

 Learn SQL quickly using 30 scenarios
 Published by Valuetech Academy

 Copyright 2020 Valuetech Academy

 www.valuetechacademy.com

http://www.valuetechacademy.com/

 START HERE

At Valuetech Academy, we believe that going through "different scenarios" is the key to learn
SQL skills effectively, in order to meet today's demand. It will help you gain confidence during
interviews and solve real problems at work place in less time.

In this book, you will learn SQL using Microsoft SQL Server and the sample database
"AdventureWorks”. You will be shown how to install SQL server on Windows and how to get
the sample database to practice the 30 scenarios. If you are a MAC user and want to learn SQL
using Microsoft SQL Server, then check out our YouTube video. In this YouTube video, you
will learn how to install SQL server on Mac and Windows. Also, in that video you can see a
demo of the 30 scenarios shown in this book. So, readers of this book are encouraged to view the
YouTube video along with this book for better learning.

But before we start seeing the 30 scenarios one by one, we need to first set-up the practice
environment with Sample data. In the next chapter, you will be shown how to do that set-up.

 INSTALLATION

https://youtu.be/3Ss8XqyxOrA
https://youtu.be/3Ss8XqyxOrA
https://youtu.be/3Ss8XqyxOrA
https://valuetechacademy.com/sql

Download the SQL Server 2017 Express edition from the official Microsoft site.
You can also type in any search engine “SQL Server 2017 Express edition download” and you
will find the official Microsoft download link in the search results.

Click the “Download now” button. You will see the file getting downloaded. Once the download
is complete, the installation file can be found in the “Downloads” folder.

Double-click the installation file in the “Downloads” folder.
You will see the installation wizard as shown in the next page.

Click the “Basic” Option.

Review the License Terms and click “Accept”.

Click “Install” and you can see the software getting downloaded.

It will take a few minutes to install the SQL Server 2017 Express Edition. Depending on the
configuration of your laptop or computer, it will take anywhere from 10-20 minutes for the
installation to complete. Once the installation is complete, you will see this screen below.

Copy the “CONNECTION STRING” by clicking the “Copy” icon (shown using red arrow in
image) and past it in a notepad and save it for later reference.

Server=localhost\SQLEXPRESS;Database=master;Trusted_Connection=True;

You can see that the “Installation has completed successfully”.
Once you have copied the “CONNECTION STRING” to a notepad,
click the option “Install SSMS” on the Installation wizard and it will open a link in the web
browser to download the SSMS.

(Note- SSMS is called SQL Server Management Studio and it is nothing but the UI/User
Interface using which you are going to connect to the SQL Server 2017 you installed now and
will be used for typing your SQL queries. Suppose, if you have closed the installation wizard,
you can also type in any search engine “SQL server management studio 2017” and you will
find the official Microsoft download link for SSMS in the search results. Alternatively, you can
also download and install “Azure data studio” to connect to the SQL Server 2017 and type SQL
queries. In this book, scenarios will be shown using SSMS.)

Click on the Download link (as shown by the red arrow in the above image).
You will see the file downloaded the “Downloads” folder.

Right click the downloaded file and “Run as Administrator”
You will see the Installation wizard for SSMS.

Click “Install”. You will see below screens during the installation process.
(It may take 20-25 minutes depending on the speed of your laptop/computer).

Once the installation is complete you would require to “Restart”.

After restart, you can find the Management studio (SSMS) in the “Recently added” section of
the Windows Start Menu. From there you can pin it to the Start.

Double click and open the SQL Server Management Studio (SSMS).
(It may take a few minutes the first time to launch).
If it asks for “Import User Settings”, you can ignore that by clicking “Do not import”.

Once the SQL Server Management Studio (SSMS) is launched, provide the Server name.

The server name usually will be localhost\SQLEXPRESS (If you installing it the first time).
You refer to your notepad where you copy pasted the “CONNECTION STRING” information
earlier. You will see the server name as localhost\SQLEXPRESS.
Provide this as the Server name.

Also, make sure you have selected,
Server type: Database Engine
Authentication: Windows Authentication

(In our case, the Server name is WinServer\SQLEXPRESS)

Click “Connect” and you should be connected to SQL Server 2017 Express edition now.

Next, Open the Query Editor.
Right click the server name (localhost\SQLEXPRESS)  New Query

It will open a Query editor where you can type SQL Queries.

Type the below query in the Query editor and using which you will be able to see the version of
the SQLEXPRESS installed.

select @@version

You can see the version of the SQL Server as “Express Edition”.
Next, we need a sample database with data to learn SQL Queries. You will be shown how to get
the sample database in the following section.

