ products will never possess the same degree
of substitutability in relation to any particular product. Any particular producer will always
be faced with rivals who are nearer to him, and others who are farther off. In fact, he should
be able to class his rivals, from his own point of view, in a certain order, according to the
influence of their prices upon his own demand.”

To develop the idea that some firms are close whereas others are distant, Kaldor used
Hotelling’s (1929) spatial metaphor. In spatial models of product differentiation, a consumer
is identified by her “ideal” variety s ∈ S ⊂ R

n, while the variety provided by firm i is
denoted by si ∈ S. Hotelling (1929) uses the following spatial metaphor: firms and consumers
are located in a metric space S ⊂ R

n where d(s, s ′) is the physical distance between any
two locations s and s ′ ∈ S. Because moving from one place to another involves a cost,
space is sufficient to render heterogeneous consumers who are otherwise homogeneous. In
a characteristics space à la Gorman-Lancaster, d(s, s ′) is the inverse measure of the degree of
substitutability between the varieties s and s ′. Besides the distance d, the other salient feature
of the spatial model of product differentiation is the transport rate t > 0, which can be viewed
as the intensity of preferences for the ideal variety, or the unit cost of travelling to a store.
The taste mismatch of consumer s with variety si is now expressed by the weighted distance
td(s, si) between the consumer’s ideal variety and firm i’s variety. Even though the individual
purchase decision is discontinuous – a consumer buys from a single firm – Hotelling (1929)
finds it reasonable to suppose that firms’ aggregate demands are continuous. Supposing that
consumers are continuously distributed across locations solves the apparent contradiction
between discontinuity at the individual level and continuity at the aggregate level.

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

102 Handbook of game theory and industrial organization: theory

Spatial models of product differentiation attracted a lot of attention in 1970s and 1980s. In
this set-up, a consumer can purchase from any firm, provided she is willing to pay the transport
cost, and thus the boundaries between firms are endogenous to firms’ prices and locations.
One of the earliest contributions is Beckmann (1972) who studied how firms equidistantly
distributed over S compete to attract consumers who are uniformly distributed over the same
space with a unit density. Each consumer buys one unit of the good up to a given reservation
price, while transport costs are linear in the Euclidean distance. Accordingly, competition is
localized, whereas it is global in models with symmetric preferences such as those discussed
above. In the geographical space, the goods sold by any two stores are physically identical
but differentiated by the places where they are made available. As a consequence, a consumer
buys from the firm with the lowest full price, which is defined as the posted (mill) price plus
the transport cost to the corresponding firm.

Assume that S is given by a one-dimensional market without boundary, e.g., the real line or
a circle. In this case, firm i has only two neighbors located at a distance 
 on either side of
si. When t takes on a high value, firm i is a local monopoly because it is too expensive for
consumers located near the midpoint between firms i − 1 and i to make any purchase. On
the contrary, when t is sufficiently low, each firm competes with its two neighbors for the
consumers located between them. As argued by Kaldor in the above quotation, the market
power of a firm is restrained by the actions of neighboring firms. In other words, their
(geographic) isolation avails them only local monopoly power, for firm i’s demand depends
upon the prices set by the neighboring firms i − 1 and i + 1:

xi(pi−1, pi, p+1) = max

{
0,

pi−1 − 2pi + pi+1 + 2t


2t

}
. (5.14)

If n firms are symmetrically located along a circle C of length L (
 = L/n), the equilibrium
price is given by

p ∗(n ) = c + t
 = c + tL

n
. (5.15)

Hence, p ∗(n ) decreases with the transport rate t because firms benefit less from their
geographical separation. At the limit, when t = 0, distance does not matter anymore,
implying that firms price at marginal cost. Thus, the limit of the spatial model of monopolistic
competition is perfect competition. When fixed costs are taken into account, the free-entry
equilibrium price can be shown to decrease when the market size is expanded by raising the
consumer density over S.

Beckmann’s paper went unnoticed outside the field of regional science. It is also worth
mentioning the contributions made by Eaton and Lipsey (1977) who build a theory of market
competition in a spatial economy. Again, despite the quality of the work, Eaton and Lipsey’s
contributions attracted a limited amount of attention. It was not until Salop (1979), who used
the circular city model, that scholars in industrial organization started paying attention to
spatial competition models, more or less at the same time as they came across Hotelling’s
(1929) potential for new applications.1

1 This is not yet the end of the story. Several results obtained using the spatial competition model in industrial
organization were anticipated by Vickrey in his Microstatics published in 1964.
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Spatial models have proven to be very powerful tools because they account explicitly for
the product specification chosen by firms, whereas the Chamberlinian and discrete choice
models provide no basis for a theory of product choice and product design. Spatial models
are appealing in two more respects. First, they capture consumer heterogeneity by means of a
simple and suggestive metaphor, which has been used extensively to describe heterogeneous
agents in several economic fields as well as in political science. Second, the spatial model
of monopolistic competition is well suited for studying various facets of the market process,
for example, by assuming that firms have a base product that is associated with the core
competence of the firm. This product may be redesigned to match consumer requirements if
the corresponding firm is willing to incur a cost that grows as the customized product becomes
more differentiated from the base product. In this set-up, firms are multi-product and each
variety is produced at a specific marginal cost. This problem may be studied by replacing
Hotelling-like shopping models with shipping models, where firms deliver the product and
take advantage of the fact that customer locations are observable to price discriminate across
space (Macleod, Norman and Thisse, 1988; Eaton and Schmitt, 1994; Norman and Thisse,
1999; Vogel, 2011).

Unfortunately, spatial models become quickly intractable when they are cast in a general
framework involving a non-uniform distribution of consumers and price-sensitive consump-
tion of a variety. In those cases, showing the existence of a Nash equilibrium in pure strategies
is problematic, especially when the location pattern is asymmetric.

2.3 Heterogeneous Consumers: The Discrete Choice Approach

There is a continuum of consumer types θ ∈ R. When n varieties are available, a consumer
of type θ is described by a type-specific vector e θ = (e θ1 , . . . , eθn) ∈ R

n of match values with
the varieties, which can also be viewed as the consumer’s transport costs she bears to reach
the varieties. Each consumer buys one unit of a single variety. More specifically, the indirect
utility from consuming variety i by a θ -type consumer is given by

V θ
i = y − pi + e θi , (5.16)

where y is the consumer’s income. Given prices, a consumer chooses her “best buy,” that is,
the variety that gives her the highest surplus net of its price.

We assume that each type θ is distributed according to the same continuous density f (·) and
cumulative distribution function F(·). In this case, the market demand for variety i is given by

xi(p) =
∫ ∞

−∞
f (θ)

∏
k 
=i

F(pk − pi + θ)dθ , (5.17)

where, for any given type θ , �k 
=i F(pk − pi + θ) is the density of consumers who choose
variety i at the price vector p. The probability of indifference between two varieties being zero,
each consumer buys a single variety. Because it embodies symmetry across varieties, (5.17)
has a Chamberlinian flavor. However, even though consumer types obey the same distribution,
they have heterogeneous tastes, for the probability that two types of consumers have the same
match values is zero.

The Bertrand game associated with the demand system (5.17) can be studied along the
lines of Section 2.1. Anderson, De Palma and Nesterov (1995) show that a price equilibrium
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always exists if the density f (θ) is log-concave, while Perloff and Salop (1985) show the
following result:

Proposition 2 If either the support of the density f (θ) is bounded from above or
limθ→∞ f ′(θ)/f (θ) = −∞ then Bertrand competition converges to perfect competition
as n → ∞.

Proposition 2 holds that the upper tail of the density of types is not “too” fat.2 Under this
condition, as new varieties enter the market, it becomes more likely that two varieties are very
close substitutes, implying the two producers get trapped into a price war. This in turn pulls
down all prices close to the marginal cost. This can be illustrated in the case of a normal
distribution where f ′(θ)/f (θ) = −θ , so that pB(n ) tends to c. Otherwise, the tail is fat enough
for a growing number of varieties to enter the market while remaining distant enough from
each other, thus allowing firms to price above the marginal cost even when n is arbitrarily
large. For example, when the match values are drawn from the Gumbel distribution, we obtain
(Anderson, De Palma and Thisse, 1992, ch. 7):

lim
n→∞pB(n ) = lim

n→∞

(
c + n

n − 1
�

)
= c + �, (5.18)

where � is the standard deviation of the Gumbel distribution up to the coefficient
√

6/π .
Since � > 0, the limit of Bertrand competition is thus monopolistic competition. In addition,
as a higher μ signals a more dispersed distribution of tastes across consumers, (5.18) implies
that a more heterogeneous population of consumers allows firms to charge a higher price.
Alternatively, we may say that each variety has a growing number of consumers prepared
to buy it even at a premium. Observe also that pB(n ) = c for all n when consumers are
homogeneous because � = 0, as in the standard Bertrand duopoly. Last, Proposition 2 is
the mirror image of Proposition 1. The former means that individual preferences must be
sufficiently dispersed for monopolistic competition to be the equilibrium outcome in a large
economy, while the latter shows that a strong love for variety is needed for monopolistic
competition to arise.

The model (5.16) can be easily extended to cope with the case where consumers have ideal
varieties and a variable consumption level. This can be achieved by assuming that

V θ
i = ψ(y)− φ(pi)+ e θi ,

where both ψ and φ are increasing. A natural candidate investigated by Sattinger (1984)
is obtained when ψ(y) = ln y and φ(p) = ln p. In this case, individual consumptions are
variable and determined by price ratios, rather than price differences. Under the assumptions
of Proposition 2, it is readily verified that limn→∞ pB(n ) = c. However, this ceases to hold
under the Gumbel distribution where

lim
n→∞ pB(n ) = lim

n→∞c

(
1 + n

n − 1
�

)
= c(1 + �).

2 Gabaix et al. (2016) show that markups are asymptotically determined by the tail behavior of the distribution
of tastes.
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Again, taste dispersion allows firms to set prices higher than marginal cost.
Note, finally, that the symmetry of preferences may be relaxed by assuming the vector of

match values is drawn from a multivariate distribution F(x1, . . . , xn), such as the probit where
the covariance measures the substitutability between the corresponding two varieties. Though
empirically relevant, it is hard to characterize the market equilibrium at this level of generality.

The above models are related to, but differ from, Hart (1985a). As in discrete choice models,
Hart focuses on consumers who have heterogeneous tastes. However, unlike these models
where consumers can switch between varieties, individual choices are restricted to a given and
finite set of desirable varieties, which is consumer specific. In equilibrium, every consumer
chooses the quantity (which can be zero) to consume of each desirable variety. Hart (1985b)
then shows that, in a large economy, a monopolistically competitive equilibrium exists if the
taste distribution is sufficiently dispersed.

2.4 Where Do We Stand?

2.4.1 Summary
We have discussed three different families of models that describe preferences over dif-
ferentiated products. In each case, the same conclusion emerges: the limit of Cournot or
Bertrand competition may be monopolistic competition. Unlike what Robinson, Kaldor,
Stigler and others have argued, a large number of firms need not imply perfect competition. As
anticipated by Chamberlin, when firms are many, their strategic power vanishes. Nevertheless,
product differentiation may allow every firm to retain monopoly power over the demand for
its variety in an environment in which strategic considerations are banned.

Whereas the spatial models are very intuitive, the symmetric representative consumer
models display a high degree of versatility. They both seem to belong to different worlds. This
need not be so, however. The two families of models can generate the same market outcome.
For this to happen, the market space of any variety must share a border with the market
space of any other variety, while the distance between any two varieties must be the same.
More specifically, if the number of characteristics is equal to n − 1, where n is the number
of varieties, each firm competes directly with every other firm (Anderson, De Palma, and
Thisse, 1992, ch. 4). To put it differently, a reconciliation between discrete choice theory,
the representative consumer approach, and the spatial models of product differentiation is
possible when the number of product characteristics is sufficiently large relative to the number
of product varieties.

2.4.2 Syntheses
Two attempts at providing a synthesis of spatial and symmetric models are worth
mentioning.3 First, Chen and Riordan (2007) developed an ingenious synthesis of the spatial
and variety-seeking models using a spokes network. There are N potential varieties and a unit
mass of consumers uniformly distributed over n ≤ N spokes connected at the center x = 0
of the plane. Each spoke has the same length
/2 and a single store is located at the endpoint
x = 
/2. The distance between any two stores is thus equal to 
. A consumer’s ideal variety
is described by her location along a particular spoke. Consumer variety-seeking behavior is
captured by assuming that each consumer may purchase her second most-preferred variety

3 Other attempts include Hart (1985c), Deneckere and Rotschild (1992) and Ushchev and Zenou (2015).
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chosen by nature with a probability equal to 1/(N − 1), so that this variety need not be
available. When n ≤ N varieties are available, the demand for variety i = 1, . . . , n is formed
by consumers whose ideal variety is i and those who choose i as a second choice. Each firm
has some monopoly power on its spokes, but competes symmetrically with the other firms.
Hence, the model combines the above two transport geographies.

Assuming that all consumers buy their most and second most-preferred varieties, the
equilibrium price is given by

p ∗(n ) = c + t

2N − n − 1

n − 1
.

As the number n of varieties/spokes grows and reaches the value N , the equilibrium price
decreases toward c+t
 > c. Hence, regardless of the value of N the limit of the spokes model
is monopolistic competition, whereas the limit of the circular model is perfect competition
(
 = 0). This echoes what we have seen in the foregoing.

Second, Anderson and De Palma (2000) developed an integrative framework that links
spatial and symmetric models. A consumer buys a fixed number x̄ of units of the differentiated
product (e.g., a given number of restaurant dinners per month) and has an entropy-like utility:

U(x) =
n∑

i=1

xi − �

n∑
i=1

xi log xi + x0 s.t.
n∑

i=1

xi = x̄,

where the parameter � > 0 is a measure of the degree of differentiation across varieties.
This specification corresponds to a special case of (5.1) in which u(x) = x − � × log x
and ϕ(X ) = X. The entropy of a consumption profile x may be viewed as a measure of
its dispersion. Therefore, the impact of the entropy term on the consumer’s utility level tells
us how differentiated varieties are from the consumer’s point of view.

Assume that identical consumers are uniformly distributed over the real line, while firms
are equidistantly located over the set of integers i = 0, ±1, ... let t > 0 be the unit shopping
cost. In this case, a consumer located at s has a logit demand given by

xi(p; s) = x̄
exp

[−(pi + t |s − i|)/�]∑∞
k=−∞ exp

[−(pk + t |s − k|)/�] > 0.

Competition is localized when � = 0. As � rises from zero, market boundaries get blurred:
a firm’s spatial market is encroached on by its competitors; but this firm also captures
customers from its rivals. At the limit, when � → ∞ the market demand is equally spread
across firms. For given prices, the individual demand for any variety is positive, as in
Chamberlinian models, but decreases with the distance between the consumer and the variety
supplier. The market price is given by

p ∗(�, t) = c + �
(1 + φ)2 lnφ

2φ(1 + φ)− ln(1 − φ)2
,

where φ ≡ exp(−t/�) is a measure of the degree of global competition in the market.
Differentiating p ∗ with respect to t for any given �, or with respect to � for any given

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

Monopolistic competition without apology 107

t, shows that higher transport costs or a stronger love for variety lead to a higher price
because the former weakens competition between neighboring firms while the latter means
that varieties are more differentiated. When � → 0, p ∗(�, t) boils down to the equilibrium
price of the circular model, p ∗(0, t) = c + tL/n, while p ∗(�, t) converges to c + �n/(n − 1)
when t → 0. Hence, when heterogeneity prevails along one dimension only, the equilibrium
markups remain positive. However, p ∗(�, t)/� being homogeneous of degree zero, we have
p ∗(0, 0) = c when heterogeneity completely vanishes.

3 THE NEGLIGIBILITY HYPOTHESIS IN MONOPOLISTIC
COMPETITION

From now on, we assume that the supply side of the economy is described by a continuum of
negligible firms whose mass is determined by free entry and exit. The negligibility assumption
has several important implications. First, it captures the essence of the Chamberlinian idea
of monopolistic competition, summarized in the following quote: “A price cut, for instance,
which increases the sales of him who made it, draws inappreciable amounts from the markets
of each of his many competitors, achieving a considerable result for the one who cut, but
without making incursions upon the market of any single competitor sufficient to cause him
to do anything he would not have done anyway” (Chamberlin, 1933, p. 83).

Second, because each firm treats the market as a given, it faces a given residual demand,
very much like a monopolist. As a consequence, a firm can indifferently choose its profit-
maximizing price and output (Vives, 1999, p. 168). In other words, the negligibility assump-
tion makes monopolistic competition immune to the difficult choice to be made between
Cournot and Bertrand. Third, ever since Gabszewicz and Vial (1972), it is well known that
the choice of a good produced by oligopolistic firms as the numéraire affects the equilibrium.
Under the negligibility hypothesis, the choice of any particular variety as the numéraire has
no impact on the market outcome. Last, one of the typical assumptions of monopolistic
competition is that of free entry and exit. The role of this assumption is worth stressing.
Indeed, positive (or negative) profits would affect individual incomes, hence firm demands.
This feedback effect is precisely one of the major difficulties encountered when one aims to
introduce oligopolistic competition in general equilibrium.

In this section, we illustrate those ideas by discussing the CES and LQ models. Anderson,
Erkal and Piccinin (2015) argue that these models can be viewed as aggregative oligopoly
games in which “firms do not internalize the effects of their actions on the aggregate.” In other
words, the CES and LQ models of monopolistic competition may be viewed as sequential
games in which a “Chamberlinian auctioneer” first chooses the value of the aggregate, while
firms move second. As a result, the market outcome under monopolistic competition generates
lower prices (or higher quantities) than those obtained under oligopolistic competition. Such
an interpretation is accurate when each firm is negligible to the market. However, for the
reasons put forward by Aumann (1964), it is inaccurate when there is a finite and discrete
number of firms because firms are able to manipulate the aggregate (d’Aspremont, Dos Santos
Ferreira and Gérard-Varet, 1996). This highlights the role of the negligibility hypothesis in
monopolistic competition.

Note, finally, that the negligibility hypothesis keeps its relevance when firms are multi-
product. Contrary to general belief, a firm supplying a finite number or a range of varieties
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remains negligible to the market (Allanson and Montagna, 2005; Bernard, Redding and
Schott, 2010, 2011; Dhingra, 2013; Mayer, Melitz and Ottaviano, 2014, 2016). Therefore,
issues studied in industrial organization, such as the cannibalization and customerization
effects, can be revisited in simpler settings.

3.1 The CES Model of Monopolistic Competition

Even economists with minimal exposure to monopolistic competition have probably heard of
the constant elasticity of substution (CES) model. There is little doubt that this model has led
to a wealth of new results (Matsuyama, 1995). For this reason, we find it useful to describe
briefly how the CES model works.

3.1.1 The benchmark set-up
Firms and consumers Labor is the only factor of production and is inelastically supplied in
a competitive market; labor is chosen as the numéraire. There are L consumers endowed with
y efficiency units of labor. They share the same CES utility function:

U =
(∫ N

0
x
σ−1
σ

i di

) σ
σ−1

, (5.19)

where σ > 1 is the elasticity of substitution between any two varieties. Maximizing U subject
to the budget constraint yields the individual demand for variety i:

xi = p−σ
i∫ N

0 p−(σ−1)
i di

y, i ∈ [0, N ]. (5.20)

This expression implies that the supply of an infinitesimal interval of new varieties increases
the denominator and, consequently, leads to a reduction in the demand for the existing
varieties so long as their prices remain unchanged. In other words, the entry of new varieties
triggers the “fragmentation” of demand over a wider range of varieties.

Let

P ≡
(∫ N

0
p−(σ−1)

i di

) −1
σ−1

be the CES price index of the differentiated good. The price index, which is the power mean of
prices, decreases with the mass of varieties. Indeed, if a non-negligible range of new varieties

 is added to the incumbent ones, we get

P =
(∫ N

0
p−(σ−1)

i di

) −1
σ−1

> P
 =
(∫ N+


0
p−(σ−1)

i di

) −1
σ−1

.

To put it differently, the price index falls as if competition among a larger mass of competitors
were to lead to lower prices. In addition, as suggested by spatial models, the less differentiated
the varieties, the lower the price index.
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The market demand functions Lxi may then be rewritten as follows:

Xi = p−σ
i P σ−1Ly. (5.21)

Thus, a firm’s demand accounts for the aggregate behavior of its competitors via the sole
price index, and the game is aggregative. Since firm i is negligible to the market, it treats P as
a parameter; although firms are price-makers, they are price index-takers. As a consequence,
Triffin’s condition ∂Xi/∂pk = 0 holds for all k 
= i. Furthermore, (5.21) implies that market
demands are isoelastic, the price elasticity being equal to the elasticity of substitution σ .
Finally, the market demand is still given in (5.21) when individual incomes are redistributed
because the demand Xi depends on the aggregate income only. As a consequence, the market
demand is independent of the income distribution.

Firms share the same fixed cost F and the same constant marginal cost c. In other words,
to produce qi units of its variety, firm i needs F + cqi efficiency units of labor. Hence, firm i’s
profit is given by

�i(qi) = (pi − c)qi − F. (5.22)

Market equilibrium A symmetric free-entry equilibrium (SFE) is a four-tuple (x ∗, q ∗, p ∗, N ∗),
which satisfies the following four conditions: (i) no firm can increase its profit by deviating
from q ∗; (ii) x ∗ maximizes a consumer’s utility subject to his or her budget constraint; (iii)
the product market clearing condition

q ∗ = Lx ∗

holds; (iv) the mass of firms is pinned down by the zero-profit condition (ZPC). The Walras
Law implies that the labor market balance

N ∗ · (F + cq ∗) = Ly

is satisfied.
The first-order condition (FOC) shows that the equilibrium price is given by (the second-

order condition [SOC] is satisfied):

p ∗ = σ

σ − 1
c,

which increases when varieties get more differentiated, as in the various models discussed in
Section 2. The markup is constant and equal to

p ∗ − c

p ∗ = 1

σ
. (5.23)

In other words, firm markups are the same in large/small/rich/poor countries, the reason
being that firms’ demands are isoelastic. In game-theoretic terms, this means that firms have
a dominant strategy – the reaction functions are flat – a result that probably explains the lack
of interest among researchers in industrial organization for the CES model of monopolistic
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competition. A constant markup runs against the conventional wisdom that asserts that entry
fosters lower market prices. The markup (5.23) is also independent of shocks on marginal cost
and market size, which contradicts a growing number of empirical studies (De Loecker and
Goldberg, 2014).

The above criticisms need qualification, however. Even if the equilibrium price remains
unchanged when the mass of firms increases, the consumption of the differentiated good is
fragmented over a wider range of varieties. This in turn implies that each firm’s profits go
down. In other words, we come back, albeit very indirectly, to a kind of competitive effect as
the entry of new firms has a negative effect on the profitability of the incumbents. Note also
that the Lerner index increases exogenously with the degree of differentiation across varieties,
which also agrees with one of the main messages of industrial organization, that is, product
differentiation relaxes competition.

To determine the equilibrium firm size, one could substitute the equilibrium price into the
demand function (5.21). By plugging prices and quantities into the ZPC, one could obtain
the equilibrium mass of firms/varieties. It is in fact simpler, but strictly equivalent, to proceed
in the reverse order by determining first the volume of production thanks to the free-entry
condition given by

�i = (p ∗ − c)qi − F = c

σ − 1
qi − F = 0,

which yields

q ∗ = σ − 1

c
F. (5.24)

Thus, regardless of the mass of firms, firm size remains constant. This result, which is a direct
consequence of a constant markup, is one of the major weaknesses of the CES model: there
is no scale effect as q ∗ is independent of the market size L.

It follows immediately from the labor market balance that

N ∗ = Ly

σF
. (5.25)

Hence, when varieties are less (more) differentiated, the mass of firms is smaller (larger),
while a firm’s output is larger (smaller) because the market demand is less (more) fragmented.
Furthermore, a higher degree of increasing returns is associated with larger output and fewer
but larger firms.

There is no question that the CES model of monopolistic competition captures some
fundamental features of imperfect competition. But, and this is a big but, it is at odds with
the main corpus of oligopoly theory. Despite (or, perhaps, because of) its great flexibility in
applications and econometric estimations, the CES model brushes under the carpet several
effects that may deeply affect the results it gives rise to. Therefore, although this model is
a natural point of departure in studying issues where imperfect competition and increasing
returns are crucial, we find it hard to maintain that it can serve as a cornerstone of any
sound theory. For this, we need alternative or more general models to test the robustness
of the results. Note, finally, that how appealing a model is depends on what questions one is
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interested in and whether the features from which the CES model abstracts are important for
the issue in question.

3.1.2 The weighted CES
Assume that the CES is modified as follows:

U =
(∫ N

0
(aixi)

σ−1
σ di

) σ
σ−1

, (5.26)

where ai > 0 are salience coefficients whose purpose is to account for asymmetries among
varieties (Bernard et al., 2010, 2011). If xi = xj, then ai > aj implies that, everything
else being equal, the utility of consuming variety i exceeds that of variety j. However, the
consumer is indifferent between consuming ai/aj units of variety i and one unit of variety j.
Therefore, the preferences (5.26) can be made symmetric by changing the units in which
the quantities of varieties are measured. Nevertheless, changing the units in which varieties
are measured implies that firms that are otherwise symmetric now face different marginal
costs. To be precise, firm i’s marginal cost is equal to c/ai. This implies that a CES with
asymmetric preferences and symmetric firms is isomorphic to a CES in which preferences are
symmetric and firms heterogeneous. Accordingly, to discriminate between cost heterogeneity
and the salience coefficients ai, one needs data on prices and sales because prices reflect
the heterogeneity in costs while the salience coefficients act like demand shifters in the CES
(Kugler and Verhoogen, 2012).

3.2 Monopolistic Competition Under Linear-quadratic Preferences

3.2.1 The benchmark set-up
We have seen that there are (at least) two versions of LQ preferences defined over a finite
number of varieties, namely (5.12) and (5.13). Even though the former is not the limit of
oligopolistic competition, it is associated with equilibrium values of the main variables that
vary with the key parameters of the model (Ottaviano, Tabuchi and Thisse, 2002):4

U(x) = α

∫ N

0
xidi − β

2

∫ N

0
x2

i di − γ

2

∫ N

0

(∫ N

0
xkdk

)
xidi + x0. (5.27)

One unit of labor is needed to produce one unit of the homogeneous good x0, which is sold
under perfect competition. This good is chosen as the numéraire so that the equilibrium wage
is equal to 1. A consumer’s budget constraint is as follows:

∫ N

0
pixidi + x0 = 1 + x̄0, (5.28)

where x̄0, the initial endowment in the numéraire, is supposed to be large enough for the
consumption of this good to be strictly positive at the market outcome.

4 Papers that use the LQ model include Belleflamme, Picard and Thisse (2000), Nocke (2006), Foster,
Haltiwanger and Syverson (2008) and Dhingra (2013).
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Solving (5.28) for the numéraire consumption, substituting the corresponding expression
into (5.27) and solving the FOCs with respect to xi yields the individual inverse demand for
variety i:

pi = α − βxi − γX i ∈ [0, N ] (5.29)

where

X ≡
∫ N

0
xkdk

is the total individual consumption of the differentiated product. Varieties interact through the
value of X, which determines the demand intercept α − γX, so that a hike in X renders the
inverse demand more elastic. As a consequence, when choosing its output level each firm must
guess what X will be, meaning that the game is aggregative in nature.

Firm i’s profit function is as follows:

�i = (pi − c)qi − F = L ·
[
(pi − c)xi − F

L

]
,

so that maximizing �i with respect to qi amounts to maximizing the bracketed term with
respect to xi. To ease the burden of notation, we assume that c is equal to zero, which amounts
to rescaling the demand intercept.

The best-reply function

x ∗(X ) = α − γX

2β

shows how each firm plays against the market as x ∗ decreases with X. Since the equilibrium
values of x and X must satisfy the condition Nx = X, for any given mass N of firms, the
consumption x ∗(N ) is given by

x ∗(N ) = α

2β + γN
, (5.30)

which decreases with the mass of competitors. Using (5.30), (5.29) yields the price p ∗(N ):

p ∗(N ) = αβ

2β + γN
= βx ∗(N ), (5.31)

which also decreases with N. Thus, unlike the CES, entry generates pro-competitive effects. In
addition, as suggested by product differentiation theory, the market price rises when varieties
get more differentiated (lower γ ).

The ZPC implies that the equilibrium mass of firms is given by

N ∗ = 1

γ

(
α

√
βL

F
− 2β

)
. (5.32)
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It is readily verified that N ∗ increases at a decreasing rate with the market size (L), the
consumer’s willingness-to-pay for the differentiated product (α), the degree of product
differentiation (1/γ ), whereas it decreases with the marginal and fixed costs (c and F ).

Substituting (5.32) in (5.30) and multiplying by L gives the equilibrium output:

q ∗ = Lx ∗ =
√

FL

β
,

which increases with L at a decreasing rate, while a stronger love for variety allows more
firms to enter the market, but they all have a smaller size. Plugging (5.32) in (5.31) gives the
equilibrium price:

p ∗ =
√
βF

L
,

which decreases with L at an increasing rate.
Thus, market size and cost parameters matter for all the equilibrium variables under

free entry. This makes the linear model of monopolistic competition a good proxy of an
oligopolistic market. Notwithstanding the absence of an income effect, the linear model
performs fairly well in trade theory and economic geography (Ottaviano and Thisse, 2004;
Melitz and Ottaviano, 2008).

4 THE VES MODEL OF MONOPOLISTIC COMPETITION

Choosing an appropriate framework for studying imperfect competition involves a trade-off
between allowing firms to have sophisticated behavior and capturing basic general equilibrium
effects. In this section, we discuss a model that aims to find a prudent balance between those
two objectives. The CES and LQ models, as well as the translog developed by Feenstra (2003),
are all special cases. Firms are still symmetric, which allows one to insulate the impact of
preferences on the market outcome and to assess the limitations of specific models.

4.1 Firms and Consumers

Owing to their analytical simplicity, the CES and LQ models conceal a difficulty that is often
ignored: working with a continuum of goods implies that we cannot use the standard tools of
calculus. Rather, we must work in a functional space whose elements are functions, and not
vectors.

Let N, an arbitrarily large number, be the mass of potential varieties. As all potential
varieties are not necessarily made available to consumers, we denote by N ≤ N the
endogenous mass of available varieties. A consumption profile x ≥ 0 is a Lebesgue-
measurable mapping from the space of potential varieties [0,N] to R+, which is assumed to
belong to L2([0,N]). Individual preferences are described by a utility functional U(x) defined
over the positive cone of L2([0,N]). In what follows, we assume that (i) U is symmetric over
the range of potential varieties in the sense that any Lebesgue measure-preserving mapping
from [0,N] into itself does not change the value of U, and (ii) U exhibits a love for variety. To
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determine the inverse demand for a variety, Parenti, Ushchev and Thisse (2017) assume that
there exists a unique function D (xi, x) from R+ × L2 to R+ such that, for any given N and for
all h ∈ L2, the equality

U(x + h) = U(x)+
∫ N

0
D (xi, x) hi di + ◦ (||h||2) (5.33)

holds, ||·||2 being the L2-norm.5 The function D(xi, x), which is the marginal utility of variety
i, is the same across varieties because preferences are symmetric. Parenti et al. (2017) focus
on the utility functionals such that the marginal utility D(xi, x) is decreasing and twice
differentiable with respect to xi.

Maximizing the utility functional U(x) subject to (i) the budget constraint

∫ N

0
pixidi = y,

and (ii) the availability constraint

xi ≥ 0 for all i ∈ [0, N] and xi = 0 for all i ∈ [N,N ]

yields the inverse demand function for variety i:

pi = D(xi, x)
λ

for all i ∈ [0, N ] , (5.34)

where λ is the Lagrange multiplier of the consumer’s optimization problem. Expressing λ as
a function of y and x yields

λ(y, x) =
∫ N

0 xiD(xi, x) di

y
,

which is the marginal utility of income at the consumption profile x and income y.
Firm i maximizes (5.22) with respect to its output qi subject to the inverse market demand

function pi = LD/λ, while the market outcome is given by a Nash equilibrium. Being
negligible, each firm accurately treats the variables x and λ in (5.34) as parameters. Note
the difference between the consumer and producer programs. The individual chooses a
consumption level for all available varieties. By contrast, each firm selects an output level
for a single variety. In other words, the consumer’s choice variable x is defined on a non-zero
measure set while firm i’s choice variable qi is defined on a zero-measure set. Thus, unlike in
Aumann (1964), the key ingredient of monopolistic competition is the negligibility of firms
rather than that of consumers.6

5 Formally, this means that U(x) is Fréchet-differentiable, which extends in a fairly natural way the standard
concept of differentiability to L2.

6 We thank Kristian Behrens for having pointed out this difference to us.
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Plugging (5.34) into (5.22) and using the product market clearing condition, the program
of firm i may be rewritten as follows:

max
xi
�i(xi, x) ≡

[
D (xi, x)
λ

− c

]
L xi − F.

Setting

D ′
i ≡ ∂D(xi, x)

∂xi
D ′′

i ≡ ∂D2(xi, x)

∂x2
i

,

the FOC for profit maximization is given by

D(xi, x)+ xiD
′
i = [1 − η(xi, x)] D(xi, x) = λc, (5.35)

where

η(xi, x) ≡ − xi

D(xi, x)
∂D(xi, x)
∂xi

is the elasticity of the inverse demand for variety i. The right-hand side of (5.35) is variable,
and thus each firm must guess what the equilibrium value of λ is to determine its profit-
maximizing output. Parenti et al. (2017) show that the profit function �i is strictly quasi-
concave in xi for all admissible values of λc if and only if (A) firm i’s marginal revenue
decreases in xi.

4.2 The Elasticity of Substitution

We have seen that the elasticity of substitution plays a central role in the CES model of
monopolistic competition. Many would argue that this concept is relevant for such preferences
only. This opinion is unwarranted. The argument goes as follows. It is well known that, when
the number of goods exceeds 2, there are different definitions of the elasticity of substitution.
Parenti et al. (2017) choose one of them, σ̄ , evaluated at (xi, x) where i is any arbitrary variety
and x = xI[0,N] but for i. Treating N parametrically, this amounts to considering σ̄ (xi, x; N),
which depends only on two goods, that is, xi and x. In this case, the choice of σ̄ no longer mat-
ters because all definitions of the elasticity of substitution are equivalent. As a result, by setting

σ(x, N) ≡ σ (x, x; N),

hence, along the diagonal, the elasticity of substitution among varieties hinges only upon the
individual consumption per variety and the total mass of available varieties. Under the CES,
σ(x, N) is a constant.

To gain insights about the behavior of σ , we give below the elasticity of substitution for the
two main families of preferences used in the literature: (i) when the utility is additive, we have:

σ(x, N) = 1

ru(x)
, (5.36)
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where ru(x) is the relative love for variety (see Section 2.1). As implied by (5.36), σ depends
only upon the individual per variety consumption; (ii) When preferences are homothetic, the
elasticity of substitution evaluated at a symmetric consumption profile depends solely on the
mass N of available varieties:

σ(x, N) = 1

η(1, I[0,N ])
≡ 1

M(N )
. (5.37)

Using (5.36) and (5.37), we have the following: EN(σ ) = 0 when preferences are additive,
while Ex(σ ) = 0 when preferences are homothetic.

4.3 Market Equilibrium

Assume that (A) holds. Then, for any given N ≤ Ly/F, Parenti et al. (2017) show that there
exists a unique Nash equilibrium such that (i) no firm can increase its profit by changing its
output; (ii) each consumer maximizes utility subject to her budget constraint; (iii) the product
markets clear; (iv) the labor market balance holds. Furthermore, this equilibrium is symmetric
and given by

x ∗(N ) = y

cN
− F

cL
, q ∗(N ) = yL

cN
− F

c
, p ∗(N ) = c

σ(x ∗(N ), N )

σ (x ∗(N ), N )− 1
, (5.38)

and thus the equilibrium markup is

m ∗(N ) ≡ p ∗(N )− c

p ∗(N )
= 1

σ(x ∗(N ), N )
, (5.39)

which generalizes the expression (5.23) obtained under the CES. First of all, (5.39) suffices to
show that, in monopolistic competition working with a variable markup amounts to assuming
a variable elasticity of substitution and non-isoelastic demands. Furthermore, as in oligopoly
theory, all variables depend on the mass of active firms. In particular, the equilibrium per
variety consumption x ∗(N ) always decreases with N, whereas the impact of N on m ∗(N )
is a priori undetermined. To be precise, since σ(x ∗(N ), N ) may increase or decrease with
the mass of firms, entry may generate pro- or anti-competitive effects. This in turn shows
why comparative statics may give rise to diverging results in models where preferences are
characterized by different functions σ(x, N). In a nutshell, monopolistic competition is able to
mimic oligopolistic competition. Finally, since q ∗(N ) decreases with N, there is a business-
stealing effect regardless of preferences.

Using (5.38) yields the operating profits earned by a firm:

� ∗(N ) = c

σ (x ∗(N ), N )− 1
Lx ∗(N )− F, (5.40)

Solving the ZPC � ∗(N ) = 0 with respect to m yields a single equilibrium condition:

m ∗(N ) = NF

Ly
. (5.41)
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Setting m ≡ FN/(Ly), (5.39) may be rewritten as a function of m only:

mσ

(
F

cL

1 − m

m
,

Ly

F
m

)
= 1. (5.42)

This expression shows that a variable elasticity of substitution σ(x, N) is sufficient to
characterize the market outcome under general symmetric preferences and symmetric firms.
Note that (5.42) implies that σ must be a function, and not a constant, for the markup to be
variable in our general framework. Since (5.42) involves the four structural parameters of the
economy (L, y, c and F), how the market outcome varies with these parameters depends on
how σ varies with x and N.

Although the above framework allows for very different patterns of substitution across
varieties, it should be clear that they are not equally plausible. This is why most applications
of monopolistic competition focus on different subclasses of utilities to cope with particular
effects. Admittedly, making “realistic” assumptions on how the elasticity of substitution varies
with x and N is not an easy task. That said, it is worth recalling with Stigler (1969) that “it is
often impossible to determine whether assumption A is more or less realistic than assumption
B, except by comparing the agreement between their implications and the observable course
of events.” This is what we will do below.

Spatial and discrete choice models of product differentiation suggest that varieties become
closer substitutes when the number of competing varieties rises (Salop, 1979; Anderson et al.,
1995). This leads Feenstra and Weinstein (2017) to use the translog expenditure function,
where σ(N ) = 1 + βN increases with N, to capture the pro-competitive effects of entry.
Therefore, EN(σ ) ≥ 0 seems to be a reasonable assumption. In contrast, how σ varies with x
is a priori less clear. Nevertheless, this question can be answered by appealing to the literature
on pass-through.

If a firm’s demand is not too convex, the pass-through of a cost change triggered by a
trade liberalization or productivity shock is smaller than 100 percent for a very large family
of demand functions (Greenhut, Norman and Hung, 1987). More importantly, the empirical
evidence strongly suggests that the pass-through is incomplete (De Loecker et al., 2016).
Which assumption about σ leads to this result? The intuition is easy to grasp when preferences
are additive, that is, m(x) = ru(x) = σ(x). Incomplete pass-through amounts to saying
that p/c increases when c decreases, which means that firms have more market power or,
equivalently, varieties are more differentiated. As firms facing a lower marginal cost produce
more, the per capita consumption increases. Therefore, it must be that σ(x) decreases with x.
In the case of general symmetric preferences, Parenti et al. (2017) show that the pass-through
is smaller than 100 percent if and only if Ex(σ ) < 0 holds. In addition, the pass-through must
be equal to 100 percent when preferences are homothetic because Ex(σ ) = 0.

This discussion suggests the following conditions:

Ex(σ ) ≤ 0 ≤ EN(σ ). (5.43)

Even though these inequalities do not hold for some preferences, it is convenient to assume
here that (5.43) holds. Applying Propositions 1 to 4 of Parenti et al. to (5.43) then implies:

Proposition 3 Assume that (A) and (5.43) hold. Then, (i) there exists a free-entry equilibrium
for all c > 0 and F > 0; (ii) this equilibrium is unique and symmetric; (iii) a larger market or
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a higher income leads to lower markups, bigger firms and a larger number of varieties; (iv)
the pass-through rate of a cost change is smaller than 100 percent.

The pro-competitive effects associated with the extent of the market are intuitively plausible
and supported by empirical evidence (Amiti, Itskhoki and Konings, 2016; De Loecker
et al., 2016). Furthermore, a model in which the pass-through is smaller than 100 percent
allows one to study firms’ pricing policies, such as spatial price discrimination where firms
charge different producer prices in response to differences in demand conditions, something
that is hard to accomplish with the CES. Nevertheless, one should bear in mind that the
industrial organization literature highlights the possibility of anti-competitive effects (Chen
and Riordan, 2008). Moreover, result (iv) of Proposition 3 may be used to study how firms
react to a shock which affects aggregate productivity, as in Bilbiie, Ghironi and Melitz
(2012). To capture the versatility of the market outcome in the present setting, Parenti et al.
(2017) provide a complete description of the comparative static effects through necessary and
sufficient conditions, which may be used to pin down the restrictions on preferences for the
equilibrium outcome to be consistent with the stylized facts.

Last, since we focus on monopolistic competition, the markup (5.39) stems directly
from preferences through only the elasticity of substitution. This stands in stark contrast
to oligopoly models where the markup emerges as the outcome of the interplay between
preferences and strategic interactions. Nevertheless, by choosing appropriately the elasticity
of substitution as a function of x and N, monopolistic competition is able to replicate
the direction of comparative static effects generated in symmetric oligopoly models with
free entry, as well as their magnitude. Therefore, as conjectured by Mas-Colell (1984),
monopolistic competition may be considered as the marriage between the negligibility
hypothesis and oligopolistic competition.

4.3.1 Additive preferences
Let u(·) be a strictly increasing and strictly concave function. Assume that the utility
functional is as follows:

U(x) =
∫

N

0
u(xi)di. (5.44)

Since D (xi, x ) = u ′(xi), the marginal utility of variety i is independent of the other
varieties’ consumption. This property suggests that additive models retain, at least partially,
the tractability of the CES. And indeed, since EN(σ ) = 0, the equilibrium condition (5.42)
becomes simpler:

m = ru

(
F

cL

1 − m

m

)
. (5.45)

The equilibrium markup m ∗ is a fixed point of the function ru (·), which maps the interval
[0, 1] into itself. If r ′

u(x) ≥ 0 for all x ≥ 0, then the right-hand side of (5.45) is weakly
decreasing, and thus m ∗ is always unique. When r ′

u(x) < 0, showing uniqueness is less
straightforward. However, if (A) holds, the right-hand side of (5.45) is a contraction mapping
over [0, 1], which implies that the equilibrium exists and is unique.
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To illustrate, consider the CARA utility u(x) = 1 − exp(−αx) studied in Behrens and
Murata (2007). Since the RLV is given by ru(x) = αx, (5.45) is the following quadratic
equation:

m2 + αF

cL
m − αF

cL
= 0,

the solution of which is as follows:

m ∗ = αF

2cL

(√
1 + 4

cL

αF
− 1

)
. (5.46)

Equation (5.46) gives a clue to understanding the asymptotic behavior of the market outcome:
when the market is arbitrarily large, the equilibrium markup is arbitrarily close to zero. Thus,
the economy features a competitive limit, which echoes what we saw in Section 2.1. Note that
this is not so under the CES where m ∗ = 1/σ > 0 for all L.

Using (5.46) and recalling that m = NF/(Ly) yields the equilibrium number of firms:

N ∗ = αy

2c

(√
1 + 4

cL

αF
− 1

)
. (5.47)

Plugging (5.47) into (5.38) pins down the equilibrium values of the remaining variables:

q ∗ = F

2c

(√
1 + 4

cL

αF
− 1

)
, p ∗ = c + αF

2L

(√
1 + 4

cL

αF
+ 1

)
. (5.48)

Expressions (5.46)–(5.48) provide a complete solution of the CARA model. Furthermore, they
imply unambiguous comparative statics with respect to L: an increase in population leads to
a drop in markup, price, and per variety consumption, an increase in firm size, and a less than
proportional increase in the number of firms.

Are these findings robust against the choice of alternative specifications for u? Zhelobodko
et al. (2012) show the following result: if ru is strictly increasing in x, then a larger market
leads to a lower markup, bigger firms and a larger number of varieties, whereas the opposite
holds when ru is strictly decreasing in x. Evidently, when ru is constant, whence preferences
are CES, L has no impact on the market outcome.

The above discussion also shows that the individual income y has no impact on the market
solution. This led Bertoletti and Etro (2017) to work with indirectly additive preferences:

V(p; y) ≡
∫

N

0
v

(
y

pi

)
di, (5.49)

where v is strictly increasing, strictly concave, and homogeneous of degree zero. Such
preferences mean that Ex(σ ) = EN(σ ). Applying the concept of RLV to v, Bertoletti and Etro
show that the equilibrium price depends on y but not on L. Since EN(σ ) = 0 for non-CES
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additive preferences and Ex(σ ) = 0 for non-CES homothetic preferences, indirectly additive
preferences are disjoint from these two classes of preferences apart from the CES.

4.3.2 Homothetic preferences
There are several reasons for paying attention to homothetic preferences. First, such prefer-
ences retain much of the CES tractability. In particular, the marginal utility D (xi, x) of variety
i is positive homogeneous of degree zero: D (txi, tx) = D (xi, x) for all t > 0. By implication,
an increase in income y leads to a proportional change in the consumption pattern x and
leaves the relative consumptions xi/xj unchanged. Second, an appealing feature of homothetic
preferences is that they can be easily nested into a multi-sectoral setting, for the aggregate
price index is always well defined.

Homothetic preferences were used by Bilbiie et al. (2012) to study real business cycles to
capture the fact that both markups and the number of firms are highly procyclical variables,
while Feenstra and Weinstein (2016) use translog preferences for studying international trade.
It is well known that there is no closed-form expression of the translog utility functional,
which is instead defined by the expenditure functional:

ln E(p, U) = ln U + 1

N

∫
N

0
ln pidi − β

2N

⎡
⎣
∫

N

0
(ln pi)

2di − 1

N

(∫
N

0
ln pidi

)2
⎤
⎦. (5.50)

Using (5.37), we find that under homothetic preferences the equilibrium condition (5.42)
reduces to

m = M
(

Ly

F
m

)
. (5.51)

Under (5.43), M(N ) is a decreasing function of N, and thus there exists a unique equilibrium
markup.

Contrasting the properties of (5.51) with those of (5.45) provides an insightful comparison
of the market outcomes generated by, respectively, homothetic and additive preferences.
The most striking difference is that (5.45) does not involve y as a parameter. In other
words, assuming additive preferences implies that per capita income shocks are irrelevant for
understanding changes in markups, prices and firm sizes. This property of additive preferences
justifies the choice of population size as a measure of the market size. In contrast, (5.51)
involves both L and y through the product Ly, i.e., the total GDP. Another interesting feature
of homothetic preferences is that, unlike (5.45), (5.51) does not involve the marginal cost
c. This yields an important comparative statics result: under monopolistic competition with
non-CES homothetic preferences, the markup is variable but the pass-through is always 1.

As in the case of additive preferences, we proceed by studying an analytically solvable non-
CES example. We choose to work with translog preferences (5.50). In this case, M(N ) =
1/(1 + βN), while (5.51) is given by the following quadratic equation:

m2 + F

βLy
m − F

βLy
= 0,
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Figure 5.1 The space of preferences

whose solution is

m ∗ = F

2βLy

(√
1 + 4

βLy

F
− 1

)
. (5.52)

Despite the differences between additive and homothetic preferences, the equilibrium markup
(5.52) bears a remarkable resemblance to that obtained under the CARA utility, given by
(5.46). In particular, (5.52) implies that m ∗ → 0 in a large economy, i.e., when Ly → ∞.

The equilibrium mass of firms can be determined by combining m = FN/(Ly) with (5.52):

N ∗ = 1

2β

(√
1 + 4

βLy

F
− 1

)
. (5.53)

Plugging (5.53) into (5.38) and rearranging terms yields:

q ∗ = F

2c

(√
1 + 4

βLy

F
− 1

)
, p ∗ = c + cF

2βLy

(√
1 + 4

βLy

F
+ 1

)
. (5.54)

Expressions (5.52)–(5.54) yield a complete analytical solution of the translog model and entail
unambiguous comparative statics results: an increase in GDP triggers a decrease in prices
and markups, increases firm size, and invites more firms to enter the market. The same holds
for any symmetric homothetic preference satisfying (5.43). What is more, (5.52)–(5.54) are
strikingly similar to (5.46)–(5.48). To be precise, the CARA and translog models yield the
same market outcome up to replacing the population L by the total GDP Ly.

Figure 5.1 shows the three subclasses of preferences used in the literature. The CES is the
only one that belongs to all of them, which highlights how peculiar these preferences are.

5 HETEROGENEOUS FIRMS

In this section, we follow Melitz (2003) and assume that firms face different marginal costs.
In this context, the key question is how the market selects the operating firms. We consider

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

122 Handbook of game theory and industrial organization: theory

the one-period framework used by Jean (2002) and Melitz and Ottaviano (2008). Prior to
entry, risk-neutral firms face uncertainty about their marginal cost while entry requires a
sunk cost Fe. Once this cost is paid, firms observe their marginal cost drawn randomly from
the continuous probability distribution �(c) defined over R+. After observing its type c,
each entrant decides whether to produce or not, given that an active firm must incur a fixed
production cost F. Under such circumstances, the mass of entrants, Ne, is larger than the mass
of operating firms, N.

Even though varieties are differentiated from the consumer’s point of view, firms sharing the
same marginal cost c behave in the same way and earn the same profit at the equilibrium. As
a consequence, we may refer to any variety/firm by its c-type only. Furthermore, the envelope
theorem implies that equilibrium profits always decrease with c. Hence, there is perfect sorting
of firms by increasing order of marginal cost. In other words, there exists a value c̄ such that all
operating firms have a marginal cost smaller than or equal to c̄, while firms having a marginal
cost exceeding c̄ choose not to produce. A consumer program may then be written as follows:

max
xc(.)

U ≡ Ne

∫ c̄

0
u(xc)d�(c) s.t. Ne

∫ c̄

0
pcxcd�(c) = y,

where xc ≥ 0 is the individual consumption of a c-variety. The mass of operating firms is
then given by N = Ne�(c̄). Since the distribution � is given, the equilibrium consumption
profile is entirely determined by c̄ and Ne. For homogeneous firms, the variable N is sufficient
to describe the set of active firms.

A free-entry equilibrium (c ∗, N ∗
e , q ∗

c≤c ∗ , x ∗
c≤c ∗ , λ ∗) must satisfy the following equilibrium

conditions:

1. the profit-maximization condition for c-type firms:

max
xc
�c(xc, x) ≡

[
D (xc, x)

λ
− c

]
Lxc − F;

2. the ZPC for the cutoff firm:

(pc ∗ − c ∗)qc ∗ = F,

where c ∗ is the cutoff cost. At the equilibrium, firms are sorted out by decreasing order
of productivity, which implies that the mass of active firms is equal to N ≡ Ne�(c ∗);

3. the product market clearing condition:

qc = Lxc

for all c ∈ [0, c ∗];
4. the labor market clearing condition:

NeFe +
∫ c ∗

0
(F + cqc)d�(c) = yL;
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5. firms enter the market until their expected profits net of the entry cost Fe are zero:

∫ c ∗

0
�c(xc, x)d�(c) = Fe.

Although some entrants earn positive profits whereas others lose money, the last condition
implies that total profits are zero. Hence, yL is the total income.

5.1 Additive Preferences

Melitz (2003) and successors assume that consumers have CES preferences. This vastly
simplifies the analysis because the equilibrium price of a c-type firm, p ∗(c) = cσ/(σ − 1),
does not depend on the cost distribution �, although the price index does. Given that
many properties derived under CES preferences are not robust, we focus below on additive
preferences.

The inverse demand function (5.34) becomes pc(xc) = u ′(xc)/λ, which implies that the
demand structure retains the simplicity of the homogeneous firm case. The profits made by a
c-type firm are given by

�(xc; λ) =
[

u ′(xc)

λ
− c

]
Lxc − F.

Rewriting (5.39) for each type c implies that the equilibrium markup of a c-type firm is given
by

m ∗
c = ru(x

∗(c)) = 1/σ(x ∗(c)), (5.55)

which extends (5.23) to markets where firms are heterogeneous. It follows immediately from
(5.55) that the elasticity of substitution is now c-specific in that it is the same within each
type, whereas it varies between types. Furthermore, as firms of different types charge different
prices, the individual consumption x ∗(c) varies with the firm’s type, so that the equilibrium
markup also varies with c. Evidently, a more efficient firm sells at a lower price than a less
efficient firm. Therefore, consumers buy more from the former than from the latter, so that a
firm’s markup increases (decreases) with its degree of efficiency when the RLV is increasing
(decreasing).

Given the second-order condition for profit-maximization (ru ′(·) < 2), for each type c the
expression

π̄(c, λ; L) ≡ max
q≥0

[
u ′(q/L)
λ

q − cq

]

is a well-defined and continuous function. Since π̄(c, λ, L) is strictly decreasing in c, the
solution c̄(λ; L) to the equation π̄(c; λ, L)− F = 0 is unique. Clearly, the free-entry condition
may be rewritten as follows:

∫ c̄(λ;L)

0
[π̄(c, λ; L)− F] d�(c) − Fe = 0. (5.56)
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Using the envelope theorem and the ZPC at c̄(λ; L), we find that π̄(c, λ; L) and c̄(λ; L) are both
decreasing functions of λ, which implies that the left-hand side of (5.56) is also decreasing in
λ. As a consequence, the above equation has a unique solution λ̄(L). Plugging this expression
into c̄(λ; L) yields the equilibrium cutoff c ∗(L). In other words, the free-entry equilibrium, if it
exists, is unique. The expression (5.56) also shows that c ∗(L) exists when the fixed production
cost F and entry cost Fe are not too large.

We are now equipped to study the impact of market size on the cutoff cost. The ZPC at c̄
implies that

∂π̄

∂L
+ ∂π̄

∂c

d c̄

dL
+ ∂π̄

∂λ

dλ̄

dL
= 0.

Rewriting this expression in terms of elasticity and applying the envelope theorem to each
term, it can be shown that the elasticity of c ∗ with respect to L is, up to a positive factor,
equal to

∫ θ̄

0

[
ru(x

∗(c ∗))− ru(x
∗(c))

]
R ∗(c)d�(c),

where R ∗(c) is the equilibrium revenue of a c-type firm. As a consequence, the elasticity of
c ∗ is negative (positive) if ru is increasing (decreasing). Therefore, we have:

Proposition 4 Regardless of the cost distribution, the cutoff cost decreases with market size
if and only if the RLV is increasing. Furthermore, the cutoff cost is independent of the market
size if and only if preferences are CES.

Thus, the number of firms selected when the market gets bigger depends only upon the
behavior of the RLV. Intuitively, we expect a larger market to render competition tougher
(the RLV increases), which in turn triggers the exit of the least productive firms. However, if
a larger market happens to soften competition (the RLV decreases), then less productive firms
are able to stay in business.

Zhelobodko et al. (2012) show that both the equilibrium mass of entrants and the mass
of operating firms increase with L when the RLV increases. The same authors also establish
that the equilibrium consumption x ∗(c) decreases with L for all c < c ∗. Therefore, when
the RLV is increasing, (5.55) implies that the equilibrium price p ∗(c) decreases for all the
c-type firms that remain in business. Hence, when preferences are additive, prices move in
the same direction in response to a market size shock whether firms are homogeneous or
heterogeneous.

Note, finally, that even when preferences generate pro-competitive effects (Ex(σ ) < 0), the
selection of firms associated with a bigger market may lead to a drop in aggregate productivity
because the more productive firms need not gain more demand than the less productive firms.
To be precise, Bertoletti and Epifani (2014) show that a hike in L may have a negative impact
on the aggregate productivity if the elasticity of the marginal revenue is decreasing in q while
the elasticity of substitution is decreasing in x.
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5.2 Linear-quadratic Preferences

Melitz and Ottaviano (2008) propose an alternative approach based on utility (5.27). Because
such preferences generate linear demands that feature a finite choke-price α (see Section 3.2),
there is no need to assume that firms face a positive fixed production cost (F = 0). In this case,
total profits are generally different from zero. However, how profits/loses are shared does not
matter because the upper-tier utility is linear.

Firm i operates if the demand for its variety is positive, that is,

pi ≤ p max ≡ βα + γNp̄

β + γN
, (5.57)

holds, where p̄ is the average market price given by

p̄ ≡ 1

N

∫ N

0
pidi.

The market demand for a variety i is such that

qi = L

β
(p max − pi) . (5.58)

Unlike the CES, the price elasticity of the demand for variety i is variable and equal to

Epi(xi) = pi

p max − pi
. (5.59)

The expressions (5.57) and (5.59) imply that the demand elasticity increases with its own price
pi, decreases with the average market price p̄ (because varieties are substitutes), and increases
when more firms are active.

Using (5.58), it is readily verified that the profit-maximizing price p ∗(c) set by a c-type
firm must satisfy

p ∗(c) = p max + c

2
, (5.60)

which boils down to (5.31) when firms are homogeneous.
Assume that the support of cost distribution � is a compact interval [0, cM], where cM is

large. The cut-off cost c̄ ∈ [0, cM] satisfies p ∗(c) = c, that is, the least productive operating
firm earns zero profits and prices at the marginal cost. Combining the cut-off condition
p ∗(c) = c with (5.60) yields

c̄ = p max,

so that the equilibrium price p ∗(c), output q ∗(c) and profits π ∗(c) of a c-type firm are
given by:

p ∗(c) = c̄ + c

2
, q ∗(c) = L

β

c̄ − c

2
, (5.61)
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π ∗(c) ≡ [
p ∗(c)− c

]
q ∗(c) = L

4β
(c̄ − c)2. (5.62)

By implication, firms with a higher productivity have more monopoly power and higher
profits.

It is well known that linear demands allow for a simple relationship between the variances
of prices and marginal costs:

V(p) = 1

4
V(c),

which means prices are less dispersed than marginal costs. This result complements the
discussion on incomplete pass-through in Section 4.2.

It remains to pin down c̄, which is given using the ZPC:

∫ c̄

0
π̄ (c)d�(c) = Fe,

where Fe > 0 is the sunk entry cost. Using (5.62), we restate this condition as follows:

L

4β

∫ c̄

0
(c̄ − c)2d�(c) = Fe. (5.63)

The left-hand side of this expression is an increasing function of c̄, which implies that (5.63)
has a unique solution c ∗. This solution is interior (0 < c ∗ < cM) if and only if

E
[
(cM − c)2

]
>

4β

L
Fe

holds. Therefore, when the population L is very small, all firms choose to produce. Otherwise,
as implied by (5.63), a hike in L drives c ∗ downwards, which confirms the idea that firms do
not pass onto consumers the entire fall in cost (see Proposition 3). In other words, a larger
market skews the distribution of sales toward the varieties that are more efficiently produced.

Finally, (5.57) and (5.61) can be used to pin down the mass of active firms:

N ∗ = 2β

γ

α − c ∗

c ∗ − E(c|c ≤ c ∗)
,

which indicates a decreasing relationship between c ∗ and N ∗. In particular, an increase in L
invites more firms to enter, even though a larger market pushes the least productive firms out
of business.7

7 Behrens et al. (2014) undertake a similar exercise within a full-fledged general equilibrium model with CARA
preferences and income effects.
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5.3 VES Preferences

Working with general symmetric preferences and heterogeneous firms is tricky. Assume that
the cutoff cost c̄ and the number of entrants are given, so that the mass of active firms is
determined. Unlike the CES, the equilibrium consumption of a given variety depends on the
consumption levels of the other varieties. Hence, markets are independent across varieties.
Unlike additive preferences, competition among firms is no longer described by an aggregative
game. Unlike LQ preferences, a closed-form solution is not available. All of this implies that
the way firms choose their output is through a non-atomic game with asymmetric players,
which cannot be solved point-wise. Such an equilibrium x̄(c̄, Ne), which need not be unique,
can be shown to exist if, when a non-zero measure set of firms raise their prices, it is profit-
maximizing for the other firms to increase their prices, as in oligopoly games where prices are
strategic complements (Parenti et al., 2017). The corresponding free-entry equilibrium is thus
defined by a pair

(
c̄ ∗, N ∗

e

)
that satisfies the zero-expected-profit condition for each firm:

∫ c̄

0
[π̄c(c̄, Ne)− F] d�(c) = Fe, (5.64)

and the cutoff condition:

π̄c̄(c̄, Ne) = F. (5.65)

Thus, regardless of the nature of preferences and the distribution of marginal costs, the
heterogeneity of firms amounts to replacing N by c̄ and Ne because N = �(c̄)Ne. As a
consequence, the complexity of the problem increases from one to two dimensions.

Dividing (5.64) by (5.65) yields the following new equilibrium condition:

∫ c̄

0

[
π̄c(c̄, Ne)

π̄c̄(c̄, Ne)
− 1

]
d�(c) = Fe

F
. (5.66)

When firms are symmetric, we have seen that the sign of EN(σ ) plays a critical role in
comparative statics. Since firms of a given type are symmetric, the same holds here. The
difference is that the mass of operating firms is determined by the two endogenous variables
c̄ and Ne. As a consequence, understanding how the mass of active firms responds to a
population hike requires studying the way the left-hand side of (5.66) varies with c̄ and Ne. Let
σc(c̄, Ne) be the equilibrium value of the elasticity of substitution between any two varieties
supplied by c-type firms:

σc(c̄, Ne) ≡ σ̄ [x̄c(c̄, Ne), x̄(c̄, Ne)] .

In this case, we may rewrite π̄c(c̄, Ne) as follows:

π̄c(c̄, Ne) = c

σc(c̄, Ne)− 1
Lx̄c(c̄, Ne),

which is the counter-part of (5.40), while the markup of a c-type firm is given by

m ∗
c (ĉ, Ne) = 1

σc(ĉ, Ne)
.
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Hence, the elasticity of substitution can be used for studying heterogeneous firms at the cost of
one additional dimension, i.e., the firm’s type c. Following this approach, Parenti et al. (2017)
prove the following result:

Proposition 5 Assume that π̄c(c̄, Ne) decreases with c̄ and Ne for all c. Then, the equilibrium
mass of entrants increases with L. Furthermore, the equilibrium cutoff decreases with L when
σc(c̄, Ne) increases with c̄ and Ne, whereas it increases with L when σc(c̄, Ne) increases with
c̄ but decreases with Ne.

Given c̄, the number of operating firms is proportional to the number of entrants. Therefore,
assuming that σc(c̄, Ne) increases with c̄ and Ne may be considered as the counterpart of the
condition EN(σ ) > 0 discussed in subsection 5.3. In response to an increase in L, the two
effects combine to induce the exit of the least efficient active firms. However, Proposition 5
also shows that predicting the direction of firms’ selection is generally problematic.

6 EQUILIBRIUM VERSUS OPTIMUM PRODUCT DIVERSITY:
A VARIETY OF RESULTS

Conventional wisdom holds that entry is desirable because it often triggers more competition
and enhances social efficiency. However, when the entry of new firms involves additional
fixed costs, the case for entry is less clear-cut. What is more, when goods are differentiated
the extent of diversity comes into play. In this context, the following question arises: does the
market provide too many or too few varieties?

Spence (1976) casts doubt on the possibility of coming up with a clear-cut answer to this
question because two opposite forces are at work. First, the entrant disregards the negative
impact its decision has on the incumbents by taking away from them some of their customers
(the “business-stealing” effect). This effect pushes toward excessive diversity. Second, the
entrant is unable to capture the entire social benefit it creates by increasing diversity because
it does not price discriminate across consumers (the “incomplete appropriability” effect). This
pushes toward insufficient diversity. As a consequence, the comparison between the market
and optimal outcomes is likely to depend on the particular framework we believe to be a good
representation of differentiated markets. Conventional wisdom holds that spatial models foster
excessive diversity, whereas the market and optimal outcomes do not differ much in the case
of symmetric preferences. The reason for this difference is that a firm has few neighboring
rivals in spatial models, which facilitates entry. On the contrary, when competition is global,
the entrant must compete with many rivals, which dampens entry.

6.1 Additive Preferences

The social planner aims to find the mass of firms and the consumption profile that maximize
the common utility level and meet the labor balance constraint:

max
(x, N)

U (x) s.t. cL
∫ N

0
xi di + NF = L. (5.67)
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Using additivity and symmetry, this program may rewritten as follows:

max
(q, N)

Nu (x) s.t. N = L

cLx + F
,

which can be reduced to maximizing

Lu(x)

cLx + F

with respect to x. Applying the FOC yields

Ex(u) = cLx

cLx + F
. (5.68)

Using the equilibrium condition (5.45), we obtain

1 − ru(x) = cLx

cLx + F
. (5.69)

These two expressions show that firms care about consumers’ marginal utility (see (5.69)),
which determines the inverse demands, whereas the planner cares about consumers’ utility
(see (5.68)).

The equilibrium outcome is optimal for any L, c and F if and only if the utility u(·) satisfies
both (5.68) and (5.69), that is, solves the following differential equation:

ru(x)+ Ex(u)− 1 = 0. (5.70)

Can this condition be given a simple economic interpretation? Let λ be the social value of
labor, that is, the Lagrange multiplier of the social planner. Therefore, it must be that u ′(x) =
λcx, so that

1 − Ex(u) = u(x)− u ′(x)x
u(x)

= u(x)− λcx

u(x)
,

and thus 1−Ex(u)may be interpreted as the “social markup” of a variety (Vives, 1999). Since
ru(x) is a firm’s markup, (5.70) means that the market and social outcomes coincide if and
only if the private and social markups are identical at the equilibrium consumption.

It is readily verified that, up to an affine transformation, u(x) = xρ is the only solution
to (5.70). Furthermore, labor balance implies that each firm produces the optimal quantity.
Accordingly, when firms are symmetric the CES is the only model with additive preferences
under which the market outcome is socially optimal. Intuitively, under the CES everything
works as if firms’ marginal cost were cσ/(σ − 1) > c, while the market price equals
cσ/(σ − 1) in an otherwise perfectly competitive market. Under these circumstances, the
amount (p ∗ − c)q ∗ = cq ∗/(σ − 1) > 0 must be interpreted as a transfer from consumers
to firms, which allows firms to exactly cover their fixed costs. Labor market clearing pins
down the mass of firms, which is optimal because the surplus (p ∗ − c)q ∗ generated by an
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additional variety is equal to its launching cost F. As a consequence, the market equilibrium
coincides with the socially optimal outcome. Dhingra and Morrow (2018) extend this result
to heterogeneous firms. But how robust are these interesting optimality properties?

Comparing (5.68) with (5.69) implies that the market delivers excessive variety if and only
if the private markup exceeds the social markup at the equilibrium consumption level:

Ex(u)|x=x ∗ > 1 − ru(x
∗). (5.71)

For example, under the CARA utility, (5.71) may be written as follows:

αx ∗

1 − αx ∗ > exp(αx ∗)− 1.

Applying Taylor expansion to both sides of this expression yields

∞∑
k=1

(αx)k >
∞∑

k=1

1

k
(αx)k ,

which holds for any positive value of x. As a consequence, under the CARA, the market
provides too many varieties while firms’ output is too small. In addition, Behrens et al. (2016)
show that, when firms are heterogeneous, the more productive firms under-produce, whereas
the less productive firms over-produce, and thus the average productivity at the equilibrium is
lower than at the social optimum.

Since

d

dx
[1 − Ex(u)] = Ex(u)

x
[ru(x)− (1 − Ex(u))] ,

there is always excessive diversity, hence firms’ output is too small, if and only if Ex(u) is
decreasing. Equivalently, there is always insufficient diversity, hence firms’ outputs are too
large, if and only if Ex(u) is increasing. For example, under the preferences given by u(x) =
(x + α)ρ , there are too few (too many) varieties in equilibrium if α > 0 (α < 0).

Furthermore, in a multi-sector economy where firms are heterogeneous, the upper-tier
utility is Cobb-Douglas, while each sub-utility is CES, the equilibrium and optimum coincide
if and only if the elasticity of substitution is the same across sectors. Otherwise, too much
labor is allocated to the more competitive sectors (Behrens et al., 2016). These results point
to the lack of robustness of the CES welfare properties, which may lead to strong biases in
policy assessment.

6.2 Homothetic Preferences

Since homothetic preferences are also widely used in applications, it is legitimate to ask how
the above results change when preferences are homothetic. Without loss of generality, we
assume that U is homogeneous of degree one in x. In the case of symmetric consumption
profiles x = xI[0,N], we have

U
(
xI[0,N]

) ≡ φ(N, x) = Xψ(N ),
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where ψ(N ) ≡ φ(N, 1)/N and X ≡ xN. The ratio of the first-order conditions is given by

X
ψ ′(N )
ψ(N )

= F

cL
,

which is equivalent to

Eψ(N ) ≡ N
ψ ′(N )
ψ(N )

= F

cLx
.

As for the market equilibrium condition (5.41) can be reformulated as follows:

m̄(N )

1 − m̄(N )
= F

cLx
.

The social optimum and the market equilibrium are identical if and only if

Eψ(N ) = m̄(N )

1 − m̄(N )
, (5.72)

while there is excess (insufficient) variety if and only if the right-hand side term of (5.72) is
larger (smaller) than the left-hand side term.

Given φ(X, N), it is reasonable to map this function into another homothetic preference
A(N )φ(X, N), where A(N ) is a shifter that depends only on N. Observe that the utility
A(N )U(x) is homothetic and generates the same equilibrium outcome as U(x), for the
elasticity of substitution σ(N ) is unaffected by introducing the shifter A(N ). To determine
the shifter A(N ), (5.72) is to be rewritten as follows in the case of A(N )φ(X, N):

EA(N )+ Eψ(N ) = m(N )

1 − m(N )
. (5.73)

For this expression to hold, A(N ) must be the solution to the linear differential equation in N

dA

dN
=
[

m(N )

1 − m(N )
− N

ψ(N )

dψ

dN

]
A(N )

N
,

which has a unique solution up to a positive constant. Therefore, there always exists a shifter
A(N ) such that (5.73) holds for all N if and only if U(x) is replaced with A(N )U(x). The
shifter aligns the optimum to the equilibrium, which remains the same. Furthermore, it is
readily verified that there is excess (insufficient) variety if and only if the right-hand side term
of (5.73) is larger (smaller) than the left-hand side term. Thus, even when one restricts oneself
to homothetic and symmetric preferences, there is, a priori, no reason to expect a robust result
to emerge.

In sum, care is needed, for the choice of (additive or homothetic) preferences is likely
to affect the nature of the prescriptions based on quantitative models of monopolistic
competition. In particular, CES preferences, which occupy center stage in the growing flow
of quantitative models, must be used with care.
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7 CONCLUDING REMARKS

Accounting for oligopolistic competition in general equilibrium theory remains a worthy goal
rather than an actual achievement. This is why many scholars have embraced the CES model
of monopolistic competition. Although this model has great merits, it leads to knife-edge
results or to findings that clash with fundamental principles of microeconomics and industrial
organization. In addition, recent empirical evidence pointing out the shortcomings of the CES
is growing fast. This does not mean, however, that we need a totally new framework; the
emphasis on the elasticity of substitution is warranted when recognizing that it is variable,
rather than constant. By mimicking the behavior of oligopolistic markets, the VES model of
monopolistic competition offers an alternative solution to some of the difficulties uncovered
by Gabszewicz and Vial (1972) in their pioneering work on imperfect competition in general
equilibrium. In this respect, we have built a link between two bodies of the literature on
imperfect markets that were perceived so far as totally separate.

Despite real progress, it should be clear that there is scope for more work. We provide
here a short list of some major issues that should rank high on the research agenda. First,
papers coping with several sectors typically assume a Cobb-Douglas upper-tier utility and
CES lower-tier sub-utilities. Such a specification of preferences leaves much to desire as it
does not allow for a genuine interaction across sectors because the income share spent on
each product is given a priori. Behrens et al. (2016) is a worthy exception that should trigger
new contributions.

Second, the demand side of existing models of monopolistic competition relies on the
assumption of symmetric preferences, while heterogeneity is introduced on the supply side
only. Yet, the recent empirical evidence gathered by Hottman, Redding and Weinstein (2016)
find that 50 to 75 percent of the variance in US firm size can be attributed to differences in
what these authors call “firms’ appeal,” that is, the demand side, and less than 20 percent to
average marginal cost differences. As a consequence, one may safely conclude that it is
time to pay more attention to the demand side in monopolistic competition theory. Besides
the VES model, another step in this direction has been made by Di Comite, Thisse and
Vandenbussche (2014) who embed taste heterogeneity into the LQ model. Absent a specific
taste demand parameter, the model with heterogeneous costs and quality only explains 55
percent of the quantity variation in Belgian exports. Allowing for taste differences generates
asymmetry in demand across countries and offers a rationale for the missing variability
in sales.

Last, one may wonder what “heterogeneous firms” actually mean in a world where,
despite a large number of producers, a handful of firms account for a very high share
of total sales. There are at least two different modeling strategies that can be used to
tackle this question. Ever since Melitz (2003), the first approach with firms operating
under monopolistic competition but facing different marginal costs is dominant. However,
as observed by Neary (2011), firms in this approach differ in types, not in kind, as all firms
remain negligible to the market. A second line of research, developed by Shimomura and
Thisse (2012), combines a continuum of negligible (non-atomic) players and a few large
(atomic) players who are able to manipulate the market. Hence, firms now differ in kind.
This leads to a hybrid market structure blending the features of oligopoly and monopolistic
competition. Despite its empirical relevance, this approach has attracted little attention in the
profession.
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APPENDIX

That Epi(P ) > 0 is straightforward because P (p) is increasing in any pi. To show that
Epi(P ) < 1 also holds, observe that P ( p) satisfies P (t p) < tP (p) for any t > 1. Indeed,
(5.6) implies that for any given p and any given t > 1, P1 ≡ P (tp) and P2 ≡ tP (p) must
solve, respectively, the following equations:

P1 = ϕ ′
⎡
⎣

n∑
j=1

u

(
ξ

(
tpj

P1

))⎤
⎦, P2 = tϕ ′

⎡
⎣

n∑
j=1

u

(
ξ

(
tpj

P2

))⎤
⎦.

As t > 1, the right-hand side of the second equation is greater than the right-hand side of the
first equation. Therefore, P1 < P2, that is, P (t p) < tP (p). This, in turn, implies

Et
[
P (t p)

]∣∣
t=1 < 1,

or, equivalently,

n∑
i=1

Epi(P ) < 1. (A.1)

Since Epi(P ) > 0, it must be that Epi(P ) < 1. Q.E.D.
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6. Oligopoly and product differentiation
Jean J. Gabszewicz and Ornella Tarola

1 INTRODUCTION

Several reasons can explain why the variants of many products are so numerous in developed
economies. The main reason is certainly related to consumers’ heterogeneity. Not only are
their preferences and tastes different among them, but also their income. Imagine on the other
hand, a completely homogeneous world in which all consumers were identical. There would
be no reason to make different cars, with different colors; all houses would be built using
the same style. There would be no luxuries, but only standard variants of the products
since all consumers would have the same income. The world would be uniform, deprived of
any diversity. Clearly, taste and income heterogeneity constitute the main factors explaining
variants’ proliferation.

As for the firms, one could think a priori that there exist counterincentives to multiply
the number of variants of a product. In particular, it seems that producing two different
variants of the same product is more expensive than producing a single one and duplicating it.
Nevertheless, this is not always the case. Consider cars of different colors: a red car of some
given type is not more expensive than a blue one of the same type while there certainly exist
consumers who prefer a red car to a blue one. Accordingly, it can be more advantageous for
the firm to produce both models, then all consumers can be supplied, while some of them
would probably not be willing to buy the car if it does not correspond to their preferred
color. In some cases, it could even be less costly to produce different variants than simply
reproducing the original one. This would be the case, for instance, when a flexible technology
is able to produce different variants, allowing the firm to reach a production level large enough
to benefit from increasing returns to scale and satisfy the higher demand resulting from this
very model diversity. Then the working stock is more rapidly deadened and the unit cost is
accordingly reduced. In such cases, the firm wishes to increase the diversity of its supply to
take full advantage of economies of scope.

Yet, there is a deeper reason why firms may wish to differentiate their products from those
supplied by their rivals. When firms sell close substitutes, a small price differential is sufficient
in order to attract all consumers to the least expensive variant. As a consequence, one should
expect exacerbated competition among firms to capture demand, possibly leading to a price
war, and devastating the profits realized by all firms in the industry. On the other hand,
when proposing variants not “too” close to each other, firms can soften price competition.
When the rival firm decreases its price, it succeeds in attracting only a small fringe of the
competitor’s customers. Each firm then benefits from a local monopoly position. Thus, all
economic agents – consumers as well as firms – have strong incentives to favour product
differentiation.

A competitive market is often idealized as a central place where many sellers and buyers
meet in order to exchange units of a homogeneous product. From this interaction a unique
price emerges, the competitive price, summarizing all the transactions and arbitrages among
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them. A typical example of such a market is the stock exchange market. In the real world
however, economic activities are generally performed at different points in space, even when
they concern the same homogeneous product. The market operates through a complex network
of scattered sellers and buyers located in different points of the geographical space. Examples
abound of such dispersed activities: supermarkets located in different areas of the urban space,
gasoline stations, shops like bakeries, butchers, groceries, to cite only a few. An immediate
consequence of this spatial dispersion is to make the key assumption of pure competition
inapplicable: a large number of buyers and sellers participating in the exchange of the product.
When firms are dispersed over space, each of them finds at most a small number of other firms
selling the same product in its immediate environment. Yet more such firms exist in a remoter
area, but their influence is weaker due to the transportation cost that consumers would pay in
order to buy from them. In the same way, consumers far enough from a particular seller have
no incentives to buy from it. The market of a particular seller is thus limited to a specific area:
the more restricted this area, the smaller the transportation cost between the consumers and
the seller.

The difference between a competitive market and a geographically dispersed market finds
its counterpart, in industrial economics, in the difference existing between a homogeneous
and a differentiated industry. In a competitive market for a homogeneous good, all variants
proposed for sale are all agglutinated on the same point in the space of characteristics:
they are perfect substitutes.1 Furthermore, nothing prevents sellers and buyers from being
numerous. By contrast, in a differentiated industry, products are dispersed in the space of
characteristics. Furthermore, the seller of each variant is almost a monopolist with respect to
potential consumers since only those firms selling rather close substitutes could attract these
consumers by setting a lower price. These substitute products are thus located in a small
neighborhood of the space of characteristics.

The analogy between a geographically dispersed market and a differentiated industry
spontaneously invites the analysis of spatial competition, and extends it later, by analogy,
to competition among differentiated products. This is the proposal made by Hotelling (1929)
in his celebrated article on spatial competition, which we shall analyze later in full. At this
stage, we simply examine how the spatial metaphor allows a precise definition of the industry.

Figure 6.1 represents a two-dimensional geographical space. Points identify consumers’
locations in this space, while crosses represent the position of the sellers of a perfectly
homogeneous product. Consumers and sellers are dispersed over the space. Consumers pay a
transportation cost, increasing with the distance they are separated from each seller whenever
they want to buy a unit of this homogeneous good. Let the index i identify a specific consumer,
and the index j a particular seller. We assume there are m consumers i, i = 1, . . . , m and n
sellers j, j = 1, . . . , n. We denote by t(i, j ) the transportation cost of consumer i when moving
from his home to seller j. Assume that seller j produces the good at a constant unit cost c( j )
and that the reservation price of consumer i for buying a unit of the good is equal to r(i ).
Consumers’ choice operates among a finite number of alternatives, equal to n + 1 when there
are n sellers: to buy one unit of the good from one of the n sellers at the exclusion of the others,
or not to buy at all. In a purely competitive market, the price to be paid by each consumer to
seller j would be equal to its marginal cost, c( j ).

1 The model of characteristics was invented by Gorman (see Gorman, 1956 and 1980) and popularized by
Lancaster (see Lancaster, 1966).
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Figure 6.1 A two-dimensional geographical space

A necessary condition for firm j to capture consumer i when setting the price c( j ) is that
the magnitude c( j ) + t(i, j ) does not exceed the reservation price r(i ) corresponding to this
consumer. On the contrary, this consumer would refrain from buying the good since his/her
reservation price is lower than the effective price augmented with the transportation cost
he/she has to incur to travel to seller j. Consequently, all consumers for whom this condition
does not hold will never buy from seller j: even at a price leaving a zero profit margin to
the seller, they are not willing to buy the product from him. This observation explains the
following definitions. The potential market of seller j is the set of all consumers i for which
the condition

c( j ) + t(i, j ) < r(i )

is satisfied. For all consumers in the potential market of seller j, their reservation price
is smaller than their transportation cost to seller j plus the production cost c( j ): all these
consumers are thus potential buyers of firm j if the latter sets a price equal to its marginal cost.

The notion of potential market suggests the intuitive idea of potential competition between
two sellers. If there is no consumer in the intersection of their potential markets, it means that,
even if these sellers set their price each at their unit cost – the competitive price – there is no
consumer who would contemplate buying from either of them at these prices. Thus there is no
reason for these sellers to compete with each other since they have no potential customer who
is common to both of them. On the other hand, two sellers are direct potential competitors
when there is at least one consumer who belongs to the intersection of their potential markets.
When two firms are direct potential competitors, a price always exists for each of them such
that, setting this price, they do not go bankrupt while attracting, however, some customers
who would be willing to buy from them.

The notion of direct potential competition is not yet sufficient to totally capture the
ingredients of spatial competition. In particular it does not take into account the indirect
competition between sellers belonging to the same geographic space, who, while not being
direct potential competitors with other firms, indirectly influence their price decisions. This
indirect influence transits along a chain formed by a sequence of firms who are, two by
two, direct potential competitors. More precisely, two firms are indirect potential competitors
when (i ) they are not direct potential competitors and (ii) there is a chain of sellers between
them such that each pair of successive firms in the chain are direct potential competitors.
The notion of indirect potential competition captures the idea that each seller in the chain of
firms can influence the others’ market shares by the reactions it provokes in their strategies
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when changing its own price. Finally, an industry is defined as a group of sellers such that
all of them are either direct or indirect competitors of some other firm(s) in the group,
and no seller outside the group is a direct or indirect competitor of some firm in the
group.

The above conceptual machinery seems at first sight to be a little abstract. It is necessary,
however, to define unambiguously when and which firms compete with each other in the
context of spatial competition. In other words, it is important to define precisely where an
industry starts and where it finishes. The following examples illustrate how to apply the above
concepts to more specific environments. As a first example, consider a geographical space
made of a road connecting five villages located at points A, B, C, E and F, separated from each
other by a distance equal to d, except between C and E where the distance is equal to 2d (see
Figure 6.2). A bakery is located in each of these villages, and produces bread at a unit cost c.
Each inhabitant in every village eats bread every day, obtaining a resulting utility level equal
to s from this consumption. Furthermore, they pay a transportation cost equal to zero when
buying the bread in their own village while they pay a cost equal to d when buying the bread
in an adjacent village. Finally, we suppose that c + d < s < c + 2d. As a consequence, if
a baker located in the group of villages (A, B, C) or (E, F) sells the bread at a price p = c,
he/she can attract inhabitants of an adjacent village to buy bread in his/her shop since the
price paid plus the transportation cost is smaller than their willingness to pay s. However, this
baker cannot succeed in attracting inhabitants located in more remote villages. In particular,
the baker located in village C has no hope of attracting the inhabitants of village E because,
even when selling at price p = c, the transportation cost 2d plus the price c exceeds their
willingness to pay (remember that we have assumed s < c + 2d). Similarly, the bakers in the
group (E, F) can attract the customers of the next village’s baker, but the baker in E cannot
attract those located in village C.

In this example there are in fact two industries: the bakeries located in the group of villages
(A, B, C) and those in the group (E, F). The baker in village A is a direct potential competitor
of the baker located in B, and reciprocally: at price p = c, consumers in B (resp. A) could
consider buying their bread from the baker in village A (resp. B) since their willingness to pay
s exceeds c + d. Similarly, and for the same reason, bakeries located in B and C are direct
potential competitors. Furthermore, even bakers located in A and C are not direct potential
competitors (since s < c + 2d); they are, however, indirect ones via the bakery located in
village B: the baker in A is a direct potential competitor of the baker in B who, in turn, is
a direct potential competitor of the baker in C. Thus there is a chain of bakeries connecting
bakeries A and C such that any link in the chain is made up of direct potential competitors.
The group of bakeries (A, B, C) thus corresponds to the definition of an industry given above.
As for the group (E, F), the two bakeries are mutually direct potential competitors. Since
there is no other bakery that is a direct potential competitor of one of these firms, the group
(E, F) also satisfies the conditions required to constitute an industry. In order to introduce a
second example, consider the geographical space made up of two roads crossing each other

A B C E F

d 2d

Figure 6.2 An example of spatial competition
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Figure 6.3 A star network

and whose extremities are occupied each by a village and a grocery selling the same product.
This star network is represented in Figure 6.3.

Suppose the distance separating each village from the crossing point of the two roads is
equal to d, also representing the transportation cost from each village to the crossing point.
Again suppose that the willingness to pay for the product is equal to s and that the inequalities
c + d < s < c + 2d hold, with c representing the unit cost of producing the good. Under
these conditions, each of the sellers is a pure monopolist in its own village since no consumer
belonging to another village would consider buying from him at p = c and, a fortiori, at any
price strictly higher than c. We have to conclude that four industries exist in this example,
each consisting of a single firm. Now imagine that a new grocery is installed at the crossing
point of the two roads and that it also sells the product at a price p equal to c. Then the
existing market conditions are completely upset by this new entry since this entry now makes
each grocery a direct potential competitor of at least another one (the entrant is now a direct
potential competitor of all the groceries existing before entry while each existing grocery is
now a direct potential competitor of the entrant).

The concept of industry introduced above is based on the microeconomic characteristics of
the agents, firms and consumers. More precisely, it takes as parameters (i ) the geographical
distribution of consumers, their number, as well as their willingness to pay and their
transportation costs; (ii) the location of firms, their number, as well as their unit production
costs. As revealed by the last example, changing the value of these parameters is likely to
deeply affect the nature of competition among rival firms. Yet the entry of a new firm can
entail a brutal change in the competitive environment. Similarly, a change in the distribution
of firms in the space of characteristics is likely to modify the structure of potential competition
among them.

Finally, it is worth noting that extending the analysis from the spatial metaphor to product
differentiation is almost immediate. In the case of differentiated products, the potential market
of firm j producing a variant whose cost is equal to c( j ) is made up of all consumers i for
whom their willingness to pay for variant j, s(i, j ), exceeds c( j ). The definition of an industry
immediately follows from the definition of potential competition. Notice that the spatial model
represents only a particular case of the general definition above when the willingness to
pay s(i, j ) is set equal to r(i ) − t(i, j ). We shall frequently use the spatial analog in the
following pages to illustrate competition among differentiated products, but it must be clearly
understood that these illustrations are used only for simplicity, and not because the analysis
would apply to the spatial context only. Thanks to the spatial analogy, the concepts introduced
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above, like potential market or industry, do still hold in all situations in which firms sell
substitute products represented in the space of characteristics. Yet, it remains true that, in
most applications, the analysis of competition is limited to cases where products’ variants are
defined with respect to a single dimension only. In such cases variants are identified with only
one index. Similarly a particular consumer is identified with a specific point along the line,
and this point is viewed as the most preferred variant of this consumer, his/her ideal variant.
The farther another point (variant) from this one, the lower the utility of this consumer for that
variant. An example, due to Salop (1979), in which consumers are continuously distributed on
the space of characteristics is provided below, in the form of a circular market. At each point
of the circle is one consumer for whom this point constitutes his/her ideal variant because the
transportation cost for this consumer at that point is equal to zero, while it is strictly increasing
when moving away from this point in either direction.

It is easy to derive the consumer’s demand function for the product’s variants from his/her
preferences on the space of characteristics. First let us show how to obtain this demand for
consumer i, i = 1, . . . , m, when the choice operates among the variants j, j = 1, . . . , n,
supplied by the n firms j, j = 1, . . . , n, and according to the rule of mutually exclusive
purchases: if the consumer decides to buy, he/she buys one unit only, and from only one
firm. Let r(i, j ) denote the reservation price of consumer i for variant j and p( j ) the price of
that variant. Consumer i, facing the vector of prices (p(1), p(2), . . . , p( j ), . . . p(n)), chooses
to buy variant j if, and only if, the two conditions: (i ) r(i, j ) > p( j ) and (ii) r(i, j ) − p( j ) =
maxk=1,...,n (r(i, k) − p(k)) are simultaneously satisfied. The first condition guarantees that
consumer i prefers to consume variant j at price p( j ) than not to buy at all, and the second that
consumer i selects the variant offering him the largest surplus in utility among all the variants
supplied in the industry at the corresponding prices. This variant is called the ideal variant.
The above procedure divides the population of consumers into two categories: the first gathers
all consumers who buy a specific variant at this vector of prices, and the second one consists
of all consumers who do not want to buy any variant at these prices. More precisely, the
demand for variant j is defined as equal to the number of consumers i for which conditions (i )
and (ii) defined above are simultaneously satisfied. Taking into account that each consumer
buys at most one unit of a variant, this number correctly expresses the number of variants
bought at this price vector. In order to get rid of the discontinuities due to the finite number
of consumers, it is often assumed that the set of consumers is represented by an atomless
continuum.

As an example, consider the circular market due to Salop (1979) (see Figure 6.4). Now we
assume a market with consumers uniformly distributed along a circle. In this representation,
there are four firms, A, B, C, and D, located equidistantly from each other around the circle.
As for the consumers, they are uniformly dispersed around the circular boulevard, with
one consumer located at each point. We shall denote a typical consumer by the letter t.
This notation designates the consumer as well as the place where he/she is located: point
t constitutes consumer t’s ideal variant since the transportation cost to this point is equal
to zero for him/her, and strictly positive to any other point on the circle. Assume that all
consumers have the same willingness to pay for the product, s, and that the transportation cost
of consumer t, to buy from firm j, j = A, BC or D, is equal to the distance d(j, t) separating
consumer t from firm j, with d(j, t) smaller than 1 for all j and all t. Assume that consumers
have to move along the boulevard to buy from one of the sellers. If all sellers set the same
price smaller than s − 1, condition (ii) is satisfied so that all consumers buy the product,
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and buy it from the firm they are the closest to. Accordingly, the market share of each firm
(its demand) consists of a quarter of the circumference, as on Figure 6.4, where the segment
(a1, a 2) constitutes the market share of firm A when all sellers set the same price. Consider
indeed two adjacent firms k and j. For the consumer t(p) located at the border between two
market shares, he is necessarily indifferent between buying the product from the seller located
on his/her left side and buying from the one located on the right. Accordingly the equality
d(k, t)+ p = d(j, t)+ p must necessarily hold: the sum of the transportation cost and the price
must be the same for both sellers. All consumers located between t(p) and firm j a fortiori
buy from firm j since their transportation cost is lower than for t(p). For the same reason,
consumers located between t(p) and firm k buy from firm k. Now assume that a firm, say firm
A, decides to lower its price while the other firms still keep their price equal to p. This price
drop pushes farther away the consumers indifferent between buying from firm A and firms B
and D in the direction of these adjacent firms. The price drop makes firm A more attractive for
the fringes of consumers located on both sides of its original market share who were buying
from the adjacent firms before the price drop. The market share of firm A now coincides with
the segment (a′

1, a′
2), as depicted on Figure 6.4.

We notice that firms B and D are direct potential competitors of firm A: the price drop
directly affects the market share of the adjacent firms. On the other hand, the price drop does
not affect the market share of firm C, which is only an indirect potential competitor of firm A
via firms B and D.

An important distinction about differentiation often follows from the intrinsic character-
istics of the products, changing from one variant to the other: shirts can be synthetic or
linen, and TV sets can be black and white, or color. Some cars can be sports cars, while
others are family cars. Similarly, shops can be close to some buyers and far from others, and
vice versa. The first two examples correspond to cases of vertical product differentiation,
while the latter to horizontal differentiation. Under vertical differentiation, all consumers buy
the same variant when both are sold at the same price. This unanimity is not satisfied under
horizontal differentiation: some consumers prefer to buy one variant and some the other, when
they are sold at the same price. It turns out that market properties of product differentiation
are not the same with the two types of differentiation. While vertical differentiation mainly
evokes the differences in quality, all consumers ranking quality in the same way, horizontal
product differentiation rests on the differences in tastes. A consumer close to a given shop
prefers to buy from that, while another consumer closer to another shop would prefer to buy
from the latter at equal price. As we shall see, the market properties differ from one type to
the other.

A

C

B D. O

a1

a ’1

a2

a ’2

Figure 6.4 A circular market (Salop, 1979)
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This chapter is subdivided into four main sections. Section 2 is devoted to horizontal
differentiation while vertical differentiation is considered in Section 3. In Section 4 an
essay on nesting the two approaches is provided. Section 5 is devoted to applications like
environmental issues and credit card markets.

2 HORIZONTAL PRODUCT DIFFERENTIATION

The study of competition under horizontal product differentiation is developed in this section.
Recall the definitions given in the introduction. Two variants of a product are horizontally
differentiated when, sold at the same price, some consumers prefer to buy one variant over
the other while the reverse is true for the other consumers. The archetypal model of horizontal
product differentiation is the Hotelling model of spatial competition. The first subsections
below study price competition in this spatial model, and its implication concerning the
selection of the variants by the competing firms. Two opposite forces should a priori
be considered in this respect. On the one hand, the firm selecting a variant remote from the
space of characteristics of the variant selected by the rival firm, benefits from the advantage of
protecting its market against the rival’s price cuts: the firm enjoys an almost local monopoly
position. But, conversely, this choice makes it more difficult for this firm to attract the rival’s
clients by setting a lower price, which should induce the firm to locate its own variant closer
to the variant selected by its competitor. The above analysis is performed assuming that
consumers have perfect information on the prices selected by the firms. This assumption is
partially abandoned in the next section, where a less strict assumption is made concerning the
information structure of the customers: here it is assumed that consumers know the price set
by the firm closer to them, but are ignorant of the price set by the more remote firm.

The following subsection is devoted to the problem of entry in a horizontally differentiated
market, as well as its consequences on the number of variants offered at equilibrium: how
many variants are supplied? Are they too few, or too many? Are they the “good” ones?
How does entry in a horizontally differentiated market differ from entry in a market for a
homogeneous product? Also, some applications of the model are evoked at the end of this
section, like competition between political parties, or competition in media markets. The
preceding analysis has been made assuming that each firm supplies only a single variant.
Firms, however, often sell several products and variants simultaneously. At the end of this
chapter, different problems raised by multiproduct firms are studied, like brand proliferation
to create barriers to entry, or the danger of cannibalization, the increase in sales of one variant
produced by the firm decreasing the sales of another one also produced by the same firm. See,
for example, Sections 3.4, 3.5 and 5.

2.1 Price Competition and Horizontal Differentiation

2.1.1 Price competition when the good is a homogeneous product
As already underlined in the introduction, a major motivation of firms to differentiate their
products comes from the disastrous consequences of price competition on profits, when
they sell a homogeneous product. When the sellers of a product are few, each of them
should a priori benefit from some market power, resulting from its capacity to influence the
selling price that will emerge as a consequence of aggregate supply. When the product is
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homogeneous, and consumers have perfect information on prices, total demand is addressed
to the firm quoting the lowest price. As a consequence, the other sellers must in turn decrease
their own price in order to keep their customers. Accordingly, the price should progressively
decrease down to the level where a further drop would cost more than would be beneficial.
Under price competition, the price must finally decrease down to the competitive level, where
it is equal to marginal cost. The whole market power resulting from competition among the
few completely vanishes when the product is homogeneous. Probably this is why a market
where few firms sell very similar variants of a product is rarely observed. Perhaps this is the
case of gasoline stations located close to each other at the entrance of a highway or of some
products hardly differentiable by modulating the level of their characteristics, like soaps or
other housekeeping products. But, even in these extreme cases, sellers try to personalize their
variant by choosing particular packaging, or by advertising specific virtues of their product
that the rivals’ variants do not share. In the extreme case where such a minimal differentiation
appears impossible, the survival of firms necessarily requires a tacit collusive agreement on
price, in order to keep it at a level exceeding the competitive price (see Vives, 2000 on this).

As soon as it is possible, one should expect firms to adopt any shelter available from price
competition: it is harsher the closer the similitude in the space of characteristics between
their products. Nonetheless, as stressed in the preceding section, there is a force operating in
the reverse direction, which induces competing firms to locate in the space of characteristics
not too far apart from their rivals. This force allows firms to choose their characteristics
close enough to those selected by their rivals so as to capture their customers without
having to consent to substantial price cuts. An endogenous determination of both prices
and characteristics’ levels emerges from the equilibrium conditions resulting from these two
opposite forces.

2.1.2 Price competition in the spatial model
Hotelling (1929) proposed the following analysis of price competition in a spatial context.
Two bakeries are located along a road of length L uniformly scattered with inhabitants. They
constitute their potential consumers. Each individual consumes one unit of a homogeneous
good, produced at zero cost, which he/she can buy either from seller 1, located at a distance
a from the left extremity of the road, or from seller 2, located at a distance b from its right
extremity (see Figure 6.5).

All customers are assumed to have a sufficiently high willingness to pay to be sure that all of
them want to buy a unit of bread from either of the bakeries. Furthermore, each individual pays
a transportation cost equal to the square of the distance he/she has to travel to join the chosen
selling point. The problems raised by Hotelling are as follows. Which prices pi, i = 1, 2, are
the firms willing to set? How did they select their location, point a for seller 1, and L − b for
seller 2? As we have just seen, these two questions are intimately related. Here we concentrate
on the first, assuming that the sellers have already selected their location.

Whichever consumer t in the interval [0, L], he/she will choose the seller offering him/her
the best opportunity. Since the bread is identical for both sellers, a consumer located between

0              a L–b L

a b 

Figure 6.5 Price competition in the spatial model
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the two sellers will select to buy bread at the seller for whom the transportation cost to travel to
him plus the price is the lowest. If p1 (resp. p 2) denotes the price at bakery 1 (resp. bakery 2),
and x (resp. y) the distance between the consumer and bakery 1 (resp. 2), the consumer will
arbitrate for bakery 1 (resp. 2) whenever p1 + cx2 < p 2 + cy2. When these two numbers are
equal then the corresponding consumer – call him/her t(p1, p 2) – is indifferent between the
two alternatives and is just at the border between the two markets: those consumers located
at the left of consumer t(p1, p 2) buy from bakery 1 while those at his left buy from bakery 2.
Similarly, those consumers located at the left of bakery 1 buy from bakery 1 and those located
at the right of bakery 2 buy from bakery 2. The market shares of the two bakeries at the pair
of prices (p1, p 2) are thus represented by the two intervals

[
0, t(p1, p 2)

]
and

[
t(p1, p 2), L

]
,

respectively. It is not difficult to determine the consumer t(p1, p 2) who is at the border of the
two markets. First the equality p1 + cx2 = p 2 + cy2 must necessarily be satisfied since this
consumer is indifferent between buying his bread at either bakery. Furthermore, the equality
x + y = L − a − b must also hold: the distance between the two sellers is equal to the total
distance (L) minus the distances from seller 1 to 0 (a) and from seller 2 to L(b). Accordingly,
the explicit value of t(p1, p 2) can be found solving the linear system formed by these two
equations in x and y, i.e.

x = p 2 − p1

2c(L − a − b)
+ L − a − b

2
;

y = L − a − b

2
− p 2 − p1

2c(L − a − b)
.

It is now easy to determine the demand functions of the two sellers as a function of their
prices. If we denote by Di(p1, p 2) the quantity demanded from firm i, i = 1, 2 at the pair of
prices (p1, p 2), we get

D1(p1, p 2) = a + x = a + p 2 − p1

2c(L − a − b)
+ L − a − b

2
;

D 2(p1, p 2) = b + y = b − p 2 − p1

2c(L − a − b)
+ L − a − b

2
.

The profits of the sellers corresponding to the pair of prices (p 2, p1) are thus equal to
p1D1(p1, p 2) for firm 1 and p 2D 2(p1, p 2) for firm 2. Now all the ingredients with which
to define a game are brought together: the players are represented by the two bakeries, the
strategies correspond to the prices chosen by each firm and the payoffs to the profit functions
we have just identified. Now we use the Nash equilibrium concept proposed by game theory
to represent the choices of prices made by each firm. A Nash equilibrium is a pair of prices
such that no player can increase his/her payoff by deviating unilaterally from the strategy
he/she has selected at this pair. Applying this criterion to our situation leads us to identify, for
each bakery, the price maximizing its profits, given the price selected by the rival. From the
first-order conditions we easily derive the equilibrium values for the prices, namely,

p ∗
1 = c(L − a − b)

L + (a − b
3 )

; p ∗
2 = c(L − a − b)

L − (a − b
3 )

.

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

Oligopoly and product differentiation 147

A look at these equilibrium prices immediately shows that their values explicitly depend on
the locations that sellers have selected, revealing that price competition is directly related to
the positioning of products in the space of characteristics (here represented by the set of points
on the line (a, b)). In particular, when the sellers locate exactly at the same place (in this case,
a = L − b), the two variants are perceived by all consumers as perfectly homogeneous. We
discover that both prices are then equal to zero, the competitive price.

The previous analysis has been conducted assuming that the sellers had already selected
their location before choosing their price. Thanks to this assumption, we were able to answer
the first question raised by Hotelling: which prices will the competitors select? We have just
identified their values at the Nash equilibrium of the price competition game. It appears,
however, that these values depend on the locations of a and L − b selected by the sellers.
Accordingly, we still need a method to identify how the firms select their location in order to
answer the second question raised by Hotelling: how do firms choose their location, point a
for seller 1, and L − b for seller 2?

2.1.3 The choice of locations: Spatial competition
The previous analysis reveals that the value of prices (p ∗

1 , p ∗
2) is known as soon as locations

are given. If the sellers are able to anticipate these prices as a consequence of their location
choice, they will use this information in order to evaluate what their profits are at each location.
To this end, it is sufficient to evaluate their demands Di(p1, p 2) at the pair of prices (p ∗

1 , p ∗
2)

and multiply the resulting magnitude by the corresponding equilibrium price p ∗
i , i = 1, 2. For

instance, the profits of seller 1 corresponding to the location L − b of seller 2 are given by
c(L−a−b)

18(a−b+3L)2
, while those of seller 2 corresponding to the location a of seller 1 are equal

to c(L−a−b)
18(b−a+3L)2

. The first expression is a function of the location choice of seller 1 and,
similarly, the second is a function of the location choice of seller 2. Assuming that the selection
of locations takes place before the selection of prices, it is easy to determine the best location
of each seller as a function of the location selected by the rival. For instance, imagine that
seller 2 has chosen to locate at point L − b. Then, looking at the expression of profits of seller
1 as given above, it is easy to see that the profits of seller 1 are monotone decreasing with his
location variable a. Another way to say the same thing is that the farther seller 1 locates from
seller 2, the higher seller 1’s profits. It follows that, whatever the location choice of his rival,
the best decision of seller 1 is to locate at a = 0. Reasoning in the same manner from the
viewpoint of seller 2, we observe that, whatever the location strategy a of seller 1, the optimal
location choice of seller 2 obtains by choosing b = 0, entailing a location at the point L − b.
Thus, we conclude that, if the sellers correctly anticipate the equilibrium prices as a function
of the locations, and if the transportation costs are quadratic in distance, both firms will locate
at the opposite extremities of the linear market.

It is easy to interpret this conclusion. We have seen above that, when the two sellers are
located at the same place (in which case a = L − b), their variants are like perfect substitutes:
equilibrium prices are then equal to zero. Also, a close scrutiny of equilibrium prices reveals
that these prices tend to zero when the sellers’ locations tend to each other. Accordingly, in
spite of the agglomeration force that induces both sellers to get closer to each other in order to
increase their market share, the loss in product differentiation implied by these moves reduces
prices to such an extent that it ceases to be profitable. Between the agglomeration force and
the strength of competition, the latter appears to be more significant: sellers differentiate their
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variants as much as possible, by locating themselves at the two opposite extremities of the
linear market. When the choice of location and price operates in a sequential manner without
cooperation between the sellers, and with quadratic transportation costs for consumers, these
sellers constitute “local monopolies” in order to protect themselves as much as possible from
too harsh competition with their rival. A natural question immediately comes to mind: how
robust is this conclusion?

2.1.4 Robustness of the analysis
The conclusion in the above paragraph seems to exclude the possibility of agglomeration
as the major force operating in horizontal differentiation. On the contrary, as a result of
spatial competition, firms seem to prefer to remain far apart from each other. But this
result follows from the particular assumptions under which the analysis has been conducted.
Hotelling (1929) was assuming in his original paper that the cost of distance is a linear
function of the latter while it is assumed here that the cost varies as the square of the
distance. It can be shown that, under Hotelling’s specification of transportation costs, there
is no price equilibrium when the firms are located too close to each other (d’Aspremont,
Gabszewicz, and Thisse, 1979). This conclusion excludes the possibility of applying a similar
analysis to the above in order to characterize the result of spatial competition when assuming
linear transportation costs. Since no price equilibrium exists for some locations, one cannot
theoretically conclude at which location sellers would finally stabilize their choice. Finally,
we can say that no general conclusion can be drawn from Hotelling’s analysis as whether firms
have incentives to reduce competition by moving away from each other or on the other hand to
agglomerate. Hotelling thought erroneously that a kind of principle of minimum differentiation
should hold. But this conclusion was not robust to the choice of the transportation cost
function.

In the real world, many signs seem to indicate a strong tendency of firms to locate in
similar areas. Numerous examples, provided in particular by Hotelling himself, reinforce
the desire to prove the existence of an agglomerating force dominating the dispersion of
firms in order to relax competition. For instance, De Palma et al. (1985) show that, under
sufficient heterogeneity of consumers and random preferences, the principle of minimum
differentiation still holds. Similarly, Lin and Tu (2013) develop a variant of Hotelling’s model
involving an intermediate good’s market in order to explore the location choices of firms.
They consider interactions among three firms: a wholesale supplier of an essential input and
two retail producers. One of these retailers is a vertically integrated firm. The other is an
independent downstream firm. Then they discuss the role of strategic vertical outsourcing
in determining optimal locations for firms, and the input pricing of wholesale suppliers. In
general, the two firms were located more closely when the vertically integrated firm had a
cost advantage without taking strategic outsourcing into consideration. However, the price
of the input may increase when we take strategic vertical outsourcing into account and this
may cause the two firms to move farther away, giving rise again to the principle of minimum
differentiation. In his contribution to this stream of literature, Jehiel (1992) studies the effects
of costs on differentiation. In the standard model, not including differentiation costs, firms
choose to locate at the extremes of the linear city in order to dampen price competition. In
his setup, the differentiation costs increase the attractiveness of the central locations, as the
production cost increases with the distance to the center. He finds that low differentiation
costs, relative to transportation costs, do not affect the equilibrium location choices of the
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firms (maximum differentiation). However, sufficiently high differentiation costs induce firms
to locate in the interior of the city (partial differentiation), increasingly closer to the center as
the differentiation costs increase.

It is important to notice that the principle of minimum differentiation is restored when
prices are not taken into account as strategies in the interaction between the rivals, as in
political competition or in the case when firms compete only on the choice of characteristics of
their variant. Applying the standard model described above to political competition between
two candidates at an election, Downs (1956) considers two political candidates, the first
representing the Left Party while the second represents the Right Party. The voters’ population
is uniformly spread on the political spectrum, represented by the interval [0, 1]: each point
in this interval simultaneously identifies a voter and a political program, ranking from the
extreme left (point 0) to the extreme right (point 1) and the voter for whom this political
program constitute his/her “ideal” program. Each elector votes for the program lying closest to
his/her own position. The objective of each candidate is to announce the program maximizing
the number of voters for the selected program. Which programs will the two candidates
select at equilibrium? In this representation, the main ingredients of the spatial competition
model are inserted. The linear market is replaced here by the political spectrum, and the
choice of a particular variant by the consumers becomes the selection by the voters of a
particular program between those proposed by the candidates. Also, the transportation cost
in the spatial model here becomes the cost for the voter of voting for a political program
differing from his/her ideal one. But there ends the analogy. In particular, the other element
conditioning the consumers’ choice between the variants in the spatial model, namely their
price, is not present here since the only element taken into account in the voters’ choice is
the inadequacy of the proposed programs to their own ideal. Accordingly, this interpretation
is simpler since it does not deal with price selection but only with variant selection, where a
variant is identified with a specific political program on the political spectrum. It gives rise
to a game with the players being the political candidates, the strategies the programs to be
chosen in the political spectrum (0, 1) and the payoffs the number of votes obtained by each
candidate at each pair of programs selected. The Nash equilibrium of this game can provide
an answer to the question formulated above concerning which programs will be proposed to
the vote of electors. It is easy to show that the only equilibrium of this game consists of the
pair of programs (1/2, 1/2), which obtains when each candidate selects the perfectly centrist
program represented by point 1

2 of the political spectrum. This property is called the median
voter theorem.

To conclude, nothing can be said in the standard Hotelling model about the forces under-
lying competition in the case of horizontal product differentiation. Of course, introducing
alternative assumptions in the model can restore the principle of minimum differentiation.
However, in the pure model of horizontal differentiation, equilibrium prices crucially depend
on the transportation costs, sometimes driving the equilibrium to maximal differentiation
(quadratic transportation costs), or to non-existence of an equilibrium (linear transporta-
tion costs).

2.2 Entry and Horizontal Product Differentiation

Using the model of a circular market à la Salop, we have seen in the introduction how the
chain structure of demands implies a localized competition between each seller and their two
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neighbors in the space of characteristics. As a consequence, the entry of new competitors in
a differentiated market requires taking into account the interdependence among sellers: even
if they are very numerous in the market, they are in direct competition with only a few of
them, their immediate neighbors. Our purpose now is to illustrate the entry of new sellers
in horizontal differentiation, using the circular market as a paradigm to describe strategic
aspects of entry on the circle. Let us recall the ingredients of this model. The market consists
of a circular boulevard of length 1, with sellers equidistantly located around the circle. As for
the consumers, they are uniformly dispersed along the boulevard so that, at each point, there
corresponds a different consumer, denoted by the letter t: this letter denotes the consumer t,
as well as the location of this consumer on the boulevard. The point t thus also constitutes
the ideal variant of this consumer since the transportation cost to this point is equal to zero
for him.

Let us suppose that for all consumers transportation varies linearly with the distance d(j, t)
to be traveled by consumer t to buy the good at shop j, j = 1, . . . , n (see Figure 6.6).

Furthermore, suppose that consumers are forced to travel along the boulevard in order to
shop. To determine the demand addressed to firm j, fix all the prices pk of the other sellers.
The share of the market going to firm j is then constituted by the segment of the circle lying
between the consumer indifferent between buying from seller j − 1 or from firm j, and the
consumer indifferent between buying from seller j and seller j + 1. The position of the first of
these consumers is determined by the condition

cx + pj−1 − 1 = c(1/n − x)+ pj,

where x denotes the consumer indifferent between buying from seller j or seller j − 1 (recall
that the n firms are located equidistantly on the circle, implying that the distance between two
firms is equal to 1/n) and cx represents the (linear) cost of traveling a distance x. Similarly,
the position of the consumer y indifferent between buying from firm j and j + 1 must satisfy
the equality

cy + pj + 1 = c(1/n − x)+ pj + 1.

All consumers located between the consumer satisfying the first equation and firm j buy
from firm j, because the distance between them and firm j is smaller than the distance between
them and firm j + 1. Similarly, all consumers located between the consumer satisfying the

firm j

d( j, t)

consumer t

Figure 6.6 Entry and horizontal product differentiation
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second equation and firm j buy from firm j as well, and for the same reason. Solving the two
above equations in x and y, we obtain

x =
1
n (pj − 1 − 2pj + pj + 1)

2c
+ 1

2n

and

y =
1
n (pj + 1 − 2pj + pj − 1)

2c
+ 1

2n
.

Thus, adding the two above expressions, we obtain the demand addressed to firm j, namely

Dj(pj − 1, pj, pj + 1) = (pj − 1 − 2pj + pj + 1)

2c/n
+ 1

n
.

From this expression, it clearly follows that the demand addressed to firm j depends on its own
price and on the prices of its immediate neighbors, but not on the prices quoted by more remote
firms. This is the essence of localized competition. Also, as expected, this demand decreases
when firm j increases its price, but increases when neighboring firms j − 1 or j + 1 increase
their prices: differentiated products are indeed imperfect substitutes. If the unit production
cost b is constant and identical for all firms, the profits of firm j are written as:

(pj − b)Dj(pj − 1, pj, pj + 1).

Due to the complete symmetry of the model, one must expect that all firms sell their product
at the same price p ∗ at equilibrium. First-order conditions for profit maximization reveal that
all equilibrium prices are equal to p ∗ = b + c/2n.

First, notice from the preceding analysis the discrepancy between the equilibrium price
p ∗ with n firms in the market, and the competitive price. In a competitive market all firms
would have sold their product at a uniform price equal to the marginal cost, b. In this case, the
product is the same in each firm: no differentiation exists among firms from the viewpoint of
consumers. When the sellers are dispersed over the space, with the cost parameter c strictly
positive, as in the situation described above, each seller benefits from a kind of local monopoly
power allowing the firm to sell above the marginal cost. While two firms are sufficient to
destroy the monopoly rent in a homogeneous market, horizontal differentiation maintains
positive profit margins whatever the number n of sellers. The higher the profit margin, the
higher the value of the cost parameter c representing the unit transportation cost. On the other
hand, when the value of c is weak, the units of the product sold by different firms appear as
more homogeneous since the transportation cost is weak: a small price differential between
two firms may justify traveling from one to the other while a higher transportation cost would
not have allowed it. In this case, competition is harsher since variants are less differentiated,
and the equilibrium price p ∗ tends to the competitive price when c tends to zero.

A similar effect appears when increasing the number of firms, n. The equilibrium price p ∗
tends also to the competitive price b when the number n of firms tends to infinity: this reflects
the decline in profits resulting from the entry of new firms, which reinforces competition by
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diminishing the distance between adjacent firms (here we compare situations in which all
firms relocate equidistantly on the circle when a new firm enters the market). Notice also that,
without any fixed cost, nothing can stop the entry of new firms in a horizontally differentiated
market. There is no upper bound on the number of firms. It is sufficient for the new entrant to
locate its shop between two existing sellers and capture all the customers who are now located
closer to the entrant than to the adjacent incumbents. By contrast, the existence of a fixed cost
F will limit the proliferation: when there is free entry in the sector, the number of firms cannot
increase beyond the level where the revenue of each firm would become smaller than the fixed
cost, F. This property imposes an upper bound on the number of firms capable of surviving at
equilibrium. In our example, the revenue per firm at equilibrium is equal to c

3n . Accordingly,
the number of firms able to survive at equilibrium is obtained from the condition c

3n ≥ F,

or n ≤ 1/
√

3F. The number of firms surviving at equilibrium results from a compromise
between the transportation costs paid by the consumers and the fixed costs paid by the firms.
When the fixed cost is small, the number of firms can be very high. As a consequence, the
price p ∗ tends to the marginal cost, b, or the competitive price. When the number of firms
becomes very large, each consumer finds one of them in an immediate neighborhood, and
competition is very harsh. By contrast, when the transportation cost c is weak, only a small
number of firms can survive at equilibrium. In spite of this, the equilibrium price tends to
the marginal cost when c becomes very small. When products are horizontally differentiated,
the equilibrium price can be close to the competitive price either because they are weakly
differentiated (c is small), or because the fixed cost F is small, which allows the entry of a
large number of firms.

In the preceding analysis, we assume that the incumbent firms do not anticipate the entry of
new firms and relocate equidistantly at zero cost around the circle each time a new firm enters
the market. Sequential entry when dropping this assumption has been analyzed by several
authors (in particular Prescott and Visscher, 1977). This analysis introduces a new element.
The incumbent firms are handicapped, being unable to relocate. Yet they are assumed to be
able to anticipate the future entry of new competitors and accordingly develop strategies to
choose the most profitable locations before entry of new competitors, taking into account
ex ante these future entries. In the case of sequential entry, one can show the persistence of
strictly positive profits at equilibrium, even under free entry (Eaton and Lipsey, 1980).

2.3 Social Optimum and Market Equilibrium in the Spatial Model

At the end of the preceding subsection we analyzed how the number of firms was influenced
by the size of the fixed cost F and the transportation cost c. Now we try to compare the
number of firms at a market equilibrium with the number corresponding to a Pareto-optimal
allocation. To evaluate this number, we can write down the welfare W corresponding to n
firms equidistantly located on the circular market as

W = 2n
∫ 1

2n

0
(v − b − cx)dx − nF = (v − b − c

4n
)− nF

(notation v expresses the willingness to pay for the product, assumed to be identical for all
consumers, and sufficiently high for all consumers to buy a unit of it at equilibrium). The
expression W can be explained as follows. When n equidistant firms operate in the industry,
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the consumer at the border between two market segments travels a distance equal to 1/2n
to the closest firm. Consequently a consumer located at a distance x ≤ 1/2n from this firm
enjoys a surplus exceeding the marginal cost b, equal to v−b−cx. Maximizing the expression
W with respect to n, we find that the number of firms maximizing total welfare is equal to
1
2

√
c/F. A direct comparison from this value of n with the value of n resulting from the

market mechanism (n = √
3c/F) reveals that it is difficult to conclude whether competition

in the spatial model generates too much, or too little, diversity. The result of the comparison
depends crucially on the specific values of the cost parameter c and the size of the fixed cost F.

3 VERTICAL PRODUCT DIFFERENTIATION

This section studies competition in a vertically differentiated market, and its effects on
product differentiation. Two variants of the same product are vertically differentiated when
all consumers prefer to buy one of these variants over the other, when both variants are sold
at equal price.

A major reason why variants are vertically differentiated follows from income disparities:
there are consumers who have sufficient income to buy the luxurious variant while other
consumers possibly have access to the standard one only.

3.1 The Various Dimensions of Quality

The “quality” of the different variants of a product have to be specified by reference to the set
of characteristics defining this product. Assuming the utility of all consumers of this product
is increasing in the amount of each characteristic, it is easy to compare the quality of the
variants by comparing the amount that each of them embodies. In the particular case where
one variant embodies a larger amount of each of them, compared with another one, it seems
clear that the first variant is of higher quality than the other. It is rather exceptional for a
product that the utility of a consumer would increase, whatever the characteristic defining
this product. More generally, the utility is increasing with respect to some characteristics
and decreasing with respect to others when climbing along the quality ladder. Consider, for
instance, different types of French wines, like a bottle of Burgundy or Bordeaux. Everybody
would agree that the wine is tantamount to higher quality, the higher the respect and
devotion to the sanitary conditions of its production. Nevertheless, there is disagreement
when appreciating the two bottles of wine since many consumers prefer the Burgundy wine
to the Bordeaux, and vice versa for the remaining consumers (this example is borrowed
from Coestler and Marette, 2004). Similarly the utility of a restaurant’s customers probably
increases with the freshness of the food, but some customers like a small restaurant while
others prefer a larger one. This is also the case for tourist hotels in seaside resorts. These hotels
are vertically differentiated by their comfort (number of “stars”), but also by their location.
Some tourists would prefer to sacrifice a star to be in a hotel at Sharm-el-Sheikh rather in
the Canary Islands, or vice versa. In all these cases, variants are vertically differentiated with
respect to some characteristics, but horizontally with respect to others.

Situations in which a product can be defined with respect to a single characteristic only are
simpler to analyze. It requires, however, the utility of all consumers to be monotone increasing
in the amount of this unique characteristic. In this case, indeed, the quality of a variant is
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simply measured by the amount of the single characteristic it embodies. A first characteristic
frequently studied by industrial economists is the reliability of a variant. This reliability can
be measured unequivocally by the probability of success of a variant, measured either by its
functioning or by the expectation of the customer. The higher this probability, the higher the
quality of the variant. This is the case, for instance, for a bulb endowed with a given probability
of functioning when it is switched on. Similarly, concerning the life duration of a product: the
longer the life, the higher the quality of the variant. This also can be the case with a bulb or
a car or, dresses: their quality is often judged on their resistance to wear. Further, it is also
possible to compare two variants according to their chemical components or to a particular
index, like the number of carats of a jewel or the proportion of silver and tin content of a
silver dish, or the number of watts of a bulb. Moreover, product quality can also be measured
by the number of warranties accompanying the sale of the product, or the quality of the after-
sales service. Finally notice that, for some goods, it is possible to substitute the quality and
the quantity, so as to keep the utility obtained from consuming such goods constant. For
instance, one can obtain the same quantity of light in a home either by using a single bulb of
a given number of watts, or by combining several bulbs of different watts, the sum of which
corresponds to the number of watts of this single bulb. Similarly, if the quality of a razor
blade is identified as its life duration, and if there are two different types of blades, one of a
life duration equal to half the duration of the other, it is possible to obtain the same service by
purchasing two blades of the first type, or a single blade of the second!

3.2 Price Competition and Vertical Differentiation

3.2.1 Vertically differentiated duopoly
Consider the following simple model of two vertically differentiated variants of a given
product, based on income disparities existing in the population of potential buyers. Suppose
there are two firms, with one of them selling the “standard” product at price p1 and the other
the “luxurious” one at price p 2. To simplify, we shall temporarily assume that production costs
of the two variants are equal and proportional to the quantity produced. One can then assume,
without loss of generality, that production costs are equal to zero. All potential buyers agree
that variant 2 is of a higher quality than variant 1. All consumers have identical preferences but
differ by their income. We represent these differences by assuming that consumers are ranked
by order of increasing income in the unit interval, from the poorest customer (the consumer
represented by point 0 in the interval) owning an income R1 to the richest one (represented
by point 1 in the same interval) owning an income equal to R1 + R 2. As for the consumers t
located in the interior of the interval, they own an intermediate income equal to R1 + R 2t,
t denoting a point in the interval. Figure 6.7 represents the different income levels assigned to
the agents in the population of consumers.

0 1

R1

R1+R2
R(t)

Figure 6.7 Vertically differentiated duopoly
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This income distribution is uniform between the income R1 and R1 + R 2, respectively.
Income R1, corresponding to the income level of the poorer customer, is proportional to the
population’s average income: an increase in this level equally affects the income of every
member of the population. Similarly, the parameter R1 is proportional to the variance in the
population’s income. Suppose indeed that we keep the total mass of income constant while
transferring a proportion of it from the richer to the poorer customers. This is equivalent to
rotating the line joining R1 to R1 + R 2 while maintaining the surface constant below this line.
This corresponds to a change in the dispersion of income distribution.

Let us now define consumers’ preferences. As remarked above, we assume that all
consumers are identical from this viewpoint. We also suppose that, if a consumer decides
to buy one unit of some variant, he/she decides to buy it at the exclusion of the other.
Furthermore, if he/she decides to buy a variant, he/she buys a single unit of it. These
assumptions depict most purchasing decisions about manufactured goods, like pianos or
television sets. If one consumer is considering buying a piano, he/she is satisfied with one
piano only, and the choice is which one, among all brands available in the industry. This
choice represents the classical arbitrage between price and quality when a consumer examines
whether the increase in utility obtained when buying a higher-quality variant compensates
for buying it at a higher price. In view of obtaining an explicit representation of consumers’
preferences, we suppose finally that the consumer denoted by t, with income R(t) = R1 +R 2t,
obtains a utility level given by u1(R1 + R 2t) when consuming variant 1 (low-quality variant),
by u 2(R1 + R 2t) when consuming variant 2 (high-quality variant) and u0(R1 + R 2t) when
consuming neither of them. Since all consumers prefer owning a unit of the higher-quality
variant to the lower one, and prefer to own a unit of the good, even if this unit is of lower
quality, the parameters u0, u1 and u 2 must satisfy u 2 > u1 > u0 . It is now easy to derive
the reservation price of each consumer t according to his/her income R(t) for each of the two
variants. Taking into account the fact that the utility of the consumer buying a variant i must
be equal, for each variant, to the utility obtained when he does not buy it, the equalities

ui(R1 + R 2t − si(t)) = u0(R1 + R 2t), i = 1, 2

have to be be satisfied, with si(t) representing the reservation price of consumer t for variant
i, i = 1, 2. Solving these equations with respect to si(t),we obtain:

si(t) = ui − u0

ui
(R1 + R 2t), i = 1, 2.

Figure 6.8 represents the reservation price of each of the two variants. As expected, the
reservation price of the luxurious variant is higher than the standard one, whichever the
consumer t. This property reflects the unanimity of consumers about the ranking of variants
on the quality ladder. Moreover, whatever the variant, the reservation price is increasing with
consumers’ income.

3.2.2 Monopoly pricing
We start by assuming that the only variant is the low-quality good, and we study what price
would be set by the monopolist, and which consumers would be willing to buy at this price.
Let p1 be any price set by the monopolist. All consumers whose reservation price exceeds p1
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0 1

s2

s1

Figure 6.8 Vertical differentiation and reservation price

buy the product. Denote by t(p1) that consumer for whom the reservation price is equal to p1.
The demand at this price is equal to the length of the interval

[
1, t(p1)

]
. The explicit value of

t(p1) is easily found from the condition u1 − u0
u1

(R1 + R 2t) = p1. Solving this equation for t,
we obtain

t(p1) = u1p1

(u1 − u0)R 2
− R1

R 2
.

Demand at price p1 is thus equal to 1− t(p1)= 1− u1p1
(u1 − u0)R 2

+ R1
R 2

, with a revenue equal to

p1(1− u1p1
(u1 − u0)R 2

+ R1
R 2
). Maximizing this revenue with respect to price, and assuming that the

solution is interior to the domain of prices (u1R1, u1(R1 + R 2)) in which the demand does not
cover the set of consumers, we find the optimal price from the necessary first-order condition,
namely,

pM = (R1 + R 2)(u1 − u0)

2u1
,

providing a receipt equal to (R1 + R 2)
2(u1 − u0)/(4u1R 2).

It is important, however, to recall the assumption we have made to derive this optimal price:
we have assumed that it strictly belongs to the interval

[u1R1, u1(R1 + R 2)]

of those prices at which the market is not covered. Thus, the optimal price should exceed
the value u1R1 corresponding to the reservation price of the poorest customer present in this
market. In the opposite case, when the optimal price pM does not satisfy this condition, it must
take the value pM = u1R1: this is the highest price among all those whose corresponding
demand is equal to 1. At this price, the revenue of monopoly is also equal to 1. When
comparing this revenue with that corresponding to the interior solution, we find that the first
exceeds the second if, and only if, R1

R 2
> 1.

We can draw the following conclusions from the preceding analysis. First, two market
situations can emerge from profit maximization by the monopolist, according to the values
characterizing the income distribution. According as R1

R 2
� 1, the whole market is served or,
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on the contrary, some potential customers prefer to refrain from buying because they find the
price too high. These customers are of course those with the smaller income. This situation
must arise when incomes are highly dispersed, with “very” rich and “very” poor customers.
The first have higher reservation prices while the remaining ones rather low ones. Thus, the
monopolist has an interest in setting a higher price in order to capture the surplus from richer
customers, even if it leads to abandoning the share of the market consisting of the poorer
ones. The reverse holds when the income distribution is “flatter”. The monopolist in this case
has an interest in fixing the price equal to the reservation price of the poorest customer and
serving the whole market. Concerning the choice of quality, we notice that both price and
monopoly revenue are increasing functions of u1. Thus, the higher the quality, the higher the
monopoly revenue and price. Consequently, if the monopolist has control over the quality, he
will always choose the highest possible one. This conclusion should, however, be tempered
by the fact that we have assumed so far zero production costs. In fact, production costs are
generally increasing with the quality of the variant. Consequently, when costs are introduced,
the monopolist should arbitrate between the increase in quality and the resulting increase in
cost, a property we have not considered so far in the analysis. This will be done when costs
are introduced.

3.2.3 Equilibrium prices under duopoly
Let us now return to our initial situation consisting of a differentiated duopoly, with firm
1 selling a standard product and firm 2 a luxurious variant of it. This situation could be
interpreted as the entry of a new producer in the market, selling a higher-quality variant than
the quality sold by the incumbent. Which price equilibrium will then follow? With respect to
the earlier situation with only one low-quality variant on the market, when the consumer had
only to decide to buy the product at the running price or not, the consumer is now faced with a
new problem: which variant should he/she decide to buy? Given the pair of prices p1 and p 2, a
consumer t buys one unit of variant 2 if and only if, the utility level u 2(R1+R 2t−p 2) obtained
when buying one unit of variant 2 exceeds the utility level u1(R1 + R 2t − p1) obtained when
buying one unit of variant 1. In the case when the inequality is satisfied in the reverse order,
the consumer buys the first variant. In all cases, a second requirement is that the reservation
price si(t) of variant i exceeds the price pi. Thus, a purchase of variant 2 takes place if, and
only if, the two following inequalities u 2p 2 − u1p1 < u 2s 2(t) − u1s1(t) and s 2(t) ≥ p 2 are
satisfied.

Figure 6.9 describes how the market is partitioned for three different pairs of prices.

Case A Case B Case C 

p1 p1

p1=0t(p1) t(p1, p2) t(p1, p2)

v
v

v
v

v

v

0 0 0

(u2/u1)p2

(u2/u1)p2

(u2/u1)p2

Figure 6.9 The market for three different pairs of prices
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In the first case (case A), the set of consumers is partitioned into three parts. In the interval[
0, t(p1)

]
, consumers buy neither variant 1 nor variant 2: in such situations, their reservation

price is smaller than the price corresponding to the associated variant. All consumers in this set
have the weaker income levels. By contrast, all consumers lying in the interval

[
t(p1), t(p1, p)

]
buy variant 1. This group consists, on the one hand, of consumers who, in any case, would
not buy variant 2 at price p2, and of consumers who would have bought variant 2 without
the presence of variant 1, but prefer to refrain from buying this variant, given the difference
in prices. This group of consumers represents the class of “average” income levels. Finally
remains the set of consumers in the interval

[
1, t(p1, p 2)

]
, namely, those who buy variant 2.

These are the richer consumers. The sharing of the market between those who buy variant 1
and variant 2 takes place at the “frontier” consumer t(p1, p 2) for whom the equality

u 2p 2 − u1p1 = s 2(t)

u 2 − u1

is satisfied. Denoting by V the difference u 2p 2 − u1p1, we find the consumer t(p1, p 2) as the
consumer t for whom the distance between the two lines on Figure 6.9 is exactly equal to V.

Suppose now that firm 1 decides to lower its price p1 to some level below u1R1, the
reservation price of the poorest customer t, t = 0. This fall in price influences the size of
firm 1’s market share in two different ways. On the one hand it increases its market share by
“stealing” some customers from the original market share of its rival, those who are located
just at the right of t(p1, p 2), who now prefer to buy from firm 1 due to the fall in price p1.
On the other hand, firm 1 also increases its market share by acquiring customers to the left of
customer t(p1) who did not buy anything before the fall in price, but now start to be attracted
by variant 1 due to the fall of its price. Further, this fall in price has the effect of covering the
market when it is large enough to lower the price below the reservation price of the poorest
customer, namely, below u1R1: all consumers now buy either from firm 1, or from firm 2.
Then we are in case B on Figure 6.9. All customers buy a single unit either from firm 1 (those
consumers in the interval

[
0, t(p1, p 2)

]
, or from firm 2 (the interval

[
1, t(p1, p 2)

]
. Finally, in

case C in Figure 6.9, firm 1 has no customers because all of them prefer to buy the luxurious
product. Everything happens as if the firm entering the market has succeeded in eliminating
the incumbent and is now a monopolist in place of the latter.

The preceding analysis reveals that the domain of a pair of prices can be partitioned into
three subdomains. In the first one, corresponding to case A, both firms obtain a positive market
share at running prices, but the market remains uncovered: some customers, the poorest ones,
do not buy any of the variants. In the second, case B, both firms have a strictly positive market
share, but the market is entirely served. Finally, in case C, firm 2 is the only one present in the
market: firm 1 cannot find any customers, even setting a price equal to zero. It can be shown
that, for any values of the parameters (u1, u 2, R1, R 2) characterizing the income distribution
and the preferences of the customers, there is one, and only one, equilibrium pair of prices,
depending on these values. One can show that this unique pair of prices lies either in domain
A, or B, or C, according to the particular values of the parameters (u1, u 2, R1, R 2). When these
parameters satisfy the inequalities:

0 ≤ R1/R 2 ≤ u 2 − u1

3(u 2 − u0)
,
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the pair of equilibrium prices lie in the subdomain A. In other words, these parameters lead to
a market situation where both firms have a positive market share and the whole market is not
served. On the other hand, when the parameters satisfy

u 2 − u1

3(u 2 − u0)
< R1/R 2 ≤ 1,

the two sellers share the whole market, as in case B. Finally, when 1 ≤ R1/R 2, the whole
market is now served by firm 2 selling the high-quality variant, and firm 1 is excluded from
the market: now we are in case C. Finally, an explicit solution for equilibrium prices can be
found for each of the three cases (for more details, see Gabszewicz and Thisse, 1979).

3.2.4 Properties of equilibrium prices
It follows from the above discussion that, when R1/R 2 ≤ 1, the entry in the market of a
firm selling a higher-quality variant than the incumbent is compatible with the presence of
this incumbent in the market: only prices have to readjust at their new equilibrium values. It
can be verified that these prices are lower than those set by each seller as a monopolist. By
contrast, when R1/R 2 > 1, the entry of a new variant can only be realized with a higher-
quality variant, and is always accompanied by the exit of the standard product. Moreover,
one can verify that, in this case, the equilibrum price is equal to u 2−u1

3(u 2−u1)
, a price not only

inferior to the pure monopoly price, but also the highest price compatible with the presence
of the standard product on the market. Even setting a price equal to zero, there is no hope
for the standard product to be sold to any customer. This surprising result is easily explained
when the quality differential between the incumbent’s variant and the variant penetrating the
market is taken into account. The increase in quality justifies paying a strictly positive price
for variant 2 even if the standard variant is made available at zero price! Notice finally that
entry of the high-quality variant is always beneficial for the consumers. Not only is the set of
possible purchases widened, but the price of the standard variable is lower when it can remain
in the market!

3.3 Product Choice

Let us now consider the choice of quality by the entrant. We recognize here the same problem
as in horizontal product differentiation. Is it more profitable to select a variant whose quality
is close to the incumbent’s quality or, on the contrary, to select a variant strongly differentiated
so as to constitute a kind of “local monopoly”? When R1/R 2 > 1, the answer is immediate.
Since the entrant remains alone in the market after entry, with a demand equal to 1, its profits
are equal to u 2−u1

3(u 2−u0)
, a function monotone increasing in the quality u 2. Thus the monopoly

chooses the highest possible quality. Now suppose that the reverse inequality holds, namely,
R1
R 2

≤ 1. When the entrant selects a quality sufficiently close to the existing standard variant,

the condition 0 ≤ R1/R 2 ≤ u 2−u1
3(u 2−u0)

is necessarily satisfied, so that the price equilibrium
is located in case B in Figure 6.9: both sellers have a positive market share and the market
is covered. One can easily show that, when u 2 tends to u1, both equilibrium prices and profits
simultaneously tend to zero. This is not surprising since, in the latter case, both variants tend
to be homogeneous and we know since Bertrand that two homogeneous products have zero
price at equilibrium. It is easy to show that the optimal choice for the entrant again consists of
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choosing the highest possible quality, confirming the outcome already observed in the case of
horizontal product differentiation. There is a strong incentive for competitors to differentiate
their variants in view of relaxing price competition when products are too similar.

Finally, we point out two properties of price equilibria related to the parameters of the
income distribution, R1 and R 2. First notice that increasing the value R1 from 0, without
changing R 2, leads the equilibrium prices from domain A to B and, then, to C: the ratio
R1/R 2 increases when R1 increases and R 2 remains constant. Considering the explicit values
of the equilibrium prices, we conclude that increasing the value of R1 from 0 first leads to
a simultaneous increase in both equilibrium prices. Beyond some level, a further increase of
R1 drives the equilibrium prices in domain B, with the price p1 of the low-quality product
decreasing to zero and reaching this value exactly when the ratio R1/R 2 is equal to 1. The
decrease in p1 follows because more and more consumers reject the standard variant, in
proportion as the average income increases with R1. At the limit, when R1/R 2 is equal to
1, the price p1 is equal to zero: even with a null price, the seller of the low-quality variant
cannot retain any consumers! A higher value of R1 then reverberates into an increase of p 2.

Changing the value of R 2 and, thus, the redistribution of income, shows more ambiguous
effects. Starting with a high dispersion of incomes over the population, reducing the value
of R 2 entails oscillatory behavior of equilibrium prices in domains A and B, until R1/R 2
becomes equal to 1. Reducing further the parameter R 2 again leads to the exclusion of the
standard product. It also leads to an increase in the price of the luxurious variant. Consequently
a further reduction of R 2 can only decrease consumers’ welfare. In spite of this surprising
proposition, it shows that it is never optimal to promote a pure egalitarian income distribution.
With weak heterogeneity in the income distribution, firms can more easily capture the con-
sumers’ surplus than they can when income is dispersed. When income is further dispersed,
they must lower their price in view of capturing the surplus of the poorer consumers.

3.4 Vertical Differentiation and Entry: The Finiteness Property

In order to analyze how entry modifies the market, we shall assume that entry takes place by
superior quality: the kth firm entering the industry sells a variant dominating all the existing
ones in quality. This assumption is not unreasonable since it captures the fact that, being
the latest to enter, it benefits from technological progress since the entry of firm k − 1. The
preceding analysis can then be extended to a differentiated oligopoly embodying n firms,
ranked by order of increasing quality, variant k being of higher quality than variant k − 1,
namely, uk − 1 < uk for all k, k = 2, . . . , n.

Suppose now the entry of a (n + 1)th variant of superior quality than un. Two situations can
be observed at the new Nash equilibrium after entry. In the first, there are still some consumers
who do not buy any of the variants available after entry: this situation corresponds to case A
identified above in Figure 6.9. In spite of the entry of variant 2, the market is not yet fully
covered: some consumers among the poorest prefer to refrain from consuming either of the
two variants. In the second situation, the entry drives the market to be fully covered at the new
equilibrium prices. Even the poorest customer buys a variant. We are then in the situations
corresponding to case B or case C analyzed above. The first one corresponds to case B. The
entry of firm n+1 does not cancel the share of any firm existing before entry: all of them keep
a strictly positive market share. The second situation corresponds to case C. The entry of the
(n+1)th firm entails a new price equilibrium excluding the lowest-quality seller. Even setting
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a price equal to zero, the latter cannot avoid being excluded from the market by higher-quality
variants. The seller n + 1 selling the highest quality enters the market, but simultaneously
excludes from it the seller producing the lowest quality. Everything happens as if the market
would be too “narrow” to allow more than n firms to cohabit with a strictly positive market
share. The entry of the highest quality must necessarily be accompanied with the exit of the
lowest-quality firm. This result generalizes the the property already observed with n = 2
when the condition R1/R2 > 1 is satisfied: under this assumption, firm 2 drives out firm 1
from the market. It can be proved that, whatever the value of the ratio R1/R2, there is always
a maximal number of variants that can cohabit in the market with strictly positive market
shares. Moreover, this number is increasing with the degree of income dispersion. Finally, it
follows that, under some conditions, the entry of a higher quality always leads to a decrease
in the equilibrium prices of the variants already existing in the market. This property, which
seems natural when the number of variants is increasing, is more surprising when the entry of
a new variant is necessarily accompanied by the exit of the least-quality variant!

