

Reinventing ITIL® and
DevOps with Digital

Transformation
Essential Guidance

to Accelerate the Process

Second Edition

Abhinav Krishna Kaiser

Reinventing ITIL® and DevOps with Digital Transformation: Essential Guidance to
Accelerate the Process

ISBN-13 (pbk): 978-1-4842-9071-2 ISBN-13 (electronic): 978-1-4842-9072-9
https://doi.org/10.1007/978-1-4842-9072-9

Copyright © 2023 by Abhinav Krishna Kaiser

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley

Cover designed by eStudioCalamar

Cover image by Glitch Lab on Unsplash (www.unsplash.com)

ITIL® is a (registered) trademark of AXELOS Limited. All rights reserved.

Distributed to the book trade worldwide by Apress Media, LLC, 1 New York Plaza, New York, NY 10004,
U.S.A. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or visit
www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner) is Springer
Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (https://github.com/Apress). For more detailed information, please visit
http://www.apress.com/source-code.

Printed on acid-free paper

Abhinav Krishna Kaiser
Bengaluru, India

https://doi.org/10.1007/978-1-4842-9072-9

To my readers,
whose constant feedback and encouragement

keeps me churning out new books…

v

About the Author ��xxi

About the Technical Reviewer ��xxiii

Introduction ���xxv

Part I: ITIL to DevOps �� 1

Chapter 1: Introduction to DevOps ��� 3

What Exactly Is DevOps? ��� 4

DevOps with an Example �� 4

Why DevOps? �� 6

Let’s Look at the Scope ��� 8

The Benefits of Transforming into DevOps �� 9

Insight from the State of DevOps Report �� 10

DevOps Principles ��� 12

Culture ��� 12

Automation �� 13

Lean ��� 14

Measurement �� 14

Sharing �� 15

Elements of DevOps �� 15

People ��� 18

DevOps Team �� 20

The Basis for a DevOps Team �� 21

An Example of a DevOps Team �� 21

Processes �� 22

Continuous Integration �� 23

Table of Contents

https://doi.org/10.1007/978-1-4842-9072-9_1
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec1
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec2
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec3
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec4
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec5
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec6
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec7
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec8
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec9
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec10
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec11
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec12
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec13
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec14
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec15
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec16
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec17
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec18
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec19

vi

Continuous Delivery ��� 26

Continuous Deployment��� 29

Technology �� 32

Choosing the Right Tool ��� 32

Categories of Tools �� 33

Source Code Repositories ��� 34

Hosting Services �� 34

Orchestrators ��� 35

Deployment and Environment Provisioning ��� 35

Testing ��� 36

Is DevOps the End of Ops? �� 36

Summary��� 38

Chapter 2: ITIL Basics ��� 39

IT Service Management and ITIL ��� 39

The Conception of ITIL �� 40

Competition to ITIL �� 42

Understanding Services �� 43

Service Types (Components) ��� 44

Core Services �� 45

Enabling Services ��� 46

Enhancement Services ��� 46

Understanding Processes ��� 47

Understanding Functions �� 48

Functions in ITIL �� 49

Processes vs� Functions �� 49

ITIL Service Lifecycle �� 50

Service Strategy �� 51

Service Strategy Processes �� 53

Service Design��� 53

Service Design Processes ��� 54

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9072-9_1#Sec21
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec24
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec26
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec27
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec28
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec29
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec30
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec31
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec32
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec33
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec34
https://doi.org/10.1007/978-1-4842-9072-9_1#Sec35
https://doi.org/10.1007/978-1-4842-9072-9_2
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec1
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec2
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec3
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec4
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec5
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec6
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec7
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec8
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec9
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec10
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec11
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec12
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec13
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec14
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec15
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec16
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec17

vii

Service Transition �� 54

Service Transition Processes ��� 55

Service Operations �� 55

Service Operations Processes ��� 56

Continual Service Improvement �� 56

Continual Service Improvement Process ��� 57

ITIL Roles��� 58

Service Owner ��� 58

Process Owner �� 59

Process Manager ��� 59

Process Practitioner �� 60

RACI Matrix ��� 60

An Example of RACI ��� 61

Tips on RACI Creation �� 62

ITIL V3 and ITIL 4 ��� 63

The Service Lifecycle Is Dead �� 63

Introducing Practices��� 63

Service Has a New Definition �� 64

Governance Is a New Kid on the Block �� 64

Automation Is In��� 65

Summary��� 65

Chapter 3: ITIL and DevOps: An Analysis �� 67

Product vs� Services ��� 68

Big Ticket Conflicts ��� 72

Which Is It: Sequential vs� Concurrent? �� 72

Let’s Discuss Batch Sizes ��� 72

It’s All About the Feedback �� 73

The Silo Culture ��� 73

What Is Configuration Management? �� 74

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9072-9_2#Sec18
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec19
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec20
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec21
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec22
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec23
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec24
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec25
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec26
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec27
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec28
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec29
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec30
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec31
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec32
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec33
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec34
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec35
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec36
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec37
https://doi.org/10.1007/978-1-4842-9072-9_2#Sec38
https://doi.org/10.1007/978-1-4842-9072-9_3
https://doi.org/10.1007/978-1-4842-9072-9_3#Sec1
https://doi.org/10.1007/978-1-4842-9072-9_3#Sec2
https://doi.org/10.1007/978-1-4842-9072-9_3#Sec3
https://doi.org/10.1007/978-1-4842-9072-9_3#Sec4
https://doi.org/10.1007/978-1-4842-9072-9_3#Sec5
https://doi.org/10.1007/978-1-4842-9072-9_3#Sec6
https://doi.org/10.1007/978-1-4842-9072-9_3#Sec7

viii

Continuous Deployment Makes Release Management Irrelevant ��� 75

Union of Mindsets ��� 76

The Case for ITIL Adaptation with DevOps �� 77

To Conclude ��� 78

Summary��� 80

Chapter 4: Integration: Alignment of Processes ��� 81

Analysis of ITIL Phases ��� 81

Analysis: Service Strategy Phase �� 83

Strategy Management for IT Services ��� 83

Service Portfolio Management �� 86

Financial Management for IT Services �� 86

Demand Management ��� 86

Business Relationship Management ��� 88

Analysis: Service Design Phase �� 89

Design Coordination �� 89

Service Catalog Management ��� 93

Service Level Management ��� 94

Availability Management ��� 95

Capacity Management ��� 96

IT Service Continuity Management �� 99

Information Security Management �� 100

Supplier Management ��� 103

Analysis: Service Transition Phase �� 104

Transition Planning and Support ��� 104

Change Management �� 105

Service Asset and Configuration Management�� 105

Release and Deployment Management ��� 105

Service Validation and Testing ��� 105

Change Evaluation ��� 106

Knowledge Management ��� 107

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9072-9_3#Sec8
https://doi.org/10.1007/978-1-4842-9072-9_3#Sec9
https://doi.org/10.1007/978-1-4842-9072-9_3#Sec10
https://doi.org/10.1007/978-1-4842-9072-9_3#Sec11
https://doi.org/10.1007/978-1-4842-9072-9_3#Sec12
https://doi.org/10.1007/978-1-4842-9072-9_4
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec1
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec2
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec3
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec4
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec5
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec6
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec7
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec8
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec9
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec10
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec11
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec12
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec13
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec17
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec18
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec21
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec22
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec23
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec24
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec25
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec26
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec27
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec28
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec29

ix

Analysis: Service Operation Phase �� 108

Event Management �� 108

Incident Management �� 110

Request Fulfillment ��� 110

Problem Management ��� 111

Access Management ��� 111

Continual Service Improvement �� 111

The Seven-Step Improvement Process ��� 112

Summary��� 113

Chapter 5: Teams and Structures ��� 115

A Plunge Into ITIL Functions �� 116

Service Desk�� 116

Technical Management ��� 118

Application Management ��� 119

IT Operations Management ��� 120

DevOps Team Structure Revisited ��� 122

Traditional Model ��� 123

The Agile Model �� 125

Flat Hierarchy �� 125

No Project Manager ��� 126

Single Team ��� 126

Product Owner ��� 127

Predictability �� 128

The DevOps Model �� 129

Composition of a DevOps Team ��� 129

ITIL Role Mapping in a DevOps World ��� 132

Strategy and Compliance �� 133

Umbrella Teams ��� 134

Shared Teams �� 135

DevOps Teams ��� 136

Summary��� 137

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9072-9_4#Sec30
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec31
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec32
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec33
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec34
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec35
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec36
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec37
https://doi.org/10.1007/978-1-4842-9072-9_4#Sec38
https://doi.org/10.1007/978-1-4842-9072-9_5
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec1
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec2
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec3
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec4
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec5
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec8
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec9
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec10
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec11
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec12
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec13
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec14
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec15
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec16
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec17
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec18
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec19
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec20
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec21
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec22
https://doi.org/10.1007/978-1-4842-9072-9_5#Sec23

x

Chapter 6: Managing Configurations in a DevOps Project ������������������������������������ 139

ITIL Service Asset and Configuration Management Process ��� 139

Objectives and Principles �� 140

Service Assets and Configuration Items �� 140

Scope of Service Asset and Configuration Management ��� 142

Introducing the CMDB, CMS, DML, and DS �� 143

Configuration Management Database ��� 143

Configuration Management System �� 143

Definitive Media Library and Definitive Spares ��� 144

Service Asset and Configuration Management Processes �� 145

Step 1: Management and Planning �� 146

Step 2: Configuration Identification ��� 147

Step 3: Configuration Control��� 148

Step 4: Status Accounting and Reporting �� 149

Step 5: Verification and Audit �� 150

Why Configuration Management Is Relevant to DevOps ��� 151

Configuration Management in a DevOps Sense �� 152

Decoding IaaS ��� 153

Decoding PaaS �� 154

Application Deployment and Configuration ��� 154

Underlying Configuration Management �� 155

Automation in Configuration Management ��� 156

Who Manages DevOps Configurations? �� 157

Comprehensive Configuration Management ��� 158

Configuration Management Database ��� 159

CMDB for Change Management �� 160

CMDB for Provisioning Environments �� 161

CMDB for Incident Management �� 161

Source Code Repository �� 161

Basics of a Source Code Repository �� 162

What Can Be Stored in a Source Code Repository?��� 162

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9072-9_6
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec1
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec2
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec3
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec4
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec5
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec6
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec7
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec8
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec9
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec10
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec11
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec12
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec13
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec14
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec15
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec16
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec17
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec18
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec19
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec20
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec21
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec22
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec23
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec24
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec25
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec26
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec27
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec28
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec29
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec30

xi

Good Practices for Achieving DevOps Objectives �� 162

Choosing a Source Code Repository Tool �� 163

Artifact Repository �� 165

Managing Binaries �� 166

Summary��� 167

Chapter 7: Incident Management Adaptation ��� 169

What Is ITIL Incident Management? �� 170

Incident Management Is Vital �� 170

Incident Management Is the First Line of Defense �� 171

Digging Deeper Into Incident Management ��� 171

What Constitutes an Incident? ��� 172

Who Can Register Incidents? ��� 173

A Typical Incident Management Process �� 174

Step 1: Incident Identification �� 176

Step 2: Incident Logging �� 176

Step 3: Incident Categorization �� 177

Step 4: Incident Prioritization �� 178

Step 5: Diagnosis and Investigation �� 178

Step 6: Resolution and Recovery ��� 179

Step 7: Incident Closure��� 180

Major Incidents ��� 180

Incident Management in DevOps �� 181

Agile Project Management �� 182

DOR and DOD ��� 188

Sprint Planning for a DevOps Team ��� 188

Plan for What Is Currently on Your Plate �� 190

Keep Some Contingency Aside During the Planning Session �� 190

The Scope of the DevOps Team in Incident Management ��� 191

Levels of Support ��� 191

Incident Flow ��� 193

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9072-9_6#Sec31
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec32
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec33
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec34
https://doi.org/10.1007/978-1-4842-9072-9_6#Sec35
https://doi.org/10.1007/978-1-4842-9072-9_7
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec1
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec2
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec3
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec4
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec6
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec7
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec8
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec9
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec10
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec11
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec12
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec13
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec14
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec15
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec16
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec17
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec18
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec28
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec29
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec30
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec31
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec32
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec33
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec34

xii

Knowledge Management at the Core �� 194

ITIL’s Knowledge Management �� 194

What Knowledge to Maintain ��� 195

Knowledge Storing and Retrieval �� 197

The DevOps Incident Management Process�� 198

Step 1: Incident Identification �� 200

Step 2: Incident Analysis, Escalation, and Resolution �� 200

Step 3: Incident with DevOps Team ��� 201

Step 4: Incident Manager Analyzes and Accepts Incidents ��� 201

Steps 5 and 6: The Incident Is Prioritized and Added to the Sprint �������������������������������������� 202

Steps 7 and 8: The Scrum Team Makes Code Changes and Checks In ������������������������������� 203

Step 9: Continuous Integration and Continuous Testing �� 204

Step 10: Auto Deployment ��� 205

Step 11: Post-Mortem�� 206

Summary��� 206

Chapter 8: Problem Management Adaptation��� 207

Introduction to ITIL Problem Management �� 207

Objectives and Principles �� 208

Incidents vs� Problems �� 209

Key Terminologies in Problem Management ��� 210

Root Cause �� 210

Root-Cause Analysis �� 210

Known Error ��� 210

Known Error Database ��� 211

Workarounds ��� 211

Permanent Solutions ��� 211

Problem Analysis Techniques �� 212

Brainstorming �� 212

The Five-Why Technique ��� 214

Applying the Five-Why Technique �� 214

Limitations of the Five-Why Technique �� 216

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9072-9_7#Sec35
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec36
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec37
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec38
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec39
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec40
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec41
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec42
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec43
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec44
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec45
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec46
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec47
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec48
https://doi.org/10.1007/978-1-4842-9072-9_7#Sec49
https://doi.org/10.1007/978-1-4842-9072-9_8
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec1
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec2
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec3
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec4
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec5
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec6
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec7
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec8
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec9
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec10
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec11
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec12
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec13
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec14
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec15

xiii

The Ishikawa Diagram �� 217

The Kepner-Tregoe Method ��� 220

A Typical Problem Management Process �� 221

Step 1: Problem Detection ��� 222

Step 2: Problem Logging ��� 224

Step 3: Problem Categorization ��� 225

Step 4: Problem Prioritization �� 226

Step 5: Problem Investigation and Diagnosis �� 226

Step 6: Problem Resolution ��� 227

Step 7: Problem Closure �� 227

Problem Management in DevOps �� 228

What Are the Possible Problems in a DevOps Project? ��� 228

Making the Case for a Problem Manager �� 229

The DevOps Problem Management Process �� 231

Summary��� 235

Chapter 9: Managing Changes in a DevOps Project ��� 237

What Constitutes a Change? ��� 238

Overview of Resources and Capabilities ��� 238

Change in Scope �� 239

Why Is Change Management Critical? �� 241

Objectives and Scope of ITIL Change Management �� 242

Types of Changes �� 243

ITIL Change Management Process �� 246

Step 1: Create a Request for Change ��� 248

Step 2: Assess and Evaluate the Change ��� 249

Step 3: Authorize the Build and Test It ��� 249

Step 4: Build and Test �� 253

Step 5: Authorize the Implementation ��� 253

Step 6: Implement and Verify �� 253

Step 7: Review and Close the Change ��� 254

How Are DevOps Changes Different from ITIL Changes? �� 254

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9072-9_8#Sec16
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec17
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec18
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec19
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec24
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec28
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec29
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec30
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec31
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec32
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec33
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec34
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec35
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec36
https://doi.org/10.1007/978-1-4842-9072-9_8#Sec42
https://doi.org/10.1007/978-1-4842-9072-9_9
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec1
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec2
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec3
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec4
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec5
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec6
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec10
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec11
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec12
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec13
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec18
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec19
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec20
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec21
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec22

xiv

The Perceived Problem with ITIL Change Management�� 255

DevOps to the Rescue ��� 256

Project Change Management �� 256

Risk Mitigation Strategies ��� 261

Auto-Deployment and Auto-Checks ��� 261

DevOps Change Management Process ��� 263

Change Management Adaption for Continuous Delivery ��� 263

Steps 1, 2, and 3: Change Initiation ��� 264

Step 4: Build and Test �� 265

Step 5: Deployment Authorization ��� 265

Steps 6 and 7: Deployment and Verification �� 265

Continuous Delivery for Maximum Change Governance ��� 265

Change Management Adaption for Continuous Deployment ��� 266

Steps 1, 2, 3, and 5: Change Initiation and Authorization to Deploy ������������������������������������ 267

Step 4: Build and Test �� 268

Step 6: Deployment to Production ��� 268

Step 7: Change Verification and Closure �� 268

Maximum Agility with Standard Changes �� 269

Championing Standard Changes ��� 269

Process for Identifying and Managing Standard Changes ��� 271

Summary��� 277

Chapter 10: Release Management in DevOps ��� 279

Change Management vs� Release Management ��� 279

Release Management vs� Release and Deployment Management ��� 281

The Basics of a Release �� 282

Release Units ��� 282

Release Packages ��� 283

Types of Releases ��� 284

Major Releases �� 284

Minor Releases �� 284

Emergency Releases ��� 285

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9072-9_9#Sec23
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec24
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec25
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec26
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec27
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec28
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec29
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec30
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec31
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec32
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec33
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec34
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec35
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec36
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec37
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec38
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec39
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec40
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec41
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec42
https://doi.org/10.1007/978-1-4842-9072-9_9#Sec49
https://doi.org/10.1007/978-1-4842-9072-9_10
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec1
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec2
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec3
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec4
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec5
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec6
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec7
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec8
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec9

xv

Early Life Support �� 285

Deployment Options �� 286

The Big Bang Option �� 286

The Phased Approach �� 287

The Four Phases of Release Management �� 288

Release and Deployment Planning �� 288

Release Build and Test �� 288

Deployment ��� 289

Review and Close �� 290

Releases in DevOps �� 290

Sequential and Iterative Nature of the Process ��� 290

Release Management Process Adaption with Iterations ��� 292

Using Agile Release Trains ��� 292

Applying Release Management to Continuous Deployment �� 292

Applying Release Management to Continuous Delivery �� 293

Expectations from Release Management ��� 293

Blue-Green Deployment �� 294

The Scope of Release Management �� 295

Automation of Release Management �� 296

The DevOps Release Management Team �� 297

Release Management Team Structure��� 298

Welcome Release Manager, the Role for All Seasons ��� 299

Product Owners Are the New Release Managers �� 302

Summary��� 303

Part II: DevOps to Digital Transformation ��� 305

Chapter 11: Digital Transformation: The Driver of Business Success ������������������ 307

DevOps and Beyond �� 307

The World of Digital Transformation �� 309

The Curious Case of Magic Link �� 310

What About Google Glass? ��� 311

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9072-9_10#Sec10
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec11
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec12
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec13
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec14
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec15
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec16
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec17
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec18
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec19
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec20
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec21
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec22
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec23
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec24
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec25
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec26
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec27
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec28
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec29
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec30
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec34
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec35
https://doi.org/10.1007/978-1-4842-9072-9_10#Sec36
https://doi.org/10.1007/978-1-4842-9072-9_11
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec1
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec2
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec3
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec4

xvi

The Right Questions to Ask ��� 312

Digital Transformation and Business Disruption �� 312

Business Disruption 101 �� 314

Does the Disruption Have to Be Big Bang? �� 316

Is Virtual the Assumed Goal? ��� 317

Finding Synergy with Partner Organizations ��� 318

Key Focus Areas �� 319

Customers ��� 320

Value �� 320

Innovation �� 321

Data ��� 323

Balancing All Things Digital ��� 324

Roadmap vs� Agility ��� 324

Planning vs� Experimentation �� 325

In-Housing vs� Collaboration�� 326

Summary��� 326

Chapter 12: The Digital Transformation Framework ��� 327

The Battle Tank Framework �� 327

The Digital Transformation Strategy �� 329

Step 1: Identify Opportunities/Pain Points ��� 331

Step 2: Prepare a Game Plan ��� 333

Step 3: Seek Out Partners ��� 335

Step 4: Execute a Small Project ��� 336

Step 5: Observe, Refine, and Transform ��� 338

Culture and Digital Culture �� 340

Innovative �� 342

Openness ��� 343

Collaborative �� 344

Entrepreneurial �� 345

Customer Centric ��� 346

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9072-9_11#Sec5
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec6
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec7
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec11
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec12
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec13
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec14
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec15
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec16
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec17
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec18
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec19
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec20
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec21
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec22
https://doi.org/10.1007/978-1-4842-9072-9_11#Sec23
https://doi.org/10.1007/978-1-4842-9072-9_12
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec1
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec2
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec3
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec4
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec8
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec11
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec12
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec16
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec17
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec18
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec19
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec20
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec21

xvii

People ��� 348

The Coca-Cola Case Study �� 348

The Psychological Effect of Change �� 349

Fear of Automation �� 349

Technology �� 350

The L’Oréal Case Study �� 351

L’Oréal vs� Estée Lauder: A Digital Transformation Comparison �� 352

Techniques and Architectures ��� 352

Golden Practices for Technology Implementation ��� 353

Data ��� 358

DIKW Cycle �� 359

Summary��� 361

Chapter 13: People and Leadership �� 363

Digital Transformation Is People Centric ��� 363

The End of Work as We Know it �� 365

The Pitfalls of Legacy Working �� 366

The Talent Code ��� 367

The Productivity Equation �� 367

The Flexible Model of Working �� 368

No Fixed Hours or Location Constraints �� 369

Asynchronous Work ��� 369

Productivity as a KPI �� 370

Employee Engagement �� 371

The Framework for the Flexi-Work Model��� 372

Digital Envisioning ��� 373

Enablement for the Flexible Work Model ��� 374

Work Culture Fitment ��� 375

The MURAL Story ��� 376

Performance Management �� 377

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9072-9_12#Sec22
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec23
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec24
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec25
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec26
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec27
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec28
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec29
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec30
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec38
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec39
https://doi.org/10.1007/978-1-4842-9072-9_12#Sec40
https://doi.org/10.1007/978-1-4842-9072-9_13
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec1
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec2
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec3
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec4
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec5
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec6
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec7
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec8
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec9
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec10
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec11
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec12
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec13
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec14
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec500
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec15

xviii

Leadership in the Digital Age �� 379

Organization Structure �� 380

Leadership Style �� 381

Motivation �� 384

Responsibility �� 386

Leadership Levers to Stay Relevant �� 387

The Customer Is Still King ��� 388

Agile and Nimble ��� 390

Experimentation and Innovation �� 392

Build the Right Team and Foster People in the New Culture ��� 395

Be Authentic �� 403

Summary��� 406

Chapter 14: Techniques and Tools for Managing Digital Teams ��������������������������� 407

How Do You Manage Remote Work? ��� 407

Trust the Teams to Deliver ��� 408

Google’s Team Effectiveness Study ��� 409

Respect the Team �� 411

How Do You Hire the Right People? �� 413

The Fundamental Challenges with Hiring �� 413

The Automattic Case Study�� 416

Self-Supervised and Self-Motivated �� 418

Collaborators and Communicators �� 421

Managing Virtual Meetings ��� 425

How to Run Virtual Meetings Effectively �� 427

Summary��� 431

Chapter 15: Adopting a Product-Led Approach �� 433

What Exactly Is a Product-Led Approach? �� 435

Why Should Companies Swivel Around Products? �� 435

Why Should Products Exist? �� 438

The DNA of a Product-Led Company ��� 439

Benefits of the Product-Led Approach ��� 442

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9072-9_13#Sec16
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec17
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec18
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec19
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec20
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec21
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec22
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec23
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec24
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec25
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec36
https://doi.org/10.1007/978-1-4842-9072-9_13#Sec41
https://doi.org/10.1007/978-1-4842-9072-9_14
https://doi.org/10.1007/978-1-4842-9072-9_14#Sec1
https://doi.org/10.1007/978-1-4842-9072-9_14#Sec2
https://doi.org/10.1007/978-1-4842-9072-9_14#Sec3
https://doi.org/10.1007/978-1-4842-9072-9_14#Sec4
https://doi.org/10.1007/978-1-4842-9072-9_14#Sec5
https://doi.org/10.1007/978-1-4842-9072-9_14#Sec6
https://doi.org/10.1007/978-1-4842-9072-9_14#Sec9
https://doi.org/10.1007/978-1-4842-9072-9_14#Sec10
https://doi.org/10.1007/978-1-4842-9072-9_14#Sec13
https://doi.org/10.1007/978-1-4842-9072-9_14#Sec16
https://doi.org/10.1007/978-1-4842-9072-9_14#Sec17
https://doi.org/10.1007/978-1-4842-9072-9_14#Sec26
https://doi.org/10.1007/978-1-4842-9072-9_15
https://doi.org/10.1007/978-1-4842-9072-9_15#Sec1
https://doi.org/10.1007/978-1-4842-9072-9_15#Sec2
https://doi.org/10.1007/978-1-4842-9072-9_15#Sec3
https://doi.org/10.1007/978-1-4842-9072-9_15#Sec4
https://doi.org/10.1007/978-1-4842-9072-9_15#Sec9

xix

Understanding Value Streams and Value Stream Mapping ��� 443

An Introduction to Value Streams �� 444

What Is Value Stream Mapping? �� 446

Carrying Out Value Stream Mapping ��� 448

Looking at Data and Metrics ��� 454

The Problem of Perspective in the Digital Age �� 455

Operational Metrics ��� 456

Usage Metrics �� 457

Business Metrics ��� 460

Summary��� 462

Index ��� 463

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9072-9_15#Sec13
https://doi.org/10.1007/978-1-4842-9072-9_15#Sec14
https://doi.org/10.1007/978-1-4842-9072-9_15#Sec15
https://doi.org/10.1007/978-1-4842-9072-9_15#Sec16
https://doi.org/10.1007/978-1-4842-9072-9_15#Sec24
https://doi.org/10.1007/978-1-4842-9072-9_15#Sec25
https://doi.org/10.1007/978-1-4842-9072-9_15#Sec26
https://doi.org/10.1007/978-1-4842-9072-9_15#Sec27
https://doi.org/10.1007/978-1-4842-9072-9_15#Sec28
https://doi.org/10.1007/978-1-4842-9072-9_15#Sec29

xxi

About the Author

Abhinav Krishna Kaiser is a management consultant and

works as a partner in a leading consulting firm. He consults

with organizations that are looking to improve, become

efficient, and transform. His areas of expertise include

Digital Transformation, Product Models, Agile, DevOps,

ITIL, and other connected IT areas.

Abhinav is a digital transformation enthusiast who

has been instrumental in driving several transformation

initiatives across sectors. He has consulted with companies

to change their approach from traditional to a product-led

model, and these initiatives have driven companies to achieve new heights in reaching

higher customer satisfaction levels.

He is one of the leading names synonymous with ITIL, and his previous publication,

Become ITIL 4 Foundation Certified in 7 Days, is one of the top guides recommended

to IT professionals looking to get into the service management field and become ITIL

Foundation certified.

Abhinav started consulting with clients several years ago on IT service management,

creating value by developing robust service management solutions. He is one of the

foremost authorities in the area of configuration management, and his solutions have

stood the test of time, rigor, and technological advancements. A natural evolution in

consulting, led him from service management to Agile and DevOps and now into digital

transformation and product-led models.

Abhinav has trained thousands of IT professionals on DevOps processes, Agile

methodologies, and ITIL expert-level certifications. He blogs and writes guides and

articles on digital transformation, DevOps, Agile, and ITIL at http://abhinavpmp.com.

His first book came out in 2015: Workshop in a Box: Communication Skills for IT

Professionals. He runs a video channel on YouTube that has garnered several thousands

of views and acclaim: https://www.youtube.com/user/abhinavonthetube.

http://abhinavpmp.com
https://www.youtube.com/user/abhinavonthetube

xxii

As consultants go where the clients want them to, Abhinav has traveled across

the globe and has lived in the United States, Australia, South Africa, and the United

Kingdom, before settling down in Bangalore. He is happily married to Radhika, and they

have two children—Anagha (daughter) and Aadwik (son).

abouT The auThor

xxiii

About the Technical Reviewer

Rajeev Kesana brings two decades of IT industry experience,

partnering with customers at Tech Mahindra, IBM Software

Labs, Infosys, Capgemini, & TCS. As an accomplished leader

in strategy and transformation, Rajeev has envisioned,

designed, and built multiple technology-transformation-

focused business units from the ground up over the years.

Currently based in Hyderabad, where he resides with his

wife, Chaitanya, he enjoys meditation, nature, cooking, and

travelling.

xxv

Introduction

I am lucky to have worked on various transformation programs in the past 15 years.

Although we didn’t call it "transformation" in the 2000s, it disrupted the notions of what

was considered normal, the general principles that we applied and the outcomes that we

considered are time immemorial. Just as a sculptor takes a piece of monolith and turns

it into something beautiful, transformation projects involve fast-paced evolutions that

change the current flow into something different.

Transformation is the same in every field. The principles are common across the

board. I went through a physical transformation fairly recently. I weighed around

95 kilograms (210 pounds) and I am 177 centimeters (5'8") tall. My body mass

was 28 percent fat, according to a machine that measures all kinds of bodily stats.

I had accepted that this was my normal; this was who I was and honestly, it never

bothered me.

I was introduced to a fitness coach by my wife, who had transformed some of her

friends. Although I wasn’t serious at first, I decided to hire him. The regimen involved a

combination of diet devoid of voluminous food and activity at the gym. The first couple

of weeks were perhaps the most difficult part of transformation, with hunger eating

at me. I was asked to cut down my carb intake to a fifth of what I used to consume.

No chips. No pizzas. And no beer. As I saw my weight shed on a weekly basis, the

cravings disappeared and so did the hunger. I longed to follow my prescribed diet, and

I looked forward to my time at the gym. A few months down the line, I had lost around

25 kilograms (55 pounds) and I was down to 17 percent body fat.

The man in the mirror was transformed, but it did not happen overnight. It took a

lot of discipline and will power to stay on course. My coach changed my diet every week

based on the progress that I made—the importance of measurement and feedback

struck me more than ever before. My weight loss was massive to begin with and slowed

as the weeks passed, which is the expected to curve for any transformation, physical

and digital. I have far from a perfect body, but I am in a much better place than when

I started off. Digital transformations are typically like this; they don't end. At any point,

you can see how much you have progressed, and new technologies, direction and pivots

point towards the path where much more can be achieved.

xxvi

Reinventing ITIL® and DevOps with Digital Transformation is the second edition of

Reinventing ITIL® in the Age of DevOps. The first edition received lots of feedback from

on-the-ground implementations. The ideas were the first of their kind, and that book

provided solutions to thousands of ITIL projects that were moving the DevOps way. As

the pandemic hit, digital transformation accelerated, and our notions of work changed

with it. I added five chapters in the second edition to address this new level of evolution,

whereby DevOps projects started to move into the bigger realm of digital transformation.

The original chapters (with some modifications) are presented as Section I, while the

new chapters covering digital transformation are in Section II. You can read this book

like a story, from cover to cover, or you can use the table of contents to choose topics of

interest.

In Chapter 12, I present a framework for strategizing and implementing digital

transformations, called the battle tank framework. This framework has nothing to

do with wars or the army—it illustrates various elements of digital transformation in

conjunction with the parts of a battle tank. The final chapter of this book presents a

product-led approach, which is quite distinct from the usual ways of working.

InTroduCTIon

https://doi.org/10.1007/978-1-4842-9072-9_12

3

CHAPTER 1

Introduction to DevOps
New ways of working or new methodologies often come about because of a problem—

yes, it all starts with a problem. DevOps too resulted from problems faced by businesses.

Businesses craved quick turnarounds to their solutions. Businesses often found, in the

midst of development, that they didn’t have all the information they needed to make the

right decisions. They wanted to make a few more changes to the requirements and still

expected the delivery to happen on time. DevOps was born to solve this problem.

DevOps just didn’t show up as the DevOps we have today. It evolved over time. It was

clear to those who started solving the agility problem that DevOps had a lot of potential

to not just solve that problem but also increase productivity by leaps and bounds.

Further, the quality of the software developed had the potential to be the best. Thus, to

this day, DevOps keeps evolving for the better.

DevOps is not just a methodology for developers. Operations reaps its share of

benefits from DevOps as well. With increased automation, operations went from

being a mundane job to an innovative one. Operations folks got a new lease on life

through various tools that made their working lives a whole lot of fun, and they could

look forward to integrating and configuring tools to do advanced stuff, rather than the

repetitive workload that’s generally associated with operations. Productivity shot up and

human errors became much rarer.

Software development was carried out on the back of the software delivery lifecycle

(SDLC) and was managed through waterfall project management. On the operations

front, ITIL ruled the roost. Through DevOps, development and operations essentially

came together to form a union. In the mix, the waterfall methodology gave way to Agile

methodologies, and still people who designed DevOps processes did not have a good

understanding of how ITIL would come into DevOps. A lot of noise started to circulate

that the dawn of DevOps was the end for ITIL. This was plainly noise without any

substance; you will learn in this book about the value that ITIL brings to the table and

why DevOps cannot exist in its entirety without a framework such as ITIL.

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9_1

https://doi.org/10.1007/978-1-4842-9072-9_1#DOI

4

The first part of the book is structured around the ITIL service management framework

and explores what changes need to be made to ITIL to ease into DevOps projects.

Chapter 4 covers common ITIL processes and ITIL functions with respect to DevOps

and Chapters 5 through 10 provide in-depth analysis of major processes in ITIL around

DevOps designs and implementations. You can use the book to readily implement ITIL in

the most effective manner for it to create value in DevOps projects. The second part of the

book shifts gears to transform DevOps a notch higher – into digital transformation.

This chapter briefly explains DevOps, including its principles, elements, and processes.

Chapter 2 provides a snapshot of ITIL V3, including its lifecycle, phases, processes, and

functions. Chapter 3 analyzes DevOps and ITIL, identifying the commonalities and

conflicts that support the journey toward adapting ITIL for DevOps implementations.

 What Exactly Is DevOps?
There are multiple perceptions about DevOps in the core. In fact, if you search the web,

you will be surprised to find multiple definitions for DevOps. No two definitions have

common aspects and elements.

I have trained thousands in the area of DevOps, and the best answer I have is that it

combines the development and operations teams, and that’s about it. Why does bringing

two teams together create such a strong buzz across the globe? In fact, if it actually was just

the culmination of two teams, DevOps probably would have been discussed in the human

resources ecosphere, and it would have remained a semi-complex HR management process.

During the beginning of the DevOps era, to amuse my curiosity, I spoke to a number

of people to understand what DevOps is. Most bent toward automation, some spoke

of that thing they do in startups, and there were a very few who spoke of it as a cultural

change. Interesting! Who talks of culture these days, when the edge of our seats burn a

hole if we don’t act on our commitments? A particular example made me sit up and start

connecting the DevOps dots, and it all made sense eventually.

 DevOps with an Example
Let’s say that you are a project manager of an Internet banking product. The past

weekend you deployed a change to update a critical component of the system after

weeks of development and testing. The change was deployed successfully; however,

during the post-implementation review, it threw an error that forced you to roll back

the change.

Chapter 1 IntroduCtIon to devops

https://doi.org/10.1007/978-1-4842-9072-9_4
https://doi.org/10.1007/978-1-4842-9072-9_5
https://doi.org/10.1007/978-1-4842-9072-9_10
https://doi.org/10.1007/978-1-4842-9072-9_2
https://doi.org/10.1007/978-1-4842-9072-9_3

5

The rollback was successful, and all the artifacts pertaining to the release were

brought to the table to examine and identify the root cause the following Monday. Now

what? The root cause was identified, a developer was pressed into action to fix the bug,

and the code went through the scrutiny of various tests, including the tests that were

not originally included that could have caught the bug in the functional testing stage

rather than in production. All the tests ran okay and a new change was planned. It was

approved by the change advisory board, and the change was implemented, tested, and

green-lit.

These are the typical process activities that are undertaken when a deployment fails

and has to be replanned. However, the moment things go south, what is the first thing

that comes to your mind as the project manager? Is it what objective action you should

take next, or do you start thinking about the developer who worked in this area, the

person responsible for the bug in the first place? Or do you think about the tester who

identified the scenarios, wrote the scripts, and performed the exploratory testing? It is

true that most people start to think about the people responsible for the mess. Why? It is

because of our culture. We live in a culture that blames people and tries to pass the buck.

I mentioned earlier about some respondents telling me that DevOps is about culture.

So, what culture am I talking about in the context of this example? The example depicts

a culture of blame, where the project manager is trying to pin the blame on the people

on their team directly responsible for the failure. They could be factually right in pinning

the blame on the people directly responsible, but I am focusing on the practice involving

blaming individuals.

How is this practice different from the DevOps culture? In DevOps, the responsibility

of completing a task is not considered an individual responsibility but rather a shared

one. Although an individual works on a task, if the person fails or succeeds, the entire

team gets the carrot or the stick. Individuals are not held responsible when we look at the

overall DevOps scheme of things, and we don’t blame individuals. We follow a blameless

culture. This culture of blamelessness culminates from the fact that we all make mistakes

because we are humans after all and far from perfect. We make mistakes. So, what’s the

point of blaming people? In fact, we expect that people do make mistakes, not based

on negligence but from the experimentation mindset. This acceptance (of developers

making mistakes) has led us to develop a system where the mistakes are identified and

rectified in the developmental stages, way before they reach production.

Chapter 1 IntroduCtIon to devops

6

How is this system (to catch mistakes) built? To make it happen, we brought the

development and operations teams together (to avoid disconnect), we developed

processes that are far more effective and efficient than what is out there (discussed in the

rest of the book), and finally we took umbrage under automation to efficiently provide

feedback on how we are doing (as speed is one of the main objectives we intend to

achieve).

DevOps is a common phrase, and with its spread reaching far and wide, there are

multiple definitions coming from various quarters. No two definitions are alike, but they

do have a common theme: culture. So, for me, DevOps is a cultural transformation that

brings people together from across disciplines. They work under a single umbrella to

collaborate as one unit with an open mind and to remove inefficiencies.

Note a blameless culture does not mean that the individuals who make repeated
mistakes do so without repercussions. Individuals are appraised justly and
appropriately and in a constructive manner.

 Why DevOps?
What gave rise to a new culture called DevOps, you might ask? The answer is evolution.

If you take a timeline view of software, from the 1960s up to the advent of the internet,

developing software was equivalent to building a project or launching a space shuttle.

It required meticulous planning and activities that were planned to be executed

sequentially. The waterfall project management methodology was thus born with five

sequential steps, as indicated in Figure 1-1.

Chapter 1 IntroduCtIon to devops

7

Figure 1-1. Waterfall project management methodology

When the Internet boomed, software was far more accessible, and this generated

great demand. When the software industry started to expand, the waterfall model’s

limitations were exposed. The need to complete a detailed planning exercise and the

sequential practice of flow seemed like an impediment to the advancement of the

software industry.

Then in 2001, at a ski resort in Utah, the Agile Manifesto was born. A number of

prevalent Agile methodologies came together to form a common goal that would remove

the cast-in-stone waterfall sequential activities.

Agile was more fluid because all its requirements were not conceived at the

beginning. It was an approach that was based on iterations, where all the project

management activities just cycled over and over again. In between, if a requirement

changed, that was okay because there were provisions to make changes that were not

bureaucratic nor tedious in nature. In fact, the Agile methodology places emphasis on

the response to changes in requirements rather than any map to be followed.

The flexibility and dynamism that came about through Agile spread its wings across

the software industry. A number of software projects migrated to the Agile way of

working, and to this day, there are projects that are undergoing serious coaching during

this transformational phase.

Chapter 1 IntroduCtIon to devops

8

The Agile methodology is pretty simple when you keep things small enough to

manage and large enough to be rendered meaningful. The time frames that define

iterations in Agile do not allow for too much wriggle room. From an efficiency

perspective, Agile is far better than the waterfall model. However, the demands from the

market were out of sync with what Agile could provide. While the market shouted for

faster deliveries, the need to increase quality (i.e., reduce defect rate) was perennially

being pursued. The Agile project management methodology needed something, like an

elixir, to run things faster. It needed automation. Enter DevOps!

Automation by itself is like giving a drone to a kid without really teaching them the

process to make it fly. Generally speaking, technology by itself has no meaning if there

are no underlying functional architecture, process, and embedded principles. DevOps,

therefore, is not just automation but a whole lot more. You will find out the nitty-gritty

details in the coming sections.

 Let’s Look at the Scope
The word DevOps gives away the scope through its conjunction of two parts of a software

lifecycle. While Agile existed mainly to put an end to the rigidity brought forth by the

waterfall model, it was said that the methodology can be used for operations as well.

However, without an overarching process or framework, using Agile for operations with

the same rigor does not work. DevOps bridged this gap by bringing in the operational

phases and developmental activities under a single umbrella and employing common

processes and principles across the board.

DevOps comes into play when you start with the software development process,

which is the requirements-gathering phase. It ends when the software retires from

service. DevOps spans the entire software lifecycle, and if you read between the lines,

you cannot just implement and execute DevOps until deployment and be done with it.

It will continue to function until the software is used by its designated users. In other

words, DevOps is here to stay, and stay for as long as services are delivered. So, in

practice, the operational phase runs perpetually, and DevOps will deliver the required

optimization and automation. The processes to run operations will be borrowed from

the ITIL service management framework, and the present format of the ITIL framework

will be highly customized to fit the DevOps bill. The process of how ITIL fits into a

DevOps project is the heart of this book.

Chapter 1 IntroduCtIon to devops

9

Note the word devops came into existence thanks to twitter. the first
devopsdays conference was held in Ghent, Belgium in 2009. While people tweeted
about it, the #devopsdays tag used 11 characters out of a possible 140. to shorten
it, one of the tweeters used #devops, and others followed suit. this led to what we
know today as devops.

 The Benefits of Transforming into DevOps
Many software companies have been delivering applications for a number of years now.

Why do we need DevOps to tell us how we must develop?

Our services are being delivered to a number of customers, including top banks and

mines around the globe. I am running just fine with my service management framework.

Why DevOps?

People have lived for thousands of years. They did just fine, reproducing and

surviving. What has changed in the past 100 years? We have changed the modes of

transport for better efficiency, we communicate faster today, and overall our quality

of life has gone up several notches. Something is working should not be a barrier to

improvements. DevOps introduces several enhancements in the areas of working

culture, process, technology, and organizational structure. This transformation is rooted

in practices that were developed by like-minded organizations that were willing to

experiment, and the results have vastly gone in the favor of DevOps over other ancient

methodologies.

Amazon, Netflix, Etsy, and Facebook are just some of the organizations that have

taken their software deliveries to a whole new level, and they don’t compete with the

laggards anymore. They have set new benchmarks that are impossible to meet with any

other methodology.

At the 2011 Velocity conference, Amazon’s director of platform analysis, Jon Jenkins,

provided a brief insight into Amazon’s ways of working. He supported it with the

following statistics.

During weekdays, Amazon is able to deploy every 11.6 seconds on average. Most

organizations struggle to deploy weekly consistently, but Amazon does more than 1,000

deployments every hour (1,079 deployments to be precise). Further, 10,000 hosts receive

deployments simultaneously on average, and the highest Amazon has been able to

Chapter 1 IntroduCtIon to devops

10

achieve was 30,000 hosts simultaneously receiving deployments. Wow! These numbers

are out of this world. And these are the statistics from May 2011. Imagine what they are

able to do today!

It’s just not the speed of deployments. There are several other advantages that

Amazon went on to claim during the conference:

• Outages due to software deployments have gone down by a

whopping 75 percent since 2006. Most outages are caused by new

changes (read software deployments), and the reduction in outages

points to the success achieved in deploying software changes.

• The downtime owing to software deployments has reduced

drastically, by about 90 percent.

• On average, there has been an outage for every 1,000 software

deployments, which is about a 0.001 percent failure rate. This looks

great for a moderate software delivery organization, but for Amazon,

the number seems high because of the more than 1000 deployments

every hour.

• Through automation, Amazon has introduced automatic failovers

whenever hosts go down.

• Architecture complexity has reduced significantly.

 Insight from the State of DevOps Report
Puppet Labs publishes an annual whitepaper called the “State of DevOps Report.”

The report provides insight into the world of DevOps—the statistics, changes, and

innovations in the past year.

In the 2021 report, Puppet Labs surveyed about 2,657 professionals, including

executives, developers, testers, and other IT professionals. The trajectory of people

working in DevOps takes the shape of a bell. In 2014, 16 percent of the respondents

worked in DevOps, in 2017, it was 27 percent, and in 2018, it was 28 percent, which was

the peak. 2019 saw 22 percent of professionals working in DevOps, with a further dip

to 20 percent in 2021. It appeared as if DevOps was spreading like wildfire until 2018,

and then it started to slow down. The reasoning is, as DevOps reached its zenith, the

scope of changes or transformation in organizations took shape under a bigger umbrella

Chapter 1 IntroduCtIon to devops

11

called digital transformations. The dip does not indicate that fewer people are practicing

DevOps, but rather that the association with DevOps started to decline and the same

DevOps methodology became an integral part of digital transformation, which is

discussed in part 2 of this book.

According to the report, the future of operations in DevOps/digital projects depend

on the following aspects:

• Vendor engineering: Single service providers are the thing of the

past. Organizations, however small, contract with multiple vendors

for their various IT needs. Managing all the vendors begins with

the contracting process and is managed throughout the lifecycle. It

requires uncommon skills and is referred to as vendor engineering.

• Product engineering: This is the age of creating products and running

companies through their products. This product-led approach

(discussed in detail in Chapter 15) brings new thinking to the ways of

working, starting from how organizations approach their positioning,

to how their teams are stacked and the decisions they undertake.

• Sociotechnical system engineering: The culture of working in the

digital age is changing, and the primary reason is that rapid feedback

flows swiftly and directly to the source. If people are to deliver at their

best, then they must be given the freedom to experiment. Performing

activities out of compulsion or fear is a deterrent in the long run,

and confidence levels dip significantly. It is all the more important

to develop a culture where people can confidently state their minds,

including being able to disagree with their leaders.

• Managing the portfolio of technical investments: There is an

application for every use case, and teams no longer support a single

application or a portfolio of applications. Support has become

expensive and more importantly, hands-free. In such a scenario, it

is key that the code shipped during development is free from clutter

(read, technical debt). The more cluttered it is, the more expensive

it is to maintain, due to instability and delays. The mitigation is

straightforward: reduce technical debt. It doesn’t add value, and even

if the customers don’t see its effect, doesn’t necessarily mean that it is

harmless.

Chapter 1 IntroduCtIon to devops

https://doi.org/10.1007/978-1-4842-9072-9_15

12

 DevOps Principles
DevOps principles are in a state of constant evolution. In fact, there are multiple versions

of the principles. The most widely believed set of principles is represented with the

acronym CALMS. Figure 1-2 shows a mug from a marketing campaign for DevOps

featuring CALMS.

Figure 1-2. DevOps principles (credit: devopsnet.com)

CALMS stands for the following:

• Culture

• Automation

• Lean

• Measurement

• Sharing

 Culture
There is a popular urban legend that the late Peter Drucker, known as the founder of

modern management, famously said, “Culture eats strategy for breakfast.” If you want to

make a massive mind-boggling, Earth-shaking change, start by changing the culture that

Chapter 1 IntroduCtIon to devops

http://devopsnet.com

13

can make it happen. Culture cannot be changed using a swift process. It is embedded

into human behavior and requires an overhaul of their behavior.

Here are some of the behavioral traits that we seek to change with DevOps:

• Take responsibility for the entire product and not just the work that

you perform

• Step out of your comfort zone and innovate

• Experiment as much as you want; there’s a safety net to catch you if

you fall

• Communicate, collaborate, and develop affinity with the

involved teams

• For developers especially, you build it, you run it

 Automation
Automation is a key component in the DevOps methodology. It is a massive enabler of

faster delivery and crucial for providing rapid feedback. Under the culture principle,

I talked about a safety net with respect to experimentation. This safety net is made

possible through automation.

The objective is to automate whatever possible in the software delivery lifecycle. The

kinds of activities that can be efficiently automated are repetitive tasks that don’t require

human intelligence. For example, building infrastructure was a major task that involved

hardware architects and administrators, and most importantly building servers took a

significant amount of time. This time was added to the overall software delivery. Thanks

to technology advancements, we have cloud infrastructure today, and servers can be

spun up through code. Additionally, we don’t need hardware administrators to do it.

Developers can do it themselves. Wait, there’s more! Once the environment provisioning

script is written, it can be used to automate spinning up servers as many times as

necessary. Automation has changed the way we see infrastructure.

Activities involving executing tasks such as running a build or a test script can be

automated. But the activities that involve human cognizance are hard to automate today.

The art of writing code or test scripts requires human intelligence, and the machines of

today are not in a position to do it. In the future, artificial intelligence will be able to take

on these types of activities.

Chapter 1 IntroduCtIon to devops

14

 Lean
DevOps has borrowed heavily from the Lean methodology and the Toyota Production

Systems (TPS). The thinking behind the Lean methodology is to keep things simple

and not overcomplicate them. It is natural that the advent of automation decreases the

complexity of architecture and simplifies complicated workflows. The Lean principle

aids in keeping us on the ground so we can continue working with things that are easy to

comprehend and simple to work with.

There are two parts to the Lean principle. The primary issue is not to bloat the logic

or the way you do things; keep it straightforward and minimal. An example is the use of

microservices, which support the cause by not overcomplicating the architecture. We are

no longer looking to build monolithic architectures that are cumbersome when it comes

to enhancements, maintenance, and upgrades. A microservice architecture solves all the

problems that we faced yesterday with monolithic architectures; it is easy to upgrade,

troubleshoot (maintain), and enhance.

The second part of the principle is to reduce waste arising from the methodology.

Defects are one of the key wastes. Defects are a nuisance. They delay the overall delivery,

and the amount of effort that goes into fixing them is just a sheer waste of time and

money. The next type of waste focuses on the convoluted processes. If something can be

done by passing the ball from A to B, why does it have to bounce off C? There are many

such wastes that can be addressed to make the software delivery more efficient and

effective.

 Measurement
If you should automate everything, then you possibly need a system to provide feedback

whenever something goes wrong. Feedback is possible if you know what the optimum

results should be. The only way you can find out whether the outcome is optimal is by

measuring it. It is therefore key that you measure everything if you are going to automate

everything!

The measurement principle provides direction about the measures to implement

and the tabs to feel the pulse of the overall software delivery. It is not a simple task to

measure everything. Many times, we don’t even know what we should measure. Even

if we do it, the how part can be an obstacle. A good DevOps process architect can help

solve this problem. For example, if you are running static analysis on your code, the

extent of passable code must be predetermined. It is not a random number; there should

Chapter 1 IntroduCtIon to devops

15

be scientific reasoning behind it. A number of companies allow a unit test to pass even if

it parses 90 percent of the code. That’s the kind of logic that must go behind measuring

everything. You must be realistic about the kind of feedback that you want to receive.

In operations, parameters such as monitoring applications, infrastructure,

performance, and others fall under this principle. Measurements in monitoring indicate

when an event is categorized as a warning or an exception. With automation in place, it

is extremely important that all the critical activities, and the infrastructure that supports

them, be monitored and optimized for measurement.

There are other measurements that are attached to contracts and SLAs and are used

for reporting on a regular basis. These measurements are key in the overall scheme

of things.

 Sharing
The final principle is sharing, which hinges on the need for collaboration and knowledge

sharing between people. If we aim to significantly hasten the process of software

delivery, people can no longer work in silos. The knowledge, experience, thoughts, and

ideas must be into the open for others to join in the process of making them better,

enhanced, and more profound.

One of the key takeaways of this principle is to put everyone who works on a

product or a service on a single team and promote knowledge sharing. This will lead to

collaboration rather than competition and skepticism.

There are a number of collaboration tools on the market today that support the

cause. People don’t even have to be co-located to share and collaborate. Tools such

as Microsoft Teams and Slack help get the information across not only to a single

person but to all those who matter (such as the entire team). With information

being transparent, there is no reason for others to worry or be skeptical about the

dependencies or the outcome of the process.

 Elements of DevOps
DevOps is not a framework; it’s a set of good practices. It started from a perfect storm

that pooled several practices together (discussed later in this chapter), and today

we consider them under the DevOps umbrella. You might have seen the elephant in

Figure 1-3. The IT industry around software development is so vast that a number of

Chapter 1 IntroduCtIon to devops

16

practices are followed across the board. This is depicted as the elephant in the figure.

DevOps, which is a cultural change, can be applied to any part of the software industry

and to any activity that is being carried out today. So, you can identify any part of the

elephant (say testing) and design DevOps-related practices and implement them—then

you are doing DevOps!

Figure 1-3. The DevOps elephant (credit: devopsdays.org)

No matter where you want to implement DevOps, there are three common elements

that support and enable the culture change. These three elements are indicated in the

Venn diagram shown in Figure 1-4.

Chapter 1 IntroduCtIon to devops

17

Figure 1-4. Three elements of DevOps

People, process, and technology are the three elements that are common to all

DevOps practices. In fact, they are the enablers to affect change in the DevOps culture.

Only when the three elements come together are we able to realize the complete benefits

of DevOps.

Let’s examine the three elements and see how they fit together. To bring in a cultural

change, we most definitely need people, and people cannot operate without the aid

of processes. By bringing in people and processes, we achieve the functional design to

implement a DevOps solution. However, the question is whether it is efficient. Humans

are known to make mistakes. We cannot avoid it. How can processes alone support

humans in identifying the mistakes? There may be a way to do this, but it is most

definitely not efficient. To make things move faster and in a more efficient manner, we

need the technology stack to help us achieve the process objectives.

Today people talk of DevOps through the lens of technology. They throw around

several tool names and claim that they do DevOps. So, the question to ponder is whether

you can really do DevOps by tools alone. Can people and technology elements suffice

without an underlying process? You probably guessed the answer, and the answer is no.

Nothing succeeds without a process in place, not only in DevOps but in every objective

that you want to achieve, IT or otherwise.

Chapter 1 IntroduCtIon to devops

18

This is the age of artificial intelligence. Some experts claim that the machines will

take over the world and replace the work people used to do. There are a number of

movies, such as Terminator Genisys and Ex Machina, that depict AI taking over the reins

and putting humans in jeopardy. I love fiction, and AI making decisions is something

I like to think of as fiction (for now anyway, because the technology advancements are

breaking new barriers every day). However, coming back to DevOps, just employing

technology with underlying processes is not going to cut it. Without people, creation

does not happen. Yes, technology can automate a number of preprogrammed activities,

but can it develop new solutions on its own? I don’t think so, not today anyway. People

are the driving force of creation and the agents of cultural change.

All the three elements of people, process, and technology are essential to build

the DevOps methodology and to achieve the objectives. By the union of all three

elements, we can create an unmatched synergy that can fuel developments at an

unparalleled pace.

 People
The word DevOps is derived from the conjunction of two words, development and

operations. I have already familiarized you with what DevOps is all about: a change of

culture in the way we deliver and operate software. People are at the heart of this cultural

transformation, and they are one of the three critical elements that enable the DevOps

culture.

The development and operation teams are combined to bring about a change in

culture. The thinking behind it is quite straightforward. Let’s say that an application is

developed and it comes to the change advisory board (CAB) for approval. One of the

parties on the CAB is the operational teams. They specifically ask questions around the

testing that has been performed for this software, and even though the answer from

development is yes for the success rate of all the tests, the operational teams tend to

be critical. They don’t want to block progress, yet they find themselves in a position

where they have to support software that they haven’t been familiarized yet. The bugs

and defects that come with the software will become their problem after the warranty

period (usually between one and three months). Most important, they only have the

confirmation of the developers to go by when the quality of the software is on the line.

Chapter 1 IntroduCtIon to devops

19

In the same scenario, imagine if the operational teams were already part of the same

team as development. Being on the same team gives them the opportunity to become

familiar with the development process and the quality controls put in place. Instead of

asking questions in the CAB, they can work progressively with the development teams

to ensure that the software is maintainable and all possible operational aspects are

considered beforehand. This is one such case study that showcases the benefit of having

a single team. I talk more about it in the section titled “DevOps Team.”

In Figure 1-5, you can visualize the development team on one end of the cliff,

while the operations team is on the opposite end. In between the two cliffs lies an area

of uncertainty where activities that fall between the two teams have a knack of being

unpredictable and sparred over, generally over ownership. In other words, you want

things to be either with the development team or with the operations team. There is no

bridge between the teams, which can result in a lot of confusion, miscommunication,

and mistrust between the two opposing teams.

Figure 1-5. Conflict between development and operations teams

Let’s consider the priorities for both teams. The development team still has a job

because there is a need to develop new features. That is their core area, and that is what

they must do to remain relevant. The operations team’s big-ticket goal is to keep the

Chapter 1 IntroduCtIon to devops

20

environment stable, in the most basic sense. They need to ensure that even if something

were to go wrong, they would be tasked to bring it back to normal, in other words,

maintain the status quo. So, here we have a development team intending to create new

features and an operations team looking to keep the environment stable. Why does

it have to be rocket science to have evolved into a methodology called DevOps that

promises to shake the industry from its roots? Well, the environment is going to remain

stable if there are no changes introduced to it. As long as it stays stagnant, nothing ever

will bother its stability, and the operations team would have been awarded for a stellar

job. But, we have the development team waiting in the wings to develop new features.

New features that are developed will be deployed in the production environment. There

is every chance that new features could impact the stability. So, stability is something

that can never be achieved as long as new features are introduced, and the software will

remain stagnant without enhancements and expansion.

A decent way to tackle this conundrum between the development and operation

teams is to put them together and create channels of communication within the team

members. The development and operations teams have a shared responsibility to ensure

that development, testing, deployment, and other support activities happen smoothly

and without glitches. Every team member takes responsibility for all the activities being

carried out, which translates to the development and operation teams jointly working

on the solution that begins with coding and ends with deployment. The operation teams

have no reason to mistrust the test results and can confidently deploy the results onto

the production environment.

 DevOps Team
Along with a new way of working and the new culture comes what is called a DevOps

team. We have so far discussed a single team consisting of the development and

operation teams. An anti-pattern that has emerged in the IT industry is the creation of

DevOps teams that consist of a pool of tooling professionals. A team of tool specialists is

not a true DevOps team; rather, it should be a truly cross-functional team consisting of

roles needed to support an application.

Chapter 1 IntroduCtIon to devops

21

 The Basis for a DevOps Team
DevOps does not suggest that you pool your entire set of development and operation

teams together and create a DevOps team. The DevOps team must be built around

an application. If application X is being developed, let all the people responsible for

its development and operations be together to create one single team, which is a true

DevOps team. If application X is complex and has a number of features, find a way to

logically create multiple DevOps teams based on the application’s features.

 An Example of a DevOps Team
Application X is an internet banking program that caters to individuals and small

business owners. It is currently in the development stages. Let’s think of the roles

that are required to support it. Today, most projects work in an Agile manner, and the

development of application X will be no different. It is based on Scrum practices and

employs a single Scrum team for its development. The DevOps team for application X

possibly consists of the following roles:

• Product owner (PO): The product owner is from the business

organization and is the owner of the product backlog.

• Scrum master (SM): The Scrum master leads the development as a

servant leader.

• Developer (DEV): Coding and unit testing are carried out by the

developers.

• Testers (TEST): Testers are involved in developing test scripts and

executing functional and nonfunctional tests.

• Architect (ARC): Architects design the software and are generally

shared across multiple DevOps teams, as they are not required to

play a full-time role in a single DevOps team.

• Database administrator (DBA): This person does database

management.

• Application support (AS): This person is responsible for the support

activities of the application.

Chapter 1 IntroduCtIon to devops

22

• System administrator (SYS): This person is responsible for

configuring and managing tools.

• Service manager (SMG): This person is responsible for managing

services from the incident, problem, change, and other service

management areas.

• IT security (SEC): This person is responsible for managing aspects of

IT security.

Figure 1-6 provides a typical structure of a DevOps team in which the architect is

shared between the two illustrated DevOps teams.

Figure 1-6. Typical DevOps team structure

 Processes
Processes are a key component in ensuring the success of any project. However, we often

find that most DevOps implementations focus more on automation and technology and

give a backseat to processes that are supposed to be the basis of automation. They say

that backseat driving is dangerous, so placing processes in this position and hoping that

the destination will be reached in record time with no mishaps is a gamble that plays

with unpredictability. Therefore, it is important that processes are defined first along

Chapter 1 IntroduCtIon to devops

23

with a functional DevOps architecture and then translated into tooling and automation.

The process must always drive tools and never the other way around.

With DevOps combining different disciplines under a single banner, the processes

need to be rejigged to fit the new objectives. The section covers the processes pertaining

to the development area. The rest of the book is dedicated to operational processes and

their union with the development processes.

Waterfall project management methodologies (such as PMI-backed Project

Management and PRINCE for projects in controlled environments) are not favored

in the IT field anymore. There are various reasons for this, mainly stemming from the

rigidity it brings into the project management structure. Most IT projects run on Agile

project management methodologies because of the flexibility it offers. According to

PMI’s Pulse of Profession publication, 71 percent of organizations have been leveraging

Agile. Another study by PricewaterhouseCoopers, in a study named “Agile Project

Delivery Confidence,” reports that Agile projects are 28 percent more successful than

their waterfall counterparts. This is huge considering that Agile is still new and emerging

and that the waterfall methodology has existed since the 1960s.

When we talk about Agile project management, there are a number of methodologies

to pick from. Scrum, Kanban, Scrumban, Extreme Programming (XP), Dynamic Systems

Development Method (DSDM), Crystal, and Feature Driven Development (FDD) are

some examples. However, all the methodologies are aligned by a manifesto that was

formulated in a ski resort in Utah in 2001. There are a set of 12 Agile principles that

provide guidance in setting up the project management processes.

In this book, I do not go into the Agile project management processes. These

processes are similar irrespective of the DevOps implementation. The specific DevOps

processes that are introduced on top of the Agile processes are as follows:

• Continuous integration

• Continuous delivery

• Continuous deployment

 Continuous Integration
A number of developers work together on the same piece of code, which is referred to as the

mainline in software development lingo. When multiple developers are at work, conflicts due

to changes performed on pieces of code and the employed logic are quite common. Software

developers generally integrate their pieces of code into the mainline once a day.

Chapter 1 IntroduCtIon to devops

24

When conflicts arise, they discuss and sort it out. This process of integrating the code

manually at a defined time slows down development. Conflicts at times can have drastic

results with hundreds of lines of code having to be rewritten. Imagine the time and effort

lost due to this manual integration. If I can integrate code in almost real time with the

rest of the developers, the potential amount of rework can be significantly reduced. This

is the concept of continuous integration.

To be more specific, continuous integration is a process where developers integrate

their code into the source code repository (mainline) on a regular basis, say multiple

times a day. When the code is integrated with the mainline, any conflicts, if there are any,

will come out into the open, as soon as it is integrated. The resolution of conflicts does

not have to be an affair where all developers sit across the codebase. Only those who

have conflicts need to sort them out manually. By performing this conflict resolution

multiple times a day, the extent of the conflicts is drastically minimized.

Note the best definition of continuous integration was coined by Martin Fowler
from thoughtWorks, who is also one of the founding members of the agile
Manifesto.

Continuous integration is a software development practice whereby members of

a team integrate their work frequently. Each person usually integrates at least daily,

leading to multiple integrations per day. Each integration is verified by an automated

build (including tests) to detect integration errors as quickly as possible. Many teams

find that this approach leads to significantly reduced integration problems and allows a

team to develop cohesive software more rapidly (source: https://www.martinfowler.

com/articles/continuousIntegration.html).

Integrating the code with the mainline is just the beginning. Whenever the code is

integrated, the entire mainline is built, and other quality checks such as unit testing and

code-quality checks (static and dynamic analysis) are also carried out.

Note a build is a process whereby the human-readable code is converted into
the machine-readable language (executable code) and the output of a build activity
is a binary.

Chapter 1 IntroduCtIon to devops

https://www.martinfowler.com/articles/continuousIntegration.html
https://www.martinfowler.com/articles/continuousIntegration.html

25

Unit testing is a quality check whereby the smallest testable parts of an application

are tested individually and in a componentized manner.

Static analysis is an examination of the source code against the coding standards set

forth by the industry/software company, such as naming conventions, blank spaces, and

comments.

Dynamic analysis is an examination of the binary during runtime. Such an

examination helps identify runtime errors such as memory leaks.

 An Illustration

Let’s say a particular project has three developers, and each developer integrates

their code three times a day. On a daily basis, this equates to nine integrations. As per

Figure 1-7, code that is integrated gets unit tested first, followed by software builds and

code quality checks. All this happens automatically whenever the code is integrated.

Figure 1-7. Continuous integration

With nine integrations on a daily basis, we are staring at a possibility of having nine

unit tests, nine builds on the entire mainline, and nine code-quality checks.

Chapter 1 IntroduCtIon to devops

26

Suppose one of the builds, unit tests, or code-quality checks fail. The flow is

interrupted, and the developer gets down to work to fix the defect. This ensures that the

flow of code is not hampered and other coders can continue coding and integrate their

work onto the mainline.

In the “Technology” section, I talk about a few tools that are used to achieve this

kind of an automation. They set loose the dependencies that we normally have and the

impediments that are normally faced by developers.

Continuous integration allows for fast delivery of software, and any roadblocks are

avoided or identified as early as possible, thanks to rapid feedback and automation. The

objective of continuous integration is to hasten the coding process and to generate a

binary without integration bugs.

 Continuous Delivery
With continuous integration, you achieve these two things:

• A binary is generated successfully.

• Code-level and runtime checks and analysis are completed.

The next item in the software delivery lifecycle is to test the generated binary from

various angles, aspects, and perspectives. I am referring to system tests, integration tests,

regression tests, user acceptance tests, performance tests, and security tests; the list is

quite endless. When you are done with the agreed number of tests, the binary is deemed

to be of good quality and deployable into production. The qualified binary can be

deployed into production with a click of a button. The qualification of any of the binaries

as releasable into production is called continuous delivery (see Figure 1-8). It is generally

seen as a natural extension of the continuous integration process.

Chapter 1 IntroduCtIon to devops

27

Figure 1-8. Continuous delivery

Figure 1-8 depicts a continuous delivery pipeline. After every successful cycle of

continuous integration, the binary is automatically subjected to an integration test.

When the integration test is successful, the same binary is automatically system tested.

The cycle passes up to the preproduction environment as long as the tests (regression

and user acceptance testing in Figure 1-8) are successful. When the same binary is

successfully deployed in the preproduction environment or any other environment

that comes before the production environment, the binary becomes qualified to be

deployed to production. The deployment into the production environment is not done

automatically, but requires a trigger. The entire cycle—starting from the code push

into the source code repository up to the manual deployment into the production

environment—is continuous delivery.

Figure 1-8 shows three developers integrating their code and three deployable

binaries. Continuous delivery does not dictate that all three binaries have to be deployed

into production. The release-management process can make a decision to deploy only

the latest binary every week. Remember that the latest binary will consist of the code

changes performed by all the developers up until that point in time.

The sequence of automation for the activities beginning in the continuous

integration process until the production environment is referred to as a pipeline or

continuous delivery pipeline in this case.

Chapter 1 IntroduCtIon to devops

28

 Who Employs Continuous Delivery?

Continuous delivery gives an organization complete control over the production

environment. Only the binaries that have passed manual scrutiny (such as change

management) will pass through the gate between the preproduction and production

environments.

DevOps implementation is generally done in a step-wise manner. Organizations first

play around with a few DevOps tools, trying to automate little pieces of work and then

the complete activities. The first major step toward DevOpsification (yes, I just coined

this word) is the definition and implementation of continuous integration. After gaining

confidence in doing it, the next round is to integrate and automate tests without the need

for a trigger (automation). Combining the test integrations into the pipeline where the

binary can be deemed deployable is a big step toward achieving continuous delivery.

Most organizations do not have the capability to fully implement continuous delivery

as illustrated in Figure 1-8. It requires adequate focus, unparalleled talent in process

and technology, and—most importantly—a concrete vision and intent to move toward

automation.

 Automation Testing vs. Continuous Testing

Here is more DevOps jargon for you: continuous testing. Continuous testing is the

process where automated tests kick in after the continuous integration process. There

is absolutely no human involvement during the execution of tests, not even a trigger

to begin a test. Everything happens in a sequence, and the only automated trigger is a

successful test of the previous activity. For example, in Figure 1-9, the automated UAT

does not happen if the regression test does not succeed.

Figure 1-9. The difference between automation and continuous testing

Chapter 1 IntroduCtIon to devops

29

The term automation testing may be familiar to you. What is the difference between

the two?

Automation testing is a process in which tests are executed automatically using

various automation testing tools. However, the trigger to begin the testing in an

automated fashion is a manual activity.

Continuous testing is a process where the execution of tests is run through the testing

tools automatically following code integration and success of the previous sequential

activity. There is no manual trigger to begin a test execution.

So, what is the difference between automation testing and continuous testing?

In both the cases, test scripts have to be written by testers, and there is no difference

in the manner they are written. The only difference is the execution.

Generally, in a project involving automation testing, the code is developed and built.

Then the automation test script is written and fed into the testing tool and manually

triggers an automated test.

In the continuous testing world, the automation test scripts are written before the

coding begins, which requires a good and common understanding of the requirements.

When the binary is successfully built and continuous integration cycle is successfully

processed, the execution of the tests is triggered and they run automatically as well.

The advantage of continuous testing over automation testing is that the entire

sequence of activities in the pipeline happens rapidly, one after another. There are no

waiting periods for scripts to be ready or for the tester to press the Execute button. It is

swift, leaving no room for inefficiencies of human constructs and therefore enabling

faster delivery, which is the objective of DevOps.

 Continuous Deployment
Continuous deployment is one step beyond continuous delivery. In continuous delivery,

the deployment to production is based on a manual trigger. However, in the continuous

deployment process, the deployment to production happens automatically, as depicted

in Figure 1-10.

Chapter 1 IntroduCtIon to devops

30

Figure 1-10. Continuous deployment

In Figure 1-10, as soon as all the tests are successful, the binary is deployed to the

preproduction environment. When the deployment to preproduction goes as planned,

the same binary is deployed into production directly. In continuous delivery (Figure 1-8),

the binaries were qualified as deployable, and the release manager was in a position to

not deploy every single qualified binary into production. On the contrary, in continuous

deployment, every single qualified binary gets deployed onto the production instance.

You might think that this is far too risky. How can you deploy something into

production without any checks and balances or approvals from all stakeholders?

Well, every test that is performed and all the quality checks are qualifying binaries as

deployables. It’s all happening in an automated fashion. You would do the same set of

things otherwise, but manually. Instead of deploying multiple times a day, you might

deploy once a week. All the benefits that you derive from going early into the market are

missing from the manual processes.

Let’s say that one of the deployments were to fail. No problem! There is an automated

rollback mechanism built into the system that rolls back the deployment within seconds.

And it is important to note that the changes that are being discussed here are tiny

changes. So, the chances of these binaries bringing down a system are remote.

 Continuous Delivery vs. Continuous Deployment

Figure 1-11 depicts the difference between continuous delivery and continuous

deployment.

Chapter 1 IntroduCtIon to devops

31

Figure 1-11. The difference between continuous delivery and continuous
deployment

The difference lies in the final sequence, where the deployment to production

instance is automatic in continuous deployment and has a manual trigger in continuous

delivery.

Any organization on the journey of implementing DevOps will implement the

continuous delivery process and, upon gaining sufficient maturity, will move toward the

pinnacle of DevOps maturity: the continuous deployment process.

Organizations that feel a need to keep total control of their production environment

through a formal structure of approvals and visibility tend to opt for continuous delivery.

Banking and other financial segments fall into this category.

There are other organizations that have scaled the DevOps maturity ladder and

are quite confident that the automatic deployment doesn’t significantly impact their

production environment, and even if something were to fail, then the rollback will be

rapid too, even before anybody can notice it. Companies like Amazon, Netflix, and

Google have been in this space for a while now. I shared a statistic earlier about Amazon

managing a deployment every 11.6 seconds. How is it even possible? Look no further

than continuous deployment.

Note here’s a cheat sheet for continuous delivery and continuous deployment:

Continuous delivery: You can deploy.

Continuous deployment: You will deploy.

Chapter 1 IntroduCtIon to devops

32

 Technology
Technology is the third element of DevOps and is often regarded as the most important.

It is true in a sense that without automation, we cannot possibly achieve the fast results

that I have shared earlier through some statistics. It is also true that technology on its

own, without the proper synchrony of people (roles) and processes, is like a spaceship

in the hands of kindergarteners. The people and process sides of DevOps must be sorted

out before the technology.