Download the sample database from the official Microsoft site.
Alternatively, you can also type in any search engine “Adventure works sample database” and
you will find the official Microsoft download link in the search results.

In the official Microsoft page, click the link “AdventureWorks2017.bak” under the
“OLTP downloads”. It is shown in the next screenshot with a red arrow.
(NOTE- Since you have installed SQL Server 2017, you need the file AdventureWorks2017.bak)

Once you click the link “AdventureWorks2017.bak”, the backup file will be downloaded.

You then copy the downloaded file to a folder in your local drive

https://docs.microsoft.com/en-us/sql/samples/adventureworks-install-configure?view=sql-server-2017

(For example, C:\Sample database).

Follow the below steps to restore a backup of the Sample database (AdventureWorks) using SQL
Server Management Studio (SSMS).

1. Open SQL Server Management Studio and connect to the SQL Server providing the
Server Name.

2. Right-click on the Databases node, and select Restore Database.

3. Select Device and click the ellipses (...)

4. In the dialog Select backup devices, click Add, navigate to the backup file
 that you copied to your local drive (For example, C:\Sample database),
 and select the backup. Click OK.

5. Click OK. This will initiate the database restore. After it completes, you will have the
AdventureWorks database installed on your SQL Server.

6. If you go to the Management Studio (SSMS), you should be able to see the Sample

database there:

7. Open a Query editor and type the below query to list all table names in this Sample
database and hit Ctrl+E

 select * from sys.tables

Now, you got your SQL Server 2017 installed and the Sample database to practice the scenarios.
Starting from next section, you will see the Scenarios.

If you got stuck with any issues during this installation process or have questions in this process,
drop us an email to sql@valuetechacademy.com and we will help you in the learning process.

mailto:sql@valuetechacademy.com

 SCENARIO 1
 Sort a result set by one column in ascending or descending order

Consider the table [Person].[CountryRegion] and it has the following data:
(To execute any query, select the query and go to the menu option Query -> Execute
 OR simply select the query and hit F5)

You can see the ‘Name’ column having the name of different countries but in different order.

If you want to order the country names in the ascending order from A-Z, you use ORDER BY
clause for the column ‘Name’ along with the ASC keyword.

select * from [Person].[CountryRegion]

ORDER BY Name ASC

In case if you want to order the country names in the descending order from Z-A, you use
ORDER BY clause for the column ‘Name’ along with the DESC keyword.

 SCENARIO 2
 Sort a result set by an expression

Consider the Product Review table [Production].[ProductReview]
Query this table to find the Product ID, Reviewer name, rating and comments people left for the
products.

SELECT productid,

 reviewername,

 rating,

 comments

FROM [Production].[productreview]

Now we want to list the comments with more words to get more insight about a product.

In order to list the comments with more words, you use the ORDER BY clause with the
expression LEN(Comments) and key word DESC.LEN(Comments) will compute the length of
each comment and the key word DESC will order the comment with the most word on top.

SELECT productid,

 reviewername,

 rating,

 comments

FROM [Production].[productreview]

ORDER BY Len(comments) DESC

In the Output, you can see that the comments with more words got to the top and the words with
less words got to the bottom in the column “comments”.

 SCENARIO 3
 Retrieve 10 percent of the result set

Consider the table [Production].[TransactionHistory] storing the transactions related with
products. You can execute the below query to see the transactions ordered by the most recent
date.

SELECT transactionid,

 productid,

 transactiondate,

 transactiontype

FROM [Production].[transactionhistory]

ORDER BY TransactionDate DESC

A total of 113,443 rows will be returned. You can see this at the bottom of the screen.

Now the requirement is to get only the first 10 percent rows.
10 percent of 113,443 is a fractional value (11344.3), SQL Server rounds up to the next whole
number which is 11,345 in this case. So, to get the first 10 percent rows of the result set (11,345)
you use the TOP 10 PERCENT keyword.

SELECT TOP 10 PERCENT transactionid,

 productid,

 transactiondate,

 transactiontype

FROM [Production].[transactionhistory]

ORDER BY TransactionDate DESC

Now, you can see at the bottom of the screen that 10 percent of the result set (11,345) got
returned.

 SCENARIO 4
 Retrieve distinct values

Consider the table [Sales].[CreditCard], it has different Card types.

select * from [Sales].[CreditCard]

As you can see from the output, the Card Types are duplicate. Now you want to find the total
Card Types without any duplication. To do that you add the DISTINCT keyword as follows:

select distinct CardType from [Sales].[CreditCard]

Now from the output you can see that there are only 4 Card Types in this table and you do this
using the DISTINCT keyword as shown in this scenario.