Thus we conclude that entry with vertically differentiated variants follows a very different
mechanics from entry with identical or horizontally differentiated products. In the latter case,
without barriers of entry and/or fixed costs, a large number of firms must be expected, and pure
competition is naturally observed: each seller takes the price as given since he/she resembles
a drop in the ocean. By contrast, entry in a vertically differentiated industry drives the market
more or less rapidly to a “natural” oligopoly structure: according to the degree of dispersion,
the market becomes overcrowded with a too large number of firms and a relatively small
number among them can cohabit (finiteness property). A strategic behavior must be expected
from the sellers. This context prevents perfect competition from being realized.

If tastes and incomes are little differentiated throughout the population, all individuals have
almost the same income and agree to buy the high-quality variant at the reservation price
of the poorest customer. By contrast, when income is more dispersed, richer consumers add
more to the surplus when buying the high-quality product at a higher price than the reservation
price of the poorest customer. Thus, in this case, the profit is higher at a higher price and some
poorer customers remain unserved. Then a lower-quality firm can enter the market and sell
its product to these poorer customers. Paradoxically, the weaker the income dispersion, the
smaller the number of sellers at equilibrium, and the weaker their competition!

3.5 The Role of Production Costs

We have assumed so far that the average production cost of each variant with respect to quality
is equal to zero, or to some constant equal for each variant. This is not realistic. Generally, the
higher the quality of a variant, the higher its unit cost. Thus it seems natural to assume that
there is a cost function c(u) increasing with u, and representing the unit cost of the variant
u. Moreover, let us assume that there is an interval

[
u∗, u ∗] of qualities where u∗ (resp. u ∗)

represents the lowest (resp. highest) quality available. If the unit cost is increasing very quickly
with quality, the gain obtained by increasing quality could be lost due to the increase in unit
cost. In particular, it must be verified that the finiteness property still holds after unit costs
are introduced. To this end, assume that each unit of variant u is sold at a price equal to its
average cost c(u). The utility level U of a consumer with income R choosing variant u is equal
to u(R − c(u)). This equation can be rewritten as uc(u) = uR − U. Figure 6.10 represents the
curve uc(u) in the plane (u, c(u)).
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D
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Figure 6.10 The role of production costs

Suppose that a consumer with income R decides to buy quality u′, and consider the line
passing through (u′, c(u′)) with a slope equal to R. This line cuts the vertical axis at point A.
By an elementary rule, the distance AC is equal to u′R. Since C = u′c(u′), we find that A is
equal to u′c(u′)−u′R. Consequently, the distance between point A and the origin u0 measures
the utility of a consumer with income R and buying one unit of variant u′ at average cost c(u′).
Suppose that the consumer chooses the variant leading to the highest utility. The optimal
variant u ∗ maximizing utility is defined by the marginal condition R = u ∗c′(u ∗) + c(u ∗)
where c′ denotes the first derivative of c with respect to u. This optimal variant satisfying the
first-order condition is represented in Figure 6.10: the utility obtained is equal to D.

The preceding analysis was performed for an arbitrary consumer with income R. In our
analysis, incomes are spread over the interval [0, 1] representing the population of consumers.
Let us examine now which variants are effectively consumed with the income distribution
R1 + R 2t ,t ∈ [0, 1]. We first identify the variants consumed by the poorest and the richest
consumers, with revenue R1 and R1 + R 2, respectively, if the price of each variant u would
be given by c(u). In Figure 6.11, the two lines corresponding to these levels of income are
represented. The higher line corresponds to income level R1, and the lower one to income level
R1 + R 2. The curve uc(u) is also represented in Figure 6.11. To any income level R1 + R 2t,
t ∈ [0, 1] , there corresponds one line whose slope is in between the slopes of lines (a) and (b).

u u° u°° u°°° u 

(a)

(b)

uc(u)
uc(u)

Figure 6.11 Production costs and income distribution
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Suppose first that the technologically feasible variants are between u and u◦, as in Figure
6.11: only the branch of uc(u) between these two values has to be taken into account. For
all u in [u, u◦], all consumers maximize their utility by selecting the highest quality since it
is at u◦ that the distance from the origin is the largest for the line going through u, for all u
in [u, u◦]. Furthermore, all consumers rank the variants in the feasible domain in the same
increasing way. However, all consumers would have preferred to consume higher variants,
but they are not available. Now suppose that the feasible domain is the interval [u◦, u◦◦]: now
only the section of uc(u) between u◦ and u◦◦ has to be taken into account. Then, at a price
equal to marginal cost, the poorest consumer selects variant u◦ and the richest one variant
u◦◦. Furthermore, all consumers with an intermediate income choose a different variant.
This variant is determined by the tangency between the line corresponding to income of this
consumer and the curve uc(u). Finally, suppose that the feasible variants correspond to the
interval [u◦◦, u◦◦◦]. Now all consumers rank the available variants in the same manner but
in a decreasing way. Whatever the level of income, the farther away from u◦◦◦, the least it is
desired if its price is equal to marginal cost. We are in the situation evoked above: if the unit
cost increases too fast with quality, what can be gained in quality is more than proportionately
lost by the increase in cost.

What can be said about the preceding analysis, due to Mussa and Rosen (1978)? The first
case arises when the unit cost is constant (equal to zero) independently from the level of
quality: at constant unit cost, all consumers rank the variants in the same increasing way.
The second case is clearly different. At a price equal to average cost, all consumers prefer a
different variant. This is similar to horizontal product differentiation: pricing at marginal cost
allows the entry of an arbitrary number of firms and the finiteness property does not hold.
Finally, in the third case, all variants are again unanimously ranked, but in a decreasing order:
the increase in the unit cost, or the price, is stronger than the quality increase. Finally, only
the first case leads to the finiteness property when costs are explicitly introduced and variants
are priced at their marginal cost. To obtain this situation, it is necessary that the unit cost does
not increase too rapidly with respect to quality. This condition is of course satisfied when the
unit cost is assumed to be equal to zero whatever the quality.

The analysis has so far been conducted assuming that the variants are priced at their
marginal cost. In fact, prices are set at the Nash equilibrium of the game, complicating the
analysis a little more. In spite of these difficulties, Shaked and Sutton (1983) have found a
necessary and sufficient condition for the finiteness property to hold at a Nash equilibrium in
prices. This condition specifies that either the first-order condition R = uc′(u)+ c(u) is never
satisfied by any consumer in the interval of qualities supplied, or, if there is such a consumer,
he/she prefers to refrain from buying any variant and spends all of his/her income on other
goods and services.

Let us summarize the main insights of our preceding paragraphs. They have revealed a new
element to the case of vertical differentiation. Contrary to horizontal product differentiation,
there might exist an upper bound on the number of variants who can cohabit in a vertically
differentiated market. Generally, economists justify the presence of only a small number
of firms by the existence of fixed costs or of barriers to entry. In a vertically differentiated
industry, it is not necessary to evoke these arguments because the small number of firms can
follow from the finiteness property: the entry of a new firm offering a higher quality product
should be accompanied by the exit of the lowest-quality variant. This conclusion should,
however, be tempered: in order to hold, the average cost should not increase too quickly with
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quality. Otherwise, the finiteness property does not hold and an arbitrarily large number of
firms can invade the market and realize the conditions required by perfect competition.

3.6 Vertical Differentiation and Spatial Competition

Hotelling proposed a spatial metaphor for analyzing horizontal differentiation. Similarly, we
define a spatial version of the vertical differentiation model (Gabszewicz and Thisse, 1986).
Let us suppose there is a linear market uniformly covered with consumers on the interval [0, 1]
and willing to buy a unit of a homogeneous product. Nevertheless, differing from Hotelling,
we suppose that the two sellers are located outside the market (see Figure 6.12, where si

identifies the location of seller i, i = 1, 2). Also, all consumers have a transportation cost
c(x) = cx2 to move from their position on the line to the shops. Of course, all of them prefer
to buy from the seller located at the closest end of the market if the sellers set the same
price. Accordingly, the two variants are vertically differentiated since variant 1 located in s1
is unanimously ranked above variant 2 located in s 2.

It is easy to find the price equilibrium in this model. Given a pair of prices (p1, p 2), the
consumer who is indifferent between buying variant 1 at price p1 and variant 2 at price p 2 is
located at the intersection of the two curves in Figure 6.12. The consumers located at the left
of the latter buy from seller 2 and those located at the right buy from the more remote seller
since they benefit from their proximity in terms of transportation costs. Formally, the marginal
consumer is defined by the condition

p1 + c(s1 − x)2 = p 2 + c(s 2 − x)2.

Accordingly, profit functions are defined as

R1(p1, p 2) = p1(1 − c(s1 + s 2)/2 + (p 2 − p1))

R 2(p1, p 2) = p 2(c(s1 + s 2)/2 + (p1 − p 2)).

From the first-order conditions it is easy to derive equilibrium prices, namely,

p ∗
1 = (s 2 − s1)(c(s 2 + s1 + 2)/3)

p ∗
2 = (s 2 − s1)(c(4 − s 2 − s1)/3).

p1

p2

0 t(p1 , p2) L s1 s2

Figure 6.12 Vertical differentiation and spatial competition
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Notice, however, that if condition 4 < s 2 − s1 is not satisfied, the price of the most remote
firm becomes negative. Then, its price is given by zero: even by setting a zero price, the most
remote firm is unable to attract any consumer to buy the product at his/her shop.

How do the sellers choose their location? Substituting p ∗
1 and p ∗

2 in the profit functions
given above, we obtain the payoffs of the sellers expressed as a function of their location at
equilibrium prices corresponding to these locations. The resulting Nash equilibrium obtains
when firm 1 selects to locate as close as possible to the market, i.e., s ∗

1 = 1, while firm 2
chooses its location by maximizing its profit under the constraint that s ∗

1 = 1. The next section
is devoted to the problem of nesting the two forms of differentiation: horizontal and vertical.

4 NESTING HORIZONTAL AND VERTICAL DIFFERENTIATION

Under horizontal differentiation, when tastes are heterogenous, it is possible to segment the
population of consumers according to their preferred variant. We may then associate to each
variant the group of consumers who prefer that variant over the other and define this group as
its natural market. In the extreme case of vertical product differentiation, the natural market of
one firm consists of the whole market while the other has a zero market share at equal price.
By contrast, horizontal differentiation accommodates a very large class of the natural markets’
configurations. For instance, in the case of spatial competition à la Hotelling (Hotelling, 1929),
when firm 1 is located at the left extremity of the linear market while firm 2 stands at the other
extremity, the market does not view one firm as more “desirable” on average than the other
since both natural markets are exactly of equal size.

At the other extreme, firms can be located in the linear market in such a manner that almost
all consumers would prefer to buy from one of the two firms, in spite of the fact that these firms
set the same price. This would be the case, again in the classical Hotelling location model,
when firm 2 is located at the right extremity of the linear market while firm 1 now stands
very close to it. Due to transportation costs, almost all consumers buy from firm 1 when it
quotes the same price as firm 2. Thus, this situation corresponds very closely to the definition
of vertical differentiation, even if, sensu stricto, it should fall into the alternative category. In
all such hybrid cases, and although, differently from vertical differentiation, no variant holds
a definite advantage over the other when horizontally differentiated, one may argue that the
firm counting a larger number of consumers in its natural market should somehow benefit
from a larger market power: on average, the market views this variant as more desirable. A
first natural question therefore comes to mind: to what extent do differences in natural market
sizes translate into different equilibrium market valuations for the product? Another natural
question is whether, when the size of the natural market of a particular firm tends to the size
of the whole market, the corresponding equilibrium prices tend monotonically to the prices
prevailing at equilibrium of the corresponding vertical product differentiation market. Such
a conclusion would then allow nesting vertical and horizontal product differentiation models
in a natural way. We develop hereafter a duopoly model that addresses these questions in a
precise way. To this end, we adapt the canonical Hotelling model to allow for natural markets
of different sizes. In the symmetric linear model with firms located at the extremities of the
unit interval, natural markets are defined by the

[
0, 1/2

]
and

[
1/2, 1

]
intervals, respectively. In

order to allow for natural markets with different sizes, we then assume that the density differs
from one interval to the other. Notice that, in this model, a vertical configuration appears as a
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0 ½ 1

µ

Figure 6.13 Horizontal and vertical differentiation

limiting case where the density of one of the intervals tends to zero while the density of the
other tends to 1. In this setup, we show that equilibrium prices display two key properties:
first, the level of prices at equilibrium decreases with the disparities in the natural market size.
Second, the equilibrium price differential increases with the disparities. In other words, the
more unequal in size the natural markets, the fiercer the price competition.

Let [0, 1] be the set of types of consumers and consider two firms, the first one being located

at point 0 and the other at point 1. The density over the types in T1 =
[
0, 1

2

]
is equal to μ and

to 1 − μ over the types in T 2 =
[

1
2 , 1

]
. Figure 6.13 illustrates this situation.

The preferences of consumer of type x in [0, 1], are defined by

U(x) = S − tx − p1

when the consumers buy from firm 1 (firm located at point 0), and by

U(x) = S − (1 − t)x − p 2

when the consumers buy from firm 2 (firm located at point 1), with S denoting the absolute
reservation price and with t denoting the unit transportation cost and pi the price set by firm
i, i = 1, 2. Notice that, at equal prices, all consumers in T1 prefer to buy from firm 1 while
all consumers in T 2 prefer to buy from firm 2 so that, when μ < 1/2, there is a majority of
consumers who prefer buying from firm 2 than from firm 1 at equal prices, and vice versa
when μ > 1/2. In particular, when μ = 0, all consumers prefer buying from 2, which
corresponds to the (extreme) case of vertical differentiation and, when μ = 1/2, we obtain
the (opposite extreme) case of symmetric horizontal differentiation. For different values of μ,
we get hybrid cases of horizontal product differentiation, with a majority preferring to buy
from firm 2 (resp. firm 1) than firm 1 (resp. firm 2) according as μ < 1/2 (resp. μ > 1/2). In
the following, we normalize the transportation cost t by putting t = 1. We shall also assume
without loss of generality that μ < 1/2, so that there is a majority of consumers who prefer
to buy from firm 2 than from firm 1 at equal prices. Finally, we assume that the constant S is
large enough to guarantee that the market is covered.

Let x(p1, p 2) be the solution to

S − x − p1 = S − (1 − x)− p 2,

namely, x(p1, p 2) = 1
2 (p 2 − p1 + 1).
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Notice that, if p1 < p 2, we have x(p1, p 2) > 1/2, so that the interval T1 = [
0, 1/2

]
is

included in the set of consumers who buy from firm 1 at prices (p1, p 2). To this set, one must
add the interval of types

[
1/2, x(p1, p 2)

]
corresponding to consumers who prefer to buy from

firm 2 than from firm 1 at equal price, but who prefer to buy from firm 1 at prices (p1, p 2).
Consequently, the demand D1(p1, p 2) to firm 1 at prices (p1, p 2) with p1 > p 2 obtains as

D1(p1, p 2) = μ

2
+ (1 − μ)(p1 − p 2).

Now, if p1 > p 2, the point x(p1, p 2) is located at the left of 1/2 and

D1(p1, p 2) = μ

2
(p 2 − p1 + 1).

Notice that, since μ < 1/2, the demand function of firm 1 is a linear convex with a kink
at p1 = p 2. Therefore, the revenue function might not be concave in own price. The demand
D 2(p1, p 2) and revenue functions for firm 2 are easily derived as

D 2(p1, p 2) = 1 − μ

2
+ μ

2
(p1 − p 2)

when p1 < p2, and

D 2(p1, p 2) = 1 − μ

2
(p1 − p 2 + 1)

when p 2 > p1. The corresponding revenue function is concave in own price. We first
identify the unique candidate pure-strategy equilibrium. Given the firms’ best replies, it is first
clear that there is no symmetric pure-strategy equilibrium. Additional computations directly
show that there is no asymmetric equilibrium in which firm 2 quotes the lowest price. The only
remaining price equilibrium candidate is such that p1 < p 2. Combining the corresponding
best reply functions, one obtains

p ∗
1 = μ+ 1

3(1 − μ)
; p ∗

2 = 2 − μ

3(1 − μ)
.

It is then easy to check that p ∗
1 < p ∗

2 holds if and only if μ < 1/2. In other words, the
equilibrium candidate indeed yields the desired price hierarchy. Finally, one can show that the
price candidate p ∗

2 is located at the right of the point where the best-reply function of seller 2
is discontinuous, which guarantees the existence of (p ∗

1 , p ∗
2) as a price equilibrium.

We may consider now the equilibrium prices corresponding to the “extreme” situations
in which either all agents prefer to buy from firm 2 than from firm 1 at equal prices
(μ = 0: vertical product differentiation), or half of them prefer to buy from firm 1 and
half of them from firm 2 under the same condition (μ < 1/2: symmetric horizontal product
differentiation). In the first case, p ∗

1 = 1/3; p ∗
2 = 2/3. In the second case, we notice that when

μ < 1/2, equilibrium prices are equal to each other and equal to one. We also notice that,
when μ tends to zero, the model gets closer and closer to a situation of vertical differentiation,
in which a larger and larger majority prefers variant 2 to variant 1 (1 − μ tends to 1), and the
corresponding equilibrium prices converge to the equilibrium prices in the limit model.
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It is easy to check that the equilibrium analysis covering the case when 1/2 > μ > 1 is,
mutatis mutandis, identical to the preceding one: firm 1 now plays the role of firm 2 in the
definition of demands and profits, firm 2 now selling the variant preferred by the majority.
Additional properties of the equilibrium are worth mentioning, namely, the equilibrium price
differential decreases with μ, while absolute price levels both increase with μ. In other words,
a larger symmetry in the population’s tastes means that the natural market of firm 2 gets bigger,
which implies that it is less attractive to challenge the other’s natural market in relative terms.
Market valuations of the product tend to reflect the distribution of tastes among variants in the
population. Equilibrium market valuations reflect the disparities in natural market sizes.

5 APPLICATIONS

In the following, we provide two applications of the above approach to product differentiation
via models based on characteristics. The first deals with externalities, both simple and cross-
network externalities. Simple networks arise when the utility of consumers for a good depends
on the number of its users, like in the case of a communication network. Cross-network
externalities are observed in several markets when the utility of the consumers in one market
depends on the number of consumers in another, and vice versa. This the case, for instance,
in the competition between bank card companies when the utility of merchants for accepting
a credit card depends on the number of cardholders and the utility of subscribing a credit card
to a bank card company depends on the numbers of merchants who accept it.

The second application is concerned with social preferences: people are conscious of their
peers and the social image they convey to them. Two noticeable approaches to this social
attitude are the “other-regarding preferences” (Andreoni, 1990, Andreoni and Miller, 2002)
on the one hand, and “identity utility” (Akerlof, 1997) on the other. In the former approach, the
individual choice is driven by the others’ payoff. In the latter, the individual choice is shaped
simultaneously by the desire to satisfy material needs and to comply with some normative
ideal. Of course, when these drivers are in conflict, the actual choice depends both on the
disutility of deviating from one’s normative ideal and the cost of sacrificing some material
needs to comply with the norm. Rather than being mutually exclusive, we combine these
approaches of other-regarding preferences and identity utility by assuming that people do
not pursue an absolute egoistic goal, but a social position among peers. This position is
obtained through goods that provide their buyers with some social/psychological benefits
beyond the material needs that products traditionally satisfy. In particular, these benefits can
enable the buyers to differentiate themselves from other consumers, thereby satisfying their
vanity. Otherwise, consumers can decide to purchase some brands to satisfy a conformity
desire. Whatever the specific driver of this social behavior, consumers’ choice is guided by a
social and/or psychological incentive in addition to the individual rationality-based motive.

5.1 Network Effects

5.1.1 Simple network effects and product differentiation
In numerous situations, the demand for a product is correlated with the number of its
users: for example, the utility of a cell is directly related to the size of the communication
network in which it operates. The existence of such network externalities is a privileged
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field of application of product differentiation theory. We shall limit our analysis to the case
of horizontal product differentiation combined with the existence of positive consumption
externalities. The analysis easily extends to vertical product differentiation and negative
externalities (like congestion effects where the utility of consuming a product decreases with
the length of the queue).

As in the Hotelling model, consider two firms selling a homogeneous product at zero cost
to customers uniformly distributed along the unit interval. Each customer can buy a unit of
the product either from seller 1 located in x1, x1 ∈ [0, 1], with x1 measuring the distance
between the selling point and the left extremity of the interval, or from seller 2, located at
a distance equal to x 2 from the same extremity. We suppose that customers share the same
reservation price for one unit of the good, K. Moreover, each customer incurs a transportation
cost proportional to the square of the distance to the seller he has selected for buying the good
from.

This model differs, however, from the traditional model because it is assumed that
consumers’ utility now not only depends on the intrinsic value of the good (stand-alone value),
but also on the number of buyers ni of seller i, i = 1, 2 (network value).

More precisely, it is supposed that the utility of customer x of buying from seller i located
at xi is equal to K −pi − t(x−xi)

2 +ani, i = 1, 2, where ni represents the number of customers
buying from seller i at price pi. If the parameter a is positive (resp. negative), the network
externality is positive (resp. negative). We suppose a > 0 (positive externalities). Also notice
that the larger the value of a, the stronger the network effect since the externality increases
with a. Given a pair of prices (p1, p 2), two situations can appear. Either there is a consumer
t(p1, p 2) in the interval [0, 1] who is indifferent between buying at this pair of prices from
either seller, in which case all consumers to the left of this consumer buy from seller 1 and
those to his/her right from seller 2. Or there is no such consumer, in which case all consumers
buy from a single seller. The first situation takes place when there is a value x in the interval
[0, 1], solving the equation

K − p1 − t(x − x1)
2 + an1 = K − p 2 − t(x − x 2)

2 + an 2,

with n1 and n 2 representing the expectations of buyers concerning the size of demand
addressed to seller 1 and seller 2, respectively. We assume that these expectations are self-
fulfilling: the sizes of demand expected by the buyers at the pair of prices (p1, p 2) are
corresponding to their effective sizes. Then, we may replace in the above equation the values
n1 and n 2 with the sizes x and 1 − x, respectively, and we get the following equation to be
solved for x, namely,

x = x(p1, p 2) = p1 − p1 − a/2(t(2 − x1 − x 2)− a).

This value belongs to the interior of the interval [0, 1] if, and only if, the two conditions

p1 − p 2 > a − t(x 2 − x1)(2 − x1 − x 2)

p1 − p 2 < t(x 2 − x1)t(x 2 + x1)− a

are simultaneously satisfied. The domain of a pair of prices for which these two conditions are
simultaneously satisfied differs from the empty set if and only if the inequality t(x 2 − x1) > a
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is satisfied. This condition states that the cost of the distance between the two sellers must
exceed the intensity of the network effect. Now suppose that these conditions are not satisfied.
Then, there is no solution in x to the preceding equation. Either the first equation is violated
and the value of x(p1, p 2) is equal to 1 (and 1 − x(p1, p 2) = 0); or the second inequality is
not satisfied and x(p1, p 2) = 0 (and 1 − x(p1, p 2) = 1). Accordingly, given a pair of prices
(p1, p 2), three situations can be realized concerning the sharing of the market between the
two sellers. In the first one, x(p1, p 2) belongs to the interior of the interval [0, 1] and the two
sellers each have a strictly positive market share. In the two alternative cases, one of the sellers
eliminates its competitor from the market.

5.1.2 Simple network effects and price equilibrium
It remains to determine the equilibrium prices and, in particular, under which conditions both
sellers have a strictly market share or, on the contrary, one of them is eliminated from the
market. When x(p1, p 2) belongs to the interior of the interval [0, 1], the demand from seller 1
is then equal to x(p1, p 2) = p 2 − p1 − a/2(t(2 − x1 − x 2) − a) and the demand of seller 2
x(p1, p 2) = 0, with the corresponding profits obtained by multiplying these market shares by
the corresponding prices. If the price equilibrium is interior to the admissible domain [0, 1],
it is easy to determine the equilibrium values by using, as usual, the first-order necessary and
sufficient conditions, leading to the equilibrium values:

p ∗
1 = t

3
((x 2 − x1)(2 + x1 + x 2))− a

p ∗
2 = t

3
((x 2 − x1)(4 − x1 − x 2))− a.

Substituting these values in the value of x(p1, p 2) given above and assuming x1 + x 2 > 1, we
notice that x(p1, p 2) effectively belongs to the interior of [0, 1] if, and only if, the condition
a ≤ t

3 (x 2 − x1)(4 − x1 − x 2) is satisfied. In the reverse case, only one seller covers the
market with its sales. Suppose it is seller 1. Then, the equation p1 − p 2 > a − t(x 2 − x1)(2 −
x1 − x 2) is violated, so that the reverse of this inequality must hold at equilibrium. Then,
the price equilibrium p ∗

1 obtains as the highest price allowing seller 1 to serve the market
(p ∗

1 = a − t
3 ((x 2 − x1)(2 − x1 − x 2))) guaranteeing that seller 2, even setting the lowest price

p ∗
2 = 0, cannot serve any share of the market. At the equilibrium prices, both sellers find

it profitable to serve the market if and only if the network effect is sufficiently low, namely
a ≤ t

3 ((x 2 − x1)(4 − x1 − x 2)).
When both sellers enjoy a positive market share at equilibrium we notice that equilibrium

prices are smaller than they would be without network effects. Also we notice that equilibrium
prices decrease with the size of the network effects as measured by a. The existence of network
effects increases the elasticity of demand with respect to price, increasing the incentive of
sellers to lower their price to conquer the rival’s customers. When the above inequality is not
satisfied, only one seller serves the whole market. Accordingly, network effects can engender
a situation where, even though frequently observed in vertical differentiation, cannot arise
under horizontal product differentiation without such effects, one of the sellers bars entry to
its competitor at equilibrium. This can be explained as follows. With network effects, the good
is desired not only for its intrinsic characteristics, but also for the number of its consumers.
Accordingly, the seller with a larger market share can attract a larger number of consumers,
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even if the product quality is the same. Thus equilibrium determines in an endogenous way
the “quality” of the product by the size of the market of each seller at equilibrium.

5.1.3 Cross-network effects and product differentiation
In the preceding analysis, we assume that the externalities are induced by the size of demand
in the industry considered. It happens, however, that externalities develop from one industry to
another, when the utility for a product depends on the size of demand for a product developed
in another. Thus, we deal with cross-network externalities. There are many examples leading
to this situation. For instance, consider shopping malls. The larger the number of different
shops in a shopping mall, the more attractive it is to visit. But, conversely, the larger the
number of visitors, the more attractive for a merchant to rent a shop in the shopping mall!
Another example is provided by credit cards. The utility of owning a credit card depends on
the number of merchants who are willing to accept it as a means of payment. Conversely, the
utility for a merchant to pay a subscription to the bank card company to be able to accept the
credit card depends on the number of cardholders who are willing to pay with a credit card.
Such a situation is called a two-sided market. If the two-sides market are men on the one hand
and women on the other, the interest in subscribing to a dating website depends for men on the
number of women and, for women, on the number of men who have subscribed to the website.
Finally, a last example is provided by the market for media and the market for advertising, both
linked by cross-network externalities. For instance, the readers of a newspaper are sensitive
to the ads placed in it. In particular, ads are interesting to those who try to buy a second-hand
car or rent an apartment. As for the advertisers, they are interested in the number of readers of
the newspaper since the more readers, the higher the probability that the ad will be noticed.

All these situations give birth to new opportunities to all firms working at the interface
of these markets (we call them platforms in the following). One intuitively understands
that platforms play the major role of facilitating transactions between the buyers of some
products and their sellers, transactions that could not have been realized without the platform’s
intervention. “Embarking” buyers and sellers on the platform makes possible transactions that
would not be possible without their existence.

To model the preceding situations, we use a model combining two distinct models of
vertical product differentiation, one for each side of the market. The first one constitutes
bank card companies producing credit cards and selling them to customers, while they make
available to merchants the right to accept them as a means of payment in exchange for paying
a subscription. Then the second group constitutes consumers, paying their credit card bill
to bank card companies and using it to pay for their purchases to the merchants. Finally,
the third group comprises the merchants. They acquire from the banks the machine allowing
them to accept the credit card as a means of payment and accept the payment for purchases
by consumers using their credit card. In this representation, bank card companies are the
platforms of the two-sided market: consumers the demand on one side and merchants the
demand on the other side. The role of platforms consists in facilitating the transactions
between the agents on the two sides. To simplify we shall assume there are only two platforms,
for instance Visa and Mastercard.

We assume that the set of consumers is represented by the interval [0, 1]. The utility of a
consumer t in this interval is measured by the expression txi − pi, where xi represents the
number of merchants accepting the credit card of type i and pi the price to be paid at the bank
card company to hold a credit card of type i, i = 1, 2.
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It is important to know whether a consumer has one or two credit cards and if merchants
accept one or two of them. In the first case, one speaks of single-homing agents and multi-
homing in the second. In cross-network externalities multi-homing is often realized. A large
number of agents own several credit cards and merchants also accept several of them; also
many consumers subscribe to several dating sites. In the credit card case, and supposing the
number of the merchants accepting credit card 2 exceeds the number of those accepting credit
card 1 (x 2 > x1), it is reasonable to define the utility of consumer t if he owns both cards as
equal to tx3 − p1 − p3, with x3 a number belonging to the interval [x 2, x + x3]. When x3 = x 2,
it means that all merchants accepting card 2 also accept card 1 so that this latter is perfectly
useless. At the other extreme, when x3 = x 2 + x1, it means that no merchant accepts the two
cards simultaneously.

Finally we suppose that the set of merchants is also represented by the interval [0, 1], the
merchant v in this interval having a utility measured by the expression αiv − si, with αi

representing the number of consumers who own the credit card of type i and si the price
imposed by the platform to accept payments of consumers by means of card i, i = 1, 2. In
the case of merchants’ multi-homing, we shall assume that the utility of a merchant v of
accepting two cards is equal to α3v − s1 − s 2, where α3 belongs to the interval [α 2,α3 + α 2]
when α 2 > α3.

The intuition underlying the above model is as follows. From the viewpoint of the
customers, the platforms appear as two sellers on a differentiated market, the seller having
constituted the larger network on one side of the market looking like selling a product of
higher “quality” to the customers of the other side. The hierarchical value on the quality ladder
reflects the size of their respective networks: the larger the network on one side, the higher
the quality of this “product” for the other side. Accordingly, the cross-network effects in this
model appear as generating two parallel differentiated markets according to the price they
choose on each side. Furthermore, the quality of the variants sold on each side of the market
is endogenous and determined by the price each platform chooses at the price equilibrium.
Notice that the platform can, by lowering its price on one side of the market, make the product
more attractive to the buyers operating on the other side, thereby allowing it to set a higher
price on the latter! Thus one can expect the existence of asymmetric equilibria such that, while
the price of the product on one side is very low, the price set on the other side is, on the other
hand, very high.

5.2 Product Differentiation and Environmental Economics

A natural entry point for combining social preferences with product differentiation is
environmental economics. The theoretical framework of product differentiation has often
been applied by the literature in environmental economics to the analysis of equilibrium
configurations, environmental policy and firms’ behavior in markets with polluting goods
(Moraga-Gonzales and Padron-Fumero, 2002). The starting point of this literature is that
consumers are environmentally concerned. This concern can be driven by traditional and
self-regarding preferences. Then, when caring about environment, people care about their
own health and safety, thereby being guided by purely private motives. Otherwise, this
concern for environmentally friendly goods can be justified on different grounds, based
on the judgment that human actions are driven both by individual rationality and social
concern. For example, people can purchase green products to avoid a bad conscience. In this
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case, consumers have some degree of idealism and take into account their possible negative
contribution to the environment when purchasing brown goods. Also, their willingness to
pay a price premium can be driven by a positional concern: consumers do not pursue an
absolute end when going green, but a social status or a relative position among peers. In
this perspective, the traditional self-regarding preferences no longer suffice to formalize
consumption behavior: this opens the door to new ingredients in the utility function. Hereafter,
we briefly present two models nesting this environmental concern in the utility function.2

The first model is borrowed from the literature on horizontal product differentiation and
assumes that, although consumers’ individual decisions are based on utility-maximizing
behavior, there may be a trade-off between the utility immediately derived from the preferred
characteristics of a product and a moral constraint to buy environmentally friendly goods.
Whenever a consumer purchases a brown product, she might incur a bad conscience and
thus feel guilty. This moral guilt can be fostered by friends, parents, partners, or by the
media. Since this guilt is internalized by consumers, the traditional utility function is
enriched by some moral/social externality indirectly affecting the optimal characteristics of
products.

Then, we consider a model of vertical product differentiation. In this work, the typical utility
function à la Mussa-Rosen is modified with the aim of representing consumers that seek a
relative position among peers when purchasing products. This position is obtained through
conspicuous goods providing their buyers with some social benefits beyond the material
needs that products traditionally satisfy. The higher the quality of these goods, namely
their ranking along the quality ladder, the higher their social value and the corresponding
position they confer to the buyer along the social ladder. Accordingly, utility function
depends on the characteristics of products a consumer buys compared with those bought by
his/her peers.

5.2.1 Horizontal product differentiation and social concern
The model we present in this section is inspired by Conrad (2005) and assumes that consumers
are characterized by some moral concern, taking the form of a social externality. When making
their decision about consumption, consumers value both the intrinsic characteristics and the
green nature of the good. When the former satisfy the consumers, but the latter is missing, they
can suffer social disapproval if they decide to buy the (brown) product. In this circumstance,
the consumption behavior is driven by the solution to the dilemma between privileging the
intrinsic characteristics of the product, thereby incurring social stigma, or sacrificing them
and refraining from buying the polluting good. The duopoly theory developed hereafter aims
at providing a solution to this dilemma.

The market is populated by two firms selling a heterogeneous product with characteristics
qi ∈ [0, 1], i = 1, 2. On the one hand, goods are assumed to be horizontally differentiated.
Horizontal product differentiation is formalized through a spatial duopoly model. On the other
hand, they are labeled in increasing order of environmental friendliness and q1 ≤ q 2 so firm 1
is less concerned about not producing environmentally friendly goods compared with firm 2.
There is a continuum of consumers uniformly distributed over the interval [0, 1] and each

2 The most frequently used utility function in these works is inspired by Mussa and Rosen (1978) (see also
Ben Elhadj, Hili and Lahmandi-Ayed, 2013 and Coestier and Marette, 2004) so that the self-regarding preferences
formalized in the traditional framework of vertical product differentiation are not questioned.
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consumer buys one unit of the product. The utility of consumer θ ∈ [0, 1] for a unit of the
good qi is given by

U(qi, θ) = r − t(qi − θ)2 − d(1 − qi)− pi

where r denotes the gross utility a consumer derives from consuming one unit of the product.
The term t(qi − θ)2 represents the costs a consumer, located at θ ∈ [0, 1], faces when buying
the good qi, with pi being the corresponding price. Finally, the new ingredient d(1 − qi)

captures the social concern of the consumer. The consumer knows he should buy the most
environmentally friendly product at the end of the characteristics’ [0, 1] line. Still, his/her
preferences induce him/her to buy a different good, namely qi. Because of this, the consumer
suffers a social stigma that increases with the distance between the ideal green good and the
one actually bought.

In a two-stage game, either firm chooses the product’s characteristic qi at the first stage and
then, at the second stage, the corresponding price. In producing the two characteristics, costs
increase in q.

The aim of the analysis is to identify the effect, if any, of environmental awareness
on the equilibrium configuration. In the traditional duopoly models of horizontal product
differentiation, the two firms choose different locations (and thus differentiated goods) and
both gain positive profits at the unique equilibrium. The key question here is whether under
social externalities, the above finding still holds, namely whether (i ) the existence of social
concern among consumers induces firms to change location and thus price at equilibrium,
with immediate consequence on the optimal profits and (ii) the equilibrium is unique. Conrad
shows that when the environmental concern is strong compared with cost, firm 2 finds it
optimal to produce q ∗

2 = 1 while firm 1 chooses q ∗
1 > 0. Under weak environmental concern,

firm 1 optimally selects q ∗
1 = 0 while q ∗

2 < 1. Finally, in the case when the environmental
concern is not very relevant so that the cost component can (weakly) prevail, then q ∗

1 = 0
while q ∗

2 = 1. The optimal characteristics of goods is unambiguously depending on the
interplay between social concern and costs, the former ingredient favoring the production
of a green good in terms of a higher market share and higher profits, the latter discouraging it.
This statement immediately justifies the equilibria observed with the environmental concern
is either extremely strong or weak, compared with costs. In the third scenario with a balanced
environmental/cost situation, both firms choose maximal product differentiation since the
incentive to improve the environmental characteristics of goods is countervailed by the costs
incurred for this improvement.

5.2.2 Vertical product differentiation and relative preferences
In the duopoly theory presented hereafter, consumers’ satisfaction is described by relative
preferences. Formally, variants in the market are differentiated along two dimensions: hedonic
quality and environmental quality. The hedonic dimension refers to the pure (intrinsic)
performance of the good, whereas the latter dimension has a positional content: buying
green goods satisfies the consumer’s desire to be portrayed as a socially worthy citizen and
thus provides some social rewards. In the case of brown consumption, people feel socially
disapproved of, thereby incurring social stigma. As a by-product of this, whenever green
purchases are used to obtain social approval or to escape from social stigma, the social benefit
(resp. social punishment) from a pro-environmental (resp. brown) behavior is larger, the larger
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the quality gap between the green and the brown variants. In line with this approach, the utility
function of the consumer incorporates a new term depending, for each variant, on the relative
position it can confer to the buyers, namely the environmental quality gap between “adjacent”
variants.

It is worth noting that in some sectors a trade-off between hedonic and environmental
quality is unavoidable as certain polluting goods meet consumers’ requirements better than the
green alternatives (Gupta and Ogden, 2009). For example, conventional internal combustion
engine vehicles, although dominated by green alternatives in terms of polluting emissions,
are still superior in most cases to electric or hybrid vehicles based on pure performance.
Paper produced from trees instead of recycled paper is often preferred because it is softer
to the touch. New-generation washing machines have energy-saving cycles labeled “green”
or “eco”; they are, however, more time consuming in comparison with ordinary cycles.
Nevertheless, in other sectors, such as cosmetics, household goods and sometimes food, a
high hedonic quality can be obtained without sacrificing the corresponding environmental
quality. In this circumstance, a variant can be unambiguously viewed of higher quality with
respect to the alternative good since it meets the high hedonic standards valued by a consumer
while conferring to her a high-ranked social position along the quality ladder.

The following analysis relies on Mantovani, Tarola, and Vergari (2015) and considers the
former scenario where a trade-off between hedonic and environmental quality arises, so that
a high hedonic quality variant is more polluting than a low hedonic quality alternative. Firms
are assumed to compete in prices, the quality of variants being exogenously given.

Consider a vertically differentiated duopoly with two variants of the same good. The
performance of the variant i, with i = L, H, determines its intrinsic or hedonic quality qi.
Accordingly, qH > qL: variant H has a higher intrinsic quality than variant L so that qH is
ranked higher than qL along the hedonic quality ladder. Nevertheless, variant H generates
more polluting emissions eH per unit of production than variant L. Accordingly, variant qH

represents the brown good. Conversely, variant L is considered green because its emissions eL

are lower than those deriving from variant qH , namely eL < eH . The environmental quality of
L is then higher than that of H. The ranking between qH and qL is reversed when considered in
terms of this latter dimension of quality: variant qL is ranked higher than variant qH along the
environmental quality ladder. There is a continuum of consumers indexed by θ and uniformly
distributed in the interval [0, b] with density 1/b. Formally, the indirect utility of consumer
type θ is written as:

U (θ) =

⎧⎪⎪⎨
⎪⎪⎩

θqH − pH − γ (eH − eL) , if she buys the high-quality good,

θqL − pL + γ (eH − eL) , if she buys the low-quality good,

0, if she refrains from buying.

A further ingredient, namely γ (eH − eL) with i 	= j, is added to the traditional component
of the indirect utility function (θqi − pi) such that the satisfaction of buying a product can be
either magnified or dampened by the environmental characteristics of variant i, as compared
with j. In line with the idea that green consumption has a positional driver, it is the relative
pollution emitted by either good – captured by the term γ (eH − eL) – that affects consumers’
utility. Parameter γ ≥ 0 measures the intensity of the relative dimension of consumption;
the higher the value of γ , the stronger the relative (or social) preferences with respect to
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the hedonic ones. From the above formulation of the utility function, the consumer who is
indifferent between buying the low-quality good and not buying at all is given by θL, namely,

θL = γ + pL − γ qH

qL
= pL − γ (qH − qL)

qL
, (6.1)

with θL > 0 ⇐⇒ pL > γ (qH − qL). The consumer indifferent between buying the low-
quality good and the high-quality good is:

θH = 2γ + pH − pL

qH − qL
. (6.2)

The introduction of other-regarding preferences is such that the traditional mechanism of
competition between firms observed in a traditional vertically differentiated market holds
sensu stricto as long as all consumers agree that the hedonic quality of a product is more
valuable than its green nature (or the reverse). However, if a product is better than the
alternative based on one characteristic but worse based on another one, then the defining
property of vertical differentiation may cease to hold. This occurs whenever some consumers
give more value to the hedonic dimension of a variant while others privilege its environmental
quality so that, at the same price, both variants face a positive demand. Although this feature
resembles the defining property of horizontal differentiation, the asymmetry between firms
stemming from the two dimensions of product differentiation is such that, when the defining
property of vertical differentiation stops holding, competition falls into a hybrid category
where, at equal prices, both variants have a positive demand (horizontal differentiation) but at
equilibrium their prices do not coincide (vertical differentiation).3

This hybrid category of product differentiation opens the door to several results that are
not observed in a traditional vertically differentiated market. In particular, depending on b
and γ driving consumers to the hedonic and environmental dimensions, respectively, one can
characterize two relevant parametric regions. For relatively low values of b, both firms are
active at interior equilibrium when γ takes intermediate values, while only the green (resp.
brown) firm is active in the market when γ is sufficiently high (resp. low). Further, in the
case when the market is monopolized by the green firm, it finds it profitable to cover the
whole market if γ is extremely relevant. Conversely, for relatively high values of b, the brown
producer never monopolizes the market. Moreover, under duopoly, the green firm can find it
optimal to cover the market. This happens when γ is relatively high.

It is worth noting that, when both firms are active at equilibrium, there are circumstances
in which the price of the green good (the low hedonic quality product) ceases to be lower
than the price of the competing variant (duopoly with price switch). This finding can never be
observed under self-regarding preferences. Along the same rationale, in a traditional model
of vertical product differentiation, a monopoly configuration can hold only under a restrictive
assumption on consumer heterogeneity (natural monopoly). Further, at this configuration, the
firm is typically induced to cover one-half of the entire population of consumers. In Mantovani
et al. (2015), both the green monopolization of the market and its coverage are observed at

3 There is a strand of literature considering different sources of product differentiation. For example, Gabszewicz
and Thisse (1986), Neven and Thisse (1990), and Gabszewicz and Wauthy (2012) combine horizontal and vertical
differentiation.
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equilibrium whenever the relative preferences are sufficiently strong that the social component
of consumption prevails over the hedonic driver. A final remark deserves some attention.
When the social component of consumption γ is high with respect to the willingness to pay for
the hedonic quality b, then the green firm can monopolize the market. Still, the monopolization
by the brown competitor does not arise when b is high compared with γ . So, one can easily
conclude that the social component of consumption can benefit the green firm more than the
willingness to pay for the hedonic quality can benefit the brown producer, thereby creating
asymmetric effects on the equilibrium configurations.

It is worth noting that, if the two dimensions of product differentiation were not in contrast
with each other, then the equilibrium analysis would change. If the green products were
also of high hedonic quality, then one would never observe the price switch or the market
coverage scenario. Indeed, the initial disadvantageous position of the low-quality firm would
be enhanced by the social stigma associated with the brown nature of the good. Interestingly,
this model can be reconciled with a setting where the trade-off is absent: for this to be
evident, it suffices to focus on the range of parameters such that one dimension of quality,
either the hedonic or the environmental one, unambiguously prevails over the other. As an
example, consider the case in which the environmental quality dominates the hedonic quality.
Then, the analysis can immediately be developed along the lines of traditional literature on
vertical differentiation with the environmental quality being the driver of consumption. Thus,
in a framework without trade-off, at equilibrium either the market would be served by two
producers with the price of the green variant being higher than the brown one, or only the
green firm would be active.4

6 DISCUSSION OF THE LITERATURE

Clearly the above survey does not give credit to many scientific contributions in the field of
product differentiation and it would be impossible to quote all the literature related to this
field. Accordingly, we have chosen to cite only some significant contributions. Many of them
are related to international trade. Thus, the papers by Helpman (1981) and Krugman (1980)
cover basic trade theory. One should also cite in the same field the papers by Gabszewicz et al.
(1981) as well as Shaked and Sutton (1984). One could also add the papers by Lyons (1984),
Flam and Helpman (1987), Hallak (2006), Herguera, Kujal, and Petrakis (2002), Hummels
and Klenow (2005), Motta, Thisse, and Cabrales (1995) and Baltzer (2011), to cite just a few.

Another significant topic in product differentiation is the question of quality standards.
This question has given rise to important contributions dealing with quality standards and
competition (Crampes and Hollander, 1995, Boom, 1995, Scarpa, 1998, Garella, 2006,
Valletti, 2000), quality standards and collusion (Ecchia and Lambertini, 1997, Lambertini,
Poddar and Sasaki, 2002), quality standards and trade (Petropoulou, 2013, Baltzer, 2011),
and quality standards and environment policy (Motta and Thisse, 1993).

Also, numerous contributions are devoted to innovation in the context of product differen-
tiation. Dutta, Lach, and Rustichini (1995) and Lehmann-Grube (1997) study the relationship
between technology adoption and vertical product differentiation. Gabszewicz and Tarola
(2007) use a model of vertical differentiation to examine the question of firms’ ownership in

4 See on this Ben Elhadj and Tarola (2015) and Ben Elhadj, Gabszewicz, and Tarola (2015).
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the context of product innovation. Hoppe and Lehmann-Grube (2001) examine the second-
mover advantages in the context of dynamic quality competition, while Boone (2001)
considers the incentive to innovate as a consequence of the intensity of competition. Finally,
under the impetus of Lambertini, several contributions are devoted to the approach to product
differentiation via dynamic games (Cellini and Lambertini, 2007, 2011, Lambertini, 2012,
and Colombo and Lambertini, 2003).

7 CONCLUSION

In this survey we have concentrated on describing the basics of product differentiation theory
and its place in the theories of imperfect competition. It is clear that the approaches proposed
here are somewhat partial and suffer from the absence of robustness in their conclusions.
What is really lacking to develop a satisfactory theory of product differentiation is a notion
of proximity among different variants of a commodity, allowing us to define on a solid basis
the idea that two variants are “close” or, on the other hand, “far” from each other. The notion
of price substitutability is clearly insufficient to fill this gap, since it depends on prices of the
existing variants. Thus, this notion could explain how the existing variants of a good mutually
depend on their price variations, but cannot serve to explain why these variants have been
chosen by the firms. It is suggested in this survey that the approach via characteristics can
be a satisfactory way to introduce the notion of proximity among variants. Nevertheless, a
better-performing method should be found to measure the distance between different variants
of a good, allowing in particular the consideration of several variants, rather than a single
variation as in this study. Until such a measure is developed, economists will have to rely on
partial approaches to tackle the difficult problem raised by firms’ product choice.
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7. Oligopolistic competition and welfare
Robert A. Ritz ∗

1 INTRODUCTION

1.1 Objectives

Market performance under imperfect competition has been a classic question for economists
since the time of Adam Smith. It remains a central concern of the theoretical and empirical
industrial organization (IO) literature and antitrust policymakers dealing with competition
issues in practice.

The objective of this chapter is to survey recent developments in the IO theory literature
that speak to oligopoly and welfare. The coverage here is explicitly selective, concentrating on
areas where the literature has substantially progressed over the last five to ten years. Related
issues have been covered extensively by several authors in the past. Valuable resources remain:
the early survey chapter by Shapiro (1989) as well as the oligopoly-theory books by Tirole
(1988) and Vives (1999), which also contain significant material on welfare.

The uniqueness of this chapter lies in the following. First, the focus is specifically on
welfare; most other treatments deal with this only as a by-product. Second, it covers recent
developments that have not yet found their way into textbook treatments – but hopefully will
do so in the near future. Third, it discusses separate strands of the recent literature in a way
that highlights their common themes.

1.2 Scope

The scope of this chapter is limited to relatively simple static oligopoly models under partial
equilibrium analysis.1 It concentrates on theory – albeit in a way that it is informed by the
empirical literature and speaks to industrial applications. Extensions to more complex settings
are dealt with by other chapters contained in this volume.

Market power lies solely with firms, while buyers are atomistic; there is no price
discrimination. The focus is on markets with varying degrees of competitive conduct – rather
than tacit collusion or price fixing. Firms are assumed to be risk-neutral profit maximizers
and are equally well informed about the market. There are no other market failures (such as
environmental externalities) and no explicit role for regulation (such as price caps) or other
policy interventions.

The definition of “welfare” (W ) is mostly taken to be social surplus, that is, the unweighted
sum of aggregate consumer surplus (CS ) and aggregate producer surplus (�): W = CS +�.

∗ I am grateful to Anette Boom, Simon Cowan, Federico Etro, Pär Holmberg, Nathan Miller, Michael Pollitt,
Andrew Rhodes, John Vickers and Glen Weyl for helpful comments and suggestions. Any remaining errors are mine.

1 This excludes any general-equilibrium effects, which, for example, could arise due to interactions between
supplier market power and imperfections in input markets (such as the labour market).
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A consumer welfare standard is highlighted in some places given that recent antitrust policy in
jurisdictions such as the USA and EU is said to be geared more heavily towards consumers.2

The results discussed cover a range of models with homogeneous products as well as
different forms of horizontal product differentiation. Some of the homogeneous products
results apply equally to settings with vertical differentiation in which there are (known)
differences in product quality across firms. Many of the models are “aggregative games” in
which a firm’s competitive environment can be captured using a single summary statistic of
rivals’ actions.

These models have useful applications across a wide array of industries. In the energy sec-
tor, similar homogeneous product models are widely employed in the analysis of electricity,
natural gas and crude oil markets – as well as energy-intensive industry such as cement and
steel. The differentiated price models covered form the basis for competition policy in sectors
with branded products.

1.3 Plan for the Chapter

Section 2 presents the recent literature on the rate of cost pass-through as an economic tool
with which to understand the market performance and the division of surplus between buyers
and sellers. Section 3 discusses recent papers that quantify market performance in various
Cournot-style models using welfare losses, that is, the comparison between equilibrium
welfare and first-best. Section 4 covers recent developments in the theory of oligopoly with
endogenous entry of firms, with a focus on the quantification of welfare losses and the impact
of firm heterogeneity. Section 5 provides concluding remarks and suggestions for future
research.

2 COST PASS-THROUGH AND THE DIVISION OF SURPLUS

Consider the treatment of monopoly in a textbook on microeconomics or industrial organi-
zation. With linear demand and costs, the monopolist captures 50 per cent of the (potential)
gains from trade, with 25 per cent as consumer surplus – and the remainder as deadweight
loss. So there is a ratio of 1:2 between consumer surplus and producer surplus.

Elsewhere, the textbook may turn to the question of cost pass-through: how much of a
unit tax is passed onto the market price? For a linear monopoly, the rate of pass-through
(�P/�MC ) equals 50 per cent. So there is a ratio of 1:2 between the price change and the
cost increase.

What textbooks do not say is that this is no coincidence. The ratio of consumer to producer
surplus, in equilibrium, is equal to the rate of cost pass-through in that market. Weyl and
Fabinger (2013) develop this insight more broadly, including for various representations of
oligopoly, and argue that pass-through is a versatile tool with which to think about market
performance.

2 See Farrell and Katz (2006) for a discussion of welfare standards in antitrust. Armstrong and Vickers (2010)
study a model in which a consumer welfare standard can, for strategic reasons, be optimal even if the regulator cares
about total welfare (because the standard affects the set of mergers that is proposed by firms).

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

Oligopolistic competition and welfare 183

Much earlier, Bulow and Pfleiderer (1983) noted how monopoly cost pass-through varies
with the shape of the demand curve, i.e., its curvature. Kimmel (1992) exploits this link
to frame the profit impact of a unit tax in a Cournot oligopoly in terms of pass-through.
Anderson and Renault (2003) study the relationship between demand curvature and the
division of surplus under Cournot competition but do not explicitly cover pass-through. Weyl
and Fabinger (2013) tie together these various antecedents.

2.1 Monopoly Case

Consider a monopolist that produces a single good with marginal cost c + t, where t ≥ 0 is a
parameter. The monopolist faces inverse demand p(Q ); let D(p) be the corresponding direct
demand. At the optimum, marginal revenue equals marginal cost, MR(Q ) = c + t.

What is the impact of a small increase in t? Let κ ≡ dp/dt denote the rate of cost pass-
through, which measures how price responds to a $1 increase in marginal cost.3 Denote
consumer surplus CS = ∫∞

p D(x)dx, and observe that dCS/dt = −κQ, at the optimum.
Similarly, by the envelope theorem, the profit impact d�/dt = −Q, as the indirect impact
of the tax is zero since the monopolist is optimizing. Hence the burden of an infinitesimal tax,
starting at zero, is split according to

dCS/dt

d�/dt

∣∣∣∣
t=0

= κ(0),

where κ(0) is pass-through at the price corresponding to initial zero tax rate.
Consider now a discrete increase in the tax from t0 to t1 > t0. Write Q(t) for the optimal

quantity as a function of the tax. The changes in consumer surplus and monopoly profits
satisfy �CS t1

t0 = − ∫ t1
t0
κ(t)Q(t)dt and ��t1

t0 = − ∫ t1
t0

Q(t)dt. Define the quantity-weighted

pass-through over the interval [t0, t1] as κ t1
t0 ≡ [

∫ t1
t0
κ(t)Q(t)dt]/

∫ t1
t0

Q(t)dt. Define t as the
hypothetical tax rate at which the market is eliminated, that is, Q(t) = 0, and call the average
quantity-weighted pass-through rate κ ≡ κ t

0.4 Hence the surplus generated from the market’s
“birth” (at t) to the equilibrium status quo (at t = 0) satisfies

�CSt
0

��t
0

=
∫ t

0 κ(t)Q(t)dt
∫ t

0 Q(t)dt
= κ = CS

�
.

Consumer surplus is generated by the market at a rate of monopoly profits times the pass-
through rate, weighted over the inframarginal market quantities traded over the interval [0, t ].
This takes into account that the pass-through rate may not be a constant.

Intuitively, high pass-through means that price closely tracks marginal cost, so that (i) the
monopolist’s degree of market power is “low”, and, conversely, (ii) realized social surplus is
“high” and largely goes to consumers. With low pass-through, price follows more closely
consumers’ willingness-to-pay (WTP) so the monopolist captures the bulk of the gains
from trade.

3 Another formulation, more frequently used in the international trade literature, instead concerns the pass-
through elasticity (dp/p)/(dt/t) ≤ κ , which also incorporates the profit margin.

4 Some demand curves have t = ∞, though a finite choke price can be assumed.
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Bulow and Pfleiderer (1983) showed that monopoly pass-through satisfies:

κ(t) = 1

[2 − ξ(t)]
= slope of inverse demand p(Q )

slope of marginal revenue MR(Q )

∣∣∣∣
Q=Q(t)

,

where ξ(t) ≡ − [p ′′(Q )/Qp ′(Q )
]

Q=Q(t) is the elasticity of the slope of inverse demand,
which is a measure of demand curvature. The common theory assumption (Bagnoli and
Bergstrom, 2005) that direct demand D(p) is log-concave (i.e., log D(p) is concave in p),
corresponds to ξ ≤ 1, and hence to pass-through (weakly) less than 100 per cent. Loosely
put, the monopolist then captures a greater share of the gains from trade than consumers.
For very concave demand, ξ � 0, the “triangle” left as consumer surplus is very small;
correspondingly the ratio CS/� and pass-through κ are both small – as is the remaining
deadweight loss.

For many familiar demand curves, the ratio p ′(Q )/MR ′(Q ) is constant, so pass-through
is a constant with κ(t) = κ for all t ∈ [0, t] – and so the “local” properties of demand are
also “global”. With linear demand, marginal revenue is everywhere twice as steep as demand,
so pass-through κ = 1

2 . Other examples are constant elasticity demand, for which ξ = 1 +
1/η > 1 (violating log-concavity) where η ≡ −p(Q )/Qp ′(Q ) > 0 is the price elasticity,
and exponential demand D(p) = exp ((α − p)/β), for which ξ = 1 as it is log-linear. In
such cases, the marginal impact of a tax is equal to its average impact, (dCS/dt)/(d�/dt) =
�CSt1

t0/��
t1
t0 = CS/� = κ .

The literature has found different ways of representing “constant” higher-order properties
of demand. First, using the concept of ρ-concavity: demand D(p) is ρ-concave if and only if
demand curvature ξ(Q ) ≤ (1 − ρ) (Anderson and Renault, 2003). A ρ-linear demand curve
thus has constant curvature ξ = 1 − ρ, and constant pass-through over its entire domain.
Second, the demand curve D(p) can be interpreted as arising from the values v of a distribution
F(v) of consumers with unit demand, so 1 − F(p) is the quantity sold at price p. The inverse
hazard rate is h(v) ≡ [1 − F(v)]/f (v) where f (v) is the density. The monopolist’s first-order
condition (p − c) = h(p), so pass-through is constant whenever the inverse hazard takes the
linear form h(v) = λ0 +λ1v. Third, Rostek, Weretka and Pycia (2009) show that a distribution
has a linear inverse hazard rate if and only if it belongs to the generalized Pareto distribution,
F(v) = 1 − [1 + ω

σ
(v − μ)

]−1/ω
, where (μ, σ ,ω) respectively describe its location, scale and

shape (with λ0 = (σ − ωμ) and λ1 = ω).

2.2 Oligopoly Models

The preceding insights generalize to certain n-firm oligopoly models. Consider a general
reduced-form model of competition in which firm i’s profits πi = (pi − c)qi and the Lerner
index (price–cost margin) with symmetric firms is determined as:

εD
(p − c − t)

p
= θ ,

where θ is a “conduct parameter” that measures the intensity of competition, and
εD ≡ −p(Q )/Qp ′(Q ) is the market-level price elasticity of demand.5 The previous monopoly

5 A large empirical literature reviewed by Reiss and Wolak (2007) has developed structural econometric
techniques for estimating the intensity of competition.
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analysis corresponds to joint profit maximization with θ = 1. This setup nests various widely
used models of symmetric oligopoly, including the two following models:

Homogeneous product oligopoly Consider a Cournot model augmented with “conjectural
variations”: when firm i chooses its output it conjectures that each other firm j will adjust
its quantity by dqj = [R/(n − 1)]dqi. So the aggregate responses by all its rivals is given
by d(

∑
j 
=i qj)/dqi = R. Cournot-Nash competition corresponds to R = 0 while Bertrand

competition in effect has R = −1 (so the price stays fixed). Conjectural variations can be seen
as a reduced-form way of incorporating (unmodelled) dynamic features of the game that firms
play (Cabral, 1995).

The first-order condition for firm i has MRi = p(Q ) + qip ′(Q )(1 + R ) = c + t, where
Q ≡ ∑n

i=1 qi is industry output. This can be rearranged to give the symmetric equilibrium
(with qi = Q/n):

εD
(p − c − t)

p
= (1 + R )

n
= θ .

Thus a constant conjectural variation R corresponds to a constant conduct parameter θ .

Differentiated products price competition Consider a model of price-setting competition
with symmetrically differentiated products. Firm i’s demand qi( pi, p−i) depends on its own
price and those of its n − 1 rivals. In symmetric equilibrium (with qi = q = Q/n), the
corresponding price can be written as p(q), which captures how each price changes in response
to a simultaneous change in all firms’ outputs.

The first-order condition, at symmetric equilibrium, for firm i is given by the inverse-
elasticity rule, (p − c − t)/p = −(q/p)/(∂qi/∂pi). The elasticity of market demand is
εD = −(p/q)∑n

j=1(∂qi/∂pj), and so:

εD
(p − c − t)

p
=
∑n

j=1(∂qi/∂pj)

∂qi/∂pi
= 1 +

∑
j 
=i(∂qj/∂pi)

∂qi/∂pi
= 1 − A = θ ,

where A is the “diversion ratio” from firm i to the rest of the industry as it raises its price
(Shapiro, 1996).6 With a linear demand system, for example, A is constant – and hence the
conduct parameter is also constant.

As in the monopoly case, the envelope theorem together with the symmetric demand structure
imply that the marginal impact of an increase in the tax rate on consumer surplus is given by
dCS/dt = −κ(t)Q(t). Weyl and Fabinger (2013) show that the marginal impact on producers
is given by d�/dt = −[1 − κ(t)(1 − θ(t))]Q(t), where industry profits � ≡ ∑n

i=1 πi. So the
burden of an infinitesimal tax, starting at zero, is split according to:

dCS/dt

d�/dt

∣∣∣∣
t=0

= κ(0)

[1 − κ(0)(1 − θ(0))]
.

6 With the symmetric demand structure,
∑

j
=i(∂qi/∂pj)

∂qi/∂pi
=

∑
j
=i(∂qj/∂pi)

∂qi/∂pi
.
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This is a clean generalization of the monopoly case, with some intuitive properties. For given
pass-through κ(0), less competitive conduct (higher θ ) skews the division of surplus from
consumers to producers. For given conduct θ , higher pass-through favours consumers.

The pass-through rate is here given endogenously by:

κ(t) = 1

1 + θ(t) [εMCS + εθ ]

∣∣∣∣
Q=Q(t)

,

where εθ ≡ d log θ(q)/d log q is the elasticity of the conduct parameters to changes in output,
and εMCS ≡ d log CS ′(Q )/d log Q measures how responsive the marginal consumer surplus
CS ′(Q ) = −p ′(Q )Q = [p(Q ) − MR(Q )] (Bulow and Klemperer, 2012) is to changes in
aggregate output.7 The pass-through rate, in general, must capture how both of these metrics
may vary as the tax affects equilibrium quantities. For example, if the tax reduces per-firm
output (dq/dt < 0) and this makes the industry more competitive (dθ/dq > 0), then this will
tend to enhance pass-through. Note also that pass-through depends indirectly on the number
of firms, since this will generally enter into θ(t).8

As in the monopoly case, it is possible to go from this local impact to the global division
of surplus by appropriately weighting how pass-through rates change along the demand
curve.

With “constant conduct” and “constant curvature”, the global division of surplus again
follows immediately from its local properties. As noted above, many oligopoly models feature
θ(t) = θ so that εθ = 0. It is also instructive to write out εMCS = [1 − ξ(t)] in terms of
demand curvature. (Log-concave demand ξ < 1 corresponds to εMCS > 0 ⇔ CS ′′(Q ) > 0.)
With these modifications, pass-through becomes κ = 1/ [1 + θ(1 − ξ)]Q=Q(t), which nests
the well-known Cournot-Nash oligopoly result (Kimmel, 1992) when θ = 1/n.

2.3 Discussion

The insight that the division of surplus is pinned down by the rate of pass-through has a
number of appealing features. First, it allows pass-through to be seen as a “sufficient statistic”
for welfare analysis. Second, pass-through estimates already exist in the literature for many
markets – based on studies of taxation, exchange rates, and other cost shifts. Third, it makes
it easier to form intuitions about market performance since pass-through rates are often easier
to think about than higher-order properties of demand.

Information on pass-through can also be used in the reverse direction. For price competition
with differentiated products, Miller, Remer and Sheu (2013) instead emphasize how, assuming
second-order demand properties (i.e., demand curvatures), the matrix of pass-through rates
across products can be used to estimate a matrix of “first-order” cross-price elasticities.
The attraction of this is that it sidesteps the problem of full-scale estimation of the demand
system – which can be time-consuming or even infeasible.

While it is relatively easy to obtain empirical estimates of pass-through, it is more difficult
to ascertain how pass-through itself varies along a demand curve. Yet, strictly speaking, the

7 Note that d log CS ′(Q )/d log Q = d log CS ′(Q )/d log q given the symmetric setup.
8 For Bertrand competition (with θ ≡ 0), note that CS/� = κ/(1 − κ) but also κ = 1, so that CS/� → 0 (since

firms make zero profits).
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theory requires the quantity-weighted pass-through κ ≡ κ t
0. MacKay et al. (2014) show how

reduced-form regressions of price on cost may not yield reliable estimates of the rate of cost
pass-through. Loosely put, such a regression can only yield consistent estimates in situations
where the underlying environment is such that cost pass-through is constant over the range
of prices in the data. Empirical implementation of the theory may have to resort to assuming
κ(t) = κ for all (or large parts of ) t ∈ [0, t ].

The above results are based on strong symmetry assumptions such as identical marginal
costs and symmetrically differentiated products. These greatly simplify the welfare analysis
but are likely to be violated in any oligopoly. Weyl and Fabinger (2013) also develop results
from a general model that allows certain types of asymmetries. Other factors, such as the
details of market structure, then come into play. Again, it is possible to adjust the definition of
pass-through to incorporate these but this means that estimating this “adjusted” pass-through
rate becomes increasingly difficult – and begins to merge into estimation of a full-scale market
model. The power of pass-through is strongest for monopoly.

Another assumption is that the number of the firms in the market is fixed, and hence
invariant to changes in costs. Ritz (2014b) shows that, with log-convex demand, a higher
unit tax can induce additional entry into a market, and thus ultimately lead to a lower market
price. Negative pass-through, also known as “Edgeworth’s paradox of taxation”, is ruled out
in the models covered here. Conversely, a low pass-through rate can induce exit of weaker
firms, which in turn causes price to jump back up.9

3 QUANTIFYING WELFARE LOSSES IN COURNOT-STYLE MODELS

Consider a textbook Cournot oligopoly with symmetric firms. How large are welfare losses
due to market power? With three firms, they equal 6.66 per cent; in other words, a highly
concentrated Cournot triopoly delivers over 93 per cent of the maximum possible welfare.10

For a duopoly, the loss is 11 per cent – certainly not trivial, but not large either.
A recent literature quantifies market performance directly in terms of realized welfare

(Corchón, 2008; Ritz, 2014a). It shows that welfare losses in familiar oligopoly models are
often perhaps surprisingly small, and also shows what market factors can generate more
substantial losses.

The approach is based on calculating equilibrium welfare losses relative to the first-best
benchmark. It turns out that this ratio can naturally be determined in terms of observable
metrics, notably firms’ market shares. In this way, this literature is potentially useful also for
policy purposes as a simple initial screening tool for market performance.11

9 Further afield, in the context of the commercial banking industry, Ritz and Walther (2015) show how risk
aversion and informational frictions tend to dampen the pass-through of changes in interest rates across loan and
deposit markets.

10 For a duopoly in which one firm is a Stackelberg leader, the welfare loss also equals 6.66 per cent – so the
social value of leadership is equal to one additional entrant.

11 An older empirical literature going back to Harberger (1954) estimates welfare losses normalized relative to
sales revenue. A disadvantage is that magnitudes are hard to intepret; for example, the ratio of equilbrium welfare to
revenue can vary widely for reasons that have nothing to do with market power.

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

188 Handbook of game theory and industrial organization: theory

3.1 Cournot-Nash Oligopoly

Consider a Cournot-Nash oligopoly with n ≥ 2 active firms. Firm i has marginal cost ci and
chooses its output qi to maximize its profits πi = (p−ci)qi, where the price p(Q )with industry
output Q ≡ ∑n

i=1 qi. Without loss of generality, firms are ordered such that c1 ≤ c2 ≤ . . . ≤
cn. Inverse demand p(Q ) = α − βQ1−ξ is (1 − ξ )-linear with constant curvature ξ , where
ξ < 2 gives downward-sloping industry marginal revenue. This also ensures the uniqueness
and stability of the Cournot equilibrium as well as a well-behaved consumer surplus function.

The first-best outcome, which maximizes social welfare W ≡ CS+�, where� ≡ ∑n
i=1 πi,

has price equal to the lowest marginal cost p fb = c1 with output Q fb = p−1(c1) =[
(α − c1)/β

]1/(1−ξ). Denote the corresponding welfare level as W fb.
The first-order condition for firm i is MRi = ci, and the sum of first-order conditions∑n
i=1 MRi ≡ [

np(Q )+ Qp ′(Q )
] = ∑n

i=1 ci pins down the equilibrium industry output Q ∗.
Hence the equilibrium price is given by:

[
np ∗ − (1 − ξ)(α − p ∗)

] =
∑n

i=1
ci ⇒ p ∗ = (1 − ξ)α + nc

(n + 1 − ξ)
.

This equilibrium pricing function p ∗( c ) is affine in the unweighted average unit cost c ≡
1
n

∑n
i=1, so the pass-through of a cost change that affects all firms equally κ ≡ dp ∗/d c =

n/(n + 1 − ξ) is constant (i.e., d2p ∗/d c 2 = 0).
Denote equilibrium welfare and consumer surplus under Cournot competition as W ∗ and

CS ∗, and define welfare losses relative to first-best as:

L ≡
(

1 − W ∗

W fb

)
,

which is a unit-free measure of welfare that lies on the unit interval, L ∈ [0, 1].

3.1.1 Symmetric firms
To build intuition, it is useful to begin with the benchmark case in which firms have identical
marginal costs, ci = c for all i; Anderson and Renault (2003) showed that:

L(n, ξ) = 1 − n1/(1−ξ)(n + 2 − ξ)

(n + 1 − ξ)(2−ξ)/(1−ξ) .

Equilibrium welfare losses depend only on the number of (symmetric) firms and the curvature
of demand. As expected, they decline with the number of firms and tend to zero at the limit
as the competitors grows large. This reflects the classic result on convergence to perfect
competition in large markets.

Welfare losses also tend to zero if the curvature of demand is extreme, either as ξ → 2
or as ξ → −∞. The case with ξ → 2 corresponds to very convex demand in which the
total revenue to firms (and hence the total expenditure by consumers) become constant – and
thus invariant to the number of firms competing; since production costs are symmetric, there
is no other source of welfare losses. The case with ξ → −∞ corresponds to demand that
becomes rectangular (infinitely concave) so all consumers have identical WTP of α for the
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good; then firms extract all the gains from trade with a uniform price p ∗ = α while serving
all consumers efficiently. Consistent with the previous monopoly discussion, this is the limit
of zero pass-through, κ → 0.

More generally, Corchón (2008) shows that welfare losses with symmetric firms tend to
be quite “small”. For example, with linear demand (ξ = 0) the above simplifies to L(n) =
1/(n + 1)2. So welfare losses are of order 1/n2 (as the price and output inefficiencies are both
of order 1/n) and in a quantitative sense decline quickly as the number of competitors rises,
e.g., L(n) ≤ 4 per cent if n ≥ 4. For non-linear demands, Corchón (2008) derives the maximal
welfare loss for a given number of firms, that is, L̂(n) ≡ maxξ L(n, ξ). As long as there are
at least four firms in the market, overall welfare losses are never greater than around 5.8 per
cent. In fact, the textbook case with linear demand generally yields fairly high welfare losses.

3.1.2 Asymmetric firms
The symmetric case shows that welfare losses due to market power do not tend to be
“large”– say well above 5 per cent – in Cournot-Nash models, except in some duopoly cases.
However, the symmetry assumption switches off any role for welfare losses due to productive
inefficiency. Indeed, it is well known that Cournot equilibria are not cost efficient since the
lowest-cost firm does produce all output; high-cost firms serve too much of the market (Lahiri
and Ono, 1988; Farrell and Shapiro, 1990; Aiginger and Pfaffermayr, 1997).12

More realistic results revert back to the case where firms’ marginal costs may be
asymmetric. The challenge is that costs are typically difficult to observe (or even reliably
estimate), while there is an advantage in having a welfare measure that depends on observables
as far as possible. The trick to resolve this is to use the first-order conditions to “substitute
out” costs for market shares that are readily available for many markets.

In particular, let firm i’s equilibrium market share s ∗
i ≡ (

q ∗
i /Q

∗), and recall the first-order
condition MRi = p(Q )+ qip ′(Q ) = p − (1 − ξ)βQ 2−ξ si = ci. Some rearranging shows that
its equilibrium market share satisfies:

(1 − ξ)(α − p ∗)s ∗
i = (p ∗ − ci),

which provides a direct mapping between (observable) market share and marginal cost, for a
given p ∗ as determined above. Note that firm 1’s market share s ∗

1 is the highest since it has
the lowest marginal cost, and s ∗

1 ≥ s ∗
2 ≥ . . . ≥ s ∗

n .
Based on this, Corchón (2008) shows that welfare losses with asymmetric firms are

given by:

L(s ∗
1 , H ∗, ξ) = 1 −

[
1 + (2 − ξ)H ∗]

[
1 + (1 − ξ)s ∗

1

](2−ξ)/(1−ξ) ,

where H ∗ ≡ (∑n
i=1 s 2

i

)
{s ∗

i }n
i=1

is the Herfindahl index of concentration, evaluated at the

equilibrium market shares.13 The expression for welfare losses remains simple: they now

12 More generally, marginal costs are not equalized across firms (as would occur in a cost-minimizing allocation
of any given industry production level).

13 This expression simplifies to the symmetric case where H ∗ = s ∗
1 = n−1 for all i.
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depend on s ∗
1 and the Herfindahl index H ∗, both of which previously boiled down to the

number of firms in the symmetric case.14 Intuitively, market performance under Cournot is
described by the Herfindahl index, while the largest market share captures how close this
performance is to first-best – for which it should equal 100 per cent.

Welfare losses increase with the market share of the largest firm s ∗
1 (holding fixed the value

of the Herfindahl index). Intuitively, the largest firm must have an above-average market share;
further increasing its size relative to the market pushes the equilibrium closer to monopoly.

Welfare losses decline in the Herfindahl index (holding fixed s ∗
1 ). While perhaps initially

counterintuitive, the reason for the results is that a higher industry concentration shifts market
share toward the more efficient firms (which have lower costs). This mitigates the productive
inefficiency of the Cournot equilibrium. The more general point is that the Herfindahl index
is not a reliable guide to market performance.

Corchón (2008) shows that welfare losses in asymmetric Cournot models can be very large.
Specifically, it is possible to find combinations of demand conditions (ξ ) and market structure
(s ∗

1 , s ∗
2 , . . . , s ∗

n ) that yield welfare losses that are arbitrarily close to unity, L(s ∗
1 , H ∗, ξ) = 1−ε

for a small constant ε → 0. At the same time, the Herfindahl index may be arbitrarily low.
The worst case for welfare is when the non-largest firms are symmetric, s ∗

2 = s ∗
3 = . . . = s ∗

n ;
then limξ→−∞

[
limn→∞ L(s ∗

1 , n, ξ)
] = 1 − s ∗

1 , and clearly H ∗ ≈ 0 while L ≈ 1 for s ∗
1 small.

Welfare losses can be substantially higher than in symmetric cases, even with non-extreme
assumptions about demand curvature and realistic market structures. As a numerical example,
let firms’ market shares s ∗

1 = 40 per cent, s ∗
2 = 30 per cent, s ∗

3 = 20 per cent, and s ∗
4 = 20

per cent which implies a Herfindahl index H ∗ = 0.3. Assuming linear demand (ξ = 0), it
follows that welfare losses L(s ∗

1 , H ∗, ξ) ≈ 18 per cent. This is approximately three times as
high as the maximal loss with four symmetric firms.

Surprisingly, it is possible for market performance under Cournot to be worse than for a
monopoly. Corchón (2008) shows that with log-convex demand (ξ > 1), monopoly indeed
generates the highest welfare loss. However, with log-concavity (ξ < 1), the socially worst
outcome involves a “high” market share (at least 50 per cent) for one firm combined with a
“tail” of very small firms. The intuition is that the small firms add little to competition but
substantially reduce productive efficiency.

Finally, with asymmetric firms, market performance is no longer obviously related to cost
pass-through. Pass-through κ(n, ξ) reflects the number of competitors and demand conditions,
while welfare losses L(s ∗

1 , H ∗, ξ) also depend on the details of the distribution of firms’
market shares. Market performance can vary widely even for a fixed underlying rate of pass-
through.

3.2 Endogenous Competitive Conduct in Two-stage Games

A significant body of empirical evidence shows that many industrial markets have a
competitive intensity that is tougher than Cournot-Nash but falls short of perfect competition
(Bresnahan, 1989). One way to model this, as in Section 2, is by adding an exogenous conduct
parameter. Similarly, a widely used class of two-stage strategic games comes with an conduct

14 Again, the demand parameters (α, β) do not play any role: the influence of α is subsumed in firms’ market
shares and β is merely a scale factor that does not affect relative welfare losses. (All else equal, doubling β halves
both W ∗ and W fb so their ratio is unchanged.)
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parameter that is endogenously determined by the interaction of the two stages. It turns out
that welfare losses in such models can be much lower than in the standard Cournot setup.

Consider the two-stage game introduced by Vickers (1985) and Fershtman and Judd (1987).
Each firm delegates decision-making in the product market to a manager. Manager i receives
an incentive contract that induces maximization of an objective function �i = (1 − ϕi)πi +
ϕiRi, where Ri ≡ pqi is the firm’s sales revenue. In the first stage, each firm’s shareholders
choose the incentive weight ϕi to maximize their firm’s profits πi. In the second stage, each
firm’s manager chooses an output level qi to maximize the objective �i.

This setup reflects extensive evidence that managers across a wide range of industries
appear to place significant emphasis on measures of their firm’s size (Ritz, 2008, 2014a). This
is particularly evident in competition for rankings in “league tables” that are based on firms’
sales or market share, not profits – and play a prominent role, for example, in commercial and
investment banking as well as in car and aircraft manufacturing.15

Firms can use their Stage 1 choice of the incentive contract as a commitment device to
gain strategic advantage in the product market.16 Higher values of ϕi constitute aggressive
output-increasing behaviour since they correspond to placing less weight on costs. Aggressive
behaviour is optimal when firms are competing in strategic substitutes since it induces a soft
response from rivals. From the firms’ viewpoint, this leads to a prisoner’s dilemma: each firm
individually has an incentive to engage in aggressive behaviour but this ends up making them
collectively worse off.

Remark The exposition here focuses on a widely used two-stage model of delegation. Yet
the same welfare conclusions apply to a range of other two-stage models that are strategically
equivalent. This includes the seminal model of Allaz and Vila (1993) in which firms engage
in forward trading of their production, hiring “overconfident” managers who overestimate the
state of market demand, and models of strategic trade policy in which countries use output
subsidies to commit their firms to aggressive behaviour. (See Ritz, 2008, 2014a for further
discussion.)

The game is solved backward for the subgame-perfect Nash equilibrium. Manager i’s first-
order condition in Stage 2 is given by:

∂�i

∂qi
= (1 − ϕi)

∂πi

∂qi
+ ϕi

∂Ri

∂qi
= [

p(Q )+ p ′(Q )qi − (1 − ϕi)ci
] = 0.

This implicitly defines manager i’s best response in the product market. Let q ∗
i (ϕ1, ϕ2, . . . , ϕn)

denote the Nash equilibrium output choice, as a function of all firms’ incentive contracts.
Given this, in Stage 1, each firm’s shareholders choose their manager’s incentive weight
according to:

dπi

dθi
= [

p(Q ∗)+ p ′(Q ∗)q ∗
i (1 + υ−i)− ci

] dq ∗
i

dϕi
= 0,

15 There is also a large body of evidence that shows that executive compensation in manufacturing, service and
financial industries often rewards measures of firm size in addition to profits.

16 It is assumed that such commitment is credible; a sufficient condition for this is that managers’ contracts are
observable and cannot be renegotiated.
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where υ−i ≡ (dQ−i/dqi){q ∗
i }n

i=1
< 0 is the aggregate response of rivals’ Q−i ≡ ∑

j 
=i qj and
dq ∗

i /dϕi > 0. Combining the two first conditions, the contract places positive weight on sales
revenue ϕ ∗

i > 0 if and only if υ ∗
−i < 0. This corresponds to a conduct parameter for firm i’s

product-market behaviour; the only difference is that υ ∗
−i is here determined endogenously in

Stage 1.17

Ritz (2014a) shows that, with linear demand, υ ∗
−i = −(n − 1)/n < 0 for all i, and

equilibrium welfare losses are given by:

L̃(n, s ∗
1 , H ∗) = 1 − n(n + 2H ∗)

(n + s ∗
1 )

2
.

The market share of the largest firm and the Herfindahl index play similar roles as in Cournot-
Nash (υ ∗

−i ≡ 0); the difference is that the number of firms now also plays a crucial role –
because it determines the endogenous competitive intensity as per υ ∗

−i.
With symmetric firms, welfare losses then become L̃(n) = 1/(n2 + 1)2. Losses are now

of order 1/n4, and thus vanish extremely quickly as the number of firms rises. In effect, n
firms now behave like n2 Cournot competitors; even in a duopoly, losses are only 4 per cent.
The reason is that the conduct becomes endogenously more competitive with more firms;
in addition to having “Cournot with more firms”, “Cournot becomes more like Bertrand”.
Intuitively, there is more scope to manipulate rivals’ behaviour if they are more numerous.

With asymmetric firms, the key point is that, given more intense competition, lower-cost
firms capture larger market shares than under Cournot-Nash.18 Turned on its head, this means
that a weaker firm can sustain a given market share only if its cost disadvantage is less
pronounced than under Cournot-Nash. This additional efficiency effect strongly limits welfare
losses.

Ritz (2014a) shows that welfare losses now remain “small” (less than 5 per cent) for many
empirically relevant market structures. A simple sufficient condition is that the market share
of the largest firm is no larger than 35 per cent. Welfare losses are always small if firms are
not too symmetric or are sufficiently numerous (both in contrast to Cournot-Nash). In the
numerical example with s ∗

1 = 40 per cent, s ∗
2 = 30 per cent, s ∗

3 = 20 per cent, and s ∗
4 = 10

per cent, welfare losses are just below 5 per cent (instead of 18 per cent under Cournot-Nash).
These insights also extend fairly widely to non-linear demand systems.19

17 Instead using a differentiated-products Bertand model in which prices are strategic complements would lead
to firms choosing to place negative weight on sales revenue (ϕ ∗

i < 0), which seems at odds with empirical
observation. In related work, Miller and Pazgal (2001) show that the equilibrium outcomes (and hence welfare)
under differentiated Cournot and Bertrand can be identical if delegation contracts instead take the form of relative
profits, e.g., �i = πi − γiπj (for a fixed n = 2). While competition is as such tougher under Bertrand, this is exactly
offset by the “soft” equilibrium contract featuring γ ∗

i < 0 – while γ ∗
i > 0 under Cournot (strategic substitutes).

18 Boone (2008) pursues this logic to develop a novel measure of competition based on how the relative profits
of an efficient and a less efficient firm diverge more strongly when competition is more intense. Also related, Aghion
and Schankerman (2004) study the welfare impacts of policies designed to enhance competition, and the political
economy of their support, in a differentiated-products model with asymmetric costs.

19 In related work on restructured electricity markets, Bushnell, Mansur and Saravia (2008) emphasize how retail
market commitments by vertically integrated players play a similar role to forward sales in Allaz and Vila (1993) –
and how such long-term commitments can substantially improve market performance.
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3.3 Discussion

The above welfare quantifications hold equally if firms’ products are vertically differentiated
in the eyes of consumers, due to (known) differences in quality. In particular, if firm i faced
a demand curve pi = φi + p(Q ) where φi is a measure of vertical product differentiation,
then the first-best has the firm with the highest “value-added”, maxi {φi − ci}, produce all
output. At equilibrium, higher-quality firms tend to have too small market shares from a social
viewpoint. However, like cost differentials, differences in product quality are fully captured
in firms’ observed market shares, allowing for welfare to be estimated.

Welfare losses, in practice, will be lower if the first-best outcome is not the relevant
benchmark for comparison. For example, the most efficient firm may not apply to supply
q fb because of capacity constraints or the government intervention that would be required to
achieve first-best itself causes other welfare-reducing distortions. Welfare losses relative to
any second-best optimum will be smaller.

These models can also speak to merger analysis. For example, as long as the post-merger
market structure is sufficiently symmetric under Cournot-Nash or the largest firm has a market
share of less than 35 per cent with delegation, then welfare “losses” remain small even after
one or several mergers.20 In this sense, the welfare impact of the mergers is limited, and there
may be little rationale for policy intervention. Note that this is a different perspective from
the usual approach in merger analysis: instead of testing whether or not a merger reduces
in welfare, it focuses on whether the level of welfare losses remains “small” post merger
(regardless of the direction of change).

Conversely, welfare losses would be higher if either the mode of competition in the
industry is (tacitly) collusive or if the approximate welfare standard is skewed more strongly
toward consumers, e.g., Wλ = λ� + CS with λ < 1. Cournot-style equilibria with very
concave demand (low-cost pass-through) often produce high W but only low CS – and hence
possibly also low Wλ.21 For example, Cournot-Nash equilibrium with linear demand yields
CS ∗/W fb = 1/(1 + s ∗

1 )
2, so consumer losses due to market power will be substantial – and

sometimes very large – unless the largest firm is itself small relative to market.22

Other strands of the literature develop related models with endogenous conduct that may
have similar welfare properties that lie between Cournot-Nash and perfect competition. One
example is supply function models in which firms choose a set of price–quantity pairs to
supply rather than being restricted to price or quantity choices (Klemperer and Meyer, 1989;
Green and Newbery, 1992). In more recent work, d’Aspremont, Dos Santos Ferreira and
Gerard-Varet (2007) and d’Aspremont and Dos Santos Ferreira (2009) develop a related
way of endogenizing conduct parameters. Although welfare results for some limiting cases
and specific examples are known, I am not aware of any general welfare analysis for such
models.23

20 Strictly speaking, this assumes that the underlying first-best welfare remains unaffected by the merger; this will
be the case either if the most efficient firm is not involved in the merger, or if it does not experience any efficiency
gains.

21 This may explain why policymakers often appear to have a distaste for low pass-through markets; while these
often yield low deadweight losses, consumers typically capture only a small fraction of the gains from trade.

22 This formula can be obtained heuristically by setting ξ = 0 and H ∗ = 0 in the expression for L(s ∗
1 , H ∗, ξ);

superimposing a zero Herfindahl in effect takes away industry profits.
23 Holmberg and Newbery (2010) study how deadweight losses vary with market structure, demand elasticity

and capacity utilization in an application of the supply function approach to electricity markets.
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The finding that welfare losses due to market power are often quantitatively modest in
Cournot-style models naturally leads to the question: what other market features could
generate higher losses? One possibility is horizontal product differentiation, which confers
additional market power on firms (Corchón and Zudenkova, 2009). Another possibility is
welfare losses due to different forms of asymmetric information. Vives (2002) studies a
symmetric (Bayesian) Cournot model in which firms have private information on their costs,
and argues that informational losses can outweigh those due to classical market power. Its
effect on deadweight losses is of order 1/n, while that of market power is of order 1/n2. Put
differently, a larger number of firms is more effective at curbing market power than reducing
informational distortions. It would be interesting to know more about how such effects play
out with (ex ante) firm heterogeneity.24

4 SOCIAL COSTS OF ENDOGENOUS ENTRY

Recent work provides several refinements to the classic result that, in symmetric oligopoly,
there is a tendency towards “excess entry”: more firms enter than would be chosen by a social
planner (Mankiw and Whinston, 1986).25

In the long run, firms decide endogenously on whether to enter a market (at some cost,
which is sunk). Amir, De Castro and Koutsougeras (2014) show for Cournot models that
excess entry arises if and only if there is “business stealing”: each entrant, to some degree,
captures sales from incumbents rather than serving new customers; per-firm output satisfies
q ′(n) < 0.

Hence there is wedge between private and social incentives: some of an entrant’s profits
are a transfer from incumbent firms but yield no social gain; since entry is costly, this wedge
matters for welfare. In free-entry equilibrium, each individual firm is too small from a social
perspective.26

4.1 Quantifying Welfare Losses Due to Excess Entry

Most of the existing literature examines a second-best setting in which the social planner
cannot influence post-entry pricing, and focuses on qualitative results. In more recent work,
Corchón (2008) quantifies the welfare losses L arising in a symmetric Cournot free-entry

24 In recent work, Gabaix et al. (2016) highlight how price–cost margins (rather than welfare) under (symmetric)
monopolistic competition can be much less sensitive to the number of firms than under Cournot. They show that,
in a random utility model in which goods are homogeneous but consumers are affected by random Gaussian
“taste” shocks, markups are asymptotically proportional to 1/

√
ln(n). One interpretation is behavioural: “consumer

confusion” not captured in standard models of imperfect competition may result in significantly higher prices – even
in “large” markets.

25 Taken literally, the policy implication is that entry should be regulated or otherwise restricted. By contrast,
under perfect competition the degree of entry by firms is welfare optimal; more entry is then always a good thing for
society.

26 The same conclusion applies with a moderate degree of horizontal product differentiation, so each entrant
adds only little extra variety of value to consumers. However, the result can be reversed, leading to “insufficient
entry”, if competition in the market is very tough (e.g., undifferentiated Bertrand), even though at most by one firm
“too few” (Mankiw and Whinston, 1986). In recent work, Bertoletti and Etro (2016) unify many existing results
from endogenous-entry models (with symmetric preferences and symmetric firms), covering Bertrand, Cournot, and
monopolistic competition.
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equilibrium, relative to the first-best social optimum – in which a single firm enters and price
equals marginal cost. Welfare losses under free entry are sometimes very large, even with
symmetric firms, because of the further cost misallocation.

Similar to the previous section, the approach is based on observables as far as possible.
Assuming a free-entry equilibrium, the number of firms n is observed from market data.27

The fixed cost of entry K is obtained as follows. (This can also be thought of as a fixed
investment cost or R&D outlay required for market entry.) Let π(n) denote per-firm Cournot
profits (where π ′(n) < 0). Since the nth firm decided to enter, K ≤ π(n) ≡ Kmax, while the
(n + 1)th firm staying out implies that K > π(n + 1) ≡ Kmin. (This assumes a sufficiently
large pool of potential entrants.) So the entry cost is bounded according to K ∈ (Kmin, Kmax].

It is clear from Mankiw and Whinston (1986) that welfare losses are increasing in the size
of the entry cost; indeed the social inefficiency disappears as the entry cost becomes small.
Therefore, L(n, K, ξ) ≤ L(n, Kmax, ξ) ≡ Lmax and L(n, K, ξ) > L(n, Kmin, ξ) ≡ Lmin, where ξ
is the familiar measure of (constant) demand curvature.

The limiting cases are instructive. First, with a large number of observed entrants in the
industry, welfare losses tend to zero. In such cases, operating profits are driven down to almost
zero, so the entry cost must have been tiny to have allowed so many firms to participate. Hence
the outcome is essentially equivalent to perfect competition.

Second, with a very convex demand curve (ξ → 2) industry profits are only a very small
fraction of the overall surplus generated. Hence the entry cost sustaining n firms in the market
cannot be very large, and so welfare losses are again tiny.

Third, and conversely, with a very concave demand curve (ξ → −∞), industry operating
profits are very large relative to consumer surplus. So if some potential entrants nonetheless
choose not to enter, then the fixed cost must be substantial – and so there is a lot of socially
wasteful cost outlay. Indeed, if the fixed cost is large enough to wipe out all industry profits,
then welfare losses tend to 100 per cent. Specifically, Corchón (2008) shows that Lmin =
(n − 1)/n ≥ 1/2 while Lmax = 1.

This latter set of cases is interesting because it contrasts so strongly with a fixed number of
firms. With exogenous n, welfare losses under symmetric Cournot tend to zero as ξ → −∞;
the incentive for firms to withhold output disappears as they capture all surplus at the margin.
By contrast, with endogenous n, the majority of this surplus is dissipated by fixed costs.

To get a feel for how welfare losses remain “large” in interior cases, consider the case with
linear demand. Using the results in Corchón (2008), it is easy to check that Lmin(4) ≈ 21.8
per cent while Lmax(4) is just over 30 per cent. This is at least five to seven times as high
as the loss of 4 per cent with an exogenous four firms. For a larger number of firms, the
gap [Lmax(n) − Lmin(n)] shrinks as per-firm profits decline. With ten firms, welfare losses
are bounded by 13.5–16.0 per cent; they remain above 5 per cent until the number of firms
exceeds 35.

4.2 Firm Heterogeneity and Endogenous Entry

More recent work on endogenous entry has relaxed the assumption that potential entrants
are symmetric, allowing for differences in firms’ marginal costs and in the timing of market

27 This side-steps the problem of the integer constraint on n that arises when the number of firms is derived from
market primitives on costs and demand.
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entry. By contrast, classic models of “excess entry” leave no room for competition to enhance
productive efficiency via selection – and thus deprive it of one of its fundamental roles.

Vickers (1995) develops a simple Cournot example with unit-elastic demand (i.e., p(Q ) =
S/Q with fixed industry revenue S ) to illustrate how the adverse effects of entry may thus be
overstated. Suppose that each firm discovers its unit cost (low or high) following entry; the
industry already consists of three firms; the question is the welfare impact of a fourth entrant.

If the entrant ends up being high cost and at least two incumbents are low cost, then it finds
it optimal not to produce, so the externality from entry is zero. Even if only one incumbent
is low cost, the negative externality is less pronounced than under symmetry since business
stealing mainly affects the high-cost incumbent.

The entry externality turns positive if two of the three incumbents are high cost; entry by
a low-cost firm then induces one of the less efficient incumbents to quit, and the efficient
incumbent again expands output post-entry.28 Surprisingly the literature does not appear to
have generalized this example to richer market structures or to different forms of competition.

Etro (2008) shows how a first mover facing endogenous entry of followers typically behaves
“more aggressively” than under simultaneous moves, and how this is good for social welfare.
This stands in contrast with Stackelberg leadership against a fixed number of firms, which
is well known to be critically sensitive to the question of strategic substitutes (which leads
to aggressive behaviour and a first-mover advantage) versus strategic complements (which
yields a second-mover advantage).

Intuitively, endogenous entry means that the leaders’ attention shifts away from the
reactions of followers at the margin (are strategies substitutes or complements?) to how its
behaviour affects entry, that is, their participation constraints. Since products are substitutes,
more aggressive behaviour (more output or lower prices) always leads to a favourable
response: rivals’ non-entry (or exit) becomes more likely.

To illustrate, consider quantity competition with one leader and m potential followers.
Demand is linear p(Q ) = 1 − Q and costs are zero – apart from the entry cost K.29 The key
point is that, with free entry of followers determined by a zero-profit condition, the number
of actual entrants decreases with the leader’s output. Etro (2006) shows that the equilibrium
thus features strategic entry deterrence; the market leader produces qL = 1 − 2

√
K, which

prevents any entry, and the limit price is p = 2
√

K.
This simple example already has some interesting welfare implications. The price is higher

than in the free-entry Cournot equilibrium (simultaneous moves), so consumers are worse
off – contrary to the fixed-n Stackelberg logic. However, social surplus is nonetheless higher
because of the profits made by the leader – which are associated with the saving on entry
costs. The observed market structures are radically different: the market has flipped from n
active firms with identical shares to a single quasi-monopolist.

Etro (2008) studies a general “aggregative game” in which each firm’s profits depend on
its own action and a summary statistic of those of its rivals combined, that is, firm i’s payoff
πi = �(xi, X−i) − K where xi is its own action (e.g., price or output) and X−i = ∑

j 
=i h(xj)

captures the “externalities” arising via the actions of other players, where h(·), h ′(·) > 0. This

28 The unit-elastic example is somewhat unusual in that an efficient incumbent regards rivals’ outputs as a
strategic complement.

29 As is standard, the entry cost is assumed to be sufficiently low such that the market is not a natural monopoly.
Both Nash and Stackelberg free-entry models converge to perfect competition as K → 0.
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setup nests as special cases quantity competition with differentiated products as well as price
competition with logit and iso-elastic demand, amongst others. Typically the leader produces
more than under simultaneous moves or prices lower than the followers; this achieves a Pareto
improvement in the allocation of resources.

The general implication is that large market shares of leading firms in an industry can be
good news for social welfare; this also restores the notion of a first-mover advantage that
prevails under both price and quantity competition. The details of a Stackelberg free-entry
equilibrium depend on firms’ strategic variables (price or quantity), the nature of product
differentiation, and the shape of their cost functions.30

Mukherjee (2012) builds on these insights to show that the “excess entry” result can be
reversed in markets with leadership and endogenous entry. The model has a single leader
that enjoys a unit-cost advantage relative to a tail of symmetric followers, and a linear
homogeneous products demand curve. The analysis is again second-best in that the social
planner chooses the number of followers taking as given that they will engage in Stackelberg
competition with the leader post-entry.

The main novelty is a “business creation” effect: the leader’s optimal response to an increase
in the number of followers is to raise production, dqL/dn > 0. The reason is that its output
rises with the followers’ cost, and does so more strongly if there are more of them. Intuitively,
the leader meets more rivals with a “fighting response” that leverages its cost advantage. (More
formally, the leader’s optimal output is supermodular in its cost advantage and the number of
follower-entrants.)

The key insight is that the excess entry result is reversed if the leader’s cost advantage
is sufficiently pronounced. Then the new business creation effect dominates the standard
business-stealing effect (which still exists amongst the followers), and more followers than
delivered by the market would be socially desirable.

4.3 Discussion

The welfare metric used in the literature on endogenous entry is social surplus, so that the
productive inefficiency arising from excess entry counts. Instead, using consumer welfare, an
extra entrant is always socially desirable as long as it reduces prices; the market, if anything,
delivers insufficient entry.31

The additional welfare losses that arise with endogenous entry thus have a similar effect
to placing less weight on consumer surplus in the social-welfare function. Lowering λ in
Wλ = λ� + CS pays less attention to profits either for normative reasons or because these
profits are dissipated in another way. Incorporating wasteful rent-seeking costs that firms incur
in securing market power (Posner, 1975) has similar effects.

30 Anderson, Erkal and Piccinin (2015) analyse the welfare impacts of changes that affect only a subset of firms in
a market – such as a merger or a technology change – in a general aggregative-game setup. They show that the short-
run impacts (e.g., a merger raises prices) of the change are often fully neutralized in the long run with endogenous
entry (i.e., the merger has no impact on prices). The key condition is that the marginal entrants, who make zero profits,
are not directly affected, e.g., by the merger – and their actions effectively pin down the behaviour of the aggregate
(and hence prices) over the long run.

31 Some exceptions to this baseline result are known. Chen and Riordan (2008) show how more firms can
sometimes lead to higher prices in a discrete-choice model with product differentiation; see also Cowan and Yin
(2008) who study a related Hotelling setup.
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A central conclusion is that surplus losses remain large with endogenous entry even with
a considerable number of firms in the market. Again, this conclusion can be substantially
altered in two-stage models of competition. When post-entry competition is more intense, the
inferred entry cost for any given number of observed entrants is well below that of Cournot
competition, and so the additional source of cost misallocation is also much smaller. Welfare
losses already drop below 5 per cent whenever there are at least four to six observed entrants
(Ritz, 2014a).

Models of excess entry make the (sometimes neglected) assumption that entry occurs
sequentially. While this is often reasonable, there are other examples in which a potential
entrant may not know what entry decision other firms have made. Cabral (2004) provides a
second-best analysis in which entry is a simultaneous process and either happens immediately
or takes time as in a war of attrition. If entry costs are fairly low, then the results from
sequential models are fairly robust. However, with high entry costs, the details on the timing
of the entry process become important and “insufficient entry” more likely: from a societal
perspective, a firm may be too fearful of an “entry mistake” (more firms enter than the market
can support).

Finally, Kremer and Snyder (2015) emphasize a related source of welfare losses that arises
from under-entry. Suppose that there is only a single potential entrant and that, from a social
standpoint, it would be efficient for this firm to invest. However, if this firm is unable to
appropriate a sufficiently large fraction of the surplus as profits, it will choose not to enter;
as a result, the market does not come into existence.32 Kremer and Snyder (2015) provide
worst-case bounds that take into account the possibility of such “zero entry”, and argue that
the resulting welfare losses can be large – for instance, in the pharmaceuticals industry in
which consumers’ valuations for products often vary widely.

5 CONCLUSION

The recent literature offers some new perspectives on a significant body of existing knowledge
on oligopolistic competition and social welfare.

In a fairly broad class of oligopoly models, the division of surplus between firms and
consumers is importantly determined by the rate of cost pass-through. Empirical estimates
of pass-through across different markets thus offer indirect inference on welfare metrics. Yet
pass-through is not a panacea in settings with firm heterogeneity, and the link between theory
and the econometrics of pass-through still needs further tightening in future research.

The degree of welfare loss in widely used Cournot-style models is often surprisingly
modest, even relative to first-best and with significant industry concentration. Under Cournot-
Nash competition, losses can be significantly higher due to cost asymmetries between firms
yet their adverse impact is strongly limited in two-stage models with tougher competitive
conduct. Losses are also typically much higher under a consumer welfare standard. Future
research could examine more closely the interaction between heterogeneity in firms’ costs
and asymmetric information.

32 By contrast, the above models consider the welfare implications of endogenous entry where some entry has
indeed occurred – so there exists an observed distribution of firms’ market shares.
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Market performance is similarly reduced in dynamic models featuring “excess entry” that
dissipates a significant fraction of firm profits. Recent work has extended these results to allow
for Stackelberg leadership as well as differences in firms’ costs. Both can be good news for
social welfare, especially if the market leader also enjoys a cost advantage. Future research
may focus on how these results map onto the empirical study of specific markets.
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8. Dynamic games
Klaus Ritzberger

1 INTRODUCTION

To the interested reader of the New York Times (Passell, 1994) a game is about choosing
cooperate or defect in a prisoner’s dilemma, hence, an entirely static affair. This is a pity,
because the issue at stake concerns non-cooperative games. And a game is non-cooperative if
it has complete rules. An obvious example, and the inspiration for the discipline’s nickname,
is a parlor game. Yet, a parlor game is not a static one-shot affair. Or do you play chess by
submitting a full strategy – a complete plan for all possible contingencies – to the umpire?

For most parlor games the interaction of players takes place in a sequence of moves as
dictated by the rules. Hence, it is an inherently dynamic affair. When the rules are complete,
every possible succession of attacks, counterattacks, and defenses that are consistent with
the rules can be mapped out in a flow-chart. In fact, such a flow-chart represents a device to
verify that the rules are complete, and is technically known as a “tree.” Therefore, a game
is non-cooperative if and only if it has such a dynamic representation by a tree, technically
known as an “extensive form.” In this sense every non-cooperative game is dynamic.

This may sound surprising given that the literature, somewhat imprecisely, refers to
“dynamics” only in the presence of an explicit and common time dimension. Examples
include repeated games, stochastic games (Shapley, 1953), or games in continuous time
(also called “differential games”). Yet, in a non-cooperative game there is in principle no
reason that players are aware of a common time axis, even if they perceive a personalized
time-ordering of their own moves. (An example of this was already given by Kuhn, 1953,
p. 199.) Still, their interaction is dynamic in the sense that it evolves over time.

For this reason this chapter will deal with games in extensive form. Of course, that does
not exclude the narrower classes of repeated, stochastic, or differential games, as those are
also games in extensive form. Indeed, differential games will be touched upon now and then,
but no comprehensive overview will be provided. Instead, the development of extensive form
game theory, historical and recent, will be outlined and its significance for applications will
be explained. The emphasis will be on concepts that are peculiar to extensive form analysis,
like the role of backwards induction and their strengths and weaknesses.

There is no intention to deny the virtues of normal form analysis. After all, the most basic
solution concepts, like Nash equilibrium, rationalizable, or iteratively undominated strategies,
rely on it. In fact, discovering the idea of a pure strategy has had a major impact on the
development of game theory. It enabled the translation of the extensive form representation of
a game (von Neumann, 1928) into the mathematically more transparent problem of a (payoff
or utility) function on a product set (of pure-strategy combinations). Some have even argued
that this normal form representation contains everything that is relevant to rational decision
makers (e.g., Kohlberg and Mertens, 1986). Whether or not this is a valid argument will
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be seen to depend on which decision-theoretic rationality notion one is willing to adopt –
consistent with the idea that game theory is interactive decision theory (Aumann, 1987).
Whatever view one holds about that, normal form games suppress the dynamics of strategic
interaction. Extensive form games, on the other hand, live off this dynamics and, therefore,
have an intuitive appeal that is often very informative in applications.

It is trivially true that every normal form game has an extensive form representation, one
where all players simultaneously choose a strategy once and for all at the root of the tree.
In this sense normal form games are indeed also non-cooperative games (even though I will
raise some doubts about that later on). The key difference between normal and extensive form
games rests with what are the primitives.

To highlight this, let us first agree that the rules of the game specify only outcomes, like win
or lose, sums of money to be transferred, market shares, or the like, but no payoffs (or utilities).
Such a pure representation of the rules is often called a game form. A game form turns into
a game when preferences of players over outcomes are added. Then, fixing a set of players,
in a normal form the two primitives are the (product) set of pure strategy combinations and
an outcome function that maps each strategy combination into an outcome. By contrast, in
an extensive form the two primitives are the tree (that incorporates the outcomes) and the
players’ sets of choices that determine information sets. In particular, for the extensive form
representation strategies are derived objects, not primitives.

This distinction determines on which objects assumptions can be imposed that give rise to
a particular application. In the normal form the assumptions are put on strategies or on the
outcome function. In the extensive form the assumptions are put on the tree or the players’
choices. Since the latter formalize the evolution of the players’ information structure, it is
an explicitly dynamic model of strategic interaction that gives rise to observable implications.
This is not true for the normal form as strategies can differ off the equilibrium path, at counter-
factual events that cannot be observed. Therefore, the dynamic model of the extensive form is
better suited to studying applications that can be taken to the data – and this is one reason for
its popularity in industrial organization.

The chapter is organized as follows. Section 2 introduces three possible definitions of game
trees and extensive forms and discusses their virtues and vices. Section 3 comes back to how
the normal form is related to the extensive form and explains the concept of perfect recall and
its significance for applications (Kuhn’s theorem). Section 4 discusses two applications.

2 EXTENSIVE FORMS

The idea of how to represent a game in extensive form by a tree goes back to an early paper
by von Neumann (1928), but it was not until the Theory of Games and Economic Behavior
(von Neumann and Morgenstern, 1944) that it was recognized beyond the initiated circles.
The formalizations proposed since differ in details, but share at least three ingredients: first,
a set of players, throughout denoted by I; second, a tree that captures how an omniscient
outside observer sees the evolution of play; and third, a model for the evolution of the
players’ private information, typically comprising choice sets and/or information sets. The set
of players i ∈ I will not pose any problems, except that it will mostly be taken to be
finite. The various incarnations of the other two ingredients will now be described more
formally.
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2.1 Trees

In their foundational book, von Neumann and Morgenstern proposed to formalize a game
tree, in line with statistics and decision theory, as a collection of subsets of a common
underlying set of plays, outcomes, or states (1944, p. 60). Yet, for reasons that are elusive they
imposed restrictive assumptions, for instance, that the number of moves that come before
any node in a given information set is constant (1944, p. 73). This limitation caused Kuhn
(1953) to generalize the model and recast the tree as a graph. His remained the canonical
formalization until the turn of the twenty-first century (see, e.g., Selten, 1975; Kreps and
Wilson, 1982). The only exception appeared first in a paper by Harris (1985) and was then
taken up in a textbook by Osborne and Rubinstein (1994). They perceived a tree as a collection
of sequences. This century, the original formalization of an event tree launched a comeback
in a series of papers by Alós-Ferrer and Ritzberger (2005a, 2005b, 2008, 2013, henceforth
AR1a, AR1b, AR2, and AR3). Each of those three representations will now be discussed
in turn, beginning with von Neumann and Morgenstern’s original formulation in its modern
incarnation.

2.1.1 Event trees
Throughout, W will denote a fixed set of outcomes or plays. A play is a maximal history of the
game, from the beginning to the end – if there is an end. Since a play keeps track of everything
that happens along it, the set W of plays is the appropriate domain for the players’ preferences.
Statisticians may also want to think of W as a state space. In the early literature W is typically
taken to be finite, but this will not be necessary, that is, W may well be a continuum. The
following definition captures what AR3 call a discrete game tree.

Definition 1 A discrete event tree is a pair T = (W, N) consisting of a non-empty set W of
plays and a collection of non-empty subsets x ∈ N (the nodes) of W, partially ordered by set
inclusion, such that W ∈ N, {w} ∈ N for all w ∈ W, and
(GT1) h ⊆ N is a chain if and only if there is w ∈ W such that w ∈ ∩x∈hx,1

(GT2) every chain in the set X ≡ N \ {{w}}w∈W of moves has a maximum and either an
infimum in the set E ≡ {{w}}w∈W of terminal nodes or a minimum.2

In statistics an event is a non-empty subset of the state space. The same applies here. It begins
at the root W ∈ N where nothing has been decided yet, so everything is still possible.
At this all-encompassing event someone takes a decision and thereby narrows down the
possible outcomes. Continuing inductively, suppose that a move x ∈ X ≡ N \ {{w}}w∈W
has materialized. At x a further decision discards more outcomes in x and, hence, a smaller
node y ∈ N with y ⊂ x is reached. This continues until a terminal node {w} ∈ N finally pins
down the realized play – which follows from the only-if part of (GT1). By the if part of (GT1)
every two events (nodes) x, y ∈ N must either be disjoint or one must contain the other; hence,
succession translates into a refinement of information.

1 A subset of a partially ordered set is a chain if the order relation restricted to the subset is complete.
2 Maximum, minimum, supremum, and infimum are with respect to set inclusion. Henceforth ⊂ denotes proper

inclusion and ⊆ denotes inclusion or equality. Note that AR3 call an event tree a (discrete) game tree, hence (GT1)
and (GT2). They also denote the tree by (N, ⊇), which is justified by AR1, Theorem 1, p. 775.
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206 Handbook of game theory and industrial organization: theory

For each node x ∈ N let ↑ x = {y ∈ N |x ⊆ y } (the past) and ↓ x = {y ∈ N |y ⊆ x } (the
future). Then, nodes in an event tree can be classified as follows. A node x ∈ N \ {W} is finite
if ↑x \ {x} has a minimum and infinite if x = inf ↑x \ {x}. All infinite nodes must be terminal
(by Theorem 1(b) of AR3). Let F (N) ⊆ N denote the set of finite nodes together with the root
W ∈ N. Its complement, the set of infinite nodes, consists of those that are reached only after
infinitely many decisions – thus justifying its name. Whether or not infinite terminal nodes
are included in the tree does not matter (AR3, Proposition 4). If they are, the tree is called
complete. For a finite node x ∈ F (N)\ {W} let p (x) = min ↑x \ {x} ∈ N denote its immediate
predecessor.

Definition 1 can be shown to represent the most general notion of a game tree in the
literature, save for one aspect incorporated in (GT2). Condition (GT2) demands that every
chain of moves has a maximum and either also a minimum or an infimum in the set of
singletons (terminal nodes). The first part, existence of a maximum or “up-discreteness,”
corresponds to the existence of immediate successors. This can be shown to be necessary.
Without it, strategies may induce no outcome at all or a whole continuum thereof (AR2,
Theorems 2 and 3). The second part, existence of a minimum or a terminal infimum
(or “down-discreteness”), corresponds to the existence of immediate predecessors. This one,
by contrast, is a convenience property. It holds in all known applications, with the single
exception of differential games. Yet, it simplifies working with the most general definition
(given as Definition 4 of AR1b) that also encompasses continuous-time games.3 Hence, for
the present purpose Definition 1 will do. In particular, note that it allows for infinitely many
choices at a move as well as for an infinite horizon.

2.1.2 Graph trees
Since graphs are more abstract, their introduction takes some preparation. A graph is a pair
(N, R) consisting of a non-empty set N, whose elements x ∈ N are called nodes or vertices,
together with a binary relation R ⊆ N × N, called edges or incidence. If the relation R is
symmetric, the graph is called undirected.4 Otherwise it is directed (or a digraph).

A key notion for graphs is as follows: A finite subset {x1, . . . , xk} ⊆ N for some k ∈
Z++ is a path if (x�, x�+1) ∈ R, no edge (x�, x�+1) and no node x� being repeated, for all
� = 1, . . . , k − 1. Node xk may be repeated, though. If xk = x� for some � = 1, . . . , k − 1,
then the path {x�, . . . , xk} is called a cycle if � < k − 1 or a loop if � = k − 1. A graph that
contains no cycles or loops is called acyclic.

The notion of a path gives rise to a new relation on N, defined by taking the transitive
closure.5 In particular, say that x ∈ N is connected to node y ∈ N if there is a path {x1, . . . , xk}
with x1 = x and xk = y. Clearly, if R itself is transitive, then its transitive closure agrees with
R, otherwise it is larger than R. A graph in which for all distinct x, y ∈ N either x is connected
to y or y is connected to x is a connected graph.

For an acyclic directed graph (N, R) the transitive closure of R is irreflexive and transitive
and denoted by >. Transitivity is by construction and irreflexivity by the absence of
loops. Taking the union with equality results in a reflexive, transitive, and antisymmetric

3 Strictly speaking there is an even more general formulation, proposed by AR1a. The extra generality, however,
concerns only allowing trivial structures, like nodes with only one successor.

4 A binary relation R is symmetric if (x, y) ∈ R implies (y, x) ∈ R, reflexive if (x, x) ∈ R, transitive if (x, y) ∈ R
and (y, z) ∈ R imply (x, z) ∈ R, and antisymmetric if (x, y) ∈ R and (y, x) ∈ R imply x = y, for all x, y, z ∈ N.

5 The transitive closure of a relation is the smallest transitive relation that contains the original one.
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relation ≥, i.e., x ≥ y if and only if either x > y or x = y is a partial ordering. Reflexivity
and transitivity follows from the definition. If x ≥ y and y ≥ x would hold with either x > y
or y > x, then x > x by transitivity would contradict irreflexivity of the transitive closure;
hence, x ≥ y and y ≥ x must imply x = y, viz. antisymmetry. This union of equality with the
transitive closure, ≥, is called the induced (partial) ordering. The following definition refers
to this induced ordering:

Definition 2 A graph tree (N, R) is an acyclic directed graph that has a maximum x0 ∈ N
(called the root) with respect to the induced ordering ≥ of R such that
(ST1) for all x ∈ N, the set ↑x ≡ {y ∈ N |y ≥ x } is a path with x0 ∈↑x, and
(ST2) for all x, y ∈ N, if x > y then there is z ∈ N such that x > z and neither y ≥ z nor z ≥ y,
where > denotes the transitive closure of R.6

A concept closely related to this definition is as follows. A directed graph (N, R) is an
arborescence if there is a distinguished node x0 ∈ N (the root) such that every other node
x ∈ N is connected to x0 by a unique path. Hence, an arborescence satisfies (ST1). For
instance, N = {x, y, z} together with R = {(x, z) , (z, y) , (y, x)} is an arborescence, if one of the
three nodes is declared the root (because a path cannot repeat edges). Thus, an arborescence
may look like a cycle, which a graph tree cannot. Another example of an arborescence is
(Z++, R) with R = {(n, n − 1) |n > 1 } and root x0 = 1. For this example the transitive
closure > of R is simply the reversed natural ordering of the positive integers n ∈ Z++. This
is an example of an arborescence that fails (ST2) as the latter is a non-triviality requirement
that excludes pure chains.

A peculiarity of a graph tree is that an infinite play does not end at a terminal node; instead
it never ends. The corresponding play is nevertheless well defined – as a maximal chain with
respect to ≥, where a chain c ⊆ N is maximal if there is no x ∈ N \ c such that c ∪ {x}
is a chain.7 Hence, the set W of plays is the set of maximal chains and again provides the
appropriate domain for the players’ preferences.

For a graph tree (N, R) denote by W its set of plays, and for each x ∈ N let W (x) =
{w ∈ W |x ∈ w } denote the set of plays passing through node x. This provides a way to make
an equivalence between graph trees and event trees precise.

Proposition 1 (a) If (N, R) is a graph tree, then its set of plays W together with the set
{W (x) |x ∈ N } ∪ {{w}}w∈W is an event tree.

(b) If (W, N) is an event tree, then the set F (N) of finite nodes together with the binary
relation R = {(x, y) ∈ F (N)× F (N) |y = min ↑x \ {x} } is a graph tree.

Proof (a) First, observe that for all x, y ∈ N it holds that W (y) ⊆ W (x) if and only if x ≥ y,
i.e., the partially ordered set (N, ≥) and ({W (x) |x ∈ N } , ⊇) are order isomorphic.8 To verify
(GT1) let h′ ⊆ N ′ ≡ {W (x) |x ∈ N } be a chain, that is, for all x′, y′ ∈ h either x′ ⊆ y′ or
y′ ⊂ x′. By order isomorphism there is a chain h ⊆ N such that h′ = {W (x) |x ∈ h }. By the

6 AR3, Definition 7, calls a graph tree a “simple tree,” hence (ST1) and (ST2).
7 In a partially ordered set every chain is contained in a maximal chain by the Hausdorff maximality principle –

a version of the axiom of choice (see, e.g., Hewitt and Stromberg, 1965, Ch. 1).
8 An order isomorphism between two partially ordered sets is a bijection that preserves the partial orderings on

domain and codomain.
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208 Handbook of game theory and industrial organization: theory

Hausdorff maximality principle h is contained in a maximal chain w ∈ W. It follows that
w ∈ W (x) for all x ∈ h, as required by the only-if part of (GT1). To see the if part, let h′ be a
subset of N ′ such that there is some w ∈ W with w ∈ W (x) for all W (x) ∈ h′. It follows that
the set h ⊆ N such that h′ ={W (x) |x ∈ h } is a chain, thus h′ is also a chain.

To see (GT2), let w, ŵ ∈ W with w = ŵ. Since w and ŵ are maximal chains in N, there are
x, x̂ ∈ N such that x ∈ w and x̂ ∈ ŵ, but x /∈ ŵ and x̂ /∈ ŵ. It follows that w ∈ W (x) \ W

(
x̂
)

and ŵ ∈ W
(
x̂
) \ W (x). Hence, ({W (x) |x ∈ N , ⊇}) is a game tree in the sense of Definition 4

of AR1b. By the existence of a maximum x0 ∈ N with respect to ≥, this game tree is rooted.
By (ST1) and order isomorphism ↑ W (x) is finite and, hence, W (x) is a finite node in this
game tree for all x ∈ N. Therefore, ({W (x) |x ∈ N } , ⊇) is regular (AR2, Definition 2.2(c))
and rooted, hence, it is discrete by Theorem 1 of AR3. Adding the singletons {{w}}w∈W can
only add infinite terminal nodes.9

(b) Let R = {(x, y) ∈ F (N)× F (N) |y = p (x) }, denote by>⊆ F (N)×F (N) the transitive
closure of R, and by ≥ ⊆ F (N) × F (N) the union of equality (the diagonal) with >.
Then ≥ is simply (weak) set inclusion and, therefore, a partial ordering. If there were a cycle{
x′

1, . . . , x′
k

} ⊆ F (N) with x′
1 = x′

k, then ≥ cannot be antisymmetric, because for any two
distinct x′, y′ ∈ {x′

1, . . . , x′
k

}
it would be the case that x′ ≥ y′ and y′ ≥ x′, even though x′ = y′.

Likewise, if there were a loop
{
x′, x′}, then x′ > x′ would contradict that > (viz. proper set

inclusion) is irreflexive. Hence, that ≥ is a partial ordering implies that (F (N) , R) is acyclic.
As W = x0 ≥ x′ for all x′ ∈ N, it follows that x0 ∈↑ x′ = {

y′ ∈ F (N)
∣∣y′ ≥ x′ } for all

x′ ∈ F (N). Because in the event tree ↑ x = {y ∈ N |y ⊇ x } is finite for all x ∈ F (N) by
Theorem 1(c) of AR3, so is ↑ x′ for all x′ ∈ F (N); thus, ↑ x is a path and (ST1) holds. (ST2)
follows from Proposition 5(b) of AR3.

By this result Definitions 1 and 2 are equivalent up to the inclusion or exclusion of infinite
terminal nodes. Therefore, even though Definition 2 is again not the most general definition,
it suffices for the present purpose. In particular, infinitely many choices are available at a move
and a potentially (countably) infinite horizon are still covered. To a certain extent it is a matter
of taste which definition is used.

It should be noted, though, that the graph formulation does not admit a generalization as
event trees do. The reason is most easily seen for differential games, i.e., continuous-time
problems. Because the real numbers are not well ordered, for a given node at “time” t ∈ R

there is simply no hope of identifying immediate successors or predecessors. Hence, the
statement (x, y) ∈ R, which is to be read as “y ∈ N immediately precedes x ∈ N,” has no
meaning. Yet, as pointed out before, such problems appear to be outside the realm of dynamic
game theory regardless.

2.1.3 Sequence trees
There is a third definition of a tree, introduced by Harris (1985) and later popularized
by Osborne and Rubinstein (1994, p. 200) in their textbook. The present exposition will
follow the latter source, because Harris’s paper is concerned with perfect information games.
The formulation starts from a universal set of actions A, like “move left,” “pay a certain
amount of money,” “shoot,” “stop producing,” etc., which lists everything that players may do
in the course of a game after all sorts of histories. Even though in many applications A may

9 This proof of statement (a) is almost identical to the proof of Proposition 5(a) of AR3.
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Dynamic games 209

be finite, there is once again no reason for that; hence, A may well have the cardinality of the
continuum. The second ingredient is a subset H of the infinite product A∞.

Definition 3 A sequence tree is a pair (A, H) consisting of a set A of actions and a set H ⊆ A
of sequences (finite or infinite) from A such that
(OR1) the empty sequence belongs to H, i.e., ∅ ∈ H,
(OR2) if (ak)

K
k=1 ∈ H (where K may be infinity) and L < K, then (ak)

L
k=1 ∈ H,

(OR3) if an infinite sequence (ak)
∞
k=1 from A satisfies (ak)

L
k=1 ∈ H for every positive integer

L ∈ Z++, then (ak)
∞
k=1 ∈ H.

Each element of H is a history, and each coordinate ak of a history is an action taken by some
player from A. A history (ak)

K
k=1 ∈ H is terminal (or maximal) if it is infinite or if there

is no aK+1 ∈ A such that (ak)
K+1
k=1 ∈ H. Otherwise it is non-terminal. The set of terminal

histories corresponds to the set of plays and is denoted by W. The set of actions available at
any non-terminal history x ∈ H \ W ≡ X is the set A (x) = {a ∈ A |(x, a) ∈ H }, which must
be non-empty by the definition of X (the set of moves or non-terminal histories). For each
t = 1, 2, . . . denote by At = {

a ∈ A
∣∣∃ (ak)

t
k=1 ∈ H : at = a

}
the set of actions available at

stage t.
Once again, for a given non-terminal history x ∈ X the set A (x) of available actions may

be infinite; and by construction the time horizon may also be (countably) infinite. In fact,
Definition 3 is slightly more general than the other two, because it covers the arborescence
(Z++, R) with R = {(n, n − 1) |n > 1 } and with root x0 = 1. That is, a sequence tree may
contain trivial structures, where every non-terminal history x ∈ X has only a single successor
y = (x, a) ∈ H, and nothing else can happen between x and y. Therefore, a result like
Proposition 1 is infeasible. Yet, if Definition 3 were amended by a non-triviality condition,
then it can again be shown to be equivalent to Definition 1 in a precise sense (see Example
10 of AR3). Since pure chains are uninteresting for game theory, all three definitions can be
taken as equivalent for practical purposes.

Unlike event trees (Definition 1), sequence trees do not admit a generalization to
continuous-time problems. This is because a sequence is a function from the natural numbers
to some set and, therefore, can take at most countably many values. Yet, since differential
games pose problems anyway, this amounts to a minor loss of generality.

2.2 The Problem of Information

The tree represents the evolution of information of an omniscient outside observer or an
umpire. The second ingredient of an extensive form representation, therefore, has to concern
the players’ private information – this is why the phrase “the problem of information” occurs
in the title of Kuhn’s (1953) seminal paper. With regard to formalizing that problem the
dividing line between approaches is somewhat different, as here Kuhn’s approach agrees with
von Neumann and Morgenstern’s. They both emphasize information sets. It was not until
the recent revival of event trees (as in Definition 1) that choices were discovered as the true
primitive.

Before turning to formal definitions, let us agree on two conventions. First, chance moves
will not be treated explicitly; instead chance (or nature) is seen as one of the players and, if
present, assigned the index 0 ∈ I. Personal players will mostly be denoted by i = 1, . . . , n ∈ I.
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210 Handbook of game theory and industrial organization: theory

In any case, the player set will remain fixed. The reason not to treat chance separately is
that this would require a specification of some randomized strategy for nature. Yet, in the
absence of any cardinality assumptions this poses problems (see, e.g., Aumann, 1961, 1963,
or Feldman and Gilles, 1985). For instance, how would you feel about having to simulate a
uniform distribution on the unit interval, if all that you have at your disposal is a two-sided
coin that you can flip only once?

Second, because any given game could be played by many different player sets (with the
same cardinality), preferences (or payoffs or utilities) will not figure in the definitions. They
will be added in the end, when a game form is turned into a game. To emphasize that, the term
“game” will not appear in the definition of a “form.”

2.2.1 Discrete extensive forms
As for notation, given an event tree (W, N) as in Definition 1 and a subset a ⊆ W that is a
union of nodes, define ↓a = {x ∈ N |x ⊆ a } and

P (a) = {x ∈ N |∃y ∈↓a : ↑x =↑y\ ↓a } , (8.1)

where the latter is the set of nodes at which a is available. This function will figure in the
following definition that adds choices to an event tree:

Definition 4 A discrete extensive form (DEF) with player set I is a pair (T, C), where T =
(W, N) is an event tree (Definition 1) and C = (Ci)i∈I consists of collections Ci (the set of
player i’s choices) of non-empty unions of nodes for all i ∈ I, such that
(DEF1) if P (c) ∩ P

(
c′) = ∅ and c = c′, then P (c) = P

(
c′) and c ∩ c′ = ∅, for all c, c′ ∈ Ci

and all i ∈ I, and
(DEF2) p−1 (x) = {

x ∩ (∩i∈J(x)ci
) ∣∣(ci)i∈J(x) ∈ A (x)

}
, for all x ∈ X,

where A (x) = ×i∈J(x)Ai (x), Ai (x) = {c ∈ Ci |x ∈ P (c) } are the choices available to i ∈ I at
x ∈ X, and J (x) = {i ∈ I |Ai (x) = ∅} is the set of decision makers at x, which is required to
be non-empty for all x ∈ X.

The new insight in this is that only choices are needed to formalize an extensive form, because
information sets can be reconstructed from choices (but not vice versa). Unlike the “actions”
in Definition 3, choices keep track of their histories, that is, “turn left” after two distinct
histories shows up as two distinct choices. By this token (formally because choices are sets of
plays) a player’s choices pin down the information sets at which they are available.

Condition (DEF1) ensures that, once at an information set P (c) with c ∈ Ci, player i
cannot infer from the available menu of choices at which node in her information set she is
called upon to choose. Condition (DEF2) states that the combined decisions of all players
choosing at move x ∈ X give rise to an immediate successor of x. This in fact incorporates a
second innovation. For, Definition 4 allows several players to decide at the same move, thus
formalizing truly simultaneous decisions. This has not been the case in earlier definitions.

Another noteworthy property of a DEF is that, because choices are sets of plays or
outcomes, it is impossible for a play to pass through an information set more than once
(Proposition 13 of AR1b). This condition had to be added as part of the definition of an
extensive form by Kuhn (1953, p. 219) and his followers. Here it follows naturally from the
set-up.
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Since Definition 4 is based on discrete game trees, it is not the most general definition of
an extensive form in the literature. Yet, it is the specialization of the most general definition
(viz. Definition 3.1 of AR2) to the case of discreteness. The latter in fact encompasses even
games in continuous time, hence it allows for plays of uncountable length.

2.2.2 Graph-based extensive forms
Kuhn’s (1953) seminal definition employed a strict finiteness assumption, as did Selten (1975)
and Kreps and Wilson’s (1982). Though well justified back then, from today’s viewpoint this
appears unwarranted. Because of that, a modified definition will be given here. It follows
Selten (1975) as closely as possible, save for the cardinality assumptions.

As for notation, given a graph tree (N, R) as in Definition 2, let X = {x ∈ N |∃y ∈ N :
(y, x) ∈ R} denote the set of moves. For each node x ∈ N denote its immediate predecessor by
p̃ (x) ∈ X. This gives a function p̃ : N → X, because p̃ (x) = min ↑x \ {x} by condition (ST1).
Let p̃−1 (x) = {y ∈ N |p̃ (y) = x } denote the immediate successors, for all moves x ∈ X.
Recall that ≥ denotes the union of the transitive closure of R with equality.

Definition 5 A graph-based extensive form with player set I is a triplet (T,X, (D, C)), where

● T = (N, R) is a graph tree as in Definition 2;
● X = (Xi)i∈I is a partition of the set X of moves into cells Xi, where the moves x ∈ Xi

are player i’s decision points;10

● the pair (D, C) = ((Di, Ci))i∈I consists, for each player i ∈ I, of one partition Di

of the set Xi of player i’s decision points into information sets d ∈ Di together with
a collection Ci = (Cid)d∈Di of partitions Cid of the sets {(y, x) ∈ R |x ∈ d } of edges
incident at (moves in) d ∈ Di, one choice partition for each information set d ∈ Di,
such that:
(KS1) d = ∅ for all d ∈ Di with i = 0,
(KS2) if x, y ∈ d ∈ Di and x ≥ y then x = y, and
(KS3) for all information sets d ∈ Di, each move x ∈ d, and all choices c ∈ Cid there is
a unique y ∈ p̃−1 (x) such that

c ∩ {(z, x) ∈ R |p̃ (z) = x } = {(y, x)}. (8.2)

In this definition choices are sets of edges emanating from an information set, rather than
sets of plays. It is, therefore, not surprising that condition (KS2) has to be added, demanding
that every play intersects an information set at most once. The significance of this condition
will be discussed in the next subsection. Condition (KS3) is needed, because information sets
are treated as primitives, rather than as a derived object as in a DEF. If an information set
d ∈ Di contained one move x ∈ d with a continuum of immediate successors and another
move y ∈ d with only two immediate successors, (8.2) is bound to fail. Therefore, the
consistency condition (KS3) is needed. In the finite case (KS3) would say that the number
of edges emanating from a move in an information set d ∈ Di is constant across all moves in
d, and that every choice c ∈ Cid contains exactly one edge (y, x) ∈ R emanating from x for

10 A partition of a non-empty set X is a collection of pairwise disjoint subsets whose union is all of X.
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212 Handbook of game theory and industrial organization: theory

every move x ∈ d. Hence, the successor reached, after the player owning the move has made
her decision, is unique.

Because X = (Xi)i∈I is a partition, at each move x ∈ X there is exactly one player who
decides (possibly chance). Hence, truly simultaneous decisions (as in a DEF) are excluded.
Yet, there may well be informationally simultaneous decisions, if for all x ∈ d ∈ Di all
y ∈ p̃−1 (x) belongs to the same information set d′ ∈ Dj of player j (where j ∈ I may or may
not be distinct from i ∈ I). That is, even though player i has made her choice when j gets
to choose, j cannot distinguish what i has done, nor can she distinguish between plays that i
could not distinguish.

Whether or not this informational simultaneity is sufficient for modeling simultaneous deci-
sions is a matter of the underlying decision theory. If, in particular, one adopts the expected
utility axioms (see, e.g., von Neumann and Morgenstern, 1944, p. 26, or Fishburn 1988, p. 10),
then any compound lottery is indifferent to its reduced lottery by the independence axiom.
In such a case it does not matter for decision makers who moves first; all that matters is
informational simultaneity. Under decision theories that are characterized by an independence
axiom, therefore, this model of “cascading information sets” is enough. Yet, imagine how
large the tree would have to be to capture simultaneous decisions of infinitely many players.

The absence of truly simultaneous decisions entails a loss of generality for graph-based
extensive forms in comparison with DEFs. On the other hand, a DEF also allows for cascading
information sets, since it does not insist on modeling simultaneous decisions as taking
place at one node. If one assumes that simultaneous decisions are represented by cascading
information sets, graph-based extensive forms and DEFs are equivalent in the following sense:

Proposition 2 (a) If (T,X, (D, C)) is a graph-based extensive form with player set I, then(
T, C′) is a DEF with player set I whenever

T = (
W, {W(x)|x ∈ N} ∪ {{w}}w∈W

)
,

where W is the set of plays of T = (N, R), and C′ = (
C′

i

)
i∈I , where, ∀i ∈ I,

C′
i = {{w ∈ W |∃y ∈ w : (y, p̃ (y)) ∈ c, p̃ (y) ∈ d } |c ∈ Cid, d ∈ Di } .

(b) If (T, C) is a DEF with player set I such that J (x) = {i} for some i ∈ I
for all x ∈ X, then

(
T,X,

(
D, C′)) is a graph-based extensive form with player set I

whenever T = (F (N) , R), where F (N) is the set of finite nodes of T = (N, ⊇) and
R = {(x, y) ∈ F (N)× F (N) |p (x) = y }, X = (Xi)i∈I is the partition of X given by x ∈ Xi ⇔
J (x) = {i}, D = (Di)i∈I is the collection of partitions Di of Xi given by x ∈ d ∈ Di ⇔ x ∈
P (c) for some c ∈ Ci, and C′ = (

C′
i

)
i∈I consists of collections of partitions C′

i = (
C′

id

)
d∈Di

of

sets of edges in R, one partition C′
id for each d ∈ Di, given by (y, x) ∈ c′ ∈ C′

id ⇔ y = x ∩ c
for some c ∈ Ci with x ∈ P (c), for all i ∈ I.

Proof (a) By Proposition 1(a) it is enough to demonstrate (GT1) and (GT2) for the con-
struction in the statement. (GT2) follows directly from the fact that X = (Xi)i∈I partitions X
and that an edge is a pair of nodes, where the second is the immediate predecessor of the first.
To see (GT1), let c′

1, c′
2 ∈ C′

i be such that P
(
c′

1

)∩P
(
c′

2

) = ∅, where P is derived from T. Then

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

Dynamic games 213

there are d ∈ Di and c1, c2 ∈ Cid such that c′
1 = {w ∈ W |∃y ∈ w : (y, p̃ (y)) ∈ c1, p̃ (y) ∈ d }

and c′
2 = {w ∈ W |∃y ∈ w : (y, p̃ (y)) ∈ c2, p̃ (y) ∈ d }. If c1 = c2, then also c′

1 ∩ c′
2 = ∅,

because Cid partitions the edges emanating from d. Likewise, since a partition is exhaustive,
P
(
c′

1

) = P
(
c′

2

)
, which completes the verification of (GT1).

(b) By Proposition 1(b) and the hypothesis that each move belongs to precisely one player
it is enough to verify (KS1)–(KS3). The first is obvious, and (KS2) follows from Proposition
13 of AR1b. Finally, (KS3) follows from (GT2) specialized to the case Xi ∩ Xj = ∅ ⇒ i = j
for all i, j ∈ I.

By this proposition Definition 5 is as good as a DEF. In particular, plays may be of (countably)
infinite length and decision makers may well choose from continua. Yet, because the relation
R in the definition of a graph tree (Definition 2) relies on the identification of immediate
predecessors, graph-based extensive forms do not admit a generalization to continuous-time
problems.

2.2.3 Sequence-based extensive forms
The third variant concerns sequence trees. In those, the empty history serves as the root where
all plays begin. The other ingredients are similar to their analogues in the other two definitions.

Definition 6 A sequence-based extensive form with player set I is a triplet (T ,π , D),
where:

● T = (A, H) is a sequence tree as in Definition 3;
● π : X → I is a function that assigns to each non-terminal history one member of the

player set I, i.e., π (x) ∈ I is the player (possibly chance, 0 ∈ I) who takes an action at
x ∈ X = H \ E; and

● D = (Di)i∈I is a family of partitions, one partition Di for each of the sets Xi ≡ π−1 (i) =
{x ∈ X |π (x) = i } of player i’s moves, such that

if x, y ∈ d ∈ Di then A (x) = A (y) (8.3)

for all d ∈ Di and all i ∈ I, where A (x) = {a ∈ A |(x, a) ∈ H }.

A cell d in the information partition Di of player i ∈ I is an information set for player i. The
histories contained in some d ∈ Di are meant to be indistinguishable to player i, when she is
called upon to decide after some history x ∈ d. Therefore, condition (8.3) is needed to ensure
that player i cannot infer from the available menu of actions A (x) at which particular x ∈ d
she is called upon to choose. Because π is a function defined on all of X = H \ W, every
non-terminal history is assigned to exactly one player. Hence, once again there are no truly
simultaneous decisions.

Strictly speaking Definition 6 is not proper, because the tree and the assignment D = (Di)i∈I
of information sets to players interact. In particular, condition (8.3) restricts what the tree can
be when D is given, or restricts what information sets d ∈ Di can be when the tree is given.
Osborne and Rubinstein (1994, p. 200) avoid this glitch by merging Definitions 3 and 6 into
a single one.
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214 Handbook of game theory and industrial organization: theory

Choices do not show up explicitly in Definition 6. They may be reconstructed, though, by
pairing non-terminal histories x ∈ H with actions a ∈ A that are available at x in the sense
that (x, a) ∈ H and taking the union over all decision points x ∈ d in a particular information
set d ∈ Di for fixed a ∈ A. That this is possible is guaranteed by (8.3). Hence, in a sense
a sequence-based extensive form is a mirror image of a DEF. While in the latter choices are
primitives, in the former information sets are primitives.

A peculiarity of Definition 6 is that it admits the possibility that an information set d ∈ Di

for some player i ∈ I contains two histories x, y ∈ d with y = (
x, a1, . . . , ak

)
for some

sequence
(
a1, . . . , ak

)
of actions. Hence, what (KS2) rules out for the graph-based case, and

is automatically excluded for a DEF, is allowed here. That is, a path may cross the same
information set more than once. This has been dubbed absent-mindedness and, ironically,
spurred a whole literature.11 Yet, it is inconsistent with any known decision theory. For, when
a player decides at one of her information sets, the histories contained in it figure as “states”;
and in all our decision theories states need to be independent of what the decision maker does –
after all “states” are supposedly chosen by nature or by an opponent. With absent-mindedness
they are not.

Example 1 The well-known “drunken driver” example (Piccione and Rubinstein, 1997)
illustrates this point. This is a single-player game, I = {1}, with binary action set A = {0, 1},
where 0 stands for “continue” and 1 for “exit.” The extensive form is obtained by specifying
the tree by H = {∅, (1) , (0) , (0, 1) , (0, 0)}, assigning all non-terminal histories to the same
player, π (∅) = π ((0)) = 1, and the information partition D1 = {{∅, (0)}} with a single cell.
The interpretation is that a drunken driver wishes to go home and to do so has to take the
second exit from the freeway. Since she is absent-minded, she knows that, once at the second
exit, she will have forgotten that she passed the first.

In her single information set the two histories ∅ ∈ H and (0) ∈ H should be like
“states.” But by taking the action 1 ∈ A the driver precludes the second state, (0) ∈ d, from
materializing. This implies that no pure strategy can take our driver home.