The number of tools that claim to support DevOps activities is enormous; that are

too many to count.

 Choosing the Right Tool
Not all tools can be used for all technologies, and the same tool cannot be used to carry

out different types of activities. For example, if you are using the Java programming

language for unit testing, you need use a tool such as JUnit. On the other hand, with

Microsoft technologies, you need NUnit for unit testing.

There are tools that support multiprogramming languages, such as Jenkins and

Cucumber. In fact, for the same activity and the same technology, there are multiple tool

choices. It is important to weigh the capabilities and compatibilities before choosing

one. For example, for the source code repository function, there are multiple good

choices. Git is the most common one, and Subversion is almost as popular as Git. Both

provide versioning capability for the source code and can be integrated with other

toolsets for automation. Which one should you choose? If you look deeper into the

technology employed, Subversion falls under the category of central version control

system (CVCS), and Git is a distributed version control system (DVCS).

The underlying technology specifies where the code is stored and retrieved. CVCS

employs a server-client relationship to store and retrieve the code. The developer is

required to first check out the existing code, make changes, and check it back in. Under

DVCS, every single developer has the entire mainline sitting on their computer. So,

there is no concept of check-out and check-in. DVCS allows multiple developers to work

seamlessly.

The greatest advantage of DVCS over CVCS is its availability. For DVCS to function,

you don’t need an active network connection, but for CVCS it is absolutely necessary.

If server access is blocked, development comes to a standstill. Thus, CVCS has a single

point of failure (SPOF), something that goes against the principles of DevOps, which

Chapter 1 IntroduCtIon to devops

33

emphasizes incessant development and maximum efficiency. Since source code is

available locally in DVCS, accessing, merging, and pushing the code is much faster

relative to CVCS. DVCS also enables software developers to exchange code with other

developers before pushing it to the central server and, consequently, to all other

developers. In fact, there are no notable disadvantages with DVCS other than perhaps

the storage needs on a developer’s terminal if the source code contains an elongated

history of changesets.

In this example of a source code repository, I gave a glimpse of how the tools are

chosen and how they must be scrutinized. The role of a DevOps architect is to find the

right tool for a particular activity.

 Categories of Tools
Remember the periodic table of elements? Digital.ai (formerly XebiaLabs) has replaced

the chemical elements with a few DevOps tools in their respective categories in a

periodic table format. Figure 1-12 shows this periodic table of DevOps at the time of this

writing.

Figure 1-12. The periodic table of DevOps (Source: https://digital.ai/learn/
devops-periodic-table/)

Chapter 1 IntroduCtIon to devops

https://digital.ai/learn/devops-periodic-table/
https://digital.ai/learn/devops-periodic-table/

34

If I have to categorize the toolsets, then I would probably do it based on function

and the outcome that I am trying to achieve. For example, managing the source code

is an outcome, so I categorize all source code repositories under a single bucket. The

following sections list some categories to help you identify the right tool. They are, by no

means, comprehensive.

 Source Code Repositories
These are the more popular source code repositories:

• Git: The most popular source code repository today. Git is free and

open source. However, some Git hosting providers charge you for the

hosting service and the customizations that have been employed.

• Apache Subversion: Commonly referred to as SVN, this is open source

(and free). This version-control system is losing steam because of

the underlying CVCS technology. This is not apt for most DevOps

implementations.

• Mercurial: Another DVCS tool that is playing catch up with Git.

 Hosting Services
These are hosting services:

• Amazon Web Services (AWS): AWS has taken the DevOps world by

storm. It has transformed the way hosting is done, where consumers

pay only for what they use. The AWS ecosystem is vast, and Amazon

offers its own set of tools for carrying out various DevOps activities.

For example, AWS CodeCommit is an AWS instance of the Git

software.

• Azure: Microsoft is not far behind with its offerings and is on equal

footing with AWS. It hosts multiple platforms and is not limited to the

Windows operating system.

Chapter 1 IntroduCtIon to devops

35

• Google Compute Engine: Can you leave out Google when talking

about hosting and state-of-the-art tooling solutions? The solutions

offered on all hosting services are high quality, so in most cases, cost

becomes a factor in choosing one over the other. At the time of this

writing, Google Compute Engine offers the cheapest prices across

multiple segments.

 Orchestrators
Automation is achieved through the orchestration of various toolsets. Orchestrators

create workflows through which pipelines can be defined, along with various parameters

that set the criteria for progression into the next activity. These are orchestrators:

• Jenkins: Jenkins is the most popular orchestrator, as it works across

platforms and technologies. It can talk to most tools through various

plug-ins. The best part is that the tool is free and comes with massive

community support.

• UrbanCode Deploy: UrbanCode Deploy is an IBM product that is

a powerful orchestration tool. Its compatibility with mainframe

systems is its biggest advantage. The tool can also carry out

automated deployments, which Jenkins achieves through

orchestration with other tools.

• Bamboo: Bamboo is from Atlassian and is not free. Like Jenkins, it

works across platforms and supports multiple technologies.

 Deployment and Environment Provisioning
These tools do deployment and environment provisioning:

• Ansible: Ansible is a popular tool for automated deployments,

environment provisioning, and configuration management. The

concept of infrastructure as code (IAC), whereby infrastructure can

be built by scripts, is handled through Ansible. Other toolsets in this

category also effectively manage IAC.

Chapter 1 IntroduCtIon to devops

36

• Puppet: Puppet comes in two versions: open source with limited

features and a full-blown enterprise version. It is perhaps the most

popular tool in this category.

• Chef: This is similar to Ansible and Puppet. Facebook uses Chef for its

deployments and for managing the configuration of applications and

infrastructure.

 Testing
There are a number of types of testing, and in this section, I highlight some popular

testing tools that are employed in DevOps implementations.

• Selenium: This is the most popular functional testing tool. It works

across platforms and technologies and integrates seamlessly with all

the major orchestration tools. It is open source.

• Cucumber: Cucumber runs automated acceptance tests (such as

UAT without the user). It provides support for behavior-driven

development (BDD), which is a development methodology that

is driven by writing the test script first and then the code. The test

scripts are written in a natural language called Gherkin.

• HP LoadRunner: LoadRunner by HP is a testing tool for measuring

system behavior and performance under load. Performance testing is

considered nonfunctional testing, whereby the quality aspects of an

application are scrutinized.

 Is DevOps the End of Ops?
With the introduction of continuous integration, continuous delivery, and continuous

deployment, the focus has been to plug the defects, increase the quality, and not

sacrifice the efficiency. The thinking behind the notion of DevOps ending the

operational activities is based on the premise that a lack of defects will not give rise to

operational work. If there are no defects, there are potentially no incidents or problems,

which translates to a massive reduction in operational work. Another example is if we

Chapter 1 IntroduCtIon to devops

37

implement continuous deployment, the change and release management processes

as we know them will be automated to a great extent and will diminish the need for

approvals and subsequent approvals, release planning, and release deployment.

Let’s get one thing straight: no matter how much you try using technology and

automation, defects will always exist. The number of defects will go down due to the

rapid feedback and automation, but to state that all the defects will be identified and

rectified is absurd. With the reduction of defects, the amount of operational work

will definitely go down. With the argument around change and release management

processes, the execution of changes and releases can be automated through continuous

delivery and continuous deployment, but the planning bit will always remain in

the human realm. To an extent, the operational work involving change and release

management processes are starting to go down as well.

Innovation is a double-edged sword. With the introduction of tools and automation,

there is a new operational requirement to set up and configure the tool stack and to

maintain it as long as the project is underway. This is an operational activity that is

added to the traditional operations work. While some areas have seen a reduction, there

are new ones that have sprouted to take their place. The manual, repetitive, and boring

activities are going away. In their place, exciting DevOps tooling work has come to the

fore and is making the operational roles all the more lucrative.

So, if you are an operational person, it is time to scale up and scale beyond

managerial activities alone. The new wave of role mapping requires people to be

technomanagerial in talent and be multiskilled. T-shaped resources, not only for

operations but also in development, are being sought after. I-shaped resources must look

toward getting acquainted with areas of expertise that complement their line of work.

With the advent of DevOps, there is a turbulence created in software projects. It is a

good turbulence because it seeks to raise the level of delivery and to make teams, rather

than individuals, accountable for the outcomes. From an operations front, it is clear that

their role has gone up a couple of notches, whereby the mundane, boring, and repetitive

activities have been replaced with imaginative and challenging jobs such as configuring

pipelines, integrating toolsets, and automating configuration management. The nature

of operations work has changed but not the role they play as guardians of environments

and troubleshooters of incidents and problems. DevOps has not meant the end of

operations but rather rejuvenated it to an exciting journey that will keep the wits of

people working in operations alive.

Chapter 1 IntroduCtIon to devops

38

 Summary
Treat this chapter as DevOps 101. The basis and origins of DevOps are happenstance,

but the principles it uses are supported by thousands of enthusiasts who have improved

and transformed the thinking of rapid delivery. Continuous integration, continuous

delivery, and continuous deployment form the basic processes and maturity levels

in DevOps. The structure of DevOps teams is unified to encourage collaboration and

remove the silo culture. Technology plays a significant part through the automation it

brings in. But at the heart of it all, DevOps is a culture that promotes blamelessness,

experimentation, and collaboration.

Chapter 1 IntroduCtIon to devops

39

CHAPTER 2

ITIL Basics
The Information Technology Infrastructure Library (ITIL) is the most popular

framework to deliver services. It has become a standard of sorts, and most service-based

organizations have implemented one form of ITIL or another.

The objective of the ITIL framework is to provide guidance on how services have to

be defined, developed, built, and operated. The framework provides a detailed lifecycle

of phases, from inception to operation, in a methodical fashion, which some construe as

loaded or heavy (something not considered favorably today). No matter what the critics

say, ITIL is complete and absolute and takes into account all perspectives of a service; it

is a valuable ally for a service management organization. The entire process of setting up

ITIL in organizations may take anywhere from 6 to 18 months, depending on the volume

and complexity.

I have practiced ITIL for more than 20 years, and when I look at the length and breadth

of the framework, it amazes me how holistically it has grown over the years. I wrote a

book on the subject, called Become ITIL 4 Foundation Certified in 7 Days (Apress, 2020).

This book is a foundational course in ITIL for those who intend to get into the service

management industry. The additional aim of the book is to aid readers in becoming ITIL

Foundation certified (within seven days, considering professionals have a day job). If

you want a deeper understanding of the ITIL framework, I highly recommend that you

read the book. This chapter is meant to provide the absolute basics of ITIL, which is the

foundation for the building that I am about to construct in the rest of this part.

 IT Service Management and ITIL
There was a time when there was business and then there was IT. Businesses had their

set of practices, and IT was a supporting agent, helping businesses achieve their tasks.

IT supplied businesses with a word processor for drafting contracts and the ability to

compute complex formulas. Without IT, businesses could survive, although surely with

some inconvenience.

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9_2

https://doi.org/10.1007/978-1-4842-9072-9_2#DOI

40

Today, the world of business has been turned on its head. You take IT out of business

and the business will cease to exist. In other words, there is no business without

IT. Businesses rely on IT for its sustenance, and IT is not a support function anymore.

Rather, it is a partner that enables businesses to achieve their goals and succeed in

beating their competitors. Try to think of a midsize business where IT is not be involved.

I know your results came up blank. To reiterate, IT is a part of the business, and there is

no looking back.

IT service management is defined as the implementation and management of

quality IT services that meet the needs of and deliver value to the business. IT services

are provided by IT service providers (the entity that provides IT services to internal and

external customers) through an appropriate mix of people, processes, and information

technology.

There is increased pressure on IT to deliver on its services. IT must deliver services

that not only meet its objectives but also do it effectively and efficiently. And it must be

done at a minimal cost. The competition in the IT service management industry is fierce.

You have some of the biggest names playing ball, cutting IT costs, and providing best-

in- class service. The world of IT service management is challenging with ever-changing

technology, and it’s exciting with innovative ideas coming into play. At the same time, it’s

a race that can be won only if you couple technology with management.

 The Conception of ITIL
The history of ITIL is nebulous and inconsistent. It started sometime during the late

1980s as a collection of best practices in IT management. A department in the UK

government, known as the Office of Government Commerce (OGC), sanctioned the

coalition. Basically, the best practices of various IT departments and companies in the

United Kingdom were studied and documented. It is believed that most of the initial

practices that constituted ITIL came from IBM.

The first version of ITIL was bulky and lacked direction with a compilation of

more than 30 books. The second version of ITIL was cut down to nine books in 2000

but mainly revolved around two books: service delivery and service support. The ITIL

certifications were based on these two books as well. ITIL V2 introduced ten processes,

five each from service delivery and service support. I started my ITIL journey with

ITIL V2.

Chapter 2 ItIL BasICs

41

ITIL V2 was process-centric. IT organizations were expected to operate around the

ITIL processes. The processes were interconnected but lacked a broader vision and a

flow to move things along.

The shortcomings and inadequacies in V2 gave rise to ITIL V3 in 2007. It has 24

processes, spanning the entire lifecycle of a service, from conception up to a point where

the service runs on regular improvement cycles.

ITIL V3 came out with five books, each book spanning a lifecycle phase of an

IT service. ITIL V3 has penetrated most IT organizations. Even conservative IT

organizations have embraced the ITIL V3 service management framework with open

arms. The framework is rampant in the industry today and enjoys the monopolistic

nature, except for Microsoft, which adheres to a derivative version of ITIL, the Microsoft

Operations Framework.

In 2011, ITIL V3 received a minor update where a couple of new processes were

added along with some minute changes in definitions and concepts. This version of ITIL

is referred to as ITIL 2011, and some people refer to it as ITIL V3 2011, indicating the

version and the revision year. ITIL in this version has 26 processes and four functions.

In 2017, a new version (V4) was announced. The date was set two years later, and in

February 2019, a phase-wise release of ITIL 4 started. It started with the ITIL Foundation

publication and the announcement of the ITIL Foundation examination, and in the next

few months, individual modules were announced. The entire set of ITIL 4 modules came

out in 2020. In my view, ITIL 4 should have come out at around 2015, which was the

prime time when DevOps had taken shape and several eulogies for ITIL V3 were sung.

Several experts from all areas of IT predicted ITIL's doom. They felt that ITIL V3 was

quite archaic and did not fit the needs of the digital age. They are right about it, and until

ITIL V3 was adapted to work in DevOps projects, it was not going to work - which is

exactly what the first part of the book intends to cater to.

Figure 2-1 depicts ITIL versions over the years.

Chapter 2 ItIL BasICs

42

Figure 2-1. ITIL over the years

Note although ItIL 4 is the latest version, the guidance provided in ItIL V3 is
most prevalent. although a number of companies looked at moving into the new
version, the general feeling was that it was apt for the digital age, but it consisted
of principles that need to be accounted for, like value chains and value streams,
and the guidance provided around practical implementation was insufficient. In
this book, I address the topic of ItIL 4 but recommend new strategies and process
changes based on ItIL V3 2011.

 Competition to ITIL
ITIL has been dominant for the past two decades. There are no other service

management frameworks that are competing for space. It is quite lonely in the club

of service management frameworks. Why do you think this is the case? A lot of things

have worked in ITIL’s favor. It has a single objective—to deliver value to the business. To

deliver unparalleled value, it has adopted the following characteristics:

Chapter 2 ItIL BasICs

43

• ITIL is based on best practices.

• ITIL is nonprescriptive.

• ITIL is vendor and technology neutral.

• ITIL is nonproprietary.

As mentioned in the previous section, best practices are collated from various

organizations. Some organizations may be doing a great job of gathering requirements,

while others focus on identifying improvements. So, when you take the best of such

organizations and bring that together, you have knowledge that is enviable.

Proprietary knowledge, on the other hand, stays within close quarters, and fewer

heads have been banged together to come up with proprietary knowledge, which may be

good, but it’s not as diverse and experienced as public frameworks such as ITIL.

Proprietary knowledge is developed for the sole purpose of meeting the

organization’s objectives. It is not meant to be adapted to meet other organizations’

objectives. Moreover, if you are adopting proprietary knowledge, you are expected to pay

a fee or royalty of some kind. Public frameworks are free. When you can get an all-you-

can-eat buffet for free, why would you pay for dinner à la carte?

 Understanding Services
ITIL is a framework that is centered on IT services. So, it is imperative to first understand

the meaning of a service, according to ITIL. Here is the official definition of an IT service:

A service is a means of delivering value to customers by facilitating out-
comes that customers want to achieve, without the ownership of specific
costs and risks.

The best way to understand anything that is complex is to break it into parts. This is

my method for understanding the concept of IT services.

The first section of the definition states: “means of delivering value to customers by

facilitating outcomes that customers want to achieve.”

IT services in ITIL are defined from a customer viewpoint. Essentially, an IT service

must deliver value to the customer. The value delivered must be something that the

customer considers as helpful. Let’s take the example of an IT service that is quite

common across the board: the Internet. An Internet service delivers value to customers

to help them achieve their objectives. So, it fits the bill of what an IT service is all about.

Chapter 2 ItIL BasICs

44

If the Internet service provider (ISP) were to provide speeds upward of 100MB per

second for a customer who only checks emails, it would be overkill. The high speeds

offered by ISPs are generally appreciated by gamers and social networking users. In

contrast, the customer who uses the Internet service for checking emails does not find

any special value between a high-speed Internet and a normal Internet connection. But

for a user who hogs a lot of bandwidth, it is valuable. To summarize, the value of an IT

service is derived from the customer’s standpoint. So from this example, value to one

customer may not be value to another.

Now the last part of the definition states: “without the ownership of specific costs

and risks.”

The customer enjoys the service but does not pay for specific costs. Instead, they

pay for the service as a lump sum. For example, in the Internet example, the customer

pays for the high-speed Internet a fixed sum every month, not a specific price for the

elements that make up a service, such as the infrastructure that supports it, the people

who maintain and design, and the other governmental regulation costs. Instead, the

customer just pays an agreed amount.

The final part of the definition states that the customers do not take ownership of the

risks. Yes, but the Internet service provider does. What are some of the risks that exist in

the IT world pertaining to ISPs?

• Fiber cuts

• Availability of support technicians

• Infrastructure stability among others

The customers protect themselves against the risk of enjoying services through

service level agreements (SLAs) to guarantee service at certain minimum levels (fit for

use and fit for purpose).

 Service Types (Components)
A service can be broken into three components. Essentially what a service provides is

the heart of a service; the component is called as the core service. The core service is

customer-facing; however, the core service is powered by sets of services called enabling

services, which is the final component. Finally, the core service is embellished with other

service to make it more attractive (the third and final component), called enhancing

services.

Chapter 2 ItIL BasICs

45

So, these are the components of a service:

• Core service

• Enabling service

• Enhancing service

Figure 2-2 illustrates the three components of a service.

Figure 2-2. Types/components of a service

 Core Services
A core service is at the heart of the service that is delivered to the customer. It delivers

the basic outcomes that the customer is interested in. The value representation for

the customer starts with the core service, and it is the main driver that the customer is

willing to pay for.

For example, say a customer signs on with a cellular service provider to make and

receive calls on the go. The most basic service that a cell phone service provider offers

is the ability to make and receive calls. This is the core service. If the service provider

fails to deliver the telephony functionality to the customer’s satisfaction but instead

Chapter 2 ItIL BasICs

46

focuses on other add-ons such as high-speed Internet, the customer will still be unhappy

because the core service, the reason behind the customer’s decision to pay for the

service, has backfired.

 Enabling Services
For the core service to work, you need services that can support it. These services are

the enabling or supporting services. Enabling services are mostly (almost always) not

customer-facing, and the customer may or may not see them. The customer does not pay

for them individually, but the payment that goes toward a core service gets back charged

internally for the enabling service.

For example, sticking with the cellular service example, what services do you think

are needed to support the core service of making and receiving calls?

• A service for installing and maintaining cell towers

• A network service for routing your calls

• A software service for accounting and billing

This list could get pretty long. I hope you get the idea. All the aforementioned

services work in the background and exist to support the core service, without which the

cell phone service may not function like it should. So, the customer does not get billed

individually against the cell towers, network services, and so on, but rather the service

the customer enjoys comes with a price tag attached to it.

 Enhancement Services
Enhancing services provide the excitement factor to the customer. They add on to the

core service, providing a number of services that most often excite the customer into

paying more for the service. The enhancing services may not function on their own, so it

is necessary for them to be piggybacked on the core service for their deliverance.

A core service can exist without enhancing service, but the reverse is not possible.

The presence of enhancing services differentiates the service provider from others in

the market.

Chapter 2 ItIL BasICs

47

For example, the customer can make and receive calls. What else? When looking at

the service brochure, the customer was more interested in what else the service provider

could offer as the calling part was a given. It offered 4G Internet, Internet hotspots

around the city, voicemail, SMS, and others. These additional features help the customer

make a decision in choosing the service provider.

 Understanding Processes
ITIL is made up of processes. Just as with services, you cannot get into the nitty-gritty

of ITIL if you don’t understand the concept of a process. I give you some examples to

emphasize its importance so that your foundation is strong for what you have to build on

for your career. For the official definition, ITIL defines a process as follows:

A structured set of activities designed to accomplish a specific objective.
A process takes one or more inputs and turns them into defined outputs.

You can envision a process as a set of activities that you need to perform, one after

another, to achieve something. Each activity that you perform sets the precedence for the

next one and then the next. The objective of a process would be to achieve an output that

is along the expected lines and as desired.

Now for a simple and digestible example. A process is similar to a recipe for cooking

a dish. In a recipe, you have several steps that you need to follow, as instructed, to get the

dish you desire.

Let’s look at this recipe for an egg omelet. It goes something like this:

• Step 1: Break a couple of eggs into a bowl.

• Step 2: Whisk them until they become fluffy.

• Step 3: Add salt and pepper to the mixture.

• Step 4: Heat a nonstick frying pan and melt some butter until it foams.

• Step 5: Pour the egg mixture into the pan and tilt the pan until it

covers the base.

• Step 6: Cook for a minute or two and flip the omelet and cook it for a

minute more.

• Step 7: Serve the omelet hot with toasted bread.

Chapter 2 ItIL BasICs

48

You need to follow the steps to make an egg omelet. You cannot interchange any two

steps to get the same output. In IT language, this is the process to make an egg omelet.

The main aspect of a process is the interconnectivity between the individual steps,

and collectively, all the steps work toward a common goal, or a common objective that is

desired.

Note all processes must have an input, a trigger, and an output. a trigger will
initiate a process to kickstart, and the provided inputs are processed to provide
a predictable output. In the recipe example, eggs are the input, and hunger or
the need to have breakfast is the trigger. the finished product of the omelet is
the output.

 Understanding Functions
Before I discuss functions, let’s take a look at organization structures. It is quite common

these days for there to be teams with people who have expertise in one area. Examples

could be the networking team, the UNIX team, the Windows team, the Java team, and

the web development team. It is also in vogue that teams are carved out based on the

depth of knowledge. An example would be a Network L1 team (junior), Network L2

team (senior), and Network L3 team (expert teams, the architects). L1 teams consist of

people with less experience, and the tasks they are asked to take care of are quite basic

and administrative in nature. For an L2 team, it gets a little more complicated, and they

could be asked to troubleshoot and diagnose outages. An L3 team could be your top-

notch team that not only provides support when L2 needs it but also helps architecting

networks.

The teams that I have been referring to are known as functions in ITIL, nothing

more, nothing less. There are only four functions that are defined in ITIL, and all of them

come into play during the entire lifecycle of ITIL framework. The official definition of a

function is as follows:

A team or group of people and the tools or other resources they use to carry
out one or more processes or activities.

Chapter 2 ItIL BasICs

49

 Functions in ITIL
All the functions are defined in the service operations publication. The list of functions is

as follows:

• Service desk

• Technical management

• Application management

• IT operations management

• IT operations control

• Facility management

 Processes vs. Functions
There are processes, and there are functions in ITIL. While there are 26 processes,

there are only four functions. Processes don’t run by themselves. They need people to

carry out the individual process activities in traditional ITIL (you will find out later how

processes can be automated later in this book in DevOps). And the people the processes

look for come from functions. To state it simply, functions provide the resources needed

by the processes to complete their objectives.

Within the organization where you work, there are verticals—say banking, retail, and

insurance. There are processes that cut across all the verticals of the organization such as

human resources. The people in the verticals perform their role in the human resources

process, which is horizontal cutting across all verticals, even though they are part of a

function. This is an example of how a process leverages functions for carrying out the set

objectives.

Figure 2-3 illustrates the intersection between processes and functions. You can

replace the functions with the verticals in your organization and the processes with the

common processes such as travel process, promotion processes, and others, to establish

a better understanding.

Chapter 2 ItIL BasICs

50

Figure 2-3. Intersection between processes and functions

 ITIL Service Lifecycle
ITIL was derived from various high-level activities that encounter an IT service, and each

of these high-level activities was introduced as phases in the ITIL service lifecycle. The

five phases are as follows:

• Service strategy

• Service design

• Service transition

• Service operations

• Continual service improvement

These five phases are represented in Figure 2-4. The figure shows service strategy

at the core to indicate the importance and involvement of a sound strategy in the

inception of IT services. Service strategy provides guidance around existing and new IT

services. Surrounding service strategy includes service design, service transition, and

service operations. Service design provides the direction pertaining to the realization

of a service. The IT services that are identified in the service strategy are defined and

designed, and blueprints are created for its development. These designs are built,

tested, and implemented in the service transition phase. After implementation, the

services move into a maintenance mode. Maintenance of services is handled by the

Chapter 2 ItIL BasICs

51

service operations phase. Continual service operations envelop the other four phases.

The depiction shows that all four phases present opportunities for improvement, and

the continuous service improvement will provide the means to identify and implement

improvements across the service lifecycle.

Figure 2-4. ITIL service lifecycle

Did you notice that every phase in ITIL has service in it? This is not happenstance but

rather strongly indicates that ITIL is service-centric, and it revolves around services that

provide value to customers.

 Service Strategy
Service strategy is at the core of IT services. It is the heart of service management. The

main intent of ITIL and IT service management is to create value for customers. The

value creation starts at the service strategy lifecycle phase.

In this phase, the question “why do it?” is posed before the question “how to do it?”.

The core intent of this phase is to develop a strategy and create services that add value to

customers. For the service provider organization to flourish financially, everything must

be business as usual at the end of the day.

Chapter 2 ItIL BasICs

52

Note Business as usual is commonly abbreviated as BaU. It refers to employees
of an organization completing their respective day-to-day tasks in a normal way.
exceptions and ad hoc changes to the work done does not count as BaU.

Let’s say that the major occupation of most residents in a city is IT, and their staple

food is noodles. As most people in IT spend several hours at the office, they find it

difficult to fix food at home. So, they end up ordering takeout or cooking with instant

noodles. Of late, there has been bad press against instant noodles, and eating out every

day is not working out very well for the residents financially; in addition, health concerns

are beginning to creep up. What would be a good product to introduce in this market?

A gadget that allows the residents to make their own noodles would be a godsend,

where the residents have to add flour, oil, water, and other ingredients into the machine.

And at a click of a button, the gadget would start churning out noodles (which are

healthy because the raw materials were produced by residents). The chances of the

this gadget becoming an instant hit is good. All the company did was strategize to find

out what their market lacked and filled the void with a solution. Instead, if they had

marketed this product to a sleepy town where men and women have ample time on their

hands to fix their own food and healthy noodles are available on every shelf across the

stores in the town, the same company would have had to shut down shop quite early in

the game.

In short, strategy is not a silver bullet. Every problem will have a different solution,

and identifying this solution is a strategy that is bound to make or break companies.

The most important aspect of service strategy is to understand the customer, identify

the customers’ needs, and fill those voids. If the provider can do this, even a dim-witted

service or product would take off exponentially, until someone else finds a competing

service or a product to counter yours.

To give with another non-IT example, let’s say that a landowner identifies a location

in a popular neighborhood that lacks a decent mall. Building one would be like striking

gold; you would have customers waiting to lap up what you have to offer once it is built.

This move can potentially be termed a successful strategy.

Specifically, with ITIL, the service strategy’s role is to provide guidance on creating

value through IT services. The idea is to introduce services that have the potential to

succeed and garner market share.

Chapter 2 ItIL BasICs

53

 Service Strategy Processes
The following processes are listed in the ITIL service strategy publication:

• Strategy management for IT services

• Service portfolio management

• Demand management

• Financial management

• Business relationship management

 Service Design
At the end of the service strategy lifecycle phase, leadership has provided direction and

guidance on which services to offer. The outcome of the service strategy is like the idea

that an entrepreneur comes up with. Whether the idea will come to fruition will become

known in time.

The service design lifecycle phase answers the question “How do I do it?”. It takes the

idea and comes up with solutions and designs that give wings to the ideation process set

forth in the previous phase.

The success of a service depends primarily on the service design phase. While

strategy plays an initial part, the solution to make it happen is equally important.

Tablet computers have existed for a long time. My earliest memory of one was the

Palm Pilot in the 1990s, and I started using Windows-based tablet PCs in the early 2000s.

They were commonly called personal digital assistants (PDAs). But it was not until the

introduction of iPads in 2010 that led to an explosion in the demand for the touch-

capable portable computing devices. They stepped in and became synonymous with

tablet computers.

What are the differences between an iPad and all the other personal handheld

devices that came before? In my opinion, it is the iPad’s design that made the difference.

The strategy was out there since the 1980s, but the design wasn't great. This is my

interpretation of the tablet computer history and its relation to design; others may see it

differently. The key takeaway is to highlight the importance of design. Before I end this

topic, I will honorably mention Android tablets, which are competing with iPads neck to

neck. There is nothing better than two good designs fighting for acceptance on a strong

foundation built on a wise strategy.

Chapter 2 ItIL BasICs

54

Revisiting the non-IT example that I used with service strategy, after identifying

the location, the landowner will have to hire the best architects to bring the most value

money can buy on the land that is most sought after. The architectural designs that the

architects come up with become the blueprint showing what things will look and feel

like once they are realized.

 Service Design Processes
The following processes are listed in the ITIL service design publication:

• Design coordination

• Service level management

• Availability management

• Capacity management

• Supplier management

• Information security management

• Service catalog management

• IT service continuity management

 Service Transition
The output of the service design is a set of design documents giving you the designs

pertaining to all aspects of a service. The next task is to develop the service based on

the designs. In the ITIL world, this is called the service transition, where the designs

are transitioned into production environments through development, testing, and

implementation.

The service transition lifecycle phase answers the question “What do I develop

and deploy into production?” To achieve the objectives of service transition, you could

employ service design lifecycle activities, hardware delivery lifecycle (HDLC) activities,

or any other framework that delves into building a system/service and deploying it into

the intended environment. ITIL is flexible like that; it can integrate seamlessly with any

of the frameworks you can throw at it.

Chapter 2 ItIL BasICs

55

Going back to the non-IT example, there are architectural drawings from the

previous design phase. These designs are handed over to a qualified builder to construct

the mall as per the architectural designs. The builder constructs the mall in this phase as

per the plan and brings it to a state where it could be operationalized. This is exactly the

role of the service transition phase.

 Service Transition Processes
The following processes are listed in the ITIL service transition publication:

• Change management

• Release and deployment management

• Knowledge management

• Transition planning and support

• Change evaluation

• Service validation and testing

• Service asset and configuration management

 Service Operations
Service operations is the most popular phase of the ITIL service lifecycle. The reasons

are twofold.

• Operations run for a long time. I am trying to avoid the word infinite

here, as there is nothing guaranteed in this world. So, in effect,

operations run for a long time, which translates into most service

management practitioners working on the service operations

lifecycle phase.

• As the phase runs the maximum amount of time, it has the maximum

number of touch points with the customer. Moreover, operations

is considered to be the first point of interaction for a customer on a

regular basis.

Chapter 2 ItIL BasICs

56

Service operations entail maintenance and making sure the services are running

as per the plan—the status quo is achieved. Under service operations, there are no new

development or deployments, only maintenance. When I say no deployments, I will

clearly differentiate that from regular patching or some releases being deployed for

maintenance issues. Some maintenance activities could include doing health checks,

fixing issues when they arise, and ensuring recurring activities are scheduled and run as

planned.

Drawing on the previous example, the mall owner takes possession of the mall,

rents out the shops, and sets the ball in motion for it to run smoothly. For it to be

operationalized, they need to hire people who can manage various areas of the mall and

employees who can carry out day-to-day tasks, such as cleaning, security, marketing,

and so on. They also need to set up daily/weekly/monthly/yearly activities as required

activities to keep the mall functioning. Examples could include monthly generator

checks, security audits, four-hour restroom janitorial services, and so on. Do you get

the drift?

By looking at this simple example, you can easily see the activities that are needed in

operations. The operations phase in IT service management is a lot more complicated

and requires plenty of minds to work out its various aspects.

 Service Operations Processes
The following processes are listed in the ITIL service operations publication:

• Incident management

• Problem management

• Event management

• Request fulfillment management

• Access management

 Continual Service Improvement
The final phase in ITIL is continual service improvement. While I call it the final phase,

it does not necessarily come into play after the service operations phase. If you look

at Figure 2-4 closely, you will observe that this phase encircles the other four phases.

There is meaning to this. This phase takes input from any of the other phases to carry

Chapter 2 ItIL BasICs

57

out its process activities. You can also say that it does not fit in the lifecycle phases

because it does not roll once the previous phase has completed its delivery, but will feed

improvement opportunities to the previous phases. But remember that this is the phase

that keeps the ball rolling, or the service breathing.

I strongly believe that if something does not grow, it is as good as dead. This is true

with careers, bank accounts, or anything else you might think of, except of course our

waists! This concept applies to services too; if they do not improve over time, IT services

wither away and something else takes their place. The objective of the continual service

improvement (CSI) phase is to identify and implement improvements across the four

lifecycle phases; whether they are improvements in strategies, designs, transition, or

operations, CSI is there to help. It is also the smallest phase of all the phases in ITIL.

In keeping with the example, in the fully functional mall, you might have thought

that general maintenance should be sufficient for upkeep and ongoing operations. This

may be good for a brief period, but not for long-term care. Other malls are competing

with this one in terms of amenities, stores, parking availability, and aesthetics, among

others. If this mall does not improve over time, customers are going to lose interest,

and sales will start to dwindle. So, to keep up with the growing demands, the mall

owner must find ways to make the mall exciting to shopkeepers as well as to customers,

perhaps by providing space underground for a public transit station, valet parking for

certain customers, free high-speed Internet for customers, and moving walkways.

These improvements need not happen overnight; it can be a process that takes

place over days and months. But the important thing is to keep improving the mall on a

regular basis.

 Continual Service Improvement Process
The following process is listed in the ITIL continual service improvement publication:

• Seven-step improvement process

Note It takes an extremely mature service organization to implement all five
phases. Generally speaking, service design, transition, and operations are the
most commonly implemented phases, followed closely by continual service
improvement. service strategy is sparse.

Chapter 2 ItIL BasICs

58

 ITIL Roles
ITIL is a harbinger of employment. It has introduced a number of roles, all useful and

necessary, that are the most sought after in the IT industry today. As mentioned, ITIL has

26 processes, and each of these processes needs to be owned, managed, and practiced.

Automation has its place in ITIL, but machines cannot do what people can, even in the

age of machines ruled by Skynet!

Note according to Wikipedia, skynet is a fictional neural net–based conscious
group mind and artificial general intelligence system that features centrally in the
Terminator movie franchise and serves as the franchise’s main and true antagonist.

Every ITIL process brings to the table at least a couple of roles (process owner and

process manager). So, it brings plenty of employment opportunities, plus customers

would be happier dealing with people with the right skillset and with the organization

that has clarity over people owning and managing respective areas. So, with 26 processes

in the pipeline, you are looking at more than 50 distinct roles, at a minimum.

At a framework level, there are four roles that can be applied to various services and

processes. The roles are that of a service owner, process owner, process manager, and

process practitioner.

 Service Owner
Earlier in the chapter, I explained what a service is. This service, which provides value

to the customer, must have an owner to ensure somebody has accountability. The

person who owns the service from end to end and the person without whose consent no

changes would be done is the service owner.

In the mall example, the mall owners are accountable to the shopkeepers and the

customers. The owners own the place, so they put their signature on all changes being

made to it; in other words, the mall owner approves enhancements and modifications

and decommissions if any. They are the service owner in ITIL terminology.

Chapter 2 ItIL BasICs

59

 Process Owner
A process is a set of coordinated activities that exist to meet the defined objectives.

This process, or the series of coordinated activities, needs an owner, someone who has

a finger on the pulse to check whether the process is fit for the purpose and that it is

subjected to continuous improvements.

This person is the process owner and is accountable for the process deliveries, be it

in terms of effectiveness or efficiency.

In the mall example, several processes will be defined and implemented. One

such process is maintaining the diesel generators. The maintenance process could go

something like this: weekly general checks on Sundays at 10 p.m. and detailed monthly

checks on the first Sunday of each month at 11 p.m. Checks are done based on a

checklist. If minor repairs are identified, they are carried out during the maintenance

window. If a major repair is identified, a suitable window is arranged, all the necessary

resources are mobilized, and repairs are carried out by a specialist team. This diesel

generator process cannot be orphaned. It needs somebody to own it and ensure that it is

meeting its objective, which is to work without outages.

 Process Manager
You know what a process is and who the owner is. It is unlikely that an owner will

actually manage things on their own. They will hire people who can manage the process

for them.

Process managers ensure that the processes run as per their design and achieve what

they’re meant to. Since they are close to the work, they are in a good position to suggest

improvements to the process owner. A decision to accept or reject the suggestions is

made by the process owner.

A process manager is accountable for the operational management of the

process, which means coordinating activities between various parties; monitoring,

developing, and publishing reports; and, as mentioned earlier, identifying improvement

opportunities.

In the diesel generator maintenance process, the process owner hires an electrical

engineer to manage the maintenance activities and to report on the outcomes. The

maintenance manager is responsible for ensuring that the technicians involved have

the right skillset and are following the right set of instructions in carrying out the

maintenance activities. If the manager finds that the weekly checks are not adding value,

Chapter 2 ItIL BasICs

60

they can suggest to the process owner to shelve the weekly checks and schedule them for

every two weeks. As mentioned earlier, the decision to make the checks every two weeks

is made by the owner, not the manager.

 Process Practitioner
Anyone who plays a part in the process is a process practitioner. This may be the

manager or the owner or someone who may not be part of the process hierarchy.

To rephrase, people who are responsible for carrying out one or more activities in a

particular process are process practitioners.

In the generator maintenance process, technicians have the responsibility to check

the generators based on a checklist. They are process practitioners. It is also likely that

the technician is a process practitioner for multiple processes, depending on the number

of processes they are acting on. For example, they could also be responsible for electrical

maintenance, electrical repairs, and elevator maintenance, thus being a process

practitioner in each of these processes.

 RACI Matrix
In an organization, it is important that roles and responsibilities be clearly defined.

When there is ambiguity over responsibilities for activities, it often leads to inefficiency

within the system. You might have seen in your own organization that a lack of clarity

over roles and responsibilities can end up in a mess, where both of the perceived

responsible parties duplicate activities or both leave them for the other to act on.

RACI is an acronym for Responsible, Accountable, Consulted, and Informed.

According to the ITIL service management framework, these four types of roles can be

used to define all responsibilities and ownership in an organization.

• Responsible: The person who is responsible for carrying out the

activity gets this tag. This person actually completes the work.

Examples could be your process manager and process practitioner,

who are responsible for managing activities and performing

deliveries, respectively.

Chapter 2 ItIL BasICs

61

• Accountable: This is the person who owns the activity. This person

is the decision-maker. Examples are the service and process owners.

It is important to remember that although in the real world you

could have joint ownership, in the world of ITIL, there is no joint

ownership. An activity has a single owner. It can never be shared by

two individuals.

• Consulted: In any organization, you have subject-matter experts who

need to be consulted before and during activities. These people play

the role of a catalyst in the service management organization. They

do not own anything, nor do they get their hands dirty in the actual

operations. But, they do provide their expertise in the successful

execution of the activity. Examples are corporate lawyers and

technical architects.

• Informed: There are the people who like to soak in the information.

They do not have any role in the activity but want to be informed of

the progress or the lack of it. They are, in other words, stakeholders

without the power to make decisions. Examples are users and senior

management.

 An Example of RACI
Table 2-1 shows an example of how a RACI matrix looks. It has activities to be performed

as part of a process in several rows. Those who play a role in the process make up the

columns. You get a matrix by putting the activities and the roles together.

Table 2-1. RACI Matrix Example

Activities Mall Owner
Maintenance
Manager

Maintenance
Engineer Customer

schedule maintenance activities C ar I

sponsor maintenance activities ar

perform maintenance activities a r I

Communicate to customers a r

Fix issues with diesel generator I aC r

Chapter 2 ItIL BasICs

62

In the example, the activity “Schedule maintenance activities” is owned and

performed by the maintenance manager (AR represents Accountability and

Responsibility in the respective cell). So, both the accountability and responsibility lie

with them. For this activity, they are consulting (represented by C) with the mall owner

on suitable dates and informing (represented by I) the maintenance engineer on the

maintenance schedule.

Let’s look at the final activity: “Fix issues with diesel generator.” In this activity, the

accountability lies with the maintenance manager, but the person performing the fixing

is the maintenance engineer. The engineer consults with the manager regarding this

activity, as the manager is experienced in diesel generators. The mall owner is merely

informed of this activity.

 Tips on RACI Creation
Developing a good RACI matrix takes experience and good insight into the activities

on hand. However, there are a few ground rules that will aid you in your RACI creation

endeavors:

• For every activity, you can have only one person accountable.

• Responsible, consulted, and informed can be spread across multiple

roles, although I have not illustrated this in the example.

• A single role can don various hats, such as accountable and

responsible for “Sponsor maintenance activities” by the mall owner.

• Accountable and responsible are mandatory for every activity.

• Consulted and informed are optional. If you are not informing

anyone of an activity, you may not have the informed role for the

particular activity. “Sponsor maintenance activities” is an example.

• Identify and document as many activities as possible in the RACI

matrix, as long as the activities have specific deliverables coming

from it.

Chapter 2 ItIL BasICs

63

 ITIL V3 and ITIL 4
ITIL 4 is not a new wine in an old bottle. Although the principles of the ITIL remain

strong, the nuances of the framework are contrasting. While the former tries to build a

story like Jeffrey Archer, the new is dynamic and explosive like Tim Ferris’ brilliance. In

other words, the resemblance is limited to individual processes rather than the story and

context built around them.

There are several changes but I am not going to discuss all of them in here. Maybe I

need an entire book to expound on it. The big ticket items are discussed in the following

sections.

 The Service Lifecycle Is Dead
On expected lines, the service lifecycle has been done away with. It was the lack of a

traditional lifecycle that led the call for a new ITIL.

The void left by the service lifecycle has been taken up by not one concept but two.

Service value system and service value chain are the new concepts that drive the delivery

of services. Service value chain roughly tries to cover for service lifecycle but takes the

PDCA flavor with the planning, acting, vetting, and corrective actions.

 Introducing Practices
In ITIL, processes rule the roost. All activities happen through processes. In fact, the

service lifecycle is comprised of various processes to deliver service phase objectives.

However in ITIL 4, it is practices that take center stage, but not as prominently as the

processes did.

Practices are more than processes. One does not replace the other nor is one a

mere reflection of the other. A process was meant to take in certain inputs and when

the trigger kicks in, a set of activities were designed to take place. And finally there is an

output. A practice is an extension of a process. It not only defines the activities but also

brings together various entities, capabilities, and tools to accomplish the set objectives.

We had a concept called functions in ITIL V3, which were the teams executing

various processes. In the previous ITIL version, I had a section dedicated to fuse

processes and functions. I imagined the functions running as horizontals while the

processes were verticals and they intersected as a mesh—because people and teams

Chapter 2 ItIL BasICs

64

were needed to run the processes. I don't include that section in this book. Guess why?

There are no functions in ITIL 4. The functions are fused within the process and the

outcome can roughly be termed a practice.

Imagine having a problem management team in your organization. It is a function.

What do they do? They work on the problem management process to meet its objectives.

Not just the problem management team, you needed other technical teams to deliver the

objectives. They were part of the different distinct functions

To collaborate better and to deliver value efficiently, ITIL 4 has introduced the

concept of practices. That's the problem management practice in this instance. It's a

system whose objective is to deliver all the problem management outputs.

 Service Has a New Definition
In ITIL V3, service is defined as a means of delivering value to customers by facilitating

outcomes customers want to achieve without the ownership of specific costs and risks.

The onus was on the service provider to create value for the customer; the customer does

not have to own the risks or individual costs for unit items. The customers pay a certain

agreed amount for the service and get the service without worrying about the service’s

inherent risks or the underlying cost of individual elements that make up a service.

ITIL 4 has changed the definition of a service. It is a means of enabling value co-

creation by facilitating outcomes that customers want to achieve, without the customer

having to manage specific costs and risks. The difference might look trivial but the

meaning and implication is huge.

Today a service provider cannot tuck away services and deliver them to the

customer in isolation. Any service can become valuable only if there is ample direction

and feedback from the customer, the primary person who uses the service. Hence the

definition has rightly included co-creation.

 Governance Is a New Kid on the Block
In ITIL V3, governance was not embraced with open arms in my opinion. Yes we had the

governance process to ensure that the service management work was governed to the

hilt and things didn’t go in unwanted directions. But there was no explicit mention or a

process or a function to define it. It was always the outsider looking in.

Chapter 2 ItIL BasICs

65

Things have changed for the better in ITIL 4. Governance has a proper seat at the

table. The only way a service management framework (or any other management

framework) can get governance defined and implemented correctly is by giving it focus

and defining its objectives. More on this in Chapter 5.

 Automation Is In
Activities that does not require cognizance, intelligence, or decision making brain cells

can theoretically be run by machines. This makes even more sense if these activities are

repeatable. Automation is the key to launching and running any service because services

are not simplistic anymore. There are multiple integrations and managing every single

driver can only be achieved if they are entrusted to the machines. So, automation is to be

embraced and not looked at as an opponent to job creation.

ITIL V3 toyed with the idea of event management tools. It was not full blown but

the intentions were clear. ITIL 4 has taken this to the next level by defining a guiding

principle that couples optimization and automation.

 Summary
This chapter was meant to be a refresher course on ITIL. You read about the history of

ITIL, its origins, and its present form. ITIL’s foundation is based on services. The success

of ITIL implementation is dependent on how well the services and its components

are defined. ITIL V3’s lifecycle is the centerpiece of ITIL implementations, and they

move in a sequential manner—starting with service strategy and then service design,

service transition, service operations, and continual service improvement. ITIL draws

boundaries through the RACI matrix, which defines the roles and responsibilities of the

various parties involved. ITIL V3 and ITIL 4 have several fundamental differences, which

have pros and cons. ITIL V3 is sequential but the implementation guidance is rock solid.

ITIL 4 provides the principles of applying ITIL to the digital realm, but it stops short of

providing guidance on implementation.

Chapter 2 ItIL BasICs

https://doi.org/10.1007/978-1-4842-9072-9_5

67

CHAPTER 3

ITIL and DevOps:
An Analysis
Chapters 1 and 2 introduced DevOps and ITIL as independent frameworks/

methodologies, and I consciously did not make an effort to combine the two entities.

This chapter analyzes them together. It dissects the big ticket conflicts and sets the tone

for the rest of the book. In other words, it encourages creating a union between the two

rather than replacing one with the other. Chapters 1 and 2 clearly specify that the two

are leaders in their own respective areas, and developers cannot reasonably replace one

with the other. The question of replacement has arisen because the newer of the two,

DevOps, steps on ITIL’s foot and claims to take over certain (or all) aspects of service

management.

Today the reality is that ITIL is (almost) everywhere in some form or another.

The majority of development projects run on Agile today, and the normal extension

of it, DevOps, is being talked about at great length. However, the implementations

are far and few. One of the prime reasons for this is because of the ambiguity that

exists between product development and service management. Wherever DevOps is

being implemented (with the exception of Amazon, Netflix, and others I discussed in

Chapter 1), it is being restricted to the development side of things. The time is right

to make DevOps whole by removing the uncertainty and ambiguity (see Figure 1-4),

and that is the reason for this book’s existence. The book is titled Reinventing ITIL and

DevOps with Digital Transformation, and it’s a practical approach to implementing ITIL

in DevOps projects. However, this book is so much more than what this title suggests,

because it realizes the DevOps principles to the fullest and will make DevOps a potent

force for years to come.

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9_3

https://doi.org/10.1007/978-1-4842-9072-9_1
https://doi.org/10.1007/978-1-4842-9072-9_2
https://doi.org/10.1007/978-1-4842-9072-9_1
https://doi.org/10.1007/978-1-4842-9072-9_2
https://doi.org/10.1007/978-1-4842-9072-9_1
https://doi.org/10.1007/978-1-4842-9072-9_1#Fig4
https://doi.org/10.1007/978-1-4842-9072-9_3#DOI

68

 Product vs. Services
Traditionally speaking, the IT industry is like a magnet that has two opposing

poles: products and services. So, you are running either a development project or a

maintenance one. The people involved on the development side of things have different

skillsets, and the support personnel have their own unique talents.

Figure 3-1 indicates this IT magnet, featuring products on the left and services on

the right.

Figure 3-1. IT magnet

Products (discussed in detail in Chapter 15) are typically tangible—in a digital

way, meaning that a digital/physical deliverable is produced. They can be consumed

either now or at a later point in time. Services, on the other hand, are intangible—it

is the experience that is the result of consuming a service. More important, a service

is consumed in the present, rather than getting serviced for future needs. I am not

referring to purchasing services for an advanced period of time but rather experiencing

something. For example, you can head to a bakery and purchase a quiche. That’s

a product. You can choose to eat it now or later. The experience of eating it can be

experienced only when you bite into it. This is a service.

Referring to Figure 3-1, some examples of products include software, servers, data

centers, and documents. All the products can be purchased one time and be used now

or later. On the other end of the IT magnet are the services. Maintaining the software and

the hardware that is either purchased or developed falls under services. Other examples

include conducting risk assessments, consulting, and training. All these services can be

experienced only in the present.

Chapter 3 ItIL and devOps: an anaLysIs

https://doi.org/10.1007/978-1-4842-9072-9_15

69

The product industry depends heavily on the service industry because the

products that are developed or purchased need servicing on a regular basis. Take, for

example, a car that you purchased this summer. You paid the dealer a certain amount

of money and purchased the car. The transaction between the consumer and the

product manufacturer for all practical purposes is done. The car, however, needs to be

maintained on a regular basis. For somebody not so hands-on like me, I depend even

more on the auto service stations to maintain the oil and other fluid levels in my car and

to check the various parts of the car every six months.

The auto service station, as the name indicates, is a service provider and it gets

business every time I choose to experience the service. There is an open debate about

whether the product industry is more profitable or whether it is the service industry

given that the service industry comes into play as long as the product is relevant. The

other school of thought is that the product replication and the profit by numbers

make the product industry a better proposition. I don’t see this debate being settled

anytime soon!

The reality is that although we have products and services, the gulf between the

two is shrinking fast. The ideological differences between the two industries don’t

benefit the consumer, who is facing the heat from the divide. The cost of producing

products and living off the profits is no longer feasible, as there are intense price wars

between competitors. For the service provider, the cost of providing services is rising,

but the market conditions do not allow them to charge higher rates. Neither the product

manufacturers nor the service providers can survive in the present market. So, how do

they survive?

The answer is that the product and service industries bring together their resources

and capabilities to become a solution provider, as illustrated in Figure 3-2.

Chapter 3 ItIL and devOps: an anaLysIs

70

Figure 3-2. Solution provider

How does this work? Does it mean that an organization that develops products

starts providing support as well? Not really. This model has been in place for some time,

whereby the product manufacturer extends support for their products for a certain

period of time. This is a failed model; in addition, this organization is nothing but two

entities (products and services), and the gulf—instead of existing between different

organizations—exists within the same organization.

A solution provider brings together products and services with an aim to solve the

needs of the customers. The solution is developed based on the problems faced by the

customers and the specific requirements. In other words, it is customized to ensure that

the customers get focused value from the overall delivery of products and services and at

an optimized cost.

Today you will find that the gap between products and services is quite narrow, and

the solution to customers’ needs and problems is being addressed by joining products

and services. The outcome of this marriage is popularly known as XaaS—which refers

to anything as a service. Specific popular examples include software as a service

(SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS). In the XaaS

model, every customer need turns into a service, including products. So in essence, the

marriage of products and services has given birth to the product as a service.

There are several advantages of the XaaS model. Referencing Chapter 2 on the topic

of services, the definition of a service is as follows:

A means of delivering value to customers by facilitating outcomes that cus-
tomers want to achieve, without the ownership of specific costs and risks.

Chapter 3 ItIL and devOps: an anaLysIs

https://doi.org/10.1007/978-1-4842-9072-9_2

71

In the XaaS model, the customer gets to enjoy the product without the ownership

costs, the need for constant upgrades, and the risks associated with it. In exchange, the

customer pays regular “rent” to use the product as a service. Office 365 is an excellent

example; it falls under the SaaS model. I get to use all the programs that fall under Office

365 for a regular monthly or yearly fee. When Microsoft upgrades the program, I get the

upgrades for free. To start using the Office product, I don’t need to spend capital upfront,

which was the traditional model. Earlier, I used to purchase Office products, and in a

couple of years, my version became extinct and I was forced to purchase a new license or

upgrade the existing one at a cost.

Another use case is that of startup companies that require servers and datacenters.

They now have the luxury of the IaaS option where they can reroute their precious

capital into other parts of the organization rather than spending it all on infrastructure.

Instead, they pay a monthly or yearly fee.

Turning our attention back to DevOps and ITIL and their mutual existence, the

solution is to bring the two together to get the best results. DevOps can be seen as the

product side of the IT magnet, and ITIL is definitely on the service side. DevOps is the

right approach to providing the solution to customers rather than products, but for it

to happen, there is a need for a solid service management framework such as ITIL. The

XaaS model works if the product management and delivery are powered by DevOps and

the ongoing services through ITIL.

We don’t have other options. The best industry models must come together to boost

the IT industry from sinking in waste and provide customers with the best possible

outcome. The value to customers is based on their perceptions. ITIL identified this

aspect a long time ago and put in place various service-management parameters that

manage the customer expectations, thus ensuring customer satisfaction. The volatile

market conditions and the blitzkrieg of technological advancements require a software

development process that can turn on a dime as the wind changes direction. This is

made possible through DevOps implementations. Finally, the XaaS model has greatly

benefited the solution providers as well as the customers—it’s a win-win situation. From

all fronts, there is a desire to combine various natural elements, and this is exactly what

I am trying to accomplish in this book, by bringing the two magnetic poles together and

creating a bond that’s bound to take the IT industry into the next decade.

Chapter 3 ItIL and devOps: an anaLysIs

72

 Big Ticket Conflicts
Not all is well with how things stand at the moment between DevOps and

ITIL. Importantly, the conflicts between the two must be identified before going into

solution mode (Chapter 4 onward). ITIL has been around for a while now, and DevOps

is relatively the new kid on the block. So, just as we have generation gaps among people,

these gaps exist in frameworks as well, leading to certain big ticket conflicts, covered in

this section. The minor issues are a culmination of the major conflicts; therefore, I expect

them to be resolved through dialogue and perspective of the bigger picture.

 Which Is It: Sequential vs. Concurrent?
ITIL V3 was conceived in the age of waterfall management, and DevOps is anti-

waterfall—meaning that it’s Agile in nature. The five phases of ITIL are strictly sequential

in nature. Unless you have a service strategy, you cannot develop new services. Unless

you have defined services, you cannot think of designing, building, and implementing

them. Only after they are implemented and handed over formally can they be

maintained. So, the fruits of the labor are visible only during the service operations

phase, because the rest of the time, the service is in its development stages and is adding

no value to the customers.

This is the point of inflection as far as DevOps in concerned. DevOps is based on

Agile, which is anti-sequential. Therefore, DevOps expects some form of output right

away. How can you do it in ITIL given that the service developmental works are a long

consummated process? As I mentioned earlier, this is the time for identifying conflicts

and not resolving them.

 Let’s Discuss Batch Sizes
With the sequential nature of ITIL, the outcome is one big piece of delivery that contains

all the pieces of the puzzle required to solve the IT service conundrum. This worked fine

for services for the most part, but product delivery today mostly deals with small batches.

Every sprint delivers a piece of software that can be independently tested, demonstrated,

and verified. The suspense around what is going to come out at the end of the long-

winded cycle does not exist in a DevOps-run project.

Chapter 3 ItIL and devOps: an anaLysIs

https://doi.org/10.1007/978-1-4842-9072-9_4

73

The longer the batch size, the riskier the proposition. What if the requirements

were misunderstood all along and, in the end, you produce something the customer

never wanted? Either it would be too late to go back and make changes or the road

to completion would have plenty of rework. Either way, the customer ends up being

unsatisfied. This is where DevOps pitches in with its small batches. If there are any

changes to be done, you make them before you start.

 It’s All About the Feedback
Delivering small batches alone to find out whether the direction you are taking is right

is not enough. You need the feedback to come through rapidly so that you are on the

right course.

In ITIL, there is never any talk of formal feedback until you get to the final phase,

which is continual service improvement. I am not suggesting that people who follow ITIL

don’t take feedback seriously, but I am pointing out that the framework has missed an

important element that’s one of the core pillars for satisfying customers.

The small batches that are produced in a DevOps cycle are followed by a feedback

cycle, whereby feedback is sought every step of the way, and it comes in the form of test

results, acceptance tests, and demonstrations to the customer. Considering that the two-

week sprint cycle is the most common, even if you were going off-course, the amount

of rework that you may be expected to perform is equivalent to the two-week sprint.

This too is arrested by the presence of a product owner who is from the customer’s

organization and who is part of the team and knows exactly what the team is working

on at any point in time. By contrast, in ITIL (where feedback is not formalized until you

hit the improvement cycle), if the service development takes a quarter to half a year, the

entire effort will be wasted if it’s not as the customer demanded.

 The Silo Culture
The ITIL service management framework defines functions that are teams where people

with similar skillsets are housed. In other words, every team represents a silo of people

with similar talents. As and when they are required to work on process activities, they get

pulled into the process role, and then they are sequestered back to their homes. There is

the logic behind this. People with similar skillsets, when housed together, can help each

other in terms of capability improvement and can work as a team to deliver results.

Chapter 3 ItIL and devOps: an anaLysIs

74

In DevOps, as covered in Chapter 1, teams are strictly cross-functional and are

formed around a product or a project. They are aligned to the product or project alone,

and this helps ensure that all the right people needed to build and support a product

are sitting in the same group and not spread across the organization with differing lines

of reporting structure. By housing the cross-functional teams together, teams invariably

understand all aspects of the product, and this helps deal with issues and other parts of

delivery.

Clearly, ITIL and DevOps are divided over how the team structure should look. It

definitely makes sense to put all the similar talented people together to ensure skill

development and capability improvement. But is this structure focused on the product

and the customer? Is everybody on the team intimately close to the product to ensure

speedy delivery? These are some loopholes that are clearly present in the ITIL world.

It makes sense to build cross-functional teams to get to know the product better. If

they are part of the team since inception, the intimacy with the product deepens and

helps support the customers in an effective manner. However, does everybody on the

team have a role to play throughout the lifecycle of a product? That is the answer to seek!

The answer will be along the lines of no. So, what do you do with them? In IT, we don’t

bench people as we did a decade ago. How do you ensure that the intimacy with the

product is maintained and yet the resources are utilized optimally? This is a challenge

that comes up often in DevOps projects, and the answer lies in a metateam.

 What Is Configuration Management?
The word football does not indicate the same sport around the world. In the United

Kingdom and many other countries, it refers to “soccer,” which is played with a perfectly

round ball. In the United States, however, football is a different game altogether,

played with an oval-shaped ball and somewhat similar to rugby. Likewise, the word

configuration management has different connotations in ITIL and DevOps.

In ITIL, a configuration management system (CMS) is a collection of databases of

service-related data. It contains configuration management databases, incident records,

problem records, change records, known error databases, and everything else that goes

into the service management system.

The word configuration management is commonly used to refer to source code

management (SCM) in the software development industry, and it has trickled down

to the DevOps scheme of things as well. The repository consisting of source code, the

Chapter 3 ItIL and devOps: an anaLysIs

https://doi.org/10.1007/978-1-4842-9072-9_1

75

strategy, and implementation around branches and the way updates are done to the

repository are all under the purview of configuration management in DevOps.

So, it is quite apparent that configuration management has different meanings

in both areas. When you try to bring the two systems together, which one would you

probably go with? The ITIL configuration management has critical configuration

management database (CMDB) information, which is considered the foundation for

setting up services. DevOps configuration management refers to the source code itself,

which is at the heart of software development. So, you cannot replace one with the other.

This is a serious conflict that requires an amicable solution if you plan for a long game

with the two frameworks.

 Continuous Deployment Makes Release
Management Irrelevant
As introduced in Chapter 1, the continuous deployment process directly deploys the

package into the production system when all tests are green. This is the domain of

control for the change and release management processes, and by deploying directly

without any governance and controls, there is a perception that the change and release

management processes become irrelevant.

The ITIL change and release management processes are a trusted set of processes

that ensure that the changes going into production are well-tested, and it also brings

together all the stakeholders in a huddle to decide the merits and demerits of a potential

change. Careful planning around changes by all stakeholders can potentially ensure

that the changes are beneficial to the organization and do not disrupt any of the existing

setup unless they are designed that way.

By going around these governance processes, DevOps through the continuous

deployment process is setting a bad precedent that is uncontrolled and perhaps

malevolent to the ecosystem. The general perception is that development teams rejoice

over fewer governances, and operations teams feel antsy about this whole DevOps

thing! The market we are in today roots for speed and dynamism. In fact, more and

more organizations are withering away when they are unable to cope with the speed of

change. So, organizations have opted to ride the DevOps rollercoaster and take chances

with rapid deployments. In fact, continuous deployment may not be feasible for all

Chapter 3 ItIL and devOps: an anaLysIs

https://doi.org/10.1007/978-1-4842-9072-9_1

76

types of organizations. Some, such as banks and other financial institutions, have legal

and regulatory approvals in their workflow that hold them back by opting for trigger

deployments rather than continuous deployment.

Continuous deployment going around the approvals of change management is a

premature judgment call. ITIL change and release management provide the precious

governance layer around the changes going into the ecosystem. It would take an artist

to bring both together and stitch them up seamlessly, and I have taken up the cudgels to

be that artist. There are ways to rein in continuous deployments through the change and

release management processes, and Chapters 9 and 10 look at them in detail. The truth

is that we need both. Continuous deployment is the future, and it differentiates market

leaders from the rest.

 Union of Mindsets
DevOps is a philosophy. It’s a new culture and with it comes a new mindset. The DevOps

mindset aims to speed up software delivery through collaboration and working in small

batches, aided by automation. The thought process is that working swiftly in smaller

batches will help deliver incrementally, and even if something were to go wrong, the

damage would be trivial. Rolling it back is a simpler task as well, with a good chance that

nobody on the other end (read, end users) even notices.

Although never mentioned thus far, service management (aka ITIL) has a mindset

too. The framework is built heavily around the customers, and the mindset is around

creating value to customers through services. ITIL ensures that a customer’s perception

of value takes precedence over what it really is, and customers always get what they

want. Across the five phases, ITIL ensures that value creation is at the heart of services,

and this is a great sign of things to come when we place the service management

framework over the DevOps mindset. DevOps is highly centered on the customer

because, in the Agile methodology, the customer is part of the development team. The

customer role, referred to as a product owner (PO), works with the team from inception

to the end, helping to build a set of requirements and prioritize them, as well as

providing regular feedback and supporting the team every step of the way.

The union of mindsets puts all other conflicts on the back burner. It does not

matter if one is sequential and the other is concurrent because at the heart of both,

the customer is elevated to a new high. As long as true north points to the customer,

frameworks and philosophies blend like fresh strawberries and milk in a strawberry

Chapter 3 ItIL and devOps: an anaLysIs

https://doi.org/10.1007/978-1-4842-9072-9_9
https://doi.org/10.1007/978-1-4842-9072-9_10

77

milkshake. The taste gets better only when the individual elements of the milkshake do

not reveal themselves as strawberries, milk, or sugar. Likewise, ITIL and DevOps have

all the ingredients to come together to create synergy and support what customers want

when they want it and maintain those wants seamlessly. The union of mindsets, despite

the differences, is illustrated in Figure 3-3.

Figure 3-3. The union of mindsets

 The Case for ITIL Adaptation with DevOps
Some experts believe that ITIL is a 20-year-old framework that does not fit into the Agile

scheme of things, which is viewed as dynamic, fast-paced, and innovative. Further,

the argument goes on to state that ITIL is bulky, rigid, and strictly sequential. The

problem these proponents state is that ITIL is a framework for services and service-

based organizations. With the advent of DevOps, the line between development

and support is closing in, and a service-oriented framework doesn’t fit into a hybrid

(development and operations) way of working. Before ITIL, development ran on a

waterfall model, and support drew inspiration, practices, and processes from ITIL. With

the conglomeration of development and operations, waterfall has already made way for

Agile project management methodologies. And ITIL too will have to buckle in. But what

is its replacement? There is none, because DevOps infuses plenty of enthusiasm in the

development practices, and the interest wanes during the operational practices.

The proponents against the ITIL framework are rather biased. Without an occupant

in the wings, the existing tenant is being driven out. A big gaping hole will be the

outcome if their will is the way. Their arguments seem one-sided, as the obvious benefits

derived from having ITIL are often sidelined.

Chapter 3 ItIL and devOps: an anaLysIs

78

ITIL is a framework that has met the rubber on the road more than any other

organized set of practices for more than three decades. The framework has adapted to

the changing world and adopted the best practices from the industry to be the be-all and

end-all. ITIL v3 came out in 2007, with a minor update four years later. (ITIL 4, which

was released in 2019, is a reference guide more than anything else.) So, can a decade-old

framework still suit our needs? The answer is yes. Fluidity in development and being

Agile does not conflict directly with the principles of ITIL. The way to go about building a

service does not change, but what essentially needs to happen is for a prominent person

in ITIL to identify the pieces of the framework that can be directly inserted into the

DevOps processes and to delicately tweak a few more bits without altering the meaning

or objectives of service management.

With the absence of any other suitable competitor to ITIL in the digital age, there

is no question whether ITIL still needs to be pursued. The only factor is how quickly

companies are going to recognize the operational needs of DevOps and blend the ITIL

framework into the overall scheme of DevOps. Without ITIL, there is no DevOps!

Note Gene Kim, the author of DevOps Handbook, says that devOps being
in opposition to ItIL is a misconception. even releasing more than 10,000
deployments a day requires processes. What goes against the devOps objectives
are the approvals.

 To Conclude
Many experts believe that ITIL may be humongous in terms of the literature and may be

sequential, but it is well known that ITIL does not prescribe the sequence of activities

nor does it dictate the bureaucracies to be involved. Instead, the framework provides the

phases in which a service needs to be developed to ensure that all aspects of a service are

addressed during the formational stages.

Jayne Groll, the CEO of the DevOps Institute, says that within the more than 2,000

pages of ITIL publications, there are no implications or directions to suggest that the

ITIL processes must be developed in a complex manner and that it must follow certain

Chapter 3 ItIL and devOps: an anaLysIs

79

bureaucracies (such as obtaining approvals before embarking onto the next stage). She

further goes on to state that DevOps does not diminish the value of ITIL. Instead, it

validates and matures it by connecting the dots between Agile, Lean, automation, and

other related frameworks.

Matthew Skelton from Skelton Thatcher Consulting believes that DevOps has much

to learn from ITIL, including identifying and addressing dependencies, putting emphasis

on service level agreements (SLA), and developing service strategies. On the other

hand, ITIL can learn plenty from DevOps, such as collaboration between various teams,

effective event management by modern monitoring toolsets and metrics, and the rapid

responses to incidents.

Kaimar Karu, head of ITSM at Axelos, is of the opinion that ITIL has things to

adapt from DevOps—mainly on the people front. DevOps can help with better

communication, collaboration, and customer focus.

In the next few chapters, the focus is on the solutions to the problems and conflicts

listed in this chapter. Furthermore, the remainder of the book takes on the integration of

the ITIL framework and DevOps practices. I worked in the area of ITIL for several years

and have helped organizations create value through service management designs based

on ITIL processes. The ITIL processes are grounded in maturity, and there is nothing

fundamentally wrong with them. In the era of swift turnarounds and automation, the

existing processes have to be adapted to the ITIL way of working. You will see in the

chapters dedicated to individual processes that the principle underlying the processes

does not change; the meaning and its objectives stay firm to what it is meant for. But the

way it is designed and executed has been altered to make it more dynamic and Agile.

The adaptations that I have recommended are just one way of looking through the

adaptation lens. There are more ways of doing things. In the spirit of ITIL, where the

framework avoids prescribing a way of designing and operating, I stick to the same

philosophy with my material so you can adapt it further to your organizations, designs,

and processes.

Chapter 3 ItIL and devOps: an anaLysIs

80

 Summary
This chapter looked at ITIL and DevOps from chapter to verse. While ITIL has a legacy

that has evolved over the years, DevOps is considered modern. ITIL was built on the

waterfall project management model, where things flow sequentially from one activity

into another. Whereas DevOps (and Agile) is about building or working toward the

goal in the form of iterations—generally delivered in small batches. ITIL is strong in its

foundation and its concepts are timeless. DevOps is the culmination of brains that aimed

toward rapid development and nothing else. Integrating these two elements can only

result in a powerful force.

Chapter 3 ItIL and devOps: an anaLysIs

81

CHAPTER 4

Integration: Alignment
of Processes
From this chapter on, we start aligning the ITIL service management framework with

a DevOps project. The exciting bit starts here! The exercise involves looking at ITIL

holistically and identifying the phases and processes that can stay as is and those that

need to realigned.

Although ITIL offers great insights and learning, I do not reframe DevOps processes,

methodology, or philosophy to fit the ITIL framework just so it sounds better.

 Analysis of ITIL Phases
ITIL is broadly categorized into five phases, and at least four of them are sequential in

nature. The fifth one is an overarching phase. The sequential phases are as follows:

• Service strategy

• Service design

• Service transition

• Service operations

Continual service improvement is the overarching phase that is invoked at any time

during the four phases. Figure 4-1 shows the phases of ITIL.

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9_4

https://doi.org/10.1007/978-1-4842-9072-9_4#DOI

82

Figure 4-1. ITIL phases featuring sequential and overarching phases

These phases are designed and aligned in a logical manner, where the service

ideation and inception happen right at the beginning. The business providing the

services determine the service applicability, the cost of its development, the return on

investment, and the market segment, among other tasks. This is done in the service

strategy phase. After the sponsors support the finalized service, it goes into the design

stage. During the service design phase, the various design elements of a service are

put together. Here, the service is developed on paper—something like a blueprint. The

next logical step is to take this blueprint and get something out of it. This is the service

transition phase, whereby the service is built and implemented based on the designs.

This could involve training and hand-holding along with the services build. After the

implementation of a service, the service needs to be maintained to ensure that it runs

as it was designed. This is the service operations phase. Throughout the four phases,

there are opportunities for improvement, and the continual service improvement phase

is firmly focused on the four phases in order to identify improvement opportunities and

execute any feasible improvements.

The obvious problem is its sequential nature. Let’s say that the business heads

conceive a service takes about a month, with the design and transition phases lasting

about six to eight months. Within the nine-month period, a lot can change. The service

that was conceived may become irrelevant, or it may have to be overhauled to meet a

different market segment. This drawback is typical of a project executed in the waterfall

Chapter 4 IntegratIon: alIgnment of proCesses

83

style of project management. The obvious solution is to turn it into the Agile style

of functioning, whereby the service elements are designed and executed in sprints.

However, adapting service development into an Agile style may not be a simple task.

 Analysis: Service Strategy Phase
Let’s take another look at the processes in Figure 4-2.

Figure 4-2. Service strategy processes

 Strategy Management for IT Services
When it comes to strategizing, plenty of research is needed to decide what can be

deemed a service. It requires plenty of footwork in terms of crunching the numbers and

identifying whether it is worth offering a particular service. It also requires identifying

the competition and defining a unique factor that will help the organization’s service

stand out from the crowd. All of these activities and the related ones are carried out

under the strategy management for IT service process.

This process, although associated with IT, is a business process. Every business

starting with a new product or service has to do the groundwork if it wants to be sure

that the product or service will trounce the competition. The flexibility of the Agile

way of working is that the end-to-end strategizing need not be done before the rest

of the processes kick in. As long as the big ticket features are known, that is probably

sufficient for the high-level design to take place. The same concept can be applied to the

deliverables of the strategy management for IT services process.

Chapter 4 IntegratIon: alIgnment of proCesses

84

Let’s say that a business wants to offer cloud services as part of its renewed strategy.

The market is already crowded with a number of players, and there are some top guns

like Microsoft Azure, Amazon Web Services (AWS), and Google Cloud Platform (GCP).

The new cloud service must be competitive, either in terms of pricing or features,

or both, to stay relevant. While the basics of a cloud service remain well known, the

strategizing is done around the differentiator. For the service design to kick in, is it

necessary that the entire strategy be known? Not really. The design can start at a high

level, and the basic architecture can be put in place by the time the strategy is well

conceived. The differentiators or the enhancements can be on top of the basic design.

This technique will help the business quickly move from inception to the design stage

and subsequently to build and service release.

Note a service backlog is a list of all the basic, intermediate, and advanced
features that need to be designed, built, and implemented to deploy a service.