 SCENARIO 5
 Return values based on condition

Consider the table [Production].[ProductReview] and you can find the customer rating for each
Product using this query:

SELECT productid,

 rating

FROM [Production].[productreview]

The values in the “Rating” column are numbers, which are not meaningful in this case. To make
the output more understandable (1-Poor, 2-Fair, 3-Good, 4-Very Good, 5- Excellent), you can
use the CASE expression. The CASE expression will add the required logic to the “Rating”
column.

SELECT productid,

 CASE rating

 WHEN 1 THEN 'Poor'

WHEN 2 THEN 'Fair'

WHEN 3 THEN 'Good'

WHEN 4 THEN 'Very Good'

WHEN 5 THEN 'Excellent'

 END AS rating

FROM [Production].[productreview]

Now you can see from the output that, if the value is 5 in the column “rating” then ‘Excellent’ is
returned and if value is 2 then ‘Fair’ returned.

If you want to return values based on a condition, you can use the CASE expression as shown in
this scenario.

 SCENARIO 6
 Replace NULL values with specific values

Consider this table [Production].[BillOfMaterials]
You can see there are 2 columns (ProductAssemblyID, EndDate) with NULL Values.

select * from [Production].[BillOfMaterials]

The requirement is, in the output instead of NULL values need to have value 0 for
‘ProductAssemblyID’ column without changing any values in the table. To achieve this, you can
use ISNULL() function in the select to replace the NULL values with a specific value.

select

 BillOfMaterialsID,

 ISNULL(ProductAssemblyID,0) as ProductAssemblyID,

 EndDate

from [Production].[BillOfMaterials]

In the output you can see that the ProductAssemblyID values with NULL got changed to 0.

 SCENARIO 7
 Replacing the table or column name temporarily

Consider the table [Production].[ProductModelProductDescriptionCulture].
Let’s have a look at the columns and data in this table.

select * from [Production].[ProductModelProductDescriptionCulture]

You can see that the table name and column names are longer. It will be difficult to type the long
names when we try to query between tables (which we will see later in SQL Joins). To name a
column or table name with an Alias you will use the keyword AS.

select

 ProductModelID,

 ProductDescriptionID

from [Production].[ProductModelProductDescriptionCulture]

The above query itself can be re-written using the keyword AS and there will be no change in
output.

select

 ProductModelID AS ID,

 ProductDescriptionID AS DescID

from [Production].[ProductModelProductDescriptionCulture] AS A

These alias names exists only during the duration of the query and will NOT change the names
of the tables or columns permanently.

 SCENARIO 8
 Filtering out Information

Consider the table [Person].[AddressType].
You can see the table has the following columns and data.

select * from [Person].[AddressType]

Now you want to filter rows that has the name ‘Archive’ and list other rows in the output.
To filter out data, you use the operator NOT. You can re-write the above query as follows with
the NOT operator:

select * from [Person].[AddressType] where NOT Name = 'Archive'

You can see from the above output that the row with data ‘Archive’ got filtered in the result set.

 SCENARIO 9
 Filtering on more than 1 condition

The table [Purchasing].[PurchaseOrderDetail] has the below data.

select * from [Purchasing].[PurchaseOrderDetail]

In the above output, you can see that there is a column for ProductID and UnitPrice.
Now the requirement is to find all Purchase Orders for the ProductId = 512 that costs less than
$35 Unit Price. In case, if you are curious to know what is the name of the Product that has the
ProductID as 512, you refer the table [Production].[Product].

select * from [Production].[Product] where ProductID = 512

Now back to our requirement.
We have to filter data in the table [Purchasing].[PurchaseOrderDetail] based on two
conditions, one is ProductID needs to be 512 and it should cost less than $35 Unit Price. Now
you use the AND operator to filter data based on more than 1 condition.

select * from [Purchasing].[PurchaseOrderDetail]

where ProductID = 512 AND UnitPrice < 35

You can see that the data got filtered based on more than 1 condition in the above output.

Now there is a slight change in the requirement. You need to find all Purchase Orders for
ProductId = 512 that has Unit Price greater than $35 but less than $40. Now to accommodate this
change in requirement you can include the OR operator in the query. The query can be re-written
as,

select * from [Purchasing].[PurchaseOrderDetail]

where ProductID = 512 AND (UnitPrice > 35 OR UnitPrice < 40)

Now in the output below you can see that all the Purchase Orders got listed for the ProductID
512 that has Unit Price greater than $35 but less than $40.