For, suppose for an information set d ∈ Di of some player i ∈ I there are x, y ∈ d such
that y = (

x, a1, . . . , ak
)

for some k = 1, 2, . . . and A (x) contains at least two elements. Then
by (8.3) there is (y, a) ∈ H such that a ∈ A \ {a1

}
. Let h ∈ E be a terminal history with

h = (y, a, . . .). Every pure strategy of player i that picks a1 ∈ A (x) at x ∈ d must also pick
a1 ∈ A (y) at y ∈ d and, therefore, cannot reach h ∈ E. On the other hand, every pure strategy
of i that does not choose a1 ∈ A (x) at x ∈ d cannot reach y ∈ d and, therefore, also not h ∈ E.
Hence, h is unreachable by any pure strategy. ♦

Other than that, sequence-based extensive forms are as general as the other two, even
though an equivalence result like Proposition 2 cannot be had, due to trivial structures in the
tree and the potential presence of absent-mindedness. With appropriate restriction, however,
Kline and Luckraz (2016) establish an equivalence between sequence-based extensive forms
and graph-based ones. On the other hand, because a sequence tree is bound to have at
most countable depth (maximal length of a play), it does not admit a generalization to
continuous time.

11 Among those papers, Gilboa (1997) points out that the phenomenon of absent-mindedness also has a
representation that satisfies (KS2).
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Even though sequence-based extensive forms are fairly general, this does not mean that
they are easy to work with. On the contrary, the implicit product construction may induce
“spurious” dimensions in the outcome space, as the following example illustrates:

Example 2 Consider a two-player perfect information game, where at the root player 1 picks
either a pair (a, b) ∈ [0, 1]2 with a < 1 or sets a = 1 and gives the move to player 2. In
the former case (a < 1) the game ends. In the latter case (a = 1) player 2 is called upon
to choose b ∈ [0, 1] and, once b has been selected, the game ends. With an event tree the
set of plays would be W = [0, 1]2 (hence two-dimensional) and the nodes would simply be
N = {

W, {1} × [0, 1] , ({w})w∈W
}
.

In the sequence approach, on the other hand, action sets for each “stage” need to
be constructed. For player 1, who moves at the root, the obvious choice is the action set A1 =
[0, 1]2, as she may (but need not) choose both a and b. For player 2 the action set is clearly
A2 = [0, 1]. Since the game has only two “stages,” the appropriate product for the outcome
space is hence A = A1 × A2 = [0, 1]3. That is, by taking the product of action sets an extra
dimension has crept in through the back door! To retrieve the set of plays in this large set A,
two classes of histories need to be considered. The first are those where player 1 has fixed both
a and b (with a < 1) and player 2 does not get to choose, H1 = {((a, b1) , b2) |b1 = b2, a < 1 }.
The fact that player 2 is not called upon is incorporated in H1 by the restriction that b2 = b1.
The second class includes the plays where player 1 has set a = 1 and player 2 chooses
b ∈ [0, 1], viz. H2 = {((a, 0) , b) |a = 1, b ∈ [0, 1]}. The coordinate 0 in (a, 0) is merely an
arbitrary marker indicating that player 1 does not choose b. Any other marker would also
do, but it would be incorrect to write (a, b), because if a = 1, player 2’s choice of b is
unconstrained by 1’s decision. Ultimately, the set of plays in the sequence approach is the
union H1 ∪ H2 as a subset of the three-dimensional cube, H1 ∪ H2 ⊂ A = [0, 1]3. ♦

That the sequence approach may blow up the dimension of the space can lead to
problems. For instance, traditional existence theorems for subgame perfect equilibria in
perfect information games (e.g., Harris, 1985) may not be applicable, even if the game does
have a subgame perfect equilibrium, purely because the set H of histories may not be closed
as a subset of the product space A (see Example 7 in Alós-Ferrer and Ritzberger, 2016, or
Example 3 in Alós-Ferrer and Ritzberger, 2017a) or payoffs may not be continuous in the
product topology (see Example 2 in Alós-Ferrer and Ritzberger, 2017b).

2.3 Games

Given an extensive form, in any of the representations above, the step to obtaining a game
involves two specifications. First, adding preferences for all the players and, second, if chance
(player 0 ∈ I) is present (i.e., X0 = ∅), pinning down what it does. The first is achieved by
specifying a profile �= (

�i
)

i∈I of reflexive, transitive, and complete binary relations �i on
the set W of plays, one preference relation for each player i ∈ I. Typically it is assumed that
preferences are representable by a utility function u = (ui)i∈I : W → R

|I|. With that comes
an extension of preferences to uncertain prospects on W that is needed to cope with chances
moves (see below) and potentially randomized strategies by other players. This extension is
almost invariably expected utility (resp. its three axioms) (see von Neumann and Morgenstern,
1944, p. 26, or Fishburn, 1988, p. 10).
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216 Handbook of game theory and industrial organization: theory

The second ingredient is easy in the finite case. It consists of specifying probability
distributions over player 0’s choices for each of her information sets. In fact, it may be
assumed that all of the information sets of chance are singletons. Then, in the finite case, it
is enough to specify a positive vector, whose coordinates sum to one, for each of 0’s decision
points. Such a vector is then seen as the vector of conditional probabilities of the choices of
chance given that the decision point, where these choices are available, has been reached.

In the general case this is not so straightforward. The reason is that the cardinality of
the set of choices available at any one of the decision points of chance may be too large
for a σ -additive probability measure to apply. In that case it is wiser to proceed as follows
(see Aumann, 1961, 1963, 1964, and Remark 1 below). Let (�,�, λ) be an extraneous
standard probability space,12 where � is the sample space, � a σ -algebra on �, and λ
a probability measure, e.g., � the unit interval [0, 1], � the Borel σ -algebra, and λ the
Lebesgue measure – think of that as a roulette wheel. Endow the set C0 of 0’s choices with
a σ -algebra C0. Assume again that all of 0’s information sets are singletons, hence, C0 ⊆ N.
Then, a specification for chance is a function f : X0 ×� → C0 such that f (x,ω) ∈ p−1 (x) for
all (x,ω) ∈ X0 × � and the evaluation function fx : � → C0, defined by fx (ω) = f (x,ω)
for all (x,ω) ∈ X0 ×�, is (�, C0)-measurable for all x ∈ X0.13

This construction replaces the probability distribution from the finite case with a random
variable. While this finesses problems with the cardinality of nature’s choices, its drawback
is that not all such choices may have positive probability. For instance, if the sample space is
� = {0, 1} , i.e., a coin flip, and for some x ∈ X0 the set p−1 (x) of successors has the
cardinality of the continuum, then for each f only two points from the continuum can be cho-
sen. Since probability theory cannot go beyond spaces that resemble the unit interval, this is
unavoidable. On the other hand, in applications [0, 1] will most likely suffice to capture chance
moves. Hence, for practical purposes the random variable approach sketched above will do.

3 STRATEGIES AND NORMAL FORMS

Having explained the details of formalizing an extensive form, from this point onwards the
notions incorporated in Definitions 1 and 4 will be employed. It has been shown that this does
not make a difference, and using event trees and DEFs makes the exposition more compact.

3.1 Strategies

Putting things together, the primitives of an extensive form representation are the tree and
choices or information sets. The basic assumption of non-cooperative game theory is complete
information, meaning that this representation and all players’ preferences are common
knowledge among the players.14 In particular, the extensive form is common knowledge
among the players. Therefore, each player can reason through all possible plays of the game

12 The sample space � is standard if it is either finite or countable with the discrete σ -algebra or isomorphic to
the unit interval.

13 The random variable fx : � → C0 is (�,�0)-measurable if f −1
x (ϑ) ∈ � for all ϑ ∈ �0.

14 The literature is somewhat unfortunately haunted by terms like “incomplete information game.” This is not to
be taken literally. It refers to the complete information game that is obtained after all uncertainty that players may
entertain about the rules or the preferences has been encoded into “types” – the Harsanyi transformation.
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and come up with a plan for all contingencies. Such a complete plan for all possible events is
known as a pure strategy.

In a DEF a pure strategy for player i ∈ I is a function si : Xi → Ci such that

s−1
i (c) = P (c) for all c ∈ si (Xi) , (8.4)

where si (Xi) = {si (x) ∈ Ci |x ∈ Xi } and s−1
i (c) = {x ∈ Xi |si (x) = c }. That s−1

i (c) ⊆ P (c)
says that choice c ∈ Ci can only be taken where it is available in the sense that x ∈ P (c). That
s−1

i (c) ⊇ P (c) says that at all moves, where i has choice c ∈ Ci available, she must take the
same choice. That is, a pure strategy is measurable with respect to the player’s information
partition.

A pure strategy is the direct generalization to dynamic interactive decision theory of
Savage’s (1954) notion of an “act.” In a static decision problem under uncertainty an act is a
function from states to consequences. At an information set the moves contained in it perform
the role of states, and choices the role of consequences. Hence, a strategy maps decision
points into choices. But it does so under the constraint that it cannot use more information
than what the player has – hence measurability. A pure strategy is therefore a derived object,
not a primitive.15

For each player i ∈ I denote by Si the set of pure strategies, i.e., the set of all functions
satisfying (8.4). The product S = ×i∈ISi is the set of all pure strategy combinations. A pure
strategy combination s = (si)i∈I ∈ S induces the play w ∈ W if

w ∈
⋂

{si (x) |w ∈ x ∈ X, i ∈ J (x) } , (8.5)

that is, if w is a fixed point of the correspondence (from W to W) defined by the right hand
side of (8.5).

With the notion of a pure strategy at hand the somewhat cryptic remarks about continuous-
time problems can now be made more precise. This is done in the following example (viz.
Example 10 of AR2, p. 229):

Example 3 Let W be the set of all functions f : R+ → A, where A is some non-empty set,
say, A = {0, 1}. To define the set of nodes let N = {xt (g) |g ∈ W, t ∈ R+ }, where xt (g) =
{ f ∈ W | f (τ ) = g (τ ) ∀τ ∈ [0, t) }, for any g ∈ W and t ∈ R+. Intuitively, at each point in
time t a decision at ∈ A is taken. The “history” of all decisions in the past up to, but exclusive
of time t is a function f : [0, t) → A, i.e., f (τ ) = aτ for all τ ∈ [0, t). A node at time t is
the set of all functions that coincide with f on [0, t), all possibilities still open for their values
thereafter. It can be shown that this is a game tree, in its most general incarnation, albeit not a
discrete one (see Example 14 of AR1b). To turn it into an extensive form, define first16

γ (x, w) =
⋃

{z ∈ N |w ∈ z ∈↓x \ {x} } (8.6)

15 One of his students attributes the following stark expression of this principle to Pierpaolo Battigalli: “Strategies
cannot be chosen.”

16 The function γ can be shown to provide choices under perfect information in any (general) game tree; see
Theorem 1 of AR2, p. 226.
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for each x ∈ X = N \ {{w}}w∈W and all w ∈ x and, second, define choices available at
xt ( f ) ∈ X by ct ( f , a) = {g ∈ xt ( f ) |g (t) = a } = γ (xt ( f ) , g) ⊂ xt (g) for any g ∈ xt ( f )
with g (t) = a ∈ A. Let C1 denote the set of all such choices. Now assume that there is a
single player, who has perfect information. With a single player and perfect information a
pure strategy is simply a function s1 : X → C1 such that s−1

1 (γ (xt ( f ) , g)) = {xt ( f )} for all
xt ( f ) ∈ X.

One such strategy is s1 (W) = c0 ( f , 1), s1 (xt ( f )) = ct ( f , 0) if f (τ ) = 1 for all τ < t, and
s1 (xt ( f )) = ct ( f , 1) otherwise, for any t > 0 and f ∈ W. Intuitively, this strategy starts with
choosing 1 ∈ A at time t = 0 and then, for any positive t ∈ R++, chooses 0 ∈ A, provided
that 0 ∈ A has not been chosen before, in which case it continues with 1 ∈ A. Even though
this is a perfectly valid strategy, it induces no outcome (play).

For, the constant function 1 (i.e., 1 (t) = 1 for all t ≥ 0) cannot be a fixed point as in (8.5),
because 1 (τ ) = 1 for all τ < t for any t > 0, so that by the construction of s1 it would
follow that 1 (t) = 0, a contradiction. Suppose there is a fixed point f ∈ W as in (8.5). Then
f (0) = 1, but, since f = 1, there exists t > 0 such that f (t) = 0. Therefore, the set of real
numbers {t ≥ 0 | f (t) = 0 } is non-empty and bounded below by 0 ∈ R+. By the supremum
axiom this set has an infimum t∗. If t∗ > 0, consider t ′ = t∗/2 > 0. Then f

(
t ′) = 1, but also

f (τ ) = 1 for all τ < t ′. By the definition of s1 it would follow that f
(
t ′) = 0, a contradiction.

Therefore, t∗ = 0. But then consider any t > 0. By the definition of an infimum there exists
τ ∈ (0, t) such that f (τ ) = 0. By the definition of s1 it follows that f (t) = 1. Since t > 0 was
arbitrary, it follows that f must be identically 1, i.e., f = 1, a contradiction. ♦

The problem illustrated in this example defies the whole purpose of game theory. For
instance, recall that a Nash equilibrium is defined as a strategy combination, namely one
from which no player has an incentive to deviate. If there are strategy profiles that induce
no outcome, what sense does such a notion make? How is a deviation to be evaluated, if it
induces no outcome at all?

This is not a matter of existence of equilibrium, but a conceptual problem. The very idea of
a non-cooperative game, i.e., a game with complete rules, is a thought-experiment in which all
decisions are left to the players. But players can only evaluate objects in the domain of their
preferences: plays or outcomes. If a strategy results in no play at all, players cannot decide
and the thought-experiment has miserably failed. This also applies to the next example (viz.
Example 12 of AR2, p. 239):

Example 4 Take the same example as before, the single-player differential game. Now
consider the strategy s1 ∈ S1 defined by s1 (xt ( f )) = ct ( f , 1) if f ∈ xt (1) and s1 (xt ( f )) =
ct ( f , 0) otherwise, for all xt ( f ) ∈ X, where 1 again denotes the constant function, 1 (t) = 1 ∀t.
Intuitively, this strategy begins at t = 0 with 1 ∈ A and then, for any t > 0, sticks to 1 ∈ A
except when 0 ∈ A has occurred in the past, in which case it chooses 0 ∈ A. Once again this
is a perfectly valid strategy.

This strategy induces quite a number of plays. In fact, for every r > 0 the function fr ∈ W
such that fr (t) = 1 for all t ∈ [0, r] and fr (t) = 0 for all t > r is a fixed point as in
(8.5), because
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fr ∈
⋂

g∈xt( fr)

s1 (xt (g)) =
[⋂

t≤r

ct (1, 1)

]
∩
[⋂

r<t

{h ∈ xt ( fr) |h (t) = 0 }
]

=
[⋂

t≤r

ct (1, 1)

]
∩
[⋂

r<t

{h ∈ xt ( fr) |h (τ ) = 0 ∀τ ∈ (r, t] }
]

= {fr} .

In other words, this strategy s1 induces a whole continuum of plays, as fr is a fixed point for
every r > 0. ♦

These two examples show that continuous time is inappropriate for the purposes of game
theory. The underlying insight goes beyond examples, though. AR2 (Theorem 6, p. 242)
provides a characterization theorem for the class of game trees that are such that (a) every
strategy profile induces an outcome, and (b) if a strategy profile induces an outcome, this
outcome is unique. The class thus characterized is slightly more general than DEFs,17 but it
definitely excludes continuous-time problems.

There is a third property that one may ask for: (c) every play is induced by some strategy
combination. This holds true in a DEF (by Theorem 4 of AR2, p. 238). But it may fail in
the absence of a condition like (KS2), that every play intersects an information set at most
once. Hence, it may fail in sequence-based extensive forms (Definition 6), as illustrated in
Example 1.

3.1.1 Randomized strategies
Strategies are functions, so the set of all pure strategies of a player is a function space.
Therefore, in general this space is huge. Take, for instance, a two-player game with perfect
information,18 where player 1 first chooses from the unit interval, player 2 sees 1’s choice and
then also chooses from the unit interval. The set of player 2’s pure strategies is the the set of
all functions from the unit interval to the unit interval, [0, 1][0,1]. With spaces of that size there
is no guarantee that probability distributions on strategies do result in probability distributions
on outcomes (plays).

Example 5 There are two players, 1 and 2, engaged in ultimatum bargaining. Player 1
proposes a split of a unit surplus, which is any number from the interval [0, 1]. The set [0, 1]
hence coincides with the set S1 of pure strategies for player 1. Player 2 observes the proposal
and responds by either accepting (1) or rejecting (0) the proposed split. Thus, the set of pure
strategies of player 2 is the set S2 of all functions of the form s2 : [0, 1] → {0, 1}. The set of
plays is W = [0, 1]×{0, 1}. A minimal requirement on a σ -algebra W on W is that singletons
and sets of the form {r} × {0, 1} for r ∈ [0, 1] are measurable. This is fulfilled if one takes,
for instance, the product of the Borel σ -algebra on [0, 1] and the discrete σ -algebra on {0, 1}.
The outcome function φ is explicitly given by φ (s1, s2) = (s1, s2 (s1)).

Strikingly, problems already arise if player 1 randomizes uniformly and player 2 uses a pure
strategy. Take a non-Borel set A of [0, 1] and consider the indicator function 1A ∈ S2. This is

17 Specifically, only up-discreteness and regularity (↑ x \ {x} has an infimum for all x ∈ N) are necessary and
sufficient, but not down-discreteness.

18 Formally, perfect information for a DEF is defined by c ∈ N for all choices c ∈ Ci and all players i ∈ I, i.e., by
all choices being nodes.
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a pure strategy for player 2. Thus, for a pure decision theorist, nothing can rule it out. Now
suppose player 1 randomizes uniformly over S1 = [0, 1]. What is the induced distribution
over outcomes? Clearly, the set [0, 1] × {1} should be measurable for any reasonable model
of the game. But φ−1

2 ([0, 1] × {1}) = A, which is not measurable by construction. Thus the
uniform randomization of player 1 (which is a well-defined random variable) does not induce
a distribution over the set of outcomes. ♦

It may be tempting in this example to replace the Borel σ -algebra by the discrete σ -algebra.
But, of course, it is known that on the class of all subsets of the unit interval there exists no
probability measure that assigns the value zero to all singletons (see Birkhoff, 1961, p. 187;
Billingsley, 1986, p. 41).

Remark 1 The problem is in fact deeper and concerns the following general situation.
Suppose you are given a probability space (�,�,μ) and a measurable space (W, W ), say,
the first capturing chance or other players and the second outcomes. Your own strategy space
S consists of all (�, W )-measurable functions s : � → W. If you wish to randomize your
strategy choice, you will be interested in the subsets F ⊆ S such that there is a σ -algebra SF

on F for which the “outcome function” F : F × � → W, defined by F (s,ω) = s (ω)
for all (s,ω) ∈ F × �, is jointly measurable. For, if you randomize over F according
to the probability measure ν (on SF) and B ∈ W can be assigned a probability, then

Pr (s (ω) ∈ B) = (μ× ν)
(
−1

F (B)
)

, hence −1
F (B) must belong to the product σ -algebra

on F ×�.
Aumann (1961) has proved a characterization theorem for such subsets F ⊆ S (under the

hypothesis that both (�,�) and (W, W ) have countable generating families). This theorem
relates the “sizes” of (�,�) and (W, W ) to how large F can be. If both � and W are finite,
then randomization can apply to all strategies, that is, F = S can actually hold. On the other
hand, if both � and W are continua, then the best that can be achieved is a proper subset,
F ⊂ S. In particular, if both � and W are like unit intervals (with the Borel algebra), it is
impossible to randomize over all functions from the unit interval to itself.

To bypass this problem, Aumann (1964) proposed using the following random variable
approach.19 Fix a standard probability space (�,�, λ), as with chance moves. For each player
i ∈ I endow the space Si of pure strategies with a σ -algebra Si.20 A mixed strategy for player
i ∈ I is a (�, Si)-measurable function σi : � → Si. Denote by Mi the set of all mixed
strategies of player i ∈ I and by M = ×i∈IMi the space of all mixed strategy profiles. The
interpretation of a mixed strategy of player i ∈ I is that i picks the set ϑ ∈ Si of pure strategies

with probability λ
(
σ−1

i (ϑ)
)

. By varying the function σi the player chooses this probability.

Of course, the same caveat as before applies. If Si is too large as compared to �, only “few”
pure strategies can be chosen with positive probability.

19 In another paper (Aumann, 1963) he actually shows that the random variable approach is essentially equivalent
to using the largest F satisfying the joint measurability property described in Remark 1.

20 Strictly speaking Si is not entirely arbitrary. To make things work, the first object is a σ -algebra W on the
set of plays W that contains at least all nodes x ∈ N. The second is a σ -algebra S on the product space S such that
the function φ : S → W (whose existence follows from Theorems 4 and 6 of AR2) is (S , W )-measurable. The
σ -algebra Si is then the projection σ -algebra on Si, for each i ∈ I.
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Dynamic games 221

A conceptually different type of randomized strategy derives from a piecemeal approach.
Suppose each player i ∈ I is split into “agents,” one agent for each of i’s information sets.
The only coordination device between the agents is the fact that all agents of the same player
have the same preference relation on plays. The correlation between decisions at different
information sets (of the same player), which is implicit in the notion of a mixed strategy,
disappears.

For each player i ∈ I endow the set Ci of choices with a σ -algebra Ci and let Bi denote the
set of all (�, Ci)-measurable functions b : � → Ci. A behavior strategy for player i ∈ I is
a function βi : Xi → Bi, whose values are denoted bix = βi (x) : � → Ci for all x ∈ Xi,
such that, for all x, y ∈ Xi, (a) bix (�) ⊆ Ai (x), (b) if y ∈ P (bix (ω)) for some ω ∈ �, then

biy = bix, and (c) if there is no c ∈ Ci with x, y ∈ P (c), then λ
(

b−1
ix (ϑ) ∩ b−1

iy

(
ϑ ′)) =

λ
(

b−1
ix (ϑ)

)
λ
(

b−1
iy

(
ϑ ′)) for all ϑ ,ϑ ′ ∈ Ci.

Condition (a) states that if c ∈ bix (�) = {bix (ω) ∈ Ci |ω ∈ � }, then c ∈ Ai (x) =
{c ∈ Ci |x ∈ P (c) }, i.e., x ∈ P (c), for all x ∈ Xi; that is, it ensures that the random variable
bix is supported on choices that are available at x ∈ Xi. Condition (b) demands that the same
random variable bix is assigned to all moves y in the information set that contains x; hence,
the behavior strategy ρi does not use more information than the player has. Finally, condition
(c) imposes independence on decisions at distinct information sets. Denote by Bi the set of
all behavior strategies of player i ∈ I, and by B = ×i∈IBi the space of all behavior strategy
profiles.

The interpretation of the probability λ
(

b−1
ix (ϑ)

)
is as the conditional probability that

player i takes a choice in the set ϑ ∈ Ci given that move x ∈ Xi has materialized.
Player i decides on this conditional probability by choosing the function (random variable)
bix ∈ Bi. By condition (b) these decisions are perfectly correlated across all moves in the
information set that contains x, but independent across different information sets by condition
(c). Hence, while mixed strategies pick functions from decision points to choices potentially at
random, behavior strategies pick choices at each decision point (again potentially at random),
independently across different information sets. Because of the independence inherent in
behavior strategies, they are, in general, less powerful than mixed strategies are. To see that,
endow the set W of plays with a σ -algebra W that contains at least all nodes x ∈ N. Alós-
Ferrer and Ritzberger (2017a) then prove the following result:

Proposition 3 For any DEF (T, C): If the behavior strategy profile β ∈ B induces the
probability measure μ : W → [0, 1] on the measurable space (W, W ), then there exists
a mixed strategy combination σ ∈ M that also induces μ.

Proof To begin with, define for the behavior strategy profile β ∈ B and each player i ∈ I the
function fi : Xi × � → Ci by fi (x,ω) = bix (ω) = βi (x) (ω) for all (x,ω) ∈ Xi × �, and let
f = ( fi)i∈I denote the associated profile. Let φ : S → W be the surjection that assigns to each
pure strategy combination s ∈ S the play that it induces, as in (8.5). This function exists by
Theorems 4 and 6 of AR2. Observe that for each fixed ω ∈ � the function f (·,ω) : Xi → Ci

is a pure strategy combination, i.e., f (·,ω) ∈ S, for (a) guarantees that fi (·,ω)−1 (c) ⊆ P (c)
and (b) ensures that fi (·,ω)−1 (c) ⊇ P (c) for all c ∈ Ci and all i ∈ I. Hence, β induces μ
if μ (V) = λ ({ω ∈ � |φ ( f (·,ω)) ∈ V }) for all V ∈ W , for fixed ω ∈ � a mixed strategy
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222 Handbook of game theory and industrial organization: theory

profile σ ∈ M is a pure strategy combination by definition, σ (ω) ∈ S. Hence, σ induces μ if
μ (V) = λ ({ω ∈ � |φ (σ (ω)) ∈ V }) for all V ∈ W .

Given the behavior strategy profile β ∈ B, construct a mixed strategy profile σ ∈ M by
setting σ (ω) = f (·,ω) ∈ S for each ω ∈ �. Then by construction, if β induces μ, then
σ ∈ M also does, and the statement is verified.

The proof of Proposition 3 implicitly relies on the fact that every DEF satisfies no-absent-
mindedness, i.e., Example 1 is excluded. It can be shown that, at least in the finite case,
no-absent-mindedness is in fact equivalent to the statement of Proposition 3 (see Ritzberger,
2002, Theorem 3.2, p. 122).

An analogous result like Proposition 3 with the roles of behavior and mixed strategies
reversed does not hold, because of the independence (condition (c)) in the definition of
behavior strategies. This can lead to problems in applications, for in applications one often
determines optimal choices locally, at each information set separately, and pastes together a
solution to the overall game from these local solutions – the essence of dynamic analysis
as incorporated in the notion of backwards induction. That is, in practice, equilibria are
frequently determined in behavior strategies. But, if mixed strategies are indeed more
powerful, then there could be profitable deviations in mixed strategies, even if there are no
such deviations in behavior strategies. Hence, in general, an “equilibrium in behavior
strategies” may not be an equilibrium at all.

This calls for a condition that puts mixed and behavior strategies on an equal footing. And
indeed, such a condition has already been provided by Kuhn (1953) in his seminal paper. This
condition will be discussed next.

3.2 Perfect Recall

The condition that renders mixed and behavior strategies equally powerful is known as
“perfect recall.” Kuhn (1953, p. 213) describes it as “equivalent to the assertion that each
player is allowed by the rules of the game to remember everything he knew at previous moves
and all of his choices at those moves.” Strictly speaking it does a little more. In particular,
it also implies that for each player separately there is something like a time axis, formally
each player’s information sets can be partially ordered (see Ritzberger, 1999). And this is
needed, because otherwise notions like “the past” or “memory” don’t make sense.

This description reads more like a rationality condition than a property of different types
of randomized strategies. But indeed Kuhn’s theorem (1953, p. 214) states the following
remarkable characterization: mixed and behavior strategies are equivalent if and only if the
game satisfies perfect recall.21 By the only-if part of this statement perfect recall is a necessity
in a dynamic analysis of games. Hence, the concept will now be introduced formally.

Given a DEF (T, C) and a move x ∈ Xi of player i ∈ I, say that x is possible under si ∈ Si

for player i, denoted x ∈ Poss (si), if there is s−i ∈ ×j =iSj ≡ S−i such that φ (si, s−i) ∈ x,
where φ : S → W denotes the surjection that assigns to each pure strategy combination the
play that it induces. Similarly, an information set P (c) for c ∈ Ci for player i ∈ I is relevant

21 In the light of Proposition 3 Kuhn’s theorem may be rephrased as follows: for every mixed strategy profile
there exists a behavior strategy profile that induces the same probability measure on plays (as the mixed strategies
do) if and only if the game satisfies perfect recall.
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Dynamic games 223

under si ∈ Si for player i, denoted P (c) ∈ Rel (si), if P (c) ∩ Poss (si) = ∅. The following
definition is directly from Kuhn (1953, p. 213):

Definition 7 A DEF (T, C) satisfies perfect recall if P (c) ∈ Rel (si) implies P (c) ⊆ Poss (si)

for all c ∈ Ci, all si ∈ Si, and all i ∈ I.

Clearly, perfect recall could be defined for each player separately by dropping the last
quantifier. Furthermore, the definition may also be rewritten in terms of the function φ as
follows: player i’s choices in a DEF satisfy perfect recall if, for all x ∈ P (c),

x ∩ φ (si, S−i) = ∅ ⇒ y ∩ φ (si, S−i) = ∅, ∀y ∈ P (c) (8.7)

for all c ∈ Ci and all si ∈ Si, where φ (si, S−i) = {φ (si, s−i) |s−i ∈ S−i }. This follows from,
for all si ∈ Si,

Poss (si) = {x ∈ Xi |x ∩ φ (si, S−i) = ∅} and

Rel (si) = {P (c) |c ∈ Ci, ∃x ∈ P (c) : x ∩ φ (si, S−i) = ∅ } .

A drawback of the original definition is that it refers to derived objects, namely pure strategies.
Selten (1975) has provided an equivalent definition that uses only primitives: player i’s choices
in a DEF satisfy perfect recall if, for all c, c′ ∈ Ci, that there is x ∈ P (c) with x ⊆ c′ implies
that y ⊆ c′ for all y ∈ P (c). That is, if one move x in an information set P (c) can be reached
by choosing c′ ∈ Ci, then all moves y in P (c) can be reached by choosing c′.

Even though the definitions make no reference to finiteness, Kuhn’s theorem was originally
proved only for the finite case. This was because the general case indeed poses serious
technical difficulties. It took over ten years until Aumann (1964), using the random variable
approach sketched above, proved a weaker version of Kuhn’s theorem for the case of games
with perfect recall, an infinite horizon, and action sets that are homeomorphic to the unit
interval: given a pure strategy combination of the opponents, for every mixed strategy of
player i there is a behavior strategy for that player, which induces the same probability
measure on plays as the mixed strategy does.22 Of course, this states only the sufficiency part
of Kuhn’s theorem for large games, and it does so only for a given strategy of the opponents.
The latter appears acceptable for practical problems. The former, the necessity of perfect
recall, was proved another ten years later by Schwarz (1974) under a few mild measurability
assumptions.

So, overall, the issue of a general version of Kuhn’s theorem is largely but not entirely
settled. In any case, it is clear that perfect recall is an indispensable condition for a dynamic
analysis of games. In particular, the important technique of backwards induction will not
work without it. After all, an “equilibrium in behavior strategies” may not be an equilibrium
at all due to profitable deviations in mixed strategies, or there may be equilibria in mixed
strategies that cannot be reproduced in behavior strategies (see the remarkable example by
Wichardt, 2008).

22 Technically, Aumann’s proof in fact uses the order structure on the unit interval (in paragraph 7), rather than
only its measurability structure. Hence, a generalization to separable complete metric action spaces will require the
Borel-isomorphism of such spaces with the unit interval.
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3.3 Normal Forms

If for an extensive form every pure strategy combination s ∈ S induces a unique play w ∈ W,
i.e., if there exists a function φ : S → W, then there is a way to ascertain the outcome
of a playing of the game that eliminates the dynamics of the interaction from the picture.
Every player picks a strategy, submits it to an umpire, and the umpire executes the strategy
combination. This leads to the representation of the game in normal form. Once again, this is
now defined without reference to preferences, payoffs, or utilities, on the understanding that
preferences need to be added to turn it into a game.

Definition 8 A normal form with player set I is a triplet (S, W,φ), where S = ×i∈ISi is the
product set of pure strategy combinations, W is a non-empty set of plays or outcomes, and
φ : S → W is a surjection that associates with every strategy combination s ∈ S the play
φ (s) ∈ W that it induces.

Once again, a normal form game is obtained from a normal form by adding preferences or
utility functions for all players. In a normal form players make their decisions once and for
all by choosing a strategy; hence all dynamics is gone. On the other hand, the mathematical
structure of a normal form is clearly simpler than that of an extensive form; it is a map on a
product set. Most of the basic solution concepts for games are defined in the normal form, e.g.,
iteratively undominated strategies, rationalizable strategies (Bernheim, 1984; Pearce, 1984),
or Nash equilibrium (Nash, 1950, 1951). Only refined notions of Nash equilibrium make use
of the dynamics of interaction, e.g., subgame perfect equilibrium (Selten, 1965) or sequential
equilibrium (Kreps and Wilson, 1982).

Normal form representations exist for all DEFs by Theorems 4 and 6 of AR2. By
Proposition 2 they also exist for every graph-based extensive form, and also for sequence-
based extensive forms, as far as those are equivalent to the former.

In the normal form the primitives are now strategies, outcomes, and the relation between
these two. Therefore, one is free to specify which strategies are admitted in modeling a game –
something that is not true in the extensive form. In particular, it may be desirable to collapse
“equivalent” strategies into single representatives.

Two strategies si, s′
i ∈ Si of player i ∈ I are said to agree on a strategy subset R−i ⊆ S−i =

×j =iSj if φ (si, s−i) = φ
(
s′

i, s−i
)

for all s−i = (s1, . . . , si−1, si+1, . . . , sn) ∈ R−i. They are
called strategically equivalent if they agree on all of S−i. A normal form in which no two
distinct strategies of the same player are strategically equivalent is called a reduced normal
form (see Dalkey, 1953, p. 222).

If one begins with the strategies derived from an extensive form, the associated reduced
normal form is obtained by taking the quotient space with respect to strategic equivalence for
each player. This collapses into single representatives all classes of strategies that differ only
at contingencies, which cannot arise under these strategies (in the extensive form).

Proposition 4 For a DEF (T, C) two strategies si, s′
i ∈ Si of player i ∈ I agree on the (non-

empty) strategy subset R−i ⊆ S−i = ×j =iSj if and only if

si (x) = s′
i (x) ⇒ x ∩ (φ (si, R−i) ∪ φ (s′

i, R−i
)) = ∅

for all x ∈ Xi, , where φ (si, R−i) = {φ (si, s−i) ∈ W |s−i ∈ R−i } for all si ∈ Si.
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Proof “if:” The hypothesis is equivalent to x ∩ (
φ (si, R−i) ∪ φ (s′

i, R−i
)) = ∅ ⇒ si (x) =

s′
i (x) for all x ∈ Xi. Suppose w ∈ φ (si, R−i); then w ∈ x ∈ Xi implies si (x) = s′

i (x) and
w ∈ si (x) = s′

i (x) by the construction of φ (see the right-hand side of (8.5)). It follows
that w ∈ φ

(
s′

i, R−i
)
. Repeating the argument with w′ ∈ φ

(
s′

i, R−i
)

proves that φ (si, R−i) =
φ
(
s′

i, R−i
)
.

“Only if”: Assume that φ (si, R−i) = φ
(
s′

i, R−i
)

and let x ∈ Xi be such that
x ∩ φ (si, R−i) = ∅. If si (x) = s′

i (x), then si (x)∩s′
i (x) = ∅ by (DEF1) implies w /∈ φ (s′

i, R−i
)

for any w ∈ si (x) ∩ φ (si, R−i). It follows that φ (si, R−i) = φ
(
s′

i, R−i
)

in contradiction to the
assumption. Hence, si (x) = s′

i (x) whenever x ∩ φ (si, R−i) = ∅.

In particular, strategically equivalent strategies take identical choices at all information sets
that are reachable with these strategies. Hence, the information suppressed by going to the
reduced normal form concerns only events that cannot materialize. And there is a sense in
which this appears as inessential information for rational decision making.

4 APPLICATIONS

Even though a well-specified extensive form gives rise to a normal form there is a definite
advantage that the former representation has over the latter. This section illustrates this
by looking at two applications. The first application concerns the ability to investigate
substructures, like subgames or particular information sets. The second concerns the formal
virtue of being able to represent simultaneous decisions as truly simultaneous.

4.1 Directed Search

The representation of a game in extensive form allows the analyst to consider the behavior, as
implied by an equilibrium, in parts of the tree where certain decisions have already been taken,
thereby enabling a better understanding of how equilibrium is supported. A prime example
of that is the celebrated equilibrium refinement of subgame perfection (Selten, 1965). Since
subgames are games of their own, judging how plausible behavior in a proper subgame is
informs the analyst about how sensible the overall equilibrium is.

An example of that point emerges from the literature on directed labor market search (e.g.,
Montgomery, 1991; Burdett, Shi, and Wright, 2001; Lang, Manove, and Dickens, 2005). The
basic model works as follows. There are n risk-neutral firms who wish to fill precisely one
vacancy each. The vacancies, if filled, have a gross value of vi > 0 to firm i = 1, . . . , n.
On the other side of the market there are m potential workers who seek employment, but
who can apply to only one employer. To begin the game, all firms simultaneously post wage
offers y = (y1, . . . , yn) ≥ 0. All these offers are publicly announced, hence become common
knowledge among the potential workers. Therefore, the vector y of wage offers corresponds
to the root of a subgame (each vector y belongs to a different subgame). In this subgame
job seekers have to decide which firm to apply to, that is, each of them chooses precisely
one firm.

The simplest case is n = m = 2. In the subgame after the two firms have posted their
wage offers y = (y1, y2) each of the two job seekers may choose either firm 1 or firm 2.
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Assuming that facing two applicants a firm randomizes uniformly, the two workers face the
following 2 × 2 game:

y1/2
y1/2

y1
y2

y2
y1

y2/2
y2/2

where worker 1 plays rows and worker 2 columns and the upper left entry is 1’s payoff and
the lower right 2’s. If 2y2 ≥ y1 ≥ y2/2 and 2y1 ≥ y2 ≥ y1/2, the game has two pure
strategy equilibria, one where firm 1 and worker 1 and firm 2 and worker 2 are matched, and
another where firm 1 and worker 2 and firm 2 and worker 1 are matched. (If y2/2 > y1 both
workers will apply at firm 2, if y1/2 < y2 both workers apply at firm 1.) There is also a mixed
equilibrium where both players mix with probability (2y1 − y2) / (y1 + y2) for the first row
(resp. column).

The latter is in fact the equilibrium on which this literature focuses. The reasons for this
focus are not quite clear. An argument sometimes given is that the pure strategy equilibria
require coordination on the part of the applicants (e.g., Montgomery, 1991, p. 167) or that it
amounts to anonymity (e.g., Lang et al., 2005, p. 1329). But, of course, a mixed equilibrium
requires even more coordination and is even more at variance with anonymity than a pure
strategy equilibrium. After all, in a mixed strategy equilibrium each player has to compute
all possible payoffs of her opponent to keep him precisely indifferent, which requires very
precise information about the opponent’s preferences. As a consequence, in a mixed strategy
equilibrium each player faces no cost for deviating from the mixture that makes the opponent
indifferent. Therefore, a mixed strategy equilibrium is a very weak equilibrium that does not
appear plausible – in particular, not in the presence of strict equilibria. In the context of a
market, mixed equilibria are even more implausible as they are inefficient, meaning that there
is a positive probability of the parties remaining unmatched. In real life this would probably
cause intervention or intermediation.

Hence, this example illustrates that the consideration of extensive form structures can be
informative about how plausible an equilibrium prediction is. If the overall equilibrium is
supported by very weak equilibria in subgames, there is reason to doubt what this equilibrium
prescribes.

4.2 Job Market Signaling

Beyond enabling scrutiny of substructures, like subgames or information sets, the particular
formalization of extensive forms by a DEF (as in Definition 4) has further advantages. The job
market model by Spence (1973) serves to illustrate how using a DEF, rather than a graph- or
sequence-based definition, may simplify the application of refined equilibrium concepts like
perfect Bayesian equilibrium (see also Example 9 of AR3).

In that model chance initially assigns a productivity type θ ∈ {θL, θH}, with 0 < θL < θH , to
a potential worker. The prospective employee then decides on a training level e ∈ R+ in order
to signal her productivity. This signal, but not the productivity, is observed by a competitive
industry, which then offers a wage y ∈ [θL, θH]. This wage equals the expected productivity
conditional on the observed signal.
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To complete the specification of a game, assume two firms who compete à la Bertrand by
offering wages to the worker, who in turn chooses among wage offers. Since the worker
will always choose the higher wage, price competition guarantees that both firms offer
a wage equal to expected productivity. This ensures that the productivities expected by
the two firms are equal along the equilibrium path. The equilibrium concept of perfect
Bayesian equilibrium, however, does not force the two firms to hold the same beliefs off the
equilibrium path.

Imposing the “common belief property” additionally runs into problems when simultaneous
moves are represented by cascading information sets. For this traditional representation,
outcomes are ordered four-tuples:

(θ , e, w1, w2) ∈ {θL, θH} × R+ × [θL, θH] × [θL, θH] = W,

assuming that firm 1 moves first and ignoring the trivial decision by the worker. When
xt (ē) = {w ∈ W |θ = θt, e = ē } denotes the node where type t = L, H has chosen ē ∈ R+,
firm 1’s beliefs are μ1 (ē) = (μ1 (xL (ē)) ,μ1 (xH (ē))). Firm 2 moves second at her infinite
information set

g2 (ē) = {yt (ē, w̄1) |t = L, H, w̄1 ∈ [θL, θH]}

where yt (ē, w̄1) = {w ∈ W |θ = θt, e = ē, w1 = w̄1 } denotes the node reached after type
t = L, H has chosen ē ∈ R+ and firm 1 has offered w̄1 ∈ [θL, θH]. Her beliefs are then given
by a probability measure μ2 (· |ē ) : g2 (ē) → R+. This specification is void of economic
content, but complicates the common belief property, because it becomes necessary to specify
beliefs of firm 2 about the wage offered by firm 1 (and, out of equilibrium, nothing pins
down such beliefs). Common beliefs boil down to the statement that the probability mass
μ2 ({yt (ē, w̄1) |w̄1 ∈ [θL, θH] } |ē ) numerically equals the probability μ1 (xt |ē ), for t = L, H
and all ē ∈ R+. The beliefs μ1 and μ2 are radically different formal objects!

Since a DEF allows several players to decide at the same move, the natural representation
is much simpler. Outcomes become triplets (θ , e, (w1, w2)) ∈ {θL, θH} × R+ × [θL, θH]2 = W
and all nodes xt (ē) are directly followed by terminal nodes; the nodes yt (ē, w̄1) are not
needed anymore. The information sets g (ē) = {xt (ē) |t = L, H }, which are now common
to both firms, consist of two nodes and beliefs for both firms are two vectors μ1 (ē) ,μ2 (ē) in
the one dimensional unit simplex. The common belief property is captured by the statement
μ1 (ē) = μ2 (ē) for all ē ∈ R+.
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9. Strategic refinements
Carlos Pimienta∗

1 INTRODUCTION

Nash (1950, 1951) formalized the idea of strategic equilibrium already used by Cournot
(1838). A Nash equilibrium is a description of behavior for every agent in the strategic
interaction with the property that no agent can induce a better outcome for herself by
modifying her behavior and keeping the other agents’ behavior unchanged. Selten (1965,
1975) noticed that, in many relevant cases, rational agents have reasons to deviate from their
prescribed Nash equilibrium behavior, anticipating that other agents will not follow their
corresponding Nash equilibrium behavior either. This initiated the main research program
in game theory whose objective was to propose a definition of strategic equilibrium that, for
each strategic situation, identifies the set of self-enforcing norms of behavior. That is, the set
of norms of behavior with the property that, if every player in the game knows which norm is
going to be followed by every other player in the game, no player has any reason to disobey
such a norm. This research program uncovered important implications of strategic rational
behavior as well as their connection with decision-theoretic principles.

The evolution of such a research program followed a recognizable pattern that we also
employ in many parts of this chapter. Many contributions preceding Kohlberg and Mertens
(1986) tried to improve upon an existing equilibrium concept by showing some of its
deficiencies in an example, arguing how a selected equilibrium was not reasonable, and
proposing a new concept that does not suffer from those same deficiencies. This led to
a proliferation of equilibrium concepts that either do not fully capture all the different
implications of rationality or, if they do, it is at the cost of not satisfying existence in some
subset of games.

In contrast, Kohlberg and Mertens (1986) listed a collection of properties that an ideal
equilibrium refinement ought to satisfy. Summarizing, it has to exist for every game, players
should not use dominated strategies, it has to satisfy backward and forward induction, it
has to be robust to iterated elimination of dominated strategies, and it has to be immune
to strategically irrelevant presentation effects. They show that this list of requirements forces
us to think of a self-enforcing equilibrium not as a single strategy profile, but as a set of
strategy profiles where behavior is not necessarily completely pinned down and can vary
because of reasons different from the players’ preferences. Nevertheless, the equilibrium
concept proposed by Kohlberg and Mertens (1986) is unsatisfactory as it does not satisfy
backward induction. Mertens (1989, 1991) offers a reformulation of the concept that does
satisfy all those properties including backward induction.

∗ I am grateful to Francesco De Sinopoli, Hari Govindan, Claudia Meroni, Matías Núñez, and Robert Wilson for
very useful comments. I thank financial support from the Australian Research Council’s Discovery Projects funding
scheme DP140102426.
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We cover some classic equilibrium concepts from Nash (1950) to Kohlberg and Mertens
(1986) as well as more recent contributions. However, the structure of the chapter and the
selection of topics are organized around what seems to be the most successful notion of
equilibrium: stable sets of equilibria as defined by Mertens (1989, 1991). Hence, the emphasis
is different from surveys such as Hillas and Kohlberg (2002), Van Damme (2002) or Govindan
and Wilson (2008b). There is little attempt to justify concepts such as admissibility, backward
induction, or invariance. We simply take them as desirable properties and refer the reader to
Hillas and Kohlberg (2002) for a critical analysis of such properties and many other aspects
related to the notion of equilibrium. Similarly, we do not cover epistemic game theory (see
Dekel and Siniscalchi, 2014 for a recent survey) or evolutionary stability (see instead, e.g.,
Samuelson, 2002).

We, of course, adhere to the classical assumptions in game theory. A given game fully
represents the relevant strategic interaction. Players are fully rational and strive to obtain the
most desirable outcome subject to the other players’ behavior. They make their decision in
isolation, there is no possibility of correlation or commitment, and binding contracts are not
available. The objective is to identify strategically stable or, in other words, self-enforcing
equilibria; that is, those rules of behavior such that, if every player in the game knew that every
other player is going to abide by them then no player in the game would have an incentive to
deviate.

In the next section we introduce basic definitions and notation. In Section 3, we quickly
cover some of the most prominent equilibrium concepts in non-cooperative game theory.
Section 4 defines several set-valued equilibrium concepts that lead to Mertens’ (1989, 1991)
definition of stable sets of equilibria. We analyze each part of the definition, its properties,
and some of its applications to industrial organization. Section 5 makes some remarks on
backward induction and Section 6 covers some recent definitions of forward induction. We
mention some contributions to the literature of refinements from an axiomatic approach in
Section 7.

2 BASIC CONCEPTS AND NOTATION

A finite normal-form game is denoted by G. The set of players is N = {1, . . . , n} and each
player i ∈ N has a finite strategy set of pure strategies Si and a utility function ui defined on
the set of strategy profiles S := ∏

i∈N Si. Player i’s set of mixed strategies is �i and the set
of mixed strategy profiles is correspondingly denoted � := ∏

i�i. We denote also by ui the
linear extension of player i’s utility function to the set of mixed strategy profiles. An extensive-
form game is denoted by �. The set of decision nodes is X and the set of final nodes is Z. A
typical decision node is denoted by x ∈ X and a typical final node is denoted by z ∈ Z. We also
allow for moves of nature. The collection of information sets of player i ∈ N is represented
by Hi. At each information set h ∈ Hi payer i has a finite set of choices Ci(h) available. A
pure strategy for player i is a function that for each information set h ∈ Hi assigns a choice
c ∈ Ci(h). A mixed strategy for player i is a probability distribution on the set of player i’s
pure strategies. Additionally, a behavior strategy for player i assigns to each information set
h ∈ Hi a probability distribution bih on the set of choices Ci(h). The set of player i’s behavior
strategies is Bi and B is the set of behavior strategy profiles. In an extensive-form game, utility
functions are defined over the set of final nodes Z. Each (pure, mixed, or behavior) strategy

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

Strategic refinements 231

profile induces an outcome, i.e., a probability distribution on Z. Hence, we can easily compute
players’ expected utilities to each strategy profile and, therefore, construct the normal-form
representation of the game. We always assume perfect recall so that Kuhn’s theorem (Kuhn,
1953) implies that, for any mixed (behavior) strategy of player i and any mixed or behavior
strategy profile of the other players, player i has an equivalent behavior (mixed) strategy that
induces the same outcome. Under these conditions, we say that such strategies are equivalent,
and we focus on either mixed or behavior strategies whenever it is more convenient.

3 FROM NASH EQUILIBRIA TO STRATEGIC STABILITY

Nash (1950, 1951) defines an equilibrium as a strategy profile σ with the property that no
player can obtain a strictly higher payoff by unilaterally choosing a different strategy than the
one specified for her in the profile σ . Suppose that players hold beliefs about how the game is
going to be played, which are represented by the strategy profile σ . That is, we may interpret
σ as a common system of beliefs held by the players. Since σ has a product structure, each
entry provides beliefs about how player i intends to play. Let BRi(σ ) represent the set of
player i’s strategies that maximizes player i’s utility when every other player plays according
to σ . We can argue that, if player i is rational, and every player in the game knows that, a
minimal consistency requirement implies that beliefs held by every player about player i (that
is, the ith entry in σ ) should be an element of BRi(σ ). Repeating the same argument for every
player, for any strategy profile σ , we can construct the set BR(σ ) := ∏

i BRi(σ ) and give the
following definition of Nash equilibrium:

Definition 1 (Nash equilibrium) A strategy profile σ is a Nash equilibrium if σ ∈ BR(σ ).1

Thus, if players expect the game to be played according to σ then no player can unilaterally
deviate and thereby increase her payoff. A Nash equilibrium serves as a resting point that
divides the multi-person decision problem that the game represents into n individual decision
problems. In each of these problems, the corresponding player must maximize her utility. So
we can say that a strategy profile is self-enforcing only if it is a Nash equilibrium.

Nonetheless, Selten (1965) noted that a Nash equilibrium strategy is not necessarily self-
enforcing. Indeed, the strategy profile (R, b) in Figure 9.1 satisfies the Nash equilibrium
conditions because player 1 prefers (R, b) to (L, b) and player 2 is indifferent between (R, b)

R

1,3

L
1

b

0,0

a

2,1

2

Figure 9.1 Only (a,L) satisfies backward induction

1 The strategy space� is compact and the correspondence BR : � → � upper-hemicontinuous with non-empty,
convex, and compact values, hence Kakutani’s fixed-point theorem (Kakutani, 1941) implies that every finite game
has a Nash equilibrium.
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and (R, a). However, if player 2’s choice matters, that is, if player 1 chooses L then player
2 would certainly play a after observing player 1’s choice. To take this into account, we
can solve the game using backward induction (Zermelo, 1912) whose main idea can be
summarized as follows:

Players make rational decisions at every juncture of the game, even at those that
may have been ruled out by previous behavior.

Hence, if a strategy profile satisfies backward induction then every player’s strategy is still
optimal after every contingency, even those that are impossible given the strategy profile. Put
differently, the reason why a part of the game is not reached by the strategy profile cannot
be based on irrational behavior in such a part of the game. In a game of perfect information
like the one in Figure 9.1, the implementation of this principle is easy. First, find maximizing
behavior at every decision node where every choice leads to a final node. Then, taking those
choices as given, find optimizing behavior at every decision node where every choice leads to
either a final node or a decision node whose behavior has been determined in the previous step.
Iterating on this process we find a behavior strategy profile that satisfies backward induction.
In the example, such a strategy profile is (a, L).

Selten (1965) defined subgame perfect equilibrium as a first attempt to apply the idea of
backward induction to games with imperfect information. If we accept that rational behavior
in a game implies Nash equilibrium then we can request that a candidate equilibrium strategy
induce a Nash equilibrium in any subgame, i.e., in any part of the game that could be
considered as a separate game. For instance, the game on the left-hand side of Figure 9.4
has a subgame starting in the second information set of player 1. Such a subgame has three
Nash equilibria (T, L), (B, R), and ( 3

4 T + 1
4 B, 1

4 L+ 3
4 R). A subgame perfect equilibrium has to

prescribe behavior in the subgame according to one of these three profiles. And player 1 would
decide whether or not play In depending on whether or not the prescribed Nash equilibrium
in the subgame gives him a payoff of at least 2, giving us the subgame perfect equilibria
(In, T, L), (Out, B, R), and (Out, 3

4 T + 1
4 B, 1

4 L + 3
4 R).

By definition, in games without proper subgames, subgame perfection does not impose any
restriction beyond Nash equilibrium (e.g., the game on the right-hand side of Figure 9.4). But
often the idea of backward induction can still be applied. For instance, consider the game in
Figure 9.2 (Selten, 1975, Fig. 1). The strategy profile (A, C, F) is a Nash equilibrium and,
since the game does not have proper subgames, also a subgame perfect equilibrium. Under
(A, C, F), player 2’s decision node is ruled out by player 1 choosing A so player 2 cannot
change the outcome of the game. But player 2 is not maximizing her expected payoff at her
information set taking into account the behavior of player 3. Hence, the principle of backward
induction applied here dictates that player 2 should play D, but then player 1 would deviate to
B, upsetting the subgame perfect equilibrium (A, C, F).

A

1
B

C

1,1,1

D
2

3
F

3,2,2

E

0,0,0

F

4,4,0

E

0,0,1

Figure 9.2 Selton’s horse
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To address this issue, Selten (1975) introduced extensive-form perfect equilibrium. Given
a candidate behavior strategy profile b, the idea is to require that b induce optimal choices at
each information set against a slightly modified version of itself where every choice is taken
with positive, however small, probability. Under such a modified strategy, no information set
is ruled out so that every choice matters and affects the expected payoff.

For our purposes, it is convenient to take a small detour and define first the normal-
form version of this concept that we call normal-form perfect equilibrium or, simply, perfect
equilibrium. To that end, take a normal-form G and some (small) number ε > 0.

Definition 2 (Perfect equilibrium) A completely mixed strategy profile σε is an ε-perfect
equilibrium if every player i plays strategies that are non-optimal against σε−i with probability
less than ε. A strategy σ is a perfect equilibrium if and only if there is a vanishing sequence
{εt} and a sequence {σ t} converging to σ such that σ t is a εt-perfect equilibrium for every t.

That is, at an ε-perfect equilibrium σε , each player assigns strictly positive probability to each
one of her pure strategies, however, always less than ε to those that are non-optimal given σε .
As ε decreases, the ε-perfect equilibrium is closer and closer to some Nash equilibrium of the
game. Such an equilibrium is, by definition, a perfect equilibrium. Every normal-form game
has a perfect equilibrium.

We now bring back this concept to extensive-form games. The idea of an extensive-form
perfect equilibrium is that, at every information set h, the player moving there selects a choice
that maximizes her expected utility at h against a completely mixed behavior strategy profile.
To implement this idea using Definition 2, we use the agent normal form of the extensive-form
game. For each player i and each information set h ∈ Hi, define the agent ih of player i and
endow her with the strategy set Ci(h). The agent normal form is the normal-form game whose
player set is the collection of all agents, each of them with her corresponding strategy set.
Every agent of player i has the same utility function as player i. An extensive-form perfect
equilibrium is defined as a perfect equilibrium of the agent normal form. In the game of
Figure 9.2, the strategy profile (A, C, F) is not an extensive-form perfect equilibrium because
if player 1’s plays B with some small probability then player 2’s choice matters, and she is
better off by playing D.

In Figure 9.2, each player moves only once so that the agent normal form and the normal-
form representations of that game coincide. In contrast, in Figure 9.3 (Van Damme, 1984,
Example 4) player 1 has two agents so that the normal-form representation of that game has
two players while the agent normal form is a three-player game. A strategy profile in the agent
normal form is a behavior strategy in the extensive form and, by construction, agents of the
same player at different information sets behave as different players in the agent normal form.
This is not a problem when every player has just one agent (e.g., Figure 9.2) or two agents
of the same player never move one after another. However, if two agents of the same player

RL
1

b

0,0

a

1,1

1
d

1,1

c

0,0

2

Figure 9.3 Only (La, d) is an admissible strategy profile
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do move one after another an extensive-form perfect equilibrium may prescribe unreasonable
behavior. Going back to Figure 9.3 we see that, in any ε-perfect equilibrium, the second agent
of player 1’s best response is a and player 2’s best response is d. Moreover, the first agent
of player 1 prefers R to L in every ε-perfect equilibrium where player 2 plays c with more
probability than the second agent of player 1 plays b.

Thus, (R, a, d) is an extensive-form perfect equilibrium even if it seems that the only rational
strategy for player 1 is La because it guarantees her a payoff of 1 no matter what player 2 does.
In contrast, player 1’s utility to playing Ra depends on player 2’s behavior.

We say that player i’s strategy σi is (weakly) dominated by strategy σ ′
i if for any strategy

profile that players other than i may use, player i’s payoff if she plays σ ′
i is never less than

her payoff if she plays σi and, for at least one strategy profile of the opponents, the difference
in utilities is strictly positive. We say that σi is strictly dominated by strategy σ ′

i if such a
strictly positive difference holds for every strategy profile of the opponents. Following the
terminology in decision theory, we say that a strategy is admissible if it is not (weakly or
strictly) dominated. Luce and Raiffa (1957, p. 287, Axiom 5) propose that the solution to an
individual decision problem under uncertainty must be admissible, and point out that such a
requirement is equally reasonable in a game-theoretical context. We phrase the admissibility
requirement as follows:

Players play admissible strategies in any solution of the game.

The admissibility axiom is typically implemented through normal-form perfect equilib-
rium.2 (In fact, Mertens, 2003, p. 397 discusses stronger variants of the admissibility axiom
tightly related to perfect equilibrium.) To see this, notice that a weakly dominated strategy
is never optimal in an ε-perfect equilibrium because every strategy profile of the opponents
is played with positive probability. For example, the strategy profile (Ra, d) is not a perfect
equilibrium in Figure 9.3. While d is a best response to every mixed strategy of player 1, the
only strategy of player 1 that is a best response to a completely mixed strategy of player 2 is
La. Furthermore, Mertens (1995) discusses an example (a symmetrized version of the game
in Figure 9.3) where the set of extensive-form perfect equilibria and the set of admissible
equilibria are disjoint. Therefore, it seems that we have to discard extensive-form perfect
equilibrium or, at least, substitute it for a weaker variant that satisfies backward induction but
that never excludes the whole set of admissible equilibria.

An ε-perfect equilibrium (of either the normal form or the agent normal form) assigns
positive probability to every pure strategy profile and, consequently, induces well-defined
conditional probabilities given any subset of pure strategy profiles. Thus, an agent moving
at information set h can compute the conditional probability of a pure strategy profile
given that h is reached, that is, given the subset of pure strategy profiles that go through
h with positive probability. This allows the agent moving at h to find the set of choices
that maximize expected utility at h given such a conditional probability. A sequence of ε-
perfect equilibria induces a sequence of conditional probabilities, and the resulting perfect
equilibrium is optimal against the limiting conditional probability system. But any arbitrary
converging sequence of completely mixed strategies generates a sequence of conditional

2 Blume, Brandenburger, and Dekel (1991) provide a characterization of perfect equilibrium using a lexico-
graphic belief system representation with full support. They show that a normal-form perfect equilibrium is equivalent
to an admissible Nash equilibrium satisfying the common prior and strong independence assumptions.
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probabilities. A weaker version of extensive-form perfect equilibrium can be obtained by
ignoring the optimality conditions along the sequence of completely mixed strategies (i.e., the
ε-perfect equilibrium conditions) and requiring optimality only against the limiting system of
conditional probabilities. This is the concept of sequential equilibrium introduced by Kreps
and Wilson (1982a). A sequential equilibrium implements backward induction by requiring
sequential rationality or, in other words, optimality at every information set given a system
of conditional probabilities on the set of pure strategy profiles. Such a system of conditional
probabilities is called a system of beliefs. Those beliefs are not arbitrary; instead they are tied
to the strategy profile as follows. Given a behavior strategy profile b (and the equivalent mixed
strategy σ ), a system of beliefs μ is consistent with b if there is a sequence of completely
mixed behavior strategy profiles {bt} converging to b (and, thus, an equivalent sequence of
completely mixed strategy profiles {σ t} converging to σ ) such that the induced sequence of
beliefs {μt} obtained by computing μt from σ t using Bayes’ rule converges to μ.3,4 Given a
pure strategy si of player i’s, define player i’s continuation strategy at information set h ∈ Hi

to be the restriction of si to h and every other information set in Hi that follows h.

Definition 3 (Sequential equilibrium) The behavior strategy profile b is a sequential
equilibrium if there is a system of beliefs μ consistent with b such that b is sequentially
rational, that is, for every player i, every information set h ∈ Hi, and every choice c ∈ Ci(h)
we have bih(c) > 0 only if there exist a continuation strategy that prescribes c at h and that is
optimal against the conditional probability induced by μ over the pure strategy profiles of the
opponents that enable h.

Every sequential equilibrium is subgame perfect. Looking back at the previous examples,
(A, C, F) is not a sequential equilibrium in Figure 9.2 because player 2 is not being
sequentially rational in his unique information set. In turn, (R, a, d) is a sequential equilibrium
in Figure 9.3 because every player maximizes their expected payoffs at every information
set given the behavior of the opponents. For both extensive-form perfect equilibrium and
sequential equilibrium we have to construct a sequence of completely mixed behavior strategy
profiles converging to the candidate equilibrium. The difference between the two is that while
perfect equilibrium requires optimizing behavior against every member of such a sequence,
sequential equilibrium only imposes optimality at the limit of the sequence (i.e., at the
consistent system of beliefs). Thus, every extensive-form perfect equilibrium is sequential
(so every extensive-form game has at least one sequential equilibrium). In fact, Blume and
Zame (1994) show that, for generic payoffs, the set of sequential and extensive-form perfect
equilibria coincide.5

3 Kohlberg and Reny (1997) show that a system of beliefs generated in this way properly captures strategic
independence, that is, the basic game-theoretical assumption that players take their decision independently. See also
Battigalli (1996); Swinkels (1993).

4 This definition of beliefs is different from Kreps and Wilson’s (1982a). They only consider the information
needed to implement sequential rationality while here a consistent system of beliefs contains conditional probabilities
for any arbitrary subset of pure strategy profiles, even if they do not all go through the same information set. This
additional generality will be useful when discussing forward induction in Section 6.

5 A utility function in an extensive-form game is a point in R
nZ , that is, it specifies a utility value for each player

at each terminal node. Genericity is used here in the sense that there exists a lower-dimensional set in R
nZ defined by

finitely many polynomial inequalities such that, for every point in R
nZ outside that set, every sequential equilibrium

is extensive-form perfect (cf. Govindan and Wilson, 2001).
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The set of sequential equilibria always contains equilibria that are admissible. A selection
of those admissible sequential equilibria is done by quasi-perfect equilibrium (Van Damme,
1984). The concept is also similar to extensive-form perfect equilibrium in that it imposes
optimality against a sequence of perturbed mixed strategies as the perturbations vanish.
The difference is that when an agent of player i maximizes, he does so ignoring the
perturbations in the behavior of future agents of player i. In this way, quasi-perfect equilibrium
avoids selecting dominated strategies when two agents of the same player moves one after
another.

Definition 4 (Quasi-perfect equilibrium) A completely mixed behavior strategy profile bε

is an ε-quasi-perfect equilibrium if for every player i, every information set h ∈ Hi, and every
choice c ∈ Ci(h) we have bεih(c) > ε only if there exists an optimal (given bε−i) continuation
strategy that prescribes c at h. The profile b is a quasi-perfect equilibrium if there is some
vanishing sequence {εt} and a sequence of profiles {bt} converging to b such that bt is a εt-
quasi-perfect equilibrium for every t.

Every extensive-form game has a quasi-perfect equilibrium. In a quasi-perfect equilibrium,
each player (as opposed to every agent of each player as in extensive-form perfect equi-
librium) is playing a best response against a sequence of completely mixed strategies of
the opponents, so every quasi-perfect equilibrium is (normal-form) perfect and, therefore,
admissible. Quasi-perfection, like sequential rationality and extensive-form perfect equi-
librium, requires player i to optimize at every information set, even at those ruled out
by previous behavior. So quasi-perfect equilibrium satisfies backward induction (i.e., it
is sequentially rational) and admissibility (i.e., induces a perfect equilibrium). Moreover,
for generic assignments of payoffs to ending nodes, the sets of sequential, extensive-form
perfect, and quasi-perfect equilibrium coincide (Hillas, Kao, and Schiff, 2002; Pimienta and
Shen, 2010).

The definitions of quasi-perfect and sequential equilibrium (as well as backward induction
and sequential rationality) make explicit use of the extensive form. They impose some kind
of optimality condition at every information set so, were the information sets to change, these
concepts would impose a different collection of conditions. Namely, it can be that for two
extensive-form games that represent the same strategic situation, these concepts give different
solutions. This is the case for the two extensive-form games in Figure 9.4. In both games,
the set of subgame perfect equilibria and quasi-perfect equilibria coincide. The game on the
left-hand side has three quasi-perfect equilibria: (Out, B, R), (Out, 3

4 T + 1
4 B, 1

4 L + 3
4 R) and

(In, T, L). But the game on the right-hand side has (T, L) and a whole continuum from (Out, R)
to (Out, 2

3 L + 1
3 R).

InOut

2,2

1

BT
1

R

0,0

L

3,1

R

1,3

L

0,0

2

BOut

2,2

T

1

R

0,0

L

3,1

R

1,3

L

0,0

2

Figure 9.4 Two extensive-form games with the same reduced normal-form representation
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If we agree that the same strategic interaction can be represented by different extensive-
form games then we would ideally want an equilibrium concept whose selection does not
depend on which game we choose to model it. Following Kohlberg and Mertens (1986), we
call the following principle invariance:

The solution of a game does not depend on strategically irrelevant aspects of
the representation of the game.

Thus, the analysis of a game should not be affected by presentation effects. In Figure 9.4,
we transform the game on the left-hand side into the game on the right-hand side by
substituting two consecutive binary choices by a three-way choice. Two extensive forms
that can be transformed into each other through a sequence of strategically inessential
transformations like this one (Thompson, 1952; Dalkey, 1953; Elmes and Reny, 1994) have
the same semi-reduced normal form (which is obtained after eliminating duplicated pure
strategies from the normal form, e.g., OutT and OutB in the normal-form representation of
the right-hand-side game in Figure 9.4).

Van Damme (1984) proves that every proper equilibrium (Myerson, 1978) of a normal-
form game induces a quasi-perfect equilibrium (hence, sequential) in every extensive-form �

with that semi-reduced normal form (cf. Kohlberg and Mertens, 1986, Proposition 0).

Definition 5 (Proper equilibrium) An ε-proper equilibrium is a completely mixed strategy
profile σε such that for each player i and any two of his pure strategies si and s′

i we
have σεi (si) < εσεi (s

′
i) whenever ui(σ

ε
−i, si) < ui(σ

ε
−i, s′

i). A strategy profile σ is a proper
equilibrium if it is the limit point of a sequence {σε} of ε-proper equilibria as ε goes
to zero.

An ε-perfect equilibrium (Definition 2) does not impose restrictions on non-optimal pure
strategies other than they have to be played with probability less than ε. An ε-proper
equilibrium, on the other hand, additionally requires that the probability assignment to pure
strategies respects the preference ordering of the player at the given profile. Every normal-
form game has a proper equilibrium and, as mentioned above, every proper equilibrium
induces a quasi-perfect equilibrium of every extensive form with that semi-reduced normal
form. Indeed, the set of proper equilibria of the normal-form representation of the extensive
forms in Figure 9.4 are (T, L), (Out, R) and (Out, 1

4 L + 3
4 R). Notwithstanding this property,

proper equilibrium is not a truly invariant concept. The game in Figure 9.5 is equivalent to the
(reduced) normal-form representation of the game in Figure 9.4. The extra pure strategy X is
a mixed strategy already available before. In this new game, the unique proper equilibrium is
(T, L): X strictly dominates B so, in an ε-proper equilibrium player 2 has to consider X to be
“infinitely” more likely than B. But then, player 2 must play L as the only reason to play R

L R
Out 2,2 2,2
T 3,1 0,0
B 0,0 1,3

2/3Out+1/3T =: X 7/3, 5/3 4/3, 4/3

Figure 9.5 A game equivalent to the games in Figure 9.4
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is that B is played with relatively higher probability than T and X. And if player 2 plays L,
player 1 must play T.6

It follows that a truly invariant solution concept only depends on the reduced normal form
of the game, that is, the one obtained after eliminating redundant pure strategies that are
already available as convex combination of other existing pure strategies. Proper equilibrium
too depends on strategically irrelevant aspects of the game, so it is not surprising that in
some examples it selects implausible equilibria. In the well-known example of Figure 9.4,
it has been argued that the only reasonable equilibrium is indeed (T, L). Considering either
extensive-form representation of this game, the reason is that if player 2 had to make a move
while also believing that player 1 is rational, he should attach probability zero to player 1
choosing B because such a strategy is strictly dominated by Out. Thus, anticipating this, player
1 should play T and player 2 respond with L. This is an example where a forward induction
argument selects the only equilibrium that survives invariance and backward induction. Hillas
and Kohlberg (2002, p. 1651) conjecture that this relationship may go beyond this simple
example (see also Hillas, 1998a). We come back to this point in Section 6.

To capture forward induction in a more encompassing way we can use the following
principle suggested by Kohlberg (1990, p. 13) and that we may refer to as independence
of irrelevant alternatives (see also Van Damme, 2002):

A solution is not be vulnerable to the elimination of a strategy that is irrelevant
(i.e., certain not to be employed) when players play according to the solution.

This principle, combined with the admissibility axiom, implies that a solution should not
depend on the existence of a dominated strategy. In Figure 9.6, backward induction implies
that the solution is the unique proper equilibrium (T, 1

2 L + 1
2 R). By admissibility, the weakly

dominated strategies M and B are “certain not to be employed”. But if we eliminate M, the
only admissible equilibrium is (T, R), while if we eliminate B the only admissible equilibrium
is (T, L). Thus, independence of irrelevant alternatives tells us that both (T, L) and (T, R)
are the solution so, if we want to preserve existence, a satisfactory equilibrium concept must
be set-valued and, in this particular case, a solution should contain (T, L), (T, R) and, by
backward induction, the unique proper equilibrium (T, 1

2 L + 1
2 R). Notice that the principle

of independence of irrelevant alternatives is not necessary to arrive at this conclusion in this
example. Again, the same can be accomplished with an argument based on invariance and
backward induction. Add to the game in Figure 9.6 the pure strategy X = 1

2 T + 1
2 M for

player 1, the only proper equilibrium in the new game is (T, L). If instead we add the pure
strategy Y = 1

2 T + 1
2 B then the only proper equilibrium is (T, R).

L R
T 1,1 1,1
M 1,−1 −1,1
B −1,1 1,−1

Figure 9.6 Iterated elimination of dominated strategies can give different solutions
depending on the order of elimination

6 Importantly, and contrary to proper equilibrium, the set of perfect equilibria is unaffected by adding or deleting
pure strategies that are convex combinations of the others.
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To a great extent, the arguments used in this section have been borrowed from Kohlberg and
Mertens (1986) who give a more careful description of the properties that an ideal solution
concept should satisfy and conclude that such a concept must be set-valued. They proposed
three set-valued solution concepts. Here we are only going to define the last one and call it
KM-stability.

As mentioned above, a given ε-perfect equilibrium induces a system of conditional
probabilities defined on pure strategy profiles. We can make those relative probabilities
more explicit by defining a perturbed game where probabilities to non-optimal strategies
are specified by the description of the game. Thus, consider an arbitrary completely mixed
strategy profile ς and a strictly positive vector ε = (ε1, . . . , εn) whose entries are small
enough. We call ηi := εiςi a perturbation for player i and η := (η1, . . . ηn) a vector of
perturbations. We can think of perturbations as changing strategies, so that if player i intends
to play σi then she actually plays σi with probability (1 − εi) and ςi with probability εi. That
is, a perturbation η transforms player i’s strategy σi into τi(σi | ηi) := (1 − εi)σi + εiςi and
the strategy profile σ into the strategy profile τ(σ | η) := (τ1(σ1 | ηi), . . . , τn(σn | ηn)).
Equivalently, given a game G and a perturbation η = (εiςi)i we can define the (perturbed)
game G(η) as a game where the strategies are not perturbed but the utility function of player
i is given by uηi := ui ◦ τ(· | η). A Nash equilibrium ση of G(η) is a strategy profile such that
no player can get a strictly higher payoff in G(η) by changing his or her strategy. And such a
strategy profile ση satisfies

ση ∈ BR((1 − ε1)σ
η

1 + ε1ς1, . . . , (1 − εn)σ
η
n + εnςn), (9.1)

where BR is the best-response correspondence of the original game G. Of course, a strategy
profile σ is a perfect equilibrium of G if and only if there is a vanishing sequence of
perturbations ηt and a sequence of strategies {σ t} converging to σ such that σ t is a Nash
equilibrium of G(ηt) for every t (cf. Definition 2).

A KM-stable set is a minimal set of Nash equilibria that is robust to every completely mixed
strategy perturbation. We describe such a set of perturbations as follows. For any number
0 < δ ≤ 1 we construct the set of all completely mixed strategy perturbations of “size”
smaller than δ. If we let �◦ be the set of completely mixed strategy profiles then such a set of
perturbations is P◦

δ := {(εiςi)i∈N : 0 < εi ≤ δ, ςi ∈ �◦
i for all i}. The equilibrium property of

being robust to every completely mixed strategy perturbation is described as follows:

Definition 6 (Property S) A set of equilibria T satisfies Property S if it is a closed set of Nash
equilibria of G such that for every λ > 0 there is a δ such that if η ∈ P◦

δ then the game G(η)
has a Nash equilibrium whose distance with respect to T is less than λ.

This robustness property is similar to the definition of continuity. For any value of λ (which is
how far away from T we are allowed to go searching for a Nash equilibrium of the perturbed
games) we can restrict the size of the perturbations δ so that every perturbed game with a
perturbation of size smaller than δ has a Nash equilibrium λ-close to T. The fact that the
Nash equilibrium correspondence (which maps each game G into its set of Nash equilibria)
is upper-hemicontinuous implies, by definition, that the whole set of Nash equilibria of G
satisfies Property S. Kohlberg and Mertens (1986) extract a non-trivial refinement by imposing
minimality.
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240 Handbook of game theory and industrial organization: theory

Definition 7 (KM-stable set) T is a KM-stable set if it is a minimal set (in terms of set
inclusion) satisfying Property S.

A KM-stable set always exists. By minimality, every equilibrium in a KM-stable set is perfect.
Because of this fact, the collection of KM-stable sets does not change when we add or
delete a pure strategy that is a convex combination of other pure strategies. It also satisfies
robustness against deletion of irrelevant alternatives in the following two versions. A KM-
stable set contains a KM-stable set of the game obtained after eliminating a dominated strategy
(iterated dominance), and a KM-stable set contains a KM-stable set of the game obtained after
eliminating a strategy that is never an optimal response against any strategy in the KM-stable
set (forward induction).7

However, some stable sets may fail to include a proper equilibrium and, therefore, satisfy
backward induction. Kohlberg and Mertens (1986) give an example due to Faruk Gul of a KM-
stable set made of two equilibrium points, none of which is the unique sequential equilibrium
of the game.8 For completeness, we include Gul’s game in Figure 9.7. The subgame starting
with player 1’s second information set has a unique equilibrium ( 1

2 M+ 2
2 B, 1

2 L+ 2
2 R, 1

2 l+ 2
2 r).

Therefore, the game has a unique subgame perfect equilibrium, which is also necessarily
sequential. This sequential equilibrium is (T, 1

2 L + 2
2 R, 1

2 l + 2
2 r). By backward induction,

a satisfactory solution of this game should include this strategy. But {(T, L, l), (T, R, r)} is a
KM-stable set of the game: player 1’s strategy T is a strict best response against both elements
in the set, so it is still a best response against their perturbed versions. Furthermore, for those
perturbed games such that η1(M) ≥ η1(B) there is a Nash equilibrium where players 2 and 3
play, respectively, L and l; and for those perturbed games such that η1(B) ≥ η1(M) there is a
Nash equilibrium where players 2 and 3 play, respectively, R and r.

Another desirable property listed by Kohlberg and Mertens (1986) that we have still not
mentioned is connectedness, that is, every solution must be a connected set of Nash equilibria.
Connectedness is a natural condition to identify equilibrium points in the same solution. In
this way, we can interpret the different equilibrium points in the same solution as varying
continuously with beliefs, presentation effects, or other aspects of the interaction not captured

T

2,0,0

1

BM
1

2

RL RL

3

r

5,1,1

l

0,3,3

r

1,0,0

l

5,1,1

r

5,1,1

l

1,0,0

r

0,3,3

l

5,1,1

Figure 9.7 Gul’s game

7 Cho and Kreps, (1987) and Banks and Sobel (1987) offer a characterization of KM-stability for a generic class
of signaling games. Govindan and Wilson (2006) offer a characterization of Property S in terms of lexicographic
probability systems.

8 A strategy profile σ is a strictly perfect equilibrium (Okada, 1981) if the set {σ } satisfies Property S. Vermeulen
and Jansen (1996) provide a counterexample that shows that a strictly perfect equilibrium may not be proper.
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by preferences. Additionally, for generic extensive-form games, connectedness implies (cf.
Kreps and Wilson, 1982a, Theorem 2) that a solution induces a unique outcome so that the
departure from a single-valued solution concept is minimal in these games. In any case, as
Gul’s example demonstrates, KM-stability does not satisfy this requirement either.

4 ESSENTIAL SETS OF FIXED POINTS AND STRATEGIC STABILITY

A game G is defined by a set of exogenous variables (players, strategies, and preferences) from
which we can construct the best-response correspondence. A Nash equilibrium is a fixed point
of BR : � → �, that is, a point σ that satisfies σ ∈ BR(σ ). Some of the desirable properties in
the previous section can be implemented by looking at the set of Nash equilibria of games that
are either nearby, or that can be constructed from the original game. The set of Nash equilibria
of those games can be obtained as fixed points of a perturbed version of the best-reply
correspondence. For instance, dominated strategies are eliminated in a perfect equilibrium
because they become strictly dominated in any close-by completely mixed strategy perturbed
game and, therefore, they cannot be part of a Nash equilibrium in such a perturbed game.
As another illustration of this idea, we know that regular equilibrium (Harsanyi, 1973;
Ritzberger, 1994) satisfies every desirable requirement apart from existence. A property of
regular equilibrium is that if σ is a regular equilibrium of G then, locally, there is a bijective
function between games that are close to G and their Nash equilibria that are close to σ .

Consider the function from the interval [0, 1] to itself represented in Figure 9.8. Looking at
the 45 degree line we see that the function has several fixed points, x1, the interval [x2, x3], x4,
and x5. Any continuous function “close” to f has a fixed point close to x1, another one close
to the interval [x2, x3] and another one close to x5. But the same is not necessarily true for x4:
some perturbations of f have two fixed points close to x4 and some other perturbations have
no fixed point at all close to x4. In this sense, x1 and x5 are more robust fixed points than x4.
Fort (1951) defines a fixed point of a continuous function to be essential if they satisfy this
robustness property. It is not difficult to come up with an example of a continuous function

x2 x3x1 x4 x5

f

x

Figure 9.8 Essential and inessential sets of fixed points
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with no essential fixed point, e.g., the identity function. Hence, Kinoshita (1952) defined a set
of fixed points X of a function f to be essential if every function close to f has a fixed point
close to X. In Figure 9.8 no fixed point in the interval [x2, x3] is essential, but [x2, x3] is an
essential set of fixed points. But once we accept that we need to consider sets of fixed points
if we want to obtain a useful concept, we also have to limit the size of the robust set of fixed
points to avoid selecting all of them. In the literature, we normally find conditions such as
minimality or connectedness.

Similar ideas can be applied to correspondences in general and to the best-response
correspondence in particular. McLennan (2012) provides a unified treatment that we now use
to discuss set-valued equilibrium concepts in terms of some robustness property of the best-
response correspondence against some set of perturbations. There are at least three parts that
we can adjust to obtain a set-valued equilibrium concept in this way: the space of perturbations
that we want to consider, the concept of robustness with respect to such perturbations, and how
we extract a solution concept from the robustness condition. The way we tune each of these
parts determines the game-theoretical properties of the resulting concept.

For the time being, let us fix the robustness property (for every small perturbation there must
be a fixed point close to the proposed set) and how we extract a refinement from it (the set
should not strictly contain another set that satisfies the robustness property) and look only at
the set of perturbations. We first note that the bigger the set of perturbations that we admit, the
larger the sets of fixed points that we need to accept. For instance, suppose that the true game
in Figure 9.9 is the one obtained when ε1 = ε2 = 0 so that the only admissible equilibrium
is (T, L). If we were to require that a selected set of equilibria should be robust against every
perturbation of the best-response correspondence generated by payoff perturbations then we
have to admit the inadmissible equilibria (T, R) and (B, L) because those are the only equilibria
in any close-by game where ε1 and ε2 are positive that are close to the set of Nash equilibria
of the true game.9

KM-stability only considers perturbations of the best-response correspondence generated
by strategy perturbations of the game. That is, perturbations of BR that are obtained by
composing it with τ(· | η) for some η ∈ P◦

δ (see page 239). Hence, Property S can also
be stated as follows:

Definition 8 (Property S) A set of Nash equilibria S satisfies property S if for every λ there
is a δ such that for every η ∈ P◦

δ we can find a strategy σ that is λ-close to S and, furthermore,
σ ∈ BR(τ (σ | η)).

A KM-stable set is a minimal set that satisfies Property S. While the choice of perturbations
guarantees admissibility, Figure 9.7 demonstrates that the definition does not guarantee
backward induction. Hillas (1990, p. 1372) explains the reason. For those perturbed games

L R
T 1,1 1,1+ε2
B 1+ε1,1 0,0

Figure 9.9 A payoff perturbed game

9 This is the space of perturbation used in the definition of hyperstability given by Kohlberg and Mertens (1986).
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such that η1(M) ≥ η1(B), even if the strategy profile (T, L, l) is a Nash equilibrium, player
1 strictly prefers B to M but plays the latter with larger probability than the former. That
is, (M, L, l) is not a Nash equilibrium of the smallest subgame, which, in turn, implies that
(T, L, l) is not subgame perfect. A similar argument applies to (T, R, r). Hillas (1990) defines
a new class of perturbations that allows players some “wiggle room” to assign probabilities to
non-optimal strategies in a way that respects the players’ preference ordering. We call these
perturbations γ restrictions.10 A γ restriction specifies, for each player and each subset of her
strategies, the minimal total probability that must be assigned to such a subset. For instance, in
Gul’s example, one of such γ restrictions specifies the minimum total probability that player
1 must assign to the set {M, B}, e.g., γ > 0, as well as the minimum probabilities that M
and B must each be played with, e.g., γ 2. Hence, if players 2 and 3 play in a way that player
1 strictly prefers T to B and B to M, then she would play M with probability γ 2 and B with
probability γ −γ 2. A minimal set of equilibria such that for every γ restriction there is a Nash
equilibrium close to it is called a quasi-stable set.11 Based on the analysis of Gul’s example,
one can intuitively see how this concept implies backward induction.

Now consider the best-response correspondence of a γ restriction of a game, but defined
on the entire set �. Let ϕ : � → � be such a correspondence. For each σ ∈ � it specifies,
for each player, the set of optimal responses over those that satisfy the minimal probabilities
specified by the γ restriction on the different sets of pure strategies. As such, the set ϕ(σ)
is as “close” to BR(σ ) as those probability restrictions allow. Hillas (1990) defines the space
of perturbations of BR to be the collection of those correspondences that are close to BR
(and maintains the same notion of robustness as Kohlberg and Mertens, 1986). Note that this
collection of perturbations also includes those perturbations of BR considered in Definition 8
so that every set satisfying the following definition also satisfies Property S.

Definition 9 (BR-stability) A closed set T ⊂ S is a BR-set if for any neighborhood V of T
there exists a number δ > 0 such that every closed and convex-valued upper-hemicontinuous
correspondence ϕ that is δ-close to the best-response correspondence BR has a fixed point in
V.12 A BR-stable set is a BR-set that is connected and only contains perfect equilibria.

In the definition, δ-close means that for every σ ∈ � the Hausdorff distance between the
sets BR(σ ) and ϕ(σ) is less than or equal to δ (so that BR(σ ) is a subset of a neighborhood
of ϕ(σ) and ϕ(σ) is a subset of a neighborhood of BR(σ )). Following Hillas et al. (2001),
the equilibrium concept is obtained from the robustness condition by directly imposing
connectedness and perfection instead of a minimality condition. (A minimality condition can
violate the invariance principle: see the ordinality concept discussed in the next section and
footnote 15.) BR-stable sets satisfy every desirable property that we have discussed so far.
They are connected sets of perfect equilibria and always contain a proper equilibrium. And,

10 Hillas (1990) calls them δ restrictions. We change the terminology here to avoid re-using the symbol δ.
11 Hillas (1990) furthermore defines fully stable sets of equilibria, modifying the definition of quasi-stability to

obtain a concept immune to the addition and deletion of existing mixed strategies as pure strategies.
12 The results in Hillas et al. (2001) imply that we can alternatively consider those perturbations of the

correspondence BR that can be obtained through the collection of continuous functions that map each strategy profile
to a strategy perturbation (see also Vermeulen, Potters, and Jansen 1997). Namely, a CKM-perturbation of “size”
δ is a continuous function fδ : � → Pδ . A CKM-set is a set that such that for any λ there is a δ so that for any
CKM-perturbation of size δ the correspondence BR ◦ τ (·|f (·)) : � → � has a fixed point λ-close to it. A set is a
BR-set if and only if it is a CKM-set.
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furthermore, a BR-stable set contains a BR-stable set of a game obtained after deleting a
strategy that is either dominated or not a best response against any equilibrium in the BR-
stable set.

Nonetheless, BR-stability does not satisfy all the different invariance properties discussed
by Mertens (1989, 1991, 1992, 2003). These invariance properties go beyond requiring that
the equilibrium concept depends only on the reduced normal form. They correspond to other
changes in the description of the game that, by its nature, do not alter the strategic interaction
under study. In the next section, we define Mertens’ stable sets and discuss the invariance
properties that they satisfy.

Before that, we mention a recent paper by Grigis de Stefano (2014). He defines a stability
concept that changes Kohlberg and Mertens by enlarging the collection of games against
which a stable set must be robust. It considers games obtained by introducing new irrelevant
players and adding new appropriately chosen strictly dominated strategies. Furthermore, those
games are perturbed so that each pure strategy is replaced by several perturbed versions of
itself. These auxiliary games are conceived not to alter the relevant strategic interaction of
the original game and a stable set of the original game must “produce” an equilibrium for
each of these perturbed games in a similar fashion as Property S. Even if the final properties
obtained improve upon KM-stability, it is also the case that the concept does not satisfy all
the invariance properties satisfied by Mertens’ stability.

4.1 Mertens’ Stable Sets

Mertens’ (1989, 1991) definition of stability uses the same set of perturbations as Kohlberg
and Mertens (1986). However, he strengthens the robustness property by requiring not only
that each sufficiently close perturbed game has a Nash equilibrium close to the stable set, but
also imposing a restriction on how those equilibria must “hang together”.

We introduce the concept in an incremental way so that we can get some intuition about
each of its parts. We begin with the space of perturbations. For any number 0 ≤ δ ≤ 1 we
construct the set Pδ := {(εiςi)i∈N : 0 ≤ εi ≤ δ, ςi ∈ �i for all i}. The set Pδ contains those
completely mixed strategy perturbations P◦

δ defined on page 239 and also perturbations that
are not completely mixed, i.e., in the boundary ∂Pδ of Pδ . Of course, P◦

δ := Pδ \ ∂Pδ . Recall
also that for each perturbation η ∈ Pδ we can construct the corresponding payoff perturbed
game G(η)with the same player set and strategy sets as G but where the utility of each player i
is given by uηi (s) = ui(τ (s | η)). Thus, we can consider the restriction of the Nash equilibrium
correspondence NEu : P1 → � that takes each strategy perturbation η ∈ P1 and maps it to
the set of Nash equilibria of the game G(η). We are only interested in equilibria of perturbed
games that are close to some candidate set of equilibria of G. Hence, if the set T ⊂ � is such a
candidate, we look for a subset E of the graph of NEu that satisfies T = {σ ∈ � : (0, σ) ∈ E}.
The subset of E where perturbations are smaller than some δ is denoted Eδ = {(η, σ) ∈
E : η ∈ Pδ}. We also construct the subset of Eδ where perturbations are completely mixed
E◦
δ := {(η, σ) ∈ E : η ∈ P◦

δ} and where perturbations are in the boundary ∂Eδ := {(η, σ) ∈
Eδ : η ∈ ∂Pδ}. (Note that ∂Eδ and E◦

δ are not necessarily the boundary and interior of Eδ .)
Once we have identified a relevant subset of the graph of the Nash equilibrium correspondence
of perturbed games, we can use it to impose a robustness condition more strongly than simply
requiring that every nearby perturbed game has a nearby equilibrium. For instance, following
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Hillas and Kohlberg (2002, p. 1647), we can provide a slightly strengthened version of
KM-stability:

Definition 10 A set of equilibria T is KM∗-stable if there is a closed set E ⊂ graph(NEu) and
some δ with T = {σ : (0, σ) ∈ Eδ} such that

● for every 0 < δ′ ≤ δ the set E◦
δ′ is connected and satisfies Eδ′ = cl(E◦

δ′); and
● p : Eδ → Pδ is surjective.

The only extra requirement with respect to KM-stability is the connectedness requirement
in the first bullet point (we also dropped the minimality condition). We can think of E◦

δ as
capturing beliefs supporting the set of equilibria. For any (η, σ) ∈ E◦

δ we can compute the
completely mixed strategy τ(σ | η) and, therefore, the corresponding system of conditional
probabilities. As δ decreases we can construct sequences of those systems of beliefs which, at
the limit, produce a system of beliefs associated with the corresponding perfect equilibrium
in T. The connectedness requirement implies that both the collection of beliefs supporting the
KM∗-stable set and the KM∗-stable set itself are connected sets. However, the improvement
with respect to KM-stability is not substantial. Hillas (1990, p. 1386) modifies Gul’s example
to obtain a game with a KM∗-stable that also fails to include a proper equilibrium (see also
Hillas, 1998b).

Mertens’ (1989) reformulation of strategic stability imposes a yet stronger restriction on
how the set Eδ should look. An implication of such a restriction is that not only must the
projection p : Eδ → Pδ be surjective but also it must not be “equivalent” to a function that
is not surjective. If we consider two functions to be equivalent when one can be continuously
deformed into the other then the set Eδ cannot have any hole in it. As an illustration, consider
Figure 9.10 and the projection from the set consisting of the two short horizontal lines (whose
union plays the role of Eδ – the set ∂Eδ is represented by the union of the two dots) to the larger
horizontal line (which plays the role of Pδ – the set ∂Pδ is represented by the union of the two
short vertical lines). This projection mapping is surjective, however, it can be continuously
deformed into a function that is not surjective, namely, one that maps the lower segment of
Eδ to the left end of Pδ and the upper segment of Eδ to the right end of Pδ . Of course, in this
figure, what would be the set E◦

δ is not connected, but a similar example can be constructed in
a higher dimensional space where E◦

δ is connected and still has a hole in it that is “vertical” to
the space of perturbations. The example provided by Hillas (1998b) of a KM∗-stable without
a proper equilibrium has precisely this feature.

∂Eδ

∂Pδ

Figure 9.10 The projection mapping can be continuously deformed into a non-surjective
function
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Based on this, let us provide a definition of an equilibrium concept that is one step closer
to Mertens’ stability. This definition appears in Mertens (1991, p. 704), Hillas et al. (2001,
p. 615) and Govindan and Wilson (2008a, p. 792). We first formalize what it means to
continuously deform a function into another. Consider two topological spaces, X and Y and let
A ⊂ X and B ⊂ Y. We write f : (X, A) → (Y, B) for a function f : X → Y such that the image
of A is in B, that is f (A) ⊂ B. Two maps between pairs f , g : (X, A) → (Y, B) are homotopic
relative to A if there is a continuous function H : [0, 1] × X → Y such that H(0, x) = f (x) and
H(1, x) = g(x) for all x ∈ X and, moreover, H(t, a) = f (a) = g(a) for all t ∈ [0, 1] and all
a ∈ A. We say that the map f : (X, A) → (Y, B) is essential in homotopy if it is not homotopic
relative to A to a map whose image is in B.

Definition 11 (Homotopy-stable set) A set of equilibria T is homotopy-stable if there is a
closed set E ⊂ graph(NEu) and some δ with T = {σ : (0, σ) ∈ Eδ} such that

● for every 0 < δ′ ≤ δ the set E◦
δ′ is connected and satisfies Eδ′ = cl(E◦

δ′); and
● p : (Eδ , ∂Eδ) → (Pδ , ∂Pδ) is essential in homotopy.

Every homotopy-stable set is a BR-set (Hillas et al., 2001). Therefore, they are connected
sets of perfect equilibria and always contain a proper equilibrium. They satisfy a stronger
version of iterated dominance and forward induction; a homotopy-stable set contains a
homotopy-stable set of any game obtained after eliminating a strategy that is at its minimum
probability in every ε-perfect equilibrium close to the homotopy-stable set. To get a feeling
for the implications of the strengthening of the robustness requirement (the second bullet
point in the previous definition) with respect to the definition of KM∗-stable sets, we note it
implies the following strong fixed-point property: any upper-hemicontinuous, convex-valued
correspondence (e.g., any continuous function) F : (Eδ, ∂Eδ) → (Pδ , ∂Pδ) has a point of
coincidence with the projection mapping p, that is, a point e ∈ E such that p(e) ∈ F(e).13

Then, to see why every homotopy-stable set satisfies backward induction, construct the
correspondence that assigns to each perturbation-strategy pair (η, σ) in Eδ the set of strategy
perturbations that, for each player i and each pair of strategies, respect the upper bound on
probabilities imposed by the δ/2-proper equilibrium conditions on the less preferred pure
strategy given σ−i. This correspondence satisfies the necessary conditions for the previous
fixed-point result to hold and, therefore, there is a point (η, σ) ∈ Eδ such that σ is a δ/2-
proper equilibrium. Taking a sequence as δ vanishes proves that every homotopy-stable set
has a proper equilibrium. (See Mertens, 1989, p. 597 for details.)

Homotopy-stable sets are a good approximation to Mertens’ stable sets but they still do not
satisfy all the implications of the invariance principle. The invariance principle tells us that an
equilibrium concept must not depend on strategically irrelevant aspects of the game. So we
need to be specific about what we mean by “strategically irrelevant”.

We first describe strategically irrelevant aspects of the game that do not modify the set
of players. For example, we have already discussed that an invariant equilibrium concept
should only depend on the reduced normal form of the game. Mertens (2003) incorporates
this requirement as part of the ordinality principle. Mertens (1992) describes ordinality as “the
unifying idea behind many different desiderata: Normal form invariance, utility invariance,

13 See, e.g., Govindan and Wilson (2008a, Lemma A.3).
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neutrality as to names of strategies and as to duplication of them, that pure and mixed
strategies should be treated identically (the only distinctions stemming from preferences),
that only choice sets matter and not the whole preference ordering, that choices are always (in
a strong sense) admissible and expected utility maximizing, etc.” Shortly, ordinality means
the following. Take two games with the same player set. If each player has the same set of
admissible best responses in these two games for each belief she might have over the set of
mixed strategy profiles of the opponents then the two games must have the same solutions.
Mertens shows that an equilibrium concept is ordinal if it is both normal-form invariant and
admissible best-response invariant. An equilibrium concept is normal-form invariant if given
two games G and G′ with the same reduced normal form (up to relabeling of pure strategies)
and a family of surjective linear mappings f = (fi)i∈N from the strategy sets of one game
to the strategy sets of the other game that preserve payoffs, we have that the image of every
solution of the first game is a solution in the second game, and that the inverse image of a
solution of the second game is the union over all the solutions in the first game whose image
is precisely that solution. An equilibrium concept is admissible best-response invariant if any
any two games with the same set of pure strategies (up to relabeling) and such that their best-
response correspondences coincide for every completely mixed strategy profile have the same
solutions.14,15

A game can be also be presented within an environment with a different player set but
where the relevant strategic interaction is not affected. Consider the following variants:

1. Small worlds axiom (Mertens, 1992). Suppose that a game G with set of player N is
embedded in a larger game G′ with a larger set of players N ′ so that every player in
G is in G′. Suppose that in this larger game, the best-response correspondence of any
player in N is not affected by the strategic choices of players in N ′ that are not in N and,
moreover, coincides with the best-response correspondence of the first game. The small
worlds axiom specifies that the solutions of the game G are precisely the projections of
the solutions in G′.

2. Decomposition. Consider two different games played by two different sets of players. One
can formalize the situation as a big game whose player set is the union of the player sets
of the two small games. An equilibrium concept satisfies the decomposition property if
the projection of each solution of the big game into one of the smaller games is a solution
of the small game and, moreover, the product of two solutions, one for each of the two
small games, is a solution of the big game.

3. Player splitting. An equilibrium concept satisfies player splitting if it is immune to
splitting two agents of the same player that do not move one after the other into two
different players.

Mertens’ stable sets satisfy ordinality, the small words axiom, decomposition, and player
splitting. It is worthwhile pointing out that the set of Nash equilibria satisfy all these invariance

14 Homotopy-stable sets are admissible best-response invariant but not normal-form invariant.
15 As mentioned before, a minimality condition imposed on an equilibrium concept may violate the ordinality

requirement, in particular, normal-form invariance. Given two games that are ordinally equivalent and a function
mapping strategies in the first game to equivalent counterparts in the second game, a minimal set satisfying some
robustness condition in the first game can be mapped into a set of the second game that, even if it satisfies the same
robustness condition, may not be minimal. Vermeulen and Jansen (2001) give an example of a minimal BR-set that
behaves in this way.
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248 Handbook of game theory and industrial organization: theory

properties as well. The definition of Mertens’ stability is obtained after strengthening the
robustness property of the definition of homotopy stability so that all these invariance
properties can be obtained. For completeness, we include the definition here and note that
every stable set is homotopy-stable:

Definition 12 (Mertens’ stable set) A set of equilibria T is stable if there is a closed set
E ⊂ graph(NEu) and some δ with T = {σ : (0, σ) ∈ Eδ} such that

● for every 0 < δ′ ≤ δ the set E◦
δ′ is connected and satisfies Eδ′ = cl(E◦

δ′); and
● p : (Eδ , ∂Eδ) → (Pδ , ∂Pδ) is essential in cohomology.16,17

Of course, stable sets are connected sets of perfect equilibria and always contain a proper
equilibrium. Every stable set contains a stable set of the game obtained after eliminating a
strategy that is played with probability less than ε in every ε-perfect equilibrium close to the
stable set. Hence, stable sets also satisfy forward induction and robustness against iterated
elimination of dominated strategies.

The robustness condition involves concepts of algebraic topology that can be difficult to
verify in applications. However, sometimes, stronger properties are easier to check, e.g., if
the projection from E◦

δ to P◦
δ is a homeomorphism then the projection mapping is necessarily

essential in cohomology, which implies that every strict equilibrium, every regular equilib-
rium, and every strongly stable equilibrium (Kojima, Okada, and Shindoh, 1985) are singleton
stable sets. Likewise, if we know that the game has finitely many equilibria, like generic
normal-form games (Harsanyi, 1973), generic extensive-form games (Kreps and Wilson,
1982a), or generic voting games (De Sinopoli, 2001) then each component of Nash equilibria
maps into a unique outcome. Hence, in these cases, it is easier to verify whether a given
outcome is stable than whether a particular subset of equilibria is a stable set. For instance,
Ritzberger (1994) shows that every Nash equilibrium component with non-zero index contains
a stable set. Finding a stable outcome is even easier when iterated deletion of dominated strate-
gies reduces the game to a game with a unique perfect equilibrium outcome. It is also the case
that every persistent retract (Kalai and Samet, 1984) contains a stable set (Mertens, 1992).18

4.2 Some Applications of Strategic Stability to Industrial Organization

In applications, it is more tractable to characterize the set of stable outcomes by taking
advantage of their properties. For example, Govindan (1995) shows that the Kreps and Wilson
(1982b) version of the chain store game has a unique stable outcome. Kreps and Wilson
resolve the chain store paradox, introducing incomplete information so that potential entrants

16 See Govindan and Mertens (2004) for an equivalent definition of stability.
17 Mertens’ original definition is in terms of homological essentiality. A map is essential in (co)homology if the

induced map between the corresponding (co)homology groups is different from zero. There are different versions of
this definition that depend on the coefficient module used to construct the (co)homology groups, which, therefore,
lead to different solution concepts. For the purposes of this chapter, these differences are unimportant. The reader can
find an accessible introduction to algebraic topology in Hatcher (2002).

18 A retract is a set � := ∏
i∈N �i such that �i ⊂ �i is non-empty, closed and convex set of mixed strategies.

A persistent retract is a minimal retract � such that every strategy profile sufficiently close to � has a best response
in �. Myerson and Weibull (2015) define related concepts called coarsely tenable block and finely tenable block.
These concepts are used to define settled equilibria.
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do not know if they are facing a strong monopolist who would not pay any short-term costs
to deter entry or a weak monopolist whose short-term incentives dictate that she should
acquiesce to entry. The paradox is resolved because, unlike in the perfect information case,
the (weak) monopolist does not acquiesce at every stage but fights entry in early stages to
build a reputation for being strong only to acquiesce in the last stages. However, there are
also other “nonsensical” sequential equilibria that Kreps and Wilson eliminate by assuming
that entrants’ beliefs are such, at every stage, that they believe that a fight was more likely to
have come from the strong monopolist. Even if such an assumption is intuitively appealing
it is also rather ad hoc. Govindan (1995) shows that the outcome induced by the Kreps and
Wilson (1982b) solution (henceforth K-W solution) is induced by the unique stable outcome
of the game. We quickly summarize the game and the relevant arguments.

Thus, consider the following T-stage game. In each stage, a different potential entrant
decides whether entering a market currently served by a monopolist or staying out. If she
enters then the monopolist chooses between fighting (F) or acquiescing (A). The payoffs to
the entrant are 0 if she stays out, 0 < b < 1 if she enters and the monopolist acquiesces,
and b − 1 if she enters and the monopolist fights. The monopolist can be of two types. With
probability p she is strong and with probability 1 − p she is weak. Whatever her type, the
monopolist receives a > 1 if the entrant stays out. If the potential entrant enters the market
then the weak monopolist obtains a payoff of −1 if she fights and 0 if she acquiesces. In turn,
the strong monopolists receives, respectively, payoffs equal to 0 and −1. The monopolist’s
payoff is the payoff accumulated in all the stages.

We index time backwards so that the first entrant is Entrant T and the last entrant is Entrant
1. In the K-W solution, Strong always fights entry. Weak fights entry with positive probability
unless she acquiesced in the past, in which case her type is revealed, every remaining entrant
enters and Weak acquiesces at every stage. At stage t 
= 1, if Entrant t’s posterior probability
pt that she is facing Strong satisfies pt ≥ bt−1 then Weak fights entry with probability 1,
otherwise she fights with probability ((1 − bt−1)pt)/((1 − pt)bt−1) so that Entrant t − 1 is
indifferent between entering or not. At stage t = 1 Weak acquiesces. Entrant t’s posterior
probability pt is either p if t = T or if Weak always fought with probability 1 in the past, 0
if Weak acquiesced sometime in the past, or bt if Weak mixed in the previous stage and the
current history terminates with a fight. Therefore, Entrant t stays out if pt > bt and enters if
pt < bt. If pt = bt then Entrant t stays out with probability 1/a (so that Weak is indifferent
between fighting and acquiescing at t + 1).

Govindan (1995) shows that the outcome generated by the K-W solution is the unique
stable outcome. The reader is referred to the original paper for details but, vaguely speaking,
the argument is as follows:

1. In a perfect equilibrium, given a history h, if Strong acquiesces with positive probability
then Weak acquiesces with probability one after some history h′ of fights and outs that
follows h and before the last stage. Otherwise, Weak would be better off by acquiescing
after h and then mimicking strong.

2. If σ is a perfect equilibrium such that Strong always fights with positive probability then
σ induces the K-W outcome. This is shown by induction assuming that if from t onwards
σ induces the K-W outcome then from t + 1 onwards σ also induces the K-W outcome.

3. Consider the perturbed game where Strong always fights and Weak always acquiesces
with at least probability η, while each entrant enters and stays out with at least probability
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δ. Since Strong always fights with small positive probability, in an equilibrium of the
perturbed game, Weak also fights with positive probability not to reveal her type. But
then, by (1), Strong never acquiesces with positive probability. By (2), an equilibrium of
this perturbed game must be close to a perfect equilibrium that induces the K-W outcome.

4. The subset of perfect equilibria that generates the K-W outcome is disconnected from the
subset of perfect equilibria that do not.

5. Since stable sets are connected sets of perfect equilibria the unique stable outcome of the
game is the K-W outcome.

Govindan (1995) also shows that KM-stability does not suffice to eliminate other sequential
equilibrium outcomes. But sometimes it is enough to show that a candidate equilibrium set
does not even satisfy KM-stability. Indeed, Glazer and Weiss (1990) study a two-player two-
period model where players (firms) play the prisoner’s dilemma in the first stage (firms choose
either high or low prices and the payoffs capture price competition where the dominant
strategy is to undercut the competition) followed by a coordination game (where firms choose
either complementary advertising, giving them both a high payoff, or negative advertising,
giving them both a lower payoff). They show how no stable set contains the collusive outcome
where firms choose high prices and then engage in cooperative advertising, nor the outcome
where we observe two different prices.

Even if the details of the payoffs matter, we can informally argue why the collusive
outcome is not part of a stable set. The collusive outcome relies on playing the Pareto-
dominant equilibrium in the second stage if both players collaborate in the first stage, and
playing the Pareto-dominated equilibrium in the second stage if a player deviated in the first
stage. However, charging a lower price in the first stage and then participating in one’s own
punishment in the second stage is a strategy that, by the choice of payoffs, is dominated by
the equilibrium outcome and, correspondingly, is played with minimum probability at any
ε-perfect equilibrium close to a perfect equilibrium generating the collusive outcome. Thus,
the collusive outcome is not a stable outcome.

Analogous forward-induction arguments are explored by Kohlberg (1990), Van Damme
(1989) and Osborne (1990). This method of identifying stable outcomes is also used in some
political economy models (De Sinopoli, 2000; De Sinopoli, Dutta, and Laslier, 2006). We
analyze yet another example at the end of Section 6.

5 BACKWARD INDUCTION

In a sequential equilibrium, behavior off the equilibrium path disciplines behavior on the
equilibrium path. Reny (1992) argues that if a player happens to deviate from the equilibrium
path then this is evidence that his behavior was indeed not disciplined by the strategy profile
and that he either holds different beliefs about how the others are going to play after a
deviation or that, maybe, she is not rational at all. Hence, Reny argues that we may not insist
on a player’s optimizing behavior after she has deviated and weakens sequential equilibrium
as follows:

Definition 13 (Weakly sequential equilibrium) The behavior strategy profile b is a weakly
sequential equilibrium if there is a system of beliefs μ consistent with b such that, for each
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player i, every information set h that bi does not exclude, and every choice c ∈ Ci(h) we have
bih(c) > 0 only if there exists an optimal (givenμ) continuation strategy that prescribes c at h.

Reny proves that every perfect equilibrium induces a weakly sequential equilibrium. The
opposite is not true. However, if in Definition 13 instead of requiring optimality at the limit
against the system of beliefs μ we require optimality along the sequence of completely
mixed strategies supporting μ then we obtain a concept that we may call weakly quasi-
perfect equilibrium (cf. Definition 4). And every quasi-perfect equilibrium induces a perfect
equilibrium.

To illustrate Definition 13 and how it fits within the context of stable sets consider the game
of Figure 9.11 (this is Figure 3 in Reny, 1992). The unique stable set coincides with the set of
perfect equilibria, that is, the continuum from the unique backward induction solution (T, L)
to (T, C). Of course, every point in this continuum corresponds to a weakly quasi-perfect
equilibrium of the extensive from. We can interpret them as the set of equilibria such that the
equilibrium that is actually in place changes continuously with player 2’s beliefs about player
1’s intentions in her second information set, which could conform with backward induction
(in which case player 2’s strategy should be L) or not (so that C starts looking like a viable
option). In other words, our analysis of the game implies that player 1, if rational, would play
T. But then, this means that a self-enforcing norm of behavior has to be somewhat imprecise
about how players would behave if player 1 did not play T as, if that happened, there is no
argument based purely on rationality in the game that can delineate behavior. (Hillas and
Kohlberg, 2002, p. 1624, make a similar point.) Moreover, a version of this argument can
be generalized to generic extensive-form games given that they have finitely many sequential
equilibrium outcomes. This, in turn, implies that different equilibria in the same stable set
only differ off the equilibrium path.

To conclude this section, we note that Hillas (1990) lists different variants of backward
induction. One of them coincides with the concept that we have used (a solution must include
a proper equilibrium). Another one is a subgame consistency property of a solution concept,
meaning that a solution of the game, when projected onto a subgame, contains a solution of the
subgame. This property could be conceived as a basis of an algorithm procedure to compute
a solution of a game from the solutions of its subgames. Govindan (1996) shows that stable
sets satisfy this property, i.e., for any stable set of (the reduced normal form of) an extensive-
from game contains a stable set of (the reduced normal form of) any of its subgames.19

T

2,0

1

L

0,1

2

BM

1,0

1

R

3,0

C

0,2

2

L C R
T 2,0 2,0 2,0
M 0,1 1,0 1,0
B 0,1 0,2 3,0

Figure 9.11 The unique stable set is the set of perfect equilibria

19 Brandenburger and Friedenberg (2011) propose a related concept of backward induction. Fix a solution
concept. A given solution defines a collection of choices that are “disallowed” by the solution because, at every
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6 FORWARD INDUCTION

The principle of independence of irrelevant alternatives and the derived concept of forward
induction that were introduced in Section 3 are self-referential, e.g., a stable set contains a
stable set of the game obtained by deleting a strategy that is played with probability less than ε
in every ε-perfect equilibrium close to the stable set. In this section, we revise some definitions
of forward induction that have been proposed to determine whether or not a strategy or a set
of strategies conform with forward induction.

Consider again Figure 9.4 and the quasi-perfect equilibrium strategy (Out, B, R). In this
strategy profile, player 1 selects Out because, if she chooses otherwise, the subgame is
played according to (B, R). This behavior strategy corresponds to (Out, R) in the normal-form
representation on the right-hand side. We can ask what would player 2 do if she was given the
opportunity to move (in the extensive-form representation) or if her strategy choice mattered
(in the normal-form representation). The answer depends on how likely player 2 thinks player
1’s choice of B is relative to T.

Forward induction is the principle that prescribes players to maintain the assumption that
their opponents chose their strategies rationally as long as that assumption is justifiable. In an
extensive-form game this implies that, given an equilibrium strategy profile, players moving
at information sets that are not supposed to be reached should, whenever possible, make sense
of those deviations as being part of a rational pattern of behavior. In practical terms, this
should be reflected in the beliefs held at those zero probability information sets and on its
consequences on optimizing behavior. Under such a principle, if (Out, R) is proposed as a
way of playing the game in Figure 9.4 and if player 2 is confronted with the unexpected
event that she has to move then she would have to assume that player 1 chose rationally. That
translates into discarding the possibility that player 1 chose B as it is a strictly dominated
strategy. Strategy T, on the other hand, is a perfectly rational choice if player 1 expects player
2 to understand that she deviated to T and not to B. Hence, (Out, R) violates forward induction
because player 2’s strategy R is only justified by assuming that player 1 took an irrational
deviation while a rational one was available. The only quasi-perfect equilibrium that survives
this argument in this game is (T, L).

While it is clear what forward induction entails in a game like the one in Figure 9.4,
capturing the idea through an operational definition is more complex. Cho and Kreps (1987)
focus on signaling games and propose the intuitive criterion. A sequential equilibrium
satisfies the intuitive criterion if the receiver’s belief after a non-equilibrium message assigns
probability zero to those types who prefer the equilibrium outcome to any outcome that
follows after her sending that message. (If no sender can benefit from sending that message
then they can take any value.) Banks and Sobel (1987) propose the D1 (and the D2) criterion.
Suppose that a type t1 of sender would obtain a utility above her equilibrium utility if after
sending a non-equilibrium message m the receiver responds with some action in some set C.
If there is another type t2 of sender (a set of types T not including t1) and a strict superset C′
of C such that for any choice in c ∈ C′ type t2 (some type in T) prefers the outcome where

point of the solution, they are either taken with probability zero or belong to an information set that is never reached.
A solution concept satisfies Brandenburger and Friedenberg’s definition of backward induction if, for any solution of
an extensive-form game and any subgame, the induced set of outcomes coincides with the set of outcomes induced
by a solution of the reduced game obtained after eliminating the choices disallowed by some solution of the subgame.
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she sends message m and the receiver responds with c to the equilibrium outcome then the
D1 (the D2) criterion dictates that the receiver’s beliefs assign probability zero to type t1 after
message m. An iterative application of these criteria leads to divinity and universal divinity
(Banks and Sobel, 1987).

Govindan and Wilson (2009) provide a general definition of forward induction for
extensive-form games with perfect recall consistent with the idea of assigning probability
zero to those strategy profiles that do not satisfy a rationality requirement. In their definition,
forward induction is a property of an equilibrium outcome and not of a strategy profile. A
pure strategy si of player i is relevant for outcome ζ ∈ �(Z) if there is a weakly sequential
equilibrium b (see Definition 13) inducing ζ such that si induces an optimal continuation
strategy against the beliefs consistent with b at every information set that si does not exclude.
Therefore, to find player i’s pure strategies that are relevant for ζ one has to find every weakly
sequential equilibrium inducing ζ and, for each of them, the strategies si that prescribe an
optimal continuation at every information set not ruled out by si. Because si is an optimal
response against some weakly sequential equilibrium, player i must be indifferent between ζ
and the induced outcome if she deviated to si. A player’s set of strategies that are relevant for
an outcome are to be understood as those strategies that satisfy the rationality requirement
mentioned above. Now, an information set is relevant for an outcome if it is not ruled out by
every strategy profile that is relevant for that outcome. Govindan and Wilson’s forward induc-
tion imposes restrictions on beliefs at those information sets that are relevant for an outcome:

Definition 14 (GW-forward induction) An outcome satisfies forward induction if it is
induced by a weakly sequential equilibrium in which, at every information set that is relevant
for that outcome, the support of the belief of the corresponding player assigns probability zero
to those strategy profiles that are not relevant for that outcome.

Govindan and Wilson (2009) show that this concept implies the intuitive criterion, D1, and
D2. But a more a remarkable result is that, for a generic assignment of payoffs to ending nodes
of a two-player extensive form, an invariant sequential equilibrium outcome satisfies forward
induction. This result was suggested by Hillas, (1998a) and Hillas and Kohlberg, (2002).
For an illustration, see the analysis of Figures 9.5 and 9.6. To describe what an invariant
sequential equilibrium outcome is, note that given an outcome ζ ∈ �(Z) there is a set of
strategy profiles that induce ζ . Each of those strategy profiles can be replicated by a strategy
profile of the reduced normal form. Hence, we can find the set of strategies of the reduced
normal form that induce ζ . Say that two extensive-form games �1 and �2 are equivalent if
they have the same reduced normal form. Furthermore, if �1 and �2 are equivalent games with
normal-form representation G, we say that outcome ζ1 of game �1 is equivalent to outcome
ζ2 of game �2 if ζ1 and ζ2 are induced by the same set of strategies of G. Govindan and
Wilson (2009) show that, for a given outcome of a generic extensive-form games, if every
equivalent game has an equivalent sequential equilibrium outcome then such an outcome
satisfies Definition 14.

Being a property of an element of �(Z), GW-forward induction is likely to depend on the
details of the extensive-form representation. That is, two extensive-form games representing
the same strategic interaction may have different sets of final nodes. The game in Figure 9.12
is another representation of the game in Figure 9.4. And, in this representation, the outcome
induced by the profile (Out, R) satisfies forward induction. Man (2012) argues that forward
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Figure 9.12 (Out, R) satisfies GW-forward induction

induction should not depend on the extensive-form representation. Govindan and Wilson
(2009, Appendix B) offer such a definition of forward induction that only depend on the
reduced normal form. However, we follow the variant of the definition suggested by Man
(2012). That is, we strengthen weakly sequential equilibria to weakly quasi-perfect equilibria
and provide a definition of forward induction based on perfect equilibria (see page 251).

Consider a reduced normal form and a function mapping pure strategy profiles to a finite
set of alternatives � where players have their preferences defined. For instance, if it is the
reduced normal form of an extensive-form game where each ending node leads to a different
alternative then � = Z. Consider a perfect equilibrium σ inducing a probability distribution
ζ on �. The set of all probability distributions on � induced by perfect equilibria has finitely
many connected components. Let P(ζ ) be the component that contains ζ and let PE(ζ ) be the
set of perfect equilibria that induces a probability distribution in P(ζ ).

A pure strategy si ∈ Si of player i is (first-order) relevant for PE(ζ ) if there exists a sequence
of ε-perfect equilibria {σ t} converging to a perfect equilibrium in PE(ζ ) such that for every
player i ∈ N and every s′

i ∈ Si

ui(σ
t
−i, si) ≥ ui(σ

t
−i, s′

i).

Thus, this is analogous to the previous definition of relevant strategy, but adapted for perfect
equilibrium. The next step is to consider relevant strategies as infinitely more likely than
strategies that are not relevant. If, under such a condition, a perfect equilibrium inducing ζ
can be sustained then it satisfies (first-order) forward induction:

Definition 15 A perfect equilibrium σ inducing outcome ζ satisfies (first-order) forward
induction if there exists a sequence of ε-perfect equilibria {σ t} converging to σ such that
for all players i ∈ N and any two si, s′

i ∈ Si, if si is (first-order) relevant for PE(ζ ) and s′
i is

not then

lim
t→∞

σi(s′
i)

σi(si)
= 0. (9.2)

Man (2012) provides an example where a first-order relevant strategy is never a best response
against a forward induction equilibrium in PE(ζ ). Hence, there is room for an iterative
definition. Call a strategy second-order relevant for PE(ζ ) if it is a best response to a sequence
of ε-perfect equilibria satisfying (9.2) and converging to a, consequently, first-order forward
induction equilibrium in PE(ζ ). Then a perfect equilibrium inducing outcome ζ satisfies
second-order forward induction if it is the limit point of a sequence of ε-perfect equilibria
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where second-order relevant strategies for PE(ζ ) are infinitely more likely than first-order
relevant strategies for PE(ζ ), and first-order relevant strategies for PE(ζ ) are infinitely more
likely than strategies that are not first-order relevant for PE(ζ ). Continuing in this fashion we
may say that a perfect equilibrium σ inducing outcome ζ is a forward induction equilibrium
if it survives this iterative process.

In signaling games, this version of forward induction implies the intuitive criterion, D1,
and D2. Furthermore, Man (2012) also shows that every KM-stable set contained in a single
connected component of equilibria contains a forward induction equilibrium. Thus, it is also
the case that every Mertens stable set has a forward induction equilibrium as defined by Man
(2012).

6.1 An Example

We present an example with an equilibrium that (vaguely) satisfies the definitions of forward
induction of the previous section. However, the forward induction property of stable sets
eliminates such an equilibrium. As we can see, we need some form of collective forward
induction argument to reject the equilibrium.

Consider the extensive-form game � depicted in Figure 9.13. The strategy profile σ =
(Out, Ns, Lr) is a perfect and a proper equilibrium. The outcome (3, 3, 3) is induced, e.g., by
a sequential equilibrium in which player 3’s beliefs are such that (W, N) is infinitely more
likely than (E, n) and (E, s) is infinitely more likely than (W, S). Player 1’s strategies W and E
are irrelevant for that outcome, indeed, they are never a best response against any sequential
equilibrium generating a payoff vector close to (3, 3, 3). If, say, W was optimal against a
sequential equilibrium generating a playoff for player 1 close to 3, then player 3 must be
playing l with probability close to 3/4. But if that is the case, player 2’s unique sequentially
rational best response is to play S after W and n after E. Additionally, for player 3 to be mixing
and playing l with probability close to 3/4 it must be the case that she believes that (W, S)
and (E, s) are equally likely. These two last facts together with belief consistency imply that
player 3 must put probability 1 on the profile (E, n) at her top information set and play R there.
Hence, player 1 would be playing E and obtaining a payoff of 4.

This argument implies that the two information sets of player 3 are not relevant for the
outcome (3, 3, 3) and that forward induction as defined by either Govindan and Wilson (2009)

EW I

Out

3,3,3

N

II

S

n

II

s

III

III

R

0,0,0

L

0,2,2

x1

R

4,4,2

L

0,1,0

x2

r

0,1,0

l

4,4,2

x3

r

0,2,2

l

0,0,0

x4

Figure 9.13 The unique stable outcome is ‘4,4,2’
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or Man (2012) does not have a bite in this game. However, it seems that a typical forward
induction argument is possible and that, under an equilibrium generating a payoff vector
(3, 3, 3) player 3 can only make sense of having to move, say, at her top information set if
by concluding that players 1 and 2 played according to (E, n). As a matter of fact, the unique
Mertens stable set of this game generates outcome (4, 4, 2) and one sees that there is no stable
set with payoffs (3, 3, 3) by noticing that such a stable set would not contain a stable set of
the game obtained by eliminating either W or E, i.e., it would violate the forward induction
property of stable sets.

7 THE AXIOMATIC APPROACH

Stable sets (Mertens, 1989) satisfy desirable rationality requirements (admissibility, backward
induction, forward induction, and iterated deletion of dominated strategies) as well as the most
exhaustive list of invariance properties. The definition imposes conditions on how the graph
of the Nash equilibrium correspondence of perturbed games must look close to the stable set
of the game. We can ask whether this definition imposes more than what is warranted by the
properties. One way to address this question is treating some desirable equilibrium properties
as axioms and then looking on how those axioms shape the collection of equilibrium concepts
that satisfy them. A complete axiomatic approach to strategic stability would identify what
is implied by game-theoretical axioms, and whether there are any unintended consequences
in the definition of stability.20 We do not currently have such a complete theory available but
only some partial contributions.

Even if the approach is not truly axiomatic, Govindan and Wilson (2008a) define metasta-
bility motivated by the following two axioms:

● Invariance to embedding: It is a combination of immunity to the addition of redundant
strategies and the small worlds axiom. A game G can be trivially embedded in a larger
game G̃ with a larger player set and larger strategy space in a way that the extra features
in G̃ do not affect the strategic interaction as represented by G. Embedding requires that
each selected set of equilibria of G is the projection of a selected set of equilibria of any
larger game G̃ in which G is embedded.

● Continuity: A game whose best-response correspondence is nearby (as in the robustness
condition of BR-sets; see Definition 9) must have a Nash equilibrium close to the
selected set.

Taking into account these two axioms we can define an equilibrium concept as follows:

Definition 16 A connected set of the equilibria T of a game G is metastable if and only if
every neighborhood of T contains the projection (into the set of strategy profiles of G) of a

20 Balkenborg and Vermeulen (2015) study “diversity games” where players have to avoid choosing the same
strategy. If they do they all get a payoff equal to 1, otherwise they all get a payoff equal to 0. All pure strategy
equilibria of this game belong to the same component. Balkenborg and Vermeulen (2015) show that if every player
has two strategies then such a component is a stable set if and only if the number of players is even. (If the number of
players is odd the component does not even contain a BR-stable set.) While this alternating behavior seems counter
intuitive, it may be related to backward induction and the small worlds axiom (see Balkenborg and Vermeulen, 2015,
Footnote 21).
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fixed point of every sufficiently small perturbation of the best-reply correspondence of any
larger game G̃ in which G is embedded.

Govindan and Wilson (2008a) show that this definition is equivalent to a definition of the same
type as those definitions in Section 4. They have to satisfy a connectedness condition and an
essentiality condition. The latter condition is somewhere in between homotopic essentiality
and cohomologic essentiality: not only must the projection mapping be essential in homotopy,
but must remain essential when the domain and range are expanded to take into account the
larger games in which the game of interest can be embedded. A metastable set satisfies all
the properties of stable sets but with only two differences in the small worlds axiom and
composition property (cf. properties 1 and 2 in page 247):

1. The projection of a metastable set of the game obtained by trivially increasing the set of
players contains a metastable set.

2. Given two independent games G and G′ and a metastable set T of G, there exists a
metastable set T ′ of G′ such that T × T ′ is a metastable set of the game G × G′.

A truly axiomatic approach is taken by Govindan and Wilson (2012). They strengthen the
meaning of invariance to embedding and combine it with the admissibility and backward
induction axioms. The meaning of admissibility is the usual: backward induction is taken
to mean that a selected set of equilibria must contain a quasi-perfect equilibrium. The
strengthened version of invariance to embedding has the small worlds axiom and immunity
to the addition of redundant strategies as special cases. In particular, embedding a game in a
larger game may introduce new players whose strategy choice may change the redundant pure
strategies that the original players have available. Invariance to embedding requires that each
solution of a game is the image of a solution of a bigger game in which the game is embedded.
Formally, let G have player set N and each i ∈ N a set of mixed strategies �i. We embed G
into a larger game G̃ with player set N ∪ No, where each player i ∈ N has mixed strategy set
�̃i, and where the set of mixed strategy profiles of players in No is �̃o. Such an embedding
is represented by means of a family of fi : �̃i × �̃o → �i satisfying some conditions that
guarantee that the extra features in G̃ do not affect the strategic interaction of players in N.
Then, invariance to embedding implies that the solutions of G are the images under f = (fi)i∈N

of the solutions in G̃.
Govindan and Wilson (2012) show that robustness to strategy perturbations can be

substituted by invariance to embedding in larger games. Based on this, they prove that, in
generic two-player extensive-form games, any equilibrium concept that satisfies admissibility,
backward induction and invariance to embedding must select Mertens’ stable sets. Hence, in
this class of games, stability is implied purely by decision-theoretic criteria rather than by
properties inherited from perturbed games.
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10. Stackelberg games∗
Ludovic A. Julien

1 INTRODUCTION

The Stackelberg market structure portrays a landscape where strategic interactions fall
within hierarchical competition. Stackelberg’s book Marktform und Gleichgewicht (1934)
is probably alongside Cournot’s monograph (1838) one of the most creative and innovative
books devoted to the functioning of markets under strategic interactions. The noncooperative
duopoly model was developed widely, leading to many game-theoretic models. As an
extension of the simultaneous move games, it was notably at the origin of some refinement
for the Nash equilibrium concept, namely the subgame perfect Nash equilibrium (Selten,
1975). It also contributed to operation research insofar as some algorithms were developed
to determine strategic sequential equilibria (Murphy, Sherali, and Soyster, 1983). Finally,
it applied in many areas of economics like industrial organization (Carlton and Perloff,
2004), international economics (Brander and Spencer, 1983), and macroeconomics (Kydland
and Prescott, 1977). In this chapter devoted to Stackelberg games, the motivations are
threefold. First, we aim at deepening the logic of Stackelberg competition to capture some
salient features of strategic interactions in hierarchical markets. Second, we study some
extensions and generalizations of the basic Stackelberg duopoly game. Third, we compare
the performance of the Stackelberg market structure(s) with the performance of the Cournot
and the competitive market structures.

The standard Stackelberg model depicts a market in which two strategic firms move
sequentially. By introducing some hierarchy among firms in the Cournot duopoly model,
Stackelberg competition puts forward a second kind of asymmetry. As in the Cournot
duopoly market, there is an asymmetry between the demand side, which embodies a large
number of price-taking consumers, and the supply side, which includes strategic firms whose
behavior is noncooperative. The second asymmetry consists of assuming that strategic firms
do not behave in the same way. Thus, the strategic interactions are cast in a sequential
model of decisions. Indeed, in the basic duopoly model one firm (the leader) moves first
and makes its (her) decision by taking into consideration the reaction of the second-mover
firm (the follower) it (she) perfectly knows. The difference between these two kinds of
strategic behavior does not stem primarily from the fundamentals, but is merely linked to
the noncooperative nature of the game itself. A Stackelberg equilibrium is a noncooperative
equilibrium of a two-stage game with complete and perfect information in which the players
are the firms, the strategies are their supply decisions, and the payoffs are their profit
functions. Therefore, a Stackelberg equilibrium constitutes a pure strategy subgame perfect

∗ Some parts of this chapter have been presented in seminars held at the University of Udine and at the University
of Paris West-Nanterre between the years 2013 and 2015. I am grateful to Giulio Codognato, Stefano Comino, Alex
Dickson, Clara Grazziano, Marco Marini, Louis de Mesnard, Fabrice Tricou, and Simone Tonin for their helpful
comments, remarks and suggestions.
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262 Handbook of game theory and industrial organization: theory

Nash equilibrium of the two-stage game (Fudenberg and Tirole, 1990). In this chapter, we
explore the logic of Stackelberg competition, and we consider a framework, which enables us
to widen and generalize the basic game.

This chapter devoted to Stackelberg games does not aspire to exhaustiveness. It rather
aims at focusing on the main properties of deterministic and static quantity-setting games,
which feature capacity competition in time.1 It also aims at exploring some of their possible
(new) extensions that would be of interest for industrial organization. To this end, we focus
on Stackelberg games with (one) homogeneous product(s). In addition, we consider games
with complete and perfect information. The reasons are twofold. First, we start from a
basic model general enough to allow simple extensions and generalizations. Second, the
equilibrium properties of these games do not depend upon special functional forms assumed
for costs and market demand. Our starting point is the duopoly model we progressively enrich.
Then, we consider strategic interactions between several leaders and followers. Finally, we
study a two-commodity multiple leader–follower bilateral market game. This transposition
notably tests the limits of some results that hold in industry games. Games with differentiated
products are dealt with in Appendix A for comparison. For each game, we discuss the
main assumptions, define the corresponding market equilibrium concept, and characterize
the optimality conditions. Then, we focus on market power and on the welfare implications of
imperfectly competitive behavior. More specifically, we provide welfare comparisons between
the various Stackelberg equilibria; and, for each Stackelberg equilibrium concept, we study its
relationship with the Cournot and the competitive equilibria. The endogenization of the order
of moves, mergers and free entry are also dealt with.

The remainder of this chapter is organized as follows. Section 2 studies the basic Stack-
elberg duopoly game. Section 3 deals with the multiple leader–follower game. Section 4 is
devoted to the bilateral oligopoly multiple leader–follower market game. Section 5 concludes.
Appendices A and B complete the story.

2 THE BASIC LEADER–FOLLOWER GAME

The basic static and deterministic leader–follower quantity game is a natural starting point
from which to study some critical features of Stackelberg competition. First, we describe
the duopoly model. Second, we study the Stackelberg duopoly equilibrium (SDE thereafter).
Third, we consider the market power and the welfare properties of the SDE. To this end,
we compare the SDE with the Cournot duopoly equilibrium (CDE) and with the competitive
equilibrium (CE). Fourth, as the timing of moves is given we consider the endogenization of
the order of moves. Fifth, we study free entry, and notably the convergence of the extended
SDE to the CE.

1 Indeed, the price-setting models may generate dual results. For instance, in the basic duopoly price leadership
game with linear demand and identical quadratic costs, the follower behaves as a price taker and achieves higher
payoffs than the leader. In addition, in the symmetric duopoly price leadership game with differentiated products,
the leader sets a higher price than the follower whether the goods are substitutes or complements; and, the leader
achieves lower (higher) payoffs than the follower when the goods are substitutes (complements). See Appendix A.
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Stackelberg games 263

2.1 The Model

Consider a market with one single divisible homogeneous product. There are two risk-neutral
firms, namely L (the leader) and F (the follower) who compete strategically on quantities.
Firm L (resp. F) produces xL (resp. xF) units of the good. Each firm bears some costs. Let
CL : R+ → R+, with xL → CL(xL) be the total cost function of the leader. Similarly,
we define CF : R+ → R+, with xF → CF(xF). We assume the costs functions are
twice-continuously differentiable, increasing and convex. Both firms face a large number of
consumers who behave as price takers. Thus, there is a continuous and decreasing market
demand function, namely D(p), where p is the unit price of the good expressed in a numéraire.
Indeed, let X �−→ p (X ) = D−1(X ) be the market inverse demand function. This inverse
demand represents the maximum price the consumers are willing to pay to buy the quantity
X as well as the minimum price the firms are willing to charge to sell the corresponding
production X. There is a market-clearing condition that stipulates that the demand balances
the aggregate supply X, with X ≡ xL+xF . We assume the price function is twice-continuously

differentiable and decreasing. In addition, it satisfies dp (X )
dX + kx d2p (X )

(dX)2
� 0, where k > 0.

This assumption says that marginal revenue for any single firm is a decreasing function of
total industry output.2

The profit functions πL(.) and πF(.) may be written:

πL(xL, xF) = p (X )xL − CL(xL) (10.1)

πF(xL, xF) = p (X )xF − CF(xF). (10.2)

Let us notice that, under the assumptions made, (10.2) is strictly concave in xF . The strict
concavity of (10.1) is studied in subsection 2.2.

We associate now a noncooperative game �. The players are the firms, the strategies are
their supply decisions, and the payoffs are their profits. Let SL = [0, ∞) be the strategy set
of the leader, where the supply xL represents the pure strategy of the leader. Correspondingly,
let SF = [0, ∞),where xF is the pure strategy of the follower. A strategy profile will be
represented by the vector (xL, xF). This sequential game displays two stages of decision and
no discounting. We also assume that the timing of positions is given. First, the leader chooses
a quantity to sell, and then the follower determines his supply on the residual demand. The
leader cannot revise her decision: her supply is irreversible. In addition, firms meet once
and cannot make binding agreements. Finally, information is assumed to be complete and
perfect. It notably implies that the leader has perfect knowledge of the follower’s reactions.
It also implies that, for the follower, each information set is a single decision node. In
addition, in each decision node, the follower makes an optimal choice, so sequential rationality

2 This formulation deserves two comments. First, we do not impose d2p (X )
(dX)2

� 0, so our assumption does not
preclude (strictly) convex market demand functions. But it precludes (strong) strategic complementarities. Second,
our formulation of the decreasing marginal revenue hypothesis embodies some positive parameter, namely k. For any
follower firm, we have k = 1, as in the Cournot model (Hahn, 1962, Okugushi, 1976). Let us notice, however, that for
any leader firm, the parameter k may be different from unity unless the leader behaves as a follower. This formulation
puts forward an important feature of Stackelberg competition, which explicitly takes into account the leader’s beliefs.
Indeed, the leader has perfect information regarding the optimal reaction of the follower to a change in the leader’s
strategy (see notably Julien, 2011).

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

264 Handbook of game theory and industrial organization: theory

prevails. As sequential rationality is common knowledge, the game � is solved by backward
induction, considering first the optimal strategic reactive decision of the follower, and then the
equilibrium strategic choice of the leader.

2.2 Stackelberg Duopoly Equilibrium

First, given any feasible strategy profile xL, firm F determines its optimal decision as a
mapping that depends upon the leader’s strategy. Let ϕ : SL → SF , with xL �→ ϕ(xL) the
follower’s best response, which is the solution to:

ϕ(xL) ∈ arg max πF(xL, xF), ∀xL ∈ SL. (10.3)

The first-order sufficient condition, which is given by ∂πF
∂xF

= 0, may be written:

p (X )+ xF
dp (X )

dX
− dCF(xF)

dxF
= 0. (10.4)

Expression (10.4) is the standard optimality condition for a firm that behaves á la Cournot.
By the strict concavity of the profit function (10.1), the reaction function ϕ(xL), solution to
(10.3), is unique. We can deduce:

∂ϕ(xL)

∂xL
= −

∂2πF
∂xF∂xL

∂2πF
∂(xF)2

= −
dp (X )

dX + xF
d2p (X )
(dX )2

2 dp (X )
dX + xF

d2p (X )
(dX )2

− d2CF(xF)

(dxF)2

. (10.5)

Then ∂ϕ
∂xL

∈ [−1, 0] as dp (X )
dX + xF

d2p (X )
(dX)2

� 0, so the best response is nonincreasing. Thus,
the game displays strategic substitutabilities: the strategies of the follower and the leader are

substitutes. But, if dp (X )
dX +xF

d2p (X )
(dX)2

> 0, then the game exhibits strategic complementarities:
the best response is upward sloping. It may happen when the demand function is not linear
and/or with nonconvex costs functions (see Amir and Grilo, 1999, Vives, 1999).

In the first stage, the leader knows, via the effective demand that is addressed to her, i.e.,
p (xL + ϕ(xL)), how the market price is affected by the follower’s reaction. Therefore, the
leader solves:

xL ∈ arg max πL(xL, ϕ(xL)). (10.6)

The first-order condition ∂πL
∂xL

= 0 may be written:

p (X)+ (1 + ν)xL
dp (X )

dX
− dCL(xL)

dxL
= 0. (10.7)

This expression is rather different from (10.4) as it includes the term ν, where ν = ∂ϕ(xL)
∂xL

,
with ν ∈ [−1, 0]. It represents the reaction of the follower to the leader’s strategy, that
is, the slope of the best response evaluated in equilibrium. Indeed, if ν = −1, then
p (X) = dC(xL)

dxL
(which can also be deduced from (10.5)): the leader and his follower behave as
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Stackelberg games 265

price-takers. The leader expects its rival to compensate exactly any expansion or reduction to
its own supply, leaving the market price unchanged (see Dixit, 1986, Jeffrey, Karp, and Perloff,
2007). If ν = 0, i.e., the leader makes no expectation regarding the slope of the best response,
which means that firm L behaves as a Cournot competitor, i.e., p (X)+xL

dp (X )
dX − dCL(xL)

dxL
= 0.3

Otherwise, if ν ∈ (−1, 0), then firm L behaves as a leader. The second-order sufficient
condition, i.e., ∂2πL

(∂xL)2
< 0, with k = 1 + ν, may be written:

k

(
kxL

d2p (X )

(dX)2
+ 2

dp (X )

dX

)
− d2CL(xL)

(dxL)2
< 0. (10.8)

This inequality is true as dp (X )
dX + kxL

d2p (X )
(dX)2

� 0. Equation (10.7) determines the leader’s
equilibrium strategy, namely x̃L, which by using ϕ(xL), yields the follower’s equilibrium
strategy x̃F = ϕ(x̃L). Then, given the strategy profile (x̃F , x̃L), we deduce the market price p̃.
The payoffs (π̃L, π̃F) follow from (10.1)–(10.2).

We now provide a formal definition of a Stackelberg duopoly equilibrium (SDE):

Definition 1 (SDE) A Stackelberg duopoly equilibrium of � is given by a strategy profile
(x̃L, x̃F) ∈ SL × SF such that:

a. πF (x̃L, x̃F) � πF (x̃L, xF), ∀xF ∈ SF, xF = ϕ(xL);
b. πL (x̃L, ϕ(x̃L)) � πL (xL, ϕ(xL)), ϕ(xL) ∈ SF and ∀xL ∈ SL.