DevOps primarily deals with building (the service transition phase) and maintaining

(the service operations phase) products and services. Therefore, the strategizing and

design processes are taken care of under the Agile project management framework. This

ensures that the product backlog consists of all the elements of the product. In this case,

the service backlog consists of all the basic, intermediate, and advanced features that

have been identified.

Figure 4-3 illustrates how a service can be built from the ideation phase to the

deployment stage in an Agile manner.

Chapter 4 IntegratIon: alIgnment of proCesses

85

Figure 4-3. Service development the Agile way

Let’s say that the basic features are known early and there is clarity around what

goes in, which is usually the case in terms of basic features. An example could be cloud

infrastructure to set up servers on the fly using an infrastructure-as-code (IaC) model.

The basic features make up the initial items in the service backlog. In Sprint 1, the

design of the service with the basic features is completed. This is followed by the build

(development) and implementation (deployment). A service can be offered with the

basic (but core) features to start with. With the design, development, and deployment of

the core feature, we have just created the first piece of the IT service. Whether the basic

service can be offered to a select group of customers is a business decision.

Likewise, when the intermediate and advanced features are formalized, they are

populated in the service backlog and subsequently designed, built, and deployed. The

service is developed progressively rather than in a big-bang approach.

After deploying services, the system needs to be maintained to ensure the status quo.

The operational activities kick in to ensure the services run smoothly. The activities that

you see in Figure 4-4 between the service backlog and IT service usually represent the

scope of DevOps.

Chapter 4 IntegratIon: alIgnment of proCesses

86

 Service Portfolio Management
The investigation, research, and decisions behind identifying the services to build and

offer are made during the service portfolio management process. This process looks

at the end-to-end portfolio of services, starting from the ideation stage up to retiring

services when they are no longer relevant and valuable. The process sources the

investment into building services and ensures that the investment bears fruit for the

service provider organization.

From a DevOps perspective, this activity happens much before the actual build

begins, including the design stage. And it is a critical process to ensure proper due

diligence before committing to the service. Therefore, proposing to hasten decision-

making through DevOps methods is not feasible.

 Financial Management for IT Services
Whether you deal with IT services, IT products, or spare car parts, you have to manage

the finances. This includes developing a budget to operate within, keeping tabs on where

the money is spent, and charging back as necessary. At a high level, this is common in

most industries, and it is no different in the IT services sector. The financial management

of IT services takes care of budgeting, accounting, and chargebacks for services.

The financial side of a service takes place in the service strategy phase; however, this

process comes into play in all phases. While the budgets are set up before the actual work

begins, accountability of expenditures happens throughout the lifecycle. Chargebacks

happen when necessary. As mentioned, this happens everywhere, and it is no different in a

DevOps project where high-level budget estimates are made for the build and test phases—

because the Agile processes try to couple finances loosely with the project deliverables.

From a DevOps standpoint, nothing needs to change the way it is set up in ITIL.

 Demand Management
Demand management is an interesting process and is not too common in most service-

based organizations. The process gathers inputs from various sources to feel the pulse

for the upcoming demand for services. For example, if the customer plans to add several

hundred more users to the lot, the service provider must be aware of this ramp-up

to ensure that the services (such as Internet bandwidth, storage allocation, account

creation, and so on) are scaled by the time the ramp-up is done.

Chapter 4 IntegratIon: alIgnment of proCesses

87

So, how is this relevant to a DevOps project? Consider this: as part of the build

activities, or even before the build can start, a number of prerequisites need to be in

place. How will these demands be addressed without a mechanism that is in alignment

with the DevOps way of working? I know that in most organizations, getting the right

kind of people, tools, and especially environments on time is a major challenge. Most of

these resources are showstoppers, and they make or break organizations. So, how can

you align the needs of the project with the demand management process?

The ITIL demand management identifies demand for services by preempting and

identifying patterns to better serve customers through uninterrupted and optimized

service delivery. In a DevOps project, my recommendation is to extrapolate the reach of

the demand management process to look into all the demands of a DevOps project. Be

it in the human resource area, or tools, or anything else that is needed to run the project,

demand management steps in.

When you plan the roadmap for a DevOps-styled implementation, you do certain

due diligence to identify what type of people you need, the environment setup, tools,

work locations, and other work enablers. The demand management process in this

setup must be as lean as possible to ensure that provisions are made for speedy

deliveries. Today, some of the environments and tool setups are managed on the cloud,

and the developers and DevOps engineers can spin environments along with the

required toolset at the snap of a finger. However, some organizations are skeptical, and

provisioning environments is still done in the traditional way. So, if you are to going to

work in a DevOps project, the demand management process must make commitments

Figure 4-4. Demand management alignment

Chapter 4 IntegratIon: alIgnment of proCesses

88

to use the full extent of technology to remove any blockers that exist. When it comes to

people and work locations, it’s a different matter altogether. Companies don’t maintain

a massive bench strength anymore, and brick-and-mortar offices come at a premium.

There is more onus on the demand management process to ensure that the people

sourcing and other enabling processes are optimized and focused on speed and quality.

Most of the demands generally get sorted out during the roadmap planning. No

matter how detailed the plan is, calculations go awry. During the build process, there

might be new requirements that need to be sourced. Therefore, there should be constant

alignment between the sprint planning process and demand management to get new

demands (if any) every two weeks and fulfill them in a decent amount of time. It should

work both ways.

The sprint planning sessions must identify what is needed in the next sprint or a

couple of sprints from now, and a governance structure should ensure that the demand

management process has open ears to pick up on the demand. A tool such as Slack or

Trello serves nicely in putting up the demands on a regular basis; maybe follow it up

with a meeting for clarification.

Note I don’t recommend using collaboration tools for clarification, as this process
normally goes back and forth, and precious time is spent on clarifying points rather
than acting on them. It’s better to talk and sort out issues!

 Business Relationship Management
The business relationship management process ensures that sufficient hooks are drawn

between the customer and the service provider organization at strategic and tactical

levels. This ensures that the customer feedback is immediately dealt with, and when

there is a need for new products and services, the business relationship management

can jump in to offer services to meet the needs. This is a relatively new process brought

in to support the service level management process in the service design phase.

The tenets of managing customers are more or less the same in every industry, but

maybe even more so in a DevOps project. Decisions at a strategic level can affect the

product or service delivered, so it is imperative that you are aware of the customer’s

needs and address any feedback.

Chapter 4 IntegratIon: alIgnment of proCesses

89

Note In a scrum team setup, the product owner is the customer who works
with the Devops team. they provide regular feedback during the various scrum
ceremonies. gathering feedback and acting on it is a good example of business
relationship management activities (not all) in action.

 Analysis: Service Design Phase
The service design phase comes immediately after the service has been identified to

be developed or enhanced, and the overall design of a service is done here. Making it

relevant to a DevOps project, this phase provides the architectural and enterprise design

to the service or product being delivered in DevOps style.

Figure 4-5 shows the service design processes.

Figure 4-5. Service design processes

 Design Coordination
Design coordination is the umbrella process for all design activities. It is a process that

manages the complete design activities, including aligning with the strategic initiatives,

the business requirements, and the management of budgets, resources, scope, quality,

and schedule. To state it simply, design coordination is a process for managing the

project of developing service designs.

Chapter 4 IntegratIon: alIgnment of proCesses

90

Most organizations that implement ITIL don’t try to call the design coordination

process out and plan to meet its objectives. The process just happens under the guise

of project management. There is nothing specific about coordinating design in the ITIL

framework. However, when we look at designing services for a DevOps project, we can

definitely enhance this process to fare better.

For starters, in Agile and DevOps, options are good. We don’t like to concretize

anything right at the beginning and put all our money on a single solution. I borrow the

concept of coming up with multiple design options from the Scaled Agile Framework

(SAFe). SAFe introduced a set-based design (SBD), whereby the requirements and

design options are flexible, even during the development stages. By staying flexible, the

design can pivot from one option to another based on the market conditions, the value

generated, and expenses, among other factors.

In a traditional world of design, after the requirements are drawn and fully analyzed,

the blueprint of the service (design) is drafted, run by all stakeholders, and finalized.

This is referred to as a point-based design, as depicted in Figure 4-6.

Figure 4-6. Point-based design

Typically, in a point-based design, a single design option is finalized, and the design

team gets to work materializing it, indicated in the left column of Figure 4-6. At some

point in the development stages, the original design might require changes, and these

Chapter 4 IntegratIon: alIgnment of proCesses

91

alterations are done on the fly by getting certain approvals. There is a certain amount of

rework, but the overall project plan is factored for such rework, which is still considered

normal. In Figure 4-6, the altered design is indicated as Design Change 1, indicating a

decent amount of rework.

However, as the development comes close to ending and as the transition to the real

world begins, the stakeholders realize that Design Change 1 is no longer fully relevant to

the current market conditions and to what they had assumed a few months/years back.

The design needs to change, and that needs to be followed up with a major amount of

rework. Questions pop up at this moment: Is it really worth it? What if something were to

change between now and the development completion of Design Change 2? What is the

return on investment from all this rework?

There is a good chance that the service that needs to go through massive amounts of

rework might never see the light of day.

What if there were multiple designs to work with from the beginning? What if you

could pivot during the development stages from one design to another? The set-based

design has the answer (see Figure 4-7).

Figure 4-7. Set-based design

Chapter 4 IntegratIon: alIgnment of proCesses

92

In the set-based design, you don’t finalize on a single design. You come up with a

set of possible designs, which gives you the leverage to pivot from one design to another,

even late in the game. This is illustrated in the first column, showing five different

designs.

The development begins with all five designs. When you do this, you start with

aspects of design, which helps when deciding which design options to drop. Figure 4-7

shows that Designs 2 and 3 are no longer relevant.

As you continue working on the other designs, and as you come closer to

completion, it is clear that some designs can’t make the cut, and you finalize Design 4.

In a set-based design, instead of finalizing at the beginning and working your way

making changes to the design, you start with multiple options and eliminate designs that

don’t fit the purpose and the use. This process gives you a better handle on adapting to

the current market conditions faster and allows you to make informed decisions as you

move through the process. Most importantly, you don’t have to live with a mistake that

you made months earlier in deciding on one design over the other but rather make a

decision when you have all the data points.

Now let’s address the elephant in the room: rework. Working on multiple designs

just to eliminate them during the process is waste of time, resources, and money, isn’t it?

Not really. Think about it—the development that goes against the designs are all planned

and isn’t really rework, where you try to alter the existing design to fit the updated set of

requirements. Moreover, the whole objective of developing services is to ensure that they

create value to the customer, and to achieve this goal, if it requires additional effort to

generate extra data points through multiple designs, so be it!

Another option is to borrow the principle of minimum viable product (MVP) from

the Lean Startup mindset, where the design considers the bare minimum aspects of a

design to get started. When the minimal design is placed into development, the outcome

will provide the necessary data points to make informed decisions.

The goal here is to develop a design that fits the purpose for the current market

conditions, at a finite time and with a planned budget. The chances of success is much

higher when there are options, and options give you the flexibility to alter your course as

the wind blows.

Chapter 4 IntegratIon: alIgnment of proCesses

93

 Service Catalog Management
The service catalog management is a key process in the ITIL framework. It provides a

single view of all available services for the customers to choose from. Think about the

service catalog as a menu in a restaurant that gives you a list of all available dishes.

Likewise, a service catalog for a service provider gives customers the necessary

information on what is being offered and what is in the pipeline.

Service catalog management exists to ensure that the service catalog is current and

up to date and provides all the pertinent information to the customer. This works well in

the ITIL framework and can continue to do so in a DevOps project.

There is a second thread to service catalog management, which is more technical in

nature. It is referred to as a technical service catalog. This is an internal service catalog

that provides the internal teams with pertinent information on who is supporting the

service and what the dependencies are.

For example, if I were to offer WordPress as a service to the customer, on the back

end, multiple teams make up this service. The cloud infrastructure team takes care of

the underlying servers and networks. The application team provides support for the

WordPress application. The database team supports the MySQL database. All three

teams work in conjunction to provide the WordPress service. If any of the underlying

services that power the WordPress service go down, the WordPress service goes down

as well. Therefore, it is important to map the service dependencies, and the technical

service catalog maps the service dependencies and keeps it updated.

In a DevOps project, technical service catalogs are as important as the service

catalog (visible to customers). Based on its availability and accuracy, DevOps can be a

lot more effective at churning out incident fixes, identifying dependencies, and mapping

components and modules. In a typical DevOps project, the role of a technical service

catalog is often not recognized, which leads to delays from analysis that identifies the

dependencies. A DevOps project can be a lot stronger and more effective with the

implementation of the service catalog management process.

The service asset and configuration management (SACM) process is an extension of

the technical service catalog management process, and it maps the dependencies to its

granularities. Chapter 6 is dedicated to this process.

Chapter 4 IntegratIon: alIgnment of proCesses

https://doi.org/10.1007/978-1-4842-9072-9_6

94

 Service Level Management
The service level management process is like a score-keeper. It is responsible for

measuring the levels of services delivered to customers, and before it can measure them,

the process agrees with the customers on the level of service that is to be offered.

The service level management process works closely with the business relationship

management discussed in the “Analysis: Service Strategy Phase” section earlier in this

chapter. While the business relationship management works at a strategic and tactical

level, the service level management works at an operational level.

This process seeks to understand the service level requirements (SLRs) from the

customer and translate them into service level agreements (SLAs), which will be used

as a rulebook for measuring and reporting the numbers. The SLRs determine the

contingencies to be provided in the architecture (such as high-availability architecture)

and the resources to be onboarded, and this eventually has bearing on the cost of

services.

The service level management process under ITIL was meant to measure the

various aspects of a service, mostly on the operational front. DevOps is a combination

of development and operations. While the operational measurements hold water in

DevOps, the development measurements need to be factored in during customer

discussions and negotiations. Generally, in a DevOps project, discussions around key

performance indicators (KPIs) and expected measurements are done at a contractual

level, without a process defining the ins and outs of the data sources and measurement

of performances. The service level management can be a valuable ally for DevOps

projects in identifying the KPIs and keeping a tab on how things move along.

Agreement of service levels happens at multiple levels. The agreement with

customers are referred to as SLAs, and an internal agreement in the same organization

is called an operational level agreement (OLA). Typically agreements with suppliers also

have SLAs, along with underlying contracts (UCs).

DevOps is all about speed and quality. To enable speed, multiple toolsets are

employed across various environments. They are usually managed by separate teams.

Therefore, it is imperative that the agreements (either OLA or SLA) exist to ensure

guarantees for speedy deliveries.

Chapter 4 IntegratIon: alIgnment of proCesses

95

 Availability Management
The availability management process ensures that the services delivered to customers

are available as mandated by the service level agreements. The premise is that no

matter how great the offered service is, it is not worth anything if the users are unable to

access it. This process ensures that the underlying architecture—the infrastructure and

application—are built to the expected rigors of the service.

After the service levels are agreed on by the service level management, the

availability management kicks in to build a service that meets and perhaps surpasses the

expected levels of a service. For example, building a service for 99.99 percent availability

can look very different for a similar service built for 99.9999 percent availability. The

difference between the two is minuscule, running in decimals, yet the impact on

architecture could be massive. For 99.9999 percent availability, the architects have to

factor in multiple layers of contingencies to ensure that even multiple failures do not

take down the service. The cost of services offered at 99.9999 percent availability is

multiples of the cost of services offered at 99.99 percent availability.

Managing availability in an ITIL project is similar to that of a DevOps project. Both

offer services, and both have to abide by the service levels pertaining to availability.

However, there are additions as always in the DevOps world. First, most environments

are on public clouds, and this could be a challenge in terms of setting availability

targets. Then, the presence of multiple environments to provision for builds and tests

requires a tightened grip over the availability designs, even for environments that are

not customer-facing. Also, multiple tools are employed in DevOps projects, and they

too need to be hosted and be available as per the DevOps team’s needs. Any laxity in the

availability management of test environments or tools will result in the delayed delivery

of services, which in turn will affect the overall delivery levels set forth by the service

level management process.

Therefore, it is important that the availability requirements are carefully analyzed

to be in perfect alignment with the delivery rate and the speed at which the team can

deliver.

The other aspect to consider is over-delivering on availability. As mentioned about

the cost earlier, every single decimal adds exponentially to the cost of services. So,

building an architecture that over-delivers in terms of availability is not bound to be cost-

effective, which is detrimental to the business angle of services.

Chapter 4 IntegratIon: alIgnment of proCesses

96

 Capacity Management
Although capacity management is placed in the service design phase in the ITIL

framework, the process extends its arms across the entire lifecycle. It exists to ensure that

the services offered have sufficient capacity to produce value. As a service provider, you

might be offering a top-of-the-line, full-featured service (say, cloud services), but if there

isn’t sufficient capacity (bandwidth and disk space), then the service will be useless after

all. Therefore, capacities must be ensured for maximum utilization of a service, and the

process plays a significant role in value creation for customers.

Note In the traditional architecture design principles, the design will also leave
room for growth and uncertainty; however, in the Devops world, the demand might
vary because of changing business requirements and a shortened service/product
lifecycle.

The capacity management works proactively in planning for various aspects of

capacities and in reacting to capacity-related incidents and problems. It is a process that

takes control over anything to do with capacity across the entire lifecycle of a service or

product.

Capacity management comes in three flavors:

• Business capacity management

• Service capacity management

• Component capacity management

 Business Capacity Management

The business capacity management flavor tends to the business’s needs for ensuring

sufficient capacities. It works primarily in the service strategy phase and is responsible

for understanding the demands of the customer, and it works closely with the demand

management process in identifying patterns of business activity to accurately plan for

current and future capacities.

In a DevOps project, business capacity management plays a key role in ensuring that

the scale-up and scale-down of deliveries are done in a seamless fashion, by monitoring

the demand and supporting the scale plans.

Chapter 4 IntegratIon: alIgnment of proCesses

97

The process can also help provide guidance on the scale of workload coming the

project’s way. Think about the incoming requirements as a funnel. The customer throws

in a bucket a list of the requirements to be brought forward to production. The funnel

size determines the incoming flow and the outcome. Therefore, insights around what

comes in can help alter the funnel size as needed. On the flipside, a scale-down insight

will help optimize and reduce the overall cost of delivery. Figure 4-8 illustrates the funnel

concept.

Figure 4-8. Business capacity management

In Figure 4-8, requirements come thick and fast through the opening. The service

or product delivered will depend on the size of the funnel, which is indicative of the

infrastructure, tools, team strength, and licenses, among other things, that must be

delivered. The delivery is a product or service, and without any riders, a product or

service does not add any value. What if a service is delivered that’s reeking of bugs or

Chapter 4 IntegratIon: alIgnment of proCesses

98

a product is delivered two years too late? It is critical to deliver when the product is

expected to be delivered, and an agreed level of quality must be maintained as a hygiene

factor. All this is possible if and only if the funnel size alterations are made quickly and

effectively. For this to happen, business capacity management is a vital cog in the entire

chain link.

The ITIL business capacity management is well-defined to address the capacity

concerns coming from the business. For DevOps, the existing process can be readily

applied without any modifications or enhancements. As it is deployed in the cloud

technology, you can ensure the capacity can be increased anytime you need it or

decrease it if demand drops to a certain level. The elasticity of capacity demand is

suitable to deploy on a cloud-based platform.

 Service Capacity Management

The service capacity management operates one rung lower than the business capacity

management: at a tactical level. The process delves deeper into the services offered

and brings to the table an intimate understanding of it. Through service capacity

management, you can understand the resources that are leveraged for the delivery

of services, the usage patterns of the service, and all the other statistics. Having this

information enables the service provider to maintain the performance at the required

levels and to optimize service elements wherever necessary.

For example, a video streaming service provider can improve their content delivery

networks (CDN) in regions where the subscription rate is high and optimize resource at

regions with moderate subscribers. The only way to make decisions about enhancing

performance or optimizing resources is through service capacity management.

The service capacity management process is relevant in its present form for DevOps

projects, as the methodology can leverage the maturity of the process to keep its ears

close to the ground from a capacity perspective and make adjustments in an Agile

manner when necessary.

 Component Capacity Management

The final subprocess that operates at the runway level (operations) is component

capacity management. In this subprocess, the scope isn’t to measure the performance

of the service from end to end but rather to look internally at the various configuration

items that make up the service.

Chapter 4 IntegratIon: alIgnment of proCesses

99

Component capacity management is an important subprocess, as the tactical and

strategic capacity management processes rely on the data from the ground to make

decisions on the top.

In a DevOps project, where a service depends on the infrastructure and applications,

every cog being capacity managed is a given. The additional components that need to be

capacity managed are the tools and the various nonproduction environments that are set

up to manage the quality show.

 IT Service Continuity Management
The IT service continuity management (ITSCM) process supports the business

continuity management (BCM) process by ensuring that the business functions

identified in the BCM are sufficiently recovered in the agreed upon timelines.

This process is invoked mostly when there are disasters of epic proportions and

the service offered to customers is probably going to be impacted for long periods of

time. Long-running incidents without any resolution in sight can fall under the scope of

ITSCM too.

The service provider would have prearranged recovery options such as having real-

time data replication on servers sitting across the ocean or running empty fully equipped

offices to helicopter in people from affected regions as necessary. There are different

types of recoveries, but what is more important is to identify the type of recovery needed

and to make plans for it. The inspiration to identify the type of recovery can be drawn

from the BCM.

The ITIL ITSCM process is meant for services that are offered and used by customers

and deemed critical to customer’s business. The process framework is mature and

has demonstrated time and time again that it meets the objective and is valuable to

the customer. So, I see the ITIL ITSCM process delivering the same sets of values in a

DevOps project for services that are under the purview. On the development side of

DevOps, the code, database, and tool configurations are most critical, and if there are

backup and recovery mechanisms in place, that should be enough for most projects.

Some projects might insist that development and testing not stop even in the wake of

the disaster, given the stringent timelines running against market conditions. In such

cases, the DevOps architects must plan for recoveries of code, data, pipelines, and

environments. They must also explore provisions for developers to work in alternative

settings, such as working over the raw Internet from the comfort of their homes.

Chapter 4 IntegratIon: alIgnment of proCesses

100

Nowadays, the job of architects is less challenging, as the cloud platform can offer lots

of features for fast recoveries, backup, and dual-site hosting during disaster recovery

operations.

 Information Security Management
Information security is a key aspect of IT today, and everything that we do digitally is

looked at from the perspective of security. To manage the customer information that is

used in delivering the services, the information security management process is in place.

The information security management follows the footsteps of the overall business,

the customer’s business security controls, and legislative controls, if any. In ITIL,

information security is comprised of the following:

• Confidentiality: Confidentiality is about ensuring that only

authorized personnel have the right to access data. It is about

protecting information from unauthorized parties.

• Integrity: Data that is accurate, trustworthy, and consistent has

integrity. Data gets transmitted at some point in the lifecycle and

gets read and modified across the lifecycle. The data must stay true

to what was transmitted at all times. In essence, integrity is about

protecting the data against change from unauthorized parties.

• Availability: Data may be well-protected from access by unauthorized

people, but it must also be available to authorized parties, when

needed. Denial of access to data is one of the security concerns and

is categorized as a data breach. The service provider must guarantee

availability by ensuring that infrastructure is well-architected, and

the security protocols protect the right to privacy and safeguard

against modifying confidential data.

This is generally referred to as CIA and is illustrated in Figure 4-9.

Chapter 4 IntegratIon: alIgnment of proCesses

101

Figure 4-9. Information security elements (CIA)

From a DevOps perspective, CIA is too basic for service operations. From

a development standpoint, security has a lot more standing, and there are two

philosophies currently that are ruling the security space in DevOps projects: DevSecOps

and Rugged DevOps.

 DevSecOps

The philosophy behind DevSecOps is that everyone involved in development is

responsible for security. This includes the businesses, developers, tools administrators,

testers, and product owners, among others.

Traditionally, security was considered after the product was developed and

functionally tested. It was a phase in the development process, and this was in the

waterfall world. In Agile, security activities must be done in an iterative manner. The

problem is that security has always been considered a major roadblock for speedy

delivery and IT innovation. So, in many cases, security becomes an afterthought. There

are various instances of security lapses like in Twitter and Facebook, which are the result

of laidback security controls.

Chapter 4 IntegratIon: alIgnment of proCesses

102

In DevSecOps, the goal is to introduce security at every stage of the development

process. It starts with the business processes, where the business operators are given

the tools and techniques, along with security practitioners, to help identify security

requirements. This is further drilled down with security practitioners being part of the

DevOps team and helping at every step in monitoring the system, attacking the system,

and identifying security defects before hackers do.

The thinking behind DevSecOps is that value is truly not added until security has

been part of it. It’s a mindset to inculcate and is built on the back of cooperation between

various stakeholders. Just as testing has shifted left, security too has moved with it. Now

security activities such as identity and access management, vulnerability scanning, and

firewalling can be performed programmatically (security as code) and automated.

 Rugged DevOps

While DevSecOps ensures that security is considered from the beginning stages of

development, Rugged DevOps puts the onus on security over all other activities. In other

words, between development, operations, and security, Rugged DevOps prioritizes

security over the other two.

In Rugged DevOps, the security framework is first established, and all the other

successive and subsequent activities work within the boundaries of security. This

promotes an increase in trust, transparency, and a better understanding of risk

probabilities.

The objective is to get solid, secure code, and the Rugged DevOps mindset places

stringent controls to achieve this. One of the practices is to perform a penetration test at

every stage of development. The Rugged DevOps Manifesto is as follows.

I am rugged because I refuse to be a source of vulnerability or

weakness.

I am rugged because I assure my code will support its mission.

I recognize that my code will be attacked by talented and persistent

adversaries who threaten our physical, economic, and national

security.

Chapter 4 IntegratIon: alIgnment of proCesses

103

 Supplier Management
No single service provider can provide end-to-end customer services. The service

provider will employ other service providers to provision customer services. For

example, a cloud service provider will require dedicated network connectivity, which

is a specialty of different types of service providers. The cloud service provider will

require hardware, and there are hardware manufacturers that indirectly help provision

services. The network service providers and hardware manufacturers are referred

to as suppliers in ITIL as they are not directly contracted by the customer but rather

by the service provider to offer a service. Suppliers are managed with the supplier

management process. The trend today is adopting another framework that’s an offshoot

of ITIL called service integration and management (SIAM). This framework deals with

the management of services in a multivendor environment that is common for most

organizations today.

One of the main objectives of the supplier management process is to get the most out

of the money paid to suppliers. However, in project management circles, we often ensure

that suppliers don’t get squeezed, and in the end, the contractual situation becomes

favorable to both. From a DevOps perspective, we employ a number of suppliers, and

the money expended is not everything. We need to build a healthy relationship with

suppliers to influence their feature pipeline. For example, let’s say that a configuration

management tool that you use requires an additional feature such as self-healing with

some added controls. If your relationship with the supplier is healthy, you stand a

chance in prioritizing the supplier’s feature development list, which will eventually be

beneficial to you. To sum up, in any project, especially with a DevOps philosophy, it is

paramount to maintain relationships, promote collaboration (even with suppliers), and

keep an open communication channel with all involved parties.

Other supplier management objectives are about managing suppliers through

contracts and measuring performance on a regular basis. These are what you would

expect from a supplier management process, and the ITIL supplier management process

ticks all the boxes.

Chapter 4 IntegratIon: alIgnment of proCesses

104

 Analysis: Service Transition Phase
In the service design phase, all the aspects of design are carried out. In the DevOps

adoption, however, some of the processes that appeared in the design are carried out

throughout the development lifecycle. Considering that high-level designs are in place,

it’s time that the rubber starts to meet the road. This is the service transition phase where

the actual development of services begins.

The processes involved in the service transition phase are indicated in Figure 4-10.

Some of the processes have dedicated chapters for DevOps project adoption.

Figure 4-10. Service transition processes

 Transition Planning and Support
Transition planning and support makes up the project management side of the service

transitioning activities. The process ensures that all the deliverables promised in the

service transition service lifecycle are delivered as per the scope, the time, and the cost.

This process is quite specific to the service transition phase. In DevOps projects, the

service transition and service operations phases work hand in hand, and the process and

specific project management side of transitions will make way for Agile to step in and

take over the entire project lifecycle.

In effect, the transition planning and support will cease to exist in its present form

and will become part of the entire Agile process that primarily defines and dictates the

transitioning activities.

Chapter 4 IntegratIon: alIgnment of proCesses

105

 Change Management
Chapter 9 is dedicated to the change management process.

 Service Asset and Configuration Management
Chapter 6 is dedicated to the Service Asset and Configuration Management (SACM)

process.

 Release and Deployment Management
Chapter 10 is dedicated to the Release and Deployment Management process.

 Service Validation and Testing
A service or product that is built needs to be tested to ensure its quality. This includes

functional tests to prove that the service or product is fit for use and nonfunctional tests

(such as performance and security) to prove that the service is fit for purpose. These tests

are within the scope of the service validation and testing process in ITIL.

In the ITIL publication, value creation is defined as a product that is fit for purpose

and fit for use. Value is derived based on the functionality delivered through a service

and the warranty aspects, including nonfunctional parameters such as security, capacity,

availability, and continuity. Figure 4-11 defines the value creation principle.

Figure 4-11. Value creation (image credit: ITIL.org)

Chapter 4 IntegratIon: alIgnment of proCesses

https://doi.org/10.1007/978-1-4842-9072-9_9
https://doi.org/10.1007/978-1-4842-9072-9_6
https://doi.org/10.1007/978-1-4842-9072-9_10
http://itil.org

106

This aspect of value creation in DevOps is the continuous testing that is performed

after the binary is built. I briefly addressed the testing activities in Chapter 1. Testing

ensures that the product or service conforms with requirements and meets all the

nonfunctional requirements. The DevOps testing process (continuous testing) fits like a

hand in glove with the ITIL value creation, as illustrated in Figure 4-12.

Figure 4-12. Value creation through continuous testing

In Figure 4-12, tests such as integration, system, regression, and acceptance are

functional in nature, and in ITIL terminology, a test ensures that the service or product

is fit for use. The tests indicated in the bottom row—such as performance, security, load,

and stress—are conducted based on nonfunctional requirements and ensure that the

product or service is fit for purpose.

The synergy between ITIL and DevOps in terms of the existing processes and testing

activities is further strengthened by the automation capabilities introduced in DevOps

through the continuous testing model. Every test is done automatically and multiple

times, which identifies bugs and ensure quality; ensuring quality is one of the prime

objectives of the service validation and testing process.

 Change Evaluation
The change evaluation process is a supporting process to the change management

process. It ensures that all aspects of risks are considered and put forth in front of

stakeholders who are evaluating a change (in other words, the change advisory board

[CAB]). The process is also responsible for conducting a business impact analysis to

Chapter 4 IntegratIon: alIgnment of proCesses

https://doi.org/10.1007/978-1-4842-9072-9_1

107

identify the true nature of business impact based on the potential change, which once

again provides ammunition for the CAB to make a decision.

While carrying out business impact analysis and conducting thorough investigations

are good practices, they must not get in the way of speedy delivery and innovation. In

DevOps, the changes made are smaller in pieces and are done multiple times to arrest

the probability of business impact due to a change going south. In other words, changes

are done much more rapidly, and if a change brings about an unwanted situation, it is

rolled back immediately. Since these changes are small, the chances of one hurting the

business is minimal. This is one of the insurances that exists in DevOps for delivering

rapidly. In essence, the process around thorough investigation may not happen in depth,

but it needs to be done for every user story that is developed.

The concept of minimum viable product (MVP) is borrowed in most DevOps

projects. This concept comes from the Lean Startup methodology. In an MVP approach,

you first build a service or a product that is as basic as it can be, but provides the

opportunity to conduct tests such as business impact analysis and various forecasts. This

is done to get a feel for how the final product might impact the business, positively and

negatively.

So, in a DevOps project, change evaluation is not done exclusively but is embedded

within the change and release management processes.

 Knowledge Management
Knowledge is most valuable in all areas of study, be it ITIL, DevOps, or civil engineering.

It must be built, protected, and managed to have complete command over of products

and services and to make sound decisions. The knowledge management process in ITIL

is defined with the sole purpose of managing the knowledge in organizations.

A product or a service is built over a period of time and goes through multiple

iterations. The people responsible for development and testing change over time and

are replaced by others. The incumbent knowledge with the team is precious; it helps

the team make changes efficiently and resolve incidents effectively. But if a new team

is tasked to do the same, the knowledge management system is the only bridge that

can scale up the new team to the incumbent team’s familiarity with the products and

services.

Chapter 4 IntegratIon: alIgnment of proCesses

108

The objective of ITIL knowledge management process is to ensure that the

knowledge of services is preserved in a knowledge management database and is updated

when changes are made. It also attempts to prevent reinventing the wheel because of an

effective knowledge management system.

The process ticks all the boxes in the list of features and activities that you look for

in a knowledge management system. It is ample and has demonstrated that it works

well with the ITIL framework, and the same process can be implemented for a DevOps

project as well. However, there is a subtle difference. Agile projects encourage less

documentation than traditional projects. The DevOps team uses a less formal way to

maintain the knowledge, by coding in a way that tells the story, plus writing comments

in the code (to make the code more readable), sharing knowledge in wiki pages or user

community forums, or even just taking screenshots and videos to capture knowledge.

It can be quite challenging to locate the knowledge in the DevOps world, as it is not

as straightforward as with traditional projects, where everything is documented and a

keyword search can reveal the results.

 Analysis: Service Operation Phase
The service transition phase deploys the product or service into production, and now it

is up to the service operation phase to maintain the status quo.

Figure 4-13 shows the processes in the service operation phase.

Figure 4-13. Service operation processes

 Event Management
The event management process monitors various strategic points in the infrastructure,

applications, and services and keeps a close watch on events that are preprogrammed.

Only through event management can a fast resolution be put in place, which reduces the

downtime and increases value to the customers.

Chapter 4 IntegratIon: alIgnment of proCesses

109

The process depends heavily on tools to monitor devices and services. DevOps deals

with a lot of tools, including ones that fall into the monitoring space. The ITIL event

management process provides guidance on the process to identify the critical points,

monitoring controls, and the subsequent set of actions to be done based on the event. All

this can quickly and readily be consumed by a DevOps project, as there is no dedicated

guidance in DevOps to support the setup of monitoring systems and event detection

mechanisms.

The ITIL event management process can be applied to the DevOps toolsets as well

to ensure that the rapid delivery mechanisms aren’t affected because of failing tools and

infrastructure. It is also key to establish types of events to help understand the criticality

of the events generated. Talking of types of events, ITIL defines three:

• Informational event: This event conveys information that is mostly

transactional, such as an administrator logging into a server or a

completion of a batch job. The outcome of an informational event

will not have any subsequent actions attached to it. At most, an email

could be sent out to certain stakeholders.

• Warning event: A warning event indicates that something is unusual;

however, it is not an exception or an error yet. As the event name

indicates, it gives a heads-up that an anomaly is about to happen.

Examples include the CPU utilization nearing peak load and an

administrator password keyed in incorrectly multiple times. The

subsequent action after an event can be a low-priority incident

logged and automatically assigned to the designated team.

• Exception event: When something goes down or is untoward, it is an

exception. Urgent action impends after an exception event. Examples

include cloud services that are down and data that is downloaded

to an unknown IP. Following an exception event, a high-priority or

a critical priority incident is raised, and the resolution teams spring

into action.

There is no rule that events must be categorized in this way. ITIL is based on good

practices and on the experiences of multiple organizations. These three types of events

have served well over the years; hence, they find a place in this book. Plus, the examples

that I provided are based on my experience and what I think must be categorized under

Chapter 4 IntegratIon: alIgnment of proCesses

110

information, warning, and exception. For your organization, you can start defining

events using a blank slate. You can define as many types of events as you want—as long

as there is a clear demarcation between the types of events.

Note monitoring and event management might be talked about in the same vein,
but there is a subtle difference. monitoring is the activity pertaining to keeping
a close watch on the device statuses. event management deals mostly with the
aftermath of an event detection. It deals with identifying meaningful notifications
and taking appropriate actions.

 Incident Management
Chapter 7 is dedicated to the incident management process.

 Request Fulfillment
The request fulfillment process is defined to fulfill the service requests placed by the

users, customers, and other concerned stakeholders. This process is often confused or is

badly combined with the incident management process. The request fulfillment process

serves service requests, and the incident management process serves incidents. Service

requests and incidents are different beasts altogether.

An incident is a disruption to a service, either in full or partially. Generally, it

pertains to downtimes and outages. A service request, on the other hand, has nothing

to do with outages. It is a request placed to obtain something over and above the

service that is already offered. Examples of service requests include access requests to a

SharePoint portal, requests for a new laptop, and requests to unblock a certain IP from a

firewall.

In a DevOps project, there are plenty of tools, databases, systems, and repositories.

Projects may require new tools, upgraded environments, access to team members, and

new configurations. All these fall under service requests and under the ITIL request

fulfillment process. The process has matured over the years, and in the present form, it is

apt for a DevOps project.

Chapter 4 IntegratIon: alIgnment of proCesses

https://doi.org/10.1007/978-1-4842-9072-9_7

111

 Problem Management
Chapter 8 is dedicated to the problem management process.

 Access Management
Access management is an offshoot of the information security management and request

fulfillment processes. While accesses to tools, systems, and repositories fall under the

confidentiality clause of the CIA, access management is also a service request that is

managed through the request fulfillment process.

The access management process exists to execute the policies set forth in the

information security management process, and it diligently acts on service requests in

providing, modifying, and removing access to users and other stakeholders.

In my view, the access management process is a minor process that could have been

done away with in the ITIL 2011 publication. It does not add significant value to the

ITIL framework, and the activities stated in the process are duplicates of what is already

defined under the request fulfillment process. At best, access management could have

been a subset of the request fulfillment process. I have not seen many organizations

implement access management separately, but if an organization feels the need to do so

for a DevOps project, so be it.

 Continual Service Improvement
The continual service improvement (CSI) lifecycle phase stretches across all other

phases. The scope of CSI is any of the other activities in the other four phases. The

objective is to ensure that the services don’t stay stagnant but rather improve gradually

and steadily. There is just one process in this phase, which is indicated in Figure 4-14.

Figure 4-14. The CSI process

Chapter 4 IntegratIon: alIgnment of proCesses

https://doi.org/10.1007/978-1-4842-9072-9_8

112

 The Seven-Step Improvement Process
The seven-step improvement process is the only process in the continual service

improvement service lifecycle phase. This is because the process is generic and can be

applied to any situation, any process, and any activity to come out on the other side with

an improvement opportunity.

It is important to note that improvements are an integral part of ITIL. If a service

stays stagnant without anything to show in terms of improvements, it is pretty

much guaranteed that the service is on the decline. A competitor is likely to come

up with something better, and any service that lacks improvements is due to be left

playing catchup. So, without a doubt, improvements are a necessity in ITIL. And all

improvements, either directly or indirectly, point to an increase in value delivered to the

customer, and this and only this will keep the service afloat.

Figure 4-15 shows the seven-step improvement process.

Figure 4-15. Seven-step improvement process

The seven-step process follows a logical model, whereby the succeeding activity

builds on top of the first, and all the seven actions are aimed at identifying and

implementing improvements. It all starts with what the strategy is, in other words, what

you are trying to improve. This points directly to the IT vision that has been set forth.

Once you know where you want to be, then in the second step, you check whether it is

Chapter 4 IntegratIon: alIgnment of proCesses

113

feasible to find that data points that you need. If you are unable to measure something,

then probably you have an improvement right there—go back to the design table and

enable measuring the data points as needed to achieve the targets.

Steps 3, 4, and 5 assume that you have the data that you need, and the data is

processed and analyzed so that the mere raw data ends up being information that you

can use by Step 6, where the analysis is presented back to the decision-makers. When a

decision is made to improve, the final step is to go ahead and implement it. The key here

is that the process does not stop with one iteration. It keeps chugging along. This model

of continuous cycles of improvements is an indispensable factor when we consider

alignment with DevOps. DevOps loves iterations, as it makes sense to keep doing small

things over and over again to achieve big targets. Secondly, improvements are the only

way DevOps is going to remain relevant and address the various challenges that face

projects.

This natural alignment between the seven-step improvement process and DevOps

comes in handy, as the process can be readily applied, in its present form, to any aspect

of a DevOps project and you can get tangible results out of the cycle. As the nature is

cyclic and iterative, you can probably read into the process as a step toward the future

and a stepping stone into the DevOps world.

 Summary
This chapter looked at the union of individual ITIL processes through the eyes of

DevOps. Upcoming chapters recommend a number of process changes for major

processes, such as incident and problem management processes. This chapter discussed

other minor processes and processes that do not change much within the prism

of DevOps.

Chapter 4 IntegratIon: alIgnment of proCesses

115

CHAPTER 5

Teams and Structures
Processes provide guidance for objectives to be met and outcomes to be delivered on

time. They provide the directions necessary for an organization to succeed. However,

processes are not executed by machines—people are required to carry them out. People

are extremely unpredictable, and their analog nature does not guarantee outcomes, no

matter how well processes are laid out. Therefore, it is imperative that teams be set up for

maximum chances of success. The setup for success starts with the team’s structure. The

team’s motivation, orientation, and enthusiasm stem from this structure. The teams and

their structure are the focus of this chapter, which is aimed at delivering faster outcomes

with higher accuracy.

Note In ITIL 4, there are no processes or functions. Processes and functions
added a layer of complexity that offered no benefits to those trying to define
processes and team structures.

ITIL’s processes represented a series of activities and workflow necessary to turn

an input into an output. Functions were team structures that provided the resources

for carrying out the process activities. Practices and functions engaged in a matrix

arrangement where processes called on different functions to carry out process

activities. In ITIL 4, the ITIL processes and functions are put together to work in unison

as a practice.

A practice is defined as a set of organizational resources designed to perform work

or accomplish an objective. Practices are based on a set of organizational resources that

could be people, infrastructure, software, or processes. These resources are aligned/

designed in order to achieve a specific objective. The keyword is a specific objective, and

not general. If you create a practice for making burgers, it does not create anything other

than burgers. If you want to make a burrito, you need a different practice.

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9_5

https://doi.org/10.1007/978-1-4842-9072-9_5#DOI

116

 A Plunge Into ITIL Functions
Functions in ITIL are the silos that teams are spread across. Each function represents a

group of people with different skillsets. As introduced in Chapter 1, the functions in ITIL

are represented in Figure 5-1.

Figure 5-1. Functions in ITIL

 Service Desk
The service desk is an integral component of the ITIL framework, and most ITIL

implementations prioritize the design and implementation of the service desk and its

associated processes. It is a group of people who act as the face of the service provider

organization to users, suppliers, other service providers, and even customers. The

service desk is the single and first point of contact for the identified stakeholders. If you

have a problem with your mobile phone bill, you call your cell phone service provider,

and the person on the other end of the line is from the service desk.

As the service desk serves as the single and first point of contact, it often becomes

the face of the service provider organization. Therefore, it becomes an activity of

utmost gravity to ensure that the service provider is fit to represent the service provider

organization with professional etiquette. Generally, an organization’s image depends

on the service desk. Just think about it. If your cell phone provider’s service desk gave

you the cold shoulder about a genuine problem you are facing, would you measure the

service provider’s performance based on this interaction? Definitely you would, even if

the service had been immaculate up until now, because a single interaction can break a

solid foundation built over the years.

ChaPTer 5 Teams and sTruCTures

https://doi.org/10.1007/978-1-4842-9072-9_1

117

The service desk is the first line of support for the service provider organization apart

from being the first point of contact. If the service desk cannot resolve an incident or

fulfill a service request, it is escalated to the second line of support and then the third

if the second line is not in a position to resolve. In an organization that supports an

application, generally the first and second lines of support offer configuration changes.

If the resolution requires changes to the code, it is pushed to the third line of support.

The third line of support is part of the DevOps team in a DevOps organization. This is

represented in Figure 5-2.

Figure 5-2. Functional escalation from service desk to L3 support

This chapter discusses the DevOps team and its role in the overall service desk.

Note There are multiple types of service desks that are in vogue. The most
prominent ones are local service desks that serve a particular location, centralized
service desks that are located centrally to serve multiple locations, and distributed
(virtual) service desks that are spread across multiple locations. In the last case,
the call is routed depending on the requestor’s geography and issue.

ChaPTer 5 Teams and sTruCTures

118

 Technical Management
Technical management is a functional grouping of all the technical (infrastructure)

teams. The organization structure is built around the specialization of individuals. The

thinking behind this organization structure is to place people with similar skillsets in

groups. Server teams, network teams, database teams, and data center teams, among

others, usually make up technical management function. In Figure 5-2, the L2 and L3

teams could possibly come from the technical management function if the incident is

infrastructure-related.

In Figure 5-3, the word cloud throws light on the possible technical

management teams.

Figure 5-3. Technical management teams

The premise behind setting up a separate technical management silo is to ensure

that the functional grouping will promote knowledge sharing between professionals with

similar skillsets. This silo is their home, the base where they are groomed, mentored, and

mature over time. When a project or a process activity comes calling, they are deployed

into action. After completion of the project or process activity, they return to their

familiar habitat.

This type of an organization is called a matrix organization, where the people

are placed in silos and are deployed into projects when needed. When the project is

done, they go back to their silo. They typically have dual reporting, one from the silo

and the other from the project. This is not ideal but is commonly employed in most

organizations.

ChaPTer 5 Teams and sTruCTures

119

The ITIL framework promotes placing people with similar skillsets in separate teams

or silos. They don’t distinguish between people who have stepped into the field and the

architects. Everybody is in the same silo. The rationale is that the architects require the

help of the operational professionals to design better, and the maintenance personnel

may require the support of architects in their activities. However, most organizations

today do not subscribe to this organizational framework, but rather keep architects and

operations separate.

 Application Management
Technical management is to the IT infrastructure as application management is to

applications. Similar to technical management catering to IT infrastructure, application

management specializes in software management (development and support).

Application management is a function that houses professionals who work on

software development and maintenance activities. They represent a silo that provides

resources for various software-related activities involving application practices such as

requirement gathering, analysis, design, coding, and testing. Figure 5-4 illustrates a few

application management teams that could exist.

Figure 5-4. Application management teams

Apart from providing resources to meet process objectives, one of the main tasks of

application management is to make decisions on buying third-party software or building

it in-house. Based on the requirements, options available on the market, commercials,

and other factors, the application management function is expected to decide whether

ChaPTer 5 Teams and sTruCTures

120

the service provider is better served buying commercial off-the-shelf (COTS) software or

building their own. For example, if an organization needs a ticket management system

and looks at the COTS options, ServiceNow, BMC Remedy, or HP Service Manager might

be a better bet than building a product with in-house developers. But if an organization

needs a specific workflow management solution and if the customization on the

available COTS products is expensive and time-consuming, it makes sense to opt for an

in-house solution.

Within application management, there are two areas: application development

and application management. Application development is involved in developing new

software or enhancing existing software, whereas application management maintains

the software in its designed state. They take care of incidents as they come and don’t get

into the specifics of making significant changes to the software. The distinction in ITIL is

very clear; you need people with different attitudes and skillsets to carry out application

development and application management activities. It is prudent to identify the

resources and move them into their respective silos.

The thinking behind different silos for application development and application

management is in stark contrast to what DevOps believes in, which is “one team, one

software.” The DevOps team and its objectives are covered later in this chapter.

 IT Operations Management
Operations is often seen as a launch pad for professionals getting into the IT sector. It is

viewed from the prism of complexity and is rated pretty low, which is the primary reason

for professionals to be put into operations, which signifies the bottom rung of the IT

career ladder. However, this notion is not true. Operations cannot be done by everybody,

especially newbies. It is a specialist job and requires a different set of skills to expect

the unexpected and to learn rapidly from mistakes. For operational roles, you need

people who are wired different so they can understand the underlying root causes from

repetitive actions and the analysis carried forth to look for permanent solutions. In ITIL,

the IT operations management function is tasked with managing the service operations.

There is a lot of strategy in the beginning, followed by planning and implementation.

But the actual execution of the plans are done by the IT operations management

function. People under operations management interact fairly regularly with customers,

and their attitude and zeal to keep the engine running can have an effect on the

customer.

ChaPTer 5 Teams and sTruCTures

121

Within operations, the ITIL framework defines two distinct subfunctions:

• IT operations control

• Facilities management

 IT Operations Control

IT operations control is the subfunction where IT infrastructure operations are executed.

I mention IT infrastructure specifically because the application management group

handles the operations of software-related operational activities.

Some frequent activities that are performed here are monitoring, running

operational bridges, taking backups and performing restorations, managing batch jobs,

printing, and keeping an eye on the performance of all systems.

A number of operations activities today can be fully automated to ensure efficiency

and standardization and to avoid human errors and biases. Automation is one of the key

aspects of DevOps, whereby you try to avoid people carrying out repetitive activities with

the sole aim of utilizing people power where it is really needed.

Operations in an integral part of DevOps teams, and the scope of the IT operations

control function is purely based on the operational activities pertaining to IT

infrastructure. On a DevOps team, operations folks find a place, but they are mostly from

the application maintenance front. Managing physical IT infrastructure is done outside

a DevOps team, as it is a common activity that serves multiple DevOps teams. However,

within the DevOps teams, the IT infrastructure operations teams is involved in spinning

up environments, managing them, and ensuring that the environments (or lack of)

don’t end up being a bottleneck for speedy delivery. This is all made possible through

advancements in technology, whereby servers can be created through code—a concept

known as infrastructure as code (IaC). Environments can be created by writing scripts,

and with the help of tools such as Puppet and Ansible, they can be spun up in a matter

of minutes and hours as opposed to weeks and months of effort gaining approvals and

manually processing environments.

 Facilities Management

The second subfunction in IT operations management is facilities management. As its

name suggests, this function takes care of facilities that are key to running IT services,

such as data centers, control rooms, workspaces, recovery sites, and generators,

among others.

ChaPTer 5 Teams and sTruCTures

122

The facilities management function is an overarching entity for all the teams

and people involved in the delivery of IT services. They are the enablers for DevOps

and other teams to deliver. They remain independent and outside the purview of

DevOps teams.

 DevOps Team Structure Revisited
Chapter 1 briefly introduced the DevOps team, as illustrated in Figure 5-5.

Figure 5-5. DevOps team structure

On this DevOps team, everybody associated with product development is placed

together in the same team and is asked to make the best use of the aligned goals and

objectives to intensify delivery and minimize rework (generally owing to defects). This

structure is inspired by the Toyota Production System concept of Obeya (from the

Japanese 大部屋, which translates to “large room” or “war room”), where in the time

of crisis, all stakeholders are brought into the same room to quicken decision-making.

When all the decision-makers are sitting across from each other, there is no need to wait

for decision-makers to give their okays at their leisure. Likewise, when all the people

connected to the development and support of a project are together in the same room,

the need to formally hand decisions between teams to “pass the buck” does not arise.

ChaPTer 5 Teams and sTruCTures

https://doi.org/10.1007/978-1-4842-9072-9_1

123

Given that the shared responsibility is enforced, people on a DevOps team cannot point

fingers at each other, as everybody becomes responsible for everything delivered, or a

lack thereof.

 Traditional Model
Let’s examine how this is different from the traditional sense of setting up teams that

is defined in the ITIL functions and in waterfall’s matrix organization. In a traditional

organization, people with similar skillsets are placed on the same teams and verticals

and are called into action when needed. The people are always temporarily assigned to

projects and are pulled back to the home base at the end of the engagement.

Consider Figure 5-6, which depicts a typical matrix organization where practices

denote various verticals consisting of resources with similar skillsets. The illustration

considers development, testing, server, database, project management, and architecture

the practices. Digging deeper, the development practice will have multiple teams based

on the technology, which I generically called Team 1, Team 2, and Team 3. This could be

a Java team, Microsoft team, a web development team, and so on. Likewise, each of these

practices can be subdivided based on technology, which is the most common practice of

organizing teams within enterprises.

Figure 5-6. Matrix organization

Let’s say that a project team is mobilized to develop an application. Some of the team

members from each practice come together to form a project team. This is illustrated

in Figure 5-7. In this illustration, I picked up developers, testers, database admins, an

architect, and a project manager. Note that the server administrators from the server

ChaPTer 5 Teams and sTruCTures

124

practice were not placed on the project team because the infrastructure is considered

an enabler and it stays outside the project governance. During project planning, the

infrastructure setup is considered a dependency, and this dependency is likely to

turn into a risk in due time since a discrete governance model is a formula for failure.

Likewise, there could be other dependencies, but considering that infrastructure is most

essential, keeping it outside the project governance is a risk waiting to materialize.

Figure 5-7. Mobilizing a project team

People from different practices come together to form a project team and then you

can notice that a mini-hierarchy of sorts has been set up on the project team. There is a

development team consisting of coders, headed by a development lead. Likewise, testing

leads and database leads head their respective teams. The structure is hierarchical

because of the influence from the organization’s hierarchical setup. Waterfall project

managers also argue that this is an ideal structure to avoid a conflict of interest. The

testing team, for example, will be completely impartial when testing the functionalities,

as they are under different leadership, and they are not obliged to push it through.

I examine this argument under the Agile model.

ChaPTer 5 Teams and sTruCTures

125

 The Agile Model
The Agile model, more specifically the Scrum framework, guides you to maintain smaller

teams, and each of these teams is homogenous and hybrid with developers, testers, a

Scrum master, and a product owner. These teams are called Scrum teams in the Scrum

framework. This is illustrated in Figure 5-8.

Figure 5-8. Scrum team

There are a few seemingly major differences between a traditional model of team

organization and a Scrum-based organization.

 Flat Hierarchy
The Agile team organization is as flat as a pancake. There are no layers, as clearly visible

in the traditional model. Flat organizations help transmit and receive information

between team members because of the lack of hierarchy, which helps promote better

collaboration between team members. Collaboration is one of the key asks of the Agile

framework, whereby the entire team works as a single unit.

A flat organization is not a panacea for all of an organization’s hierarchical

problems. It works the best if the teams are smaller and are well-adapted to freely share

information. Therefore, for a Scrum team using this flat structure, the recommended

team size is between six to nine members—that’s it! These numbers are based on

experiments and the experiences of various project management experts in the field.

ChaPTer 5 Teams and sTruCTures

126

You might wonder how you can manage with a maximum of nine resources for

bigger projects. The answer is to form multiple Scrum teams with homogenized setups.

In other words, every Scrum team will have a dedicated Scrum master, a product owner,

a business analyst, developers, and testers. Each Scrum team will be responsible for the

development of a particular feature or a module to ensure that they work independently,

with minimum dependencies as much as possible. For example, if you are building an

Internet banking application, Scrum Team 1 is tasked with the development of fund

transfers, Scrum Team 2 with credit rating checks, and Scrum Team 3 with the debits and

credits feature. All three teams are going to come together to form a single application,

but managing each of these modules or features independently on a homogenized team

provides the project team with the best chance of success.

 No Project Manager
In Figure 5-8 you might have noticed that there is no project manager. This is not a

mistake but is by design. You don’t need project managers if the team is self-supervised

and is able to work synchronously on their own. To help with the synchrony, a new role

of a Scrum master has been introduced. The Scrum master, unlike the project manager,

is not a manager who keeps people in check while they work. The primary role of a

Scrum master is to help the Scrum team in their developmental activities by removing

impediments that come in the way of hurdles. A Scrum master is a servant leader who

leads the team members by helping them succeed. Think about it as a cross-country

relay, where the racers are required to cross several bumpy terrains to win the race. The

Scrum master essentially removes the bumps from the way of the racers to ensure that

they drive swiftly and come out on top. The actions are generally attributed to leaders,

and the Scrum master is doing this not by commands but rather by service.

 Single Team
In the traditional model there were mini-hierarchies: development team, testing team,

and database team. The logic is to keep each of these teams independent of the others

to ensure ample wriggle room to do their work and to ensure there is no conflict of

interest. The traditional modelers did not want to have a situation where the testers

would pass all the tests owing to the pressure of release timelines. The logic is sound, but

can there be a better way to manage it? On the downside, handovers between each of

ChaPTer 5 Teams and sTruCTures

127

these teams were sluggish and often not seamless. A lot of time and effort went to waste

in trying to explain the reasoning behind the codes and the test failures between teams.

For example, during the coding phase, only the coders are given the requirements, and

then the coders pass on the developed code to the testers and at that stage explain the

requirements. How much information is passed in this game of Chinese whispers? The

testers tested based on what they understood, but received that information from second

and third parties.

The answer to this problem that materialized more often than not was to build a

single team with all the roles fused in. You create a single team and not multiple teams

as was the case in the traditional team. Remember that the teams are small in the Agile

case, so a large traditional model team typically translates into multiple Scrum teams.

When you fuse team members with different skillsets into a single team, the next thing

on the agenda is to provide shared responsibility, where everybody on the team has

equal ownership of product or feature delivery. This means you cannot have a situation

where the developers did extremely well but the testers failed to test on time. When

there is any kind of lapse at any stage of the development lifecycle, the entire Scrum

team takes responsibility. When shared responsibility is the principle for judging the

team members on their work products, conflicts of interest simply disappear. They do

not arise because the entire team wants to see the product succeed and will not be in a

position to compromise on what they see as substandard.

 Product Owner
Apart from the role of a Scrum master, which is new, there is another role introduced

in the Agile organization: the product owner. The product owner is the sole owner of

the product backlog, which is the list of requirements that need to be developed. The

product backlog consists of all the nuts and bolts that need to go into the product or

feature. The product owner owns this list and is the person who prioritizes this list to

help the Scrum team pick up items from the product backlog during sprints. If any

clarifications are needed on the requirements, the product owner is ready to help the

Scrum team.

How is it that the product owner has a complete grasp of the requirements, and how

is it that the product owner knows what priority item needs to be picked up? Although

the product owner is part of the Scrum team, he/she is from the business (customer)

organization. The proximity of a business representative who owns the requirements

list helps the development team develop better, faster, and to the requirements. In the

ChaPTer 5 Teams and sTruCTures

128

traditional model, the customer always sat outside the project organization and was

brought in only during testing and demonstrations, which was at the end of the project

lifecycle. In the Agile model, the customer or a customer’s representative takes a seat

on the project team and works with the development team closely in realizing the

requirements. This change in stance in terms of where the customer sits prevents the gulf

of mismatch between what was asked for and what was delivered.

 Predictability
Predictability may not be a good feature for individual’s personality, but for projects,

it is a top-notch character trait to possess. In a traditional model, a project might

run for a few weeks, and another project might drag on for a year or two. The cycles

of development, testing, and other associated activities happen at different times,

depending on the project plan, which was carefully laid out well before the project is due

to begin. Over a period of time, contexts change, and the project plan changes along with

it. This seems to bring in plenty of uncertainty to the mix with long project timelines and

multi-angle changes bearing their ugly effect on deliveries.

The top motto of the Agile project management methodology is not to freeze

everything at the beginning, but to keep things fluid, transparent, and flexible to adapt to

things that change. Predictability is the last thing you would associate with Agile, right?

Wrong! Although Agile is flexible enough to pick up whatever gets pushed up the list by

the product owner, most elements in the framework have a predictable nature.

For example, the sprint length is two weeks, starting on the first Monday and ending

on the second Friday. On the first day of the sprint cycle, you have a sprint planning

session where the entire team comes together to estimate and plan what can be achieved

during the two weeks. On the last day of the sprint (the second Friday), the developed

product is showcased to stakeholders, and feedback is received. Also, on the same day,

the team sits together and does a post-mortem called a sprint retrospective to understand

what went right and what went wrong during the sprint and to identify ways of not

repeating the mistakes and to optimize the delivery. So, come what may, every second

Friday, the customer stakeholders are aware that a demonstration of the developed

product (however small) is on schedule. No matter what happens in the market, the

sprint length remains the same, and the sprint plans are drawn up for the two-week

estimates and delivered accordingly within the two-week window. This is the predictable

side of Agile project management, which provides a roadmap for customers on what to

expect and what to commit.

ChaPTer 5 Teams and sTruCTures

129

 The DevOps Model
The Agile model is self-sufficient. It is a single homogenous team that has all the

elements of development built into it. Once the software is released into production and

is accepted by operations, the Agile team gives up its baby for adoption and washes its

hands of it. The team that developed it knows the product intimately, so why give it up to

another team to manage? Logic does not support it, but there are certain sections of the

IT community that believe operations is rookie work and experienced hands shouldn’t

be doing it.

Let’s take this argument one step further. If this product were to break down,

experienced hands require X amount of time to recover it, and the rookies, because

of their relative inexperience of the product, require about four times as much time

(the numbers put forth in this argument are factionary; there are no studies to suggest

that it takes four times the effort). The amount of time taken to resolve the issue is

the downtime during which customers cannot use the product or the service. This

downtime can translate into penalties based on the SLAs, negative perception of the

service provider, and bad-mouthing of the service provider to other potential customers.

Given that the time taken to resolve an issue can be significantly more with a separate

operations team, will service provider organizations sacrifice perception and avoid

penalties for the sake of engaging experienced hands only on developmental activities?

This sounds absurd! This is one of the prime reasons that the concept of DevOps took

shape and the DevOps team was born to break all barriers that exist.

 Composition of a DevOps Team
The objective of a DevOps team is to build a team that is the alpha and the omega of a

product or a service. We look at this team for all its needs. The thinking behind this is not

to scatter the knowledge across teams but to groom and build it under a single umbrella

that is close quartered.

The DevOps team introduced in Chapter 1 is the target team we try to build that has

both the development and operational team members. It is a team that is going to coexist

between sections of IT that are considered to be on different poles—the development

and operations teams.

Another illustration of a DevOps team is provided in Figure 5-9. The DevOps team

is a conglomerate of three different teams. The first is the Scrum team discussed in the

previous section under the Agile model. The second is the application management

ChaPTer 5 Teams and sTruCTures

https://doi.org/10.1007/978-1-4842-9072-9_1

130

function from ITIL; this is the team that is involved in managing and maintaining

the application. The final parts of the DevOps team are the other functions that help

with nonfunctional aspects of a product, such as IT security, tools automation and

configuration, and service managers who manage the various service management

activities and also act as a conduit between the DevOps team and the customer

organization on operational aspects. The formation of a DevOps team is decided by

the product, the service, the service provider organization, and the contracts that

were signed. The team composition presented here is for illustration purposes only.

For example, if you don’t need a service manager to be part of the DevOps, so be it.

Somebody else can pitch in to take the role, or maybe a shared team can manage service

management activities. The same is true for all activities coming under other functions.

However, the roles coming under the Scrum team and the application management

teams are a fairly standard setup for a DevOps team, and it can be said that they are the

permanent members of the team.

Figure 5-9. DevOps team composition

Another team is introduced in Figure 5-9, the shared team. The shared team consists

of a set of functions that must be carried out in a DevOps workload, but a dedicated team

member carrying out the function is not the best use of that person’s costs. Therefore, we

create a shared team for functions such as architecture, IT infrastructure, consultants,

and domain experts, when they support multiple DevOps teams. In effect, their time

will be shared between multiple DevOps teams, and they must manage their time and

ChaPTer 5 Teams and sTruCTures

131

expectations with the DevOps teams on their availability and delivery. I have always

found this challenging, especially when you have significant deliveries to make. But we

don’t have a choice today with the onus on cost reductions; for example, a dedicated

consultant or a dedicated domain expert is a major waste of resources if they don’t have

full-time work.

Consider Figure 5-10, which features the scope of a team’s reach in an organization

to provide a sense of how people are spread across teams.

Figure 5-10. Team scope in an organization

The DevOps teams are on the lowest rung in terms of the breadth of scope covered,

meaning that they are pretty much restricted to the product and service they develop

and manage. They are focused on their product, and they are 100 percent dedicated to

supporting the product placed in their scope. They don’t get into the development or

problem-solving of other products and services.

The shared teams, on the other hand, have a wider reach than a DevOps team. The

name shared teams suggests that the resources on the shared teams support multiple

DevOps teams. For example, a software architect may provide architectural support to

multiple DevOps teams, which is fairly common.

ChaPTer 5 Teams and sTruCTures

132

The next layer in the hierarchy of scopes consists of the umbrella teams. These are

teams that carry out their work across multiple projects and services. They don’t restrict

themselves to limited teams but rather do it for an entire program or an organization

depending on the size of the organization. Some examples include the capacity

management activity, which is generally done at a larger level considering that the

capacities of infrastructure and network are generally shared across multiple projects.

Another example is the asset management activity. Managing assets (such as laptops) is

generally governed from an organizational level or a business unit level.

The topmost rung with the maximum scope space consists of strategy and

compliance. All the strategic and compliance activities are carried out across the

organization by default, rather than at a lower level. An organization’s strategy will affect

all projects, DevOps or not, so it is at the highest rung on the scope-o-meter. Compliance

as well is strategized and planned at a higher level, although it will come down to

individual projects being audited and put under the lens.

 ITIL Role Mapping in a DevOps World
ITIL V3 brings in a number of roles across its five publications. Figure 5-11 shows the

list of roles from the service provider organization. It deliberately does not include the

practitioner roles and other roles that are from the customer and user community,

as they have no bearing on the mapping with the DevOps methodology. Also, the

lower-rung roles, such as coordination roles, usually exist in organizations but not in

publications. Also, you will not find the list of roles coming from functions, as I discussed

them in detail in earlier sections.

ChaPTer 5 Teams and sTruCTures

133

Figure 5-11. ITIL roles

 Strategy and Compliance
The roles that appear in the service strategy lifecycle phase of ITIL can be directly

mapped to the strategy and compliance role structure in the DevOps model, as the ITIL

roles performed are at a strategic level and the DevOps scoping is for strategic activities

along with compliance.

Figure 5-12 indicates the ITIL service strategy roles in the DevOps scope of activities.

The role of a quality manager is not explicitly named in the ITIL publications. However,

to manage the compliance of related ISO standards, such as ISO 20000 and ISO 27001,

you need a head to lead the quality function.

ChaPTer 5 Teams and sTruCTures

134

Figure 5-12. Roles under strategy and compliance in the DevOps scope

 Umbrella Teams
Umbrella teams are the set of activities that you perform that affect the entire

organization or business unit. These activities are common across the board, and they

level the playing field. For example, a change policy/process is generally common for

all technologies and business units in mature organizations because this is the process

that controls what goes in and what doesn’t. I talk more about this later in the book.

Figure 5-13 shows the roles that are generally placed in umbrella teams.

Most ITIL roles go under the umbrella teams scope, as the activities they manage are

common across the entire organization or business, and it makes more sense to keep

them standardized. The criteria for roles to be placed under the umbrella teams is that

the policies and processes stay common across the organization or the business unit.

ChaPTer 5 Teams and sTruCTures

135

Figure 5-13. Roles under umbrella teams scope

 Shared Teams
Shared teams work at a DevOps team level but across multiple DevOps teams. The

strategy behind coming up with the shared teams is to ensure that costs are splurged

on various roles, especially when the workload is not 100 percent. Some of the roles

indicated in Figure 5-14 can easily move into the DevOps team scope depending on the

product and scale of the project.

You will find that some of the roles, such as configuration manager and knowledge

manager, find representation under shared teams as well; they were previously featured

under umbrella teams. They find double representation because the role under umbrella

teams sets the tone for how the configurations and knowledge databases are developed

and managed, and the execution is done at a shared teams scope.

ChaPTer 5 Teams and sTruCTures

136

Figure 5-14. Roles under shared teams scope

 DevOps Teams
The DevOps teams are mostly made up of people who work on the ground, close to the

development and operations teams. You will find that some roles are common to the

shared teams and umbrella teams. If a specific role is in the DevOps teams, it can be

absent from the shared teams scope, and vice versa. Figure 5-15 showcases the roles

under the DevOps team’s scope.

ChaPTer 5 Teams and sTruCTures

137

Figure 5-15. Roles under the DevOps teams scope

Note that this mapping is a guide only, because every organization has its own

chemistry and trying to combine a standard set of elements goes against the nature

of DevOps.

 Summary
An organization thrives on backing a powerful operating model. An operating model

is partly defined by the teams, the structures, and their responsibilities. While ITIL has

clearly segregated teams to work as functions in a matrix type of an organization, there

are nuances in DevOps models that do not work well in silos. This chapter transformed

the functions and roles defined in ITIL into the DevOps ways of working.

ChaPTer 5 Teams and sTruCTures

139

CHAPTER 6

Managing Configurations
in a DevOps Project
Most projects fail because of a lack of configuration management and control over

the various components that make a project tick. Configuration management is the

foundation upon which a project is built. Building a shoddy foundation will logically

result in the walls and roofs of the project crumbling down in record time. Configuration

management plays a significant role for systems made up of multiple components that

are integrated with other systems and run on multiple dependencies. Sound familiar?

Most systems today are complex, owing to the need for integration and its respective

data sources and data consumers. In such a complicated setup, it is imperative that

systems be driven by configuration management, which projects rely on heavily. In this

context, those are DevOps projects.

ITIL’s service asset and configuration management process has matured over the

years and has been powering the service industry for a number of years. The first half

of this chapter delves into the ITIL configuration management process. It follows up

with what constitutes configuration management in a DevOps project and provides the

details around how they can work in unison.

 ITIL Service Asset and Configuration
Management Process
The ITIL service asset and configuration management process has served as the spine

for IT services over the years, and within ITIL, the process has matured with each

version. It is a process that defines whether a service provider succeeds in delivering IT

services and defines the longitude of the services offered.

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9_6

https://doi.org/10.1007/978-1-4842-9072-9_6#DOI

140

The concept of configuration management is simple enough. Configuration

management gives you a blueprint of IT services, the architecture underneath, and

the dependencies. It provides an accurate reflection of the connected pieces and

dependencies. It is this network of components that make the service work, and having

it in a form that’s alive and accessible gives you ammunition to make changes to services

with ease, identify business impact with minimal analysis, and resolve outages in a jiffy.

These are the tools that you need to be a valid player in today’s market, where changes

happen on the fly and customer wish lists change faster than ever.

A project without accurate and dynamic configuration management is a nightmare.

Imagine making changes to one part of the system without understanding the impact

they could cause on other, dependent systems. This happens commonly in the software

development industry. It is not uncommon that architects are baffled when they have

certain dependencies and defects crop up through the regression of acceptance testing

quite late in the development lifecycle. This is a blunder of sorts because there is a good

likelihood that software delivery might not happen as per the promised schedule, and if

the development teams try to cram in fixes at the last minute, defects pop up. If only the

architects had a working configuration management process in place, they could have

identified everything that needed to be changed and could have avoided the negativity

that emanates from failures.

 Objectives and Principles
In short, the service asset and configuration management process exists to ensure that

the various moving parts of a service are identified, registered, and maintained as long

as the service is operational. The principle behind the process is to identify the smallest

piece of a component that can be uniquely identified and managed and to connect such

components with each other to build a service model. Once a service model is built,

it needs to be maintained as long as needed to support the restoration of services, to

identify the business impact, and to make changes to the service.

 Service Assets and Configuration Items
There are two parts to this process: service assets and configuration items (CIs). Service

assets are individual elements that make up a service. The entire lifecycle of the service

assets—beginning with initiation, the changes it undergoes, and finally retirement—is

Chapter 6 Managing Configurations in a Devops projeCt

141

managed, controlled, and tracked in the service asset and configuration management

process. Examples of service assets are software, licenses, monitors, laptops, data

centers, and servers.

A service asset is any resource or capability that could contribute to the
delivery of a service. A configuration item is a service asset that needs to be
managed in order to deliver an IT service.

A configuration item is a fundamental component of a service that can be

configured, tracked, accounted for, and controlled. For example, in an email server

involving servers, routers, and MS Exchange applications, each server, router, switch,

application, and firewall can be considered a CI. Why? Because these CIs can be tracked,

controlled, accounted for, and audited.

Not every service asset is a CI, but every CI is a service asset.

Who decides what can or cannot be a CI? This is a decision made by the

configuration architect based on the nature of the services, its interfacing to other

processes such as incident and change management processes, and most importantly

the cost. For example, a server can be considered a CI. Conversely, each of the

components of a server such the processor, memory, and hard drives can be considered

CIs, which necessarily alludes to a lot more effort (and cost) in coming up with the

configuration management and maintaining it. Therefore, generally the decision is left

to the architect to make a judgment call on what level a CI should be considered. The

general practice is to measure the value derived by delving deeper into the services for

deriving CIs.

Every CI has a number of attributes attached to it. Attributes are various details

that are recorded against a CI, such as owner, location, date of commission, status, and

configuration. All these attributes are controlled through change management. This is

the layer of control that ensures that the configuration management remains accurate

and nobody can make changes to it without the approval and consent of the change

management governance.

Any service asset that is critical or that directly impacts a service is a configuration

item. This definition gives rise to a number of types of CIs that could potentially be

leveraged in a service provider organization. Human CIs (workforce management),

document CIs (document management), business CIs (the business processes that

connects business side of things), software CIs (business applications and in-house

Chapter 6 Managing Configurations in a Devops projeCt

142

developed software), and hardware CIs (servers and routers) are some examples. An

architect can choose to include only IT elements (such as software and hardware) or go

shopping for human CIs through HR departments and document CIs through document

management teams. It is entirely the architect’s decision on how to manage the CIs

appropriately.

 Scope of Service Asset and Configuration Management
As the name of the process suggests, there are two main parts to the service asset and

configuration management (SACM) process: asset management and configuration

management.

The asset management part of the SACM process is where the accountability of all

the service assets happens. Under this, the service assets are identified, accounted for,

managed, and controlled. The type of assets that will be individually managed will be at

the discretion of the service provider organization.

For example, a service provider might decide to include the monitor as part of a

desktop so as to not manage the monitor individually but under the whole unit of a

desktop computer.