 SCENARIO 10
 Search within a range of values

If you look at the table [Production].[Product], it has the List Price of all the products.

select Name, ProductNumber, ListPrice from [Production].[Product]

The requirement is to find the name of products that has a List Price in the range of $10-$20.
To search data within a range, you use the BETWEEN operator.
The above query can be re-written as,

select Name,ProductNumber,ListPrice from [Production].[Product]

where ListPrice BETWEEN 10 and 20

From the above output, you can see that there are 2 products in the price range $10-$20.
The BETWEEN operator searches for records within the range of values specified.

 SCENARIO 11
 Filtering out data by comparing values

Consider the [Production].[WorkOrder] table. It has the below data:

select * from [Production].[WorkOrder]

Now you want to find the WorkOrderID’s for Products with ProductID 995.
To find a particular value, you use the = (EQUAL) Operator.

select * from [Production].[WorkOrder] where ProductID = 995

And now you can see in the below output that WorkOrderID’s for Products with ProductID 995
got listed.

If you are curious to know what is the name of the Product with the ProductID 995, you can refer
the table [Production].[Product].

select * from [Production].[Product] where ProductID = 995

And now back to our requirement. You want to find out WorkOrderID’s for ProductID 995 that
has more than 500 Orders. To filter data based on more than condition, you can use the
operator > (GREATER THAN)

select * from [Production].[WorkOrder]

where ProductID = 995 and OrderQty > 500

From the above output, you can see the WorkOrderID’s for Product ID 995 with
more than 500 Orders.
Now again you need to find WorkOrderID’s for Product ID 995 with more than 500 Orders that
was received before May 3,2013. You can re-write the above query with < (LESS THAN)
Operator to accommodate this change in requirement.

select * from [Production].[WorkOrder]

where ProductID = 995 and OrderQty > 500 and StartDate < '2013-05-03 00:00:00.000'

In the above output you can see the WorkOrderID’s for Product ID 995 with more than 500
Orders that was received before May 3,2013. And you have used all 3 comparison
Operators (=, >, <) in the query.

 SCENARIO 12
 Finding rows based on a list of values

Consider the table [Production].[Product]. It has the below data:

select * from [Production].[Product]

Now the requirement is to find the name of Products that has
these 3 ListPrice values: 106.50, 1003.91, 333.42.

To find out the name of Products whose list price is one of the following values: 106.50,
1003.91, 333.42, you use the IN operator.

select Name,ListPrice from [Production].[Product]

where ListPrice IN (106.50, 1003.91,333.42)

From the above output you can see that the name of the Products whose list price is one of the
following values: 106.50, 1003.91, 333.42 got listed using the IN operator.

 SCENARIO 13
 Finding rows having a specific string

Consider the table [Person].[CountryRegion]. It has the following data:

select * from [Person].[CountryRegion]

Now you got an issue in the application with the 2-letter Country Region Codes that starts with
letter V , so you need to find the name of the countries that start with the letter V.
To filter data based on the matching character(“V”) , you use the LIKE operator.

select * from [Person].[CountryRegion] where Name like 'V%'

Using the LIKE Operator, you can find the Name of Countries that matches the character “V”,
as shown in the above output.

 SCENARIO 14
 Filtering rows having no data value in the column

Consider the table [Production].[WorkOrder]. It has the following data:

select * from [Production].[WorkOrder]

You can see from the above output that the column “ScrapReasonID” has many NULL values.
But you want to find Products that has a Scrap Reason. So first, you want to filter rows that has
no value in the column “ScrapReasonID”. You can use the NOT NULL operator to filter rows
having NULL values.

select * from [Production].[WorkOrder] where ScrapReasonID IS NOT NULL

Now you can see the Products that has a Scrap Reason.
If you want to dig further what is the name of the Product and the Scrap Reason you can check
the tables: [Production].[Product] and [Production].[ScrapReason]

For example, If you want to see what is the name of the Product with ProductID 518 and Scrap
Reason with ScrapReasonID 7, you can use the below queries:

select ProductID, Name from [Production].[Product] where ProductID = 518

select ScrapReasonID, Name from [Production].[ScrapReason] where ScrapReasonID = 7

In the above output, you can see the Product Name and Scrap Reason displayed.