At an SDE, each firm behaves optimally given its beliefs about its rival, and the firms’ beliefs
are fulfilled for these strategies. An SDE is thus a noncooperative equilibrium of a two-stage
game with complete and perfect information; i.e., a pure strategy subgame perfect Nash
equilibrium of �. It requires the strategies of the leader and of the follower to constitute a
Nash equilibrium of any subgame. Indeed, neither the leader firm nor the follower firm want
to unilaterally deviate from their choice based on their conjectures, and the choices they make
are consistent with these conjectures. In addition, it is a subgame perfect Nash equilibrium
without empty threats: it rules out noncredible threats by the follower. The reason is that
the strategy of the follower is optimal for any supply of the leader. The follower can set
their own supply according to any possible function of the quantity set by the leader, with
the belief that the leader will not counter-react. Similarly, the leader expects the follower
to conform to the decisions given by his best-response function. For the leader, the only
requirement it imposes on her strategy is that it does not generate losses, i.e., any supply
xL within [0, p (0) − cL(xL)] is sustainable as a Nash equilibrium of the two-stage game
with complete and perfect information. Let us notice that the leader’s payoff in a SDE
is always higher than her payoff in the CDE as she knows that her rival behaves as a
Cournot firm.

3 Let us notice that there is no such best response under Cournot competition. No firm can observe the choice of
any other firm since both firms play a simultaneous-move game. For instance, the term “optimal decision mapping”
is more appropriate in this case (see notably Johansen, 1982 and Daughety, 2009). Therefore, the fact that there is
a zero slope conjecture is not inconsistent with the fact that the slope of the optimal decision mapping of any firm
differs from zero since there is no reaction of any firm to possible deviations of the other firm.
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What can be said about existence and uniqueness of an SDE? We know that (10.3) has a
unique solution: the mapping ϕ(xL) is a well-defined function from the strict concavity of
(10.1). Indeed, the objective function (10.1) is a continuous function, and it is defined over
a compact(ified) strategy set. So, the mapping ϕ(xL) exists and is point-valued. In addition,
as the function (10.2) is also strictly concave in xL, the solution to (10.6) is unique and given
by the solution to equation (10.7), that is x̃L. Then, we deduce x̃F = ϕ(x̃L). Existence and
uniqueness of SDE are notably studied by Leitmann (1978) in a nonzero-sum two-player
game, and in Alj, Breton, and Haurie (1988), and by Freiling, Jank, and Lee (2001) within
differential games.

2.3 Market Power and Welfare

We now consider market power, and the welfare implications of strategic interactions. More
specifically, we compare the SDE market outcome with the CDE and the CE ones. Then, we
study the relationships between market concentration and social surplus, and between market
power and payoffs.

2.3.1 The SDE, CDE and CE aggregate market outcomes
Between the two polar sides of market structures, namely monopoly and perfect competi-
tion, there are several oligopoly market structures, among which are the Cournot and the
Stackelberg duopoly competitions. The SDE aggregate market outcome is located somewhere
between the CDE and the CE market outcomes. Proposition 1 compares market outcomes,
and Proposition 2 compares SDE and CDE strategies.

Proposition 1 The SDE aggregate supply (market price) is higher (lower) than the CDE
supply (market price). But the SDE aggregate supply (market price) is lower (higher) than the
CE aggregate supply (market price).

The difference between the SDE and the CDE market outcomes can be explained as follows.
The Cournot market structure features a simultaneous-move game. Therefore, firm L makes its
decision by (correctly) expecting that the supply of firm F is independent of its own decision
(and conversely). On the contrary, the sequential noncooperative game implies that the leader,
who moves first, makes its decision by taking into consideration the reactions of the follower
that the leader perfectly knows: the leader knows the reactions of the follower to a change
of the leader’s strategy, i.e., that the follower behaves as a Cournot firm. Then, the leader
can set a higher supply than the supply corresponding to a Cournot behavior. In addition,
the increment in the leader’s supply more than compensates the decrease of the follower’s
supply when the best response is negatively sloped (above −1), whilst it goes in the same
direction when the best response increases, i.e., when strategies are complements. Therefore,
the aggregate output (market price) is higher (lower) in the SDE than in the CDE either when
strategies are substitutes or when they are complements.

Proposition 2 If ν = 0, then the SDE coincides with the CDE.

Proof Immediate, by comparing (10.7) with (10.4) when ν = 0. �
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Stackelberg games 267

So, when the follower’s best response has a zero slope, the leader rationally expects that
each strategic decision she should undertake would entail no reaction from the follower.
Each firm believes the others behave à la Cournot; thus all firms behave as if they played
a simultaneous move game. This result holds when the market demand is isoelastic (Colombo
and Labrecciosa, 2008).

The preceding propositions have welfare implications, which we now explore.

2.3.2 Market concentration and social surplus
Welfare is measured in numéraire units with the concept of surplus. Let S be the social surplus,
which may be defined as a function of X:

S(X ) :=
∫ X

0
p (z)dz − [CL(sLX)+ CF(sFX)] , with X � X∗, (10.9)

where sL ≡ xL
X and sF ≡ xF

X are the market shares. Differentiating partially with respect to

X and decomposing p (X ) lead to ∂S(X )
∂X = sL[p (X ) − dCL(xL)

dX ] + sF[p (X ) − dCF(xF)
dX ] �

0 for fixed sL and sF , with ∂S(X )
∂X |X=X ∗ = 0. Therefore, the social surplus increases with

the aggregate supply: it is higher at the SDE than at the CDE, and highest at the CE. The
consumer’s surplus is SC(X ) := ∫ X

0 p (z)dz − p (X )X, with ∂SC(X )
∂X = −X dp (X )

dX > 0. In

addition, if we let S�(X ) := p (X )(sL + sF)X − CL(sLX)− CF(sFX), then dS�(X )
dX = p (X )+

X dp (X )
dX − [sL

dCL(sLX)
dX + sF

dCF(sFX)
dX ] < 0 (costs are convex). Let us notice that the surplus of

firm L is higher in the SDE than in the CDE.
The fact that the firm’s aggregate surplus decreases with the aggregate output may be

linked to market concentration. One interesting feature of Stackelberg competition is that
the concentration is higher than under Cournot competition. Consider the Herfindahl index,
which we denote by H, and that is defined as:

H(xL, xF) := (sL)
2 + (sF)

2 =
(

xL

xL + xF

)2

+
(

xF

xL + xF

)2

. (10.10)

In the linear model with identical maginal costs, market concentration is highest at the
SDE. In addition, social surplus (resp. firm’s average profit) and concentration are negatively
(resp. positively) correlated. We now investigate the link between market power and individual
welfare.

2.3.3 Market power and payoffs
We compare the SDE and CDE payoffs. To this end, we write (10.4) and (10.7) as:

p (X) = (1 + κF)
dCF(xF)

dxF
, with κF = 1

1 + 1
ε

sF
− 1 (10.11)

p (X) = (1 + κL)
dCL(xL)

dxL
, with κL = 1

1 + 1+ν
ε

sL
− 1, (10.12)
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where κF and κL represent the markups of the follower and the leader, and ε = dp (X )
dX

p (X )
X

is the price elasticity of market demand. We have κF ∈ [0, 1) and κL ∈ [0, 1), where κF =
κL = 0 (resp. 0 < κF , κL < 1) corresponds to CE (resp. SDE) behavior. Thus, κL � κF when

(1 + ν)sL � sF . To analyze the relation between market power and payoffs, it is instructive to
rewrite (10.11) and (10.12) as:

LF = κF

κF + 1
= −1

ε
sF (10.13)

LL = κL

κL + 1
= −1 + ν

ε
sL, (10.14)

where LF ≡ p (X )− dCF (xF)
dxF

p (X ) and LL ≡ p (X )− dCL(xL)
dxL

p (X ) are the Lerner indexes.

Remark 1 The Lerner index of the leader may be written as LL = − 1
ξ

sL, where ξ is the price
elasticity of the effective demand on the basis of which the leader might behave as if she were
a monopolist.4 Likewise, for the follower, we have LF = − 1

ζ
sL, where ζ is the price elasticity

of the residual demand.

Proposition 3 If LL > LF, then π̃L > π̃F. In addition, assume LL = LF. Then π̃L � π̃F if and

only if ν � 0.

Proof Immediate from (10.13) and (10.14). �

First, when the leader’s cost is lower than the follower’s cost, then the leader has more
market power and achieves higher payoffs. Note the first part of the property does not preclude
the case for which π̃L > π̃F with LL < LF , when dCL(xL)

dxL
>

dCF(xF)
dxF

. But it excludes the case
for which π̃L < π̃F with LL > LF . The following example illustrates this:

Example 1 Let p (X ) = a−bX, a, b > 0, and CL(xL) = (c+θ)xL, θ > 0, and CF(xF) = cxF .

Then, the SDE is given by (x̃L, x̃F) =
(

a−2−2θ
2b , a−c+2θ

4b

)
, p̃ = a+3c−2θ

4 , and (π̃L, π̃F) =(
a−c−2θ

4b

)(
a−c−6θ

2 , a−c−2θ
4

)
. Then, we have π̃L > π̃F whenever θ < a−c

10 but L1 < L2, where

(L1, L2) =
(

a−c−2θ
a+3c−2θ , a−c+2θ

a+3c−2θ

)
as ν = − 1

2 and ε = − a+3c−2θ
3(a−c)−2θ .

Second, when L1 = L2, we have CL(xL) = CF(xF). The leader achieves higher payoffs
only if the best response is decreasing (a result that holds in the case of constant marginal
costs). Indeed, the next example illustrates that the leader may have higher market power than
the follower even if the two Lerner indexes are equal:

4 A leader behaves as a monopolist (on the effective demand) when market demand is linear and firms bear the
same constant marginal costs.
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Example 2 Let p (X ) = a − bX, a, b > 0, CL(xL) = cxL and CF(xF) = cxF , with c < a.

The SDE market shares and market price are given by (s̃L, s̃F) =
(

2
3 , 1

3

)
and p̃ = a+3c

4 . Then,

L̃L = L̃F = a−c
a+3c as ν = − 1

2 and ε = − 1
3

a+3c
a−c . In addition, the inverse of the effective

demand is given by p (X ) = a+c
2 − b

2 x1. Then, L̃L = a−c
a+3c as s̃L = 1 and ξ = − a+3c

a−c . Finally,

the inverse of the residual demand is given by p (X ) − x1 = a+c
2 − bx2. Then, L̃F = a−c

a+3c as

s̃F = 1 and ζ = − a+3c
a−c .

More generally, in case of strategic substituabilities, i.e., ν < 0, the leader can decrease the
supply of the follower by increasing his supply. The leader exploits the fact that the second-
mover behaves with Cournot beliefs (Gal-Or, 1985, Vives, 1999, and Julien, 2011). When
the best response has a zero slope in equilibrium, firm L behaves as a follower and both
firms reach the Cournot payoffs (Colombo and Labrecciosa, 2008). The leader has lower
payoffs than the follower when the best response increases in equilibrium, reflecting strategic
complementarities (Gal-Or, 1985, Dowrick, 1986, Vives, 1999, and Julien, 2011). Recall an
SDE is a subgame perfect equilibrium where empty threats are not allowed. So, when the
follower’s best reply has a positive slope in equilibrium, the leader will be deterred from
raising output by the threat of retaliation from the follower, who can increase his supply. The
next example, based on Amir and Grilo (1999), illustrates a second-mover advantage:

Example 3 Let p (X ) = 1
(X+1)γ , γ > 2 and CL(xL) = CF(xF) = 0. The best response is

given by ϕ(xL) = 1
γ−1 + 1

γ−1 xL, with ν = 1
γ−1 > 0. We get (x̃L, x̃F) = 1

γ−1

(
1, γ
γ−1

)
, p̃ =

(
γ−1
γ

)2γ
, and (π̃L, π̃F) =

(
γ−1
γ

)2γ (
1

γ−1 , γ

(γ−1)2

)
, so π̃L < π̃F . Finally, we have

(
L̃L, L̃F

) =
1

2γ−1

(
γ
γ−1

)2(γ+1) (
1
γ

, 1
)

. Then L̃L < L̃F .

Therefore, the leader always achieves higher payoff than the follower for a certain class of
nonlinear market demand functions intersecting the price axis. This echoes the results of
Kaplan and Wettstein (2000) and of Tasnadi (1999).5

2.4 Strategic Behavior and Endogenous Timing

The preceding discussion devoted to the comparison between individual payoffs, notably
Propositions 1 and 3, suggests that there may be situations in which the leader has lower
payoffs than the follower. In addition, the timing of moves is purely arbitrary: the positions of
moves is given even if firms are interchangeable players. Therefore, it questions the leadership
position in quantity-setting games. Making Stackelberg leadership endogenous also enables us
to test the prediction of the duopoly model. We briefly review some results in some quantity-
setting theoretical models and in experimental games literature.6

5 The former authors show that the Bertrand paradox can only be avoided if the demand curve does not intersect
the vertical axis, whereas the latter establishes that the avoidance of a mixed-strategy equilibrium in the standard
Bertrand-Edgeworth game requires the same condition.

6 There is a literature devoted to Bertrand games with price leadership in oligopoly markets. Van Damme
and Hurkens (2004) consider a linear price-setting duopoly game with differentiated products and endogenously
determine which of the players will lead and which one will follow. While the follower role is better for each firm,
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2.4.1 Some results
The Stackelberg duopoly game provides some insights into the idea of commitment. Schelling
(1960) develops the idea of commitment in strategic environments, and shows through
examples that committing is beneficial only if the rival does not commit.7 The theoretical
literature devoted to the endogenization of the order of moves in oligopoly starts from the
articles by Gal-Or (1985), Reinganum (1985), Dowrick (1986), Boyer and Moreaux (1987a),
and Saloner (1987). More recently, several game-theoretic contributions establish conditions
under which firms are likely to play either a simultaneous-move game or a sequential-
move game in quantity-setting competition with complete information (see Hamilton and
Slutsky, 1990, Robson, 1990a, Pal, 1991, Anderson and Engers, 1992, Amir, 1995, Amir
and Grilo, 1999, Van Damme and Hurkens, 1999, Matsumura, 1999, among others). Other
contributions consider either incomplete information (Mailath, 1993, Normann, 2002), or
uncertainty (Albaek, 1990, Spencer and Brander, 1992, Sadanand and Sadanand, 1996). In
these papers, the order of supply decisions is not exogenously specified. Rather, it is derived
from the firms’ decisions about timing. We propose to focus on Hamilton and Slutsky’s
seminal paper (1990).

Hamilton and Slutsky (1990) consider a duopoly game with an initial stage in which both
firms simultaneously decide whether to move first or to move second. They propose two
ways of endogenizing the order of moves in a duopoly market with complete information:
either with an extended game with observable delay or with an extended game with action
commitment. In the former, both firms announce the period in which they decide to move
before choosing an action. After the announcement, they choose their actions in the sequence
that results from the timing decisions by knowing when its rival will play. In the latter, a firm
can move first only by selecting an action to which it is committed. But a firm that plays
first does not know whether its opponent plays first or delays. In the extended game with
action commitment, the two Stackelberg equilibria are the only pure strategy equilibria in
undominated strategies; the Cournot-Nash equilibrium is an outcome in dominated strategies.
In the extended game with observable delays, there are three sets of pure strategy subgame
perfect equilibria. In case 1, there are two Stackelberg duopoly equilibria if each firm prefers
its SDE follower payoffs to its CDE payoffs. In case 2, there is one SDE with one leader if the
other firm prefers its SDE follower payoffs than its CDE payoff. In case 3, there is one CDE
if each firm prefers its CDE payoffs to its SDE follower payoffs.

These results provide some theoretical foundation for endogenous timing in Stackelberg
duopoly.8 But as emphasized by Hamilton and Slutsky (1990), without further assumptions

they show that waiting is more risky for the low-cost firm. Consequently, risk dominance leads to the result that
only the high-cost firm will choose to wait. Hence, the low-cost firm will emerge as the endogenous price leader.
Amir and Stepanova (2006) generalize the preceding model by considering the issue of first-mover versus second-
mover advantage in differentiated products Bertrand duopoly with general demand and asymmetric linear costs.
They use the supermodularity framework to generalize existing results for all possible combinations where prices
are either strategic substitutes or complements. They show that a firm with a sufficiently large cost can have a first-
mover advantage. For the linear version of the model, they invoke a natural endogenous timing scheme coupled with
equilibrium selection according to risk dominance. The sequential game produces a unique equilibrium outcome with
the low-cost firm as leader. See also the seminal paper by Robson (1990a).

7 This situation displays a coordination problem. Thus, some participants could decide not to commit to avoid a
conflict that would result from antagonist leadership positions.

8 Anderson and Engers (1992) consider a game in which firms choose whether to reveal their supplies. This game
includes Stackelberg and Cournot settings as possible outcomes. They show that the equilibrium is the Stackelberg
setting; all firms decide to reveal in the sequence.
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the existence of multiple perfect equilibria makes crystal clear prediction impossible. Never-
theless, in the extended game with observable delay, the Pareto preferred outcome depends
on characteristics of the firms’ isoprofits and of the best responses. Indeed, given that the two
firms have an optimal mapping to the strategy of the rival, the leader achieves higher payment
at the SDE than at the SCE. In addition, it is possible to figure out three configurations. First,
if the optimal decision mappings have slopes of the same sign, then the market outcome
corresponds to cases 1 or 3. When both optimal mappings are negatively sloped, neither
functions intersect the Pareto preferred set to the CDE (the set of strategies that increase
both payoffs), then there is a first-mover advantage; whilst, when both optimal mappings are
positively sloped, both functions intersect the Pareto preferred set to the CDE, then there
may be a second-mover advantage. Second, if these functions have slopes of opposite signs,
then the market outcome corresponds to case 2. Thus, the optimal mapping that is negatively
sloped intersects the Pareto preferred set to the CDE.9 By contrast, in the game with action
commitment, both sequential games with both order of moves are the only two pure strategy
Stackelberg subgame perfect Nash equilibria, regardless of slopes of best responses and Pareto
dominance.

2.4.2 Experimental games
Some recent papers consider experimental games to study which kind of duopoly equilibria
would emerge. Indeed, results from this literature may indicate whether models of simultane-
ous output or price decisions (Cournot, Bertrand) or sequential decisions (Stackelberg, price
leadership) are plausible.

The experimental evidence on Hamilton and Slutsky’s (1990) commitment game shows
that: first, simultaneous-move Cournot market outcomes are more frequent than the Stackel-
berg market outcomes; second, simultaneous-move outcomes are often played in the second
period; and, third, in some cases the follower punishes the leader. For instance, Huck, Konrad,
and Müller (2002) use the extended duopoly game with action commitment of Hamilton and
Slutsky (1990), which predicts the emergence of endogenous Stackelberg leadership. They
search for the equilibrium predictions of the extended game with action commitment. Their
data do not confirm the prediction. Indeed, while Stackelberg equilibria are rare, they often
observe endogenous Cournot outcomes and sometimes collusive play. Hence, any endogenous
Stackelberg follower learns over time to reward cooperation and to punish exploitation (see
Huck et al., 2001a who suggest that the Stackelberg leader–follower structure is also beneficial
for welfare). Given the empirical response function of the follower, the Stackelberg leader
would have a better payoff by producing less than the amount that corresponds to the subgame
perfect equilibrium.

Santos-Pinto (2008) studies endogenous timing by assuming that players are averse to
inequality in payoffs. He explores the implications of inequity aversion and compares them
to the empirical evidence. He shows that inequity aversion is able to explain most of the
experimental evidence (among which collusive outcome) on the action commitment game
of Hamilton and Slutsky (1990). He finds that when inequity aversion is high, the game

9 The case of decreasing optimal responses correspond to Cournot competition. The case of increasing optimal
mappings may correspond to Bertrand price competition with differentiated substitute products. The case of opposite
slopes in sign may correspond to a quantity-setting firm for the increasing one and a price-setting firm for the
decreasing one (see Singh and Vives, 1984). For a discussion of this classification, see Hamilton and Slutsky (1990)
and Vives (1999).
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displays only simultaneous-move symmetric equilibria where both firms produce in the
first production period, whilst when the inequity aversion is low there is a continuum of
simultaneous-move symmetric equilibria, but there are also two Stackelberg equilibria with
sequential play.10

Fonseca, Müller, and Normann (2006) test the prediction of the game with observable
delay of Hamilton and Slutsky (1990), which has a unique subgame perfect equilibrium in
which both players choose to behave as Cournot producers in the first period. To this end,
they carry out the game both with a random- and a fixed-matching scheme. With random
matching, they find that players choose the predicted production period more frequently over
time but choices do not converge to the predicted level as nearly one-third of all players
still choose to delay toward the end of the experiment. With a fixed-matching scheme,
the subgame perfect equilibrium has no predictive power with regard to timing choices as
throughout the experiment only half of the timing observations are period 1 choices. These
differences in timing choices are explained by the deviations from the prediction observed
in the sequential move subgame: with random matching, more competitive behavior in the
Stackelberg subgame provides an incentive to avoid it by choosing to produce early.

2.5 Free Entry

Free entry and market performance are linked under Cournot competition: the Cournot
oligopoly market outcome coincides with the CE outcome when the number of firms increases
without limit. We would like to know whether Stackelberg quantity competition has the same
property. To this end, we first consider strategic free entry.11 In particular, does quantity
commitment still give strategic advantage to incumbent firms under free entry? Under which
condition(s) does a leader firm always have higher payoffs in the Stackelberg game? Then, we
study market power in the extended Stackelberg duopoly game.

2.5.1 SDE and free entry
The SDE may be analyzed as the market outcome resulting from a rivalry between an
incumbent and one potential entrant (Spence, 1977 and Dixit, 1980).12 Indeed, the SDE
constitutes a subgame perfect Nash equilibrium with free entry. For instance, in Salop
(1979) the entrant is a leader, whilst in Basu and Singh (1990) the leader is the incumbent
firm.13 Other contributions merely focus on the welfare implications of market power (Etro,
2006, 2008, Mukherjee and Zhao, 2009). We here consider the market performance of the
Stackelberg structure to emphasize the differences, if any, with Cournot competition. It is
well known that in a Cournot game with symmetric firms, free entry may increase or reduce
the incumbents’ supplies, but it always reduces their profits (Seade, 1980). The following

10 Rassenti et al. (2000) examine results from laboratory experiments in which five persons participate as sellers in
a Cournot oligopoly game. They wonder whether repeated play will lead to convergence to a unique noncooperative
Nash equilibrium. The results provide observed intertemporal variation in total output and heterogeneity in individual
choices that are inconsistent with convergence to the static Nash equilibrium.

11 See also Appendix D in Anderson, Erkal, and Piccinin (2016).
12 The starting point of these models is a criticism of the limit price approach according to which the potential

entrant firm is assumed to believe that the incumbent firm will maintain the same action after entry as before the entry
(Dixit, 1979, Nti and Shubik, 1981, Eaton and Ware, 1987).

13 Entry may also be linked to endogenous timing (Sadanand and Sadanand, 1996).
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illustration given by Mukherjee and Zhao (2009) emphasizes that Stackelberg competition
does not always lead to higher supply when we compare it with the CDE without entry:

Example 4 Let p (X ) = a − X, a > 0, C1
L(x

1
L) = 0, C2

L(x
2
L) = cLx2

L, and CF(xF) = cFxF .
Assume first there is no entry and both firms behave as Cournot competitors. The CDE is given

by
(
x̂1

L, x̂2
L

) =
(

a+cL
3 , a−2cL

3

)
, p̂ = a+cL

3 , and (π̂1
L , π̂2

L) =
(( a+cL

3

)2
,
(

a−2cL
3

)2
)

. Consider

now the case of entry. The follower’s best response is ϕ(x1
L, x2

L) = a−cF
2 − 1

2 (x
1
L + x2

L). The

SDE is given by
(
x̃1

L, x̃2
L, x̃F

) =
(

a+2cL+cF
3 , a−4cL+cF

3 , a+2cL−5cF
6

)
, p̃ = a+2cL+cF

6 , and π̃1
L =

1
2

(
a+2cL+cF

3

)2
, π̃2

L = 1
2

(
a−4cL+cF

3

)2
and π̃F =

(
a+2cL−5cF

6

)2
. Let us notice that x̃F > 0

whenever cF <
a+cL

5 ≡ c̄F and that c̄F � cF for cL � a
3 . Therefore, consider cL � a

3 ≡ c̄L as
a condition for entry. Let us now compare the SDE supplies with the CDE supplies. We have
x̃1

L > x̂1
L but x̃2

L > x̂2
L if cL ∈ [0, a

8 ] and cF ∈ (2cL, c̄F). The reason is that under Stackelberg
competition, both firms face a higher (effective) demand and the second leader faces higher
marginal cost, so its supply increases provided the cost of the follower entrant is relatively
high with respect to the second leader’s cost. In addition, π̃1

L > π̂
1
L if cF ∈ (c

¯
F(cL), c̄F), where

c
¯

F(cL) ≡ (
√

2−1)(a−cL
√

2) and cL ∈ (c
¯

L,c̄L), where c
¯

L ≡ a 5
√

2−6
12−5

√
2
, whilst π̃2

L < π̂
2
L . First,

the supply of the first leader increases with the higher (effective) demand, and with the cost of
the follower, and second, as supplies are strategic substitutes, the decrease of the other leader’s
supply is favorable for the first leader. The total effect is positive for the first firm when costs
are relatively high.

This example shows that, when firms have different marginal costs and the incumbents
behave as Stackelberg leaders, while the entrant behaves as a follower, then entry (does
not necessarily) increases the supply (the profit) of the higher efficient cost leader but (not
necessarily) decreases the supply (the profit) of the less efficient leader. The next example
shows that entry of a second follower in a Stackelberg market may be damaging for the
incumbent firms:

Example 5 (Example 4 with firm 2 as a follower) Let now C1
L(x

1
L) = 0, C1

F(x
1
F) = c1

Fx1
F ,

and C2
F(x

2
F) = c2

Fx2
F . Assume first, there is no entry and both firms behave as in the SDE

game, with firm L as the leader. The best response is ϕ(x1
L) = a+c1

F
2 − 1

2 x1
L. The SDE obtains

as
(
x̃1

L, x̃1
F

) =
(

a+c1
F

2 ,
a−3c1

F
4

)
, p̂ = a+c1

F
4 , and (π̂1

L , π̂1
F) =

(
1
2

(
a+c1

F
2

)2

,
(a+c1

F)(a−3c1
F)

16

)
.

Consider now the case of entry with a new entrant follower. The best responses are ϕ(x1
L) =

a−2c1+c2

3 − 1
3 x1

L and ϕ2(x1
L) = a+c1

F−2c2
F

3 − 1
3 x1

L. The Stackelberg equilibrium with free

entry is given by
(
x̌1

L, x̌1
F , x̌2

F

) =
(

a+c1
F+c2

F
2 , a−5c1+c2

6 ,
a+c1

F−5c2
F

6

)
, p̌ = a+c1

F+c2
F

6 , and π̌1
L =

1
3

(
a+c1

F+c2
F

2

)2

, π̌1
F =

(
a−5c1

F+c2
F

6

)2

and π̌2
F =

(
a+c1

F−5c2
F

6

)2

. We have x̌2
F > 0 whenever

c2 <
a+c1

F
5 ≡ c̄2

F and that c̄2
F � c1

F for c1
F � a

4 . Therefore, consider c1
F � a

4 ≡ c̄1
F as a
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condition for entry (c̄1
F <

a
3 for the no entry case). We now compare the SDE supplies with

entry with the SDE supplies without entry. We have x̌1
L > x̃1

L but x̌1
F < x̃1

F as c2
F <

a+c1
F

2 .
The incumbent follower faces a lower (effective) demand and the conditions on costs are
more stringent with the presence of a new follower. In addition, π̌1

L < π̃1
L and π̌1

F < π̃1
F . But

X̌ − X̃ = a+c1
F−2c2

F
3 > 0, and p̌ − p̃ = − a+c1

F−2c2
F

12 < 0.

This example outlines the consequences of altering the basic duopoly game with new intrants.
But may large entry lead to the competitive market outcome?

2.5.2 The extended Stackelberg duopoly game (T-stage game I)
The first extension to the SDE is performed in Boyer and Moreaux (1986) who consider a
linear hierarchical market game as a T-stage oligopoly model with one firm per stage. They
show that, by enlarging the game, the Stackelberg equilibrium may coincide at the limit with
the CE. In addition, the profit of the first leader is strictly higher than the profit it reaches in
the corresponding Cournot game when there are at most two stages of decision. Anderson
and Engers (1992) assume X(p) = a − bpα, a, b,α > 0, and show that each firm behaves
as if it were a monopolist facing the residual demand inherited from the preceding movers in
the hierarchy. Indeed, a T-stage Stackelberg game, with one firm per stage, is a succession of
monopoly choices on residual demand.14 In addition, the first firm in the hierarchy may reach
lower payoffs than the payoffs reached in the Cournot game if and only if n > α+ 2, all other
firms having less payoffs than their Cournot counterparts for all α, n > 0. Then, the advantage
of being a leader may vanish when the number of stages increases.15

Robson (1990b) considers the existence and the welfare property of the Stackelberg equi-
librium with free entry. There are T firms, each being indexed by i, i = 1, . . . , T. Each firm has

average cost given by the function a(x i), with da(x i)

dx i � 0, ∀x i ∈ (0, x ∗], da(x i)

dx i > 0, ∀x i > x ∗
for some x ∗ > 0. The minimum level of average cost is given by p ∗ = a(x ∗), and total cost is
given by c(x i) = x ia(x i), with c(x i) � 0, for x i � 0. The price function p (X ) is continuous
and continuously differentiable. In addition, limX→∞ p (X ) < p ∗ < p (0) < limx i→0 a(x i):
the demand and the limiting competitive aggregate supply intersect nontrivially at p ∗, and
supply per firm is bounded below and the number of active firms is bounded above. The
strategy set of firm i is S i = [αx̄, X ∗], where X ∗ is the unique solution to p (X ) = p ∗, x̄ is the
unique solution to a(x i) = p (0), x i < x ∗, and α ∈ (0, 1] is a scale factor. Consider firm k in
the hierarchy, where 1 < k < T. Its best-response function is given by xk = ϕk(x1, . . . , xk−1),
1 < k < T. A set of pure strategies is uniquely determined recursively as x1, x2 = ϕ2(x1),
x3 = ϕ3(x1, x2), . . . , xT = ϕT(x1, x2, . . . , xT−1). Then, there exists a subgame perfect Nash
equilibrium (SPNE) in pure strategies. In addition, the sequence of Stackelberg equilibria with
free entry converges to the CE.

What can be said about the sequential entry and its relationship with welfare in the
hierarchical game? There are two kinds of models that study sequential entry. The first kind
allows for entry deterrence, whilst the second kind does not. Economides (1993) considers a

14 This is no longer true when the costs are quadratic and/or with a linear demand system for symmetrically
differentiated products of the type p i = α − βx i − γ

∑
j
=i x j, where β > γ > 0, and x i > 0, i = 1, . . . , n (see

Vives, 1988).
15 But it does not imply that firms prefer to play à la Cournot. See also Matsumura (1999).
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separation of the entry and supply decisions in a generalized version of Boyer and Moreaux
(1986). The decision of entry is taken at an earlier stage, and entry is simultaneous. Therefore,
entry deterrence cannot occur. The inverse demand function is concave and the cost function
includes a fixed cost of entry. The aggregate supply and market price of the extended SE with
free entry are the same as those of the CE with free entry, with the supply of the last firm
equal to its Cournot supply, and with fewer active firms in the SE than in the CE. Second,
any firm’s supply varies inversely with its order in the sequence of decisions, and equilibrium
payoffs decrease, with the last firm making zero payoff. Third, the extended SE with free entry
Pareto dominates the CE with free entry since the higher social surplus is due to higher payoffs
for active firms. The increase in social welfare is caused by more efficient utilization of the
technology: there are less active firms in the SE and more firms bear the fixed costs in the CE.
Therefore, earlier active firms exploit their strategic advantage by supplying more (efficiently)
than any later-acting firm. But entry deterrence is not dealt with.

Vives (1988) considers a set of entrants ordered in a sequence either with one or with
several incumbents. All firms have the same linear technology and have to bear an entry
cost in case they decide to produce. First, if there are a few (many) potential entrants, the
incumbent lets them entry (prefers to prevent them from entering). More potential entrants do
not decrease welfare. Second, the potential entrants may face several incumbents. Equilibria
with and without entry may coexist. In both cases, the incumbents must supply high levels to
prevent entry. Thus, the efficiency of a public policy that consists of lowering the cost of entry
depends on the number of entrants. In the same spirit, Anderson and Engers (1994) consider
competition over entry time to show how the differences in profits can be dissipated. The order
of entry is endogenous and depends on costs. Lower fixed costs can lower the social surplus.
But here the incumbent leader firm will no longer choose only between either letting all firms
enter or preventing them from entering. Finally, Pal and Sarkar (2001) show that additional
entry of a lower firm cost in the hierarchy can increase the supply and profits of existing firms.

3 THE MULTIPLE LEADER–FOLLOWER GAME

The multiple leader–follower two-stage noncooperative game was introduced by Sherali
(1984), and explored by Daughety (1990), DeMiguel and Xu (2009), and Julien (2017).16

It constitutes an interesting and nontrivial extension to the basic Stackelberg duopoly game,
and it provides a richer set of strategic interactions between several (heterogeneous) firms
than the preceding games. First, strategic interactions are more complex since the entire game
consists of two Cournot games embedded in a hierarchical competition game. Therefore,
the resulting market outcome, namely existence and uniqueness, is more difficult to handle.
Second, some features regarding the working and the consequences of market power are
specific to this model and are not captured in the basic duopoly game. We describe the
multiple leader–follower oligopoly game. Then, we characterize the optimal behavior. To
understand the nature of strategic interactions at work, we study existence and uniqueness of
a Stackelberg oligopoly equilibrium (SOE thereafter). Finally, we consider the market power

16 To the best of our current knowledge, the first model with one leader and several followers was introduced by
Leitmann (1978), and developed by Murphy et al. (1983) and Sherali (1984). Note that Stackelberg (1934) already
envisaged the possibility of several market participants (see his Chapter 3).
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and the welfare properties of the SOE. To this end, we compare the SOE with the Cournot
oligopoly equilibrium (COE), and with the CE. We also outline the main differences with the
SDE game.

3.1 The Model

There are now several risk-neutral firms of type L and of type F who compete on quantities
to sell the homogeneous divisible product. Thus, the set of firms partitions into two subsets
FL= {1, . . . , nL} and FF= {1, . . . , nF}, with FL ∪ FF = F and FL ∩ FF = ∅. We consider
|FL| � 1 and |FF| � 1, where |A| denotes the cardinality of the set A. Firms of type L
are leaders, while firms of type F are followers. Leaders are indexed by i and followers are
indexed by j.17 The cost function of leader i is denoted by C i

L(x
i
L), i ∈ FL. Likewise, for each

j ∈ FF , we let C j
F(x

j
F). The costs functions are twice-continuously differentiable, increasing

and convex. The price function p (X ) is twice-continuously differentiable and decreasing. In

addition, it still satisfies dp (X )
dX + kx d2p (X )

(dX)2
� 0, where k > 0.

The profit functions π i
L(.) of firm i and π j

F(.) of firm j may be written:

π i
L(x

i
L, x −i

L , xF) = p (X )x i
L − C i

L(x
i
L), i ∈ FL (10.15)

π
j

F(x
j
F , x−j

F , xL) = p (X )x j
F − C j

F(x
j
F), j ∈ FF . (10.16)

Let us notice that (10.16) is strictly concave with respect to x j
F given x−j

F and xL. In addition,
like in Section 2, the concavity of (10.15) is more difficult to state.

Consider now the noncooperative game � associated with this economy. The players are
the (nL + nF) firms, the strategies are their production decisions, and the payoffs are their
profits. Let S i

L = [0, ∞) be the strategy set of leader i ∈ FL, where the supply x i
L represents

the pure strategy of the leader. Similarly, let S j
F = [0, ∞), where x j

F is the pure strategy of the
follower j ∈ FF . A strategy profile will be represented by the vector (xL, xF), with (xL, xF) ∈∏

i∈FL
S i

L ×∏
j∈FF

S j
F . The corresponding payoffs functions are given by π i

L(.), i ∈ FL, and

π
j

F(.), j ∈ FF . This sequential game displays two stages of decisions and no discounting. We
also assume the timing of positions is given. Each leader chooses first a quantity to sell, and
each follower determines their supply on the residual demand. Information is again assumed
to be complete and perfect. The multiple leader–follower model is thus described by a two-
stage game that embodies two simultaneous-move partial games. Indeed, the leaders play a
two-stage game with the followers, but the leaders (the followers) play a simultaneous-move
game together.

17 We adopt the following notational conventions. Let x ∈ R
n+. Then, x ≥ 0 means xi � 0, i = 1, . . . , n; x > 0

means there is some i such that xi > 0, with x 
= 0, and x >> 0 means xi > 0 for all i, i = 1, . . . , n. Let

xL = (
x1

L, . . . , x i
L, . . . , xnL

L

)
be a strategy profile of leaders, and xF =

(
x1

F , . . . , x j
F , . . . , xnF

F

)
be a strategy profile of

followers, where x i
L and x j

F represent respectively the supply of leader i ∈ FL, and of follower j ∈ FF . In addition,

let x−i
L =

(
x1

L, . . . , xi−1
L , xi+1

L , . . . , xnL
L

)
and x−j

F =
(

x1
F , . . . , xj−1

F , xj+1
F , . . . , xnF

F

)
.
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Stackelberg games 277

3.2 Stackelberg Oligopoly Equilibrium

In this framework strategic interactions occur within each partial game but also between both
partial games through sequential decisions. It is worth noticing that the critical difference with
the previous duopoly games stem from the fact that the optimal decision of any follower does
not necessarily coincide with their best response (see Julien, 2017).18 Each follower interacts
strategically and simultaneously with all other followers. We determine the optimal behavior.
Then, we define the SOE, and we state some existence and uniqueness results.

3.2.1 Optimal behavior
The extended game � is solved by backward induction. Let φ j :

∏
−j∈FF

S−j
F ×∏i∈FL

S i
L →

S j
F , be follower j’s optimal decision, with x j

F = φ j(x−j
F , xL), j ∈ FF , which is the solution to:

φ j
(

x−j
F , xL

)
∈ arg maxπ j

F

(
x j

F , x−j
F , xL

)
. (10.17)

The first-order sufficient condition may be written:

p (X )+ x j
F

dp (X )

dX
−

dC j
F

(
x j

F

)

dx j
F

= 0, j ∈ FF . (10.18)

By the strict concavity of the profit function (10.16), the optimal decision φ j(x−j
F , xL) is

unique. Let us notice this function is not a best-response function since it depends also on the
decisions of the other followers. Let us notice that:

∂φ j

∂x−j
F

= −
∂2π

j
F

∂x j
F∂x−j

F

∂2π
j

F

∂
(

x j
F

)2

= −
dp (X )

dX + x j
F

d2p (X )
(dX)2

2 dp (X )
dX + x j

F
d2p (X )
(dX)2

− d2C j
F

(
x j

F

)
(

dx j
F

)2

, (10.19)

where ∂φ j

∂x−j
F

∈ (−1, 0), when φ j > 0, and ∂φ j

∂x−j
F

= 0 when φ j = 0. Then, ∂φ j

∂x−j
F

∈ (−1, 0],

−j, j ∈ FF . In addition, we can show that ∂φ
j

∂x i
L

∈ (−1, 0], i ∈ FL, j ∈ FF .

To determine the effective demand that is addressed to any leader, i.e., p (x i
L + X −i

L +∑
j
ϕ j(xL)), we must show there exist best responses ϕ j :

∏
i∈FL

S i
L → S j

F , with x j
F = ϕ j(xL),

j ∈ FF . This is the critical difference with the previous duopoly game in which the
optimal decision of the follower coincides with their best response. Julien (2017) provides
a consistency criterion to determine each optimal decision as a function of the strategy profile
of the leaders. In addition, it is possible to show that the best responses are not increasing,
so the game displays actions that are strategic substitutes. Note the condition is sufficient, so
strategic complementarities could exist provided they are not too strong.

18 One difficulty stems from the fact that the followers’ optimal decision mappings might be mutually inconsistent.
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Therefore, leader i’s optimal decision, which is defined by ψ i :
∏

−i∈FL
S −i

L → S i
L, with

x i
L = ψ i

(
x −i

L

)
and ϕ(XL) = (ϕ1(XL), . . . , ϕn(xL)), is the solution to:

ψ i
(

x −i
L

)
∈ arg maxπ i

L

(
x i

L, x −i
L , ϕ (xL)

)
, i ∈ FL. (10.20)

As p (X ) = p
(

x i
L + X −i

L +∑
j ϕ

j
(

x i
L + X −i

L

))
, the condition ∂π i

∂x i
L

= 0 leads to:

p (X)+ (
1 + ν i) x i

L
dp (X )

dX
− dC i

L

(
x i

L

)

dx i
L

= 0, i ∈ FL. (10.21)

The term ν i = ∂
∑

j ϕ
j(xL )

∂x i
L

, with ν i ∈ [−1, 0], represents the reaction of all followers

to leader i’s strategy, i.e., the slope of the aggregate best response to i, i ∈ FL. By
construction ν i = ν −i = ν for all i, −i ∈ FL. This term has the same interpretation as
in subsection 2.2, with k = (1 + ν). It is possible to check that the second-order sufficient
condition holds:

∂2π i
L

(∂x i
L)

2
= k

(
kx i

L
d2p (X )

(dX)2
+ 2

dp (X )

dX

)
− d2C i

L

(
x i

L

)
(
dx i

L

)2 < 0. (10.22)

Finally, let us notice that ∂2π i

∂x i
L∂x −i

L
= k

(
k dp (X )

dX + x i
L

d2p (X )
(dX)2

)
� 0, i ∈ FL; and ∂ψ i

∂x −i
L

=

−
∂2π i

L
∂x i

L∂x −i
L

∂2π i
L

∂(x i
L)

2

= −
k dp (X )

dX +k2x i
L

d2p (X )
(dX)2

2k dp (X )
dX +k2x i

L
d2p (X )
(dX)2

− d2C i
L(x

i
L)

(dx i
L)

2

, so ∂φ j

∂x−j
F

∈ (−1, 0], for all −i 
= i, −i, i ∈ FL.

3.2.2 SOE: definition, existence and uniqueness
We first provide a definition of an SOE.

Definition 2 (SOE) A Stackelberg oligopoly equilibrium of � is given by a strategy profile(
x̃L, x̃F

) ∈ ∏
i∈FL

S i
L × ∏

j∈FF

S j
F , with xF = ϕ(xL), where ϕ :

∏
i∈FL

S i
L → ∏

j∈FF

S j
F , such that:

a. π
j

F

(
x̃ j

F , x̃−j
F , x̃L

)
� π

j
F

(
x i

F , x̃−j
F , x̃L

)
, ∀x j

F ∈ S j, j ∈ FF

b. π i
L

(
x̃ i

L, x̃ −i
L , ϕ

(
x̃ i

L, x̃ −i
L

))
� π i

L

(
x i

L, x̃ −i
L , ϕ(x i

L, x̃ −i
L )
)

, ∀ϕ(xL) ∈ ∏
j∈FF

S j
F,

∀x −i
L ∈ ∏

−i∈FL

S −i
F and ∀x i

L ∈ S i
L, i ∈ FL.

Existence and uniqueness problems are more difficult to handle in this framework, insofar as
strategic interactions occur within each partial game but also between both partial games
through sequential decisions. Indeed, the nL leaders play a two-stage game with the nF

followers, but the leaders (the followers) play a simultaneous-move game together. But
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the presence of several leaders and followers displays a richer set of strategic interactions.
Strategic interactions occur between both stages of the game but also within each stage.
Indeed, the best responses could not be well defined in the presence of several heterogeneous
followers. As a consequence, existence and uniqueness are more difficult to handle with
several heterogeneous firms in each stage. By taking into account this problem, Julien (2017)
shows existence and uniqueness of an SOE under general assumptions on costs and demand
functions.19 Therefore, is it possible to state the following two theorems:

Theorem 1 (Existence) Consider the game �, and let Assumptions 1 and 2 be satisfied. Then,
there exists a Stackelberg oligopoly equilibrium.

Proof For more details, see Julien (2017). �

Theorem 2 (Uniqueness) Let Assumptions 1 and 2 be satisfied. Then, if there exists a
Stackelberg oligopoly equilibrium, then it is unique.

Proof To this end, consider ϒL=
(
∂π1

L

∂x1
L

, . . . ,
∂π i

L
∂x i

L
, . . . ,

∂π
nL
L

∂x
nL
L

)
(see Julien, 2017 for details). Let

∣∣J−ϒL(x̃L, x̃F)
∣∣, with J−ϒL= −

(
∂2π i

L

∂x i
L∂x −i

L

)
, where

∂π i
L

∂x i
L

= p (X ) + kx i
L

dp (X )
dX − dC i

L(x
i
L)

dx i
L

. From

Corollary 2.1 in Kolstad and Mathiesen (1987), as leaders in the partial game �L behave as
Cournot firms, we show this criterion is satisfied, so the SPNE in �L is unique. It is possible
to show that:

∣∣J−ϒL

∣∣=

⎛
⎜⎝1 − k

∑
i∈FL

dp (X )
dX + kx i

L
d2p (X )
(dX)2

d2C i
L(x

i
L)

(dx i
L)

2 − k dp (X )
dX

⎞
⎟⎠
∏

i∈FL

(
d2C i

L(x
i
L)

(dx i
L)

2
− k

dp (X )

dX

)
. (10.23)

Then, using the assumptions on costs and demand, we deduce:

sign
∣∣J−ϒL

∣∣=sign

⎛
⎜⎝1 − k

∑
i∈FL

dp (X )
dX + kx i

L
d2p (X )
(dX)2

d2C i
L(x

i
L)

(dx i
L)

2 − k dp (X )
dX

⎞
⎟⎠ > 0. (10.24)

19 Sherali (1984) shows existence and uniqueness with identical convex costs for leaders, and states some results
under the assumptions of linear demand either with linear or quadratic costs (see Ehrenmann, 2004). Sherali’s
model constitutes an extension of the seminal paper of Murphy et al. (1983) that covers the case of many followers
who interact with one leader. But they do not study the conditions under which the followers’ optimal decisions
are mutually consistent. In the same vein, Tobin (1992) provides an efficient algorithm to find a unique SE by
parameterizing the price function by the leader’s strategy. Some strong assumptions on the thrice-differentiability
of the price function and cost function of the leader profit function are made. Following De Wolf and Smeers (1997)
who extend Murphy et al. (1983), De Miguel and Xu (2009) extend Sherali (1984) to uncertainty with stochastic
market demand. Unlike Sherali (1984) they allow costs to differ across leaders. Nevertheless, to show the concavity
of the expected profit of any leader, they assume that the follower aggregate best response is convex. But as this
assumption does not always hold, they must resort to a linear demand. Fukushima and Pang (2005), Wang and Yu
(2008), and Jia, He, and Xiang (2015) prove existence of an equilibrium point of a finite game with two leaders and
several followers without specifying the assumptions made on demand and costs.
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As
∣∣J−ϒL((x̃L, x̃F)

∣∣ > 0 there exists a unique Nash equilibrium in �L, and then, a unique pure
strategy Nash equilibrium of �F . Then, the SPNE of � is unique, which proves uniqueness of
the SOE. �

Assuming symmetry, the condition for the sign of
∣∣J−ϒL((x̃L, x̃F)

∣∣ might be rewritten as
dp (X )

dX + kx i
L

d2p (X )
(dX)2

< 1
knL

(
d2C i

L(x
i
L)

(dx i
L)

2 − k dp (X )
dX

)
, which would say that “on average” leaders’

marginal revenues could be increased but not too much. In addition,
d2C i

L(x
i
L)

(dx i
L)

2 − k dp (X )
dX +

nL

(
dp (X )

dX + kx i
L

d2p (X )
(dX)2

)
= ∂2π1

L

(∂x1
L)

2 + (nL − 1)
∂2π i

L

∂x i
L∂x −i

L
< 0: the effect on i’s marginal profit of a

change in x i
L dominates the sum of the cross-effects of similar changes of other leaders’ supply.

We illustrate the SOE concept with the linear model of Daughety (1990).

3.2.3 The linear game
Consider a market that embodies n firms: there are nL � 1 leader(s) and nF � 1 follower(s),
with nL + nF = n. Let p (X ) = a − bX, a, b > 0, where X ≡ XL + XF, with XL ≡ ∑nL

i=1 x i
L

and XF ≡ ∑nF
j=1 x j

F . The costs functions are given by C i
L(x

i
L) = cx i

L, i = 1, . . . , nL, and by

C j
F

(
x j

F

)
= cx j

F , j = 1, . . . , nF , with c < a. The strategy sets are given by S i
L = S j

F =[
0, a

b − c
]
, i ∈ FL, j ∈ FF . As a reference the CE aggregate supply and market price are

given respectively by X ∗ = a−c
b and p ∗ = c. In addition, the COE is given by x̂ i

L = x̂ j
F =

X ∗ 1
nL+nF+1 , X̂ = X ∗ nL+nF

nL+nF+1 , p̃ = a+c(nL+nF)
nL+nF+1 , π̂ i

L = π̂
j

F = (a−c)2

b(nL+nF+1)2
, i ∈ FL, j ∈ FF .

Follower j’s program is maxπ j
F

(
x j

F , x−j
F , xL

)
=

[
a − b(x j

F + X−j
F + XL)− c

]
x j

F . The

solution to equation (10.18) is given by φ j
(

x−j
F , xL

)
= a−c

2b − 1
2

(
X−j

F + XL

)
, where we

let X−j
F ≡ ∑

−j 
=j x−j
F . Then, the best response of follower j is:

ϕ j(xL) = a − c

b(nF + 1)
− 1

nF + 1
XL, j ∈ FF (10.25)

The effective demand is p (XL) = a+cnF
nF+1 − bnF

nF+1 XL. Then, leader i solves:

max π i
L(x

i
L, x −i

L ) =
[

a + cnF

nF + 1
− bnF

nF + 1
(x i

L + X −i
L )− c

]
x i

L. (10.26)

Assuming x i
L = x −i

L , −i 
= i, we deduce the equilibrium strategy of leader i:

x̃ i
L = X ∗ 1

nL + 1
, i ∈ FL. (10.27)

Then, we deduce the equilibrium strategy of follower j:

x̃ j
F = X ∗ 1

(nL + 1)(nF + 1)
, j ∈ FF . (10.28)
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Therefore X̃ = X∗ nL(nF+1)+nF
(nL+1)(nF+1) , so p̃ = a+c[nL(nF+1)+nF]

(nL+1)(nF+1) . Then, the payoffs are given by:

π̃ i
L = (a − c)2

b(nL + 1)2(nF + 1)
, i ∈ FL (10.29)

π̃
j

F = (a − c)2

b[(nL + 1)(nF + 1)]2
, j ∈ FF. (10.30)

We remark that for each i ∈ FL, π̃ i
L � π̂ i

L whenever nL �
√

nF + 1 any leader achives higher
payoff provided the number of leaders is not too high.

We now investigate the welfare implications of the SOE game.

3.3 Market Power and Welfare

We now compare the SOE market outcome with the COE, and with the CE. Then, we study the
relation between market concentration and surplus, and also the relation between individual
market power and payoffs. Do the welfare properties of the SOE differ from those of the SDE?
Why or why not?

3.3.1 The SOE, COE and CE aggregate market outcomes
We can state the following proposition, which relies on Proposition 1:

Proposition 4 The SOE aggregate supply (market price) is higher (lower) than the COE
supply (market price). But the SOE aggregate supply (market price) is lower (higher) than the
CE aggregate supply (market price).

The leaders can set higher supply since they know the followers behave as Cournot
competitors. In addition, the increment in the total supply of leaders more than compensates
for the decrease of the total supply of followers when the aggregate best response decreases,
whilst it goes in the same direction when the aggregate best response increases, i.e., when
strategies are complements. Therefore, like in the SDE, the aggregate supply (market price) is
higher (lower) in the SOE than in the COE either when strategies are substitutes or when they
are complements. The next example illustrates this (Daughety, 1990).

Example 6 (linear game continued) Consider the market outcome given by (10.27)–
(10.28). We deduce X̃L = X ∗ nL

nL+1 and X̃F = X ∗ nF
(nL+1)(nF+1) . Then, X̃ = X ∗ nLnF+nL+nF

(nL+1)(nF+1) ,

which may be written as X̃(nL, n) = X ∗ n+nnL−n2
L

(nL+1)(n−nL+1) . We see that X̃ < X ∗, and then,

p ∗ < p̃ = a+c[nL(nF+1)+nF]
(nL+1)(nF+1) . We remark that X̃(0, n) = X̃(n, n) = X ∗ n

n+1 , which corresponds

to the two Cournot oligopoly equilibria, and X̃(2, n) = 4n−9
4(n−2) < X̃(2, n) = 3n−4

3(n−1) >

X(1, n) = 2n−1
2n > X(0, n). Then, for fixed n, the aggregate supply is concave in nL,

i.e., ∂2X(nL,n)
(∂nL)2

= − 2X ∗
(nL+1)3(n−nL+1)

< 0. Indeed, the Cournot aggregate supply is given by

X̂(nL, nF) = X∗ nL+nF
nL+nF+1 . Then, we have X̂(nL, nF) < X̃(nL, nF).

The next proposition echoes Proposition 2, but it refers to the slope of the aggregate best
response (see Julien, 2011):

Proposition 5 If ν = 0, then the SOE coincides with the COE.
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Proof Immediate from (10.18) and (10.21). �

3.3.2 Market concentration and welfare
Welfare is defined as in subsection 2.3 but since there are now several leaders and followers,
we must take into consideration, when considering the variation in aggregate supply, the
shares of aggregate supply of leaders and of followers. Let ϑL ≡ XL

X , with 0 � ϑL � 1,
and ϑF ≡ XF

X , with 0 � ϑF � 1, and where ϑL + ϑF = 1. Therefore, the social surplus may
now be defined as:

S(X ) :=
∫ X

0
p (z)dz −

⎡
⎣

nL∑
i=1

C i
L(s

i
LϑLX)+

nF∑
j=1

C j
F(s

j
FϑFX)

⎤
⎦ , with X � X ∗, (10.31)

where s i
L ≡ x i

L
XL

is the leader i’s market share, and s j
F ≡ x j

F
XF

is follower j’s market

share. Differentiating partially with respect to X and decomposing p (X ) lead to ∂S(X )
∂X =

∑nL
i=1 s i

L

[
p (X )− ϑL

dC i
L(x

i
L)

dX

]
+ ∑nF

j=1 s j
F

[
p (X )− ϑF

dC j
F(x

j
F)

dX

]
� 0 for fixed s i

L, s j
F , ϑL

and ϑF , with ∂S(X )
∂X |X=X ∗ = 0. Then, the social surplus is higher at the SOE than at the

COE, and reaches its maximum value at the CE. Indeed, ∂SC(X )
∂X = −X dp (X )

dX > 0, with

SC(X ) := ∫ X
0 p (z)dz − p (X )X. In addition, if we let SP(X ) := p (X )(ϑL

∑nL
i=1 s i

L +
ϑF
∑nF

j=1 s j
F)X − ∑nL

i=1 C i
L(s

i
LϑLX) − ∑nF

j=1 C j
F(s

j
FϑFX), then dSP(X )

dX = p (X ) + X dp (X )
dX −

[ϑL
∑nL

i=1 s i
L

dC i
L(s

i
LϑLX)

dX + ϑF
∑nF

j=1 s j
F

dC j
F(s

j
FϑFX)

dX ] < 0 (costs are convex). Therefore, one
essential feature of the SOE game is that the strategic interactions between leaders and
followers may be welfare enhancing.

Daughety (1990) shows that, by taking the aggregate supply as a measure of welfare,
welfare may be maximized when there is considerable asymmetry in the market, whilst
symmetric (Cournot) equilibria for which nL = 0 and nL = n minimize welfare (see
Daughety, 1990). Example 7 illustrates this:

Example 7 (linear game continued) Let X̃(nL, n) = X ∗ n+nnL−n2
L

(nL+1)(n−nL+1) as a measure of
welfare. We know that, for fixed n, the aggregate supply is concave in nL for fixed n. Therefore,
let maxnL X̃(nL, n). The solution to this program, namely the optimal number of leaders ñL,
exists and is unique; it is given by ñL = n

2 when n is even, and by either ñL = n−1
2 or ñL = n+1

2
when n is odd. Then, for a fixed number of firms, welfare is maximized when there is the same
number of leaders and followers (see Daughety, 1990).

What can be said in this context regarding concentration and welfare? Consider the
Herfindahl index, which is now denoted by H(nL, nF), and that is defined as:

H(nL, nF) :=
nL∑

i=1

(ϑLs i
L)

2 +
nF∑
j=1

(ϑFs j
F)

2. (10.32)
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Unlike the SDE game, one critical feature of the multiple leader–follower game is the
concentration index, which might be no longer appropriate for measuring welfare, as the next
example illustrates (see Daughety, 1990)!

Example 8 (linear game continued) Equation (10.23) leads to H̃(nL, n) = ϑ2
L

nL
+ (1−ϑL)

2

n−nL
for

1 � nL < n − 1 and to H̃(nL, n) = 1
n for nL = 0 or nL = n. Some algebra yields ∂H̃(nL,n)

∂nL
� 0

when nL � 1, and ∂H̃(nL,n)
∂nL

< 0 when nL > 1. Recall that X̃(nL, n) = X ∗ n+nnL−n2
L

(nL+1)(n−nL+1)

and ñL = n
2 when n is even, and either ñL = n−1

2 or ñL = n+1
2 when n is odd. With

one leader there is considerable asymmetry in the market. When the number of leaders
increases, the aggregate shares of leaders ϑL and the individual shares s i

L increase. Therefore,
the market outcome becomes less asymmetric (the Herfindahl index decreases). But welfare
first increases until the optimal number of leaders ñL is reached and it decreases after. Then,
welfare is not necessarily positively correlated with concentration!

Therefore, unlike the SDE game, the SOE game shows that market concentration may be
of little concern with welfare.

3.3.3 Market power and payoffs
The next example shows that there is no positive correlation between market power and
concentration:

Example 9 (linear game continued) For fixed n, the average profit defined as π̄(nL, n) :=∑
i π

i
L+∑j π

j
F

n , and given by π̄(nL, n) = (a−c)2

bn
n+nnL−n2

L
(nL+1)2(n−nL+1)2

, is convex in nL. Moreover, we

have ∂π̄(nL,n)
∂nL

= (a−c)2

bn
(n+nnL−n2

L−1)(2nL−n)
(nL+1)3(n−nL+1)2

. Then, ∂π̄(nL,n)
∂nL

� 0 when nL � n
2 . Recall that

∂H̃(nL,n)
∂nL

< 0 when nL > 1. So average firm profit and concentration are positively correlated
when the number of leaders is less than the socially optimal number of leaders (Daughety,
1990). Thus, unlike the SDE, there is no positive correlation between π̄ and H̃ no longer
holds in the SOE unless there are few leaders.

We now compare the SDE payoffs with the CDE payoffs. The optimal conditions (10.18)

and (10.21) may be expressed respectively as p (X) = (1+m j
F)

dC j
F(x

j
F)

dx j
F

, with κ j
F = 1

1+ 1
ε
ϑFs j

F

−1,

j ∈ FF , and as p (X) = (1 + κ i
L)

dC i
L(x

i
L)

dx i
L

, with κ i
L = 1

1+ 1+ν
ε ϑLs i

L
− 1, i ∈ FL, where κ j

F and κ i
L

are the markups of follower j and leader i. To analyze the relation between market power and
individual payoffs, consider:

L j
F = −1

ε
ϑFs j

F , j ∈ FF and L i
L = −1 + ν

ε
ϑLs i

L, i ∈ FL, (10.33)

where L j
F and L i

L are the Lerner indexes of follower j and of leader i respectively.
The following corollary is the counterpart of Proposition 3:

Corollary 1 If L i
L > L j

F, then π̃ i
L > π̃

j
F, i ∈ FF, j ∈ FF. In addition, assume for all i ∈ FF

and j ∈ FF, L i
L = L j

F. Then, π̃ i
L � π̃

j
F if and only if ν � 0, i ∈ FF, j ∈ FF.
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Proof Immediate by comparing expressions in (10.33). �

Corollary 1 extends Proposition 3. However, differences in leaders’ (resp. followers’) payoffs
are caused by asymmetries in costs. As the extended game embodies strategic interactions
among several leaders and followers, we now explore the possibility of merging.

3.3.4 Mergers, payoffs and welfare
The welfare effects and the profitability of horizontal merger in oligopoly quantity-setting
games depend on firms’ costs functions. For instance, in Cournot competition bilateral
mergers between two firms can be profitable if costs are sufficiently convex (Reynolds, Salant,
and Switer, 1983, Perry and Porter, 1985, Farell and Shapiro, 1990). But the (strategic) effects
of merging on welfare and on the profitability also depend on the market structure. Indeed,
the advantages and disadvantages of merging are due to noncooperative strategic behavior
that prevails in the SOE (Daughtety, 1990, Heywood and McGinty, 2007, 2008, and Huck
et al., 2001b, Huck, Muller and Normann, 2002). The following two examples illustrate the
welfare effects of merging and the conditions under which bilateral merger is profitable in two
distinct experiments (see Daughety, 1990 and Huck et al., 2001b). These examples show that
the multiple leader–follower game may provide counterintuitive results:

Example 10 (linear model continued) Effects of mergers on welfare: Let X̃(nL, n) =
X ∗ n+nnL−n2

L
(nL+1)(n−nL+1) . First, a merger means that one firm disappears from the market. Consider

the following three cases: (1) merger of two leaders so the post-merger market has nL − 1
leaders but still n − nL followers; (2) merger of two followers, so there are nL leaders
but n − nL − 1 followers; and (3) merger of one leader and one follower, so there
are nL leaders but n − nL − 1 followers. Therefore, in case 1, some calculations yield
X̃(nL − 1, n − 1) − X̃(nL, n) = −X ∗ (n−1)nL(nL+3)−2nL+1

nL(nL+1)(n−nL+1) < 0. In cases 2 and 3, we get

X̃(nL, n − 1) − X̃(nL, n) = −X ∗ 1
(nL+1)(n−nL)(n−nL+1) < 0. Thus, welfare is always reduced.

Second, consider now the number of leaders increases. The comparative statics yields:
∂X̃(nL,n)
∂nL

= X ∗ n−2nL
(nL+1)2(n−nL+1)2

� 0 for n � 2nL, ∂X̃(nL,n)
∂n = X ∗ 1

(nL+1)(n−nL+1)2
> 0, and

∂2X̃(nL,n)
∂nL∂n = X ∗ n−2nL

(nL+1)2(n−nL+1)2
� for 3nL + 1 � n. The last effect captures the effect

on welfare of changes in industry structure. Consider that two followers merge and behave
as a leader firm. There are now n − 1 firms with nL + 1 leaders. Some algebra leads to
X̃(nL + 1, n − 1) − X̃(nL, n) = X ∗ n−3(nL+1)

(nL+1)(nL+2)(n−nL−1)(n−nL+1) > 0 whenever nL <
n
3 − 1:

so, when there are few leaders, merging can increase aggregate supply. Asymmetry is socially
desirable as it enhances welfare. But when nL >

n
2 , less leaders and more followers could

increase welfare.

In both experiments, the advantages or disavantages in terms of welfare do not stem from
costs but merely from the noncooperative SOE itself: the mergers alter the strategic behavior
of market participants (Daughety, 1990). The difference between the two experiments explains
by the fact that, in the second case, the reduction of the number of followers is associated with
an increase in the number of leaders. But which are the effects of bilateral merging on payoffs?

Example 11 (linear model continued) Effects of mergers on payoffs in the first experiment:
Let us write (10.29) and (10.30) as π̃ i

L(nL, n) for all i ∈ FF , and as π̃ j
F(nL, n) for all j ∈ FF .
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Select one i and one j. Consider the first experiment with the three merging cases. Therefore,
in the case of a merger of two leaders, some calculations yield π̃ i

L(nL−1, n−1)−2π̃ i
L(nL, n) =

− (a−c)2(n2
L−2nL−1)

bn2
L(nL+1)2(n−nL+1)

> 0 if nL = 2. In case of a merger of two followers, we get π̃ j
F(nL, n−1)

−2π̃ j
F(nL, n) = − (a−c)2(n2

L−+2nL−2nnL+n2−2n−1)
b(n−nL)2(nL+1)2(n−nL+1)2

> 0 if 1−√
2 < n−nL < 1+√

2. In the case

of a merger of one leader and one follower, we get π̃ i
L(nL, n − 1) − π̃ i

L(nL, n) − π̃
j

F(nL, n) =
(a−c)2

b(n−nL)2(nL+1)(n−nL+1)2
> 0. Consider now the second experiment with n−1 firms with nL+1

leaders. We get π̃ i
L(nL+1, n−1)−2π̃ j

F(nL, n) = − (a−c)2(nL+1)2(n−nL+1)2−2(nL+2)2(n−nL−1)
b((nL+1)(nL+2)(n−nL−1)(n−nL+1) > 0

for n � 28 is also welfare enhancing.

The first experiment shows that merger between two firms who belong to the same cohort
and have the same market power rarely have an incentive to merge, while merger between two
firms who belong to two distinct cohorts and have different market power is always profitable
since the leader firm incorporates the follower firm regardless of the number of rivals. The
merger supplies the same amount as the leader did before the merging (here X ∗ 1

nL+1 ), but the

joint payoff increases due to a rise in market price (here a+c(n−nL+1)2

(nL+1)(n−nL)(n−nL+1) > 0). In the SOE
the merger internalizes better the effect of the increase in price on payoffs than in the COE:
the decrease in supply is lower than under Cournot quantity competition (see Huck et al.,
2001b). Therefore, the implementation of competition policy should take into consideration
the merger of two firms that are heterogeneous in terms of behavior and strategic market power
(see Huck et al., 2002). The second experiment reveals that mergers can both individually and
socially beneficial with a few leaders (Daughety, 1990).

We now turn to the related question of free entry in the SOE.

3.4 Free Entry

3.4.1 Exogenous versus endogenous entry in the SOE
The multiple leader–follower game delivers an interesting setup to study entry. Two mech-
anisms of entry with first-mover advantage together with their welfare effects are studied
in Etro (2006, 2008). Etro (2008) considers a three-stage game with complete and perfect
information. In stage 1, the leaders enter, pay a fixed cost, and simultaneously determine their
individual strategies. In stage 2, knowing the strategies of the leaders, the potential entrants
determine whether to enter or not (if a firm decides to enter, it pays the fixed cost). In stage 3,
the firms that decide to enter in stage 2 are followers and simultaneously determine their
individual strategies. The associated subgame equilibrium concept is Stackelberg equilibrium
with free entry.20 When entry is exogenous, i.e., the number of followers is fixed, the leaders
are mainly concerned with the reactions of the potential entrants (such reactions are opposite
under strategic substitutability or strategic complementarity). Indeed, the leaders are more
aggressive when strategies are substitutes and more accommodating when strategies are
complements. Nevertheless, when entry is endogenous, the leaders are primarily concerned
with the effects of their choices on the entry decision (Etro, 2008). The induced entry would

20 Two questions are not addressed. First, the existence of a Stackelberg equilibrium with free entry. Second, the
problem of determining whether a follower might become a leader by entering endogenously in the process of entry.
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reduce the profitability of leaders. Therefore, the accommodating behavior is ineffective and
the subsequent aggressive behavior of leaders limits entry.21

The following example shows that in case of homogeneous product, Stackelberg compe-
tition with endogenous entry always leads to entry-deterrence with only leaders as market
participants. In addition, the exogenous entry SOE and the SOE with endogenous entry and
active followers Pareto dominate the COE (Etro, 2008).22

Example 12 (linear model continued) Consider (10.25)–(10.30). Assume now there is a
fixed cost of entry f > 0.

SOE with exogenous entry: Here the game displays two stages of decisions described by
equations (10.17)–(10.21). The entrants are the nF followers. The SOE strategies are given by
x̃ i

L = X ∗ 1
nL+1 , i ∈ FL, and x̃ j

F = X ∗ 1
(nL+1)(nF+1) , j ∈ FF . In addition, the SOE with exogenous

entry Pareto dominates the COE. Indeed, as X̃ = X ∗ nL(nF+1)+nF
(nL+1)(nF+1) > X̂ = X ∗ nL+nF

nL+nF+1 (the SOE

price is lower), the SOE surplus of consumers is higher. In addition, for each i ∈ FL, s̃ i
L =

nF+1
nL(nF+1)+nF

> 1
nL+nF

= ŝ i
L. Finally, as the profits of followers are positive, and for any leader

i, we have π̃ i
L = (a−c)2

b
1

(nL+1)2(nF+1)
− f > π̂ i

L = (a−c)2

b
1

(nL+nF+1)2
− f , i ∈ FL, whenever

nL <
√

nF + 1: then, the social surplus in the SOE is higher than in the COE provided the
number of leaders in not too high.

SOE with endogenous entry: Now the game displays three stages of decisions, and only
a limited number of firms can enter and produce in equilibrium. Therefore, the number of
active firms n is now endogenous. Given XL any follower will supply x j

F = a−c−bXL
b(nF+1) , j ∈ FF .

Therefore, the payoff of follower j is given by π j
F = 1

b

(
a−c−bXL

nF+1

)2 − f , j ∈ FF . The zero-

profit condition for entry, i.e., for all j ∈ FF , π j
F − f = 0, leads to the optimal number of

followers ñF = a−c−bXL√
bf

− 1, which decreases with the supplies of leaders. Then, the supply

of follower j is x j
F = 1

b

√
bf , j ∈ FF . The effective demand is given by p = c + √

bf ,
j ∈ FF . Then, in the first stage, as long as there are some follower entrants, i.e., for ñF � 0

or x̃ i
L � a−c−√

bf
bnL

, the payoff of leader i is π i
L = b

√
bf x i

L − f , i ∈ FL, which increases with

x i
L, with x i

L decreasing in nF . If there is no entry, in which case ñF = 0, the SOE strategy,

aggregate supply, market price and payoffs are given respectively by x̃ i
L = 1

nL
X∗ −

√
bf

bnL
,

i ∈ FL, X̃ = X̃L = X ∗ − 1
b

√
bf , p̃ = c + √

bf , and π̃ i
L = √

bf a−c−√
bf

bnL
− f , i ∈ FL.

So π̃ i
L = √

bf a−c−√
bf

bnL
− f > b

√
bf x i

L − f , i ∈ FL, ∀ñF: the best strategy of leaders is to
prevent entry. In addition, the SOE with endogenous entry Pareto dominates the COE with
endogenous entry. From the linear model subsection 2.2, we deduce that the COE profit with

21 Potential entry is conditioned on the fundamentals of the model (the costs functions and the (im)perfect
substitutability of commodities). Etro (2008) shows that the impact of endogenous entry is amplified in price
competition models. Price quoted by leaders is higher under exogenous entry and lower under endogenous entry.
In particular, under endogenous entry with logit demand or Dixit and Stiglitz (1977) demand, a leader sells its variety
at a lower price, which “Pareto improves” the market outcome.

22 This property is still true in the case of decreasing marginal costs. In the case of quadratic costs, the supply of
any leader always exceeds the supply of any follower, but if the size of the market is not large enough (so fixed costs
are small enough), i.e., the equilibrium number of firms is small, then there is an SOE with entry deterrence (see
Etro, 2008).
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endogenous entry is π̂ i
L = π̂

j
F = (a−c)2

b(nL+nF+1)2
−f , i ∈ FL, j ∈ FF , so the number of active firms

is n̂ = a−c√
bf

− 1. Then, we deduce the COE with endogenous entry, namely x̂ i
L = x̂ j

F = 1
b

√
bf ,

X̂ = X ∗ − 1
b

√
bf , p̂ = c + √

bf , π̂ i
L = π̂

j
F = 0, i ∈ FL, j ∈ FF . Indeed, we have X̃ = X̂

(and then p̂ = p̃), so the surplus of consumers is the same in both equilibria with endogenous
entry. For each i ∈ FL, we have ŝ i

L = 1
X ∗

1
b

√
bf − 1 < 1

nL
= s̃ i

L (as X∗ > 1
b

√
bf ). Then, the

leaders are more aggressive under endogenous entry (x̃ i
L > x̂ i

L, i ∈ FL). Then, leaders have

higher payoffs as π̃ i
L = √

bf a−c−√
bf

bnL
− f > 0, i ∈ FL. Therefore, the social surplus increases

(
√

bf (a − c − √
bf )− nLf > 0).

This example shows that when there is a low number of potential entrants, all followers are
active, but when there are many potential entrants in a free-entry SOE, the only active firms
are the leader firms. In addition, a SOE with free entry improves welfare since Stackelberg
competition induces a reduction in the number of active firms (see Etro, 2008). The aggressive
behavior of leaders may be either a result of market exploitation or the consequence of
an increase in the competitiveness caused by the potential presence of new entrants (the
followers). Therefore, the role of antitrust policy is not crystal clear (see Etro, 2008).

We now turn to the extended version of the SOE, which constitutes the generalized quantity-
setting oligopoly game with homogeneous products.

3.4.2 The extended Stackelberg oligopoly game (T-stage game II)
Let us consider the T-stage decision linear game (Watt, 2002, Lafay, 2010, Julien, Musy,
and Saïdi, 2012). There are T stages of decisions indexed by t, t = 1, 2, . . . , T. Each stage
embodies nt firms, with

∑T
t=1 nt = n. The full set of sequence of stages represents a hierarchy.

The supply of firm i in stage t is denoted by x i
t . The aggregate supply in stage t is given by

Xt ≡ ∑nt
i=1 x i

t . The nt firms behave as leaders (followers) with respect to all firms at stages
τ > t (τ < t). Let p (X ) = a − bX, a, b > 0, where X ≡ ∑

t Xt. The costs functions are
C i

t (x
i
t ) = cx i

t , i = 1, . . . , nt, t = 1, . . . , T, with c < a. The strategy sets are S i
t = [0, X ∗],

i = 1, . . . , nt, t = 1, . . . , T, where X ∗ = a−c
b (with p ∗ = c as the competitive price). The

T-stage SOE is given by x̃ i
t = X∗ t∏

τ=1

1
nτ+1 , t = 1, . . . , T, p̃ = c + (a − c)

t∏
τ=1

1
nτ+1 as

X̃ = X ∗∑T
t=1 nt

∏t
τ=1

1
nτ+1 , and π̃ i

t = (a−c)2

b

t∏
τ=1

1
(nτ+1)2

T∏
τ=t+1

1
nτ+1 , t = 1, . . . , T − 1, and

π̃ i
T = (a−c)2

b

T∏
τ=1

1
(nτ+1)2

.

It is worth noticing that the T-stage Stackelberg linear economy reduces to a multi-stage
Cournot game in which firms compete oligopolistically on the residual demands (see Julien
et al., 2012). Therefore, each firm within a given stage behaves as if there were no following
stages, i.e., as if its direct followers did not matter, generalizing the T-stage monopoly property
of Boyer and Moreaux (1986).

The welfare properties are explored in Julien et al. (2011). To this end, they define ω, the
index of social welfare X̃, as ω =∏T

τ=1 ηtnt = 1 −∏T
τ=1

1
nτ+1 = 1 + η1,T . Then, they obtain

two results. First, when the number of firms becomes arbitrarily large, either vertically (when
T tends to infinity) or horizontally (when nt tends to infinity) the T-stage SOE aggregate supply
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converges toward the CE aggregate supply. Second, the social welfare can be maximized
either by enlarging the hierarchy or by changing the size of existing stages by relocating firms
from the most populated stage until equalizing the size of all stages. The relocation echoes the
merger analysis provided in Daughety (1990). There are two implications. First, a sequential
market structure with one firm per stage Pareto dominates any other market structure, among
which the COE (Watt, 2002). Second, the firms’ surplus may be dominated by the COE
surplus when T � 3. Indeed, unlike the preceding games, the leaders might be better off
if they are supplying simultaneously!

These results may be useful to analyze how entry effects affect welfare. Indeed, when a
new firm enters in stage t it causes a decrease in market price as p̃′(

∑t
t=1 X̃τ + x̃nt+1

t ) −
p̃(
∑t

t=1 X̃τ ) = a−c
nt
∏T
τ=1(nt+1)

< 0. In addition, as in Daughety (1990), the maximization of

welfare implies the most asymmetric distribution of market power. Nevetheless, if costs are
different, entry is affected by some relocations or extensions (for instance by ranking the
entry by costs differences as in Pal and Sarkar, 2001). Lafay (2010) uses a T-stage game in
which firms enter at different times or have different commitment abilities (firms bear different
constant marginal costs). The game confirms the positive effect of entry on welfare. But, the
salient feature is how firms must forecast future entries in the market. Indeed, asymmetric
costs could make entry inefficient. When the firm reasons backwards, and the price is lower
when there is further entry, it enters the market provided its costs do not exceed the resulting
market price.23

4 THE MULTIPLE LEADER–FOLLOWER BILATERAL
MARKET GAME

The SDE and SOE games feature strategic interactions on the supply side of a market with
perfect competition on the demand side. When thinking about the market participants, there
are two shortcomings. First, the market demand is exogenously specified and not derived
from preferences. Second, the market is asymmetric: some agents behave strategically, while
others behave competitively.24 This view corresponds to the Cournot tradition, but might
miss some features regarding the working and the consequences of market power caused
by imperfectly competitive behavior. Therefore, we now consider a class of games in which
all agents, consumers and producers, have preferences for all commodities. Preferences are
endogenized, and market demand stems from strategic behavior. In addition, we allow the
producers to be consumers. Let us notice that the story that will be developed throughout this
section is far from being independent from the preceding ones. In the SDE and SOE games the
presence of two commodities was left implicit: the consumers held some units of numéraire
they were willing to exchange against some units of the produced commodity. The buyers
have a utility function (not necessarily quasi-linear) and they behave strategically.

23 When constant marginal costs differ among firms, the price contribution to an additional entrant may not be
negative since the strategies of all firms are modified when a firm no longer enters the market (see Lafay, 2010).

24 Models of monopolistic competition study imperfect competition in a multi-market environment but each
monopoly firm is strategically isolated; no strategic interactions exist (see Thisse and Ushchev, Chapter 5 in this
volume). Otherwise, in games with differentiated commodities the market is asymmetric as the demand side is
competitive and the supply side is strategic. See Appendix A.
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To model Stackelberg competition within interrelated markets we consider the bilateral
oligopoly model.25 This model features a market with two divisible commodities and a finite
number of traders (Gabszewicz and Michel, 1997, Bloch and Ghosal, 1997, Bloch and Ferrer,
2001, Amir and Bloch, 2009, Dickson and Hartley, 2011). It constitutes an illustration with
two commodities and corner endowments of the Shapley (1976)–Shubik (1973), Dubey and
Shubik, (1978), Sahi and Yao (1989), and Amir et al. (1990) market games models (see
Giraud, 2003). There are two types of traders: each type has a corner endowment on one
good, but wants to consume both goods. There is a market price mechanism that connects
both sides of the market. This mechanism captures strategic interactions within each side
and between both sides of the market. A game is associated with this market in which the
players are the traders, the strategies are their supply decisions, and the payoffs are the utility
they reach for this market outcome. We extend the bilateral oligopoly model introduced by
Gabszewicz and Michel (1997) by considering heterogeneous behavior. Thus, the multiple
leader–follower model is now embedded in a complete strategic quantity-setting game.

We first describe the bilateral multiple leader–follower oligopoly game. Second, we
characterize the optimal behavior and state the bilateral Stackelberg oligopoly equilibrium
(BSOE thereafter) conditions. Third, we consider the market power and the welfare properties
of the BSOE. To this end, we compare the SOE with the bilateral Cournot oligopoly
equilibrium (BCOE) and with the CE. We also outline the main differences with the SDE
and SOE games.

4.1 The Model

Consider an economy with two divisible homogeneous commodities labeled X and Y.26 Let pX

and pY be the corresponding unit prices. We assume commodity X does not exist initially and
must be produced. There are traders of two types, namely 1 and 2, such that the set of traders is
partitioned into two subsets T1 and T2, with T1∩T2 = {∅}. We assume 2 � |T1| < ∞ and 2 �
|T2| < ∞, where |T| denotes the cardinality of the set T. Traders who belong to T1 (resp. T2)
are indexed by i (resp. by j). We assume there are nL leaders and nF followers of type I,
with T1 = {1, . . . , nL, nL + 1, . . . , n}. Similarly, T2 = {1, . . . , mL, mL + 1, . . . , m}. We assume
nL � 1 (resp. mL � 1) and nF � 1 (resp. mF � 1).

Commodity Y is spread among traders who belong to T2: the endowment of trader j is
denoted by ω j, with ω j > 0, for all j ∈ T2. Like in Gabszewicz and Michel (1997), traders of
type 1 have no endowment but have inherited some technology that specifies how to produce
some amount e i of good X with some amount z i of good Y. The production function of trader i
is defined as Fi : R+ → R+, such that e i = Fi(z i), i ∈ T1. We assume all Fi are continuously
differentiable, strictly monotonic and concave (constant returns to scale). Therefore, like in
Sections 2 and 3, for all i ∈ T1, the cost function pYF−1

i (e i) is convex. The utility function of
any type 1 trader is U i : R2+ → R, x i �→ U i(x i, y i), i ∈ T1, while the utility function of any
type 2 trader is V j : R2+ → R, x j �→ V j(x j, y j), j ∈ T2, where x and y represent the amount of

25 The first transposition of Stackelberg competition in an L-commodity setting is provided in Julien and Tricou
(2010) and in Julien (2013) in the context of a pure exchange economy with a finite number of traders, and in Julien
and Tricou (2012) with a productive sector.

26 We could consider good Y is commodity money. This interpretation is implicit in the Stackelberg games of
Sections 2 and 3 in which each consumer is endowed with units of numéraire that she exchanges for the produced
good.
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goods X and Y consumed. The utility functions are twice-continuously differentiable, strictly
monotonic and strictly quasi-concave.

We associate now a noncooperative market game � with this economy. This game displays
two stages of decisions and no discounting. The timing of positions is given. Information is
assumed to be complete and perfect. Let B i = {b i ∈ R+ : 0 � b i � e i} be the strategy sets
of trader i ∈ T1. The quantity b i denotes the pure strategy of any trader i ∈ T1. The strategy
b i represents the amount of commodity X trader i ∈ T1 sells. Likewise, let Q j = {q j ∈ R+ :
0 � q j � ω j}, where q j is the pure strategy of trader j ∈ T2. Therefore, trader i consumes
the difference between the amount produced e i and the amount sold b i, i.e., x i = e i − q i,
i ∈ T1. In addition, she buys the amount y i = π i

pY
of good Y, where π i is her nominal profit,

with π i
(
b i, e i

) = pXq i − pYF−1
i (e i), i ∈ T1. A strategy profile is represented by the vector

(b; q) = (b1, b2, . . . , bn; q1, q2, . . . , qm), with (b; q) ∈ ∏
i∈T1

B i × ∏
j∈T2

Q j. Let b −i (q−j)
denote the strategy profile of all type 1 traders but i (j). In addition, let bL and bF be the
strategy profiles of type 1 leaders and followers. We also consider b −i

L and b −i
F . The same

holds for q, with q = (qL, qF) and (q−j
L , q−j

F ).
There is a trading post that specifies the relative price at which exchange occurs. The

relative price pX
pY

is such that pXB ≡ pY
∑

i∈T1
b i must balance pYQ ≡ pY

∑
j∈T2

q j (see
Sahi and Yao, 1989). Therefore, given a price vector p = (pX , pY) and a strategy profile
(b; q), the market clearing price pX

pY
(b; q) obtains as:27

pX

pY
(b; q) = Q

B
, if B > 0 and Q > 0. (10.34)

So, after exchange, each trader obtains the following commodity bundle:

(
x i, y i) =

(
e i − b i,

Q
b i + B −i

b i − F−1
i (e i)

)
, i ∈ T1 (10.35)

(
x j, y j) =

(
B

q j + Q−j
q j,ω j − q j

)
, j ∈ T2. (10.36)

The corresponding utility levels may be written as payoffs:

� i(b; q) = U i
(

e i − b i,
Q

b i + B −i
b i − F−1

i (e i)

)
, i ∈ T1 (10.37)

� j(b; q) = V j
(

B
q j + Q−j

q j,ω j − q j
)

, j ∈ T2. (10.38)

We now analyze the properties of this Stackelberg bilateral market game.

27 Since we consider only active equilibria, i.e., market participation equilibria without autarky, we delete the case
for which pX

pY
(b; q) = 0 if B = 0 and/or Q = 0.
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4.2 Bilateral Stackelberg Oligopoly Equilibrium

We first define the BSOE of this market game. Second, we provide a characterization of the
equilibrium conditions. Third, we study the welfare properties of the BSOE. To this end, we
study the effects of strategic interactions on market power, which we compare with the games
developed in Sections 2 and 3.

4.2.1 BSOE: definition
The BSOE is a noncooperative equilibrium of a two-step game where the players are the
traders who belong to both sides of the market, the strategies are the quantity they send to
the market for trade, and their payment is the utility levels they reach. To simplify we denote
an allocation (x, y) by a, with (x̃ i, ỹ i) = ã i, for i ∈ T1, and (x̃ j, ỹ j) = ã j, for j ∈ T2. In
addition, like in Section 3, let bF = ϕ(bL; qL) be the vector of best responses, with component
b i = ϕ i(bL; qL), i = nL + 1, . . . , n. Similarly, let qF = σ (bL; qL), with component q j =
σ j(bL; qL), j = mL + 1, . . . , m.

Definition 3 Given �, a vector ((b̃; q̃); ã), consisting of a strategy profile (b̃; q̃) =
(b̃1, . . . , b̃n; q̃1, . . . , q̃m) and an allocation ã such that ã i(b̃ i, pX

pY
(b̃; q̃)), for i ∈ T1, and

ã j(q̃ j, pX
pY
(b̃; q̃)), for j ∈ T2, constitutes a bilateral Stackelberg oligopoly equilibrium, with

respect to a relative price pX
pY
(b̃; q̃), if:

� i(ã i(b̃ i, pX
pY
(b̃ i, b̃ −i;q̃))) � � i(a i(b i, pX

pY
(b i, b̃ −i;q̃))), ∀b i ∈ B i, i = nL + 1, . . . , n

� j(ã j(q̃ j, pX
pY
(b̃;q̃ j, q̃−j))) � � j(a j(q j, pX

pY
(b̃;q j,q̃−j))), ∀q j ∈ Q j, j = mL + 1, . . . , m

� i(ã i(b̃ i, pX
pY
(b̃ i, b̃ −i

L , ϕ(b̃ i, b̃ −i
L ;q̃L);q̃L, σ (b̃ i, b̃ −i

L ;q̃L)))) �

� i(a i(b i, pX
pY
(b i, b̃ −i

L , ϕ(b i, b̃ −i
L ;q̃L);q̃L, σ (b i, b̃ −i

L ;q̃L)))), ∀ϕ(.) ∈ ∏
i>nL

B i, ∀σ (.) ∈
∏

j>mL

Q j, ∀b i ∈ B i, i = 1, . . . , nL

� j(ã j(q̃ j, pX
pY
(b̃L, ϕ(b̃L;q̃ j, q̃−j

L );q̃
j, q̃−j

L , σ (b̃L;q̃ j, q̃−j
L )))) �

� j(a j(q j, pX
pY
(b̃L, ϕ(b̃L;q j, q̃−j

L );q
j, q̃−j

L , σ (b̃L;q j, q̃−j
L )))), ∀ϕ(.) ∈ ∏

i>nL

B i, ∀σ (.) ∈
∏

j>mL

Q j, ∀q j ∈ Q j, j = 1, . . . , mL.

Thus, a BSOE is a n + m-tuple of strategies (b̃; q̃) chosen by the traders such that no trader
has an advantage to deviate unilaterally from her choice. We here assume the existence and
uniqueness of an active (nonautarkic) BSOE and we focus on the equilibrium properties of
the game.28

28 To avoid the trivial equilibrium, some restrictions are needed regarding the behavior of the indifference curves

on the boundary of the commodity space (limxk→0
∂uk

∂xk = limyk→0
∂uk

∂yk = ∞). It implies that the indifference curves

have no intersection with the axis in the quantity space. More generally, the existence of an active Cournot oligopoly
equilibrium rises specific difficulties. Indeed, it is well known that the Cournot bilateral oligopoly model can have
the trivial equilibrium as a possible outcome (see notably Cordella and Gabszewicz, 1998).

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

292 Handbook of game theory and industrial organization: theory

4.2.2 BSOE: characterization

Let s i
X ≡ b i

B and s j
Y ≡ q j

Q as the market shares of trader i and trader j.

Proposition 6 If the strategy profile (b̃; q̃) constitutes a BSOE, then:

pX

pY

(
1 − (1 + νX)s̃

i
X + ηY

b̃ i

Q̃

)
= dF−1

i (e i)

de i |e i=ẽ i
, i = 1, . . . , nL (10.39)

pX

pY

(
1 − s̃ i

X

) = dF−1
i (e i)

de i |e i=ẽ i
, i = nL + 1, . . . , n (10.40)

pY

pX

(
1 − (1 + νY)s̃

j
Y + ηX

q̃ j

B̃

)
= MRS j

Y/X(ã
j), j = 1, . . . , mL (10.41)

pY

pX

(
1 − s̃ j

Y

)
= MRS j

Y/X(ã
j), j = mL + 1, . . . , m, (10.42)

where νX = ∂ϕ(bL;qL)

∂b i , ηY = ∂σ (bL;qL)

∂b i , νY = ∂σ (bL;qL)

∂q j , and ηX = ∂ϕ(bL;qL)

∂q j represent the

aggregate reactions of followers to a small change of each leader’s strategy,
dF−1

i (e i)

de i is the

marginal cost of trader i ∈ T1, and MRS j
Y/X is the marginal rate of substitution of good X for

good Y of trader j ∈ T2.

Proof See Appendix B. �

The conditions (10.39)–(10.42) state that, for each trader, the marginal revenue balances
the rate of tradeoff between both commodities X and Y. In (10.39) and (10.40), the rate
of tradeoff is the marginal cost, i.e., the marginal rate of transformation of good Y for
good X, while in (10.41) and (10.42), it is the marginal rate of substitution between goods
X and Y. A trader’s real marginal revenue always depends upon her market share, which
measures her weight with respect to the size of her market side. Is also depends upon the
price elasticity(ies) of aggregate supply function(s), namely εX := d log B

d log(pX/pY )
= −1 and

εY := d log Q
d log(pX/pY )

= 1. Conditions (10.39) and (10.40) depend also upon the terms νX and
νY that feature strategic interactions between the leaders and the followers who belong to
the same side of the market. The meaning of these terms receive the same interpretation
as the one given in Sections 2 and 3. Indeed, when ν � 0 (ν < 0), the strategies are
independent or complements (substitutes) in the same side of the market. But the terms
ηX and ηY feature (new) strategic interactions between the leaders and the followers who
belong to opposite sides of the market. Indeed, when η < 0 (η � 0), the strategies are
substitutes (complements) between both sides of the market. The complementarity stems from
the substitutability between commodities (see Bloch and Ferrer, 2001 for the Cournot bilateral
market). It is worth noticing that η has some connections with the parameter that measures the
differentiation between commodities in the differentiated products game (see Appendix A).

Whilst these conditions share some similarities with those obtained in the games developed
in Sections 2 and 3, they are derived from a two-commodity framework. Likewise, the price
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clears the market, i.e., the aggregate strategic supply must be consistent with the market
demand. But here the demand side (which includes the producers) is endogenous since it
is derived from preferences. Then, this game explains how relative price is formed as the ratio
of aggregate strategic supplies. Hence, the price is not obtained on the basis of a given market
demand function. Therefore, the market outcome does not depend on specific assumptions
regarding the demand function.

Remark 2 When U i(.) = U(.) and Fi(.) = F(.), i = 1, . . . , n, the (10.39)–(10.40) may be

written as pX
pY

(
1 − 1+νX

nL
+ ηY

nL

pY
pX

)
= dF−1

i (e i)

de i , i < nL+1, pX
pY

(
1 − 1

nF

)
= dF−1

i (e i)

de i , i � nL+1.

The same holds for type 2 traders.

We now explore the welfare properties of the Stackelberg bilateral oligopoly model and we
outline the market power at stake.

4.3 Market Power and Welfare

We now consider market power in the BSOE. More specifically, we compare the BSOE with
the BCOE, and with the CE. Then, we consider the relation between market concentration and
surplus, and also the relation between individual market power and payoffs. Do the welfare
properties of the BSOE differ significantly from those of the SOE? Why or why not?

4.3.1 The BSOE, BCOE and CE aggregate market outcomes
It is possible to state the following propositions: the first extends the inefficiency property
of single-industry games, while the second is specific to the multiple leader–follower
noncooperative market game:

Proposition 7 The noncooperative BSOE is inefficient.

Proof Immediate from (10.39)–(10.42). For each pair (i, j), we get (1 − (1 + νX)s̃ i
X +

ηY
b̃ i

Q̃
)−1 dF−1

i (e i)

de i |e i=ẽ i = (1 − q̃ j

Q̃
)−1 ∂V j/∂x j

∂V j/∂y j (ã j), i = 1, . . . , nL, j = mL + 1, . . . , m. �

The BSOE displays some market failures: the marginal rate of transformation of good Y
into good X is not equal to the marginal rate of substitution between X and Y. Market power is
caused by imperfectly competitive behavior: the market outcome within an industry is affected
by the strategic interactions that prevail in the other industry (and vice versa)!

Proposition 8 There is no Pareto domination between the BSOE and the BCOE aggregate
market outcomes, i.e., the BSOE aggregate supplies (market price) are not necessarily higher
(not necessarily lower) than the COE aggregate supplies (market price). But the CE aggregate
supplies (market price) are higher (lower) than the BSOE and BCOE aggregate supplies.

By contrast with the previous games, this market game illustrates that aggregate market
outcomes cannot be Pareto ranked. Here every trader exerts her market power by restricting
the amount of the good brought to the market. To highlight the difference with partial games,
recall that commodity Y may be viewed as commodity money (Shapley and Shubik, 1977).
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The market price is determined as the ratio of total bids of traders who buy over total
supply of traders who produce but do not sell all their production. Then, as all traders
behave strategically, a lower price does not mean higher aggregate supply! Thus, unlike
Stackelberg competition equilibria with one homogeneous product or two differentiated
products, no general conclusion emerges when strategic interactions occur between (at least)
two industries. Nevertheless, we state some connection with the partial framework by looking
at two scenarios: first, the traders of type 2 behave à la Cournot, and second, they behave
competitively. The next example illustrates these features:

Example 13 Consider |T1| = |T2| = 2, ω j = (0, 1), j = 1, 2, U i(x i, y i) = (
(x i)ρ + (y i)ρ

) 1
ρ ,

ρ � 1, i = 1, 2, V j(x j, y j) = x j.y j, j = 1, 2, F1(z1) = 1
β

z1, β ∈ (0, 1) and

F2(z2) = 1
γ

z2, γ ∈ (0, 1). The CE is given by ( p̂X
pY
) ∗ = min {β, γ }, (e i) ∗ = 1

min{β,γ } ,

(π i) ∗ = (� i) ∗ = 0, i = 1, 2, and (� j) ∗ = 1
4

1
min{β,γ } , j = 1, 2. The BCOE is given by

(b̂1, ê1) = 2
3

γ
β+γ (

1
β+γ ,

1
β+γ +

(
1
β

) 1
1−ρ

1+
(

1
β

) ρ
1−ρ

), (b̂2, ê2) = 2
3

β
β+γ (

1
β+γ ,

1
β+γ +

(
1
γ

) 1
1−ρ

1+
(

1
γ

) ρ
1−ρ

), and q̃ j = 1
3 ,

j = 1, 2, and
(

p̂X
pY

)
= β + γ . The computation of the BSOE strategies leads to (b̃1, ẽ1) =

√
2(31+√

97)
12

1
2
γ
β
( 1

2β ,
1

2β+
(

1
β

) 1
1−ρ

1+
(

1
β

) ρ
1−ρ

), (b̃2, ẽ2) =
√

2(31+√
97)

12 (1 − 1
2
γ
β
)( 1

2β ,
1

2β+
(

1
γ

) 1
1−ρ

1+
(

1
γ

) ρ
1−ρ

), and

(q̃1, q̃2) = (
√

97−5
12 , 5+

√
2(31+√

97)−√
97

12 ). So we deduce B̃ =
√

2(31+√
97)

12
1

2β and Q̃ =√
2(31+√

97)
12 , then ( p̃1

p2
) = 2β. Therefore, if β � γ , then ( p̂X

pY
) ∗ < (

p̃X
pY
) � (

p̂X
pY
), whilst if

β > γ , then, ( p̂X
pY
) ∗ < (

p̂X
pY
) < (

p̃X
pY
). In addition, Q ∗ > Q̂ > Q̃, and B ∗ > B̃ and B ∗ > B̂.

And, if β = γ , then B̃ > B̂. But when β 
= γ things are more complicated. Indeed, if β < γ ,

with γ = aβ, a > 1, then B̃ > B̂ whenever β < 1
16

√
2(31 + √

97) 1+a
a , while if β > γ ,

with β = bγ , b > 1, then B̃ > B̂ whenever β < 1
16

√
2(31 + √

97)(1 + b). Now, assume
that both traders of type 2 behave as followers. Then, the best response of type 1 follower is
the same. The best responses of type 2 followers are given by σ 1(q2) = −q2 +

√
(q2)2 + q2

and σ 2(q1) = −q1 +
√
(q1)2 + q1. Some computations yield (b̌1, ě1) = 1

3
γ
β
( 1

2β ,
1

2β+
(

1
β

) 1
1−ρ

1+
(

1
β

) ρ
1−ρ

),

(b̌2, ě2) = 2
3 (1 − 1

2
γ
β
)( 1

2β ,
1

2β+
(

1
γ

) 1
1−ρ

1+
(

1
γ

) ρ
1−ρ

), and q̌ j = 1
3 , j = 1, 2. Then, we get B̌ = 1

3β and

Q̌ = 2
3 , so ( p̌X

pY
) = 2β. Then, ( p̌X

pY
) = (

p̃X
pY
). Finally, assume that both traders of type 2 behave

as price-takers. We deduce B̄ = 1
2β and Q̄ = 1, so ( p̄X

pY
) = 2β. Therefore, ( p̄X

pY
) = (

p̃X
pY
). Then,

(
p̂X
pY
) ∗ < ( p̌X

pY
) = (

p̄X
pY
) = (

p̃X
pY
). In addition, Q ∗ = Q̄ > Q̌ > Q̃ and B̃ < B̌ < B̄ < B∗.

Therefore, in a BSOE the aggregate supply is lowest than in other strategic equilibria: the
supply of good X increases when the market power of the agents endowed with commodity
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Y dilutes. The rate of tradeoff becomes more disadvantageous for these traders, who must
consequently “spend more money” to consume the same amount of good X. When all traders
endowed with commodity Y behave as followers, the corresponding market outcome results
in the Stackelberg-Cournot equilibrium. But when they behave as price-takers the market
outcome results in the Stackelberg-Walras equilibrium (see Julien and Tricou, 2012). Such
a market structure is implicit in the games of Sections 2 and 3. The central message is as
follows: if one side of the market embodies strategic traders while the other side includes
only price-taking traders, the BSOE aggregate market outcomes mimic the SDE and SOE
aggregate market outcomes of the partial industry models.29

4.3.2 Market power
The notion of surplus makes no sense here. In addition, a measure of concentration is
difficult to capture as all traders behave strategically. We rather consider the Lerner indexes:

L i
L ≡

pX
pY

− dF−1
i (e i)

de i
pX
pY

, i = 1, . . . , nL, L i
F ≡

pX
pY

− dF−1
i (e i)

de i
pX
pY

, i = nL + 1, . . . , n, L j
L ≡

pY
pX

−MRS j
Y/X

pY
pX

,

j = 1, . . . , mF , and L j
F ≡

pY
pX

−MRS j
Y/X

pY
pX

, j = mF + 1, . . . , m. The following corollary echoes

(10.13)–(10.14) and (10.33).

Corollary 2 Let L i
X, i ∈ T1, and L j

Y , j ∈ T2, be the Lerner indexes. Then:

L i
L = (1 + νX)s̃

i
X − ηY

b̃ i

Q̃
, i = 1, . . . , nL (10.43)

L i
F = s̃ i

X , i = nL + 1, . . . , n (10.44)

L j
L = (1 + νY )s̃

j
Y − ηX

q̃ j

B̃
, j = 1, . . . , mL (10.45)

L j
F = s̃ j

Y , j = mL + 1, . . . , m. (10.46)

Proof Immediate from (10.39)–(10.42) and by using the Lerner indexes. �

These conditions show that strategic behavior of any trader consists in contracting her
supply to manipulate the rate of exchange.

Remark 3 The markups are given by κ i
L = 1

1+(1+νX)s1
X−ηY

b1
Q

−1, i = 1, . . . , nL, κ i
F = 1

1+s1
X
−1,

i = nL + 1, . . . , n. Similar expressions hold for all j ∈ T2.

Proposition 9 Let L i
L, i = 1, . . . , nL, and L j

L, j = 1, . . . , mF. Then,
∂L i

L
∂b i > 0, i = 1, . . . , nL,

whenever νX � 0 and ηY < 0; and,
∂L i

L
∂q j > 0, j = 1, . . . , mL, whenever ηX < 0 and ηY > 0. In

29 An alternative, but equivalent way to model such asymmetric positions in markets consists of considering
Stackelberg competition with a mixed measure space of traders (Julien, 2012).
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addition,
∂L j

L
∂q j > 0, j = 1, . . . , mL, whenever νY � 0 and ηX < 0; and,

∂L j
L

∂b i > 0, i = 1, . . . , nL,
whenever ηX > 0 and ηY < 0.

Proof Immediate from (10.39) as
∂L i

L
∂b i = (1+νX)

B [1 − (1 + νX)s i
X] − ηY

1
Q + η2

Y
b i

Q2 and
∂L i

L
∂q j = −(1 + νX)ηX

b i

B2 + ηY (1 + νY)
b i

Q2 . The same holds with (10.41). �

Thus, any leader’s market power increases with her strategy when strategies are substitutes
in both industries (the other followers decrease their supply). In addition, her market power
increases with the strategy of any other leader type when the strategies of type 2 traders
are substitutes, and the strategies of leaders and of followers of two different types are
complements. Again these effects depend critically on preferences. As the market power is
relative, we give the definition:

Definition 4 Let l i = L i
L

L i
F

, l j = L j
L

L j
F

, lij = L i
L

L j
L

be the relative Lerner indexes.

Proposition 10 Assume U i(.) = U(.) and V j(.) = V(.). Then:

1. l i � 1 iff

(
dF−1

i (e i)

de i |e i=ẽ i

)

i<nL+1
�
(

dF−1
i (e i)

de i |e i=ẽ i

)

i�nL+1

, and;

2. l j � 1 iff
(
MRS j(ã j)

)
j<mL+1 �

(
MRS j(ã j)

)
j�mL+1.

Proof Immediate from the definitions of the Lerner indexes. �

The market power of any trader is higher when the ratio of sacrifice (either in production or
in consumption) is lower. The market power depends not only on the number of traders, but
also on preferences and/or endowments. Thus, industries are “connected” by preferences.

Remark 4 Consider l i = 1 (or l j = 1). Then, unlike the games of Sections 2 and 3 with
constant identical marginal costs, the equilibrium strategies of leaders and followers are equal
when costs are identical! Here the production decisions, and thereby the costs, are determined
by preferences.

Corollary 3 Assume U i(.) = U(.) and V j(.) = V(.). Then:

1. l i = 1 iff (b̃ i)i<nL+1 = (b̃ i)i�nL+1 , and;

2. l j = 1 iff
(
q̃ j
)

j<mL+1 = (
q̃ j
)

j�mL+1.

Proof Immediate from (10.43)–(10.46). �

Whilst the first implication always holds for isolated industries, the second no longer holds:
equilibrium strategies may differ when marginal costs are equal!
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Proposition 11 Assume all traders i ∈ T1 (resp. j ∈ T2) have the same utility function and the
same technology (resp. the same endowments), and ηX = ηY = 0. Then, l i = 1 (resp. l j = 1)
if and only if νX = 0 (resp. νY = 0). In particular, for each i ∈ T1, b̃ i = b̂ i, and for each
j ∈ T2, q̃ j = q̂ j, where b̂ i and q̂ j are the BCOE strategies of trader i and trader j respectively.

Proof Immediate by using (10.39)–(10.42), Corollary 3 and Remark 3. �

This equivalence between the BSOE and the BCOE mimics the equivalences obtained in
Propositions 2 and 5.

Proposition 12 In a BSOE, if ηX = 0 and νX < 0, then ∂lij

∂b i > 0, i < nL + 1, j < mL + 1. In

addition, if ηY = 0 and νY < 0, then ∂lij

∂q j > 0, i < nL + 1, j < mL + 1.

Proof As lij = b i

q j

(1+νX)
pX
pY

−ηY

(1+νY )−ηX
pX
pY

, then lij

∂b i = 1
b i l

ij[1 − s i (1+νX)(1+νY )−ηXηY

(1+νY )−ηX
pX
pY

]. If ηX = 0 and

νX < 0, then lij

∂b i = 1
q j

(1+νX)
pX
pY

−ηY

(1+νY )

[
1 − (1 + νX)s i

]
> 0. �

Therefore, the relative market power of any leader increases with her strategy (the strategy
of any type 2 leader) when the strategies are substitutes within each side of the market. Thus, it
extends the properties of the partial model when the behavior of buyers and sellers is strategic.

4.3.3 Market power and payoffs
We can now state the following proposition that holds in a BSOE:

Proposition 13 Assume that all traders have the same utility function. Then:

1. (�̃ i)i<nL+1 � ( �̃ i)i�nL+1 iff

(
dF−1

i (e i)

de i |e i=ẽ i

)

i<nL+1
�
(

dF−1
i (e i)

de i |e i=ẽ i

)

i�nL+1

;

2. (�̃ j)j<mL+1 = (�̃ j)j�mL+1 iff
(
MRS j(ã j)

)
j<mL+1 = (

MRS j(ã j)
)

j�mL+1.

Part 1 says that the traders who bear the lower (higher) cost reach higher (lower) payoffs.
But part 2 says that a leader can have higher Lerner index and less payoffs even if they have
the same endowments!

Corollary 4 Assume that all traders have the same utility function. Then:

1. (�̃ i)i<nL+1 � ( �̃ i)i�nL+1 iff l i � 1, and;

2. (�̃ j)j<mL+1 = (�̃ j)j�mL+1 iff l j = 1.

Let us notice that Proposition 2 and Corollary 1 stated in Section 2 no longer hold when
l i = 1 or l j = 1: the reason stems from the fact that in this game the real opportunity costs
(production costs and marginal rates of substitution) are determined by preferences. Here
equal market power means equal payoff.
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4.4 Free Entry

We investigate now the conditions under which more competition would affect market power.
The BSOE market game displays some inefficiency caused by strategic interactions. Indeed,
failure of optimality stems from the fact that each trader restricts the quantity she sends to
the market. We would like to know whether market performance is linked to the thickness
of the market. Hence, for a fixed number of traders, under which conditions does the BSOE
coincide with the CE? More specifically, under exogenous free entry, does the sequence of
bilateral Stackelberg equilibria converge asymptotically toward the CE?

4.4.1 When does strategic behavior become competitive?
First, under which conditions does the BSOE coincide with the CE?

Proposition 14 If νX = νY = −1 and ηX = ηY = 0, then the BSOE coincides with the CE.

Proof Consider (10.43) and (10.46). If νX = νY = −1 and ηX = ηY = 0, then L i
L = L j

L = 0,

which from (10.39) and (10.42) means pX
pY

= dF−1
i (e i)

de i , i = 1, . . . , nL, and pY
pX

= MRS j
Y/X ,

j = 1, . . . , mL. In addition, if νX = νY = −1, then L i
L = 0, i = nL + 1, . . . , n, and L j

L = 0,
j = mL + 1, . . . , m. �

When νX = νY = −1, aggregate best responses have slopes equal to −1: any change in
the strategies of leaders is exactly compensated by an equal reduction of followers’ aggregate
supply, which leaves the relative price unchanged (any increase is entirely “absorbed” by the
rivals). In addition, when ηX = ηY = 0, there is no strategic interaction between both sides of
the market: both industries are “strategically” isolated. This result extends a result that holds
in single-industry models (see Dixit, 1986).

4.4.2 Free entry: a replication exercise
We now study exogenous free entry. To this end, the economy is enlarged in such a way
the number of leaders increases. Let r be an integer, with r ≥ 1. The new bilateral market
game �r now includes rnL leaders of type 1, each being indexed by ik, i = 1, . . . , nL, k =
1, . . . , r, and rmL leaders of type 2, each being indexed by jk, j = 1, . . . , mL, k = 1, . . . , r.
Therefore, there are now rnL + nF traders of type 1 and rmL + mF traders of type 2. Let
Uik(xik, yik) and V j k(x j k, y j k) the utility functions of leader ik of type 1 and of leader jk of
type 2 respectively. In addition, eik = Fik(zik), i = 1, . . . , nL, k = 1, . . . , r, and e i = Fi(z i),
i = rnL +1, . . . , rnL +nF. Finally, w j k = (0, 1), j = 1, . . . , mL, k = 1, . . . , r, and w j = (0, 1),
j = rmL + 1, . . . , rmL + mF .

Given a strategy profile (br; qr), the market clearing price pX
pY

(br; qr) obtains as

pX
pY
(br; qr) =

∑r
k=1

∑mL
j=1 q j k+∑rmL+mF

j=rmL+1 q j

∑r
k=1

∑nL
i=1 bik+∑rnL+nF

i=rnL+1 b i
. Following the same steps as in Appendix B and

using Remark 2, we deduce:

pX

pY

(
1 − (1 + νX)s̃

ik
X (r)+ ηY

B̃(r)

Q̃(r)
sik

X (r)

)
= dF−1

ik (e
ik)

deik
, i < nL + 1, k � 1 (10.47)
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pX

pY

(
1 − s̃ i

X(r)
) = dF−1

i (e i)

de i
, i = rnL + 1, . . . , rnL + nF (10.48)

pY

pX

(
1 − (1 + νY )s̃

j k
Y (r)+ ηX

Q̃(r)

B̃(r)
s j k

Y (r)

)
= MRS j k

Y/X , j < mL + 1, k � 1 (10.49)

pY

pX
(1 − s̃ j

Y (r)) = MRS j
Y/X , j = rmL + 1, . . . , rmL + mF . (10.50)

Proposition 15 Assume: (H1) both commodities are normal for all traders and all the utility
functions satisfy the gross substitutes property; and, (H2) all leaders and all followers of each
type are identical. Then, when the number of leaders becomes arbitrarily large the BSOE of
the replicated economy converges to the CE.

Proof Consider (10.47)–(10.50) under (H2). We have sik
X (r) = bik

BL

BL
B , where BL ≡

∑r
k=1

∑nL
i=1 bik, and s j k

Y (r) ≡ q j k

QL

QL
Q , where QL ≡ ∑r

k=1
∑mL

j=1 q j k. Using Remark 2, we

get for the leaders limr→∞(1 + νX)sik
X (r) = limr→∞ 1+νX

r
B̃L(r)
B̃(r)

= 0 as 0 <
B̃L(r)
B̃(r)

< 1,

and limr→∞(1 + νY)s
j k
Y (r) = limr→∞ 1+νY

r
Q̃L(r)
Q̃(r)

= 0 as 0 < Q̃L(r)
Q̃(r)

< 1. In addition,

limr→∞ ηY
B̃(r)
Q̃(r)

sik
X (r) = limr→∞ ηY

r
B̃L

B̃(r)
B̃(r)
Q̃(r)

= 0 as limr→∞ Q̃(r)
B̃(r)

= (
pX
pY
)∗, by using

Proposition 3 in Amir and Bloch (2009). Indeed, under (H1), both B̃(r) and Q̃(r) increase
with r, and converge monotonically to the CE. For the followers, we have limr→∞ sik

X (r) =
limr→∞ 1

r
B̃L(r)
B̃(r)

= 0 and limr→∞ s j k
Y (r) = limr→∞ 1

r
Q̃L(r)
Q̃(r)

= 0. Then, (10.47)–(10.50) may

now be written pX
pY

= dF−1
ik (e

ik)

deik , i < nL + 1, k � 1, pX
pY

= dF−1
i (e i)

de i , i = rnL + 1, . . . , rnL + nF;

and, pY
pX

= MRS j k
Y/X , j < mL + 1, k � 1, and pY

pX
= MRS j

Y/X , j = rmL + 1, . . . , rmL + mF . �

When the economy is replicated an infinite number of times the BSOE market outcome
converges to the CE. This result may be explained as follows. When commodities are
substitutes, for any given supply of good Y, an increase in the supply of good X by leaders
decreases the relative price, and increases the purchasing power of the traders of type 2.
Under normality of good, they increase their demand for commodity X and, by the gross
substitutability property of the utility function, they substitute quantities of good Y for
quantities of good X. Then, it puts up the supply of commodity Y. This effect is also based on
the fact that the strategies of leaders and followers within each side of the market are strategic
complements, in which case the aggregate best responses increase. These effects are similar
to those described in Amir and Bloch (2009) who consider a bilateral oligopoly game with
Cournot competition. They show that under (H1) and (H2) the equilibrium of the market game
converges monotonically to the CE. On the other hand Dickson (2013) studies the conditions
under which entry by new sellers raises the Cournot-Nash equilibrium payoffs of existing
sellers. When the demand is sufficiently elastic, sellers with large enough market shares leads
to profit-increasing competition. But here the main difference stems from the fact that the
effects of entry are also driven by the followers’ reactions. Such results confirm the point that
the market demand must be endogenized since preferences play a critical role.
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5 CONCLUSIONS

This inquiry into Stackelberg competition under quantity-setting two-stage games with perfect
and complete information reveals the following:

1. In basic duopoly games, the SDE social surplus is higher (lower) than the CDE (CE)
social surplus. In addition, endogenous timing and experimental games suggest that the
noncooperative SDE can emerge as a plausible market outcome. Finally, free entry may
lead to the competitive market outcome.

2. In the multiple leader–follower games, the welfare property stated in (1) holds, but
no longer holds in multi-stage decision settings, when the number of stages is greater
than two. In addition, the asymmetry between firms can limit market inefficiencies, so
welfare is not always correlated with concentration. Moreover, merging between firms
who belong to two distinct cohorts may be welfare enhancing. Finally, the Stackelberg
equilibria with exogenous entry and endogenous entry Pareto dominate the Cournot
equilibria with entry.

3. In the two-stage multiple leader–follower bilateral market game there is no Pareto ranking
between market outcomes. Thus, the study of market performance is more complex.
Production decision and strategic behavior depend critically upon preferences. Unlike the
differentiated products games in which prices are based on some specific utility function,
a market-clearing mechanism determines the relative price. In addition, market power is
relative, and some features are not captured in single-industry games. Indeed, the leaders
and the followers reach the same payoff when they bear the same cost. Moreover, as
preferences matter, the comparative statics effects depend upon whether commodities are
complements or substitutes. Finally, the BSOE converges to the CE when the market is
enlarged.

To conclude, the class of Stackelberg bilateral oligopoly games provides a richer set of
strategic interactions. Stackelberg competition in a multi-commodity market deserves careful
study to investigate merging and free entry, and it paves the way for future theoretical and
applied research devoted to competition policy.
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APPENDIX A: A MULTIPLE LEADER–FOLLOWER GAME WITH
TWO DIFFERENTIATED PRODUCTS

In Appendix A, we consider the basic game with differentiated products. Thus, we compare
this model with the two homogeneous commodities models developed in Section 4. We
consider a quantity-setting multiple leader–follower game with two differentiated products.
Then, we compare the SOE with two differentiated products with the corresponding CE. We
also compare the payoffs with the corresponding Cournot equilibrium payoffs. Moreover, we
compare a duopoly differentiated version of this model with the BSOE game of Section 4.
Finally, we consider the Bertrand leadership price-setting game, which we compare with the
quantity-setting game.

Consider a market with a continuum [0, 1] of identical consumers. The preferences of
consumers are represented by the following quasi-linear utility function:

U(X1, X2, M) = X1 + X2 − 1

2

(
(X1)

2 − 2αX1X2 + (X2)
2
)

+ M, (A1)

where Xi, i = 1, 2, is the quantity of commodity i and M is the quantity of a numeraire good,
whose price is equal to 1. The parameter α, with α ∈ (−1, 1), indicates whether the goods are
substitutes, independent or complements, whenever α � 0 respectively.1 The budget set of

any consumer is B(p1, p2, I) = {
(X1, X2) ∈ R

2+ : p1X1 + p2X2 + M � I)
}
, where 0 < I < ∞

is her income.
Let L(X1, X2, M, λ) := U(X1, X2, M)+ λ(I − p1X1 − p2X2 − M) be the Lagrangian, where

λ � 0 is the Lagrange multiplier. By using the fact that the third optimality condition yields
λ ∗ = 1, and since the measure of consumers over [0, 1] is equal to 1, the system of inverse
market demand functions may be obtained as:

p1 = 1 − X1 + αX2 (A2)

p2 = 1 − X2 + αX1,

with p1 � 0 and p2 � 0, i.e., 1 + αX2 � X1 and 1 + αX1 � X2: the marginal utility of each
consumer for each commodity must be non-negative for exchange to hold.

Commodity 1 is produced by n1 leaders, while commodity 2 is produced by n2 fol-
lowers. To simplify and without loss of generality, costs are assumed to be zero. Define
π i

1 (x
i
1, X −i

1 , X2) := (1 − x i
1 − X −i

1 + αX2)x i
1 as the payoff function of leader i, i = 1, . . . , n1,

where x i
1 is her supply, with X −i

1 ≡ ∑
−i 
=i x −i

1 , and X2 ≡ ∑
j x j

2. Similarly, for any follower j,

we define π j
2(X1, x j

2, X−j
2 ) := (1−x j

2 −X j
2 +αX1)x

j
2, with X1 ≡ ∑

i x i
1, and X−j

2 ≡ ∑
−j 
=j x−j

2 .

1 More generally, U(X1, X2) = α1X1 + α2X2 − 1
2

(
β1(X1)

2 − 2γX1X2 + β2(X2)
2
)
, where αi, βi > 0, i = 1, 2,

γ ∈ [−1, 1], with β1β2 − γ 2 > 0 in which case U is strictly concave, and with αiβj − αjγ > 0, i 
= j, i = 1, 2.

The commodities are substitutes, independent or complements whenever γ � 0. In addition, when α1 = α2 and

β1 = β2 = γ , the goods are perfect substitutes. Finally, when α1 = α2, the ratio ρ ≡ γ 2

β1β2
measures the product

differentiation, with ρ ∈ [0, 1], where ρ = 0 and ρ = 1 corresponds to independency and perfect substitutability
respectively (Dixit, 1979, Singh and Vives, 1984, and Vives, 1999).
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The SOE with Two Differentiated Products
There are the n1 leaders and n2 followers. The strategy sets areS i = [0, ∞), i = 1, . . . , n1, and
S j = [0, ∞), j = 1, . . . , n2. The CE is given by ((x i

1)
∗, (x j

2)
∗) = 1

1−α (χ
i

1 ,χ j
2 ), 0 � χ i

1 ,χ j
2 �

1, (p ∗
1 , p ∗

2 ) = (0, 0), and ((π i
1 )

∗, (π j
2)

∗) = (0, 0), i = 1, . . . , n1, j = 1, . . . , n2. The COE with

differentiated products is given by: x̂ i
1 = 1+(1+α)n2

(n1+1)(n2+1)−α2n1n2
, p̂1 = 1+(1+α)n2

(n1+1)(n2+1)−α2n1n2
,

and π̂ i =
(

1+(1+α)n2
(n1+1)(n2+1)−α2n1n2

)2
, i = 1, . . . , n1; and x̂ j

2 = 1+(1+α)n1
(n1+1)(n2+1)−α2n1n2

,

p̂2 = 1+(1+α)n1
(n1+1)(n2+1)−α2n1n2

, and π̂ j =
(

1+(1+α)n1
(n1+1)(n2+1)−α2n1n2

)2
, j = 1, . . . , n2. Then, we deduce

p̂1
p̂2

= 1+(1+α)n2
1+(1+α)n1

, with lim(n1,n2)→(∞,∞)
p̂1
p̂2

= 1. Assuming symmetry among followers, i.e.,

x j
2 = x−j

2 , −j 
= j, the best response ϕ j(X1) of follower j may be written:

ϕ j(X1) = 1

n2 + 1
+ α

n2 + 1
X1, j = 1, . . . , n2. (A3)

We remark that for all j we get ∂ϕ
j(X1)

∂x i
1

= α
n2+1 � 0, whenever α � 0, ∀i. In the first stage

of the game, leader i’s supply is the solution to:

max π i
1 (x

i
1, X −i

1 , X2(x
i
1, X −i

1 )), i = 1, . . . , n1, (A4)

where π i
1(x

i
1, .) :=

(
1 − x i

1 − X −i
1 + α n2

n2+1 (1 + α(x i
1 + X −i

1 ))
)

x i
1. We deduce:

x̃ i
1 = (1 + α)n2 + 1

(n1 + 1)(n2 + 1)− α2(n1 + 1)n2
, i = 1, . . . , n1. (A5)

Using (A3) we deduce the equilibrium strategy of follower j:

x̃ j
2 = 1

n2 + 1
+ αn1

n2 + 1

(1 + α)n2 + 1

(n1 + 1)(n2 + 1)− α2(n1 + 1)n2
, j = 1, . . . , n2. (A6)

The equilibrium market prices follow from (A2):

p̃1 = (1 + α)n2 + 1

n2 + 1
− (1 − α)(1 + α)n2 + 1

n2 + 1
X̃1 (A7)

p̃2 = 1

n2 + 1
+ α

n2 + 1
X̃1. (A8)
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Then, p̃1
p̃2

= (1+α)n2+1−[(1−α)(1+α)n2+1]X̃1
1+αX̃1

. The payoffs are given by:

π̃ i
1 =

(
(1 + α)n2 + 1

n2 + 1
− [(1 − α)(1 + α)n2 + 1]X̃1

n2 + 1

)
X̃1

n1
, i = 1, . . . , n1 (A9)

π̃
j

2 =
(
αX̃1 + 1

n2 + 1

)2

, j = 1, . . . , n2. (A10)

Let us notice that when n1 = n2 = 1, the market outcome coincides, up to a scalar multiple
due to normalization, with the market outcome of the Stackelberg duopoly equilibrium with
two differentiated products of Boyer and Moreaux (1987b).

We now compare the Stackelberg oligopoly equilibrium with two differentiated products
with the CE. Some calculations lead to lim(n1,n2)→(∞,∞) = (p̃1, p̃2) = (0, 0) = (p∗

1, p ∗
2 ) as

lim(n1,n2)→(∞,∞) X̃i = 1
1−α = X ∗

i , i = 1, 2. Then, free entry leads to the CE market prices,
but the relative price is indeterminate, which is not the case in the bilateral oligopoly model of
Section 4. To compare, first, the equilibrium strategies, prices and payoffs of the leaders and of
the followers in the SOE, and, second, the SOE with the COE with differentiated products, let

n1 = n2 = n in (A5)–(A10). We get X̃1 = n[(1+α)n+1]
(n+1)2−α2n(n+1)

, p̃1 = [(1+α)n+1][(1−α2)n+1]
(n+1)[(n+1)2−α2n(n+1)]

,

and π̃ i
1 = (1−α2)n+1

n+1

(
(1+α)n+1

(n+1)2−α2n(n+1)

)2
, i = 1, . . . , n1; and X̃2 = n

n+1
(n+1)2+αn(2−α)
(n+1)2−α2n(n+1)

,

p̃2 = (n+1)2+αn(n+1−α)
(n+1)[(n+1)2−α2n(n+1)]

, and π̃ j
2 = [(n+1)2+αn(2−α)][(n+1)2+αn[n+1−α]

((n+1)[(n+1)2−α2n(n+1)])
2 , j = 1, . . . , n2. Some

tedious calculations lead to X̃1 > X̃2, p̃1 < p̃2, and π̃ i
1 > π̃

j
2 , as −1 < α < 1, i = 1, . . . , n1,

j = 1, . . . , n2.
In addition, in the Cournot oligopoly equilibrium we get X̂1 = n[(1+α)n+1]

(n+1)2−α2n2 , p̂1 =
(1+α)n+1
(n+1)2−α2n2 , and π̂ i

1 =
(

(1+α)n+1
(n+1)2−α2n2

)2
, i = 1, . . . , n1; and X̂2 = n[(1+α)n+1]

(n+1)2−α2n2 , p̂2 =
(1+α)n+1
(n+1)2−α2n2 , and π̂ j

2 =
(

(1+α)n+1
(n+1)2−α2n2

)2
, j = 1, . . . , n2. Then, we deduce X̃1 > X̂1, p̃1 < p̂1,

and π̃ i
1 > π̂ i

2 , i = 1, . . . , n1; and X̃2 > X̂2, p̃2 < p̂2, and π̃ j
1 > π̂

j
2 , as −1 < α < 1,

i = 1, . . . , n1, j = 1, . . . , n2. We also have p̃1
p̃2
<

p̂1
p̂2

= 1. Therefore, unlike the BSOE of Section
4, the Stackelberg and Cournot equilibria with differentiated products do not coincide even
if marginal costs are identical. This result stems from the linearity of the market demands,
each of which is derived from competitive behavior. Indeed, as outlined in the Introduction,
this result stems from the asymmetric behavior of the first type: the demand side embodies
competitive buyers, whilst the supply side includes strategic firms.

A Variation Around the Stackelberg Game with Two Differentiated Products
To refine the comparison between the BSOE provided in Example 13, and the Stackelberg
oligopoly with two differentiated products, let n1 = n2 = 2. From (A5)–(A10),

we get x̃ i
1 = 2α+3

3(3−2α2)
, p̃1 =

(
2α+3

3

)2
, and π̃ i

1 = 1
3−2α2

(
2α+3

3

)3
, i = 1, 2; and

x̃ j
2 = 9+6α−2α2

9(3−2α2)
, p̃2 = 9+6α−2α2

9(3−2α2)
, and π̃ j =

(
9+6α−2α2

9(3−2α2)

)2
, j = 1, 2. Consider

now that, for each commodity, there is one leader and one follower who compete
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on the same commodity. Therefore, the two followers solve respectively maxπ2
1 :=(

1 − xL
1 − xF

1 + αX2
)

xF
1 and maxπ2

2 := (
1 + αX1 − xL

2 − xF
2

)
x2

1, where X1 ≡ x1
1 + x2

1

and X2 ≡ x1
2 + x2

2. The best responses are ϕ
(
x1

1, x1
2

) = 1
2−α − 2−α2

(2−α)(2+α)x
1
1 + α

(2−α)(2+α)x
1
2

and σ(x1
1, x1

2) = 1
2−α + α

(2−α)(2+α)x
1
1 − 2−α2

(2−α)(2+α)x
1
2. The leaders’ equilibrium strategy

profile is (x̄1
1, x̄1

2) =
(

α+2
2(2−α2)−α , α+2

2(2−α2)−α
)

, from which we deduce the followers’ profile
(
x̄2

1, x̄2
2

) =
(

2−α2

(2−α)[2(2−α2)−α] , 2−α2

(2−α)[2(2−α2)−α]

)
. The equilibrium prices are given by

p̄1 = p̄2 = 2−α2

(2−α)[2(2−α2)−α]
, and the payoffs by

(
π̄1

1 , π̄1
2

) = (α+2)(2−α2)

(2−α)[2(2−α2)−α]2 (1, 1) and

(π̄2
1 , π̄2

2 ) =
(

2−α2

(2−α)[2(2−α2)−α]

)2
(1, 1), with

(
π̄1

1 , π̄1
2

)
>>

(
π̄2

1 , π̄2
2

)
.

Then, π̃ i
1 > π̄1

1 = π̄1
2 , i = 1, 2, and π̃ j

2 > π̄2
1 = π̄2

2 , j = 1, 2 (prices are higher in the
double Stackelberg case). Leaders (resp. followers) always prefer interacting only with leaders
(resp. followers) in their own industry, whichever commodities are substitutes, independent
or complements. The leaders’ market power is higher when they face symmetric Cournot
competitors who interact in the other industry. Thus, this comparison displays a Pareto
domination between the two duopoly equilibria. This result does not necessarily hold in the
BSOE since the allocations depend on the endogenous relative price. The welfare implications
of endogenous entry are more difficult to handle. Nevertheless, price reduction by leaders may
more than compensate for the reduction in the number of varieties, so consumers’ surplus
increase (see Etro, 2008).

The Stackelberg Price-setting Game with Two Differentiated Products
Let n1 = n2 = 1. The demand obtained from (A2) are given by:

X1 = 1

1 − α
− 1

1 − α2 p1 − α

1 − α2 p2 (A11)

X2 = 1

1 − α
− 1

1 − α2
p2 − α

1 − α2
p1.

The best response is ϕ(p1) = 1+α
2 − α

2 p1, so the leader solves maxπ1(p1, ϕ(p1)) =
( 2−α

2(1−α) − 2−α2

2(1−α2)
p1)p1. We deduce:

(p̃1, p̃2) =
(
(1 + α)(2 − α)

2(2 − α2)
,
(1 + α)(2 − 2α + α2)

4(2 − α2)

)
. (A12)

From (A12) we deduce the quantity traded:

(X̃1, X̃2) = 1

4(1 − α)(2 − α2)
(4 − 2α2 − α3, 6 − 2α − 3α2). (A13)
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Then, the payoffs are given by:

π̃1 =
(

1

2(2 − α2)

)2
(1 + α)(2 − α)(4 − 2α2 − α3)

2(1 − α)
(A14)

π̃2 =
(

1

4(2 − α2)

)2
(1 + α)(2 − 2α + α2)(6 − 2α − 3α2)

1 − α
. (A15)

We get p̃1 > p̃2, X̃1 < X̃2, and π̃1 < π̃2. Some calculations show that both firms
achieve higher payoffs than in the simultaneous-move Bertrand game: the leader expects that
its follower will lower its price to increase its higher market share, so the leader chooses
a high price, which leads both firms to set prices above the Bertrand single period game.
The main difference with the corresponding quantity duopoly game is that the leader’s profit
is higher whenever the products are substitutes (with identical costs). To see this consider

(A5)–(A10) with n1 = n2 = 1. Then, we deduce (x̃1, x̃2) =
(

2+α
2(2−α2)

, 4+2α−α2

4(2−α2)

)
, (p̃1, p̃2) =

(
2+α

4 , 4+2α−α2

4(2−α2)

)
, and (π̃1, π̃2) =

(
1

2(2−α2)

(
2+α

2

)2
,
(

4+2α−α2

4(2−α2)

)2
)

, so x̃1 > x̃2, p̃1 � p̃2,

and π̃1 � π̃2, whenever α � 0. Therefore, the quantity-setting and price-setting differentiated
products games are dual to each other when strategies are substitutes. Otherwise, the quantity-
setting game has the same welfare property as the basic Stackelberg duopoly game since the
parameter α plays the same role as the term η in the model of Section 4, with the main
difference that η is endogenously determined.
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APPENDIX B: PROOF OF PROPOSITION 6

In Appendix B, we provide a proof for Proposition 6. The optimality conditions enables the
capture of some salient features of the BSOE. The followers’ optimal decision mappings are
solutions to:

max
φ i(b−i;q)

U i
(

e i − q i,
Q

b i + B −i
b i − F−1

i (e i)

)
, i = nL + 1, . . . , n (B1)

max
ψ j(b;q−j)

V j
(

b i + B −i

Q
q j,ω j − q j

)
, j = mL + 1, . . . , m. (B2)

Differentiating (B1) with respect to b i and y i, and expressing the two conditions as a single
one; and differentiating (B2) with respect to q j, lead respectively to:

pX

pY
(b; q)+

∂(
pX
pY
)

∂B
b i = dF−1

i (e i)

de i
, i = nL + 1, . . . , n (B3)

pY

pX
(b; q) +

∂(
pY
pX
)

∂Q
q j = ∂V j/∂y j

∂V j/∂x j
, j = mL + 1, . . . , m. (B4)

The optimal decision functions of each type of follower may be written:

b i = φ i

(
b −i; q,

dF−1
i (e i)

de i

)
, i = nL + 1, . . . , n (B5)

q j = ψ j
(

b; q−j,
∂V j/∂y j

∂V j/∂x j

)
, j = mL + 1, . . . , m. (B6)

We assume the system made up of equations (B5)–(B6) is consistent. Therefore, we assume
the existence of best responses, which are given by:

b i = ϕ i
(

bL; qL, �(F−1
i )i�nL+1

)
, i = nL + 1, . . . , n (B7)

q j = σ j
(

bL; qL, �(F−1
i )i�nL+1

)
, j = mL + 1, . . . , m, (B8)

where �
(

F−1
i

)
i�nL+1

=
(

dF−1
nL+1(e

nL+1)

denL+1 , . . . , dF−1
n (en)

den

)
.
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Then, leader i, i = 1, . . . , nL, and leader j, j = 1, . . . , mL, solve:

max
b i

U i
(

e i − b i,
pX

pY

(
b i, b −i

L , ϕ
(
b i, .

)
; qL, σ

(
b i, .

))
b i − F−1

i (e i)

)
(B9)

max
q j

V j
(

pY

pX

(
bL, ϕ(., q j, .); q j, q−j

L , σ (., q j, .)
)

q j,ω j − q j
)

, (B10)

with ϕ(b i, .) = (ϕnL+1(b i, .), . . . , ϕn(b i, .)), where for each i = nL + 1, . . . , n, the function
ϕ i(b i, .) is defined by (B7); and with σ

(
., q j

) = (σmL+1(., q j, .), . . . , σm(., q j, .)), where for
each j = mL + 1, . . . , m, the function σ j(., q j, .) is defined by (B8).

Let the market price be pX
pY

=
mL∑
j=1

q j+
m∑

j=mL+1
σ j
(

bL;qL,�
(

F−1
i

)
i�nL+1

)

nL∑
i=1

b i+
m∑

i=mL+1
ϕ i

(
bL;qL,�

(
F−1

i

)
i�nL+1

) . Then, partially differen-

tiating (B9) with respect to b i and y i respectively, and expressing the two conditions obtained
as a single one; and partially differentiating (B10) with respect to q j, lead respectively to the
two following first-order (sufficient) conditions:

pX

pY
+
∂
(

pX
pY

)

∂B
(1 + νX)b

i +
∂
(

pX
pY

)

∂Q
ηY b i = dF−1

i (e i)

de i
, i = 1, . . . , nL (B11)

pY

pX
+
∂
(

pY
pX

)

∂Q
(1 + νY)q

j +
∂
(

pY
pX

)

∂B
ηXq j = ∂V j/∂y j

∂V j/∂x j
, j = 1, . . . , mL. (B12)

These expressions may be written in equilibrium as:

pX

pY

(
1 − 1 + νX

|εX |
b̃ i

B̃
+ ηY

|εY |
b̃ i

Q̃

)
= dF−1

i (e i)

de i |e i=ẽ i
, i = 1, . . . , nL (B13)

pY

pX

(
1 − 1 + νY

|εY |
q̃ j

Q̃
+ ηX

|εX |
q̃ j

B̃

)
= ∂V j/∂y j

∂V j/∂x j
(ã j), j = 1, . . . , mL, (B14)

where |εX | = ∂B
∂
(

pX
pY

)
pX
pY
B = 1 and |εY | = ∂Q

∂
(

pX
pY

)
pX
pY
Q = 1.

The equations (B13) and (B14) determine together the equilibrium strategy profile of
leaders (b̃L;q̃L) = (b̃1, . . . , b̃nL ; q̃1, . . . , q̃mL) and the equilibrium production vector ẽL =
(ẽ1, . . . , ẽnL). Then, from (B7) and (B8) we deduce the equilibrium strategy profile of the

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

Stackelberg games 311

followers (b̃F;q̃F) = (b̃nL+1, . . . , b̃n; q̃mL+1, . . . , q̃m), which in the bilateral oligopoly market
game must satisfy (B3) and (B4), so:

pX

pY

(
b̃; q̃

)(
1 − 1

|εX |
b̃ i

B̃

)
= dF−1

i (e i)

de i |e i=ẽ i
, i = 1, . . . , nL (B15)

pY

pX

(
b̃; q̃

)(
1 − 1

|εY |
q̃ j

Q̃

)
= ∂V j/∂y j

∂V j/∂x j
(ã j), j = 1, . . . , mL. (B16)

Therefore (B13)–(B16) coincide with (10.39)–(10.42).
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11. Entry games and free entry equilibria∗
Michele Polo

1 INTRODUCTION

What are the elements that may explain why certain industries are populated by a large number
of firms, each covering a small fraction of total output, whereas other markets are dominated
by a few large firms that supply a relevant fraction of customers? These questions have been at
the core of the topics studied in industrial organization (IO) from the very beginning.1 These
research topics have been approached in the early phases of industrial economics mostly from
an empirical perspective2 within the structure–conduct–performance paradigm, while the
theoretical foundations of endogenous market structures have been explored more rigorously
in the game-theoretic framework of the new IO literature. The analytical framework that has
been developed looks at market entry and exit as the process that endogenously determines
the number and characteristics of active firms in the long run. In this setting, then, other
research questions emerge. How do these market structures change in reaction to a variation
in some key parameters? Are we able to identify a set of robust comparative statics properties
in oligopoly markets, despite the rich variety of models in the IO literature? And finally, on the
normative side, does entry into the market, a key component of the competitive process, lead
to a welfare-maximizing outcome, or might the number and characteristics of firms exceed or
fall short of the level of efficiency?

This chapter deals with the theories of market equilibria when the number and characteris-
tics of active firms are endogenously determined through the process of entry. More precisely,
we shall review the literature on entry games and free entry equilibria in a multi-stage game
framework. A large number of potential entrants decide first whether to enter or not; once all
the firms have undertaken their entry decisions, the active firms compete according to some
oligopoly game. The chapter is organized as follows. In Section 2 we present the general
analytical framework. In Section 3 we analyze a wide range of symmetric oligopoly models to
identify the relationship between the number of firms and the market equilibria: we start with
homogeneous products and competition in strategic substitutes (Section 3.1), moving then to
differentiated products and competition in strategic complements (Section 3.2), next offering
a general explanation of the comparative statics properties (Section 3.3) and concluding
with cartels (Section 3.4). We then move to free entry equilibria and the determinants of
the maximum number of firms (Section 4). Finally, we consider symmetric entry games
under a normative perspective (Section 5), looking at the comparison between the free
entry and the welfare-maximizing number of firms. In Section 6 we review asymmetric

∗ I thank Simon Anderson, Emilio Calvano, Chiara Fumagalli and Michele Grillo for very useful discussions and
suggestions. Usual disclaimers apply.

1 See Bain (1956) and Scherer (1980).
2 See Schmalensee (1989) for a comprehensive survey of the empirical literature.
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Entry games and free entry equilibria 313

free entry equilibria that exploit the aggregative nature of most oligopoly models. We
then present the case of endogenous sunk cost and persistent concentration (Section 7)
and the case of frictionless entry and contestable markets (Section 8). Concluding remarks
follow.

2 ENTRY GAMES

There are several ways to model the entry process and market interaction among active
firms. The various set-ups allow us to highlight different issues, focussing on distinct effects
that interact in the overall market dynamics. We can draw a key distinction between the
environments in which the entry decisions precede the market strategies, and those where
some firms undertake entry decisions after observing their competitors’ market strategies.