The question to ask is how well a service provider can manage the service assets,

without any compromises to the users, to the service provider personnel, and to the

services. Based on this, the service design lifecycle phase determines whether certain

service assets are within or outside the scope of individual management. Remember that

every asset has to be managed. Whether they are managed individually or as a group is

at the service provider’s discretion.

In most organizations, service assets have a financial value associated with them.

The user group that enjoys the service will be charged for the assets leveraged. For

example, if I am using a laptop, each year my business unit is billed a certain amount

of money for the laptop that I use. Of course, it is notional charging, where an actual

exchange of money does not take place. But, it is a good practice to keep track of assets

and their financial information across the organizational units.

On the other hand, the scope of configuration management is based on services that

potentially impact business by the lack of it, or even in its degraded state. The scoping of

which services to be included in the configuration management process is decided by

the architect.

Chapter 6 Managing Configurations in a Devops projeCt

143

 Introducing the CMDB, CMS, DML, and DS
To manage the service asset and configuration management process, you rely on a

number of databases with varying relevance and significance.

 Configuration Management Database
A configuration management database (CMDB) is a repository containing all the CIs,

including their relationships. For example, in a CMDB model, the dependency between

the CIs can be defined through relationships such as “runs on” and “supported by.”

In the CMDB, you can have multiple services, the individual CIs, and their

relationships. Most modern ITSM tools, such as ServiceNow and BMC Atrium, offer

placeholders to record the upstream and downstream impacts. If you pick up a service

and want to use it visually to see how CIs connect, you will see an array of connections

between the CIs. Using this visual image, other processes such as incident management

can troubleshoot incidents with ease, and processes such as change management can

identify upstream and downstream impacts with a click of a button. Imagine if this were

not in place; the whole activity involving analysis and troubleshooting would be tough.

In an organization, you can have multiple CMDBs depending on the requirements,

business structure, and customer obligations. For example, you can have a CMDB for

business units A, B, and C; a CMDB separately for customer ABC; and yet another

CMDB for internal infrastructure and software. There is no limit, as long as the logic

makes sense to manage, control, and simplify matters.

 Configuration Management System
The configuration management system (CMS) is the super database that contains all the

CMDBs and more in its ecosphere. It is the layer that integrates all the individual CMDBs

along with other databases in the IT service management space, such as known error

databases, incident records, problem records, service request records, change records,

and release records. Figure 6-1 provides an illustration of a CMS.

Chapter 6 Managing Configurations in a Devops projeCt

144

Figure 6-1. Configuration management system

It is possible that some CIs in a CMDB talk to other CIs in another CMDB. The

overview of all the relationships between the CIs is provided in the CMS.

The CMS holds the CI data as well as other databases such as incident records, so

service providers and customers alike can utilize the CMS to identify all the incidents

raised against a CI and the number of times they have failed on a regular basis.

 Definitive Media Library and Definitive Spares
The definitive media library (DML) is a repository for storing all licensed copies of

procured software and software developed in-house. The repository can be an online

one or a physical one, but it needs to be access controlled.

The software that is accepted into the DML is controlled by the change management

process, and only copies authorized by change management into the DML are allowed to

be used during the release and deployment management process. The software that gets

into the DML is expected to be analyzed, quality tested, and checked for vulnerabilities

before being accepted.

Chapter 6 Managing Configurations in a Devops projeCt

145

In the case of a physical DML where CDs, DVDs, and other storage media are used,

it is expected that the storage facility is fireproof, can withstand the normal rigors of

nature, and is secure against media thefts.

The DML is ideally designed during the service design lifecycle phase, and the

following are considered during the planning stages:

• Medium to be used and the location of the master copies to be stored

• Security arrangements for both online and offline storage

• Access rights, including who has access and how it is controlled

• The naming convention for the stored media to help in easy retrieval

and tracking

• What types of software go into the DML, for example, source codes or

packages

• Retention period

• Audit plan, checklist, and process

• Service continuity of DML if disaster strikes

The definitive spares (DS) is a repository for storing hardware spares. Generally, all

organizations store a certain amount of stock, mostly pieces of critical infrastructure, to

be used to quickly replace hardware in case of an incident. Also, stocks are needed for

the operational consumption and ever-increasing demands of the customer.

Like DML, a DS must be secured, tracked, managed, and controlled. However,

change management generally does not get involved in controlling the items that go

in and out of the DS, as the gravity of compromising intellectual property and master

copies of licensed versions can be messy compared to hardware spares. The SACM

process oversees the overall functioning of the DS.

 Service Asset and Configuration
Management Processes
The service asset and configuration management process is a complex process with

technical and logical flavors playing a big part in its definition and implementation. At a

high level, the process can be explained in five steps, as shown in Figure 6-2. Translating

these five steps into a full-fledged process is a different matter altogether. The architect

Chapter 6 Managing Configurations in a Devops projeCt

146

behind configuration management must be well versed in the technicalities surrounding

the service, have a good understanding of the contractual requirements, and must be

an expert in ITIL to understand the interfaces of configuration management with other

processes.

I have been developing configuration models and processes for a long time now,

and still the field amazes me, as there is always something new to learn, such as new

technologies or a complicated contractual requirement such as a report on the number

of cores for servers. I might write a book in the future on ITIL configuration management

as the bookshelves look barren when it comes to configuration management and the

techniques to implement it. This section only talks about it from a high-level view.

 Step 1: Management and Planning
Configuration plans play a major role in the SACM process. The plans lay out the

various elements of the configuration management that needs to be considered in the

implementation. There is no set template for plans to be formed, and every plan is

customized for the services in scope and the customer/interfacing process requirements.

Figure 6-2. SACM process

Chapter 6 Managing Configurations in a Devops projeCt

147

A configuration architect will lead the planning exercise by giving structure to the

configuration model and defining various elements of configuration management that

are fit for use and fit for purpose throughout the service management lifecycle. This is

by no means an easy exercise. In terms of the timeline, a good plan might take as much

time as the overall implementation of the process.

Before this step, the architect must identify all stakeholders and sit down with each

one to understand the stated and unstated requirements. Contract documents are one

of the major sources of requirements. After gathering all requirements and analyzing

them for configuration management elements, a plan has to be defined with the

following items:

• The scope of SACM (what services are in and which ones aren’t)

• Sources of requirements and how they translate into specific

configuration management decisions

• Interfaces with other process (specifying the exact nature along with

the handshake details)

• Principles around which the configuration management will be built

• Identification of risks and dependencies

• Involved suppliers and their scope in the SACM process

• Identified tools

• Tools to be integrated between systems and suppliers

• Service assets and configuration items along with their attributes

• Configuration identification and control mechanisms

• Configuration management roles and their authorized accesses

• Other elements as needed

 Step 2: Configuration Identification
A good plan gives way to a seamless identification of configuration items. Based on the

identified configuration items and their respective attributes and data sources, the CIs

are identified for the defined scope.

Chapter 6 Managing Configurations in a Devops projeCt

148

Identifying CIs is a tedious and time-consuming process, depending on the

complexity of the services and the configuration management database. It is an activity

where different parts of the organization must come together to identify the right set of

CIs and register them accurately in the CMDB. For example, the data center teams, the

tools team, and the configuration management team must work in close collaboration

to capture the identified CIs from the data center into the CMDB. Tools help capture

CIs accurately and quickly. There was a time when we were manually capturing CIs

based on the service architecture. Many times, by the time we acquired the architecture

diagrams, captured the Cis, and registered them, the CIs involved had been modified or

replaced. Or new CIs were introduced into the architecture. This was a risk that we were

running against when manually identifying CIs.

However, today things are a lot more advanced, and most CIs are captured

automatically using discovery toolsets such as Service Watch, ADDM, and Dynatrace.

The discovery tools can even identify the relationships between CIs (such as a software

using a database). The manual activity in this whole process is to validate the data to

ensure its integrity.

 Step 3: Configuration Control
When all the configuration items are identified and the service models are built, they

are not going to remain constant forever. They can change at every turn, such as when

tweaking configurations, replacing modules, or even changing the architecture. For the

configuration management to stay relevant and useful, the CIs that are identified and

built must remain accurate at all times. A tight control net must be weaved around the

CMDB to ensure that all changes to the database happen through a defined process that

is streamlined and without loopholes.

Since configuration identification takes a good amount of time, it is likely that the

configurations will change before they officially get into the configuration control stages.

Therefore, it is practical to set up the control processes, and when configurations are

identified, they automatically go into the pipeline that’s controlled by the defined control

processes. If control processes kick in sequentially, it is likely that you will look down the

barrel to find the changes in the CMDB even before you claim a stabilized CMDB build.

Chapter 6 Managing Configurations in a Devops projeCt

149

The control processes are generally concerned with the following:

• When the CMDB will be modified (trigger and input)

• How it will be done

• Who does it

• Handshakes with other processes

Generally speaking, a good configuration management control process will initiate

making changes to the CMDB on the back of a change ticket. After making the changes

to the CMDB, the data is verified with the live environment to ensure that the change

performed is as proposed in the change plan. For example, if a change ticket is raised

to upgrade the hard drive on a server to 2TB, but instead the hard drive inserted is 1GB,

configuration management must identify the mismatch and have mechanisms flag it to

all concerned. So, configuration management is not just a database to store data but is

also a validation tool that can help organizations achieve total control.

 Step 4: Status Accounting and Reporting
The configuration items that make up the CMDB have lifecycle states. Let’s say that

a server is ordered, procured, and delivered to the service provider. When the server

gets delivered, generally it is registered in the CMDB with the status of “in store.” When

it is built or tested, the status may change accordingly. When the server makes it to

production, it takes the state “active” or “live.” When it’s time to send it for maintenance,

the status gets changed accordingly. When it's at the end of its life, the server gets

decommissioned with a status of “decommissioned.” Finally, it is discarded as e-waste,

and the server ends up with a final status of “disposed.”

All the status changes must be defined and controlled. For the status to change from

decommissioned to disposed, let’s say the acceptance criteria is that the hard drive

must be wiped clean and degaussed. Unless this is done, the status will not change to

disposed. Likewise, between the status changes, there are input, acceptance, trigger,

and output criteria. The status accounting activity is responsible for ensuring that every

change in state for a CI is recorded, and at any point in time, a clear lifeline as a CI

traverses through states is available.

Chapter 6 Managing Configurations in a Devops projeCt

150

Based on the data recorded, reports can be generated to provide an accurate

representation of the CMDB ecosystem. A number of reports are generally developed

as part of the service asset and configuration management process. A few include

configuration baseline and snapshots, active CIs in production, CI changes that are

unauthorized, and CI changes performed in a specified period.

 Step 5: Verification and Audit
The CMDB is built and used by the service management teams on a day-to-day basis for

all their needs. But how do we know that the data residing in the CMDB reflects the true

representation of the configuration items in production? For all we know, somebody

could have made changes to some of the servers and switches without updating the

changes in the CMDB. The verification and audit activity ensures that the accuracy of the

CMDB is checked on a regular basis.

This activity can happen in multiple ways. Today we have automated auditing tools

that monitor CIs in production and compare them to the CMDB values. If they don’t

match, a flag goes out to the concerned teams indicating the anomaly. This is perhaps

the most efficient way to verify the accuracy of the CMDB.

Then there are CIs that cannot be audited automatically, such as racks on a chassis

and server mounts. These need to be audited physically. In this case, an auditor walks

into a data center and picks up a random set of servers and switches to be audited

physically. The CMDB indicates its physical location. The auditor walks up to its physical

location and checks whether the server/switch sits where it is meant to.

Physical audits are limited to geographical attributes of a CI. However, there was a

time when the entire audit was done physically. An auditor would ask the administrator

to log into a server and then would check for the configuration matches physically. Gone

are those days, as physical checks have been replaced by remote audits. The auditor

remotely connects with the administrator to audit the configurations of CIs instead of

being physically present at the data center.

When the audit is complete, an audit report is written, highlighting the lapses and

providing a list of actions aimed at improving the accuracy of the CMDB. The lapses

are referred to as nonconformances (NCs). A certain period of time is given to the

accountable teams to fix the lapses and to come up with a preventive measure to ensure

such inaccuracies don’t occur again. Anomalies between the CIs in the field and the

CMDB happen mostly because of unauthorized changes and the lack of CMDB changes

on authorized changes.

Chapter 6 Managing Configurations in a Devops projeCt

151

 Why Configuration Management Is Relevant
to DevOps
Configuration management is at the heart of service management and is solely

responsible for the efficient resolution of incidents and to provide an effective map for

identifying true business impact. DevOps is not much different from ITIL when it comes

to the maintenance of products and services. The other half, development, also has

plenty of dependency on configuration management, as you will find out later in this

chapter.

Development is not a stand-alone activity and cannot be done in isolation. Systems

talk to one another and exchange data. With configuration management in place, it

makes it much easier for developers to identify the connecting bits and develop with

ease and efficiency.

Some of the development projects that I was involved with, sadly enough, did not

have the luxury of a CMDB or a map that gave them an accurate representation of web

services, databases, and views. So, any development done on one part of the software

resulted in something else breaking on the other end. The worst part was that such

defects came to the fore only during regression testing toward the later part of the

development and testing lifecycle. This essentially led to a few panic moments for the

development team, put a big question mark around the quality of the product, and

delayed the project release.

DevOps is based on the premise of speeding up the development cycle and

increasing the quality of the product, apart from efficient operational activities. For faster

cycles of development, something like a CMDB is absolutely essential to be able to have

all the information you need.

I cannot implement DevOps processes in a project until I have a working

configuration management in place—something like a CMDB that gives me a view

of the application and infrastructure integrations. In a software development project,

configuration management is a whole lot more than just something like a CMDB. There

are other moving parts that require additional management of configurations, which I

discuss in the next section.

Chapter 6 Managing Configurations in a Devops projeCt

152

 Configuration Management in a DevOps Sense
Is configuration management relevant at all today in the age of cloud and automation?

Detractors say that everything is on the cloud; resources are allocated dynamically, and

at the click of a button, environments are spun up. So, why do you need to maintain the

configurations and attributes if they are subject to change in a whiff?

It is true that the way we used to stack up servers has changed; in fact, it has been

transformed. We no longer depend on server teams to create virtual machines and load

operating systems and the set of standard settings and applications. At a click of a button,

environments are created within minutes, and the resources of the server are shared

between multiple server boxes. They are logically pooled to create an environment on

the cloud. The question to ask, rather than point to automation is, what configuration

is going into the making of the environment? How does the one-click environment

creation tool know what parameters and configurations to use in the environment? The

answer is quite simple: configuration management based on ITIL.

Consider Figure 6-3, which depicts a simple configuration management system in

the DevOps world. The environment today generally lies in the cloud, and the cloud

infrastructure gives you the ability to scale and descale on demand without any physical

changes done to the underlying infrastructure. Furthermore, all the applications and

their dependencies are deployed and maintained automatically, who gives no scope for

any uncontrolled changes to creep in. The underlying configuration management that

starts with the cloud infrastructure, the codebase, the binaries, and the dependencies,

among others, provides a real-time blueprint of all things configuration in a DevOps

project, and this will power projects to develop freely and with flair.

Chapter 6 Managing Configurations in a Devops projeCt

153

Figure 6-3. DevOps configuration management

 Decoding IaaS
Traditionally building a server—which involved racking it on a chassis, hooking all

the cables up, and allocating a subset of the box as a virtual machine—was the role of

somebody working in operations. Today, with the advent of the cloud and automation,

server creation is dynamic and can be done with a few keystrokes. The physical activities

involving server racking and connecting cables are still and will always be a manual

activity in a data center. I don’t see robotics taking over this activity! However, building a

server with specific hardware configurations is fully automated today.

To build a server, a script needs to be written with the required configurations, and

the script is then executed with tools such as Vagrant or Pivotal Cloud Foundry. Writing

a script is a one-time activity, and it can be executed as many times as needed to create

additional servers, which is generally referred to as one-click server creation. In fact,

infrastructure-as-a-service (IaaS) providers such as AWS, Azure, and Google Cloud have

created an intuitive interface to enable semi-technical people to build their own servers

by playing around on their GUIs.

Chapter 6 Managing Configurations in a Devops projeCt

154

Here’s the best part about IaaS. Prior to cloud infrastructure, if you had to scale your

infrastructure, you had to add physical components to the infrastructure to scale. In

some cases, adding could not be done, which resulted in migration to a different piece

of infrastructure altogether. Cloud infrastructure, on the other hand, is highly scalable.

You need additional RAM, no problem. Just tweak the script and execute it. You got extra

RAM. If you don’t need additional RAM anymore, you can just as easily descale. This

provides unparalleled flexibility for architects to tweak their designs and optimize for the

best performance.

 Decoding PaaS
After a server is built, the first order of business is to load an operating system on it. This

activity was traditionally carried out by installing the operating system at the command

line or via friendly GUIs. Or, operating systems can be installed by loading preset images

onto servers. Both ways work; however, they all require people from operations to do

them, and since it was a manual process, it took a good amount of finite time.

This is where PaaS comes in to automate the process of installing the platforms

(operating systems). Once the server is ready, running a script yet again with platform

characteristics enables the setup of an operating system at the snap of a finger. You

can also configure OS-level configurations such as enabling group policies, installing

standard antivirus software, monitoring, and other agents as specified by the

organizational policy.

PaaS is also flexible. If you want to change a configuration across a server farm,

you just need to change the script and execute it. Changes to thousands of servers can

happen in an instant, saving hours of manual dispensation. Tools such as Ansible,

Puppet, and Chef help with installing and maintaining software configurations.

 Application Deployment and Configuration
In Figure 6-3, I indicate that the combination of IaaS and PaaS basically gives you a bare

shell environment on which applications and their dependencies are loaded to complete

the setup of the environments, in other words, testing and production. The application

deployment was traditionally done manually, and the application was configured with

Chapter 6 Managing Configurations in a Devops projeCt

155

its dependencies and database connections. This was traditionally the activity that

the development team used to perform in testing environments and was mimicked by

operations teams on production environments.

Automation has significantly changed the way we deploy and configure applications.

The tools that I discussed for use with PaaS are capable of delivering application

packages along with all the necessary configurations at the click of a button.

So, does this mean that the development team’s role has been trimmed to

development and testing alone? In a sense, yes. We expect developers to focus on their

core areas and leave the repetitive activities for tools to execute. In addition, unnecessary

human errors are eliminated in the age of automation.

 Underlying Configuration Management
In Figure 6-3, all the configuration activities performed have a common link:

configuration management (and, more specifically, ITIL’s configuration management).

Let’s break this down.

To perform IaaS (in other words, build a server), you need to know what

configurations you need to employ. How would you get this information? You can get it

from the architects or configuration management plans, if it’s a new development. What

if it’s a system that has existed for ages and has been modified, changed, and upgraded

several times over the years, and none of the blueprints carry the exact specifications of

the server. In this case, where can you get the server specifications? Logging into each

one of them and getting the details or even running a monitoring and discovery script

is not too dependable. What you need is a live database that has been updated with the

true configurations of the server over the years: the configuration management database.

The CMDB, which is at the heart of configuration management, has all the answers that

IaaS toolsets need to build the server.

Even after the server is built all the way up, the configurations still need managing.

Whether the configuration data lies in the configuration management toolset or the

CMDB, it does not matter. The configuration management toolset can work as a

federated CMDB to ensure that the CMDB has all the data available in a single database.

Likewise, PaaS takes configuration details from the CMDB to complete its tasks,

and the application deployment and its dependencies can be effortlessly identified in

a CMDB using the existing relationships between various CIs. So, the whole network of

Chapter 6 Managing Configurations in a Devops projeCt

156

application dependencies can be brought together, stitched, and deployed to make the

environment whole again with minimum effort, ensuring maximum productivity for the

involved teams.

Once everything is set up, the working environment goes into the CMDB as a CI or a

bunch of CIs with relationships and is managed until its retirement.

 Automation in Configuration Management
Cloud infrastructure changes to the configuration happen quite rapidly. If the

configuration management is to remain updated, it needs to be updated as rapidly as the

changes. That is where the automation in configuration management comes in to play.

Making changes to configurations, although done quite rapidly with minimal lead

time—requires governance. Something like the change management process to govern

the changes done to ensure that it does not disrupt services. There is a special provision

in change management called standard changes where changes are preapproved after

a thorough assessment of business risks, which allows changes to be carried out with

minimal lead time.

I talk about standard changes in detail in Chapter 9. However, for now, assume that

changes are done on the back of standard change tickets. You can make CMDB updates

automatically based on the standard changes instantly after the change has been

deemed successful. This way, the CMDB data remains accurate with the environment at

all times, thanks to the automation you employed to make it happen.

One way to visualize this happening is that the CI where the changes are going

to happen are registered in the standard change. The CI is referenced from the

CMDB. So, when the change is carried out, the referenced CI gets a trigger to change

its configuration. But where does this configuration data come from? It might come

from the change ticket. However, more accurate sources of configuration changes are

the monitoring toolsets that you use to keep your finger on the pulse. These tools pick

up changes to the configurations, confirm whether there is a change ticket associated

with them, and if there is, go ahead and update the CMDB directly. Voila! Suppose

that the change carried out is an unauthorized one (no change ticket to back it up). In

that case, automation helps flag the unauthorized changes to the relevant parties. In

fact, automation can go one step ahead too. Based on the lack of a change ticket, the

configuration toolsets like Ansible and Puppet can self-correct the configurations to

Chapter 6 Managing Configurations in a Devops projeCt

https://doi.org/10.1007/978-1-4842-9072-9_9

157

undo the changes. So, thanks to automation, you can fully ensure that no unauthorized

changes take place in the ecosystem. The CMDB data remains accurate and provides a

true reflection of the network of CIs in the data center and the rest of the ecosystem.

 Who Manages DevOps Configurations?
The activity involving building a server—virtual machines, group policies, and the

operating system—has always been part of the operations space. The server teams were

responsible for discharging the duties related to building the server up to its operating

system. In some cases, they even deployed the applications manually, tweaked the

services involved, and set up applications.

As mentioned, servers are built in a completely different way today. Building a

server has been codified using scripts, and writing scripts can be seen as an activity that

might fall under the developer’s realm. So, it begs the question of whether the activity of

building servers requires hardware engineers (read, operations).

This is a common trap that people who try to dissect DevOps fall into. We are no

longer dealing with Dev and Ops teams anymore. We are dealing with DevOps teams,

where the team works as one unit to get the job done. If the developers can write

scripts and execute them to build servers, then so be it. While they build a server, they

are carrying out an operational activity and not a developmental activity. The same

person wears different hats while executing different activities in this case. Therefore,

in a DevOps team, it is important not to differentiate people based on Dev and Ops but

rather recognize them as a collective unit—a unit that collaborates to bring the best of

both worlds into building and maintaining a product.

To conclude, the DevOps team manages configurations related to the CIs that come

under its scope. We don’t call someone the configuration analyst or manager because

they manage configurations. In fact, in a DevOps project, at a DevOps team level, we

don’t even like to manage configurations manually but rather automate them so that

changes happen automatically and keep up with the rate of change. When new CIs are

introduced, a central configuration management team that is accountable for the overall

design and maintenance of the CMDB is brought into the loop for seamless additions

and possible deletions.

Chapter 6 Managing Configurations in a Devops projeCt

158

 Comprehensive Configuration Management
In DevOps, configuration management has a wider scope than a typical services

organization would require. For operations to run, a services organization with a good

working CMDB will be utterly satisfied, as it gives them the foundational support to

resolve incidents quickly and to assess the business impact accurately. For development

teams to be satisfied, it’s a different kettle altogether. The superset of configuration

management, which is indeed what a DevOps project requires, is the comprehensive

configuration management.

Comprehensive configuration management (CCM) is meant to be a single source of

truth for a DevOps project. Data integrity is integral to the success of any project, and this

is accomplished in DevOps through CCM, which maintains the entire product, project,

and service information. To extend this concept, no information pertaining to a DevOps

project can reside outside the CCM.

Comprehensive configuration management consists of three parts, as shown here

(and illustrated in Figure 6-4):

• Configuration management database

• Source code repository

• Artifact repository

Figure 6-4. Comprehensive configuration management

The idea behind comprehensive configuration management is simple enough.

The entire lifecycle of DevOps starts with development and continues to exist

with operations. Therefore, the configurations for a DevOps project start with the

configurations around managing source codes and the branching strategies. The

binaries generated need to be managed with care and with nitpicky organizational

Chapter 6 Managing Configurations in a Devops projeCt

159

skills. In DevOps, we recommend that developers check in the code multiple times a

day, resulting in multiple builds and binaries. Not all the binaries end up getting pushed

to various environments. Therefore, it is critical to segregate the builds that get pushed

to production and those that don’t make the cut. Binaries are stored in an artifact

repository, which is part of comprehensive configuration management.

 Configuration Management Database
A Configuration Management Database (CMDB) comes with multiple views—one that

is beneficial to operations, one for developers, and maybe another as a superset of all

information such as a complete CMS view.

The developer’s view of the CMDB can possibly have the various integrations of the

software, including the data sources, data consumers, residing environment (servers),

databases, and database instances. The operations view will possibly go deeper into the

infrastructure, and the CMDB of the data sources and data consumers will have all the

possible information to troubleshoot incidents and to identify root causes of problems.

So, although a CMDB is a vast repository of data, it is possible to customize the views to

ensure that the developer or operational personnel using it does not get drained from

data overload.

A CMDB is essential for a development team’s day-to-day activities, as it helps to

draw a blueprint of all integrations. This will help the architect plan the development

activities better, with no element of surprise coming in the latter part of the development

process. It helps developers write better code considering all the possible integrations

and avoids defects due to regression issues. The overall quality of the software improves

because of fewer defects, and most importantly it avoids rework and boosts the

development team’s productivity.

For operations, a CMDB is like pure gold. When incidents or problems are raised

against the application, it helps the team to troubleshoot the issue faster and thus reduce

the downtime of the service. During the planning of enhancements as well, an accurate

business impact can be drawn with a CMDB in place.

To summarize, a CMDB is an inherent part of any project, be it ITIL-driven services

or DevOps-powered software development projects. Building and maintaining a CMDB

is an onerous task and involves a significant portion of the budget investment. However,

the value gained by it outweighs the money spent building and maintaining it.

Chapter 6 Managing Configurations in a Devops projeCt

160

Figure 6-5 shows a CMDB. In the illustration, services, applications, databases, and

servers are represented by the different colored boxes. Service 1 depends on Application

A, as shown by the arrow. Application A leverages Database 1. Both Application A and

Database 1 reside on Server A.

Figure 6-5. Another illustration of a CMDB

In a real CMDB, however, the arrows mean something different from the relationships

described. For example, an application generally uses a database; this is the relationship

between the two entities. An application residing on a server leads to a dependency on

the relationship. The relationship around the data flow between applications (indicated

between Application B and Application C) is one of the data dependencies.

 CMDB for Change Management
The CMDB is particularly useful when you are trying to change any of the applications,

databases, or servers.

Let’s say you want to make a change to Application B. To make the change, you must first

do an impact assessment. A CMDB helps in performing impact assessments, and in Figure 6-5,

suppose changes are done to Application B. The impact assessment will read that any changes

done to Application B will impact Application C, as the data is flowing through it.

Chapter 6 Managing Configurations in a Devops projeCt

161

Today, software development seldom happens in isolation. The software to be

developed either is an improvement over existing code or is getting plugged into an

enterprise network of applications. Therefore, it is critical that the impacts are assessed

correctly, and a CMDB is a great help in this area.

 CMDB for Provisioning Environments
Another application of a CMDB in DevOps is in environment provisioning. Today we can

spin up environments on the go with tools such as Ansible in our scripts. When you key

in the exact configuration of the production server, the environment-provisioning tools

create a prod-like server with the click of a button.

But how is it that you are going to obtain the complete configuration of a server? The

most straightforward way is to refer to a CMDB.

Let’s say Server C is a production server that needs to be replicated. In the CMDB,

the Server C entry will provide the complete configuration of the server, which is a great

help in creating provisioning scripts such as with Playbooks (compatible with Ansible).

 CMDB for Incident Management
The CMDB also has other benefits, such as supporting the incident management teams

during incident resolutions. The CMDB readily provides the architecture of applications

and infrastructure, which is used to troubleshoot and identify the cause of the issue.

 Source Code Repository
A source code repository (SCR) is a critical element of a DevOps project, as the entire

basis for delivering software quickly starts with the organization of the SCR and its

related scripts. The SCR has never been included or referred to in the ITIL publications

because the design and maintenance of services depended on the production instance

of the application rather than the means to achieving the application instance. If you

are strictly from an ITIL background, you will find that the SCR is a completely new

subject that was never addressed in any of the ITIL versions and publications. The SCR

is an integral part of the CCM, and to make configuration management whole again for

DevOps projects, it is critical that you understand the nuances of the SCR and include

it during the design and implementation of the configuration management process for

DevOps projects.

Chapter 6 Managing Configurations in a Devops projeCt

162

 Basics of a Source Code Repository
A source code repository hosts the codebase used when developing an application. It is

a version control system that allows multiple versions of the source code to be stored,

retrieved, and rolled back at any point in time. This will act as an insurance against code

changes that potentially could break the application. An SCR is the single source of truth

for the entire project team, and it is also the medium that allows the team to collaborate

and work as one unit. Source code repositories are also called version control systems,

and the management techniques involved are referred to as source code management.

The objective of an SCR is to bring about a clear understanding of the constituents

of different versions of a software. If you were going to release software version 4.4, then

what exactly does it consist of, the contents of the release notes? To control the software

and its configuration, this information is critical. In addition, every version change that

was done to the SCR has a name associated with it, a timestamp, and a summary of

changes performed. This showcases the evolution of a software and will come in handy

during firefighting exercises.

 What Can Be Stored in a Source Code Repository?
This is a million-dollar question. SCR in principle is a repository where files are stored

and code changes are performed with features to allow collaboration. In a repository,

typically anything and everything can be stored. This includes documents, libraries,

contracts, databases, and the source code, of course. However, the best practice is to

restrict the SCR to store the codebase, build scripts, test scripts, deployment scripts,

stored procedures, and configuration files.

An easy way to remember is that data that is readable by humans goes into an

SCR. Anything that isn’t readable goes into an artifact repository. This is just a broad

principle. There could be some exceptions to this rule.

 Good Practices for Achieving DevOps Objectives
A DevOps project can be deemed successful if it can accelerate the speed of delivery and

reduce the defect count. For this to happen, some good practices around source code

management are necessary.

Chapter 6 Managing Configurations in a Devops projeCt

163

In Chapter 1, when I discussed the process of continuous integration, I wrote of

the need for developers to check their code in at regular intervals. This is absolutely

necessary. However, even before we go into the length of delivery, it is important to lay

down a hygiene factor involving storing source codes and other scripts that are stored on

a source code repository. First, all source code and scripts must be stored in an SCR and

nowhere else. I have seen some developers store code locally and check it into an SCR

when needed. This is not a good practice if a team is involved (which is generally the

case) in the software development. No files should be stored locally, and code changes

done on a local machine must be checked into an SCR in short batches to obtain fast

feedback and allow other developers to make adjustments according to the code

changes, or vice versa.

An SCR is a safety net that helps you experiment. Since it is a version control system,

any mistakes you make can be undone at the click of a button. In DevOps projects,

experimentation is encouraged, and an SCR ensures that no matter what you screw up,

you can always go back to the previous state without working your sweat glands.

 Choosing a Source Code Repository Tool
There are a number of commercial off-the-shelf (COTS) and open source repositories

available today. Architects who are implementing DevOps projects are spoiled for

choices with differing feature sets, which makes choosing one all the more complex.

Before we get into the tools that are used today and the benefits behind them, we need to

understand the architecture and principle behind these toolsets.

Source code repositories or version control systems come in two different

architectural standards. Traditional SCRs fall under the architectural standard called

a centralized version control system (CVCS). The concept is straightforward. The

source code is stored in a centralized repository and can be accessed by all authorized

developers. At any point in time, one of the developers can check out the code, make

changes, and check the changes back into the repository. This is illustrated in Figure 6-6.

Chapter 6 Managing Configurations in a Devops projeCt

https://doi.org/10.1007/978-1-4842-9072-9_1

164

Figure 6-6. A centralized version control system

In a CVCS, the codebase is stored centrally on a server, and developers can access

it to make changes and check it back in, something similar to the traditional file

repositories such as Microsoft SharePoint. When a developer makes a change to the

codebase, other developers have to pull the changes to their local systems, and the

incremental changes appear in the local repositories. The positive aspect of a CVCS

is that the developers are not expected to store local copies of the codebase, and as

soon as they are connected to the network, they can access the server and pull the

entire codebase. This is also one of the main disadvantages. Suppose the network or

the repository is down; the developers cannot do anything but wait for the systems and

networks to come back up. This affects the productivity and hence the project timelines.

This shortcoming is taken care of in the modern architecture of an SCR: a distributed

version control system (DVCS).

A DVCS is far more flexible, as the codebase is stored locally in every developer’s

machine, and it is updated directly from the server as well as from other developers,

which is similar to how torrent downloads work. So, even if the network to the SCR

server or the server itself is down, the developers can work on their local copies and

share their changes dynamically with other developers. The SCR server is no longer a

single point of failure in a DVCS architecture, as is the case in CVCS. This is illustrated in

Figure 6-7.

Chapter 6 Managing Configurations in a Devops projeCt

165

Figure 6-7. Distributed version control system

Another thing to note between the two architectures is that in DVCS you see that

two developers are concurrently making changes to the codebase, while in CVCS, the

codebase is locked when a single developer checks it out. In DVCS, concurrent working

is one of the major pluses and is a differentiating factor in being the SCR architecture of

choice in DevOps projects.

Because developers don’t depend on a server for pulling and committing their

changes, the whole process of development is much faster, and it promotes collaborative

working, which are sweet words to hear for any DevOps project.

Tools that run on the CVCS architecture are Subversion (SVN), CVS, and Perforce.

SVN is perhaps the most popular of the CVCS toolsets and is quickly being replaced by

DVCS ones such as Git and Mercurial.

 Artifact Repository
An artifact repository is a database that stores primarily binaries. In addition to binaries,

you can store libraries and product- and project-related documents. All machine-

readable documents go into an artifact repository and not into a source code repository,

primarily because artifacts are bigger, and the collaborative features of an SCR are

Chapter 6 Managing Configurations in a Devops projeCt

166

overkill for dealing with binaries. Also, storing source code on SCR comes at a premium

price, and you don’t want to pay a whole lot more than you have to for binaries—for the

simple reason that binaries are reproducible based on the versions of codebases.

The principle of continuous integration encourages developers to push code to

the mainline frequently. Each push triggers a build, which results in a binary getting

generated. Depending on the size of the project, an artifact repository could end with

thousands of binaries. Therefore, managing it can be a headache if there is no proper

strategy around it.

 Managing Binaries
Binary management can be cumbersome; with thousands of binaries, which one should

the release manager choose to push into production? Believe me, this is an undesirable

task. To the release manager’s aid, an artifact repository will help big time.

An artifact repository comes with two logical partitions for storing and managing

binaries:

• Snapshot

• Release

Every time a build is successfully run, the binary that is generated is stored in the

Snapshot repository. But not all of the binaries are pushed into production unless the

project adopts the continuous deployment methodology. The binary that is pushed

into the production is first moved into the Release partition before being deployed into

production, as illustrated in Figure 6-8.

Figure 6-8. Artifact repository logical partitioning

Chapter 6 Managing Configurations in a Devops projeCt

167

Figure 6-8 demonstrates that various binaries are generated every time the build

is successful. The binaries in this example are named Binary 0.x and are stored in the

Snapshot partition. Not every binary is promoted into production.

The binaries that are promoted get moved into the Release partition from the

Snapshot partition. In this example, that includes Binary 0.3 and Binary 0.5.

This is key to the release management process. Let’s say that Binary 0.5 is deployed

into production, and the deployment fails. As a fallback step, the deployment must roll

back to the previous version.

The previous binary versions used are stored in the Release partition, making

planning and executing releases efficient.

Without a logical partition, imagine the planning and effort it would take to identify

the previous version in production and roll it back.

 Summary
Configuration management is the most important process in ITIL and the spinal

cord of DevOps projects to operate in an autonomous fashion. Getting configuration

management right will have bearing on the health and wellbeing of the project.

Configuration management in DevOps can be referred to comprehensive configuration

management that consists of configuration management database (CMDB), source code

repository, and artifact repository. Identifying, capturing, and maintaining data across

each of these repositories is crucial.

Chapter 6 Managing Configurations in a Devops projeCt

169

CHAPTER 7

Incident Management
Adaptation
Whenever somebody refers to IT service management or ITIL, the first issue that comes

up is the incident management process. No matter how far away one might be from the

service management area, they always seem to be quite familiar with the process and its

relevance. It is a highly popular process that finds its rightful place in every organization.

Since this process makes or breaks an organization’s service delivery, service providers

often give plenty of weight to the process, and as a result, the incident management

process is perhaps the most mature of all the ITIL processes.

This chapter assumes that you are new to the concept of incident management,

so the first couple of sections provide insights into the world of incident management

from an ITIL perspective, which is the baseline that we are going to draw for the DevOps

adaptation. If you are well versed with the incident management process, you can skip

ahead to the DevOps adaptation sections.

However, in my experience as an ITIL trainer, ITIL practitioner, and ITIL

consultant, I find that many people believe that they know incident management

but their understanding is further away from the ITIL’s version. The rationale behind

my supposition is that ITIL practitioners often believe that an incident management

implementation in their respective organizations to be absolutely correct, which is

not often the case. Most organizations tweak and turn the process to their advantage,

and there is nothing wrong in doing that. But, when it comes to an individual’s

understanding of incident management, the person must draw a clear line between what

the incident management baseline is and what is implemented in their organizations.

With this logic, I recommend you read all the sections in this chapter to get a better

handle on the ITIL incident management process and its adaptation in a DevOps

environment.

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9_7

https://doi.org/10.1007/978-1-4842-9072-9_7#DOI

170

 What Is ITIL Incident Management?
The main aim of incident management is to reduce downtime once a service is

disrupted. The process does not get into the areas of prevention and thus reduction of

downtime but rather is a process that lives and breathes in the reactive realm and jumps

into the ring when the service is down. Let’s look at some examples of services. Cable TV,

Internet, and electricity are some services we subscribe to, and the expectation is that

they must be available around the clock. Let’s say that you come back tired from work,

get a cold beer from a fridge, and sit down in front of TV to enjoy your time. If the cable

TV service goes down, then obviously you cannot enjoy the service that you are paying

for. In this instance, your service is down, which is a disruption to the service you were

meant to enjoy. However, just because the service is down does not mean that incident

management is at play. Perhaps your service provider does not even know that your

service is down. When you lodge a complaint, an incident is logged against your cable

TV account, and the incident management process is triggered.

Since you are logging the incident, it is considered reactive incident management, as

you are reacting to a reported incident. Suppose your service provider had a mechanism

to monitor cable TV connections in real time and the cable TV service goes down in

the afternoon. The service provider would soon enough know about the outage and

can raise an incident without being called in. The process that deals with monitoring

and acting on various states of monitoring is the event management process. The event

management process monitors various critical points for defined changes of state, and

when the change of state refers to a loss of service (or degradation), an incident gets

logged automatically (capability exists), and the incident management process takes

over from the event management process. This is proactive incident management where

the incident is logged even before users have identified anomalies in the system.

 Incident Management Is Vital
The incident management process plays a vital role in any service provider organization.

It is the process that influences customer perception, it is the process that ensures

that customers aren’t at a disadvantage because of the lack of services, and it is the

process that opens the communication channel on a regular basis with customers and

keeps a lid on expectations before the steam blows all over. Therefore, the incident

management process must be developed and implemented with utmost precision to

ensure that the customer’s sensibilities are understood and that restorers are deployed

Chapter 7 InCIdent ManageMent adaptatIon

171

to work when needed. This is the area where DevOps can have a momentous role, as

the integrated DevOps teams provides the incident manager with the best of resources/

staff to be parachuted into an incident resolution when needed. This luxury of having

knowledgeable and capable resource-handling incidents in a non-DevOps incident

management process is generally rare.

 Incident Management Is the First Line of Defense
I see incident management as the first line of defense. The service desk is the first point

of contact, you might think. That’s true! The service desk plays a role as first-line support.

When they cannot resolve the incident, they pass it onto L2 and L3. More often than

not, the incident management process can find a resolution and bring the service back

online—whether it involves tactics that are permanent in nature or are temporary is not

of significance. At times when critical incidents emerge or when a temporary resolution

is applied, the problem management process picks up the slack to perform a detailed

investigation and to apply a permanent solution. I will talk about problem management

later in this book.

 Digging Deeper Into Incident Management
Incident management is a vast topic, and with the maximum number of IT service

management professionals working in this process, it has grown a lot in terms of

maturity and the ways of working. Although the section title says, “digging deeper into

incident management,” I am just going to skim the surface of the incident management

process and provide a basic understanding of what the process entails.

 Objectives and Principles

The main objective of the incident management process is to restore the service to its

normal self as quickly as possible—the focus being on speed rather than on how it’s

achieved, as long as it’s not disruptive. Speed is critical because the service is down,

and a service that is not enjoyed by the users and customers has the potential to lead

to business losses. In turn, the service provider gets penalized based on the signed

contracts.

Chapter 7 InCIdent ManageMent adaptatIon

172

Note here’s the definition of an incident from the ItIL publication: “an unplanned
interruption to an It service or reduction in the quality of an It service.”

Let me provide an example to illustrate the means of resolution over permanency.

Let’s say that the printer located in your bay has run out of juice and you need to print

something out for an upcoming meeting. You register an incident, as per the standard

process, but it takes a couple of days for a new ink toner to arrive and another day for it

to be installed. You don’t have that kind of time on your hands, and moreover incident

management frowns on delays such as this. Therefore, the incident analysts help you

install a printer that is in the adjacent bay, which will enable you to print before the

meeting. Here, by providing a temporary solution, users are unaffected for long periods

of time, and the work gets done as it should seamlessly—maybe with a little blip. On the

back end, new toner is ordered, and its installation is processed. It’s a win-win situation.

This temporary solution is referred to as a workaround, as it does need to be tweaked

again to fix the problem permanently. You cannot expect users to use the printer in the

adjacent bay going forward—indefinitely.

To emphasize the point, the objective of incident management is to make sure that

the service comes back to normal state as soon as possible, no matter how it's resolved.

To ensure that the applied fix is stable and long standing, there are other processes that

are held accountable.

 What Constitutes an Incident?
Any disruption to a service is an incident. When we say service, we refer to services that

are in the active state and services that are currently available and being enjoyed by the

user community. Suppose a service is being designed and something in the process goes

wrong. This cannot be an incident. It could be a defect or a bug that needs to be fixed

using the software lifecycle management process. The incident management process

must be strictly applied to the services that are live.

Chapter 7 InCIdent ManageMent adaptatIon

173

There are exceptions, but they must have a rationale. Suppose a software

development team encounters an issue with the system testing environment. They go

ahead and raise an incident. Why? The software developers and testers are the users

(internal customers) of the testing environment service that is put into place to develop

applications.

Another scenario is when the tool that monitors the health of the network switches is

down. You still register an incident although the customer’s service is unaffected. Why?

If you consider monitoring a service, it’s a service that has an internal service provider

involved. Second, the lack of a monitoring tool is a risk that poses greater danger to

services—delayed incident detection and hence longer downtime.

 Who Can Register Incidents?
So far we have discussed two instances:

• Users report incidents based on their observation or experience of

service degradation or lack of service usability.

• Monitoring tools keep a close to real-time watch on the service, and

as soon as it veers from the normal, an incident is automatically

registered.

Users reporting incidents is highly reactive, and a fact surfaces that the service

provider does not know whether the services are running as they should. It is highly

ineffective in terms of maintaining service uptime, although the downtime of services

is calculated generally based on the registered incidents. Monitoring agents reporting

incidents is a highly recommended option and is often employed in most services.

The monitoring toolsets often keep track of services or devices and employ a set of

criteria for registering incidents. This system is effective because many times, incidents

are identified and rectified even before the users get wind of them. I would not call

it proactive as opposed to reactive when users report incidents, but in the reactive

quadrant, this provides the best chance of resolving incidents quickly—which directly

serves the purpose of the incident management process.

Chapter 7 InCIdent ManageMent adaptatIon

174

There are two types of monitoring services available—active monitoring and passive

monitoring. Active monitoring refers to monitoring toolsets that monitor critical points of

a service or a device and register an incident during anomalies. Examples of monitoring

tools include Dynatrace, AppDynamics, Splunk, and Nagios. The second type is passive

monitoring, where the devices such as switches and routers have a built-in capability

to capture data and report it to another system that studies the data and decides to take

action based on the study. Passive monitoring is often not an effective partner for the

incident management process to keep downtime in check. A third-party monitoring tool

(active monitoring) has a fair chance of staying outside the realm of the infrastructure,

applications, and network, and report back on health accordingly.

Apart from users and monitoring tools reporting incidents, there’s a third source as

well. IT staff who are working toward maintaining services (infrastructure, application,

and networks) are required to report incidents when they observe them. Like users, IT

staff reporting incidents is ineffective as well, but nonetheless it is an option to keep the

IT staff aligned with the overall objectives of the incident management process.

 A Typical Incident Management Process
It is important to understand the general set of activities that are followed to achieve the

incident management objectives. As mentioned, ITIL is based on the value derived from

various organizations, and incident management is one of the founding processes. The

typical process is based on the common set of activities performed across organizations.

Figure 7-1 illustrates a typical incident management process in line with the ITIL service

operation publication.

Chapter 7 InCIdent ManageMent adaptatIon

175

Figure 7-1. Typical incident management process

Chapter 7 InCIdent ManageMent adaptatIon

176

 Step 1: Incident Identification
A mechanism needs to identify incidents; they don’t show up at your doorstep by

themselves. Incident identification or triggering of incidents can happen a number of

ways. Remember that a process is kick-started when it is fueled by the identified triggers.

It is important that all triggers are identified during the process definition stage. The

more the merrier, but controlling all the known triggers requires plenty of effort and

could lead to misidentifying incidents if they are not thought through. The following are

the most commonly used incident management triggers:

• Event management: The monitoring activities mentioned earlier fall

under the event management process, including both active and

passive monitoring.

• Telephone: One of the oldest forms of raising complaints is to pick up

the phone and complain about a broken service. To raise an incident,

users have the option of calling the service desk. The trigger in this

case is the phone call by the users. The IT staff could also find a fault

in one of the systems and call the service desk.

• Email/chat: Instead of calling, users can opt for a passive form

of communication through email or real-time chat. They still

interact with the service desk and get them to raise an incident on

their behalf.

• Web interface: In today’s world of cutbacks, the service desk is often

replaced by self-help mechanisms. ITSM ticketing tools such as

ServiceNow and BMC Remedy provide the frontend for users to raise

their own tickets without the aid of the service desk. In a way, it is good

that precious resources can be used elsewhere. But it could also lead to

a misidentified incidents, which add to the flab that you don’t like to see.

 Step 2: Incident Logging
All incidents that are identified should be logged, with a timestamp that is unalterable.

Incidents are generally logged directly into the tool by the user if there is a web interface.

The event management tools can also create incidents based on the threshold levels and

the designed algorithms. The service desk raises incidents on behalf of end users when

they call, email, or chat about their issues.

Chapter 7 InCIdent ManageMent adaptatIon

177

An incident ticket has a number of fields associated with it, primarily to support

the resolution of the incident and to control the various parameters and pull reports as

necessary. The following are some common fields that are found on incident tickets:

• Incident number (unique)

• End user name

• End user team name

• Incident logger name

• Time of logging the incident

• Incident medium (phone/chat/web/email)

• Impact

• Urgency

• Priority

• Category

• Related CI

• Incident summary

• Incident description

• Assigned resolver group

• Assigned engineer

• Status

• Resolution code

• Time of resolution/closure

 Step 3: Incident Categorization
Not all incidents fall in the same bucket. Some incidents are server based, some network,

and some application/software. It is paramount to identify which bucket the incident

falls into, as the incident categories determine which resolver group gets assigned to

resolve it.

Chapter 7 InCIdent ManageMent adaptatIon

178

For example, if there is an incident logged for the loss of Internet, you need the

network team in charge of handling network issues to work on it. If this incident gets

categorized incorrectly, say into applications, the incident will be assigned to a resolver

group that specializes in software troubleshooting and code fixes. They will not be

able to resolve the incident. They would have to recategorize it and assign it to the

right group. The resolution would then take longer, and this defeats the purpose of

the incident management process. So, it is absolutely imperative that the team that is

logging the incident is specialized in identifying the incident types and categorizes them

correctly.

In case of autologged incidents, event management tools are designed to select a

predetermined category that does not falter. User-raised incidents are automatically

categorized based on the keywords mentioned in the incident summary and description.

It is quite possible that the incident could be categorized incorrectly in this scenario, but

in the interest of automation, this is the price you have to pay.

 Step 4: Incident Prioritization
Earlier I discussed incident prioritization. This is the step where the process of incident

prioritization is acted upon. The service desk measures the urgency and impact and sets

the incident priority. Event management tools have the ability to set the right priority

based on an algorithm. User-created incidents are normally assigned a default priority,

and the resolver group changes the priority once it begins resolving the incident.

Incident priorities are not set in stone. They can be changed throughout the lifecycle of

an incident. It is possible that the end user hyped the impact of the incident and raised

a higher-priority incident. During the resolution process, the resolver group validates

the impact and urgency and alters the priority as needed. Some critical incidents are

monitored after resolution. The observation period could see the priority pushed down

until closure.

 Step 5: Diagnosis and Investigation
The service desk performs the initial diagnosis of an incident by understanding the

symptoms of the incident. The service desk tries to understand exactly what is not

working and then tries to take the user through some basic troubleshooting steps to

resolve the incident. This is a key substep, as it provides the necessary data points for

Chapter 7 InCIdent ManageMent adaptatIon

179

further investigation on the incident. It is analogous to a doctor asking you about the

symptoms you have: Do you have throat pain? Do you have a cough? Do you have a

cold? Do you have a headache? You get the drift. Likewise, the service desk is expected

to ask a series of questions to provide the necessary information to resolve the incident

quickly, which is the objective of the incident management process.

Not all incidents can be resolved by the service desk. They are functionally escalated

to the next level of support, generally referred to as level 2, or L2. The L2 group is

normally part of an expert group, such as the server group, network group, storage

group, or software group. The resolver group diagnoses the incident with the available

information and, if needed, calls the user to obtain more information. It is possible

that the service desk’s line of questioning could be on the wrong path, and perhaps the

resolver group must start all over again by asking the right set of questions. Investigation

of the incident digs deeper into the incident by understanding one or more of the

following thought processes:

• What is the user expecting to obtain through the incident?

• What has gone wrong?

• What are the sequence of steps that led to the incident?

• Who is impacted? Is it localized or global?

• Were there changes performed in the environment that might have

upset the system?

• Are there any similar incidents logged previously? Are there any

known error database (KEDB) articles available to assist?

 Step 6: Resolution and Recovery
Based on the investigation, resolutions can be applied. For example, if the resolver

group determines that a particular incident is not localized, there is no reason for it to

resolve the incidents on the user’s PC, but rather it starts troubleshooting in the server or

network. Or perhaps it brings in the experts who deal with global issues. The success of

resolution rides on the right path of investigation. If the doctor you are seeing prescribes

the wrong medicine because the line of investigation was completely way off, the

chances of recovery are close to nil, aren’t they?

Chapter 7 InCIdent ManageMent adaptatIon

180

For incidents that are widespread in nature (affecting multiple users), once the

resolution is applied, various tests have to be conducted by the resolver group to be

absolutely sure that the incident has been resolved, and there is generally a recovery

period to observe the incident and be on the lookout if anything were to go wrong again.

In some of the accounts that I have handled in major incident management, it was a

regular practice to keep major incidents open for at least a week, to observe, and to hold

daily/hourly meetings with stakeholders to check the pulse and to keep tabs on things

that could go wayward.

 Step 7: Incident Closure
When an incident is resolved, it is normal practice to confirm with the user before

closing the incident ticket. The confirmation is generally made by the service desk, not

the resolver group. So, the process for post-resolution of an incident is that the incident

is assigned to the service desk for confirmation and closure of the incident. Some

organizations think that this step adds too much overhead to the service desk and prefer

to forgo this confirmation. They keep the incident in resolved status for maybe three

days. An email is sent to the user stating that the incident has been resolved, and if they

feel otherwise, they are expected to speak up or to reopen the incident. If there is no

response in three days, the incident would be auto-closed. I like doing this and have been

a proponent of the auto-closure system as confirmation can be overbearing and, from a

user’s standpoint, irritating to the customer to receive calls just to ask for confirmation.

After an incident has been closed, a user satisfaction survey goes out asking for

feedback on the timeliness of the resolution, the ease of logging incidents, and whether

the user was kept informed of the incident status throughout the lifecycle.

 Major Incidents
Major incidents, as the name suggests, are severely impacting incidents that have the

potential to cause irreparable damage to the business. So, the ITIL service management

suggests that major incidents be dealt with through a different lens. This can be done

by having a separate process, a more stringent one, of course, with stricter timelines

and multiple lines of communication. Many organizations institute a separate team to

look into major incidents and hire those with specialized skillsets to be exposed to the

pressure that the job inherits.

Chapter 7 InCIdent ManageMent adaptatIon

181

The people who work solely on major incidents are called major incident managers.

They have all the privileged powers to mobilize teams and summon management

representatives at any time of the day (or night). They run the show when there is a major

incident and become completely accountable for the resolution of the incident. The

pressure on them is immense, and it calls for nerves of steel to withstand the pressure

from the customer, service provider senior management, and all other interested parties.

I once worked as a major incident manager and was heading a major incident

management team not too long ago. The job entailed keeping the boat afloat at all times,

and any delays from my end could potentially jeopardize the lives of miners across the

globe. During a major incident, there could have been two or three phones buzzing with

action, emails flying daggers into my inbox, and chat boxes flashing and roaring. It is a

good experience when you think about it in hindsight and a time I will cherish.

To track, manage, and chase incident-related activities, there are incident managers

who keep tabs on all occurrences. When a major incident hits the queue, none of the

groups takes responsibility, but they call in the experts (major incident managers) to

manage the situation. In some cases, the service desk and incident managers might

validate the incident priority before calling the major incident line.

It is good practice to let the whole service provider team and the customer

organization know that a major incident is in progress to make sure that everybody knows

that certain services are down and to avoid users calling the service desk to report the

same incident. A few good practices in this regard include sending emails at the start and

end of major incidents, flashing messages on office portals and on ticket logging pages,

and playing an interactive voice response (IVR) messages when users call the service desk.

 Incident Management in DevOps
Whenever we talk of DevOps and the operations side of it, we are mostly referring to

incident management and a methodology that caters to maintaining services from

a downtime reduction standpoint. Making incident management work in a DevOps

project is critical for the DevOps model to work. If we can get incident management

right, the rest of the components in the DevOps methodology flow like molten lava.

This section not only looks at the process to be employed but also drills down to the

management of the DevOps team—the jugglery between incidents and user stories and

everything else that can make or break the incident management process in a DevOps

project.

Chapter 7 InCIdent ManageMent adaptatIon

182

Before you delve deeper into the aspects of incident management in DevOps, the

setting you need to consider is the one team concept. This is a team consisting of the

traditional application development and application management teams fused into a

single being. It is illustrated in Figure 7-2. I am not highlighting the other roles that I did

in Chapter 5, as the focus of this section is to emphasize the formation of a single team

that is responsible for both development and maintenance activities. This team is the

alpha and the omega of the product you are supporting or the service you are delivering.

Figure 7-2. One team concept

 Agile Project Management
There are multiple types of inputs for a DevOps team. They can come in the form of

user stories for developing new features, or can come through the service management

pipeline in the form of incidents and problems. The DevOps team must cater to all

recognized types of inputs.

Chapter 7 InCIdent ManageMent adaptatIon

https://doi.org/10.1007/978-1-4842-9072-9_5

183

 User Stories

The inputs for an application development team are generally requirements from

the customers. In the Agile world, we call these user stories and not requirements.

Is it the same wine in a fancier bottle? No. User stories are the goals that the users

want to achieve from their own perspectives. User stories are written in the form of

users explaining what they want the software to do in various contexts. Here are some

examples of simple user stories:

• I want to get suggestions when I start typing in the search box.

• I want the desktop background to refresh every hour.

• I want to see the logo as I scroll down the web site.

User stories can be specific and more to the point. They help developers by providing

a context, action, and expectation. The given-when-then template is often used to define

user stories.

• Given specifies a context.

• When provides the action that you are going to take in the defined

context.

• Then sets the user’s expectation when the action is taken in the

defined context.

Here’s an example:

• Given I sign into a shopping website

• When I type puppy in the search bar

• Then a list of products with the keyword puppy will appear on a

full page

Simply put, the requirements for a development team come in the form of

user stories. The expectation from a user story is that it is a piece of work that can

be completed within a sprint. But it is likely that the piece of work coming in is too

complicated to be completed in a sprint cycle. These bigger pieces of work are referred

to as epics, and they are further broken down into user stories. Development of epics

can run across multiple sprints. Epics are broken into multiple user stories, and the

development of user stories is planned to be done in a single sprint.

Chapter 7 InCIdent ManageMent adaptatIon

184

 Incidents

When there are incidents reported for a service supported by a DevOps team, the

incident eventually trickles down onto the laps of the team for its resolution. The team

that works on the user stories could be tasked with resolving incidents as well.

 Problems

Although incidents and problems are mentioned in the same vein, more often than not,

they are a different species. Chapter 8 goes into the depths of problem management in a

DevOps project. Identifying the problem is one of the inputs in a DevOps team, and the

nature of work coming from a problem is to triage the underlying cause of complex or

nagging issues. Once the root cause is known, a permanent solution is applied to avoid

repeatability.

 Sprints

In Agile project management methodology, we work in smaller chunks at a time,

referred to as sprints. A sprint could last anywhere from two to four weeks. The idea

behind a sprint is not the same as the phases in the waterfall project management

methodology. The activities performed in a sprint are the same as the other sprints.

However, the prerequisite activities completed before the actual development—such as

requirement gathering, environment setup, and environment design—are done before

the sprint cycle kicks in and are usually referred to as Sprint 0. The nature of sprints is

illustrated in Figure 7-3.

Chapter 7 InCIdent ManageMent adaptatIon

https://doi.org/10.1007/978-1-4842-9072-9_8

185

Figure 7-3. Nature of sprints

There can be as many sprints as needed to develop a product. There are absolutely

no restrictions. However, in the Scaled Agile framework, there is a concept of an Agile

release train (ART), which supports long-running projects by clubbing the planning

and execution in chunks, usually between eight and twelve weeks. Usually an ART will

encompass about four to five sprints, and each ART has a planning session involving

all stakeholders, governance to manage multiple sprint activities, and a review session

toward the end of the cycle.

 Sprint Planning

The master list of all user stories is stored in a bucket called the product backlog. Not all

the requirements are well known before the development commences. A good chunk

of the requirements are added during the project, which is the premise of Agile project

management: to keep an open mind for changes to come midway through the project.

Agile teams must embrace changes during the development cycle with open arms, and

that’s precisely why a holistic planning exercise is planned in iterations, and the exercise

is called sprint planning. If the sprint is two weeks, the planning exercise will determine

what can be achieved during the two weeks only, and not more.

Chapter 7 InCIdent ManageMent adaptatIon

186

 Sprint Backlog

A subset of the product backlog is picked up in every sprint, and this bucket of user

stories that is going to be worked on in a particular sprint is called the sprint backlog. The

number of user stories picked up depends on the team’s capacity.

Capacity and Velocity

A mature team with lots of years of experience can have a greater capacity compared

to a similar team size with fewer years of experience. The capacity of a team is highly

subjective—meaning it needs to be deciphered on the individuals and we cannot come

up with a formula for identifying a team’s capacity. In most cases, the capacity of a team

is determined only after running a few sprints. Based on the number of user stories

delivered in every sprint, a pattern emerges that indicates the efficiency of the team. This

pattern is called the velocity. Based on the velocity, we can gauge the estimated time to

complete all the user stories in the product backlog. Velocity is one of the key metrics

used in Agile project management.

Determining Complexity

Not all user stories are similar in complexity. Some user stories require a few hours of

development, while others may need a few days. Calculating the velocity based on the

number of user stories does not accurately reflect on the team’s performance. Therefore,

we measure the complexity of user stories with story points. Story points are an abstract

unit of measurement for user stories that loosely indicate their complexity, the duration

to complete development and testing, and the dependencies involved. Every user story

is associated with certain story points, and the process of associating user stories with

story points is called story point estimation.

Estimation Technique: Planning Poker

The estimation process is not a straightforward activity. There is no formula to help with

it. Story points are determined based on relative comparison with other user stories. For

example, creating a login page can be estimated to be one story point in project A, in

which a blogging engine is getting built. But on another project involving the same login

page for an Internet banking site, the login page user story could have three story points.

Chapter 7 InCIdent ManageMent adaptatIon

187

The estimated story points for user stories depend solely on the complexity of the other

story points. There are several ways of coming up with the estimation. The most popular

one is through the game of planning poker.

The game of poker is played with each team member given a set of playing cards

bearing numerical values—usually the Fibonacci series (1,2,3,5,8,13,21…). The user

stories in the product backlog are laid out to identify the simplest and least complex user

story, and this user story is given one story point. Based on this user story’s complexity,

the other user stories are measured. If the login page is one story point, how complex

is the summary page where various data sources have to be called in? Say that it is five

times as complex, so five story points are given to it.

How do you determine whether it is five times more complex or eight times more

complex? Who can determine this? This is where the game of planning poker comes

in handy. The team is seated around the table along with the product owner, each with

their own set of Fibonacci-numbered cards. First they all agree on the simplest user

story. Conflicts within team members on what constitutes the simplest work story are

sorted out through discussion. If there is no consensus, it is put to vote, and the user

stories with maximum backing are considered the simplest. The simplest user story is

given a weight of one story point.

The product owner then goes on to pick the next user story from the product backlog

and explains what is expected, which provides a fair idea to the team on its complexity.

Now each of the team members measures the user story against the simplest user

story. If the simplest user story has a complexity of X and if the user story that is being

considered for estimation is five times as complex (5X), then the playing card number

bearing the numerical value 5 is drawn. Each team member pulls the playing card based

on their perception and keeps it face down on the table. When everybody has drawn a

card, the card is turned up, and discussions begin to deliberate the complexity and to

arrive at a consensus on its complexity and the associated story points. It is likely that

one developer might select three story points while another selects five story points.

Each of the developers has to provide a rationale for their complexity estimation;

this can either compel the other team members to change their vote or stick to their

points of view. This exercise might seem to take time, but underneath, it is beginning a

conversation around the user stories, and it is bringing the team together in arriving at a

decision. It is like a jury that deliberates on a verdict hoping to arrive at a consensus.

Chapter 7 InCIdent ManageMent adaptatIon

188

 DOR and DOD
There are several user stories in the product backlog. How do you know which ones to

pick? As mentioned earlier, the product owner is the only person who can call the shots

and prioritize requirements. However, what is the acceptance criteria for a user story to

be picked up into a sprint? We call this minimum criteria the definition of ready (DOR),

which means having all the ducks in a row in perfect order before being considered for

development.

How do you know that the user story that is picked up in a sprint is delivered? What

is the agreement upon completion of a user story? This common agreement upon

completion of development is called the definition of done (DOD). DOD refers exactly

to the series of actions that are undertaken before signaling it as done. For example, in a

project, the DOD could be as follows:

Analysis ➤ Coding ➤ Unit Testing ➤ Static Analysis ➤

System Testing

So whenever a user story goes through this cycle successfully, it is considered done.

But for another project, the DOD could be this:

Analysis ➤ Coding ➤ Unit Testing

In this case, the team is expected to run unit tests successfully before the user story is

considered delivered.

In both the examples, there is no right or wrong definitions of done. It is an

agreement between the customer and the software development organization as far as

what constitutes done and stick with it throughout the lifecycle of the product.

 Sprint Planning for a DevOps Team
The sprint planning session is in play. We have identified that the inputs are user stories,

incidents, and problems. So, all the three inputs make up the product backlog, and it is

represented as an input funnel, as shown in Figure 7-4.

Chapter 7 InCIdent ManageMent adaptatIon

189

Figure 7-4. Input funnel for a DevOps team

Incidents and problems have a SLA associated with them; delays in resolving

incidents could lead to SLA breaches and penalties. So, during the planning session,

it might be prudent to pick up incidents that are closer to breaching. If I have four

incidents, two breaching their SLAs in the next three weeks and the other two breaching

in about five weeks, I will probably pick the two incidents that are breaching the SLA in

three weeks.

Let’s say that the team capacity is 40 story points. They have identified the two

incidents that need to be resolved during the sprint. The incident resolution’s complexity

is identified using story points. In this case, let’s say that it amounts to four story points.

So, they have another 36 story points for problems and development activities.

There is one problem in the product backlog whose SLA is nearing the breaching

levels, so they decide to pick it up as well. The problem is worth ten story points. So, the

team has about 26 story points left for the delivery of user stories.

The team then goes on to pick user stories amounting to 26 user stories or fewer. One

of the working principles in planning is that the identified load never exceeds the team

capacity. This means that the team cannot choose more than 26 user stories. In other

words, when the capacity is 40 story points, the load must be less than 40 story points.

Chapter 7 InCIdent ManageMent adaptatIon

190

But wait. What if a high-priority incident comes calling during a sprint that requires

immediate resolution? The SLA is for a few hours rather than weeks. How do you plan for

such circumstances?

There are two schools of thought for such scenarios:

• Plan for what is currently on your plate.

• Keep some contingency aside during the planning session.

 Plan for What Is Currently on Your Plate
You have two incidents and one problem that needs resolution in the sprint, so take it up.

There are user stories prioritized by the product owner. Pick it up. If an incident comes

midway through the sprint, prioritize the incident that is higher priority. One or more

user stories could be the casualties, but they are considered in the next sprint.

In this approach, the planning is done for what is currently on the plate, and

incidents that come midway railroad the execution of some parts of the delivery, which

is deemed okay considering that incidents pertain to the disruption of services. But in

terms of identifying the team’s performance, team morale could take a hit. You planned

for 39 story points in a sprint, but you delivered only 26 because of the midway incident.

It kind of throws the sprint and planning off-balance. But, I have seen this kind of a setup

used in organizations, and it does fairly well if the product is quite stable.

 Keep Some Contingency Aside During the
Planning Session
In the second method, a certain amount of contingency is kept aside during the

planning session for midway incidents. For example, during the sprint planning session,

the team could consider that the planning will be done for 35 story points instead of 40.

The remaining five story points are a contingency measure for incidents that require

immediate assistance.

In my experience, I have seen that with operations, nothing goes precisely as

planned. There’s always something coming back to you, either for code changes or

to answer certain queries. It is good to keep some contingencies to ensure that the

operational side of things is given equal priority. Moreover, even developmental

activities can benefit from some amount of contingency. After the DOD, the incremental

Chapter 7 InCIdent ManageMent adaptatIon

191

delivery of the product could go in for a performance test, a security test, or even an

acceptance test. The feedback from any of these tests can mean additional development

in future sprints. A decent amount of contingency will take this a long way.

How much contingency should you keep? The answer is in the metrics. Analyze

the high-priority incidents you received for the product in the past year. Identify the

frequency of occurrence and the average complexity of the work that was involved.

Marrying the two will give you a contingency measure to consider during planning

sessions. Do a similar analysis for development activities outside the purview of sprints.

Measure the frequency of feedback and the average amount of rework that is needed.

A combination of rework and incident expectancy will give you a good idea of the

contingency to consider.

 The Scope of the DevOps Team in Incident
Management
Incidents come in all shapes and sizes. Not all are the same, and most importantly, not

all incidents need to be handled by the DevOps teams. Normally in operations, we call

different levels of support L1, L2, L3, and L4 (and so on). The various levels define the

complexity and indicate the team responsible for resolution.

 Levels of Support
To keep things simple, I consider only three levels—L1, L2, and L3. L1 defines basic

support such as answering user queries, scheduling batches, and taking backups, among

others, that are performed through an administrative page. To carry out these activities,

no coding experience is necessary. In fact, the only experience that is technically needed

is to follow the instructions exactly. On the soft skills front, there’s plenty more to

address, as the service desk is usually responsible for the L1 type of support.

When an incident is identified at a higher level than what the service desk is capable

of doing, the service desk immediately transfers the ticket to the next line of support, L2,

without trying to fix it themselves. By trying things in support, we invariably waste time,

which translates to an extension of downtime and the customer not being happy. So, as

soon as the incident complexity is identified, it gets pushed to the next level.

Chapter 7 InCIdent ManageMent adaptatIon

192

The second level of support, L2, is one over the service desk. This team provides

a configuration level of changes to the product and involves incidents pertaining

to IT infrastructure and connectivity. The teams that are best suited to handle the

configuration level and infrastructure changes are shared teams. These shared teams

work across products and services, and they are best placed to support at a L2 level.

The next level of support, L3, involves code changes. In this case, it includes

architectural changes as well. Architectural changes are usually referred to as L4s.

So, any code changes to be affected can be done only by the L3 support team. The L3

support team has access to the codebase and the necessary skillsets and setup to make

changes to the code. Remember that making changes to the code is like a surgeon

cutting into your skin to access your organs. Not all doctors can do it nor do they have

an environment or setup to perform such operations. Your surgeon is like L3 support,

a general physician like L1, and a specialist like a L2 support. The L3 support or the

L3 team is the DevOps team, in other words, the blended team that does application

development and application management.

Figure 7-5 illustrates the different levels of support—L1, L2, and L3. I use an inverted

pyramid to indicate the levels because the areas under the L1, L2, and L3 levels of

support are directly proportional to the volume of incidents handled by each of the

support teams. In my experience, most of the incidents that come through require basic

knowledge for resolution, L1, by service desk. Among the ones left over, a lion’s share of

the incidents are resolved through configurational changes. Only a small percentage of

incidents actually flow through to the L3 team, which is the DevOps team.

Figure 7-5. L1, L2, and L3 support structure

Chapter 7 InCIdent ManageMent adaptatIon

193

An incident that requires code support flows into the service desk. The service desk

identifies that the incident pertains to code changes. Do they transfer the ticket to the

DevOps team? The answer is no. The service desk does not and cannot make a decision

on an incident requiring code changes. They don’t have the necessary skillsets to make

that decision. Therefore, their only functional escalation is to the L2 team. The L2

team, the technical management function as per the ITIL publication, is better able to

recommend code changes. They transfer incidents to the DevOps team.

Does the DevOps team accept all incidents that come into their bucket? The answer

is once again no.

The incident manager comes into the picture when incidents hit the DevOps

incident bucket. They review the incident, analyze it, and determine whether the

incident requires code changes or whether it can be resolved through changes in

the configuration files. If it’s the latter, the incident is pushed back to the L2 support

team, and if it requires changes to the code, the incident manager gets the pertinent

information (to meet the DOR) to populate the product backlog with the incident.

 Incident Flow
From my experience, about 60 percent of incidents are resolved either at the service desk

or by using tools that can resolve incidents automatically without human intervention.

About 30 to 35 percent of incidents need configuration level of changes. And only a small

percentage of incidents flow through to the DevOps team, requiring changes to the code.

Remember that the code usually does not break services. There are plenty of layers above

the code build, such as configuration, infrastructure, and network, that can cause incidents.

Note It is a good practice to pass the configuration changes through the CI-Cd
pipeline to ensure that the development and test environments are similar to the
production environments and to identify any regression issues. also, changes
performed by L2 should be reviewed by L3 teams during sprint retrospectives, in
order to reflect on the changes and identify any improvement opportunities.

I was involved in a couple of projects where the L2 support was combined with the

DevOps team. With L2 in DevOps team, the team had to resolve more incidents than

the actual development work. The morale of the team went from being quite high to

Chapter 7 InCIdent ManageMent adaptatIon

194

terribly low because most of the time they were consigned to working on configurational

changes rather than the actual work that coders do. After this experience, it was pretty

clear to me that L2 must stay outside of a DevOps team.

 Knowledge Management at the Core
One important key ingredient that is missed time and again is the knowledge around

the product, the history, and all that is necessary to maintain and upgrade. It is in fact

as important as the configuration management, but it is often given a secondary life,

with the key phrase being if there is time. Development is given the priority and so is

everything else that contributes directly to the service or the product. When it comes

to creating and maintaining knowledge, people just don’t have the time. And when an

incident comes calling, the developers sit for a detailed session of analysis trying to

identify all the dependencies and the logic behind the application design. This analysis

time eventually eats into the incident resolution time, extending the downtime and

failing the objective of the incident management process.

If the intent is to make incident management effective and efficient, then start with

the knowledge management along with the configuration management. Time and again

I have seen projects not even maintain the bare necessities such as design documents.

The remedy to the problem starts with governance. Agile project management preaches

minimum documentation with an emphasis on developing a working software. So,

determining what the minimum documentation should look like needs to come from

project governance. For a DevOps project that covers both development and operations,

the documentation around the product/service must be specific, easy to retrieve, and

regularly updated.

 ITIL’s Knowledge Management
In fact, ITIL’s knowledge management process is quite powerful and has the ability

to provide credence to the management of knowledge in a DevOps project. The

process exists to ensure that the service delivery is done in an efficient manner and

the knowledge is available when it is needed. The whole premise is around ensuring

knowledge exists to support the process and not that the knowledge needs to be there

because you created something new.