 SCENARIO 15
 Filtering rows based on some values in a sub-query

Consider the table [Production].[WorkOrder]. It has the following data:

select * from [Production].[WorkOrder]

Now you want to find the ProductID’s having more than 20,000 Order Quantity.
You are interested only in the column “ProductID”.
So, you re-write the above query as follows and you call this Query as “Query 1”

select ProductID from [Production].[WorkOrder]

where OrderQty > 20000

In the above output, you can see the ProductID’s but now you want to find the Product names
associated with these ProductID’s. The names of products can be found in the table
[Production].[Product] .You can do it using the below query and lets call it “Query 2”.

select ProductID, Name from [Production].[Product]

You can see that ALL Product ID and associated Product Names are returned.
But we are interested to find the name of Products ONLY for the Product ID’s returned by the
below “Query 1” :

select ProductID from [Production].[WorkOrder]

where OrderQty > 20000

To find that you need to pass the output from “Query 1” to “Query 2”.
This can be done using the ANY operator as follows:

select ProductID, Name from [Production].[Product] --Query 2

where ProductID = ANY(

select ProductID from [Production].[WorkOrder] --Query 1

where OrderQty > 20000

)

Since we pass the output of Query 1 to Query 2 to be compared by the ANY operator,
we call the Query 1 as the “Sub-Query” to Query 2.

 SCENARIO 16
 Return values by converting them into Upper or Lower case

Consider the table [Production].[Product]. It has the following data:

select * from [Production].[Product]

In the above output, we are interested only in the 2 columns “Name” and “ProductNumber”.
You can re-write the above query as follows,

select Name, ProductNumber from [Production].[Product]

You can see in the above output that the “ProductNumber” column has Characters in uppercase.
So, you need to have the characters in “Name” column also in uppercase. To do that, you use the
UPPER() function to convert all characters in “Name” column to uppercase.
You re-write the above query using the UPPER() function:

select UPPER(Name), ProductNumber from [Production].[Product]

Also, if you want to convert the characters in column “ProductNumber” to lower case, you can
use the LOWER() function. And the query will look like this,

select Name, LOWER(ProductNumber) from [Production].[Product]

You can see from the above queries, how characters can be converted to UPPER or LOWER
cases using the SQL function UPPER() and LOWER().

 SCENARIO 17
 Return values by extracting specific characters

Consider the table [Production].[Product]. It has the following data:

select * from [Production].[Product]

We are interested in the 2 columns “Name” and “ProductNumber”.

select Name, ProductNumber from [Production].[Product]

In the above output, you can see that the values in the column “ProductNumber” has 2 characters
and 5 numbers. Now you want to get only the 2 characters from the “ProductNumber” for each
“Name”. To do that, you use the LEFT() function as shown below:

select Name, LEFT(ProductNumber,2) from [Production].[Product]

In case, if the requirement is to display only the last 4 digits from the column “ProductNumber”,
you use the RIGHT() function as shown below:

select Name, RIGHT(ProductNumber,4) from [Production].[Product]

You can see form the above output that there is no name for the column. This is because the
column values are derived from the original column values. But if you want to have a name for
the column, you can rename it using the keyword AS,

select Name, RIGHT(ProductNumber,4) AS ProductNumber from [Production].[Product]

 SCENARIO 18
 Select records that has matching values in two tables

Consider the table [Production].[WorkOrder]. It has the following data:

select * from [Production].[WorkOrder]

Let us consider the 2 columns “WorkOrderID” and “ProductID” in [Production].[WorkOrder].
 You can re-write the above query as,
select WorkOrderID, ProductID from [Production].[WorkOrder]

Now the requirement is, you want to find the Product name of each ProductID along with the
WorkOrderID.
You know that the name of the Product can be found from the table [Production].[Product] .

select ProductID, Name from [Production].[Product]

To find the Product names of “ProductID” along with the “WorkOrderID”, you combine the two
tables [Production].[WorkOrder] and [Production].[Product] using the keyword INNER JOIN
that matches values for “ProductID” column in both the tables. You can combine the two tables
using the keyword INNER JOIN as shown in below query,

select A.WorkOrderID, A.ProductID, B.Name from [Production].[WorkOrder] AS A

INNER JOIN [Production].[Product] AS B

ON A.ProductID = B.ProductID

Combining the two tables [Production].[WorkOrder] and [Production].[Product] using the
keyword INNER JOIN based on the matching values in the common column “ProductID”,

you can get the Product names of “ProductID” along with the “WorkOrderID”. In this way, you
have selected records that has matching values (ProductID) in two tables [Production].
[WorkOrder] and [Production].[Product]

 SCENARIO 19
 Select all records from first table and only the matching records from second

table

Consider the table [Production].[Product]. It has the following data:

select * from [Production].[Product]

Let us consider only the first two columns “ProductID” and “Name”.
The query can be re-written as,

select ProductID,Name from [Production].[Product]

Now the requirement is that, you want to find the Sales Orders for ALL ProductID’s in the above
output along with the ProductID and Name. Sales Orders can be found separately from another
table [Sales].[SalesOrderDetail]

select ProductID, SalesOrderID from [Sales].[SalesOrderDetail]