In the former case, the market strategies of individual firms cannot be chosen with the
purpose of affecting the entry decisions of any firm, since entry already occurred, although
the features of the market equilibria that result from the aggregate process of entry affect the
early decision to enter the market. In this perspective, multi-stage games represent a suitable
formal framework. There is a large group of m potential entrants j ∈ Im that choose whether
to enter, incurring a fixed set-up cost F > 0, or not; then, once they have taken their decision
and the set of n ≤ m entrants i ∈ In is common knowledge, the active firms play a market
game. This set-up is usually adopted to study long-run free entry equilibria, in which a set
of exogenous variables referring to the primitives of technology and preferences explains the
long-run market structure.

Alternatively, in a second class of strategic environments, a subset of early entrants
(incumbents) commit to observable market strategies before the other firms (entrants) decide
whether to enter or not. The incumbents’ initial strategy, then, may affect the entry decisions
of the latecomers, explaining why this set-up is widely used to study strategic entry deterrence
and foreclosure. In this environment, the market structure is explained by foreclosure
strategies, based on a rich set of strategic tools, rather than by market fundamentals.

The two set-ups are useful to explore different and complementary issues and they are
characterized by a different time horizon. Sequential entry with incumbents and entrants is a
more realistic representation of short-run market dynamics, since entry is typically an ongoing
process where already established and new firms interact. The possibility of foreclosure, then,
is an empirically relevant issue that characterizes the evolution of markets. At the same time,
multi-stage entry games allow us to move away from these short-run phenomena and focus on
the underlying features of preferences and technology as long-run drivers of market evolution.
By shifting attention to this complementary perspective we can identify fundamental forces
that, despite the frictions that in the short run may slow down the process and foreclose the
market, push towards a more or less concentrated market. Since in this chapter the focus is
on long-run market structures rather than foreclosure, we will consider several and different
specifications of multi-stage entry games.

A second relevant feature recurring across models is the assumption of symmetric firms.
Supply-side symmetry is a natural assumption in a long-run perspective, since we may
think that any barrier to adopting best practice technologies, such as patent protection or
private know-how, tends to vanish in the long run. Demand-side symmetry, consistent with
homogeneous products or horizontal product differentiation and different varieties, is a
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314 Handbook of game theory and industrial organization: theory

convenient assumption when we want to analyze the number of entrants and the distribution
of market shares.3

The different models considered in the following sections make use of the symmetry
assumption at different levels, either by applying it to the whole population of potential
entrants, or to a subset of them identified as marginal entrants, while allowing for asymmetries
across major market players. We shall see that the symmetry assumption is also at the core of
the analysis of potential competition and contestable markets.

3 SYMMETRIC OLIGOPOLY MARKETS

We start our analysis of entry games by considering the (second-stage) market games where
n firms are active, having decided to enter in the first stage. In this section we consider
symmetric market games where all the n firms share the same (best-practice) technology and
no one has an advantage on the demand side, e.g. a higher-quality product. In this setting,
when firms adopt the same strategies ai = a, i ∈ In, then they obtain the same level of profits.
A symmetric environment greatly simplifies the analysis of free entry equilibria, since the
equilibrium profits, as well as the equilibrium strategies, consumers’ surplus and welfare, all
depend on a vector x of parameters related to the properties of costs (technology) and demand
(preferences), and on the number of firms n:�i(a ∗

i , a ∗
−1) = � ∗(n; x). Market equilibria, once

the entry process has been completed, therefore can be analyzed simply in terms of the number
of firms n. The individual equilibrium profits � ∗(n; x) are therefore the object that potential
entrants consider when, at the initial stage of the game, they choose whether to enter or not,
given their expectation of the number of firms that will enter.

Oligopoly theory offers a very rich set of models that describe market interaction among
n competitors, ranging from homogeneous to differentiated products and distinguishing
competition in strategic substitutes or complements. In all these environments, moreover,
demand and cost functions can be specified differently. Finally, beyond static, possibly multi-
stage games, the literature on tacit collusion adds to the toolkit for the analysis of cartels. A
general theory of free entry equilibria has to encompass all these classes of models, admitting
a variety of business strategies, modes of strategic interaction and features of demand and
costs. In this perspective, then, the key point is whether there exist some regularities across
different models in the relationship between the number of (symmetric) active firms n and the
equilibrium profits they obtain� ∗(n; x). A first, relevant result that we are going to present in
the following sections, is that, despite the significant differences in oligopoly equilibria across
models, we can establish under very general conditions a negative relationship between the
equilibrium profits and the number of firms.

We organize the discussion by considering three different cases: homogeneous products and
strategic substitutes, differentiated products and strategic complements, and repeated games.

3 As will be clear in the following sections, this approach does not prevent us from also considering environments
where, for instance, firms offer goods of different quality, which are therefore attractive to consumers in different
ways. What we maintain is that, even in these cases, there is a further dimension of (horizontal) product differentiation
such that for each level of quality several firms may further differentiate their products by variety. In this case,
symmetry is preserved at each layer of quality.
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Entry games and free entry equilibria 315

3.1 Homogeneous Products and Strategic Substitutes

Our first look at symmetric oligopoly equilibria refers to a market with n firms producing
a homogeneous product and competing in strategic substitutes, usually associated with the
Cournot model. Since the pioneering work of Cournot (1838) a large number of contributions
have explored the conditions for the existence of and characteristics of the equilibria when n
firms compete in quantities. McManus (1962, 1964) and Roberts and Sonnenschein (1976),
independently proved the existence of a symmetric equilibrium in symmetric Cournot games
with convex costs. Novshek (1985) showed that an n-oligopoly has a Nash equilibrium if
each firm’s marginal revenue is decreasing in the other firms’ aggregate output. A step
forward in proving the existence of Cournot equilibria under general conditions is in Vives
(1990), who showed in the duopoly case the relationship between the assumptions of the
previous literature and the submodularity of Cournot games. Supermodular games and the
techniques of monotone comparative statics,4 have proved to be extremely useful tools to
explore the properties of Cournot oligopolies and to identify the general conditions under
which the comparative statics of equilibria can be analyzed. We summarize here the main
results following this approach as in Amir and Lambson (2000).

Consider an oligopoly with n firms offering a homogeneous product and producing with
the same cost function C(qi) and incurring no capacity constraint over the relevant output
range. Market inverse demand P(Q ) is a continuous and differentiable function of total output

Q =
n∑

i=1
qi. The profit function of firm i, then, is:

�i(qi, Q−i) = P(Q )qi − C(qi)

where Q−i = {
qj
}

j �=i is the vector of outputs of the other firms. In this traditional specification,
each firm maximizes its profits by choosing a level of output for given strategies of the other
firms, Q−i. It is well recognized that under standard assumptions, firm i’s best reply q̂i(Q−i) =
arg maxqi �i(qi, Q−i) is downward sloping in the other firms’ output, implying a submodular
game and competition in strategic substitutes.

Let us define

�(qi, Q ) := −P ′(Q )+ C ′′(qi). (11.1)

Then, Amir and Lambson (2000) prove that if �(qi, Q ) > 0 on the relevant range of
outputs and the inverse demand function is log-concave, there exists a unique and symmetric
equilibrium, with individual output q ∗(n) nonincreasing in n and total output Q ∗(n) (market
price P(Q ∗(n))) nondecreasing (nonincreasing) in n.5 This condition holds, for instance, in the
set-up adopted in the works of McManus (1962, 1964), Roberts and Sonnenschein (1976) and
Novshek (1985) quoted above and is consistent with the framework proposed in Vives (1999).

4 See Milgrom and Roberts (1990, 1994) and Milgrom and Shannon (1994).
5 Amir and Lambson (2000) prove (Theorem 2.2) a more general result that does not require log-concavity of the

inverse demand function and that allows for multiplicity of Cournot equilibria. In this case the comparative statics
properties with respect to n of total equilibrium output and the equilibrium output of n − 1 firms are preserved by
considering the values of the extremal equilibria. We focus in the text on uniqueness to ease the exposition.

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

316 Handbook of game theory and industrial organization: theory

To illustrate this result with an example let us consider the linear Cournot model: market
demand is Q = S ∗ [α − βp

]
, where S measures market size, e.g. the number of consumers.

Then, the inverse demand is P(Q
S ) = a − b Q

S where a = α
β

, b = 1
β

and Q is total supply.
Firms produce at constant marginal cost c ∈ (0, a) and compete in quantities. Then, each

firm selects its optimal output by solving q ∗
i = arg maxqi

(
P(Q

S )− c
)

qi. The symmetric

equilibrium quantity q ∗(n) satisfies for all firms the first-order conditions:

(
P

(
nq ∗

S

)
− c

)
− P ′ q ∗

S
= 0, (11.2)

Substituting and solving for the symmetric equilibrium we get:

q ∗(n) = S
a − c

b(n + 1)
, p ∗(n) = a + nc

n + 1
≥ c, � ∗(n) = S

b

(
a − c

n + 1

)2

. (11.3)

When the number of firms increases, therefore, the individual quantity decreases, whereas
total output increases. Consequently, the market clearing price falls and tends to the marginal
cost when the number of firms increases indefinitely. Finally, the equilibrium profits, gross of
the fixed entry costs, decrease in n and tends to zero at the limit, due to the combined quantity
and price effects.

This pattern characterizes the so-called Cournotian paradigm, a representation of the
market equilibrium that depends on the number of firms and that moves from the monopoly to
the perfectly competitive equilibrium as n increases from 1 to infinity. Perfect competition, in
this setting, corresponds to the limiting case when each firm supplies an infinitesimal amount
of output in a market populated by an infinite number of negligible firms.

This structural view of perfect competition can be easily derived from the first-order
conditions that guarantee a profit-maximizing solution for any number of firms. Equation
(11.2), indeed, implies that the market clearing price tends to the marginal cost when the
last term vanishes. There are two possible explanations why P ′ q ∗

S → 0. One argues that
when firms are small with respect to the market, they follow a price-taking behavior; that is,
they expect the market price not to react to any change in their individual output. This case
corresponds to assuming P ′ = 0 in a perfectly competitive market. The other explanation,
which is consistent with the structuralist view of the Cournotian paradigm, instead focusses on
the fact that it is the individual quantity that vanishes as n becomes indefinitely large, whereas
P ′ < 0 even at the limit. In this latter case, indeed, limn→∞ q ∗(n) = 0, as evident from (11.3).

It is interesting to notice that the last term in (11.2) also represents the negative externality
that characterizes strategic interaction in a Cournot game, i.e. ∂�i

∂qj
= P ′ q ∗

S . In other words,
with Cournot competition each firm affects the rivals’ profits when it increases its quantity
since it makes the price fall and reduces the revenues that the competitors obtain from
their production. The level of individual production, therefore, multiplicatively affects this
externality, which vanishes when each firm produces a negligible output. Then, a perfectly
competitive market in a Cournotian perspective is also characterized at the limit by vanishing
externalities across firms. This result confirms the idea that in a perfectly competitive market
no externality occurs, a feature that is driven by the same effect (limn→∞ q ∗(n) = 0) that
explains why the competitive price tends to the marginal cost.
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Finally, market size S increases individual and total quantities as well as the equilibrium
profits.

3.2 Differentiated Products and Strategic Complements

A different class of oligopoly models moves into the realm of differentiated products and
assumes that firms compete in prices, a framework that entails strategic complementarities.
In the product differentiation literature, moreover, we can assume that either differentiation
does not break the intrinsic symmetry of firms’ market positions, or alternatively that product
differentiation introduces a competitive advantage for some firms with respect to the others.
The former case recalls the idea of (horizontal) differentiation by variety, where products
differ in terms of characteristics, each one being more suited to a specific subset of customers.
The latter, instead, captures the idea of (vertical) differentiation in quality. Given our focus on
symmetric equilibria, in this section we shall consider several approaches to differentiation by
variety. We shall consider entry and differentiation by quality in Section 7.

There are three main ways to model the demand side when products are (horizontally)
differentiated: the representative consumer approach characterized by preference for variety;
the discrete choice model where the external observer is able to reconstruct consumers’
behavior up to a random component related to unobservable individual characteristics; and
the address approach that assumes heterogeneous consumers with inelastic demand.6

Let qi = S ∗ Di(pi, p−i) be the demand for product i ∈ In, where S measures the size of the
market and p−i is the vector of prices other than pi. Let us further assume Di(.) is continuous
and differentiable and Ci(Di(.)) = cDi(pi, p−i). Finally, let us assume that each firm offers
only one variety.7 Each firm solves the following problem: maxpi(pi − c)Di(pi, p−i). Under
standard assumptions on the strategy space being compact and convex, and the profit function
being quasi-concave, the following equation identifies the necessary and sufficient conditions
for a maximum:

p ∗
i − c

p ∗
i

= Di
(
p ∗

i , p−i
)

p ∗
i
∂Di
∂pi

= 1

εi
(11.4)

where εi is the price elasticity of demand for product i. In a symmetric equilibrium p ∗
i =

p∗(n), i ∈ In, and

ε ∗(n) =
p ∗(n) ∂Di

∂pi

Di (p ∗(n), p ∗(n))
. (11.5)

6 For a detailed analysis of these three approaches and the relationships among them see Anderson, De Palma and
Thisse (1992). On the representative consumer models see, for instance, the constant elasticity of substitution (CES)
representation adopted in Spence (1976) and Dixit and Stiglitz (1977) and the linear representation in Shubik and
Levitan (1980) and Singh and Vives (1984). On the interpretations of random utility models, we find two approaches:
Manski (1977) assumes that utility is deterministic but it is not perfectly observed by the other agents, with a random
term capturing the unobserved component; Quandt (1956) instead assumes the individual behavior to be intrinsically
probabilistic. Finally, the address model approach was first proposed in Hotelling (1929). See also Salop (1979) and
d’Aspremont et al. (1979).

7 As we shall discuss in Section 4, assuming single-product firms makes the analysis of the maximum number
of varieties and that of firms equivalent. With multi-product firms, instead, the maximum number of varieties will be
larger than the number of active firms in a free entry equilibrium.
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Hence, the pattern of equilibrium prices p ∗(n) when the number of firms increases depends
inversely on the corresponding pattern of ε ∗(n). If limn→∞ ε ∗(n) = ∞, then at the limit the
price converges to the marginal cost, and we replicate the perfectly competitive equilibrium
already found in the case of Cournot competition. When, instead, limn→∞ ε ∗(n) = ε

with ε finite, a positive mark-up persists at the limit, a pattern associated to Chamberlinian
monopolist competition.8 As we shall see, the limiting properties of the different approaches
to product differentiation are consistent with either of the two alternatives.

Let us consider first the case of convergence to competitive equilibria. Generalizing the
duopoly linear model originally proposed by Singh and Vives (1984) and further developed in
Häckner (2000), the utility function of the representative consumer is quasi-linear according
to the expression:

U(q1, . . . , qn; I) = α

n∑
i=1

qi − 1

2

⎛
⎝

n∑
i=1

q2
i + 2γ

∑
j �=i

qiqj

⎞
⎠+ O (11.6)

where γ ∈ [0, 1)measures product substitutability and O is the money spent on outside goods.
The demand system, then, is:

Di(pi, p−i) = S ∗ α(1 − γ )+ γ
∑

j �=i pj − [
γ (n − 2)+ 1

]
pi

(1 − γ )
[
γ (n − 1)+ 1

] (11.7)

where S measures the size of the market, i.e. the number of representative consumers. Notice
that in a symmetric price configuration pi = p for i ∈ In, firm i’s demand

Di(p, p) = S ∗ α − p[
γ (n − 1)+ 1

]

decreases in the number of firms, since consumers spread their purchases over a larger set of
varieties. The demand elasticity in a symmetric price equilibrium is:

ε ∗(n) =
[
γ (n − 2)+ 1

]
p ∗(n)

(α − p ∗(n)) (1 − γ )
. (11.8)

Hence, lim ε ∗(n) = ∞ being p∗(n) < α. Indeed, the equilibrium price

p ∗(n) = α(1 − γ )+ c
[
γ (n − 2)+ 1

]

γ (n − 3)+ 2
(11.9)

8 See Vives (1999), pp. 160–64 for a detailed discussion.
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tends to the marginal cost when n → ∞. Moreover, the equilibrium quantity and profits

q ∗(n) = S ∗ (α − c)
[
γ (n − 2)+ 1

]
[
γ (n − 1)+ 1

] [
γ (n − 3)+ 2

] (11.10)

and

� ∗(n) = S ∗ (α − c)2(1 − γ )
[
γ (n − 2)+ 1

]
[
γ (n − 1)+ 1

] [
γ (n − 3)+ 2

]2 (11.11)

are decreasing in the number of firms n.
A similar pattern can be obtained within the address models of product differentiation.

Following Salop (1979) we can extend the original linear Hotelling duopoly to encompass n
active firms by considering a circular market of length 1 where S consumers are uniformly
distributed according to their individual preferred version t. Firms i ∈ In produce at constant
marginal cost c and sell at price pi horizontally differentiated varieties that are evenly
distributed at xi = i/n around the circle. Finally, a consumer of type t purchasing variety i
has a net utility u ∗ − pi − (xi − t)2/γ . We also use in this class of address models parameter
γ to positively affect product substitutability. When γ is large the utility mostly depends on
the price and the consumers are ready to switch to a more convenient, although more distant,
variety. The demand system, in this setting, is given by:

Di(pi, pi−1, pi+1) = S

[
1

n
− nγ pi + nγ

2
(pi+1 + pi−1)

]
(11.12)

and displays localized competition between neighboring varieties, a notable feature of the
address approach. The demand elasticity in a symmetric equilibrium is

ε ∗(n) = γ n2p ∗(n) (11.13)

and limn→∞ ε ∗(n) = ∞, implying convergence to the marginal cost. Notice also that, for
given n, the elasticity is increasing in the substitutability parameter γ .

The symmetric equilibrium price, quantity and profits, indeed, are given by:

p ∗(n) = c + 1

γ n2
, q ∗(n) = S

n
� ∗(n) = S

γ n3
. (11.14)

Comparing the symmetric equilibria in the Singh and Vives (1984) and in the Salop (1979)
models of product differentiation with those obtained in the Cournot linear model we find
significantly similar comparative statics properties, with price and individual quantity falling
in the number of firms and the price approaching the marginal cost as the number of firms
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tends to infinity. Indeed, the driving effect we highlighted in Cournot, based on vanishing
individual quantities still applies. In the Salop model, however, an additional interesting effect
is at work. When n increases indefinitely the market is completely covered with (locally)
almost identical varieties. Localized competition between adjacent varieties reproduces a
Bertrand environment, leading to marginal cost pricing. This latter effect corresponds to an
increasingly intense price competition between closer and closer variety. In other words, in
the localized competition model of product differentiation an increase in n produces at the
same time a vanishing quantity externality and an increasing price externality, both pushing
towards convergence to a competitive outcome.

We can now turn to the case of monopolistic competition, when positive mark-ups are
associated with a market populated by a very large (i.e. infinite) number of infinitesimal
firms. We illustrate this case referring to the multinomial logit model, thereby also covering
the discrete choice approach to product differentiation. Let the utility of a consumer be
described by a deterministic component U(pi) = α − pi and an additive random independent
and identically distributed (i.i.d.) component ηi that is distributed according to the double
exponential distribution F(x) = exp − [exp −(γ x + ε

]
where ε is Euler’s constant and γ

a positive constant that negatively affects the variance. Then, the resulting probability of
choosing product i given the vector of prices (p1, . . . , pn) is

Pi(pi, p−i) = exp(−γ pi)
n∑

j=1
exp(−γ pj(μ)

. (11.15)

Then firm i’s expected profits are:

�i(pi, p−i) = S ∗ (pi − c)Pi(pi, p−i).

We can observe that ∂Pi
∂pi

= γPi(1 − Pi) and that, therefore, parameter γ , once again, captures

product substitutability. Moreover, in a symmetric equilibrium Pi(p, p)= 1
n . Then, the elasticity

of demand is

ε ∗(n) = γ (n − 1)p ∗(n)
n

, (11.16)

with limn→∞ ε ∗(n) = γ p ∗(n) finite.9 Hence, the firms obtain a positive mark-up when n
tends to infinity. The equilibrium price, quantity and profits are:

p ∗(n) = c + n

γ (n − 1)
, q ∗(n) = S

n
, � ∗(n) = S

γ (n − 1)
. (11.17)

9 Parameter γ , as in the previous models, positively affects price elasticity for given n.
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The multinomial logit model10 presents a different pattern of price adjustment, with the
equilibrium price decreasing in the number of firms and converging to a mark-up 1/γ when
n → ∞. Despite the positive mark-up, the firm’s profits vanish at the limit, since the
individual output becomes negligible, as it is in a monopolistic competition environment.
We can also notice that the basic channel of interaction across firms vanishes as well at
the limit: ∂Pi

∂pj
= γPiPj = γ

n2 . Hence, the “competitive” component of monopolistic com-
petition is associated with vanishing externalities, as already observed when discussing the
Cournot model.

To sum up, the different models of product differentiation display similar comparative static
properties with respect to the number of firms, with the equilibrium price, quantity and profits
falling in n. The main difference rests on the convergence of the equilibrium prices to the
marginal cost, as in a perfectly competitive market, or instead to a positive mark-up over costs
that characterizes monopolistic competition. Moreover, the size of the market, in all cases,
pushes up profits.

The results of the product differentiation literature provide an additional insight related
to the intensity of price competition and its effect on n-firms market equilibria. In the three
models, with a little abuse of notation, we have represented product substitutability through
parameter γ , with the price elasticity increasing and the price and profits falling in γ .

3.3 Explaining the Comparative Statics in a Unified Framework

In the previous sections we have shown that the market equilibria, described by prices
and quantities, share similar comparative statics properties across a wide range of different
oligopoly models and features of preferences and technology. This raises a natural question
of whether this common pattern may be accounted for through a unified explanation. The
theory of monotone comparative statics developed by Milgrom and Roberts (1990, 1994)
and Milgrom and Shannon (1994) offers an enlightening perspective. Their approach allows
the development of new tools with which to study how equilibria change in reaction to a
variation in the parameters and constraints of the maximization problem, moving beyond the
tradition approach based on the implicit function theorem.11 Quoting Amir (2003, p. 2), “if
in a maximization problem, the objective reflects a complementarity between an endogenous
variable and an exogenous parameter, in the sense that having more of one increases the
marginal return to having more of the other, then the optimal value of the former will be
increasing in the latter. In the case of multiple endogenous variables, then all of them must also

10 A similar result is obtained, within the representative consumer approach, assuming Cobb-Douglas preferences
between a numéraire good q0 and a set of differentiated products qi with CES preferences:

U(qo, q1,..., qn) = q1−β
0 q̃β with γ ∈ (0, 1)

and

q̃ =
(

n∑
i=1

q
σ−1
σ

i

) σ
σ−1

.

See Spence (1976), Dixit and Stiglitz (1977) and Anderson et al. (1992) pp. 226–9.
11 Importantly, the new tools help to deal with the comparative statics of multiple equilibria, by studying how

extremal equilibria move in reaction to a change in exogenous variables. For the purpose of our discussion, however,
we shall focus on the case of unique equilibria.
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be complements so as to guarantee that their increases are mutually reinforcing”. The former
property corresponds to increasing differences (between the endogenous and the exogenous
variables, and more in general between two variables), whereas the latter qualifies the function
to be maximized as supermodular.12

When a game is supermodular and characterized by increasing differences, an increase in
the strategy of one player increases the marginal payoff of the strategy of the other players,
inducing them to adjust their optimal choice upwards. This case, therefore, corresponds
to upward-sloping reaction functions or, in the classification of Bulow, Geanakoplos and
Klemperer (1985), strategic complementarity. Moreover, increasing differences between the
endogenous variables and the exogenous variable implies that an increase in the exogenous
variable increases the marginal payoff of the strategy of the players, with an upwards shift in
the best-reply functions.

Increasing differences then can be easily turned into decreasing differences by reverting
the sign of the adjustment or defining a new exogenous variable that is the negative of the
original one. In this case, an increase in the exogenous variable induces a contraction in the
endogenous one.13

We can borrow from the theory of monotone comparative statics two conditions, described
in the statements of Theorem 5 and 6 in Milgrom and Shannon (1994) that, in our setting, fit
the problem. The exogenous variable14 is the number of firms n whereas the endogenous
variables are, depending on the model specification, the quantities qi or prices pi. Then,
we require the profit functions to be supermodular in the strategic variables and to display
decreasing differences in the number of firms. Since we consider continuous and differentiable
functions, the two conditions correspond to ∂�i

∂ai∂aj
> 0 and ∂�i

∂ai∂n < 0 for i, j = In, i �= j,
where ai describes firm i’s strategy, i.e. quantity or price. Moreover, in order to focus on the
comparative statics, we take for granted that an equilibrium exists and is unique, by assuming
that the profit function is strictly quasi-concave in the choice variable and that the best-reply
slope meets the contraction mapping requirement.

Starting with the Cournot case, a first problem arises since in the traditional description
competition is in strategic substitutes, and the game is submodular rather than supermodular.15

A way out of this problem borrows from an early intuition in Novshek (1985) and is developed
in Amir and Lambson (2000). Indeed, a notable property of the Cournot model is that the
profits can be expressed as a function of own output qi and of the aggregate level of output of
the other n − 1 firms Q−i = ∑

j �=i qj, i.e.

�i(qi, Q−i) = P (qi + Q−i) qi − C(qi).

12 See Vives (1999), Chapter 2. When the payoff functions are smooth and the strategy space of each firm and
the exogenous parameters space are one-dimensional, supermodularity and increasing differences boil down to the
condition that the second cross-partials between each firm’s strategic variable and the other firm’s strategic variable
and with the exogenous parameter are positive.

13 Increasing differences is a cardinal property and can be replaced by the ordinal Spence-Mirlees single-crossing
property considered in Milgrom and Shannon (1994). When this property holds, if an increase in the choice variable
is profitable when the exogenous variable is low it is still profitable when the exogenous variable is high, although it
is not required, as in the case of increasing differences, that the profitability is higher in the latter case.

14 Here for convenience we measure the number of firms n as a continuous variable defined on the positive reals.
15 While in a Cournot duopoly this issue is easily adjusted by describing one of the strategies as −q, transforming

the setting into a supermodular game, with n > 2 firms this trick cannot be applied anymore.
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Moreover, we can equivalently describe firm i’s strategy, rather than refer to the choice of
its own output qi, as the selection of a certain level of total output Q for given output Q−i

supplied by the competitors. In this alternative formulation

�̂i(Q, Q−i) = P(Q )(Q − Q−i)− C ((Q − Q−i)) . (11.18)

Then,

∂2�̂i

∂Q∂Q−i
= C ′′(Q − Q−i)− P ′(Q ) = �, (11.19)

which corresponds to (11.1). Then, the condition � > 0 implies the supermodularity of the
modified Cournot game. Decreasing differences can be easily established by noting that when
the other n − 1 firms choose the same output q then Q−i = (n − 1)q. Then, substituting in the
first-order conditions for the choice of Q in the modified Cournot problem we have:

∂�̂i

∂Q
= P ′(Q ) (Q − (n − 1)q)+ P(Q )− C ′ (Q − (n − 1)q) . (11.20)

Hence,

∂2�̂i

∂Q∂n
= q� > 0 (11.21)

when the game is supermodular. We conclude that the equilibrium total output Q ∗(n) is
increasing in the number of firms. In a symmetric equilibrium Q ∗

−i(n) = n−1
n Q ∗(n), and

therefore the output of the firms other than i is increasing in n as well, since both terms n−1
n

and Q ∗(n) are positive and increasing in n. Moreover, since firm i’s best reply in the original
Cournot problem is downward sloping and Q ∗

−i(n) is increasing in n, the individual output
q ∗

i (n) is decreasing in the number of firms. Finally, since demand is bounded, when n → ∞
we must have Q ∗(n) = nq ∗(n) finite and therefore limn→∞ q ∗(n) = 0. Then, given the
first-order conditions of the original Cournot problem, p∗(n) → C ′ (q ∗(n)).

Our discussion offers a clear insight into the advantages of the techniques of monotone
comparative statics. A single and general condition, � = C ′′(qi) − P ′(Q ) > 0, generates
supermodularity of the modified Cournot problem and Q ∗(n) and Q ∗

−i(n) increasing in the
number of firms, while the comparative statics on individual output q ∗

i (n) and the limiting
competitive result on the price derive from the first-order conditions of the original Cournot
problem. Interestingly, the condition � > 0 includes elements of demand and costs, and
both jointly define the relevant condition. This extends with respect to previous contributions
that explored the properties of Cournot equilibria by making specific assumptions on costs or
demand.16

16 See Amir and Lambson (2000) for a general analysis of equilibria in Cournot games.
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Turning to the models of product differentiation and price competition, in an n-firm
oligopoly each one solves maxpi piDi(pi, p−i; n) − C(Di(.)) where we emphasize that,
differently from the homogeneous product case, the number of substitute products n may
directly enter into the expression of the demand for product i. Moreover, notice that in
our symmetric environment we assume that all firms have the same cost structure, i.e.
Ci(Di(.)) = C(Di(.)).

If

∂2�i

∂pi∂pj
= ∂Di

∂pj
+ (pi − C ′)

∂2Di

∂pi∂pj
− C ′′ ∂Di

∂pj

∂Di

∂pi
> 0, (11.22)

for any i, j = In, i �= j, the game is in strategic complements, that is the condition for
supermodularity is met. Then, the equilibrium prices fall in the number of firms if

∂2�i

∂pi∂n
= ∂Di

∂n
+ (pi − C ′)

∂2Di

∂pi∂n
− C ′′

(
∂Di

∂pi

)2

< 0.

Substituting the first-order conditions pi − C ′ = − Di
∂Di/∂pi

and rearranging we get:

∂2�i

∂pi∂n
= ∂Di

∂n
+ pi

εp

∂2Di

∂pi∂n
− C ′′

(
∂Di

∂pi

)2

. (11.23)

Differentiating the elasticity of demand with respect to n, we obtain:

∂εp

∂n
= − εp

Di

[
∂Di

∂n
+ pi

εp

∂2Di

∂pi∂n

]
.

Hence, we can rewrite (11.23) as

∂2�i

∂pi∂n
= −Di

εp

∂εp

∂n
− C ′′

(
∂Di

∂pi

)2

. (11.24)

Then, if (11.22) holds and (11.24)< 0 for all i ∈ In, the symmetric equilibrium prices fall
in the number of firms. We can notice that the conditions (11.22) and (11.24) display a
combination of demand and cost elements, a feature already noticed in the Cournot model.
For instance, if the marginal costs are not decreasing and the demand elasticity is increasing
in the number of firms, then the conditions are met.

Turning to our three examples of differentiated products models referred to in the different
approaches, we have directly derived the equilibrium prices and observed that they fall in the
number of firms. It is easy to check that the two conditions (11.22) and (11.24) are satisfied in
our examples. Indeed, we assumed in the examples linear costs, i.e. C ′′ = 0. Moreover, it can
be easily verified that when the other n−1 firms set the same price p, the elasticity of demand
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is increasing in n. Hence, the game features supermodularity and increasing differences and
the prices fall in n.

3.4 Collusive Equilibria

We conclude our review of n-firms’ oligopolies by considering the case of collusive equilibria.
We refer to the infinite horizon repeated game approach pioneered by Friedman (1971) and
further developed in Fudenberg and Maskin (1986). Since we are considering symmetric
oligopolies, we assume that the basic market interaction can be represented in each period
t = 1, .., T by a symmetric and stationary constituent game �t = {

In, at
i ∈ A,π t

i = π(at)
}
,

where In is the set of n firms, at = (at
i, at

−i) is the vector of actions chosen by firm i
and the other n − 1 firms at time t, A is the set of feasible actions and π t

i = π(at)

the per-period payoff. We further assume that �t has a unique symmetric Nash equi-
librium â = (̂a, .., â) that is Pareto dominated by other market configurations An∗ ={
(a ∗

i , a ∗
−i) ∈ An

∣∣π(a∗
i , a∗

−i) ≥ π( â ) ∀i ∈ In
}
. Let a ∗ be the maximal collusive symmetric

configuration. The firms maximize the discounted sum of profits V0 =
T∑

t=0
δtπ t

i , where

δ = 1/(1 + r) is the discount factor. Each firm observes the other firms’ actions with
a one-period lag. The set of observed actions at time t, the history of the game, then, is
Ht = {

a0, .., at−1
}
.

In what follows we concentrate on symmetric collusive equilibria, in the spirit of the overall
section. Let aC be firm i’s collusive action, aC ∈ An∗ be the vector of collusive actions, and
πC = π(aC) the corresponding individual profits. Notice17 that aC ∈ [

a ∗, â
]
; that is, the

collusive symmetric allocation is in between the Nash equilibrium and the maximal collusive
allocation. Further, define aP = â firm i’s action during the punishment phase, corresponding
to the symmetric Nash equilibrium action in the constituent game, and πP = π( â ) the
punishment individual profits. Finally, let aD = arg maxai π(ai, aC

−i) be firm i’s optimal
deviation when the other firms stick to the collusive action, yielding πD = π(a D, aC

−i). Our
previous discussion implies that πP ≤ πC ≤ πD with strict inequalities if aC < â. We focus
on closed-loop grim-trigger strategies:

σ ∗
i =

⎧⎪⎨
⎪⎩

at
i = aC for t = 0

at
i = aC for t > 0 and Ht = {

aC, .., aC
}

at
i = aP for t > 0 and Ht �= {

aC, .., aC
}.

When T = ∞ (infinite horizon), given the strategy followed by the other firms and the
stationarity of the repeated game each firm chooses to collude if the following incentive
compatibility constraint holds:

VC = πC

1 − δ
≥ VD = πD + δ

1 − δ
πP.

17 We implicitly assume in this notation that â > a∗, as is the case if the action corresponds to an output level. If,
instead, the action corresponds to a price, the boundaries of the interval should be inverted.
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Then, a well-known result (Folk theorem) states that any allocation a∗ ∈ An∗ can be
implemented as a subgame perfect equilibrium in the game repeated indefinitely (T = ∞)
if the following condition holds18 for all firms i ∈ In:

δ ≥ δ∗ = πD − πC

πD − πP
. (11.25)

We can now address the key issue of whether the price(s), quantities and profits change,
and in which direction, when the number of firms increases. To answer these questions we
can consider two examples of market interaction when firms offer homogeneous products,
characterizing the constituent game �t as a price-setting Bertrand game or a quantity-setting
Cournot game. Let �C = nπC be the total profits of the cartel. Then, in a Bertrand setting
πC = �C/n, πD = �C and πP = 0. Then, the condition (11.25) boils down to

δ ≥ δ∗(n) = n − 1

n

that is increasing in n. In other words, if the basic market interaction takes the form of Bertrand
competition with homogeneous products, the incentive compatibility constraint becomes
tighter the larger the number of firms. The economic intuition is pretty simple: a cartel
with more members distributes the overall profits �C among a larger number of participants,
making the individual profits fall. Deviation and punishment profits, in this setting, are instead
unaffected by the number of cartel members, making the condition for cartel sustainability
harder to meet. We can further observe that the incentive compatibility constraint does not
depend on the specific (symmetric) collusive allocation aC the cartelists agree upon, since the
gains from deviations are always proportional to the collusive profits. Then, a focal outcome
would be to mimic the monopoly price p m. Our prediction, then, is that the market price will
be p m if the number of firms is n ≤ 1

1−δ , falling to the Nash equilibrium price p = c thereafter.
To sum up, individual profits are strictly decreasing and the market price is weakly decreasing
in the number of firms.

Turning to the Cournot model, we can identify a further element in the comparative statics.
Indeed, in a Cournot setting the profits in the different states vary nonproportionally in the
collusive allocation QC the firms choose to implement. More precisely, the incentive com-
patibility constraint becomes tighter when the firms coordinate on an allocation, summarized
by total output QC; that is, closer to the monopoly output Q m. Hence, in a Cournot setting
the critical discount factor δ ∗(QC, n) is decreasing in the collusive output QC, whereas it
continues to be increasing in the number of firms n.19 The most collusive sustainable output

in a symmetric cartel, Q
C

, then, is (weakly) increasing in the number of firms: if we start from

Q
C = Q m, we can find a number of firms n(Q m, δ) such that δ ∗(Q m, n(Q m, δ)) = δ. For a

larger number of firms the cartel would collapse. However, the firms can coordinate on a less

18 Notice that, having assumed symmetric firms, the incentive compatibility constraint and the threshold discount
factors are the same for each and every firm.

19 For instance, it is easy to show that, in the linear Cournot model when firms implement the monopoly output

the critical discount factor is δ ∗ = n2+2n+1
n2+6n+1

and is therefore increasing in n.
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collusive output (i.e. Q
C
> Q m) such that the incentive compatibility constraint is satisfied.

In general, when (11.25) holds as an equality, for given δ we have

dQ
C

dn
= −

∂δ∗
∂n
∂δ ∗
∂Q

C

≥ 0.

Hence, for n ≤ n(Q m, δ) the individual profits are decreasing in n while the market price is
p m, whereas for n > n(Q m, δ) both the individual profits and the market price are falling in n.

Finally, an informal argument that is often put forward refers to the impact of a larger and
larger cartel on the monitoring activity that the firms have to perform to prevent cheating. It
seems realistic that such activity may take more time the higher the number of firms to be
scrutinized. We can include this further argument by considering that the length of the period
in the repeated game framework may increase when more firms participate in the agreement
and have to be monitored. A longer period, then, corresponds to a lower discount factor
δ, leading to a decreasing relationship δ(n). In this latter case, the incentive compatibility

constraint would become δ ∗(QC
, n) ≥ δ(n) and the effect of the number of firms on the

maximal collusive allocation would be

dQ
C

dn
= −

∂δ∗
∂n − ∂δ

∂n
∂δ ∗
∂Q

C

≥ 0,

implying a stronger expansion in the cartel output when n increases. Finally, when n → ∞
both πP and πC tend to zero and the only sustainable output Q

C
becomes the competitive one.

The effect of market size S on collusive equilibria is twofold. Under constant marginal
costs, market size and the scale of production multiplicatively affect the profits in each of the
relevant states. Then, S cancels out in the expression of the critical discount factor. In other
words, under constant marginal costs the incentive compatibility constraints are unaffected
by market size. On the other hand, the level of collusive equilibrium profits πC increase with
market size.

To sum up, even the cartel equilibria display comparative statics properties similar to those
already highlighted: the individual profits decrease, as does the market price, when the number
of firms increases, and they tend to the perfectly competitive output when n → ∞. Market
size positively affects collusive profits while being neutral on the conditions for sustainability
of the cartel. Moreover, the level of profits in a cartel are higher, for a given number of firms,
than those of the oligopoly equilibria analyzed in the previous sections.

4 FREE ENTRY SYMMETRIC EQUILIBRIA

We can now endogenize the entry decision that determines how many of the m potential
entrants will decide to become active, sinking the entry cost F. In a symmetric setting, the
post-entry profits depend on the number of active firms n and are decreasing in it, as analyzed
in detail across a wide set of models in the previous section. We can summarize the main
findings in the relationship �(n, S, γ ) between the individual profits, the number of firms n,
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the market size S and the variable γ that captures the intensity of price competition. This latter,
therefore, can be referred to as the degree of substitutability among differentiated products,
as in Section 3.2, as well as the mode of competition (price, quantity, collusion). Hence,
the individual profits are decreasing in the number of firms, increasing in market size and
decreasing in the intensity of competition.

The maximum number of firms n ∗ in a symmetric free entry equilibrium (SFEE) is then
captured by the two conditions:

�(n ∗, S, γ ) ≥ F (11.26)

�(n ∗ + 1, S, γ ) < F

The former ensures that all the active firms make non-negative net profits, whereas the latter
implies that in a market equilibrium with n ∗ + 1 firms each one would not cover the sunk
entry costs. Given the monotonicity of the individual profits in n we can therefore write20

n ∗ = n(S, F, γ ), (11.27)

where

∂n ∗

∂S
= −∂�/∂S

∂�/∂n
> 0, ,

∂n ∗

∂F
= 1

∂�/∂n
< 0 and n∗(γ ′) < n ∗(γ ) if γ ′ > γ . (11.28)

Hence, our main predictions state that the number of firms in a symmetric free entry
equilibrium is increasing in market size, decreasing in the sunk entry costs (economies of
scale) and decreasing in the intensity of competition.21 Interestingly, relaxed competition (a
lower γ ), as may arise if products are weak substitutes, or in the case that the industry is
cartelized, is concomitant with an increased number of firms. We can further notice that if
marginal costs are constant, market size multiplicatively increases the profits and therefore
the number of firms depends on the ratio F/S that captures the relevance of economies of
scale with respect to market size. Then, an increase in market size, as it may derive from free
trade agreements, leads to an increase in the number of firms and a fall in prices, making
consumers better off.

The SFEE identifies the maximum number of firms sustainable given market fundamentals
and the prevailing strategic behavior. More specifically, in differentiated products markets we
have identified the maximum number of varieties sustainable in an SFEE, assuming that each
variety requires to sink a cost F to be produced, whereas the number of firms may be lower if
some of them offer a portfolio of different varieties.22

20 We consider here for convenience n as defined on R
+, ignoring the integer issue. Then, given the monotonicity

of profits in n the two conditions for an SFEE boil down to�(n∗ , S, β) = F.
21 We express the relationship between n∗ and γ to encompass both the case when γ is defined over a compact

interval (the substitutability parameter in the differentiated products models) and when it is a discrete index measuring
the intensity of competition (as when comparing collusive and non-cooperative equilibria).

22 This statement should be further qualified according to the different models of product differentiation. In
general, if in a symmetric multi-product setting each firm offers k varieties some cross-variety effects are internalized,
and therefore the market price should be different (higher) than in the case of single-product firms. With higher
individual profits in the symmetric k-varieties firms equilibrium some further entry should be profitable. Therefore,
the number of multi-product firms should be larger than n∗/k, where n∗ is the SFEE number of single-product firms.

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

Entry games and free entry equilibria 329

5 FREE ENTRY AND SOCIAL EFFICIENCY

Moving from the positive to the normative analysis, we are interested in evaluating whether
the entry process leads to an optimal, excessive or insufficient number of firms. A frequent
presumption is that guaranteeing conditions of free entry is desirable from a social point
perspective. The analysis we have developed in the previous sections allows us to address this
issue and to verify whether and under which conditions free entry leads to socially desirable
outcomes. Spence (1976) and Dixit and Stiglitz (1977) have explored the issue in a monopolist
competition set-up, finding that the number of varieties in a free entry equilibrium falls short of
the social optimum. In a homogeneous product environment, instead, Von Weizsäcker (1980)
and Perry (1984) established an opposite result, with too many firms entering with respect to
the social optimum.

We discuss the social efficiency of SFEE following Mankiw and Whinston (1986) and
Amir, De Castro and Koutsougeras (2014) and adopting the same two-stage game of the
previous sections. We analyze a second-best welfare maximization problem where the social
planner is assumed to control the number of firms but to be unable to affect or determine the
behavior of the active firms once they enter. In the comparison of the equilibrium and the
socially optimal number of firms we focus on the case when the fixed costs are non-negligible
given market size, and the number of firms in either solution is finite.

We start with the case of homogeneous products and quantity competition and then move to
a product differentiation and price competition environment. We can borrow from the analysis
of symmetric market equilibria three conditions that we proved to hold under fairly general
conditions in the Cournot model:23

1. In the symmetric equilibrium the individual output is decreasing in n: q(n) > q(n ′) for
n ′ > n.

2. Total output is increasing in the number of firms: Q(n) = nq(n) < Q(n ′) = n ′q(n ′) for
n < n ′.

3. The price cost margin is non-negative for any number of firms, and strictly positive for a
finite number of firms: P (Q(n))− C ′ (q(n)) ≥ 0 for all n and P (Q(n)) − C ′ (q(n)) > 0
for n finite.

Given these features, the social planner maximizes total welfare by choosing the number
of firms:

max
n

W(n) =
Q(n)∫

0

P(s)ds − nC (q(n))− nF (11.29)

23 In their paper, Mankiw and Whinston do not model explicitly the post-entry game and assume that certain
features characterize the firm and aggregate pattern of the equilibrium strategies. We can, instead, explicitly refer to
the properties of the equilibria developed in the previous sections. A similar approach can be found in Amir et al.
(2014).
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Let us define nW as the solution. Then, under 1–3, the SFEE number of firms is higher
than the social optimum, that is n∗ > nW . The result can be easily proved by noting that the
first-order conditions in problem (11.29) are:

W ′(n) = P (.)

[
n
∂q

∂n
+ q(n)

]
− C(q )− nC ′(q )

∂q

∂n
− F = (11.30)

= �(n)− F + n
[
P (Q(n))− C ′(q(n))

] ∂q

∂n
.

Since in SFEE �(n ∗) = F, ∂q
∂n < 0 by condition 1 and P (Q(n ∗)) − C ′(q(n ∗)) > 0 for n ∗

finite given condition 3, it follows that W ′(n ∗) < 0 and therefore n ∗ > nW .
The economic intuition of the excessive entry result is straightforward: when an additional

firm enters, it adds to the social welfare the profit�(n)−F but, at the same time, it steals out-
put, and therefore profits, from the other firms, the last term in the derivative (11.30), second
line. The business-stealing effect, captured by condition 1 above, creates a wedge between the
private incentives of the entrant, and the social effect of entry, explaining why too many firms
enter in an SFEE.24 We can observe that when F (or F/S ) tends to zero then P (Q(n ∗)) −
C ′(q(n ∗)) and �(n ∗) vanish, implying that an infinite number of firms enter in equilibrium
and maximize welfare. In other words, the excessive entry result applies to the case of signif-
icant fixed costs and a finite number of firms, whereas it vanishes when fixed costs become
negligible. A policy that expands markets, as it is a free trade approach, therefore can fix the
excessive entry distortion and realign competitive market outcomes and social optimality.

The case of differentiated products adds an additional effect of entry on welfare, since more
firms imply a larger set of varieties available to the consumers. Following Spence (1976) we
capture this effect by assuming that the gross consumers’ benefit is

CS(q) = G

[
n∑

i=1

f (qi)

]
(11.31)

where q is the vector of outputs, f (0) = 0, f ′(.) > 0 and f ′′(.) ≤ 0 for all qi ≥ 0 implies
a preference for variety and G ′(z) > 0, G ′′(z) < 0 for all z ≥ 0 qualifies products as
substitutes.25 The social planner then solves the problem

max
n

W(n) = G
[
nq(n)

]− nC(q(n))− nF.

Contrary to the case of homogeneous products, when products are differentiated in general
we cannot rank the number of firms in an SFEE and the socially optimal one. The reason is
immediately evident from the first-order conditions of the problem:

W ′(n) = G ′
(

nf ′ ∂q

∂n
+ f

)
− C(q )− nC ′(q )

∂q

∂n
− F = (11.32)

= �(n)− F + n
(
G ′f ′ − C ′) ∂q

∂n
+ G ′ (f − f ′q

)

24 Mankiw and Whinston show that, when the integer problem is taken into account, n∗ ≥ nW − 1.
25 Consumers’ utility maximization implies that in a symmetric equilibrium the price is equal to G ′ (nf (q )) f ′(q )

and therefore the profits can be written as � = G ′ (nf (q )) f ′(q )q − C(q ) − F.
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Condition (11.32) shows that an additional firm adds to total welfare the profits generated,
�(n) − F, and further affects total welfare with two additional terms. The first corresponds
to the business-stealing effect already identified in the case of homogeneous products, and
captures the fact that the new firm subtracts output and profits to the competitors, with a lower
net social gain than the private firm and a bias towards excessive entry.

The last term is new and refers to the impact of an additional variety on consumers’ surplus.
G ′f is the marginal social effect of the new variety, whereas G ′f ′q is the firm revenue.
Since the firm does not internalize all the social benefit of the additional variety, the private
incentives are lower than the social ones, leading to underprovision of varieties.

Without specific assumptions on preferences the two terms with opposite signs in (11.32)
do not allow the identification of W ′(n∗). Therefore, we may have an excessive, insufficient
or optimal number of firms entering in an SFEE. Under more specific assumptions on the
utility function, we can generate examples where the ranking can be established. For instance,
Dixit and Stiglitz (1977), using a CES utility function, obtain that the SFEE number of firms is
lower than the welfare-maximizing one, reverting the case of excessive entry that characterizes
a homogeneous product environment.

6 FREE ENTRY EQUILIBRIA WITHOUT SYMMETRY

Although a symmetric environment is a natural reference when analyzing long-run free entry
equilibria, we may be interested in the effects of free entry in oligopoly markets when some
kind of asymmetry has long-lasting effects. This may come from the existence of patents
or other frictions in the adoption of process innovations that prevent the equalization of
production techniques, from persisting advantages on the demand side coming from quality or
brand image, to institutional features that affect the behavior of firms, such as, for instance, the
coexistence of different ownership structures or the presence of state-owned firms. Since free
entry equilibria suggest the pattern of adjustment when the entry process unfolds, asymmetric
oligopolies are an interesting and relevant case to be addressed.

Once firms intrinsically differ, the number of firms is no longer a relevant statistic with
which to describe, in a positive or normative sense, the long-run equilibria. However, many
of the oligopoly models we have already considered in a symmetric setting share a particular
property: that of being aggregative games, which allows us to deal easily with asymmetric
environments.26

The profits of firm i in an aggregative oligopoly game can be written as a function of a

choice variable (action) ai and of the sum of the actions of all market participants A =
n∑

j=1
aj;

that is, �i(ai, A). A very simple illustration is the Cournot model already considered in
Section 3.1. Setting qi = ai we can write �i(ai, A) = P(A)ai − Ci(ai). We also recognize
an aggregative structure in some of the models of product differentiation.27 In the Singh and

26 See Anderson, Erkal and Piccinin (2015) on free entry equilibria with aggregative oligopoly games.
27 One can notice that address models with n > 3, such as the Salop circular road model described above, are not

aggregative games, since the profits of each firm depend only on a subset of prices.

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

332 Handbook of game theory and industrial organization: theory

Vives (1984) linear model the prices enter additively in the demand function and therefore,
setting pi = ai, the profits are written as:

�i(ai, A) = (ai − c)
α(1 − γ )+ γA − [

γ (n − 1)+ 1
]

ai

(1 − γ )
[
γ (n − 1)+ 1

] .

Even the logit model shares the feature of an aggregative game, once we define ai =
exp(−γ pi): the profits can be written as

�i(ai, A) = (− log(ai)/γ − ci)
ai

A
.

To illustrate the main features of aggregative games, we use here the linear Cournot model
�i(qi, Q ) = (a−bQ−ci)qi as an example. The traditional setting describes the profit function
as depending on own output and the aggregate of other firms’ production Q−i = ∑

j �=i qj; that
is, �i(qi, Q−i) = (a − b(qi + Q−i)− ci)qi and identifies the best reply

q̂i(Q−i) = a − ci

2b
− Q−i

2
.

Alternatively, following the aggregative setting we can identify the inclusive best reply first
introduced by Selten (1970), where the optimal individual output is consistent with a given
aggregate level of production:28

q̃i(Q ) = a − ci

b
− Q .

Notice that an equilibrium exists only if
n∑

i=1
q̃i(Q ) = Q ; that is, if the sum of the inclusive

best replies has a fixed point.29 Further we can define firm i’s profits, when it and all firms
choose their inclusive best reply, as a function of total output Q :

�i(Q, q̃i(Q )) = � ∗
i (Q ) = (a − ci − bQ )2

b
(11.33)

that is strictly decreasing in Q. The function (11.33) plays a fundamental role in the analysis
of free entry equilibria when asymmetries are admitted. Indeed, it allows the mapping of the
total equilibrium output – in general the aggregate A – into the profits of the individual firms,

28 One can notice that both expressions come directly from the first-order conditions

∂�i

∂qi
= a − ci − b(qi + Q−i)− bqi = 0.

29 Anderson et al. (2015) introduce a set of assumptions that guarantee the existence and uniqueness of
an equilibrium in inclusive best replies. Moreover, under these assumptions the nature of interaction (strategic
substitutability or complementarity) of the original best replies translates into an analogous feature of the inclusive
best replies.
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where therefore Q replaces the number of firms as the key driver of equilibrium profits in an
asymmetric setting.

Continuing with our Cournot example, a free entry equilibrium (FEE) can be defined as a
set of quantities

{
(q ∗

i )i∈I
}

and a set of entrants I ⊆ Im, where Im is the set of all m potential
entrants, such that

�i(Q
∗
I ) ≥ Fi for all i ∈ I (11.34)

�j(Q
∗
I + q ∗

j ) < Fj for all j /∈ I

where Q ∗
I = ∑

i∈I q̃i(Q ∗
I ) is the aggregate output of the entrants I. Notice that we are not

imposing symmetry in gross profits �i or in the sunk costs Fi. As a final step, it is often
argued that the marginal entrant in a free entry equilibrium gains zero profit, a condition that
is shared by all firms in a symmetric equilibrium. Anderson et al. (2015) assume that, among
the potential entrants, there is a subset e ⊂ Im of symmetric marginal firms30 with identical
profit function �i = �e(qi, Q ) and entry cost Fi = Fe for all i ∈ e. Some of these marginal
firms may be active, belonging to the set ea ⊂ I.

In a zero-profit free entry equilibrium (ZPFEE) a nonempty set of marginal firms ea is
active and gains zero profit. More formally, a ZPFEE is an FEE with a set I of active firms
such that ea ⊂ I and �i = � ∗

i (Q
∗
I ) = Fi for all i ∈ ea, where � ∗

i (.) is given by (11.33).
The existence of a fringe of symmetric active marginal entrants allows the combination of the
zero-profit condition of the marginal firms with a unique level of aggregate output Q ∗

I and
with a variety of profit levels of the inframarginal (asymmetric) firms. Indeed, since � ∗

i (Q )
is decreasing in Q, from the zero-profit condition for the active marginal firms we obtain Q ∗

I ,
and this latter determines the profits of the other inframarginal firms � ∗

i (Q
∗
I ). The number of

active marginal firms ea is then adjusted through the entry process to find the ZPFEE.
To illustrate these properties it is interesting to analyze how the ZPFEE varies when

exogenous changes in the set of inframarginal firms occur, modifying their profit structure
and, consequently, the optimal output they deliver to the market. Let us consider an exogenous
shock that affects a subset IC of inframarginal firms (the changed firms), such as, for instance,
a process innovation, or a merger, or a privatization, while leaving the other inframarginal
firms in subset IU (the unchanged firms) unaffected. Hence, in the initial state, I = IC∪IU ∪ea.

Then, after the shock the set of active firms in a ZPFEE moves from I to I ′. All the changed
and unchanged inframarginal firms remain active both before and after the shock, i.e. IC = I ′

C
and IU = I ′

U . The adjustment to the new ZPFEE works through a variation in the set of active
marginal entrants: ea �= e ′

a. Since e ′
a �= ∅ in the new equilibrium, �i = � ∗

e (Q
∗
I ′) = Fe must

hold for i ∈ e ′
a and therefore total output remains the same; that is, Q ∗

I ′ = Q ∗
I . Consequently,

the profits of the unchanged inframarginal firms do not vary. Hence, for instance, a reduction
in the marginal cost of the changed inframarginal firms IC leads them to produce more in
the new ZPFEE, whereas the unchanged inframarginal firms IU maintain the same level of
production. Since total output does not vary, the set of marginal firms shrinks as does their

30 A possible justification of this key assumption rests on the following argument. The industry is populated by a
set of larger firms that display rich strategies and, through them, are able to introduce some competitive advantage,
i.e. asymmetry. Then, there is a fringe of small firms (the marginal entrants) that are not strategically sophisticated
and adopt a standard and similar technology and are therefore less efficient than the larger ones.
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overall production, adjusting the larger production of the changed inframarginal firms and
maintaining total output Q ∗

I at the initial level.31

This property of the ZPFEE also encompasses the case of the “aggressive leaders” in Etro
(2006), where one firm, the leader, is the inframarginal agent and the other symmetric firms,
the followers, belong to the active marginal entrant group ea. A change in the profits of
the leader, for instance due to some investment, as Etro (2006, p. 150) writes, “does not
affect the equilibrium strategies of the other firms, but it reduces their equilibrium number”.
Interestingly, in this setting with an endogenous number of followers, if the investment
increases the marginal profit of the leader, this latter has an incentive to over-invest, no
matter whether competition is in strategic complements or substitutes. Indeed, if the market
equilibrium output does not change with its investment, whereas its market share and profits
increase, the leader will over-invest. At the limit, if the investment is not costly, the leader has
the incentive to produce more than the usual Stackelberg leader’s output and to monopolize
the market, preventing the entry of the followers.

This result of generalized over-investment is strikingly different from what happens when
the number of followers (entrants) is given and exogenous. In the taxonomy proposed by
Fudenberg and Tirole (1984), when the investment increases the marginal profit, the leader
over-invests (top dog) if competition is in strategic substitutes but it under-invests (puppy
dog) when it competes in strategic complements.

Aggregative games also greatly simplify the normative analysis of asymmetric environ-
ments. Starting with the case of homogeneous products, we observe that consumers’ surplus
depends on aggregate output only,32 i.e. CS = CS(Q ), with CS(0) = 0, CS ′(.) > 0 and
CS ′′(.) ≤ 0 for all Q ≥ 0. Then, when a shock affects a subset of inframarginal firms while
leaving total output Q ∗

I unchanged, consumers’ surplus also does not vary. The only impact
on social welfare comes from the variation in profits of the changed inframarginal firms IC.
Indeed, the profits of the unchanged inframarginal firms IU do not vary and the change in
the number of active marginal firms from ea to e ′

a does not affect welfare, since they gain
zero profits. We conclude that if a shock induces a profitable adjustment in a subset of firms
and a change in their market shares, the only effect on welfare comes from the variation in
the profits of the affected firms, quite in contrast with the impact in the short run when the
number of firms does not vary.

To appreciate the result, let us consider the welfare impact of a merger between two firms
absent any efficiency gain. The short-run effects are well known in the IO literature: the
merged entity internalizes the negative externalities and contracts output; the outsiders react
by expanding their production. The net effect is a fall in total output, consumers’ surplus and
total welfare, an increase in outsiders’ profits and, in the case of constant returns to scale, a
fall in insiders’ profits.33

Once we consider entry and ZPFEE, however, the effects change significantly. Since
additional active marginal firms enter in reaction to the short-run adjustments, total output,

31 This neutrality outcome recalls a case of a competitive market where a fringe of identical firms with constant
marginal costs makes the supply curve flat at some price p. Any efficiency improvement of the inframarginal firms
affects the supply curve but the market equilibrium is always determined by (p, D(p)). The reduction in costs, then,
is cashed in by the inframarginal firms as increased profits. These latter, in a sense, are Ricardian rents.

32 This is true if firms’ activities do not entail any externality, such as, for instance, different levels of pollution. If
this were the case, the composition, and not only the total level of output would matter from a welfare point of view.
In our discussion we are assuming that these composition effects do not arise in a homogeneous product market.

33 See Salant, Switzer and Reynolds (1983).
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consumers’ surplus and outsiders’ profits (IU and ea) do not change. The insiders’ (IC) profits,
due to their output contraction, are weakly lower. If, however, the merger allows the realization
of efficiencies, insiders’ profits, as well as their incentive to merge, increase, as does total
welfare. This result brings with it a strong policy implication in favor of lifting ex ante merger
control and authorization policies. Indeed, since the long-run private and social effects of a
merger coincide, if private firms have an incentive to merge, then social welfare will rise,
whereas socially damaging mergers would never be implemented given the lack of private
incentives.34

In the welfare analysis of homogeneous product markets, we assumed that consumers’
surplus depends only on total output but not on its allocation among the active firms. Moving
to a differentiated products environment a similar assumption may be more problematic.
Indeed, Anderson et al. (2015) show that in aggregative oligopoly games with differentiated
products, a reallocation of a given aggregate among the different varieties, although neutral
on the ZPFEE conditions, may affect total surplus and welfare. In other words, it may be that
consumers’ surplus not only depends on the aggregate, but also on its composition.

They show that the dependence of consumers’ surplus on the aggregate only still persists
with differentiated products if the demand functions satisfy the independence of irrelevant
alternatives (IIA) property; that is, if the ratio of any two demands depends only on their
own prices and not on the prices of other, unconsidered, alternatives. Notably, the logit
model, as well as the demand functions derived from the CES utility function, satisfy the
IIA and therefore the corresponding oligopoly game is not only aggregative, but also allows
the expression of consumers’ surplus as a function of the sum of the prices only.35

7 ENDOGENOUS SUNK COSTS AND PERSISTENT
CONCENTRATION

The entry decision in the previous sections involved sinking a fixed set-up cost F that was
related to some initial indivisible investment. We have not further specified the nature of these
outlays. Assuming that the level of the sunk cost F is an exogenous parameter with respect to
the entry and market strategies may be explained referring to technology (e.g. investment in
a minimum efficient scale plant) or institutions (e.g. the payment of a license fee needed to
operate). The sunk cost may vary, allowing us to extrapolate comparative statics properties,
but for reasons orthogonal to the market strategies adopted by the active firms once entered.
In this sense we can label the environments considered so far as characterized by exogenous
sunk costs.

In this setting, the amplitude of the sunk costs F compared to the size of the market S
is a fundamental driver in determining the maximum number of firms sustainable in a free
entry equilibrium. The limiting case, when F becomes negligible with respect to S, leads

34 Notice that the hands-off policy implications of free entry on merger control are much stronger than the usual
argument that low entry barriers may constitute a favorable element when analyzing a merger. In this latter case easy
entry conditions may mean that pros are balanced with the cons of enhanced market power in the evaluation of a
merger. In the ZPFEE case, free entry is instead sufficient to generate mergers only when they are welfare enhancing.

35 It should be stressed that aggregative product differentiation models do not necessarily satisfy the IIA, as is
evident, for instance, considering the linear model drawn from Singh and Vives (1984). In this case consumers’
surplus depends not only on the aggregate price but also on its composition.
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to convergence to a competitive equilibrium with an infinite number of firms, vanishing
externalities and price converging to the marginal cost.

Although this paradigm can apply to several industries, there are many other sectors where
a relevant part of the sunk costs arise due to specific market strategies of the firms, which
in general we may connect to the effort of attaining a competitive advantage and market
leadership. This is the case with investments in advertising that enhance the perceived quality
of the product, or with R&D expenditures aimed at improving the efficiency of the technology
or the quality of the products.36 Similar effects take place in industries such as media and
entertainment, where market leadership can be reached by securing specific, nonreproducible
inputs such as, for instance, talent and premium content.37 In all these examples, a competitive
advantage is reached through enhanced efforts and, therefore, higher sunk costs. We label this
second class of economic environments endogenous sunk costs.

When sunk costs react to market incentives, we may expect that the entry process, which is
constrained by the need to repay all the sunk outlays, is affected. Indeed, market size, which
drives the tendency to fragmentation in an exogenous sunk cost industry, has the additional
effect of increasing the marginal return to market dominance, incentivizing leadership and
endogenous sunk costs. A central result of the endogenous sunk cost case claims that if
the incentives for effort are sufficiently high, an increase in market size does not lead to an
increasingly fragmented market structure. There exists an upper bound to fragmentation such
that, even at the limit, large firms and concentration persist.

We illustrate this result through a very simple model due to Schmalensee (1992)38 that
conveys the main ideas and intuition. In this setting we set the price p > c fixed and
concentrate on the investment in advertising Ai. The demand for product i has a similar
structure to that in discrete choice models: Di(Ai, A−i) = S ∗ Pi(Ai, A−i) where S is market
size and Pi firm i’s market share. Moreover,

Pi(Ai, A−i) = Aγi
n∑

j=1
Aγj

(11.35)

where γ ∈ [0, 2] is a parameter that measures the mobility of consumers in reaction to
advertising outlays. Notice that ∂Di

∂Ai
= γ

Ai
Pi ∗ (1 − Pi).

The profit function of firm i, then, is

�i(Ai, A−i) = (p − c)S
Aγi

n∑
j=1

Aγj

− Ai − F (11.36)

36 A pathbreaking contribution in the theory and empirical analysis of these industries is due to Sutton (1991,
1998), the former referring to advertising-intensive industries and the latter to R&D-intensive sectors. See also Sutton
(2007) for a comprehensive review.

37 See on these examples Motta and Polo (1997, 2003).
38 A full-fledged model based on quantity competition and investments in quality can be found in Sutton (1991,

and 2007, Appendix B).
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where the last two terms refer to endogenous sunk costs in advertising (Ai) and exogenous
sunk entry costs (F ). In this setting there exists a symmetric Nash equilibrium in advertising
levels

A ∗ = (p − c)Sγ
n − 1

n2
(11.37)

that is increasing in market size S and in consumers’ reactivity to advertising γ .
Plugging into the profit function and taking into account that in a symmetric equilibrium

Pi = 1/n, the zero-profit condition can be rewritten as:

1 − γ

n ∗ + γ

n∗2 − F

S(p − c)
= 0, (11.38)

where n ∗ is a solution of the above equation; that is, the SFEE number of firms.
The last term refers to exogenous sunk costs F and vanishes as the size of the market

S increases indefinitely. However, the first two terms, which are directly related to the
endogenous sunk costs in advertising outlays, present a different pattern: they do not depend
on market size.39

When γ ≤ 1, corresponding to consumers poorly reacting to advertising, and therefore a
weak competitive pressure for market leadership, the single positive solution n ∗ of (11.38)
increases indefinitely in market size S, reproducing a pattern we already observed in pure
exogenous sunk cost models. However, for γ ∈ (1, 2] the incentives to invest in market
leadership bite and advertising increases in larger markets, pushing up the endogenous sunk
costs. In this latter case

lim
S→∞

n ∗ = γ

γ − 1
.

The entry process in this case is predominantly governed by the endogenous sunk costs, and
the number of sustainable firms is bounded above for any market size, implying persistent
concentration.40 Moreover, the endogenous sunk costs tend to rise more quickly when
consumers are more responsive to advertising, increasing concentration. Interestingly, in
exogenous sunk costs environments more intense competition is associated with a lower n ∗
and a more concentrated market, although these features dilute and vanish when the market
size increases indefinitely. This pattern of higher concentration when competition is harsher,
instead persists in endogenous sunk cost industries even with growing market size.

39 This feature, literally speaking, depends on the specific set-up of the very simple model we adopt. However, a
general property of this class of models is that when market size increases indefinitely, gross profits and investment
costs once we reach a certain number of firms tend to increase at the same rate. In this case, when S increases,
boosting the gross profits, the incentives to invest in market leadership increase accordingly and the endogenous sunk
costs increase at the same rate, preventing entry of additional firms.

40 Shaked and Sutton (1983) identify a second case when the number of firms does not increase when market size
rises. When firms offer different qualities xi ∈ [x, x

]
and the burden of quality improvements falls on fixed rather than

marginal costs, price competition squeezes the margins. With relatively similar prices the demand for lower-quality
products vanishes and a limited number of firms survives (finiteness property).
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8 FRICTIONLESS ENTRY AND CONTESTABILITY

The general result in the endogenous and exogenous sunk costs cases claims that there exists
a maximum number of firms sustainable in a free entry equilibrium, and that it is decreasing
in the amplitude of the sunk costs F compared with market size S. A concentrated market,
in turn, is associated with noncompetitive mark-ups and allocative inefficiency. At the limit,
when the economies of scale are particularly relevant, then we might find that only one firm
can operate in the market: a case of natural monopoly. The firm will set the monopoly price
p m, being able to cover the high fixed costs with the monopoly margins. A second, symmetric
entrant, pushing the market price down to p(2) = P(Q(2)) with its additional output, would
make losses, since by definition in a natural monopoly it would be unable to cover the fixed
costs. Then, there is a range of fixed costs such that the monopoly price is charged and no
entry occurs. Similar cases can be generated where a small number of firms can be sustained
in a free entry equilibrium.

The contestable markets approach41 challenges this view, arguing that when entry is
frictionless, structural monopoly or oligopoly environments do not lead to monopoly or
oligopoly pricing and the associated allocative distortions. Indeed, potential competition may
exert a sufficient corrective effect on the incumbent, inducing it to set a (second-best) efficient
price to prevent temporary (hit-and-run) entry. Allocative efficiency is therefore ensured by
(potential) competition even when economies of scale are so relevant to preventing actual
competition.

This striking result re-establishes in a free entry environment a central feature of the
Bertrand result, which claims that no relationship exists between the number n > 1 of
active firms and the (socially efficient) oligopoly equilibrium. Indeed, as the exogenous sunk
cost paradigm extends to the free entry case the Cournotian result of smooth convergence to
competitive equilibria, the contestable market approach brings to the stage of the free entry
story a Bertrand-type flavour.

It is now time to specify in more detail what we mean by frictionless entry. As a general
point, the incumbent firm and the (potential) entrant are, under any respect, perfectly identical.

Since we are considering a natural monopoly, the first issue to address is the nature and
amplitude of the fixed costs. Let us consider the following example. On the supply side,
suppose that, in order to operate in the industry, it is necessary to bear a total investment
F for an indivisible capital good that provides production services over a time horizon T.
Let us divide this total time into t periods, whose length we are going to specify below. The
incumbent firm I, then, has to cover a fraction f = F/t of the fixed costs in each of the t periods
it is active in the market, and has variable costs CI(qI). Let us consider the case f ∈ (�2,�m],
where �2 are the gross profits from duopoly and �m the monopoly gross profits. Under this
assumption the number of firms sustainable in the market is n ∗ = 1; that, is the market is a
natural monopoly.

The potential entrant E, if it is willing to enter, has to pay F = t ∗ f to purchase the capital
good. If, after one period, E decides to exit, the residual value of the capital good is (t −1)∗ f .

41 See Baumol, Panzar and Willig (1982). To ease the exposition we present here the case of a contestable natural
monopoly. The authors generalize the contestable market approach to natural monopolies, showing that second-best
efficient allocations arise also in these cases when entry is frictionless. The case of multi-product firms and economies
of scope is a third, relevant extension of the analysis.
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Let α ∈ [0, 1] be the fraction of the residual value that can be cashed back by reselling
the capital good or by using it in other markets. This parameter measures the sunkness of
the initial investment, with α = 1 corresponding to the case when the capital good can be
efficiently recovered after exit and α < 1 to some level of sunkness. If E enters and produces,
its costs are CE(qE). It is evident that, since the incumbent can efficiently use the capital good
in the market for the entire length of its economic life, the entrant is in a symmetric position
on the supply side only if α = 1 and CE(q ) = CI(q ).

Turning to demand, for a given price p the entrant’s demand is DE(p) ≤ DI(p) where the
equals sign corresponds to a symmetric position towards the customers, who are uncommitted
and can switch to the entrant if the price pE is more attractive than the incumbent’s price pI .

The timing of the game is as follows: at s = 0 the incumbent sets a price pI that cannot
be changed for a period of length T/t; just after pI is set the entrant posts its own price pE;
once the two prices are set, the customers choose which of the two firms to patronize and are
supplied immediately; at s = T/t, before the incumbent changes its price, the entrant exits
and resells (or reuses) the capital good, collecting α(t − 1)f .

Once the contestable market story is unbundled, two key ingredients become evident:

1. There is no administrative restriction on entry, as licenses or authorizations.
2. Demand and supply quantities adjust instantaneously while price changes take time.

In this environment, the incumbent sets a (limit) price that prevents the temporary entry of
the competitor:

p̂I = CE (DE( p̂I ))+ f [α + t(1 − α)]

DE( p̂I )
. (11.39)

If we compare (11.39) with the second-best Ramsey price

p sb = C
(
D(p sb)

)+ f

D(p sb)

we can immediately notice that the limit price set by the incumbent is second-best efficient if
three further conditions hold:

3. The entrant has access to the same technology as the incumbent, with no restrictions
coming from patents or privately owned know-how: CE(q ) = CI(q ); moreover, it can
instantaneously change the level of production at the desired level.

4. The customers see the entrant and the incumbent as offering perfect substitutes and have
no restrictions or costs in switching from one to the other: DE(p) = DI(p).

5. The fixed indivisible investment is not sunk and the entrant recovers the residual value of
the capital good entirely: α = 1.

Under assumptions 1–5 potential competition is able to discipline the incumbent and
induces second-best efficient outcomes in markets plagued by substantial economies of
scale and concentration. Intuitively, perfect symmetry of the incumbent and the entrant and
frictionless entry allow the market to be supplied, indifferently, by either of the two firms. If
the incumbent commits to a profitable price, it is temporarily replaced by the entrant through
undercutting. In this case, the identity of the provider changes for a period, although the
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market remains a monopoly. To avoid undercutting, the incumbent is forced to adopt the
efficient limit price equal to the average costs. This remarkable result is derived under a set
of specific assumptions, and can be evaluated both with respect to their empirical relevance
and theoretical robustness. On theoretical grounds, the limit price expression (11.39) clearly
shows that substantial departures from the second-best efficient price occur when any of the
assumptions are weakened.

Turning to empirical relevance, the contestable market approach inspired the liberalization
of the airline industry in the USA in the late 1970s.42 In this sector a market corresponds
to a route, and therefore the large investments in aircrafts are not specific to a market: the
aircrafts can be moved to other routes or resold in an efficient market. Alternatively, the
carriers can lease the aircrafts. The other fixed costs, check-in and handling services, are
specific to airports, and therefore to the routes served. In the market reform, the airports, rather
than the carriers, supplied these services, leasing them to the carriers on a variable cost basis.
Hence, Assumption 5 of no sunkness seems consistent with the empirical data, as well as the
access to the same technology (Assumption 3). Price stickiness may derive from contractual
constraints on fares posted in advance (Assumption 2), and lifting authorizations was a key
measure of the reform (Assumption 1). However, Assumption 4 was the Achilles’ heel of the
reform, since slots were assigned under grandfather rights, and the peak-hour more profitable
ones remained in the portfolio of the incumbents. Moreover, in the years after the reform the
carriers reorganized the routes from a spoke-to-spoke to a hub-and-spoke pattern, enhancing
their dominant role in large hubs and achieving high load factors. With DE(p) < DI(p),
after an initial phase of turbulence, the incumbents were able to profitably prevent entries and
maintain dominance in their key hubs.

Hence, although intellectually brilliant, the contestable market approach can hardly be
considered a general theory of free market equilibria due to its lack of robustness. Although
potential competition is an important ingredient in entry games, its impact on the behavior of
active firms has to be carefully evaluated from an empirical point of view.

9 CONCLUSIONS

In this chapter we have reviewed the different branches of the IO literature that analyzes free
entry equilibria and the endogenous determination of market structure. A recurrent theme is
the assumption of symmetric firms, which in a long-run perspective can be justified when
the friction of access to technology and the features of demand allow all firms to refer to a
common set of best practice techniques and to exploit the possibility of (horizontal) product
differentiation. In this perspective, a very rich class of oligopoly models is characterized by
significantly similar comparative statics properties of the market prices, quantities and profits
when the number of active firms increases. Two limiting cases emerge, perfectly competitive
and the monopolistic competitive outcomes, when the number of firms increases indefinitely.
The monotone comparative statics tools allow the identification of the general conditions
behind these results. Long-run market structures under free entry are determined by a small
set of elements referring to technology (economies of scale) and preferences (market size),
with an additional ingredient related to strategies and the intensity of price competition.

42 See Bailey and Panzar (1981) and Fawcett and Farris (1989).
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Hence, the general result of free entry equilibria provides a solid theoretical foundation to
the traditional approach of industrial economics based on the structure–conduct–performance
paradigm.

The normative properties of free entry equilibria show that in a homogeneous product
setting the business-stealing effect is the key element that creates a wedge between the private
incentives and the social planner, determining an excessive number of firms. When product
differentiation is introduced, however, an opposite externality leading to underprovision of
varieties is also introduced, since the private incentives to enter do not include the benefits of
an increased number of substitute products on consumers.

While symmetric market games are a useful reference for the long-run evolution of markets,
asymmetric settings may be relevant both in the long run, when frictions persist, and as a
starting point from which to study the evolution of market structure under free entry. It is
important to notice that some form of symmetry is also maintained in this framework, which
exploits the aggregative nature of many oligopoly models, by assuming that the (relatively
inefficient) marginal entrants are all alike. The zero-profit condition on the marginal entrants,
together with the aggregative nature of the market games, then generates unconventional long-
run effects when a shock hits the active firms. Indeed, in the new free entry equilibria the total
output remains unchanged, while its composition varies, with the change in output of the firms
affected by the shock absorbed by an opposite variation in the number of marginal entrants.
With these results, a hands-off policy is implied.

Endogenous sunk costs related to market strategies provide a different pattern of adjustment
characterized by persistent concentration even in very large markets, in contrast with the
tendency to fragmentation when sunk costs are exogenous. Finally, we review the attempt to
establish efficient entry equilibria even in markets characterized by huge economies of scale
and structural concentration, including natural monopolies, by assuming frictionless entry and
giving a role to potential competition. The contestable markets paradigm refreshes the features
of Bertrand competition in a free entry set-up, in contrast with the Cournotian paradigm of the
exogenous sunk costs approach. Once again, symmetry plays a role, since the effectiveness of
potential competition in disciplining dominant firms rests on the assumption that the entrants
can perfectly replace the incumbent during their temporary raid in the market.
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12. Evolutionary oligopoly games with heterogeneous
adaptive players
Gian Italo Bischi, Fabio Lamantia and Davide Radi

1 INTRODUCTION

Since 1838, the year of publication of the seminal duopoly model (Cournot, 1938), Cournot
oligopoly games have become one of the standard and most widely employed models of
imperfect competition. Although this contribution had been proposed long before game-
theoretic methods were formally developed, it has become central in the literature on industrial
organization and, in general, on game theory. The equilibrium concept proposed by Cournot
is regarded as the first example of Nash equilibrium, a concept elaborated by Nash in 1950
for general N-person games.1

According to its definition, when all agents are in such an equilibrium, no unilateral
deviation by a single agent is profitable and, therefore, no competitor has an incentive to depart
from that state. However, the possibility of attaining a Nash equilibrium, even in a theoretical
setting, is not a weak outcome, as its immediate realization involves the postulation that every
player is endowed with the highest degree of rationality and information. In oligopoly games,
this means that each firm possesses cognitive and computational skills to understand exactly
the microeconomic structure of the game: the market in which it operates (i.e. the exact
specification of the demand for the produced goods) and the production technologies adopted
by the various firms (represented by their cost functions); moreover, it must be assumed that
firms have rational expectations, which, in a deterministic setting, means perfect foresight into
the competitors’ future production. Such assumptions are often considered too demanding
when compared with real-world cases, where firms usually have partial knowledge of the
complex and uncertain environment in which they operate, and are not endowed with such
high levels of rationality, information and computational skills.

So, in the economic literature several heuristics, characterized by bounded rationality
and/or limited information, have been proposed as a proxy for more realistic “behavioral
rules” followed by firms to make their production decisions. This point of view is consistent
with recent trends in economic research, where a shift in the modeling has taken place
from the standard paradigm of the rational and representative agent (who is endowed with
unlimited computational ability and perfect information) to alternative perspectives, which
allow for assumptions such as bounded rationality, agents’ heterogeneity, social interaction
and learning. As a result, agents’ behavior is governed by simpler “rules of thumb”, “trial and
error” or even “imitation” mechanisms. Under such weaker and more realistic assumptions,
firms are unlikely to simultaneously select a Nash equilibrium output level; consequently,
some firms might be able to increase their profits by changing their output level in the next

1 In the context of oligopoly models where firms compete in output, it is sometimes called Cournot–Nash
equilibrium. However, we will follow the convention of most game theorists and simply call it Nash equilibrium.
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time period. This implies that, under such behavioral rules, firms will change their outputs
step by step. In other words, such heuristics often mean that decisions are repeated over time.
This approach may seem, at first sight, a quite unsatisfactory and dismissive (in the sense of
understating and reductive) representation of how economic agents face decisions. However,
the significance of this perspective becomes interesting and meaningful when decisions are
repeatedly made over time. In some cases, the repetition of boundedly rational decisions,
which we denote by the general term “adaptive”, may represent a much more realistic (and
even more efficient) behavior than a rigid optimizing attitude, which follows by postulating
rational choices. Indeed, the latter approach may become quite unreliable (even misleading)
under incomplete information on the environment where the economic agents operate or
on other agents’ degree of rationality, or under intrinsic uncertainty on the evolution of the
system. The latter occurs, for instance, when the dynamics of the system are governed by
nonlinear laws that allow for chaotic behavior, with the associated phenomenon of sensitivity
to arbitrarily small perturbations, which is a quite common occurrence in economics and
social sciences. Instead, adaptive agents are allowed to adjust their repeated actions on the
basis of the information collected as the system evolves, so that they can adapt to events
or even “learn” by repeatedly comparing expected and observed results of their decisions.
As a consequence, the assumption on firms’ dynamic adjustments may give rise to long-run
evolutions of their productions that are more complex than simple convergence to a Nash
equilibrium; furthermore, different heuristics may entail different degrees of stability as well
as different long-run dynamic scenarios. This naturally leads to the question of whether and
how such firms will coordinate on playing a Nash equilibrium, a question that has not been
unambiguously resolved yet. More importantly, what kind of long-run pattern prevails when
convergence to a Nash equilibrium does not occur?

Clearly, given an oligopoly game, a unique way of being rational exists. However, when
the rationality assumption is abandoned, several different heuristics for mimicking bounded
rationality can be postulated. Indeed, during the years, many adaptive behavioral rules have
been proposed in the specialized literature; extensive overviews and references are provided in
Bischi et al. (2010), to which we refer the interested reader. From an historical point of view,
the first model aimed at describing the evolution of production plans with boundedly rational
firms was based on best reply (BR) with naive expectations and was introduced by Cournot
himself in 1938. This adaptive behavior has been considered and employed by several authors
under different assumptions on the microeconomic structure of the game. Among the most rel-
evant contributions, it is worth remembering Theocharis (1960), Fisher (1961), Rand (1978),
Puu (1991) and Kopel (1996). Another adaptive behavioral rule, which will be extensively
considered in this chapter, is the so-called local monopolistic approximation (LMA), proposed
for the first time by Silvestre in 1977 with the name of “strong monopolistic equilibrium”.
Then, it has been employed more recently in Tuinstra (2004), Bischi, Naimzada, and Sbragia,
(2007) and Cavalli, Naimzada, and Tramontana (2015), see also Naimzada and Sbragia
(2006). Under the LMA heuristic, the oligopolists do not know the form of the market demand
function and conjecture that it is linear; in addition, they assume that competitors’ productions
do not influence the expected price. Thus, firms proceed by estimating locally the slope of the
demand curve and the current market state in terms of total output and price. Interestingly, Bis-
chi et al. (2007) show that oligopoly dynamics with LMA behavior converge to a Nash equilib-
rium even in cases where the classic best reply dynamics fail to converge to it. Another heuris-
tic considered in the following is gradient dynamics (GD); see e.g. Kenneth and Hurwicz
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(1960), Varian (1992), Corchon and Mas-Colell (1996), and Bischi and Naimzada (1999). In
gradient-like adjustments, players are not required to have complete knowledge of the demand
and cost functions, nor do they choose their strategy by solving an optimization problem;
indeed, they just employ a local estimate of their marginal profit. Each firm’s output level is
then updated by following the direction of increment of its profit, which is indeed regulated by
the gradient of the profit. The reactivity of this adjustment is governed by a parameter, which
can be set in different ways, as specified in the quoted literature.

The main feature that unites GD and LMA heuristics is that firms do not need “global”
information on the demand function in order to adjust their production; however, they need
some “local” information about it. Thus, one can assume that the adoption of either one of
these two heuristics requires a lower amount of information than, for example, that required
with best reply adjustments, see, e.g. Droste, Hommes, and Tuinstra (2002), Hommes, Ochea,
and Tuinstra (2011) and Bischi, Lamantia, and Radi (2015), where different behavioral rules
are compared with one rule employing global knowledge of the demand function. It is
useful to observe that all these dynamic adjustment mechanisms share the property that any
Nash equilibrium is a fixed point of the corresponding dynamical system. Thus, although
these heuristics are driven by local (or myopic) decision rules from boundedly rational
and heterogeneous agents, they may lead the system to long-run convergence to the same
equilibrium forecasted (and reached in one shot) under the assumptions of full rationality and
complete information of all economic agents.

In this chapter, after a brief review of the related literature, we describe a general framework
for dealing with evolutionary oligopoly models with different behavioral rules. Here we show
some general properties of such models by considering a switching mechanism based on
replicator dynamics, the most common and probably simplest model proposed in the literature
on evolutionary games to mimic selection pressure in favor of groups obtaining the highest
payoffs (see Taylor and Jonker, 1978 and also Vega-Redondo, 1996, Hofbauer and Sigmund,
1998, and Weibull, 1997). Following Bischi, Lamantia, and Radi (2015) and Cerboni Baiardi,
Lamantia, and Radi (2015), we consider an improvement of the standard replicator dynamics
in discrete time that was first proposed in Cabrales and Sobel (1992) (see also Hofbauer and
Sigmund, 2003 and Hofbauer and Weibull, 1996) and takes a monotone transformation of a
discounted average of past profits as a fitness measure.2

Then we apply this general evolutionary framework to some examples, in which the
population of firms can choose between two different heuristics, so that the long-run spread
of either behavioral rule in the firms’ population can be seen as a proxy for the long-run
profitability of the two heuristics. When only two heuristics are considered, the population
of firms can be split at each time period into two groups, according to the different rules
they employ. Then, a switching mechanism based on last-period profits can be modeled
by a three-dimensional dynamical system,3 characterized by invariant planes where all
players follow the same “pure” behavioral rule. The dynamics on these invariant planes are

2 Although many papers are based on the replicator dynamics, this is not the only evolutionary selection
mechanism, as many others have been proposed in the literature – see e.g. Brock and Hommes, 1997, 1998 and
Droste et al., 2002 – for many different switching mechanisms and their applications.

3 Here we consider only models where last-period profits influence firms’ decisions, i.e. we only describe models
without memory. By augmenting the dimension of the system, it is possible to deal with these extensions, as shown
in Bischi, Lamantia, and Radi (2015). For discussions on this point, we refer the interested reader also to Hommes
et al. (2012).
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governed by two-dimensional restrictions of the model that assume the form of triangular
maps, i.e. unidirectionally coupled dynamical systems or systems with a skew-product
structure (see Bischi, Lamantia, and Radi, 2015 and Cerboni Baiardi et al., 2015). Thus,
many properties of the attractors that characterize the long-run evolution in the case of
homogeneous firms (all firms following the same heuristic) can often be separately studied
even by analytical methods. For the model with heterogeneous firms, several kinds of long-run
evolutions can be detected, characterized either by the coexistence in the long run of both the
considered heuristics, i.e. cyclic or chaotic attractors involving both kinds of behavioral rules,
or possibly by on–off intermittency phenomena between monomorphic and polymorphic
states in the oligopoly market, with either all firms following the same behavioral rule or not.
In other words, interesting dynamic scenarios are observed when asymptotic dynamics do not
converge to a Nash equilibrium. Moreover, we detected coexistence of different attracting sets
that characterize the possible long-run distribution of the behavioral rules, so that the initial
conditions of the game do play a crucial role for the resulting long-run behaviors.

In any case, if the Nash equilibrium of the game is stable under any considered behavioral
rule, then the asymptotic behavior of the model is very simple. In general, the cheapest (in
terms of information costs) behavioral rule will prevail and all agents will end up producing
the Nash equilibrium quantity. In this case, the standard results from oligopoly theory are
retrieved by the evolutionary model. However, intriguing questions – from an economic as
well as mathematical point of view – arise when the Nash equilibrium is unstable at least under
one behavioral rule. In these cases, the principal points of investigation are the following:

● What is the most likely short-run and asymptotic production of the industry when firms
employ different behavioral rules and fail to converge to a Nash equilibrium?

● What is the long-term distribution of the behavioral rules in the population of firms? Can
behavioral heterogeneity arise endogenously as a result of interaction among identical
firms switching between different heuristics?

● What is the effect of different information costs of behavioral rules on the asymptotic
dynamics of the system (or, equivalently, of the presence of a bias in the population
towards a particular behavioral rule)?

In this chapter, we briefly address these questions for two important examples, namely the
case of competition between LMA and BR rules, as in Bischi, Lamantia, and Radi (2015),
and the case of competition between GD and LMA rules, as in Cerboni Baiardi et al. (2015).

The plan of the chapter is the following. In Section 2 we briefly survey some relevant
contributions on dynamic oligopoly games, with particular reference to the literature on
evolutionary models. Then in Section 3 a general evolutionary model is described together
with its properties. In Section 4 an oligopolistic market characterized by isoelastic demand is
considered; in subsection 4.1 a particular couple of heuristics is considered, namely BR and
LMA, whereas subsection 4.2 focuses on the comparison between LMA and GD heuristics.
Section 5 concludes.

2 RELATED LITERATURE

As we remarked before, different dynamic processes exist that may converge or not to the
same Nash equilibrium. This occurrence opened up the road to the modeling of oligopoly
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games with heterogenous firms, which decide their outputs over time by adopting different
behavioral rules. Several works deal with oligopoly models with two or more firms following
heterogeneous behavioral rules; see, just to cite a few, Leonard and Nishimura (1999),
Den Haan (2001), Agiza and Elsadany (2003, 2004), Angelini, Dieci, and Nardini (2009),
Tramontana (2010), Dubiel-Teleszynski (2011), Cavalli, Naimzada, and Tramontana (2015),
Anufriev, Kopányi, and Tuinstra (2013), and Bischi et al. (2007). These papers consider
duopoly and triopoly models with firms adopting different kinds of adaptive adjustments,
involving different degrees of rationality and information, whence different costs. For these
models, one important research question concerns the effect of such heterogeneities on the
stability of Nash equilibria in the space of parameters, compared with the stability of the same
equilibria when all firms adopt the same behavioral rule.

Recently, the more general case with a population of N firms has been considered, where
agents are subdivided into complementary fractions (or classes) of adopters of the same
heuristic. Here, one research question regards the stability of the Nash equilibria as the
number N of firms increases, a classical problem in the literature on oligopoly games that
dates back to the works of Theocharis (1960), Fisher (1961), Hahn (1962) and McManus
and Quandt (1961), see, in particular, Hommes et al. (2011) on this point. Another important
issue for these models is to investigate whether a Nash equilibrium is stable under a given
subdivision into fractions of adopters of the various behavioral rules. This question can be
ascertained by taking the shares of adopters of the different behavioral rules as bifurcation
parameters, see e.g. Bischi, Lamantia, and Radi (2015), Cerboni Baiardi et al. (2015) and
Cavalli, Naimzada, and Pireddu (2015). Indeed, if “better” rules are available for the firms,
it seems reasonable that their management would adopt these rules to improve the overall
“performance” of the firm. This argument suggests endogenizing the dynamics of the fraction
of firms playing the different behavioral rules, according to a switching mechanism governed
by profit-driven evolutionary pressure. Following the spirit of evolutionary games, such a
switching mechanism determines at each time step how the shares of adopters of the different
strategies are updated. These models are based on the distinct principle that the fraction of
agents playing a better-performing strategy will increase in the next period at the expense
of the fractions of worse-performing strategies. One way to model this in discrete time is
to assume that at the end of each period each agent compares her payoff with the average
payoff of the population of agents; then she decides to change her strategy if she assesses that
adopting a different rule might provide her with higher average gains. An interpretation of
this mechanism is that each agent observes the (current period) performance, for instance the
payoff, of a randomly chosen agent among those that have used a different behavioral rule,
and then she decides to imitate the sampled agent if the latter’s gain is higher.

The general approach of evolutionary pressure on the basis of past firms’ performance has
been extensively employed for understanding the dynamic choices of agents with differential
information, different expectation formation mechanisms or different objective functions.
Several authors have studied models where agents are endowed with different kinds of
expectations, such as rational expectations vs naive or adaptive expectations, with an index of
performance defined in terms of discrepancy between expected and realized values, or profits
gained (see e.g. Brock and Hommes, 1997, 1998, and Hommes, 2013), or market competition
(see e.g. Chiarella and He, 2001 and Chiarella, Dieci, and Gardini, 2002 for applications to
financial markets with heterogeneous agents, such as chartists and fundamentalists, adopting
different strategies in forecasting price trends). Droste et al. (2002) provide an interesting
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example with a Cournot duopoly where ex ante identical firms can employ different behavioral
rules to set the quantities to produce. The economic structure of the underlying game
is particularly simple, with homogeneous goods, linear demand and quadratic production
costs. The fitness of each behavioral rule at each time period is assessed by considering
average payoffs obtained by pairs of firms that are randomly matched to play the game. An
evolutionary mechanism based on average profits regulates the distribution of the various
rules over time. Droste et al. concentrate on the comparison between a “best reply” rule
and a (costly, since sophisticated) “Nash” rule and show that endogenous fluctuations and
complicated dynamics may arise, mainly due to the dominance of best reply behavior in a
neighborhood of the Nash equilibrium because of information costs. Also Hommes et al.
(2011) present a similar setup with linear demand and linear production costs, where firms
switch between different expectation rules concerning aggregate output of their rivals but with
random matching of N firms at a time. On the basis of past performance, these firms decide
to switch between costly rational and cheap boundedly rational expectations on aggregate
output of their competitors. Hommes et al. (2011) find that the classic Theocharis result in
1960 on the instability of the Nash equilibrium as the number of firms increases is also
confirmed qualitatively under evolutionary competition between heterogeneous (costly and
costless) expectation heuristics. Recent literature closely related to these works includes
Bischi, Lamantia, and Radi (2015) and Cerboni Baiardi et al. (2015), which are extensively
discussed in the second part of this chapter.

Other contributions deal with evolutionary selection to explain whether behavioral het-
erogeneity, such as the evolution of preferences, can arise as a result of this dynamic
process. One of the first papers in the oligopoly literature dealing with the issue is Schaffer
(1989), which shows that profit-maximizing firms are not necessarily the best survivors
provided that firms have market power. Similarly, Heifetz, Shannon, and Spiegel (2007)
establish that evolutionary motives do not always justify payoff maximization under strategic
interaction among the players. In fact, the population will not converge to payoff-maximizing
behavior under any payoff-monotone selection dynamics. Relatedly, several authors have
studied the emergence of so-called “spiteful behavior” in evolutionary oligopolies to explain
evolutionary dominance of Walrasian behavior over Cournotian behavior, as the former
allows the reduction of losses with respect to other strategies see, for example, Vega-
Redondo (1997), Vriend (2000), and Vallée and Yildizoglu (2009). In this vein, Radi
(2017) analyzes an oligopoly game with a population of firms subdivided into a fraction
following the best reply rule with naive expectations and complementary fraction following
a Walrasian rule, i.e. each firm acts as naïve price taker, so that the resulting dynamics
have a Walrasian equilibrium output as the unique steady state. Rhode and Stegeman (2001)
propose a differentiated duopoly to argue that if firms’ choices follow an evolutionary
process, then the long-run outcome is not a Nash equilibrium and evolutionary pressure
tweaks the objective towards revenue maximization. Adopting an indirect evolutionary
approach, Königstein and Müller (2001) ascertain that it is worthwhile for firms to include
a share of consumer welfare in their objective function. Kopel, Lamantia, and Szidarovsky
(2014) consider a similar evolutionary mechanism to describe an oligopoly market where
a fraction of firms just behave as profit maximizers and the complementary fraction
exhibit social responsibility by maximizing the sum of their profits plus a share of the
consumer surplus. De Giovanni and Lamantia (2016a, 2016b) study several versions of
an evolutionary oligopoly with control delegation to managers and different amounts of
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information to the firms about how managers are compensated under linear and nonlinear
market demand. Other generalizations are given by multipopulation models, e.g. models
with m different populations of firms (e.g. m nations or m industrial districts) with different
numbers of individuals, each with a given set of strategies (or behavioral rules) available.
For example, Bischi, Dawid, and Kopel (2003a, 2003b) deal with two-population models
(e.g. two industrial districts), where agents of each population have two available strategies
(invest in the industry or in financial markets), with a form of “switching by imitation
of the more profitable strategy”. They investigate the global dynamics of the system with
intra-group and inter-group spillovers and demonstrate the kind of complex dynamics that
may occur through interaction. Other examples of switching by imitation can be found
in Hofbauer and Sigmund (2003), Weibull (1997) and Bischi, Lamantia, and Sbragia
(2009b).

Interesting extensions of these oligopoly models are provided within the literature on
evolutionary resource exploitation models. In environmental economics, evolutionary models
have been employed to study cooperative vs noncooperative behaviors in the exploitation of a
natural resource (e.g. a fishery; see Bischi, Lamantia, and Sbragia, 2009a), the establishment
of protected areas (see Bischi et al., 2009b and also Bischi and Lamantia, 2007 on this
point) and related issues. Bischi, Lamantia, and Radi (2013a, 2013b) analyze evolutionary
oligopoly models where the behavioral rule to adopt consists of deciding the species
to harvest; in addition, several different multispecies interactions are assumed in these
papers. Lamantia and Radi (2015) describe a fishery model where two different harvesting
technologies can be employed: a standard one and an environmentally friendly one (less
intensive). Thus, fishermen may decide to employ a less efficient but more “environmentally
friendly” fishing technology if the loss in efficiency is counterbalanced by a higher price that
consumers might be willing to pay for the “green” product. In this model, the harvesting
technologies to adopt constitute the behavioral rules at disposal of the oligopolists. The cases
of continuous time and the hybrid system (continuous time for the resource and discrete
time for decisions on technology switching) are analyzed in Lamantia and Radi (2015),
whereas Bischi, Cerboni Baiardi, and Radi (2015) study the same model with discrete-time
scale.

Next, we specify a general evolutionary setting in which we define and compare
the dynamic properties of two specific pairs of behavioral rules, namely BR vs LMA and
LMA vs GD.

3 THE GENERAL MODEL

Let us consider an oligopoly market with N ex ante identical firms that produce homogeneous
goods. We assume that the set of strategies (output levels) is a nonempty compact and convex
set of RN and each firm’s profit is concave in its own strategy.4 These assumptions guarantee
that a Nash equilibrium exists; see Rosen (1965). Firms can conceive different behavioral
rules for setting their next-period productions. For the sake of the argument, let us consider
that only two different behavioral rules are available and denote by xi(t) the production at

4 In particular, the case with isoelastic demand and linear costs, which is developed in the next sections, satisfies
these assumptions.
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time t by a generic firm adopting rule i = 1, 2.5 All firms employ the same technology and
bear the same production cost C(x).

Behavioral rule i entails a fixed “information” cost Ki ≥ 0. At time t, the first behavioral
rule is distributed with frequency r (t) ∈ [0, 1] among the firms and, obviously, the second
rule with complementary frequency 1 − r (t).

A heuristic, or adaptive behavioral rule, can be defined as a rule that specifies next-period
production xi (t + 1) as a function of the current quantities6 xj (t), i, j = 1, 2, as well as of the
frequency r (t), i.e.7

xi (t + 1) = Hi (x1 (t) , x2 (t) , r (t)) ; i = 1, 2 (12.1)

In the following, we consider behavioral rules that are stationary at any symmetric Nash
equilibrium of the underlying game. More precisely, we assume that if the industry is at a
Nash equilibrium, each behavioral rule prescribes that the industry stays at that equilibrium,
regardless of the distribution r (t). By assumption, Nash equilibria of the game always exist.
In particular, since agents are homogeneous, a symmetric Nash equilibrium exists, which is
characterized by the same production by all agents, i.e. x∗

1 = x∗
2 = x∗. The stationary property

at a symmetric equilibrium can be thus expressed as

x∗ = Hi
(
x∗, x∗, r

)
; i = 1, 2 (12.2)

Stated differently, a symmetric Nash equilibrium is a fixed point of the two-dimensional
map (12.1) for any r ∈ [0, 1]. Now consider the profit obtained by employing behavioral
rule i:

πi (t) = [
p (t) − C (t)

]
xi (t)− Ki (12.3)

and assume that firms can observe this quantity and switch, from period to period, to the more
profitable behavioral rule, thus modifying the next-period distribution of behavioral rules. In
the following, we adopt a model that we call exponential replicator, which was first proposed
by Cabrales and Sobel (1992) (see also Hofbauer and Sigmund, 2003, Hofbauer and Weibull,
1996 and Kopel et al., 2014 for an application in oligopoly theory), which assumes the form

r (t + 1) = r (t) eβπ1(t)

r (t) eβπ1(t) + [1 − r (t)] eβπ2(t)
= r (t)

r (t) + [1 − r (t)] eβ[π2(t)−π1(t)]
(12.4)

In (12.4) β ≥ 0 is the intensity of choice, which measures how sensitive the players are
at selecting behavioral rules with the best relative performances. The minimum value β = 0

5 In the general setup, it is easy to generalize to M different behavioral rules. However, we present the idea with
only two different rules, as in the second part of this chapter such an example is developed. Another example with
two rules is proposed in Bischi, Lamantia, and Radi (2015).

6 In general, a behavioral rule can also incorporate older information through a “memory” term; see Bischi,
Lamantia, and Radi (2015) for details. However, we do not consider this issue in this chapter.

7 Notice that in principle a behavioral rule Hi should have N + 1 arguments, i.e. the quantities by the N
oligopolists and the fraction r. However, if agents that employ the same behavioral rule set the same quantities
then each behavioral rule only depends on quantities of representative agents of the different groups. This reflects in
the notation, with a slight abuse of it.
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corresponds to the case with fixed fractions, being r (t + 1) = r (t) = r. The other extreme
case, β = ∞, corresponds to a situation where all firms immediately switch to the behavioral
rule showing a (even negligible) better performance, i.e. r (t) → 1 if π1 (t) > π2 (t) and
r (t) → 0 if π1 (t) < π2 (t).

Coupling the behavioral rules in (12.1), which specify quantity dynamics, with the
evolutionary dynamics in (12.4), a three-dimensional map T is defined in the phase space
(x, y, r) ∈ A ⊆ R

2+ × [0, 1], where R+ = [0, +∞):

T :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x (t + 1) = H1 (x (t) , y (t) , r (t))

y(t + 1) = H2 (x (t) , y (t) , r (t))

r (t + 1) = r (t)

r (t)+ [1 − r (t)] eβ[π2(t)−π1(t)]

(12.5)

The choice of a specific evolutionary model, namely the exponential replicator, originates
from its interesting properties. First of all, the strictly monotone transformation πi (t) →
eβπi(t) guarantees that the fractions obtained through (12.4) are always contained in the
interval [0, 1] even when πi (t) < 0. Another important property of (12.4) concerns the role
of invariant planes r = 0 and r = 1, where only one pure strategy is employed (H2 or H1
respectively). On these planes, the dynamics are governed by the two-dimensional restrictions
of T on them. From an economic point of view, this fact has the obvious interpretation that
absent behaviors remain absent. However, the introduction of a mutation in agents’ behavior
may spread over the population or may be reabsorbed. This phenomenon can be ascertained
through the study of transverse stability of the attractors on the invariant planes. In general, an
attractor on one of these two-dimensional restrictions of the phase space may be transversely
stable, so that it attracts trajectories starting outside the restriction, i.e. from r (0) ∈ (0, 1); in
this case, the attractor on the restriction is also an attractor of the three-dimensional map T.

From (12.2), it follows that if productions are at a symmetric Nash equilibrium level x∗,
then point E∗ = (x∗, x∗, r∗) is an equilibrium (or fixed point) of the three-dimensional map
T when r∗ = 0, r∗ = 1 or r∗ ∈ (0, 1) such that π1 = π2. By abuse of notation, equilibrium
(x∗, x∗, 0) is also denoted as E0 and (x∗, x∗, 1) is also denoted as E1. In addition, when the
Nash equilibrium is stable with respect to the quantity adjustments (12.1) only then it is easy
to characterize the asymptotic behavior of the evolutionary map T. In fact, regardless of the
specific behavioral rules considered, the following stability properties hold:

Proposition 1 Consider the dynamical system T defined in (12.5) with β > 0 and assume
that the symmetric Nash equilibrium of quantity dynamics under constant r is locally
asymptotically stable ∀r ∈ [0, 1], (∀r ∈ [0, 1] , (x∗, x∗) is a locally asymptotically stable
fixed point of the two-dimensional map (12.1) with r (t) = r). The following hold:

● If K1 = K2, then a continuum of equilibrium points E∗ exists along the segment E =
(x∗, x∗, r), with r ∈ [0, 1]. Each fixed point filling this invariant segment is stable.

● If K1 	= K2, then the segment E = {
(x∗, x∗, r) ∈ R

2+ × [0, 1]
}
, is invariant for T and

only the two extreme points of the segment E are equilibria, namely

E0 = (
x∗, x∗, 0

)
and E1 = (

x∗, x∗, 1
)
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in which all agents adopt the same behavioral rule, which is H2 or H1 respectively.
When K1 < K2 [K1 > K2] equilibrium E1 [E0] is locally asymptotically stable, whereas
E0 [E1] is unstable.

Proof Assume that firms of either type produce the Nash equilibrium quantity x∗. Then, for
any r ∈ [0, 1], the difference in their profits is given by the information costs, π1 −π2 = K2 −
K1 (see (12.3)). Therefore, if fixed information costs are equal, i.e. K1 = K2, the replicator
equation in (12.4) reduces to r (t + 1) = r (t) so that any point of the form E = (x∗, x∗, r),
r ∈ [0, 1], is a fixed point for map T. Instead, if K1 	= K2, then at any point of E, it is π2 	= π1,
so that the stationary condition can be satisfied only at the boundary points E0 = (x∗, x∗, 0),
and E1 = (x∗, x∗, 1), with all agents employing the same behavioral rule. Stability analysis of
equilibria can be studied through the Jacobian matrix, which assumes the following form:

J(x∗, y∗, r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂H1 (x∗, y∗, r)

∂x1

∂H1 (x∗, y∗, r)

∂x2
0

∂H2 (x∗, y∗, r)

∂x1

∂H2 (x∗, y∗, r)

∂x2
0

∂r

∂x1

∂r

∂x2

eβ(π1+π2)

(
(r − 1)eβπ2 − reβπ1

)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

From (12.2), the entries J13 and J23 of the Jacobian matrix are equal to zero, and the

characteristic equation becomes P (z) =
(

eβ(π1+π2)(
(r−1)eβπ2 −reβπ1

)2 − z

)
P2 (z), where P2 (z) is the

characteristic equation of the two-dimensional model (12.1), whose roots are in modulus
less than 1 by the assumption of stability of the Nash equilibrium with respect to quantity
dynamics. Thus, when π1 = π2, which occurs when K1 = K2, z3 = 1 is an eigenvalue
of J (x∗, y∗, r), and any point of the form E = (x∗, x∗, r), with r ∈ [0, 1], is a stable
equilibrium. If K1 < K2, it is T (E) ⊂ E by the assumption that (12.1) is stationary at a
symmetric Nash equilibrium. Thus, E is invariant for T. At r = 0, the third eigenvalue is

z3 = eβ(π1+π2)(
(r−1)eβπ2 −reβπ1

)2 = eβ(K2−K1) ∈ (1, +∞), whereas at r = 1 the third eigenvalue is

z3 = eβ(K1−K2) ∈ (0, 1), thus proving the statement. The eigenvector associated with the third
eigenvalue is clearly (0, 0, 1). The case K2 < K1 is analogous and left to the reader. �

The conditions under which the symmetric Nash equilibrium is stable can be violated and
some attractors can be created through bifurcations, as stated in the following corollary:

Corollary Consider the dynamical system T defined in (12.5) with β > 0. When the
conditions for local asymptotic stability of the Nash equilibrium (x∗, x∗) are broken in (12.1)
with r (t) = r∗, the following cases occur:

● If K1 = K2, an attractor can appear in R+ × R+ × [0, 1] (or in R+ × R+ × (0, 1) if
r∗ /∈ {0, 1}) through a bifurcation of codimension 1, 2 or 3.

● If K1 < K2 and r∗ = 1 [K1 > K2 and r∗ = 0], then equilibrium E1 [E0] undergoes
a bifurcation and an attractor may appear in the invariant subspace r = 1 [r = 0],
whereas E0 [E1] remains unstable.
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Proof The first part of the corollary follows the observation that two of the roots of the
characteristic polynomial associated with the Jacobian matrix of dynamical system T (defined
in (12.5) with β > 0) computed at the fixed point E∗ = (x∗, x∗, r∗), coincide with the two
roots of the characteristic polynomial of the Jacobian matrix of system (12.1) computed at the
fixed point (x∗, x∗) with r (t) = r∗. The second part of the corollary follows by noting that the
dynamics on the invariant plane r = 1 (or r = 0) of the dynamical system T is equal to the
one of system (12.1) with r (t) = 1 (or r (t) = 0). �

On the other hand, if the Nash equilibrium is unstable for the quantity adjustments (12.1)
and more complex attractors exist, then the asymptotic behavior of the model becomes more
complicated but also more interesting both from a mathematical as well as economic point of
view. In the rest of the chapter, we develop this model for two different pairs of behavioral
rules, namely best reply (BR) vs local monopolistic approximation (LMA) as a first case and
gradient dynamics (GD) vs LMA as a second, and we investigate the main dynamic properties
of the two systems.

4 AN EVOLUTIONARY OLIGOPOLY CHARACTERIZED
BY ISOELASTIC DEMAND

The type of behavioral rule adopted by firms depends on the market structure of the oligopoly.
For a quantity-setting oligopoly, the inverse market demand and the production cost function
are essential ingredients with which to identify the game for which the behavioral rules are
employed.

Concerning the inverse market demand, let us assume that firms produce homogeneous
goods (commodities) and their entire output is sold in the market at a price that is determined
according to an isoelastic demand function, with constant elasticity equal to one. This means
that the inverse demand function (or price function) is given by

p = f (Q) = 1

Q
(12.6)

where Q = ∑N
i=1 qi > 0 is the total industry output and p is the selling price.8 This particular

demand function is widely employed in the literature; see, e.g., Puu (1991), Bischi et al.
(2010), Tramontana, Gardini, and Puu (2010), Agliari, Gardini, and Puu (2006), Lambertini
(2010) and Lamantia (2011).9 Concerning the production costs, they are assumed to be a
linear function of the output of each firm:

Ci (qi) = c · qi (12.7)

8 The reader will note that for Q = 0 this (inverse) demand function is undefined. Here we avoid discussing such
technical aspects, for which the interested reader can consult Cerboni Baiardi et al. (2015). In the following, we focus
on dynamics such that Q > 0 and refer to the case Q = 0 as the infeasibility of the oligopoly.

9 In particular, isoelastic demand is obtained when a representative consumer maximizes a log-linear (or Cobb-
Douglas) utility function; see Lambertini (2010) for details.
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354 Handbook of game theory and industrial organization: theory

where qi is the quantity produced by firm i, i = 1, . . . , N, and c > 0 denotes the marginal cost
(here assumed the same for all the firms). It follows that the profit function of the generic firm
i is given by:

πi (qi, Q−i) = f (Q−i + qi) qi − Ci (qi) , i = 1, . . . , N

where Q−i = Q − qi. Let us indicate by Qe
−i (t + 1) firm i’s prediction at time t for time

t + 1 production of the rest of the industry and let us assume that the actual production
Q−i (t) is employed as a proxy for Qe

−i (t + 1). In other words, firms believe that competitors’
output will not change in the next period (naive expectations). Moreover, we assume that
firms may gain knowledge of the form of the price function p = f (Q), ∀Q > 0, or at least
they can acquire such information by paying a cost. Given this wealth of knowledge, firms
decide their own next-period level of production in accordance with the rational principle of
profit maximization. In the attempt to reach such a target, each firm has the possibility of
employing different levels of knowledge or types of behavior, from which we obtain different
behavioral rules.

Consistent with the rational principle of increasing own profits and coherently with the
level of knowledge assumed, a variety of behavioral rules are available. Let us focus on three
of them, which are also among the most well known in literature. The first one is the best
reply (BR) rule with naive expectation (see Bischi et al., 2007), according to which:

qi (t + 1) = max

{
0, arg max

qi
πi
(
qi, Qe

−i (t + 1)
)} =

= max

{
0, arg max

qi

[
f (Q−i(t)+ qi) qi − Ci (qi)

]}

This behavioral rule requires global knowledge of the inverse demand function, i.e. the
maximum level of market cognizance that we can assume.

Another behavioral rule is the so-called local monopolistic approximation (LMA) rule (see
Bischi et al., 2007), according to which:

qi (t + 1) = max

{
0, arg max

qi

[(
f (Q (t))+ ∂f (Q (t))

∂qi
(qi − qi (t))

)
qi − Ci (qi)

]}

This behavioral rule does not require any type of expectation about the production of the rest
of the industry, as a firm employing LMA does not take into account the negative strategic
effect of competitors’ outputs when attempting to maximize its own profit. All in all, the LMA
rule requires only local knowledge of the demand function, and thus, it is fully consistent with
the maximum wealth of knowledge that we have assumed.

A third behavioral rule is the so-called gadient dynamics (GD) rule (see Bischi and
Naimzada, 1999), according to which:

qi (t + 1) = max

{
0, qi (t)

(
1 + ∂πi (qi (t) , Q−i (t))

∂qi

)}
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Evolutionary oligopoly games 355

Following the latter behavioral rule, a firm adjusts its output according to its marginal profit,
i.e. the relative change in the quantity produced at time t + 1 is equal to the marginal profit
experienced by the firm at time t.10 Thus, the ability to compute or estimate own marginal
profits is the only ability required to a firm to employ this behavioral rule. Among the three,
this is the only behavioral rule that does not require the solution to an optimization problem.

It follows that the three behavioral rules can be ranked on the basis of the knowledge that
they require. The BR and the GD rules are, respectively, the more and the less advanced and
sophisticated of the three. The LMA rule represents a middle ground among the three. This
could lead one to think that if firms can freely decide which behavioral rule to adopt and their
cost is the same, they will choose the BR rule; equivalently, the BR rule would seem to be
the behavioral rule that achieves higher profits. However, this would not be the case if firms
base their decisions on relative performance indices. For example, a strategy that is the best
in terms of absolute performances is not automatically evolutionarily desirable. Evolutionary
game theory provides an explanation for this occurrence in terms of spiteful behaviors. A
behavioral rule (or, generally speaking, a strategy) can be evolutionarily stable because in
adopting that behavioral rule a firm damages the rivals more than it damages itself. Then, to
study the evolution of firms’ preferences on the behavioral rules and the consequent industrial
outputs and profits, one must study the dynamics of a related evolutionary oligopoly model.
In an attempt to do so, in the following we analyze and discuss two different cases, with
competition between two behavioral rules at a time. In the first example we allow firms to
choose between BR rule and LMA rule, while in the second case firms can choose between
GD rule and LMA rule. The investigation reveals interesting phenomena, such as evolutionary
stable heterogeneity and complex dynamics that coincide with performances (in terms of
average profits of the industry) higher than the ones observed at the Nash equilibrium.

4.1 An Example with Best Reply and Local Monopolistic Approximation
Behavioral Rules

Here, following Bischi, Lamantia, and Radi (2015), the general model introduced in Section 3
is applied to describe the time evolution of a population of firms that can choose between the
BR rule and the LMA rule in order to update their output decisions. A firm that adopts the BR
rule is called BR firm while a firm that adopts the LMA rule is called LMA firm.

At a given time t, the fraction of BR firms is denoted by r(t) ∈ [0, 1].11 Then, 1 − r(t) is the
fraction of LMA firms. The outputs at time t of a representative BR firm and a representative
LMA firm are denoted, respectively, by x(t) and y(t). Taking

(N − 1)
[
r(t)x(t) + (1 − r(t)) y(t)

]
(12.8)

10 In general, this rule is given in the form

qi (t + 1) = max

{
0, qi (t)

(
1 + ξi

∂πi (qi (t) , Q−i (t))

∂qi

)}

where ξi ≥ 0 can be interpreted as a speed of adjustment (see Bischi and Naimzada, 1999 and Bischi et al., 2010).
Here, for the sake of brevity, we assume that ξi = 1 for all i = 1, . . . , N.

11 It is worth pointing out that the use of the replicator dynamics, in whatever form, implies a random matching,
see, e.g., Plank (1997). Then, r (t) must be interpreted as the probability to meet a BR firm. Nevertheless, with an
abuse of language we call r (t) the fraction of BR firms.
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as a proxy for Q−i (t) and denoting by HBR the heuristic that identifies the BR rule and
by HLMA the heuristic that identifies the LMA rule, these can be defined by the following
functions:

HBR (x, y, r) = max

{
0,

√
(N − 1) (rx + (1 − r) y)

c
− (N − 1) (rx + (1 − r) y)

}

HLMA (x, y, r) = max

{
0,

y + N
[
rx + (1 − r) y

] (
1 − cN

[
rx + (1 − r) y

])

2

}

where the first one specifies the output of a BR firm while the second one that of an LMA firm.
Substituting H1 with HBR and H2 with HLMA in model (12.5), the following three-dimensional
map T : R2+ × [0, 1] −→ R

2+ × [0, 1] is obtained:

T :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x (t + 1) = HBR (x (t) , y (t) , r (t))

y (t + 1) = HLMA (x (t) , y (t) , r (t))

r (t + 1) = r(t)eβπBR(t)

r(t)eβπBR(t) + (1 − r(t))eβπLMA(t)

(12.9)

where πi(t), i ∈ {BR, LMA}, are, respectively:

πBR(t) = p(t)x(t) − (cx(t)+ KBR) =
(

N − 1

NQ−1(t)
− c

)
x(t) − KBR (12.10)

πLMA(t) = p(t)y(t) − (cy(t) + KL) =
(

N − 1

NQ−1(t)
− c

)
y(t)− KLMA

and KBR and KLMA are the respective information costs defined in Section 3.
Given the market structure of the oligopoly previously described, the unique Nash quantity

of the game is

qNE = N − 1

cN2 > 0 (12.11)

(see Bischi et al., 2010 for details). Moreover, it is easy to show that:

qNE = HBR
(
qNE, qNE, r

) = HLMA
(
qNE, qNE, r

) ∀r ∈ [0, 1]

It follows that the fixed points of the model (12.9) are of the form

E∗ = (
qNE , qNE, r∗) with r∗ ∈ [0, 1] ,
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Evolutionary oligopoly games 357

which we call Nash equilibria independently of the value of r∗. Stability properties of these
Nash equilibria are specified in the following proposition:

Proposition 2 Consider the dynamical system T in (12.9):

● If KBR = KLMA, then a continuum of equilibrium points E∗ exists along the segment
E = (

qNE , qNE, r
)
, with r ∈ [0, 1]. A fixed point in E has an associated eigenvalue

equal to 1, one positive eigenvalue less than 1, and a negative eigenvalue greater
than −1 for N < N+ (r∗) where

N+ (r∗) = 10 + 2r∗

2 + r∗

● If KBR 	= KLMA, then only the two extremum points of the segment E are equilibria,
namely

E0 = (
qNE, qNE, 0

)
and E1 = (

qNE, qNE, 1
)

in which all agents adopt the same strategy, which is LMA or BR respectively:

– If KLMA < KBR, then equilibrium E0 is stable for N < 5, and it loses stability
through a bifurcation of eigenvalue −1 at N = 5. E0 is unstable for N > 5. E1 is
always unstable.

– If KLMA > KBR, then equilibrium E1 is stable for N < 4, and it loses stability
through a bifurcation of eigenvalue −1 at N = 4. E1 is unstable for N > 4. E0 is
always unstable.

Proof The local stability properties of the Nash equilibria are determined through the study
of the associated Jacobian matrix. For KBR = KLMA we have

J (E∗) =

⎡
⎢⎢⎢⎢⎢⎣

(2 − N) r∗

2

(2 − N) (1 − r∗)
2

0

(2 − N) r∗

2

1

2
+ (2 − N) (1 − r∗)

2
0

J31 J32 1

⎤
⎥⎥⎥⎥⎥⎦

Hence, the characteristic equation is (1 − λ)P (λ) = (1 − λ)
(
λ2 − 3−N

2 λ+ 2−N
4 r∗

)
= 0.

From which the three eigenvalues

λ1 + λ2 = 3 − N

2
≤ 1

2
, λ1λ2 = 2 − N

4
r∗ ≤ 0, λ3 = 1

It follows that one eigenvalue, say λ1, is positive and another one, say λ2, is negative. Since
P (1) > 0 ∀r∗ ∈ (0, 1), it follows that 0 ≤ λ1 < 1. By imposing P (−1) > 0, we obtain the
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condition N < N+ (r∗), which guarantees that −1 < λ2 < 0. For KBR 	= KLMA, by similar
calculations we obtain the eigenvalues associated with E0:

λ1 = 0, λ2 = 3 − N

2
, λ3 = eβ(KLMA−KBR)

By imposing λi ∈ (−1, 1), i = 1, 2, 3, the stability conditions for E1 follow, i.e. KLMA <

KBR and N < 5. For KLMA < KBR and N = 5, one eigenvalue associated with E0 is equal
to −1 while the other two belong to the interval (−1, 1). Thus, E0 undergoes a bifurcation
of eigenvalue −1. For N > 5, one eigenvalue associated with E0 is always smaller than −1.
Hence, E0 is unstable. In the same way, we obtain the eigenvalues associated with E1:

λ1 = 2 − N

2
, λ2 = 1

2
, λ3 = eβ(KBR−KLMA)

Again, by imposing λi ∈ (−1, 1), i = 1, 2, 3, the stability conditions for E1 follow, i.e.
KLMA > KBR and N < 4. Moreover, for KLMA > KBR and N = 4, one eigenvalue associated
with E1 is equal to −1 while the other two belong to the interval (−1, 1). Thus, E1 undergoes a
bifurcation of eigenvalue −1. For N > 4, one eigenvalue associated with E1 is always smaller
than −1. Hence, E1 is unstable. �

The proposition underlines the crucial role played by KBR − KLMA. When firms have a natural
propensity to play the LMA rule (KBR − KLMA > 0), or equivalently the LMA rule is cheaper
than the BR rule, at the Nash equilibrium all firms will adopt the LMA rule. The opposite
occurs for KBR − KLMA < 0. Another interesting aspect that arises from the analysis concerns
the stability of the Nash equilibrium, which loses stability as the number of firms involved in
the oligopoly increases. Nevertheless, the exact number of firms at which the Nash equilibrium
loses stability depends on the type of behavioral rule the firms decide to adopt. When firms
have a natural propensity to play the LMA rule, the Nash equilibrium loses stability when the
number of firms is greater than five. When firms have a natural propensity to play the BR rule,
the Nash equilibrium loses stability already with four firms. This observation is relevant to
clarify the different complexity of the dynamics of the two behavioral rules, as explained in
the example that follows.

Let us start by assuming that firms have a natural propensity to adopt the LMA rule
(KLMA < KBR). By Proposition 2 and numerical simulations, E0 is the unique attractor and
E1 is transversely unstable when N = 3. Instead, when N = 4, E1 undergoes a period-
doubling bifurcation through which a two-cycle appears in the subspace r = 1. Through the
usual period-doubling cascade an attractor (either periodic or chaotic) appears in the subspace
r = 1. For N < 5, this attractor coexists with the stable Nash equilibrium E0, then the model
is characterized by path dependence. Starting with a large fraction of LMA firms, the system
converges to E0; otherwise, in the long run all firms will adopt the BR rule and the system
will be characterized by either periodic or aperiodic oscillations in the level of the outputs.
A detailed analysis of the basins of these two attractors can be found in Bischi, Lamantia,
and Radi (2015). Despite the oscillations of the output dynamics, adopting the BR rule is the
choice implied by evolutionary pressure. The average level of profits are substantially higher
than the ones experienced at the Nash equilibrium. Then, the output oscillations represent a
profitable, and so desirable, alternative to the Nash equilibrium. One typical example of such
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Note: Parameters: N = 5, c = 0.1, β = 1, KGD − KLMA = 0.00001. First line, dynamics of the model in the
phase space (attractor on the plane r = 1 and the Nash equilibrium E0). Second line, time series, in black q (t) =
MA

(
r (t) x (t)+ (1 − r (t)) y (t) /qNE

)
, where qNE is the level of production at the Nash equilibrium (depicted by a

gray and dashed line). Third line, �(t) = MA
(
(r�GD + (1 − r)�LMA) /�

NE
)
, where �NE is the level of profit at

the Nash equilibrium (depicted by a gray and dashed line) and MA stands for moving average with 80 lags. Initial
conditions: x (0) = qNE + 0.002, y (0) = qNE − 0.002, r (0) = 0.95.

Figure 12.1 Dynamics of model 12.9

behavior is depicted in Figure 12.1 where N = 5. For N ≥ 5, all the Nash equilibria, i.e., E0
and E1, are unstable.

4.2 An Example with Gradient Dynamics and Local Monopolistic Approximation
Behavioral Rules

Here, following Cerboni Baiardi et al. (2015), the general model described in Section 3 is
applied to study the time evolution of a population of firms that can choose between GD rule
and LMA rule in order to update their output decisions. A firm that adopts the GD rule is
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called GD firm while a firm that adopts the LMA rule is called LMA firm. At a given time t
the fraction of GD firms is denoted by r(t) ∈ [0, 1]. Then, 1−r(t) is the fraction of LMA firms.
The output at time t of a representative GD firm and a representative LMA firm are denoted,
respectively, by x(t) and y(t). Again, using a proxy such as (12.8) for Q−i (t) and denoting by
HGD and by HLMA the heuristics that identify the GD and the LMA rule respectively, they can
be written through the functions

HGD (x, y, r) = max

{
0, x + x

(
(N − 1)

[
rx + (1 − r) y

]

(x ((N − 1) r + 1)+ y (N − 1) (1 − r))2
− c

)}

HLMA (x, y, r) = max

{
0,

y + N
[
rx + (1 − r) y

] (
1 − cN

[
rx + (1 − r) y

])

2

}

where the first one specifies the output of a GD firm while the second one that of an LMA
firm. Following the steps of the previous case, we can substitute in model (12.5) H1 with HGD

and H2 with HLMA, thus obtaining the following three-dimensional map T : A −→ A (with
A ⊆ R

2+ × [0, 1]):12

T :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x (t + 1) = HGD (x (t) , y (t) , r (t))

y(t + 1) = HLMA (x (t) , y (t) , r (t))

r (t + 1) = r(t)eβπGD(t)

r(t)eβπGD(t) + (1 − r(t))eβπLMA(t)

(12.12)

where πi(t), i ∈ {GD, LMA}, are, respectively:

πGD(t) = p(t)x(t) − (cx(t) + KG) =
(

N − 1

NQ−1(t)
− c

)
x(t)− KGD (12.13)

πLMA(t) = p(t)y(t) − (cy(t) + KL) =
(

N − 1

NQ−1(t)
− c

)
y(t)− KLMA

and KGD and KLMA are the information costs of the two behavioral rules. Clearly, the unique
Nash quantity of the game is again (12.11) and it is easy to show that:

qNE = HGD
(
qNE, qNE, r

) = HLMA
(
qNE, qNE, r

) ∀r ∈ [0, 1]

It follows that, as for model (12.9), the equilibria of the model (12.12) are

E∗ = (
qNE, qNE, r∗) with r∗ ∈ [0, 1]

12 Note that the region R
2+\A where map T is not defined, represents cases of “infeasibility of the oligopoly”. It

is worth pointing out that the infeasibility of the oligopoly is to impute that the demand function is not defined for
Q (t) = 0. See the previous discussion and Cerboni Baiardi et al. (2015) and references therein for details.
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which, again, we call Nash equilibria independently of the value r∗. Stability properties of
these Nash equilibria are specified in the following proposition:

Proposition 3 Consider the dynamical system T in (12.12):

● If KGD = KLMA, then a continuum of equilibrium points E∗ exists along the segment
E = (

qNE, qNE, r
)
, with r ∈ [0, 1]. One fixed point in E undergoes a codimension-two

bifurcation changing KGD−KLMA with an associated eigenvalue equal to 1 and another

one equal to −1, with the possible creation of a stable two-cycle
{(

x, y, r
)

, (x, y, r)
}

.

The point in E that undergoes the codimension-two bifurcation is the one such that(
qNE, qNE, r∗) =

(
x, y, r

)
= (x, y, r) and c = c+ (N, r∗), where

c+ (N, r∗) = 2N (3 + (2 − N) (1 − r∗))
8 − 2 (N − 1)− 5 (2 − N) r∗

● If KGD 	= KLMA, then only the two extremum points of the segment E are equilibria,
namely

E0 = (
qNE, qNE, 0

)
and E1 = (

qNE, qNE, 1
)

in which all agents adopt the same strategy, which is LMA or GD respectively:

– If KLMA < KGD, then equilibrium E0 is stable for 2 ≤ N < 5 and c < N, and it
loses stability through a bifurcation of eigenvalue −1 at N = 5 given c < N. E0 is
unstable for N > 5. E1 is always unstable.

– If KLMA > KGD, then equilibrium E1 is stable for c < 2 and undergoes a bifurcation
of eigenvalue −1 at c = 2. E1 is unstable for c > 2. E0 is always unstable.

Proof The local stability properties of the Nash equilibria are determined through the study
of the associated Jacobian matrix. For KGD = KLMA we have

J (E∗) =

⎡
⎢⎢⎣

1 + c (2−N)r∗−2
N

c(2−N)(1−r∗)
N 0

(2−N)r∗
2

1
2 + (2−N)(1−r∗)

2 0

J31 J32 1

⎤
⎥⎥⎦

Hence, the characteristic equation is (1 − λ)P (λ) = (1 − λ)
(
λ2 − Tr (J (E∗)) λ+

det (J (E∗))) = 0, where

det (J (E∗)) = (2 − N) (1 − r∗)+ 1

2
+ c

(2 − N) r∗ − 2 − 2 (2 − N) (1 − r∗)
2N

Tr (J (E∗)) = (2 − N) (1 − r∗)+ 3

2
+ c

(2 − N) r∗ − 2

N

Thus, one eigenvalue associated with the equilibrium is equal to 1, say λ3 = 1. Moreover, to
have the other two eigenvalues inside the unit circle (in the complex plane) it is required that
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the following system of inequalities (known as Schur or Jury’s conditions, see, e.g. Medio and
Lines, 2001) are satisfied:

⎧⎨
⎩

P (1) > 0
P (−1) > 0
1 − det (J (E∗)) > 0

(12.14)

Condition 1 − det (J (E∗)) > 0 is always satisfied. Thus, E∗ cannot lose stability through a
Neimark-Sacker bifurcation. Condition P (1) > 0 is always satisfied as well, being:

P (1) = c
(N − 2) r∗ + (N − 2) (1 − r∗)+ 2

N
> 0

From P (−1) = 0, we have c = c+ (N, r∗), where

c+ (N, r∗) = 2N (3 + (2 − N) (1 − r∗))
8 − 2 (N − 1)− 5 (2 − N) r∗

Then, the equilibrium E∗ has an associated eigenvalue equal to −1, one equal to 1 and
another that takes a value between −1 and 1. These conditions are necessary for a degenerate
codimension-two bifurcation through which a two-cycle is created. The sufficient condition
can be verified by standard calculations. For KGD 	= KLMA, by similar calculations, we obtain
the eigenvalues associated with E0:

λ1 = N − 2c

N
, λ2 = 3 − N

2
, λ3 = eβ(KLMA−KGD)

By imposing λi ∈ (−1, 1), i = 1, 2, 3, the stability conditions for E0 follow, i.e. KLMA < KGD

and 2 ≤ N < 5 and c < N. For KLMA < KGD, c < N and N = 5, one eigenvalue associated
with E0 is equal to −1 while the other two belong to the interval (−1, 1). Thus, E0 loses
stability through a bifurcation of eigenvalue −1. For N > 5, one eigenvalue associated with E0
is always smaller than −1. Hence, E0 is unstable. In the same way, we obtain the eigenvalues
associated with E1:

λ1 = 1 − c, λ2 = 1

2
, λ3 = eβ(KGD−KLMA)

Again, by imposing λi ∈ (−1, 1), i = 1, 2, 3, the stability conditions for E1 follow, i.e.
KLMA > KGD and c < 2. For KLMA > KGD and c = 2, one eigenvalue associated with
E1 is equal to −1 while the other two belong to the interval (−1, 1). Thus, E1 undergoes a
bifurcation of eigenvalue −1. For c > 2, one eigenvalue associated with E1 is always smaller
than −1. Hence, E1 is unstable. �

The proposition underlines the crucial role played by the difference in information costs
KLMA−KGD. When firms have a natural propensity to play the LMA rule, that is, the LMA rule
is cheaper than the GD rule (KLMA − KGD < 0), at the Nash equilibrium all firms will adopt
the LMA rule. The opposite occurs for KLMA − KGD > 0. Nevertheless, the Nash equilibrium
can lose stability, for example when the number of firms N is larger than 5, and in this case
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two interesting scenarios emerge. The first is characterized by homogeneity in the choice of
the behavioral rule to adopt. All firms will be LMA for KLMA − KGD < 0 while all firms will
be GD for KLMA − KGD > 0, with periodic or aperiodic dynamics of the output. This occurs
when the difference between KLMA and KGD is relatively large. For example, let us assume
that firms have a propensity to play the LMA rule, i.e. KLMA − KGD < 0. Moreover, let us
assume that the marginal production cost is c = 0.1. This implies that the condition c < N is
always guaranteed. So, the equilibrium E0 is stable for N < 5 and it loses stability for N > 5.
Then, let us consider the case with N = 6. If firms have a “strong” propensity to adopt the
LMA rule, say KLMA − KGD = −0.1, the output dynamics is periodic and all the firms adopt
the LMA rule as shown by numerical simulations; see Figure 12.2. In this case, the loss of
stability of the Nash equilibrium is related to a reduction of both the level of production and
of the profit of a single firm; see again Figure 12.2.
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y (0) = qNE − 0.002, r (0) = 0.1. The meaning of the pictures is the same as in Figure 12.1.

Figure 12.2 Dynamics of model 12.12
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The scenario is different when the propensity to play one behavioral rule over the other
is small. Let us still consider a natural propensity to play the LMA rule, but smaller than
before, say KLMA − KGD = −0.0001. Numerical simulations show that trajectories converge
to a two-cycle and firms are heterogeneous; see Figure 12.3. Over and over again, some firms
will decide the next-period output according to the LMA rule and some others according
to the GD rule. It is worth noting that despite the heterogeneity and the oscillations in
the fraction of adopters of the two behavioral rules, the average level of production is
close to that experienced at the Nash equilibrium, and so are the average profits; see again
Figure 12.3.

Increasing firms’ propensity to chase the best relative-performing rule, i.e. increasing the
intensity-of-choice parameter β in (12.4), heterogeneity in the choice of the behavioral rules
persists. In addition, the dynamics of the model get more complicated. Numerical simulations
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Note: Parameters: N = 6, c = 0.1, β = 1, KGD − KLMA = 0.0001. The initial conditions and the meaning of the
pictures are the same as in Figure 12.2.

Figure 12.3 Dynamics of model 12.12
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show that the two-cycle undergoes a Neimark-Sacker bifurcation and two stable invariant
curves appear. Increasing β further, the two invariant curves have a contact and a strange
attractor appears; see Figure 12.4. Even more interesting is the level of production and the
profits that firms experience in these scenarios. For example, when β = 10 we observe that
the average level of profit of a single firm (computed as simple moving average with 80 lags
of the average profit of the industry) is higher than the profit at Nash equilibrium (at least
at regular time windows); see again Figure 12.4. This situation is even more marked when
the marginal cost and the number of firms increases. These examples testify how complicated
dynamics and evolutionary stable heterogeneity can improve the overall performance of an
industry. The interested reader can find more details about the dynamics of this evolutionary
oligopoly model in Cerboni Baiardi et al. (2015).
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Figure 12.4 Dynamics of model 12.12
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5 CONCLUSIONS

In this chapter, we have presented an overview of oligopoly models with boundedly rational
firms that choose the behavioral rule to adopt on the basis of relative past performances, i.e.
through evolutionary processes. In this regard, we have described an evolutionary framework
to model oligopolistic markets where a population of firms can employ different heuristics
for deciding their next-period production plans. In this general evolutionary oligopoly game,
the time evolution of the fractions of firms adopting the different adaptive behavioral rules
is simulated by a profit-driven switching mechanism based on the well-known replicator
dynamics. The only assumption made for the behavioral rules is that the dynamical system
defined through the heuristics should admit the symmetric Nash equilibrium as steady state.
Despite the generality of the model, some analytical results can be provided regarding its
dynamics and the stability of its equilibria.

Nevertheless, to undertake a deep analytical and numerical investigation of the dynamics
of the model we need to specify the type of heuristics that the firms can choose. Thus,
after having underlined some dynamical properties of the general model, we have considered
two different cases in detail. In each of these two cases two particular heuristics have been
considered. In the first, we chose the best reply (BR) dynamics with naive expectations vs
the local monopolistic approximation (LMA). In the second, the gradient dynamics (GD)
vs – again – the LMA. All these three behavioral rules model boundedly rational adaptive
adjustments that admit the same Nash equilibrium as the fixed point. In other words, all
the adaptive heuristics considered, even if governed by local (or myopic) decision rules of
boundedly rational and heterogeneous agents, may converge in the long run to a rational
equilibrium, i.e. the same equilibrium forecast (and reached in one shot) under the assumption
of full rationality and complete information of all economic agents. When a Nash equilibrium
is reached, then the outcome of the long-run share of behavioral rules within the population of
firms is simple: the cheapest behavioral rule is preferred over the other(s), so that the poorly
performing ones disappear in the long run, thus giving rise to a homogeneous oligopoly, with
all firms following the same heuristic. Despite their simple properties, when convergence to
the Nash equilibrium is not achieved, these models reveal quite rich dynamic behaviors even
from the point of view of the time evolution of the distribution of the behavioral rules. In fact,
when convergence to a Nash equilibrium does not occur, attractors located on the invariant
planes, where all agents adopt the same behavioral rule, can coexist, and also attractors in
the interior of the three-dimensional phase space can appear. The latter attractors represent
cases where heterogeneous heuristics coexist within the population of firms, thus providing an
interesting example of evolutionary stable heterogeneity, i.e. polymorphic population states
are convenient over time. These attractors are characterized by very complicated dynamics
that are not discussed in detail in this chapter. For the sake of completeness, and with the hope
of attracting the attention of the reader, we conclude with a brief description of these attractors
and related complex phenomena. They are generally characterized by cyclic, quasi-periodic
or chaotic dynamics, each with its own basin of attraction. So, two kinds of complexity can
be observed: one related to the kind of attractors, the other related to the topological structure
of the basins’ boundaries. Moreover, even more complex situations can be obtained for the
attractors embedded inside the invariant planes where homogeneous behavior take place. In
fact, these chaotic two-dimensional invariant sets inside a three-dimensional phase space can
be transversely stable on average, thus giving rise to weaker attractors in the Milnor (1985)
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sense and, consequently, to on–off intermittency phenomena or riddled basins. The interested
reader is referred to Milnor (1985), Alexander et al. (1992), Bischi, Gardini, and Stefanini
(1998), Bischi, Cerboni Baiardi, and Radi (2015). The study of transverse stability of these
“pure strategy” attractors provides useful information about the fate of small mutations, i.e.
if the introduction of a different heuristic followed by just one firm (or a few firms) in
an oligopoly market, will give rise to a spread of it inside the population or will die out
spontaneously; see e.g. Cerboni Baiardi et al. (2015) and Bischi, Lamantia, and Radi (2015).
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13. Coalitions and networks in oligopolies
Francis Bloch

1 INTRODUCTION

This chapter discusses the formation of coalitions and networks in oligopolies. It weaves
together a literature in game theory on cooperation and a literature in industrial organization
on the formation of groups of oligopolistic firms. The literature on coalitions in oligopolies
started with Stigler’s discussion of cartel instability in the 1950s. It was particularly active
in the late 1980s and the 1990s, spurred on by new regulations on cooperative research, new
merger policies and the emergence of “co-opetition”, to use a phrase coined by Brandenburger
and Nalebuff (2011), as a new form of interaction where oligopolistic firms cooperate on
some dimensions and compete on others. At the same time, a number of empirical studies
on collaborative projects established the prevalence of new forms of cooperation across
oligopolistic firms.