Chapter 7 InCIdent ManageMent adaptatIon

195

I have heard from a few project managers that the whole idea of maintaining

knowledge is done so that the organizations get ISO certified. They say that they

maintain knowledge just for the sake of it. This statement is so untrue. Let me peel it

open like an onion. The ISO certifications are based on standards that have shown

results and that are widely accepted. The controls in the ISOs are a culmination of what

the industry determines is relevant and something that is absolutely necessary for the

project to perform. Consider the example of a risk register, a document where you record

project risks along with its respective owners, mitigation plans, and other pertinent

details. You tend to revisit the document when needed, especially after major changes.

Let me remind you that risks stand in the way of project success and failure, and

maintaining one will help you understand the project risks and be prepared for them

when they materialize. It is better to be ready than be surprised.

 What Knowledge to Maintain
Every project is different, and every project caters to different domains. The technology

is different, which changes the composition of the documents that one maintains for a

projects.

Generally speaking, in a development project, you should maintain a number of

documents including the following:

• Contracts signed with the customer

• High-level requirements

• Design and analysis documents

• Test strategy and test plan

• Project and release plans

• Financial plans and tracker

• Estimation schemes and trackers

• Balanced scorecards

• Release notes

• Training and support documents

Chapter 7 InCIdent ManageMent adaptatIon

196

From a support perspective, the following documents are generally maintained:

• Service level agreement

• Support documents with cheat sheets

• Knowledgebase of issues encountered

• Root cause analysis and proactive measures undertaken

• Improvements implemented

• Reports

To me, the most critical documentation that you can maintain in a DevOps project

is the code itself. No, I am not talking of the comments in the code but the way the code

is written. Just like how this book is divided into chapters and subheadings, well-written

code can also be placed under chapters covering the various functionalities it is trying to

achieve. The marks of well-written code are the following:

• Simplicity: Do not introduce complex loops, but rather keep the

code simple.

• Readability: Anybody (other coders) reading the code must be in a

position to understand what it is indeed doing.

• Maintainability: It should be easy to make changes and debug.

• Efficiency: If you can convey a message with fewer words, that’s the

way to do it; likewise, the logic that can be realized with fewer lines of

code is efficient (tools like SonarQube help in this regard).

• Clarity: Code must tell the story, and you must put in all the

effort for the story to reveal itself by using meaningful class and

method names.

Chapter 7 InCIdent ManageMent adaptatIon

197

 Knowledge Storing and Retrieval
Creating documentation is one part of the story; it is like a story that develops nicely,

and everything solely depends on the climax. If the developed knowledge is not easily

retrievable, then it’s not the climax everybody is waiting for. What is the point of creating

knowledge if nobody knows how to retrieve it? What good is a story if the ending

is shoddy?

I have seen organizations use certain folder structures on Microsoft SharePoint

and other file repositories. When it is first set up, everything is hunky dory, and after a

period of time, disuse and laziness sets in. The folder meant for placing release notes

stays stagnant, while release notes are stored on local drives and emails. The document

tracker remains unread and unmodified until an audit is announced. Why do you think

this problem happens?

To me this is a problem that we create. The structure with files, file updates, check-

in, checkout, and sync issues are all adding to the problem. It is so complex that

developers would rather analyze from the beginning rather than search in the so-called

knowledge base.

What does work well is an integrated system with everything stored in the same

place. You don’t have the hassle of switching applications, and everything can be

done with one touch. Lovely, isn’t it? If you are using Jira as your project management

tool, imagine a file repository built into Jira, where files can be stored directly against

the design task or the user stories. Life would be much simpler. Creating and storing

documents is a whole lot of fun, and retrieval is super friendly as well. The problem of

nonmaintenance does not arise, as everything is right in front of your eyes. By the way,

you can get this functionality on Jira through an add-on from the Atlassian Marketplace,

but it is not as good as the real thing. I am comparing it against ServiceNow, the service

management tool. In ServiceNow, a separate knowledge management module exists

where articles can be created or files uploaded, just like how you would do it on a

weblog. The best part is the integration with the rest of the ServiceNow system. When

you create an incident, you key in an incident summary and provide a brief of the issue.

Based on the keywords, the system automatically searches the knowledge base and

displays relevant knowledge base articles. Analysts and technicians working on incidents

have access to knowledge at their fingertips, and they didn’t even have to search for it.

This makes a big difference in utilizing the maximum power of knowledge management.

Chapter 7 InCIdent ManageMent adaptatIon

198

 The DevOps Incident Management Process
Earlier in the chapter, you looked at a typical incident management process based

on industry best practices. I also mentioned that the incident management process

is generally adapted for organizations that implement them based on their services,

stakeholders, and comfort level. For a DevOps project, the typical incident management

process goes through some adaptions, but overall it remains the same in spirit and in

principle. With the DevOps incident management process, you cannot deviate too much

from the normal, a sign that is good news for existing application management projects

looking to go the DevOps way.

The DevOps incident management process is illustrated in Figure 7-6. The sequence

of activities is indicated with seven-pointed stars.

Chapter 7 InCIdent ManageMent adaptatIon

199

Figure 7-6. DevOps incident management process

Chapter 7 InCIdent ManageMent adaptatIon

200

 Step 1: Incident Identification
The incident identification activity does not differ from its typical incident management

counterpart. Incidents can be identified in a number of ways, automatically through

monitoring tools or manually from users and IT staff.

Incidents are recorded manually through the service desk, where the service desk

prioritizes and categorizes them. In fact, most manually recorded incidents are routed

to the service desk. For incidents registered automatically through monitoring tools,

intelligence can be built into route incidents that require specialist skillsets to L2 support

directly, thereby bypassing the service desk. This helps reduce the downtime, as a better

abled team is directly put into action.

 Step 2: Incident Analysis, Escalation, and Resolution
There are four scenarios in Step 2:

• Scenario 1: Incidents routed to the service desk are analyzed by the

service desk, and whatever comes under their purview is resolved.

• Scenario 2: Incidents that cannot be resolved by the service, typically

because they require specialist skillsets, are transferred to L2 support.

• Scenario 3: Incidents that are routed directly from monitoring

tools are prioritized and categorized based on embedded logic in

the service management toolset. These incidents, along with the

incidents escalated from the service desk, land in the L2 support

queue. L2 support analyzes the incidents and provides resolutions.

• Scenario 4: L2 support cannot resolve all incidents. Remember

that they are a specialist group, but their specialty does not involve

making code modifications. The incidents that cannot be resolved by

L2 support, as well as the incidents that require code modifications,

are escalated to L3 support, the DevOps team.

Chapter 7 InCIdent ManageMent adaptatIon

201

 Step 3: Incident with DevOps Team
This is the step where things get interesting compared to a normal service management

practice. Usually there is a specialist L3 support team, the application management

team that exists only to manage the services such as the resolution of incidents requiring

code modifications. In the DevOps incident management process, the incident has been

passed onto the DevOps team, which is primarily a development team.

Try to imagine the amount of specialty that the DevOps team brings to the table for

incident resolution. The software developers have intimate knowledge of the software,

and this will reduce downtime rapidly and ensure that the incidents are resolved as

quickly as possible, meeting the objective of the ITIL incident management process.

 Step 4: Incident Manager Analyzes and Accepts Incidents
As per the roles and structures discussed in Chapter 5, the incident manager is part

of the DevOps team. However, if the DevOps team is fairly small without a full-time

workload for an incident manager, the person can be placed in a shared role as well.

The incident manager is well aware of the product that is being developed and

managed. Generally, in ITIL, incident managers are reactive folks, and they act on

the incident when it comes in and, during the course of the incident, understand the

intricacies of the product. However, in the DevOps incident management process,

incident managers are part of the DevOps team that works with the developers. So, they

are well versed with the product, and this expanded knowledge gives them a better

handle on incidents that could possibly come in. This knowledge gives them the power

to manage incidents throughout the lifecycle with precision and can help direct and

manage multiple teams to align toward incident resolution swiftly and with a purpose.

All incidents that come to the DevOps team go through the desk of the incident

manager. This person analyzes the incident, and after confirming that it requires coding-

specific skillsets, the incident is accepted. If the incident manager decides that the

incident can be resolved by the L2 support and does not require changes to the code, the

incident manager can send the incident to L2 support. In certain cases, if the L2 support

is unable to resolve the incident even if the incident does not call for changes to the code,

the incident manager accepts the incident in the DevOps team queue.

Chapter 7 InCIdent ManageMent adaptatIon

https://doi.org/10.1007/978-1-4842-9072-9_5

202

Accepting an incident involves two things:

• Adding the incident to the product backlog. Generally, the service

management tool for registering and tracking incidents and the

product backlog tool are separate toolsets. For example, ServiceNow

is a service management tool for registering and tracking incidents,

and Jira is a tool for managing the product backlog. The DevOps

team generally does not work on the service management tool, as the

product backlog is their single source of truth. Therefore, the incident

details need to be moved into the product backlog. This can happen

through a connector (B2B bridge). In this case, Atlassian Marketplace

is one of the providers for connectors between ServiceNow and Jira.

The incident that is accepted by the incident manager is moved over

to the product backlog with a click of a button. If no such connector

exists, the incident manager might have to manually register the

incident in the product backlog.

• After accepting the incident, the incident manager must inform

the product owner and the Scrum master about the addition of

the incident in the product backlog. The Scrum master or the

product owner does not decide whether an incident can make it to

the product backlog; that decision lies with the incident manager.

However, both parties need to be notified, as they need to start

planning for incident resolution.

 Steps 5 and 6: The Incident Is Prioritized and Added
to the Sprint
The Scrum master is responsible for adding incidents to the sprint backlog. Before doing

that, the product owner will analyze the incident and determine its priority. For example,

if the incident is low priority with an SLA of 25 business days, then the product owner

might prioritize it lower for it to be accommodated in the upcoming sprint and not be

included in the ongoing one. If the incident is major, with an SLA counted in hours

rather than days, the product owner will prioritize the incident over all others, and it will

be included in the current sprint.

Chapter 7 InCIdent ManageMent adaptatIon

203

The Scrum master will add the incident in the sprint backlog depending on the

priority. If a high-priority incident pops up, the incident is immediately added to the

sprint backlog. If a lower-priority incident comes in, it can wait for the next sprint or the

sprint after, depending on the SLAs attached to it and the prioritization of the product

owner. When the incident is added to the sprint backlog, the Scrum master engages the

Scrum team and the incident manager to resolve the incident. If it is a major incident,

the priority is communicated, and the best developers or a group of developers get into

action for speedy resolution.

 Steps 7 and 8: The Scrum Team Makes Code Changes
and Checks In
When the sprint backlog is populated with the incident (and only then), the Scrum

team will start working on it. In most instances, incidents are added midway through

the sprint, which is usually not common in any other development project involving

the Scrum methodology. However, in DevOps, this is accepted and valid. To make way

for the incident, there is a certain amount of contingency added during the planning

sessions. During stable periods and change freeze windows, a minimal amount of

contingency is added during sprints. When releases are being deployed into production

or whenever partner systems are being modified, there is a certain expectation

of regression hitting the project, which allows for additional effort going into the

contingency bucket.

The developer is usually briefed by the incident manager on the history and facts

around the incident, which might help the developer re-create the issue and could

possibly lead to faster resolution.

The developer might be working on a development branch, but for the incident, the

developer will pull the production codebase (mainline). Whatever modifications done to

the code will be done on a separate branch and not on the development branch.

Let’s consider the illustration of a mainline featuring release 1.3 in Figure 7-7. The

development for the next release (R 2) is carried out on a development branch. All

developers are working on the development branch. Midway through the sprint, an

incident lands in the sprint backlog, and one of the developers picks up the incident

from the backlog.

Chapter 7 InCIdent ManageMent adaptatIon

204

Figure 7-7. Development and incident resolution in parallel

The developer will make changes based on the production codebase, such as R 1.3

on a separate branch (R 1.3.1), and not on the development branch. When the code

changes are done, the code is checked back in to the production mainline, considering

that the incident needs to be resolved at the earliest. If the code changes performed

go through the testing phase successfully and are deployed without any issues, the

developers working on the development branch have to merge the code changes

performed in R 1.3.1 (incident) onto the development branch before continuing their

coding activities. This is an important step and ensures that the incident fixes (code

changes) completed between R 1.3 and R 2 aren't missed when R 2 is deployed. Second,

there is a probability that some of the code changes performed for the incident fix could

lead to merge conflicts and will need to be resolved before any build and test activities.

 Step 9: Continuous Integration and Continuous Testing
In Chapter 1, I explained the continuous integration process and the concept of

continuous testing in a fair amount of detail. At this point in the process, the developer

checks in the code, and the automation built into the development system kicks off the

build activity, followed by unit testing, static analysis, and other activities pertinent to

continuous integration.

After a successful build and code reviews, the binary goes through a rigorous testing

process. In DevOps, we hoot for continuous testing where various tests such as system,

integration, regression, performance, and other types of testing are done automatically,

generally in a sequential manner. For this to happen, the various test scripts must be

ready before the code check-in. This requires a certain amount of maturity in terms of

DevOps processes for the project team. While this capability is built, project teams opt

Chapter 7 InCIdent ManageMent adaptatIon

https://doi.org/10.1007/978-1-4842-9072-9_1

205

for automation testing, where the test triggers are done manually when the test scripts

are ready. Automation testing does not require test scripts to be in place before the code

check-in.

 Step 10: Auto Deployment
Most DevOps-savvy organizations have auto deployment in place, which deploys the

package at a click of a button.

In the incident management process, it is important to tweak the release policies to

support a reduction of downtimes. The release policy must be flexible enough to allow

deployments without too many riders and outside the schedule of releases. Only then

does the whole setup of bringing in incidents within the development teams’ workload

make sense. Most organizations’ release policy states that the changes to software can

be made only during minor and major releases. Emergency changes are usually frowned

upon and are viewed as exceptions in most organizations practicing ITIL service

management. However, in DevOps-led projects, there are no exceptions; instead, there’s

only common sense. If a service or part of a service is down, then you need to bring it up

as soon as possible. For this to happen, if you need to deploy a package, so be it. What’s

the fuss over it? Amazon would ask. We do it multiple times a minute!

Following deployment, there are some sanity checks performed, some automatic

and some manual. These checks are mandatory to ensure that the basic and critical

parts of the system are working as they should. Nobody likes to make changes, even

the Amazons and Netflixes. When a new package hits production, smoke tests are done

to ensure that the scent of production did not drive the binary on a lunatic path (just

saying)!

When the sanity checks wave the green flag, the incident manager informs the

service desk to take the incident to closure by seeking confirmation from the user who

logged the incident. If there is no user involved in this incident creation, the appropriate

customer contact is made aware of the resolution.

Through Steps 5 to 10, the incident manager is actively monitoring the incident. The

person provides support and seeks updates from team members on a regular basis. The

incident manager also keeps the customer updated on the progress and the expected

date of resolution at all time. This communication with the customer is extremely

critical, as a loss of service generally results in revenue losses, and no business takes loss

of revenue kindly. In my experience as a major incident manager, I have come across

customers who have lost their cool, and the situation is far from pretty.

Chapter 7 InCIdent ManageMent adaptatIon

206

 Step 11: Post-Mortem
The whole incident management process would be undone if there were no checks in

place to identify the reason for the incident. However, this investigation is not done at a

detailed level, as the problem management process is tasked with investigations around

service breakages. The incident management process conducts a fairly quick, though not

thorough, investigation into the incident to determine the reasons behind the issue. This

is an important step in the DevOps methodology, as the lessons from the investigation

could forewarn the team of another incident or could reveal potential weaknesses in

the code and the logic. However, the post-mortem does not involve pointing fingers at

individual members of the DevOps team, pinpointing them for the lack of quality code

and other mishaps.

The investigation is done during the sprint, and in the sprint retrospective session,

the entire incident management process is under the microscope, including the

outcome of the investigation.

What went right or wrong with the acceptance of the incident? Was it the right call, or

should the incident have been sent back to L2 support?

Were the Scrum master and product owner informed quickly enough to allow

maximum wiggle room in the sprint? Are there any areas for improvement? Was the

incident well understood before beginning the development on it?

Were the testers involved when the incident details were briefed by the incident

manager? Were the test scripts ready on time? Did the test scripts cover all scenarios?

These are just some of the difficult questions that are addressed during these sprint

retrospective sessions. Note that the questions are in relation to the process and the

outcome rather than in relation to individuals.

 Summary
The ITIL incident management process is the most common support process and

it interacts heavily with users, customers, and service providers alike. This chapter

provided a brief look into the classic incident management process and further delved

into the DevOps adaptation of the process, where incidents come through the pipeline

along with the feature development. In addition, knowledge management, the process

that fuels the incident management process, was also discussed.

Chapter 7 InCIdent ManageMent adaptatIon

207

CHAPTER 8

Problem Management
Adaptation
Incident management is the first line of defense in providing immediate relief against the

disruption of services and eventual downtimes. However, by no means does the incident

management process get into the nitty-gritty of putting an end to the cause behind

the incidents. Its purpose is to bring the services back up, even if the solution is not a

permanent one.

The second ring of process governance ensuring permanence to solutions is the

problem management process. This process dives deep into the cause of incidents and

follows the problem to its root, ensuring that incidents related to the particular cause do

not repeat.

To summarize, the incident management process deals with correction, while the

problem management process focuses on prevention.

This chapter provides a brief introduction to the problem management process, the

techniques involved, and the typical process, and then moves into how the problem

management process can be transformed in a DevOps project.

 Introduction to ITIL Problem Management
The problem management process is featured in the ITIL service operations publication

and is one of the critical processes needed for services to thrive. Incident management is

good, but at the end of the day, the more incidents there are, the more downtime and the

greater effort required to bring the service back up. The customer gains nothing from the

process, as it’s trying to keep the support above water at all times but not taking it to new

places. There is a dire need to bring value to services, and value can be brought about

only if stability is assured. One of the pillars for ensuring service stability is the problem

management process.

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9_8

https://doi.org/10.1007/978-1-4842-9072-9_8#DOI

208

The problem management process is slightly academic. It does not believe in

happenstance and trying to resolve world hunger in one go. There is a definite method to

the madness around laying tombstones on top of the problems. I represent the problem

management process as the investigation unit of the IT service provider organization.

You might have seen the popular TV series CSI, where crimes are solved by following

leads and finding culprits. The problem management process is the CSI of IT service

management, and you can compare incident management to the police squad.

Let’s consider an example involving an application that crashes frequently when

certain actions are performed simultaneously. An incident is raised. The incident is

diagnosed, and the resolution is a complex one. But incident management focuses on

helping users move on with their day-to-day activities involving services. Therefore,

an incident analyst recommends a workaround so users can perform actions on the

application in a sequential manner rather than in parallel. The user’s immediate issue

is solved, but the impending problem exists. A problem is raised, and an investigation

into the problem begins. The problem is recreated, the codebase is examined, and all the

relevant logs are studied to debug the underlying cause. The investigation pays off, and

the cause is identified and subsequently fixed. All the investigative activities are done

under the auspices of problem management, in order to identify the problem and find a

permanent solution.

 Objectives and Principles
Before you get any further, you need to understand the problem accurately. The ITIL

service operations publication defines the problem as the underlying cause of one or

more incidents. In simple terms, there are incidents where the fix is yet to be found. The

resolution of these incidents is not possible as the root cause of the incident is unknown.

This is similar to a doctor prescribing medicines. If the doctor does not know the cause

of certain symptoms, the doctor cannot prescribe the right medicine. Likewise, to resolve

incidents, the technical resolver groups must know the root cause of the problems. If

they do not know the root cause, they start to guess by asking users to restart machines,

uninstall and reinstall software, and other hara-kiri that may amount to a waste of time

and resources. But, if the principles of problem management were to be applied and the

root cause were identified, the solution will be routine.

Chapter 8 problem management adaptation

209

A problem gets raised when the root cause of an incident is unknown. Or a bunch of

incidents with a common thread cannot be resolved, as the underlying root cause is yet

to be identified.

 Incidents vs. Problems
It is my experience that many IT professionals in the IT service management industry

use the terms incident and problem interchangeably. This does more harm than good,

especially when you are working in an organization that takes shape after ITIL and

especially if you are preparing for the ITIL foundation exam. This section differentiates

the two terms with examples, so as you move forward toward the process and other key

terminologies, there shouldn’t be any confusion between incidents and problems.

Incidents are raised due to loss or degradation of services. They are raised by

users, IT staff, or event management tools. When the incident resolution is not

possible, because the underlying root cause is unknown, the IT team will raise a

problem. Remember that users and event management tools don’t raise problems;

generally speaking, they can come only through the incident. However, in a mature IT

environment, we can configure event management tools to look for specific patterns of

events and raise problems. Let’s restrict this discussion to problems derived only from

incidents.

Let’s consider the example of a software application that crashes when it is initiated.

The user raises an incident to fix this issue. The software resolution team tries to start

the application in safe mode, uninstalls and reinstalls the application, and finally make

changes to the OS registry, to no avail. When all hopes fail, they provide a heads- up

to the problem management process to find the root cause and provide a permanent

solution.

The problem management process aided by experts in the software architecture

group debug the application loading and run a series of tests to find the triggers and

sparks for the crash. They find out that the root cause of the crash is a conflict with a

hardware device driver. They recommend uninstalling the hardware device driver and

updating it with the latest driver. The recommendation works like a charm, and the

software application loads nicely without any fuss. This is the problem management

process in action, working on iron- legged problems that can cause irreparable damages

to the customer organization if they are not dealt with on a timely basis.

Chapter 8 problem management adaptation

210

 Key Terminologies in Problem Management
Problem management digs deep, and the process brings a certain amount of complexity

to the table. The complexity includes a few terms that are used quite often during various

stages of the process activities. It is key that you understand all this terminology, for work

and for the ITIL Foundation exam.

 Root Cause
A root cause is the fundamental reason for an incident or problem.

Let’s say the ATM at your bank does not disburse the money that you requested. The

underlying cause or the root cause for the denial of service in this instance is attributed

to a network failure in the bank. Likewise, for every incident, there will be a root cause.

Only when you identify the root cause can you resolve the incident. In the ATM

instance, unless you know about the network failure, you cannot bring the ATM service

back up.

 Root-Cause Analysis
Identifying the root cause of an incident is no menial task. At times, the root cause may

reveal itself, but other times, it is challenging to identify the root causes of complex

incidents. You are required to analyze the root cause by using techniques that commonly

fall under root-cause analysis (RCA).

Remember that the outcome of an RCA may not always result in the root cause of

an incident. In such cases, RCA must be performed using complex techniques and with

experts pertaining to related fields of technology and management.

 Known Error
When the outcome of the RCA procedure yields results and the root cause is known, it

might not be always possible to implement a permanent solution. Instead, temporary

fixes, called workarounds, are enacted. Such cases where root causes are known along

with the workarounds are called known errors.

Chapter 8 problem management adaptation

211

There could be various reasons that solutions cannot be implemented. Commonly,

permanent solutions are expensive. Most organizations are price conscious these

days and may not approve the excess expenditures. Other reasons could include a

lack of experts or people resources to implement the permanent solution or could cite

governance or legislation controls that could prevent implementation.

 Known Error Database
Known errors are documented and stored in a repository called a known error

database (KEDB).

The KEDB consists of various known errors, their identified root causes, and the

workarounds. The known error records are not permanent members of a KEDB. Known

errors will cease to exist in this repository when a permanent solution is implemented.

 Workarounds
As mentioned, workarounds are fixes that temporarily solve incidents. Each incident

could have one or multiple workarounds, but none alleviates the problem permanently,

and it may be required to revisit the workaround on a regular basis.

For example, say a printer on your floor is not working and you cannot wait for the

technician can get to it. A classic workaround, in this case, is to print from a printer on

a different floor. The workaround will solve your problem temporarily by providing a

way out, but it may not be a permanent solution as you may find it inconvenient to run

down to the next floor every time. Another workaround could be that you don’t print the

document but instead send the soft copy to the intended recipient.

 Permanent Solutions
When the root cause of a problem is known, the follow-up activity in problem

management process is to identify a permanent solution. This solution permanently

resolves the problem, contributes toward a reduction in the incident count, and prevents

future outages.

As mentioned, permanent solutions come at a cost, and organizations may not

always be willing to shell out the required capital. In such cases, permanent solutions are

known but not implemented.

Chapter 8 problem management adaptation

212

 Problem Analysis Techniques
There are a number of ways to investigate a problem. Every problem is unique and

may require a different approach altogether to determine the cause of it. My favorite

investigative approach is to use common sense and follow the trail until it leads you

to the smoking gun—in some ways like Sherlock Holmes conducts his investigation. I

don’t like to be boxed in with approaches that come attached with a model, such as a

theme for investigation; examples include the forensic anthropology used in Bones and

the mentalism illustrated in the show The Mentalist. Yet, it is good to know about the

approaches so you can understand the methodology and create your own techniques to

solve a problem. This section introduces a few popular techniques used by investigators

in the IT industry, most popularly known as problem managers.

 Brainstorming
Brainstorming that has been used, misused, and underused. It’s the power of using our

brains to focus on areas of investigation. The brainstorming technique involves focused

thinking without any inhibitions. The term brainstorming was first made popular by

the author Alex Faickney Osborn in the book Applied Imagination, published in 1953.

Although the methodology around brainstorming existed long before, it was never

brought into the limelight as a powerful technique to investigate problems.

Using the brainstorming technique, there are no bad thoughts. Every thought must

be weighed, and then a decision must be made. In other words, ideas are not tagged

as absurd or made fun of, and everything is accepted, examined, and then acted upon

based on the results of the thought. For example, if thinking is a car, it’s a car without

brakes. You don’t want the thinking to stop or be impeded. There must be no action to

stop the flow of thoughts. People use the steering wheel to steer their thoughts toward

the goal they want to achieve. The more thinking, with the right steering, the closer they

get to the destination.

Brainstorming can be done on your own or in a group. The more the merrier, right?

Not always. It is possible that clear thoughts in your mind could get unfocused, so group

brainstorming must be done with caution and with a process to keep it in a framework.

In his book, Osborn says that group brainstorming sessions are more effective than

individual ones, as he firmly believed that quantity breeds quality. The assumption is

that a greater number of ideas generated, the better the probability of striking gold. If you

are planning a group brainstorming session, I recommend following these steps:

Chapter 8 problem management adaptation

213

 1. You need the right set of people to brainstorm an idea or to

investigate the cause of a problem. If you bring like-minded

people into a brainstorming session, you are not going to get

diverse ideas. Instead, if you bring in a diverse group of people,

you get different ideas, all of which are needed to investigate a

problem.

 2. Don’t bring the group together into the meeting room without

preparation. Explain to them in advance the goal of the

brainstorming session and what you want to achieve. This agenda

helps the group start thinking, even before they set foot into

the brainstorming session, and their ideas can be discussed,

dissected, and challenged, which is a lot more productive than

doing the actual thinking in the session.

 3. In the brainstorming session, restate the agenda and set the

rules of engagement. Rules of engagement can be something

like this: no ideas are bad, and no ideas should be cast away

without examining them. This is an important step to provide a

voice to the participants who may sit on the bottom steps of the

corporate ladder.

 4. Use a whiteboard to note down every idea. Note an idea, discuss it,

and then rate the idea based on its merit. I have used mindmaps

(made popular by Tony Buzan) and Kanban dashboards on a

whiteboard to visually organize and manage ideas.

 5. As a chairperson of the brainstorming session, you must have

a good idea what you are trying to achieve. You must use this

knowledge to steer the group toward ideas that matter. In this car

without brakes, you are the steering wheel. You need to guide

the discussions. Appoint a note-taker to jot down all the ideas for

further discussion. Take as many breaks as needed. Our brains

work better in short sprints rather than in marathon sessions.

Chapter 8 problem management adaptation

214

 The Five-Why Technique
One of the most commonly used (and misused) techniques in the problem management

process is the five- why technique. It is used when investigating a problem, specifically

during the root-cause determination stage. The technique is so commonly taught and

retaught to problem management personnel that it has become a de facto standard in

the activity of root-cause analysis.

The five-why technique involves asking the question “why” about the problem at

hand five times to arrive at the root cause. It was conceived by Japanese industrialist

Sakichi Toyoda, the founder of Toyota Industries in 1930. But it wasn’t until the Toyota

Production System (TPS) became known that the technique became popular (in the

1970s). The principle relies on being on the ground to find the reasons for something

rather than in the comfort of an air conditioner (a “go and see” philosophy).

This technique is popular, partly because it’s extremely simple to use and takes a

short amount of time to process and execute.

 Applying the Five-Why Technique
Let’s consider the most common problem in the airline industry. Most airlines have

flight delays. Flight delays not only inconvenience passengers but also tarnish the image

of flight operators, which works against the optimal use of their assets and leads to

disrupting any plans for expansion. In this example, I illustrate a simplistic view of the

problem and arrived at the cause of the problem using the five-why technique, as shown

in Figure 8-1.

Chapter 8 problem management adaptation

215

Figure 8-1. The five-why technique used to determine the root cause of flight delays

My first step and perhaps the most significant activity is to identify the problem

accurately. The problem must be pinned down to its granular details in order to have a

better chance at identifying the root cause. The problem is rather simplistic and at a high

level: low percentage of on-time flight arrivals for a particular flight operator. Perhaps

using the metrics, I should have been more specific with the problem statement: Only 17

percent of arrivals for flights departing from the Kempegowda International Airport are

on time. By being specific, you can get on the ground and examine the reasons for the

problem.

Using this technique, I question the reason for the problem. Why are flights

departing the Kempegowda International Airport late? The immediate answer throws

light on the baggage check-in process, which seems to hold up passengers before they

arrive at the gate. The airline must wait for those passengers in the queue at the baggage

check-in. Thinking through it, the next logical question to ask is why are people spending

so much time in the baggage queue? Is this normal for other airlines as well? The answer

to this question points toward limited counter space that the airline has set up compared

to its competitors, which operate a similar number of flights.

Chapter 8 problem management adaptation

216

The next question to ask is why the airline operator has fewer counters while it

knows that other airlines have a significant number of check-in counters. The answer to

this question is rather painful in this example. The airline is facing financial difficulties

and, as a result, has made a number of cutbacks including cutting down on the baggage

check-in counters. Voila! We have the root cause of the problem. Or do we? Why am I not

digging in deeper to find out why the airline has financial problems?

Maybe the root cause is financial mismanagement. I can dig deeper, but in this

example, I chose not to. The five- why technique proposes that I question the problem

with “why” five times, and more often than, before you even ask the fifth “why,” you’ll

have the root cause. In some cases, you might need to ask the question “why” a few

more times to pinpoint the cause. The reason I am choosing to not dig deeper into this

flight arrival problem is that the budget issue is something I can work with. Going into

the financial details may not give me an immediate remedy to the problem I am facing.

Ask the whys wisely and do not stick to five just because the technique highlights this

particular number. This is not a prescription but rather guidance toward solving a

problem.

Based on the identified cause (low budget), an appropriate solution can be

conceived. It could be online check-ins with baggage drop-off stations, self-serve

baggage check-in counters, or shared resources with other airlines to use common

check-in counters for all airlines. The effectiveness of the solution depends on the

quality of the root cause. Therefore, it is critical that the root cause is specific enough to

offer a full-blown real solution that isn’t superficial and molded for the sake of a solution.

 Limitations of the Five-Why Technique
While the five-why technique is popular as the model is easy to adapt and simple to

use, it begs a question whether this technique can be used to solve problems of higher

complexity. Of course, you can further expand on the technique in the flight delay

problem if the “why” question gives rise to multiple reasons. You can use multitiered

“why” questions to determine the cause of the problem.

The real test of the technique is when the person answering the question does

not know the answer. The person might not even know where to look. The technique

just asks the question “why” but does not supplement the question with helpful keys

to determine the cause. For example, the answer to flight delays may perhaps be the

efficiency of people manning the check-in desk. Did the technique attempt to determine

Chapter 8 problem management adaptation

217

whether the reasons could perhaps be any other than those given by the person trying to

solve the problem? This is why the five-why technique is limited when there is a complex

problem with multiple tentacles. With this, I want to introduce the next problem-solving

technique: the Ishikawa diagram.

 The Ishikawa Diagram
An Ishikawa diagram is known by multiple names, including a fishbone diagram, a

fishikawa diagram, and a herringbone diagram, among others. It consists of a central

spine that represents the problem. Several branches jut out of the spine to indicate

possible causes. The arrangement of the spine and branches looks like a fishbone

(see Figure 8-2).

Figure 8-2. Fishbone diagram (image credit: 4improvement.one)

The causes are not arbitrary, as discussed in the five-why technique. There is

a method to the madness in the Ishikawa process. Each branch is designated to a

category, and the thinking behind it is to follow the category to determine the root

cause. Figure 8-2 illustrates one of the more popular fishbone models used in the

manufacturing industry, called the 6M model. The six cause categories are modeled are

as follows:

Chapter 8 problem management adaptation

218

• Material: Causes related to the material used in the

manufacturing process

• Method: The process

• Machine: The actual machinery, technology, and so on

• Mother nature: The environment

• Measurement: The measurement techniques employed in

deriving metrics

• Manpower: The people involved

There are other models as well, depending on the industry. For example, the service

industry uses a 4S model with these categories:

• Surroundings

• Suppliers

• Systems

• Skills

The service and marketing industry is also known to use the 8P method, with these

categories:

• Procedures

• Policies

• Place

• Product

• People

• Processes

• Price

• Promotion

I am most comfortable with the 6M process, so Figure 8-3 uses this model to explain

the Ishikawa diagram. However, do not feel you must one of the available models. Come

up with your own set of categories to assess the root cause of the problem. These models

are just starting points, and this should eventually give way to your own set of categories

for the industry, domain, and customers you are involved with.

Chapter 8 problem management adaptation

219

Using the same example as earlier (the low on-time flight arrival rate) and using the

Ishikawa diagram with the 6M categories, Figure 8-3 depicts the possible outcome of the

analysis.

Figure 8-3. Ishikawa analysis for low on-time flight arrival rate

In this example, the problem is central to the whole exercise. Under each of the

branches, I look at the problem from a different perspective. For this particular example,

I find manpower, methods, machines, and measurements to be relevant. Therefore, my

analysis surrounds only those categories.

Note every problem is unique, so you need to carefully pick and choose the
branches to analyze the root cause. don’t feel that you have explore every
category. be judicious and use common sense in identifying the right categories.

When you view the problem from one perspective, say manpower, you can start

asking a number of pointed questions to arrive at a root cause:

• Are people sufficiently trained to do their jobs?

• Are people motivated on the job, and are they compensated fairly?

• Are there sufficient people to work the check-in counters?

Chapter 8 problem management adaptation

220

The answers to these questions will take you closer to finding the root cause.

Remember that there is no set formula for probing a problem. You must use logic and

work on the ground to understand how things work.

The analysis into manpower tells us that people were sufficiently motivated, trained,

and quantified, so manpower is probably not the reason behind the low on-time arrivals.

If you move onto the next category, which includes the methods or the processes

involved, the analysis reveals that there were certain activities that the check-in

personnel were doing that was not yielding any value or meeting the objectives of

the process. They were dead activities that just consumed time and effort. Probably

optimizing these activities could help with efficiency. Another revelation, of course, was

that fewer counters were being utilized due to budgetary problems. These two actions

look strong at this point in time.

Under machines, a careful examination and analysis of the infrastructure and

application environment revealed that legacy systems were employed, and processing

passengers was not a smooth process. Plus, frequent freezing of systems and restarts did

not help reduce the check-in queue.

Finally, under measurements, it was found that 17 percent was indeed faulty. It

did not exclude the delays attributed to the airport. By excluding them, the problem

statement changes slightly for the better, with 42 percent on-time arrivals for flights

departing from the airport at Bangalore.

Now that we have the causes handy, we can get to work identifying necessary

solutions. There now exists a single root cause to a problem. However, for problems

such as the one considered in this example, it is possible that multiple causes add to the

delays, and tweaking various elements could help improve the on-time arrival rate.

 The Kepner-Tregoe Method
The Kepner-Tregoe method is yet another popular technique that analyzes problems.

It is a problem-solving and decision-making (PSDM) technique that decouples the

problem from the decision. This technique was developed by Charles Kepner and

Benjamin Tregoe in the 1960s.

There are four steps to the Kepner-Tregoe method:

Chapter 8 problem management adaptation

221

 1. Situation appraisal: In the first step, you analyze the situation on

the ground. What exactly led to the current situation? At this point

in time, you do not identify the problem itself, but simply outline

the concerns.

 2. Problem analysis: During problem analysis, you find the root

cause of the problem. You analyze the problem and determine the

root cause, possibly using one of the methods discussed earlier.

 3. Decision analysis: Based on the root cause, you identify various

alternatives for resolving the problem. In an unbiased manner,

you weigh each alternative to calculate the risks and benefits.

 4. Potential problem analysis: Against the best alternatives

identified in the previous step, you perform further analysis to

identify whether there are any regression issues based on the

dependencies.

At the end of the four steps, you’ll make a decision to go with the best possible

alternative identified in the process. This process tries to be unbiased in terms of

identifying the approaches for resolving problems and looking at the resolutions

objectively. However, some critics rightly say that the decision-makers are always

inclined to one side or the other, making it a biased approach after all.

However, the method helps identify options and the associated risks. Wise decision-

makers have all the information they need to make the right decision.

 A Typical Problem Management Process
The problem management process can be drafted in a number of ways to meet the

goals of the problem management process. While ITIL doesn’t prescribe how the flow

must look, it provides a true north for the process architects to follow. A typical problem

management process workflow, with all the bells and whistles, is illustrated in Figure 8-4.

Chapter 8 problem management adaptation

222

Figure 8-4. Typical problem management process

 Step 1: Problem Detection
As with the incident management process, problems need to be detected for the

process to be triggered. A problem can be identified from any source; it can come as an

action item from the customer, a threat notification from regulatory departments, or

Chapter 8 problem management adaptation

223

loopholes identified by hackers. In the problem management lifecycle, I considered the

most common triggers for a problem. Remember that the triggers need to be identified

beforehand to ensure that the process is well controlled and does not spiral out into

directions that were not factored in.

 Event Management

These days, event management tools play a handy role in keeping a finger on the

pulse and to standardize monitoring and capture events that are of significance to IT

service management. We have seen the application of event management tools in the

incident management process. In a similar vein, these tools can be programmed to

detect problems as well. For example, if a server goes down, an incident ticket is raised.

Suppose the same server alternates between being offline and online a preconceived

number of times; the tools can be programmed to raise a problem ticket so the problem

manager can start investigation-related activities.

With all this said, it is rare to see the event management tools used to raise problem

tickets. I have seen such instances with a handful of implementations. Programming

problems on automation solutions requires a certain amount of maturity for the service

management organization to design, execute, and control.

 Major Incidents

The most common source for triggering problems are major incidents. It is a common

sight in the process world to see major incidents tagged to problem investigations.

Normally, toward the resolution of a major incident, a problem ticket is created by the

incident manager. While the major incident resolution brings in a logical closure to the

major incident management process, it gives rise to the problem management process to

kick-start and initiate investigations.

This is a good practice as major incidents can cause massive damage to clients

(financial, productivity, brand image, and so on). It is in the interest of all stakeholders

that a problem investigation is performed on the major incident to identify the loopholes

and come up with a preventive measure to ensure such outages do not happen in

the future.

Chapter 8 problem management adaptation

224

 Partners/Suppliers

We live in a world whereby no single IT service provider organization can afford to

provide all IT services based on the supplier’s expertise.

Suppliers handle specific areas. Let’s say that a particular supplier provides

networks, another supplier provides infrastructure, and another supplier manages

applications. These suppliers are the best sources for identifying problems in their

respective areas, rather than a third party identifying it. Suppliers are one of the main

triggers or sources of detecting problems. Suppliers are also referred to as partners to

make them accountable for the overall delivery of IT services.

 Analysis/Trending

Proactive problem management’s objective is to forecast future problems and stop

them from happening. In the movie Minority Report, the aim of the main crime-fighting

organization is to stop crimes before they actually take place. This concept of problem

management is similar to that movie theme.

How do you forecast what is going to happen in the future? You don’t have crystal

balls in IT, nor do you have precogs as in the movie. But you do possess historical data.

This data can be dissected, and when cross sections are analyzed, you can see into

the future.

One of the techniques for doing proactive problem management is to trend the

incidents or the common root causes of incidents. This will provide you with insight on

what is generally going wrong. If you review these frequent occurrences and devise a

way to fix the problem permanently, you will reduce recurring incidents. Along with this,

you can reduce the incident count, potential outages, potential penalties, and potential

brand image damage.

Another technique is the Pareto principle, whereby you identify the top 20 percent of

the causes responsible for 80 percent of the incidents and find a permanent solution for

these incidents. If you can do this, you will reduce the incident count by 80 percent.

 Step 2: Problem Logging
You need to document detected problems in a formal way to ensure that each problem

goes through all the steps in its lifecycle.

Chapter 8 problem management adaptation

225

Every problem ticket is likely to have all or a subset of the following attributes:

• Problem Number (unique)

• User details

• Problem Summary

• Problem Description

• Problem Category

• Problem Priority

• Incident Reference Number(s)

• Investigation Details

• Resolution/Recovery Details

 Event Management

Most modern event management tools can auto-log problems on the ITSM tool. If this

capability is not available, the tool will raise alerts in the form of emails to the service

desk function. For major incidents, problems are logged by the incident manager or the

service desk function, generally toward the end of the incident resolution.

 Partners/Suppliers

Suppliers or partners who identify problems either log problem tickets on their own or

provide the necessary inputs to the service desk function or the problem manager.

 Analysis/Trending

Problem managers who perform the analysis activities raise the problem ticket based on

their findings.

 Step 3: Problem Categorization
All problems have to be categorized similar to incidents. Categorization will help in

assigning the problem tickets to the right resolver groups and in reporting.

Chapter 8 problem management adaptation

226

 Step 4: Problem Prioritization
Some problems are more important than others. They need to work with more focus

on the others. How do you differentiate one problem from another? Through assigned

priorities. This exercise is similar to incidents.

Similar to the incident priority matrix, a problem priority matrix exists, and a

timeline is associated with it to set targets for investigation and resolution. However, in

the service industry, problem timelines are not strictly adhered to like with incidents.

This is because investigation tends to take longer than expected in the case of complex

problems, and generally, there will not be enough resources assigned to problem

management specifically but rather shared with incidents and changes. When an

incident comes up at the same time as a problem, the incident always takes priority, and

resources will always end up falling short on the time needed to investigate problems

and find a permanent solution.

 Step 5: Problem Investigation and Diagnosis
The step of problem investigation and diagnosis starts with identifying the root cause

of the problem. Getting to the root cause of the problem is the biggest challenge in this

exercise. A root-cause analysis (RCA) is the output of this step, and it involves various

RCA techniques that are employed in getting to the root cause. Five-why analysis,

Ishikawa diagram, Pareto analysis, affinity mapping, and hypothesis testing are the

popular techniques used. Discussing these techniques is outside the scope of the ITIL

foundation examination and hence of this book.

To conduct a thorough investigation into a problem, suitable resources, referred

to as problem analysts, must be assigned. They are technical experts who have the

expertise to delve deeper into the cause of the problem. They are aided by the knowledge

management database (KMDB) and the configuration management system (CMS). The

KEDB is also referred to when identifying whether similar problems have occurred in the

past and what resolution steps were undertaken.

In most cases, the problem analyst tries to recreate the problem to identify the root

cause. After identifying the root cause, problem resolutions are developed, preferentially

economic solutions.

Chapter 8 problem management adaptation

227

 Step 6: Problem Resolution
In the previous step, the root cause of the problem is identified, and a solution is

developed to mitigate the problem. The solution can be either a permanent solution,

which is preferable, or a workaround. You should also be aware that the solution

implementation may come at a cost. The client might have to invest some capital

into resolving problems, maybe adding extra infrastructure, procuring applications,

developing connectors between applications, and leasing more bandwidth, among

others. So, financial approval from the sponsors will always precede the problem

resolution activity. The financial approval is based on the business case that the service

provider develops and the return on investment that the resolution brings to the table.

For example, if a particular resolution costs a million dollars and can improve the client

productivity by 10 percent, the client might be tempted to approve it. On the other hand,

for the same million dollars, if the return on investment cannot be quantified, it may not

get the nod.

Implementation activities will be carried out through the change management

process. The resolution will be submitted to the change manager in the form of a request

for change (RFC). The change management process will conduct due diligence like

risk and impact analysis to ensure that the resolution does not cause more harm than

good and that it does not impact other connected services (regression analysis) or cause

outages during business- critical periods. Most solution implementations go into the

change advisory board (CAB) approval cycle for further assessments and scrutiny. After

getting the okay from all stakeholders, they will be taken up for implementation.

Resolution can also come in the form of a workaround. I discussed workarounds

earlier in this chapter. Workarounds must also be reviewed through the change

management process.

At the end of the resolution activity, the KEDB will be updated. If a permanent

solution is implemented, the KEDB record is archived. If a workaround is implemented,

the KEDB record will be updated with the necessary workaround details. In a

workaround implementation, it is a good practice to keep the problem record open.

 Step 7: Problem Closure
When a permanent solution is implemented, the problem record needs to be updated

with the historical data (of the problem), resolution details, and change details; then

it is closed with the appropriate status. If a workaround is implemented, you keep the

Chapter 8 problem management adaptation

228

problem record open in an appropriate status to indicate that the problem is temporarily

fixed using a workaround. The problem manager is generally responsible for closing all

problem records.

 Problem Management in DevOps
The problem management process exists to reduce incidents and to ensure that the IT

environment is free from anomalies that hold back the system and the services. The

process is relevant in an IT services environment powered by ITIL, and a DevOps project

is an extension of the ITIL environment. So, it is clear that problem management is here

to stay in a DevOps project.

You may think I am contradicting myself based on what I said earlier about DevOps.

I mentioned earlier that the goal of DevOps is to deliver quickly and to minimize the

number of bugs in the production environment. It is impossible for any methodology to

claim that a bug-free system is going to be deployed. If that’s the case, there is no room

for either the incident or problem management processes. But, bugs are an inherent part

of the system. They are like the weeds in your garden. No matter how technologically

savvy you are in agriculture, you can never take all the weeds out. The same is true

for the bugs in an IT system. They are here to stay and so is problem management to

minimize the effects of these bugs.

 What Are the Possible Problems in a DevOps Project?
Incidents and problems often look the same in a DevOps project. The speed of delivery

is the most important aspect. When incidents flow in, they come in quickly, and they

move out quickly as well. The time needed to analyze an incident is kept short to avoid

extended downtimes, and this often gives rise to a dilemma of not sharpening the axe

before felling the tree.

Of course, there are bugs (and incidents) that crop up, for which the developers

may not have the answers. In the interest of moving ahead and reducing the backlog,

the developers might put the bug on the backburner, tagging it “unresolvable.” These

unresolvable defects form the basis for reactive problem management. As the word

reactive suggests, you react to the problem at hand rather than anticipating it and

removing the cause of it before the problem materializes.

Chapter 8 problem management adaptation

229

The enigma over incidents and problems needs to be reexamined in a DevOps

project. In an IT services project, the boundaries are straightforward. Problems are

incidents that cannot be resolved permanently or resolved at all without detailed

analysis. A post-mortem on major incidents is done on the back of a problem.

Analysis on the incidents can reveal certain interesting aspects such as incidents that

have commonalities, often called repetitive incidents in ITIL lingo.

In a DevOps project, what can be categorized as problems?

Incidents flow from L2 support to the DevOps team. The DevOps team works on the

incident for a reasonable time based on its priority. The planning around working on

incidents is taken up the Scrum master and the incident manager. When the developer

spends sufficient time on an incident without success, the Scrum master, in consultation

with the incident manager, might weigh in on the impact of the incident and workaround

if available. Instead of spending excessive time on an incident that does not have a major

impact, the Scrum master will make a decision to rebadge the incident as a problem, and

the problem goes back into the backlog, only to be picked up in a future sprint. This is

one source of problems.

Major incidents are rare in most projects. However, when one does happen, there

needs to be a good amount of post-resolution analysis to ensure that major incidents

are avoided at all costs. Post-resolution analysis is a necessary evil, and the problem

management process is best equipped to deal with it. This is equally applicable to

DevOps projects as well.

I started this topic with an axe-sharpening analogy. It is so true that you need to

sit back and take a holistic view of the flow of incidents. Only then can you get the true

effects of axe sharpening and won’t slog away at incidents instead of bringing an end to

a bunch of incidents in one swooping move. Analyzing repetitive incidents is a worthy

exercise in a DevOps project, and it helps with the stability of the system and helps deal

with the problem head-on rather than in a reactive manner, which makes a case for a

dedicated role to manage problems.

 Making the Case for a Problem Manager
There are discussions on various forums about the relevance of full-blown ITIL in a

DevOps world. One of the liabilities according to a certain school of thought is the

role of the problem manager. Detractors say that the problem management process is

relevant and has value, but having a dedicated role of a problem manager to manage the

Chapter 8 problem management adaptation

230

problems is overkill because the problem manager does not do the heavy lifting that is

involved in the analysis of problems and root cause identification. The person merely

touches the surface and acts as a record keeper. Well, in my humble opinion, these

detractors are wrong. There is considerable value in having a problem manager, and in

this section, I hope to prove explain why.

I spoke briefly on reactive problem management in the previous section. The word

reactive must not be looked at as something to stay away from. There is value in reacting

to problems at hand and ensuring that they are resolved quickly. Reactive problem

management takes place on two fronts in a DevOps project:

• Defects that cannot be resolved (at least quickly), wherein the impact

of the bug is minimal (such as slight misalignment of the footer text).

However, these defects must be fixed at point, and sooner than later.

Tagging such defects by an appropriate status such as “unresolvable”

will provide an opportunity for the planning team (Scrum master)

to break down the problem into multiple parts and present them in

various sprints for action and closure.

• I presented the case of major incidents in a services project as being

appended with a problem ticket to conduct investigations and

propose a permanent solution to ensure such major incidents do not

happen again. This scope of problem management can be extended

to a DevOps project as well. Not only major incidents, there’s more

coming into the realm of problem management from a DevOps

project. DevOps projects are generally anal about defects getting

into production. Incidents that are raised against software releases

need to be looked at under a microscope. Who best to do this than

problem management?

Proactive problem management in DevOps is about analyzing incidents. Incidents

are analyzed based on various common factors, such as the nature of the incidents, the

configuration item involved, the application features, and so on. This sort of analysis

more often than not provides an opportunity to get an overview of incidents. The results

are always interesting because you start to find problems in areas where you least expect.

As the Pareto principle goes (tailored to ITIL), 80 percent of the problems are caused

by 20 percent of the incidents. So, it is important to identify that bugger behind a whole

bunch of incidents!

Chapter 8 problem management adaptation

231

Problems do not cause as many problems as incidents do. Therefore, it is anything

but natural to do away with a problem manager, as there isn’t much noise around

problems. This is how the IT industry operates. The ones who make the most noise

get the prize. The problem manager is like a campaign manager, working in the

background and drumming up support for your candidate. Thus far, I have established

the role of problem management in the overall scheme of things. Having a dedicated

problem manager to shepherd the problems to their closure seems to be a logical

choice. However, it is also true that with the advancement of DevOps methodologies

and catching defects early, defect rates have dropped, and a problem manager being

part of the DevOps team seems a luxury rather than a necessity. In Chapter 5, I propose

multiple layers of team structures. The DevOps team is dedicated to a single product

and shared teams managing multiple DevOps teams. The problem manager can be part

of the shared teams and manage problems from multiple DevOps projects if there isn’t

sufficient load from a single DevOps project.

 The DevOps Problem Management Process
The problem management process in a DevOps project is in principle the same as in an

ITIL-driven services project. The process, however, is broken into multiple sequential

items that are processed in sprints based on their prioritization. A rundown of a problem

management process in a DevOps project is in Figure 8-5.

Chapter 8 problem management adaptation

https://doi.org/10.1007/978-1-4842-9072-9_5

232

Figure 8-5. DevOps problem management process

Chapter 8 problem management adaptation

233

 Step 1: Problem Detection

Incidents are identified while problems are detected. Problems are not obvious; they

need to be unearthed based on historic trends or on the back of patterns. The problem

detection is primarily entrusted to the problem manager, who is part of the shared team.

However, detecting problems is the responsibility of all involved personnel. That means

everybody. Problems can occur anywhere, be it in the toolsets or infrastructure or the

way the Agile implementation is done. After a problem been detected, the problem

manager takes ownership of it and analyzes it for its relevance, value, and impact. If it is

low on all three counts, the problem manager may close the problems without further

action. For problems that rank high on the agreed-on matrix, the problem manager takes

them further.

One of the most common ways of identifying problems is through trend analysis.

A trend analysis for the past six to twelve months will reveal patterns that can be

used to identify the common denominator. A problem ticket is raised against the

detected problem. This type of problem management where problems are detected

(and rectified) before they grow into major impacting incidents is called proactive

problem management. The process of detecting and solving problems on the back of

a major incident (or coming from other processes) is referred to as reactive problem

management.

 Step 2: Scrum Master Logs the Problem into the Product Backlog

The Scrum master receives the problem ticket and, for every problem ticket, creates an

epic (a big chunk of work consisting of multiple user stories) on the product backlog with

the following user stories:

• Analysis (RCA)

• Solution

• Development

I recommend creating a minimum of three user stories because a problem needs

to be analyzed to identify the root cause. Identifying the root cause is potentially time-

consuming and can eat away at a developer’s time for the entire duration of a sprint.

While planning, the Scrum team can sequentially analyze the root cause in Sprint 1,

developing a solution based on the identified root cause in Sprint 2, and then develop

the solution and test it in Sprint 3. The order cannot change, but the sprint numbers can.

Chapter 8 problem management adaptation

234

Based on the prioritization, the Scrum team can pick up root-cause analysis in Sprint 2,

the solution in Sprint 5, and its development and testing in Sprint 7. The order cannot be

turned around; in other words, the solution cannot be developed before the root cause is

identified.

 Steps 3 and 4: Product Owner Prioritizes the Problem and Adds
the User Story to the Sprint Backlog

No surprises here. The product owner is the sole proprietor of the product backlog;

they prioritize the epics and user stories. In this case, the product owner has decided to

prioritize the problem over all other product backlog items. The user story pertaining to

analyzing the root cause (followed by other user stories in subsequent sprints) is added

to the sprint backlog.

 Step 5: Scrum Team Acts on the Problem

It is okay that the Scrum team, instead of developing and testing the user stories, puts on

a Sherlock Holmes hat and investigates the problem. The definition of done in this case

is to identify the smoking gun.

When the root cause is identified, the next user story is to develop a permanent

solution for the problem based on the root cause. This is prioritized and added to the

sprint backlog. Developing a permanent solution can be done by developers, testers,

operations, or architects (who sit in the shared teams). During the sprint planning

session, the person who is going to derive a solution is identified, and the definition of

done is to come up with a solution that plugs the problem.

In the subsequent sprint, the solution is developed and tested if it involves coding.

If it involves infrastructure changes, the respective team member gets down to work to

implement the recommended solution.

 Steps 6, 7, and 8: Continuous Integration, Testing, and
Auto-Deployment

If the solution involves coding changes, the changes made to the mainline are fed back

into the mainline, the continuous integration and continuous testing processes take over,

and the binaries are deployed into environments of choice.

Chapter 8 problem management adaptation

235

The problem manager is kept in the loop throughout this process. Although

this problem manager will have a limited role to play in the process, they will keep

monitoring to ensure that the process and deliverables are met as agreed-on. When the

solution is successfully developed and implemented, the problem manager marks the

problem ticket as successfully implemented.

 Summary
ITIL can go deep into the root of the problems, to weed out defects/bugs that can have

a long-lasting effect. The problem management process conducts root cause analysis

followed by a permanent fix, which potentially prevents a number of incidents. This

chapter introduced the problem management process in detail, including some

root cause analysis techniques, such as five whys, Ishikawa, and Kepner-Tregoe. It

also covered the adaptation in a DevOps project, and the viability of the problem

manager role.

Chapter 8 problem management adaptation

237

CHAPTER 9

Managing Changes
in a DevOps Project
They say that change is the only constant. They also say that anything that does not grow

withers away. This is true in the software industry. No matter how old the software or the

service is, changes happen all the time. No matter how legacy the application is, it still

needs to be maintained and updated with the organizational needs.

Changes are inevitable in any industry; therefore, the onus is on management. The

question is not whether you make changes but rather how you do so without impacting

the product or service negatively.

It is also true that a majority of incidents are caused by mismanaging changes. This

is all the more reason that you need to tighten the change management process to

increase the overall uptime and reduce the number of outages. This chapter provides the

necessary details of the ITIL change management process, including the types that exist

and a typical process that is normally employed. Then I move into adapting the change

management process into a DevOps project.

To me, a real difference can be made in the way you deliver projects, and the change

management process is a major stakeholder in ensuring that the security blanket that

it provides protects the service from malicious changes. This is the process that sets the

bar for implementing DevOps successfully in organizations; it does this by allowing

seamless changes with the least amount of bureaucracy and by providing plenty of

support to guard against mishaps. In the ITIL adaption scheme for processes, the change

management process will define the way forward.

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9_9

https://doi.org/10.1007/978-1-4842-9072-9_9#DOI

238

 What Constitutes a Change?
A change can come in many forms. Identifying a change is half the problem, because

most organizations fail to define the list of changes as compared to other issues, such as

service requests. The big-ticket question is what is a change?

 Overview of Resources and Capabilities
Changes in the ITIL framework and changes in the project management framework have

different connotations. My focus in this section is ITIL; therefore, the change that I refer

to here is the change that comes about for a service. A service is made up of multiple

moving parts, and in ITIL they are broadly classified as resources and capabilities.

Figure 9-1 shows the resources and capabilities; each item listed is called a service asset.

Figure 9-1. Resources and capabilities of a service

Note People are listed under both resources and capabilities, as they directly
make up the resources that support and build services, and their capabilities also
have a major stake in the quality of their delivery.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

239

The ten service assets listed in Figure 9-1 represent the various moving parts of

a service. Changes to any of the ten service assets are likely to have an impact on the

service. While some service assets impact services directly, most impact it indirectly.

For example, financial capital is a necessity to run services. The lack of it will dwindle

the resources that are working to keep the services up and running, and thus it impacts

the service. As another example, on the capabilities front, knowledge about the services

is like pure gold. If knowledge is well maintained, then resolving incidents and making

changes become hassle-free exercises. If the knowledge is all over the place or is not

retained, then the real challenges creep in, with longer resolution times and malicious

changes. Therefore, it is critical to note that all the service assets have a role to play in the

delivery of services.

If changes are made to the service assets, they need to go through the change

management process. However, the change management process may not be common

for all service assets. For example, making changes to a process may involve a quick

conference between the process owner, process manager, business counterparts, and

service managers. They sit down, discuss the proposed change, and ratify it if satisfied.

The underlying premise is that for each of the service assets, there must be a governance

body around them (call it change management or anything else) to ensure that the

changes do not negatively impact the services.

Changes come in several layers, such as strategic, tactical, and operational. Strategic

and tactical changes are done at a level that’s outside the scope of the project, be it an

ITIL project or a DevOps project. Only operational changes come go through the change

management process, which is discussed in the rest of the chapter.

 Change in Scope
In Figure 9-1, the infrastructure and applications are shown in a different shade as

the purview of change management comes directly under ITIL. Simply put, in the IT

industry, change management refers to making changes to the IT infrastructure and

the applications that contribute to the services. In the rest of the chapter and the book,

when I refer to change management, I am talking about changes to be done either to

infrastructure or to applications.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

240

Note the official definition of change is as follows: “Change is the addition,
removal, or modification of anything that could have an effect on it services.”

Even after reading the official change definition, the scope may not spell out

everything that you wanted to know. An IT service can spread far and wide, including

the suppliers that support the service, the IT professionals who manage it, and the

documentation for it. Does changing any of these peripheral components require

a change? Yes, but it depends on the agreement between the service provider and

customer organization. Managing more items requires more time and resources, which

adds up to expenses. If the customer wants to have absolute control over the IT services,

then yes, every element that makes up a service must come into the purview of change

management. In the real world, this is often not the case, owing to the financials. Many

of the indirect components are ignored in the interests of reducing expenses, and some

companies find innovative ways of controlling the peripheral objects using standard

changes and service requests.

There is much more to change management than adding, removing, and modifying

IT services. Take the example of running an ad hoc report. You are not adding, removing,

or modifying anything, just reading data from the database. Yet, you possess the power

to break systems with the wrong set of queries that search every table, that utilize the

infrastructure’s resources, and that could potentially cause performance issues to the IT

service. In this case, if you bring this through to change management, they can possibly

identify the resource-consuming queries and shelve them or schedule them to be run

during off-peak hours.

In the ITIL fiefdom, a change is painted as follows:

• Architectural changes to infrastructure and applications

• Additions, deletions, and modifications done to infrastructure CIs

• Additions, deletions, and modifications done to application CIs

• Database schema changes, migrations, and data transformations to

data used by services

• Configuration modifications performed on infrastructure and

application CIs

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

241

The list is not comprehensive, but the underlying idea is that anything that affects

running a service is going to change, so it should be brought under the lens of the change

management process.

 Why Is Change Management Critical?
In Chapter 6, I mentioned that the service asset and configuration management process

is critical and is the foundation for the rest of the processes to follow. While configuration

management provides the foundation, change management uses the foundational

data to make decisions that could potentially break the existing services or could do

wonders for the service. The change management process is a governance process and

has complete control over what changes can be performed to the services and to the

products that make up the service. If you determine your change management process,

the service management implementation is bound to mature faster and make way for

service improvements quite early in the cycle.

Change management is the sole authority that keeps a close watch on all the changes

that are proposed, and after conducting due diligence and ensuring that all concerned

parties are happy with the change, it gives the go-ahead for the commencement of the

change. This ensures that all the stakeholders know of the change and are given the

opportunity to ask questions and oppose it. The process is responsible for bringing in a

framework to ensure that changes go through a common pipeline that is governed by a

change governing body, called the change advisory board (CAB).

The process is that a governing body gives approval for technical teams to carry out

the changes. They are a management body; therefore, they do not control the sluice

gates if the technical team wants to make changes in a discrete manner. Changes that

are done outside the purview of change management are called unauthorized changes.

Such changes hurt organizations, and service management generally loses control of

their services because of such irresponsible actions by the technical teams. To state an

example, an unauthorized change does not lead to changes to the content management

database (CMDB). So, if an application is installed without going through the change

management process, the application CI does not get registered in the CMDB. In

the future, when an incident is raised against the data coming out of the installed

application, the application support teams refer to CMDB and become perplexed

because there is nothing to troubleshoot. They need to later dig into the server to check

what exists, and eventually, the overall diagnosis and troubleshooting take a lot more

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

https://doi.org/10.1007/978-1-4842-9072-9_6

242

effort, leading to extended downtimes and perhaps penalties. All such unwanted and

unnecessary outcomes are the result of unauthorized changes. Therefore, it is critically

important for the change management process to spread awareness on making the

changes the right way and keeping a tight leash overall services in scope. One of the ways

that the process keeps a watch over unauthorized changes is through the service asset

and configuration management process audits, which are responsible for identifying

such discrete changes. In the DevOps change management process, I introduce a

technical way to keep a close watch on the aspects of changes to the services and

products.

A major mistake that most ITIL implementers make is to prioritize the design and

implementation of the incident management process over the change management

process. It’s true that a process must handle downtimes and degradations, but it is

a whole lot more important to keep sentries at the door of services to allow only the

authorized ones through. This blip of prioritizing the wrong process places many

ITIL projects on a path of constant firefighting even after months and years after the

completion of the implementation. My advice is simple. Put a change management

process in place to keep track of all the processes. This process may not be a full-fledged

one but rather something like its skeletal cousin that can help prevent unauthorized

changes. Once a full-blown incident management process is designed and implemented,

get to work bolstering the change management process.

 Objectives and Scope of ITIL Change Management
The change management process is one of the governances put in place in the ITIL

service management framework. It is a process that controls the changes that go into the

IT environment. It is a process that acts as a gatekeeper, vetting, analyzing, and letting

through only qualified changes.

According to ITIL, the official definition of change management is that it controls the

lifecycle of all changes, enabling beneficial changes to be made with minimum service

disruption. This is change management in a nutshell: ensure only beneficial changes go

through, remove the wheat from the chaff, and ensure that if anything were to go wrong,

the risks are well understood, mitigated, and prepared for with minimal disruption.

To expand on this, the way this process works is somewhat like the changes that are

funneled through the change management process. Only the changes that pass all the

criteria set forth, that are of good quality, and that are deemed beneficial to customers

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

243

or service providers, in general, are approved for implementation. You should also

know that the buck stops with change management for providing approvals. Change

implementation is managed through the release and deployment management

process, which works in tight integration with the change management process. To

reiterate, change management is accountable for providing approvals, and the release

and deployment management process is accountable for implementation and post-

implementation activities.

Digging deeper into change management, the output, or the objectives, of change

management are as follows:

• Respond to the customer’s ever-changing needs (technology

upgrades and new business requirements) by ensuring that value

is created

• Align IT services with business services when changes are planned

and implemented

• Ensure all changes are recorded, analyzed, and evaluated by

the process

• Ensure only authorized changes are allowed to be prioritized,

planned, tested, and implemented in a controlled manner

• Ensure changes to configuration items are recorded in the

configuration management system

• Ensure business risks are well understood and mitigated for

all changes

 Types of Changes
One size does not fit all the changes that happen in services. They come in all shapes and

sizes. Therefore, you cannot use the same yardstick for all changes. You need a different

set of protocols, policies, and processes to handle various types of changes. Say, for

example, you trip over a water pipe and hurt your shoulder. You go to the hospital, and a

doctor tends to you and does what is necessary with minimum fuss. Instead, if you were

in a car wreck that required stitching you up after and putting some dislodged organs

back in their place, this process will require an operation, surgeons, an anesthesiologist,

and nurses, among others to be present to ensure you survive and the operation is a

success.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

244

Between the two instances, the processes carried out is expectedly different, as one

instance requires a host of professionals, utmost care, and some amount of planning,

while the other can be done when needed with a basic medical skillset. For the patient

who hurt their shoulder, you don’t need to assemble surgeons and others. Likewise, in

change management, some changes need to be dealt with proper attention, planning,

and care, while others can be carried out with minimum scrutiny.

In ITIL, there are three major types of changes:

• Normal changes

• Emergency changes

• Standard changes

For your organization, you can define as many types of changes as you need. ITIL is

not prescriptive, so the types of changes are served at best as a guideline. I once worked

for an organization that had a fourth type, called an urgent change, that was placed

between a normal and emergency change.

 Type 1: Normal Changes

Let’s say that a patient has a heart problem, and they need to have open-heart surgery.

The doctors and surgeons involved carefully and meticulously make all the plans,

reserve the facilities, and then carry out the procedure. These are planned surgeries, and

in the change management world, such changes that are planned in advance are called

normal changes.

Most changes in any organization are normal changes, as no organization wants to

make changes without proper plans in place. Such changes are often lengthy because

of the planning sessions, stakeholder visibility, and approvals, and to ensure that all the

dependencies are managed.

Normal changes are generally associated with all the bells and whistles of the change

management process and are often well analyzed, tested, mitigated, and verified. The

maturity of an organization’s change management process is often measured through

the normal change process and the metrics and KPIs associated with it. Examples of

normal changes include an application refresh to a newer version, a server migration

from in-house to a cloud service provider, and the decommissioning of mainframe

applications and servers.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

245

 Type 2: Emergency Changes

During REM sleep, a person clutches their chest in pain and starts to sweat. An

ambulance is called, and they are transported swiftly to a nearby hospital. The doctors

diagnose a series of heart attacks that were caused because of a blockage. They don’t

have time to plan the surgery but rather do it right away so the patient will survive. So,

with minimum planning, they carry out the surgery. Such changes that are done during

firefighting exercises are called emergency changes in the change management process.

Emergency changes are necessary to urgently fix an ongoing issue or a crisis. These

changes are mostly carried out as a resolution to a major incident. The nature of such

changes requires swift action, whether it is getting the necessary approvals or the testing

that is involved. Generally, emergency changes are not thoroughly pretested, as the time

availability is minimal. In some cases, they may go through without any testing, although

this is not recommended, even for an emergency change.

The success of emergency changes reflects the agility of an organization and the

change management process to address disruptions in a time-constrained environment

and to come out unscathed in the eyes of the customers and their competition.

Emergency change management supports the incident management process in the

resolution of incidents, especially major ones. Emergency changes are generally frowned

upon and are not preferred. The number of such changes in an organization reflects

poorly on the organization’s stability of the services it offers.

Examples of emergency changes are the replacement of hardware infrastructure and

restoring customer data from backup volumes.

 Type 3: Standard Changes

A patient with failed kidneys gets dialysis multiple times a week. The process for carrying

out a dialysis procedure is well known and rarely fails. Most patients set up dialysis

treatments at home and do them fairly regularly. The risks involved are low, and if

something goes wrong, the impact is on the lower end of the spectrum as there are

multiple workarounds. Such changes for IT services that pose no danger to services and

are low key are referred to as standard changes.

Standard changes are normal changes that are low risk and low impact in

nature. Standard changes are at the discretion of the service provider and customer

organizations.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

246

Any organization will have a good chunk of low-risk and low-impact changes. In my

estimate, it should run up to 50 percent of the overall changes. The service provider’s

responsibility to deliver Agile change management depends on their ability to identify

standard changes from the normal change list and obtain the necessary approvals to

standardize them.

Standard changes have distinct advantages and create value for customers. They

follow a process that is less stringent and is free from multiple approvals and lead times

that are often associated with normal changes. This provides the service provider with

the arsenal needed to implement changes on the fly, which increases productivity and

helps deliver better value to the customers.

Examples of standard changes include minor patch upgrades, database reindexing,

and blacklisting IPs on firewalls.

 ITIL Change Management Process
Of the three types of changes (normal, emergency, and standard), the normal

change process is elaborate, lengthy, and contains the most elements of the change

management process. Figure 9-2 indicates a typical workflow for the normal change

management process.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

247

Figure 9-2. ITIL change management process for normal changes

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

248

At first glance, it looks complicated, but as you break it down, you will understand

that it is logical, and perhaps this will provide insight into how changes are recorded,

approved, and implemented. The workflow boxes indicate process activities, and the text

on the outside indicate the people/team responsible for carrying out the activity.

 Step 1: Create a Request for Change
A request for change (RFC) is a proposal initiated to perform a change. At this stage, the

RFC is just a document with the change proposal. It is generally raised by the customer

team or the technical team. There are no approvals or authorizations to perform

the change.

The RFC document consists of all the necessary information pertaining to a change.

RFCs will vary for every organization. The information needed, the format, the depth,

and the necessary technical jargon are dictated by the change management policy.

Generally speaking, an RFC consists of the following fields:

• Change number

• Trigger for the change

• Change description

• Configuration items that are changing

• Change justification

• What happens if the change is not implemented

• Change start and end date and time

• Change category (major, significant, minor)

• Who is involved in the change

• Test plan

• Implementation plan

• Backout plan

• Verification plan

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

249

In most ITIL change management implementations, the RFC is directly available

on IT service management tools such as ServiceNow and BMC Remedy. The details

required are collected using web forms. A few years back, before ITSM tools were used,

RFCs were presented in the form of Microsoft Excel templates. IT stakeholders used the

copies of the template to populate and send RFCs to change managers for processing

and approval. This process was rather cumbersome, as it was manual and was not

governed using a system that applied the same yardstick for all change requesters.

Change management has come a long way with the application of digital technology.

 Step 2: Assess and Evaluate the Change
The RFC is analyzed and evaluated for risk, impact, and conflicts. The change

management team is responsible for performing the assessment. They typically

understand the change details, check whether the right stakeholders are indeed carrying

out the change, and check for conflicts with connected systems and related changes

going in during the same change window, among other conflict criteria. When the

change is free of conflicts and is fully scoped and documented, it is scheduled to be

presented in the CAB meeting.

In this activity, the role of the change manager is critical, as the change manager

alone would have visibility across the organization’s changes and is in the best position

to identify conflicts, if any arise. You can think of change managers as the first line of

defense against potential malicious changes.

I worked as an enterprise change manager at one stage in my career. The role was

daunting, and knowing that the entire billion-dollar organization depended on my

foresight and analysis was a scary thought. It was a challenging role that I enjoyed during

my heyday in operations.

 Step 3: Authorize the Build and Test It
The change manager calls for a CAB meeting of all stakeholders, from the technical and

business lines in the organization.

In the CAB meeting, the change manager leads the meeting and presents the change.

The CAB provides its approval for building and testing the change. The forum provides

authorization for developing the change, and this is the most critical approval in the

change management process.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

250

 Change Advisory Board

The CAB exists to support the change management team and to make decisions on

approving or rejecting changes. To state it simply, it can be described as an extension

of the change management role, and it exists to ensure that the proposed changes are

nondisruptive, scheduled to minimize conflicts, prioritized based on risk and impact,

and analyzed for every possible outcome to the hilt.

In an organization, you can have multiple CABs to support change management.

A typical example would be a change being represented in an infrastructure CAB before

it goes into the enterprise CAB and perhaps followed by a global CAB. The essence of

having a CAB is important, not the way it gets implemented.

It is critical for the change owner to present the complete change to the CAB, with all

the possible details. This will help the CAB decide on authorization to proceed with it.