But you want to find the Sales Orders for ALL ProductID’s and Name’s in the table
[Production].[Product] in the same output. To do that you combine the two tables [Production].
[Product] and [Sales].[SalesOrderDetail] using the keyword LEFT JOIN based on the common
column between both tables. i.e. “ProductID” column. You can combine both the tables using
LEFT JOIN as shown in below query:

select A.ProductID, A.Name, B.SalesOrderID from [Production].[Product] AS A

LEFT JOIN [Sales].[SalesOrderDetail] AS B

ON A.ProductID = B.ProductID

In the above output, you can see that the Sales Orders are displayed for ALL “ProductID” and
“Name” columns in [Production].[Product].In this way, you have selected all records from first
table [Production].[Product] and only the matching records from second table [Sales].
[SalesOrderDetail].

 SCENARIO 20
 Select all records from second table and only the matching records from

first table

Consider the products table [Production].[Product].It has the name of all products.

select ProductID, Name from [Production].[Product]

Now the requirement is to find the reviews of products along with the product name.
To find the customer review about a product you can check the table [Production].
[ProductReview]

select ProductID,Comments from [Production].[ProductReview]

To find ONLY the name of products that has a Customer review, you combine the tables
[Production].[Product] and [Production].[ProductReview] using the keyword RIGHT JOIN
based on the common column between both tables. i.e. “ProductID” column. You can combine
both the tables using RIGHT JOIN as shown in below query:

select B.ProductID, B.Comments, A.Name from [Production].[Product] AS A

RIGHT JOIN [Production].[ProductReview] AS B

ON B.ProductID = A.ProductID

In the above output, you can see the reviews of products along with the product name. In this
way, you have selected all records from second table [Production].[ProductReview] and only
the matching records from first table [Production].[Product].

 SCENARIO 21
 Select all records from two tables when there is a match between them or

not

Consider the Products table [Production].[Product]. It has the following data:

select * from [Production].[Product]

Let us consider only 3 columns from this table “ProductID”, “Name”, “ProductSubcategoryID”.
The above query can be re-written as,

select ProductID, Name, ProductSubcategoryID from [Production].[Product]

In the above output, you can see the Product names and the Sub-Category ID to which each
Product belongs. But the requirement is, you want to find the Sub-Category name to which each
Product belongs and also find if any sub-category name is not assigned to a Product name.

The Sub-category names alone can be found separately from the table [Production].
[ProductSubcategory] using the below query,

select ProductSubcategoryID, Name from [Production].[ProductSubcategory]

Since you want to find the sub-category names for ALL products in table [Production].[Product]
and product names associated with ALL sub-category names in table [Production].
[ProductSubcategory], you use the syntax FULL JOIN combining the two tables based on the
common column between them i.e. “ProductSubcategoryID”. The query to combine to two
tables using FULL JOIN shown below,

select A.ProductID, A.Name, B.ProductSubcategoryID, B.Name

from [Production].[Product] AS A

FULL JOIN [Production].[ProductSubcategory] AS B

ON A.ProductSubcategoryID = B.ProductSubcategoryID

In the above output you can see the sub-category names for ALL Products and there is no sub-
category without a product name.

NOTE: The FULL JOIN keyword returns all matching records from both tables whether the
other table matches or not based on the common column “ProductSubcategoryID”.
So, if there are rows in "[Production].[ProductSubcategory]" that do not have matches in
"[Production].[Product]", or if there are rows in "[Production].[Product]" that do not have
matches in "[Production].[ProductSubcategory]", those rows will be listed as well.

 SCENARIO 22
 Return the number of items found in a result set

Consider the table [Production].[Product]. It has the following data:

select * from [Production].[Product]

Now the requirement is to check how many Product Numbers are there without any duplication.
To check the count of Product numbers, you use the function COUNT() and to check the count
without considering the duplicates, you use the keyword DISTINCT.

You use the below query to check the count of Product Numbers without any duplication,

select distinct COUNT(ProductNumber) from [Production].[Product]

The above output shows that there are 504 unique Product Numbers in the table [Production].
[Product].