From its inception, the literature on cooperation in oligopolies has made use of solution
concepts derived from game theory. The initial solution concepts of cartel stability were
borrowed from the literature on cooperative games, focusing on notions of internal and
external stability dating back from von Neumann and Morgenstern (1944). Gradually, these
cooperative solution concepts gave way to equilibrium outcomes of non-cooperative games –
either simultaneous or sequential – providing strategic foundations for cooperation. More
recently, the emphasis has been placed on bilateral rather than multilateral cooperation,
leading to the development of new models of network formation, which replace models of
coalition formation.

Our discussion of cooperation in oligopolies starts with a brief presentation of the game-
theoretic models used to predict the formation of coalitions and networks. We then consider
two different forms of cooperation. We start by analyzing collusion, discussing the formation
of cartels and horizontal mergers in oligopolies. The last part of the chapter is devoted to the
analysis of strategic alliances, which encompass both research joint ventures and information
exchange platforms.

The literature on cooperation in oligopolies covers a large fraction of theoretical research in
industrial organization, and it is, of course, impossible to cover it all in one chapter. We have
chosen to be very selective, restricting attention to theoretical models that aim at predicting
whether cooperation will arise, and what sizes of groups and architecture of networks are
likely to emerge among oligopolistic firms. Due to lack of space, we cannot cover the
empirical literature on collusion and collaboration, the theoretical literature on supergames
and tacit collusion, or the more recent theoretical literature on the interaction between antitrust
policies and cooperation decisions.
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2 MODELS OF COALITION AND NETWORK FORMATION

In this section, we review models of coalition and network formation developed in game
theory that have been applied to industrial organization. The models fall into three categories:
simultaneous models of coalition formation that are played in one shot and where all players
announce the coalitions they want to form; dynamic games of coalition formation, where
coalitions are formed sequentially through extensive form games; and models of network
formation where pairs of players form bilateral links. We start with some simple notations.
Let N = {1, 2., , , n} be a set of players with typical element i and 2N \ ∅ the set of all non-
empty coalitions of players with typical element C. A partition π is a collection of coalitions
that are disjoint, non-empty and cover the entire set N. We denote by� the set of all possible
partitions. We also consider the set G of all undirected networks over n players. An undirected
network can be identified with a symmetric n × n matrix of 0, 1 with gij = 1 if and only if

there is a link between i and j. This formulation shows that there are 2
n(n−1)

2 networks on
the set of players. We let ij ∈ g denote the fact that players i and j are directly linked in
network g.

2.1 Open Membership Games

In the open membership game, members cannot prevent other players from joining a coalition.
In the simplest model considered by d’Aspremont et al. (1983), all players select a strategy in
S = {0, 1}. All players who announce 1 belong to the coalition, and all players who announce
0 remain independent. Hence C = {i|si = 1} and the partition formed is π = {C, {j}j/∈C}.
Following d’Aspremont et al. (1983), we say that a coalition is internally stable if no player
wants to leave the coalition and externally stable if no player wants to join the coalition. A
coalition that is internally and externally stable is called stable. Alternatively, we can define a
stable coalition as the Nash equilibrium outcome of the open membership game.

The cartel formation game of d’Aspremont et al. (1983) only allows for one coalition to
form. A natural extension of this game is the address game discussed by Yi (1997). Players
choose addresses in the state S = {0, a1, .., an}. All players who choose the same address aj

form the coalition Cj. All players who choose 0 remain independent. The partition formed is
thus π = {C1, ..CJ, {k}k/∈Cj∀j}.

2.2 Exclusive Membership Games

In exclusive membership games, players announce the coalition they want to form and can
thus prevent the entry of other members into the coalition. The earliest game of coalition
formation was proposed by von Neumann and Morgenstern (1944), (pp. 243–244). Each
player i announces a coalition Ci to which she wants to belong. The outcome function assigns
to any vector of announcements C1, . . . , Cn, a coalition structure π as follows: C �= {i} ∈ π if
and only if, for all agents i ∈ C, Ci = S. A singleton i belongs to the coalition structure π if
and only if either Ci = {i} or Ci = C and there exist j ∈ C such that Cj �= C. In this procedure,
a coalition is formed if and only if all its members unanimously agree to form the coalition.

This procedure was rediscovered by Hart and Kurz (1983), who labeled it “model γ ”.
They contrast it with another procedure, labeled “model δ”, where unanimity is not required
for a coalition to form. In the δ procedure, the outcome function assigns to any vector of
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announcements C1, . . . , Cn, a coalition structure π where: C ∈ π if and only if Ci = Cj ⊇ C
for all i, j ∈ C. In other words, coalitions are formed by any subset C of players who coordinate
and announce the same coalition Ci. In this procedure, the announcement serves to coordinate
the actions of the players, and indicates what is the largest coalition that players are willing
to form.

2.3 Bidding Game

The bidding game of coalition formation was proposed by Kamien and Zang (1990). Every
agent i submits a vector of bids, b i

j over all agents j in N. A bid b i
j for i �= j is interpreted as

the amount of money that agent i is willing to pay to acquire the resources of agent j. The bid
b i

i is interpreted as the asking price at which agent i is willing to sell her resources. Given a

matrix B =
[
b j

i

]
of non-negative bids, one can assign the resources of every agent i either to

another agent j or to agent i herself, if she remains a singleton. Formally, let

S(i) =
{

j ∈ N, j �= i, b j
i ≥ bk

i ∀k �= j
}

denote the set of players other than i such that (i) the bid they offer is no smaller than the
bid of any other player and (ii) the bid they offer is higher than the asking price. If S(i) is a
singleton, the assignment of the resources of player i to the unique player in S(j) (and hence
the formation of a coalition S containing {i, j}) is immediate. If S(i) is not a singleton, one
needs to define an exogenous tie-breaking rule to assign the resources of player i to some
member of S(i). As a result of this bidding procedure, resources of some players are bought
by other players, resulting both in the formation of a coalition structure π and in transfers
across players given by t j

i = b j
i and t i

j = −b j
i if player j acquires the resources of player i.

Pérez-Castrillo (1994) independently proposed a procedure of coalition formation that bears
a close resemblance to Kamien and Zang’s (1990) bidding game. The main difference is
that Pérez-Castrillo introduces competitive outside players (the “coalition developers”) who
simultaneously bid for the resources of the players.

2.4 Sequential Formation of Coalitions

Sequential games of coalition formation are based on Rubinstein’s (1982) model of alternative
offers bargaining. As in Rubinstein’s (1982) model, the representative model has an infinite
horizon, players discount future payoffs, and at each period in time, one of the players (the
proposer) makes an offer to other players (the respondents) who must approve or reject the
proposal.

Different variants of this scenario have been proposed. Chatterjee et al. (1993) propose a
rejector–proposer version. Players are ordered according to an exogenous protocol. At the
initial stage, player 1 chooses a coalition C to which she belongs and a vector of payoffs for
all members of C, xC satisfying

∑
i∈C xi = v(C ), where v(C ) describes the coalitional surplus

of the coalition C. Players in C then respond sequentially to the offer. If all accept the offer,
the coalition C is formed, and the payoff vector xC is implemented. The first player in N\C is
chosen as proposer with no lapse of time. If one of the players in C rejects the offer, one period
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elapses and the rejector becomes the proposer at the following period. Okada (1996) analyzes
a coalitional bargaining game where the proposer is selected at random after every rejection.

In the context of coalition formation, payoffs depend on the entire coalition structure,
and underlying gains from cooperation depend on the coalitions formed by other players.
In this context, Bloch (1996) proposes a coalitional bargaining game capturing this forward-
looking behavior when the division of the surplus across coalition members is fixed. At any
stage player i announces a coalition Ci that she wants to form. If all players in Ci agree, the
coalition is formed and the next player is chosen to make a proposal. If one of the members
of Ci rejects the proposal, she becomes the proposer next period. Consider symmetric games
where payoffs only depend on the size distribution of coalitions. In that case, the equilibrium
coalition structures of the infinite horizon bargaining game can be computed by using the
following finite procedure. Let players be ordered exogenously. The first player announces an
integer k1, corresponding to the size of the coalition she wants to form. Player k1 + 1 then
announces the size k2 of the second coalition formed. The game ends when all players have
formed coalitions, i.e.

∑
kt = n.

While Bloch (1996) assumes that the division rule of the surplus is fixed, Ray and Vohra
(1999) consider a model of coalitional bargaining with externalities, where the division of
coalitional surplus is endogenous, and payoffs are represented by an underlying game in
partition function form. Ray and Vohra (1999) first establish the existence of stationary
equilibria in mixed strategies, where the only source of mixing is the probabilistic choice
of a coalition by each proposer. Their main theorem establishes an equivalence between
equilibrium outcomes of the game and the result of a recursive algorithm. This algorithm,
in four steps, characterizes equilibrium coalition structures for symmetric games. It can easily
be implemented on computers and has been successfully applied in Ray and Vohra (2001) to
study the provision of pure public goods.

2.5 Successive Formation of Coalitions

In successive games of coalition formation, players meet in pairs and decide whether to merge.
If the players agree on a merger, one of the players acquires the resources of the other, and
forms a single entity that continues to take part in the process. In successive games of coalition
formation, coalitions are thus formed by successive acquisition of the resources of the other
players. Gul (1989) proposed the first game of successive formation of coalitions and showed
that the equilibrium payoff converges to the Shapley value of the underlying cooperative game.
The set of active players in the game varies over time, as the resources of players are acquired
by other players. At any period, a pair of active players is selected and one of the players
is chosen at random to make a take-it-or-leave-it offer to acquire the resources of the other
player. If the offer is accepted, the set of active players is reduced by one (the player whose
resources have been acquired) and the process continues. If the offer is rejected, the set of
active players does not change, one period of time elapses, and a new pair is chosen.

2.6 Formation of Networks

We now consider the formation of links in networks. Myerson (1991) proposed a game of
undirected network formation that is very similar to models γ and δ. Agents simultaneously
announce the set of agents with whom they want to form links. Hence, a pure strategy in the
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game is a subset Ci ⊆ N \ {i} for every agent i. The formation of a link requires consent by
both parties. Link ij is formed if and only if i ∈ Cj and j ∈ Ci. We let Yi(g) denote the value
of player i in network g.

Given the typical indeterminacy of Nash equilibrium in models of undirected networks,
it is not surprising that other equilibrium notions have been considered in the literature.
These equilibrium refinements allow for some cooperation among players. Because it takes
agreement of both players i and j to form the link ij, it is natural to consider coalitions of size
two since this is the minimal departure from a purely non-cooperative equilibrium concept.
Jackson and Wolinsky (1996) specify a very weak notion of stability for networks:

A network g is pairwise stable if for all i, j ∈ N:

(i) Yi(g) ≥ Yi(g − ij);
(ii) Yi(g + ij) > Yi(g) implies that Yj(g + ij) < Yj(g).

This concept of stability is very weak because it restricts deviations to change only one link
at a time – either some agent can delete a link or a pair of agents can add the link between
them. This notion of stability is not based on any specific procedure of network formation. A
stronger concept of stability based on bilateral deviations uses Myerson’s network formation
game: a pairwise Nash equilibrium is a Nash equilibrium if it is a Nash equilibrium of the
Myerson game that is immune to the formation of a new link by a pair of players. In a pairwise
Nash equilibrium, players can delete any subset of links, and pairs of players can coordinate
on the formation of a new link.

3 CARTELS AND MERGERS

3.1 Cartel Formation in Cournot Oligopolies

In Cournot oligopolies, the formation of a cartel leads its members to reduce quantities in
order to increase the selling price. This provides a public good to firms that do not belong
to the cartel – the outsiders, who benefit from the price increase without paying the cost of
a limitation in quantities. Hence firms may be reluctant to form or join cartels, resulting in a
“puzzle” of cartel formation that was first noted by George Stigler (1950, pp. 25–26) in his
discussion of mergers:

The major difficulty in forming a merger is that it is more profitable to be outside a
merger than to be a participant. The outsider sells at the same price but at a much
larger output at which marginal cost equals price. Hence the promoter of a merger is
likely to receive much encouragement from each firm – almost every encouragement
in fact except participation.

The “Stigler effect” can easily be observed in a linear Cournot oligopoly. Let n firms on
the market, with zero marginal cost, produce homogeneous products with a linear demand
P = 1 − Q. The profit of each firm only depends on the number of active firms on the market
and is given by R = 1

(n+1)2
. Now suppose that a cartel of size k forms on the market, with the

remaining n − k firms remaining independent. The total number of active firms in the market
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reduces to n − k + 1. As cartel members share equally the profit of the cartel, the profit of an
insider is R i(k) = 1

k(n−k+2)2
, whereas the profit of an outsider is R o(k) = 1

(n−k+2)2
.

We immediately observe that the profit of an outsider is always greater than the profit of
an insider: R o(k) > R i(k) for all k. Following d’Aspremont et al. (1983), a cartel of size k
is stable if R i(k) ≥ R o(k − 1) (internal stability) and R o(k) ≥ R i(k + 1) (external stability).
These conditions amount to

(n − k + 3)2 ≥ k(n − k + 2)2,

(k + 1)(n − k + 1)2 ≥ (n − k + 2)2

It is easy to check that the first inequality (internal stability) cannot be satisfied for k ≥ 2.
Hence, the only stable partition is the partition of singletons, where no cartel is formed and all
firms remain independent. This simple computation suggests that free riding in the formation
of cartels is so strong as to prevent the formation of cartels or mergers on any market. A closer
inspection of the profits of insiders and outsiders, due to Salant, Switzer and Reynolds (1983),
shows that R o is increasing in k but R i is non-monotonic in k and assumes a U-shape, first
decreasing, then increasing in k. The minimal profitable cartel size is defined as the unique
value of k for which R i(k) = R i(1), namely the solution to the equation

(n + 1)2 = k(n − k + 2)2,

giving k∗ = 2n+3−√
4n+5

2n , or around 80 percent of the size of the market. The observation
made by Salant et al. (1983) is thus that mergers must involve a very large fraction of the
firms in the industry to become profitable.

The computation of the minimal profitable cartel size also has important implications for
the study of exclusive membership and sequential models of coalition formation. In the γ
game, when a firm leaves the cartel, the cartel dissolves. Hence any cartel of size k ≥ k∗
is an equilibrium outcome, because no player wants to deviate from the cartel and obtain
R o(1) instead of R i(k). By contrast, in the δ model, when a firm leaves the cartel, other cartel
members remain together, so that the deviating firm compares R i(k)with R o(k−1) and always
has an incentive to deviate: no cartel of a size greater than one can be formed at equilibrium.
In the model of sequential coalition formation, Bloch (1996) and Ray and Vohra (1999) show
that the only subgame equilibrium outcome is for the first firms to remain outsiders, and
the last k∗ firms to agree to form a coalition. Hence, in equilibrium, the minimum profitable
cartel size is formed. Macho-Stadler, Pérez-Castrillo, and Porteiro (2006) use the successive
coalition formation model where firms meet bilaterally and decide whether or not to merge.
They show that the equilibrium outcome is either that all firms remain singletons or that they
merge into a single coalition. Merger to monopoly arises for a specific region of the parameters
that is described by a complex recursive formula. Mauleon and Vannetelbosch (2004) explore
the formation of cartels in the linear Cournot oligopoly using a farsighted solution concept:
the largest consistent set of Chwe (1994). They observe that any coalition structure where the
size of the cartel is above the minimal profitable cartel size belongs to the largest consistent
set. However, other coalition structures can also be sustained, including some involving the
formation of multiple cartels.
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Kamien and Zang (1990, 1991) propose a different approach to the study of horizontal
mergers. In their acquisition game, firms announce a bidding price for the assets of all other
firms and an asking price for their own assets. They observe that no merger will arise at
equilibrium. To understand this point, notice that if a firm forms a cartel of size k, it must
compensate all k − 1 firms for their participation in the cartel at a price π ◦(k − 1). Now
clearly, kπ i(k) < (k − 1)π o(k − 1), so that the cartel cannot profitably acquire k − 1 other
firms at their asking price π ◦(k − 1). This line of reasoning is reminiscent of a classical
argument on the difficulty of successful take-overs in the corporate finance literature, when
an investor must acquire shares from different shareholders of the target firm.

The fact that cartels are inherently unstable, and unlikely to emerge as equilibrium
outcomes of a game of coalition formation is a puzzle, as cartels and mergers are indeed
observed on many markets. The puzzle can be solved by enriching the model in order to give
an advantage to cartels over independent firms. In d’Aspremont et al. (1983), Donsimoni
(1985) and Donsimoni, Economides and Polemarchakis (1986), Thoron (1998), Schaffer
(1995) and Prokop (1999), cartels are dominant firms fixing prices and independent firms
form a competitive fringe, responding in quantity to the price of the dominant firm. In all
these papers, cartels are formed by a simultaneous open membership game and a non-trivial
stable cartel size exists. Diamantoudi (2005) considers a more general farsighted solution
concept, where firms anticipate the sequence of moves following deviations. Using an indirect
dominance relation, she shows that von Neumann-Morgenstern stable sets always exist in
the cartel game, and singles out the smallest stable cartel as the most appealing prediction
in the game of cartel formation. In the same spirit, Kuipers and Olaizola (2008) define a
different dynamic process of cartel formation where firms move from one cartel structure to
another considering myopic improvements, but moves that can be countered immediately are
excluded. With this alternative model of transitions, Kuipers and Olaizola (2008) show that
stable cartels are a size larger than the minimal profitable cartel size – a conclusion that stands
in sharp contrast to Diamantoudi (2005). Konishi and Lin (1999) generalize the analysis of
the Stackelberg game where the cartel chooses its quantity first to arbitrary demand and cost
functions. They offer a conjecture on the size of the stable cartel and numerically compute it
for small values of n. Recently, Zu, Zhang and Wang (2012) have provided an exact formula
for the size of the stable cartel in Konishi and Lin’s (1999) model (which results in higher
cartel sizes than originally conjectured).

Perry and Porter (1985) assume that costs are quadratic and that firms own capital units
that can be recombined after a merger. Hence the merged entity can produce more efficiently
than outsiders by distributing production in the plants of the constituent firms. In this model
of convex costs, the cartel benefits from a cost advantage over the outsiders, and profitable
mergers can form. Farrell and Shapiro (1990) move away from the homogeneous linear
Cournot oligopoly and assume a general demand and cost structure. They highlight the fact
that cartels benefit from synergies among their members so that the marginal cost of a cartel
is lower than the marginal cost of independent firms. Hence, in the presence of synergies,
concentration and welfare may move in the same direction, casting a new light on the antitrust
treatment of horizontal mergers.

Any other strategic advantage given to cartel members over independent firms would help
explain the formation of cartels on actual oligopolistic markets. Brown and Chiang (2002) and
Banal-Estañol and Ottaviani (2006) suppose that firms face idiosyncratic shocks in demand
and costs. When firms are risk averse, a merger allows firms to diversity risk, and the merged
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entity has a strategic advantage over independent firms, which leads it to increase production.
Hence, mergers occur more frequently when firms are risk averse and the environment more
variable. Brown and Chiang (2002) study a three-firm environment and a sequential merger
process, and observe that since mergers of two firms are more likely to be profitable, merger to
monopoly is less likely to emerge with risk-averse firms. Banal-Estañol and Ottaviani (2006)
consider a general environment and characterize the sharing contract among participants to
the merger, showing that under Cournot competition, firms have an incentive to equalize the
number of shares they possess in each other’s firm. Davidson and Ferrett (2007) suppose
that cartel members can share the benefit of R&D investments and show that this allows for
profitable cartels. Nocke (1999) studies the formation of cartels when firms face capacity
constraints. Because cartels have larger capacity, they enjoy a strategic advantage when firms
are capacity constrained. Large cartels are easier to sustain when demand is high and the
capacities of individual firms are low. Espinosa and Macho-Stadler (2003) incorporate moral
hazard in the Cournot model, assuming that production is realized by independent teams. The
moral hazard problem becomes more stringent when teams are larger (free-riding incentives
are higher) so that, at first glance, cartels are less likely to form. However, as intermediate
cartels are unlikely to form, large cartels are easier to sustain – firms realize that by leaving the
cartel, they will lead to an unstable intermediate cartel that unravels so that in the end all firms
become independent. Horn and Persson (2001) study cartel formation through a cooperative
game-theoretic solution concept. They assume that mergers are profitable and show that
the most concentrated coalition structure will always emerge: firms form monopolies if
monopolies are allowed, duopolies if duopolies are allowed but not monopolies, etc.

When firms have heterogeneous costs, the formation of cartels becomes harder, because
the gains from cooperation cannot be divided equally among cartel members. Characterizing
conditions under which cartels are profitable, and the equilibrium coalition structure becomes
a difficult exercise, and results have only been obtained for small numbers of firms or
small numbers of types. Donsimoni (1985) studies cartels among heterogeneous firms in the
dominant firm–competitive fringe model when firms have different quadratic costs. Barros
(1998) and Brown and Chiang (2003) discuss the formation of cartels in the linear Cournot
model among three firms with different costs. Faulí-Oller (2000) analyzes a four-firm model
where two firms have low costs and two firms have high costs. When costs are privately
known, the cartel must in addition elicit information about costs from the cartel members.
Cramton and Palfrey (1990) provide a complete analysis of the mechanism design problem
faced by a cartel when firms have to reveal their production costs.

3.2 Cartel Formation in Bertrand and Spatial Oligopolies

The intuition underlying the instability of cartels in Cournot oligopolies is related to the
fact that quantities are strategic substitutes: a reduction in quantity by cartel members leads
outsiders to expand their own quantity, thereby depressing the price and reducing the profit of
cartel members. In a Bertrand oligopoly, prices are strategic complements, and the increase
in price resulting from collusion among cartel members leads outsiders in turn to increase
their prices, resulting in an equilibrium with higher prices and profits for all cartel members.
Deneckere and Davidson (1985) were the first to make this observation in a model of
symmetric product differentiation, when firms set prices rather than quantities. They note
that both cartel members and outsiders benefit from the formation of a merger, even though
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outsiders benefit more than insiders. They compute the profit functions R i(k) and R o(k) and
show that they are both strictly increasing in k. However, it remains true that outsiders obtain
higher profits than insiders (or more generally members of smaller cartels obtain higher
profits than members of larger cartels), so that the formation of mergers is not guaranteed.
Deneckere and Davidson (1985) provide a numerical example to show that firms may be
unwilling to merge even under Bertrand competition, but note that, when the degree of product
differentiation becomes small, and fierce Bertrand competition erodes the firms’ profits,
merger to monopoly is obtained as the equilibrium outcome of an open membership game
of cartel formation.

The formation of cartels in spatial models has been studied both in the circular city and
on the line. Following early work by Levy and Reitzes (1992) and Brito (2003) computes
the effect of a merger between two consecutive firms. He shows that the profit of insiders
always goes up, providing a positive incentive to merger as in the model of symmetric product
differentiation of Deneckere and Davidson (1985). When two consecutive firms merge around
the circle, the pricing game is no longer symmetric, and firms’ equilibrium prices depend on
their proximity to the merged entity. Not surprisingly, firms closer to the merged entity are
more affected by the merger, and hence raise their prices more and benefit from a larger
increase in profits than firms at a higher distance. However, the effect of the merger ripples
through the entire circle, and all firms effectively raise their prices and experience an increase
in profit. Giraud-Héraud, Hammoudi and Mokrane (2003) use the same model of a circular
city but assume that one of the firms sells products at all locations (the multi-product firm).
They analyze the incentives of the multi-product firm to merge with some of its independent
rivals. One difficulty that they highlight is that merging firms are no longer ex ante symmetric,
and the profitability of the merger depends on the post-merger division of the gains from
cooperation.

Studies of mergers on the line have also led to significant insights. Braid (1986) studies
mergers between two adjacent stores on an infinite line. He shows that when prices are
set simultaneously, collusion among stores only has an effect if the two stores are nearest
neighbors, and that affects the prices of all other stores on the infinite line. If the merged entity
acts as a Stackelberg leader, merger has an effect even when stores are not adjacent. Braid
(1999) builds on this model to study mergers between two stores located on a two-dimensional
space and computes numerically the effect on equilibrium prices. On the Hotelling line,
Rothschild, Heywood and Monaco (2000) analyze a three-firm model, where two firms
have the opportunity to merge. The innovation of their paper is that they consider how the
possibility of merger affects the firms’ location decisions. They thus consider a three-stage
model where firms initially choose locations, then two of the three firms decide whether to
merge and finally firms compete in prices. In this model, the two merging firms obtain a
higher gain than the outsider. Heywood, Monaco and Rothschild (2001) extend the analysis
to n firms, and distinguish between corner cases where the merging firms are at the extremity
of the Hotelling segment and interior cases. They show that outsiders are always harmed in
corner cases but not in interior cases.

In the context of vertical differentiation, the analysis of mergers has so far been restricted to
oligopolies with three firms. Norman, Pepall and Richards (2005) analyze a model where the
two merging firms sell the goods of lowest qualities. They show that the merged entity will
always choose to sell the good of lowest quality and argue that the post-merger equilibrium
may lead to higher market prices. Gabszewicz, Marini and Tarola (2015) analyze general
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mergers among three competing firms and show that the only stable mergers involve the
firms producing the bottom two qualities or the firm producing the high quality and the firm
producing the low quality.

We conclude by noting that three papers have attempted to characterize equilibrium
coalition structures in an abstract context encompassing both the Cournot and Bertrand games.
Currarini and Marini (2006) explore the difference between situations where the competitive
game among firms has strategic complements (Bertrand) or substitutes (Cournot). They show
that non-trivial coalition structures emerge in games with strategic complements and provide
conditions under which non-trivial coalition structures also emerge in games with strategic
substitutes. Yi (1997) and Finus and Rundshagen (2009) consider a general model with
positive externalities that encompasses mergers and cartels. They obtain interesting results
comparing the sizes of cartels formed under different processes of coalition formation.

3.3 Dynamic Mergers

Dynamic models of mergers emphasize the changing environment under which firms interact,
the interplay between entry, exit and merger decisions, and the role of repeated interactions
on the enforcement of collusion. The seminal model proposed by Gowrisankaran (1999),
in the spirit of Ericsson and Pakes (1995), analyzes a dynamic model where firms choose
to enter, invest, merge and exit at every period. Each firm evaluates the outcome of its
decision based on expected discounted profit calculations, and the equilibrium concept is a
Markov perfect equilibrium outcome in a complex environment where the state captures all
relevant information about the industry. Equilibrium is shown to exist, and can be computed
using numerical techniques. Computations show that the possibility of mergers greatly affects
the structure of the industry, reducing the number of active firms in equilibrium. Once
mergers are introduced, production, prices and profits go up, but consumer surplus decreases.
Gowrisankaran and Holmes (2004) analyze a dynamic model with a dominant firm and
a competitive fringe, where, as in Perry and Porter (1985), merging firms can reallocate
productive capital to reduce production costs. In the dynamic environment, capital is not given
but results from firms’ investment decisions. The analysis shows that both perfect competition
and monopoly are absorbing states. In some situations, fringe firms acquire the capital of
the dominant firm; in others, the dominant firm successively acquires all the capital of the
dominant firm, resulting in a monopoly.

Pesendorfer (2005) studies a simpler model of mergers and entry and provides an explicit
characterization of Markov perfect equilibria. He assumes that, at every period, a single firm
has the opportunity to enter, and that firms make offers to merge as in Kamien and Zang
(1990). Firms are identical and profits only depend on the number of active firms every
period. In this simple setting, conditions are obtained under which no merger ever takes place,
and under which mergers result in monopoly. Mergers may occur because firms anticipate
that other mergers will follow – this is the pre-emptive role of mergers. Pesendorfer (2005)
establishes the existence of merger cycles, under which k mergers happen at some period,
followed by k − 1 periods with no mergers. Pre-emptive mergers also occur in Fridolfsson
and Stennek (2005) who analyze a three-firm model, where following a shock, firms race to
merge with another firm. In their model, firms merge not only to increase prices as in the
classical framework but also in order to guarantee that they will not be left out of the wave
of mergers.
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Mergers have also been analyzed in the context of repeated interaction between oligopolis-
tic firms. When firms have different capacity constraints, mergers allow firms to recombine
capacities, and change the environment under which collusive agreements can be enforced.
Compte, Jenny and Rey (2002), Vasconcelos (2005) and Kuhn and Motta (2001) analyze
different models of collusion with mergers. They focus attention on situations where all
firms in the industry (the merged firm and the independent firms) collude. Both Compte
et al. (2002) and Kuhn and Motta (2001) observe that collusion is easier to sustain when
firms have equal capacities, so that any merger of small firms that leads to an equalization
of capacities may help collusion. By contrast, mergers involving large firms may make
collusion harder to sustain and hence be procompetitive. In addition, by reducing the number
of active firms, a merger helps sustain collusion in a repeated interaction. Vasconcelos (2005)
generalizes the analysis by allowing merged firms to recombine capital as in Perry and
Porter (1985) and allowing for more general punishment schemes in the repeated game.
In all the previous papers, collusion involves all the firms in the industry, By contrast,
Bos and Harrington (2010) allow for collusion to involve a subset of firms, and propose a
model that combines endogenous cartel formation, enforcement through repeated interaction
and asymmetric capacities. They show that a cartel is stable if the smallest firm finds it
optimal to be in the cartel and the largest firm finds it optimal to be outside the cartel.
This characterization yields a formula to compute stable cartels. A merger of firms under
partial collusion produce complex effects, as it simultaneously affects firms outside the cartel
and the incentives to collude inside the cartel. After a merger, the set of stable cartels may
change, and hence post-merger equilibrium prices and quantities may be difficult to analyze.
Bos and Harrington (2010) use numerical computations to evaluate the effects of mergers in
their model.

3.4 Bidding Rings

Bidding rings are groups of buyers who submit their bids cooperatively in auctions. Graham
and Marshall (1987) and Mailath and Zemsky (1991) have analyzed bidding rings in second
price private value auctions. Suppose that values are independently distributed according to a
common distribution F with density f . In a second-price auction, the optimal bidding strategy
is to bid one’s valuation and the expected profit is given by

R =
∫ ∞

0

∫ z

0
(z − y)(n − 1)F(y)n−2f (y)f (z)dydz,

where (n − 1)F(y)n−2f (y) is the distribution of the highest bid among n − 1 bidders.
If a bidding ring of size k forms, the distribution of the highest bid among ring members is

kF(y)k−1f (y) and of the highest bid among independent bidders (n − k)F(y)n−k−1f (y). Hence
the expected profit of a ring member (insider) is

R i(k) = 1

k

∫ ∞

0

∫ z

0
kF(y)k−1f (y)(n − k)F(y)n−k−1f (y)dydz,

whereas the expected profit of an independent bidder (outsider) remains R o(k) = R.
In the special case where the distribution of values is uniform on [0, 1], the profits are
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R i(k) = 1
(n−k+1)(n+1) and R o = 1

n(n+1) . We immediately observe that R o is independent

of k, R i increasing in k and R i(k) > R o for all k > 1. Hence the only stable bidding ring is the
complete bidding ring including all the bidders. This is also the unique equilibrium outcome
of the γ and δ games and of the sequential game of coalition formation. In sharp contrast to
the oligopoly case, bidding rings in auctions are always profitable to all the bidders.

Mailath and Zemsky (1991) consider a general situation where values are drawn from
different distributions and prove a stronger result. They show that the sum of utilities of
bidders is increasing and convex in the size of the bidding ring. Hence, in cooperative game-
theoretic terms, the coalitional function is convex, so that the core of the game is non-empty.
Even when bidders are heterogeneous, there always exists a distribution of the surplus of the
bidding ring that will be accepted by all the bidders.

The analysis of bidding rings in first-price auctions is much more complex, as it requires
computing the equilibrium payoff of a first-price auction with asymmetric bidders (the
bidding ring and independent bidders), a notoriously complex task. MacAfee and MacMillan
(1992) compute equilibrium strategies when values are independent and identically distributed
according to a binary distribution, v = 1 with probability p and v = 0 with probability 1 − p.
In that case, the distribution of values of all bidders is a binomial distribution with parameter
p, allowing for simple computations of the distributions of order statistics. The expected profit
of a member of the bidding ring is R i(k) = 1

k (1 − p)n−k(1 − (1 − p)k) whereas the expected
profit of an independent bidder is R o(k) = p(1 − p)n−k. As opposed to the second-price
auction, but in line with the oligopoly models, the profit of an insider is always smaller than
the profit of an outsider, π i(k) < π o(k). Stable bidding rings exist when π i(k) > π◦(k − 1),
a condition that holds for the unique value k∗ such that

1 − (1 − p)k

k
≥ p(1 − p) ≥ 1 − (1 − p)k+1

k + 1
.

MacAfee and MacMillan (1992) show that k∗ is always larger than 3, increasing in p and
converges to infinity when p converges to 1.

3.5 Collusive Networks

Collusive networks emerge when firms form reciprocal market-sharing agreements whereby
they refrain from entering each other’s market. This geographical division of markets has
been analyzed by Belleflamme and Bloch (2004). Suppose that firm i is based on market i.
By forming a link ij with firm j, firm i refrains from entering market i and firm j refrains from
entering market j. For any graph g, ni(g) = n − di(g) is the number of active firms on i’s
market, where di(g) denotes the degree of firm i in the collusive network g. Assuming that
firms are symmetric, the profit that each firm makes on market i is given by π(ni(g)) and the
total profit of firm i is

R = π(ni(g))+
∑
j|ij∈g

π(nj(g)).

Belleflamme and Bloch (2004) characterize pairwise-stable collusive networks when profit
functions are decreasing and log-convex in the number of active firms. They show that
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(i) every stable network must include complete components – when firms sign market-sharing
agreements, they must sign them with all other firms in their component – (ii) that components
must be of different sizes and (iii) that every component must be of size greater than m∗ where
m∗ is the solution to π(n−m+1)

π(n−m+2) = 2.

In a linear Cournot oligopoly where π(n) = 1
(n+1)2

, it is easy to see that m∗ = n so that
there are only two candidates for collusive networks: the complete network and the empty
network. In a second-price auction with uniform distributions, the expected profit of a bidder
is π(n) = 1

n(n+1) and we find that m∗ = n−1 so that there exist three possible stable collusive
networks: the empty network, the complete network, and an asymmetric configuration where
one independent bidder faces a bidding ring of n − 1 bidders.

4 ALLIANCES, RJVS AND TRADE ASSOCIATIONS

4.1 Research Joint Ventures and Alliances

Cost-reducing alliances have been extensively studied in the context of research joint
ventures (RJVs). The seminal papers by Katz (1986) and d’Aspremont and Jacquemin
(1988) considered the incentives of two firms to cooperate in cost-reducing research before
competing on the market. This line of research was prompted by a change in the regulatory
environment, with programs aimed at stimulating cooperative research among firms both in
the USA and in Europe in the mid-1980s – the National Cooperative Research Act of 1984
and the National Cooperative Production Amendments of 1993 in the USA and the block
exemption to collusion in R&D of Regulation 418/85 in 1985 in the European Union. The
main trade-off embodied in these models compares the direct benefit of the cost reduction
experienced by a firm with the indirect cost of facing a competitor who also experiences a
cost reduction and thus behaves more aggressively in a Cournot market. d’Aspremont and
Jacquemin (1988) discuss how this trade-off is affected by the presence of spillovers, when
some part of the research output of one firm is leaked to the other firm. Because there are
only two firms involved in the models, the formation of an RJV has no external effect on
other firms in the industry. Suzumura (1992) and Kamien, Morton and Zang (1990) consider
an industry with an arbitrary number n of firms. Kamien et al. (1992) distinguish between
different types of alliances: RJVs where firms share their R&D results but do not coordinate
their investments, R&D cartels, where firms coordinate their investments but do not share
research outputs and RJV cartels where firms coordinate their investments and share research
outputs. Both Suzumura (1992) and Kamien et al. (1992) restrict attention to situations where
the formation of an RJV has no external effects by considering alliances covering all the
firms in the industry. Kamien and Zang (1993) analyze a model with symmetric alliances.
Poyago-Theotoky (1995) considers partial alliances that only cover a fraction of the firms
in the industry but supposes that only one alliance is formed. Hinloopen (1997) contrasts
cooperative research with R&D subsidies and concludes that research subsidies are a more
effective policy tool than allowing firms to cooperate in research.

Bloch (1995) proposes a model to endogenously derive the structure of cost-reducing
alliances in oligopolies. Consider a linear Cournot oligopoly with inverse demand P = 1 −Q.
Let ak denote the size of the alliance Ak. We suppose that firms have complementary assets
in R&D so that the marginal cost of production of a firm is linearly decreasing in the size of
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the association it belongs to. Formally, if firm i belongs to association k(i), its marginal cost
of production is given by ci = λ − μak(i). The equilibrium profit of a firm belonging to an
association of size ai is given by

Ri =
[

1 − λ

n + 1
+ μai − μ

∑
k a2

k

n + 1

]2

.

We observe significant differences between the formation of alliances and cartels. First,
the formation of an alliance has a negative externality on the profit of outsiders. An increase
in ak, k �= i reduces the profit of firm i. Second, in a fixed coalition structure, members
of larger alliances have higher profits, as

∑
a2

k is constant, but profit is increasing in ai.
These differences lead to very different predictions on equilibrium coalition structures. For
example, in an open membership game, firms always have an incentive to join a larger alliance
so that the only equilibrium outcome is for all firms to join in a single RJV. On the other
hand, in exclusive membership games, the equilibrium alliance structure will not be the grand
coalition. To understand this fact, notice that, when a single firm joins an alliance, benefits are
asymmetric. The single firm benefits from a large cost reduction whereas alliance members
only experience a small reduction in costs as the size of the alliance only increases by one unit.
This implies that, when an alliance is very large, it will be reluctant to admit new members. A
careful look at the profit function shows that Ri is increasing in ai until ai = n

2 and decreasing
afterwards. The symmetric association structure with two associations of size n

2 cannot be
an equilibrium either. In order to increase the cost difference with members of the rival
association, any association has an incentive to accept more than n

2 members. Anticipating that
the remaining players will form an association of size n − a, members of the first association
optimally choose a coalition size of a∗ = 3n+1

4 . In the sequential game of coalition formation,
the unique equilibrium association structure thus results in the formation of two associations
of unequal sizes, one with 3n+1

4 members and the other with n−1
4 members.

Bloch (1995) discusses the extension of the model to Cournot and Bertrand competition
with differentiated products. As the level of product differentiation increases, competition on
the market is less fierce and the dominant association becomes larger. Interestingly, the sizes
of equilibrium associations are identical under Cournot and Bertrand competition. Yi (1998)
and Yi and Shin (2000) generalize the model by studying arbitrary demand and cost functions.
They identify conditions on demand and cost functions for which the grand coalition emerges
in an open membership game. Greenlee (2005) considers a general linear model with intra-
RJV and industry-wide spillovers and characterizes the equilibrium outcomes of the open
membership game and the sequential game of coalition formation. He finds that the grand
coalition always forms in the open membership game, but that a more fragmented coalition
structure with different alliances arises in the sequential game. However, the number of
alliances is bounded above by 3 for all n. Numerical computations are used to illustrate the
size of alliances as a function of the two spillover parameters. Belleflamme (2000) extends
the model to asymmetric firms and shows that when cost reductions are not symmetric, the
grand coalition may fail to form in the open membership game. Morasch (2000) considers a
related model where heterogenous firms in a strategic alliance propose output-based transfer
payments. Under this formulation of profit-sharing contracts, he computes numerically the
equilibrium association structures for small values of n.
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4.2 Networks of Collaboration

As an alternative to multilateral alliances, Goyal and Joshi (2003) propose a model of
networks of bilateral collaboration among firms. They assume that the marginal cost of
production is linearly decreasing in the number of bilateral alliances a firm has formed (rather
than the size of the alliance it belongs to). We then have ci = λ−μdi(g), where di(g) denotes
again the degree of firm i in the graph g. Equilibrium profits are given by

Ri =
[

1 − λ

n + 1
+ μdi(g)− μ

∑
j dj(g)

n + 1

]2

.

As in the model of alliances, the formation of a link between two firms i and j hurts all other
competitors, and for a fixed network structure, firms with a higher degree obtain a higher
profit. If the formula for the profit is very similar to the formula in strategic alliances, the
analysis of the model of network formation is very different. When two firms sign a bilateral
agreement, they enjoy a symmetric reduction in production cost. One computes the marginal
effect of an additional agreement on firm i’s equilibrium quantity as

�qi = nμ

n + 1
> 0.

As equilibrium profits are increasing in quantities, all bilateral agreements thus raise the
firms’ profits so that the only pairwise stable network is the complete network. When firms
face a significant fixed cost of link formation, the complete network ceases to be stable. Goyal
and Joshi (2003) show that stable networks have a dominant group architecture, with one
complete component and singleton firms.

Goyal and Moraga-Gonzales (2001) extend the analysis by supposing that firms endoge-
nously choose their research effort. Research effort will be decreasing in the number of links
a firm has formed, and hence the addition of a new bilateral agreement may result in lower
R&D on the market. In a linear Cournot market, Goyal and Moraga Gonzales (2001) show
that research efforts are maximized when every firm is linked to exactly n−1

2 competitors.
However, as the marginal benefit of an additional link remains positive, firms have an incentive
to form the complete network. Hence, in a model with endogenous research efforts, firms
engage in excessive collaborative activities.

4.3 Exchange of Information and Trade Associations

Another important instance of collaboration among firms is the exchange of information.
We distinguish between two types of information: common value information (about market
demand) and private value information (about idiosyncratic costs). Information exchange has
been studied in the context of trade associations – groups covering all firms in the industry.
The first strand of papers by Novshek and Sonnenschein (1982), Clarke (1983), Vives (1984)
and Gal-Or (1985) consider information sharing about an unknown parameter of demand.
Novshek and Sonnenschein (1982) and Vives (1984) focus on a duopoly model. Novshek and
Sonnenschein (1982) solve for the partial pooling of information, when each firm chooses
to pool some of the signals they receive. Vives (1984) compares the incentive to share
information under Cournot and Bertrand, and under substitutes and complements, showing
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that it is optimal not to pool information in games of strategic substitutes (Cournot with
substitutes and Bertrand with complements) but optimal to share information in games of
strategic complements (Cournot with complements and Bertrand with substitutes). The same
result – that information sharing is never optimal under Cournot with substitutes – is obtained
by Clarke (1983) and Gal-Or (1985) in an oligopoly model with n firms, quadratic payoffs
and normally distributed signals. Li (1985) extends the model by allowing for more general
signal distributions, and considers also information sharing about private cost parameters.
He finds that firms never have an incentive to share information about common market
demand but always have an incentive to share information about private costs in a Cournot
oligopoly. Shapiro (1986) also notes that information sharing about private costs arises as an
equilibrium. Gal-Or (1986) analyzes information sharing about market demand and private
costs under Cournot and Bertrand and shows that there is a stark distinction between Cournot
and Bertrand and common value and private value, with no information sharing emerging
as the equilibrium outcome for Cournot under common values and Bertrand under private
values, and full information sharing for Bertrand under common values and Cournot under
private values. Okuno-Fujiwara, Postlewaite, and Suzumura (1990) offer a general argument
to show that unraveling results in all firms revealing their private cost information. Raith
(1996) provides a useful guide to the literature and a generalization of all existing models,
indicating exactly which conditions are required for information sharing.

Most of the literature considers information sharing with all other firms in the industry.
One exception is the paper by Kirby (1988), which allows for information sharing among a
subset of firms, and considers the formation of information pools. Building on Clarke’s (1983)
model, she shows that information pooling among a subset of firms may be an equilibrium
behavior for some subset of parameters – in sharp contrast to the case where firms must
exchange information with all other firms in the industry, where no information is ever shared.
This result suggests that allowing firms to form smaller exclusive trade associations may
lead to more information sharing, increasing the profit of firms and the expected consumer
surplus. Vives (1990) compares different disclosure rules in trade associations. He allows trade
associations to use exclusionary disclosure rules – the aggregate signal on the market is only
distributed to a fraction of the firms in the industry – and shows that exclusionary disclosure
rules restore the firms’ incentives to share information, but does not necessarily lead to all
firms joining the trade association. Currarini and Feri (2015) analyze information sharing as
bilateral agreements among firms, and characterize the stable networks of information sharing
in Cournot oligopolies. They show that in the case of private values, pairwise stable networks
are connected components with some isolated firms. In the case of correlated signals, they
show that pairs of firms always have an incentive to exchange information so that the empty
network is never pairwise stable and the complete network is always stable. Hence, as in the
case of strategic alliances, there is a sharp contrast between coalition and network formation
in information sharing, and firms will more easily share information about demand when
agreements are bilateral than when they are multilateral.
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14. TU oligopoly games and industrial cooperation
Jingang Zhao∗

1 INTRODUCTION

This chapter surveys existing results and lists nine future areas in TU oligopoly games and
industrial cooperation or, precisely, cooperative oligopoly games with transferable utilities
(TUs). Such results and future research are both empirically important and theoretically
interesting.

On the empirical side, the model of TU oligopoly games is the proper tool with which
to study industrial cooperation, ranging from early divisions of labor to modern merger
contracts; its applications help one understand the structural changes in industries and the
effects of regulatory policies.1 For example, empty-core theory has provided an understanding
about the US consolidation movement of the late nineteenth century, which actually originated
the field of industrial organization (McWilliams and Keith 1994).

Core theory allows one to estimate the merging costs or the transaction costs of horizontal
mergers (Zhao 2009a). Reductions in merging costs provide a new explanation for the
two greatest merger waves around the turns of the twentieth and the twenty-first centuries
(Zhao 2009b). Similar cost reductions by European Union Directive Solvency II (enacted on
January 1, 2016) will likely drive more mergers and acquisitions in the EU insurance industry
(Stoyanova and Gruendl 2014).

On the theory side, the results are advances in the refinements and applications of the core,
which is the most important solution in cooperative game theory. They are developed around
the stability of a monopoly merger contract. It first converts the oligopoly to a TU coalitional
game or a partition function game and then characterizes the core. The main task is to identify
conditions on the parameters in an oligopoly for a non-empty core. One sufficient condition
for a non-empty core is convexity or supermodularity, whose existence is known only in some
linear oligopolies.

There is no need to emphasize the importance of core theory in industrial organization,
because non-empty core and profitability are the two preconditions for each horizontal merger.
It should be pointed out that oligopoly games or cooperative oligopoly games with non-
transferable utilities (NTUs) are not surveyed here. The model of NTU games is the tool with
which to study collusion such as illegal cartel agreements,2 which are not in the mainstream
of industrial organization.

The rest of this survey is organized as follows: Section 2 reviews three game models and
defines their core solutions and some refinements that are relevant in oligopolies. Section 3

∗ I am indebted to Don Gilchrist, Aymeric Lardon, Marco Marini, Holger Meinhardt, Martin Shubik, Donald
Smythe, Giorgos Stamatopoulos, Xinghe Wang, Jongsay Yong and Jianbo Zhang for valuable comments and
suggestions. All errors, of course, are my own.

1 See Daughety and Reinganum (Chapter 9, Volume II of this Handbook) for a survey.
2 See Bloch (Chapter 13 in this Handbook), Marini (2009) and Marini (Chapter 3, Volume II of this Handbook)

for surveys on collusion studies.
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first reviews ten oligopoly models and their equilibrium expressions; it then reviews the
existence and refinements of the core; and finally it lists seven extensions. Section 4 reviews
the results on non-monopoly partitions. Section 5 reviews empirical studies of the core.
Section 6 concludes with a brief discussion about future research.

2 THE CORE AS A SOLUTION IN THREE GAME MODELS

This section reviews the core as a cooperative solution in three forms of games or three
models: coalitional TU games or simply coalitional games (also called games in characteristic
form or games in coalitional form; von Neumann and Morgenstern 1944), normal form games
(also called strategic games; Nash 1950), and partition function games (Thrall and Lucas
1963). These games are defined below.

Let N = {1, . . . , n} be the set of players or firms. Each subset S ⊆ N is called an alliance or
a coalition or a merger. Each partition� = {S1, S2, . . . , Sh} of N is called a coalition structure
or market structure, representing a set of h simultaneous mergers in which each merger Sj has
kj = |Sj| members (so �h

j=1kj = n).3

A coalitional game (von Neumann and Morgenstern 1944) is a set function given by

�c = {N, v(·)}, (14.1)

specifying a non-negative joint payoff or profit v(S) for each coalition S ⊆ N. The central
question here is how to split the grand coalition’s payoff v(N ) among the n players; this
implicitly assumes that the grand coalition’s payoff (such as monopoly profit) is optimal or
maximal among all coalitions and all partitions of N.

A normal form game (Nash 1950) is given by

� = {N, Xi, ui}, (14.2)

specifying a choice set Xi ⊂ Rki in ki-dimensional Euclidian space and a payoff function ui(x),
x = (x1, . . . , xn) ∈ X = �n

j=1Xj, for each player i ∈ N. Game (14.2) is called a normal form
TU game if all ui are transferable, such as dollars. The central question here is what is the
solution or a list of choices x = (x1, . . . , xn) that rational players will choose.

A partition function game (Thrall and Lucas 1963) is given by

�p = {N,φ(·)}, (14.3)

specifying a vector of joint payoffs φ(�) = {φS = φS(�)|S ∈ �} for each partition �
and each of its coalitions S ∈ �. One of the central questions here is the same as that in a
coalitional game: how to split the grand coalition’s payoff v(N ) = φN , assuming that v(N ) is
the maximum among all partitions.

3 A partition� = {S1, S2, . . . , Sh} satisfies: Sj �= ∅, ∪Sj = N, and Si ∩ Sj = ∅, all i �= j. This also represents an
h-firm n-product multi-product oligopoly, in which each firm Sj (or simply j) produces kj = |Sj| products. As shown
in Zhao (2012), the equilibrium expressions for such multi-product oligopoly are identical to that for the postmerger
equilibria. See Faulí-Oller and Sandonís (Chapter 2, Volume II of this Handbook) for a survey on other studies on
mergers.
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The following four assumptions (Zhao 2018) are implicitly assumed to support a variety of
solutions for the games in (14.1–14.3):

A1 (Assumption 1) Players are able to take collective actions.
A2 Players are unable to take any form of coordinated or collective actions.
A3 Players are able to costlessly negotiate and enforce a joint action.
A4 Given a partition � = {S1, S2, . . . , Sh}, A3 holds for each S ∈ �, and A2 holds for each

T /∈ � such that there are i �= j, T ∩ Si �= ∅ and T ∩ Sj �= ∅.

A1 applies in most situations, A2 characterizes the original Prisoner’s Dilemma game in
which the two players have no access to any form of communication or coordination or
agreements. If they could coordinate their choices or make deals by using a joint counsel, the
nature of the game will become that under A1 or A3 and thus invalidate the Nash equilibrium
predicted by A2.

Note also that players under A4 can negotiate and enforce a joint action if they belong to the
same coalition, but they can not take collective or coordinated actions if they are from two or
more different coalitions. Thus, A2 is a special case of A4 for the finest partition or premerger
structure �0 = {{1}, . . . , {n}}, and A3 is another special case for the coarsest partition or
monopoly structure �m = {N}.

Because these assumptions determine or limit a player’s rationality, they are the foundations
of game theory upon which various solutions or theories are built. For example, A2, A3 and A4
are the foundations of non-cooperative solution or Nash equilibrium (Nash 1950), cooperative
solutions (Shapley 1955, von Neumann and Morgenstern 1944), and hybrid solutions (Zhao
1992), respectively.

Care needs to be taken when applying these assumptions in a particular game. For example,
the actions for a coalition S under both A1 and A2 in a normal form game (14.2) are the vectors
of their choices given by xS = {xj | j ∈ S } ∈ XS = �j∈SXj; but their actions in a coalitional
game (14.1) are the splits of their joint payoff given by θS = {θj | j ∈ S}, which satisfies∑

j∈S θj = v(S), and θj ≥ 0, all j.

2.1 The Core in Coalitional Games

Given a coalitional game (14.1), a split of v(N ) is a payoff vector θ = (θ1, . . . , θn) ∈ Rn+ such
that�n

j=1θj = v(N ), with θj as player j’s payoff, all j. A split θ is rational for a coalition S ⊆ N
(or undominated or unblocked by S) if �j∈Sθj ≥ v(S), and θ is in the core (or a core vector) if
it is rational for all S ⊆ N. This was first defined by Shapley (1955) as given here:4

Definition 1 (Shapley 1955) The core of game (14.1) is the set of the splits of v(N ) that are
rational for all proper coalitions. Precisely, this is given by

Core(�c) = {θ ∈ Rn
+|�n

j=1θj = v(N ), and �j∈Sθj ≥ v(S), all S �= N}. (14.4)

4 Shapley first coined the term core solution during 1952–53 in one of his conversations with Shubik, and Gillies
first used the term core during the same period, referring to some intersections of the stable sets. Gillies (1959) had
been mistakenly cited in most previous studies as the first paper that defined the core. See Zhao (2016) for the history
of the core.
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Lemma 1 below summarizes two complete arguments for a non-empty core:

Lemma 1 Given (14.4), the following three arguments are equivalent: (i) Core(�c) �= ∅; (ii)
the game is balanced (Bondareva 1962, Shapley 1967); and (iii) the grand coalition’s payoff
is above the minimum no-blocking payoff (Zhao 2001b).

Specifically, argument (ii) holds if �T∈BwTv(T)≤v(N ) holds for each balanced collection
of coalitions B = {T1, . . . , Tk} with a balancing vector w = {wT |T ∈ B}:5 and argument
(iii) holds if v(N ) ≥ mnbp holds, where mnbp is the game’s minimum no-blocking payoff
given by

mnbp = Min{�j∈Nθj|θ ∈ Rn
+, and �j∈Sθj ≥ v(S), all S �= N}. (14.5)

The above mnbp method for core existence has an intuitive interpretation and it enables one
to estimate the transaction costs of horizontal mergers (Zhao 2009a).

2.2 The α-core and β-core in Normal Form TU Games

Given a coalition S in the normal form TU game (14.2), recall that its choice vector is given
by xS = {xj| j ∈ S} ∈ XS = �j∈SXj. Let x−S = {xj| j /∈ S} ∈ X−S = �j/∈SXj be the outsiders’
choice vector, and rearrange x = (x1, . . . , xn) ∈ X = �n

j=1Xj as x = (xS, x−S), so ui(x) =
ui(xS, x−S) for all i. Then, the coalition’s joint payoffs under the α- and β-beliefs are defined by

vα(S) = Maxxs∈XSMin{�j∈Suj(xS, x−S)|x−S ∈ X−S} and (14.6)

vβ(S) = Minx−s∈X−SMax{�j∈Suj(xS, x−S)|xS ∈ XS}, (14.7)

respectively. vα(S) is often called the guaranteed or worst payoff, because S can guarantee a
joint payoff no less than vα(S) by choosing some xS (i.e.,�j∈Suj(xS, x−S) ≥ vα(S) for all x−S).
On the other hand, S can not be prevented from receiving at least vβ(S), as they have a best
response function

x ∗
S = xS(x−S) = ArgMax{�j∈Suj(xS, x−S)|xS ∈ XS}6 (14.8)

such that �j∈Suj(xS(x−S), x−S) ≥ vβ(S) for each x−S.
By Max{�j∈Nuj(x)|x ∈ X} = v(N ) = vα(N ) = vβ(N ), the grand coalition’s payoff is

the same under both beliefs. An updated version of the α- and β-cores in Aumann (1959) are
given here:

5 A collection of coalitions B = {T1, . . . , Tk} is balanced if it has a balancing vector w, or a positive weight
wT > 0 for each T ∈ B, such that for each player i ∈ N, �T∈B(i)wT = 1 holds, where B(i) = {T ∈ B|i ∈ T} is the
subcollection of coalitions to which player i belongs.

6 ArgMax denotes the set of maximal solutions for each maximization problem; precisely, given Max{ f (x)|
x ∈ X}, one has ArgMax{ f (x)|x ∈ X} = {y ∈ X| f (y) ≥ f (x), all x ∈ X}.
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Definition 2 (Aumann 1959) Given a normal form TU game (14.2) and its coalitional
payoffs vα(S) and vβ(S) in (14.6–14.7), its α- and β-coalitional games are

�α = {N, vα(·)} and �β = {N, vβ(·)}, and (14.9)

the cores of above �α and �β are called the α-core and the β-core, respectively.

As shown in Zhao (1999a, p. 156), an empty α-core means that for each θ satisfying θ ≥ 0
and �θj = v(N ), there exists S and xS ∈ XS such that �j∈Suj(xS, x−S) > �j∈Sθj for all x−S,
and an empty β-core means the existence of S with a reaction function x ∗

S = xS(x−S) in
(14.8) such that �j∈Suj(xS(x−S), x−S) > �j∈Sθj for all x−S. Thus, an empty α-core implies an
empty β-core, so a non-empty β-core implies a non-empty α-core, or Core(�β) ⊆ Core(�α)
holds. This can also be understood by the following interpretation due to Jianbo Zhang of the
University of Kansas (Zhang 2016, personal communication).

For the α-core, imagine that the outsiders have a spy in S and thus know each action taken
by S. Consequently, all actions taken by S are doomed to be disastrous, and the best S could
do is damage control or choose the best of the worst given by vα(S). On the other hand, one
imagines, for the β-core, that S have a spy in N\T and know each action taken by the outsiders.
In this case, each of the outsiders’ actions will lead to the best outcome for S, and the worst
harm that the outsiders could do to S is given by vβ(S). Having a spy is better than being
spied on, so one has vβ(S) ≥ vα(S) and thus Core(�β) ⊆ Core(�α).

The general existence of NTU α-core was established by Scarf (1971). He showed that the
normal form game (14.2) has a non-empty NTU α-core if (a) all choice sets are compact and
convex, and (b) all payoff functions are continuous and quasi-concave. This has been extended
to a non-empty TU α-core by adding the assumption of weak separability (Zhao 1999c), and
a non-empty TU β-core by adding the assumption of strong separability (Zhao 1999a). These
two extensions7 are relevant in oligopoly models, which are summarized here:

Lemma 2 Let Cα = Core(�α) and Cβ = Core(�β) be the TU α- and β-cores in (14.2).
Then, (i) Cα �= ∅ if (a) all Xi are compact and convex, (b) all ui(x) are continuous and quasi-
concave, and (c) weak separability holds (Zhao 1999c); (ii) Cβ �= ∅ if (a) all Xi are compact
and convex, (b) all ui(x) are continuous and quasi-concave, and (c) strong separability holds
(Zhao 1999a).

Roughly speaking, strong (weak) separability requires that the outsiders’ choices that
minimize the insiders’ joint payoff in (14.7) (in (14.6)) also minimize each insider’s individual
payoff in a relevant range (at a relevant point). The precise statements of these two conditions
are not reviewed here because they both automatically hold in oligopoly models. Readers
are referred to Zhao (1999a), Zhao (1999c), and Meinhardt (2002, pp. 69–88) for details and
numerical examples.

7 See Allen (2006), Kajii (1992), Uyanık (2015), Wilson (1978) and Yannelis (2005) for other extensions.
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2.3 The γ -core, δ-core and their Variations in Partition Function Games

Given a partition � = {S1, S2, . . . , Sh} in the partition function game (14.3), consider the
deviation by, or formation of, a new coalition S = {i1, . . . , ik} /∈ �. Let the set of those
partitions of which S is a member be denoted by

�(S) = {�′ ∈ �|�′ = {S, T1, . . . , Tm}}, (14.10)

where � is the set of all partitions of N. Before deviating, the insiders or players in S are
assumed to have hypothesized or believed a reasonable reaction to their deviation by the
outsiders in N\S = { j| j /∈ S}.

Six possible reactions based on six kinds of beliefs are known and are reviewed here. These
beliefs lead to six core solutions for the game (14.3): the γ -core and δ-core in Hart and Kurz
(1983), α ∗-core in Zhao (1996, 2013), e-core in Yong (2004), j-core in Lekeas (2013), and
f -core in Lekeas and Stamatopoulos (2014). Note that this list excludes those core refinements
(such as the lf -core of Currarini and Marini, 2003 reviewed at end of subsection 3.3) in a
normal form game that are not defined for partition function games.8

For simplicity, all definitions here focus on the coarsest or monopoly partition �m = {N},
which is extended to a general or non-monopoly partition in section 4:

1. The breakup belief or γ -belief (Hart and Kurz 1983): insiders believe that the (n − k)
outsiders in N\S will break up into singletons or the new partition is �γ = �γ (S,�m) =
{S, { j1}, . . . , { jn−k}} ∈ �(S), so the insiders’ payoff and the γ -coalitional game are

vγ (S) = φS(�γ ), all S; and �γ = {N, vγ (·)}. (14.11)

2. The loyal belief or δ-belief (Hart and Kurz 1983): insiders believe that outsiders are loyal
to each other and stay in the coalition N\S, so the new partition is �δ = �δ(S,�m) =
{S, N\S} ∈ �(S), and their payoff and the δ-coalitional game are

vδ(S) = φS(�δ), all S; and �δ = {N, vδ(·)}. (14.12)

3. The cautious belief or α ∗-belief (Zhao 1996, 2013): insiders are cautious about their
smallest payoff at the worst partition: �α∗ ≡ �α∗(S) = {S, Tα∗

1 , . . . , Tα∗
m(α∗)} ∈ �(S),

or they believe that the outsiders partition themselves to minimize the insiders’ joint
payoff, so the insiders’ payoff and the α ∗-coalitional game are

vα∗(S) = φS(�α∗), all S; and �α∗ = {N, vα∗(·)}, (14.13)

where �α∗ = �α∗(S) is the solution of Min{φS = φS(�
′)|�′ ∈ �(S)}. Note that this

cautious or worst partition �α∗ is independent of all current partitions�.

8 It also excludes related studies such as the core in partition function games from a common pool resource
(Funaki and Yamato 1999) and the axiomatization of such cores in partition function games (Bloch and Van den
Nouweland 2014).
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4. The efficient belief or e-belief (Yong 2004): insiders believe that the outsiders choose an
efficient partition (or optimal partition in TU games) for themselves among all partitions
of N\S, so the insiders’ payoff and the e-coalitional game are

ve(S) = φS(�e), all S; and �e = {N, ve(·)}, (14.14)

where �e = �e(S) = {S, Te
1, . . . , Te

m(e)} solves Max{�T∈�′\SφT(�
′)|�′ ∈ �(S)}. This

efficient partition �e is also independent of all current partitions �.

The next two beliefs assume that the payoffs for each � = {S1, S2, . . . , Sh} are determined
by the number and sizes of its coalitions or precisely by h and si = |Si|, i = 1, . . . , h. Such
property holds when players are symmetric within each coalition.

5. j-belief (Lekeas 2013): let s = |S| be the cardinality or the number of insiders for each
S �= N, then a j-belief is an integer-to-integer function j(s), 1 ≤ j(s) ≤ n−s, for s = 1, . . . ,
n − 1, defining the belief for all coalitions with s members that outsiders are divided into
j(s) coalitions and the worst of such j-partitions will be formed, so the insiders’ payoff
and the j-coalitional game are

vj(S) = φS(�
∗
j(s)), all S; and �j = {N, vj(·)}, (14.15)

where� ∗
j(s) = {S, T ∗

1 , . . . , T ∗
j(s)} solves Min{φS = φS(�j(s))|�j(s) ∈ �j(S)}, with�j(S) =

{�|� = {S, T1, . . . , Tj(s)} ∈ �(S)} as the set of all j-partitions or all partitions in which
the outsiders are divided into j(s) coalitions.9

The next belief further assumes that the payoff φS(�) of each S ∈ � = {S1, S2, . . . , Sh} is
determined by h or the number of coalitions in �. This property holds in standard symmetric
homogeneous Cournot model with linear cost.

6. The probability belief or f -belief (Lekeas and Stamatopoulos 2014): a probability belief
is an integer-to-probability vector function f (s) (i.e., f (s) ∈ Rn−s

+ , �n−s
j=1 fj(s) = 1) for

s = 1, . . . , n − 1, defining the belief for all coalitions with s members that outsiders are
randomly partitioned into j-coalitions with a probability fj(s), j = 1, . . . , n − s, so the
insiders’ payoff and the f -coalitional game are

vf (S) = �n−s
j=1 fj(s)φS(�j), all S; and �f = {N, vf (·)}, (14.16)

where �j is any � = {S, T1, . . . , Tj} ∈ �(S), all of which yield the same φS for S.

Definition 3 The γ -, δ-, α ∗-, e-, j- and f -cores of the game (14.3) are, respectively, the core of
the above coalitional games �γ , �δ , �α∗, �e, �j and �f in (14.11–14.16), which are precisely
defined by Cγ = Core(�γ ), Cδ = Core(�δ), Cα∗ = Core(�α∗), Ce = Core(�e), Cj =
Core(�j), and Cf = Core(�f ).

9 One future research topic is to combine the efficient- and j-beliefs: replace � ∗
j(S) in (14.15) with �e

j(S), or the
outsiders’ efficient partition among all�j(S) .
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Note that for the constant j-belief such that j(s) ≡ 1, all s, j-belief is the same as the δ-belief,
so vj(S) = vδ(S) and Cj = Cδ . For the special j-belief such that j(s) = n − s, all s, j-belief is
the same as γ -belief, so vj(S) = vγ (S) and Cj = Cγ .

Subsection 3.3 reviews the existence results for the above cores in a set of games (14.3) that
are derived from oligopoly models. However, no similar results are known in a general normal
form game (14.2). The relationships among the refinements (such as which is the strongest)
are also unknown, with the only exception of the obvious relation that the α ∗-core is the
largest (i.e., Ck ⊆ Cα∗ holds for k = γ , δ, e, j and f ).

3 CORE AND ITS REFINEMENTS AS CANDIDATES
OF MONOPOLY SOLUTIONS

This section first reviews ten oligopoly models and the equilibrium expressions, to help
readers to extend the known results in standard Cournot models to the other nine models
in future research. It then reviews the known core results, including its existence as a
precondition for the involved horizontal merger, its convexity and its empirical studies. It next
reviews the results on core refinements, and at the end it lists seven large areas of future
research in the core and its refinements in more advanced oligopoly models.

3.1 The Equilibrium Expressions in Ten Oligopoly Models

This subsection reviews ten oligopoly models and the involved equilibria,10 which can be
obtained using the inverse matrix A−1 in equation (16) in Zhao (2012). Because most previous
studies have focused on a symmetric linear Cournot oligopoly (Cournot 1838), which is a
special case of model 9 in (14.26), there is a long way to go in extending the known results to
the more general cases of model 9 and then to the other nine even more general models.

A linear multi-product oligopoly with n differentiated goods is defined by three parts:
(1) n cost functions Ck(qk) = ckqk, k ∈ N = {1, . . . , n}; (2) a set of multi-product firms
H = {1, . . . , h} or a partition � = {S1, S2, . . . , Sh} of N, with each firm i ∈ H producing
ni = |Si| products in Si ∈ � (1 ≤ ni ≤ n, �h

j=1nj = n); and (3) a demand (in price-setting)
or inverse demand (in quantity-setting) function for each of the n products, whose definitions
are given below.

Let p = (p1, . . . , pn)
 = (pS, p−S) = {pS| S ∈ �} = {pSj | j ∈ H} be the vector of prices,

with pk as the price of each good k ∈ N, pS = {pk| k ∈ S} as the price vector of each firm
S ∈ �, and p−S = {pk| k ∈ N\S} as the price vector of all other firms. Similarly, q =
(q1, . . . , qn)

 = (qS, q−S) = {qS| S ∈ �} denotes the vector of products. In a price-setting
oligopoly, or simply Bertrand oligopoly, or more accurately Edgeworth-Bertrand oligopoly,11

the demand for each good k ∈ Si produced by each firm Si ∈ � are

qk(p) = qk(pSi , p−Si) = V − γkkpk + γi�m∈Si\{k}pm +�j∈H\{i}γij�m∈Sjpm, (14.17)

10 See Amir (Chapter 3 in this Handbook) for a survey on related oligopoly equilibria.
11 This title is suggested in Shubik (1980), because it was Edgeworth (1881) who originated the price-setting idea

in Bertrand (1883).
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where V > 0 is demand size; γkk > 0, γi, γij = γji ∈ (0, 1], k ∈ N and i �= j ∈ H are the
substitution parameters.12 Now, the profit for each firm S ∈ � is πS(p) = πS(pS, p−S) =
�k∈S(pk − ck)qk(p).

In a quantity-setting or Cournot oligopoly, the inverse demands for the products of each
firm Si ∈ � are

pk(q) = V̂ − γ̂kkqk − γ̂i�m∈Si\{k}qm −�j∈H\{i}γ̂ij�m∈Sjqm, all k ∈ Si, (14.18)

where γ̂kk, γ̂i, γ̂ij > 0, k ∈ N and i �= j ∈ H are the parameters, and πS(q) = πS(qS, q−S) =
�k∈S(pk(q)− ck)qk is the profit of each S ∈ �.

Strategic behavior assumes that each firm chooses a best response, or that it takes other
firms’ choices as given and chooses its choices to maximize its profit. In price setting, a
strategic equilibrium or non-cooperative solution or Bertrand-Nash equilibrium (Bertrand
1883, Nash 1950) is a price vector p ∗ = {p ∗

S | S ∈ �} such that each p ∗
S solves Max

{πS(pS, p ∗
−S)| pS ≥ 0}, which is (under usual conditions) the solution of the following h

sets of first-order conditions:

∂πSi(p)/∂pk = 0, all k ∈ Si and for each Si ∈ �, or Bp = d, (14.19)

where B = Bn×n is partitioned into h2 submatrices.13

In quantity setting, a strategic equilibrium or Cournot-Nash equilibrium (Cournot
1838, Nash 1950) is an output vector q ∗ = {q ∗

S | S ∈ �} such that each q ∗
S solves

Max{πS(qS, q ∗
−S)|qS ≥ 0}, or the solution of these first-order conditions:

∂πS(qS, q−S)/∂qk = 0, all k ∈ S and each S ∈ �, or Bq = d, (14.20)

where B has the same structure of B in (14.19).
Keep in mind that A2 (i.e., players are unable to take any form of coordinated or collective

actions) is implicitly assumed behind the multi-product equilibria in (14.19–14.20) or the
single-product equilibria in (14.21–14.22). If (14.19–14.20) are treated as the postmerger
equilibria discussed below, then A4 (i.e., firms within each merger or players in each coalition
S ∈ � are able to costlessly negotiate and enforce a joint action but players in all other
coalitions T /∈ � are unable to take any form of coordinated or collective actions) or its
variations are implicitly assumed.

It is convenient to call the Bertrand or Cournot equilibrium in single-product oligopolies
(i.e., h = n in (14.17) and (14.18)) a premerger equilibrium. Precisely, a premerger Bertrand
equilibrium p0 = {p0

i | i ∈ N} satisfies

12 Note that internal substitution within a firm i has identical rate γi (i.e., between any m and t ∈ Si), and external
substitution between two firms i �= j has identical rate γij among all of their products (i.e., between any m ∈ Si and
t ∈ Sj). Even with such simplifications, the model is already complicated enough such that it is insolvable or precisely
that the inverse of the matrix B in (14.19) is unknown and remains as an open problem.

13 The block structure of B in (14.19) follows by rearranging the first-order conditions as

2γkkpk − 2γi�m∈Si\{k}pm −�j∈H\{i}γij�m∈Sj pm = V + γkkck − γi�m∈Si\{k}cm

for all k ∈ Si and each Si ∈ �. B contains [n + h(h + 1)/2 − h1] constants, where h1 is the number of singleton
coalitions (i.e., single-product firms) in �. See equation (1) in Zhao (2012) for details.
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p0
i ∈ ArgMax{πi(pi, p0

−i)|pi ≥ 0}, all i, (14.21)

and a premerger Cournot equilibrium q0 = {q0
i | i ∈ N} satisfies

q0
i ∈ ArgMax{πi(qi, q0

−i)|qi ≥ 0}, all i. (14.22)

In this regard, the general Bertrand equilibrium or the solution p = B−1d of (14.19) (assuming
the inverse exists) can be called the postmerger equilibrium for �. This leads to three kinds
of mergers given by the following models 1–3, respectively:14

(1) πS(p) = �k∈S(pk − ck)qk(p), all S ∈ �;
(2) πS(p) = �k∈S(pk − cS)qk(p), all S ∈ �;
(3) γi = Max{γkm|k �= m ∈ Si}, γij = γji ≡ Min{γkm|k ∈ Si, m ∈ Sj};
(4) qk(p) = V − pk + γ�m �=kpm, all k ∈ N;
(5) qk(p) = V − pk − γ (pk − p), all k ∈ N,

(14.23)

where cS = Min{ck| k ∈ S} in model 2 is the smallest marginal cost of each merger or each
multi-product firm S ∈ �, and p = (�pk)/n in model 5 is the average price.

In model 1, the profits of each merger S ∈ � are simply the sum of its members’
profit (i.e., πS(p) = �k∈Sπk(p)), so it represents a set of simultaneous mergers without
synergy, from the premerger equilibrium p0 in (14.21). On the other hand, model 2 represents
simultaneous mergers with weak cost-synergy, because each merger S ∈ � can use its
smallest marginal cost cS = Min{ck| k ∈ S} in producing all its outputs, or precisely
πS(p) = �k∈S(pk − cS)qk(p). Finally, model 3 represents simultaneous mergers with
marketing-synergy, because marketing outcomes such as

γi = Max{γkm|k �= m ∈ Si} (14.24)

increases the demands for internal products, and

γij = γji ≡ Min{γkm|k ∈ Si, m ∈ Sj} (14.25)

reduces the demand for competitors’ products.
Model 4 in (14.23) is called Dixit demand (1979) and is a special case of (14.17) when

h = n (or there is no γi), γkk ≡ 1 and γij ≡ γ (i �= j, k ∈ N); model 5 is called Shubik demand
(1980) and is another special case of (14.17), when h = n, γkk ≡ [n + (n −1)γ ]/n, γij ≡ γ /n,
i �= j, k ∈ N. Thus, the Dixit and Shubik demands are two models of premerger Bertrand
equilibria.

14 To facilitate future studies, the models are arranged in the same order as in Zhao (2012), which can be expanded
to include strategic complements surveyed in Vives (Chapter 2 in this Handbook).
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The quantity-setting or Cournot equivalents of models 1–5 in (14.23) are:

(6) πS(q) = �k∈S(pk(q)− ck)qk, all S ∈ �;
(7) πS(q) = �k∈S(pk(q)− cS)qk, all S ∈ �;
(8) γ̂i= Min{γ̂km|k �= m ∈ Si}, γ̂ij= γ̂ji ≡ Max{γ̂km|k ∈ Si, m ∈ Sj};
(9) pk(q) = V̂ − qk − γ̂ �m �=kqm, all k ∈ N;
(10) pk(q) = V̂ − qk + γ̂ (qk − q), all k ∈ N,

(14.26)

where q = ∑
qj/n in model 10 is the average output, and the synergy in model 8 reduces

(increases) the negative effects of an output increase on own (rivals’) profits. The details of
(14.26) are similar to those of (14.23) and are thus skipped.

It is useful to note the following three remarks. First, most Cournot models in (14.26)
and Bertrand models in (14.23) can be inverted from each other. For example, inverting
model 5 in (14.23) yields the inverse demand in model 10 in (14.26), with V̂ = V and
γ̂ = γ /(1 + γ ). Second, the Shubik demand or model 5 has an intuitive interpretation: a firm
k that charges more (less) than the average price will be penalized (rewarded) by an amount
equal to γ |pk − p|. This intuition is the reason why the Shubik demands or models 5 and 10
are used in the three mergers in (14.23) and (14.26) (and in Lemma 3 below). If one uses
the Dixit demands or model 4 and model 9, one will get six additional merger models. Thus
(14.23) and (14.26) actually provide a total of 16 oligopoly models (eight models each in both
Cournot and Bertrand competitions).15

Third, there are two main reasons why the supermajority of previous studies have
focused on quantity competition or Cournot oligopoly: (1) the expressions of known Bertrand
equilibria are in general more involved and less tractable than the Cournot equilibria, and
(2) the expressions of many Bertrand equilibria are unknown. Although the inverse B−1 in
(14.19) is unknown in the general cases and remains as an open mathematical problem, the
partial solution or the inverse A−1 in equation (16) of Zhao (2012) is sufficient to yield the
equilibrium p = A−1d in most linear oligopolies that are relevant for empirical or theoretical
studies. This matrix A =

An×n =

⎛
⎜⎝

A11 · · · A1h
...

. . .
...

Ah1 · · · Ahh

⎞
⎟⎠ (14.27)

has the same structure of B in (14.19). It is a very small class of B in that it reduces n(n−1)/2
constants in B in (14.19) to only three constants in A in (14.27): Aii, i = 1, . . . , h, is an ni × ni

square matrix whose diagonal entries are a constant a and other entries a constant −b, and Aij,
all i �= j, is an ni × nj matrix of a constant −c, or precisely γkk ≡ a/2, γi ≡ b/2 and γij ≡ c
for all k, i and j in (14.17).

15 Dixit demand has the advantage of being the solution to a simple utility maximization problem. Let In×n be the
identity matrix, En×n the matrix of ones, G = (1 − γ )In×n + γEn×n, and U(q, y) = y + V�qm − qGq/2 the utility,
where y is a composite measure of all other consumptions. Then, Max

{
U(q, y)|pq + y ≤ Y

}
yields the inverse

version of model 4 in (14.23), or model 9 in (14.26), where Y is fixed income. In addition, the consumer surplus is
equal to CS = qGq/2.
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The next lemma provides, as an example of p = A−1d, the postmerger Bertrand equilibrium
without synergy for a single merger S = {1, . . . , t}, or precisely the equilibrium for� = {S, t+
1, . . . , n} in model 1 in (14.23) with Shubik demand or model 5. Without loss of generality,
assume (1) c1 ≤ c2 ≤ . . . ≤ ct, so cS = c1; and (2) the following assumption (A0) holds. A0
guarantees a positive output for all firms at both premerger and postmerger equilibria:16

A0 (Assumption 0) For each S = {1, . . . , t},
nV + (n + (n − t)γ )cS + γ (n − t)c−S

(2n + (2n − 2t)γ )
> cS (14.28)

holds, where cS = �i∈Sci/t and c−S = �j/∈Scj/(n − t).

Lemma 3 Let p ∗ be the postmerger equilibrium for S = {1, . . . , t} in model 1 with Shubik
demand, cS and c−S be given in (14.28). Then, for each k ∈ S, j ∈ N\S,

p ∗
k = n(2n(1 + γ )− γ )V

ω0
+ γ 2t (n − t) cS

2ω0
+ (n − t)γ (n(1 + γ )− γ )c−S

ω0
+ ck

2
,

p ∗
j = n(2n(1 + γ )− tγ )V

ω0
+ tγ (n(1 + γ )− tγ ) cS

ω0
(14.29)

+γ (n − t) (n(1 + γ )− γ ) (2n(1 + γ )− tγ ) c−S

(2n(1 + γ )− γ )ω0
+ (n(1 + γ )− γ )cj

2n(1 + γ )− γ
,

where ω0 = γ 2 (n − t) (t + 2n − 2)+ 2nγ (3n − t − 1)+ 4n2.

The above expressions become the premerger equilibrium when t = 1 in (14.29); the
postmerger equilibrium with weak synergy in model 2 when ck = c1 = cs, all k ∈ S; and the
postmerger equilibrium with Dixit demand when V in (14.29) is replaced by V/ (1 + γ − nγ )
and γ by nγ /(1 + γ − nγ ).17

3.2 The Core in Oligopoly TU Games

A homogeneous Cournot oligopoly is given by an inverse demand p(�qj) and n cost functions
Ci(qi), 0 ≤ qi ≤ zi, with zi > 0 as firm i’s capacity, or by a normal form game � = {N, Xi, ui}
in (14.2) in which

ui = πi(q) = p(�qj)qi − Ci(qi), Xi = [0, zi], all i. (14.30)

Under the usual conditions of a Cournot oligopoly such as decreasing demand and
continuity, both weak and strong separability in Lemma 2 hold because the outsiders’ choices

16 This is an extension of the conditions in a single-product Cournot oligopoly in Zhao (2001a). See Pham Do and
Folmer (2003) for discussion and Zhao (2009a, p. 377) for an application.

17 This follows from qk = V − pk + γ�m �=kpm = (1 + γ − nγ )
[

V
1+γ−nγ − pk − nγ (pk−p)

(1+γ−nγ )

]
, and the observation

that the first term (1 + γ − nγ ) does not enter the first-order conditions. See footnote 9 in Zhao (2012) for details.
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in both vα(S) in (14.6) and vβ(S) in (14.7) are equal to their full capacity at x−S = q−S =
z−S = {zj| j /∈ S}. This implies vα(S) = vβ(S) and Core (�α) = Core (�β). Therefore, there is
no need to make the α- and β-distinction in oligopoly models, and one can simply use the term
core, which will be non-empty under the additional assumption that each πi(q) is concave in
q = (q1, . . . , qn). Such results are first obtained by the author and are given here:

Proposition 1 (Zhao 1999a, p. 160) Let Cα and Cβ be the α- and β-cores of an oligopoly �
in (14.30). Assume p(�qj) is decreasing and each πi(q) is continuous. Then, (i) Cα = Cβ =
C(�); and (ii) C(�) �= ∅ if each πi(q) is concave.

Although concavity in part (ii) is a strong condition,18 it can be weakened in large classes
of oligopolies such as the linear version of (14.30) in (14.34) in subsection 3.2.2.

3.2.1 Non-empty core as a precondition for horizontal mergers
A fundamental role of the core theory in industrial organization is that a non-empty core is
a precondition for horizontal mergers. This argument is summarized in the next proposition.
For simplicity, define a monopoly merger contract in an oligopoly (14.30) as a triplet (N, q, θ)
of the set of firms N, monopoly supply q and a split of monopoly profits θ (i.e., q ∈
ArgMax{�n

j=1πj(q)|qj ∈ [0, zj], all j}, θ ≥ 0 and �θj = �πj(q) = πm = v(N )).

Proposition 2 (Two preconditions for the monopoly merger, Zhao 2009a, p. 378) Let q0

be the premerger equilibrium in (14.30), C(�) its core, and (N, q, θ) an observed monopoly
merger. Then, (i) θj ≥ π0

j = πj(q0), all j; and (ii) θ ∈ C(�).

Part (i) is the well-known profitability precondition (or incentive to merge), and part (ii) is
the non-empty core precondition. The merger would have made at least one firm worse off
(i.e., a firm j gets less than its premerger profits π0

j ) if part (i) fails, and at least one coalition
worse off (i.e., a coalition S gets less than its guaranteed or worst profits v(S)) if part (ii) fails.
Therefore, the failure of either precondition will violate a firm’s or a coalition’s rationality,
so both must hold in successful mergers.

Keep in mind that these are necessary, rather than sufficient, conditions for a monopoly
merger. Failing either or both will result in a merger failure, and meeting both will not
guarantee a merger success. In addition, they are independent of each other: Example 1 in
the next subsection reports a profitable monopoly with an empty core, and Example 2 an
unprofitable monopoly with a non-empty core.

These preconditions make it possible to study how merging costs or the transaction costs of
a merger affect merger formation and how to empirically estimate the sizes of such merging
costs. Let mc(S) ≥ 0 denote the merging cost of each merger S ⊆ N. For simplicity, assume
mc(S) = 0 for all non-monopoly merger S �= N, to focus on the monopoly merging cost
mmc = mc(N ) ≥ 0. The next proposition shows that

mmc ∗ = πm − Max
{
�π0

j , mnbp
}

and (14.31)

mmc0 = πm − Min
{
�π0

j , mnbp
}

(14.32)

18 Continuity can also be weakened, in the same manner of Uyanik (2015) on the TU α-core in a normal form
game (14.2).
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are, respectively, an upper bound of the merging cost for a successful monopoly merger and
a lower bound for a failed or unobserved monopoly merger, where πm and π0

j are the same
monopoly and premerger profits as in Proposition 2, and mnbp is given in (14.5) for the
oligopoly game (14.30).

Proposition 3 (Zhao 2009a, 2009b) Given a monopoly merger in (14.30), let mmc ∗ and
mmc0 be given in (14.31–14.32). Then, (i) mmc ≤ mmc ∗ if the merger is successful; and (ii)
mmc > mmc0 if the merger is prevented by failed preconditions.

3.2.2 The core with weak synergy
The following assumption (A0.1) modifies the concept of weak synergy in the oligopoly
(14.30). Though the synergy such as cS in (14.23) and (14.26) might be quite large in reality,
it is called weak synergy in Farrell and Shapiro (1990) for comparison with strong synergies
involving economies of scale:

A0.1 (i) Each πi(q) is continuous in q and quasi-concave in qi, and p(�qj) is decreasing; (ii)
all equilibria are positive and interior solutions; and (iii) the capacity and cost function
for each merger S are

zS = �j∈Szj, CS(y) = Min{�j∈SCj(qj)|y = �j∈Sqj ≤ zS, qS ≥ 0}. (14.33)

Most results reviewed in this chapter deal with a linear (14.30) or a subset of model 9 with
γ̂ = 1 and capacities in (14.26): p(�qj) = a −�qj, Ci(qi) = ciqi, qi ∈ [0, zi], which can be
given by a (2n + 1)-vector

(a, c, z) ∈ R2n+1
+ , where c = (c1, . . . , cn) and z = (z1, . . . , zn) (14.34)

are the vectors of marginal costs and capacities, and a > 0 is the intercept of the demand.
Without loss of generality, assume c1 ≤ . . . ≤ cn < a. Then, above A0.1 becomes for all S,
CS(y) = cSy, y ≤ zS = �j∈Szj,

0 < (a − cS − z−S)/2 ≤ zS and (a − c1)/2 ≤ zN = z = �j∈Nzj, (14.35)

where z−S = �j/∈Szj, and cS = Min{ck| k ∈ S} is the same as in (14.23) and (14.26).
A symmetric linear Cournot oligopoly is the case when ci = c and zi = z, all i, or (a, c, z) ∈

R3+.19 In such symmetric cases, the conditions in (14.35) become

0 < (a − c)/(n + 1) ≤ z ≤ (a − c)/(n − 1), (14.36)

19 The same letter c is used here as a scalar and in (14.34) as a vector. This should cause no confusion because the
meaning will be clear in the contexts. Similar simplification holds for letter z.
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which leads to, as shown in Zhao (2009a), mnbp = n(a − c − z)2/[4(n − 1)] < v(N ) =
(a − c)2/4, so the core is not only non-empty but also has a non-empty (relative) interior.
Such core results are summarized in the next proposition:

Proposition 4 (Zhao 2009a, p. 381) Let mmc ≥ 0 be the monopoly merging cost in (14.34),
C(�) its core, and assume parts (ii–iii) of A0.1 or (14.35). Then, (i) the core has a non-empty
(relative) interior if mmc = 0; (ii) C(�) �= ∅ if

mmc ≤ (a − c1)
2/4 − {n(a − c1 − zmin)

2/[4(n − 1)]}; and (14.37)

(iii) in symmetric case with ci = c and zi = z, all i, C(�) �= ∅ if and only if

mmc ≤ (a − c)2/4 − {n(a − c − z)2/[4(n − 1)]}, (14.38)

where c1 = Min{ck| k ∈ N} and zmin = Min{zk| k ∈ N} are the minimal marginal cost and
minimal capacity.

The core’s interior has important implications in empirical studies. In the event of small
shocks to the market, a core with a non-empty interior remains non-empty, but a non-empty
core with an empty interior could become empty. Thus, a long-lived merger or trust suggests
that the core has a non-empty interior, and short-lived ones suggest either an empty-core or a
non-empty core with an empty interior, which are the causes for both merger failure and the
breakup of completed mergers such as the breakup of AOL-Time Warner.

The following two examples (Zhao 2009a) show the independence of the two merger
preconditions; they also illustrate part (iii) in Proposition 4.

Example 1 n = 3, (a, c, z) = (6, 0.8, 1.5); or p = 6 − �xj, Ci(xi) = 0.8xi, 0 ≤ xi ≤ 1.5, i =
1, 2, 3; and mmc = 1.65. The premerger and monopoly profits are π0

i = 1.69, πm = 6.76, and
mnbp = 5.13. By v(123) = πm − mmc = 5.11 > �π0

i = 5.07, the merger is profitable.20

By (14.38) and by mmc = 1.65 > (a−c)2/4−n(a−c−z)2/[4(n−1)] = πm −mnbp = 1.63,
the core is empty.

Example 2 n = 3, p = 6 − �xj, Ci(xi) = 0.5xi, 0 ≤ xi ≤ 2, all i, and mmc = 2. The
premerger and monopoly profits are π0

i = 1.89, πm = 7.56, and mnbp = 4.59. The core is
non-empty because mmc = 2 < πm − mnbp = 2.97, and the merger is not profitable because
v(123) = 5.56 < �π0

i = 5.67.

The next proposition shows how excessive capacity affects the estimated bound of
monopoly merging costs. Let τ ≥ 0 be the rate of excessive capacity as defined in

z = (1 + τ)(a − c)/(n + 1), (14.39)

so τ = 0 means full capacity at premerger equilibrium: q0
i = (a − c)/(n + 1) = z, all i.

20 Coalition {1, 2, 3} is simplified as 123. Similar simplifications hold in other places where no confusion arises.
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TU oligopoly games and industrial cooperation 407

Proposition 5 (Zhao 2009a, p. 383) Let τ1 = n − 2
√

n-1, and mmc ∗ and τ be given in
(14.31) and (14.39). Then, mmc ∗ = n(a − c)2 (n − 1)2 /[4n (n + 1)2] if τ ≥ τ1, and

mmc ∗ = n(a − c)2

(n + 1)2
(n − 1) (n + 1)2 − n (n − τ)2

4n(n − 1)
if τ < τ1. (14.40)

The above results indicate that a larger capacity will strengthen the non-empty core
precondition, so the monopoly merger is more likely to be formed. This is consistent with
and thus provides a new explanation for the stylized fact that mergers are likely to occur in
markets plagued by excess capacities.

3.2.3 The convexity in oligopoly games
Convex games or supermodular set functions are interesting in both economics and mathe-
matics and have generated a large literature. Only the less technical results in oligopoly TU
games are reviewed here. For non-technical readers, it is sufficient to know three conclusions
in a convex oligopoly game: (1) a convex game exhibits increasing returns to scale in coalition
size or the property that each i’s marginal contribution to a coalition increases as the coalition
expands, so there is an incentive to get larger and eventually form the grand coalition; (2) the
core is non-empty; and (3) both the nucleolus (Schmeidler 1969) and Shapley value (Shapley
1953) are perfect answers to the question of how to split the monopoly profits.21

Definition 4 The game � in (14.1) or (14.9) is convex if for any S, T ⊆ N,

v(S)+ v(T) ≤ v(S ∩ T)+ v(S ∪ T). (14.41)

Assume the conditions in (14.35) for a linear oligopoly (14.34), one has v(S) + v(T) ≤
v(S ∪ T) for any S ∩ T = ∅ (see Theorem 1 in Zhao 1999b), or that the oligopoly game � for
(14.34) is superadditive. Because convexity in (14.41) implies the preceding superadditivity,
convex games are stronger than superadditive games.

The first main result in convex oligopoly games is a necessary and sufficient condition
for an oligopoly (14.34) reported in Zhao (1999b),22 which has been extended along several
directions in Norde, Pham and Tijs (2002), Driessen and Meinhardt (2005, 2010), Lardon
(2010), and Hou, Driessen and Lardon (2011). Let

� = {(S, T, i)|S ⊂ T ⊂ N, i ∈ N\T and cS − cS∪i > cT − cT∪i} (14.42)

21 See Driessen and Meinhardt (2010), Meinhardt (2002, 2013), Vives (Chapter 2 in this Handbook) and Zhao
(1999b) for reviews. In such cases, the nucleolus coincides with both the pre-kernel and kernel and thus satisfies
additional nice properties. See Meinhardt (2013, p. 32) for more discussion.

22 The linear model in Zhao (1999b) contains fixed costs and is given by a (3n + 1)-vector (a, c, d, z) ∈ R3n+1
+ ,

or p(�qj) = a − �qj, Ci(qi) = di + ciqi, qi ∈ [0, zi], with d = (d1, . . . , dn) as the vector of fixed costs and (a, c, z)
the same as in (14.34). Because fixed costs have no effects on convexity, this review sticks with (a, c, z) or assumes
d = 0.
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408 Handbook of game theory and industrial organization: theory

denote the set of coalitions whose marginal costs exhibit strict supermodularity.23 It is not
difficult to show that the game is convex if � = ∅ (see Theorem 2 in Zhao 1999b) . If
� �= ∅, for each (S, T, i) ∈ �, define

f (S, T, i) = c2
S − c2

S∪i − (c2
T − c2

T∪i)+ 2zi(cS − cT +�j∈T\Szj) (14.43)

+2[(cS − cS∪i)�j/∈S,j �=izj − (cT − cT∪i)�j/∈T ,j �=izj],

F(S, T, i) = f (S, T, i)/[2(cS − cS∪i − (cT − cT∪i))], and

ω = Min{F(S, T, i)|(S, T, i) ∈ �}. (14.44)

Under the conditions in (14.35), one has ω > 0 (see Lemma 5 in Zhao 1999b). Although
the economic meaning of ω is still not well understood, it nevertheless fully characterizes the
convexity.

Proposition 6 (Zhao 1999b, p. 195) Given (a, c, z) in (14.34) and ω in (14.44), assume
(14.35). Then, � in (14.9) is convex if and only if a ≤ ω.

Example 3 (Zhao 1999b) n = 3, (a, c, z) = (7, 4, 2.25, 2.25, 1.3, 1.3, 1.3). One has ω =
6.6907, v(1) = 0.04, v(2) = v(3) = 1.1556, v(12) = v(13) = v(23) = 2.9756, v(123) =
5.6406. By Proposition 6 and ω < a = 7, the game is not convex. Indeed, (14.41) fails for
S = 12, T = 13: v(S)+ v(T) = 5.9512 > v(S ∪ T) + v(S ∩ T) = 5.6806. Let a be decreased
to a = 6.65, all other parameters be unchanged, one has the same ω = 6.6907 and new
coalitional values: v(1) = 0.0006, v(2) = v(3) = 0.81, v(12) = v(13) = v(23) = 2.4026 and
v(123) = 4.84. By a = 6.65 < ω, the game is now convex. Indeed, one can verify that (14.41)
holds for all S and T.

Norde, Pham and Tijs (2002) extend the above results to mergers without weak synergy (or
without transferable technologies). They show that such oligopoly games are always convex.
Precisely, let πS(qS, z−S) = �k∈S[p(�j∈Sqj + �j/∈Szj) − ck]qk be the same as in model 6 in
(14.26), and a coalition’s payoff be given by

v(S) = vα(S) = vβ(S) = Max{πS(qS, z−S)|qk ∈ [0, zk], all k ∈ S}. (14.45)

Proposition 7 (Norde, Pham and Tijs 2002, p. 203) Given (a, c, z) in (14.34), let v(S) in �
in (14.9) be given in (14.45). Then � is convex.

Driessen and Meinhardt (2005) re-establish Proposition 7 using a new technique that has an
economic interpretation. This effective technique allows them to obtain more general convex
games with weak synergy without assuming interior solutions. This is summarized in the next
proposition:

Proposition 8 (Driessen and Meinhardt 2010, p. 330) Given (a, c, z) in (14.34), assume
part (iii) of A0.1, and let � and ω be defined as the special case of � and ω in (14.42–14.44)
when T = S ∪ j for all j /∈ T ∪ i. Then, � is convex if a ≤ ω.

23 A coalition’s marginal costs exhibit supermodularity if cS∪i −cS ≤ cT∪i −cT for S ⊂ T and i /∈ T. Thus,
(S, T, i) ∈ � in (14.42) implies strict supermodularity or cS∪i −cS < cT ∪i −cT .
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Lardon (2010) extends Propositions 1 and 7 to Bertrand competition and establishes this
result: in a symmetric linear Shubik model or in a symmetric model 5 in (14.23), the α-core
and β-core are identical and convex. Hou, Driessen and Lardon (2011) give further extensions
that similar results hold in an asymmetric Shubik model under reasonable assumptions.

3.3 Refinements of the Core

Refining the core in an oligopoly provides deeper understandings about monopoly stability
and helps search for the sufficient conditions of monopoly formation. Such refinements are
achieved in two steps: (1) As Lekeas (2013, p. 2) puts it, “Convert the oligopoly (or normal
form game) to a partition function game in Thrall and Lucas (1963) by computing the quasi-
hybrid solution (each coalition chooses an efficient solution, given others’ choices) for each
partition in Zhao (1991)”; and (2) study one of the core solutions defined in Definition 3 or
other core solutions for the converted partition function game (14.3).24

Conversions in the first step implicitly assume that the following simpler version of A4
holds for each partition:

A4.0 (Assumption 4.0) Given a partition� = {S1, S2, . . . , Sh}, A1 holds for each S ∈ �, and
A2 holds for each T /∈ � such that there are i �= j, T ∩ Si �= ∅ and T ∩ Sj �= ∅.

Because each coalition S ∈ � in (14.19) or (14.20) chooses an efficient solution, the same
as that under A4.0, the solutions in (14.19–14.20) have been called quasi-hybrid solutions
(Zhao 1991), as compared with hybrid solutions25 under A4 in which each S ∈ � chooses a
core solution. Such quasi-hybrid solutions are, as pointed out in Zhao (1991), the same as the
non-cooperative solution of Shapley (1956, 1959) for the following multi-objective game
(MOG):

�m = {H, Yj, vj}, (14.46)

where H = {1, . . . , h} =: {S1, S2, . . . , Sh} is the set of new players (i.e., new names for
coalitions in � = {S1, S2, . . . , Sh}), Yj = YSj = �i∈SjXi (in (14.2) or (14.30)) is j’s choice set,
and vj = vSj = {ui|i ∈ Sj} in (14.2) (or = {πi|i ∈ Sj} in (14.30)) is j’s vector payoff function.
Thus, the solutions in (14.19–14.20) should be cited either as a non-cooperative solution of
the MOG (14.46) or a quasi-hybrid solution for (14.2) and (14.30).26

Given a linear oligopoly in model 4 or 5 in (14.23) or model 9 or 10 in (14.26), the
inverse A−1 of A in (14.27) readily yields eight classes of postmerger equilibria (i.e.,
using model 4 or 5 with model 1 or 2, and model 9 or 10 with model 5 or 6) for each
partition � = {S1, S2, . . . , Sh}, and thus leads to eight partition function games, only one
of which (i.e., symmetric linear Cournot with no synergy or models 6 and 9) is well studied.

24 As already discussed in subsection 2.3, an exception is the leader–follower core or lf -core (Currarini and Marini
2003), see Proposition 20 at end of this subsection for an lf -core result.

25 See Allen (2000, p. 147), Diamantoudia and Xue (2007, p. 108) and McCain (2008) for discussion about the
significance and generality of hybrid solutions.

26 Chander and Tulkens (1997) study a class of normal form games. They gave such quasi-hybrid equilibria a
new name without citing Shapley (1956) or Zhao (1991). See Folmer and Mouche (1994) and Zhao (2018) for more
discussions about the connection between MOG and the solutions in (14.19–14.20).
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410 Handbook of game theory and industrial organization: theory

The following results are obvious and can be found in the discussions in Yong (2004) and
Zhao (1996, or 2013).

Lemma 4 Given �p in (14.3) for a symmetric (a, c, z) in (14.34), assume a > c and zi = z =
∞. Let C = Cα = Cβ be its core in (14.9), and Cγ , Cδ, Cα∗ and Ce be its γ -, δ-, α ∗- and
e-cores in Definition 3. Then, Cδ ⊆ Ce ⊆ Cγ ⊆ Cα∗ ⊆ C.

The first major refinement of the core in oligopoly games is Yong’s characterization of his
e-core given below:

Proposition 9 (Yong 2004, p. 10) Given �e in (14.14) for a symmetric (a, c, z) in (14.34),
assume a − c > 0 and zi = z = ∞. Then, (i) θ ∈ Ce = Core(�e) ⇐⇒ �θj = v(N ) and
θj ≥ v( j) ≡ v(1), all j; and (ii) Ce �= ∅ ⇐⇒ n ≤ 4.

Thus, in a standard symmetric linear Cournot oligopoly, the e-core and imputation set are
identical, monopoly can possibly be formed under efficient-belief with four or fewer firms,
and will not be formed under efficient-belief with five or more firms.

The next proposition is an extension to diseconomies of scale given by Ck(q) ≡ C(q) =
cq + dq2. By MC/AC = (c + 2dq)/(c + dq) > 1, average cost is increasing so there are
diseconomies of scale, and it is cheaper for a merger of m firms to produce a smaller quantity
�k∈Sqk/m at each of its m plants than to produce the sum �k∈Sqk at one large plant (i.e.,
CS(�k∈Sqk) = mC(�k∈Sqk/m) < C(�k∈Sqk)).

Proposition 10 (Yong 2004, pp. 21–24) Given p = a − �qj and Ck(q) = cq + dq2, all k,
assume part (iii) of A0.1 or πS(q) = p(�j∈Nqj)�k∈Sqk − CS(�k∈Sqk), S ∈ � for all �. Let

n0 = [5 + 5d − 2d2 + (1 + d)
√
(1 + 2d)(9 + 2d)]/[2(1 + 2d)]. Then, Ce �= ∅ ⇐⇒ n ≤ n0.

Below is another interesting and non-trivial extension in Yong (2004), which studies a
Bertrand-Shubik model with zero costs (i.e., model 5 in (14.23) with zero costs):

Proposition 11 (Yong 2004, p. 14) Given πS(p) = �k∈Spk[V − pk − γ (pk − p)], S ∈ �

for all �, let γ 0 = 2n[(n − 2)2 − 3 + (n − 2)
√
(n − 2)2 + 3]/[9(n − 1)]. Then, Ce �= ∅

⇐⇒ γ ≥ Max{0, γ 0}.

Yong (2004) shows that the conditions of Proposition 11 always hold if n ≤ 3. Readers can
find other extensions in Yong (2004) such as with capacity constraints. Proposition 11 appears
to imply the r-core result in Huang and Sjostrom (2003):27

Corollary 1 (Huang and Sjostrom 2003, p. 208) In the same oligopoly of Proposition 11,
r-core �= ∅ ⇐⇒ γ ≥ γ̂ (n), where for i = 1, . . . , 7, γ̂ (i) = Max{0, γ 0(i)}, γ̂ (8) = 19,
γ̂ (9) = 43.75, and γ̂ (n) = ∞, all n ≥ 10.

27 The concept of r-core in Huang and Sjostrom (2003) is confusing because it is not clear whether the cooperative
or the non-cooperative approach to cooperation is used. The relation of r-core with other cores is unknown because
none of the known α- or β-core results are cited in the paper. Based on the facts that γ 0(n) generates most of
the values of γ̂ (n), the author suspects that some values of γ̂ (n) in Huang and Sjostrom (2003) (i.e., some n ≥ 8)
are incorrect, and conjectures that the e-core and r-core are identical. The author thanks Giorgos Stamatopoulos for
bringing this issue to his attention.
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Lardon (2012) provides the second major contribution in refining the core:

Proposition 12 (Lardon 2012, p. 403) Let Cγ be the γ -core of (14.30). Assume p(�qj) is
decreasing and each πi(q) is continuous and concave. Then, Cγ �= ∅.

Thus, under the same conditions of Zhao (1999a) for a non-empty β-core in (14.30), γ -core
is also non-empty. This implies Rajan’s γ -core result with three or four firms (1989):

Corollary 2 (Rajan 1989, p. 871) Under the conditions of Proposition 12, Cγ �= ∅ if n = 3
or 4.

The results in Proposition 12 have been extended to coalitional interval games in which
the payoffs of each coalition are given by a closed interval (Lardon 2016). Below is another
interesting result in Lardon (2012):

Proposition 13 (Lardon 2012, p. 406) Given �γ in (14.11) for (14.34) with symmetric
c ∈ Rn+ and asymmetric z ∈ Rn++, assume part (iii) of A0.1. Let q0 be the premerger
equilibrium, πm = v(N ) the monopoly profit, and θj = v(N )q0

j /�q0
k, all j. Then, θ ∈ Cγ =

Core(�γ ).

Thus, in linear cases, proportional split of the monopoly profit by premerger market shares
is in the γ -core. This implies a symmetric γ -core result in Currarini and Marini (2015):

Corollary 3 (Currarini and Marini 2015, p. 11) In symmetric (a, c, z) with A0.1, equal split
of the monopoly profit is in the γ -core.

Currarini and Marini (2006) study a class of symmetric normal form games and provide
two γ -core results with applications in oligopoly models. The next two propositions are the
non-technical versions of their results. Readers are referred to their paper for the technical
assumptions and details.

Proposition 14 (Currarini and Marini 2006, Theorem 3.1, p. 119) Let Cγ be the γ -core
in a class of (14.2) in which Xi ≡ X ⊂ R, all i ∈ N. Then, Cγ �= ∅ if (i) the players are
symmetric and X is convex, and (ii) all ui(x) exhibit monotone externalities and increasing
differences.

This result seems to hold in classes of Bertrand oligopolies with strategic complementarity,
but such claims need to be verified in future studies.

Proposition 15 (Currarini and Marini 2006, Theorem 3.2, p. 122) Consider the same
model of Proposition 14. Then, Cγ �= ∅ if (i) the players are symmetric and X is convex,
and (ii) all ui(x) are strictly quasi-concave, satisfy contraction property, and exhibit monotone
externalities.

This proposition holds in standard linear Cournot models and thus implies the γ -core result
in Corollary 3.
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Watanabe and Matsubayashi (2013) study a differentiated linear Cournot model with three
or four firms and give a positive γ -core result. Chander (2014) studies the non-cooperative
foundation of γ -core in (14.2) and provides a γ -core result in oligopoly (14.30). His main
result, Theorem 7 in Chander (2014), appears to be identical to Proposition 12. It is not clear
at present whether concavity in profit functions can be removed while still maintaining a non-
empty γ -core in the oligopoly (14.30).

Zhao (2013) gives several δ-core results in a three-firm asymmetric linear Cournot
oligopoly, one of which is given in the next proposition.28 Note that complication arises once
asymmetry is allowed and many of the intuitions in symmetric models no longer hold. Given
(a, c, z) = (a, c1, c2, c3, z1, z2, z3) ∈ R7+, with c1 ≤ c2 ≤ c3 (so firm 1 is the most efficient, and
3 the least efficient), define

ε2 = (c2 − c1)/(a − c1), ε3 = (c3 − c1)/(a − c1), (14.47)

ω1(ε2) = [2 −
√

1 + 8ε2 − 20ε2
2]/4, (14.48)

where ε2 and ε3 represent the (relative) cost advantages of firm 1 over 2 and 3. The larger the
value of εi, the less efficient (or smaller) the firm i. Obviously, ε2 = ε3 = 0 is the symmetric
case, and it is easy to check that 0 ≤ ε2 ≤ ε3 ≤ 0.5 holds. These two intermediate parameters
simplify the original and impossible task of characterizing the δ-core in seven dimensions to
a manageable though still difficult task of characterizing the δ-core in only two dimensions.

Proposition 16 (Zhao 2013, p. 12) Given (a, c, z) ∈ R7+, assume parts (ii–iii) of A0.1, and let
ε2, ε3 and ω1(ε2) be given in (14.47–14.48). Then, (i) Cα∗ �= ∅, and (ii) Cδ �= ∅ ⇐⇒ ε3 ≥
ω1(ε2), and ε3 ≥ ω1(ε2) holds if ε2 ∈ [1/6, 1/2].

Thus, monopoly is always α ∗-stable or can possibly be formed under the α ∗-belief; it can
possibly (will not) be formed under the δ-belief if firms 2 and 3 are sufficiently small, e.g.,
ε3 ≥ ε2 ≥ 1/6 (sufficiently large, e.g., ε3 < ω1(ε2)). In particular, it will not be formed under
the δ-belief in symmetric case (i.e., ε3 = ε2 = 0). The next corollary shows that monopoly
is both δ-stable and socially optimal if there are large cost savings. Here, optimality is in the
sense of second best, which has the maximal welfare (= total profits + consumer surplus)
among the five partitions:

Corollary 4 (Zhao 2013, p. 12) If ε2 ≥ 5/22, monopoly is both δ-stable and optimal:

Currarini and Marini (2015) give a negative δ-core result in symmetric linear Cournot
oligopolies:

Proposition 17 (Currarini and Marini 2015, p. 12) In symmetric (a, c, z) in (14.34) with
z = ∞, Cδ = ∅.

This negative result is consistent with the symmetric case of Proposition 16.

28 Gabszewicz, Marini and Tarola (2016) give a δ-core result in vertically differentiated markets with n firms.
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Lekeas (2013) studies a differentiated symmetric linear Cournot oligopoly or a general
model 9 in (14.26) and provides existence results on the j-core:

Proposition 18 (Lekeas 2013, pp. 9–10) Let Cj be the j-core of (14.3) for a symmetric model
9 in (14.26) given by pk(q) = V̂ − qk − γ̂ �m �=kqm and Ck(qk) = cqk, all k. (i) Assume
γ̂ = 1 and j(s) ≥ 2(

√
n/s − 1), all s. Then, Cj �= ∅. (ii) Assume 0 < γ̂ < 1 and n ≥ 2.

Then, there exists j ∗ = j ∗(n, γ̂ ), 0 < j ∗ ≤ 1 such that for j(s) > j ∗, all s, Cj �= ∅.
(iii) Assume −1/(n − 1) < γ̂ < 0. Then, Cj �= ∅.

Thus, by part (iii), the j-core is always non-empty if goods are complements (γ̂ < 0) and if
the complementation parameter is small (|γ̂ | < 1/(n − 1)). If goods are substitutes (γ̂ > 0),
by parts (i–ii), a non-empty j-core requires that outsiders are divided into large number of
coalitions. This condition makes it hard to have a non-empty j-core because the belief function
j(s) is bounded from above by n − s. Note that the condition in part (ii) is originally stated as
j ∗ ≤ n − s, all s, in Theorem 1 in Lekeas (2013, p. 9), which has been simplified to j ∗ ≤ 1 in
the above proposition.

Lekeas and Stamatopoulos (2014) study a homogeneous Cournot model with Ck(qk) = cqk

and Q = 1 − pb, b > 0. In this case, the game �f in (14.16) is well defined. They consider a
reasonable belief f (s) = { fj(s)| j = 1, . . . , n − s} defined by the Sterling number of the second
kind (Lekeas and Stamatopoulos 2014, p. 258), and provide an f -core result in linear cases
(b = 1). However, due to the involved complexity, no f -core result is available in non-linear
cases (b �= 1).

Proposition 19 (Lekeas and Stamatopoulos 2014, p. 262) Let Cf be the f -core of (14.3) for
Q = 1 − p and Ck(qk) = cqk, all k, with the above f -belief. Then, Cf �= ∅ if n is sufficiently
large.

Finally, Currarini and Marini (2003) study the leader–follower belief and give an lf -core
result (called λ-core in Currarini and Marini, 2003, 2015) in symmetric linear Cournot
oligopolies. For each S �= N, let q−S(qS) = {qj| j ∈ N\S}, qj ∈ ArgMax{πj(qj, q−j)|qj ≥ 0},
all j ∈ N\S, be the followers’ reaction function, and q ∗

S ∈ ArgMax{�i∈Sπi(qS, q−S(qS))|
qS ≥ 0} be the leaders’ optimal choices. Then, the leaders’ payoff and the lf -coalitional game
are vlf (S) = �i∈Sπi(q ∗

S , q−S(q ∗
S )) and �lf = {N, vlf (·)}.

Proposition 20 (Currarini and Marini 2003) Let Clf be the core of �lf for a symmetric
(14.34). Then, Clf �= ∅ and equal split is its unique core vector.

It follows from Lemma 4 and Propositions 13 and 20 that Clf ⊆ Cγ ⊆ Cα∗ ⊆ C =
Cα = Cβ hold in symmetric linear Cournot oligopolies.29 It remains to be seen if new non-
trivial inclusion results among the above seven core refinements (i.e., Cα∗, Cγ , Ce, Cδ , Cj, Cf

and Clf ) can be found in future research.

29 Currarini and Marini (2004) provide related existence results on the lf -core and the γ -core, Driessen, Hou and
Lardon (2011) also provide a related lf -core result. See Currarini and Marini (2015, pp. 13–14) for more discussion
about the lf -core.
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3.4 Extensions

This subsection lists seven areas for future research or extensions of the earlier core results:

1. Extend the special cases in Propositions 1–20 in the previous two subsections to more
general cases of model 9 and then extend these core results in standard Cournot models to
the remaining nine models or precisely to models 1–5 in (14.23) and models 6–8 and 10 in
(14.26). This includes the core and its seven refinements in the multi-products or multi-
markets in Grossmann (2007), Kao and Menezes (2009), Lapan and Hennessy (2006),
Wang and Zhao (2010) and Zhang and Zhang (1996).

2. Extend the reviewed results to mixed oligopolies. Kamaga and Nakamura (2007) provide
a core result in a three-firm mixed Cournot oligopoly with linear demand and quadratic
costs, but it is not clear what their core is because none of the known α-, β-, γ - and δ-core
results are cited in their paper.

3. Extend the reviewed results to oligopolies with indivisibility (OI, this simplifies oligopoly
market with indivisibility or OMI in Zhao 2000), which are small markets for indivisible
or discrete goods (such as superstars in sports and ocean shipping with a small number
of large orders) where a one-unit change in demand or supply will have a non-negligible
effect on equilibrium. Motivated by Telser’s flight game (Telser 1994; see Example 4
below), Zhao (2000) models a m-buyer n-seller OI as

OI = {A, B; Ci(xi), [0, zi], pα}, (14.49)

where A = {1, . . . , n} is the set of firms or sellers, B = {1, . . . , m} is the set of buyers;
Ci(xi), xi ∈ [0, zi], with zi > 0 as capacity, is the cost function of each firm i ∈ A, and
pα ≥ 0 is the reservation price of each buyer α ∈ B for one unit of the homogeneous good.
This differs from (14.30) only in that both xi and zi are integers and the inverse demand
is replaced by a vector of reservation prices p ∈ Rm+. A coalitional game �c = {N, v(·)},
N = A ∪ B, can be defined by computing the profit v(S) for each S = {TA, TB} ⊆{A, B},
with TA ⊆ A and TB ⊆ B.30

Let a linear cost be given by Ci(xi) = bi if xi = 0; = di+cixi if xi = 1, · · · , zi; and = ∞
if xi > zi, where di and ci are the fixed and marginal costs, bi � 0 is the opportunity cost if
bi < 0, the sunk cost if bi = di, and it makes di an avoidable cost if bi = 0. Such OI with
linear costs can be defined by a (4n + m)-vector {b, c, d, z, p}∈ Rn × R2n+ × Rn++ × Rm+,
with p, z, d, c and b as the vectors of reservation prices, capacities, fixed, marginal and
opportunity costs, respectively. In OI with only opportunity cost (i.e., c = d = 0), (14.49)
is reduced to a (2n + m)-vector {b, z, p}∈ Rn+ × Rn++ × Rm+. Telser’s flight game is a two-
seller three-buyer OI with only opportunity cost given here.

Example 4 (Flight game, Telser 1994) {b, z, p} = {(85, 150), (2, 3), (70, 60, 55)}. There are
three passengers whose reservation prices for a trip are $70, $60 and $55, respectively, and
there are two private jets (or cabs), one with an opportunity cost b1 = $85 and capacity
z1 = 2, and the other with b2 = 150 and z2 = 3.

30 See Zhao (2000, pp. 184–186) for details. Note that A and B have been switched from those in Zhao (2000) to
emphasize that B is the set of buyers.
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Proposition 21 (Zhao 2000, p. 191) Given {b, z, p} = {(b1, b2), (z1, z2), (p1, p2, p3)}, with
b1< b2 and p1 ≥ p2 ≥ p3. Under usual conditions, the core is empty ⇐⇒ 3b1/2 < b2 < 3p3.

By 3b1/2 = 127.5 < b2 = 150 < 3p3 = 165, the core is empty in Example 4. Bejan and
Gómez (2009) provide a non-core solution or core extension for such empty core games.

4. Extend the reviewed results to uncertainty and asymmetric information along the lines
line of Allen (2006), Currarini and Feri (Chapter 18 in this Handbook), Wilson (1978)
and Yannelis (2005).

5. Extend the reviewed results to dynamic games as surveyed in Bischi, Lamantia and Radi
(Chapter 12 in this Handbook) and Long (2010).

6. Study the external stability (called comparative statics in economics) of the core such
as its upper semi-continuity (u.s.c) and lower semi-continuity (l.s.c). Applying the l.s.c
condition for an optimal set (Zhao 1997) to mnbp in (14.5) should lead to non-trivial
results, which could shed light on studying merger contracts under uncertainty. This
should not be confused with internal stability caused by coalitional deviations.

7. Connect the above core results to the huge literature on the non-cooperative approach to
coalition formation (Bloch 1997; Currarini and Marini 2006, 2015; Ray and Vohra 1997,
2015). Some of the stable monopolies formed in such studies appear to be a refinement
of the core (= α-core = β-core), but this is not totally clear and needs to be verified in
future studies, because the known α- or β-core results and connections to the partition
function game (14.3) via the MOG (14.46) or quasi-hybrid solution have not been cited
in such studies. If it is verified as a core refinement, these results form a new refinement
of the core.

4 STABLE PARTITIONS AS CANDIDATES OF NON-MONOPOLY
SOLUTIONS

There are no published and only two unpublished studies on the stability of a general non-
monopoly partition. The main ideas in the author’s 20-year-old working paper (Zhao 1996)
are surprisingly still new. Only the basic idea in this old paper and one result in (Zhao 2013)
are reviewed here.

Given a non-monopoly partition � = {S1, S2, . . . , Sh} �= {N} in (14.30), any notion of its
stability must have two basic elements: an unprofitable monopoly merger caused by merging
costs, and a payoff vector θ = θ(�) = {θS| S ∈ �} ∈ Rn+ satisfying �j∈Sθj = φS(�) for
each S ∈ �, where φS(�) is given in (14.3) for (14.30). Thus, this section assumes that for
each � �= {N}, �S∈�φS(�) > v(N ) = (πm − mmc) with some positive monopoly merging
cost mmc > 0. The concept of hybrid solution with a distribution rule (HSDR in Zhao 1996
or Zhao 1999a) was introduced to define the other basic element.

Let D = {core, equal surplus split, nucleolus, proportional split, Shapley value} be the set
of five solutions, which are restricted to (14.30) and exclude other solutions whose general
existences are either unknown or too involved. A distribution rule (DR) for the given �
specifies a solution DR(S) ∈ D for each S ∈ �.
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Definition 5 (Zhao 1996, 1999a) Given a partition � �= {N} and its DR in an oligopoly
(14.30), its hybrid solution with a distribution rule or HSDR is a pair (q ∗, θ) such that q ∗ is
the solution of (14.20) and for each S ∈ �, θS is its solution defined by DR(S).

Keep in mind that θS or DR(S) solves the parametric normal form game

�S = �S(q
∗
−S) = {S, Xi,πi(qS, q ∗

−S)} (14.50)

for each S ∈ �, where Xi = [0, zi], πi(qS, q ∗
−S) = p(�j∈Sqj +�j/∈Sq ∗

j )qi − Ci(qi), i ∈ S, and
q ∗ = {q ∗

S | S ∈ �} is the quasi-hybrid solution or postmerger equilibrium in (14.20). Such
HSDR can be called the merger contracts for�, which extends the monopoly merger contract
(N, q, θ) to a partition contract (�, q ∗, θ), specifying that each merger S ∈ � distribute its
profits by a solution DR(S) ∈ D.

Now, given a partition contract (�, q ∗, θ) for � �= {N}, consider the possible deviation by
a coalition S /∈ �, S �= N. S has incentives to move to a new partition �′ = {S, T1, . . . , Tm} ∈
�(S) in (14.10) if its payoff at the new partition is higher than the sum of its members’ current
payoffs or if φS(�

′) > �j∈Sθj, with φS(�
′) given in (14.3) for (14.30). A stable contract

(�, q ∗, θ) should rule out all such deviations.
Note that most stable partitions identified in the non-cooperative approach require symme-

try, and some of them (such as the equilibrium-binding agreement in Ray and Vohra 1997)
only rule out a small set of possible coalitional deviations; such stable partitions are thus
very weak and are not really stable. This is the reason why they have been excluded here as
candidates of non-monopoly solutions.

For simplicity, only the γ -, δ-, α ∗- and e-deviations are evaluated here. The new partitions
�α∗ = �α∗(S) = {S, Tα∗

1 , . . . , Tα∗
m(α∗)} and �e = �e(S) = {S, Te

1, . . . , Te
m(e)} are the same

as in (14.13–14.14), due to their independency of the current �. The new partitions �γ =
�γ (S,�) and �δ = �δ(S,�) under γ - and δ-beliefs are given by

�γ = �γ (S,�) = {S, Tγ1 , . . . , Tγm(γ )} ∈ �(S), and (14.51)

�δ = �δ(S,�) = {S, Tδ1 , . . . , Tδm(δ)} ∈ �(S), (14.52)

where for each i = 1, . . . , m(γ ), Tγi = T for each T ∈ � with S ∩ T = ∅, = { j} for each
j ∈ T\S and each T ∈ � with S ∩ T �= ∅; and for each i = 1, . . . , m(δ), Tδi = T\S = { j| j ∈
T, j /∈ S} for each T ∈ �. As an example, for � = {1, 2345, 67} and S = {1, 2}, one has
�γ = {12, 3, 4, 5, 67} and �δ = {12, 345, 67}.

Definition 6 (Zhao 1996) A partition contract (�, q ∗, θ) for � �= {N} or � with θ(�) is
γ -stable (δ-, α ∗- and e-stable) if for all S /∈ �, �j∈Sθj ≥ φS(�γ ) (≥ φS(�δ), ≥ φS(�α∗)
and ≥ φS(�e)), where �α∗ and �e are given in (14.13–14.14), �γ and �δ are given in
(14.51–14.52).

Let the mnbp under the above four notions of stability be given by

mnbpk = {Min�n
i=1xi|x ≥ 0,�i∈Sxi ≥ φS(�k), all S /∈ �, S �= N} (14.53)
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for k = γ , δ, α ∗and e, and let the optimal set or the set of minimal solutions in (14.53) be
given, respectively, by

Yγ (�), Yδ(�), Yα∗(�) and Ye(�). (14.54)

Then, the stability of � �= {N} with θ(�) is fully characterized by (14.54) or (14.53).

Proposition 22 (Zhao 1996) Given a partition contract (�, q ∗, θ) for � �= {N} in (14.30),
assume v(N ) = (πm − mmc) < �n

i=1θi. Then, for k = γ , δ, α ∗and e, � with θ is k-stable ⇔
θ ∈ Yk(�)+, where Yk(�) is given in (14.54) and Yk(�)+ = {x + y|x ∈ Yk(�), y ∈ Rn+}.

If players are allowed to freely redistribute θ in (�, q ∗, θ) among the n players, the above
conclusions can be simplified as � �= {N} is k-stable if and only if for k = γ , δ, α ∗and e,
�θi = �S∈�φS(�) ≥ mnbpk, which is given in (14.53).

The next proposition concludes this section with a δ-stable non-monopoly partition in a
three-firm asymmetric linear Cournot oligopoly by applying Proposition 22.

Given (a, c, z) ∈ R7+ and�1 ={1, 23},�2 ={2, 13},�3 ={3, 12}, one can verify that their
γ -, δ- and α ∗-stabilities are identical, so there is no need to make such distinction here. The
outsider’s or the single firm’s profit at each �k (k = 1, 2, 3) is

φ1(�1) = (a − c1)
2(1 + ε2)

2/9,

φ2(�2) = (a − c1)
2(1 − 2ε2)

2/9, (14.55)

φ3(�3) = (a − c1)
2(1 − 2ε3)

2/9,

where ε2 and ε3 are given in (14.47). The merger’s gain in each �k is:

d23 = φ23(�1)− (π0
2 + π0

3 ),

d13 = φ13(�2)− (π0
1 + π0

3 ), (14.56)

d12 = φ12(�3)− (π0
1 + π0

2 ),

where π0
i is i’s premerger profit, and φS(�) is the postmerger profit in (14.3) for (14.34). For

S = 12, 13, and 23, let the efficient member’s share of the above gains be t ∈ [0, 1]. Then, the
three-dimensional payoff vector θ(�k) = θ(t) ∈ R3+ for k = 1, 2, 3, respectively, is

for �1, θ1 = φ1(�1), θ2 = π0
2 + td23, θ3 = π0

3 + (1 − t)d23,

for �2, θ1 = π0
1 + td13, θ2 = φ2(�2), θ3 = π0

3 + (1 − t)d13, and (14.57)

for �3, θ1 = π0
1 + td12, θ2 = π0

2 + (1 − t)d12, θ3 = φ3(�3).

Proposition 23 (Zhao 2013, p. 16) Given (a, c, z) ∈ R7+, suppose �3
i=1θi > (πm − mmc),

dS > 0 for S = 12, 13 and 23, and assume parts (ii–iii) of A0.1. Then, the following three
claims hold:

(i) �1 with θ(t) is stable (i.e., δ- or γ - or α ∗- stable) ⇐⇒ ε3 ≤ μ1(ε2, t); ε3 ≤ μ1(ε2, t)
if 0 ≤ ε2 ≤ 1/11, and ε3 > μ1(ε2, t) if 113/316 < ε2 ≤ 1/2.
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(ii) �2 with θ(t) is stable ⇐⇒ ε3 ≤ μ2(ε2, t); ε3 ≤ μ2(ε2, t) if 0 ≤ ε2 ≤ 1/11, and
ε3 > μ2(ε2, t) if e2(t) < ε2 ≤ 1/2, where e2(t) = (2t − 9)/[14(2t − 3)].

(iii) �3 with θ(t) is stable ⇐⇒ ε2 ≤ μ3(ε3, t), which holds if 0 ≤ ε3 ≤ 3/14.

The details of μ1(ε2, t) and μ2(ε2, t) (note μ3(ε3, t) = μ2(ε3, t)) can be found in
(A27–A29) in Zhao (2013). Although such results appear to be technical, they have intuitive
interpretations. Consider, for example, part (i) or the stability of �1 ={1, 23}. Observe first
that �0 = {1, 2, 3} and �m = {123} are ruled out by the assumptions and �2 ={2, 13} has
the same postmerger profits of �1; thus, one only needs to evaluate the deviation by S = 12
in �3. Because a larger share t by firm 2 or a smaller ε3 makes the merger of S = 12 less
profitable,�1 with θ(t) will be stable with a smaller ε3 or a larger t (i.e., ε3 ≤ μ2(ε2, t), which
is increasing in t).

5 EMPIRICAL STUDIES OF THE CORE

Early empirical studies of the core include Bittlingmayer (1982), Sjostrom (1989), Pirrong
(1992), and McWilliams and Keith (1994). Reading these papers, it is clear that the authors
had an intuitive understanding of the core for which there was no precise model and that
their intuition was based on the empty-core examples in their and other early studies such
as Faulhaber (1975), Shapley and Shubik (1969) and Telser (1978, 1994). They understood
that the core theory assumes A3 and that the empty-core was caused by economies of
scale in Addyston Pipe (Bittlingmayer 1982), or by low demand plus indivisible supply or
avoidable cost in Ocean Shipping Conferences (Pirrong 1992, Sjostrom 1989) and Trust
Industries (McWilliams and Keith 1994); they equated empty-core to market failure or ruinous
competition.

The core in these studies involves a small number of sellers and buyers (similar to the
oligopoly with indivisibility in (14.49)), so it is different from the core in oligopolies as
defined earlier. The documented evidences on the sellers’ arrangements were interpreted as a
solution for the empty-core to avoid cut-throat competition. However, these same evidences
on sellers’ arrangements might be interpreted alternatively as supports for a non-empty
core in games involving only the sellers. The author believes that a non-empty core of
the sellers can be established by revisiting the evidences of Joint Traffic in Addyston Pipe
(Bittlingmayer 1982), prices and quotas in Ocean Shipping (Pirrong 1992, Sjostrom 1989)
and share allocations in Trusts (McWilliams and Keith 1994).

Recent applications of the core in Propositions 2–5 include liner shipping alliances (Shi and
Voss 2011, Yang, Liu and Shi 2011), insurance (Stoyanova and Gruendl 2014) and sugar
monopoly (Zhao 2009b). Stoyanova and Gruendl (2014) study the EU legislation called
Solvency II, which replaced 13 old EU insurance directives on January 1, 2016. Their
conclusion is that Directive Solvency II will reduce merging costs and drive more mergers
and acquisitions in the EU insurance industry.

Zhao (2009b) applies Proposition 5 to the 1887–1914 sugar monopoly (Eichner 1969,
Genesove and Mullin 1998, and Wang 2008), which replaced the 1882–87 Sugar Trust
(McWilliams and Keith 1994). The monopoly consolidated 18 refineries in 1887, with an
excess capacity rate of about 20 percent; it dissolved into 12 refineries in 1914, with a near
full capacity. Using n = 18, τ = 0.20, and the estimated linear model in Genesove and
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Mullin (1998), the estimated monopoly merging costs are at most 35 percent of pre-merger
total profits at its formation in 1887. Using n = 12 and τ = 0, the estimated monopoly’s
organizational costs (i.e., the costs of keeping monopoly and avoiding dissolution) are at least
252 percent of post-dissolution total profit at its dissolution in 1914. These results provide
a new understanding of the formation and dissolution of the sugar monopoly: it was formed
in 1887 because its merging cost was sufficiently low, and it was dissolved in 1914 because
enforcing the Sherman Act increased its organizational costs to a level that was too high to be
operational. Zhao (2009b) also reports similar results using linear demand and quadratic costs.

6 CONCLUSION AND FUTURE STUDY

The process from early division of labor or specialization to modern industrial organization is
long and dates back at least 170,000 years.31 Such a long process in human history is powered
and pulled forward by its two indisputable driving horses or driving wheels called competition
and cooperation.

The previous literature in industrial organization has largely focused on competition or the
application of non-cooperative game theory, with the exception of a small group of scholars
whose works on industrial cooperation have been reviewed with some details in this survey.
Readers are encouraged to extend the surveyed results to more general and more realistic
models. In addition to the seven extensions listed in subsection 3.4, applied scholars are
encouraged to extend the few empirical core studies to all industries or sectors with merger
activities or joint ventures, and theoretically minded scholars are encouraged to extend the
existing core results to non-monopoly partitions.
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15. Trading under asymmetric information: Positive
and normative implications
Andrea Attar and Claude d’Aspremont

1 INTRODUCTION

Trading under asymmetric information involves traders (buyers and sellers) some (or all) of
whom have private information about characteristics that influence their utilities and their
beliefs and that are relevant if trading is to be mutually beneficial. However, the terms of
trade being fixed through some market institution (with or without public intervention), some
traders might have an interest in hiding or distorting their private information. Such behaviors
might affect the equilibrium allocation, its existence and its efficiency.

The incentive problems above were traditionally linked to collective issues in public
expenditure and taxation theory (Samuelson, 1969, Mirrlees, 1971), but, as made clear in the
pioneering contributions of Vickrey (1961) and Hurwicz (1973), these issues arise whenever
economic decisions are reached through some decentralized process, even when goods are
purely private.

The early research on auctions by Vickrey (1961) and others (e.g. Griesmer, Levitan and
Shubik, 1967, and Wilson, 1967) was particularly instructive in this regard. Auction theory
uses (without saying) the Bayesian equilibrium concept (formalized by Harsanyi, 1967,
1968) where strategies are functions of the player’s type, and auction design has become a
major application of mechanism design (Myerson, 1981). First-best efficiency is replaced by
constrained (or second-best) efficiency and, in the case of one seller, an optimal auction is
one for which a Bayesian equilibrium exists and maximizes the seller’s expected utility. The
non-informed seller acts as a principal (and mechanism designer) and the buyers as agents.

Akerlof (1970) was among the first to point out the potentially dramatic implications
of incomplete information in competitive markets. His example features a number of non-
informed buyers who compete to attract sellers who are informed about the quality of the
product (used cars). Sellers with high-quality cars tend to withdraw from the market and at
the (competitive) equilibrium price only the “lemons” (or even no car) get traded. Yet, little
attention is given to the role of incentive mechanisms to elicit information revelation and
(potentially) unfreeze the market. Indeed, in the original Akerlof (1970) example, buyers are
restricted to posting linear prices, in the spirit of competitive equilibrium theory. The need for
a more explicit representation of agents’ strategic behaviors gave rise to two independent lines
of research. The first one, acknowledged as “signaling,” develops the analysis of extensive
form games in which the informed agents move first. This line of research was initiated by
Spence (1973) who introduced the possibility for informed sellers to “signal” the quality
of their product (labor) by taking a costly action (education).1 The second one is usually

1 The possibility of signaling has triggered a lot of game-theoretical research to deal with the multiplicity of
equilibria due to the possibility of unanticipated action by the first movers: e.g. Kreps and Wilson (1982), Cho and
Kreps (1987), Kohlberg and Mertens (1986).
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referred to as competitive “screening.” This amounts to considering games in which several
players have the power to design contracts to attract privately informed agents. On those
lines, Rothschild and Stiglitz (1976) were the first to model a non-cooperative game between
uninformed insurance companies, acting as principals, and offering exclusive contracts to a
buyer who knows her own risk type and chooses the contract that is best for her.

The purpose of this chapter is to pursue this second line of research. In this respect, we do
not aim to revisit the original approaches to screening, nor to propose an exhaustive survey.2

We rather start from the remark that situations in which competitors post mechanisms instead
of prices are prominent in several modern markets. Examples include: competitive insurance,
competing auctions, financial markets (over-the-counter [OTC] markets, interbank market),
etc. In some of these markets, the posted mechanisms potentially involve some degree of
reciprocity (meet the competition clause) and exclusivity of contractual relationships is not
enforceable. A typical example is given by OTC markets where little information on trading
volumes is available.3

We choose to focus on some selected contributions in the screening approach that may
contribute to our understanding of the institutional features described above. As in Rothschild
and Stiglitz (1976), we consider settings in which market equilibria may or may not exist and
second-best optimality is not guaranteed, depending very much on the specific extensive form
and on the contracting assumptions involved.

In this respect, observe that we will only consider optimality and constrained optimality
in the typology defined by Holmstrom and Myerson (1983). For instance we will stick to ex
post optimal mechanisms in the classical sense of leading to a Pareto-optimal allocation at
every state of nature without taking into account the information derived from observing this
allocation (i.e. we do not deal with the Forges’ 1994 notion of posterior efficiency). Also, we
will not review the Walrasian approaches to markets under incomplete information as modeled
in Prescott and Townsend (1984).4

Specifically, this chapter is divided into two parts. In the first part (Section 2), we adopt
the simple mechanism design approach with only one “mechanism designer.” When the
mechanism designer is an outsider (say a public authority), all traders may have private
information and play simultaneously. When the mechanism designer is an insider (a principal,
buyer or seller), then he is uninformed and has no private information. Three illustrative
applications are introduced: bilateral trade, auctions and insurance. In the second part
(Section 3), the model is extended to several principals who are uninformed and have no
private information, but compete by designing mechanisms.

2 THE MECHANISM DESIGN APPROACH

Our first approach to trading rules under incomplete information is based on mechanism
design. The focus will be on efficiency and incentive efficiency (Holmstrom and Myerson,
1983). Participation constraints will also be taken into account.

2 Riley (2001) provides an excellent retrospective of signaling and screening models.
3 Other examples include the US credit card industry (Rysman, 2007), the US life insurance market (Philipson

and Cawley, 1999), and the UK annuity market (Finkelstein and Poterba (2002, 2004).
4 As shown by Rustichini and Siconolfi (2008) such an approach works well if types are publicly known but not

under adverse selection. Then prices have to depend on types and to be incentive compatible: each type of consumer
should want to buy in the market at the corresponding price.
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2.1 A Trading Mechanism

We consider the following scenario. There is a set I of agents, who are trading: I =
{1, · · · , i, · · · , I }. They are buyers and sellers. The characteristic, or type θ i, of a trader
i ∈ I, takes values in a set � i. We denote � = ×

i∈N
� i the set of all states of nature (and

�−i = ×
i �=j
� j). In this section, we suppose that there is a single principal (the mechanism

designer), who may or may not be an outsider (a planner). An allocation is a vector x =
(x1, · · · , x i, · · · , x I) in some set X, the set of feasible allocations. Each trader i may decide
to participate, by taking the decision a i = Y (yes), or not to participate and take the decison
a i = N (no). The utility for trader i ∈ I is given by the real-valued function u i(x, a; θ),
defined on the set X × {Y, N }�I × �. We assume that the utility of a trader i, when not
participating, u i(x, N, a−i; θ) is given by the utility u i

0

(
θ i
)

of some outside option and, without
loss of generality, we suppose u i

0

(
θ i
) ≡ 0. Observe that, otherwise, the utility of each trader,

as defined, might be affected by the types of all others (common value or interdependent
values). A particular case, the private value case, is when u i(x, a; θ) ≡ v i(x, a; θ i). Each
agent i ∈ N knows her true type θ i ∈ � i and we assume that there is a distribution F on
the random variable θ , which is common knowledge (beliefs F(θ−i | θ i) are consistent).
Beliefs are free if F(θ−i | θ i) = F(θ−i | θ ′i), ∀ i ∈ N , ∀ θ i, θ ′i ∈ � i (the so-called
independent case).

The principal is supposed to choose a trading mechanism in some set �. A mechanism
is a pair (M, γ ) with M = ×

i∈I
M i, each M i being the set of messages available to trader

i, together with a function γ : M × {Y, N }�I → X. Given a mechanism, each trader
i ∈ I sends a message m i to the principal and chooses a decision a i ∈ {Y, N }. For
m = (m1, · · · , m I) ∈ M and a ∈ {Y, N }�I , the allocation γ (m, a) ∈ X is the resulting
allocation. A trading mechanism determines a game with incomplete information. A Bayesian
equilibrium is a vector of strategies (m̃, ã) = (m̃i, ãi)i∈I where, for every i ∈ I, m̃ i is a
measurable function from� i into M i and ã i a measurable function from� i into {Y, N } such
that: ∀ i ∈ I, ∀θ i ∈ � i, ∀ m i ∈ M i, ∀ a i ∈ {Y, N },
∫

�−i

(
u i(γ (m̃(θ), ã (θ)), ã (θ) ; θ)

)
dF
(
θ−i | θ i)

≥
∫

�−i

(
u i(γ (m i, m̃−i(θ−i), a i, ã−i(θ−i)), a i, ã−i(θ−i); θ)

)
dF
(
θ−i | θ i) .

In addition, this equilibrium should ensure participation, that is: ã i (θ) = Y, ∀ i ∈ I,
∀ θ ∈ �.