The CAB has the authority to ask for additional information to be gained, additional tests

to be conducted and presented to them, and changes to be rescheduled. In some cases,

the CAB can reduce the scope of the change to ensure minimal impact for business and

technical reasons.

 Composition of the Change Advisory Board

The CAB consists of stakeholders from the business as well as from service delivery.

It can also include suppliers, legal experts, business relationship managers, and other

stakeholders as identified by the chairperson.

CABs are dynamic. They could be different for every change that comes up for

discussion. For a particular change, you may have Supplier A, a network manager, an

exchange manager, and IT security. For another change in the same CAB meeting,

you may have Supplier B, an application delivery head, and the SAP manager as CAB

members.

Some organizations might insist on a set of permanent members of the CAB who

sit in on all proposed changes, during every single CAB, and additional approvers

(dynamic) would come and go as necessary.

No matter who sits on the CAB as an approver, the change manager, who is

responsible for all the change management activities, is the chairperson of the meeting

and decides on CAB members, on the changes that are represented on the CAB, and on

the final decision of the CAB.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

251

These are potential CAB members:

• Change manager as chairperson

• Customers

• Suppliers

• IT security

• Service owners

• Business relationship managers

• Application delivery managers

• Operations managers

• Technical subject-matter experts

• Facilities managers

• Legal representation

 Emergency Change Advisory Board

Emergency changes require urgent attention and quick decisions. A CAB will not work

for assessing emergency changes. These changes may happen in the middle of the night

and require people to spring into decision-making mode to approve or reject changes.

The need of the hour to help change management decide on approvals is the

emergency change advisory board (ECAB). The need for emergency changes pops up

through incidents. It is possible that carrying out an emergency change (unsuccessfully)

could impact the service more than the incident itself. So, in all necessity, there is a need

for a few extra pairs of eyes to look at the proposed emergency change and provide the

approval in the most awkward hours of the night (or day).

In most cases, a change ticket will not be created when approvals are sought. Change

documentation may be done retrospectively for emergency changes. So, it is imperative

that emergency changes are approved based on what is heard and what was relayed.

An ECAB is comprised of key members who provide their decision on the proposed

change. ECABs mostly happen over a phone line, and it’s extremely unlikely that there

would be the luxury of members sitting across from one another. In some instances,

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

252

the ECAB members may provide their approval individually but not while they sit in a

gathering. Individual responses are collected, and the change manager uses wisdom in

providing a direction for emergency changes.

Note the changes that can come to an eCaB have specific, predefined criteria
attached to them, such as a major incident requires executing a change for a fix
that might have a significant impact on the organization or its customers.

Not all emergency changes call for an ECAB. Most of these are approved directly

by the change manager if the ECAB rights are delegated. The critical ones, where entire

enterprises could possibly be negatively impacted, would call for an ECAB to make

decisions. The emergency change management process should not be exploited to push

nonemergency changes under the guise of emergency changes.

It is possible that ECABs could ask service delivery teams to convert an emergency

change to a normal change if a workaround exists to keep the service running. An

example could be a database containing customer information that has gone corrupt

and the database team wants to restore data from backup tapes. They want to do it as an

emergency change to ensure that the customer’s data are present before the customer’s

business starts in the morning. An RFC for performing an emergency change is raised.

An ECAB is convened, and approvals are sought. Change documentation may be

done retrospectively. The database team restores the customer’s data from the backup

tapes, and the emergency change is a success. During the business hours, the change

document is created with all the bells and whistles, and it goes through the entire cycle of

obtaining approvals for visibility and to keep other stakeholders who were not involved

in the ECAB process informed.

There is a specific place for ECABs, and they have a specific job to do. This process

must not be abused with trivial emergency changes knocking on the doors of ECAB. It

dilutes the process and forces the ECAB members to lose focus on what really requires

their attention.

 Standard Change Advisory Board

The standard change advisory board (SCAB) is my own making; you will not hear or read

about it elsewhere. A SCAB is a type of advisory panel that makes decisions on whether

certain changes can be standardized. It is not a panel that works in the operations layers

or service management but rather in the tactical realm.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

253

The SCAB’s prime objective is to ensure that the change presented to the board for

standardization presents no major business impact if things were to go south; it also

ensures that the possibility of things going wrong is minimal. Essentially, the SCAB is

giving the technical team a free pass to carry out the standard change as per the agreed-

on triggers with minimal external supervision. Therefore, it is important that the makeup

of the SCAB consists of people who understand their areas very well and the associated

business impacts.

 Step 4: Build and Test
The build and test process, which includes software development, unit testing, system

integration testing, and user acceptance testing, is not part of the change management

process. I include it under the change management process to provide continuity in the

process activities. These activities belong to the release and deployment process, which

is discussed in Chapter 10.

 Step 5: Authorize the Implementation
The test results are presented to the change governance body, meaning change

management and the CAB. Based on the results, the change management team provides

the authorization to implement the change in the production environment.

This is yet another important activity, as all the identified testing activities must

be completed successfully before the change is allowed to be implemented into the

production environment.

 Step 6: Implement and Verify
The implementation and verification process is not part of the change management

process per se. Like the build and test activity, this one comes under the release and

deployment management process.

In this activity, the technical team will deploy the change in the production

environment during the approved change window and perform post-implementation

verification to ensure that the change is successful. If the change is not successful, it will

be rolled back to the previous state if possible.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

https://doi.org/10.1007/978-1-4842-9072-9_10

254

 Step 7: Review and Close the Change
A post-implementation review (PIR) is conducted to ensure that the change has met its

objectives. During this review, checks are performed to identify whether there were any

unintended side effects. There are lessons to be learned from changes. If there are any

such candidates, they are fed into the knowledge management database (KMDB).

After the successful completion of the PIR, the change ticket is closed with an

appropriate status, such as implemented successfully, change rolled back, change

caused incident, or change implemented beyond the window.

The responsibility for carrying out this activity generally falls to the change

management team, but some organizations have the change owners and change

initiators close the change with the correct status.

 How Are DevOps Changes Different
from ITIL Changes?
When I worked as an enterprise change manager, I often got feedback from various

delivery teams and business teams stating that the process was rigid, and they had to

plan at least a few months earlier for major changes. When the execution of change

approvals started, the number of stakeholder identification and approvals was

cumbersome. Some even shared with me they decided to forego certain changes

because of the lack of time and the enormity of the bureaucracy that was instilled in the

process. I was managing changes for one of Australia’s biggest retail outlets, and with

a number of moving parts including presence of legacy applications and the lack of a

proper CMDB, the change management process indeed asked for good amount of lead

time for the analysis to be completed before the change went in for approvals, and it had

multiple approval stages because we did not have a matrix (usually generated through

CMDB) to identify the right stakeholders.

This was a pure service management project with no principles of DevOps

inculcated in it. Hypothetically speaking, if I were asked to redesign the change

management project as the retail organization decided to jump fully into the Agile

and DevOps world, I still would not compromise on any of the change management

principles. There is nothing wrong with them; there is a reason why certain principles

exist, like having a CAB look at the major changes and providing lead time before a

change can be executed. What needs to be stronger, however, is the enablement of

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

255

accurate information through a healthy CMDB and the use of common sense and logic

to cut down on unnecessary bureaucracies. Changes are in fact one of the main drivers

for DevOps. Changes are good. The Agile methodology embraces changes and does

not shy away from it. The change management in DevOps should be a steering process

more than a governance process. It must help steer the entire DevOps boat through

automation, simplification, and common sense.

 The Perceived Problem with ITIL
Change Management
At the core, the ITIL change management process is designed to manage complex

changes. It calls for all the bells and whistles in terms of governing changes, from

planning to ensuring minimal risks while making a change. The underlying unstated

motto is maximum and effective governance with minimal risk appetite. However,

the ITIL process also tries to be nonprescriptive in suggesting that the organization

implementing the process can decide on its risk appetite and the level of governance

scrutiny over the changes.

Organizations that tend to go by the book prefer to take a risk-averse approach and

bring in all the changes under the same umbrella (following the same process for data

center migrations and periodic security updates on a server). This is, in fact, a good

approach for an organization that has stepped into the ITIL world. But as companies

mature, they must diversify and put changes of different magnitudes and impact

into different silos, with a different governance structure. This is frequently missed in

most organizations today. Therefore, there is a sense of antipathy toward the change

management process as a whole.

Change managers and people governing changes are considered people who are

against innovation, blockers of improvements, and bureaucratic and traditional by

mindset.

The ITIL change management process is believed to be a sequential process, as you

have a set process where certain activities have to be complete before you can embark on

the next set of activities. The sequential nature is in stark contrast to what we are trying

to achieve today, which is to develop and progress through iterative changes. Yes, the

change management process is sequential. You cannot analyze a change if the change

performed is not fully documented along with the risks it introduces. A decision on

whether a change should go through cannot be made unless all the ducks are in a row.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

256

There is a reason for change management’s sequential nature. How can you add a

roof to your building if the foundation and the pillars are not erected? It’s a fool’s dream

to make changes either with no governance or by doing activities in parallel. This is

where applying DevOps methodologies bring the focus required to better the process

toward progression and agility.

 DevOps to the Rescue
When you are faced with a problem that you address from a unilateral perspective (such

as change management being sequential and DevOps being iterative), the solution can

be evasive. What you need to do is think outside the box or look at the problem from a

different perspective. Don’t concentrate on the solution to a problem but rather take a

step or two back and determine the objectives that you want to achieve. Find a solution

to meeting the objectives rather than the problem itself.

The approach DevOps has adopted is to make frequent changes with minimal

governance. If something goes wrong (even terribly), the impact will still be manageable,

and rolling back will be brisk, as the rollback too will be quite straightforward (given

that the change is a small one). When you do such multiple changes on the back of one

another, you are managing the risk effectively, and the combination of the multiple small

changes is equivalent to a decent- sized change (or even a major one). And you are able

to deliver changes with (almost) no lead time and with minimal governance and manage

risks that come as a result of its failure.

DevOps changes the nature of change management from being sequential to

iterative. Within iterations, change management is still sequential, but because of the

scale of the change, its sequentially does not become bothersome.

DevOps can be applied to projects that are built in an iterative model alone. For

example, data center migrations or nonsoftware projects may find it difficult to follow

the DevOps iterative approach to change management.

 Project Change Management
Earlier in this chapter, I introduced the three types of changes in the ITIL world. When

you look beyond ITIL and service management, there are multiple types of change

management. I am not referring to the strategic, tactical, and operational changes. In

project management, we refer to change management as change control, where changes

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

257

pertaining to the triple constraints (namely, scope, cost, and schedule) come under the

purview of the change management process. In fact, it is considered that quality is the

fourth constraint, and this too comes under change management’s purview.

Any changes to scope, cost, time, and quality go through the process of change

control. It is a fairly bureaucratic and time-consuming process that considers changes

to all aspects and measures the other constraints based on the change. This is a fairly

common process that is implemented and practiced religiously in projects that follow

the waterfall model of project management.

In the Agile world, although some projects do maintain this process and practice,

I do not see its value. As the foundation of Agile project management stands on being

Agile and embracing changes, keeping a change management process to manage

the constraints is hypocritical. Let’s say the process exists in an Agile project, and

considering that changes are fairly common, at the beginning of every sprint, you might

expect a formal change control process to kick in and sort out the impacts to other

constraints. But to what effect? It is going to change again anyway. You are going to do

this all over before the next sprint begins. The effort that goes into managing the changes

will probably be a good percentage of the overall project management efforts, which is

a waste.

But then, how do we manage projects when we have no control over the changes

that are flowing in? The planning of projects is done at a fairly high level, and the actual

planning of development is done during Agile release trains (ARTs) if SAFe is the Agile

framework or at a sprint level for a Scrum-based approach. At the ART or sprint level, we

know exactly what we are trying to achieve, and all the planning is done during the sprint

planning session. The quadruple constraints are managed in the following manner:

• Scope: The scope of a sprint is managed by the product owner, who

is preferably from the client organization, and they identify the set of

user stories that will be acted upon during a particular sprint. This is

a classic example of the client having complete control of the scope

and cherry-picking the functionalities that need to be developed.

• In ART, multiple product owners and relevant stakeholders are

involved during the program increment (PI) planning session held

over two days. During the planning session, the set of functionalities

that are to be developed over the next ten weeks are charted with

ample wiggle room for changes during this period.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

258

• Cost: The costing model for an Agile project has been a discussion

that has sparked multiple conferences around the world as well as

garnered energy and enthusiasm in digital and physical forums. The

question is, if you are not clear about the scope, then how do you

set a budget and track costs? Since the scope is a moving target, the

costs too will start to shift right, making it impossible to manage.

While scope being moved repeatedly is okay with most organizations,

when it comes to finances, the freedom is measured differently.

Organizations make yearly budgets and don’t like the accounts to

swing too far toward the red, and it is believed that Agile projects can

completely blindside financial aspects.

• Models for budgeting and accounting projects can be created in a

number of ways. Any project can be dissected into logical phases to

track and manage discrete bodies of activities. We generally don’t

start with sprints from day 1, as there are usually project inception

and road map planning phases that precede development and

testing. Resource allocations follow the pattern of project phases with

business analysts, architects, and environment engineers preceding

the development team in projects. Figure 9-3 shows the IBM Rational

Unified Process indicating the various phases of a project and the

allocation of resources against each phase.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

259

Figure 9-3. Resource allocation in a project (image credit: ibm.com)

• For resources that sit outside the sprint, based on the resource

allocations, budgeting and costing can be done in a fairly direct

manner. It gets easier for teams in sprints. A sprint is made up of cross-

functional resources, and the sprint makeup does not normally alter

through the course of a project. Therefore, the cost of resources for

each sprint is a finite number, and multiplying this by the number of

sprints gives a fairly accurate cost of the developing and testing efforts.

• Schedule: A waterfall project is a sequence of activities where the

schedule is the direct result of all the sequential activities. The

schedule is more likely to be extended than the scope. If more

money is pumped in, the schedule can be squeezed by bringing in

additional resources. In a lot of ways, in Agile project management,

similarities exist in how the schedule can be managed through scope

and costing. In a similar vein, scope and costs can be managed by

managing the other two constraints.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

260

• In an Agile project, the duration of the project can be accurately

estimated, not at the inception phase, but rather after running

through a couple of sprints. The sprint team’s velocity can be

determined after a couple of sprints. Determining the velocity and

factoring it against the product backlog may give you a clue about

the number of sprints that are needed to clear it. However, in Agile

projects, the product backlog keeps churning all the time. At the end

of a sprint, the demo might show several changes to the developed

functionality, and some functionalities in the product backlog could

be replaced by other complex functionalities that become the need

of the hour. So, I would be surprised if anybody could put a finger on

that number to indicate the duration of an Agile project.

• What you can predict, though, are the number of the story points

that can be delivered over a period of time. Story points are a unit of

velocity, and through velocity determination, you can come up with

the number of story points that can be accomplished in the next few

weeks and months. If a project is realizing a product launch (let’s

say), then the product owner (PO) is at the helm to decide on which

user stories from the product backlog make it to the sprint backlog.

The PO has been intimately aware of the velocity and can make calls

to move priority items into a sprint.

• Quality: Quality, the fourth constraint, is a critical aspect of any

project. It has a direct correlation to the cost of the project, as the

costs tend to increase as you try to increase quality. Likewise, the

schedule of a project tends to get extended when a high benchmark

is set in terms of the quality to be achieved.

With DevOps coming into play, the game has changed. It is no longer just the project

management aspects that alter the quality landscape. DevOps pipelines can ensure

that the right quality is maintained in the software based on the set expectations. The

best part is that the pipelines have to be set up once (with minor tweaks in between, of

course), and the software can be run against the test scripts in an automated manner as

many times as needed without requiring precious human resources. This setup creates a

strong backbone to projects so you need not worry too much about quality pushing the

schedule ahead or exceeding the budget. As long as the quality is well thought through

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

261

and test scenarios and scripts target the heart of user stories, the quality of the software

can stand on its own, even amid the ruins.

 Risk Mitigation Strategies
The change management process exists to minimize the risks of untoward changes

going into the system and to make the stakeholders aware of the possible risks by going

through with the change so that the stakeholders can use their discretionary powers to

either allow or deny the change. That said, the change management process prefers to go

with approaches that are less risky.

DevOps is just not a methodology that automates everything and quickens the

software delivery lifecycle. There is more to it than the general DevOps-aware public

knows. One of the main tenets of DevOps is to uphold the quality of software, and

the quality directly correlates to the risk each change imposes. The lower the quality,

the higher the number of risks, and vice versa. Not only in the software industry but

in all industries, the lack of quality is one of the top-rated risks, but by using DevOps

methodologies and processes, organizations can ensure that high quality becomes a

hygiene factor rather than something that they strive to achieve.

 Auto-Deployment and Auto-Checks
Automation kills two birds with a single bullet. The first and fairly obvious one is that

automation is far more effective than humans, and productivity is bound to increase, as

the lead time from one activity to another is typically nonexistent. The second point I am

making in this section is that automation eliminates human error.

Humans are imperfect; we have moods and emotions and are open to distractions.

The activities we perform in the software delivery lifecycle are open to errors, even if

it is a simple task of copying files from one location to another. Simply put, humans

cannot be trusted to carry out work without errors because of carelessness, confusion, or

ignorance. These shortcomings can be mitigated by asking systems to do this work, and

if the design of automation is perfect (which is a one-time activity), then the machines

can carry out the job entrusted to them error-free.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

262

Automation does have its drawbacks. It does not have its own intelligence (duh!),

and the activities that it can perform are merely repetitive ones that we have identified,

designed, and implemented into it. These are some of the repetitive activities in a

software delivery lifecycle:

 1. Code review

 2. Code build

 3. Artifact storage

 4. Artifact retrieval

 5. Testing (all types including acceptance)

 6. Defect logging

 7. Deployment

 8. Reporting

As discussed earlier, the quality of the software is greatly enhanced by applying

automation with the right rigor, which correlates with various testing activities. However,

what goes unnoticed is the risk mitigation through the other automation that we achieve,

primarily in the areas of code reviews and deployments.

Software projects can reduce risks (and make change management happy) by

employing automation to the fullest extent. In my experience, apart from the defects,

manual deployments on the production environments gave rise to a number of failed

changes, which can be easily mitigated through automating deployment by using tools

such Ansible and Puppet. The automation design around deployments is straightforward

and simple compared to the automation around testing, so projects must ensure that all

their deployments happen automatically, leaving no leeway for human errors to creep in.

Static and dynamic code reviews give insight into the health of the code and the

binary. By automating code reviews using tools such as SonarQube and Crucible,

any risks emanating based on unhealthy coding practices and faulty binaries can be

mitigated through a simple integration of the toolsets into the DevOps pipelines.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

263

 DevOps Change Management Process
I have heard from quite a few hard-core DevOps proponents that there is no room for

the change management process in a DevOps-driven project. They say that things move

way too fast for any approvals and bureaucracies to creep in. When questioned on the

risks it imposes and the lack of transparency, I was told that the magnitude of changes

was so small that most times even if things were to go south, they could fix it by any

means necessary as long as they didn’t have to report to any governance bodies. This

answer did not bode well with me. Although I am a big advocate of moving to DevOps,

implementing without a governance body, especially without a change management

process in place, is a disaster in the making. This particular incident was one of the

reasons for the existence of this book.

Earlier in this chapter, I introduced the ITIL change management process, which had

at least a couple of “bureaucratic” blocks (if I may say so) that required authorization

before moving forward. The rest of the activities mentioned in it were logical for any

project in terms of coding, testing, and implementation. The ITIL change management

process has been proven time and again to be effective against malicious changes, so

my effort here is to incorporate the process in a DevOps project without sacrificing the

process objectives and, at the same time, not introducing hurdles in the DevOps way of

working.

In Chapter 1, I introduced the two main processes of DevOps that are leveraged to

provide end-to-end delivery of software from the coders’ desk to the production boxes:

continuous delivery and continuous deployment. The change management process is

adapted differently for each of the processes.

 Change Management Adaption for
Continuous Delivery
Typically in projects governed by ITIL change management, technical teams develop

and test all their wares before approaching the change management process for

approval. As the ITIL change management process recommends a two- step approval

and authorization, first from the CAB and later from the change management team,

the process is looked at as hindering the good work done by the technical teams and as

obstructing the complete value by implementing it as soon as possible. This is a criticism

from the ignorant, but when we try to adapt the same change management process in

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

https://doi.org/10.1007/978-1-4842-9072-9_1

264

a DevOps project, it is important to emphasize the activities that need to be done even

before the first line of code is written.

The change management process adaption for continuous delivery is indicated in

Figure 9-4.

Figure 9-4. Change management adaption for continuous delivery

Continuous delivery is a development and deployment process where all the

development and testing activities are automated, except for the deployment to

production. The deployment to production requires a manual trigger for the binary to hit

the production boxes.

 Steps 1, 2, and 3: Change Initiation
The process of continuous integration, where coders check in their code frequently,

followed by automatic build, review, and the test, should not and does not change.

However, as indicated earlier, change management wants to know what you are doing

before you start doing it.

Before the coding begins and well after the requirements are documented and

agreed on and designs and blueprints are drawn up on paper, the change management

process must be initiated. Initiation of the process begins by raising a request for

change (RFC), indicating that you intend to make changes to the existing production

environment. The RFC is analyzed by the change management experts and the relevant

stakeholders, and the members of the change advisory board are identified. The CAB is

convened, and the owner of the change is summoned to the forum to present the change

and answer all the questions the CAB members might have. The CAB will provide its

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

265

approval when the change owner convinces them of the change’s value, along with the

risks identified and its mitigation actions.

 Step 4: Build and Test
After the CAB approval/authorization, the build and test activities can start; this is

continuous integration. The continuous delivery process ensures that the coding and

testing of the package are done at a level that the binary can be deployed at any time,

meaning it is ready from a quality standpoint. The activities surrounding build and test

in the change management process are correlated to Step 4.

 Step 5: Deployment Authorization
When the binaries are ready to be deployed, meaning the coding and testing activities

for the scoped set of requirements are completed, the change owner goes back to

the change management team, indicating that the binary is ready to be moved into

production. The change management team carries out some basic checks to ensure that

the scope of the binary is as agreed on in the RFC and that the timelines for deployment

are acceptable to all stakeholders. When all checks come out okay, they give their

authorization for implementation, as indicated in Step 5.

 Steps 6 and 7: Deployment and Verification
The binary is deployed to production during the agreed upon change window. Smoke

tests and other verifications (post-implementation review) are done as part of ensuring

that the change is a success. Once it is deemed successful, the change ticket is marked up

as a success and the ticket is closed. These actions are indicated in Steps 6 and 7 in the

change management process.

 Continuous Delivery for Maximum Change Governance
The continuous delivery process is perhaps what the change governance prefers, as

the process ensures that the production systems are untouched unless the proposed

changes are tabled back to the change management team. This ensures that the

deployments to production are governed closely, and this provides a sense of control for

the change management governance teams.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

266

Continuous delivery is a good process for most organizations, as they are able to

draw a good balance between control and automation. The productivity is unaffected as

the entire chain of development and testing activities is running smoothly on the back

of automation; during deployment, governance comes into play to decide on further

courses of action.

 Change Management Adaption for
Continuous Deployment
Continuous deployment is the big brother of continuous delivery. It is a lot older and

more mature and prefers to take an automated approach. There is no manual trigger for

binaries to move into deployment. As soon as a piece of code is developed and tested

satisfactorily (as determined by machines), it gets deployed onto the production boxes

automatically. There is a pause to see whether everything is okay because the changes

being done are minute and chances are such that nobody will even notice them. It is a

like an army of ants moving sugar crystals one at a time to its home, and over a period of

time, a sack of sugar that was brimming is now only half full. The movement happened

over a long period of time, continuously, and since the volume of the movement was so

low, nobody even noticed it. After a couple of months, though, the change is visible to

the naked eye. Likewise, continuous deployment changes happen in minute batches,

and the collective set (say around 10,000) might represent a change that a project

employing continuous delivery opts as a change.

Although most organizations feel trepidation about continuous deployment, it is

not risky in the sense that it might break systems or it is an accident waiting to happen

(because of a lack of governance). It is similar to a jigsaw puzzle being constructed, one

piece at a time, and over a period of time, the picture comes together. If one of the pieces

don’t fit into a particular groove, no problem; it is pulled out and adjustments are made.

In Chapter 1, I explained continuous deployment in detail. Figure 9-5 is similar to

the ITIL change management process. You can still apply and adapt the ITIL change

management process for the continuous deployment process. But how can you govern

when everything is automated? Everything is automated after the development starts,

but there’s a whole lot of open space before and after.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

https://doi.org/10.1007/978-1-4842-9072-9_1

267

Figure 9-5. Change adaption for continuous deployment

At the outset, when you compare the change management adaption for continuous

delivery and the change management adaption for continuous deployment, they

look similar. But there is some shuffling of the change management process to fit the

automated nature of the continuous deployment process.

 Steps 1, 2, 3, and 5: Change Initiation and Authorization
to Deploy
The change initiation steps of a creating an RFC and running through the CAB is similar

to the continuous delivery process. The rules remain the same; there is no coding and

testing to be done unless the CAB gives their go-ahead. But there is a difference in what

you seek from the CAB.

When the change owner presents the change in the CAB, the change owner

proposes that the CAB provides not only the approval for coding and testing but also the

authorization to implement the binaries when they are deemed successful, generally

multiple times a day. The change owner has to convince the CAB that the quality will not

be compromised by sharing the DevOps pipelines strategies, plans, and various checks

and balances put in place. This change presentation will be a lot more rigorous than the

one faced for the continuous delivery process.

The CAB will provide its approval only if it thinks the pipeline that has been

constructed meets all the quality standards put forth and does not come in the way

of accepting more risk than necessary. Yes, once the approval and authorization are

obtained, the change owner gets a VIP card to the production systems that lets them

deploy as many changes as needed during the duration of the change, as specified in the

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

268

RFC. The CAB holds the authority to pull back the VIP card if the failure rate of changes

exceeds a certain threshold. Once the card is pulled back, handing it back requires

additional plans, tests, and quality checks to be put in place.

 Step 4: Build and Test
For developers and testers, the coding and testing activities remain the same, whether

they work in the continuous delivery process or the continuous deployment process. The

principles remain the same: to innovate, experiment, and learn from mistakes.

 Step 6: Deployment to Production
In Figure 9-5, you will notice multiple steps as the deployments happen multiple times.

The DevOps pipeline is built in such a manner that if the checked-in code is successfully

built and satisfactorily tested across all the various designed tests, the binary gets

deployed into production automatically.

If any of the tests were to fail, then the binary would not get promoted to production,

but rather a defect would be raised for the developer to fix and rebuild the code. This is

a powerful way of ensuring that the quality is not compromised even in the wake of full

automation; it’s a hands-off approach. These quality parameters have to be built into

continuous integration orchestration systems such as Jenkins and Bamboo.

 Step 7: Change Verification and Closure
When binaries are deployed into production, the verification activities (smoke tests)

are automated as well. The automation ensures that the deployed binary is working

the way it should, and any anomalies should trigger an automatic rollback of the

deployed binary.

The change closure happens when all the objectives of the change are met. The

change management team will dive deep to identify what changes have been done and

whether there is scope creep. In cases where scope creep is identified, the change owner

is reprimanded, and the opportunity to leverage continuous deployment (VIP card) is

not entertained in the near future.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

269

 Maximum Agility with Standard Changes
There’s another way of achieving flexibility and agility in the world of governance in

service management: standard changes. Standard changes are preapproved to be

executed during certain scenarios. The changes that are categorized as standard usually

don’t bring down entire systems or cause fatal damages; they are low risk and low

impact. Most important, these changes are documented with specific procedures.

It is believed that the maturity of the service management process of organizations

offering services can be determined based on the number of standard changes in

the system. That’s true, as standard changes present a system to segregate difficult

changes from the usual ones. The commonly performed changes are like a well-oiled

machine. It operates smoothly and can be relied upon in most circumstances. Around 60

percent to 70 percent of the changes in any organization are common, repeatable, and

straightforward. If all these changes are standardized, imagine the number of approvals

that don’t have to be sought and the number of meetings, telephone calls, and waiting

around that can be skipped.

The advantage with standard changes is such that in most situations, it can be

done on the back of any defined trigger. When a team wants to perform a standard

change, they don’t have to go to the change management team or to the CAB to present

their change. They simply log a standard change in the system (yes, records are an

absolute necessity), and then they can carry it out. Once it is successfully implemented

(which is expected), the change is closed. Voila! There’s no need to do a post-

implementation review.

Examples of standard changes can be anything and everything under the IT sun

that are repetitive in nature and do not pose major risks. That sounds like every single

deployment you do under DevOps, doesn’t it? Do you now see the connection between

standard changes and DevOps? Typical examples include installing security patches on

operating systems, running batch jobs, and performing nonintrusive backups.

 Championing Standard Changes
I started my career as a service management consultant, and over the years, I earned

the reputation of creating value for my clients through my designs and improvements.

Implementing standard changes was one of my secret weapons. These are the first things

I look at during an assessment:

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

270

• Does a robust change management process exist?

• Are there provisions for standard changes?

• How many changes are implemented as standard changes?

• Are standard changes monitored and audited regularly?

Standard changes are the low-hanging value creation fruit for clients. Most service

management experts and consultants have yet to come to grips with them, and that hurts

their clients’ chances of making a difference through service management.

When I worked as an enterprise change manager for a retail organization in Sydney,

Australia, I noticed that the organization did not have an active standard change process.

A team of change managers reviewed and processed anywhere between 150 to 200

changes each day. They knew the changes so well that by reading the change summary,

they would just scroll down to where the approval task became visible and hit Approve.

What struck me first was why this human effort was even required as it amounted to a

process to be followed rather than any visible value through the additional pair of eyes.

I got down to work by pulling data for the past couple of years and identifying such

changes that could potentially be categorized as standard changes. I did some arithmetic

and some guesswork to crunch some numbers, and according to my analysis, the

organization could save efforts anywhere between 25 hours and 40 hours every single

day. I considered modest numbers for my calculations, and this was the minimum

savings that the organization could do. Considering 200 hours of weekly savings, and

the average wages for a week typically in Australia is about $2,500 ($12,500 for the 200

hours saved). This saving translates to a monthly savings of around $60,000 ($12,500 X 4

weeks). Out of nowhere, the company could save over half a million every year, and they

jumped onto it, not without a number of warnings from the company old-timers.

I managed to convert about 60 percent of the overall changes into standard changes

within four months, and the benefits of showcased the power of Agile and DevOps. A

number of businesspeople in this organization were relieved not to have to worry about

getting approvals for all their changes. The best part was that they didn’t have to bundle

their changes into releases, so the changes went quickly to production and provided

maximum benefit to the business.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

271

 Process for Identifying and Managing Standard Changes
There is no guideline or typical process in the ITIL publication to identify and manage

standard changes. I believe the reason could be that standard changes are viewed as a

mature service management element and the ITIL publication has provided guidance on

processes and procedures around generic service management processes only.

I devised the process that I present in this section, and it has been implemented

across organizations with excellent results.

In this process, Steps 1 through 4 are employed sequentially for identifying standard

changes, and Steps 5 and 6 are independent activities for managing standard changes

and are not carried out in any sequence. In fact, Steps 5 and 6 are processes on their

own. (I provide a glimpse of how the process activities can be designed under the

process steps.)

Figure 9-6 illustrates a process for identifying and managing standard changes.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

272

Figure 9-6. A process for identifying and managing standard changes

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

273

 Step 1: Identify Standard Changes

The best teams or people to identify standard changes are technical teams themselves.

They best know their line of work and the changes they have been carrying out for days,

months, and years. They are in a great position to qualify those changes that are of low

impact, that are low risk, and that are carried out multiple times in a given period. For

example, if there was a super-simple change that gets carried out, maybe once every two

years, then there is no point in standardizing it as the effort required to standardize it is

far greater than implementing the change through the normal change process.

The process for nominating candidates can be done in a number of ways. The

simplest one is to manage a Microsoft Excel template that asks for qualifying details to be

filled out, such as the following:

• Summary of the change

• Justification on low impact

• Justification on row risk

• Number of times the change might be implemented in a given

period, say a quarter

• Trigger for the change (under what circumstances will it be

implemented)

• Document the steps were taken to implement the change

In some of my implementations, I did not use Microsoft Excel but instead used the

change management module in the service management tool to obtain the candidates.

In these implementations, technical teams have to create a new change (just as they

would as any other change), but they select a particular type of a change (called a

standard change qualification). This type of a change request will come ordained with a

template for capturing all the necessary details. Once they click Submit, a change ticket

number is generated, and the change ticket’s workflow is designed to move the change

ticket to the change management team’s queue.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

274

 Step 2: Screen the Candidates

The change management team typically receives a number of candidates for standard

changes. In fact, it is my experience that technical teams dump their entire list of

changes in the qualification list for standard changes because they typically wouldn’t

prefer to work with normal changes, and standard changes make their life a lot easier.

The change management team vets the changes and the justifications and cross-

checks from their records the number of times certain changes have been done in the

past and their outcomes. If a simple change with low impact and risk was screwed up

once before, the change management team would probably reject such a standard

change candidate up until the point that such changes are implemented successfully at

least a few consecutive times.

The vetting generally includes plenty of phone calls and conference calls with the

technical teams to understand the change (if needed), and the extensive analysis is

done. The intent is to ensure that only good changes are represented in the SCAB, and

the chaff gets removed during this step.

 Step 3: SCAB to Qualify Standard Changes

The SCAB is a virtual committee that I conceived of (you will not find it in ITIL

publication or elsewhere). It consists of the set of (wise) people who get to decide which

change candidates can be standardized and which should remain as normal. The board

members are picked to cover all areas of IT to provide a full 360-degree dimension

for the decision-making. I include the heads of infrastructure, the cloud, networks,

applications, and databases represented on the SCAB. This provides good coverage

across IT.

The SCAB is built along the same lines as the CAB. The CAB is more dynamic in

nature, with its members differing based on the specific changes that get presented.

However, the design of SCAB is to have a standard (static) set of members who

collectively make decisions about standardizing changes.

A representative from the technical team is asked to present the change, explain

justifications for why the change can be standardized, and answer all questions posed

by the SCAB satisfactorily to have a change standardized. In my experience, at times,

the SCAB just looks at a certain change and says, “Yeah, that’s a standard change.”

The team’s representative, although present, will be happy to get clearance with

minimum work.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

275

 Step 4: Develop Change Models for Standard Changes

When the standard changes are approved by the SCAB, the change management team

gets to work developing change models for the changes that are standardized.

A change model is a way of predefining the steps that should be taken to handle a

particular type of change in an agreed upon way, according to the ITIL service transition

publication.

During this step, a standard change template is created for a particular change (say

running batch jobs), and workflows are created for, say, activity 1 to log the details of

the batch, activity 2 to vet, activity 3 to program the batches, activity 4 to run the batches

(automatically), and activity 5 to verify.

The activities defined for a batch job run are different compared to a database

reindexing. A different set of activities is loaded in this workflow.

So, for every single standard change that’s approved, the change management team

has to develop change models individually, which is time-consuming. But, it’s a one-

time activity. Do it once, run it a zillion times!

With this step, the process for standardizing changes ends. Steps 5 and 6 are

independent activities that can be carried out any time after changes have been

standardized.

 Step 5: Implement Standard Changes

The change management team informs the technical teams that the standardized

change models are available on the change module of the service management tool

for their perusal. The next time, when the situation arises to implement a change

that is already standardized, the technical team creates a change ticket based on the

standard change model for that particular change. The workflows are laid out beautifully

for them to follow and carry out their change. An important thing to note is that the

technical team can carry out a standard change only when the circumstance (trigger)

presents itself.

For example, the SCAB, while standardizing changes, can impose constraints such as

“For this particular standard change involving file backup, it can be done only during the

following hours: 0000hrs to 0400 hrs.” So, the technical team must comply and carry out

the standard change only during the window. This is just one example of a constraint;

there could be many others that the SCAB could impose.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

276

All standard changes must be closed, and the closure of the standard change is

the final task in the workflow. This is one of the areas where I find most teams lacking.

Teams are good creating changes and carrying out workflow tasks until they hit the

implementation stage. Once a change is implemented, they forget all about the closure

as they get consumed in other technical stuff.

 Step 6: Monitoring and Auditing Standard Changes

Some critics of standard changes feel that they are free tickets to technical teams to do as

they please. They can do anything and everything.

It is true that technical teams can do anything and everything because they have all

the access they need. But why restrict this criticism to standard changes alone? Teams

can make changes even without a change in place (referred to as unauthorized changes).

So, how do we make sure technical teams don’t abuse their power?

There are multiple ways to do this. In one of my implementations, I leveraged the

monitoring tools and the CMDB with some automation conjoining the two to identify

unauthorized changes. The monitoring tools keep an eye on the components and

services that come under its scope and on a regular basis compare the monitoring

elements with the CMDB’s classes and attributes. The tools do a cross-sweep across the

changes registered in the system, with a similar change window as the anomalies are

identified. If a change ticket is present and is in the correct state with all the requisite

approvals (for a normal change), then the anomaly is closed down. Otherwise, an

anomaly flag is raised, and the change management team is alerted. The change

management team will further work with the teams to identify the problem and work

through it. Once done, they close the alert to logically close the flag.

This change monitoring solution was extremely effective in combating unauthorized

changes more than identifying noncompliance on the standard changes. Therefore, the

second part of this step is to conduct logical audits on the standard changes.

I recommend a monthly audit schedule by the change management team to audit

the standard changes. Or you might do this more frequently, depending on the number

of standard changes. If there are provisions or mandates to have an independent auditor

perform audits on standard changes, they normally do it either once every six months or

once a year.

Auditing standard changes is simple enough. Pull all the standard changes

implemented during a period. Identify a sample set. Note the constraints, triggers,

and documented steps for implementing standard changes. On the standard change

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

277

tickets, check whether they meet all the requirements. There are a number of audit tools

available, or a simple Excel spreadsheet will do. The audit process is a separate process

by itself, but for standard changes and in the context of DevOps, it can be simplified to

include only the items that matter.

 Summary
This chapter looked at how changes are handled in a DevOps project. Change

management in ITIL is traditionally bureaucratic, with lots of planning ahead of time

and a number of approvals to go with it. DevOps, on the other hand, is rapid and there

is no time for such approval processes. In this scenario, the topic of change not only

needs to adapt but must transform to become Agile and accepting of dynamic changes.

The changes that can be brought about to the change management process, especially

empowering the teams through standard changes, form the bulk of the DevOps

adaptation.

ChaPter 9 Managing Changes in a DevOPs PrOjeCt

279

CHAPTER 10

Release Management
in DevOps
We have come to the end of transforming ITIL processes into DevOps projects. Release

management is the final (major) process that needs to be adapted to the Agile way of

developing and promoting deployments into various environments.

The release management process is an inherent part of service management and

software development. It has stood the test of time over the years and has changed

rapidly as technologies have evolved and practices have transformed. Release

management must deal with an influx of automation, the flair of collaboration, and the

management abilities needed to see releases through.

This chapter jumps into the ITIL release (and deployment) management process and

provides an overview of the process for managing releases. It then covers the DevOps

way of understanding release management and proposes a DevOps adaptation of the

ITIL release (and deployment) management process.

 Change Management vs. Release Management
Change management is responsible for obtaining all approvals and authorizations from

relevant stakeholders and for controlling what changes go in. The release management

process, on the other hand, deals with the management of technicalities of the changes.

For example, let’s say that a change has been raised to deploy a new software version.

The change management process exists to put the change in front of the jury (CAB) and

obtain approvals and authorizations so that the change can be deployed seamlessly. The

release management process manages the requirement gathering, coding, testing, and

deployment activities of this change.

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9_10

https://doi.org/10.1007/978-1-4842-9072-9_10#DOI

280

The two processes work together, exchanging information from related activities in

the processes. This is illustrated in Figure 10-1.

Figure 10-1. The overlap between the change and release management processes

In Figure 10-1, setting the scope, creating a plan, and gathering the requirements all

come under the auspices of release management. Once there is a plan in place, including

the known dependencies and impacts, the change management people do their bit of

formal vetting and approval, before giving the go-ahead to begin development.

The change management approval process is necessary before the development

begins because of two reasons:

• It ensures that the efforts that go into development and testing

are not wasted if change management decides not to approve the

changes.

• If there are modifications to the solution proposed by the CAB, then

rework can be avoided.

Chapter 10 release ManageMent in DevOps

281

The release management process manages the overall planning, building, testing,

and deployment portions of the project. However, after the tests have concluded,

the release status is back in change management’s court. Change management’s

authorization is a necessary step to ensure that all the entry criteria for deployment have

been met. It also provides oversight before changes to production are set to begin.

The deployment and post-implementation review activities are owned by the release

management process, and the results are duly reported to change management for

change closures with the appropriate status.

In this sample process, the release ping-pongs between the release and change

management processes at least six times. The more exchanges there are, the better the

process is for ensuring the quality of governance and sharing accountabilities.

It is also true that some of the activities that originally showed up during the change

management process (such as deployment and post-implementation review) actually

belong in the release management process. This was intentionally done to ensure the

continuity of defining the change management process.

 Release Management vs. Release
and Deployment Management
In ITIL v3, the process pertaining to releases is called release and deployment

management. There is no release management process in ITIL today. In the software

development lifecycle, we use the term release management, and a process is associated

with it. So, the question to ask is, what is the difference between release management

and the release and deployment management processes?

There is absolutely no difference between the two processes. The ITIL process looks

at a process from a service provider’s perspective, and the software development’s

process gives it a development team’s touch. So, whenever I refer to release

management, I am also referring to the release and deployment management process.

They are one and the same.

In fact, in the previous ITIL version, ITIL v2, the release and deployment

management process was referred to as the release management process. Only in v3

(2007) did the process get coined the release and deployment management process.

Chapter 10 release ManageMent in DevOps

282

 The Basics of a Release
The release management process is a vast process that includes everything from

requirements gathering to the nuances of planning, building, testing, and deploying. The

entire project gets played out within the realm of the release. Therefore, it is key that the

process is understood, precisely planned, and executed with razor-sharp precision.

This section introduces certain fundamentals of the release management process

that are common across the ITIL and software development areas.

 Release Units
A release unit is the combined set of items (configuration items, software files, and so

on) that are released together into the live environment to implement a certain change

ticket or multiple change tickets. The crux of the release unit lies in the grouping that is

deployed as one unit.

Figure 10-2 shows an example of a release unit.

Figure 10-2. Release units for a website

Chapter 10 release ManageMent in DevOps

283

Figure 10-2 indicates the various components of a website that are under the scope

of release management. On this website, there are PHP, CSS, JavaScript, and database

components. Under PHP, there are three files that make up the PHP code for the website.

Likewise, for CSS, there are two files, and JavaScript has four files. Also, there are four

databases storing the website’s data.

Figure 10-2 highlights some boxes as Release Unit 1 and Release Unit 2. A particular

functionality is being delivered by making changes to the files PHP2 and JS2, and

together, the grouping is referred to as a release unit. This grouping is because the

functionality is delivered together from both the files. Without the JS2 file, the PHP2 file

alone cannot deliver the required changes. Likewise, the JS2 file cannot do the job alone.

Therefore, the files PHP2 and JS2 are grouped together as a release unit.

The next release unit, Release Unit 2, is a bit more complex at the outset. It requires

changes to the PHP3 and JS4 files and to the DB4 database. Just as in Release Unit 1,

all three need to be deployed together to be able to deliver the required changes.

Therefore, they are grouped as a release unit, united by a common release unit number,

Release Unit 2.

 Release Packages
A release package is a combination of one or more release units that will be deployed

together as a single release. In Figure 10-2, let’s say Release Units 1 and 2 are slated to be

released under a single umbrella. This would constitute a release package.

A release package is not merely a grouping of release units to be released in one

window. During its planning stages, the release package has to consider the effects of

certain release units being together, especially if there is a strong dependency and high

business impact between each other. The next steps for a release package planning are

to ensure that sufficient resources are available to build, test, and deploy the release and

to see whether sufficient infrastructure resources are available for accepting the new

release packages. There could be many such considerations that determine how you will

plan and execute a release package.

There is more to a release package than the release units. The associated deliverables,

such as documentation, training, and compliance set, also make up the release package.

It is also important to note that release packages are uniquely identified with release

numbers. The decisions for numbering are documented in the release policy, which

states the manner in which release numbering takes place and sets the rules for other

release-related decisions.

Chapter 10 release ManageMent in DevOps

284

 Types of Releases
The release policy defines the types of releases in an organization and at a project level.

The distinction for differing types of releases is based on the complexity of the release,

the schedule it maintains, and its associated business impact. Some organizations may

decide to do a release every week with some minor updates and then, at the end of the

month, plan for some serious packages to make their way into production. The release

policy can state what constitutes a major release, a minor release, and even types of

releases. I know of an organization that used to have medium and urgent releases. They

may not find their way into ITIL, but nonetheless, if the organization finds them relevant,

then that’s all the more reason to keep them and define a number of types as necessary.

According to the ITIL publication, there are three types of releases, covered in the

following sections.

 Major Releases
Major upgrades to software generally come under major releases. The business impact

of major releases can be anywhere between high and critical. This type of a release is the

mother of all releases and takes priority over any minor releases happening around the

same time. A number of resources are usually dedicated to the building and executing

of a release, and from a compliance angle, all the hawks should watch it with extra

attention.

In my experience, major releases are far and few between. In most cases, they are

done on an ad hoc basis, with some organizations deploying at least four major releases

in a year. For example, you might notice the updates being applied to the Windows

operating system. Some changes are quick and may not even demand a restart. However,

additions, modifications, or the removal of integral features happen on the back of major

releases that could require several minutes of installation followed by multiple restarts.

 Minor Releases
As the word minor suggests, minor releases include release units that are small and do

not usually bring down the business if the release goes south.

Minor releases are usually carried out on a weekly basis or monthly. It all depends on

the number of changes and the number of resources available to work on them.

Chapter 10 release ManageMent in DevOps

285

 Emergency Releases
Emergency releases are the planning and execution counterparts of the emergency

changes. They come into play on the back of an emergency change and are deployed

(usually) to fix an incident and to avert any negative business impact.

The number of emergency releases reflects negatively on the organization and the

project. Therefore, this is a type of release that’s not preferred or planned but rather

is imposed by a turn of events. It is also not uncommon that the release policy allows

emergency changes to be helicoptered in only between releases, say between two minor

releases.

 Early Life Support
Early life support is one of the key lifecycle stages in the ITIL service transition phase.

In non-DevOps projects, the team that supports the services is different from the team

that builds it. The gap between the two teams is bridged through a temporary phase of

overlap right after the deployment is done.

The build team provides support right after deployment, and the support team

usually supports them. So, when incidents happen, the build team is ready with the

fixes right away because they know the product in detail. At the same time, the support

team that’s monitoring them will get a chance to learn. Since the support is provided

during the first few weeks after deployment, it is referred to as early life support. Some

organizations refer to it as a hypercare period, where the best resources are tasked with

providing support during the product’s initial days.

Generally speaking, during early life support, the SLA does not kick in nor does any

of the other parameters that are used for measuring the level of service.

Early life support is completely eliminated in DevOps projects, as the team that

builds and the team that supports are one and the same, and therefore having a

hypercare period isn’t relevant. Or in other words, the product that’s being serviced is

always in hypercare support, meaning that it gets the best support possible during its

lifecycle.

Chapter 10 release ManageMent in DevOps

286

 Deployment Options
When the software is ready to be deployed, you can deploy it directly across all the target

devices in parallel or do it in pieces. Based on these strategies, the ITIL service transition

publication talks about two basic types of deployment options.

• Big Bang option

• Phased approach

Figure 10-3 illustrates both approaches.

Figure 10-3. Big Bang and phased deployment options

 The Big Bang Option
The Big Bang option is derived from the Big Bang theory, which states how the universe

came into being from a single, super force. Likewise, when software is deployed, it is

deployed to everything that’s under the scope at the same moment. In other words, all

users get to experience the software (or the trauma of deployment) at the same time.

This type of deployment is referred to as Big Bang deployment. It is also called parallel

deployment. In Figure 10-2, after a pilot deployment to a sample set of users, the release

package is deployed to Regions 1, 2, 3, and 4 at the same time.

Chapter 10 release ManageMent in DevOps

287

The upside is that all users will be in a position to enjoy the upgraded services at the

same time, and the service provider can claim to be consistent with its services. This is

generally preceded by a pilot (or multiple pilots) to ensure that the software does work.

When the pilot is deemed successful, a time is set, and the users are made aware, and

then the entire scope of the targeted system will receive the release package.

The Big Bang option is almost never considered in these modern times. You might

have noticed that releases happen to certain smaller regions first (pilot) followed by,

say, the United States. iOS updates are known to follow this pattern. The downside of

deploying to everyone at once is pretty significant. Any mistake will result in a disaster,

and the negative business impact that follows will be unbearable. Therefore, no

organization likes to take chances by pushing everything out worldwide in one go.

 The Phased Approach
The alternative to the Big Bang option is to deploy in a phased manner. In Figure 10-3,

an initial pilot to a sample set of users is followed by a phased deployment to Region 1

first, followed by Regions 2, 3, and 4. It is okay for the deployments to have weeks and

months between them to allow for the learning to sink in and corrective actions to be

implemented before the following release. This is the biggest advantage of a phased

approach. Organizations can manage their risks and target their audience based on

various parameters. For example, say an organization wants to deploy packages during

usual downtimes in different regions of the world. This may be the Diwali season in

India, Christmas in the United Kingdom, and Rosh Hashanah in Israel.

I don’t see any obvious downsides to the phased approach except that it requires a

lot of continued planning and differences in release version between users, so this may

end up being a support challenge. But there are a number of ways to mitigate this.

There are multiple variations of phased approaches that can be conceived apart from

the geographical deployments described earlier:

• Different features are deployed separately, so users can enjoy certain

features first.

• All users face downtime at the same time, although the deployment

happens in phases. This usually refers to a deployment taking place

on the tail of a previous one.

• A combination of geographical deployments, feature-wise

deployments, and downtime for all.

Chapter 10 release ManageMent in DevOps

288

 The Four Phases of Release Management
Release and deployment management has four major activities, or phases:

• Release and deployment planning

• Release build and test

• Deployment

• Review and close

 Release and Deployment Planning
A good amount of planning has to go into release activities. A good plan is half the job.

To ensure that the release is successful, it is critical that the architects and other experts

brainstorm various possibilities, risks, and mitigations.

Before the plan gets underway, change management typically provides approval

to start the planning process. However, in practice, the approval to create release and

deployment plans is provided from a different body, such as a transition management

group or a group that governs the projects that are chartered. In principle, these bodies

govern the changes made to the system, and this can be the equivalent of change

management authorization to create release and deployment management plans (part

of the transition plan in the transition planning and support process).

 Release Build and Test
The release and deployment plans are submitted to the CAB. The plans are dissected

from every possible angle to identify loopholes and vulnerabilities. Upon successfully

passing the CAB and change management scrutiny, the authorization to build and test

the change is provided.

Building a change amounts to developing the code, getting hardware ready, or

addressing the prerequisites for building the change.

There are various types of testing. The most popular ones are unit tests (UTs), where

individual components of a change are tested in isolation. Upon successful testing, the

individual components are conjoined, and a system integration test (SIT) is performed.

Chapter 10 release ManageMent in DevOps

289

After a test successfully passes, users are asked to test the function in the user’s

environment to check whether the change meets the requirements that are needed. This

is called user acceptance testing (UAT). The testing is deemed complete after the user

provides the okay that all elements of the change meet the requirements and are good to

proceed.

The definitive media library (DML) is a repository where all the original code,

software licenses, and other software components are stored, physically and logically.

When release and deployment management provides ample proof that the testing

has been successful, change management provides authorization to store the code/

software in the DML (discussed in Chapter 6).

 Deployment
The results of release and deployment testing are brought before the CAB once again,

and the results are vetted for possible complications and unseen bugs. When the CAB

and change management team are happy with what they see, they authorize the change

for deployment during the planned change window.

Deployment is a common term for implementation. It could include retiring services

or transferring services to another service provider as well. For simplicity, I’ll just refer to

it as deployment.

Deploying release packages is a specialized skill and calls for the alignment of a

number of parameters. There are a number of approaches to the release package. The

Big Bang approach is used when all the CIs are targeted to receive the package at the

same time. Say there are 10,000 workstations that need to get a security patch. All 10,000

systems will receive the release package during the same window.

This method is rarely employed, as it has the ability to choke the network. And, if

there are any mishaps, all the targeted systems could be affected, causing severe damage

to the customers. The most popular approach is a phased one, where the release is

staggered through multiple phases to minimize complications and avoid network choke.

In the same example involving 10,000 systems, it could be phased to target 1,000 systems

a day and to run the entire release cycle for ten days.

Chapter 10 release ManageMent in DevOps

https://doi.org/10.1007/978-1-4842-9072-9_6

290

 Review and Close
After deployment, the release and deployment management process conducts a review

(post-implementation review) to check the performance of the release and assess the

targets achieved. Lessons learned are documented in the KMDB. The release is closed

after the review.

 Releases in DevOps
The release management phase discussed earlier in this chapter is highly sequential

in nature. Its sequential nature is the backbone of the waterfall model of project

management. Agile is iterative in nature, and so is DevOps. So, can the sequential release

management process be compatible with the iterative DevOps model?

Yes! Release management is sequential in nature. It waits for one activity to

complete before the next kicks in. I am referring to some of the high-level activities

such as planning and deployment. Unless planning is complete (consider a roadmap),

development cannot begin. Unless testing is complete, it should not be deployed.

Therefore, it is fair to assume that the sequential nature of release management is best

handled the way it is designed. But it is also possible to make it a whole lot more Agile

and give it a hint of “go-with-the-flow” flavor.

 Sequential and Iterative Nature of the Process
Figure 10-4 illustrates the release management process’s iterative and sequential phases.

The release and deployment planning was considered to be a detailed exercise that

spelled out all nuts and bolts of the release, including the date and owner. With the

advent of Agile, the planning bit of the exercise was simplified, with more importance

given to the subset of requirements in development. In addition, a roadmap was created

by the strategists in the organization. The planning exercise is an iterative process

where the immediate bits of the puzzle are determined, and once it is close to being

delivered, the next bit is brainstormed and planned. This way, the planned items more

often meet the deadlines assigned to them and make sense, instead of a whole bunch

of missed timelines and detailed explanations and root causes for the misses. In effect,

the planning phase that used to be highly sequential is now carried out in a highly

iterative manner.

Chapter 10 release ManageMent in DevOps

291

Figure 10-4. Release management iterative and sequential components

The next phase consists of the build and test activities. These activities are technical

in nature. Chapter 1 explains how the continuous delivery phase is built, which is

iterative as well.

When the product is built and tested, it is time to deploy it. In continuous delivery,

the objective is to keep the package deployable at all times. Therefore, when you

implement continuous delivery, the deployment phase becomes sequential as the build

and test activities need to be complete, and a suitable window needs to be identified for

the deployment to happen.

Let’s say you are going in with a continuous deployment type of delivery, where

every time a piece of code gets checked in, it gets tested automatically, and if it meets

all the set criteria, it gets deployed automatically. In such instances, the deployment

piece does not wait for a precondition but rather goes with the flow (the flow being the

test criteria being met and the coding and testing taking place in iterations). So, the

deployment phase too becomes iterative in nature.

Finally, the review and close phase follows the previous deployment phase. If the

deployment phase is sequential, the review and close phase takes on a sequential tone

(and likewise for an iterative nature).

Chapter 10 release ManageMent in DevOps

https://doi.org/10.1007/978-1-4842-9072-9_1

292

 Release Management Process Adaption
with Iterations
In DevOps, release management has not been completely transformed. It has become

stronger through iterations. The activities in release management are now viewed by

a different lens that’s ready to accept the facts based on the things at hand, rather than

foretelling the future.

 Using Agile Release Trains
The range of planning that we have started to do under releases is not limited to a sprint

alone, which is the Agile/Scrum way of working. However, using the SAFe framework

and applying release management to Agile release trains (ART) gives us a steady plan

for the upcoming ten to twelve weeks. The entire ART represents a release with software

packages pouring in every couple of weeks at the end of each sprint. When we put the

sprints together along with their outcomes, the end product is the release package.

 Applying Release Management to Continuous Deployment
In the DevOps world, the release management process can be adapted depending on the

kind of process (continuous delivery or continuous deployment) you leverage. Let’s say

that you plan to employ continuous deployment where every time a package is tested

successfully, it gets deployed automatically. Release management’s role here is to ensure

that the path to production is stable, relevant, and consistent.

The release management process will have a lot of planning and execution during

the initial two phases rather than the final two phases. Still, if a faulty package makes

its way to the production, the ball falls back into the release management’s court to fix

the pipeline and the associated factors that make the pipeline work (such as testing

scenarios, scripts, and so on). Also, release management has to identify multiple release

windows for the deployments to take place because the possibility of deployments

happening multiple times a day is routine in a continuous deployment process.

Chapter 10 release ManageMent in DevOps

293

 Applying Release Management to Continuous Delivery
In continuous delivery, however, saneness can be maintained to a certain extent. The

release management process becomes bimodal, with release planning and builds/tests

using the iteration model and deployments and reviews taking the traditional sequential

approach.

The plan for continuous delivery works well with ART, with the planning exercise

being done once every 12 weeks and refined as the sprints go along. The sprints are

executed in iterations with the software packages, getting them to a state of readiness but

not getting deployed. When all the pieces of the release are developed and integrated,

the deployment happens (sequentially) followed by a review of the release.

Most organizations tend to go with this approach, mainly because it gives people in

charge a sense of control. Since continuous delivery still commands a manual trigger

before deployment, the decision-makers feel comfortable in opting for a process that not

only accelerates production but also awaits a formal order before hitting production.

Maturity is leading the way toward continuous deployment. The decision-makers,

after a few releases, will realize that their decisions have always been backed by the

figures, that the releases put forth in front of them have always been good for production,

and that their decisions have become just a formality. So, the end game will always be

with continuous deployment.

 Expectations from Release Management
Every process has to meet certain objectives to justify its existence. Incident

management exists to reduce downtime and to restore service as soon as possible.

Change management is implemented to control the production environment from

malicious changes. Likewise, at a high level, release management exists to ensure that

releases are deployed successfully in the targeted environment.

In DevOps, the processes don’t get away with such simple objectives. There’s always

more to the story, such as productivity, effectiveness, efficiency, and automation.

The DevOps release management process’s expectations are multifold. We are not

happy with just successful deliveries; we need them faster, and the process for delivering

must be consistent and not two-paced.

Chapter 10 release ManageMent in DevOps

294

Since there is potential to make hundreds of changes in a day, it is critical for

the release management process to provide strong auditing capabilities. Most

important, we need to trace the feature changes back to their requirements in a

straightforward manner.

Where there is DevOps, there’s automation. Release management in DevOps must

be automated to a greater extent than before and that's one of the key expectations from

the process. Automation ensures a systematic execution of work processes, an avoidance

of defects owing to human errors, and consistency in delivery.

 Blue-Green Deployment
Seeking downtime for releases is a thing of the past. In DevOps projects, carrying out

deployments without downtime is the norm, and release management must do this

at a minimum. There are a number of ways the process could achieve this. One such

example is the blue-green deployment approach, whereby two environments run in

parallel (each of the environments is designated with the color blue or green).

Figure 10-5 illustrates blue-green deployment approach. We have two parallel

environments, designated as blue and green. The environments are identical; however,

one of them is active and the other passive. In this example, let’s say that the blue

environment is active and the green one is passive. This refers to the load balancer routing

all the user requests only to the blue environment and not to the green environment.

Figure 10-5. Blue-green deployment

Chapter 10 release ManageMent in DevOps

295

Let’s say that we have a release on hand that requires mandatory downtime to install

and configure packages, followed by elongated sanity reviews. In this scenario, the

passive node (green) is deployed first. As there are no user requests being routed, there

is no question of seeking downtime. The users continue to operate normally in the blue

environment. When the deployment is successful and the environment is production

ready, the load balancer routes all the user requests to the green environment. While

users are busy operating in the green environment, the blue environment goes down,

gets deployed, and becomes production ready. The load balancer can either be set back

to blue or be shared between green and blue; this is a decision of the architects. Voila!

Both environments have been deployed with packages that required downtime, but the

users never felt the effects of the downtime.

 The Scope of Release Management
The scope of release management based on the activities we discussed falls across the

software development and software support teams. Because of the overlap, the process

has traditionally lacked ownership where one entity throws it back to the other, stating

various reasons for complications. For example, during the time of deployment into

production, where production is owned by the support team, the development team

takes their hands off the deployment and related configuration settings. This will, in turn,

become a support issue. But the support team is rather clueless, and they need the help

of the development team to set the right configurations. The only way out is that the two

teams work together to move past the obstacles and to make the release a success.

Enter DevOps! The reason that DevOps adapts so easily with the release

management process is that it has already solved the unending problem involving

collaboration and cooperation between the development and support teams. Under

the DevOps umbrella, both teams are placed on the same team, and they don’t have a

choice but to work as a team. Either both fail or both succeed. The obvious sane choice

would be to cooperate and see through the deployment and the acceptance parameters

of the release.

As per the Agile and DevOps principles, the entire ownership of the release will lie

with the team, as they are self-supervised, although we have a formal release manager

still in existence to give the release a touch of what the customer is thinking. With

the entire team working toward the release’s success, the argument about whether

development or support is taking the ownership of the release is put to rest.

Chapter 10 release ManageMent in DevOps

296

 Automation of Release Management
The release management process as defined in ITIL is solid and mature. I don’t see

any need for it to be altered or adapted for a DevOps project (in terms of the process

activities). However, what you can still do is make it more efficient by using the power of

technology to automate certain aspects of release management.

Of the four phases of release management, at least two can be automated: release

build and test, and deployment. The majority of the time of a release is taken up during

these two phases, and it absolutely hits a home run with the automation running against

activities that are designed to eat up most of the release time. Another important concept

in deployment is a rollback plan. This plan is used when the deployment fails and needs

to be recovered and restored to the previous state. Automatic rollback is achievable

using tools such as Ansible and Puppet, and it can help to restore the original build and

configuration efficiently.

The automation for releases is done on the pipelines that are built on release

orchestration tools, such as Jenkins and Urban Code. I touched upon the pipelines

in the initial chapters that form the basis for building and implementing continuous

delivery and continuous deployment. The pipelines define the various stages of software

development and testing that make the software acceptable to end users. The pipeline

ensures the developers and testers spend their efforts doing what they do best—coding

and writing scripts. The execution of these activities such as software build and testing is

taken care of by the orchestration tools. The results are duly updated, and the defects are

logged in the designated project management tool.

To state an example of the kind of efforts that can be saved through automation,

consider this: every time you make a change to a functionality, there is a need for

the regression issues to be tested. Testers spend a good amount of effort testing for

regression defects every time the changes are put back into the development and

testing environments. The time taken to test regression issues forms a major portion

of the overall testing efforts. You can automate regression testing, and every time a

new check-in happens, the testers don’t have to fret anymore. The machines take over

automatically by checking all scenarios of regression and reporting on the status. If

there are any defects, the orchestration tools generally have the privileges to log defects

automatically based on the result of the regression run. Just merely logging defects saves

testers tons of time that they can use to write more scenarios and automation scripts to

Chapter 10 release ManageMent in DevOps

297

make the testing process more accurate and intensive. Before the time of automation, all

the efforts going toward test execution and defect logging were wastes of time that were

effectively discarded.

The automation of release management activities is not restricted to testing alone.

The version control system that is part of comprehensive configuration management

(CCM) is a major catalyst for making automation work smoothly. Imagine working

on automation without a single source of truth. It’s like an airplane trying to land on a

runway without runway lights. There is no reference point for the plane to land, and

similarly, the coding, testing, and automation activities designed around the activity fail

without the integration of CCM and automation.

 The DevOps Release Management Team
I made it pretty clear that the ITIL release management process is good as is with some

iterations plugged in. The process is good; however, the people who run the process in a

typical service management project may not be as lucky. The release management teams

that are responsible for driving the process from the planning sessions until the closure

of releases are no longer needed. Am I crazy to suggest that we have the process but not

the people who run it?

Remember that the objective of DevOps is to ensure that productivity increases and

that no humans are needed for repetitive activities. The release management process

falls into the direct firing line of the DevOps objectives, and this has consumed the team

that runs the process. Yes, the reasons are obvious: the majority (or all) of the build,

test, and deployment activities are done by machines. These two activities account for

more than 70 percent of the overall release management activities. So, automation has

simply killed the release management team! Yes, that is indeed true, but what about

the remaining phases, like planning, reviews, and closure? You certainly can’t ask the

machines to do these too. Definitely not—at least not the planning phase because of the

human’s cognitive powers, which cannot be matched by the machines (yet).

Then who is going to carry out the human part of the release management process?

We explore this further in the next section.

Before you embark on specific roles, you should be wary that DevOps teams are

made up of two sets of broad roles that people play. There are developers, and then there

are operations. The way they communicate or the terminologies they use is not even the

Chapter 10 release ManageMent in DevOps

298

same. When an operations person talks about a service, that person basically means the

service you are offering. The same service is also a product that is being developed. But

the developer might not call it a service but rather refer to it as software or a system.

That’s not the only difference. Even the tools they typically use are different from

one another. The development team uses a tool such as Jira for managing its product

backlog, while the operations team uses a tool such as ServiceNow. So, the lack of a

single source of truth might lead to more differences.

This is precisely why release management is handy and provides the common

understanding between the two teams. The teams can understand each other because

they stretch across both sets of roles and people. This helps the overall DevOps

teamwork and collaborate for the betterment of the project.

 Release Management Team Structure
In DevOps projects, having a release management team is a luxury, given that the entire

focus is on optimization and there are fewer human hands to work on repetitive actions.

However, in the industry, many DevOps projects still leverage release management

teams to make releases work. The structure, however, differs from one organization to

another. Let’s explore some common ones.

 Separate Release Management Team

This is the traditional approach where a separate release management process exists to

take care of releases. The release management team is generally governed by a separate

release management practice that ensures that common release management practices

are followed across all projects under their control. So, in a way, there is an amount of

standardization they bring to the table.

Having additional hands to work on releases is a godsend, especially if the release

management teams start working with the team rather than acting as stage gatekeepers.

However, since the release management team gets helicoptered into projects, their

intimacy with the ground situation, solution, and customer expectations can be lacking

in some ways. Also, this option costs more and affects the cost of delivery.

Chapter 10 release ManageMent in DevOps

299

 Release Management by the Delivery Team

The delivery teams (development) can run the management of releases. This is helpful

because of their closeness to the development and their intimacy with the requirements

and customers. Organizations that cannot afford to invest in separate teams go for this

approach.

On the downside, such a release management team could end up playing both sides,

development and release management. Unfortunately, the conflicts of interest will be

written all over the decisions made. This option is generally implemented only when

there are limited finances, and I do not recommend it.

 Release Management by the Operations Team

In contrast, you could have the operations team working on the releases. They are

close to the production and the users, so they make a good choice for managing

releases, right?

Not really. Like the separate release management team, they end up being on the

outside of the solution and could end up not knowing what the customer wants. But

wait—in a DevOps team, the operations team works closely with the development team.

So, they are close to the solution. Yes, that is true, and therefore they make the second

best choice for a release management team. You might be thinking about the best choice,

though. The next section introduces the best option for a release management team.

 Welcome Release Manager, the Role for All Seasons
You can probably guess that a release manager is somebody who manages releases!

This is a simplistic definition of a release manager and does not emphasize the value

of the position. Yes, in an ideal sense, the release manager is in charge of managing

releases and ensures that the releases flow as per the design, with no anomalies. The

release manager also makes judgment calls on the contents of a release, sets deployment

parameters, and manages stakeholders.

However, there is more to a release manager than this definition. Remember the

picture from Chapter 1 that illustrated the actual distance between the development and

operations teams in a traditional project? See Figure 10-6.

Chapter 10 release ManageMent in DevOps

https://doi.org/10.1007/978-1-4842-9072-9_1

300

Figure 10-6. Cloud of uncertainty in a traditional project

Chapter 1 also states that, through the merger of the development and operations

teams, you are breaking down the barriers, and the teams don’t have to be on either

end of the cliff. Rather, they can come together and work as one. This is the premise for

making DevOps work.

However, how do you bring the two teams together? Where’s the bridge? See

Figure 10-7.

Chapter 10 release ManageMent in DevOps

https://doi.org/10.1007/978-1-4842-9072-9_1

301

Figure 10-7. Bridge between development and operations teams

The bridge between the teams is the release manager. Release management’s scope

starts with the business analyst, runs through the development team, and ends with

the operations team. So, in effect, release management cuts through multiple teams

and brings all the involved teams to the table to get the job done. The person who

manages the releases, the release manager, is at the forefront of releases—understanding

requirements, planning for its execution, running the code builds and tests, deploying

them onto target locations, and finally carrying out the checks and balances to put a

logical closure to the release. Throughout the lifecycle of release management, the

release manager will have brought multiple teams to the same table, challenged the

teams to work together to achieve what is needed, and built a bridge between the

development and operations teams, as illustrated in Figure 10-7. When there is a bridge,

there is a certainty because the teams don’t have to yell to make themselves heard

but rather can cross over to the other side and work shoulder to shoulder to ease the

workload.

The bridge between the teams would not be possible if not for the release manager.

Yes, the management bit is what the person does as a hygiene factor, but building

the bridge will actually get the job done with minimal controversies, conflicts, and

escalations. There is nobody else on the DevOps team whose influence has such a

Chapter 10 release ManageMent in DevOps

302

wide span across the project. Take, for example, the Scrum master. The Scrum master

is merely interested in the development side of things and ensures that the software

packages are delivered for deployment on time and in an effective manner. Whether the

operations team understood what they had to do to conduct sanity checks or how the

operations teams will support the product in the future are none of the Scrum master’s

concerns, so that person is not a good fit to be a bridge!

 Product Owners Are the New Release Managers
The release management team has been made partially redundant by machines. It is not

absolute because of two reasons:

• You need an owner for the entire release management process that

cuts across both development and operations.

• Cognitive abilities are very much in demand to ensure that the

release management process succeeds and aligns with the objectives

set forth.

The person who manages the entire release from end to end is the release manager

and is still necessary. However, the release management role went from being a full-time

position to a part-time one (statistically speaking), mainly because of the diminished

work (thanks to automation). Capable release managers are:

• Well aware of the customer landscape, the requirements, and to an

extent the business priorities

• Fully involved in the development and deployment processes

• Knowledgeable of operations and their acceptance criteria

The person who could do all this in the past was the product owner (PO), and thus

that person is a favorite choice for a part-time release manager. POs are an adequate

choice mainly because of their closeness to the business and to the development

and operations teams. The person was like a bridge between the two entities and was

expected to keep the boat going in the most turbulent conditions.

Product owners are indeed the best people to plan considering that they had a first-

hand knowledge of the priorities of the user stories in the product backlog. This gave

them a clear advantage to pick and choose what went into a release, considering that

Chapter 10 release ManageMent in DevOps

303

we were not operating in a continuous deployment mode. Clubbing user stories for a

particular release is rather a hard task considering the dependencies that exist between

them, and the PO can definitely make it look easy.

The PO is expected to be part of the sprint and carries out the role in terms of

clarifying requirements. Combining this with the control over how the code flows and

the quality that gets embedded gives this person the authority, flexibility, and freedom

to spin the yarn the way they want. On the flipside, however, the entire responsibility

for the release and the customer expectations lie heavily with the PO, making this

person seem like a single point of failure. This is why you need to have powerful and

robust governance in place to support the product owner to become successful. I can’t

comment enough on the importance of a governance body to steer the decisions and

directions. The PO is only human and can take a wrong step once in a while. If the

governance body is there to support the PO, the product owner is stronger, and the

product and the release have no other alternative but to become a roaring success.

 Summary
Release management in ITIL is fairly straightforward and looks into the nitty-gritty of

getting releases into production. It is tightly coupled with the change management

process. When this process is overlaid with DevOps, it takes on a deeper hue. The

process gets into multiple layers of activities, including automation, which is the desired

state in DevOps. Release management in DevOps is a field in itself because of the

synchronization it needs between various parties using the same DevOps pipelines to

release into lower environments to begin with and into production. The chapter also

recommended that the role of a release manager in a DevOps project ideally be played

by the product owner.

Chapter 10 release ManageMent in DevOps

307

CHAPTER 11

Digital Transformation:
The Driver of Business
Success
We knew 20 years back that IT had become an integral part of organizations. We knew

that the business was the primary driver and IT supported it. Back then, what we did not

know is how IT would not only become an integral part of a business but also determine

a business’ success (or failure). The word IT became too generic and antiquated. Today

we simply call it digital.

There is a lot more to digital than just IT. For starters, IT followed the business and

was subservient. Digital is seen as a driver for the business to flourish—it takes the

business to greater heights. This, in turn, has made digital and business inseparable.

While the term digital evolved from IT, it added a number of dimensions that were never

thought of as IT. Channels such as social media, email marketing, websites, and mobile

applications have become synonymous with all things digital. The traditional IT that

consisted of servers, routers, and other infrastructure fall under cloud technology in

today’s digital world.

 DevOps and Beyond
Every decade or, in today’s terms, every five-year period, there are certain themes of

transformation. It’s like fashion trends that come and go, transformation too, is in the

mold of seasonal theses.