 SCENARIO 23
 Compute the total amount

Consider the table [Sales].[SalesOrderDetail]. It has the following data:

select * from [Sales].[SalesOrderDetail]

We are interested only in the 4 columns- SalesOrderID, ProductID, LineTotal, ModifiedDate.
The above query can be re-written as follows,

select SalesOrderID, ProductID, LineTotal, ModifiedDate from [Sales].[SalesOrderDetail]

where ModifiedDate between '2011-01-01' and '2011-12-31'

The requirement is, you need to find the Total Revenue from the Product 777 sold in the year
2011.First, re-write the query to list the records for Product 777 sold in the year 2011,

select SalesOrderID, ProductID, LineTotal, ModifiedDate from [Sales].[SalesOrderDetail]

where ModifiedDate between '2011-01-01' and '2011-12-31'

and ProductID = 777

In the above output, you can see that the records listed for Product 777 sold in the year 2011.
Now to find the Total Revenue from the Product 777 in the year 2011, you use the SUM()
function on the column “LineTotal”. The query can be re-written as below:

select SUM(LineTotal) from [Sales].[SalesOrderDetail]

where ModifiedDate between '2011-01-01' and '2011-12-31'

and ProductID = 777

From the above output, you can see the Total Revenue from the Product 777 in the year 2011

 SCENARIO 24
 Compute the average value

Consider the table [Sales].[SalesOrderDetail]. It has the following data:

select * from [Sales].[SalesOrderDetail]

We are interested only in the 3 columns- ProductID, LineTotal , ModifiedDate.
The above query can be re-written as below,

select ProductID, LineTotal , ModifiedDate from [Sales].[SalesOrderDetail]

The Requirement is, to find the average price on which the Product 777 got sold in 2011.
First, re-write the query to list the records for Product 777 sold in the year 2011,

select ProductID, LineTotal , ModifiedDate from [Sales].[SalesOrderDetail]

where ModifiedDate between '2011-01-01' and '2011-12-31'

and ProductID = 777

In the above output, you can see that the records listed for Product 777 sold in the year 2011.
Now to find the average price on which the Product 777 got sold in 2011, you use the AVG()
function on the column “LineTotal”. The query can be re-written as below:

select AVG(LineTotal) from [Sales].[SalesOrderDetail]

where ModifiedDate between '2011-01-01' and '2011-12-31'

and ProductID = 777

From the above output, you can see the average price on which the Product 777 got sold in 2011.

 SCENARIO 25
 Compute the lowest value

Consider the table [Production].[ProductInventory]. It has the following data:

select * from [Production].[ProductInventory]

In the above output, you can see that there are several products(ProductID) having different
quantities(Quantity) in Stock based on the LocationID. Now the requirement is, you need to find
the lowest quantity in stock for the ProductID 944. You can re-write the above query using the
MIN() function to find the lowest quantity in stock for the ProductID 944,

select MIN(Quantity) from [Production].[ProductInventory]

where ProductID = 944

You can see the lowest quantity in stock for the ProductID 944 from the above output.

 SCENARIO 26
 Compute the largest value

Consider the table [Production].[ProductInventory]. It has the following data:

select * from [Production].[ProductInventory]

In the above output, you can see that there are several ProductID’s having different
quantities(Quantity) in Stock based on the LocationID. Now the requirement is, you need to find
the largest quantity in stock for the ProductID 747. You can re-write the above query using the
MAX() function to find the largest quantity in stock for the ProductID 747,

select MAX(Quantity) from [Production].[ProductInventory]

where ProductID = 747

You can see the largest quantity in stock for the ProductID 747 from the above output.

 SCENARIO 27
 Combine values from two columns into one column

Consider the table [Person].[StateProvince]. It has the Following data:

select * from [Person].[StateProvince]

We are interested only in 3 columns- StateProvinceID, StateProvinceCode, Name.
The above query can be re-written as below,

select StateProvinceID,StateProvinceCode,Name from [Person].[StateProvince]

Now the requirement is, display State code and State name in this format:
State Code-State Name
For example, need to display as “AK-Alaska”, for State Code-AK and State Name- Alaska.
You use the CONCAT() function to combine the 2 columns- StateProvinceCode & Name as
single column. The above query can be re-written as follows using the CONCAT() function,

select StateProvinceID, CONCAT(StateProvinceCode,'-',Name) from [Person].[StateProvince]

In the above output, you can see that the 2 columns-- StateProvinceCode & Name got combined
as a single column in the output. But you can notice that there is no column name for the new
column. If you want to give a name to the newly created column, use the AS keyword,

select StateProvinceID, CONCAT(StateProvinceCode,'-',Name) AS State from [Person].[StateProvince]

Now you can see from the output that the newly created column got the name as “State”.