Now, by the revelation principle, we can as well consider the associated direct trading
mechanism (�, γ̃ ) such that γ̃ (θ) ≡ γ (m̃(θ), ã (θ)) where ã i (θ) = Y, ∀ i ∈ I, ∀ θ ∈
�, and where the vector of strategies θ̃ = (θ̃1, θ̃ 2, · · · , θ̃ i, · · · , θ̃ I) of reporting truthfully
its type for each i, i.e. θ̃ i

(
θ i
) = θ i, is a Bayesian equilibrium in the associated game of

incomplete information. For simplicity of notation we let, for all x ∈ X and θ ∈ �, U i (x; θ) ≡
u i (x, Y; θ).

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

428 Handbook of game theory and industrial organization: theory

The mechanism (�, γ̃ ) then satisfies Bayesian incentive compatibility (BIC):5 for all θ i ∈
� i, θ ′i ∈ � i and i ∈ N ,

∫

�−i

[
U i (γ̃ (θ) ; θ)

]
dF(θ−i | θ i) ≥

∫

�−i

[
U i (γ̃ (θ ′i, θ−i) ; θ i, θ−i)] dF(θ−i | θ i),

as well as interim individual rationality (IIR):

∫

�−i

[
U i (γ̃ (θ) ; θ)

]
dF(θ−i | θ i) ≥ 0,

for all θ i ∈ � i and all i ∈ N .
When the principal is an outsider, say a public decision maker, her objective function

might be chosen so that some efficiency property be satisfied. For example, following
Holmstrom and Myerson (1983), we may define the following social welfare function on
direct mechanisms

W(γ̃ ) =
∑

i

∫

�

μ i (θ)
[
U i (γ̃ (θ) ; θ)

]
dF(θ−i | θ i),

with every weight μ i (θ) non-negative and some strictly positive. Maximizing W on the set of
direct mechanisms leads to ex post (Pareto) efficiency. If, for every i ∈ I, μ i (θ) = μ i

(
θ i
)
,

then we get the stronger property of interim efficiency, and if for every i ∈ I, μ i (θ) = μ i,
then we get the even stronger property of ex ante efficiency. If the maximization is only done
over the subset of BIC direct mechanisms, we get, respectively, the properties of ex post,
interim and ex ante incentive efficiency.

Example 1: The Quasi-linear Case Suppose that X ⊂ R
(K+1)I is the set of the feasible

allocations of a finite number K of goods and of the corresponding monetary transfers. An
element (q, t) ∈ X is such that q = (

q1, . . . , q i, . . . , q I
) ∈ R

KI and t = (
t1, . . . , t i, . . . , t I

) ∈
R

I . Each trader utility function u i is assumed to be separable and transferable in money and
can be written as u i (q, a; θ) + t i (resp. U i (q; θ) + t i). In that case a trading mechanism is
a triple (M,χ , τ) where χ : M → X is called the allocation rule and τ : M → R

N is
the payment scheme. The direct trading mechanism associated with the Bayesian equilibrium
(m̃(θ), ã (θ)) is the triple (�, q, t) where q is the allocation rule q (θ) ≡ χ (m̃(θ), ã (θ)) and t
is the payment scheme such that t i (θ) ≡ τ i(m̃(θ), ã (θ)).

The allocation rule q is said to be (ex post) efficient (EF) if, for all q ∈ Q and all θ ∈ �,

∑
i∈N

U i(q(θ); θ) ≥
∑
i∈N

U i(q; θ),

5 Bayesian incentive compatibility (BIC) is the terminology used in d’Aspremont and Gérard-Varet (1979a) (see
also Myerson, 1982). In the following, when we say incentive compatible it will mean BIC.

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

Trading under asymmetric information 429

The payment scheme t is budget-balancing (BB), if for all θ ∈ �,

∑
i∈I

t i(θ) = 0.

These two properties taken together imply that the allocation resulting from the mechanism is
Pareto optimal. In the private value case, a most well-known ex post efficient mechanism is
the Vickrey-Clarke-Groves (VCG; Vickrey, 1961, Clarke, 1971, Groves, 1973) mechanism.
Take any ex post efficient allocation rule q∗ and define the payment scheme

tiVCG (θ) =
∑
j �=i

U j(q∗(θ); θ i)+ h i (θ−i) ,

where h i
(
θ−i

)
is any function independent of θ i. Because q∗ is efficient, agents report

truthfully their types (individual and collective objectives coincide) whatever their beliefs.
It is a dominant strategy. Choosing high enough h is ensures interim individual rationality.
The problem is that budget balance is generally not achievable. If

∑
i∈I

t i
VCG (θ) > 0 (resp.

∑
i∈I

t i
VCG (θ) < 0) for some θ ∈ �, then the mechanism runs a deficit (resp. a surplus).

Example 2: The Private Value Linear Case A subcase (extensively used in applications) is
to assume linear utilities and private values and that, for every i, θi ∈ �i = [

θ i
0 , θ i

1

]
, a non-

degenerate interval in R, and that i’s beliefs are free and represented by a continuous density
function f i

(
θ−i

)
with full support. The utility U i of trader i (assuming participation) is now

of the form U i (q) θ i + t i. A well-known result,6 characterizing BIC mechanisms, is given by
the following lemma:

Lemma 1 A direct trading mechanism (�, q, t) is BIC if and only if

U
i (
θ i) θ i + ti

(
θ i) = U

i (
θ i

0

)
θ i

0 + t i (
θ i

0

)+
∫ θ i

θ i
0

U
i (
θ̂ i) dθ̂ i,

where t i (
θ i
) ≡ ∫

�−i t i
(
θ i, θ−i

)
f i
(
θ−i

)
dθ−i and with U

i (
θ i
) ≡ ∫

�−i U i
(
q
(
θ i, θ−i

))

f i
(
θ−i

)
dθ−i a non-decreasing function, since by BIC, U

i (
θ i
)
θ i+t i (

θ i
)

is a convex (almost

everywhere differentiable) function and its derivative is equal to U
i (
θ i
)
.

2.2 Applications

To illustrate this general model, we turn now to three applications.

6 This is due to Myerson (1981) and Riley and Samuelson (1981). A characterization under efficiency is given in
d’Aspremont and Gérard-Varet (1979b).

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

430 Handbook of game theory and industrial organization: theory

2.2.1 Bilateral trade
If we consider the situation where one seller tries to sell an object to several potential buyers,
we can further specify Example 2 by assuming (i) that trader 1 is the seller, all other traders
being potential buyers, (ii) that an allocation q = (

q1, q 2, . . . , q I
) ∈ Q determines the

probability q i ≥ 0 that trader i will get (or keep) the object (with
∑
i∈I

q i = 1), and (iii)

that the utility function is simply U i (q; θ) = q iθ i.
For this context, we can adopt the following specification of the functions h is in the

definition of the VCG mechanism (see Krishna, 2010), for some efficient trading rule q∗,

h i (θ−i) ≡ −
∑
j �=i

q∗j (θ i
0 , θ−i) θ j − q∗i (θ i

0 , θ−i) θ i
0 .

Denote VCG0 the VCG mechanism with this specification. It satisfies EF and BIC, and by
Lemma 1 we get IIR, since

U
i (
θ i) θ i + t i

VCG0

(
θ i) =

∫

�−i

⎡
⎣∑

j∈I
q∗j (θ i, θ−i) θ j −

∑
j �=i

q∗j (θ i
0 , θ−i) θ j − q∗i (θ i

0 , θ−i) θ i
0

⎤
⎦ f i (θ−i) dθ−i,

is equal to zero for θ i = θ i
0 . Also, by Lemma 1 again, for any other mechanism

(�, q∗, t) satisfying EF, BIC and IIR, t i (
θ i
)− t i

VCG0

(
θ i
)

is a non-negative constant for each
i. This observation implies the following:

Proposition 1 (Myerson and Satterthwaite, 1983) Supposing that I = 2, θ 2
0 < θ1

1 and
θ 2

1 ≥ θ1
0 , there is no direct mechanism satisfying EF, BIC, IIR and, at the same time, balancing

the budget (BB).

Indeed, the VCG0 mechanism, as just defined, always runs a deficit (with the supposed
overlapping intervals

[
θ i

0 , θ i
1

]
, i = 1, 2), and so does any other mechanism satisfying EF,

BIC and IIR (see Krishna and Perry, 1997 and Krishna, 2010).
There are various ways to escape this impossibility result. One is to assume7 that the VCG0

mechanism, as just defined, runs a surplus (as it would be the case here if θ 2
0 ≥ θ1

1 ). Another
is to have more than two agents and to vary the ownership shares of the object (Cramton,
Gibbons, and Klemperer, 1987) or to allow for interdependent beliefs (as we will see below).
Also, the budget balance condition can be weakened to expected budget balance (McAfee and
Reny, 1992).

7 See Krishna and Perry (1997) (Theorem 2) and (under more specific assumptions) Makowski and Mezzetti
(1994) (Theorem 3.1). The argument uses a modified “expected externality” mechanism (or AGV mechanism for
Arrow, 1979 and d’Aspremont and Gérard-Varet, 1979a). See also d’Aspremont and Gérard-Varet (1975).
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Trading under asymmetric information 431

2.2.2 Auctions
Auctions are widely used in practice for selling a large variety of objects. Consider again
the situation where one seller tries to sell an object to several potential buyers with private
values. The seller is now supposed to be the mechanism designer (or the principal) and his
type is common knowledge. The set of messages M i that buyer i sends to the seller is the set
of possible bids. Several kinds of auctions are possible: first-price sealed-bid auction (where
the winner pays the highest bid), second-price sealed-bid auction (where the winner pays
the second highest bid), English (or open ascending) auction are common examples. The
revelation principle still applies and to each equilibrium of an auction mechanism (direct or
not) we can associate a BIC direct auction mechanism.

Assume that properties (i), (ii) and (iii) of the previous subsection still hold, that θ0
1 = θ1

1 =
θ i

0 = 0, i = 2, . . . , I and that f (θ) =
I∏

i=2
f i
(
θ i
)

. In this case, the mechanism VCG0 coincides

with the second-price direct auction (and with Clarke’s “pivotal” mechanism). The object is
sold to a buyer i reporting the highest valuation (i is a “pivotal” agent) and the amount this
buyer i pays to the seller, −t i

VCG0

(
θ i
)
, is equal to max

j �=i,j>1
θ j the second-highest valuation. The

other buyers pay nothing. Clearly EF and IIR hold and, since the seller receives t i
VCG0

(
θ i
)
,

we get budget balance without affecting incentives since the type of the seller is common
knowledge. All buyers report truthfully (it is the dominant strategy) whatever their beliefs.
The mechanism is independent of the traders’ characteristics (names, valuations and beliefs)
and of the object characteristics: it is anonymous and universal. Also, since values are private
and statistically free, the second-price sealed-bid auction is equivalent to the English auction
(since the information obtained during the latter auction is irrelevant). The first-price sealed-
bid auction (even when formulated as a direct auction mechanism) is different. It satisfies
BB and IIR but not, in general, BIC and EF. Vickrey (1961) already mentions the possibility
of inefficient allocation in a first-price auction. A simple argument (see Krishna, 2010) is to
suppose, with two asymmetric bidders, that the equilibrium bidding strategies are continuous
increasing and strictly unequal at some value, say m̃1 (θ) < m̃ 2 (θ), for θ i

0 < θ < θ
i

1 , i = 1, 2.
Then m̃1 (θ + ε) < m̃ 2 (θ − ε), for small ε > 0, and bidder 2 still wins although she has a
lower value.

However, if we assume symmetry (θ i
1 = θ

j
1 and f i = f j, i, j = 2, . . . , I ), the first-price

auction is ex post efficient and, by the revenue equivalence principle (Riley and Samuelson,
1981, Myerson, 1981) the expected revenue of the seller is the same as in any other ex post
efficient auction, although BIC remains violated (each buyer reports θ i/2).

More generally, from a mechanism design perspective, one can look for an ex ante
incentive-efficient auction mechanism. In particular, considering that the seller plays the
role of a principal (and as such is the mechanism designer), we can look for the direct
auction mechanism maximizing the seller’s expected revenue. Following Myerson (1981),
and assuming the virtual valuation function ψ i

(
θ i
) ≡ θ i − (

1 − F i
(
θ i
))
/f i

(
θ i
)

to be
increasing, the optimal direct auction is the one attributing the object to the buyer with
maximal virtual valuation (if non-negative) and the winner pays the smallest amount that
keeps him winning. Since the virtual valuation differs from the value and may be negative,
the optimal auction is not efficient in general. In the symmetric case ψ i ≡ ψ for all
i and the optimal auction is simply a second-price auction with reserve price equal to
ψ−1 (0) (see Proposition 5.4 in Krishna, 2010). The optimal auction is obtained under the
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432 Handbook of game theory and industrial organization: theory

assumption of statistical independence, and in that case each buyer always benefits from some
informational rent.

Myerson (1981) and Crémer and McLean (1985, 1988) show that some correlation between
types is necessary and sufficient for the seller to do much better, namely to extract the full
surplus. This result holds even if values are interdependent, namely if we assume the more
general utility function U i (q; θ) = q iU i (θ) (with the normalization U i

0

(
θ i
) ≡ 0). Suppose

for simplicity, as in Crémer and McLean (1988), that the set of types � i for each i is finite
and that the beliefs F

(
θ−i | θ i

)
are represented by discrete probability distributions with full

support and satisfy a very general condition (implying statistical dependence). To extract
the whole surplus means that, for each buyer i, q i (θ) = 0 if U i (θ) < maxjU j (θ) or if
maxjU j (θ) ≤ 0 (recall

∑
i∈I

q i (θ) = 1) and that each buyer’s IIR constraints holds as an

equality.
Crémer-McLean’s condition simply requires that for each buyer i of type θ i there is a lottery

s i
(
θ−i; θ i

)
defined on �−i such that

∑

θ−i

s i (θ−i; θ i)F
(
θ−i | θ i) >

∑

θ−i

s i (θ−i; θ i)F
(
θ−i | θ◦i)

for every θ◦i �= θ i. Under this condition, a direct auction mechanism can be constructed
to extract the whole surplus, while satisfying BIC and IIR (but not ex post individual
rationality).8

The Crémer-McLean condition can be reinforced and applied in a much larger context
(with quasi-linear utilities), in particular to general (direct) trading mechanisms with possibly
multiple buyers and sellers, all of multiple types, and with any allocation rule, efficient or not.
This is most simply obtained by reinforcing condition B in d’Aspremont and Gérard-Varet
(1982) so that IIR can be ensured, in addition to BIC and BB, whenever, for a given allocation
rule, the ex ante expected surplus is non-negative:

∑
i∈I

∑
θ

U i (q (θ) ; θ)F
(
θ−i | θ i)F

(
θ i)) ≥ 0.

The condition (introduced as condition BIIR in d’Aspremont-Crémer, 2017) requires that there
exists a budget-balanced payment scheme s for all i, all θ i and θ◦i, θi �= θ◦i, such that

∑

θ−i

s i (θ−i, θ i) F
(
θ−i | θ i) >

∑

θ−i

s i(θ−i, θ◦i)F
(
θ−i | θ i),

and

∑

θ−i

s i (θ−i, θ i)F
(
θ−i | θ i) = 0.

8 This condition is here stated in its “primal form.” It is generic in the finite case. But it implies no freeness: for
all i, and any

(
θ i, θ◦i

)
, if θ i �= θ◦i then Fi

(
. | θ i

) �= Fi
(
. | θ◦i

)
, i.e. no agent has free beliefs over two types. This

is called “belief announcement” in Johnson Pratt, and Zeckhauser (1990) and “beliefs determine preferences” (BDP)
in Heifetz and Neeman (2006).
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This condition can be shown to be equivalent to the Crémer-McLean condition plus an
identifiability condition introduced by Kosenok and Severinov (2008), entailing that, for any
allocation rule generating a non-negative ex ante expected surplus, any distribution of this
whole surplus (with BB respected) among the traders can be implemented by a BIC and IIR
mechanism:

Proposition 2 Assume I ≥ 3 and that the beliefs satisfy condition BIIR. For any allocation
rule q and any set

{
υ i
(
θ i
)

, θ i ∈ �i and i ∈ I} of non-negative utility levels such that

∑
i∈I

∑

θ i

υ i (θ i)F i (θ i) =
∑
i∈I

∑
θ

U i (q (θ) ; θ)F
(
θ−i | θ i)F

(
θ i) ≥ 0,

there is a direct trading mechanism (q, t) satisfying BIC, BB, IIR and such that

∑

θ−i

[
U i (q (θ) ; θ)+ t i (θ)

]
F
(
θ−i | θ i) = υ i (θ i) ,

for all θ i ∈ �i and i ∈ I.

This is equivalent to Corollary 1 in Kosenok and Severinov (2008). Of course, this allows for
full surplus extraction by a single trader. Matsushima (2007) has a similar result, but under an
assumption that is stronger than BIIR. The proof of the proposition is simple. Since

∑
i∈I

∑
θ

U i (q (θ) ; θ)F
(
θ−i | θ i)F

(
θ i) =

∑
i∈I

∑

θ i

υ i (θ i)F
(
θ i) ,

there is a payment scheme τ satisfying BB and such that

∑

θ−i

[
U i (q (θ) ; θ)+ τ i (θ)

]
F
(
θ−i | θ i) ≥ υ i (θ i) ,

for all θ i, all i (see Lemma 1 in Matsushima, 2007). Now, using the budget-balanced payment
scheme s given by condition BIIR, we have a family of budget-balanced payment schemes
t ≡ τ + Ks, K ≥ 0. With K large enough, BIC is satisfied and, since

∑
θ−i

Ks i(θ−i, θ i)F(θ−i |
θ i) = 0, we get IIR:

∑

θ−i

[
U i (q (θ) ; θ)+ τ i (θ)

]
F
(
θ−i | θ i) = υ i (θ i) ≥ 0.

The mechanisms that are thus obtained, optimal or not, are interesting from an investigation
point of view. As mentioned by Wilson (1985),“it suffices in principle to study direct
revelation games in order to find efficient trading rules.” But, most importantly, “There
often remains a motive, of course, to translate an efficient direct revelation game back
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434 Handbook of game theory and industrial organization: theory

into a form of the sort more usually found in practice.”9 Although direct mechanisms use
the simplest kind of equilibrium (truth-telling), their rules integrate specific features of the
economic environment.10 They are neither universal, nor anonymous. Although there might
be exceptions (e.g. a group of advertisers competing on the web for an ad impression), in
most standard contexts, trading rules have to be more simple (e.g. independent of the number
of participants and of their beliefs), and the complexity is shifted to the equilibrium strategies,
to be computed by the participants themselves on the basis of their knowledge of the economic
environment.

2.2.3 Insurance
In the first two applications we have developed, traders are restricted to being risk neutral.
All utility functions are assumed to be quasi-linear (or even linear). If one looks at a single
insurer selling an insurance policy to a single buyer with private information about the risk
she wants to insure (hence of several types), risk aversion should be an essential ingredient.
Our point of departure is the celebrated Rothschild and Stiglitz (1976) insurance economy, as
reformulated by Stiglitz (1977) in a monopolistic setting with a single risk-neutral seller (the
principal) offering coverage-premium contracts (q, t) ∈ R

2+ to ensure BIC and hence having
the power to screen different types (the no-trade contract being (0, 0)).11

We suppose that the buyer (the agent) may be of two types, θ ∈ {θ0, θ1}, with positive
probabilities F

(
θ1
) = φ and F

(
θ0
) = (1 − φ). She has initial wealth W0 and faces the

risk of a loss L > 0 with a probability given by her type θ ∈ (0, 1) and such that θ1 > θ0

and L < W0. Type θ ’s preferences over aggregate coverage-premium pairs have an expected-
utility representation

U(q, t; θ) ≡ θu(W0 − L + q − t)+ (1 − θ)u(W0 − t), (15.1)

where u is a twice continuously differentiable, strictly increasing, and strictly concave
von Neumann–Morgenstern utility function. One can check that, since θ1 > θ0, type θ ’s
preferences over coverage-premium pairs (q, t) ∈ R

2+ are ordered by single crossing. That
is, geometrically, in the (q, t) plane, an indifference curve for type θ0 crosses an indifference
curve for type θ1 only once from below, implying that her willingness to substitute coverage
for premium is everywhere higher than type θ1’s.12 If the principal provides type θ with
coverage q for a premium t, he earns a profit π (q, t ; θ) = t − v(θ)q, with v(θ1) > v(θ0),
and we let v = φv(θ1) + (1 − φ)v(θ0) be the average price. Thus, this is a case of common
value: conditional on a trade taking place, the insurer directly cares about the characteristics,
or information, of the insured.

If the probability of loss was common knowledge, the insurer (knowing the type θ ) would
offer a contract (q (θ) , t (θ)) to each type θ with full coverage (q (θ) = L) and with the

9 See Wilson (1985) p. 183.
10 Note that these features can be very general if the type space is rich enough.
11 An alternative approach involves the informed agent moving first. This is the signaling problem originally

analyzed by Spence (1973) in a labor market context, and further examined by Cho and Kreps (1987). In this class of
problems the informed agent is given little, if any, power to design incentive contracts.

12 More formally, the single-crossing assumption states that: for each (q, t) ∈ R
2+, τθ0 (q, t) > τθ1 (q, t), where

τθ ≡ − ∂Uθ /∂q
∂Uθ /∂t is type θ ’s marginal rate of substitution of coverage for premium, which is everywhere well defined

and strictly decreasing along her indifference curves.
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Trading under asymmetric information 435

participation constraint binding: U(q (θ) , t (θ) ; θ) = Uθ (0, 0; θ). This is first best optimal,
the risk-neutral seller bears all the risk and extracts the whole surplus. Note that, if contracts
were restricted to be actuarially fair, i.e. t (θ) − v (θ) L = 0, the expected profit of the seller
would be zero and the surplus would go to the buyer: U(q (θ) , t (θ) ; θ) > U(0, 0; θ).

With private information, the first best becomes unfeasible. Given the incentive constraints,
only the high-risk type can be fully insured in a monopolistic equilibrium.

Only the high-risk type is fully insured. If the low-risk type were buying more coverage
at better terms, the high-risk type would switch to that contract and the seller would
lose profit. Therefore, the seller maximizes total expected profit φπ

(
q
(
θ1
)

, t
(
θ1
)

; θ1
) +

(1 − φ) π
(
q
(
θ0
)

, t
(
θ0
)

; θ0
)

under the BIC and IIR constraints. At the solution the low-risk
type gets partial (or zero) insurance coverage, with the BIC constraint being strict,

U(q
(
θ0
)

, t
(
θ0
)

; θ0) > U(q
(
θ1
)

, t
(
θ1
)

; θ0)

and no surplus: U(q
(
θ0
)

, t
(
θ0
)

; θ0) = U(0, 0; θ0). The high-risk type, indeed, gets full
coverage, with the BIC constraint binding,

U(q
(
θ1
)

, t
(
θ1
)

; θ1) = U(q
(
θ0
)

, t
(
θ0
)

; θ1)

and positive surplus: U(q
(
θ1
)

, t
(
θ1
)

; θ1) > U(0, 0; θ1).
This characterization of the monopoly (second-best) allocation has been recently

generalized by Schlee and Chade (2012), in which the set � of buyer’s types is not
restricted to be finite (but with θ0 the smallest and θ1 the largest element) and the
distribution F (θ) is arbitrary. The seller’s problem can be written in more general terms:

max
q(θ),t(θ)

∫
�
π (q (θ) , t (θ) ; θ) dF (θ), subject to U(q (θ) , t (θ) ; θ) ≥ U(q

(
θ ′) , t

(
θ ′) ; θ) and

U(q (θ) , t (θ) ; θ) ≥ U(0, 0; θ), for all θ , θ ′ in �. As in Stiglitz (1977), type θ0 gets no
surplus, type θ1 gets full coverage, all other types get partial insurance. The seller makes
positive expected profit. The coverage and premium are non-negative and co-monotone.

If we now impose that the seller’s total expected profit be zero, we get the set of second-
best contracts as defined by Harris and Townsend (1981) and characterized for this model by
Crocker and Snow (1985). These are the ex post incentive-efficient allocations obtained by
maximizing the weighted sum μU(q

(
θ1
)

, t
(
θ1
)

; θ1) + (1 − μ)U(q
(
θ0
)

, t
(
θ0
)

; θ0) under
the constraint that φπ

(
q
(
θ1
)

, t
(
θ1
)

; θ1
) + (1 − φ) π

(
q
(
θ0
)

, t
(
θ0
)

; θ0
) = 0, as well as

the two BIC constraints, for all values of the non-negative weights μ and (1 − μ). The
resulting allocation depends on the relative weight μ/φ of the high-risk type. If φ ≥ μ

(resp. φ ≤ μ) the high-risk type (resp. low-risk type) receives full coverage and is indifferent
to the contract received by the low-risk type (resp. high-risk type): U(q

(
θ1
)

, t
(
θ1
)

; θ1) =
U(q

(
θ0
)

, t
(
θ0
)

; θ1) (resp. U(q
(
θ1
)

, t
(
θ1
)

; θ0) = U(q
(
θ0
)

, t
(
θ0
)

; θ0)). To fix an (indi-
vidually rational) allocation, the surplus can be divided among the two types (under some
distributional conditions). Figure 15.1 depicts the Wilson-Miyazaki-Spence (WMS; Wilson,
1977, Miyazaki, 1977, Spence, 1978) second-best allocation (qWMS

θ , tWMS
θ ) for θ ∈ {θ0, θ1},

in which μ = 0, that is, utility of the low-risk type is maximized.
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t

q

•
(qWMS

θ1 , tWMS
θ1 )

• (qWMS
θ0 , tWMS

θ0 )

Uθ0

Uθ1

L

υθ1 υ

υθ0

Figure 15.1 The WMS allocation

3 THE STRATEGIC APPROACH

This section revisits some recent extensions of the mechanism design approach. Specifically,
we consider markets subject to incomplete information in which several parties have the
power to propose incentive schemes. Our aim is then twofold. First, to investigate to what
extent the design of an optimal trading mechanism by a single principal is affected by
the presence of the mechanisms posted by his competitors. Second, to propose a novel
approach to the study of such markets, taking into account both the relevant informational
frictions and the decentralized nature of the contracting process. To this extent, we frame
our analysis in the context of an extensive form game in which several principals compete
over mechanisms in the presence of several privately informed agents. The next paragraphs
introduce a general version of this game and provide a theoretical reference for the economic
applications analyzed in the remaining of the section.

3.1 The Model

We refer to a scenario in which several principals (indexed by j ∈ J = {1, . . . , J }) contract
with several agents (indexed by i ∈ I = {1, . . . , I }). Each agent i has private information
about her type θ i ∈ �i and θ = {θ1, · · · , θ I} ∈ � = ×

i∈I
θ i is a random variable with

distribution F.
Each principal j may choose an action xj ∈ Xj. Agents take no actions, except for their

participation decisions, with ai
j ∈ {Y, N } being the decision of agent i to participate with

principal j, in which {N } stands for not participating, and we let ai = (ai
1, ai

2, . . . , ai
J). We

also take vj : X × A ×� → �+ and u i : X × A ×� → �+ to be the payoff to principal j and
to agent i, respectively, with X = ×

j∈J
Xj and A = ×

i∈I
A i. For a given array of agents’ types θ ,
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of actions a = (
a1, a2, . . . , aI

)
and of principals’ decisions x = (x1, x2, . . . , xJ), the payoffs to

agent i and to principal j are ui (x, a, θ) and vj (x, a, θ), respectively.
Each principal perfectly observes the set of agents who participate with him. Communica-

tion is one-sided: each agent i may send a private message mi
j ∈ Mi

j to principal j. We let each

set Mi
j be sufficiently rich to include the element {∅} corresponding to the information “agent i

does not communicate with principal j,” and to satisfy the standard size restriction �Mi
j > ��i

for every i and j. Principal j takes his decisions contingent on the array of messages mj he

receives, with mj =
(

m1
j , m2

j , . . . , mI
j

)
∈ Mj = ×

i∈I
Mi

j , and on the participation choices of the

agents. Formally, we say that a mechanism proposed by principal j is the measurable mapping
γj : Mj × {Y, N}�I → �

(
Xj
)
. We take �j to be the set of mechanisms available to principal j

and denote � = ×
j∈J

�j. The competing mechanism game relative to � begins when principals

publicly and simultaneously commit to mechanisms.
Given the posted mechanisms (γ1, γ2, . . . , γJ) ∈ � and their privately observed types,

agents simultaneously take a participation and a communication decision with respect to every
principal. In this incomplete information game, a strategy for principal j is a γj ∈ �j, and
γ = (γ1, · · · , γJ) ∈ � is a profile of strategies for principals.

A strategy for each agent i associates to every profile of posted mechanisms γ a joint
participation and communication decision. In a pure strategy, every agent participates with a
subset of principals and sends a non-degenerate message only to the principals she participates

with. We let S i =
{

s i ∈ M i × A i : m i
j = ∅ if and only if a i

j = {N }
}

be the strategy set for

agent i, with A i = {
a i = (

a i
1, . . . , a i

J

) ∈ {Y, N }�J } and M i = ×
j∈J

M i
j representing the sets of

participation and communication decision, respectively. Given a profile γ of posted mecha-
nisms, a strategy for agent i is then the measurable mapping σ i ≡ (

m̃ i, ã i
)

: � ×� i → S i,
with m̃ i

(
γ , θ i

) ∈ M i and ã i
(
γ , θ i

) ∈ A i. Every σ (γ , θ) = (
σ 1
(
γ , θ1

)
, . . . , σ I

(
γ , θ I

))
induces principal j decision γj (σ (γ , θ)) ∈ Xj and γ (σ (γ , θ)) ∈ X. The expected payoff to
each type θ i of agent i is:

∫

θ∈�−i

ui(γ (σ (γ , θ)), ã (γ , θ) , θ i, θ−i)dF(θ−i | θi),

with F
(
θ−i|θ i

)
being the conditional probability of θ−i given θ i. The expected payoff to

principal j when he plays γj against his opponents’ strategies γ−j is:

Vj
(
γj, γ−j, σ

) =
∫

θ∈�
vj (γ (σ (γ , θ)), ã (γ , θ) , θ) dF (θ) .

The strategies (γ , σ) constitute a perfect Bayesian equilibrium relative to � if σ is a
continuation equilibrium for every γ and if, given γ−j and σ , for every j ∈ J : γj ∈
argmax
γ ′

j ∈�j

Vj

(
γ ′

j , γ−j, σ
)

.
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Existence of a (potentially mixed) perfect Bayesian equilibrium of an arbitrary game � has
been established by Page and Monteiro (2003) for the multiple agent case, and by Carmona
and Fajardo (2009) for the single agent case. We focus here on characterization results. That
is, we investigate how equilibrium outcomes are affected by the set of mechanisms made
available to principals. In this respect, the following remarks will be useful in the balance of
the analysis.

Remark 1 A mechanism available to principal j is direct if agents can only communicate their
types to principal j, i.e. if Mi

j = �i ∪ {∅} for every i, with {∅} representing no communication.

We denote a direct mechanism for principal j as γ̃j : ×
i∈I

(
�i ∪ {∅}) × {Y, N}�I → �

(
Xj
)

and the set of direct mechanisms as �D
j ⊆ �j. We let G� be the competing mechanism

game induced by a given �, and GD the game in which principals are restricted to direct
mechanisms. As in Myerson (1982), a direct mechanism is incentive compatible from the
point of view of principal j if, given the mechanisms offered by the other principals, it
induces a continuation equilibrium in which agents truthfully reveal their types to him. A
direct mechanism γ̃j can therefore be incentive compatible for a given array γ̃−j, but not for
some other γ̃ ′

−j �= γ̃−j. An equilibrium is truth-telling if every principal posts an incentive-
compatible mechanism and agents truthfully reveal their private information to the principals
they participate with, whenever this constitutes an equilibrium in their continuation game.

Remark 2 The model does not put any specific structure on the agents’ message spaces(
Mi
)I

i=1. One is therefore led to ask to what extent the corresponding equilibrium characteri-
zation depends on the available modes of communication. Indeed, an agent’s report to a given
principal may convey information about other principals’ mechanisms and this information
can be strategically exploited. This suggests that relying on a straightforward application
of the revelation principle, by restricting agents to only reveal their (exogenous) private
information, may involve a loss of generality. In this perspective, Epstein and Peters (1999)
are the first to provide a canonical definition of the set of agents’ types to which the revelation
principle should apply. This set includes the agents’ physical types and a component of market
information, which is rich enough to describe what competitors would do under all kinds of
different circumstances. Despite its relevance in terms of generality, the result also documents
a fundamental difficulty in relying on simple direct mechanisms. These mechanisms indeed
turn out to be too complex to be of practical use in applications.

Remark 3 The model focuses on “ordinary” contracting games: principals cannot design
their mechanism contingent on the proposals of their rivals. An alternative possibility would
be to explicitly let them commit to write “contractible” contracts, i.e. contracts that explicitly
refer to each other, as done by Peters and Szentes (2012) and Szentes (2015). Such an
approach, in turn, would require each of the principals to be able to monitor the entire
contracting process, including all relevant off-equilibrium threats.

3.2 Applications

Our general model encompasses several economic approaches to competition in markets
subject to incomplete information, as we illustrate below.
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Trading under asymmetric information 439

Example 3: Trading Under Adverse Selection The simplest application of our set-
ting features the trade between J buyers and I sellers. Each seller is endowed with
one unit of a perfectly divisible good. Let qi

j be the quantity of the good purchased

by buyer j from seller i, and tij the transfer he makes in return. The feasible trades

((q1
1, t11), . . . , (q

1
J , t1J), . . . , (q

I
1, tI1), . . . , (q

I
J , tIJ)) are such that

∑
j qi

j ≤ 1 for all i. As in

Samuelson (1984) and Myerson (1985), the profit to seller i from trading (Qi, Ti) =(∑
j qi

j,
∑

j tij
)

in the aggregate is Ti − θ iQi, where θ i is seller i’s opportunity cost of giving

away her endowment. Each buyer j’s profit from trading (
∑

i qi
j,
∑

i tij) is
∑

i [v(θ i)qi
j − tij];

thus, he directly cares about the identity of the sellers he is trading with through the common
value component v(θ). Each seller is privately informed of her opportunity cost. As first
pointed out by Akerlof (1970), in such circumstances trade is typically threatened by adverse
selection whenever v(θ) increases with θ , since offering to trade at a given price then only
attracts the lowest qualities. In this context, a mechanism γj for buyer j associates a profile of
individual trades to each array of messages he receives from buyers. Mas-Colell, Whinston,
and Green (1995) illustrate how this setting can be naturally exploited to model competition
in several market scenarios, and Attar, Mariotti, and Salanié (2011) provide a fully strategic
formulation of the multiple-buyer multiple-seller game.

Example 4: Competitive Screening In their canonical analysis of the insurance market,
Rothschild and Stiglitz (1976) study strategic competition between intermediaries for the
exclusive right to serve a customer facing a binary risk on her endowment w ∈ {wL, wH},
with probabilities (θ , 1 − θ) that constitute her private information. Her (expected) payoff is
pu(wL+dL)+(1−p)u(wH+dH), with (dL, dH) ∈ R

2 being the state-contingent transfers issued
by the company she trades with. Similarly, market-microstructure models in the tradition of
Glosten (1994) consider several market makers who compete to sell shares of a risky asset to
a single insider who can trade with any subset of them (Biais, Martimort, and Rochet, 2000
and Back and Baruch, 2013). The private information θ of the buyer is her willingness to trade
the asset. When trading an aggregate quantity Q against an aggregate transfer T, the buyer’s

payoff is θQ − σ 2

2 Q2 − T, with σ > 0. The sellers are risk neutral and the cost of selling
a share of the asset to type θ is its expected value conditional on the insider’s being of type
θ . The model of this section can hence be interpreted in terms of competitive screening by
letting I = 1, θ ≡ (p, 1 − p) and γ̃j : θ × {Y, N} → R

2.

Example 5: Competing Auctions In a seminal paper, McAfee (1993) analyzes sellers who
compete over auctions when buyers’ valuation constitute their private information. In these
settings, sellers simultaneously and anonymously post their reservation prices and buyers
choose at most one auction to participate in. A seller and the buyers who participate in
his auction form an isolated corporation. In addition, sellers are restricted to post direct
mechanisms, asking each buyer i ∈ I to report her valuation vi ∈ [0, 1]. A strategy for seller
j is a mechanism γ̃j :

∣∣Ij
∣∣× [0, 1]|Ij| → R, where Ij ⊆ I is the set of buyers that participate in

auction j. A pure strategy for buyer i is a mapping λi : �1×. . .×�J ×[0, 1] → Ai×[0, 1]×R+,
with �j being a set of second-price auctions for j ∈ J. Given her participation decision, it is
always a dominant strategy for each of the buyers to truthfully report their private valuations.
Specifically, the model of this section adapts to the competing auction settings of Peters
(1997), Peters and Severinov (1997), Burguet and Sakovics (1999), Viràg (2010), Han (2015)
and Peck (2015).
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3.3 Equilibrium Trades

We start by taking a normative perspective. In this respect, the following paragraphs analyze
a traditional issue: can second-best allocations be supported as equilibrium outcomes of our
competitive setting? A positive answer to this question would provide novel insights into a
reformulation of the second welfare theorem for incomplete information economies.

3.3.1 The multiple agent case
In recent years, providing a full characterization of the set of equilibrium allocations of games
in which several principals have the power to design mechanisms has become a relevant
issue in mechanism design. With reference to the class of extensive form games described in
Section 3.1, Yamashita (2010) establishes a folk theorem: an allocation is implementable if
and only if it is incentive compatible and the payoff of each principal is above a well-chosen
threshold value.

We illustrate the logic underlying his result in the context of trading under adverse selection
(Example 3), assuming that the type of each seller can be either low, θ = θ1, or high, θ = θ0,
for some θ0 > θ1 > 0. To further simplify the exposition, we assume that the quality of the
good increases with the type of the seller, that is, v(θ0) > v(θ1), and that it would be efficient
to trade no matter the type of the seller, that is, v(θ) > θ for each θ . Finally, to avoid trivial
cases, we assume that x ≡ prob[θ = θ0] ∈ (0, 1). Suppose that sellers communicate with
buyers through the message spaces M1 = . . . = Mi = . . . = MI = {θ1, θ0, m}. We first show
that a monopolistic outcome for buyers can be supported in a pure strategy equilibrium. More
precisely, let pm be the price that would be optimally set by a monopsonistic buyer.13 Suppose
now that each buyer commits to buy any quantity from each of the sellers at a constant unit
price equal to pm, unless at least I −1 sellers send him the message m. In this last contingency,
and for every profile of sellers’ participation decisions, he offers to buy a quantity of one from
each of the sellers at a constant unit price p = v(θ0) so to maximize the sellers’ surplus. It is
straightforward to check that pm is supported at equilibrium by having all sellers whose type
is θ ≤ pm trading a quantity of one with the same buyer, and those such that θ > pm staying
out of the market. The equilibrium is such that each seller, irrespective of her type, sends
the message m to each non-deviating buyer she participates with in the subgame following a
buyer’s unilateral deviation, which constitutes a continuation equilibrium. A similar reasoning
guarantees that every incentive-compatible allocation can be supported at equilibrium.

Unfortunately, the analysis in Yamashita (2010) does not allow the derivation of a full
equilibrium characterization in general settings. A main drawback of his theorem is that
threshold values are not identified in terms of the primitives of the game. Although several
works have recently tried to overcome this difficulty, we still lack a general characterization
result for the class of incomplete information games analyzed in this section.14 We do not
attempt to fill this gap here, but rather to point out two implications of Yamashita’s insights
that may be relevant for the economic applications of competing mechanism games.

13 As shown by Samuelson (1984) and Myerson (1985), who extensively analyze this trading setting in the case
I = J = 1, an optimal mechanism for the buyer involves determining a given price pm at which he stands ready to
trade any quantity between 0 and 1. Indeed, given bilateral linearity of preferences, the buyer cannot further increase
his profit by designing a direct revelation mechanism γ̃ : [θ1, θ0] → [0, 1] × R+ which prescribes a quantity and a
transfer for each revealed type.

14 See Szentes (2009), Peters and Troncoso-Valverde (2013), Xiong (2013), and the survey of Peters (2014).
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Trading under asymmetric information 441

The first implication can be derived from the example above. The reasoning crucially
exploits the fact that each buyer uses a message space that is “larger” than each seller’s type
space {θ1, θ0}. Indeed, the message m is used out of equilibrium to deter any profitable devia-
tion by his rivals. Incentive-compatible mechanisms, such as those identified in Remark 1,
are actually not rich enough to reproduce the same threats. That is, if one considers the
simpler game in which buyers are only allowed to post direct mechanisms, there always exists
a profitable deviation for (at least) one buyer against any equilibrium supporting the price pm.
As already documented in earlier examples (see Peck, 1997, Peters, 2001, and Martimort and
Stole, 2002), restricting buyers from using incentive-compatible mechanisms involves a loss
of generality: there exist pure strategy equilibrium outcomes of a game in which they post
indirect mechanisms that cannot be reproduced by incentive-compatible ones.15 The result
suggests that the equilibrium predictions of competing mechanism models crucially depend
on the set of instruments that are available to competitors. At the same time, but from a more
applied standpoint, it calls for the identification of a simple class of mechanisms that allows
the characterization of meaningful equilibria. Specifically, we say that a set of mechanisms
is “robust” if the corresponding equilibria survive the principals’ unilateral deviation towards
any indirect mechanism. That is, the corresponding outcomes are supported in an equilibrium
of the game in which principals use arbitrary communication mechanisms.

Characterizing the equilibrium outcomes supportable by “robust” mechanisms is relevant
for several economic applications. Indeed, economic models of competing mechanisms typi-
cally restrict attention to simple incentive-compatible mechanisms. That is, principals commit
to message-contingent decisions that induce agents to truthfully reveal their exogenous private
information. It is therefore natural to investigate in which contexts such incentive-compatible
mechanisms end up being robust. A case in point is provided by competing auction settings. In
a pioneering work, Peters (1997) shows that when every seller offers a second-price auction
with reserve price equal to his cost, none of his rivals can improve his profits by deviating
to an alternative direct mechanism when the number of sellers gets large. The recent work
by Han (2015) extends the result by establishing the robustness of second-price auctions
against any arbitrary mechanism. Key to his argument is the fact that second-price auctions
are dominant strategy incentive compatible. This guarantees that a best reply of a single
principal to a given profile of mechanisms posted by his opponents can be characterized by
an incentive-compatible mechanism. One should, however, appreciate that the result does not
hold in general: Attar et al. (2012) show that two-sided communication is needed to obtain a
full characterization of principals’ best replies. Their analysis stresses the fact that, whenever
principals compete in the face of privately informed agents, then, from the viewpoint of a
single principal, the messages that agents send to his rivals can be seen as hidden actions.
Given the profile of mechanisms proposed by his opponents, a principal that behaves as if he
was interacting with several agents can take some non-contractible actions, i.e. the messages
they send to the other principals. It is hence possible to show, along the lines of Myerson
(1982), that he can gain by using mechanisms that induce agents to correlate on the messages
they send to his opponents.

The second relevant implication of Yamashita’s (2010) work can be described as follows.
His folk theorem-like result exploits the presence of several, at least three, agents. Yet the
strategic settings in which several principals compete to serve a single agent are at the

15 This result is typically acknowledged as a “failure of the revelation principle” in competing mechanism games.
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center-stage of several economic applications. It is therefore natural to investigate to what
extent the decentralization of second-best allocations may be successfully performed in such
a restricted scenario. We perform this task in the following paragraphs.

3.3.2 The single agent case
We analyze here the situation in which principals compete in the presence of a single agent,
that is, I = 1. It might be useful to analyze this setting in the context of competitive screening
(Example 4), in which a risk-averse agent allocates her consumption over two states of nature
by purchasing coverage from several risk-neutral sellers. Specifically, we refer to the insurance
framework introduced in Section 2.2.3, and we aim at providing a full strategic analysis of
the competition between J ≥ 2 sellers. In this context, the payoff to the single consumer
depends on the total coverage she raises from sellers and on the total premium she provides
in exchange. It is therefore useful to denote Q = ∑

j∈J
qj, and T = ∑

j∈J
tj, with (qj, tj) being

the coverage-premium pair she trades with seller j. Thus, considering again (15.1), we let
U(Q, T; θ) be the payoff to type θ ∈ {θ0, θ1} when purchasing the aggregate coverage Q
against the aggregate premium T, and to refer to the quadruple

(
(Qθ0 , Tθ0), (Qθ1 , Tθ1)

)
as an

aggregate allocation.
We frame the competitive provision of insurance in the context of a competing mechanism

game. Thus, an action xj, or contract, available to principal j is a coverage-premium pair
(q, t) ∈ R

2+, and the no-trade contract is (0, 0). The restriction to a single agent setting
allows us to simplify the extensive form game described in Section 3.1. In such a scenario,
as established by Martimort and Stole (2002) and Peters (2001), every equilibrium outcome
of each game � can be supported at equilibrium in a “simpler” game in which principals are
restricted to post arbitrary menus of contracts, with the agent choosing one item in each menu
upon privately observing her type.16 Our corresponding menu game unfolds as follows: first
nature selects the consumer’s type, then principals simultaneously post menus of coverage-
premium pairs. Finally, the agent optimally takes her participation decision and picks one item
in the menu of each principal.17 We make no specific assumption on the structure of the sets of
available menus. We only require that they are compact sets so that each type’s choice problem
admits a solution. To cope with standard applications of competitive screening, we restrict
attention to pure strategy perfect Bayesian equilibria (PBE). Equilibrium trades are threatened
by the following conflict. Given single crossing, the risk-taker consumer is willing to purchase
a higher amount of insurance. Yet, given common values, intermediaries are rather willing to
sell higher quantities to the low-risk type θ0. The tension between these two forces is at the
root of adverse selection, and may have destabilizing effects on market equilibria.

Key to our analysis is to specify the agent’s participation decisions. Specifically, we say
that competition is exclusive if, in a pure strategy, the agent participates with at most one
principal, in which case she is allowed to pick at most one item different from (0, 0),
and that competition is non-exclusive otherwise. In single agent contexts, these two market
structures deliver different implications for decentralization. We discuss them in the following
paragraphs.

16 The result is often acknowledged as the delegation principle.
17 A simple way to incorporate the consumer’s participation decisions in the analysis is to impose that every

menu of each intermediary must include the no-trade contract (0, 0). The decision not to participate with principal j
therefore corresponds to choosing the item (0, 0) on his menu.
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Trading under asymmetric information 443

Exclusive competition If competition is exclusive, our analysis mirrors that originally
developed by Rothschild and Stiglitz (1976).18 Consider the aggregate allocation RSW =(
(Qθ0 , Tθ0), (Qθ1 , Tθ1)

)
such that Tθ = vθQθ for each θ ∈ {θ0, θ1} and

τθ (Qθ1 , Tθ1) = vθ1 (15.2)

Uθ1(Qθ1 , Tθ1) = Uθ1(Qθ0 , Tθ0). (15.3)

The first condition states that the high-risk type θ1 purchases her first-best allocation, and the
second one that type θ0 has to pay a cost to signal her effective quality, which corresponds
to a binding BIC constraint for θ1. The allocation is “competitive” in the sense that each
intermediary gets a zero profit on each consumer’s type. The allocation above is the only
candidate to be supported in a pure strategy equilibrium of the exclusive competition game.19

The allocation is depicted in Figure 15.2, which represents the buyer’s and sellers’ indifference
curves.

As first acknowledged by Rothschild and Stiglitz (1976), however, pure strategy equilibria
fail to exist in a robust number of circumstances. In these cases, a single intermediary can
profitably deviate by attracting both types of consumer in such a way that his gains on the
low-risk type θ0 more than offset the losses on the higher-risk type θ1.20

T

Q

•
(Qθ1, Tθ1)

•
(Qθ0, Tθ0)

Uθ0

Uθ1

υθ1 υ

υθ0

Figure 15.2 The exclusivity outcome

18 See Attar, Campioni, and Piaser (2016) for a general analysis of competing mechanism games under exclusive
competition.

19 The proof of the result is rather standard (see, for example, Mas-Colell et al., 1995, pp. 460–465), and we do
not include it here to ease exposition.

20 See Fagart (1996) and Luz (2016) for a full characterization of the conditions needed to guarantee existence
of a pure strategy equilibrium.
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Non-exclusive competition Allowing for non-exclusive competition crucially modifies the
strategic behavior of intermediaries. On the one hand, a larger set of deviations becomes
available. Indeed, each seller can exploit the offers of his rivals by proposing insurance
contracts that the consumer may use to complement her coverage. In principle, this creates
new opportunities for undercutting. On the other hand, each intermediary may exploit the
consumer as a coordinating device to possibly prevent his rivals’ deviations. This is done
by introducing additional threats that take the form of latent contracts in one’s competitors’
menu. The interplay of these two forces dramatically shapes the set of equilibrium allocations
with respect to the benchmark of the scenario in which exclusivity clauses are enforced from
the outset.

The recent work of Attar, Mariotti, and Salanié (2014) provides a full equilibrium analysis
of the non-exclusive menu game. In general terms, they show that non-exclusivity worsens
the impact of adverse selection, and pure strategy equilibria necessarily feature the market
breakdown emphasized by Akerlof (1970). In a simple two-type setting, a positive level of
trades for one type of the consumer only obtains if the other type does not trade at all. We
revisit their arguments in the following paragraphs. We start by establishing the following:

Lemma 2 The RSW allocation cannot be supported at equilibrium in the non-exclusive
menu game.

The intuition for the result can be easily understood in a free entry equilibrium.21 Consider
then an inactive intermediary and suppose that he deviates by offering, together with the
null contract (0, 0), the additional contract (q, t) = (ε, εχ) with ε strictly positive and
χ ∈ (

vθ1 , τθ1(Qθ0 , Tθ0)
)
.22 One can check that, since χ < τθ0(Qθ0 , Tθ0), ε can be chosen

small enough to guarantee that Uθ1

(
Qθ1 + ε, Tθ1 + εχ

)
> Uθ1

(
Qθ1 , Tθ1

) = Uθ1

(
Qθ0 , Tθ0

)
,

which ensures that type θ1 will be trading the contract (q, t). One should observe that, since
χ > vθ1 , we get t − vθ1 q = ε(χ − vθ1) > 0. That is, the entrant earns a strictly positive
profit on the high-risk type θ1. Given that vθ1 > vθ0 , the deviation is a fortiori profitable if
the deviating contract (q, t) is also traded by the low-risk type θ0. This deviation is illustrated
in Figure 15.3.

Thus, the deviation exploits the possibility for sellers to attract the high-risk type θ1 by
proposing her to trade additional insurance on top of that chosen by the low-risk type θ0. The
profitability of any such deviation guarantees that in any separating equilibrium one should

have
T
θ1 −T

θ0

Q
θ1 −Q

θ0
= vθ1 . That is, the BIC constraint of type θ1 turns out not to be binding.

Furthermore, Attar et al. (2014) show that a positive level of trade for type θ1 obtains at
equilibrium only if type θ0 is left out of the market. It follows that the only candidate to be
supported in a pure strategy equilibrium of the non-exclusive menu game is the aggregate
allocation AMS = (

(Qθ0 , Tθ0), (Qθ1 , Tθ1)
)

with (Qθ0 , Tθ0) = (0, 0) and (Qθ1 , Tθ1) such that
τθ1(Qθ1 , Tθ1) = vθ1 , and Tθ1 = vθ1 Qθ1 . Clearly, this allocation involves a strictly positive
trade for the high-risk type θ1 only if τθ1(0, 0) > vθ1 . In the specific context of insurance,
the AMS allocation is such that the high-risk type achieves her first-best level of coverage,

21 See Proposition 1 of Attar et al. (2014) for a general argument.
22 Since the marginal rate of substitution is decreasing along a given indifference curve, and provided that

Qθ1 > Qθ0 by single crossing, one gets τθ1 (Qθ0 , Tθ0 ) > τθ1 (Qθ1 , Tθ1 ) = v(θ1), which guarantees that the interval is
non-empty.
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T

Q

•
(Qθ1, Tθ1)

•
(Qθ0, Tθ0)

•(Qθ0 + ε, Tθ0 + εχ )

Uθ1

vθ1 vθ1

vθ0

Figure 15.3 The RSW allocation is NOT an equilibrium under non-exclusivity

so that Qθ1 = L and Tθ1 = vθ1 L. Theorems 1 and 2 in Attar et al. (2014) show that a
necessary and sufficient condition for existence of such an equilibrium is that, starting from
the no-trade allocation (0,0), type θ0 should not be willing to purchase insurance issued at
the fair price v = φv(θ1) + (1 − φ)v(θ0). More formally, they require that τθ0(0, 0) ≤ v,
which corresponds to Akerlof’s (1970) condition for a market breakdown in which only the
worse-quality goods are traded. When this condition is not satisfied, at least one seller can
profitably deviate by exploiting the consumer’s ability to engage in multiple trades. To clarify
this point, consider a candidate-separating equilibrium in which aggregate trades are such that
Qθ0 > 0. In this case, everything happens as if type θ0 purchases the aggregate quantity Qθ0 ,
and type θ1 purchases it together with the additional insurance Qθ1 − Qθ0 priced at the unit
price vθ1 .23 Sellers may therefore engage in a Bertrand-like competition on the first layer,
implying that Qθ0 must be priced at vθ0 . Overall, we get Tθ0 = Qθ0vθ0 , which guarantees zero
profit to each of the sellers even though type θ0 subsidizes type θ1 at (Qθ0 , Tθ0). Now, since no
seller is indispensable, to provide the consumer with (Qθ0 , Tθ0), any of them actively trading
with type θ0 has a profitable menu deviation consisting of two non-zero contracts. The first
contract, targeted at θ0, is approximatively the same as the one the consumer trades with θ0 on
the candidate equilibrium path, and makes a profit when traded by type θ0 only. The second
contract, targeted at type θ1, allows the consumer to purchase the second layer Qθ1 − Qθ0 at a
unit price slightly less than vθ1 , and makes a small loss when traded by type θ1. Because the
seller now offers the second layer at slightly better terms than his competitors, it is optimal
for θ1 to trade it with him on top of the first layer Qθ0 provided by the other competitors at
unit price v. By deviating in this way, the seller almost neutralizes his loss with θ1, while
securing a profit with θ0. This amounts to dumping bad risks on one’s competitors by selling

23 Clearly, this quantity is strictly positive only if τθ1 (Qθ0 , Tθ0 ) > vθ1 .
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complementary coverage to type θ1 slightly below the fair premium rate, and basic coverage
to type θ0 significantly above the fair premium rate.

It remains to be shown that the AMS aggregate allocation can be supported at equilibrium.
This is done in the following:

Lemma 3 If τθ0(0, 0) ≤ v, then the AMS aggregate allocation can be supported in a pure
strategy equilibrium of the non-exclusive menu game.

An intuition for the proof can be provided along the following lines.24 Consider the following
profile of menus: each seller stands ready to provide any amount Q between 0 and an
appropriately chosen upper bound Q at a unit price vθ1 .25 Clearly, trading (Qθ0 , Tθ0) = (0, 0)
and (Qθ1 , Tθ1) = (L, vθ1 L) is the unique optimal choice for type θ0 and θ1, respectively, as
shown in Figure 15.4. Now consider sellers’ deviations. Since τθ0(0, 0) ≤ v, no seller can
profitably deviate by attracting both types of the consumer. In addition, since type θ1 gets her
first-best level of insurance, the only deviations to be considered are those that cream-skim

type θ0. Specifically, we say that any insurance contract (q, t) ∈ CS ≡ {(q, t) ∈ R
2+ :

t

q
>

vθ0 and Uθ0(q, t) > Uθ0(0, 0)} constitutes a cream-skimming deviation. Given any such
deviation, one can see that type θ0 finds optimal to purchase the corresponding contract (q, t).
Yet, given equilibrium menus, type θ1 also finds it optimal to purchase the same contract
because she can complement it with some insurance issued by non-deviating intermediaries.
Indeed, as depicted in Figure 15.4, starting from (q, t) type θ1 can buy additional insurance

T

Q

•
(Qθ1, Tθ1)

•
(Qθ0, Tθ0)

Uθ0

Uθ1

•
(q, t)

• (Qθ1 , Tθ 1 )

vθ1 v

vθ0

Figure 15.4 Equilibrium under non-exclusivity

24 See Attar et al. (2014) for a general analysis.
25 The upper bound is only introduced to make sure that the corresponding menus of contracts are compact,

which enables reliance on PBE as a solution concept.
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at price vθ1 so to achieve the allocation (Q ′
θ1 , T ′

θ1). By doing that, she gets the full insurance
quantity Q′

θ1 = Qθ1 at a smaller unit price T ′
θ1 < Tθ1 . Overall, the deviation is traded by

both types, and it is therefore non-profitable. Key to this reasoning is the possibility for type
θ1 to complement, at the deviation stage, any cream-skimming proposal with further trades
provided by incumbent intermediaries. These additional opportunities for insurance, i.e. the
availability of all quantities between 0 and Qθ1 = L, are usually denoted latent contracts.
Despite not being traded at equilibrium, they should be issued to prevent some well-chosen
deviations, and to guarantee existence of equilibrium.

Decentralization with a single agent: a discussion We have shown in the previous para-
graphs that, in standard single agent contexts, the possibility to enforce exclusive contracting
has dramatic implications on equilibrium outcomes. We now evaluate the normative implica-
tions of this insight.

Recall first that incentive compatibility is the relevant notion of feasibility when the
planner fully observes agents’ trades. In such a benchmark situation, the planner is allowed
to design incentive-compatible mechanisms while perfectly observing, and therefore being
able to monitor, aggregate trades (Myerson, 1979, 1982). As documented in Section 2.2.3,
restricting attention to the set of budget-balanced and incentive-compatible trading mecha-
nisms, several works have provided a characterization of the second-best efficiency frontier
for insurance economies (see Prescott and Townsend, 1984 and Crocker and Snow, 1985).
The corresponding allocations are regarded as a reference point from which to evaluate the
performances of insurance markets in which intermediaries are able to enforce exclusivity
of contracts. Indeed, as first shown by Crocker and Snow (1985), one can identify a set of
conditions on agents’ preferences guaranteeing that the RSW allocation belongs to the second-
best frontier.26 Importantly, these conditions are necessary and sufficient for the existence
of a pure strategy equilibrium in the Rothschild and Stiglitz (1976) economy. This in turn
provides an instance of the first theorem of welfare economics under exclusive competi-
tion: any allocation supported in a pure strategy equilibrium is constrained (second-best)
efficient.

Under non-exclusive competition, however, no outside party can monitor the trades between
the consumer and any subset of sellers. In general terms, little is known about how the
opportunity for privately informed consumers to secretly sign bilateral agreements with sellers
further restricts the set of allocations that are feasible to a planner. The recent work of Attar,
Mariotti, and Salanié (2016) provides a first step in this direction. Specifically, they require
feasible allocations to be not only incentive compatible, but also robust to further trading
opportunities provided by private sellers. That is, any price-quantity scheme, or tariff, posted
by the planner must be entry proof: no matter the offers subsequently made by an entrant,
there is an optimal way for the buyer to combine these offers with the planner’s tariff that
prevents the entrant from making a profit.

To resume the findings in Attar et al. (2016), it is useful to refer to an allocation,
first identified by Jaynes (1978), Hellwig (1988) and Glosten (1994), which we therefore
denote JHG. In this allocation, both types purchase the same basic coverage, which type
θ1 complements by purchasing additional coverage. A marginal version of Akerlof (1970)

26 See Bisin and Gottardi (2006) for a recent reformulation of these conditions.
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pricing holds: each layer of coverage is fairly priced given the types who purchase it, and the
size of each layer is optimally chosen subject to this constraint. Thus, the first layer Qθ1 is
optimal for type θ0 at unit price v,

Qθ0 ≡ arg max {Uθ0(Q, vQ) : Q ≥ 0}, (15.4)

Tθ0 ≡ vQθ0 . (15.5)

Then the second layer Qθ1 −Qθ0 is optimal for type θ1 at unit price vθ1 , given that she already
purchases the first layer Qθ0 at unit price v,

Qθ1 − Qθ0 ≡ arg max {Uθ1(Qθ0 + Q, Tθ0 + vθ1Q) : Q ≥ 0}, (15.6)

Tθ1 − Tθ0 ≡ vθ1(Qθ1 − Qθ0). (15.7)

The JHG allocation is depicted in Figure 15.5.
Clearly, the JHG allocation ((Qθ0 , Tθ0), (Qθ1 , Tθ1)) makes zero expected profit. However,

because the coverage Qθ1 is sold at the average premium rate v > vθ0 , type θ0 subsidizes type
θ1. This allocation plays a key role in the set of incentive-compatible allocations. Specifically,
Theorem 1 in Attar et al. (2016) establishes the following result:

Lemma 4 The JHG allocation is the unique budget-balanced allocation implementable by
an entry-proof tariff.

That is, the threat of entry severely limits the scope for redistribution: the planner is
constrained by his inability to control the buyer’s trades with a potential entrant, as the
threat of such trades effectively deprives him of any possibility to transfer utility between the

T

Q

•

•

Qθ0

Tθ0

Qθ1

Tθ1

Uθ0

Uθ1

v

vθ1

Figure 15.5 The JHG allocation
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two types. The set of feasible allocations is a singleton. This contrasts with the multiplicity
of second-best allocations, which, as discussed earlier, form a non-degenerate frontier. The
intuition for the proof of Lemma 4 is as follows. First, to prevent entry, one should have
Tθ0 ≤ vQθ0 and Tθ1 ≤ Tθ0 +vθ1(Qθ1−Qθ0). Indeed, violating the first inequality would make
it profitable for an entrant to profitably attract both types on a contract of unit price above v.
Violating the second one would make it profitable for an entrant to profitably attract type
θ1 on a contract of unit price above vθ1 , which she might combine with (Qθ0 , Tθ0). Second,
observe that, given that Tθ0 − vQθ0 + μ

[
Tθ1 − Tθ0 − vθ1(Qθ1 − Qθ0)

]
by budget balancing,

the two inequalities above can be satisfied together only when they hold as equalities. This
shows that the JHG allocation is the only candidate to be implemented by an entry-proof tariff.
In a next step, Attar et al. (2016) prove existence of such a tariff by considering the convex
price–quantity schedule

T(q) ≡ 1{q≤Q
θ0
}vq + 1{q>Q

θ0
} [vQθ0 + vθ1(q − Qθ0)

]
,

which is the analogue in our two-type setting of the tariff constructed by Glosten (1994) when
demand is continuously distributed.

It is important to clarify the relationship between this allocation and the second-best frontier
for insurance economies analyzed by Crocker and Snow (1985) among others. In this respect,
observe that, in the JHG allocation, only type θ1 gets fully insured since τθ1(Qθ0 , Tθ0) > vθ1 .
In addition, the complementary coverage Qθ1 − Qθ0 optimally traded by type θ1 is strictly
positive at the price vθ1 . This in turn implies that her incentive compatibility constraint is
slack: Uθ1(Qθ1 , Tθ1) > Uθ1(Qθ0 , Tθ0), which guarantees that the JHG allocation does not
belong to the second-best frontier. To clarify this point, observe that, in a JHG allocation,
one also has τθ0(Qθ0 , Tθ0) > vθ0 , i.e. type θ0 is underinsured. A planner with the ability to
fully control trades can then complement the JHG allocation by proposing some additional
coverage (qθ1 , tθ1) at a premium rate

t
θ1

q
θ1

between vθ0 and τθ0(Qθ0 , Tθ0), to be traded by

type θ0 only. As long as this additional amount of coverage is small enough, the relevant
incentive constraint of type θ1 would remain slack, inducing this type not to modify her
behavior, and letting the planner achieve a positive (expected) budget surplus. This logic
does not extend to the case in which the planner cannot perfectly control trades. In that
case, any additional coverage (qθ0 , tθ0), designed by the planner to attract type θ0 alone,
would be exploited by an entrant to propose further trades with type θ1 at a premium
rate slightly above vθ1 . This would guarantee a profit to the entrant, and induce a deficit
for the planner. Such a reasoning induces Attar et al. (2016) to conclude that, under non-
exclusive competition, the relevant binding incentive constraint for type θ1 is Uθ1(Qθ1 , Tθ1) =
max {Uθ1(Qθ0 + Q, Tθ0 + vθ1 Q) : Q ≥ 0}, which states that she is indifferent between
trading (Qθ1 , Tθ1) and trading (Qθ0 , Tθ0) along with contracts issued by an entrant at the fair
price vθ1 .

To conclude, we remark that, whenever τθ0(0, 0) ≤ v, (15.4) and (15.5) imply that type
θ0 purchases no insurance in a JHG allocation, that is, (Qθ0 , Tθ0) = (0, 0). It hence follows
from Lemma 3 that, when the non-exclusive menu game has a pure strategy equilibrium,
the corresponding allocation is entry proof. A planner who is in the impossible situation
of controlling aggregate trades cannot therefore improve on such allocation without making
profitable the entry of at least one seller. To the extent that this notion is interpreted as a form
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of constrained efficiency,27 the result suggests a sense in which market equilibria may achieve
efficient outcomes under non-exclusive competition.
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16. Moral hazard: Base models and two extensions
Inés Macho-Stadler and David Pérez-Castrillo∗

1 INTRODUCTION

Moral hazard (also called hidden action), the informational asymmetry related to the agent’s
behavior during a relationship, has been a long-time concern for insurance. It is said that
the term moral hazard was coined in the nineteenth century by fire insurers to differentiate
among the various hazards that cause a fire: physical hazards, both the ones related to
the causes (lightning, short circuits) and the ones affecting the magnitude of the loss
(type of construction), and moral hazards associated with insurees’ behavior (less precautions
or careless behavior).1 Since Arrow (1963, 1968, 1971) and Pauly (1968), models of
moral hazard and its applications have increasingly been recognized as key elements in
understanding sharecropping contracts, corporate governance, licensing agreements, and
executive compensations, to cite just a few examples.2 Moral hazard models are now taught
in many undergraduate majors and most graduate programs.3

In this chapter we review the literature on moral hazard in static environments. In its
simplest version, a moral hazard problem is presented in the contractual relationship of a
principal (she) and an agent (he) that works for her on a project.4 The effort of the agent
determines the probability distribution of the project’s outcome.5 There is a moral hazard
problem when it is not possible to verify the agent’s effort. This implies that effort cannot
be contracted upon, because in the case of breach of contract, no court of law could know if
the contract had really been breached or not. In this case, once hired, the agent will decide the
level of effort that he prefers, taking into account how payments change with the outcome,
that is, given the payment scheme that he has accepted. The payment scheme is the indirect
way in which the principal can sway the agent’s behavior.

The shape of the optimal payment scheme comes from the maximization of the principal’s
benefit subject to two constraints: the agent participation constraint (the agent will only sign
the contract if by doing so he obtains at least as much as his opportunities outside this

∗ We thank Kaniska Dam, Mikhail Drugov, Pau Olivella, Joaquin Poblete, Pedro Rey-Biel, and Nicolas Roux
for very useful comments. We also thank the Department FAE2 of the Universidad del Pais Vasco where this project
was partially developed. We gratefully acknowledge financial support from the research grants (ECO2012-31962 and
ECO2015-63679-P), Generalitat de Catalunya (2014SGR-142), ICREA Academia, and Severo Ochoa Programme
(SEV-2015-0563). The authors are fellows of CESifo and MOVE.

1 Aetna Insurance Co. (1867).
2 The first efforts toward understanding and solving the principal–agent problem were due to Zeckhauser (1970),

Spence and Zeckhauser (1971), Ross (1973), Stiglitz (1974), Mirrlees (1975, 1999), Harris and Raviv (1979),
Holmström (1979), and Shavell (1979a, 1979b).

3 Several textbooks cover moral hazard problems along with adverse selection situations (Mas-Colell, Whinston,
and Green, 1985, Macho-Stadler and Pérez-Castrillo, 1997, Salanié, 1997, Laffont and Martimort, 2002, and Bolton
and Dewatripont, 2005).

4 The participants can be individuals or institutions. Examples are bank regulator and bank, shareholders and
manager, and insurer and insuree.

5 In this chapter we will refer to the agent’s effort, but the agent may be taking a decision or an action.
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454 Handbook of game theory and industrial organization: theory

relationship), and the incentive compatibility constraint (that recognizes that the agent will
choose the effort that is best for him given the contract).

The general moral hazard problem is not easy to analyze. However, some simple set-ups
have been very successful when adopted to study particular situations. First, it is generally
assumed that the principal is risk neutral, and the agent’s utility is separable in payment and
effort. Still, these hypotheses do not allow us to have a simple enough problem. Second,
it is often assumed that the “first-order approach” (FOA) is valid or that the agent chooses
among a finite number (usually two) of possible efforts. While several interesting properties
of the optimal contract can be derived thanks to these hypotheses, they do not allow the
general derivation of explicit solutions. Thus, in many extensions and applications, further
simplifications are used in order to find specific solutions. We will describe and bring into
play two of these specifications that consider particular functional forms for the agent’s utility
function combined with certain assumptions on the payment scheme: the case of constant
absolute risk aversion (CARA) utility function with linear contracts and the case of risk
neutrality with limited liability.

The purpose of this chapter is neither to explain every aspect of the moral hazard problem
nor to review each extension or topic. Moreover, for the sake of space, we focus on theoretical
models, and we do not cover empirical or experimental results. We have chosen to present
the main trade-offs of the principal–agent model and to discuss two extensions that we find
particularly interesting: including behavioral considerations and an analysis of the market
assignment that determines the partnerships that are formed. The first extension aims to
discuss how incorporating behavioral biases in the analysis of incentives may affect the
predictions of the classical moral hazard model. We discuss the effect of some of the strands
of the literature. We start by considering an agent who not only takes into account his own
well-being but also has other-regarding preferences. We then discuss the role of extrinsic
and intrinsic motivations and the consequences on the optimal contract. We also cover the
literature that concentrates on loss aversion, where the agent evaluates his payoffs not in
absolute terms but in comparison with some reference. Finally, we consider the papers that
focus on the idea that agents may be optimistic about the production process or overconfident
about their ability.

The second extension we present relates to the insertion of the principal–agent problem in
a matching market. It is easy to motivate this avenue from the point of view of the agency
models. The partial equilibrium approach characterizes the optimal wage scheme when a
principal hires an agent (a given pair principal–agent). This approach is well defined for
the case where there is a single principal in the economy or when principals are perfectly
competitive and hence get zero profits. In the classical approach, the bargaining power
is given to principals or agents by assumption, which implies that the reservation utility
or the zero profit condition determines the distribution of surplus. In other words, the
effects of competition are summarized by a single parameter of the agent’s outside option
(his reservation utility) or the principal’s zero profit condition. However, when we consider
explicitly the existence of several heterogeneous principals and several heterogeneous agents,
some of the properties obtained in the simple version of the agency problem do not necessarily
hold. Thus, empirical work and policy recommendations may be based on the wrong
arguments. Moreover, we can address the endogenous determination of the principals and
agents that meet.
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Moral hazard: base models and two extensions 455

2 BASE MORAL HAZARD MODELS

A principal hires an agent to perform a task that we refer to as effort, e ∈ E, in exchange
for a wage, w. The final outcome of the relationship, x, depends on the effort e that the agent
devotes to the task and some random variable for which both participants have the same prior
distribution. The set of possible outcomes is denoted by X, which can be a continuous set, in
which case we denote X = [

x, x
]
, or a discrete set. The distribution of the random variable

induces a probability p (x | e) > 0 of outcome x ∈ X conditional on effort e, where p(. | e) is
a twice continuously differentiable density function if X is a continuous set and it is a vector
of probabilities if X is discrete. We denote by P(x | e) the cumulative distribution function,
that is, P(x | e) = ∫

y≤x p(y | e) (or P(x | e) = ∑
y≤x p(y | e) if X is discrete).

Since uncertainty exists, participants may react to risk. We concentrate on the case of a
risk-neutral principal and a (possibly) risk-averse agent. Risk preferences are expressed by
the shape of their (von Neumann-Morgenstern) utility functions. The principal, who owns
the outcome x and must pay the agent w, has preferences represented by the utility function
x − w. The agent, who receives a monetary payoff w for his participation in the relationship
and supplies an effort e, has an additively separable utility function: U(w, e) = u(w) − v(e),
where u(w) is assumed to be increasing and concave and v(e) is increasing and convex.6 The
agent can obtain a utility level U outside the relationship with the principal. Therefore, he only
accepts contracts that give him, in expectation, at least U.

Under symmetric information, that is, when effort is verifiable, the optimal (first-best)
contract includes the first-best effort eFB and the payment scheme

(
wFB(x)

)
x∈X , which

incorporates the optimal risk sharing among the two participants. If the agent is risk averse
then the payment mechanism completely insures the agent: he receives a fixed payment.

Under moral hazard, the effort is not contractible and the agent can choose the effort that
is best for him, given the contract. Thus, if the principal proposes a fixed wage, the agent’s
payment does not depend on his effort and he will choose the effort that is least costly for him,
that is, the lowest possible level of effort.

When designing the optimal incentive contract for the moral hazard problem, the principal
gets the agent interested in the consequences of his own behavior by making his payoff
dependent on the outcome. If the agent is risk averse, given that the outcome is noisy, this
entails the cost of distorting the optimal risk sharing among both participants. In this case,
the optimal contract solves the trade-off between distorting the efficient allocation of risk and
providing incentives.

The optimal contract under moral hazard takes into account the acceptance condition for
the agent and his choice of effort. Moreover, it is often the case that arbitrarily low or high
payments are not feasible, which would introduce additional constraints into the principal’s
program. For example, the agent may have limited liability so that it is not possible to impose
a penalty on him (or he should receive a minimum legal wage independent of the outcome).
Similarly, it may not be possible for the principal to pay the agent more than the value of
the outcome, or she may be constrained (by law or by norm) not to pay too much to the

6 The key characteristic of this class of utility functions is that the agent’s risk aversion (preferences over
lotteries) is independent of the effort supplied. Grossman and Hart (1983) assume the most general utility function
by considering that the agent’s utility has the form U(w, e) = K(e)u(w) − v(e). Special cases are K(e) = 1, i.e.,
additively separable preferences, and v(e) = 0, i.e., multiplicatively separable preferences.
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agent. An example of upper bounds are the European Union regulatory cap on bankers’ bonus
payments such that “the maximum ratio between the variable and the fixed part of the total
remuneration is limited to 100%.” When there are lower and/or upper bounds to the agent’s
payment, new trade-offs may appear. For example, the implementation of some (high) efforts
may not be possible because there is no room for enough variation in payments or it may
become very expensive as it requires awarding the agent an expected utility that is higher than
his reservation utility. In the latter case, there is a trade-off between giving extra rents and
providing incentives.

The timing of the relationship between the principal and the agent is the following. First, the
principal decides on the contract she offers to the agent, in particular on the agent’s payment
scheme (w(x))x∈X as a function of the outcome of the relationship. Then the agent decides
whether or not to enter the relationship. Finally, if the contract is accepted, the agent chooses
the effort level e that he most desires, given the agreed contract. This is a free decision by the
agent because effort is not a verifiable variable. The principal bears this fact in mind when she
designs the contract that defines the relationship, and the “game” can be solved by backward
induction. Formally, if we first consider a situation without lower or upper bounds on salaries,
the optimal contract under moral hazard is the solution to the maximization problem (P1):

Max{(w(x))x∈X ,e} {E (x − w (x) | e)}

s.t. E (u (w (x)) | e)− v(e) ≥ U (PC)

e ∈ arg max
ê∈E

{E (u (w (x)) | ê )− v( ê )} , (ICC)

where E (y | e) denotes the expectation of y conditional on the effort e. The first restriction of
the program is the participation constraint (PC), which states that the agent will not sign
a contract that gives him lower expected utility than the alternative market opportunities.
The second restriction is the incentive compatibility constraint (ICC), which determines the
agent’s effort under moral hazard. If the ICC is not relevant (either because there is symmetric
information or because ICC is not binding at the optimum) then the solution to the program
is the first-best contract

((
wFB(x)

)
x∈X , eFB

)
.

The solution to program (P1) provides the optimal contract under moral hazard and the
optimal level of the principal’s utility for a given level of the reservation utility U. As the level
of U changes, we obtain the Pareto frontier in the space of the utilities of the two participants.
Thus, the main quality properties of the optimal contract hold if instead of considering (PC)
we maximize the agent’s utility subject to a participation constraint for the principal.

The main difficulty in solving the general program (P1) is related to the fact that the
incentive compatibility constraint is itself a maximization problem. To overcome this obstacle,
the literature has adopted two solutions. (a) If the set E is finite (most papers that follow this
approach consider E to include two levels of effort) then the ICC can be replaced by a finite set
of inequalities (just one inequality in the case of two efforts). (b) If the set E is a continuum,
say E = [

e, e
]
, then we can try to substitute the ICC by its first-order condition, which is a

necessary condition of the optimal e if it is interior. This is called the first-order approach
(FOA). One has to be careful if one follows this approach because the agent’s expected utility
may fail to be concave in effort. Hence, using the FOA may be incorrect, and finding the
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Moral hazard: base models and two extensions 457

optimal effort in this program difficult.7 A possible way out proposed by Grossman and Hart
(1983) is to solve the problem in steps, first identifying the optimal payment mechanism for
any effort and then, if possible, finding the optimal effort.8 The other possibility is to consider
situations where the agent’s maximization problem is well defined, which requires introducing
assumptions for the FOA to be valid.

The moral hazard problem may give rise to several distortions in the optimal contract
because it forces the principal to trade-off incentives for the effort of the agent and
other objectives. We now discuss characteristics of the solution of (P1) for several cases,
emphasizing the trade-offs faced by the principal. We will make it clear in some cases that
additional constraints are added to (P1) owing, for example, to the existence of bounds on the
payments.

2.1 Incentives vs Risk Sharing

We first analyze the consequences of moral hazard in situations where the agent is risk averse,
that is, u(w) is strictly concave. In this case, the optimal, first-best contract fully insures
the agent. However, providing incentives requires that the agent’s salary depends on the
outcome. Thus, the principal needs to trade-off incentives vs risk-sharing.

We develop the analysis for three different models.

2.1.1 Model 1: Continuous effort
Consider a situation where E is continuous and the FOA is valid. Denote by λ (resp., μ)
the Lagrangian multiplier of the PC (resp., the ICC). Then, for a given effort e, Holmström
(1979) tells us that the solution to the principal’s program (P1) with respect to the payoff
scheme (w(x))x∈X satisfies, for all x ∈ X,

1

u ′(w ∗(x))
= λ+ μ

pe(x | e)

p(x | e)
, (16.1)

where pe(x | e) is the partial derivative of p(x | e) with respect to e. In the optimal contract,
both PC and ICC are binding, that is, λ and μ are strictly positive. Their value depends on the
effort e.9 The ratio pe(x|e)

p(x|e) is the likelihood ratio of obtaining outcome x when the effort is e.
The optimal scheme (w ∗(x))x∈X and the multipliers λ and μ are characterized by the

condition (16.1) for all x ∈ X together with (PC) and (ICC). Therefore, the optimal wage
scheme for a given effort e does not depend on the value that the principal places on the
outcome: the value of x does not enter directly into any of these equations. If the wage is a

7 Mirrlees (1975) shows that the FOA is generally invalid unless the optimum effort derived from the ICC
(the solution to the agent’s maximum problem) is unique. In the absence of uniqueness, the first-order conditions
of the principal’s problem when the ICC is substituted by its first-order condition are not even necessary conditions
for the optimality of the incentive contract. We describe the conditions at the end of section 2.1.

8 Grossman and Hart (1983) show that this can always be done for additively or multiplicatively separable utility
functions. By using the utilities of the wages instead of the wages, the principal’s program with respect to the payment
scheme for any effort can be rewritten as a minimization problem where the objective function is a convex cost
function subject to (a possibly infinite number of) linear constraints. In particular, when the set of possible efforts E
is a finite set, using Kuhn-Tucker one obtains necessary and sufficient conditions for optimality.

9 If the agent is risk neutral, then the multiplier μ is zero and equation (16.1) only gives the value of the
multiplier λ. In this case, any payment scheme whose expected payoff ensures the agent an expected utility level
of U is optimal.
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function of the outcome it serves only as an incentive for the agent. Hence, it only depends
on the outcome as long as the outcome is informative about the effort. In particular, the
necessary and sufficient condition for a better outcome to always lead to a higher wage, that is,
w ∗′(x) > 0, is that the likelihood ratio is increasing in x. This condition is called the monotone
likelihood ratio property (MLRP), which holds when

pe(x | e)

p(x | e)
is strictly increasing in x (MLRP)

for all e > e.10

Moreover, MLRP together with CDFC (convexity of the distribution function condition),
which are often called the Mirrlees-Rogerson sufficient conditions, are sufficient conditions
for the validity of the FOA (Mirrlees, 1976, Rogerson, 1985, and Jewitt, 1988). We say that
a distribution function satisfies CDFC if the second derivative of the cumulative distribution
function P(x | e) with respect to e is non-negative, that is,

∂ 2P(x | e)

∂e 2 ≥ 0.

Hence, the validity of the FOA requires demanding conditions on the probability function
(MLRP and CDFC).11,12

We make two additional remarks about the optimal contract. First, the wage scheme needs
to be simpler as the agent has more room to manipulate the outcome. For example, if the agent
can freely dispose of the output, the optimal payment mechanism is necessarily monotonic
even if the MLRP does not hold. Alternatively, if there are several agents who can trade
output among themselves, then only a linear scheme is feasible (any non-linear scheme will
be “linearized” by arbitrage).13

Second, we have considered payment schemes that only depend on the outcome of the
relationship (the outcome related to the effort is the only verifiable variable). However, the
principal will base the contract on any signals that reveal information on the agent’s effort.
Hence, if possible, the contract should be contingent on many other variables. Information

10 Holmström (1979), Shavell (1979a), and Milgrom (1981) show that under the FOA, if the distribution function
satisfies MLRP then the wage scheme is increasing in output. Note that MLRP is stronger than first-order stochastic
dominance, which requires that ∂

∂e P(x | e) < 0 for all x ∈ (x, x
)

.
11 MLRP and CDFC are very strong conditions and it is difficult to find distributions that satisfy both of them.

The two-step procedure proposed by Grossman and Hart (1983) provides a way of proceeding when the FOA is not
valid.

12 Kirkegaard (2014) recently proposed a reformulation of the moral hazard problem that allows the use of results
from the areas of choice under uncertainty. In this way, he can prove the classic results using an unifying methodology
and also extend the analysis to larger domains than previous work.

13 By considering additional properties of the participants’ objective function, more information on the optimal
contract can be obtained. Imagine that the agent is “prudent,” in the sense that u ′′ < 0 and u ′′′ > 0. A prudent
agent is risk averse and his marginal utility is strictly convex so he is downside risk averse (Menezes, Geiss and
Tressler, 1980). This agent applies a heavier discount to downward variations than to upward variations of the
payment scheme. Chaigneau (2014) shows that concave contracts tend to provide more incentives to risk-averse
agents, while convex contracts tend to be more profitable to motivate prudent ones. The intuition is that concave
payment schemes concentrate incentives where the marginal utility of risk-averse agents is highest, while convex
contracts protect against downside risk. However, when the principal is also risk averse and prudent, convex contracts
are not optimal if the principal is sufficiently prudent relative to the agent (Sinclair-Desgagné and Spaeter, 2013).
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Moral hazard: base models and two extensions 459

related to the state of nature may be useful if it allows better estimates of the agent’s effort, thus
reducing the risk inherent in the relationship. This is known as the sufficient statistic result,
and it is perhaps the most important conclusion in the moral hazard literature (Holmström,
1979). Formally, we say that x is sufficient for {x, y} with respect to e ∈ E if and only if the
distribution function p is multiplicatively separable in y and e :

p(x, y | e) ≡ g(x, e)h(y, x).

We say that y is informative about e ∈ E if x is not sufficient for {x, y} with respect to e ∈ E.
Finally, if y is informative about e ∈ E then there is a payment mechanism w(x, y) that strictly
Pareto dominates the best w(x).

The empirical content of the sufficient statistic argument is that the optimal contract should
exploit all available information in order to optimally filter out risk.14 In the limit, if by
including many variables the agent’s effort can be inferred with certainty, then the symmetric
information effort can be implemented at no extra cost.

Finally, once we have computed the optimal scheme for each e, which we denote
w ∗(x, e)x∈X , the principal can find the optimal effort under the moral hazard problem by
solving

max
e∈E

{
E
(
x − w ∗(x, e) | e

)}
.

The main difficulty of this program is that it is not generally concave in effort. If the
principal’s problem is well defined and has a solution, the optimal effort e ∗ is determined
by the usual condition of equality between marginal revenues and the marginal costs of
increasing the effort, which includes the increase in average wages plus the extra cost in
terms of the incentives needed to increase the effort.15 We notice that some efforts may not be
implementable under moral hazard and that the lowest effort e can always be implemented at
no extra cost using the symmetric information wage scheme.

Example 1 CARA risk preferences and linear contract A particularly simple, and very
popular, model is one where the principal is risk neutral and the agent has CARA risk
preferences:

u(w, e) = − exp [−r (w − v(e))] ,

where r is the coefficient of absolute risk aversion. Additionally, assume that the cost of effort
is a quadratic function

v(e) = 1

2
ve 2.

14 For example, when the principal hires several agents, the central question is whether incentives should be
provided as a function of all agents’ performance. The answer comes from the sufficient statistic result and depends
on the linkage of the agents’ situation, in particular on whether the agents’ outcomes are subject to correlated shocks
(informational linkage) or whether the performance of an agent depends on the effort of other agents (technological
linkage). See Holmström (1982) and Mookherjee (1984).

15 It is interesting to note that under symmetric information the PC determines the optimal effort level, while it
is the cost implied by the ICC that determines the effort when there is moral hazard. The reason is that under moral
hazard and using the FOA the ICC implies that the derivative of the PC with respect to the effort is zero.
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The output x depends on the agent’s effort e and a random variable ε that is normally
distributed with mean zero and variance σ 2:

x = e + ε.

Finally, we restrict attention to linear wage schemes of the form w = F+sx, where F is a fixed
payment and s is the share of the output that goes to the agent.16 In this case, it is convenient
to solve the program using the agent’s certain equivalent income

F + se − 1

2
ve 2 − r

2
σ 2,

in which case the ICC becomes very easy to write: e = s
v .

Solving the principal’s program, the PC determines the fixed part of the contract F and the
variable performance part of the contract is

s ∗ = 1

1 + rvσ 2 , (16.2)

which is decreasing in the cost of the effort v, the agent’s risk aversion (measured by r), and
the variance of the outcome σ 2. Since a higher s translates into a higher effort, the previous
expressions reflect the trade-off between efficiency (optimal risk sharing would require s = 0)
and incentives.17

2.1.2 Model 2: Two efforts
Consider a situation similar to the one discussed in Model 1 but with E = {

eH , eL
}
, that is,

there are only two possible levels of effort: a high effort whose cost for the agent is v
(
eH
)

and a low effort with a cost of v
(
eL
)
< v

(
eH
)
.18 Implementing eL is easy because the same

16 Although linear contracts are generally not optimal in the static setting (see Mirrlees, 1975), Holmström and
Milgrom (1987) show that the optimal contract is linear in the final outcome if the agent chooses efforts continuously
to control the drift vector of a Brownian motion process and he observes his accumulated performance before acting.
Linear contracts are also shown to be optimal in models with limited liability and risk neutrality if the principal is
uncertain about the technology available to the agent (see Carroll, 2015).

17 In a multi-agent situation, the sufficient statistic result is easy to illustrate when the principal hires two agents
with CARA risk preferences and non-cooperative behavior. Linear contracts would have the form

wi = Fi + sixi + zix−i for i = 1, 2.

When zi �= 0 there is relative performance evaluation. Suppose that each agent’s individual outcome depends on the
other agent’s random shock:

xi = ei + εi + ρε−i for i = 1, 2,

where εi, i = 1, 2, follows a distribution N(0, σ 2), and ρ is the degree of correlation among the agents’ outcomes.
Then, in the optimal contract,

s ∗
i = 1 + ρ 2

1 + ρ 2 + rvσ 2
(
1 − ρ 2

) 2 , z ∗
i = − 2ρ

1 + ρ 2 + rvσ 2
(
1 − ρ 2

) 2 .

Thus, for ρ �= 0, there is relative performance evaluation, since the wage of agent i depends on the individual outcome
of agent −i.

18 See, e.g., Grossman and Hart (1983).
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fixed-wage contract that is optimal under symmetric information is also optimal under moral
hazard (the Lagrange multiplier of the ICC is zero). On the other hand, implementing eH

requires taking into account the ICC that, in this case, can be written as

E
(
u (w (x)) | eH)− v(eH) ≥ E

(
u (w (x)) | eL)− v(eL). (ICC2)

The solution to (P1) satisfies, for all x ∈ X,

1

u ′(w ∗(x))
= λ+ μ

(
p(x | eH)− p(x | eL)

)

p(x | eH)
, (16.3)

where (p(x|e
H)−p(x|eL))
p(x|eH)

is the likelihood ratio in the discrete case.
In this model, once the optimal payment scheme that allows the implementation of each

effort has been obtained, finding the optimal effort is straightforward. It comes from the
comparison of the principal’s profits for each effort.

2.1.3 Model 3: Bounded feasible payments
As discussed above, there are important real-life situations where the principal cannot base
the incentives on arbitrarily large bonuses (“carrots”) or fines (“sticks”). We consider now
a situation that shares all the assumptions of Model 1 but where there are lower and upper
bounds for the feasible payments. For each outcome x ∈ X, the salary w (x) must satisfy

w(x) ≤ w(x) ≤ w(x) (16.4)

where w(x) and w(x) are continuous, non-decreasing, and piecewise differentiable, with
w(x) < w(x) for all x ∈ X. Moreover, assume that the MLRP holds. Then, the analysis of
Jewitt, Kadan, and Swinkels (2008) ensures that the optimal payment scheme (w ∗(x))x∈X to
implement an effort e satisfies conditions similar to (16.1) “as much as possible”:

1

u ′(w ∗(x))
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

u ′(w(x))
, if 1

u ′(w(x)) < λ+ μ
pe(x|e)
p(x|e)

λ+ μ
pe(x|e)
p(x|e) , if

1

u ′(w(x))
≤ λ+ μ

pe(x | e)

p(x | e)
≤ 1

u ′(w(x))
1

u ′(w(x))
, if λ+ μ

pe(x|e)
p(x|e) <

1
u ′(w(x))

, (16.5)

for some λ ≥ 0 andμ ≥ 0. A particularly interesting example corresponds to a situation where
there is no upper bound on salaries but there is a minimum wage w (that is, the lower bound is
independent of the outcome). This may be the case, for example, because of the agent’s limited
liability. In this case, the first line of (16.5) has no bite and the third line of (16.5) matters for
low levels of the outcome, because the MLRP implies that the wage scheme is monotone.
Thus, the optimal contract offers the minimum salary wage w until some minimum outcome x̂
is reached and, from this level on, the contract follows a pattern similar to that without bounds.
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2.2 Incentives vs Rents

We now assume that both the principal and the agent are risk neutral and that the sets
X and E are continuous. Moreover, the payments to the agent are subject to lower and
upper bounds.

Without limited liability, and because of the agent’s risk neutrality, there is no benefit in
insuring the agent and the solution of (P1) would be a franchise contract that would lead to
the first-best. The franchise contract has the form w(x) = w − k, where k is the constant that
makes (PC) binding. However, with limited liability, the principal is often forced to give the
agent additional rents so that he has an incentive to provide a high effort.19 Thus, the optimal
contract trades off incentives vs rents.

2.2.1 Model 4: Limited liability
The participants are subject to limited liability so that, in the same spirit as in (16.4), the wage
can neither be negative nor higher than the outcome, that is,

0 ≤ w(x) ≤ x (16.6)

for all x ∈ X. Following the steps in Innes (1990),20 we assume that the MLRP holds,
E {x | e = 0} = 0, a profitable contract exists involving a positive effort, and the total value of
the relationship is strictly concave in e.

Given that higher effort increases the probability of higher outcomes, the contract should
give the agent maximal payoffs in high outcomes. A particularly simple contract emerges
under the additional monotonicity constraint that the principal’s profit cannot be decreasing
in the outcome, that is, x − w(x) is non-decreasing in x.21 In this case, the optimal contract
is a “debt contract” for the principal where she obtains min {x, z}, for some z > 0. Thus, the
optimal salary scheme is

w ∗(x) = max {x − z, 0}

for all x ∈ X. The value z corresponds to the one that makes (PC) binding if U is high
enough.22 If U is very low then (PC) is not binding because (16.6) constrains the payoffs so

19 When the agent has limited wealth, his level of effort may be constrained. Quérou, Soubeyran, and Soubeyran
(2015) study a situation where the principal may need to make an up-front transfer to the agent because the agent
may not have enough resources to pay for the cost of the effort, when this cost is monetary.

20 Holmström (1979) and Lewis (1980) already noted the potential importance of limited liability constraints.
However, Innes (1990) is the first paper to study the impact of liability limits on the qualitative properties of the
optimal contract. Sappington (1983) and Demski, Sappington, and Spiller (1988) also bring in a limited liability
constraint but they assume that the agent chooses the effort e after observing the state of nature. Other papers that
study moral hazard problems with a minimum bound on payments under different assumptions are Park (1995), Kim
(1997), Oyer (2000), Matthews (2001), and Jewitt et al. (2008).

21 The monotonicity constraint may be due to the possibility for the principal to “burn” or “hide” profits, or to the
possibility for the agent to inflate the outcome at a cost if the payment does not satisfy the constraint.

22 Matthews (2001) shows that, under the same restrictions as Innes (1990), debt is still the optimal incentive
contract if the agent is risk averse, renegotiation cannot be prevented, and the agent has all the bargaining power in
the renegotiation game.
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Moral hazard: base models and two extensions 463

much that the principal prefers to give the agent some extra rent to better provide incentives for
effort. In all the cases, the effort implemented under moral hazard is lower than the first-best
level eFB.23

Without the monotonicity constraint, the optimal contract takes the extreme “live-or-die”
contract of the form

w ∗(x) =
{

0, if x ≤ z
x, if x > z

for some value z > 0, whenever this contract leads to an effort level lower than eFB. Otherwise,
a contract proportional to the previous one (that is, a contract that gives sx for x > z) is a solu-
tion to the program (with z and s chosen in an appropriate way) and it implements the first best.

The PC is often not binding in situations where there is limited liability. In other words,
when the limited liability constraint is binding the agent may obtain some rents, making
the participation constraint slack. This is in contrast to the case without limited liability
constraints where, at least when the agent’s utility is additively separable, the agent never
receives rents. Thus, the non-verifiability of the effort when there is limited liability and
the agent is risk neutral may imply a cost either because the optimal contract leads to an
effort lower than eFB, because it gives the agent an informational rent, or both.24 Example 2
illustrates the trade-offs in a simple model with two outcomes.

Example 2 Limited liability and two outcomes In this example, we consider that only
the agent is subject to limited liability, so the only additional constraint to program (P1)
is w(x) ≥ 0. Moreover, two outcomes are possible: success (a “good” outcome), in which
case x = xG > 0, and failure (a “bad” outcome), xB = 0. The probability of success is
p(xG | e) = e and the cost of effort is v(e) = 1

2 ve 2, with v > 0.
The agent’s ICC implies that, under a contract (w(xB), w(xG)), he will select effort e =

w(xG)−w(xB)
v . Once we take this constraint into account, together with the participation and

limited liability constraints, the program that the principal solves is

Max
(w(xB),w(xG))

{
−w(xB)+ (w(xG)− w(xB))(xG − (w(xG)− w(xB)))

v

}

s.t. w(xB)+ (w(xG)− w(xB))
2

2v
≥ U (16.7a)

w(xB) ≥ 0, (16.7b)

which has a solution in which the principal makes non-negative profits if U ≤ x 2
G

2v .

23 Poblete and Spulber (2012) extend the analysis of Innes (1990) by characterizing the optimal agency contract
in more general environments using the state-space (or parametric) representation. They assume a technology x =
x (θ , e), where θ is the state, a random variable with some density and distribution function. They do not assume the
MLRP and introduce a “critical ratio” from which the form of the optimal contract easily follows. In particular, they
provide a weaker condition than the MLRP under which the optimal contract is a debt contract.

24 This framework is also useful for studying more complex situations. See Fleckinger and Roux (2012) for
a comprehensive review of the literature on performance comparison and competition in motivating agents in the
framework where all participants are risk neutral, the agents are protected by limited liability, and they choose their
effort non-cooperatively.
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In the optimal contract, the base salary is zero, w ∗(xB) = 0, because the limited liability
constraint (16.7b) always binds. The participation constraint (16.7a) is also binding if the

agent’s reservation utility U is intermediate (U ∈ [ x 2
G

8v ,
x 2

G
2v

]
). On the other hand, if U is low

(U <
x 2

G
8v ) then the optimal contract gives a rent to the agent: providing incentives requires

separating w(xG) from w(xB) = 0 and the principal prefers to offer a salary w(xG) higher
than the one necessary to satisfy the PC so that the agent chooses a higher effort. The optimal
bonus is

w ∗(xG) =

⎧⎪⎪⎨
⎪⎪⎩

√
2vU, if

x 2
G

8v
≤ U ≤ x 2

G

2v

xG

2
, if U <

x 2
G

8v
.

(16.8)

For intermediate outside utility, the effort increases (it gets closer to the first-best effort

eFB = xG
2v ) while the principal’s profit decreases with U: e ∗ =

√
2U
v and π ∗ = xG

√
2U
v − 2U.

When U <
x 2

G
8v then effort and profits are constant: e ∗ = xG

2v , the utility of the agent is
x 2

G
8v > U

and the principal profit is
x 2

G
4v .

2.3 Incentives to a Task vs Incentives to Another Task

The basic theory of moral hazard considers an agent supplying a one-dimensional effort that
influences a one-dimensional output. However, relationships are often more complicated and
the agent may be responsible for supplying a multi-dimensional effort or performing more
than one task. Holmström and Milgrom (1991) study this extension using a model where the
agent has CARA utility over wage and effort (as in Example 1) and either the tasks are related
in the agent’s cost of exerting them or their outcomes may be subject to correlated shocks.
In this influential paper they discuss, among other issues, the trade-off between the incentives
for different tasks in the extreme case where the outcome is easy to measure in one task while
it is very difficult or impossible to measure (or to verify) in another task.25

2.3.1 Model 5: Moral hazard with two tasks
Consider a risk-neutral principal who hires an agent with a CARA utility function to provide
a vector (e1, e2) of efforts. The cost of the efforts for the agent are summarized in the cost
function

v(e1, e2) = 1

2
v(e 2

1 + e 2
2 )+ δe1e2,

with |δ| < v. The output vector (x1, x2) depends on the agent’s efforts and some random
variable:

xi = ei + εi for i = 1, 2.

25 Holmström and Milgrom (1991) also consider limits on outside activities and how to allocate tasks between the
agents. See also Feltham and Xie (1994).
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The noise of the output function is assumed to follow a normal distribution N (0,
) , with


 =
(
σ 2

1 σ12

σ12 σ 2
2

)
. Finally, the principal offers a payment scheme w(x1, x2) to the agent,

which is assumed to be linear:

w(x1, x2) = F + s1x1 + s2x2.

Focussing on the interior solution, from the ICCs for the two efforts one can derive the
agent’s decision regarding (e1, e2):

ei(s1, s2) = siv − δsj

v 2 − δ 2 ,

for i = 1, 2. Given the expression for the agent’s decision, it is easy to check that if δ > 0 then
there is a substitution effect: the effort in one task decreases when incentives provided to the
other task increase.

The solution of the principal’s problem determines the optimal s ∗
1 (the term s ∗

2 of the
compensation scheme is symmetric):26

s ∗
1 = 1 + rδ

(
σ12 − σ 2

2

)+ rv
(
σ 2

2 − σ12
)

1 + r
(
2δσ12 + vσ 2

1 + vσ 2
2

)+ r 2
(
v 2 − δ 2

) (
σ 2

1 σ
2

2 − σ 2
12

) .

Since there are many effects at work in the expression defining the optimal shares s ∗
1 and s ∗

2 ,
we present two extreme cases of the general situation to better understand the effects at work:

1. If the two tasks are not related to each other in their cost structure, δ = 0, but the random
shocks are correlated, σ12 �= 0, then the incentive mechanism is

s ∗
1 = 1 + rσ 2

2 v − rvσ12(
1 + rvσ 2

1

) (
1 + rvσ 2

2

)− r 2v 2σ 2
12

,

which depends on both tasks’ variance shocks and their covariance. For σ 2
1 = σ 2

2 , s ∗
1 is

decreasing in σ12: the higher the covariance of the two tasks, the lower the weight of each
outcome on the payment scheme. The reason is that with a high covariance, the outcomes
of the two tasks move together and the incentives for the effort on one task derive from
the payments on the output of both tasks.

26 If the two tasks are independent (δ = 0) and there is no correlation of the random shocks (σ12 = 0), then the
incentives are separable,

si = 1

1 + rvσ 2
i

for i = 1, 2,

and the payment scheme is the same as the one obtained in the single-task moral hazard problem.
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2. If the two tasks are related to each other in the cost structure (δ �= 0) but there is no
correlation between the random shocks (σ12 = 0), then in the optimal contract,

s ∗
1 = 1 + r (v − δ) σ 2

2

1 + rv
(
σ 2

1 + σ 2
2

)+ r 2
(
v 2 − δ 2

)
σ 2

1 σ
2

2

.

As expected, s ∗
1 is decreasing on σ 2

1 . Moreover, it is also decreasing on σ 2
2 . Therefore,

when efforts in the two tasks are substitutes then the optimal shares s ∗
1 and s ∗

2 are
complementary. If σ 2

1 = σ 2
2 = 0 then s ∗

1 = s ∗
2 = 1 and the agent is the residual claimant

for both tasks. But if σ 2
1 = 0 and σ 2

2 > 0, then

s ∗
1 = 1 + r (v − δ) σ 2

2

1 + rvσ 2
2

and s ∗
2 = 1

1 + rvσ 2
2

,

where s ∗
1 < 1 if and only if δ > 0. Therefore, even if the outcome of task 1 is a perfect

measure of the effort in this task, the principal decreases the incentives associated with the
outcome of task 1 when tasks are substitutable not to harm the effort supplied in task 2.
On the other hand, if the tasks are complementary then the optimal s ∗

1 is higher than 1.
In contrast, the parameter s ∗

2 does not depend on δ and it is the same as in the traditional
moral hazard.

Finally, if task 1 can be measured and task 2 cannot (which can be represented by
σ 2

2 = ∞) but the agent has some intrinsic motivation for this task, then the optimal
scheme is based on

s ∗
1 = 1 − δ/v

1 + rσ 2
1

(
v − δ 2/v

) , and s ∗
2 = 0.

Here, if the tasks are substitutes (δ > 0) putting effort into one task increases the marginal
cost of the other.27 Therefore, the principal gives the agent a lower incentive to exert effort
in task 1 even when it is easily measurable because she does not want to discourage the
agent’s effort in task 2, which cannot be directly motivated. The higher the cross-effort
effect is (that is, the more substitutable the effort levels are), the lower the optimal s ∗

1 .28

In contrast, if the tasks are complements (δ < 0) the opposite happens, and the agent will
be highly motivated to perform task 1 to encourage effort in the unmeasurable task.

2.4 Incentives to the Agent vs Incentives to the Principal

In many situations, it is not only the agent who must submit an effort or take a decision, but
the principal’s contribution is crucial for the relationship and, just like the agent’s, it is not

27 In a situation where the principal cares especially about the non-measurable task, Holmström and Milgrom
(1991) show that it is best not to provide any incentive to the task with measurable output.

28 Dam and Ruiz-Pérez (2012) study a model where a risk-neutral agent subject to limited liability exerts effort
in two tasks. When the efforts in the two tasks are independent of each other, the optimal contract is a debt contract.
However, if the tasks are substitutes, then revenue sharing emerges as an optimal agreement. Ghatak and Pandey
(2000) also show the optimality of sharing contracts when the risk-neutral agent has to supply an effort and to choose
the riskiness of the production technique.
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Moral hazard: base models and two extensions 467

verifiable. In these situations, the stronger the incentives to the agent (that is, the more the
salary depends on the outcome) the weaker the incentives to the principal (because the less
the principal’s benefit depends on the outcome).

2.4.1 Model 6: Double-sided moral hazard with risk neutrality
When both the principal and the agent are risk neutral, program (P1) is still interesting if we
consider a double-sided moral hazard problem. In this environment, the agent chooses e and,
simultaneously, the principal decides on her effort a ∈ A, at a cost of c(a), with c(.) increasing
and convex. Following the analysis of Bhattacharyya and Lafontaine (1995), assume that the
outcome of the relationship depends on both e and a according to

x = h(e, a)+ ε

where the function h(., .) is increasing and concave in both arguments, the cross-partial
derivative is positive, h(0, a) = h(e, 0) = 0, and ε is a random term with mean zero and
variance σ 2.

The new maximization problem (P1 ′) takes into account that the outcome depends on both
efforts and that there is also an ICC for the principal:

Max{(w(x))x∈X ,e,a}
{E (x − w (x) | e, a)}

s.t. E (u (w (x)) | e, a)− v(e) ≥ U

e ∈ arg max
ê∈E

{E (u (w (x)) | ê, a)− v( ê )}
a ∈ arg max

â∈E
{E (x − w (x) | e, â )− c( â )} .

Bhattacharyya and Lafontaine (1995) show that, without loss of generality, the optimal
sharing rule can be represented by a linear contract

w(x) = F + sx

for some sharing s ∈ (0, 1). A linear contract is not the unique way to achieve the optimal
solution for (P1 ′) but there is always an optimal solution that is linear.29 In terms of incentives,
the crucial element of any optimal contract is its slope at the optimum. By choosing a linear
rule with the slope of any optimal sharing rule (and adjusting the fixed fee), exactly the same
incentives and total payments can be achieved as with the initial rule.

The optimal sharing s ∗ makes a trade-off between providing incentives to the agent and
providing incentives to the principal. Once s ∗ is determined, the fixed part of the contract
F ∗ is easily obtained because the agent’s participation constraint is binding. While it is not
possible to obtain simple, closed-form expressions for the optimal sharing rule and the levels
of the optimal efforts on the part of the two parties in general, a very simple example allows
us to grasp most of the intuitions.

29 Romano (1994) obtains a similar result.
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Example 3 Double moral hazard with linear outcome Following Ghatak and Karaivanov
(2014), consider30

h(e, a) = αθAθP + θAe + θPa

where θA ≥ 1 and θP ≥ 1 represent the agent’s and principal’s ability to perform his or her
task, respectively, and α is a parameter capturing the extent of the types’ complementarity in
production. Moreover, v(e) = 1

2 e 2 and c(a) = 1
2 a 2.31 Then, the optimal sharing s ∗ derived

from (P1 ′) is

s ∗ = θ 2
A

θ 2
A + θ 2

P

,

which gives more weight to the relatively more important participant: s ∗ > 1/2 (and the
share that goes to the principal satisfies (1 − s ∗) < 1/2) if and only if θA is larger than θP,
and s ∗ is increasing in θA and decreasing in θP. Given the optimal contract, the efforts under
double-sided moral hazard are

e ∗ = θAs ∗ = θ3
A

θ 2
A + θ 2

P

and a ∗ = θP
(
1 − s ∗) = θ3

P

θ 2
A + θ 2

P

. (16.9)

Both efforts are lower than the corresponding first-best efforts that in this model are eFB =
θA and aFB = θB.32 However, the optimal sharing rule solves the trade-off with respect to
the incentives for the principal and the agent by inducing a smaller distortion to the most
important participant, that is,

eFB − e ∗ > aFB − a ∗ ⇐⇒ θA < θP.

3 BEHAVIORAL APPROACH

The classical moral hazard problem assumes full rationality and standard preferences.
Recent behavioral research on moral hazard, encouraged by experimental results, attempts to
understand the implications of agents’ non–fully rational and non–purely selfish preferences
on the shape of the incentive contracts. What follows is not a review of the behavioral
literature but provides some examples of how departures from the classical model affect the

30 We note that Example 3 does not satisfy all the assumptions of Model 6 because h(0, a) > 0, h(e, 0) > 0, and
∂ 2h
∂a∂e (e, a) > 0.

31 The objective in Ghatak and Karaivanov (2014) was to study the contractual choice in agriculture, taking into
account that two different tasks are necessary, following a model in the spirit of the classic Eswaran and Kotwal
(1985) model.

32 The first-best cannot be achieved (even though both partners are risk neutral) because there is no “budget-
breaker” (or residual claimant) that is, it is not possible to propose a contract where the total remuneration of the
principal and agent is higher than the outcome sometimes and lower other times. This is similar to Holmström (1982)
who shows that joint production cannot lead to efficiency when all the income is distributed amongst the agents, i.e.,
if the budget constraint always binds.
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conclusions obtained in section 2. We briefly present the consequences of considering other-
regarding preferences, intrinsic motivation, loss aversion, and overconfidence.33 In each of the
following behavioral approaches, a new effect appears. For example, in the inequality aversion
extension, the incentive contract is the issue of the trade-off between insurance, incentives,
and fairness. Similarly, in the overconfidence extension the optimal payoff scheme makes a
trade-off between optimal risk sharing, incentives, and gambling.

3.1 Other-regarding Preferences

There is evidence pointing to the existence of people or institutions who are not just concerned
about their own payment scheme but also care about other participants’ well-being (see Rabin,
2002, Englmaier, 2005, and Sobel, 2005, for reviews of the literature). To illustrate the
meaning of these type of preferences in our framework, consider the interaction between a
principal and an agent in which case the payment of the participants are described by the
vector (x − w(x), w(x))x∈X . If the agent (a similar argument can be done for the principal) is
only concerned about the second element of this vector then we are in the classical framework.
In contrast, when he cares about the whole vector of payoffs (or of utilities) then we say that
the agent has other-regarding preferences.

There are several ways in which the agent can experience other-regarding preferences.
A first possibility is that he has a utility function similar to a weighted social preference
(Segal and Sobel, 2007), such as

U(w(x), x − w(x), e) = u (w(x)+ δ(x − w(x)))− v(e).

In this case, the agent is altruistic if δ is positive, while he is spiteful if δ is negative.34 The sign
of δ also determines whether the contract is more or less costly for the principal, as compared
to the classical framework where δ = 0.

Dur and Glazer (2008) study an environment where the agent is other-regarding because he
envies the principal. They show that envy tightens the agent’s participation constraint and the
optimal contract calls for higher wages and lower effort requirements.

Inequality aversion is a second form of other-regarding preferences (see Fehr and Schmidt,
1999, and Bolton and Ockenfels, 2000). Focusing again on the agent’s behavior and denoting
the difference between the principal and the agent’s payoffs as d(x) ≡ x − 2w(x), an easy
example of a utility function that represents an inequality-averse agent is

u(w(x), x − w(x), e) = w(x)− δ (max {d(x), 0} + γ max {−d(x), 0})− v(e). (16.10)

33 See Köszegi (2014) for the latest survey of behavioral contract design.
34 We concentrate the discussion on the cases where the agent is other-regarding. One can similarly define an

other-regarding preference principal as

B(x − w(x), w(x)) = x − w(x)+ δP (w(x)− v(e)) .

Also notice that the coefficient δi, for i = P, A, could be a function of the distance between x−w(x) and w(x)−v(e),
in such a way that, for example, i may care more about the difference in earnings if s/he is the one getting less than
if s/he is the one getting more as in Fehr and Schmidt (1999) and Bolton and Ockensfels (2000) discussed below.
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The parameter δ, with δ ≥ 0, measures the extent of the agent’s concern about the difference
in earnings. If δ > 0, the agent is inequality averse and if γ ∈ [0, 1) the agent suffers more
from inequality when he is behind than when he is ahead.

Providing incentives to an inequality-averse agent is often more costly than to a classical
agent. The intuition is that as the project is more profitable, more inequality is created and
it is more expensive to satisfy the ICC. To illustrate this effect, we follow Itoh (2004) and
consider a simple model where both participants are risk neutral, the agent is protected by
limited liability, there are two efforts, E = {

eH , eL
}
, and two outcomes, X = {xG, xB = 0} .

The probabilities of success are p(xG | eH) = pH and p(xG | eL) = pL, and the cost of effort
is v(eH) = v > 0 = v(eL). Assume that the principal wants the agent to exert effort eH . Then,
taking into account that the limited liability binds (wB = 0), the ICC takes the form

(pH − pL)
[
wG − δ (max {d(xG), 0} + γ max {−d(xG), 0})] ≥ v.

The incentives (the left-hand side of the ICC) are decreasing in δ; hence, the principal’s profits
are decreasing in δ and she is in general worse off when hiring an inequality-averse rather than
a classical agent.35

In a model where the inequity aversion is convex in the difference in the payoffs, Englmaier
and Wambach (2010) find a tendency toward linear sharing rules as the agent’s concern
for inequity become more important, in line with other findings that the more complex the
situation is the simpler the optimal incentive scheme tends to be.36 Interestingly, given that the
contract now has to balance among three objectives (risk sharing, incentives, and inequality
concerns) Englmaier and Wambach (2010) also find that the sufficient statistics result is
violated because optimal contracts may be overdetermined or incomplete. To understand the
intuition, consider a situation with two sources of information: the outcome related to the
agent’s effort and another variable. First, if this other information is not related to the agent’s
effort but just to the principal’s profit, then the second measure will be included in the contract
(which will thus include non-informative performance measures) because the set of variables
used in the payment scheme no longer serve only as a signal of the agent’s effort but also deal
with the agent’s concern about an equitable treatment. Second, if the second variable (second-
order stochastically) dominates the outcome, it may be optimal to concentrate the incentives
on the outcome (neglecting informative performance measures) because this is the variable
the agent is interested in when he is inequality concerned.

A third form of other-regarding preferences is reciprocal behavior, where the agent may
take into account the behavior of the principal, in such a way that the agent will reciprocate
and take a decision that also benefits the principal (supplying higher effort) if she takes a
decision that benefits the agent (paying higher wages) (Rabin, 1993).37 If an agent follows the
previous behavior, monetary incentive and reciprocal motivation are substitute goods and the
agent’s PC may not be binding at the optimal contract. To illustrate how these two incentive
tools are combined in the optimal contract, we present a simplified version of Englmaier and
Leider’s (2012) model, where the agent has reciprocal references.

35 In this model, the effect is particularly straightforward because there is no inequality if the outcome is xB.
36 The convexity of the inequality term δ(d(x)) implies an aversion to lotteries over different levels of inequity.
37 Akerlof (1982) explained the labor relation as a gift exchange where agents respond to a generous wage scheme

offered by the principal by exerting more than minimal effort. See, e.g., Dufwenberg and Kirchsteiger (2004) and
Falk and Fischbacher (2006) on reciprocity in sequential games.
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We consider a risk-neutral principal and a risk-averse agent. There are two possible
outcomes: success (xG) and failure (xB), with xG > xB. The agent chooses between two
efforts: e ∈ {

eL, eH
}
, with p(xG | eH) = pH > pL = p(xG | eL). A contract takes the

form (wG, wB, eH), where we assume that the principal is interested in obtaining effort eH .
The effort eH is not enforceable but is “the job description.” The agent is reciprocal, in the
sense that his expected utility under (wG, wB, eH) if he provides effort e is

p(xG | e)u (wG)+ (1 − p(xG | e))u (wB)− ve + δR(eH)r(e),

where R(eH) ≡ p(xG | eH)u (wG)+ (1 − p(xG | eH))u (wB)− veH − U is the agent’s expected
rent under the job description, r(e) ≡ p(xG | e)xG + (1 − p(xG | e))xB is the principal’s
expected revenue if the agent chooses e, and δ is the intensity of the agent’s reciprocal
behavior. With this utility function, the agent experiences reciprocal motivation only if the
contract gives him an expected utility higher than his reservation utility (that is, if the PC does
not bind). The agent’s ICC is

(
pH − pL) (u (wG)− u (wB))+ δR(eH)

(
pH − pL) (xG − xB) ≥ v

(
eH − eL) .

It is worthwhile noticing that a high enough fixed payment w̃ can implement the effort eH .
The condition is that w̃ satisfies

δ
[
u (w̃)− veH − U

] (
pH − pL) (xG − xB) ≥ v

(
eH − eL) .

The ICC is always binding at the optimal contract, but the agent’s PC may be binding or
not. The optimal contract is a standard one for low values of δ, providing no rents to the
risk-averse agent, whereas it is a reciprocity contract that gives the agent a utility larger than
his reservation utility for large values of δ.38 When rents are provided to the agent, the FOC
of the principal’s program with respect to w(x) can be written as

1

u ′(w ∗(x))
= μ

(
p(x | eH)− p(x | eL)

p(x | eH)
+ δ

(
pH − pL) (xG − xB)

)
,

which implies that monetary and reciprocity motivations are substitutable.39

38 In fact, for very large values of δ the first-best solution can be arbitrarily closely approximated with a contract
that gives the agent an infinitesimal rent (Englmaier and Leider, 2012).

39 Behavioral models have been very useful in analyzing multi-agent situations. It is interesting to note that since
inequality-averse agents care about other agents’ remuneration, to reduce inequity among agents, their payments
will tend to depend on other agents’ performance, even if they are statistically and technologically independent. For
example, Englmaier and Wambach (2010), Goel and Thakor (2006), and Bartling (2011) show that inequity aversion
or envy among agents may render team incentives optimal. Itoh (2004) finds that inequity aversion when agents are
subject to limited liability may allow agency costs to be reduced. Rey-Biel (2008) finds that the principal can always
exploit inequity aversion to extract more rents from her agents. Demougin and Fluet (2006) compare group and
individual bonus schemes for behindness-averse agents and derive conditions under which either scheme implements
a given effort level at least costs.
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3.2 Extrinsic and Intrinsic Motivation

The classical moral hazard model is based on designing incentives to provide extrinsic
motivation to the agent. The so-called extrinsic motivation is the one that is derived from the
monetary incentive scheme. In contrast, an agent’s intrinsic motivation comes from the utility
obtained from achieving some goal set by himself, the society, the principal, or from working
for a particular type of principal, such as one who honors some community (environmental
or another form of social) standards. The simplest agent’s utility function that represents an
agent with both intrinsic and extrinsic motivation is

U(w, e, s) = w + Im − v(e),

where I ≥ 0 is the intrinsic motivation (I = 0 in the classical model), and m is the source of
this motivation. We briefly discuss the consequences of some sources of intrinsic motivation.40

Intrinsic motivation may come from the agent’s perception of the world, which may depend
on the contract the principal offers. The underlying idea in this approach is the following. The
agent expects to offer a predetermined effort and to receive a fixed-fee (first-best) payment.
However, if he is offered an incentive contract instead, his perception of the relationship
changes and he becomes aware of the possibility of shirking.41 Thus, providing extrinsic
incentives for the agent can be counterproductive because it may crowd out his intrinsic
motivation, leading to lower effort levels and lower profits for the principal (Kreps, 1997,
and James, 2005). For example, Auster (2013) and Von Thadden and Zhao (2012, 2014)
study a situation where agents are unaware of the full effort problem and they make a default
effort when offered an (incomplete) full insurance payoff, while they become aware of the
effort problem and behave strategically if they are offered the optimal moral hazard contract
(see also James, 2005). Similarly, Bénabou and Tirole (2003) consider a principal–agent
model where the principal is better informed than the agent about the agent’s characteristic,
and show that performance incentives lead to an increase of the agent’s effort in the short run
but they are negative reinforcements in the long run.42

Another source of intrinsic motivation may be due to some characteristic (or to a verifiable
decision) of the principal (Murdock, 2002, and Besley and Ghatak, 2005). To better explain
this approach, suppose that the two participants are risk neutral, the agent’s payoff is
constrained to be non-negative (that is, there is limited liability), and there are two possible
outcomes: success (xG) and failure (xB), with xG > xB = 0. The set of possible efforts is
E = [0, 1] and p(xG | e) = e. A principal has a certain type, or a mission orientation, and
the agent’s preferences can be aligned with a particular mission or with none of them. The
public type of the principal is τ , with τ ∈ {0, M}. A type-0 principal has no mission and
is the traditional profit-maximizing partner, whereas type-M principals have a mission. The
agent is mission-oriented. The source of his intrinsic motivation is that he cares about the

40 Some cases of other-regarding behavior, such as that of social preferences (for m = x − w(x)) or the reciprocal
motivation model presented in the previous subsection, can also be understood as models of intrinsic motivation.

41 This can be seen as a form of bounded rationality.
42 The intuition is that when the principal pays a bonus to induce low-ability agents’ to work (the principal

increases the agent’s extrinsic motivation), then the agent perceives the bonus as a bad signal about his own ability
(she reduces the agent’s intrinsic motivation). Kirkegaard (2015) studies a model where the agent works for the
principal and simultaneously pursues private benefits. He shows that the optimal contract may offer high rewards but
flat incentives to lessen the agent’s incentive to pursue private benefits, his intrinsic motivation.
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Moral hazard: base models and two extensions 473

success of his job when he works for a principal with a mission.43 His utility function can be
represented by44

U(w, e, x) = w + I(x, τ)− 1

2
e 2, (16.11)

where I(x, τ) depends on the outcome x and the type of the principal τ . In case of failure
I(xB, τ) = 0, for all τ . In case of success, I(xG, τ = M) > I(xG, τ = 0) = 0, that is, when
the mission-oriented agent works for a type-0 principal, he behaves as a traditional agent.
I(xG, τ = M) is the intrinsic utility that the agent derives from the success of his work for a
type-M principal.

This model is an extension of Example 2 (with v = 1) and the expression for the optimal
bonus in this environment is also very similar to (16.8):

w ∗(xG) =
{ √

2U − I(xG, τ), if (xG+I(xG,τ)) 2

8 ≤ U ≤ (xG+I(xG,τ)) 2

2

max
{

0, xG−I(xG ,τ)
2

}
, if U <

(xG+I(xG ,τ)) 2

8

. (16.12)

The effort implemented by the agent is e ∗ = √
2U for the intermediate region of U whereas it

is e ∗ = max
{

I(xG, τ), xG+I(xG ,τ)
2

}
when U is low. Thus, a higher intrinsic motivation I(xG, τ)

results in a higher (or equal) effort by the agent at a lower cost in terms of bonus.45

3.3 Loss Aversion

There is also evidence that some individuals do not evaluate payoff in absolute terms but
in comparison with some reference point (Kahneman and Tversky, 1984). Loss aversion is
the reference-dependent preference that has been most studied, a type of preference that may
explain why contracts framed as bonuses are much more prevalent than contracts framed as
penalties (see, e.g., Aron and Olivella, 1994). The idea is that, evaluated at the reference point,
the marginal utility of a loss is larger than the marginal utility of a gain, so that the agent’s
utility function has a kink at this reference point. We present the basic loss aversion model by
De Meza and Webb (2007) with an exogenous reference wage, which fits within the structure
of Model 2, where e ∈ {

eL, eH
}
. Consider that the principal is risk neutral and the agent is

risk averse with loss aversion with respect to a reference wage w R:

43 A type-0 agent would be the traditional agent who does not care about the type of the principal and we would
be back to the traditional moral hazard problem, whatever the type (mission) of the principal is.

44 The model can be extended by allowing the principal to choose the “mission,” taking into account the effect of
the choice in the agent’s incentives (Besley and Ghatak, 2005).

45 Guo (2016) also analyzes a model where the agent has extrinsic motivation, in addition to the monetary
incentives, associated with a principal’s decision. In her paper, the extra motivation of the agent (an employee)
comes when his principal (a manager) invests in a non-contractible employee-friendly relationship. In Guo (2016),
the utility function of the agent has the form

U(w, e, m) = u(w) − v(e, I(m))

because the agent’s extrinsic motivation influences his effort disutility. The investment in the relationship can also
benefit the principal because, for example, the employee may support the manager if she faces a replacement threat.
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U(w, e) = u (w)− 1w<wR l
(
u
(
wR)− u (w)

)− v (e) ,

where the index 1w<wR = 1 if w < wR and 1w<wR = 0 if w ≥ wR; and l > 0 is the loss the
agent suffers when the wage is lower than the reference wage wR.

Assume that MLRP is satisfied and that the principal aims to implement the high effort.
Then, from the first-order condition of the principal’s problem, we obtain

1

u ′(w ∗(x))
= (1 + ν(x)l)

(
λ+ μ

p(x | eH)− p(x | eL)

p(x | eH)

)
. (16.13)

where ν(x) ∈ [0, 1] is an instrument to handle the kink in the agent’s utility. If w < wR , loss
aversion applies and ν(x) = 1; if w > wR, loss aversion does not apply and ν(x) = 0; and if
w = wR, then the ICC holds with equality for ν(x) ∈ [0, 1] .

From (16.13), De Meza and Webb (2007) derive that loss aversion does not affect the
condition if wR is very low (ν(x) = 0 for all x) and, as in Model 2, w ∗(x) is strictly increasing
in outcome. Similarly, if wR is very high (ν(x) = 1 for all x) then w ∗(x) is also strictly
increasing in outcome. However, in the remaining cases loss aversion affects the optimal
payment scheme, and there are zones (for the lower, the intermediary, or the higher outcomes)
where the agent receives a flat wage equal to wR.46

In the presence of loss aversion or reference-dependent preferences, the principal designs
incentives by taking into account both the induced risk sharing and the agent’s loss aversion.
The wage scheme will be a function of the outcome at least for certain outcomes, but it tends
to have a significant number of outcomes where the payment is flat.47

3.4 Overconfidence

Contracts are based on the principal’s and agent’s beliefs (correct or incorrect) and, in the
standard moral hazard model, it is customary to assume that both participants share the same
beliefs about the uncertain elements of the relationship. However, we may think of situations
where beliefs are different but each knows the view of the other (they “agree to disagree”).
This may correspond to environments where the agent is “optimistic” and “overconfident”
or he has different beliefs to the principal concerning his abilities (he can have a positive or
negative self-image as compared to what the principal thinks). Santos-Pinto (2008) and De
la Rosa (2011) consider a moral hazard model when the principal and agent have (public)
asymmetric beliefs.

We present the basic elements and results within a structure close to Model 1. Consider
that the principal is risk neutral and the agent is risk averse, with utility function U(w, e) =
u (w) − ve, and that there are two possible outcomes: success (xG) and failure (xB), with
xG > xB. We denote pP(x | e) and pA(x | e) the principal’s and the agent’s beliefs for outcome
x ∈ {xG, xB} for a given effort e ∈ E. The beliefs are asymmetric if pA(x | e) �= pP(x | e) for at

46 They also show that if, in addition, there is a limited liability constraint w ≥ w (with w < wR), then it is optimal
not to have payments in the interval (w, wR) and w∗(x) is discontinuous.

47 Köszegi and Rabin (2006, 2007) show that the optimal payment scheme often has two wages (and incentives are
based on a bonus). De Meza and Webb (2007) find that when the reference wage is the median wage, the incentives are
based on performances over the median. When the reference point is endogenous, Herweg, Müller, and Weinschenk
(2010) show that the rational expectation about the wage is the expected wage.
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Moral hazard: base models and two extensions 475

least some e ∈ E, and we can say that the agent exhibits a positive self-image of own ability
(or he is optimistic) if pA(xG | e) > pP(xG | e), for all e ∈ E.

The existence of different beliefs affects the contract even under symmetric information.
In this case, the wage scheme to implement an effort e satisfies

1

u ′(w ∗(x))
= λ

pA(x | e)

pP(x | e)
.

Hence, full insurance (which results when pA(x | e) = pP(x | e)) no longer holds. Since
the principal and agent have different views of the uncertain situation they are involved in,
they can agree on a side-bet in such a way that both think they can gain. In the first-best,
an optimistic agent will be paid more in the case of success (because the principal thinks
this bonus will not be paid that often) and a pessimist will be paid more in the case of
failure.48 In addition, whether the agent is right or wrong in his beliefs, with the contract
he will obtain his reservation utility according to his subjective beliefs (PC always binds).
From her perspective, the cost to the principal of implementing high efforts is lower than in
the standard model and it decreases with the agent’s optimism and overconfidence.49

After the analysis of the contracts under symmetric information, it is easy to see that under
moral hazard it can be the case that it is less expensive for the principal to implement the high
rather than the low effort.50 If the agent is optimistic or overconfident enough, the first-best
risk-sharing incentive scheme may induce the agent to exert high effort under moral hazard.
In general, as shown by Santos-Pinto (2008), to induce the agent to work the asymmetry of
beliefs can be either favorable or unfavorable, depending on whether the agent is overconfident
or the opposite. De la Rosa (2011) and Gervais, Heaton, and Odean (2011) highlight that the
reason for the asymmetries also matters. Incentive contracts are sensitive to the kind and level
of overconfidence, not only to the presence of overconfidence per se. For example, in De la
Rosa (2011) beliefs take the functional forms

pP(xG | e) = qP + θPe, and pA(xG | e) = qA + θAe,

with qI > 0, θI > 0 and qI + θI < 1 for I = P, A. Then, assuming e ∈ {
eL = 0, eH = 1

}
, if

qA > qP the agent is optimistic, if θA > θP the agent is overconfident, and he is overconfident
overall if qA > qP and qA + θA > qP + θP. If the high effort is implemented, the principal’s
expected profit increases in both the agent’s level of optimism and overconfidence. But if
the low effort is implemented, the principal’s expected profit increases in the agent’s level of
optimism or pessimism, for an optimistic or a pessimistic agent, respectively, and it decreases
in the agent’s overconfidence if the agent is significantly optimistic.

48 As Santos-Pinto (2008) points out, if an agent is risk neutral and has mistaken beliefs, the principal’s problem
does not have a solution because the principal can always increase her profits by raising the stakes of the side-bet.
This implies that when the agent is risk neutral but is protected by limited liability then, in the optimal contract, the
limited liability constraint is binding.

49 It is usual to assume that the agent is the one mistaken about the real technical conditions of the production
process, but it is also possible that the opposite is true.

50 Another classical result in moral hazard with symmetric beliefs is that for the lowest effort the optimal contract
under moral hazard and under symmetric information coincide. This result may not hold under overconfidence.
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4 PRINCIPAL–AGENT MARKETS

The models that we have discussed above, and almost all the papers that study settings
involving a moral hazard problem, take the identity and the characteristics of the participants
in the relationship as given. They consider an isolated principal–agent situation (or an isolated
relationship among several principals and/or several agents) and analyze the optimal contract
(contracts) in this relationship. The principal assumes all the bargaining power, and the agent
is ready to accept a contract as long as it guarantees him his exogenously given reservation
utility.

The previous description is a good fit for situations where the participants in a contract
cannot be easily replaced, as is the case for the relationship between a regulator and a firm.
However, most often, a principal can look for alternative agents and an agent can look for
alternative principals. When several principals and several agents exist in this “market,”
in addition to the question about the optimal contracts, we can address the endogenous
determination of the identity of the pairs that meet (i.e., the matching between principals
and agents). In particular, we can study whether, at equilibrium, there is positive assortative
matching (PAM) or negative assortative matching (NAM). A PAM between principals and
agents with respect to, say, ability (or any other characteristic, such as risk, type, etc.) exists
if the partner A of a principal P with a higher ability than another principal P ′ has a higher or
equal level of ability than the partner A ′ of the principal P ′. A negative assortative matching
is defined in a similar manner.

Furthermore, the alternative relationships that could be formed in the market are crucial to
understanding the endogenous level of payoffs that each principal and agent obtain and some
of the properties of the contract.

The theory of “two-sided matching models” provides the tool with which to study markets
where heterogeneous players from one side (principals) meet with heterogeneous players
from the other side (agents).51 The equilibrium of the market determines the identity of the
partners that actually sign contracts (that is, the “matching”) together with the profits that
they obtain and the characteristics of the contracts.52 Equilibrium outcomes satisfy two useful
properties. First, equilibrium contracts are always Pareto optimal; hence, we can use what
we have learned from the analysis of isolated relationships. Second, if utility is transferable
(that is, it is possible to transfer one unit of utility from the principal to the agent) then any
equilibrium matching is efficient in the sense that it maximizes “total surplus”: the sum of all
the profits in the market cannot be increased by reassigning principals and agents.

We now discuss some of the new lessons from matching models with contracts.

51 The book by Roth and Sotomayor (1990) made the theory of two-sided matching models popular and accessible.
Gale and Shapley (1962) started it by studying “the marriage market,” where each participant (in their case, a man
or a woman) is only concerned about the characteristics of the members of the other side of the market (women or
men, respectively). Shapley and Shubik (1972) broaden the set of applications of this theory by considering, in “the
assignment model” that the utility derived from a relationship not only depends on the characteristics of the partner
but also on money, which can be exchanged among partners as part of the agreement.

The assignment model can be easily extended to situations where not only money but also contracts are
endogeneously decided simultaneously with the matching, as long as utility is transferable one-to-one between
principals and agents. In other cases, the analysis is more complex but the contribution by Kaneko (1982) allows
us to also use this tool.

52 Any competitive equilibrium is also a stable outcome and vice versa, where stability means individual
rationality together with the property that no principal–agent pair can be better off by leaving their current partners
and signing a new contract among them.
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4.1 The Relationship Between Risk and Incentives

A quite robust prediction of the moral hazard literature is the negative relationship between
risk and performance pay (e.g., Holmström and Milgrom, 1987): the higher the risk of the
project the agent is working on, the lower the incentives included in the contract. When the
agent has CARA risk preferences, we have seen in (16.2) that the variable part of the contract
s ∗ is decreasing in the risk of the relationship, represented by the variance σ 2. The CARA
assumption also implies that utility is transferable because the principal can give or take away
utility directly through the fixed part of the contract F.

To study whether this conclusion also holds when principals and agents interact in a market,
consider that there exists a set of principals who are heterogeneous in the risk (variance) of
their production process: each principal is associated with the variance of her project σ 2, with
σ 2 ∈ [

σ 2
L , σ 2

H

]
. There is also a set of agents, heterogeneous in their risk-aversion attitude:

each agent is identified by his degree of risk aversion r, with r ∈ [rL, rH]. Both populations
have the same mass.53

Serfes (2005) analyzes how the degree of risk aversion of an agent relates to the risk of the
project he is involved in at equilibrium. He provides the answer for two interesting cases: (a) if
σ 2

L rL ≥ 1/v (that is, the risk and/or the degree of the agent’s risk aversion are always large)
then there is PAM: low risk-averse agents are matched with low-risk principals (projects)
and vice versa; and (b) if σ 2

H rH ≤ 1/v (that is, the risk and/or the degree of the agent’s risk
aversion are always small) then there is NAM: low risk-averse agents are matched with high-
risk principals (projects) and vice versa.

If we now rethink the relationship between risk and performance pay, there are two effects.
There is the direct effect of σ 2 on s, the same that is present in the standard principal–
agent model, which is always negative. There is also an indirect effect of σ 2 on s through
the assignment that may be negative (if PAM, because a high σ 2 is matched with a high r,
which leads to a low s) or positive (if NAM). Thus, while the relationship between risk and
performance pay is certainly negative if σ 2

L rL ≥ 1/v (because of PAM), it can be positive or
have any other shape (like a U shape), otherwise.

Using a similar model, Li and Ueda (2009) analyze the relationship between risk and ability.
As in Serfes (2005), each principal is characterized by the variance of her project but, in
contrast with that paper, Li and Ueda (2009) assume that agents are heterogeneous in terms of
ability. At equilibrium a better agent is matched with a firm whose project has lower variance.
In their set-up, this provides an explanation for the fact that safer firms receive funding from
more reputable venture capitalists.

4.2 The Nature of the Matching Between Principals and Agents Under Moral Hazard

The presence of moral hazard in a relationship not only changes the characteristics and
efficiency of the contract, it may also influence the identity of the principals and agents that
decide to establish a partnership. We illustrate a reversal in the nature of the matching using
the model introduced as Example 3, due to Ghatak and Karaivanov (2014), where principals

53 Although the matching models typically involve a finite set of members on both sides, here we present the
continuous model, as in Serfes (2005), because the conditions are easier to write. See also Serfes (2008) for a similar
analysis with discrete sets.
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and agents are risk neutral and the relationship of a principal with characteristic θP and an
agent with characteristic θA produces an output of h (e, a) = αθAθB + θAe + θPa + ε.

We now consider a finite set of heterogeneous principals, each endowed with a characteris-
tic θP and a finite set of heterogeneous agents, each endowed with a characteristic θA. Assume
for simplicity that the size of the two sets is the same, and θA and θP are always higher than 1.

If efforts are contractible, then the first-best efforts are eFB = θA and aFB = θB, and the
expected value of the outcome is h

(
eFB, aFB

) = αθAθB+θ 2
A +θ 2

P . Thus, if we take into account
the cost of the effort, the joint surplus in the relationship, as a function of the characteristics
(θA, θP), is

SFB (θA, θP) = αθAθB + 1

2

(
θ 2

A + θ 2
P

)
.

For every α ≥ 0 the function is increasing in the characteristics θA and θP and the

cross-partial derivative ∂ 2SFB

∂θAθP
(θA, θP) is non-negative. Then, applying results by Legros and

Newman (2002) (see also Becker, 1973), the equilibrium satisfies PAM: principals with a high
characteristic θP end up working with agents with a high characteristic θA, and vice versa.54

If efforts are not contractible, then the optimal sharing rule decided by any partnership
formed makes a trade-off between providing incentives to the principal and the agent. The
second-best efforts are given by (16.9) and the joint surplus in the relationship is

S (θA, θP) = αθAθB + 1

2

(
θ 2

A + θ 2
P

)
− 1

2

θ 2
A θ

2
P(

θ 2
A + θ 2

P

) .

The cross-partial derivative of S (θA, θP) is now negative for positive but low values of α.
Therefore, if α is low then the equilibrium satisfies NAM: principals with a high characteristic
θP end up working with agents with low characteristics θA and vice versa.

Due to the incentive problem, the modularity of the joint surplus under moral hazard
depends on both the complementarity of the characteristics in the production function and the
endogenous efforts, which depend on the optimal sharing rule. This rule provides incentives
to each participant as a function of the magnitude of his/her type relative to the other. Better
incentives are provided to θP when θA is low rather than when it is high. Therefore, the positive
effect of an increase in, say, θP on eP is lower the higher θA is. This effect induces a certain
substitutability between the types that more than compensates the complementarity in the
production function when α is low.

Chakraborty and Citanna (2005) and Kaya and Vereshchagina (2015) also study the nature
of the matching in a market where each partnership is subject to double-sided moral hazard.
In their contributions, the market has only “one side,” instead of “two sides,” that is, each
of the participants can play either of the two roles in the partnerships. Chakraborty and
Citanna (2005) propose a model where individuals are heterogeneous in wealth and are
subject to limited liability. The wealth level of the individual can matter because of the

54 Most models that analyze whether the equilibrium satisfies PAM or NAM consider joint surplus functions that
are twice differentiable in the characteristics and hence they use the cross-partial derivative of the joint surplus to
assert the nature of the matching. However, as Besley and Ghatak (2005) state, non-standard matching arguments are
needed in the analysis of horizontal characteristics, that is, when the value function is not twice differentiable in the
arguments, for example because it depends on the distance between the characteristics of the principal and the agent.
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limited liability, but everyone has identical incentives to hire a rich individual. Thus, under
symmetric information, any matching is efficient. However, one of the tasks in the partnership
is more effort-intensive than the other. Under moral hazard, to facilitate incentive provision,
richer individuals have to be allocated to more effort-intensive tasks, which results in NAM
at equilibrium. In Kaya and Vereshchagina (2015), individuals are heterogeneous because
(for a given effort) their contribution is different: some individuals are better than others.
They study a repeated interaction where, once a partnership is formed, the partners produce
a stochastic output in each period. As before, in the absence of moral hazard, equilibrium
sorting is indeterminate. However, there are two cases in which moral hazard leads to the
formation of heterogeneous teams: when one of the partners makes an inefficient effort (NAM
is due to the same reasons as above), and when the optimal level of effort can be sustained by
both partners at the beginning of the relationship, and the partners’ types either increase the
marginal product of effort or have little impact on the output, so that the output realization is
a very informative signal of the effort (NAM is efficient in this case because it allows better
punishment strategies).