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9_11

https://doi.org/10.1007/978-1-4842-9072-9_11#DOI

308

The 70s was the period when modern programming languages like Pascal and C

were born. With C, came the UNIX operating system. Object-oriented programming

was the toast of the programming world in the 80s. ITIL too made its entry during

this era. The 90s was the Internet period, where access to the Internet and web-based

programming languages like Java, HTML, and JavaScript gained popularity. During the

2000s, ITIL gained traction and so did the roots of the Agile framework. But it wasn’t until

the 2010s that Agile got its due recognition.

DevOps started as a conference during this time, but became a thing around 2015.

The DevOps methodology did not exist as a standalone idea, but rather brought Agile,

ITIL, and automation under a single umbrella. Its inclusivity rather than exclusivity

made it attractive to the majority of industry players who had something already in place.

While it brought Agile under its wings for its Dev activities, the Ops was strengthened

with ITIL. A product’s development and maintenance came under a single structure, and

the synergy reaped several benefits, which I discussed in the first half of this book.

A product’s rapid development was achieved through DevOps, reducing cycle time

of individual feature development and as well providing the ability to deploy selective

features with feedback mechanisms. The support structure was strengthened with its

unified teams, thus reducing the downtime and increasing customer satisfaction.

With the advent of all things digital, there was a need for all-round development

to gain further benefits. The amalgamation of IT and business started with Agile and

became stronger under DevOps. The next step was to tie it up further. DevOps was

good until a certain point, but it wasn’t holistic. It brought benefits, but the benefits

were limited to a product’s development and operations. The other aspects of customer

satisfaction, delving into business problems, were outside the agenda. Thus came

a bigger, more inclusive umbrella that didn’t have any boundaries. This movement

focused on the subject rather than the object.

The digital transformation movement succeeded DevOps. It became more inclusive

than DevOps ever was. Organizations could pull various rabbits out of their hats and

bring them under the digital transformation umbrella as long as they served a purpose

and solved a problem.

Figure 11-1 illustrates the digital transformation space. It includes a number of

current technology and management trends that are poised for the future. This list is by

no means comprehensive. More importantly, inclusions grow by the day. In Figure 11-1,

you will find DevOps, IoT, machine learning, and a whole lot of transformative areas.

Chapter 11 Digital transformation: the Driver of Business suCCess

309

Figure 11-1. Digital transformation space

To jump onto the digital transformation bandwagon, an organization need not

start making plans to do all the things listed in Figure 11-1. The digital transformation

space is a superset and contains transformations across various areas, technologies,

management methodologies, and so on. So, an organization intending to get in on the

journey should judiciously pick what is relevant and plan for it meticulously.

In this list, you will also find DevOps, which indicates that DevOps is one of the

various transformation elements that fall under the digital transformation umbrella.

So while we moved the ITIL bar in the direction of DevOps in the first part of the

book, the focus in this chapter is to move further outwards, toward the digital

transformation space.

 The World of Digital Transformation
With digital becoming a vital, unsubstituted component of business, something was

needed to shake off the traditional practices that were rigidly set in. Bringing in digital

was going to disrupt the status quo; it was going to redefine the postulates of IT.

Change is never easy, especially when the change was going to sweep every person

off the business floor. Life in IT was never going to be the same. Welcome to digital

transformation!

Chapter 11 Digital transformation: the Driver of Business suCCess

310

You can look at digital transformation as a seamless integration between the

business and IT. It is like a piece of cloth weaved with yarns of business processes and

digital components. The cloth gets its form from the business and IT (with or without

equal measure). They simply become inseparable.

While the components of digital transformation are established in principle, there is

more to the story. Why does digital transformation arise to begin with?

The Curious Case of Magic Link
Sony launched a personal communicator device back in 1994. This is the equivalent of

the tablets that we use today. It was an advanced device for the times—it allowed users

to send and receive emails, fax documents, create spreadsheets, and other tasks.

The technology was beyond anything at the time. Its design and conception made

Sony the leaders in this space. It impressed the geeks and technology freaks alike.

But the common folk didn’t bother. Why? It didn’t really solve the problems that they

were facing. The general population didn’t need to send emails on the go, or carry out

computing actions remotely—they wouldn't for another decade. As Tony Fadell, the

creator of Magic Link puts it, most people did not understand what the device did. The

device became a luxury toy for rich nerds. The Magic Link device was built to solve

problems that did not yet exist. This was the primary reason for its colossal failure.

Figure 11-2. Sony Magic Link (credit: https://en.wikipedia.org/wiki/Magic_
Link#/media/File:SonyMagicLink.jpg)

Chapter 11 Digital transformation: the Driver of Business suCCess

https://en.wikipedia.org/wiki/Magic_Link#/media/File:SonyMagicLink.jpg
https://en.wikipedia.org/wiki/Magic_Link#/media/File:SonyMagicLink.jpg

311

 What About Google Glass?
One of the most anticipated products in recent history was Google Glass, shown in

Figure 11-3. One critic compared it to tablet devices and predicted a market creation

for the smart eyewear. The hype was such that it was linked to the likes of the Mission

Impossible movie, in which Tom Cruise reads the message and flicks it away before it

could self-destruct.

Google Glass turned out to be a massive failure. The device did not find sufficient

takers and the interest waned away too soon. Reasons are multi-fold.

For starters, the product manufacturers did not define the problems that Google

Glass was going to solve. They could have defined and validated a set of use cases where

the product would be used and marketed it accordingly. But that didn’t happen.

Groups of users started to define its application after its release. While a group

argued that it represented a new fashion statement that demarcated the tech savvy from

the rest, the other group looked for the utilities such as GPS functionality and to act as a

device that doubled up as a mobile entertainment station. Its camera feature made the

device socially unacceptable to worn in public—who wants to converse or be around

people who may be recording everything in sight?

The fundamental issue was that Google Glass did not provide value to users. It just

did not solve any problems nor did it benefit users in carrying out tasks. The company

had to identify potential type of users and specific use cases. Had they done a good job of

doing this, I doubt if Google Glass would have seen the day.

Figure 11-3. Google Glass (credit: https://commons.wikimedia.org/wiki/
File:Google_Glass_with_frame.jpg)

Chapter 11 Digital transformation: the Driver of Business suCCess

https://commons.wikimedia.org/wiki/File:Google_Glass_with_frame.jpg
https://commons.wikimedia.org/wiki/File:Google_Glass_with_frame.jpg

312

At the time of this writing, Google has indicated at their developer conference that

a new avatar of Google Glass that would allow for live translation and transliteration

of speech to text. This, in my opinion, is a good start that defines a use case and solves

a real problem that we all face when traveling to countries where we do not speak the

language.

 The Right Questions to Ask
Technology and futuristic processes do not dictate the direction and journey of

digital transformation. The problems solved or the opportunities created by a digital

transformation program matter, even if they leverage technologies involving on-

premises servers and methodology such as waterfall led project delivery. The question is

not about what you are leveraging or how you are achieving it, but why you are carrying

out a digital transformation exercise.

• What are the problems and opportunities that are you trying to solve

by going digital?

• Are you reducing the spend on operations?

• Are you increasing the throughput?

• Are you considerably increasing the quality of the product?

• Are you improving the image of the company?

The answers to some of these questions will help you understand the need and

extent of digital transformation to undertake.

 Digital Transformation and Business Disruption
Digital transformation is perceived as a disruptor. In other words, unless the ways of

working of an organization is disrupted, you aren’t really doing digital transformation in

principle. To put it simply, disruption is the nature of any transformation business, but it

isn’t a necessary evil.

Look at digital transformation as doing the same set of business processes using

digital means, which mostly means sets of applications and toolsets. By introducing

digital means, there is a good possibility that the business will have to transform (some)

their ways of working (process or sub-process level). The change effected by the digital

Chapter 11 Digital transformation: the Driver of Business suCCess

313

tools for the business is generally pinned as an unwelcome disruption. Why? Because

the thought process is that the business process should dictate how the tools are to be set

up and not the other way around.

Any time the new makes way for the old, there will be changes all around. Even if

the change is more efficient, it is considered disruptive. What is important in most such

cases is for the employees or the people involved to have an open mind to embrace

change. An open mindset will help disruption no longer be perceived negatively,

but objectively. This will help employees see the positive side of disruption and its

potential impact.

Consider the taxi business. Taxis were hailed on the street, and this was a norm that

the passengers and taxi drivers accepted. This method had its own set of issues where

passengers had to visually locate empty taxis and hire them. The taxi drivers too faced

uncertain times trying to find a passengers mid-street. Then came the next level of

convenience with call taxis. Passengers had the luxury of ringing a central number and

the taxi would arrive at their doorstep. This was much better for both the parties, as a

level of certainty and convenience was brought into the process.

When Uber created app-based taxi hailing, the business went through the roof. Such

was the disruption that not only the middlemen were made redundant but the fleet

of taxis multiplied overnight. Anybody with a car willing to ferry people around could

become a taxi driver, and passengers could book at a taxi with their fingertips. What's

more, they could even track the taxi as it arrived. Yes, passengers benefited the most

from this disruption. The days of uncertainty were long behind them. It also generated

employment for a number of drivers who could also drive part time. On the flipside,

the taxi companies that received calls and dispatched taxis went out of business. The

original taxi drivers probably lost some of their business to Uber drivers. Harking back to

the mindset—a passenger with an open mind can benefit multi-fold by adapting to the

new ways of working.

Another aspect of digital transformation is that it does not change your core

business. For instance, the taxi business is always about ferrying people from point A to

point B. If the strategy of the business is reinvented around the digital transformation

aspects, more often than not, business leaders will end up pivoting and moving in

various directions, only to lose sight of the goal and be stranded midway to where their

business goals are.

Chapter 11 Digital transformation: the Driver of Business suCCess

314

 Business Disruption 101
A new technology in town or a new offering does not induce disruption. At the most, it

brings in another player with services and products to offer, and further competition. So,

the golden question is—what qualifies as a business disruption?

A business exists because it can generate value for its customers and is able to market

it to its customer segment. In return, the business gets fairly remunerated. Borrowing

the concept of a business model from Mark W. Johnson, Clayton M. Christensen, and

Henning Kagermann (Reinventing your Business Model, Harvard Business Review), a

business model consists of four elements:

• Customer value proposition

• Profit formula

• Key resources

• Key processes

The most important of the four elements is the customer value proposition, which is

perhaps equivalent to the other three put together. Let’s look at the four elements from a

digital transformation angle.

 Customer Value Proposition

Customer value proposition, simply put, is the value created by the business for the

customer. The value created for the customer must simply outclass whatever was in

existence. The change that comes about should be so different that the change must

create a different level of value from the start.

Take the example of a traditional hotel versus Airbnb. While traditional hotels

offered rooms with certain expectations of a hotel room and amenities, Airbnb jumped

into the ring, targeting perhaps the same set of customers but providing value that was

dramatically different. For starters, Airbnb rentals were economic and tourists could

experience staying at local places that were not exactly commercial. Staying at actual

residences brought the kind of comfort that made them feel at home and unrestricted.

Chapter 11 Digital transformation: the Driver of Business suCCess

315

 Profit Formula

Businesses exist to make profits. The value created for the customer comes at a cost. The

profit formula is the financial planning that the business need to have in place to make

profits while delivering value to customers. The balance is quite fine—as the business

tries to up the profits, it could come at the cost of value. As the value proposition goes

down, there is a good probability that either the customers will move to a different

business or a new competitor with better a profit formula could move in.

Consider the example of Tata Nano, a car introduced in India for about $2,500.

While it is not easy to manufacture a car at that price, Rata Tata, the chairman of the

Tata Group, had to find a way to make it happen. With large sales, even a small profit per

car can lead to large profits. The trick was to find the equilibrium between sourcing the

parts, labor, and manufacturing economically and yet maintaining a minimum quality

and acceptable look.

 Key Resources and Processes

Identifying value proposition is one thing, but putting it into action is a completely

different art. To realize value proposition, the business requires people, processes, raw

material, and machines, among other things.

In the MP3 player segment, iPod is a leader and has been since it was launched

in 2001. Interestingly enough, Apple did not invent the MP3 player. They existed long

before, and were commercial since the 1990s. Elger Labs introduced an MP3 player with

32MB, but the product was mostly immobile. Personal Jukebox, with a whopping 4.8GB

of storage, was introduced the following year. That player was bulky and expensive, at

$800. There were a few other players who came out with MP3 players before the iPod

was introduced. How is it that the iPod went on to become a success, while the others

languished?

The combination of people, technologies, partners, and processes that came

together in the making of iPod made it an instant success. Tony Fadell of Magic Link

fame was hired to run the iPod division. His prior experience at General Magic and

Philips helped accelerate the product development. He brought in other experts who he

knew personally. Steve Jobs overlooked the aesthetics and design. A number of products

in the iPod were outsourced from other partners and the product became an overnight

success. It sold at $400 with 5GB storage, and it wasn’t top of the line configuration. Its

design, aesthetics, and size had the right set of ingredients for customers. The individual

Chapter 11 Digital transformation: the Driver of Business suCCess

316

elements like the Toshiba hard drive, Portal Player that designed the operating system,

Tony Fadell, Steve Jobs, and other individual elements that came together are the key

resources and processes that were responsible for creating value. While there were

other giants in the market, they couldn’t compete as the coming together of iPod

had captured the market. For others to take over the market, it required something

dramatic to displace iPod, which was nearly impossible, even today. Microsoft’s Zune

MP3 player tried to compete in the market with top of the line products and similar or

better configuration. Yet, the market for MP3 players is unequivocally dominated by

Apple. With mobile phones gaining in storage, big batteries and multi-threading, the

end of iPods did not come from a competitor but another device that could multi-task.

Apple officially discontinued their iPod line on May 10, 2022 (https://www.apple.com/

newsroom/2022/05/the-music-lives-on/).

 Does the Disruption Have to Be Big Bang?
Yes, transformation often implies a massive makeover, but it doesn’t have to be done

all at once. A Big Bang approach does not gel well for organizations that have a long

history of legacy processes and employees who have aged along with them. The plan is

to change to transformative ways of working, and in incremental approach serves just

as well.

Consider the example in Figure 11-4. It showcases a series of improvements done

over a period of time.

Figure 11-4. Incremental improvements on a modernization journey

Chapter 11 Digital transformation: the Driver of Business suCCess

https://www.apple.com/newsroom/2022/05/the-music-lives-on/
https://www.apple.com/newsroom/2022/05/the-music-lives-on/

317

In this instance, first you modify the processes to remove inefficiencies like reducing

the hops, retaining only the activities that have bearing on KPIs and bringing clarity

to people on their roles and responsibilities. Next up, once the path is ripe for Agile

implementation, you bring in the coaches for a few months of Agile training and

coaching. Replacing legacy systems is not straightforward. You wouldn’t really have a

good handle on all the integrations and the various dependencies with other systems.

The best way to modernize is to break them down into smaller chunks and modernize

them one after another. In any application, the frontend plays a significant role in

enhancing user experience. It is also the least risky option on the modernizing journey.

The next step in the transformation is identified as the frontend redesign. Likewise,

the company will embark on a series of improvements, like automation testing and

introducing DevOps pipelines, among others. At the end of a series of improvements,

the company would have realized the transformation journey without really shaking the

tree with rigor. The incremental approach to digital transformation is perhaps the path of

least resistance and goes well with carrying out improvements, observing the outcome,

and moving onto the next step.

A few things to note. While I have showcased this example of digital transformation

as a sequential activity, this may not be the case in every journey. For example, the

company could decide to carry out automation testing and DevOps pipelines in parallel.

There is plenty of synergy between the two activities and doing it in parallel will be a win-

win scenario. Most importantly, digital transformation needs to be seen as a journey and

not as a destination. No organization can ever claim to have digitally transformed and

stop at that. The journey is ongoing and, with the right set of transformation consultants,

there are always ways and means to reach the next level of digital transformation.

 Is Virtual the Assumed Goal?
Digital transformation involves leveraging technology and digital toolsets in business.

The Uber example in the last section detailed how physical taxi hailing was replaced with

an application. So, the question to ask is if digital transformation’s objective is to move

all things to the digital world? Like for example, replacing paperback books with ebooks

and diaries with e-journals.

Not quite everywhere! There could be instances where digital makes everything

virtual, like the business of video renting that has gone to the likes to Netflix, meaning,

no more brick and mortar stores.

Chapter 11 Digital transformation: the Driver of Business suCCess

318

There are certain businesses that would be better served if a combination of virtual

and physical was employed. This hybrid model is a powerful strategy where touch and

feel or emotional connections have a bearing on buying decisions.

Take for example Max Fashion, a budget clothing store in India. Their entire

wardrobe is available online. They have multi-storey physical stores too. Some people

like to shop for clothes in person, and as they enter the store, there are people wandering

about in the aisles carrying around an Android tab. They get the customer’s phone

number and check on the app to see if there are personalized offers available. As they

help with the physical shopping experience, if customers are unable to find their fit, the

agents with tabs provide the option to order online. Customers can also try the clothes

on in the physical store and order everything online at a special discount. The fashion

company is engaging with the customer physically to feel and try their choices, and the

limitations of physical space are made up by online ordering at the stores with a special

discount. It’s actually a wonderful idea for somebody who loves physical shopping but

dreads carrying around bags as they move from one shop to another.

This concept applies to all consumer products. Seeing a live product and seeing it

on the screen is not the same experience. The premium feel, the 3D spatial view, and the

pleasant odors can only be experienced first-hand, and not through customer feedback

in brick and mortar stores. This is an opportunity for retailers to combine the best of the

physical and digital worlds and maximize sales and profits.

 Finding Synergy with Partner Organizations
As much as the current generation is digital, it is equally made of partnerships as well.

Many businesses have moved toward their respective niches and the scenario calls for

them to come together to innovate and co-create value for customers. In other words,

value creation is no longer the enterprise of a single organization. It just cannot be

achieved. You need the expertise of design, software, hardware, UI/UX, branding, and a

host of other factors to come under a single roof to create synergy for value to take shape.

Not only value—for digital transformation to make sense, it must be significant value

justifying the cost and benefits.

Apple is perhaps the only company that tries to make everything in-house, but that

did not happen overnight. As I discussed earlier, iPods were made with the help of other

businesses. Likewise, all their products had outside help. Over time, Apple has invested

in these companies or acquired the necessary resources. Yet, they still have to maintain

partnerships to stay relevant. Say for example, they have partnerships with Microsoft

Chapter 11 Digital transformation: the Driver of Business suCCess

319

to offer Office and other products, distributor networks (like AT&T and iPlanet) for

sales, the Foxconn Technology Group for manufacturing, and Qualcomm for mobile

3G/4G/5G chips.

Some businesses find it enticing to acquire startups that show promise of

innovativeness. Acquisition is a business decision, but what happens after the fact is

important. If the startups are integrated with the parent organization, the innovative

culture for which the startup was acquired will start to diminish and the talent will start

to look for another startup. Businesses must resist the urge to amalgamate startups

but rather allow them to operate independently and flourish. This may be true for

organizations that are non-startups as well.

 Key Focus Areas
Digital transformation is inclusive of all things that accelerate an organization toward

digital ways of working—it comes through various management, technological, and

leadership changes.

We can identify a few areas that lay the foundation for a successful digital

transformation. The areas play a significant role in shaping the digital transformation

toward a successful implementation. Customers, value, innovation, and data are the

pillars that need to be closely examined during any digital transformation exercise.

These key focus areas are shown in Figure 11-5.

Figure 11-5. Key focus areas of digital transformation

Chapter 11 Digital transformation: the Driver of Business suCCess

320

 Customers
There was a time when customers were seen as the people with purses and the

marketing strategy revolved around influencing them to make a buy decision. That

was simple enough! While the world has gotten flatter, there is an inherent change that

has come about with customers. They don’t see themselves as an individual entity that

makes up an independent decision. Yes, the decision could have other stakeholders

weighing in on the options. But the most important characteristic that influences

customers’ decisions today is feedback from other customers.

Amazon and other online shopping channels display customer feedback ratings next

to the products they sell. Products with higher ratings and volume sales often attract

buyers. There was a time when full-page ads on magazines and newspapers used to sway

customers. My personal buying behavior is to scout the ratings across various channels

before making a decision. Yes, I know that some of these ratings can be fudged by the

lure of a gift or cashback, but when you see volume sales coupled with high ratings, it is

hard to go wrong.

Customers are no longer the target in the digital age—instead, it is customer

networks that businesses should target. The power of networks through various social

media channels can make or break product success. Ultimately it is the product value,

quality, and other features that defines its success. And yet, without the customer

networks playing a significant role, even the best products may go unnoticed.

A number of businesses have resorted to targeting customer networks by

encouraging users to post their views on various social media channels. Some

may lure buyers with a chance to win a gift or appeal to their senses by including

personalized notes.

The onus is on the businesses to ensure that every customer remains satisfied, not

only with the product but also with the customer service and after sales services.

 Value
The lifeblood of digital transformation is the value it provides to the customers. Although

value perception is subjective in nature, businesses have to ensure that the product/

service offered meets a wide range of customers. In today’s age, value proposition

remaining still is a problem. Customers expect that the value provided will improve

over time, as the market is crowded with a number of businesses that provide similar

products.

Chapter 11 Digital transformation: the Driver of Business suCCess

321

Take for example Microsoft Office 365. Although the product does not realistically

have any competitors, it improves on a regular basis. There are regular changes being

done, and most importantly, communicated to customers. This is done to ensure that

the interest in the product remains fresh, and to ensure that no competitors crop up by

offering similar products. An ever-changing product is the best way to ensure businesses

remain ahead in the market.

It is therefore important for businesses to remain on the lookout for making positive

changes to their offerings by piggybacking on the various digital transformation

exercises that can take their offerings to newer heights, most importantly ahead of their

competitors.

Staying with Microsoft Office 365, their MS Office product was doing just fine. It was

the market leader. Yet, they decided to move to a subscription-based SaaS service. The

reason was twofold—the market was moving toward reducing capital expenditure and

converting them into small chunks paid over a period of time. The subscription model

fits this market well. Secondly, the subscription model helped Microsoft generate a

constant revenue source, which turned out to be more profitable than software sales.

As a collateral benefit, the company could contain the piracy levels as well with the

SaaS model.

 Innovation
Ensuring that value remains fresh, enhancing and engaging requires a good innovation

engine. Businesses that innovate rather than simply deliver often excel in their value

proposition and are also found to be well ahead of the curve.

There was a time, about 12 to 15 years back, when organizations had innovation

departments. The team consisted of a handful of niche domain and technology experts,

and their job was to innovate. Organizations that had an overall employee strength of

100,000 or more had innovation teams that were in the low double digits. While this

small percentage of employees innovated, the rest of the workforce carried out mundane

activities to keep the lights going. What a shameful existence of an organization we

would say, but this was the norm with most organizations during those days. Innovation

required experimentation. A majority of these experiments failed. Organizations needed

an appetite to fail to innovate faster. Sadly, most didn’t.

The ones that did roared ahead, like the Apples and Googles of the world. Do you

know how many different services Google has introduced over time? Plenty. Who’s

Chapter 11 Digital transformation: the Driver of Business suCCess

322

counting? Do you remember the likes of Picasa and more recently, Hangouts? Yes, they

have been discontinued. Head over to the Wikipedia page at https://en.wikipedia.

org/wiki/List_of_Google_products to see the various products that the company

introduced and discontinued over the years. These discontinued products did not

succeed. Unless you try something, there is no way of finding out if it is going to be a

winner. Google is a market leader in a number of areas—be it Internet search, ads, and

their email engine. They have become the de facto name in our households because

they innovate like crazy. Organizations that want to succeed have to build an appetite to

fail. As Einstein said, “Anyone who has never made a mistake has never tried anything

new.” And Thomas Edison said, “I have never failed. I’ve just found 10,000 ways that

won’t work.”

A framework that fits like a glove when it comes to supporting experimentation is

DevOps. With DevOps, the onus is to build a system that provides an ideal platform for

experimentation. The platform gives you rapid feedback when something does not go

according to plan. This helps ensure that when you fail, you fail fast and you can pick

right back up and start a new experiment.

We also have techniques like A/B testing today that allow you to test in real time

and not commit to one direction or another. A/B testing is a live experiment that

businesses can do with their products. Instead of launching their product using the

Big Bang approach, they can release products to a small group of customers and solicit

feedback. Based on the feedback, they can either roll it out to the rest of their customer

group or simply roll it back. Many banking organizations launch their Internet banking

applications in this manner. They give users the option to switch to the new application.

And users who switch can either stay with the new application or switch back depending

on their experience and comfort levels. This helps the banking organizations gauge the

acceptance rate in real time, and without having to risk their reputation and deal with

acrimony from their customers. Microsoft also back-launched their Outlook application

for Macs with an option for users to switch back to the legacy mode.

Another technique that is in vogue is using the minimum viable product (MVP)

approach. Instead of developing an entire product, you develop a minimum version

of it that has limited functionalities. By releasing a MVP product, your customers can

provide feedback on a product that is likely to be launched in the future. The feedback

is invaluable because it sets the right direction for the organization from the product

perspective, and the chances of them being wrong about its direction is minimum if

not nil.

Chapter 11 Digital transformation: the Driver of Business suCCess

https://en.wikipedia.org/wiki/List_of_Google_products
https://en.wikipedia.org/wiki/List_of_Google_products

323

 Data
Data is key to making good decisions. Good decisions chart the way for an organization’s

success. The problem with data is that it's in abundance. When I created my first website

in 2003, I leveraged a third-party website called Site Meter to get an understanding of

how many users were visiting my website daily and where they were from. These were

the only things that I needed to know, and they met my needs back then. Today I use

Google Analytics, which is multiple hundred fold of my Site Meter experience. I know the

behavior and interests of my visitors, their past visits to other websites, and more. Simply

put, there is so much data around us; the onus is on carefully handpicking the data that

is useful and discarding the rest.

Data is on the overload in every area today. The key to success is to rely on data that

matters. Following the wrong sets of data points is likely to be disastrous. For example, if

I want to know what my users are saying about a new product that I launched, I must rely

on AI analytics tools that scour the various social media channels. The reason to use AI

is to understand the emotion behind the feedback. For example, if somebody says, “This

product is bad boy!,” the bad might indicate appealing. Or if somebody posts, “Not bad at

all.” You want the AI analytics engine to understand the context before providing results

to the product manufacturer.

The next set of data engines that drive digital transformation are predictions.

Companies rely on predictions to make decisions about their products. The data

obtained is generally passed through an AI engine that can predict the next course of

action. Downstream petroleum companies rely on predictors for setting the price of gas

based on their competitors. They want to price it right to attract customers and not drive

away customers by costly gas or lose profits by selling too cheap. I worked part time at a

gas station and the man who owned it used to drive around the neighborhood to find out

the gas prices in other stations. Those days are over. In the digital age, data is available

instantly, and the predictions are also based on scientific calculations rather than gut

feelings. That being said, data-based decisions alone are like taking a safe conservative

measure. At times, going with your gut defines the quality of leadership and makes a

difference in companies’ fortunes.

While much of the data is available for free on various channels, there is room for

data obtained from surveys as well. If you are releasing a new product, the only way to

understand what customers really want is to post a survey and use the survey results to

choose the direction.

Chapter 11 Digital transformation: the Driver of Business suCCess

324

 Balancing All Things Digital
Digital transformation promotes dynamism, rapid feedback mechanisms, state-of-the-

art technologies, and staying ahead of curve. There is also some caution that needs to

be thrown to the wind. As they say in the game of any sport, offense and defense must

strike a balance. In digital transformation, this too is the case. These are the digital

balances depicted in Figure 11-6. There are several areas in digital transformation that

need to be balanced. I identified the top three that require attention at all stages of digital

transformation.

Figure 11-6. The digital balance

 Roadmap vs. Agility
Digital transformation is generally a program that runs for multiple years. Rather, let me

say that digital transformation is a journey, so it can be ongoing in a true sense. While

it is a long-term plan, there are best practices that are being shaped frequently, new

technology implementations are evolving, and market demands change daily. In this

environment, it is expected that the digital transformation be nimble and agile, and is

able to take shape as the market swings. But does it mean that a digital transformation

plan takes shape and turns when required?

Chapter 11 Digital transformation: the Driver of Business suCCess

325

Digital transformation journeys must indeed have a roadmap defined. It must define

the outcomes to be achieved and the metrics that will determine success. The roadmap

can be developed for the length of time where visibility exists. The balance however

is that the roadmap must provide sufficient fissures for the plan to change/pivot on a

different axis when needed. The roadmap essentially provides a robust backbone for

carrying out the digital transformation and the agility of such a roadmap will ensure that

the organization is always traveling alongside market conditions.

 Planning vs. Experimentation
Planning is important. A good, sound plan will win the day. But on the flipside, a plan

that requires microscopic details takes time to formulate. Such a plan is still good, but

in the current market where competition is cut-throat, taking a lot of time to plan is

problematic.

Unless the plan is sound, the outcome may be like shooting in the dark. Companies

either come out on top, or they lose out completely if they go in without a balance. What

is the balance to strike?

Organizations must make room for experimentation and Agile ways of working

where a minimal viable product is rolled out before the entire set of features are

developed. This is a balanced way of approaching digital transformation. Therefore,

organizations must engage in experimentation along with planning.

The plan needs to be minimal, leaving space for it to pivot as needed. It must have

sufficient line items to account for the various possibilities and intended direction to

move into. It must experiment with ideas in a minimalistic way, and not as a Big Bang.

By combining minimalistic planning and sensible experimentation, it is likely that the

company will come out on top if the experiments succeed; the company will not be left

too far behind if the experiments fail.

Operating systems like macOs and Windows release Alpha and Beta versions before

the full launch. Most of the time, these versions may not carry the entire functionality

list. Volunteers and enthusiasts who engage with these versions provide feedback, which

is rapidly incorporated into the complete version. If they had engaged in complete

testing by their in-house teams, not only would have they have delayed the final release

but also not created keen interest among the users through the Alpha and Beta versions.

Chapter 11 Digital transformation: the Driver of Business suCCess

326

 In-Housing vs. Collaboration
It is a great achievement and a moment of pride for organizations to build products

indigenously. Not only will their costs be contained, but the knowledge and experience

of building a product will remain within the organization. But at what cost?

Doing everything in a single organization is possible but gaining expertise in all

the associated fields is unlikely. There are companies that focus solely on certain areas

of technology and leveraging these companies will help the organization accelerate

their digital transformation journey. The benefits and drawbacks of outsourcing

versus insourcing in the context of digital transformation and acceleration reveal that

organizations find lots of positives in outsourcing/engaging partners rather than doing

everything in-house.

When organizations collaborate intelligently with their partners, they can achieve

intended outcomes and, at the same time, find ways to retain the experience and

knowledge within it. In my view, host organizations must play integrator and key

governance roles and collaborate with partners who have respective expertise. This

ensures a good mix of in-house leadership and technical expertise from partner

organizations. A good case management system and process ensures that the experience

gained, and the case studies designed, will not be lost to the outsourcing business.

 Summary
This chapter introduced the concept of digital transformation and explained how it

is different compared to DevOps. Several real-life examples were discussed during

the course of the chapter to highlight the journey that you have undertaken thus

far. The chapter also discussed the various elements to focus on during any digital

transformation exercise.

Chapter 11 Digital transformation: the Driver of Business suCCess

327

CHAPTER 12

The Digital Transformation
Framework
Organizations and consultants can talk about digital transformation and they can say

that they are implementing it. But what they cannot accurately do is define the complete

scope of digital transformation. Nobody has defined its scope comprehensively, and it

will not be done for years to come. And, it’s completely okay because the scope should

be seen through the eyes of the product or the program that is undergoing digital

transformation.

Even though the contour of digital transformation is vast, ambiguous to an extent

and unknown for the most part, it still requires a guide, a structure to support it. A

framework for digital transformation is the need of the hour to build it from the ground

up and to be certain that it stands the test of time.

A framework for any other discipline needs to be somewhat prescriptive, a structure

that defines the various layers and the various processes, procedures, and other activities

that are deemed necessary. Digital transformation is unlike any other, and a typical

framework will not do. What it requires is a vehicle that can drive the transformation

through the rough tides and yet give plenty of room to maneuver, to call its own shots

and provide the crosshairs for meeting the intended outcomes. I call it the battle tank

framework.

 The Battle Tank Framework
A battle tank is an effective fighting weapon in surface warfare. The fighting vehicle can

move fast, maneuver across terrains, fire accurately at the target, and has a thick armor

to withstand brutal attacks.

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9_12

https://doi.org/10.1007/978-1-4842-9072-9_12#DOI

328

There are a lot of similarities between a battle tank and digital transformation.

A digital transformation exercise has to be done swiftly to gain the full benefit. Most of

the time, we know where we want to end up, but the path to it may be a rocky one, and

the exercise must have the rigor to withstand the unknowns. This requires a framework

that helps digital transformation reach the intended goals and guard it from the risks,

issues, and unknowns. Hence the battle tank framework for digital transformation as

featured in Figure 12-1.

Figure 12-1. Battle tank framework for digital transformation

The digital transformation strategy sits at the top, where the hatch of a tank opens up.

The vision for conducting any digital transformation exercise must be set by the senior

leadership as executive sponsor, and only with their buy-in will the exercise have the

required funding and the support of all the people involved.

Most of the offensive action happens in the turret. It is loaded with a main gun

and the turret can rotate it to the direction of choice. In the framework, consisting of

the turret are four critical elements that drive the transformation—culture, people,

technology, and data.

The hull is the main body of the tank and it provides support for the turret to sit.

Digital governance in the framework takes this place, which is the backbone for

successfully running digital transformation exercises.

Chapter 12 the Digital transformation framework

329

There are a number of wheels in a tank; the bigger the size, more the wheels. The

main wheels are called bogies, and a chain runs around them to reduce the ground

pressure and prevent it from sinking when the surface is soft. The set of wheels and the

chain is together called a track, meaning the tank has its own steel road surface. For

digital transformation to succeed, it requires the business to focus on its core offering on

one end, and to apply the digital evolution acceleration from the other. Ambidexterity is

a fine balance between innovation and fully leveraging the expertise on hand, and with it

in conjunction with the two wheels makes for a perfect digital transformation track.

 The Digital Transformation Strategy
Putting a strategy together to go digital is not a set template. Businesses cannot follow

a rule book and meet their digital goals. Every business is different, its model and

digital maturity is at varying stages. Many businesses want to go digital, and their main

objective or motivation to do so is to remain relevant. In other words, they believe that

their business may not exist if they don’t go digital. Think, for example, about a bank that

has a rich history of multiple decades. As newer banks go online, traditional banks will

be forced to digitize. What they do in such cases of existential threat will chart the course

of such traditional institutions.

So, the million-dollar question of strategizing has to be done at a business level.

It is true that startups or small businesses find it easier to get on a journey of digital

transformation than a company that’s been in traditional business for over a 50 years

with multiple lines of businesses. A smaller company will find it easy to start making

changes, and pivot if something doesn’t feel right. It is not easy for traditional businesses

to pivot because the company carries inertia, comfortable ways of working and the

people showing aversion to change. On the flipside, a startup company will not carry the

memory of what has always been done, and can turn in the direction of reason as and

when they see fit. Their limitation generally sticks up with the financial resources, which

is generally manageable for traditional businesses that have stood the test of time.

With the threat hanging over the business’s head, traditional businesses jump into

the puddle of digital transformation. They swiftly put together where they want to go,

trying to emulate other businesses, getting the resources onboarded or contracting them

out to a partner. If the strategy fails, the business will find itself in a teetering situation

having to bear the financial losses, answer to their shareholders, and most importantly

face the inevitability of being wiped out. Although the threat is huge, the response

Chapter 12 the Digital transformation framework

330

need not be of a similar magnitude. Earlier in the book, I compared the Big Bang and

incremental approach to digital transformation. An incremental approach is better, as

it gives businesses enough time to explore the possibilities and pivot as needed during

the digital transformation journey. Instead of digitizing, think of the customer journey,

the supply chain, the processes and technologies employed, and find opportunities

to improve aspects that impact the customer one step at a time. Measure the current

state, make a change, and remeasure. Metrics will tell you if you are going in the right

direction. Continue the efforts bit by bit until you reach where you want to be (the irony

is that digital transformation is a journey and not a destination).

The progress made may not compare a successful outcome of a Big Bang approach,

but it definitely favors the odds of a success, especially for a business facing existential

threats.

Figure 12-2 shows a roadmap to achieve digital transformation. The roadmap takes

into consideration a logical, sensible, and least risky path to get on the route toward

digital transformation. Of course, since we are considering taking the least amount of risk,

the progress may not be swift and the transformation will not be achieved overnight. This

is the reason that I call this a roadmap and not the roadmap to digital transformation.

While Figure 12-2 represents five steps, it is not a sequential process. Based on

the context and circumstance, it is not uncommon for multiple steps to run together.

The steps do not run in one sweeping motion but rather are iterative. In fact, it is

recommended that the digital transformation exercise be run in an iterative manner,

learning and adapting based on the previous cycles.

Figure 12-2. A strategy roadmap for digital transformation

Chapter 12 the Digital transformation framework

331

Before you embark on digital transformation journey, there is a Step 0 as well.

The people transformation step. Unless the people who are going to be a part of the

transformation journey have a transformative mindset, no matter the best of processes you

design and implement, none of it is going to work. You can’t force people to transform, and

you will not be able to impose new ways of working to people with a mindset that’s blocked

to accepting changes. Organizational change management (OCM) is good in theory but in

reality, you need the right kind of people to take the journey with you.

In the new ways of working, processes are not the king. Knowing what to do and at

what point in time is not going to get the results in a transformative environment. People

who are going to be on this journey have to value relationships, as sharing responsibilities

is not through RACI but through the context. I am also not alluding to a zero conflict

environment. There will be conflicts. There will be various challenges along the way. With

the right people, dealing with challenges and conflicts will remain constructive.

 Step 1: Identify Opportunities/Pain Points
Transformation is an exercise that is conceived by the need to reach new heights or

when a pain is too unbearable to withstand. This is not cheap, so the desire for a shiny

new thing will not drive the need, but rather a strong desire to get ahead of competitors

or an even a stronger necessity to survive.

At the center of any digital transformation exercise is the question why. Why does

an organization want to spend a significant amount of time and effort to transform from

the present way to something else? It can be as simple as for productivity increase or

to capture a segment of a market through a new offering. Every organization, in every

sector, will have a specific reason for undertaking the journey. And once they do, more

often than not, digital transformation will remain a journey and never a destination.

As an organization reaches a new level of transformation, there will always be

something shinier that has additional benefits, and naturally, having tasted success, the

organization will be inclined to push the accelerator toward the next destination. Recall

Figure 1-3 in Chapter 1, where an elephant is depicted with the superset of all DevOps

activities. Digital transformation is a lot bigger, this time it will be a big blue whale with

the world of opportunities for the organization to take the plunge.

Identifying transformation avenues requires data points, and lots of it. Usually, a

single set of data might tell one side of the story. So, it becomes key to cross-reference the

findings with additional data points and iterate.

Chapter 12 the Digital transformation framework

https://doi.org/10.1007/978-1-4842-9072-9_1#Fig3
https://doi.org/10.1007/978-1-4842-9072-9_1

332

A popular technique to determine the ins and outs of an organization’s ways of

working is by conducting assessments. This can be done by conducting workshops with

key stakeholders, asking them relevant questions that point toward what is being sought.

The first nut to crack is to identify the right set of people who need to be interviewed.

Talking to too many people might enrich the data with multiple data points, but it may

also muddle and confuse the findings. So, it is important for the assessor/transformation

consultant to understand the organization structure and their roles and responsibilities

before carefully selecting the people who are going to serve as data sources.

Every person who the assessor talks to will have a story to tell, and more often than

not, it will differ from the next person. Everybody has a perspective, and all perspectives

of curated list of stakeholders are important, even if they contradict with others. The

assessor can always revisit some of the conversations to clarify certain aspects with the

stakeholders, but should bring in enough data to tie the answers together and stitch

together a story that gives a true picture of on-the-ground situation.

The other data point that is dispossessed of perspectives/opinions is that the data is

pulled from tools. There is a lot of data that you can gather from monitoring tools, logs,

value stream tools, and testing tools, among others. The data may be raw but there are

hidden gems that tell a story. For example, the data obtained from a testing tool will

give the data points around the quality of the product while it is in development. Does

the development team get it right when they develop it the first time? How quickly are

they able to rectify bugs? A straight reading of the data might give us a direction on

the effectiveness of the developers to do it right the first time. But couple this with the

organization’s culture and the intent to experiment and fail fast, and the testing data will

point toward a different story line.

The next pitfall is understanding the problem. Sometimes, even with all the data

that is available, the issue at hand might still not be fully understood. We may end up

solving a non-existent problem unless the problem is rephrased and parroted back to

the customer stakeholders. This solves two issue: the first and straightforward issue

is that the customer may agree with your understanding of the problem, or they may

request changes to the problem statement. Second and most important is that reading

the problem statement from a different perspective may get the customer to think

and validate if the problem really exists as it was projected. The very well understood

problem statement by the customer organization may just receive a jolt when reading

it from a different perspective, and this could essentially get them thinking and moving

toward the right problem statement.

Chapter 12 the Digital transformation framework

333

Even if it is sounds repetitive, the problem statement should be rephrased in your

own words. A number of transformation consultants use the same problem statement

phrases as stated by the customer in order to display their understanding of the

customer problem accurately. This is counterproductive and any smart stakeholder in

the customer organization will be able to see through it. From the customer standpoint,

stating the right challenges solve half the problem.

 Step 2: Prepare a Game Plan
Planning is hard work when it comes to digital transformation because we can hardly

see how the pieces will fall once we get going with the digital transformational activities.

Therefore, it is recommended that the plan be nimble, and be able to pivot to different

directions as needed.

For a plan to come through, some necessities such as the funding that is available,

the leadership support and the goals to achieve must be well known.

 Funding

Digital transformation is anything but cheap. If an organization believes that they can

get onboarded on a digital transformation journey by using the spare time of people and

available resources, they probably have no clue what they are doing. At best, they are

embarking on a journey of improvements. Transformation requires funding because it

tries to flip the nature of working, and for anything of such nature, money is essential.

There are ways in which smart CEOs can find the money—one of the popular

methods these days is through self-funding. Identifying areas of transformation within a

value stream or department of an organization and calculating the return of investment

over a period of time is a good way to justify spending on digital transformation. For

example, if an organization intends to carry out all of its business processes sans people

through the employment of robotic process automation, the initial investment is likely to

be steep. The learning stages will require effort by people. But when the processes start

to function, they essentially free up people’s effort, which saves on operational expenses

that can be leveraged elsewhere. More importantly, these bots can function around the

clock—imagine the efficiency an organization can expect. If implemented right, this

solution is bound to make the organization more profitable over a period of time. The

funding for this exercise was essentially internal and the benefits realized had a telling

effect on company’s financial reports, quality of work, and possibly turnaround time.

Chapter 12 the Digital transformation framework

334

 Senior Management Support

This exercise requires senior management backing, specifically it will be effective if the

CEO champions the cause. You need the full support of senior leadership by actively

contributing as a member of the digital transformation’s steering board and providing

direction on strategy. This begins with the allocation of the necessary funds to run and

maintain the program.

The vision behind the transformation must be spelt out, including what needs to

be done too be accompanied and it must be made clear to all senior leadership and

the rest of the organization that this program is high on the priority list. Unless you

have the complete backing of the CEO/CXO and senior leadership behind the digital

transformation, the program’s full potential and its distance to go the entire distance is

unlikely.

A smart leader builds a governance structure to give complete visibility of the digital

transformation progress without micromanaging the work on the ground. And yet, when

the time calls for intervention, they put themselves in a position to steer the team in the

right direction.

 Goals and Metrics

Absolute targets have to be set. Instead of saying that you will improve revenue by 20

percent YoY, the target must say that the revenue to be achieved is $506 million. All areas

that are touched by digital transformation must be accounted for—be it performance,

quality, new business, customer experience, among others.

The next secret to setting goals for the digital transformation exercise is to set higher

goals and secret stretch goals. The age of conservatism is long over, and with digital

transformation, the belief is that anything is possible. So, steep goals come with the

territory. The numbers need not be arbitrary. Multiple models can be drawn to come up

with targets. Comparing goals of other organizations’ capabilities and setting goals to

mimic them is also a decent start.

How do you know if you are transforming? Measurements. Identify all the metrics

that will be used during the course of the program to get real time/near real time data

and understand the progress made. Even if it means spending more to get the tool

licenses just to report on the metrics, it is a worthy investment. The more metrics you

have, the better it is for the CEO and senior leadership to notice and make decisions to

refine, adapt, and pivot.

Chapter 12 the Digital transformation framework

335

 Step 3: Seek Out Partners
This is a connected world—more so from a digital transformation sense. If organizations

need to embark on digital transformation journeys, they need partners. If they think they

can do everything in-house, they should read the Dell Digital Transformation Index,

where one of the top barriers to digital transformation is the lack of the expertise and

skills in-house. Yes, organizations need to think beyond conservatism and beyond doing

everything if they are serious about digital transformation.

Technology is available at one’s fingertips for a certain cost. Acquiring technology is

the easy part. What matters are the skill and expertise to put it to use. An organization

that tends to buy technology and start to begin hiring people to use it will be left behind

in this fast paced digital world. Imagine an organization having to hire all the required

skillsets, figuring out how they can work together, and then coming together to do

whatever they set out to do. Sounds like climbing Mt. Everest for the first time! On the

flipside, imagine engaging multiple partners who have expertise on their respective

areas, including an integrator, and giving them the laundry list of what you need and

watching them deliver is more sane and practical.

There was a time when concepts, practices, and case studies were walled in. With

the world opening up, and open source leading the way, digital transformation practices

have to be open to borrowing ideas of what worked well for other organizations, sharing

their own experiences in conferences and other forums, and passing the baton. Case

studies therefore are not limited to certain organization, but to the digital ecosystem that

exists with like-minded companies.

 Key Ingredient for Partnerships to Work

For digital transformation to succeed, partners have to work in unison to understand

customer expectations and deliver what they need rather than what they ask for. This is

not possible by merely dividing and conquering work, but rather applying themselves to

the digital culture (transparency, innovativeness, trustworthy, shared responsibilities,

and so on) that acts as a differentiator between success and failure.

While the partners in the customer ecosystem work together for the success of

the customer, the human-centric design principles must be applied unequivocally.

Suppose a need surfaces which requires a solution. There are multiple ways of looking

at it, a cost-effective solution, a technology approach based on what is implemented

in the organization, or a solution that considers what adds the most value to people

Chapter 12 the Digital transformation framework

336

using it. Remember that most of the digital transformation aspects are not carried

out for backend processing activities but rather for the people to use, and make full

benefit of the digital technologies in achieving their objectives. Therefore, the digital

transformation design and implementation must consider the human-centric approach,

which should be a part of the ecosystem supported by all the involved partners.

I will talk about digital culture in detail later in this chapter. If partnerships have

to work, the digital culture has to be the norm. Unless partners trust each other and

share knowledge and information openly, they will not be in a position to deliver the

best possible results for the customer. Even if two competitor organizations work in the

customer ecosystem as partners, they must keep their differences and doubts aside and

do what is best for the customer.

 Responsibilities and Contracts

Partners working collaboratively and trusting each other is good and preferred. But

beneath the surface, they are part of different organizations. Every organization has a

contract of its own, commercials mapped to the scope and delivery. So, the work to be

carried out by each of the partners must be written down unambiguously. A RACI chart

must be developed that covers all the partners, so there is absolute clarity on the role

played by each of the parties and the extent to which they can go.

Furthermore, each of the partners bring in their set of intellectual properties

and proprietary solutions. These must be protected most importantly. Working for

the customer should not be the invitation for possible infringement of copyrighted,

patented, and contracted properties. Each of the partners has to bring in their own

measures to make sure that their properties are well protected, away from prying eyes.

 Step 4: Execute a Small Project
There are a few variations of how a digital transformation implementation can be carried

out. You can make massive changes across the organization, or you can make one

change in one value stream and then move to the other changes in a phased manner.

Using a Big Bang approach will get immediate results and when pressed against time,

is the best option. However, the disadvantages are great. If the transformation does not

provide the intended outcome, then all the effort, money, and time spent doing it is

wasted. You win all or nothing.

Chapter 12 the Digital transformation framework

337

A phased approach is good, but the success rate is either complete or nil for the

identified value stream. A value stream (discussed in detail in Chapter 15) is a part of the

organization’s structure that goes through the transformation cycle rather than the entire

organization.

With digital transformations, it’s not wise to be conservative because

conservativeness and experimentation do not necessarily go hand in hand. If you go

aggressive, then there are potential for massive failures. To strike a balance, identify a

small but relevant portion of the organization that is a good representation of the entire

organization. Then carry out the digital transformation exercises and go through the

motions in this part of the organization. If success follows, you know that the direction

of transformation is right, and you can possibly apply it to the rest of the organization

(using the Big Bang approach). If it fails, you’ll need to go back to the drawing board and

analyze the causes for the failure and come up with a new action plan. This approach

of transforming a small chunk of an organization is called a lighthouse project or a

minimum viable product (MVP). You continue to run lighthouse projects until you

succeed, and until you can replicate it in the broader organization.

When the lighthouse project is successful, how do you implement it in the rest of the

organization? Providing the processes, architectures, and related documentation to each

of the value streams and asking them to get it implemented is an option but not ideal.

When it comes to digital transformation, you want the same group to be involved in

implementation across the organization to ensure standardization and swift measures,

to enable learning, and to apply past experiences.

My recommendation to implement digital transformation measures is to build an

enablement team. This team is responsible for implementation across the organization.

It consists of all the necessary people with the skills needed for implementation. In fact,

this team is enabled with high caliber resources who are champions in their respective

areas. You need your A team, and the digital transformation enablement team should be

top notch.

This is a temporary team. The team exists to implement the digital transformation

controls across the organization. Once they complete their mandate, the team is

dispersed.

Chapter 12 the Digital transformation framework

https://doi.org/10.1007/978-1-4842-9072-9_15

338

 Step 5: Observe, Refine, and Transform
The process of reflecting, modifying, and seeing the transformation in action is the final

step in the digital transformation plan—observe, refine, and transform. This step is the

most valuable step because it provides the input to ensure the digital transformation’s

success. Up until now, you did what you thought was the best, but this step is all about

measurements, observations, and corrections. Figure 12-3 illustrates the observe, refine,

and transform approach.

Figure 12-3. Observe, refine, and transform

There is plenty to learn about the digital transformation exercise in every

implementation you do. The same processes might work like magic in one organization

and fail terribly in the next. The rationale therefore is to pick the horses for the courses,

and to understand that one size does not fit all. That said, you still go with a hunch and

implement the controls that you think work well in an organization—like cookie cutter

Chapter 12 the Digital transformation framework

339

kind of practices. At first, you expect it to fail, it would surprise you if it does. Then when

it fails, the learnings will help you understand a whole lot more about the organization.

The changes that you make are invaluable, and to a certain degree, you know that it

will work.

The general argument that I hear is about the learning. They say that learning should

be a part of the process anyway, and this is something that should happen even during

the implementation activities. So true! However, there is a difference between being in

the ring and learning from experience and sitting outside and learning about the fate of

the outcomes The structure you build to learn while sitting outside is precious in terms

of getting the feedback and enacting the next set of changes.

The observe, refine, and transform process works in three tiers:

• Measurements and metrics

• Root cause analysis

• Recommendations

 Measurements and Metrics

When the digital transformation processes, practices, and controls are defined and

implemented, metrics too are identified along with the threshold to deem a certain

control as successful. For example, if automation testing is a digital transformation

control, then the metric would be test coverage and automating 90 percent of all the

functionalities as a possible threshold. When implemented, the test coverage metric

would be measured and if it falls beyond 90 percent, then this control is marked a

success. Otherwise, it’s a failure. This is a straightforward example that I have quoted,

but generally there would be multiple criteria that make up the success factor.

The example with automation testing is quantitative in nature—which is the easier

bit of measuring. What about something that cannot be directly measured? A new

interactive voice response (IVR) system can be measured quantitatively by the time it

takes for calls to be routed and the number of customers who hang up before talking

to an agent. To understand the customer experience of the new IVR system, a survey

can be rolled out at the end of the call. The customer provides a response, and this

response is subjective. Here too you can ask customers to rate on a scale of 1-5 and

provide opportunities to add comments about their experiences, which is qualitative

feedback. Both sets of feedback are important for understanding the impact of digital

transformation and for identifying positive changes/improvements.

Chapter 12 the Digital transformation framework

340

 Root Cause Analysis

Following the measurements and feedback received from various channels, the data

(qualitative and quantitative) is analyzed. The quantitative data analysis follows various

techniques, like regression analysis, factor analysis, and trend analysis, among others.

The output of the analysis suggests the success or failure based on the threshold that has

been agreed.

For qualitative feedback, the data needs to be manually sorted and grouped, and

the outliers must be discarded. You will have data on the table that is trying to tell you

something about the digital transformation adventure.

Looking at data at face value may be of some use, but the real deal is with the why.

Why do customers like to purchase laptops but not tablets from our portal? A root cause

analysis may point to the rate differentials with the competitor portals.

There are multiple tools available, like Ishigawa and Five Why techniques, to conduct

root cause analysis. It is a key step that will help you root out the problem, and point

you toward identifying permanent solutions that will put you on the path of digital

transformation success.

 Recommendations

With the root cause of the control’s sub-par performance known, the next logical step is

to put together actions that will take the measurements beyond the identified threshold.

Transformation consultants who are behind the definition of the digital transformation

controls can put together a set of actions/recommendations that can move the needle in

the right direction.

These recommendations are implemented. The cycle of observe, refine, and transform

is repeated until you achieve the intended outcomes. It is an iterative process, and the

more cycles, the better. This is empirical data that you can derive from the process, which

helps shape the digital transformation controls to the organization and its culture.

 Culture and Digital Culture
Culture is broadly defined as the way of life—such as people’s behavior, beliefs,

values, and traits. Retrofitting the definition in the digital transformation ecosystem, it

points to the ways of working, the mindset of people, their risk appetites, and working

relationships with other stakeholders, among others.

Chapter 12 the Digital transformation framework

341

Culture in IT came into the mainstream during the DevOps era. While the popular

belief pointed to CI-CD pipelines at the utterance of the DevOps word, purists referred to

DevOps as a cultural change. The origins may have started with the mindset of accepting

shared responsibility as the entire team. Further, DevOps is big on experimentation and

that required a specific kind of mindset, which assimilated into the culture angle.

Digital transformation draws heavily from DevOps on the cultural aspects. A number

of cultural aspects that were desired in DevOps methodology are more pronounced in

digital transformation. This new culture these days is referred to as a digital culture.

This is a growing field, as demonstrated in the previous chapter. Therefore, the

elements that make up the culture will evolve as time passes and when case studies

reveal new information. So, in essence, the culture that you are looking at is more fluid/

dynamic in nature, rather a set of values and principles to live by. It’s important to note

that at the very outset, as the cultural quotient changes by the day, the people who

are part of the digital transformation equation should most necessarily have a growth

mindset that will allow them to adapt to the changing ways of working when it changes.

Carol Dweck, American psychologist, is widely associated with the growth mindset

studies. In her book, Mindset: The New Psychology of Success, she sets aside people with

a mindset to learn new talents through hard work, strategy, and learning from others as

having a growth mindset. On the other side of the spectrum, you have a fixed mindset—

people who have strong beliefs that talent is innate, and either people are born with

talent or without. So, the idea that working hard or strategizing cannot make a not-so-

smart person smart is the fixed mindset DNA. As the DNA of digital transformation

thrives on experimenting, learning, and not getting too comfortable with set ways of

working, from the lingo of Carol Dweck, people with a growth mindset will find a natural

calling in organizations that are on a digital transformation journey, which you should

consider to be a majority of the organizations in the next three to five years.

There are several aspects of culture that are desired in digital transformation. There

are five principal elements that make up digital culture, as represented in Figure 12-4.

They are as follows:

• Innovative

• Openness

• Collaborative

• Entrepreneurial

• Customer centric

Chapter 12 the Digital transformation framework

342

Figure 12-4. Elements of digital culture

 Innovative
DevOps promotes experimentation. It builds an ecosystem to thrive, and for the teams to

experiment and innovate. If they end up failing, they fail fast so they can start on the next

set of experiments. Only through an environment where experimentation is encouraged,

a culture of innovation can bloom. Unless organizations innovate, their fates are in the

hands of other organizations that are willing to hedge their bets on the next big thing.

Case in point is Nokia, which stuck to their guns with phones with buttons or a

resistive touchscreen with a stylus (Nokia 5800). Before they could blink, the market and

their loyal fanbase had shifted to capacitive touchscreen phones with play stores hosting

a repository of apps through an ecosystem of app developers. Even after the Microsoft

acquisition and their introduction to touchscreen phones, the market would not move

back in their favor. They became a classic case of the perils of non-innovativeness.

Kodak is another example. Their strong bond with touch-and-feel photography dug

their grave. As the world went toward digital photography, Kodak argued that people

loved and adored photographs on paper rather than on a monitor. As Fuji brought in

its digital cameras, instead of following suit, Kodak stood firm by engaging in debates

over real photography versus digital photography. Their sales tanked, their stock price

avalanched, and the company went into bankruptcy.

Chapter 12 the Digital transformation framework

343

For organizations to survive the next half decade, they must launch new products

and offerings that are unique, add value to customers, not be easily replicable

by competitors. To make it happen, a culture of innovation must run deep in the

organization, and the people who are part of the journey (with growth mindset) must be

curated carefully.

Some red flags to beware of:

• Teams saying that they are comfortable with a particular way of

working because they know it works rather than trying a new method

to see if it works.

• Teams fearing to fail rather than to learn from failures.

• Detailed planning and ensuring certainty over showing flexibility to

improvise.

• Forming multiple teams to perform respective sets of activities and

objectives rather than bringing together teams with a common

objective.

Efforts must be made to ensure that an environment of innovation in inbred in

the organization. This is possible if there is overwhelming senior leadership support,

followed by the practice of keeping teams accountable rather than individuals. People

who work in fear of failure will not innovate. Innovation comes through the right set

of people and in an ecosystem that allows team members to experiment, fail, and

take risks.

 Openness
A major support system for innovation to breed in an organization is through

transparency. The information pertaining to work should be available to all team

members, whether it is good news or bad. In DevOps, we follow a principle of sharing

all project related information on a medium that is accessible to all team members. The

idea is to ensure that the information shared will help team members make decisions

in terms of the product development and roadmap. For example, a bug found in the

functional testing process should be broadcasted to all team members even if they have

not particularly worked on the related feature. This information will help them identify

dependencies if any and decide on the future course of action.

Chapter 12 the Digital transformation framework

344

Open communication should be a norm and should be promoted steadfastly by

the senior leadership teams. Team members should be able to openly express their

views without fearing judgement by peers and managers. The office environment

should be psychologically safe, which in turn helps generate views (for and against),

and importantly ideas that can potentially take the company to the next level. This

has further collateral benefits such as strengthening teamwork and enhancing trust in

the system and the leadership. Good ideas, interesting views, and good work by team

members should be recognized appropriately, which will further encourage them to

open up.

Making openness a part of the culture is not as easy as documenting it in a policy

document. Leaders must walk the talk in opening up about the company and its

decisions, and encourage team members to share their thoughts. This can be further

facilitated by setting up various forums that allow team members to exchange their

views. It need not be a team meeting or any other meetings in a different name—an

online forum or a group chat will do just as good.

 Collaborative
You can call collaboration the conjoined twin of openness. Both are joined at the hip,

because as you start to promote one, the other benefits automatically. While openness

makes communication free and without bias, collaboration leverages the open

communication for team members to work together to deliver digital transformation (or

anything else that is being worked on). Collaboration could be between team members,

different teams, or even different organizations working for the benefit of a customer.

Collaboration like openness will help build trust with the team and with the system

in place. The teams will find it a lot easier to work with each other, respect each other,

and show compassion. When collaboration in the team increases, the productivity takes

a boost.

A definite way to foster collaboration is to break down silos. The moment you build

silos, people get bottled in, and the sense of possession is for those within this silo. When

silos are shattered, team members feel that they belong to the same community of work

product that’s getting delivered. This will help them communicate openly and work

freely with each other as long as the organization plays fair by rewarding the deservers

and by following blamelessness. The goals laid out by managers should be measured

for teams rather than individuals, this will promote team working over individual

contributions.

Chapter 12 the Digital transformation framework

345

Looking at the other side of the pyramid, the leadership must be appraised (at least

partly) based on the feedback by the team members. Many organizations follow this

culture where leaders are rated by their peers, team members, customers, and other

stakeholders. This system is often referred to as 360-degree feedback. It is a good system

to get the feedback not only from their managers but also to get a sense of what other

stakeholders and team members feel about their performance. Care should be taken to

ensure that sufficient number of people provide feedback in each of the categories to

allow normalization of feedback rather than deviant ones.

 Entrepreneurial
Entrepreneurs are a rare breed. It all starts with an idea which is cultivated, socialized,

invested, and finally developed. Whether the product makes it big or not is not certain.

In 2021, 90 percent of the startups failed within five years of inception. This is not an

encouraging tale but the fact remains that there are more startups every year compared

to the previous year. What does that say about the entrepreneurs behind it? Plenty!

Entrepreneurial character is a must-have for the digital culture to thrive.

Entrepreneurs exist because they innovate, and we have discussed earlier about

innovation being one of the driving forces of the digital culture. They innovate because

they are willing to take risks. While they hate failing, it does not deter them from finding

the fastest way to innovate and fail.

Entrepreneurs have a big asset that makes them what they are—apart from their

risk taking attitude. They start companies because of their positive attitude. They always

see light at the end of the tunnel no matter how deep and far it digs in. You might have

probably heard of KFC founder Colonel Sanders’ story. At 65 years, he had a monthly

social security check of $105 to live on. He had experience selling chicken dishes at a

younger age, and he wanted to sell his fried chicken recipe to willing restaurants who

were ready to team up with him. His proposal was rejected 1,009 times before getting

accepted, and this was at a ripe age of 65 years. How many of us would give up after 25

rejections? His positive mental attitude helped create what we know today as Kentucky

Fried Chicken, which is a global conglomerate with revenue earnings nearing $30 billion

mark in 2020.

Chapter 12 the Digital transformation framework

346

Entrepreneurs and their positivity do not only make them successful, but it rubs

off on others who work with them. Imagine companies having people with such a

mindset, and the various opportunities for innovation, experimentation, and ideation!

A psychologically safe environment with no fear of judgment will foster positivity.

Entrepreneurs are intrinsically motivated. They find sufficient reasons to do

what they venture into. This quality, when imbibed in digital transformations, helps

organizations self-manage teams and team members.

When it comes to a team of motivated individuals with ideas, thoughts, and differing

views, there comes a point where the person who can rationalize well wins the day.

This requires the power of persuasion, which buttresses their solutions and viewpoints.

Remember that entrepreneurs are always in a situation to find new investors, and to do

that, they must convince others that the idea is a good one. In digital transformation too,

there will be multiple ideas floating around, and differing views coming from all corners.

Persuasion skills in this context are an asset.

 Customer Centric
Gartner’s definition of customer centricity is as follows:

Customer centricity is the ability of people in an organization to

understand customers’ situations, perceptions, and expectations.

Customer centricity demands that the customer is the focal point of

all decisions related to delivering products, services and experiences

to create customer satisfaction, loyalty and advocacy.

Let’s get it real. There is no business without customers. Unless a customer gets into

the act of buying products or services, the company that is offering them ceases to exist.

So, it is a rational thought to keep customers at the center of the universe and give them

what they need.

If you are going to spend an hour of your busy day watching a TV show, and if Netflix

cannot produce a show that piques your interest, then as a customer you have the right

to go elsewhere. There is nothing that Netflix can do to hold onto you, and make you pay

for their services if you don’t like what they have to offer. The only way that Netflix can

make customers continue paying for their subscription is to produce shows that intrigue

interest, are of high production quality, and most importantly, are entertaining. This is

Chapter 12 the Digital transformation framework

347

the prime reason that Netflix launches new shows and movies on a regular basis. There

are keeping customers at the center of their business and producing entertainment that

is suitable to them.

Organizations must ensure that they are not internally focused. You find a lot of

companies doing this—going through organization changes, making changes to their

offerings, changing their policies and a whole lot of other stuff without bothering to see

what the customer is doing all this time, and how these changes affect the customer.

Any change that is done internally must have a bearing on the customer. Even an

organization change that’s a purely internal matter should be done to better serve

customers, and to better prepare for what customer’s future needs.

Digital culture centers around the customer. Those who get this right are well placed

on the path that takes them more or less where they want to be. In this quickly changing

world, it is important for companies to know what their customers are thinking, what the

customer’s needs are, and how they feel about their products. No transaction with the

customer is an one-time affair. Feedback is key. Feedback is the data that aids companies

shape their products and services to get more customers and repeat business. Soliciting

feedback may not be as straightforward as it used to be once upon a time. A survey or

a phone call won’t cut the mustard. The real feedback to obtain is from various social

media channels. Organizations should employ the machines (read artificial intelligence)

to scour the various social media channels to read the pulse of customers.

Customers generally don’t trust companies to do what is in the customers’ interests.

They know that companies are self-serving and exist for their own benefit. Organizations

must go the extra mile to earn the trust of customers. How do they do it? Every sector

is different and earning trust is an art that takes time to master. In the food delivery

business, Swiggy, a popular food delivery service, doesn’t ask too many questions

or interrogate customers when they complain about missing food items. Refunds or

missing deliveries are provided immediately. This gesture ensures the customer that

Swiggy does right by them, and the money they pay is worth it. Just for comparison, the

food prices at Swiggy are at least 30 percent more than what you get at the restaurant.

Yet, knowingly paying more is not a problem when you know that the food you seek

will be delivered (mostly) on time, and that customer service is there to serve you when

necessary.

Chapter 12 the Digital transformation framework

348

 People
While businesses disrupt, processes overhaul, and technologies upgrade or switchover,

there is a common thread that powers all other parts of the digital transformation—

the people. Digital transformation is not about technology, it is the people who are

affected, and who are expected to take the digital transformation forward. And yet,

people powering digital transformations is often assumed or taken for granted. Digital

transformations that don’t consider the people aspects tend to fail.

The whole intent of digital transformation is to bring about massive changes in a

short span of time to allow companies a first mover advantage. However, people can

be a bottleneck if they are assumed to move with lightning speed. One cannot expect

somebody who has played a particular role for a decade to do something else the next

day. While attitude is one part of the equation, training and expertise challenges are also

not easily surmountable.

 The Coca-Cola Case Study
A case study published by McKinsey shares the story of people transformation at the

Coca-Cola company. McKinsey’s discovery process identified that about 60 percent

of the workforce had to change their roles before 2030. This is a company that is close

to 100,000 strong worldwide and we are talking about 60,000 of them changing their

roles, which includes re-training on digital skills. Training commenced last year, and in

the first year, 500 people were trained on digital skills and an additional 4,000 people

are being trained. Putting together a digital academy and putting people through the

churner is a massive program that costs a lot of money. and The company expects the

digital graduates to deliver, but not everybody will come out on top. This is a massive risk

that organizations have to take head-on. One might say, why not cut ties with the existing

employees and hire digitally skilled employees? The problem with this approach is

simply this—new folks will not have the specific business and domain knowledge to run

the business. While they may do digital things well, business too needs to be run, and

for that, experience counts. Hiring new people is not ruled out, but it will not be done

on the same scale as the ones that go through the retraining process. For the record,

Chapter 12 the Digital transformation framework

349

McKinsey reported that the freshly trained graduates have helped the company develop

new approaches to automation and analytics, which has led to a productivity increase of

20 percent.

 The Psychological Effect of Change
Numbers tell you only one part of the story. What they don’t report is the mental state of

the people. Borrowing Elisabeth Kubler-Ross’ five stages of grief model, when asked to

learn a new skill or change their role, people are in shock and confused about the mess

that is in front of them. Over time, they get angry at the prospect of going back to school

and doing something new. As the anger simmers, they bring out their connections

within the organization to see a way out of the inevitable change. With change staring

them in their face, they can go into depression. Finally, when the writing is on the wall

bold and big, they accept their fate and jump on the bandwagon. These stages cannot

be plotted against a project management plan, and they take time. Most organizations

employ change management experts to deal with people and help out during the entire

process.

There is no easy way out. Organizations have to find a way out to identify people with

a growth mindset and start putting them through pilot and initial batches.

 Fear of Automation
With automation taking precedence over manual activities, people see themselves

as becoming redundant. This assumption may not be entirely false, but there is an

opportunity or silver lining with the rise of automation.

Automation is heavily employed where there are opportunities of manual activities

that do not require human intelligence. I use the word heavily and not a blanket

statement because artificial intelligence can mimic human cognition and actions to a

good effect if it’s implemented well. While automation replaces human tasks such as

running batch jobs, publishing reports, restarting services, and other mundane tasks, the

human effort required for operational tasks has significantly decreased. This, however,

has not led to loss of jobs in a number of sectors where the people getting replaced have

showcased a growth mindset. People with business experience are priceless, and letting

Chapter 12 the Digital transformation framework

350

them go is a waste of assets. Grooming new people on business knowledge takes time

and effort. As employees become redundant due to automation, people have found new

avenues and have begun working in new roles. Essentially, this serves two purposes:

• People are moving to newer roles as an outcome of digital skills they

acquire.

• People are carrying out tasks that are at a higher level of complexity,

which require human cognizance, challenging them and keeping

them interested in their new roles.

Most people naturally prefer to work in a challenging environment, and automation

has nudged them toward learning new areas of study and has pushed them toward

becoming better creators.

Automation has not made people redundant. In fact, automation has made people

more relevant in the digital scheme of things. It has given some employees new

inspiration to learn new skills and perform meaningful tasks. Over time, the new skills

they acquire will get automated too, and they will have to rinse and repeat the entire

process. It can be a fun process as long as they have the right mindset.

Chapter 13 delves deeper into the people and leadership aspects.

 Technology
Technology is the reason that digital transformation came into existence, and yet, it is a

byproduct of everything else that we do, like operating models, process methodologies,

and culture, among others. We know for a fact that anything that we can imagine, we can

realize using technology.

It goes without saying that technology is an integral part of any digital transformation

exercise and one of the potent skills that sets leaders apart from the rest. Together with

culture, people, and data, it makes for a delectable solution that can take problems head-

on. The art of digital transformation is to use it suitably and craft it for specific purposes

and accelerators.

Chapter 12 the Digital transformation framework

https://doi.org/10.1007/978-1-4842-9072-9_13

351

 The L’Oréal Case Study
With the pandemic raging across countries, there was one company that was sitting

pretty and the social distancing norms were not seen as a disruption to its business.

L’Oréal, the cosmetic giant, was comfortable with its repertoire of digital armory.

The company unleashed its augmented reality technology along with its cloud

prowess. Adding live streaming capability to the mix made it a combination that

COVID-19 could not dent. Its online sales went up by 62 percent compared to pre-

corona days.

The cosmetic industry relies on physical touch and proximity, so it was bound to be

one of the most affected industries when the pandemic raged. Pushed against the wall,

with social distancing rules in place, the company put together the next best thing with

the combination of digital technologies.

The company acquired ModiFace in 2018, which is an augmented reality (AR)

technology developed for the beauty industry. It seamlessly integrates artificial technology

to give consumers a virtual dash of makeup on their skins, minus the physical touch.

The AR technology is embedded on popular platforms such as Facebook and

Amazon, where consumers can try cosmetics using their mobile phone cameras in a

video or a photo mode. All the shades and colors at their fingertips, without having to

step outside!

This acquisition of ModiFace happened in 2018, a full two years before the pandemic

hit, which shows the digital acumen of the people leading the digital transformation

for the cosmetic major. Last year, after the pandemic, the company further added AR

lenses to Snap Camera for their brands, including Garnier, Lancôme, and Maybelline.

Furthermore, consumers can broadcast their live streaming of the virtual try-ons

through Google Meet or Zoom.

L’Oréal reached out to its consumers through a new partnership in Livescale,

which is targeted for the beauty industry. Influencers and beauticians often showcase a

plethora of beauty products on this livestreaming app, and L’Oréal’s partnership paid the

company rich dividends. The company has also invested in Replika Software, a network

for ecommerce through social networks.

The company started to modernize their applications and cloudify them well before

the pandemic hit. The flexibility they possessed when they had to scale when all sales

went digital was feather touch.

Chapter 12 the Digital transformation framework

352

 L’Oréal vs. Estée Lauder: A Digital
Transformation Comparison
Comparing digital transformations from one organization to another is like comparing

the talent of Messi against Hamilton. The baseline or the numerator will never be on the

same scale. L’Oréal and Estée Lauder are on different stages of digital maturity. The size

of the companies and their market reach and breadth are a gulf wide.

Yet, I find it coincidental that the top cosmetic companies in the world, when pitted

against a common situation, leveraged the same technology but in their own capacities.

L’Oréal saw the writing on the wall (not the pandemic, but virtualization) well before

the pandemic started and acquired the augmented reality technology. Estée Lauder

was rather reactive in opting for the technology after the fact. Clearly, having the vision

to foresee the future of virtual market through augmented reality has been the French

company’s biggest win.

Estée Lauder opted to build their own tool when the pandemic hit. When the

stores were shut, the top priority would have been to reach the maximum market at the

shortest possible time. A prudent decision would have been to go for a COTS product

such as VTO (which they did eventually six months later). This case study will open the

discussion for buy versus build and to me, the decision to go one way or the other is

governed by the situation. Retrospectively, after seeing the pandemic for a year and a

half and after having seen these examples in action, it is easy to say that the company

should have opted for COTS in the first place rather than trying to build their own.