 SCENARIO 28
 Create a Calculated Field

Consider the table [Purchasing].[PurchaseOrderDetail]. It has the following data:

We are interested only in the 5 columns-ProductID, UnitPrice, OrderQty, LineTotal,
RejectedQty. The above query can re-written now as follows,

select ProductID,UnitPrice,OrderQty,LineTotal,RejectedQty from [Purchasing].[PurchaseOrderDetail]

From the above output, you can see the Total Price(LineTotal) calculated based on the Price per
Unit(UnitPrice) and the Orders received(OrderQty). The requirement is, you need to find the
Amount lost due to the rejected quantity (RejectedQty). You have the Price per
Unit(UnitPrice) and the quantities Rejected(RejectedQty). To find the Amount lost due to the
rejected quantities, you need to multiply UnitPrice * RejectedQty and create them as a calculated
field. This can be done using the below query,

select ProductID,UnitPrice,OrderQty,LineTotal,RejectedQty,

 (UnitPrice*RejectedQty) as LossAmount

from [Purchasing].[PurchaseOrderDetail]

You can see from the above output that the Amount lost(LossAmount) due to rejected
quantity(RejectedQty), got created as a calculated field.
For example, 82 rejected quantities each with a unit price of $62.9895, lead to a loss of
$5165.139.

 SCENARIO 29
 Arrange rows in groups

Consider the table [Production].[ProductInventory]. It has the following data:

In the above output, you can see the ProductID’s having different “Quantity”
based on the “LocationID”.
Now the requirement is to find the lowest Quantity for each ProductID in the Inventory.
For example, the lowest quantity for ProductID- 1 is 324.
Similarly, the lowest quantity for ProductID-2 is 318.
Likewise, find the lowest Quantity for each ProductID in the Inventory.

To find the lowest quantity for each ProductID, you need to group the “ProductID” together
using the GROUP BY clause.The above query can be re-written as follows,

select ProductID, MIN(Quantity) from [Production].[ProductInventory]

GROUP BY ProductID

Now you can see in the output, the lowest quantity for each ProductID.

 SCENARIO 30
 Filter Groups based on condition

Consider the table [Production].[ProductInventory]. It has the following data:

select * from [Production].[ProductInventory]

Similar to previous scenario, in the above output, you can see the ProductID’s having different
“Quantity” based on the “LocationID”.
Now the requirement is, if the location count (LocationID) is less than 3 for a ProductID,
then need to find the lowest stock quantity (Quantity) for only that ProductID.
For example, consider ProductID-1, it has 3 locations(LocationID) and you are not required to
find the lowest quantity in Stock for the ProductID-1.

Consider ProductID-507, it has only 2 locations and you need to find the lowest quantity in stock
for the ProductID-507.Likewise, you need to find the lowest stock quantity (Quantity) for
ProductID’s that has less than 3 locations (LocationID).

select * from [Production].[ProductInventory] where ProductID = 507

The above output shows that the ProductID-507 has only 2 locations.

Now back to the requirement, to find the lowest stock quantity(Quantity) for ProductID’s that
has less than 3 locations(LocationID), first you need to group the ProductID’s using the
GROUP BY clause and then filter the GROUP using the HAVING clause. This can be done
using the below query,

select ProductID,

 MIN(Quantity) as LowestQuantity,

 count(locationID) as Locations from [Production].[ProductInventory]

GROUP BY ProductID

HAVING count(locationID) < 3

In the above output, you can see that the ProductID-507 has less than 3 locations and the lowest
quantity in stock is 542 for the ProductID-507.

 MORE SCENARIOS

If you are interested to learn more scenarios for FREE every week, please check out
valuetechacademy.com and get FREE SQL lessons every week.
Also, you can follow our YouTube channel for more SQL videos posted every week.

Thank you for purchasing this book! Any feedback would be greatly appreciated.
For any questions or issues, please send email to sql@valuetechacademy.com
and we will be happy to respond.

https://www.youtube.com/channel/UCwN4XNYmbPL8IRPe-E0BnYQ
http://valuetechacademy.com/

	 START HERE
	 INSTALLATION
	 SCENARIO 1
	 SCENARIO 2
	 SCENARIO 3
	 SCENARIO 4
	 SCENARIO 5
	 SCENARIO 6
	 SCENARIO 7
	 SCENARIO 8
	 SCENARIO 9
	 SCENARIO 10
	 SCENARIO 11
	 SCENARIO 12
	 SCENARIO 13
	 SCENARIO 14
	 SCENARIO 15
	 SCENARIO 16
	 SCENARIO 17
	 SCENARIO 18
	 SCENARIO 19
	 SCENARIO 20
	 SCENARIO 21
	 SCENARIO 22
	 SCENARIO 23
	 SCENARIO 24
	 SCENARIO 25
	 SCENARIO 26
	 SCENARIO 27
	 SCENARIO 28
	 SCENARIO 29
	 SCENARIO 30
	 MORE SCENARIOS