The moral hazard problem also has an influence on the equilibrium sharing of the surplus
between principals and agents. Although total surplus is reduced because of the moral hazard,
an agent with a high θA may end up obtaining higher rents because of the existence of the
moral hazard problem. When there is moral hazard, a “good” agent is more appealing for a
principal with low θP, who would be ready to pay him more, increasing his “market bargaining
power” (and his expected payoff) with a principal with a high θP (see Macho-Stadler and
Pérez-Castrillo, 2014).

In the previous model, the moral hazard problem induces a reversal of the nature of the
partnerships compared to the first-best matching because the need to provide incentives to
both participants makes “asymmetric” partnerships more profitable. When only the agent is
subject to moral hazard, a reversal may also happen when the principal can choose between
two different instruments. Alonso-Paulí and Pérez-Castrillo (2012) study a situation where
the agent receives information about the state of the world after having signed the contract,
and this information is relevant for the choice of the optimal effort. The principal can offer
either an incentive contract or a contract with a verifiable, but rigid, effort. The second type
of contract allows for better management control, but makes it hard for the agent to react to
market conditions. Although the matching between principals and agents is PAM when only
one type of contract is used in all the partnerships,55 the best principals might be willing
to renounce hiring the best agents through incentive contracts, signing rigid contracts with
lower-ability agents instead.56

4.3 Heterogeneity, Profits, and Efficiency

The utilities that principals and agents obtain at equilibrium are endogenous and depend on the
sizes of the populations of principals and agents as well as on their characteristics. To highlight

55 Legros and Newman (2007) provide sufficient conditions for monotone matchings in environments where, as
is the case in the framework of Alonso-Paulí and Pérez-Castrillo (2012), utility is not fully transferable.

56 In dynamic relationships, the agreements can also be governed by two types of contracts: short-term and long-
term contracts. When information on the workers’ ability is revealed during the relationships, the market dictates
a trade-off between the optimal matching (which requires that principals sign short-term contracts) and incentives
(which requires long-term contracts). At equilibrium, the matching is not necessarily PAM because both types of
contract can coexist (see Macho-Stadler, Pérez-Castrillo, and Porteiro, 2014).
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some of the implications of the endogenous market power of principals and agents, consider
a simple modification of the model studied in Dam and Pérez-Castrillo (2006). There are
nP homogeneous principals and nA heterogeneous agents. All participants are risk neutral.
Agents differ with respect to their initial wealth. An agent a j has an initial wealth w j, which
is known to the principals, with w1 ≥ w 2 ≥ . . . . ≥ w nA ≥ 0. Therefore, a contract with agent
a j needs to satisfy the limited liability constraint w(x) ≥ −w j. The relationship is similar to
the one introduced in Example 3, where two outcomes are possible, i.e., x ∈ {xB, xG}.

Given that principals are identical, it is necessarily the case that they obtain the same level
of profits at equilibrium; we denote it by π̂ . Therefore, the equilibrium contracts (which are
necessarily Pareto optimal) are not governed by the agents’ PC, but they will be the contracts
that maximize the agents’ utility subject to the principal’s obtaining π̂ . If nP < nA, then
there will be nP relationships and π̂ is the maximum benefit that a principal can obtain by
contracting with agent a nP , or with agent a nP+1 (which is the richest agent that does not
sign any contract).57 Even though agents are the long side of the market, those with an initial
wealth higher than w nP obtain rents and, in fact, they sign a contract that is more efficient than
the principal–agent contract, in the sense that effort is closer to the first-best. The rents and
the efficiency of the contract signed by agent a j do not depend on the absolute value of w j

but on the relative value of w j compared to w nP . Similarly, if nP > nA, then there will be nA

relationships, π̂ = 0, and all the rents will go to the agents.
As principals compete for the wealthier agents, they are compelled to offer better contracts

in order to attract them. These agents obtain higher utility, the limited liability constraint is
less stringent and hence the effort level approaches the first-best. The effect of competition
on the power of incentives and the efficiency of the relationship has already been pointed out
by Barros and Macho-Stadler (1988), in a situation where two principals compete for a good
agent.58

The analysis of Dam and Pérez-Castrillo (2006) also indicates that a larger inequality in
the distribution of agent wealth leads to more efficient relationships. In their framework,
a public authority that would like to distribute some money that could serve as collateral
in tenancy relations may need to induce inequality among the tenants. If it distributed a small
amount to every tenant, then the relative differences in initial wealth would not change and
the landowners would appropriate the additional amount distributed. On the other hand, an
unequal distribution of the money among a few tenants improves the efficiency and the agents
appropriate more than the additional money they receive.

4.4 Competition Among Mission-oriented and Profit-oriented Firms

In many markets, principals are heterogeneous not in terms of productivity or costs but in
terms of the importance that they give to their mission. Indeed, many public bureaucracies and

57 Stable outcomes are typically not unique. For example, in the current situation, π̂ can be any number in the
interval whose lower bound is given by the benefits that a principal obtains by hiring agent a nP and the upper bound
is the benefits she obtains by hiring agent a nP+1.

58 The effect of competition on the efficiency of the incentive contracts is also the main objective of Dam
(2015). Edmans, Gabaix, and Landier (2009) and Baranchuk, MacDonald, and Yang (2011) study the implications
of the assignment of managerial talent to firm size. Also, Hongy, Serfes, and Thiele (2012) study a market with
heterogeneous entrepreneurs and venture capital firms. They show that the entry of new venture capital firms has a
“ripple effect” throughout the entire market: all start-ups receive more capital in exchange for less equity and the
relationships are more efficient.
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private non-profit organizations give more weight to their mission than to profits. Also, some
private profit-oriented firms give some weight to an objective other than profits (for example,
the use of clean technologies or the development of the community). Similarly, as we
discussed in subsection 3.2, the main heterogeneity among agents (workers) may be due not
to their ability or risk aversion, but to their intrinsic motivation to work for certain types of
firm. In that subsection, we characterized the optimal principal–agent contract for an agent
whose intrinsic motivation to work for the firm is I(x, τ), which depends on the outcome x
and the type of the principal τ (see equation (16.11)).

To discuss the role of matching the mission preferences of principals and agents, we present
a model similar to Besley and Ghatak (2005). We consider a market with two types of
principals and two types of agents. The types of all the participants are perfectly observable.
In case of success, a profit-oriented principal receives a monetary payoff of x0

G > 0. The
payoff x M

G > 0 that a mission-oriented principal receives in the case of success may have
a non-pecuniary component. Similarly, there are agents who only care about the monetary
reward (we will refer to them as type-0 agents) whereas there are mission-oriented agents
who receive an intrinsic motivation of IM ≡ I(x M

G , τ = M) > 0 if they work for a mission-
oriented firm. To simplify the number of cases, we assume that IM ≤ x M

G ≤ 2x0
G, that

is, the agent’s intrinsic motivation is not larger than the firm’s payoff. Also, we assume
that the number of mission-oriented agents is the same as the number of mission-oriented
principals.

At the equilibrium matching, there is segregation, in the sense that mission-oriented
agents work for mission-oriented principals whereas type-0 agents work for profit-oriented
principals. The matching is assortative because it raises organizational productivity.

Even though the nature of the matching is the same irrespective of the number of principals
and agents in the profit-oriented sector, the agents’ bonuses and the principals’ profits in both
sectors are affected by those numbers. Suppose first that there is full employment in the profit-
oriented sector (that is, the number of type-0 agents is lower than the number of type-0 firms).
Then, the equilibrium bonuses and the optimal effort levels in this market for the two types of
agents are

w0∗
(

x0
G

)
= x0

G and e0∗ = x0
G

wM∗ (xM
G

) = x0
G − IM and eM∗ = x0

G.

Thus, competition for the type-0 agents drives the expected payoff of type-0 principals to
zero. The utility that the mission-oriented agents obtain is set by what they could obtain
by switching to the profit-oriented sector. The mission-oriented principals benefit from the
agents’ intrinsic motivation through a reduction in the salary they need to attract them.

Second, if there is unemployment in the profit-oriented sector (that is, the number of type-0
agents is higher than the number of profit-oriented firms) then the supply of motivated agents
is determined by their unemployment payoff. The bonuses and optimal levels of effort are

w0∗
(

x0
G

)
= 1

2
x0

G and e0∗ = 1

2
x0

G

wM∗ (xM
G

) = 1

2

(
xM

G − IM) and eM∗ = 1

2

(
xM

G + IM) .

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

482 Handbook of game theory and industrial organization: theory

In this case, the existence of the market does not influence the levels of the bonuses. It only
provides information on the nature of the matching between principals and agents.
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17. Learning in markets
Amparo Urbano∗

The desire to acquire economically valuable information provides a powerful explanation for
many empirically observed economic phenomena. This chapter surveys the phenomena of
market learning and experimentation – or active market learning – in the context of dynamic
models that incorporate a Bayesian expectation revision mechanism. There is an extensive
literature on this topic. This chapter only surveys some representative papers, without demerit
of many others

1 THE BEGINNING: ONE-SIDE, ONE-AGENT EXPERIMENTATION

1.1 The Ignorant Monopolist

There was a time when economists tended to assume that firms have complete demand
information or had an exact knowledge of the stochastic knowledge generating demand. This
viewpoint changed in the 1970s, in which explanations were given as to how the firm comes
by this information.

In the following cited papers, demand information is generated endogenously through the
analysis of a monopolist who wishes to learn about the demand process it faces. It may
do so by experimenting with its decision variable – by adjusting its price or quantity
away from the myopically optimal level – and observing the resulting quantity or price.
Experimentation seeks to increase the informative level of observations. While such price or
quantity experimentation reduces expected profits in the current period, the loss can possibly
be recouped in subsequent periods through use of the improved information.

Two approaches have emerged regarding the question of experimentation in the face of
a random demand curve featuring unknown parameters. One involves formulating a long -
(finite or infinite) horizon model in which attention turns to the limiting expectation of
the firm. Examples include Rothschild (1974), Prescott (1972), Kihlstrom, Mirman and
Postlewaite (1984), Easley and Kiefer (1988), Trefler (1993), Keller and Rady (1999),
among others. A second approach is restricted to two-period models and examines how the
opportunity for experimentation affects the period-one output or consumption level. Examples
include Grossman, Kihlstrom and Mirman (1977), Mirman, Samuelson and Urbano (1993a),
Creane (1994), Alepuz and Urbano (1995), among others.

∗ The author acknowledges financial support from both the Spanish Ministry of Economics, Industry and
Competitiveness under Projects ECO2013-46550-R and ECO2016-75575-R and the Generalitat Valenciana under
the Excellence Programs Prometeo 2014II/054 and ISIC 2012/021. I also wish to thank R. Moner for very helpful
comments and suggestions.
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Learning in markets 487

1.2 Monopolists’ Beliefs (Posteriors) and Optimal Actions – Convergence Over Time

There is a body of literature on whether the monopolist’s beliefs (posteriors) and optimal
actions converge over time. These works are statistical decision models of an agent trying
to optimize her decision while improving her information at the same time. The simplest
market in which the monopolist operates is the “reservation price” market. Imagine that the
monopolist operates a shop in which one customer arrives in each period and decides whether
or not to make a purchase. There is only one indivisible good for sale and each customer
buys at most one unit. Due to unobservable customer heterogeneity the monopolist views
customer purchase decisions as stochastic. At a given price some customers buy, others do not.
Thus, customer purchases follow a binomial process with probability of purchase inversely
related to price. It is this inverse relationship that the monopolist seeks to learn through price
experimentation.

Rothschild (1974) proposed the binomial reservation price model, in which a single firm
is facing a market with unknown demand. The true market demand is given by a specific
probability distribution over consumer valuations. However, the firm initially has a prior
probability over several possible market demands. A firm that does not know the consequences
of charging a particular price has an obvious way of finding it out. It may charge the price and
observe the result. If the firm charges price pi, then the true probability of a sale is Γi. Again,
if the firm knew parameters Γi, it would simply choose pi to maximize Γiri, where ri = pi −c,
is the profit from making a sale at price pi, but since the store does not know the values of the
Γi its problem is more complex. However, the firm can, if it chooses to, learn the value of any
particular parameter Γi. For Γi is simply the probability of success in a single binomial trial.
If the trial is repeated infinitely often, an observer will, according to the strong law of large
numbers, be able to estimate Γi exactly (that is, with probability of 1). The firm could come
to learn all the probabilities Γi, simply by choosing a strategy that involved charging each of
the prices an infinite number of times – such as, for instance, by playing them in turn.

However, such experimental determination of its demand curve is costly. Customers turned
away by a price that is objectively too high may not return, and sales made at prices that are too
low represent losses that cannot be recouped. Formulating the firm’s optimal strategy consists
of finding some way of weighing the value of new information from charging a particular
price against the cost of not charging the price that present information indicates is most
profitable. This is one of the classes of problems under the general heading of two-armed
bandit problems. In this class of problems, the gambler has to decide which arm of two
different slot machines to play in a sequence of trials so as to maximize her reward. This
classical problem has received much attention because it provides the trade-off between
exploration (trying out each arm to find the best one) and exploitation (playing the arm
believed to give the best payoff). The problem for the firm is to find an optimal sequence of
prices to learn more about the true demand while maximizing its expected discounted profits.
An optimal policy for a firm involves putting a value on the potential gain in information from
charging a precise price. This can be done by setting up a dynamic programming equation
in which the state variables describe the firm’s present beliefs about the demand function of
its customers Rothschild’s (1974) results are obtained only for a simple and rather special
example: customers buy at most a single unit of the commodity and there are only two prices
that the firm can charge.
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488 Handbook of game theory and industrial organization: theory

Consider, then, two potential prices to be charged. Each trial on the i-th price yields payoff
ri with probability Γi, and nothing with probability (1 − Γi). The firm does not know the
parameters with certainty. It decides which price to play at each stage after consulting its
prior beliefs about the parameter Γi and examining the record of successes and failures on
the prices so far. Sufficient statistics to represent the information in the sample are μi and δi,
defined by: δi = 1

1+Ti
and μi = Ni

1+Ti
where Ti is the number of trials and Ni the number of

successes. These definitions imply particularly simple rules for updating (μi, δi). If price i is
charged, δi becomes δi

1+δi
. If there is a success on price i, μi becomes si = (μi+δi)

1+δi
, while if

there is failure μi becomes fi = μi
1+δi

. If a success on price 1 is observed, (μ, ρ) is updated to

s1(μ1,μ2, δ1, δ2) =
(

s(μ1), μ2, δ1
1+δ1

, δ2

)
, with s2(μ, ρ), f1(μ, ρ) and f2(μ, ρ) defined in

the obvious manner. The firm’s prior beliefs about the parameters are summarized by a prior
density function g(γ1, γ2). If a firm has experience (μ, ρ) it will use Bayes’ rule to update
its prior beliefs from g(γ1, γ2) to h(γ1, γ2, μ, ρ), the probability density proportional to the
probabilities of success on the two prices.

Define λi(μ, ρ) = ∫ 1
0

∫ 1
0 γ1h (γ1, γ2,μ, ρ) dγ1dγ2, as the posterior mean of the firm’s

beliefs about the value of �i, given the sample information (μ, ρ) and the prior density g.
The dynamic programming equation is a continuous real-valued function, V(μ, ρ), equal
to the maximum expected discounted profits that the firm can make if the present state of
information is described by (μ, ρ) and satisfies the basic functional equation: V (μ, ρ) =
MaxiWi(μ, ρ), with

Wi(μ, ρ) = λi (μ, ρ) qi + δ
[
λi (μ, ρ)V (si (μ, ρ))+ (1 − λi (μ, ρ))V (fi (μ, ρ))

]
.

If the discount rate is positive, almost all firms following optimal strategies will, after an initial
period of sampling, settle on one price and play it in preference to all others. However, the
price chosen will not necessarily be the correct one. With positive probability a firm pursuing
an optimal strategy will play the most favorable price a finite number of times while it plays
a less attractive price infinitely often. An heuristic argument is as follows. Suppose that the
probability of a payoff on one of the prices, say the second one, is known with certainty. The
state of the firm’s information is described by its estimate of the probability of a payoff on
the first price. Its choice of price at any point in time is entirely determined by this estimate.
When the first price is played, the firm receives, in addition to a random payoff, information
that allows it to revise its estimate of the probability of a success on a first price. When it
plays the second price, it receives only a payoff (if it is lucky) or nothing (if it is not). The
outcome cannot affect its estimate of the probability of success on the second price since
it is assumed this is known with subjective certainty. It also cannot affect its estimate of
the probability of a payoff on the first price. Thus, if the state of the firm’s information
is such that the optimal strategy dictates that second price is played, it is unchanged after
the second price been played again. If the price whose payoff probability is known is ever
played, it will be played forever more. Rothschild (1974) shows that the optimal policy is in
the form of a stopping rule, answering the question: when is information on the unknown
arm so disappointing that play on it should be suspended? Ex ante optimal pricing rules
may well end up using prices that are ex post suboptimal if the true distribution were to
be known.

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

Learning in markets 489

Prescott (1972) establishes the direction of experimentation for the case of an additive,
normally distributed error term and a normal prior on the unknown demand slope. He sets
up a finite-horizon problem with a single control and a single unknown parameter to analyze
a model of an uncertain demand with unknown slope coefficient. The process assumed to
generate the data is a simple regression model, namely, yt = βxt + ut, for t = 1, 2, . . . , T,
where yt is the tth observation of the dependent variable, xt is the tth value of a control variable,
β is an unknown scalar parameter, and ut is the tth unobserved random error term. The uts are
normally and independently distributed, each with mean zero and common known variance,
which without loss of generality are taken to be one. Further, assume that the prior knowledge
at the time x1 can be represented by a normal distribution with mean m1 and precision (the
reciprocal of the variance) h1. Then, the distribution on the unknown parameter at the time of
the tth decision is normal, with precision satisfying the difference equation ht = ht−1 + x2

t−1
and mean satisfying mt = (mt−1ht−1 + xt−1yt−1)/ht. Given initial prior N(m1, h1) on β, the
control problem is to select the xt sequentially so as to minimize the sum of the expected
losses E [

∫ T
t=1 qt (yt)], where the qt are the non-negative losses.

Let ft (mt, ht) = inf E [
∫ T

t=1 qi (yi)/mt, ht] for i = t, . . . , T. This is the infimum for the sum
of the expected losses for periods t through T inclusive given prior N(mt, ht) on β at time t.
As the initial prior has been assumed normal, the prior at the time of the tth decision will
necessarily be normal. By backward induction,

ft (mt, ht) = min E
[
qt (yt)+ ft+1 (mt+1, ht+1)/xt, mt, ht

]
, for t = 1, . . . , T with fT+1 = 0.

Because x is constrained to a compact set, the infimum is obtained. The first term in the
expectation measures the effect of decision xt upon the loss in the current period, while the
second measures the effect upon future losses given optimal future behavior. The larger x2

t ,
the more precise will be the future knowledge of β as the precision (variance) of the posteriori
will be larger (smaller). Current decisions affect future as well as current losses so there will
be a trade-off between stabilization and experimentation. In particular, the larger x2

t , the more
informative is the experiment. This result implies that the optimal decision will be larger in
absolute value than the one that minimizes expected loss in the current period, so the optimal
policy is to sacrifice some stability in order to gain information. Grossman, Kihlstrom and
Mirman (1977) show that the Prescott result holds when the normality restriction on the prior
is relaxed.

Trefler (1993) generalizes the work by Prescott (1972) and Grossman et al. (1977) by taking
away the normality assumption and by considering an infinite-horizon problem with multiple
controls and unknown parameters, in which Bayesian learning provides the link between
periods. In each period the firm takes an action (price), observes the outcome (demand)
and updates its beliefs about the unknown parameters of the stochastic process generating
outcomes. Namely, a dynamic programming problem with a Markovian structure, where the
state space is the space of prior beliefs, and the transition from the state in a period to the next
one follows Bayes’ rule. More specifically, in each period t the decision-maker chooses an
action xt ∈ X and observes an outcome yt ∈ Y. The probability of outcome yt depends both
on xt and on an unknown parameter θ ∈ Θ . Assume that xt and θ are conformable for matrix
multiplication and let ϑ(./xt, θ) be a probability measure over outcomes. The decision-maker
begins with a prior,μ0 ∈ P(Θ) about the unknown parameter θ . In period t her beliefs about θ
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490 Handbook of game theory and industrial organization: theory

are given by μt. At the end of period t, having chosen xt and observed yt, she uses Bayes’ rule
to update her beliefs about θ to μt+1 and receives a reward r (xt, yt, θ). The salient features of
the setup are that both xt and θ enter ϑ(./xt , θ) and that the only intertemporal link is Bayesian
learning. An informal discussion of the Markovian structure of the dynamic programming
problem is as follows. The state space is the space of prior beliefs, P(Θ). The transition from
the state in period t (the prior μt) to the state in period t + 1 (the posterior, μt+1) follows
Bayes’ rule. In choosing xt, the decision-maker must take into account its effect on future
beliefs, μt+1. At the time xt is chosen, however, yt and hence μt+1 are unknown so that the
decision-maker must calculate the distribution of future beliefs μt+1, across the values that
yt may take. This forms the transition probability from μt to μt+1, which is described by
the measure q(dμt+1/μt , xt). To illustrate the use of q, consider the value function for this
dynamic programming problem, V(μt). The expectation of V(μt+1), given the information
available at t, is

∫

P(Θ)
V(μt+1)q(dμt+1/μt, xt),

or more simply,
∫

P(Θ) V (μ̃) dq(μt, xt). The author establishes the existence of a value
function V(μ0) and an optimal sequence of Markov actions. The decision-maker’s objective
is to maximize the expected discounted reward, E

[∑∞
t=0 δ

tr (xt, yt, θ)
]
. To make clear the

dependence of this expectation on μt, define

u (xt, μt) =
∫

�.

∫

Y
r (xt, yt, θ)ϑ (dyt/xt, θ) μt (dθ) .

Then, the problem is to maximize E
[∑∞

t=0 δ
tu (xt, μt)

]
, whereμt evolves according to Bayes’

rule. Using q andμ, the problem may be reduced to a standard dynamic programming problem
with action space X and state space P(Θ). For μ ∈ P(Θ) define

V (μ) = Maxx∈X

{
u (x,μ)+ δ

∫

P(Θ)
V (μ̃) dq (μ, x)

}
,

where 0 < δ < 1 is the discount factor. If there is a function V satisfying the above
equation, then it gives the value of the problem to a decision-maker with prior beliefs
μ who behaves optimally. Define the expected value of information as I (x;μ, r) =∫

P(Θ) V (μ̃) dq (μ, x)− V (μ). Trefler (1993) addresses two questions: When does one action
result in larger expected value of information than another? What implications do endogenous
information and learning have for the sequence of optimal actions; that is, what is the direction
of experimentation? Trefler’s results show the dependence of I (x;μ, r) on x for the reservation
price market, posted price market, and normal models. In the former customer purchases
follow a binomial process with probability of purchase inversely related to price, while in
the post–price market the demand process is Poisson. The main findings of the paper are a
characterization of the expected value of information and the direction of experimentation
in the above-mentioned markets. These results are related to the literature on the expected
value of information and Blackwell’s comparison of experiments (see Blackwell, 1953, and
DeGroot, 1962).
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The experimentation literature has by and large focused on broadly defined bandit
models, where stage payoffs are also random signals, so that information gathering incurs
an endogenous opportunity cost. Rustichini and Wolinsky (1995) study the problem of a
monopoly that is uncertain about the demand it faces and learns about it over time through its
pricing experience. The demand for the monopoly’s product varies stochastically over time.
Time is divided into discrete periods labeled t = 1, 2, . . . . In each period the monopoly faces
a unit demand with reservation price dt. At the beginning of each period, before it knows dt,
the monopoly quotes a price pt. Thus, if pt ≤ dt, the monopoly will sell a unit, and if pt > dt,
it will sell nothing. Let It record whether or not there has been a sale at period t. That is, It = 1
if pt ≤ dt and 0 otherwise. The maximum demand price, dt, can assume two values: 1 and
D > 1. It follows a Markov process with transition probabilities,

Prob
[
dt+1 = 1/dt = D

] = Prob
[
dt+1 = D/dt = 1

] = α.

Let wt denote the probability with which the monopoly believes that dt = 1. Thus, w1 is
the prior and subsequently it evolves as follows: wt+1 = α if 1 < pt ≤ D and It = 1;
wt+1 = (1 −α) if 1 < pt ≤ D and It = 0, and wt+1 = (1 − α)wt +α(1 −wt) if pt = 1. Given
a price sequence {pt} and a sequence of demand realizations {dt}, the monopoly’s discounted
profit is

∑
δtptIt, where δ < 1 is the discount factor. At the beginning of period t the monopoly

knows the history ht = (p1, I1) , . . . , (pt−1, It−1). Its problem is to choose a pricing policy
pt(ht) so as to maximize E

[∑
δtptIt

]
. The authors use a two-armed bandit framework to

study monopoly pricing when the buyers’ reservation value changes randomly. In particular,
the optimal policy is characterized by a cutoff belief W. If wt ≤ W, then pt = D. If wt > W,
then pt = 1. Thus, given δ and α, there are three types of optimal policy, depending on the
relative size of D. When D is sufficiently small or sufficiently large, the monopoly will always
quote the same price, 1 or D respectively. When D is in the intermediate range, the optimal
policy involves price changes whose frequency depends on N, where N is the smallest non-
negative integer such that, if wt = (1 − α) and pt = . . . = pt+N−1 = 1, then wN+t ≤ W.
That is, N is the number of times that the seller quotes p = 1 after a price offer pt−1 = D
was rejected. In implementing the optimal policy, the monopoly will make two kinds of error.
In some periods it will charge pt = 1 when dt = D, while in others it will charge pt = D
when dt = 1. The stationary probabilities of these two types of error capture the frequency
with which these errors are made in the long run, and hence provide some measure of the
extent of learning associated with the optimal policy. Rustichini and Wolinsky (1995) focus
on non-negligible pricing errors even when the frequency of change is negligible. For certain
parameter combinations, learning will cease completely even though the state keeps changing.

Keller and Rady (1999) study optimal experimentation by a monopolist who faces
an unknown demand curve subject to random changes, and who maximizes profits over
an infinite horizon in continuous time. Their model introduces Brownian noise and relies
on filtering techniques for belief updating. The monopolist knows the slope and intercept of
each demand curve and the transition probabilities, but it does not know which demand curve
it faces at any given time. There are two possible states, k = 0 or 1, each characterized by
a linear demand curve and the transitions between these states are governed by a Markov
process. Specifically, in state k, the expected per-period demand curve (expected price as a
function of quantity) is p = αk −βkq, where αk and βk are positive constants. At each instant,
it chooses from a given interval of feasible quantities, and observes a price that is the “true”
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price (derived from the prevailing demand curve) plus noise. The state changes according to
a continuous time Markov process with some transition probabilities. In particular,

Pr (ks = k, ∀s ∈ [t, t +�t]/kt = k) = exp(−αk�t).

At each time t, the monopolist chooses an output level qk, from an exogenously given
interval Q = [qmin, qmax] of feasible quantities. The resulting increment in total revenue is
dRt = qt[(αkt − βktqt) dt + σdZt], where Z is a standard Wiener process independent of the
process k, and σ > 0 is a constant known to the monopolist. Thus, dRt = qtdPt, where dPt

is the increment of a cumulative price process P given by dPt = (αkt − βktqt) dt + σdZt. The
monopolist derives all its information about the state of demand from observing this price
process. The monopolist’s initial belief about the state of demand is characterized by π , its
subjective probability that k0 = 1. Given this belief, its objective is to choose q = {qt} so as
to maximize:

uq(π) = Eπ

[∫ ∞

0
r e−rtdRt

]
= Eπ

[∫ ∞

0
r e−rtqt (αkt − βktqt) dt

]
,

where r > 0 is the monopolist’s discount rate. Following a production strategy and observing
the associated price process, the monopolist updates its beliefs about the state of demand in a
Bayesian fashion.

Given a strategy q, beliefs evolve according to the (filtering) equation dπ t = λ (πt) dt +∑
(πt, qt)dZ q

t , where λ (πt) = (1 − π) λ0 + πλ1,
∑
(π , q) = σ−1π (1 − π) (�α −�βq),

(�α and a �β being the difference in intercepts and in slopes, respectively, between the two
expected demand curves) and Zq is a Wiener process with respect to the agent’s information
sets. In other words, the change in beliefs dπ t has mean λ (πt) dt and variance

∑2
(πt, qt).

The monopolist’s value function and the Bellman equation for its decision problem is defined
as u∗(π) = supquq(π) for π in [0, 1]:

u∗ (π) = maxqεQ

{
rEπ

[
q (αk − βkq)

]
dt + e−rdtEπ

[
u∗(π + dπ)

]}
.

The Bellman equation is the main tool for constructing optimal strategies, which will in
fact be stationary Markov strategies. The monopolist can increase the information content
of the price signal by moving away from the confounding quantity, that is, the quantity
at which the two demand curves intersect; setting the confounding quantity itself leads to
a completely uninformative signal. The authors show that there are two qualitatively very
different regimes, determined by the discount rate and the intensities of demand curve
switching, and the dependence of the optimal policy on these parameters is discontinuous.
One regime is characterized by extreme experimentation and good tracking of the prevailing
demand curve, the other by moderate experimentation and poor tracking. Moreover, in the
latter regime the agent eventually becomes “trapped” into taking actions in a strict subset of
the feasible set. The authors build upon several strands of the literature on optimal Bayesian
learning. A number of authors have identified situations where it is optimal to experiment, and
have characterized the agent’s strategy as a function of his beliefs. Examples include Prescott
(1972), Grossman et al. (1977), Mirman, Samuelson and Urbano (1993a) and Trefler (1993).
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These papers do not consider confounding actions, so the different experimentation regimes
described in Keller and Rady (1999) do not arise.

Moscarini and Smith (2001) consider a Bayesian formulation of sequential analysis.
A given decision-maker is uncertain about a payoff-relevant state of the world, and before
deciding, can buy multiple independence and independently distributed (i.i.d.) informative
signals at constant marginal cost. The decision-maker should then purchase one at a time,
and act when sufficiently convinced of one state. Thus, the authors introduce and explore
a continuous time model of sequential experimentation with explicit information purchases.
Their general finding is that the optimal experimentation level grows in the Bellman value
prior to stopping and acting. This monotonicity is critical to the analysis, and admits a concrete
economic intuition – there are two decisions at each instant: stop or experiment, and then at
what level. The driving features of the model are impatience and an increasing and strictly
convex cost function of within-period experimentation. These two assumptions yield some
robust predictions: experimentation intensity grows with a project’s expected payoff. Among
falsifiable implications, the authors establish an upward secular drift in the experimentation
level for not too convex cost functions. They explore an experimentation problem, inspired by
the statistical literature on sequential hypotheses testing, that is different in two key respects:
first, information is explicitly costly, since the state-independent information costs are known
and so uninformative; second, there is eventual stopping, so that delay cost drives all the
results. The authors characterize the optimal sample size given convex costs and discounting.

1.3 Two-period Models

In two-period models, the monopoly may find it profitable to adjust its first-period quantity
away from the myopically optimal level in order to increase the informativeness of its
first-period price observation and hence increase second-period profits. The firm can thus
collect information in the first period, but only at the cost of sacrificing period-one profits.
The amount of information collected is endogenously determined by the firm’s first-period
action.

Mirman, Samuelson and Urbano (1993a, MSU thereafter), provide non-parametric results
on the direction of experimentation for a two-period problem in which the unknown parameter
takes on only two values. They examine a quantity-setting firm and focus on the effect of
experimentation on first-period output levels. Namely, the inverse monopolist’s demand is
P = g (γ , Q ) + ε, where P is price, Q is quantity, γ ∈ {γ , γ } is a parameter unknown
to the monopolist, and ε is a random variable. The prior probability that γ = γ is ρ0.
The random variable ε is characterized by a density f (ε) that has expected value zero and
is continuously differentiable on the real line. Also, f (ε) satisfies the monotone likelihood
ratio property (MLRP): f ′(ε)/f (ε) is a continuous and non-increasing function. The firm
chooses a quantity Q in period one and observes the price P = g (γ , Q) + ε. Because
ε is random, the firm may be unable to infer the value of γ from its price observation.
The firm uses Bayes’ rule to construct a posterior probability, denoted ρ, that γ = γ . Then,
it chooses its period-two quantity Q2 and receives price P2 = g (γ , Q2)+ ε. Let V (ρ) be the
maximized value of period-two expected profits as a function of the (posterior) probability ρ:

V (ρ) = maxQ2(ρQ2g (γ , Q2)+ (1 − ρ)Q2g
(
γ , Q2

)
. In the first period, the firm’s problem

is to find QE such that
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QE ∈ argmaxQ

{
ρ0Qg (γ , Q)+ (1 − ρ0)Qg

(
γ , Q

)
+ EPV(ρ (P, Q))

}
,

where ρ is calculated as a function of P and Q via Bayes’ rule, or

ρ (P, Q) = f (P − g (γ , Q))ρ0

f (P − g (γ , Q))ρ0 + f (P − g
(
γ , Q

)
)(1 − ρ0)

.

Notice that for a given value of Q, the value of the posterior probability ρ is a random
variable. The firm does not experiment if it sets a quantity equal to the myopically optimal

output, QNE = argmaxQ

{
ρ0Qg (γ , Q)+ (1 − ρ0)Qg

(
γ , Q

)}
. In this case the period-one

quantity is set so as to maximize period-one (myopic) profits and does not take account of
the future. Given the above two maximization problems, the firm will experiment whenever
{dEPV(ρ (P, Q))/dQ} �= 0. Some algebra shows that the conditions for experimentation are
that (1) the information must be valuable (V (ρ) strictly convex in ρ), and (2) adjustments in
quantity must be capable of increasing the informational content of price (dg (QNE, γ )/dQ �=
dg
(

QNE , γ
)
/dQ). The authors also establish sufficient conditions for experimentation to lead

to an increase or decrease in period-one quantity. Intuitively, the firm adjusts its period-one
quantity to push the mean demand curves further apart. This spreads apart the distributions
from which the random variable, price, might be drawn and makes price a more informative
signal of the true distribution. MSU’s results contrast with those derived for the case of
uncertain utility in Grossman et al. (1977) and Kihlstrom et al. (1984). In particular, Grossman
et al. (1977) suggest that experimentation does not occur in the case of a linear demand curve
with uncertain intercept, because the random variable observed by the firm is unaffected by
the firm’s quantity, the firm cannot affect the informativeness of the variable it observes and
no experimentation occurs. However, MSU’s results suggest that this intuition is incomplete
in two respects. First, cases arise such as linear demand curves that intersect on the horizontal
axis, in which the random variable observed by the firm is affected by the firm’s quantity but
the firm does not experiment because the resulting information is not valuable. Second, even
when information is valuable, the ability of the firm to profitably experiment depends not on
a single distribution but on the relative positions of the distributions that correspond to the
various possible parameter values. The key to experimentation is the ability to affect these
relative positions by altering the firm’s quantity. MSU then expand the model to allow the
possibility that the firm may set either price or quantity, and can choose which of these to set;
and establish conditions under which a firm prefers to be a price or quantity setter and show
that quantity-setting and price-setting firms may choose to experiment in quite different ways.

Some generalizations of MSU’s results are the following. Creane (1994) analyzes a version
of MSU with noise heteroscedasticity and finds that the direction of information with respect
to the choice variable can easily change under a general class of distributions. In particular,
suppose that the inverse monopolist’s demand is now P = a + bQ + εφ (Q) with b unknown,
ε is a random variable and φ is some known function. He shows that the expected value of
information is increasing (decreasing) in Q, if φ − Q (dφ/dQ) > 0(< 0). The implication
is that, when information is a function of the choice variable, the result of a model may be
an outcome of the structure of the uncertainty and not of the existence of uncertainty. Alepuz
and Urbano (1995) analyze the learning behavior of a risk-averse monopolist and find two
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conflicting effects in the experimental behavior: a stronger preference for the ex post reduction
in uncertainty, but ex ante the returns to information are more uncertain. Urbano (1992)
generalizes some results of MSU to the case of n values of a monopolist’s unknown demand
parameter. She extends previous results by giving a more formal treatment to concepts such as
the value of information and more informative signals. One application of this methodology
is Avila-Baltuille, Caballero-Sanz and Urbano (1993), to a monopoly with uncertainty that
concerns a new technology to be adopted by the firm. The paper examines a Bayesian learning
model with intra-firm diffusion. The authors discover that the firm will not only practice output
experimentation but also sampling experimentation, that is, the monopolist will increase both
the output level and the rate of adoption of the unknown technology for experimental purposes
with respect to the myopic choices. Moreover, there are marginal incentives to experiment
created by diffusion that introduces complementarities in the learning behavior of the firm.

2 THE CONTINUATION: TWO SELLERS, ONE-SIDED
EXPERIMENTATION

The value of information in oligopoly games has been the subject of intensive research. These
studies typically assume either that firms transmit information through “certifiable/verifiable
announcements” or that the signals that yield information to the firms are exogenously gen-
erated. In contrast, the following models endogenously determine the amount of information
available to firms and analyze how learning behavior can modify the outcome of competition
in a duopoly industry facing demand uncertainty.

Experimentation by a firm is the use of present actions to vary the amount of information
available in the future. However, when other firms observe these actions they also affect their
inferences about the same parameter and hence the underlying market competition. It is the
purpose of this section to study experimentation under competition.

2.1 The Duopoly Case

Mirman, Samuelson and Schlee (1994) generalize the results of MSU to a duopoly model.
Firms can draw inferences concerning the uncertain market demand from observation of their
outputs and market price and may adjust their outputs away from myopically optimal levels
to affect the informativeness of the market price. As in MSU’s model, the two-period duopoly
has the inverse market demand P = g (γ , Q) + ε, where P is market price, Q is industry
output, γ ∈ {γ , γ } is a parameter unknown to the monopolist, and ε is the realization of
a random variable ε̃. The random variable ε̃ is characterized by a density f (ε), with zero
mean and continuously differentiable on the real line. Also, f (ε) satisfies the monotone
likelihood ratio property. The common knowledge prior probability that γ = γ is ρ0. In period
one, each duopolist i chooses a quantity Qi and observes the price P = g (γ , Q) + ε, and
quantities Q = Q1 + Q2, but not the realization of ε̃. Therefore, each firm revises its prior
beliefs according to Bayes’ rule to obtain the common posterior ρ. Since firms’ quantities
are observed, firms can manipulate the extent to which beliefs revision occurs rather than
the direction in which beliefs are revised – as in signal-jamming models. The authors develop
conditions and present examples under which the value of information is positive and negative
and under which firms will increase or decrease quantity to manipulate information. Their
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main contribution is to extend duopoly experimental behavior to mixed strategy equilibrium
and to show some cases for which the net value of information for the duopoly is positive.
However, they are unable to relate the duopoly experimental behavior with that of the
monopoly in their general setting.

To answer the above question, Alepuz and Urbano (1999) analyze learning behavior by a
Cournotian duopoly and consider a continuum of possible values for the slope of demand.
Consider a two-period duopoly model. The firms produce a homogeneous product over the
two periods. Inverse market demand in each period is given by P̃t = a − θ̃ (q1

t + q2
t ) + ε̃t,

where P̃t is the price in period t, t = 1, 2, qi
t is firm i’s quantity in period t, t = 1, 2. Parameter

θ̃ is the fixed random slope and ε̃t is each period’s random demand shock. It is assumed that
each of these two random variables has full support on R and that they are independently
and normally distributed. The value of θ is unknown to firms, but they a priori believe that
θ̃ ∼ N (m, h) where h = 1σ 2

θ is θ̃ ′s precision. Given that ε̃t ∼ N (0, τ) , t = 1, 2, and τ is
ε̃′s precision, after observing P1 and knowing Q1, the firms’ new belief about θ is that it is
a realization of a random variable that is normally distributed according to N(θ̂ , ĥ), where

θ̂ = (mh + τQ1(a − P1)/h + τQ2
1) and ĥ = h + τQ2

1. Let V
(
θ̂
)

be each firm’s equilibrium

expected profits in the second period. Then, each firm i′s two-period expected profits as a
function of first period outputs is:

�i
(

q1
1, q2

1

)
= π i

1

(
q1

1, q2
1

)
+ E

(
V
(
θ̂
))

,

with E
(

V
(
θ̂
))

=
∫ +∞

−∞
V(θ̂(PQ11, Q1))f (a − P1)dP1,

where f is the density function of the random variable a − P̃1. Strategic interaction adds a
new effect into the analysis since the result of the experimenting behavior by one firm is
observed by the rival. In such a setting and if information is valuable, is there any unilateral
incentive to experiment? Does a monopoly experiment more or less than a duopoly? The main
contribution of this paper is twofold. First, to generalize duopoly experimentation to the case
of a continuum of possible demand curves, and to prove that the informativeness of the
commonly observed signal increases with a firm’s output. Second, to relate experimentation
and market competition. The authors find out that what is relevant is the a priori uncertainty
about the random demand. In particular, they show that if the random slope is sufficiently
precise, which, in turn, makes the commonly observed market signal precise as well, then
the monopoly will experiment more than the Cournotian duopoly. The intuition behind this
result can be understood by noting that, under duopoly, firms face a strategic informational
choice in the sense of how informative to make the publicly observed market signal. If initial
beliefs about the random slope are precise, so is the market signal and then, posterior beliefs
may become too accurate by experimentation. Hence, the rival will be better informed and
a tougher competitor: too precise signals discourage experimentation by duopolists. Then,
the incentives to learn by overproducing are smoothed down by the harder competitive
conditions that may follow. This discourages experimentation by the duopolists and therefore
the monopoly will experiment more; that is, it will produce much more away from its myopic
output.
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Extending Grossman et al.’s (1977) work to an oligopoly setting, it has been shown that
the incentives to experiment and the implication of experimentation can be quite different.
In a homogeneous-product setting Mirman et al. (1994) and Alepuz and Urbano (1999) found
that experimentation can result in either a higher or lower price depending on the demand
specification. The analysis of Aghion, Espinosa and Julien (1993), Alepuz and Urbano
(1994) and Harrington (1995) finds that uncertainty over the degree of product differentiation
impacts the amount of price dispersion. Aghion et al. (1993) assume that the degree of
substitution between products is unknown to explain the phenomenon of price dispersion
under oligopoly. They study this phenomenon and its dynamic evolution in the context of
a Hotelling duopoly model and then extend the analysis to general demand functions and
to N-firm oligopolies. The authors’ results are driven by the specific way of modeling the
error terms that affects both market demands and that, in turn, determine which specific
market signal the firms want to make more informative. With symmetric demand this is
accomplished by price dispersing. However, this result is not generally true – under both
general expected demand and error terms specifications – unless firms’ ability to make
market signals more informative is the same for both in each market, like in the Hotelling
model. Alepuz and Urbano (1994) allow for a more general modeling of the market demand
random terms and for the general class of joint distribution function of the noises that satisfies
the generalized strict monotone likelihood ratio property. The model clarifies the learning
mechanism that operates in general learning duopoly models for the existence of price
dispersion. Their results show that when firms experiment in all markets at the same time and
have the same ability to make market signals more informative then, provided that products
are substitutes, they will price-disperse in an attempt to increase the information content of
these market signals. Hence a sampling effect may arise as the global outcome of market
learning behavior. Harrington (1995) sets up a simple price-setting duopoly in which firms are
uncertain about the degree of product differentiation. Firms learn by observing the difference
in the quantities that are demanded in light of the differences in their prices. The author
shows that the informativeness of the market experiment is increasing in the amount of price
dispersion. Harrington’s central finding is that the qualitative effect of experimentation varies
with the type of markets. In markets with high substitutable products, firms create more price
dispersion than is predicted by static profit maximization so as to create a more informative
market experiment. In markets with highly differentiated products, firms compress their
prices in order to reduce how much information is generated about product substitutability.
Belleflamme and Bloch (2001) compare experimentation about product differentiation in
a linear setting under four market structures: quantity-setting and price-setting monopoly,
Cournot and Bertrand duopoly. Quantity-setting firms always experiment by raising their
quantities and the monopolist experiments relatively more than the duopolist. A price-setting
monopolist does not experiment. The value of information to Bertrand duopolists may be
positive or negative depending on the degree of product differentiation. When information
is valuable, price-setting duopolists experiment by lowering prices. A numerical example
indicates that the intensity of experimentation is higher in a Cournot duopoly than in a
Bertrand duopoly.

Alepuz and Urbano (2005), explore experimentation and learning in asymmetric duopoly
markets with product differentiation and demand uncertainty. Market demands are given
by P̃1 = a − b1Q1 − cQ2 + ε̃1, and P̃2 = a − b2Q2 − cQ1 + ε̃2, where ε̃1 and ε̃2
are uncorrelated random shocks of demand, whose joint distribution is characterized by a
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continuous differentiable density f (ε1, ε2) with zero means, full support in R2. The demand
slopes b1 and b2 are unknown fixed parameters of the market demand, with bi ∈ {bi, bi}.
Let α0 = Pr

{
b1 = b1

}
and β0 = Pr

{
b2 = b2

}
be the (common knowledge) initial

probabilities. Parameter c, the degree of product substitution between the two markets, can
be either positive (if products are substitutes) or negative (if products are complements).
As usual, in the first period firms choose simultaneously quantities Q11, Q21, observe first-
period prices, P11, P21, but not the realization of the random variables, and update (α0, β0) to
obtain the common posteriors (α (P11, P21), β (P11, P21)). Let ε̄1 = P11 −a +b1Q11 + cQ21,
ε1 = P11 −a+biQ11 +cQ21, etc. It is assumed that functions β0f (ε1, ε̄2)+(1 − β0) f

(
ε1, ε2

)
and α0f (ε̄1, ε2) + (1 − α0) f

(
ε1, ε2

)
satisfies the strict monotone likelihood property with

respect to ε1 and ε2, respectively
Let Vi(α (P11, P21) , β (P11, P21)) be firm i’s second-period equilibrium expected profits as

a function of posterior beliefs on market 1 and 2. Then, firm i’s expected profits for the two
periods is:

�i (Q11, Q21) = πi1 (Q11, Q21)+ E (Vi(α, β) ,

where:

E (Vi(α, β) =
∫ +∞

−∞

∫ +∞

−∞
Vi(α (P11, P21) , β (P11, P21)) h(P11, P21) dP11dP21, and

h (P11, P21) = α0β0 f (ε̄1, ε̄2)+ α0 (1 − β0) f
(
ε̄1, ε2

)+ (1 − α0) β0f
(
ε1, ε̄2

)

+ (1 − α0) (1 − β0) f
(
ε1, ε2

)
.

Here, in contrast with symmetric models, the value of information for each firm depends on
the uncertainty of both markets. Thus, we may find situations where the information about
a market may be valuable (for one firm), while the information about the other market may
have not value at all. The authors define the concepts of strategic substitutability and strategic
complementarity in information and show how both the mode of information competition and
the transmission of information across markets affect duopoly experimentation. The infor-
mation competition – as either information strategic substitutability or information strategic
complementarity – prevailing in markets is introduced through the notion of “favorableness”
of news in the sense of Milgrom (1981) and it may be related with product substitutability
or complementarity. In particular, under Cournot competition and with asymmetric linear
stochastic demand, the value of information from both markets is positive when products are
market complements. On the other hand, a firm is only interested in information about its own
market in case of product substitutability. In addition to the value of information, the feature
of partial information transmission across markets will either encourage or discourage the
production of information. The partial information transmission will depend on the correlation
between the market signals (P11, P21). The authors allow for both positive and negative
correlation between the market shocks, which determine, in turn, the respective correlation
between the market signals.
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2.2 Experimentation, Information Sharing and Information Manipulation

Considerable research exists concerning the incentives for firms in strategic environments
to commit to sharing information in the future. Interest in this issue is motivated by the
prevalence of industry sharing agreements and related court and Federal Trade Commission
cases (see, for instance, Vives, 1990). In the standard information-sharing model, each firm
is to receive private information in the future and knows ex ante the precision of every firm’s
future information. Each firm can commit itself to reveal the information it will receive (an
information-sharing agreement). After information is received and shared according to their
prior commitments, the firms compete strategically (e.g., quantity competition). Despite the
role information plays, these models do not explore the source of the new information. Instead
it is assumed to be exogenous. The effects of information-sharing agreements on information
production has been generally ignored in earlier research. When these effects are taken into
account, some results can change.

Creane (1995) replaces the exogenous information assumption with an endogenous learn-
ing model. Each firm is not only able to enter into an information-sharing agreement, but can
also choose how much private information to produce. Endogenizing information production
allows an analysis of the interaction between the production and the sharing of information.
Using results from the endogenous learning literature, the author models firms as Bayesian
agents with unknown cost functions. Firms learn by observing the noisy cost realization from
each production run. By varying output, a firm can learn more about its costs. This information
production model is then merged with a standard information-sharing model. The author finds
that agreements to exchange information affect the value and production of information. With
unknown costs, a learning-by-doing-like effect also arises. These effects affect consumer
welfare, the incentive to receive information, and the incentive to enter into information-
sharing agreements. Information-sharing contracts may have negative future effects on firms
through decreased information production. However, the decreased information production
has the current benefit of softening competition, which induces information-sharing agree-
ments under conditions contrary to previous results and vice versa. Contrary to previous work,
being less informed does not guarantee a learning-by-doing advantage. Further, under quantity
competition, the sharing of information increases information production by firms. Current
and future consumer welfare increases with increased information production. Even though
firms may value the sharing of a fixed amount of information, they may not want to receive
information because of the current negative effect on the firm that an increase in information
production by the rival can have.

On the other hand, signaling models have examined the transmission of private information
through perfectly observed actions. The question is what happens when firms cannot observe
their opponents’ quantities and cannot draw precise inferences because market prices are a
noisy function of quantities. Urbano (1993) examines this issue in a two-period Cournot
duopoly, where each firm is uncertain about the value of some demand parameter and engages
in experimentation, as in Alepuz and Urbano (1999) and Mirman et al. (1994). In addition,
the actions of the firms are not observable by its rivals and, therefore, there is an informational
interaction between firms even when the opportunity to experiment is not present. This
interaction arises because it is possible for a firm to adjust its (unobserved) quantity in order to
manipulate the non-trivial distribution of some variable observed by a rival. This phenomenon
is known as signal jamming (see Mirman, Samuelson and Urbano, 1993b). In Urbano (1993),
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firms may thus change their myopically optimal output in order to affect the information flow,
which in turn influences both their own future decision and their rival’s future decision. The
basic result is that three forces shape the firm’s information manipulation decision. One arises
because of experimentation and the other because of signal jamming. A new force also arises
from the interaction between signal jamming and experimentation. In particular, complemen-
tarities exist in the level of signal jamming and experimentation undertaken by firms.

Bernhardt and Taub (2015) characterize a duopoly buffeted by demand and cost shocks.
Firms learn about shocks from common observation, private observation, and noisy price
signals. Firms internalize how outputs affect a rival’s signal, and hence output. They
distinguish how the nature of information – public versus private – and of what firms learn
about – common versus private values – affect equilibrium outcomes. Firm outputs weigh
private information about private values by more than common values. Thus, prices contain
more information about private-value shocks.

2.3 Learning and Strategic Pricing

Much of the existing literature on dynamic choice under uncertainty has focused on the case
where a single decision-maker chooses sequentially among a fixed set of alternatives. In many
economic situations the alternatives are supplied by a separated economic agent or group of
agents. Bergemann and Välimäki (1996) and Felli and Harris (1996) are two early papers
analyzing the impact of price competition on experimentation. The authors show that if there
is only individual learning, the dynamic duopoly competition with vertically differentiated
products can achieve efficiency.

Bergemann and Välimäki (1996) set up a simple dynamic equilibrium model of price
formation under learning and uncertainty. In an infinite horizon model with price competition,
a buyer chooses sequentially between products whose qualities are initially unknown to all
parties in the model; the buyer does not know the underlying characteristic of the products,
while the producers are uncertain about the buyers’ tastes. Price competition between two
firms, indexed by i = 1, 2, takes place in discrete time with an infinite horizon, t = 0, 1, 2, . . . .
The firms announce in each period their prices, pi, simultaneously. The goods produced by
the two firms differ only with respect to their (expected) quality. Firms have the same unit
costs normalized to zero. The buyer has unit demand in each period. At time t, the buyer’s
expected valuation of a purchase is a linear function of the expected quality and the price:
EtXi

t − pi
t = xi

t − pi
t, where the random realization of the quality of product i in period t is

denoted by Xi
t . The expected value of the quality realization, Xi

t , conditional on the history
until period t, is given by xi

t = EtXi
t . For simplicity, the attention is concentrated in sampling

processes. A sampling process is a sequence Xi = {Xi
t}∞t=0 of independent, identically

distributed random variables Xi
0, Xi

1, . . . , drawn from a distribution with an unknown (vector-
valued) parameter θ i belonging to a family of distributions. The associated density functions
are denoted by f i(./θ i). The prior density for the parameter θ i ∈ Rn is given by π i

0(·). The
posterior beliefs are represented by πt = (π1

t , π2
t ). After observing the random variable Xi

t in
period t, π i

t is converted by Bayes’ rule into π i
t+1:

π i
t+1

(
θ i/Xi

t

) = π i
t (θ

i)f i(Xi
tθ

i)∫
π i

t (φ)f i(Xi
t/φ)dφ

.
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Starting with prior beliefs and applying the above equation recursively, a sequence of beliefs
{πt}∞t=0 is obtained. The consumer and the firms discount the future with the same discount
factor, β, with 0 < β < 1. Past quality realizations together with past prices and past
consumer decisions constitute the history of the game. Denote with Ht the set of all possible
histories up to, but not including period t. An element h ∈ Ht includes all past prices,
ps = (p1

s , p2
s ), 0 < s < t, the consumers decision variable, ds = (d1

s , d2
s ), where di

s = 1
if the consumer accepts the offer of firm i in period s, and di

s = 0 otherwise, and the random
realizations Xi

s of the purchased product i, 0 < s < t. Hence ht = (p0, d0, Xi
0, . . . , pt−1,

dt−1, Xi
t−1), where the upper index i = 1, 2 indicates the identity of the selling firm. A pricing

strategy of seller i at any time t is a function from the history into a distribution on the real
numbers: pi

t: Ht → �R. The buyer makes her purchase decision knowing the past play and the
prices currently offered. Her acceptance strategy is a function from the history and the current
prices into her decision space. Denote by ds = {dt}∞t=0 the sequence of decision functions
starting in period s. Similarly pi

s = {pi
t}∞t=0 is the sequence of future pricing strategies of firm

i starting in period s. The discounted expected profit for firm i under a given strategy triple
(ds, p1

s , p2
s ) at time s is Es

[∑∞
t β t−sdi

tp
i
t

]
, and the expected present value for the consumer in

period s is,

Es

[∑∞
t
β t−s

[
d1

t

(
X1

t − p1
t

)
+ d2

t

(
X2

t − p2
t

)]]
.

Each player acts so as to maximize the expected discounted return given the beliefs over the
return processes and the strategies of the other players. A solution for this decision problem
is available in the statistical literature on multi-armed bandits. For n = 2, the maximization
problem of the decision-maker is to find an allocation strategy d∗ that solves:

MaxdEt

[∑∞
t
β td1

t X
1
t +

∑∞
t
β td2

t X
2
t

]
.

The solution to the above equation is the celebrated index policy of Gittins and Jones (1974),
who showed that it is possible to assign to each alternative an index function Mi(π i

t ) that
depends only on the state π i

t of project i. The index Mi
(
π i

t

)
of alternative i in state π i

t is the
supremum over all terminal rewards, such that the decision-maker still prefers to continue
with the random stream; or alternatively, it is the infimum over all terminal rewards such that
the decision-maker is indifferent between continuing with the random sequence and retiring
with the stopping reward Mi(π i

t ).
Each purchase yields additional information about the true product quality to all parties in

the model. In some periods the buyer is willing to sacrifice some of her current payoffs in
order to gain additional information, which is valuable for future decisions. This temporal
separation of costs and benefits causes no ex ante efficiency losses in the single-player
case since the cost of experimentation has to be born by the same agent who enjoys any
gains from successful experiments. The innovation of this paper is to endogenize the cost
of experimentation to the consumer by allowing for price competition between the sellers.
The role of prices is then to allocate intertemporally the costs and benefits of learning between
buyers and sellers. Bergemann and Välimäki (1996) characterize the set of Markov perfect
equilibria. The central result of the paper states that in spite of future rent seeking by the
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firms, all Markov perfect equilibria in the model are efficient. In particular, an efficient
amount of experimentation is undertaken on any Markov perfect equilibrium path. Using
this fact, the authors can deduce the sequencing of consumer purchases immediately, since
the efficient path coincides with the solution paths of the buyer’s decision problem when
prices are fixed to be identically zero. The remaining task is thus to calculate the prices
that support efficient experimentation in equilibrium and determine the division of surplus
between the buyer and the sellers along the efficient path. In the cautious equilibrium, current
prices provide the buyer with insurance against future rent seeking resulting from successful
experiments. The equilibrium pricing rule is quite simple. In each period, the selling price is
equal to the difference in expected qualities and hence is similar to the equilibrium price in
the myopic Bertrand game. The identity of the seller does not, however, coincide with the
myopic game since the efficient path involves experimentation at some nodes. Bergemann and
Välimäki (1996) identify this equilibrium, which besides its unique robustness properties has a
strikingly simple, seemingly myopic pricing rule. Prices below marginal cost emerge naturally
to sustain experimentation. Intertemporal exchange of the gains of learning is necessary to
support efficient experimentation.

Felli and Harris (1996) consider a continuous model with uncertainty represented by a
Brownian motion and interpret the (matching) model in the context of the labor market with
wage renegotiation, and where human capital is seen as information. They use a variant of
the continuous-time bandit framework to study equilibrium wage dynamics in a setting where
two firms and a worker learn about the worker’s aptitude to perform firm-specific tasks.

3 SOCIAL LEARNING: EXPERIMENTATION AND EXTERNALITIES

In multi-agent learning situations, informational externalities may reduce the number
of experiments undertaken below the socially efficient level. As buyers choose among,
for instance, new experience goods or firms decide whether to adopt a new technology,
the availability of information from others’ decisions gives rise to a free-rider problem.
Rather than performing a costly experiment herself, a buyer may opt to wait to see how
the market evaluates the new product. Thus, given that experimentation typically entails an
opportunity cost, and that information obtained from an experiment is valuable to all players,
individual players attempt to free ride on the experiments of others. This informational
externality drives a wedge between equilibrium experimentation and socially optimal
experimentation. On the other hand, an individual player may be encouraged to experiment
more if, by doing so, she can bring forward the time at which the information generated by
the experimentation of others becomes available. This encouragement effect mitigates the
free-rider effect.

The idea of an informational externality arising in a sequential learning model is already
central to Rob (1991), who studies a dynamic model of entry when the size of the market
is uncertain. The model develops Bayesian learning by building insights but the novelty is
that the author considers the multi-agent case. As it turns out, new features come to light
when many agents interact. Most importantly, a learning externality emerges because present
generations of firms confer informational benefits upon as yet non-existent firms, and these
externalities result in an inefficiently slow pace of capacity expansion. These externalities exist
because information is a public good – namely, observation of existing firms’ profit-and-loss
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data is informationally beneficial to potential firms, yet potential firms do not pay for these
benefits.

Bolton and Harris (1999) extend the classic two-armed bandit problem to a many-agent
setting in which N players each face the same experimentation problem. The main change
from the single-agent problem is that an agent can now learn from the current experimentation
of other agents. Information is therefore a public good, and a free-rider problem in experimen-
tation naturally arises. More interestingly, the prospect of future experimentation by others
encourages agents to increase current experimentation. There are N identical infinitely lived
risk-neutral players. At each time t, these players simultaneously and independently choose
the proportion of the current period [t, t + dt] to devote to each of the two actions available
to them, namely 0 (the safe action) and 1 the risky action. If player i chooses to devote a
proportion αi of the current period to the risky action, then she receives the total payoff

dπ0
i (t) = (1 − αi) s dt + (1 − αi)

1/2σdZ0
i (t)

from the safe action and the total payoff dπ1
i (t) = αi μ dt + π

1/2
i σdZ1

i (t) from the risky
action. All players then observe all the proportions chosen and all the resulting payoffs. The
underlying payoff of the risky action is unknown but common to all players, and it can be
either higher or lower than that of the safe action. The actual payoff obtained by a player
from an action is the underlying payoff of that action plus noise. More explicitly, all players
observe αi, dπ0

i , and dπ1
i for all 1 ≤ i ≤ N. Once players have chosen how to allocate their

time and the payoffs have been realized, all players observe all choices and all payoffs. They
therefore obtain information about the underlying payoff of the risky action by observing the
payoffs derived from the risky action. Player i’s objective is to maximize the expectation of
the present discounted value of her payoff stream, namely

E

[∫ ∞

0
re−rt

(
dπ0

i + dπ1
i

)
(t)

]
,

where r > 0 is the discount rate.
Several features of this model are worthy of comment. First, dπ0

i (t) is composed of the
deterministic contribution s dt and the stochastic shock σdZ0

i (t). Since the contribution s dt
is known, it follows that dπ0

i conveys no information about μ ∈ {l, h}. Similarly, dπ1
i (t) is

composed of the deterministic contribution μ dt and the stochastic shock σdZ1
i (t). The first

contribution ensures that dπ1
i (t) conveys some information about μ. The second ensures that

this information is noisy. Second, if player i devotes a proportion αi of the current period
[t, t + dt] to the risky action, then her total payoff dπ0

i (t) from the safe action is distributed
normally with mean (1 − αi) s dt and variance (1 − αi) σ

2dt, and her total payoff from the
risky action is distributed normally with mean αi μ dt and variance αiσ

2dt. These means
and variances can be compared with the means and variances obtained when she devotes a
proportion αi of the periods [t, t + dt] in the interval of time [T, T +�T) to the risky action,
but devotes each period exclusively either to the safe action or to the risky action. Bolton and
Harris (1999) are concerned primarily with perfect equilibria in stationary Markov strategies.
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Such strategies depend only on the natural state variable for the problem at hand, namely
the players’ common belief p that μ is high. In order to formulate the Bellman equations for
equilibrium strategies then it is necessary to determine how p evolves. Let p(t) denote the
prior belief that μ is high at time t, suppose that player i devotes a proportion αi of the period
[t, t + dt] to the risky action, let p(t + dt) denote the posterior belief that μ is high at time
t + dt and let dp(t) = p(t + dt)− p(t) denote the change in beliefs over the period [t, t + dt].
Finally, let ϕ (p) = (p(1−)((h − l)/σ))2. Then, conditional on the information available to
players at time t, the change in beliefs dpt is distributed normally with mean 0 and variance(∑N

i=1 αi

)
ϕ (p (t)) dt. Let m (p) = (1 − p) l + ph be the expectation of the flow payoff from

the risky arm when μ is believed to be h with probability p. The Bellman equation states
that the current payoff is the maximum over the control variable αi of the expectation of the
current flow payoff, (1 − αi) s + αi m (p), plus the discounted value of the rate of change of
the continuation payoff.

Since in any given period of this game, each player must divide her time between the “safe”
action and the “risky” action, then they obtain information about the underlying payoff of
the risky action by observing the payoffs derived from the risky action. The authors provide
an analysis of the set of stationary Markov equilibria. The equilibrium experimentation is
analyzed in terms of the free-rider and the encouragement effects. The free-rider effect is
easy to explain: extra current experimentation by the other players provides player i with
information at no cost, and this information is used as a substitute for information that
she would otherwise have had to supply for herself at some opportunity cost. As for the
encouragement effect: extra future experimentation by the other players encourages player
i to increase her current experimentation in order to bring forward the time at which the
extra information generated by the other players becomes available. In summary, then,
current experimentation by one player is a strategic substitute for current experimentation
by another, but future experimentation by one player is a strategic complement for current
experimentation by another.

The many-agent continuous-time strategic experimentation literature also includes Keller
and Rady (2010) and Keller, Rady and Cripps (2005). The former paper studies a game of
strategic experimentation with a two-armed bandit where the risky arm distributes lump-
sum payoffs according to a Poisson process. The intensity of this process is either high or
low, and unknown to the players. They consider Markov perfect equilibria with beliefs as
the state variable. There is no equilibrium where all players use cut-off strategies, and all
equilibria exhibit an encouragement effect relative to the single-agent optimum. Keller et al.
(2005) analyze a game of strategic experimentation with a two-armed bandit whose risky
arm might yield payoffs after exponentially distributed random times. Free riding causes an
inefficiently low level of experimentation in any equilibrium where the players use stationary
Markovian strategies with beliefs as the state variable. Décamps and Mariotti (2004) study a
specific duopoly model where each player learns about the quality of a common value project
by observing some public information plus the experience of her rival. Investment costs are
private information, and the background signal takes the form of a Poisson process conditional
on the quality of the project being low. The resulting attrition game has a unique, symmetric
equilibrium, which depends on initial public beliefs. The authors determine the impact of
changes in the cost and signal distributions on investment timing, and how equilibrium is
affected when a first-mover advantage is introduced. Rosenberg, Solan and Vieille (2007) set
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up a model where each of two players operates a one-arm bandit machine in discrete time
and must decide when to stop operating the machine. The innovation of their model is that
they drop the assumption that payoffs are publicly observed. As a consequence, there is no
commonly observed state variable, such as a common posterior belief, on which to condition
one’s actions. Modeling dynamic pricing under social learning can also be found in Bose
et al. (2006, 2008), in which buyers take actions sequentially, based on the history of previous
purchases, prices, as well as their private information about a common value component. Their
models are closer to the herding literature: a short-lived buyer makes a purchasing decision in
a predetermined sequence.

3.1 Learning and Rational Expectation Models

Mirman, Salgueiro and Santugini (2014) study learning in perfect competition. A representa-
tive price-taking firm, which has complete information about the market, sells a good whose
quality is unknown to some buyers. Demand is composed both of informed and uninformed
buyers. The uninformed buyers use the price to infer information about quality. On the supply
side, the representative, price-taking firm produces and sells the good. The cost of production
is assumed to be increasing in quality and quantity. There is also a demand shock, which is
known to the firm but unknown to buyers that prevents the market price from being perfectly
informative about quality. Even though the firm is a price-taker, information is disseminated
through the price. It is the shape of the supply curve that influences the amount of information
contained in the price, which, in turn, affects the competitive equilibrium through the learning
process of the uninformed buyers. Information flows and market outcomes are entwined
because the uninformed buyers, who learn from prices, also participate in trading. In fact, the
presence of uninformed buyers and their learning activity influence the informational content
of the price. There is thus a two-way relation between trading and learning. Not only does
learning from prices have an effect on decisions, but also the agents’ decisions impact the
market price, thus influencing the informational content of the price and the learning process.
The uninformed buyers make decisions on the basis both of prior beliefs and the price –
learning can be decomposed into two effects: a beliefs effect and a price effect. The beliefs
effect reflects the change in behavior due to the asymmetry of information and the use of
prior beliefs. The direction of the beliefs effect depends only on the bias of the prior beliefs.
The price effect reflects the change in behavior due to updating beliefs. Unlike the beliefs
effect, the sign of the price effect depends on the bias of the prior beliefs and the demand
shock. Mirman, Salgueiro and Santugini (2015) extend the previous model by addressing the
issue of risk aversion in a competitive equilibrium when some buyers engage in learning and
information is conveyed through the price system. Specifically, since the learning process
yields uncertainty, the authors study the effect of risk aversion on the equilibrium outcomes
of the model, including the amount of information released by the market. They show that
risk aversion has an effect on the market outcomes but not on the flow of information.
In particular, an increase in risk aversion lowers the competitive price and quantity. However,
an increase in risk aversion does not change the amount of information embedded in the
equilibrium price.
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4 LEARNING MODELS OF INTRODUCTORY AND DYNAMIC
PRICING

In markets for new products and services, sellers face uncertainty over the product’s fit to
consumers’ needs. In these markets, heterogeneity in consumers’ willingness to pay for the
product creates the opportunity for firms to profitably adopt price discrimination techniques,
such as menu pricing. In addition, information about a product’s performance is widely
and publicly accessible through an increasing number of channels. The availability of such
aggregate information in a dynamic environment enables firms to modify their menu prices
on the basis of the opinion of their customers. In this scenario, a forward-looking firm must
screen consumers in order to maximize revenues, while taking into account the informational
value of sales. By selling additional units of the product (for example, by offering introductory
discounts), the firm accelerates the buyers’ learning process, thereby trading off (1) the long-
run profits that accrue due to the diffusion of information against (2) the maximization of
current revenue.

Several models of introductory and dynamic pricing under uncertainty about product qual-
ity have been developed. The main work in this area is due to Bergemann and Välimäki (1997,
2000, 2002, 2006), Villas-Boas (2004, 2006), Bonatti (2011), Weng (2015), Papanastasiou and
Savva (2016), among others. In particular, Bergemann and Välimäki (1997, 2000) analyze a
duopoly model of price competition where market participants are uncertain about the degree
of horizontal or vertical differentiation of the two firm’s products, while Bergemann and
Välimäki (2002) consider the entry of new products.

Bergemann and Välimäki (1997) model dynamic competition in a duopolistic market for
experience goods. An established firm and a firm with a new product compete in prices
in an infinite-horizon, continuous-time model. Buyers have heterogeneous preferences over
the products and sellers compete in prices. Thus, the authors analyze the diffusion of a
new product of uncertain value in a duopolistic market. Both sides of the market, buyers
and sellers, learn the true value of the new product from experiments with it. The authors
assume that the product incorporates both a common- and a private-value component to
the buyers. To keep the model analytically tractable, it is also assumed that the private-
value component of every buyer is common knowledge and may reflect idiosyncratic taste,
location, or the like. In contrast, the common component is learned gradually over time as
more experience is accumulated. The information obtained in any single trial with the new
product is a noisy signal of product quality. More formally, consider a dynamic duopoly,
where firms with differentiated products compete in prices in an infinite-horizon, continuous-
time setting. The first firm is well established in the market, and its product characteristics
are common knowledge at the beginning of the game. The second firm has a new product
whose value has to be learned over time. The preferences of the buyers are described by a
Hotelling location model. The buyers are uniformly distributed on the interval [0, 1], and they
have unit demand at each instant of time. The value of the certain product for individual n
is given by sn with sn = s + nh, n ∈ [0, 1]. The parameter h > 0 represents the horizontal
differentiation between the products, and as such, h is a measure of the heterogeneity among
the buyers. Symmetrically, the value of the uncertain product for individual n is given by, μn

with μn = μ+ (1 − n) h, n ∈ [0, 1]. The value, μ ∈ {μL, μH} of the new product is initially
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unknown to all parties. Also, 0 < s−h < μL < s < μH < s+h. The inner inequalities imply
that the new product can be of either lower or higher value than the established one. The outer
inequalities assert that in either case, the efficient allocation would assign a positive measure
of buyers to both products. The size of h determines how much the value of the product to the
buyer and ultimately the choice behavior of the buyer are influenced by her location.

The model is one of horizontal and vertical differentiation, where the horizontal differ-
entiation is common knowledge at the outset but the extent of vertical differentiation is
uncertain. The uncertainty about the value of the second product can be resolved only by
experimentation – that is, through purchases of the new product. The performance of the
new product is, however, subject to random disturbances, and any single experiment with the
new product provides only a noisy signal about the true underlying value. The information
conveyed by an experiment depends on the size of the experiment. As each buyer is of
measure zero, the size of her purchase is negligible and hence the information generated by an
individual experiment is also negligible. In consequence, all relevant information is contained
in the aggregate outcome. The aggregate or market outcome is the performance of the product
over all buyers, which is assumed to be publicly observable. The market players extract the
information provided by the noisy market outcome to improve their common prior beliefs
over time.

The learning process of the market represents a signal-extraction problem, which reduces to
the description of the law of motion of the posterior belief. It is immediately verified that the
instantaneous mean and the variance of the market outcome are linear in the market share of
the new seller. As the value of μ can only be μL or μH , posterior beliefs about the quality are
completely characterized by α (t) = pr(μ = μH/F(t)), where F(t) is the history generated
by X (n (t)). An experimentation policy prescribes for every posterior belief α the shares of
buyers allocated to the sellers. Denote by n(α) the market share of the new product and by
1 − n(α) the share of the established product. The strong long-run average is defined by the
following optimization problem:

V(α0) = sup′n(α)limT→∞E

[∫ T

0
(n (α)μ (n (α))+ (1 − n (α)) s (n (α))− ν(α)) dt/α0

]
,

where ν(α) is the long-run average values. The pricing policies and market shares in the
unique Markov perfect equilibrium are obtained explicitly. The dynamics of the equilibrium
market shares display excessive sales of the new product relative to the social optimum in
early stages and too low sales later on. The diffusion path of a successful product is S-shaped.

Bergemann and Välimäki (2000) present a model of entry and exit with Bayesian learning
and price competition. A new product of initially unknown quality is introduced in the market,
and purchases of the product yield information on its true quality. It is assumed that the
performance of the new product is publicly observable. The value of the product is determined
by the quality of the match between consumer preferences and product characteristics.
Additional information is acquired only through repeat purchases. In each period, buyers
observe a noisy signal of the true value of the product. With this assumption, all buyers
and sellers condition their behavior on the same information and we can abstract from
individual differences in past observations. As agents learn from the experiments of others,
informational externalities arise. The authors determine the paths of sales and prices in a
Markov perfect equilibrium and compare them to the Pareto-optimal paths. In contrast to the
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one-sided experimentation problems, Bergemann and Välimäki (2000) find that equilibrium
experimentation often exceeds the Pareto-optimal level in two-sided models. The paper
shows that the conventional wisdom that informational externalities lead to inefficiently low
levels of experimentation may be reversed in a two-sided learning model. The introduction
of sellers into the multi-agent learning model creates a market where experiments are priced.
The new seller sponsors the uncertain alternative and rewards buyers for experiments through
low prices. In contrast to one-sided learning models, the seller provides direct incentives for
the buyers to experiment. The ownership of the product allows the seller to extract the future
benefits of current experimentation that would have evaporated without the assignment of
property rights. The main theme of the paper is the importance of the market structure for
efficiency conclusions in a model of informational externalities. Bergemann and Välimäki
(2002) analyze the entry of new products into vertically differentiated markets where an
entrant and an incumbent compete in quantities. The qualitative features of the optimal
entry strategy are shown to depend exclusively on the relative ranking of established and
new products based on current beliefs. Superior products are launched relatively slowly and
at high initial prices, whereas substitutes for existing products are launched aggressively at
low initial prices. Bergemann and Välimäki (2006), in contrast, study a dynamic monopoly
pricing problem, in a market for new products and services, with a continuum of buyers
and independent valuations. The framework of a continuum of buyers makes it impossible
to discuss the impact of a single good news signal on price. Instead, they are more concerned
about whether price would go down or eventually go up in equilibrium.

Villas-Boas (2004) considers a model in which consumers learn in the first period about the
product they buy and then make choices in the second period about the competing products,
given what they learned in the first period. The paper finds that if the distribution of valuations
for each product is negatively (positively) skewed, a firm benefit (is hurt) in the future from
having a greater market share today – the brand loyalty characteristic. With negative skewness,
two effects are identified: on one hand, marginal forward-looking consumers are less price
sensitive than myopic consumers, and this is a force toward higher prices. On the other hand,
forward-looking firms realize that they gain in the future from having a higher market share
in the current period and compete more aggressively in prices. For similar discount factors
for consumers and firms, the latter effect dominates. Villas-Boas (2006) analyzes dynamic
competition in the case in which consumers are only able to learn about their preferences for
a certain product after experiencing it. The idea is that after trying a product and understanding
its valuation, a consumer may prefer the product whose valuation she knows better than the
product whose valuation remains mostly uncertain. With risk neutrality this can be obtained
with products offering a better-than-expected fit with greater likelihood. In this sense, firms
may compete fiercely for consumers to first try their products. This paper examines the
competitive effects of these informational advantages in an infinite horizon model with
overlapping generations of consumers. In an infinite horizon firms have to trade off exploiting
any informational advantages today with having lower informational advantages in the future.
Similarly, the marginal consumers realize that by purchasing a product today they will be
charged a higher expected price in the future. That is, forward-looking consumers become
less price sensitive. The paper finds that steady-state prices, for similar discount factors for
firms and consumers, are higher the greater the informational differentiation effects. In other
words, the effect of increased prices because of lower price sensitivity of the forward-looking
consumers dominates the effect of lower prices caused by firm competition for market share
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for future gains. The intuition is that in an infinite horizon firms realize that they should take
advantage of any informational advantages when they have them, because in the future they
also have to compete for a new generation of consumers. Furthermore, information advantages
may also lead to some consumers finding that the product they tried first is not very valuable
for them, and therefore they may be more likely to try another product. Villas-Boas (2006)
looks at heterogeneous consumers (also without private information by the firms) but moves
away from the consumer experimentation issues by limiting consumers to be in the market for
only two periods.

Bonatti (2011) addresses the issue of designing dynamic menus to sell experience goods.
The author characterizes the evolution of menu prices as information about product quality
is gradually revealed, and examines the interaction of the screening and learning problems.
More specifically, Bonatti (2011) develops a dynamic model with a monopolist firm and a
continuum of small consumers. Consumers purchase repeatedly and have multi-unit demands
in each period. Each consumer’s valuation of the firm’s product depends on both a private
value and a common value component. Denote by θ an idiosyncratic, private value component,
representing the buyer’s personal willingness to pay for the product. For each buyer, θ belongs
to the interval � = [θL, θH]. The idiosyncratic component θ is the consumer’s private
information. It is distributed in the population according to a continuously differentiable
distribution F(θ). Denote by μ a common value component that represents the quality of
the match between the product and the needs of the market. This parameter may only take
one of two values, με {μL, μH} with 0 < μL < μH . Each consumer’s valuation for q
units of a product is a separable function of the product’s quality μ and of the consumer’s
willingness to pay θ . The complete information utility of a consumer with willingness to
pay θ , who purchases q units of a product of quality μ, for a total charge of p, is given by
U(μ, θ , q p) = μθu (q) − p. Product quality μ is unknown initially to both the firm and the
consumers, and all market participants share the common prior belief α0 = Pr(μ = μH). In
each period, a monopolist posts a menu of price–quantity pairs. The firm prices anonymously,
and prices and quantities are adjusted flexibly. In a direct mechanism, the firm’s strategy
is a pair of piecewise differentiable functions qt : � → R+ and pt : � → R+ in each
period. These functions determine the quantity and the total charges assigned to each buyer θ .
Suppose each buyer purchases quantity qt(θ) and pays total charges of pt(θ). The firm then
obtains flow profits of

�(qt, pt) =
∫ θH

θL

pt (θ)− c(qt(θ))f (θ)dθ .

These buyers have private information about their willingness to pay, providing the firm with
an incentive to price differentially. The quality of the product is unknown initially; more
information is generated through experimentation. As purchases are made, both the firm and
the consumers observe signals about the product’s quality and, as a result, revise their beliefs.
The amount of information in the market is increasing in the total quantity sold in each period.
As a result, the firm can control the information flow to the market. The aggregate market
experience and the associated law of motion of belief is an adaptation of Bergemann and
Välimäki (1997) to allow for multi-unit demand. Bonatti (2011) characterizes the incentive-
compatible menus of contracts market by adjusting the level of sales. Learning occurs through
consumption, and each unit sold provides additional information. Thus the firm wants to sell
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additional units to gain more information when uncertainty about quality is high and beliefs
are more responsive to news. The second component is related to efficiency. As consumers
grow more optimistic about the quality of the product, their willingness to pay increases,
thereby creating the opportunity for the firm to realize larger gains from trade. Therefore,
the firm offers larger quantities in this case. The third component is adverse selection. Positive
signals about quality increase the spread in buyers’ valuations for the product. This makes
the incentive compatibility constraints more difficult to satisfy and induces the firm to offer
fewer units to buyers who have a lower willingness to pay. The firm pursues the dual objectives
of generating information and screening consumers simultaneously.

Weng (2015) investigates how a monopolist sells a new experience good to many buyers
over time in the presence of individual learning. The monopolist and the buyers initially are
equally unsure about the effectiveness of the product. Without having seen the effectiveness of
the product, potential purchasers become increasingly pessimistic and in order to keep buyers
purchasing the product, the price must be reduced. Dynamic monopoly pricing is modeled
as an infinite-horizon, continuous-time process. The monopolist sells a perishable experience
good. She can neither price-discriminate across buyers nor commit to a price rule. At each
instant of time, the monopolist first posts a spot price, which is contingent on the available
public information about the experiences of the buyers. Each buyer then decides to either
buy one unit of the experience good or take an outside option (modeled as another good of
known characteristics). The experience good generates random lump-sum payoffs according
to independent Poisson processes. The arrival rate of the lump-sum payoffs depends on an
unknown individual attribute, which is binary and uncorrelated across buyers. A key feature
of the model is that buyers can become ex post heterogeneous in two ways: heterogeneity
can be induced by either different outcomes or different actions. The author considers two
different cases. In the good news case, the experience good generates positive lump-sum
payoffs; in the bad news case, it generates negative lump-sum damages (e.g., side-effects
of new drugs). This paper fully characterizes the symmetric Markov perfect equilibrium for
both cases. The equilibrium purchasing behavior in the good news case is characterized for an
arbitrary number of buyers. It turns out that the equilibrium experimentation level is always
lower than the socially efficient one when at least one buyer has received a lump-sum payoff.
This is due to the existence of ex post heterogeneity: known buyers are willing to pay more
than unknown buyers. Without price discrimination, the trade-off between exploitation and
exploration leads to inefficient early termination of experimentation. The symmetric Markov
perfect equilibrium for the bad news case is always efficient.

Papanastasiou and Savva (2016) analyze how the presence of social learning interacts
with the adoption decisions of strategic consumers and the dynamic pricing decisions of a
monopolist firm, within a simple two-period model. There is a monopolist firm selling a new
product to a fixed population of strategic consumers, over two periods. Two alternative classes
of dynamic-pricing policies may be employed: the firm may either (1) announce the full price
path from the beginning of the selling horizon (pre-announced pricing) or (2) announce only
the first-period price, and delay the second-period price announcement until the beginning
of the second period (responsive pricing). Consumers are heterogeneous in their preferences
for the product and make adoption decisions to maximize their expected utility. The authors’
addition to this simple model, and the focal point of their analysis, is the introduction of
ex ante quality uncertainty (faced by both the firm and consumers), which may be partially
resolved in the second period by observing the product reviews of first period buyers (social
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learning, SL). Because in the presence of SL the product’s quality is partially revealed in
the second period, the interaction between the firm and consumers is transformed from a
game whose outcome can be perfectly anticipated from the onset (in the absence of SL), to one
whose outcome is of a probabilistic nature (i.e., a stochastic game). When the firm commits
to a price path ex ante (pre-announced pricing), the presence of social learning increases
the firm’s ex ante expected profit, despite the fact that it exacerbates consumers’ tendency
to strategically delay their purchase. As opposed to following a price-skimming policy that
is always optimal in the absence of social learning, the authors find that, for most model
parameters, the firm will announce an increasing price plan. When the firm does not commit
to a price path ex ante (responsive pricing), interestingly the presence of social learning has
no effect on strategic purchasing delays. Under this pricing regime, social learning remains
beneficial for the firm and prices may either rise or decline over time, with the latter being
ex ante more likely. Furthermore, contrary to results reported in existing literature, in settings
characterized by social learning, price commitment is generally not beneficial for a firm facing
strategic consumers.

5 EXPERIMENTATION AND SIGNAL DEPENDENCE

In models of active learning or experimentation, agents modify their actions to affect the
distribution of a signal that provides information about future payoffs. A standard result in the
experimentation literature is that agents experiment, if at all, to increase their information.
This finding is a direct consequence of Blackwell’s theorem: one experiment is more
informative than another if and only if all expected utility maximizers prefer to observe
the first. Blackwell’s theorem presupposes, however, that most analyses of the effect of
experimentation on short-run decisions assume that the information structure is noisy; that is,
for each value of the uncertain parameter the observed signal only conveys information and
does not directly affect future payoffs. Often, however, signals are directly payoff relevant, a
phenomenon called signal dependence. For example, if a firm is uncertain about its demand
and uses today’s sales as a signal of tomorrow’s demand, then that signal may also directly
affect tomorrow’s profit if the good is durable or if consumers form consumption habits.
Signal dependence arises very naturally in many models. With signal dependence, the analysis
of optimal experimentation becomes much more complex. First, Blackwell’s theorem is no
longer applicable: if the signal enters the payoff function directly, some agents may prefer
a less informative experiment, since the less informative experiment may be associated with
better signal realizations. From this fact alone, one suspects that experimentation might reduce
information. Second, the precise definition of experimentation or active learning becomes
more complicated. Datta, Mirman and Schlee (2000) analyze optimal learning in models with
signal dependence and noiseless information and show that, if the signal is payoff relevant,
experimentation may indeed reduce information. They show that, despite the inapplicability
of Blackwell’s theorem, agents always experiment to increase information if the information
structure is noiseless: given the true value of the unknown parameter, the signal realization
is deterministic. Thus, they re-establish the classic experimentation theorem, even though
Blackwell’s theorem does not apply. Datta, Mirman and Schlee (2002) re-examine the issue
of optimal experimentation in the context of dynamic problems in which today’s signal
or action is directly payoff relevant for the future. They show that experimentation may
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reduce information. They also provide sufficient conditions on the primitives for information-
increasing experimentation.

There are a few papers analyzing experimentation in signal dependent problems. For
instance, El-Gamal and Sundaram (1993) focus on learning in the long run and show that
signal dependence helps mitigate incomplete learning results that are common in standard
repeated experimentation models. Intuitively, signal dependence prevents an agent from
getting “stuck” in an uninformative action, ensuring that the agent continues to learn through
time. Chade and Vera de Serio (2002) consider an infinite horizon single-sale model where
the demand and the seller’s valuation for the good depend on the state of the world that is
unknown to her, and she meets potential buyers over time who behave strategically. In this
environment with asymmetric information, active learning, and strategic behavior, the authors
characterize the perfect Bayesian equilibria of the game and obtain two main results. First,
they prove that, even if the buyers do not attempt to manipulate the seller’s learning process,
her incentives to post a high price and to experiment are not necessarily monotonic in the
information conveyed by a buyer’s rejection to buy at a high price. Second, they show that,
as the discount factors of the seller and the buyers tend to one, there are equilibria where the
seller never trades at the “wrong” price in the limit. The main forces that drive this result are
(1) the existence of heterogeneous buyers in each state of the world, and (2) the assumption
that the number of buyers is greater than the number of sellers.

6 APPLICATIONS OF LEARNING

In static agency models (with two types of agents) the main issue is how the principal can
design a separating contract in which agents of different types self-select. In the process,
these agents reveal their information. The procedure involves paying an informational rent
to the “good” agent. The question then naturally arises if such a procedure also works in a
repeated or dynamic context. Jeitschko, Mirman and Salgueiro (2002) study the dynamics
of a stochastic, two-period principal–agent relationship. The agent’s type remains the same
over time. Contracts are short term. The principal designs the second-period contract, taking
into account the information available about the agent after the first period. Compared to
deterministic environments significant changes emerge: first, fully separating contracts are
optimal. Second, the principal has two opposing incentives when designing contracts: the
principal “experiments”, making signals more informative, yet dampens signals, thereby
reducing up-front payments. As a result, “good” agents’ targets are ratcheted over time.

Uncertainty and informational asymmetries are also present when firms decide to enter
a foreign market. Moner-Colonques, Orts and Sempere-Monerris (2008) examine a firm’s
internationalization decision – between foreign direct investment and exports – that competes
against a host-informed rival. Each entry mode entails different costs and has different
informational implications. The authors show that the incumbent host firm will produce
below its first-period monopoly output to encourage entry via foreign direct investment.
The incumbent prefers facing a stronger competitor in period two because then strategic
uncertainty is reduced. Akhmetova (2010) provides a new way of looking at the dynamics
of new exporters. The author points out that there may be a state of the firm in between full
market access and non-exporting, where the firm is granted the chance to learn about demand
before making a final decision. The duration of this learning stage is moreover determined
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endogenously – by the firm and market characteristics, and is a random variable, affected by
the draws of demand signals that the firm obtains. Similarly, the total entry cost, which here
would be the sum of total testing costs and the (one-time) sunk cost of entry, is endogenous
and random. The model makes it possible to predict the dynamics of exports by new exporters.
One specific application is the study of the response to trade liberalization – once tariffs fall,
new firms will be willing to export, and how they do so can be determined within this model.
This dynamic depends on the firm and market variables, as well as features of uncertainty.

Willems (2017) investigates the extent to which the active learning motive of a seller who
faces uncertainty on the slope of his demand curve can reconcile the volatile, discrete pattern
followed by individual prices, with the sluggishness observed in the aggregate price level. The
author develops a different explanation for the micro–macro conflict in pricing behavior –
one that is also able to generate individual price series that show a lot of discreteness. The
way in which this learning process is modeled differs from the passive approach used to
analyze the Fed’s learning process on the Phillips curve, namely, the learning process resulting
from the dynamic outcome of an adaptive process that may converge to a self-confirming
equilibrium. In the Fed’s model, a reduced-form long-run Phillips curve is derived from
having private agents adaptively forecasting inflation and the government knowing the “true”
Phillips curve and how agents forecast. The government takes into account that a constant
inflation policy will eventually be learned by private agents and the resulting outcome is close
to the Ramsey outcome (see, for example, Sargent, 1999). Although the class of learning
rules can be fairly general, it does not include the government’s optimal policy and the
resulting equilibrium has mis-specified beliefs. In contrast, this paper shows that modeling
the seller as an optimal experimenter allows the model to replicate at least three aspects
of the data: the experimentation motive generates volatile pricing patterns showing a lot of
discreteness at the individual level, while the fact that there still is some learning going on
makes the aggregate price level respond sluggishly to shocks. So once one considers a model
that optimizes the learning process itself, it turns out that learning is not only able to match
the aggregate dimension of the data, but it is also capable of reproducing important micro-
elements of it. This result is not driven by some form of irrationality: sellers in the model
are just responding optimally to the fact that they face a demand curve with an unobserved,
time-varying slope.

The strategic experimentation framework is also used as a building block to investigate
broader issues. For example, Strulovici (2010) investigates voting in a strategic experimenta-
tion environment. In particular, the incentives for collective experimentation when individual
interests may be in conflict and are revealed gradually and at times that are random and
may also vary across individuals. The analysis is conducted in a two-armed bandit model
in which a safe alternative yields a constant, homogeneous payoff to everyone, while the risky
alternative yields payoffs whose unknown distribution, or type, may vary across individuals.
At each instant, society elects one of the two alternatives according to some voting rule.
Individuals learn their type only through experimentation with the risky alternative. In the
benchmark setting the risky action is, for each individual, either good or bad, and these types
are independently distributed across individuals. Moreover, any news shock fully reveals to its
recipient that the risky action is good for him, that is, he is a sure winner. By contrast, unsure
voters are those individuals who have not yet received any positive news about their type,
and who become increasingly more pessimistic as experimentation goes on. The benchmark
setting focuses on simple majority voting.
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Bergemann and Hege (2005) examine a stylized model of the funding of a research project
where the merit of an idea and the time and money needed for completion are uncertain.
They specifically investigate how stopping decisions are taken in the presence of agency
conflicts in the form of entrepreneurial opportunism. The project will succeed with a positive
probability in every period in proportion to the volume of funds provided, so that uncertainty
is represented by a simple stochastic process. As continued research efforts are undertaken
and no success is forthcoming, Bayesian learning will lead to a gradual downgrading of the
belief in the project’s prospects. The project either ends with success or will eventually be
abandoned in the light of persistent negative news. Time horizon itself is infinite to address
the essence of the uncertainty about the time to completion, but abandonment will occur in
finite time.

Moscarini, Ottaviani and Smith (1998) set up a social learning model where individuals
take actions sequentially, after observing the history of actions taken by the predecessors,
and an informative private signal. If the state of the world is changing stochastically over
time during the learning process, only temporary informational cascades – situations where
socially valuable information is wasted – can arise. Furthermore, no cascade ever arises when
the environment changes in a sufficiently unpredictable way.

Hörner and Samuelson (2009) examine a repeated interaction between an agent who
undertakes experiments and a principal who provides the requisite funding for these exper-
iments. The agent’s actions are hidden, and the principal cannot commit to future actions.
The repeated interaction gives rise to a dynamic agency cost – the more lucrative the agent’s
stream of future rents following a failure, the costlier the current incentives for the agent. As a
result, the principal may deliberately delay experimental funding, reducing the continuation
value of the project and hence the agent’s current incentive costs. The authors characterize
the set of recursive Markov equilibria and find that there are non-Markov equilibria that make
the principal better off than the recursive Markov equilibrium, and that may make both agents
better off. Efficient equilibria front-load the agent’s effort, inducing as much experimentation
as possible over an initial period, until making a switch to the worst possible continuation
equilibrium. The initial phase concentrates the agent’s effort near the beginning of the project,
where it is most valuable, while the eventual switch to the worst continuation equilibrium
attenuates the dynamic agency cost.

Bonatti and Hörner (2009) consider moral hazard problems when effort affects the speed of
learning. They examine moral hazard in teams over time. Agents are collectively engaged in
an uncertain project, and their individual efforts are unobserved. Free riding leads not only to a
reduction in effort, but also to procrastination. The collaboration dwindles over time, but never
ceases as long as the project has not succeeded. In fact, the delay until the project succeeds,
if it ever does, increases with the number of agents. The authors show why deadlines, but not
necessarily better monitoring, help to mitigate moral hazard.

Cripps et al. (2008) examine two agents who learn the value of an unknown parameter
by observing a sequence of private signals. The signals are independent and identically
distributed across time but not necessarily across agents. The authors show that when each
agent’s signal space is finite, the agents will commonly learn the value of the parameter;
that is, that the true value of the parameter will become approximate common knowledge.
The essential step in this argument is to express the expectation of one agent’s signals, condi-
tional on those of the other agent, in terms of a Markov chain. This allows them to invoke a
contraction mapping principle ensuring that if one agent’s signals are close to those expected
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under a particular value of the parameter, then that agent expects the other agent’s signals
to be even closer to those expected under the parameter value. In contrast, if the agents’
observations come from a countably infinite signal space, then this contraction mapping
property fails.

Eeckhout and Weng (2015) analyze a general setup of experimentation with common
values, and show that in addition to the well-known conditions of value matching (level)
and smooth pasting (first derivative), this implies that the second derivatives of the value
function must be equal whenever the agent switches action. This condition holds generally
whenever the stochastic process has continuous increments. The main appeal of their approach
is its applicability, which is demonstrated with two applications featuring common value
experimentation: strategic pricing, and job search with switching costs. In the canonical exper-
imentation problem in discrete time and with independent arms, the value of pulling each arm
itself is not a function of the cutoff. In contrast, when there is common value experimentation,
the underlying states are no longer independent and pulling any given arm affects the value
of the other arms. The immediate implication is that the decision to pull any given arm affects
the value of pulling all other arms. As a result, the authors have to solve for the value of
each of the arms and the cutoffs simultaneously and they can no longer apply the canonical
model logic.

In addition to the theoretical body of work, there are a few empirical studies attempting
to quantify the importance of learning considerations on consumers’ dynamic purchasing
behavior. In these studies, consumers learn from their individual experience, revise their
beliefs about product quality, and consequently modify their choices. A non-exhaustive list
of empirical papers on learning and dynamic consumer choice includes Ackerberg (2003)
on advertising, learning, and consumer choice in experience good markets; Akçura, Gonul
and Petrova (2004) on learning and brand valuation; Crawford and Shum (2005) on learning
in pharmaceutical demand; Erdem and Keane (1996) on brand choice processes; Göttler
and Clay (2011) on tariff choices and Israel (2005) on automobile insurance. Both, Hitsch
(2006) and Song and Chintagunta (2003) analyze learning about the demand on the firm’s
side, but focus on investment decisions, such as product adoption or exit. Wieland (2000)
utilizes numerical methods to characterize the optimal policy function for a learning-by-doing
problem that is general enough for practical economic applications. Dynamic simulations
indicate that optimal experimentation dramatically improves the speed of learning and the
stream of future payoffs. Ching, Erdem and Keane (2013) survey the basic Bayesian learning
model of brand choice, pioneered by Eckstein, Horsky and Raban (1988), Roberts and Urban
(1988) and Erdem and Keane (1996). The authors describe how subsequent work has extended
the model in important ways. For instance, we now have models where consumers learn
about multiple product attributes, and/or use multiple information sources, and even learn
from others via social networks. And the model has also been applied to many interesting
topics well beyond the case of brand choice, such as how consumers learn about different
services, tariffs, forms of entertainment, medical treatments and drugs. Ching et al. (2013)
also identified some limitations of the existing literature. These include (1) that it has been
difficult to distinguish forward-looking and myopic behavior, and (2) that it has not been
technically feasible to build inventories into dynamic learning models. The latter is important,
because the dynamics generated by inventories can be quite similar to those generated by
learning.
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7 CONCLUDING REMARKS

To conclude this chapter, it is fair to mention some references not included in the various
sections above. For instance, this survey has not contemplated models of observational
learning, where agents do not choose how much information they receive. Observational
learning is learning that occurs through observing the behavior of others. It is a form of
social learning that takes various forms, based on various processes. Since agents make only
one decision, no one gains by experimentation in the observational learning models. The
interested reader may consult Smith and Sørensen (2011) and Smith, Sørensen and Tian
(2015), where a formal analogy is made between the observational learning model and a
model of an impatient experimenter. Models of word-of-mouth transmission of information
parallel the observational learning literature: Banerjee and Fudenberg (2004) analyze a model
in which agents make one binary decision, while Ellison and Fudenberg (1993) study a word-
of-mouth model in which agents base decisions solely on the payoff information contained in
their sample.

A different issue is learning and convergence to full-information equilibrium with unin-
formed firms or how to attain full-information equilibrium with competitive dynamics.
Repeated interaction in the market place provides an answer to both the lack of information
aggregation with simple market mechanisms and the formation of (fully revealing) rational
expectations. Agents process repeated observations of public market data and learn about the
relevant uncertainty (adjusting their beliefs in response to observations). The study of conver-
gence to full-information equilibrium with repeated interaction is important since it provides a
foundation to competitive equilibria under private information. Indeed, the competitive model
with full information will be approximately right even in private-information environments
if repeated interaction in the market place resolves the uncertainty. In the Bayesian setting,
agents have priors over possible sequences of market prices and update at each date. If the
prior does not coincide with the objective distribution on price sequences generated by the
behavior of agents, then there is learning about rational expectations equilibria. In general, a
crucial element to obtain convergence to a limit equilibrium with correct beliefs with respect
to the underlying true economy is the a priori assumed coordination of expectations of agents.
Jun and Vives (1996) investigate learning and convergence to a full-information equilibrium
with uninformed firms and Vives (1993) considers the implications of uncertainty about costs
and studies the market dynamics with asymmetric information. In all cases the speed of
learning and the rate of convergence to full-information equilibria are characterized.

Evolutionary game models are close to models of social learning. While these models focus
on strategic situations, the players are decidedly non-strategic. Evolutionary models have been
used to make selections in general games with multiple, but non-strict, equilibria. Kandori,
Mailath and Rob (1993) and Foster and Young (1990) study strategic evolutionary models in
which there is perpetual randomness.

Some of the literature on learning in games can be seen as an effort to revive the fictitious
play model, or at least to identify more precisely when play converges to equilibrium. The
research program of Fudenberg and Kreps (1993, 1995) is dedicated to finding conditions
on learning models that guarantee local stability of Nash equilibria. Fudenberg and Levine
(1998) discuss some work on learning in games. Models in which learning is described by
Bayes’ rule lead to surprisingly powerful results. Kalai and Lehrer (1993) present one of the
few analyses of repeated games in which players are not myopic.
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One of the main questions in the literature on Bayesian learning is whether learning leads,
asymptotically, to good outcomes. Results supporting the statement that agents make optimal
decisions asymptotically tell us little about the kind of decisions people normally make.
If rational learning leads to good outcomes in a realistic amount of time, then an effort
should be made to obtain the faster rates of convergence that are observed in experiments.
However, rational learning also provides broad scope for the assertion that learning does not
lead to optimal decisions in a realistic length of time. As Sobel (2000, p. 259) points out,
“Intelligently designed institutions perform well even if individual participants are poorly
informed or boundedly rational” then “the literature on learning could identify institutions
that lead to good outcomes either because learning is easier or faster in those settings or
because outcomes are not sensitive to poor decisions that agents may make”. This suggests
that, although the literature in mechanism design tells us a lot about how to design markets,
rational learning models may add a new dimension to market design.
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18. Information sharing in oligopoly
Sergio Currarini ∗ and Francesco Feri

1 INTRODUCTION

Oligopolistic firms face obvious incentives to coordinate their output and price strategies, in
order to collude on otherwise contested markets. A seemingly related question is whether
oligopolists face incentives to disclose or even share their private information on either
market or technological conditions before engaging in market competition. These incentives
to “collaborate” with rival firms do not stem from the softening (or even avoidance) of
competition, but rather from the modification of the informational structure under which the
upcoming competition will take place. It has been argued that understanding such incentives
has strong policy relevance, as it can guide regulative intervention by suggesting whether
evidence of information sharing should or should not be interpreted as evidence of market
collusion (see Kuhn and Vives’s 1995 report on the EU industry).

These considerations have motivated vast attention in the theoretical industrial organization
(IO) literature, where game-theoretic models of incomplete information have been employed
to disentangle the forces that finally result in the incentives to disclose or share one’s private
information. Most papers have dealt with situations where information is shared prior to the
realization of uncertainty (the ex ante case), so that the decision to disclose does not signal
anything about one’s own private information. There have also been a few attempts to deal
with the interim case, where firms receive their private information prior to taking action.
The interim case provides firms’ strategies with a signalling content, and is therefore more
complex.

In this survey we discuss the main insights from the vast body of research on the subject,
with special attention to what is now understood about the role of the various aspects of
the oligopolistic model and of the informational structure in generating incentives to share.
While the existing literature has studied the forces behind multilateral sharing (disclosure of
private information to all other firms in the market), we devote a considerable part of this
survey to recent developments of the model that encompass targeted and bilateral sharing
agreements, where pairs of firms decide to exclusively share their private information. Using
economics terminology, shared information is here a “club” good, compared to the “public
good” property of shared information in the traditional multilateral model.

1.1 The Basic Oligopoly Model

This section is based on Raith’s (1996) general model of information sharing in oligopoly.
Consider a stochastic oligopoly model with n firms; each firm i’s profit is affected by a random
variable τi, distributed normally with zero mean and variance ti. The covariance between τi

∗ Sergio Currarini wishes to acknowledge the support of the Ministry of Education and Science of the Russian
Federation, Grant No. 14.U04.31.0002, administered through the NES CSDSI.

520

Luis C. Corchón and Marco A. Marini - 9781785363276
Downloaded from Elgar Online at 02/24/2018 12:47:17PM

via University of Durham



�

�

�

�

�

�

�

�

Information sharing in oligopoly 521

and τj is tn ≥ 0 for all i, j. Depending on the specific application, this may represent deviations
from the mean of either marginal costs or of the intercept of the demand function. We refer to
the vector τ = (τ1, τ2, . . . , τn)’s as the “state of the world”. Each firm i plays a strategy si ∈
R+ (a quantity in Cournot competition and a price in Bertrand competition). The following
expression describes the relation between firm i’s profit and the ith component τi of the state
of the world, firm i’s strategy and the strategies of all other firms j:

πi = αi(τi)−
∑
j �=i

εsisj + (β + γsτi − δsi)si. (18.1)

In the above expression, the term αi(τi) is a function of τi, δ is assumed to be positive,

and ε ∈
(
− δ

n−1 , δ
]
. Expression (18.1) fits a large set of oligopolistic models. Uncertainty

on a common demand intercept corresponds to the case of perfectly correlated states of
the world (the τi’s) and γs = 1. Uncertainty about costs corresponds to the case where
γs = −1 (in which case the demand intercept is given by β alone). A positive and small
ε (relative to δ) expresses a high degree of product differentiation (or a quickly increasing
marginal cost as in Kirby, 1988); a negative ε expresses strategic complementarity in firms’
strategies.

Firms do not observe the state of the world τ . However, each firm i privately observes a
noisy signal yi about τi, with yi = τi + ηi, where the noise ηi is normally distributed with zero
mean, variance uii and covariance un ≥ 0. We assume that ti = t and uii = for all i, and denote
by ps = (t + u) the variance of signals and by pn = (t + un) the covariance.

The following classification of informational structures have been shown by Raith (1996)
to be key in determining the incentives of firms to disclose and share information (we will
discuss Raith’s work in the next sections):

● Common value (CV): tn = t. In this case, all τi’s are perfectly correlated. This is the
case, for instance, of firms facing a common demand intercept, on which each firm
receives a private noisy signal, or of firms producing with perfectly correlated costs.

● Independent values (IV): tn = un = 0. In this case, each firm i’s profit is affected by
a state of the world τi whose distribution is independent of the distribution of all other
τjs. In addition, this condition requires that firms’ signals are conditionally independent,
that is, that the noise of each firm’s signal is independent of the noise of the other firms’
signals. So, correlation is ruled out both in the market or technological conditions faced
by firms, and in the informational channels that firms use to acquire information of their
own τ .

● Perfect signals (PS): u = 0. This assumption requires that each firm i gets to know
with infinite precision its own state τi.

1.2 Modelling Information Disclosure and Sharing

In addition to observing their own private signals, firms are allowed to modify the market
information structure by disclosing and/or sharing private information with other firms. We
will first discuss the two prevailing models used in the literature to represent the technology
of information disclosure and sharing.
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In the strategic model, each firm decides whether to unilaterally disclose its own infor-
mation to other firms, and receives the information of all other disclosing firms irrespective
of its own disclosure decision. This model is well described as a game in which each firm’s
strategy is whether to disclose or not its information to either all or a subset of firms, and
firms’ expected payoffs depend on the disclosure strategy of all firms in the market.

In the contractual model, firms share information with competitors on a quid pro quo basis:
by refusing to disclose its own information, a firm also loses the information of the other
disclosing firms. Almost all papers in the literature (with the exception of Kirby, 1988 and
Malueg and Tsutsui, 1996) have focused on the comparison between the total absence of
sharing and the universal sharing of information (an industry-wide agreement), interpreting
the difference in expected payoffs as the incentives to form a trade association for the
industry.

The contractual model naturally leads itself to a more extensive analysis, based on games
of coalition formation and of network formation, where firms can form information-sharing
coalitions or bilateral agreements, and exclude other firms from their private information.
Malueg and Tsutsui (1996) have focused on the formation of small coalitions of sharing
firms, adopting the concept of “coalition-proof equilibrium”, based on the robustness
of a coalition to “credible” deviations of sub coalitions (see Bernheim and Whinston,
1987).

In a recent paper, Currarini and Feri (2015) have studied the incentives of firms to form
bilateral sharing agreements. In the spirit of the contractual model, they have maintained
the assumption of quid pro quo exchanges: firm i is not allowed to observe firm j’s signal
unless it reveals its own signal to firm j. Differently from the multilateral case, transitivity
of sharing agreements may fail, in the sense that information sharing between firms i and
j and between firms j and k need not imply information sharing between firms i and k. An
“information structure” is therefore given by a non-directed network g, in which each link
ij denotes a bilateral information-sharing agreement between firms i and j. We denote by
Ni ≡ { j : ij ∈ g} ∪ { i} the set of neighbours of i in g (including i) and we denote by ni = |Ni|
the number of such neighbours. The information available to firm i in the information structure
g is therefore Ii(g) ≡ {

yj : j ∈ Ni
}
, that is, the set of signals observed by the neighbours of i.

We will use the notation g + ij to denote the network obtained by adding to g the link ij /∈ g,
and g − ij to denote the network obtained by severing the link ij ∈ g from g.

The basic and least stringent notion of equilibrium that is in line with this approach is that
of “pairwise stability”, first introduced by Jackson and Wolinsky (1996). A pairwise stable
network g satisfies two conditions: no firm has an incentive to sever any of its links in g and
no pair of firms have an incentive to add a new link to g. More formally, let Eπi(g) denote
the expected profit of firm i if the information structure underlying market competition is
described by the network g.

Definition 1 The information structure g is pairwise stable if:

(1) Eπi(g) ≥ Eπi(g − ij) for all ij ∈ g;
(2) Eπi(g + ij) > Eπi(g) → Eπj(g + ij) < Eπj(g) for all ij /∈ g.

The above definition implicitly rules out the possibility of side payments between firms
that are contingent on the sharing of information. In the presence of such transfers, the
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two conditions of definition 1 would be replaced by the following (see Jackson and
Wolinsky, 1996):

Definition 2 The information structure g is pairwise stable with transfers if:

(1 ′) Eπi(g)+ Eπj(g) ≥ Eπi(g − ij)+ Eπj(g − ij) for all ij ∈ g;
(2 ′) Eπi(g + ij)+ Eπj(g + ij) ≤ Eπi(g)+ Eπj(g) for all ij /∈ g.

A stronger notion of stability allows each firm to revise any subset of its links (instead of
only one link), and any pair of firms to form a new one. This notion of pairwise Nash stability
has been sometimes used in the literature (see Bloch and Jackson, 2006). Formally, point (1)
in definition 2 is replaced as follows: (1 ′′) Eπi(g) ≥ Eπi(g −L) for all i and subsets L of links
maintained by i in g.

In the next sections we discuss the incentives of firms to share information in the various
models and approaches discussed above. We start in Section 2 with the traditional multilateral
model, to then report in greater detail the more recent contributions on the bilateral model in
Section 3.

2 MULTILATERAL INFORMATION SHARING

In this section we discuss the incentives to either disclose or share information with all other
firms in a common market. Multilateral information sharing has been the object of a large body
of literature, pioneered by Novshek and Sonnenschein (1982), Clarke (1983), Vives (1985),
Fried (1984), Gal-Or (1985; 1986), Li (1985), Sakai (1985), Shapiro (1986), Kirby (1988),
Sakai and Yamato (1989). More recently, Raith (1996) has provided a general and insightful
analysis, encompassing all previous models and shedding light on apparent weaknesses of the
theory. The merit of Raith’s work is that is has uncovered the primitive forces that are behind
all results in the literature, independently of the details of the model of market competition
and of technological assumptions.

In a nutshell, the effect of information sharing on competition and profits is the result
of: (1) a finer information on market and/or technological conditions (one’s own profit
function); and (2) a change in the correlation of firms’ market strategies, due to the
“more similar” information sets available to firms. Early contributions have suggested that
information sharing prior to market competition is profitable when it concerns private cost
parameters, and when it concerns market demand parameters as long as firms’ strategies are
complements. When firms, strategies are substitutes, the increased correlation of preferences,
due to a widespread better knowledge of demand conditions, makes unilateral disclosure of
information unprofitable; moreover, pooling of information in an industry-wide agreement
becomes profitable only when products’ differentiation is high. In his 1996 paper, Raith shed
further light on these early results by stressing the role played by the precision of signals,
and the complex interplay between strategic structure of the oligopoly game and the induced
correlation of strategies in equilibrium.1

1 All results discussed here refer to the ex ante model of information sharing, in which firms set their disclosure
and sharing rules prior to being informed via a private signal. There have been a few contributions considering the
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2.1 Incentives to Disclose Information

We start by considering the incentives of firms to unilaterally disclose their private informa-
tion. We have referred to this case as the “strategic model”. By disclosing private information,
a firm is refining the knowledge of rival firms about its own profit function; when states and/or
signals are correlated, it also refines rival firms’ knowledge about their respective states of the
world (the τjs). In any case, after disclosure there is more “shared” information in the system,
and this affects the correlation of strategies in equilibrium. Intuition would suggest that when
states are positively correlated, firms take advantage of the increased correlation of strategies
when these are complements. The following result in Raith (1996) gives the full account of
firms’ incentives to disclose for all possible scenarios:

Proposition 1 Under “independent values”, “perfect signals” and “common value” with
strategic complements, disclosing information is a dominant strategy. Under “common value”
with strategic substitutes, concealing information is a dominant strategy.

This result is best understood by considering the effects of disclosing private information on
one’s expected profits. Raith (1996) has shown how:

1. Letting rival firms refine their knowledge about their own respective profit functions has
a positive effect on expected profits under strategic complements, and a negative effect on
profits under strategic substitutes.

2. Letting rival firms refine their knowledge about one’s own profit function always has a
positive effect on one’s own expected profits.

By disclosing one’s own private information, a firm affects its rivals’ knowledge about
their respective payoff functions only if signals are correlated and imperfectly observed. This
implies that point (1) above does not apply under IV and PS. Only point (2) applies in those
cases, and disclosure is always profitable. Under CV and complements, both (1) and (2) work
in favour of disclosure. Under CV and substitutes, the incentives to disclose result from the
trade-off between points (1) and (2). The results by Fried (1984), Li (1985) and Shapiro (1986)
follow as corollaries of the above results for “perfect signals”. Also, results by Vives (1985)
and Gal-Or (1985) on CV situations come as special cases of the result above. Interestingly,
the key categories driving the incentives to disclose are not whether uncertainty is about
demand or costs, or (not only) whether there are private or common values, but rather about
how precise and correlated the signals are, since these aspects of information will determine
to what extent disclosure improves rivals, knowledge about their own profit functions, and,
ultimately, to what extent correlation of strategies will increase as a result.

interim model, in which disclosure and sharing occur after the signals are privately observed. When information is
verifiable, the decisions of whether to share takes on a signalling power. If uncertainty is about costs, each firm would
like to be perceived as low cost; it follows that low-cost firms reveal their type, and information revelation unravels
to the whole market (Okuno-Fujiwara, Postlewaite and Suzumura, 1990; Van Zandt and Vives, 2006). When there is
uncertainty about whether the firm is indeed informed about its cost, then unravelling may fail even if information is
verifiable (Jansen, 2005).
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2.2 Incentives to Share Information

We then turn to the richer case of exclusive information-sharing contracts, which we referred
to as the “contractual model”. Here, firms disclose their private information to all rival firms
and receive in return all private information held by rival firms. The main exercise consists
therefore in comparing the expected payoff of firms in two opposite scenarios: no information
sharing and universal (or complete) pooling of information:

Proposition 2 Under “independent values” and “perfect signals”, complete pooling is
always profitable. In the “common value” case, pooling is profitable if:

ε

δ
<

2

n + 1
.

The fact that under independent values and perfect signals firms prefer to pool information
comes almost as a corollary of Proposition 1. Here, in addition to disclosing one’s own private
information (which has a positive effect on profits), firms receive additional information
about rivals’ signals and, therefore, behaviour that, under these conditions of IV and PS,
is beneficial. Note that here receiving information from rivals does not improve a firm’s
information about its own state of the world (in Raith’s terminology, there is no “direct
adjustment” of strategies after sharing.

The more interesting result here is about common value situations. Here, the final effect
of sharing on profits comes as a result of the two effects discussed for the case of disclosure,
plus the positive effect of refining one’s own information about other firms’ behaviour and
about one’s state of the world (through the correlation induced by the common state of the
world). The main insight here is that pooling becomes profitable when the effect of the
increased correlation of strategies in equilibrium is weak enough, and this happens when
market competition is not too harsh – that is, when the level of product differentiation (here
measured by the inverse of ε) is strong enough (Kirby, 1988, has shown that the same effect
as product differentiation is replicated by steeply increasing marginal costs of production).

Malueg and Tsutsui (1996) have raised the issue of smaller-scale agreements. They show
that not only industry-wide agreements can be profitable and immune to individual defections
(when products are differentiated), but also that a coalitional agreement by a subset of firms
can be stable to defections (more precisely, can be a coalition-proof Nash equilibrium). Their
result is obtained in the framework of a three-firm model, and fails to predict information
sharing of any kind when products are strongly homogeneous. Smaller-scale agreements are
not therefore conducive to information sharing when goods are homogeneous.

As we will discuss in some detail in the next section, a recent contribution by Currarini
and Feri (2015) can be used to show that small-scale sharing agreements between firms
(bilateral agreements) can generate positive amounts of information sharing in equilibrium
even when products are perfectly homogeneous and strategies are substitutes. This result
rests on the effect of the conditional correlation of private signals on firms’ incentives to
share information in small coalitions (un > 0). The basic intuition behind this result goes
as follows. When firms’ private information is (conditionally) correlated, the exchange of
information within a small coalition of firms has the effect of refining these firms’ expectation
about all outside firms’ signals (and behaviour). This refinement results from the assumed
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conditional correlation of signals, and comes at “no cost”, since it does not imply any
additional correlation of strategies with the outside competitors who do not receive the
information about coalitional members’ signals. The result is therefore due to the “strategic
adjustment” mentioned in Raith (1996). The magnitude of the resulting increase in expected
profits is larger the larger the number of firms outside the sharing coalition.

3 BILATERAL CONTRACTS AND INFORMATION-SHARING
NETWORKS

We now turn to the bilateral model, in which firms agree to share information in pairs.
We restrict our attention to the case of uncertainty on a common demand intercept. This
is therefore the case of common value: τi = τ for all i. For a more general analysis that
covers the whole class of quasilinear games, see Currarini and Feri (2015). This section
is based on published and unpublished results of the authors. In particular, all results in
Sections 3.2 and 3.4 are unpublished, and can be found in working paper versions of the
paper “Bilateral Information Sharing in Oligopoly” by the authors (Currarini and Feri, 2007).
We omit formal proofs of the propositions, some of which involve long algebraic expression
and use of computation software. All proofs are available from the authors on request.

3.1 Equilibrium Use of Information

With each possible information structure g we associate the Bayesian Nash equilibrium of
the game in which each firm i sets its strategy si in order to maximize its profit, given its
available information determined by i’s links in g, and given the optimal strategies of other
firms. Formally, a Bayesian Nash equilibrium associated with g is a vector s∗(g) of function
mapping, for each i ∈ N, the available information Ii(g) into a choice si, and such that for
each firm i, the function s∗

i (g) solves the following problem for all Ii(g):

s∗
i (g)(Ii(g)) = arg max

si∈R+
Eτ ,η

[
πi
(
si, s∗

−i (g)
) |Ii(g)

]
. (18.2)

The reaction function of firm i as a function of i’s information structure is:

s∗
i (g) (Ii(g)) = 1

2δ

⎛
⎝β + γsE

[
τi|Ii(g)

]− ε
∑
j �=i

E
[
sj|Ii(g)

]
⎞
⎠ . (18.3)

Firms’ equilibrium strategies are affine in the observed signals:2

s∗
i (g) (Ii(g)) = a g

i +
∑

j∈Ii(g)

b g
ij yj, i = 1, 2, . . . n. (18.4)

2 Standard results (see Radner, 1962 and Proposition 3.1 in Raith, 1996).
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The a g
i and b g

ij coefficients can be computed by solving the following system, which
immediately points to the main forces at work within a given information structure:

a g
i = 1

2δ

⎛
⎝β − ε

∑
j �=i

a g
j

⎞
⎠ ; (18.5)

b g
ih = 1

2δ

⎛
⎝γsk

ig
1 − ε

⎛
⎝ ∑

j∈Nh\{ i}
b g

jh +
∑
z/∈Ni

∑
j∈Nz

kig
2 b g

jz

⎞
⎠
⎞
⎠ , ∀h ∈ Ni

The coefficients kig
1 = t

ps+(n g
i −1)pn

and kig
2 = pn

ps+(n g
i −1)pn

describe the way in which a firm

i ∈ N in a network g uses its observed signals to update its beliefs. In particular, kig
1 is applied

to all yj ∈ I(gi) to take the expectation of τ , while kig
2 is applied to all yj ∈ I(gi) to take the

expectation of the signals yh, for all h /∈ Ni.
The β coefficients measure the sensitivity of equilibrium actions to the information received

from a given source. For the above expression, we learn that under strategic substitutes
(complements) the reaction of firm i to signal h is stronger (weaker) the less signal h is used
by other firms. In the case of demand uncertainty, this can be understood as a local congestion
effect: the more other firms use a signal, the less a firm wishes to use it. This echoes results
from Morris and Shin’s (2002) study of the use of information when both private signals and
public signals are available to players. In our case, a signal is public only to agents in the
neighbourhood of the firm that acts as the source of that signal. From the expression from
the β coefficient we also learn that a firm reacts less to a signal that is used by other firms to
infer something about the information held by firms they are not linked with. This effect goes
through the correlation of signals, and is stronger the larger the k2 coefficient.

3.2 Exchange of Information and Equilibrium Networks

The incentives of firms to form and maintain links are measured by the ex ante value of
the equilibrium profits in the various networks that may form as a consequence. For a
given network g and firm i, these are given by the expectation Eπi(g) of the interim profits
taken over all possible realization of the information Ii(g) observed by i in g. Following
Proposition 3.4 in Raith (1996), we can write the following:

Eπi(g) = E (αi(τ ))+ δ
(
a g

i

)2 + βn

∑
j �=i

a g
j + δVar

(
s∗

i (g)
)

(18.6)

It can be shown that the difference in firm i’s expected profit in the two information
structures g and g ′ can be expressed as:

Eπi(g)− Eπi(g
′) = δ

[
var(s∗

i (g)− var(s∗
i (g

′))
]

(18.7)

So, a firm’s incentive to move from network g to network g′ is measured by the change in the
variability of its own equilibrium strategy. Since network structures can be highly asymmetric
and complex in nature, the analysis of the incentives to form and delete links is conceptually
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and computationally very complex. In the next section we report on some results that can be
obtained in the simplified framework of independent signals.

3.2.1 Independent signals
The case of independent signals was studied in Gal-Or (1985), where each firm receives an
imperfect signal of one piece of the demand intercept. This case can still be viewed as a
special case of Raith’s model, in which the states of the world τis are perfectly correlated but
the (conditional) correlation of signals exactly compensate the natural correlation of signals
through the state of the world.

The equilibrium parameters of firm i (see (18.5)) take the following simple form:

a g
i = β

2δ + ε(n − 1)
; (18.8)

b g
ih = γst

ps(2δ + n g
h − 1)

, ∀h ∈ Ni

From (18.8) we note that for each signal j we have bij = b for all i and h in N g
j . Also, from

(18.8) ai = ah for all i, h ∈ N.
The next proposition provides necessary and sufficient conditions for a network to be

pairwise stable when signals are independent:

Proposition 3 A network g is pairwise stable if and only if both of the following conditions
are verified:

For all ij ∈ g:

1

(2δ + ε(n g
j − 1))2

≥ 1

(2δ + ε(n g
i − 2))2

− 1

(2δ + ε(n g
i − 1))2

; (18.9)

1

(2δ + ε(n g
i − 1))2

≥ 1

(2δ + ε(n g
j − 2))2

− 1

(2δ + ε(n g
j − 1))2

; (18.10)

For all ij /∈ g:

1

(2δ + εn g
j )

2
>

1

(2δ + ε(n g
i − 1))2

− 1

(2δ + εn g
i )

2
(18.11)

implies
1

(2δ + εn g
i )

2
<

1

(2δ + ε(n g
j − 1))2

− 1

(2δ + εn g
j )

2
(18.12)

Note that the congestion effect discussed at the end of Section 3.1 translates here into simple
and stark incentives to form a link ij, which only depends on the degrees of the nodes i and j,
and on no other features of the network. In particular, when ε > 0 (strategic substitutes), the
gain in profit due to a link with node j decreases with the degree of j. It is indeed possible to
determine two thresholds in the degree of a node j: the value F(ni) above which a node i of
degree ni would not maintain the link ij, i.e. if nj > F(ni) inequality (18.9) is not satisfied; the
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value f (ni) above which a node i of degree ni would not form the new link ij; i.e. if nj > f (ni)

inequality (18.11) is not satisfied. It can also be shown that F and f are increasing in ni,
meaning that the incentives of node i to link with a given node j increase with the degree of i
(see Lemma 1 in Currarini and Feri, 2015).

Define now μ = ε
δ

the degree of products’ differentiation; the next proposition fully
characterises the set of pairwise stable networks:

Proposition 4 Let n ≥ 3. If μ < 0 the unique stable network is the complete one. If μ > 0
the set of pairwise stable networks contains: the empty network, the complete network, and
all networks made of s ≤ n − 3 isolated nodes and p ≥ 1 completely connected components
of size n1 ≥ 3, n2, . . . , np such that ni > f (ni−1) for all i = 2, . . . , p.

Remark 1 The set of pairwise stable networks characterized in Proposition 4 is very large.
However, Proposition 4 provides two precise qualitative predictions on how information is
shared in equilibrium. First, information sharing is essentially organized in groups (the
completely connected components), within which the transmission of information is equivalent
to one in which firms publicly disclose their signal to all other firms in the group. This type
of public disclosure, characterizing the traditional “contractual approach”, is here obtained
endogenously as a result of private and bilateral arrangements. Second, information-sharing
groups must be of different size, to make sure that firms in different groups do not form links
(in fact, it can be shown that firms with similar degrees link together) (Figure 18.1).

We obtain a more narrow prediction for the case in which firms can agree on side payments
that are contingent on information sharing. In this case, the formation of links that bridge two
components is made easier by the sharing of individual gains, and at most one component of
information-sharing firms can be compatible with stability:

Proposition 5 If side payments are possible, the set of pairwise stable networks contains:
the empty network, the complete network, all networks g made of one completely connected
component h of size n(h) ≥ 3 and n − n(h) isolated nodes.

Figure 18.1 A pairwise stable information-sharing network: ε = δ = 1, n = 18
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3.3 The Role of Signals’ Correlation

One of the conclusions from the case of independent signals is that the empty network,
characterized by no sharing of information, is always a stable outcome in Cournot competition
with homogeneous goods and demand uncertainty. In this proposition we discuss the role of
signals correlation in generating incentives to share information and, at the same time, to
exclude some of the rivals from sharing.

The next proposition shows that in all common value situations (that is, independently of
the degree of products differentiation), the empty network is not a pairwise stable structure
(and, therefore, not a strongly pairwise stable structure), provided the number of firms in the
market and the (conditional) correlation of signals is not too small:

Proposition 6 Consider Raith’s model of oligopolistic competition:

(i) If μ < 2
3 the empty network is not pairwise stable.

(ii) If 2
3 < μ <

2
1+√

2
then there exists a p∗∗

n such that for all pn < p∗∗
n the empty network

is not pairwise stable; otherwise (when pn > p∗∗
n ) there exists a finite number of firms

n∗(pn) such that for all n > n∗(pn) the empty network is not pairwise stable.
(iii) If μ > 2

1+√
2

there exists p∗
n and a finite value n∗(pn) such that for all pn > p∗

n and

n > n∗ the empty network is not pairwise stable.

Let us compare Proposition 6 with Raith’s (1996) results for the contractual model (note here
that when only two firms are in the market our model and Raith’s model are equivalent).
In point (i), values of μ < 2

3 are such that two duopolists would always pool their private
information ( 2

3 is in fact 2
n+1 for n = 2). Our result shows that these incentives remain when

more firms are in the market. Points (ii) and (iii) cover situations in which two duopolists may
or may not have the incentive to share information, depending on the level of the covariance of
signals pn. Point (ii) shows that when these incentives exist (low pn), they do not vanish as we
add firms to the market. More interestingly, when such incentives to bilaterally share informa-
tion in a duopoly are absent (high pn), they appear as we add more firms in the market. Finally,
point (iii) refers to the range of parameters for which two duopolists would never share infor-
mation, for any value of pn. Here, it is shown that by adding firms in the market we can gener-
ate incentives for bilateral information sharing, provided the covariance pn is large enough.3

To understand the forces at work in Proposition 6, consider again the incentives of two
Cournot duopolists to share information. These are determined by two opposite effects
on expected profits: the increased accuracy of firms’ expectations (a positive effect) and
the increased correlation of equilibrium strategies (a negative effect since strategies are
substitutes). Unless products are very differentiated (ε positive but small), the second
effect dominates the first. The crucial new element of the present proposition is that as
we increase the number of firms, the bilateral exchange of information between firms i
and j has the additional positive effect of improving the accuracy of the expectation of
these two firms on the signal observed by the other firms in the market (and thereby on

3 Note that the threshold levels of μ in Raith’s paper are decreasing in n. Therefore, it is not possible that by
adding firms in the market we pass from a situation where the empty network dominates the complete graph to a
situation where the opposite is true.
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their equilibrium behaviour). This improved accuracy comes without the disclosure of any
additional information to any of these other firms and, in this sense, at no cost. Moreover, this
positive effect on profits is larger the larger the number of other firms in the market (from
which the requirement on n in Proposition 6).

The result of Proposition 6 rules out the complete absence of information sharing in
equilibrium (at least under certain conditions on pn and n), but leaves open the question of
whether stable networks exist in general. Proposition 7 below shows that the complete network
is always pairwise stable, for all values of the parameters:

Proposition 7 Let n ≥ 3. The complete network is always a pairwise stable information
structure.

We conclude that some positive amount of information sharing is always compatible with
pairwise stability (Proposition 7), and is always a feature of pairwise stable networks when pn

and n are large enough (in the sense made clear in Proposition 6). The result of Proposition 7
does not fully extend to the notion of strong pairwise stability. The explicit expression of
expected profits when multiple links are severed from the complete network is quite complex
and does not allow for a closed-form result for all parameters’ values. However, numerical
simulations suggest that there exist a threshold level of signals’ correlation above which the
complete network is strongly pairwise stable, and below which it is not. This result is obtained
algebraically in the two polar cases of the common value: perfect substitutes (μ = 1) and high
differentiation (μ = 0):

Proposition 8 Let n ≥ 3. If μ = 0 the complete network is always strongly pairwise stable.
If μ = 1 and pn is large enough the complete network is strongly pairwise stable.

One final issue we wish to address is whether stable networks can be incomplete, with
some, but not all, private information being shared. Example 1 presents a common value
problem with four firms and homogeneous goods where, for a certain range of parameters,
in a strongly pairwise stable network three firms exchange information, and a fourth firm is
excluded (again, the algebraic derivations behind Example 1 are omitted and are available
from the authors upon request):

Example 1 Let n = 4 and ε = δ. For pn > 0.53 · ps the complete network is strongly
stable. For pn < 0.62 · ps and for pn > 0.71 · ps the network consisting of a fully connected
component of three nodes and an isolated node is pairwise stable, and it is Nash pairwise
stable for 0.58 · ps < pn < 0.62 · ps and for pn > 0.71 · ps (Figure 18.2).

We end this section by comparing the insight from Example 1 with Malueg and Tsutsui’s
(1996) results on stable sharing coalitions in the case of three firms. With only three firms on
the market, the empty network would be a pairwise stable architecture and, for all pn < 0.68 ·
ps, there are no empty strongly pairwise stable architecture.4 This is in line with the results
by Malueg and Tsutsui (1996), where no information sharing ever occurs when products are
homogeneous. By adding a fourth firm in the market, we increase the profitability of bilateral

4 For greater values of pn the complete network is strongly stable.
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Figure 18.2 A pairwise stable information-sharing network: n = 4, ε = δ, pn < 0.62 · ps

and pn > 0.71 · ps

agreements through the externality effect discussed after Proposition 6, so that the empty
network becomes unstable for pn > 0.75 ·ps. Consider then the network consisting of a three-
firm fully connected component and an isolated node; within the fully connected component,
no firm has an incentive to sever one of its links and, for pn > 0.58·ps, no firm has an incentive
to sever both its links.5 Moreover, these firms have an incentive to link to the fourth firm if and
only if pn < 0.71 ·ps; otherwise none of them has an incentive to link, having acquired enough
information on the private signal of the fourth firm through the existing bilateral agreements.
The fourth firm, instead, has an incentive to acquire additional information by forming a link
if and only if pn > 0.62 · ps. Therefore for high values of pn the fourth firm is excluded from
the information-sharing group.

3.4 Asymmetric Firms and the Emergence of Core–Periphery Structures

In this section we wish to discuss the role of asymmetry in the information-structure on
the incentives to share and on the equilibrium information-sharing networks. To keep things
simple, we limit the analysis to the case of independent signals, as we did in Section 3.2.1 for
the symmetric case, and work with homegeneous goods, setting δ to 1.

We relax the assumption that signals are identically distributed, and allow the variances
of signals pi

s to differ across firms. The stability conditions of Proposition 3 are modified to
account for this new source of heterogeneity: the network g is pairwise stable if and only if:

for all ij ∈ g:

p j
s

(n g
j + 1)2

≥ pi
s

(n g
i )

2
− pi

s

(n g
i + 1)2

(18.13)

pi
s

(n g
i + 1)2

≥ p j
s

(n g
j )

2
− p j

s

(n g
j + 1)2

(18.14)

5 Note, that as shown above, with only three firms in the market the complete network is strongly stable for
pn > 0.68 · ps. By adding a fourth firm this threshold becomes smaller because it is more convenient to share
information (or more costly to defect fron the information-sharing group).
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for all ij /∈ g:

p j
s

(2 + n g
j )

2
>

pi
s

(1 + n g
i )

2
− pi

s

(2 + n g
i )

2
(18.15)

implies
pi

s

(2 + n g
i )

2
<

p j
s

(1 + n g
j )

2
− p j

s

(2 + n g
j )

2
(18.16)

We see that, given the degrees n g
i and n g

j , the incentive of i to sever the link ij increases with

the ratio of variances
pi

s

p j
s

(conditions (18.13)–(18.14)) and the incentive of i to form the link ij

decreases with
pi

s

p j
s

(condition (18.15)). This effect can be understood in terms of the additional

variability of i’s equilibrium quantity coming from the link ij, remembering that (expected)
profits are correlated with the variability of own equilibrium strategy. The higher the term
p j

s , the higher the additional variability of i’s quantity due to the link ij, and the higher the
informational “value” of j’s signal for firm i. Similarly, the higher the term pi

s, the lower the
incentive of firm i to form the link ij; this is because it is more costly to share a signal with
higher variance with one additional firm. Again, a high value of pi

s therefore reflects a high
informational value of i’s signal.

Note that in this setting of heterogeneous variance, a firm with high variance may not wish
to maintain a link (or to form a new one) with another firm with same degree but lower
variance. As a consequence, while the empty network is always a pairwise stable information
structure (as was proved for the case of independent and identically distributed [i.i.d.] signals),
the complete network may fail to be stable when firms have significant heterogeneity in
variances. However, as the next proposition shows, this can only happen when the number
of firms is small:

Proposition 9 (i) The empty network is pairwise stable for all distributions of variances,
even if side payments are possible; (ii) there exist configurations of variances for which the
complete network is not pairwise stable; (iii) for every configuration of variances, there exists
a finite number of firms n̄ such that for all n ≥ n̄ the complete network is pairwise stable.

The intuition of this result is clear: when the degree of two nodes increase, their difference in
variances becomes less and less relevant in the stability conditions (18.13)–(18.14).

Since signals with large variance possess higher informational value, the incentive to link
to firms observing such signals may remain high even when these firms have already a large
degree. We can therefore envisage stable architectures in which firms with large variance have
larger degrees than firms with low variance. Among such architectures, we will focus on two
classes: networks made of a collection of completely connected components (as in the case of
i.i.d. signals) and core–periphery networks.

We next turn to the existence of pairwise stable networks with non–completely connected
components. We show that a special class of incomplete architectures, usually referred to
as “core–periphery networks”, can be pairwise stable for suitable distributions of variances.
In more detail, core–periphery networks present a dense set of interconnected nodes – the
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Figure 18.3 A core–periphery pairwise stable information-sharing network: n = 5, p1
s = 1,

p2
s = p3

s = 1
5 , p4

s = p5
s = 1

2 .

core – each linked with all nodes in the network, and sets of peripheral nodes that are internally
connected and are linked with the core nodes (see Figure 18.3). Formally, a core–periphery
network g consists of a set { g1, g2, . . . .gH} of fully connected subnetworks, such that i ∈ gk

and j ∈ gm implies that ij /∈ g for all k �= m such that k ∈ { 2, 3, . . . , H} and m ∈ { 2, 3, . . . , H},
and such that i ∈ g1 and j ∈ gk implies ij ∈ g for all k = 1, 2, 3, . . . , H. We call the subnetwork
g1 core (with size nc), and the subnetworks { g2, . . . .gH} peripheral planets. We define a
symmetric core–periphery network as one in which all peripheral planets have the same size
np ≥ 1. Also, we say that planets are consecutive in variances if planets can be obtained as a
consecutive partition of the set of peripheral nodes ordered with respect to variance.

Proposition 10 provides two qualitative features of pairwise stable symmetric core–
periphery networks: peripheral firms are organized in groups that are consecutive in variance,
and core firms have larger variance than peripheral firms:

Proposition 10 Every symmetric pairwise stable core–periphery network is such that periph-
eral planets are consecutive in variances. Moreover, for each given size np, there exists a finite
n ′ such that if n > n ′ then every symmetric pairwise stable core–periphery network is such
that mini∈g1 pi

s > maxj∈g\g1 p j
s .

Intuitively, core firms observe signals that are publicly observed, and therefore have lower
informational value. These signals are “desirable” only if they have large variance, from which
the second result in Proposition 10. An example of pairwise stable core–periphery network is
the following:

Example 2 Consider a network with five nodes: node 1 is the “core” node, while the two
peripheral components are { 23} and { 45}. Variances are p1

s = 1, p2
s = p3

s = 1
5 , p4

s = p5
s = 1

2 .
Relevant stability conditions (18.15)–(18.16) (for links 12, 15 and 34, respectively) are
satisfied:

1

36
+ 1

5

1

16
≥ 1

25
;

1

36
+ 1

2

1

16
≥ 1

25
;

(
1

2
+ 1

5

)
1

25
≤ 1

5

1

36
.

4 CONCLUSIONS

In this chapter we have reviewed the main results and insights coming from theoretical
research on the incentives to share information in oligopolistic markets. While most of the
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literature has focused on the formation of industry-wide agreements to either disclose or
share information, we have devoted a substantial space to recent contributions that consider
the possibility that firms establish sharing agreements with selected partners, excluding other
competitors from their private information. All the contributions covered in this survey assume
that firms agree to share information at the ex ante stage, that is, before getting to know
their private signals. This approach aims at describing the incentives to establish long-term
agreements, in which information is repeatedly shared and in which the decision to share
cannot be made contingent on what the realized information is. In reality, however, firms
may decide to share information conditionally to the private signal they receive, that is, in
certain situations. This case goes under the name of interim model, and has not received
much attention in the literature. We believe that more research is needed here, that formally
studies the signalling role of non-disclosure decisions, to determine under which condition
unravelling of information occurs and full disclosure is guaranteed.

Despite the considerable amount of theoretical work on the subject, there is little empirical
evidence on information sharing in real world oligopolistic markets. If anything, the theoret-
ical insights have been used as evidence of collusion in quantity and/or prices where direct
evidence of collusion was missing. The lack of empirical research is due to the difficulty in
obtaining data that serve as good proxy of information sharing in a world where sharing is
itself illegal. This motivates future effort in experimental research in a laboratory-controlled
environment. While there exists some experimental research on the use of information in
games with complementarities and signal with different degrees of publicness (see Cornand
and Heinemann, 2014), experiments on information sharing seem like a very promising
avenue of research.
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