A positive aspect of Estée Lauder’s case study is their decision to withdraw from the

build decision six months down the line and opt to go for VTO. Many a time, especially

when we spend six months building a product, we get too close and emotionally

attached to the product, and we end up keeping our rational decisions out of the office.

But the company pulled through with a tough decision and did end up saving a lot of

money, plus they had a working solution that put their products back on the market.

 Techniques and Architectures
Technology isn’t just about codes and futuristic elements that can automate everything.

It is not all knowing like Skynet (the artificial intelligence in the Terminator series).

Applying logic to reasoning can make mountains look like molehills—I am referring to

techniques that can be applied to make the technology look a whole lot more powerful

than it is.

Chapter 12 the Digital transformation framework

353

Consider this—a customer does not want to suffer any downtime during an overhaul

of the web application. There are multiple ways to address this quagmire. It can be done

on the infrastructure layer or on the application layer or both.

One of the common approaches is using the blue-green deployment methodology

where two sets of production environments are maintained and work in conjunction

with a load balancer. One of the environments is referred to as blue and the other

is green. Let’s say that at the time of deployment, all the traffic is routed to the blue

environment and the application is deployed on the green environment. Since the green

environment is inaccessible, users don’t face any downtime. Once the deployment

and testing is complete, the traffic from the blue environment is routed to the green

environment. The blue environment gets the new software, and upon successful

production testing, the load balancer can normalize by routing to both production

environments. You can have as many parallel production environments as needed. It

not only helps with zero downtime deployment but also serves as an effective rollback

mechanism against bad releases.

A different variation of the blue-green deployment is when you have one set

of production environments that hosts the current application. A new production

environment is set up with the new application and all required integrations. At the time

of the release, the traffic can cut over from old production to new production. Users

will probably not notice it unless they are logged into active sessions, which will be

terminated.

 Golden Practices for Technology Implementation
The heights of technology is limited by our imaginations. Digital transformation is no

different. A sound architecture and approach to planning and executing transformation

determines the role of technology. Yet, technology is not omnipotent and its

implementation comes with varied sets of challenges.

There are a number of ways to implement technology, and as long as the

implementation is successful, all is well. The problems arise when things go south.

Therefore, there are some golden practices that organizations should follow because

they have worked time and again. The order of the practices is not important. What

is key is that the practices point you in a general direction, and based on the context,

organizations have to choose the specifics. In fact, within the same organizations, two

different technology implementations may follow separate approaches.

Chapter 12 the Digital transformation framework

354

Here are the seven golden practices that are universally accepted in organizations:

• Manage the change

• Timing is key

• Automation is normal

• Plan for scaling

• Evaluate technology

• Implementation partners

• Iterate implementation

 Manage the Change

Change is always good when sitting outside of the box and driving it. People on the

inside will have a different take on the change, when it rocks their worlds and takes them

out of their comfort zones. If the people who use the products or services feel that the

change was unwarranted, the outcome is not going to be pretty. A disgruntled user is

not going to produce the best they can, and when faced with hostility, the feeling can be

contagious.

Technology change is not just what changes in the backend. The beauty of

technology changes is that they can bear a change to the process. In fact, they should.

The process should improve in order to improve efficiencies and throughput. As this

happens for the benefit of the greater good, it is critical that the people on the ground are

taken on the ride as well. Bring in change management consultants to smooth out the

effect of changes and to address any discontentment.

 Timing Is Key

Changing technology has a bearing on the business process. If the business process has

to change, the timing needs to be perfect. If you are doing it over a long weekend, who

is going to test the production when it goes live? If you are planning to make a change

during the end of the financial year, what is going to happen to the company’s financial

transactions and year-end closing if the technology change fails? Plan your release early

and give enough time to evaluate the tools and to bring about the change with optimal

planning. When you have to decide on a technology, you don’t want to make a decision

in haste, which could be perilous if the technology is not just right.

Chapter 12 the Digital transformation framework

355

Timing is everything. Get sufficient time to plan and implement. Technology changes

cannot be done in a jiffy, especially during the selection and design phases. Take as

much as you need. When it’s time to plan, consult with the business to understand their

process timelines. Plan with them and around critical timelines that may be risky if

changes go awry.

 Automation Is Normal

Automation is normal. Manual processes are the exception. Generally, organizations

start with manual activities, and when they are able to deliver manually, they look for

automation options. With a good maturity of automation setting in, it is time to reverse

the trend. Every activity that comes out of digital transformation must be planned to be

automated. If any activity cannot be done, you must put in place a rigorous process to vet

the use case. If it’s satisfied, you label it is as an exception.

For IT related testing, there are a number of solutions like Tosca and Selenium

that lend heavily in the testing space. Almost everything can be automatically tested,

including the user test cases. On the business side, their activities can be picked up

by the robotic process automation technology. Even the COTS and low code/no code

products come with built-in automation options that need to be exploited.

 Plan for Scaling

Organizations that don’t grow wither away and die. This is the hard truth. Every

organization must look toward growing. As organizations grow, their systems must be

capable of handling more transactions, their infrastructure must be scalable, their data

volumes should be managed, and, most importantly, their process must not break down

due to big numbers.

The mantra should be think big. Options for scaling must be done right at the

genesis and should not be an afterthought. After all, you may have to choose a different

technology altogether if you are thinking of scaling possibilities, so factoring it during

the design phase may not be sufficient. For example, cloud infrastructure is a shining

example of scaling. You can extend horizontally or vertically without breaking a sweat.

This was not the case a decade earlier. Moving to higher configuration servers required

migration planning for weeks and months and the effort was not only extensive but the

results were not guaranteed.

Chapter 12 the Digital transformation framework

356

 Evaluate Technology

The new norm for working in IT is in iterations and small batches. However, when it

comes to decision making on the technology, it needs to be done at the beginning and

preferably only once. The cost of deciding on a technology and changing midway is

high and it needs to be avoided at all costs. In short, don’t iterate technology evaluation.

Spend as much time as needed to determine the technology that will work for you.

Many a time, we see organizations changing their processes and goal posts to suit the

technology—this is not a good practice. Business processes and practices should always

come first; they should be defined with specific defined goals. To meet the goals, and to

solve the specific business problems, choose the best technology.

During the decision making process, identify all the stakeholders who are a part of

the value stream. Make them an integral part of the decision process. With stakeholders

from every quarter, new aspects will arise which help narrow down the technology that

will solve the problems at hand.

During technology evaluation, we often do a proof of concept to put the technology

to practical use. This helps you decide based on the actual implementation and usage

rather than published features and capabilities of the product. In some cases, certain

technologies like ERP solutions can be applied to multiple areas and value streams.

In such cases, the scope of technology may spread to a wider part of the organization,

which will bring in more stakeholders and delay the decision making process. Yet, at the

end of the tunnel, you will have an integrated solution that solves multiple problems.

 Implementation Partners

While choosing a technology is one major decision, the path to take for its

implementation is another. A company may choose to implement the procured/

acquired technology on their own. The question to ask is whether the company has the

expertise to implement. Have they done it before? Successfully?

As the digital of everything widens, there are companies that specialize in niche

areas—one of them being implementing particular technologies. Examples include

implementing Salesforce, or SAP, or any other COTS product. It has become quite rare

these days to build products from scratch and build bespoke products. With bespoke

products, the chances of success is too low, and the effort and time taken is too high.

There are products out in the market for every industry and for every application. Why

not just get it implemented with a partner who has done this a number of times and get

Chapter 12 the Digital transformation framework

357

going? The priority today is to get up and running in the shortest possible time. The risk

appetite for implementation success has gone down considerably. So, the best ploy is to

find implementation partners who come in, implement, and hand over the operations

to the company and leave. In some cases, the implementation partners will continue

supporting the product after implementation. In either case, the company that is going

to use the identified technology is not going to take it upon itself to implement it. There

is too much risk.

 Iterate Implementation

Implementation is an activity that yields the best results when done iteratively. Massive,

Big Bang changes are harder to deal with, mainly due to the lack of data and anticipated

bugs and challenges.

The advantage of iteration is that you can start small in a remote corner of an

organization. Learn from the mistakes. Rectify it in another corner to be doubly sure that

the second pilot is successfully. Once the implementation team is confident, they can

roll it out in phases/waves. The data-driven implementation bolstered by the learning

will increase the probability of success and decrease unnecessary disruption for the

business.

When I plan implementation rollouts, it starts with a proof of concept, which deals

with non-production data, and no practical uses for the product. When it meets the exit

parameters, a pilot is planned in a not-so-busy part of the organization. For the pilot

rollout, remember that you do not have any data on how the product behaves, and how

the implementation will happen in this organization. Even though as implementation

partners, you have experience from other organizations, a new organization is still a

green pitch. A pilot is crucial to study the activities. Every step in the pilot is recorded and

reviewed with various stakeholders. When the pilot goes live, you should give sufficient

time for hypercare to identify all the possible issues. Don’t look at the issues as issues but

as learnings. A retrospective of the pilot program must include a detailed analysis of the

steps undertaken, the outcomes achieved, the learnings, the optimization opportunities,

and the mistakes. These would be improvised during the next wave of implementation,

which will be a lot smoother thanks to the experience and the data that is gathered.

Chapter 12 the Digital transformation framework

358

 Data
Data is like nutrients in the digital age. There is plenty of food today, and food has

its respective carbs, fats, proteins, and other nutrients. The food that is beneficial to

us—namely protein, some carbs, and good fats—have to be chosen carefully from the

assortment of foods. Data is like food. It is everywhere. Like food, there is abundance of

data. We need to curate the data that is beneficial and discard the mundane. It is easy to

state this, but the challenge is real. To put it simply, the abundance of data is a massive

challenge because you need to start looking for specific datasets that help you in this

data superset—much like finding a needle in a haystack.

Some organizations are methodical and disciplined about data. They create

departments to manage, analyze, and make sense of the data. There are executive

positions like a Chief Data Officer (CDO) who is made accountable for all the data

functions. This is a good start, but is it good enough? I don’t believe that data can be

managed centrally because in every nook and cranny of an organization or a project,

data is generated. A central team trying to discover and manage all such data is just

not going to cut it. It is not practical and possible. Much like innovation, managing and

analyzing data must be done at every service line, every team, every program, and every

project. All those who are part of the digital exercises should be responsible for data—for

identifying data points and analysis. Construing, interpreting, and decision making may

happen either at leadership levels or the data is fed into predictive models. In essence,

the decision making can happen based on identifying data sources and analyzing it

effectively.

Digital transformation is often done on the back of almost no data to back the

decisions data. Many programs are executed under the digital transformation banner

and are either being done for the first time in the organization or being experimented

with. So digital transformation often does not have the luxury of backing the roadmaps

to undertake. Therefore, the importance of running the program in small batches and

executing the pilot is critical. A lot can be learned from the pilot, and as you iterate, you

learn a lot more. The learning does not stop, because digital transformation is not a

destination but a journey.

Chapter 12 the Digital transformation framework

359

 DIKW Cycle
Before delving into data strategy and other related nuances, this section introduces

a model that characterizes the different evolutionary stages of data. The data-to-

information-to-knowledge-to-wisdom (DIKW) is often represented as a pyramid and is

shown in Figure 12-5.

Figure 12-5. DIKW pyramid model

Data is the foundation and is (or can be) extracted at every stage. Imagine the data

that Amazon can gather from your product buying habits, your spending trends, and the

items that you browse and don’t purchase. All this is data.

But data itself doesn’t signify anything. I browsed Amazon for Isolate Whey Protein.

So what? Unless you marry the data to a trend, it’s not helpful. While I browsed for the

product, I also filtered out certain brands and sorted based on reviews. Now this is good

information. Because Amazon now knows that I don’t buy something that is listed on the

top of the screen (often paid engagements) but am specific, and I learn about the stuff

that I am buying. This is information.

Knowledge is power is a popular aphorism derived from the Latin phrase scientia

potentia est. It is powerful weapon because it is a culmination of people’s experiences,

ideas, thoughts, and insights. The result of all of these factors transforms information

into knowledge. Amazon can gather information from multiple customers, analyze the

information, and make corrections to their algorithms to showcase products that are

popularly being sought. They can also join up with manufacturers to get sponsorship for

promoting the products. No wonder they say knowledge is power!

Chapter 12 the Digital transformation framework

360

In the process, knowledge tries to answer the how question.

How did the 54 incidents get raised? How are we offering 23 services to the

customer? The answers to these questions, you need excessive analytical skills and

sound analysis.

Wisdom is the highest echelon in the knowledge management area. While data,

information, and knowledge capture the data, add context and meaning, and invoke

actions, wisdom goes back to the strategy board to see the big picture. By promoting a

product that is not very popular, is Amazon being partisan toward accumulating profits

through (perhaps) low-quality products? These could some of the level of discussions

that are hosted in the wisdom space. The decision making primarily happens in this

realm and to get to sound decision making, you need to start with data and progress

to wisdom.

Figure 12-6 indicates the flight of data moving toward information, knowledge, and

finally toward wisdom.

Figure 12-6. Data to information to knowledge to wisdom

Chapter 12 the Digital transformation framework

361

 Summary
This chapter introduced the battle tank framework for digital transformation. This

framework addresses all the aspects of digital transformation—the areas that need to be

considered before and during the journey.

The digital transformation exercise is a long-drawn game, where the end is not

in sight. Therefore focus and effort need to be placed on the means and the journey.

A sound strategy is needed before embarking on the program and the topic of digital

transformation strategy addresses this need.

Chapter 12 the Digital transformation framework

363

CHAPTER 13

People and Leadership
If you ask 100 people in IT what they are currently working on, 90 would say that it has

something to do with digital transformation. A number of organizations are on their

digital transformation journey. But the phrase digital transformation is an overly used,

abused, and misused term. Many believe that digital transformation is about shifting to

newer technologies and its offshoots. The truth is that digital transformation has very

little to do with technology, and much more to do with people.

To state it even further, digital transformation is of the people, by the people, and for

the people.

 Digital Transformation Is People Centric
Before we get into this topic, let me reiterate about digital transformation.

The phrase digital transformation has a different meaning and connotation in

every organization. Not only that, but people in the same organization interpret digital

transformation differently as well.

Imagine that business and IT are woven into the same piece of cloth. The business

processes and IT processes are not separate anymore, and IT is realizing the business’

needs every step of the way. The business’ outcomes have become IT’s objective.

The common belief is that digital transformation is about the latest technological

advancements, and organizations jumping onto the futuristic bandwagon of

transforming digitally are all set for the future. Well, it may be partially true that

organizations that keep up with technology can claim to be digitally forward, but there is

more to the story that’s often untold.

Technology is not at the center of digital transformation. Think about it.

Organizations have capital and they can buy technology. But what are they doing with

the technology? To make this technology remotely useful, you need people. You need

people who can apply the problem on hand or innovate to improve business outcomes.

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9_13

https://doi.org/10.1007/978-1-4842-9072-9_13#DOI

364

You need people who can creatively and constructively leverage the technology with the

right mindset through Agile and DevOps. Added to this is the power of automation to

accelerate processes and reduce human-induced delays.

Technology by itself is useless. Technology needs people. Or in fact, technology

becomes functional when it is deployed by people.

Moving on in support of people driving digital transformation, an important element

that drives digital transformation is the leadership. Digital transformation has to be

driven using a top-down approach. Companies cannot make changes to a process here,

and a technology there, and call it digital transformation. The vision of an organization

to move into digital ways of working has to be set by its leaders. I cannot stress enough

the importance of having the right leaders to lead the way for the organization to move

forward digitally. Digital transformation is possible only with leaders who have an able

vision, mindset, values, integrity, and competence.

For an organization to transform digitally, you need people who embrace change

willfully. One of the new ways of working is moving from the project-centric model to

the product-centric model. As this happens, the ways of working changes, roles change,

responsibilities change, and in short, the entire mindset of working toward project

completion is an old school of thought. So, for digital transformation to be successful,

you need the employees to buy into the new ways of working, the new culture. If they

don’t, then no matter the best plans and technologies, digital transformation will stall

before taking off. This shows why digital transformation is about people more than

anything else.

With new ways of working, and having introduced new tools, technologies, and

processes, the current employees will be upskilled and cross-skilled to meet the new

challenges. In essence, you need the employees to undergo training, workshops, and do

a lot of slogging to adjust to the digital ways of working. It’s not easy. Learning new skills

is hard unless you have the right mindset, but it must be done. To make it happen, you

need leaders who can persuade their teams, and people who develop a mindset to yearn

for new skills. If either one of these doesn’t fall into place, you have a problem. Digital

transformation will stall. It’s not about just hiring people with the right skills and getting

rid of the old people. Well, that may be easy to say, but in reality, you need people with

organization and customer experience; people who are tenured to ensure continuity.

The COVID-19 pandemic gave rise to a new problem—the large-scale adoption

of hybrid working environments. In fact, digital transformation has been used in

conjunction with the flexibility of ultra-distributed teams working from homes.

Chapter 13 people and leadership

365

The challenge with remote working is multi-fold. The work culture once revolved around

proximity, meeting in conference rooms, water cooler discussions, and team lunches.

That’s largely in the history books. This changing work culture involving remote working

does not foster natural collaboration, or team working and employee engagement.

Organizations on their digital transformation journeys have to find ways to overcome

these challenges to ensure that the transformation objectives are unaltered. I created a

video about leading remote teams effectively (https://youtu.be/s24H6dPCv8I), which

addresses solutions to some of the challenges.

I have only touched the tip of the digital transformation iceberg as far as the role

of people. I am not discounting the role of technology, or downplaying its role in the

journey. As long as you have the right people who are ready to take this arduous journey,

there isn’t anything that you cannot accomplish with technology. As you find new use

business use cases, technology is there to bridge the gap. The challenge will always

be training people to new ways of working. Realigning people to meet use cases is not

straight forward and that’s the argument around digital transformation being more

about people than technology.

This chapter discusses how a digital transformation worker works, what works and

what doesn’t, and the leadership qualities that are essential for digital success.

 The End of Work as We Know it
There was a time, not too long ago, when most of us worked out of offices. We had a

time slot where work was expected from us—for some, it was flexible and for most, it

was rigid, such as 9AM to 6PM. People came to offices, worked, and went back to their

homes. This trend worked until COVID-19 hit us all. Overnight, we had to improvise

and move from the familiar work environment to a space that meant everything other

than work. A lot of people kept office work out of their homes until COVID-19 changed

everything. Homes became offices, and with that, the thick redline separation between

home and office vanished.

It was novel at first. Many employees were unsure how it would turn out, given the

economic downturn and there was the anticipation of pink slips in the air. When there

is a threat to existence, it is our human nature to adjust and do the best we can. And that

is exactly what happened. People continued to work from their homes and delivered

similar results to office work. The IT train chugged along. During the course of working

from home, the clear distinction between office time and home time diminished. People

Chapter 13 people and leadership

https://youtu.be/s24H6dPCv8I

366

worked round the clock, depending on their life circumstances and commitments. In the

process, they involuntarily started to work more than they did earlier (perhaps because

of the time saved on travel), and the productivity figures started to show this. Employers

didn’t have much to complain about, as they saw the writing on the wall. While the work

from home model started to turn out favorably, they could see the saving potential from

real estate, electricity, and other amenities that are a part of the office setup.

Work from home is a norm today, and while some businesses have opened back

up, many others are hiring employees who work only from their homes. It’s probably a

win-win situation. As this is shaping up nicely, the often talked about business hours

are no longer the topic of discussion. People have stopped declining meetings that are

scheduled beyond office hours. Taking siesta naps after lunch is an accepted productivity

booster. This is not just the beginning, but the declaration of work time as we knew it.

 The Pitfalls of Legacy Working
It is no secret that the profitability of organizations has shrunk a great deal. There is a

perceived economic downturn since the COVID-19 pandemic hit, and in a bid to survive,

budget cuts is one of the tested methods. With cost cutting, one would expect digital

initiatives to have been shelved, which is not exactly what happened. The business is still

looking to continue IT with a lower budget, which translates to lower margins. What has

added to the quagmire is the increasing costs of talent acquisition. Salaries of IT workers

have gone up quite steeply, not for all, but for the top talent who showcase pie-shaped

skills. All organizations are on the lookout for top talent. They are spending freely when it

comes to acquiring smart and top talent, which is good, but it is essentially driving their

margins lower.

With new targets and changing circumstances, organizations looking to go back to

the legacy mode are faced with serious challenges. On the financial side, employees

working from homes effectively is a boon. Employers have cut down on real estate,

electricity, and Internet expenses. On the people side of things, there are essentially two

areas that don’t work anymore if we continue to work in legacy mode:

• Talent code

• Productivity equation

Chapter 13 people and leadership

367

 The Talent Code
Deloitte and Fortune conducted a joint survey in 2021 of approximately 120 CEOs from

55 sectors. Fifty-seven percent of them felt that the biggest challenge that organizations

face today is finding good talent. They are on the money, as the talent pool today has

not shrunk, but the demand has exceeded. Employees are not just looking for the

compensation and benefits but are also considering aspects that will challenge them

and teach them new tricks to take them to a different level. And, most importantly,

employees are looking for flexible work options. The CEOs felt that the next biggest

challenge at 51 percent was retaining top talent.

In the legacy work mode, companies set up offices in cities that attract employees

with the required skills. Every city has a certain number of professionals who live in it

and a percentage who are willing to relocate. Then there are employees who prefer not to

travel, and they have their own areas of companies that they can work for.

From an organizational standpoint, getting good people is a critical factor, and the

reason to have offices in expensive cities and in downtown areas is to attract the best

talent. Instead of dealing with distance, if organizations can expand their catchment

areas several times by hiring remote workers, they do themselves a favor by increasing

the probability of getting good resources, and perhaps at a cheaper rate. When hiring

talent is such a big challenge, organizations that require people to work in offices are at a

disadvantage. To me, cracking the talent code begins by expanding the search to hedge

the bets on getting the best of what the talent has to offer.

 The Productivity Equation
Owl Labs conducts an annual survey called the State of Remote Work to get the pulse of

remote working. In September 2021, they interviewed 2050 full-time remote workers

in the United States, which is the fodder for their 2021 survey report. According to the

study, 67 percent of the respondents reported that their productivity improved with

remote working, while 24 percent said that it was more or less the same as in the office.

That’s more than 91 percent of the respondents claiming that their productivity has

either gone upward or remained the same while working from home. This number

makes a big statement and reveals the human psyche of working environments.

Another study conducted by Flexjobs that same year revealed similar results.

Ninety-five percent of the respondents reported that their productivity has gone up

or remained the same as in the office. Other studies conducted by universities and

Chapter 13 people and leadership

368

private institutions reveal similar numbers as well, which is a hard confirmation for the

perceived productivity increase by employees. What would be interesting is a report

from the perspective of the employer rather than employees. I would like to believe that

the numbers would look more or less similar.

The revelation is this—a homogenous environment involving personal and work

lives is best from the productivity angle. All employers would see better productivity!

However, what the studies doesn’t show is the quality of personal lives as office work

has shifted to personal spaces. In the Owl Labs report, it states that 55 percent of the

respondents have worked more than they did at the office, while 12 percent worked less.

The additional hours don’t automatically equate to office work encroaching personal

spaces, as there is the saved commute time to consider—maybe the additional hours are

coming from the potential commute time.

 The Flexible Model of Working
The current ways of working are not automatically mapped to work from home. Flexible

working is about the freedom to work from any location and outside of a fixed time slot.

With the flexi-work model of working, the output and outcomes are measured and not

the time spent doing the tasks.

For example, if an employee is developing a functionality, in the legacy mode, the log

in and log out times were captured, and the time spent was measured as the actual time

spent working by the employee. Today, we look at the functionality delivery. We look

at how quickly and efficiently a developer can turn around the requested functionality.

They could work at midnight or any odd times, for all we care! The time spent developing

the functionality is still measured due to academic importance for future estimations,

but not for accounting the hours.

While there are several aspects to the flexi-work model of working, there are four

areas that are of importance to digital transformation. They are as follows:

• No fixed hours or location constraints

• Asynchronous work

• Productivity as a KPI

• Employee engagement

Chapter 13 people and leadership

369

 No Fixed Hours or Location Constraints
Technology has freed us from the bounds of constraining employees to physical spaces

and work shifts. Decades back, we did not have the means to allow employees to work

outside office hours, mainly due to the lack of collaboration tools, high-speed Internet

at homes, and organizations’ urge to run the show by command and control. All this has

changed now, mainly due to technology and aided by the cultural shift in thinking.

As the pandemic hit, many businesses saw the writing on the wall and got

themselves ready for a spell of misalignment, confusion, and low productivity. But

what they failed to realize was that the systems and tools that were in play enabled

collaboration, and the work was as good as what the employees delivered in the office.

As time passed and offices were shut down on precautionary grounds, they witnessed

better than ever productivity. Better ideas and out of the box thinking emerged too.

There was suddenly a splurge of creativity with new ideas and innovative designs taking

shape. This was possible because employees were unshackled from location and time

constraints, and this helped them unleash their creativity and produce better designs.

I call this as a collateral benefit of the COVID-19 era.

Employees must be free to express themselves, and this freedom comes from a place

of comfort and safety. While people work when they are their creative best, and this

allows organizations to exploit their skills for better outcomes, leading to better business

results and excited customers. Organizations should realize the multi-fold benefits

stemming from letting go of control and letting employees take charge of the collective

outcomes.

 Asynchronous Work
There was a time when my colleagues and I arrived at the office at around the same time,

and our work involved talking to each other, discussing specifics. We all sat in cubicles,

so it involved plenty of in-cubicle discussions. When other parties were involved, we

moved to a conference room and had meetings. Our work was hardly independent,

although we were individual contributors. It is generally believed in project management

that 70 percent of the projects were all about communication and with all the meetings

and discussions, project managers believed that we were moving in the right direction.

Chapter 13 people and leadership

370

As time changed, Agile came in. With Agile, there was a new concept of redesigning

offices spaces. Cubicle walls were removed to increase interactions and foster

collaboration. Co-location of teams became a trend again. Organizations started to build

teams under the same roof. Then COVID-19 happened.

The Agile ways of working are synchronous ways. This is not bad, but it eats into

efficiency. It invariably moves people into physical spaces that may not be their first

option. There are benefits to co-locating teams, but it necessarily means that the team

members have to travel to the office and, more importantly, have to work a common

shift. Not for the digital age!

The digital age runs on asynchronicity. DevOps enables asynchronous work.

Asynchronous work is where every contributor can contribute independently. They are

not necessarily expected to be online during specific shifts, and every team member

is assigned work, and they are able to accomplish the assigned work independently.

Through this, you can build global teams where team members working in different time

zones represent the principle of one team.

Meetings are not necessary as long as there is clear and crisp communication

through various collaboration tools. DevOps is built to support this, where every

developer, tester, and other roles carry out their tasks, and the feedback is seamlessly

delivered to them or to the next person in the value chain. Every developer works on

their own user story and on their own private branch. When the feature is ready, it gets

merged. If there are conflicts, there is immediate feedback.

There is minimal dependence on each other to carry out work. Technology is

backing collaboration ably. Even if a document needs to be created by multiple team

members, they can work on the same document simultaneously. They don’t need to

create their sections separately and integrate them. Integration and development can

happen together. Such is the power and backing of technology to support asynchronous

work, which is the present and future of work and is an enabler for digital transformation

to flourish.

 Productivity as a KPI
The digital age promotes flexible work, with no constraints of where and when. Team

members are not bound by constraints. This doesn’t mean that team members have no

accountability. The targets in the digital age are not about the time spent doing work

but rather the outcomes. Taking an example of a developer, certain functionalities are

Chapter 13 people and leadership

371

assigned (generally self-assigned) with a target date for delivery. The team member can

choose to work at any time and from anywhere as long as the feature is delivered within

the target. The developer may take 25 hours or 3 hours; it does not matter, as long as the

feature is delivered on time.

While the benchmark starts with delivery of outcomes, the KPIs intend to see the

delivery of work as a product of improved productivity over time. In Agile, we call it the

velocity, which needs to improve over time. It is not a preference to see productivity go

up, but rather an expectation of leadership.

In other words, it is a kind of negotiation. The team member gets the freedom to

work from anywhere and at any time. But the delivery needs to happen on time, and over

a period of time, it must gradually increase. Sounds fair!

 Employee Engagement
A common thread that existed in older ways of working was the challenge of engaging

employees. Employee engagement has its roots in how they feel about work, whether

they are satisfied with the work they are doing, and whether they are looking forward to

working the next day (and the next).

Why do we care about employee engagement as long as the desired outcomes are

being delivered?

Digital transformation is a journey. There are things that take shape on a daily basis.

Team members have to be at their best every day to make a difference. That is possible

only if they are motivated and have the zeal to do what is necessary. This is not an one-

time effort, so employees need to be involved in the good work, day after day. This can

only be done if there is motivation and sufficient engagement with the organization they

work for, the customer organization, and with the people they work with.

The State of Global Workplace is an annual study published by Gallup about

employee experiences. In their own words, employees state how they feel about their

work and their lives, which reflect on an organization’s resilience and performance.

In the 2022 report, Gallup notes that only 21 percent of the employees worldwide

are actively engaged in their respective organizations. The majority of the engaged

employees reside in United States and Canada. This is alarming, and organizations

need to take notice and implement steps that will bring employees closer to work, to

colleagues, and to the organizations.

Chapter 13 people and leadership

372

While there are multiple benefits to the flexible working model, one of the downsides

is that it is naturally hard to engage employees. Working at odd hours, and working out of

their homes is not an ideal setting to create work connections. The interest in the work,

although interesting and challenging, will wane over time in the absence of employee

engagement. This is the last thing that organizations need, as they are already battling

high attrition and talent scarcity.

Organizations need to go out of their way to build teams in which team members

respect and back each other up. There must be various employee engagement initiatives

that strengthens the bonds. A small organization that I have consulted with schedules

team dinners every third Saturday of a month. The event is a big success as coworkers

are eager to see other, talk about various topics, and connect to each other. Also, when

employees feel appreciated, a sense of loyalty and connection are direct benefits, which

go a long way in enhancing the employee experience.

On the other side, the digital age has enhanced employee engagement in unexpected

ways. In legacy styles, when a question needed to be asked, team members had to raise

their hands and ask their question, while the rest of the crowd turned their attention to

the one speaking. Not everyone is comfortable being at the center of attention, and many

people would probably not ask the question, thus reducing the engagement. In digital

age, where meetings are remote, the process of asking questions becomes inclusive. Big

meetings such as townhall meetings do not allow employees to ask questions directly

but rather they are sent over chat and scrutinized before being posed to the chair. Maybe

the digital age can unearth employee engagements that went under the radar in legacy

settings, but mostly, employee engagement has suffered, and organizations and leaders

have to think beyond their business to keep employees engaged.

 The Framework for the Flexi-Work Model
Changes that alter the fabric of an organization need to be done methodically. Yes, even

in the digital age, changes as big as flexi-work models cannot and should not be done

without thinking them through. In other words, a framework (of sorts) is needed to

ensure alignment of expectations.

The framework that is introduced here (Figure 13-1) is minimalistic and is a good

starting point. The key elements, or the pillars for setting up a flexi-work model, are as

follows:

Chapter 13 people and leadership

373

• Digital envisioning

• Enablement for flexible model

• Digital culture fitment

• Performance management

Figure 13-1. Framework for the flexi-work model

Implementing each of the elements sequentially is best, considering that there are

ample dependencies on the previous elements. Each element can be viewed as a guide

to building an organization’s flexi-work model, and you will find out soon enough that

there is plenty of room to maneuver within the elements—flexibility starts from within!

 Digital Envisioning
When an organization opts to adopt the flexi-work model, it must have strong reasons

to back this decision up. This is a major shift in the way the organization works. It is a

step toward digital transformation. But the rationale must be understood, and all the

subsequent steps are dependent on knowing the why. As Simon Sinek puts it in The

Golden Circle concept, it all starts with the question why. As a result of the pandemic,

we all figured out what to do and how to do it even before thinking through the reasons

behind it. It was justified during a crisis, but now when we start to look at the future, it is

a pertinent question to ask.

One of the primary reasons organizations opt for the flexi-work model is to attract

good talent. No matter how advanced the technologies they employ, organizations still

need good talent to grow. Talent will always be the lifeblood and success and failures are

directly dependent on the talent. There is absolutely nothing wrong for organizations to

Chapter 13 people and leadership

374

go on the record to state this. It is important for not only the employees to understand,

but also to announce it to potential employees that you mean business when you say

you follow flexi-work. In fact, employees and potential employees are always keen to

understand the rationale behind senior leadership decisions, and they go the extra mile

to support it. This is true with all decisions in the organization.

Secondly, flexi-work has become the norm today, and employee retention and

hiring performance depend on it. So, it is no longer a decision in the hands of senior

leadership, but a foregone conclusion. Yet, they can be decisive in calling out the tenets

of flexible working. Organizations typically have teams that face the customer and others

who work in the back office. Making the customer-facing role remote is not advisable

for obvious reasons, but it makes a lot of sense to make back office work remote. So,

organizations should call out that not everybody in the organization would work

remotely. The decision for certain roles to work in office need not be made by the senior

leadership. Leave it to the individual teams to decide how they want to define remote

work. The flexi-work model can further be changed to bring everybody into the office

once a week or once a month.

GitLab is one of the leading tools of DevOps orchestration. The company is global

and houses around 1200 employees across 65 countries. The company’s flexi-work policy

is called all-remote because they do not have any physical offices. Even the executives

work out of their homes. The company made a conscious decision to make remote

working uniform across the board with the intent of a singular message—all employees

are equal. Offsites are held once or twice a year, and employees are fully compensated

for travel and accommodation. By not having offices, the company is serious about

remote working and are intentional about it. They have removed the barrier between

some people working from offices and others from home. Employees for their part know

that they will work from homes, so their homes include home-offices, and some of them

prefer to travel and not work from the same location more than a month at a stretch.

GitLab does not have to spend a penny on office infrastructure, and these savings help

their bottom line.

 Enablement for the Flexible Work Model
GitLab employees work remotely every day. They may interact with their coworkers

once or twice a year. But they don’t feel isolated. Remote working is backed up by

technology to ensure that team members can collaborate, interact, and share ideas as

if they were sitting across from each other. The asynchronous nature of work aided by

Chapter 13 people and leadership

375

collaboration tools has made it possible for employees to work independently. When

needed, regular communication channels through video calling can give the experience

of social warmth.

Making a purposeful decision to flexi-work is the beginning. The company needs

to make it happen by enabling employees to work from anywhere that provides the

same experience as working from office. Target, the U.S. superstore, gave allowances

to their employees to buy comfortable chairs and desks. They further ensured that the

employees had laptops that would not constrain employees to work longer to complete

the assigned work. Furthermore, they cut down on meetings to give employees the

schedule flexibility.

It is the responsibility of employers to provide guardrails to employees that will help

them succeed at work—this could be in the form of technology through collaboration

tools, security systems, VPN for connecting to private networks, and self-healing tools to

resolve laptop problems when they arise. The example that I quoted from Target are the

physical amenities that provide a basic infrastructure, including reimbursing Internet

and electricity expenses.

When organizations are intentional about flexi-work, they must live the talk by

committing to cutting down on meetings. Essentially, meetings are harmful to flexi-

work because they go against the concept of schedule flexibility. Leaders must push

employees to communicate through chat, email, and other asynchronous forms.

Furthermore, if an organization is serious about getting the best talent onboarded

by claiming flexi-work policies, they must be intentional about it. The last thing

organizations want is to chest-beat about flexi-work and then create disparities between

employees who come into office and others who don’t. Especially when customers and

executives are involved in meetings, there is a notion that putting a face physically earns

them visibility, respect, and attention.

 Work Culture Fitment
A study conducted by Great Places to Work in the summer of 2021 revealed that a good

majority of employees reported not feeling engaged at work. The study was conducted

worldwide with 14,000+ respondents. Fifty-two percent of the European employees

reported that they were sufficiently engaged at work. Numbers from other regions were

better than Europe but not by much—United States and Canada at 53 percent, Asia at 56

percent, Africa at 58 percent, and Latin America at 60 percent. The broad message was

that the employees did not make meaningful connections at work. Reasons quoted were

Chapter 13 people and leadership

376

that coworkers did not care about each other, employees had to pretend to be somebody

else (not being their own), and emotionally and psychologically unhealthy conditions.

A majority of them indicated that their work didn’t feel like it was serving any purpose

for the company—in other words, it was redundant or lower than their expectations.

They had qualms about their leadership as well—not involving them in decision making,

not caring for them, and not walking the walk.

The problems that the study points to has its root cause in the work culture. Remote

working has its challenges, and the result indicates that companies have failed to adopt

to new ways of working. When it’s intentional, flexi-work does not end with the decision-

making alone; leaders must change the culture and bring in an essence of togetherness

and connectedness.

The MURAL Story

MURAL was successful in raising series B funding of $118 million in August 2020, all

in the midst of first wave of COVID-19 pandemic. They wanted to announce it to all of

their 250 employees spread across many countries in a celebratory style. A virtual meet

was their only option. The job was entrusted to their head of culture and collaboration

(interesting role!) Laïla von Alvensleben and she was given two weeks to plan it. Any

other planner would have planned the date and time, and an agenda of items to go over.

But she didn’t do the normal.

The session was named 2020 MURAL World Tour, at a time when worldwide travel

had come to an abrupt halt. The theme for the session was to take the team on a virtual

tour for three hours from an airport lounge and in an airplane across snowy mountains,

tropical islands, and finally into the outer space.

Images of various places to virtually visit were downloaded from the Internet and

shared with all employees , and then they were used as backgrounds during the session.

The intention was to create a sense of being in the same place by having the same

backgrounds at every stage of the virtual tour. To make the experience physical, props

such as disco lights, glow stickers, sunscreen, lip balm, and an a la carte of other items

were shipped to the employees.

The day before the session, an invite was shared that looked like a boarding pass,

with the itinerary along with the flight and ground crew. Team members were told of the

part they had to play, and to dress accordingly.

The session was peppered with entertainment and puzzle-solving sections, which

helped to break the tension of serious discussions.

Chapter 13 people and leadership

377

The culture displayed at MURAL shows that the company and its leaders are willing

to go beyond the ordinary to engage their employees; it shows that employees were

important and the teams across locations were bounded through virtual space while

they had fun with party props and zoom backgrounds.

An organization’s culture is formed by its actions, the intent showed by its leaders,

and the positive energy it generates. It becomes all the more critical that organizations

put extra effort into creating a culture of growth and inclusion. It is not easy in a remote

setting, but for the flexi-work model to bloom, it needs to be done.

 Performance Management
When we design and implement DevOps, we measure everything, whenever possible.

Measurements are at the heart of understanding the direction of performance. With

accurate frequent measurements, we have an opportunity to course-correct if needed,

rather than waiting until D-day to be surprised of the outcome.

The challenge with flexi-work is about assessing employee performance. As

employees stay out of sight (literally), a common concern has been ability to accurately

monitor employee’s work and deliverables. From experience, I find this no different

than when employees and their managers are co-located. Still, how do you monitor

employees. Not by looking over their shoulders

A Gallup Workplace survey indicated that only 21 percent of the interviewed

employees felt that they were fairly assessed and this motivated them to do outstanding

work. On the other side of the coin, the majority of employees did not feel that they are

being assessed accurately. There are various reasons this could happen:

• Employees may have feel the presence of exaggerated self-worth that

leads to demeaning their supervisor’s feedback.

• Supervisors may not be close to employee’s work, so it may be

possible that the employee may not be judged fairly.

• There is a mismatch between the expectation and the delivery.

While supervisors expect certain outcomes, the employee delivers

something else, but there could be a degree of misalignment between

the expected and delivered, which could lead to discontentment.

Chapter 13 people and leadership

378

These issues are not necessarily coming out of remote working. They existed

earlier. The problem is with the structure of performance reviews. Typically in the past,

organizations and managers insisted on certain work hours and they recorded the

punch-in and punch-out hours. How many hours the employees spent in the office

was an important measure of performance. Furthermore, the goals and expectations

were quantified—the number of lines of code, the number of calls made to prospective

customers, and the number of test scripts developed were the type of goals set during the

legacy days. These goals did not work then and will definitely not work now.

Monitoring an employee’s log-in and log-out hours is a cruel joke on the

organization’s resources and had roots in the industrial age. Even in the legacy era—

before COVID-19—measuring an employee based on the hours spent in at work is not

only unfair but also a waste of resources. The message is that the company does not

trust their employees to do the job, and they feel that they must keep track of the work,

either by monitoring the hours spent inside the office or monitoring login hours on

the workstations. Although there is no data to suggest the fact, this could be one of the

reasons for attrition in companies that practiced it.

The nature of performance goals in this age should be qualitative and not based on

quantities. It does not matter if a developer writes thousands of lines of code if they do

not work. The goals should be based on outcomes—rather than lines of code, provide

the functionalities to develop something in a certain timeframe. The goals should be

crisp, clear, and unambiguous. It should not say that development of functionalities in

the project but rather specify what those functionalities are, and when they are required

to be developed. Develop the API between Applications A, B, and C during Sprints 11 and

12. This objective is very clear. The developer is asked to develop APIs and the timeframe

is specified clearly as well.

While clear goals are one part of the equation, the elephant in the room that is yet

to be addressed is the frequency of performance reviews. In DevOps, we believe in

providing rapid feedback, which is the basis for swift development of software. Likewise,

frequent performance reviews with employees will help set short-term goals—say for

about a month (equivalent to two, two-week sprints). The goals are immediate for the

employee to start working toward, and the outcome is known within a matter of weeks so

the manager can provide feedback accordingly. It’s a win-win situation for the employee

and the manager. For flexi-work to be successful, there should be no ambiguity in this

Chapter 13 people and leadership

379

department, with managers laying out clear and actionable goals. These should be

followed up with frequent reviews, which will help set the course when employees are

off target.

The second part of the equation in the digital age is the need to introduce or firm

up employee satisfaction surveys. The organization needs to be aware of what has

been going on with their employees—especially because good talent is gold and no

organization wants to lose out in this race, especially when they have acquired them at

a steep cost. Hear from employees on a frequent basis to understand if the employee’s

career goals are met, how their flexi-work is progressing, if they are stressing out, and

most importantly, if they have sufficient time to do things outside of work.

Measuring performance is a two-way street, and it must happen methodically. In

the digital age, organizations must make the extra effort to keep employees engaged,

satisfied, and motivated to contribute to the organization. Fair assessment reviews,

constructive feedback, and a healthy paycheck will do the trick.

 Leadership in the Digital Age
We looked at how IT has changed from a decade ago, the ways of working that have

changed, the way people prefer to work, and the technological aids that are driving

transformations. One aspect that is much debated is leadership. The argument is that

leadership is not new, unlike IT processes or technology. It has existed from time

immemorial. There have been leaders with their own styles—leaders of people, leaders

who led revolutions, and leaders who changed history. In the IT world too, there are

leaders who led innovation and changed consumer behavior. The argument continues

that leadership is not new since the same principles have continued over the years,

and small refinements based on new generations should suffice. While this is true

in principle, the digital age has turned leadership on its head and has redefined and

reshaped it. The transformation in leadership is visible compared to the previous IT era.

The most visible transformations are illustrated in Figure 13-2.

Chapter 13 people and leadership

380

Figure 13-2. Leadership in the digital age

I address four dimensions of leadership that have changed drastically:

• Organization structure

• Style of people leadership

• Persuasion or motivation

• Ownership of assigned responsibilities

 Organization Structure
The genesis of leadership in an organization stems from the way companies are

organized. It is a critical success factor for them to succeed, and the majority of

organizations find it tough to get it right even after multiple iterations. While organizing

people into functions, projects, and different varieties of matrices plays a major part, the

aspect that matters directly are the layers.

A hierarchical organizational formalizes the layers in an organization starting from

executives to the developers and testers. At a non-executive level, you have a delivery

lead, project manager, team leads, senior engineers (dev/test), and junior engineers.

Chapter 13 people and leadership

381

The problem is not the structure itself. In fact, it has existed for a long time. With

this hierarchy, every manager/supervisor has direct reports who need to be managed.

Every employee should ideally get ample attention. In the digital ways of working,

employees are expected to manage themselves. This is a key differentiator between the

IT and digital eras where team members are empowered to manage their time and other

aspects that determine outcomes. In a digital organization, leaders take center stage

by guiding teams toward the true north, from the perspective of program outcomes,

innovative ideas, and career aspirations.

In digital organizations, the structure is comparatively flat. It’s devoid of multiple

levels of hierarchy. A leader will a number of employees, including senior roles such

as architects and junior positions, such as support and maintenance. Flattening the

organization helps leaders reach the lowest of layers (in hierarchical organization)

directly, and this motivates employees into delivering great outcomes.

The flat model aids communication, from both top-down and bottom-top. The

communication from the organizations’ leaders generally reaches down in a hierarchical

model. However, in a flat organization, the communication takes fewer hops to reach the

rest of the organization. Likewise, the grievances will reach the right set of the ears the

fastest in this organization.

The decision-making ability is far greater in flat organizations. Generally, the

decision makers sit at the top of the organization chain, and the intelligence from the

ground that enables the decision makers lies with employees at the bottom. With a

hierarchical structural, the possibilities of the ground level data reaching the leadership

is hit and miss. Think about it like Chinese whispers (or the game telephone), where

information passes through layers of hierarchy and is culled, modified, and transformed

before it reaches leadership. With a flat structure, there is an efficient connection

between the top and the bottom, thus enabling better decision making.

 Leadership Style
Leadership comes in numerous styles. In fact, we don’t believe that all the different styles

of leadership could be catalogued, as there are new ways that are being created today.

A leader must necessarily have certain goals and objectives, which requires people

to be able to deliver to achieve success. A leader can use any style to go past the end

goal. Putin uses violence and aggression to attempt world domination, Gandhi used

Chapter 13 people and leadership

382

non-violence in support of Indian independence, Warren Buffet provides guidance

and lets his team take success into their own hands with a laissez faire approach, and

Richard Branson’s charisma has taken Virgin to great heights.

Different situations require certain leadership styles to achieve results. For Apple

to thrive, it needed a leader who had a vision, who could show the path and innovate

together. The vision he set, that not only works great but looks beautiful, set the course

of what Apple is today. There was a decade when Apple’s fortunes looked south when

Steve wasn’t involved. His re-entry changed the fabric, and Apple became a different

company altogether. Likewise, Walt Disney Studios’ tells the story of a leader who

was transformative in nature. Although Walty Disney himself did not say it, a widely

associated quote, if you can dream it, you can do it, is true to the company. The company

started with an idea, with Walt’s skill as an artist to set in motion a transformation in

the entertainment industry. In IT, although there are numerous leadership styles that

exist—such as consensual, laissez faire, and participative—the chief among them that is

of interest is the command-and-control style of leadership.

Command and control works well in a traditional organization where bureaucracy

exists. The leadership makes all the decisions and passes down actions to be carried out

by the rest of the subordinate employees. It was in vogue in military organizations, and

when IT started, it followed the paradigm of the most commonly practiced style, and

it worked. The approach is autocratic in nature with a view that the leadership knows

everything and is capable of herding the sheep where they need to be. Developers,

testers, server admins, and other individual contributors followed orders, and it was

successful while it lasted.

As ideas dried up, the search for the next big thing was surprisingly hidden in the

trenches of individual contributors. The flatter world required assimilation of joint

venture between the top and bottom layers of the industry. Thus started the digital

revolution.

The style of leadership has turned on its head. Barking orders from the top did more

bad than good. The biggest problem however was this—lack of innovation. When new

ideas did not breed, the leadership layer understood that they didn’t stand a chance

in infusing new thoughts, and they saw glimpses of hope in the bottom layers. So, they

announced an innovation team, time for people to come together to innovate, and other

workshops to bring out innovative ideas that they could leverage.

Guess what? It just didn’t work. Innovation is like art. You can’t cage artists and

ask them to create a masterpiece. They were just able to scratch the surface. The real

innovation needed a different kind of an environment—an environment that fostered

Chapter 13 people and leadership

383

freedom, away from the commands, blame, and restrictions. The siloed environment

that was born out of the command-and-control culture did not allow freedom for

innovation to happen. There were other problems that were generally brushed under

the carpet—like lack of coordination between teams, lack of a one-team culture, and

delivery not matching the expectations.

The root cause of the problem was the style of leadership—or rather, the main cause

that had multiple ripple effects. It had to change, it had to invert. Leaders had to come

off their high horses and work shoulder to shoulder with their teams. Leaders do not tell

people what to do, but rather act as a bridge for what the team wants to achieve and aid

the team by helping their goals be free of hurdles. Thus, was born a servant leader!

A servant leader wasn’t conceived in the digital age. This style of leadership was used

as early as 1970 in an essay by Robert K Greenleaf, a writer, a consultant, and a teacher.

He wrote, “The servant-leader is servant first… It begins with the natural feeling that

one wants to serve, to serve first… The leader-first and the servant-first are two extreme

types. Between them there are shadings and blends that are part of the infinite variety

of human nature. The difference manifests itself in the care taken by the servant-first to

make sure that other people’s highest priority needs are being served. “

Simply put, a servant leader has the same set of objectives as a command-and-

control leader. However, instead of passing orders from the top for others to follow, a

servant leader makes the team successful by bringing the best out of every individual on

the team. They do this by making decision making a team activity, building a sense of

shared responsibility as opposed to individuals fending for themselves, and removing all

the hurdles that lie between the team and their intended outcomes.

Servant leaders do not showcase their leadership credentials by hierarchy or

authority but rather through the respect of team members, customers, and other

stakeholders, by virtue of leading the team toward success democratically and with

humility.

Mother Teresa served people. She did not ask her fellow nuns at the Missionaries

of Charity to start serving people in need. She was hands-on; she cared for people and

through the service, she led others into following her footsteps into serving others.

A servant leader always leads by example and is ready to do anything that is asked of

the team. The motivation for the team comes from the team watching the leaders and

following their lead.

Chapter 13 people and leadership

384

 Motivation
What motivates a team member to contribute? What do the goals and objectives look

like for team members? In the pre-digital era, the focus would be on the individual—

the work produced by the team member—and the team members is measured on the

delivery. This was the period of superstars. Certain team members would rise above the

others, get coronated for their deeds. Motivation was through competition between team

members. This internal competition would gel well for the organization in getting the

best out of individuals. In the process, the overall program delivery would benefit by the

fierce competition.

In theory, competing against one another is good, but the problem is that in the

game on one-upmanship, the direction taken by team members may not be the same.

For all we know, each of the team members could be working on something from

scratch. This would result in duplication of work, and as a result, wasted efforts. Team

members learn through experimentation and from their mistakes. In a competitive

world, these lessons are internalized and serve the individual in becoming better at the

trade. The learning is not necessarily shared with other team members, which indeed

would make the organization poorer through the lack of empirical data and lessons

learned.

I remember the days when I used to work for Dell. I was solving computer issues for

remote customers who were sitting in the United States. The company had a recognition

called the star of the week. The technician who resolved the most incidents and

received the highest rating would get the coveted award, which included a cash award.

Each technician started to build their own knowledgebase and with experience, the

database grew, and so did the competition between us. The new joiners suffered with

no help from others and the real loser was customers who had to work with the novice

technician, while the solution was available all along with the technician sitting five feet

away. I would presume that Dell also lost out on customer experience ratings owing to

delayed resolutions. I didn’t stay long enough at Dell to see the evolution of this reward

but can surmise that as the world moved from competition to collaboration, the awards

changed shape to reward collaborators than superstars.

Collaboration is the new competition. The greatest realization in organizations

is the power of team members working as a single unit—rather than rats racing each

other. The age of competition brought the best out of individuals, made them fiercely

competitive and, as professionals, they gained profound knowledge. While the team

members won this game, the organization lost. For the organization to remain on the

Chapter 13 people and leadership

385

winning side of competition, they needed team members to work shoulder to shoulder

and think of the bigger picture rather than what they had to achieve as individuals.

The focus became on the team or the organization delivering outcomes rather than

on individuals. Organizations eventually changed the structure of the organization

to promote collaboration by bringing in a host of changes, including the goals and

objectives to reflect and measure collaboration between individuals. Although

measuring collaboration is not straightforward, the vision from the leadership to

collaborate, highlighting team efforts, and awarding teams has started to pay good

dividends. Although the north star is for all the team members to collaborate seamlessly,

it may never be fully possible, as every team has superstar wannabes. And yet, the overall

team focus toward working as one team motivates the majority of individuals to shed

their egos and support one another in delivering outcomes.

As the motivation to work moves from competition to collaboration, does it mean

that individual team members are no longer accountable for their own work? While

the intent of an organization is to promote team members to work as one unit, they

need to carefully design the structure to measure individuals based on their individual

performance. Team leaders must build hooks into every team members’ work to be able

to measure and provide constructive feedback. Let’s take an example of a sprint delivery

where several team members are working toward achieving the sprint goal. Every team

member is assigned one or more user stories that they work on independently and

collaborate as needed. The outcome of the user story delivery is a decent indicator of a

team member from a technical standpoint. Even though the team practices blameless

retrospectives, where individuals are not called out for the defects stemming from their

work products, team leaders must notice and measure the performance—not in terms

of drawing a bell curve, but rather to help improve and prevent such occurrences in the

future. Case in point, SAP believes in setting goals that are measurable, and there are

specific ways for managers to provide feedback.

However, the practice of rating team members based on their performance has

been done away with. A rating, at the end of day, could either motivate or demotivate

team members. This is not only toxic for the individual but for the organization as

well. A team member who was docked in the rating system might find the fastest way

out of the company rather than improve and fight on. The company would have lost a

valuable team member, no matter what their rating is. What is more toxic to the system

of measurement is the bell curve methodology. Placing team members in a bell curve

necessitates competition—pitting one against the other, and comparatively placing

Chapter 13 people and leadership

386

certain team members at the bottom of the curve—even if the performance indicators

are minute, and in some cases, the same. This practice of bell curving has long surpassed

its use-by date, and it’s a system designed to artificially create competition, to reward

performers, and to penalize under-achievers.

 Responsibility
Motivation and responsibility are like Siamese twins. Although they represent different

aspects of leadership, they are generally connected.

While the industry worked on the system of competition, the responsibility of

work products was handed over to individuals, and their standing, success, or failure

was a direct result of the product delivery. There is little difference between the terms

ownership and responsibility in this context. Both generally remained with the same

individual. While this was a great motivation to get the job done, if the work product did

not go as planned, it was a death knell for the individual involved. This was the practice

that was generally followed across the IT industry before the digital age and Agile

era set in.

With collaboration taking precedence, the ownership and responsibility with single

individuals is counterproductive. Hence the concept of shared responsibility or shared

ownership. In this, the team would succeed together or fail together. Say for example, a

product feature consists of a few sub-features. Individuals in a team pick up one or more

of these sub-features to develop. If six of the seven sub-features work as they should,

and pass every indicator, and yet the failure of the seventh sub-feature renders the

entire sprint release as incomplete, the entire team, including the team members who

developed the successful sub-features, take responsibility for the failure. On the flipside,

let’s say that a developer is struggling to develop a sub-feature. The rest of the team helps

the developer (either by sharing work, or by providing solution) to ensure that the sprint

objectives are met. This ensures that the team that shared the responsibilities succeeds

together. To reiterate, either the entire teams succeeds or it fails. At an individual level,

each team member has their own set of responsibilities and work products assigned to

them. Yet, the onus of delivering the individual work products is the commitment of the

team, to ensure collective success or failure.

In the digital world, shared responsibility/accountability stands for doing the best

that is possible by leveraging the assets that are available, sharing information with one

another, acting in a responsible manner, and looking at the team’s objectives as a true

north star.

Chapter 13 people and leadership

387

The other aspect of the digital era that is associated with shared responsibility is

blameless postmortems. Delivery does not always follow a plan. Things can go bad.

Failures may be fewer but it is not zero. When failures happen, the genetic human

tendency is to blame an individual for it—the person blaming is usually not pointing

fingers at themself. My son is training to play competitive chess, and his first reaction

to losing is always toward the opponent. He finds various reasons why he lost, and all

of them point to the opponent. My opponent had a higher rating, my opponent made

an illegal move, or my opponent gave an unstoppable check are some of the reasons I

have heard. He hasn’t thus far analyzed his games to determine the blunders he made.

Likewise, when releases fail or when products fail customer’s expectations, it is natural

to shift the blame to individuals who are solely responsible—the users did not test

sufficiently during the acceptance testing phase or the testers didn’t think through of all

the negative scenarios are some of the reasons that get handpicked when a release goes

south. Blaming an individual or even the entire team is a bad practice. At the moment

of failure, rather than questioning the who, the focus should shift toward the what.

Analyzing the failures objectively will help find the root cause for the failure, and with

it, a solution to move forward. Blaming people will take the delivery two steps back,

demotivating individuals and team members, and with a low probability of finding a fix

for releasing it in the near future.

You may have sat in on meetings where leaders talk endlessly about failures and

how they have affected whatever they have affected. Instead, if they took a position of

objectivity, rather than looking at the past, they can look toward what can be done to

overcome the current situation. It is important to understand that analyzing objectively

with a view on future is constructive and helps move forward. Blameless retrospectives

are good options for analyzing work products, to understand how things went and to

identify improvements or actions for the way forward.

 Leadership Levers to Stay Relevant
Information travels much faster than any other time in history. Parallel inventions are

a common occurrence. Leaders serve employees. These are strange times indeed, and

it’s common across digital industries worldwide. With new competition springing up

rapidly, companies need to stay relevant to continue doing business. A strong and able

leadership will help companies stay afloat, and leadership is put to test every day in the

wake up of umpteen factors that could possibly go wrong.

Chapter 13 people and leadership

388

While there are several ways that a company can shape their leadership, the

following description makes it to the top five list in every organization. These levers drive

the organization forward in the digital age and help it handle the challenges that digital

technology throws at them. The top five leadership levers are as follows:

• The customer is still king

• Agile and nimble

• Experimentation and innovation

• Foster people in the new culture

• Be authentic

There are others that did not make the list, but are worth a mention, including

leveraging emotional intelligence, limiting needless expenses, and an unparallel focus

on quality.

 The Customer Is Still King
Twenty years back, any time I walked into a retail store, it was hard to miss sayings on the

walls stating that the Customer Is King and the Customer Is Always Right. At that time, the

saying was so common that it meant nothing and customers weren’t treated exactly like

royalty. That saying is still appropriate. If I put up the sticker on my desk, it would still

carry a lot of meaning and relevance.

The relationship with the customer has changed over the years. Customers no longer

see internal and external IT providers (products or services) as what they are, but as

partners. The status is an acknowledgement of the deep ties and dependency on one

another. The service provider or manufacturer need continued business to stay afloat,

and the customer’s organization needs the IT companies for their survival. This mutual

dependence has strengthened the bond, and in effect, the business outcomes of the

customer organization is a result of their IT partner and has a bearing on the future of

this relationship. It becomes all the more important that IT partners support businesses

as though it is their organization, and businesses have to open up and be frank about

their transactions and challenges, and more importantly, provide feedback rapidly to

enable IT partners to course-correct.

The digital strategy in customer organizations has changed dramatically over the

years. There was a time when organizations employed IT companies to build bespoke

applications for their needs. This arrangement did run well until they realized that the

Chapter 13 people and leadership

389

cost of maintaining and upgrading was impacting their profit margins. The change has

shifted to adopting commercial-off-the-shelf (COTS) products, leveraging the power of

configurations, and consciously minimizing customization. This shift has put the onus

on the IT product companies to develop products that are designed with customers’

needs in mind. IT companies no longer have the freedom to introduce features based

on their instincts, but rather they must be based on specific and perceived customer

requirements. The practice is for customer organizations to request specific product

enhancements and feature introductions, which once developed, are available for all

the organizations. For the product manufacturer, while the freedom has been taken

away in setting the roadmap, the gain is from the ideas that are generated through

various customer organizations, which eventually set the direction for the future product

roadmap. Again, this is a win-win scenario as long as the product manufacturer treats

the customer as the centerpiece.

For IT service organizations, exciting the customers throughout the journey is

paramount to their existence. Customer service is like medicine. You need to have it

handy, and you hope you never have to use it. Businesses hope that they never have

to use the customer service, because it generally means something isn’t working as it

should. The 2008 publication, The Best Service is No Service by Bill Price and David Jaffe,

explains the emotion.

We are in the times when customers expect instant responses and

immediate delivery. A finite customer service personnel sitting

in the global market can never satiate customer needs. Thus, the

need to scale customer service through self-help solutions and

employing bots. You might have observed that most companies

have employed chatbots to assist customers with basic support.

The problem is that the bot support is so minimal that its

existence feels like a bane in some of the implementations that

I have come across. What could be really useful is if the bot can

take decisions and perform as a human customer service agent

would. Embedding artificial intelligence with chatbots would be

an ideal foil to keep the customers happy and mostly to not make

them feel dumb by having them to interact with petty bots. Digital

companies must put themselves in the shoes of their customers

and think through if the bots make sense. You don’t need a bot to

fetch your tracking information. The generic page with tracking

Chapter 13 people and leadership

390

information did just fine. What would be helpful is if the bots

could reach out to delivery agents if there are changes or delays in

the delivery.

In the book, The Amazon Way, John Rossman talks about Jeff Bezos’ obsession with

customers. Bezos puts himself in the customers’ shoes and thinks through what would

give them the best possible experience, and then the processes and systems are designed

based on these parameters.

The Amazon method is built on the holy trinity in the retail industry—price,

selection, and availability. To get customers on your side, price is a powerful parameter.

Amazon priced items competitively, ready to make smaller margins for a short period

of time. When customers got familiar with Amazon shopping, the prices went up in a

long run, but customers didn’t go elsewhere. Customers love to have choices. So, it was

important for Amazon to enlist product lines from various manufacturers. The idea

was to establish Amazon as a store that had everything. Customers didn’t have to go

anywhere. When a customer buys a product, they know exactly when the product will

arrive at their doorstep. The predictability element made customers trust Amazon. One

year, Amazon ordered 4,000 pink iPods and this version of the iPod had a hard drive

instead of a disk drive. Amazon customers had prebooked the iPods to arrive just before

Christmas. In November, Apple contacted Amazon and told them that they would be

unable to deliver the iPods before Christmas due to the excess demand. Instead of saying

sorry to their customers, Amazon went to retail stores like Best Buy and Circuit City

and bought the iPods at retail price. These were shipped to their customers who had

prebooked them. While the company suffered a loss on the pink iPods, they lived up to

their promise of delivering iPods for Christmas. Such customer-centric measures have

made Amazon the go-to store and happened because they treat their customers as kings.

 Agile and Nimble
Leadership in the digital era is not about documenting, implementing, and auditing

processes. The days of hardcore processes are over. The implication is not that processes

and policies should not exist. They should. Otherwise, everyone would be running like

wild geese. Processes should be documented in a way that guides toward a general

direction, and not specifically nail down every single step. For example, if an employee

wants to work in a different role, depending on the role availability and the capability,

Chapter 13 people and leadership

391

the organization should help to make it happen in the interest of all parties. In a process

based bureaucratic organization, there generally lies clauses like minimum number

of months/years in a particular role before switching to another role and the various

approvals that are to be sought before making the switch.

Bureaucracy is good for certain types of organizations that come under the ambit of

compliance audits. But for a digital organization, the concept of compliance is restricted

to security and architecture related implementations. The organization needs to be in a

position to pivot in the direction of favorable winds to derive the best possible outcome.

Taking over the same example of an employee wanting to switch roles—if the employee

is capable, and if there is an opening, then why not switch them? It is a win-win situation

for the employee and the organization. Yes, the previous role that they were performing

needs to be backfilled, and a transition plan can be worked out. But the principle is

that there are no hardened policies and processes that will restrict an organization’s

workings.

Take the case of Agile project management. To develop new features, we frame

a methodology that will help us get the best software possible in the quickest

possible time. The internal workings of the Agile framework are so nimble that

Agile implementations between two products may not look alike. The hierarchy of

requirements will follow the path that suits the product to be developed. Some products

may follow Initiative ➤ Feature ➤ Sub-Feature ➤ User Story and another may follow

Initiative ➤ Sub-Initiative ➤ Feature ➤ Sub-Feature ➤ User Story. It does not matter

what the hierarchy is; what matters is that a hierarchy exists to plan and organize the

product roadmap, development, and deployment. If organizations start to harden the

hierarchy, there is every possibility that the structure looks made up and tends to lose

the flow.

The requirements’ hierarchy is an example of how the Agile framework differs, giving

complete freedom to the teams involved to set their own course. Of course, there are

guardrails to move the project in the intended direction.

The essential element of designing processes is to look at the bigger picture. What is

it that the process intends to achieve? Why do we have the process in place? Processes

should exist to help concerned stakeholders achieve outcomes—the optimum way to

do this is through simplicity. For the past few years, minimalism has become a lifestyle

of choice, and for a reason. The reduced complexity helps in navigating the system with

ease, and the entire experience of using a system or dealing with a process is uncluttered,

thus infusing new ideas and better use of time for creativity.

Chapter 13 people and leadership

392

 Experimentation and Innovation
An organization will thrive in the digital age if and only if they improve continuously.

Improvement to a product company can be regular product feature releases and

enhancements, and to a service company, it could be new service offerings, better

KPIs, and SLAs. Developing new product features and service offerings fairly regularly

is not an easy ask. There are cash-rich product companies that invest in research and

development, where their elite staff do nothing but innovate. The downside is that the

process is waterfall-ish and more often than not, in today’s competitive world, with

parallel innovation, these companies lose out on first mover advantage.

Digital organizations have the ability to innovate quickly. They innovate, develop,

and operate, all at the same time. The 360-degree experience involving operations

provides the additional data point to make the transformation complete.

Gene Kim is a popular name in the digital world. He is a best-selling author and the

founder of Tripwire Inc. His book, The Phoenix Project: A Novel About IT, DevOps, and

Helping Your Business Win, has been read by the majority of folks in the digital industry.

In the book and on his blog, IT Revolution (https://itrevolution.com/the-three-

ways-principles-underpinning-devops/), he talks about three underlying principles

for DevOps to operate in behavior and in function (see Figure 13-3).

Chapter 13 people and leadership

https://itrevolution.com/the-three-ways-principles-underpinning-devops/
https://itrevolution.com/the-three-ways-principles-underpinning-devops/

393

Figure 13-3. DevOps principles: the three ways

The first way is described as a fast left to right. The work product from the

development side of things moves toward operations. The objective with DevOps

coming into the picture is to deliver software as quickly as possible. This can be done in a

combination of the following ways—working in small batches, automating the repetitive

activities, identifying and fixing defects early in the cycle, simplifying the development

process, and optimizing the flow.

The second way is in the reverse direction, and it represents an equally fast right to

left feedback. As the saying goes, feedback is the breakfast of champions. Feedback is the

backbone of the DevOps methodology. In order to create a quality product, feedback is

prominent. It needs to arrive as soon as anomalies are detected, and it must be early in

the cycle. It is generally believed that if a defect costs X to be fixed in requirement/design

phase, it will cost 10X to be fixed in system/acceptance testing phase. What’s worse is if

Chapter 13 people and leadership

394

the defect gets detected in production, the cost would escalate to 100X or much more

than that, depending on the complexity and impact. Defects are common and natural

in the software development lifecycle, but what should also follow is to identify and

fix them early in the lifecycle. There is no telling what the extent of the defect could

be later in the cycle. Imagine a security defect getting into production, and a hacker

taking advantage of it by siphoning off all the funds in a bank. The second way is about

creating rapid feedback and feedforward loops that not only help in developing a quality

product, but provide an organizational learning on the defects, permanent solutions,

and workarounds.

While the first way focused on rapid development, and the second way is an equally

rapid feedback system, the third way promotes experimentation and learning, which are

essential elements for innovation.

The third way is about the culture that is inculcated in organizations—the culture of

fearlessness to experiment, learn, and fail without the trepidation of retribution. When

team members are pressured to perform and be successful, they take the easy way out,

the tried and tested method. The method that we all know that works is a safe approach,

and may also be sub-optimal, giving average results. If organizations have to grow with

new products and new features, they need to come up with new ideas. If the ideas sound

good, then build and test them. At the end of the cycle, all may come to naught, leading

to loss of effort and money. Organizations must have the appetite to accept failure, and

when they do, they shouldn’t be pointing fingers at individuals or teams for the failure.

Team members have the best intent and the only way to know if something works is to

build and test it. In failure, the team can objectively analyze and find the reasons behind

it. They may turn up successful results during the subsequent iterations by learning

from these experiments. These cycles of activity including ideation, experimentation,

learning, and blameless retrospectives. This is the culture that the third way represents.

DevOps builds guardrails that help the team members experiment, fail, learn,

and iterate in a rapid manner. It builds an environment that provides rapid feedback

at any stage of the failure through the power of automation. This system helps teams

experiment, and as soon as something does not go as planned, there is feedback

immediately, and not at some cron-based feedback timeline. This immediate feedback

helps team members to course-correct, without wasting further efforts.

The ability to come up with new ideas and experiment requires new learning.

Organizational culture must be transformed inherently into a learning organizations

for team members to have access to the best of training resources, mentors to help,

Chapter 13 people and leadership

395

and Key Responsibility Areas (KRA) that are aligned with learning objectives. Learning

new tricks and skills must be inculcated, with leaders stepping up to lead the way.

The trainings must be curated carefully to align to the direction of travel. The natural

progression is to see skilled employees performing higher levels of work and leaving the

lower bits to either the machines (automation) or somebody with fewer battle scars.

 Build the Right Team and Foster People
in the New Culture
People are everything. They determine success or failure. No matter how advanced

our technologies are, businesses and digital technology will be led by the analog

brain signals from the people who matter. Organizations therefore have to take care to

onboarding the right people and fostering the existing employees in the new culture.

The new culture is nothing but new ways of working led by collaboration,

experimentation, teamwork, and flexibility.

The top aspects that leadership should focus on to build a new team and to foster the

existing people can roughly be laid out using the following methods:

• Hire the right talent

• Understand the team

• Agree on a team charter

• Communicate clearly

• Cultivate group thinking and decision making

• Address problems head-on

• Facilitate learning

• Measure teamwork performance

• Give rapid feedback

• Recognize good work

Chapter 13 people and leadership

396

 Hire the Right Team

I have often observed that organizations hire people for the technical and management

skills of the roles they are positioned for, rather than for the alignment with the

organization and its culture. Hiring people has become transactional in other words.

You have certain work that needs to be done, so you find the right person and get it

done. Whether that person is a right fit in terms of gelling with other team members,

whether the person has the right attitude, and whether the person is motivated all take

a backseat. The result could go many ways—the employee will quit soon after realizing

they don’t fit, or worse, other team members who were a good fit for the organization

quit. Or worse, nobody quits and team members become individual contributors and

the supposed one-team becomes multiple teams.

Hiring a team member is like adding a new family member. Leaders have to bear

the brunt of time pressure for onboarding people and take utmost care while extending

offers. In his book, The Amazon Way, John Rossman explains that the company created

a role called bar raiser whose job is to review potential hire’s candidature and make a

decision based on a preset criteria. The bar raiser has the veto power over anybody in

the organization. The role exists to ensure that the right people are getting hired, and

to ensure that with the hiring decision, the collective IQ, capacity, and capability of the

organization increases. By setting the bar high, it does two things—you get the right

people onboarded into the organization family, and the value of being a part of the

organization family is well known, so people will think long and hard before leaving.

Talking of high standards, Rossman had to endure 23 interviews over a six-week period

before getting an offer.

 Understand the Team

Everybody is different. Some are good at certain aspects and some may find it difficult to

accomplish the same set of activities. It is the job of a leader to understand all the team

members and to use this information to assign the right set of activities to individuals.

I spoke about the team managing their own activities earlier in the chapter, which is

true where team work is involved. Certain initiatives and activities should be handed to

individuals. During such circumstances, knowing individual team members’ strengths

and weaknesses will increase success.

Chapter 13 people and leadership

397

It is also important that a leader gets to know the team members, their professional

history, aspirations, and bits of personal information. This will lead to a healthy

professional relationship and a strong bond, which will serve the leader and the

organization well.

 Agree on a Team Charter

When it comes to working as one team, the team needs to come together and agree on

certain hygiene factors to ensure no ambiguity.

A team charter is an agreement between the team member (facilitated by leaders)

that draws boundaries. It could include the team members and their expertise, their

roles, mode of work (remote/office), working hours for collaboration, communication

means and frequency, among other aspects. In effect, the charter exists to align the team

toward the common goal, and its charter is published to other stakeholders (such as

leaders and other interested parties) to indicate the team’s ways of working.

A charter can be done at a team level or at an unit level, as long as the group is

properly sized to have a common goal and comes to an understanding.

 Communicate Clearly

Most leaders fail to become great because they are poor communicators. Think of all the

leaders around us—in politics, technology, health, and other segments. Leaders across

the board know how to communicate. They know how to be heard, and they know how

to send messages to the intended recipients. This is a skill to master—not only for leaders

but for everyone.

Communication needs to be as direct as possible. Tell the message simply as is.

Beating around the bush and speaking in metaphors is for the books and fiction, and not

for the digital life. Leaders must make an effort to talk directly to their team members,

and not play the game of Chinese whispers through the hierarchy.

Verbal and written communication have their respective places, and they must be

used appropriately, depending on the message. Verbal communication is leveraged

when the message requires a personal touch, and when the message is of significance.

If verbal communication is employed, explore opportunities for face-to-face meetings.

Although collaboration technologies are sophisticated, it cannot be the best possible

alternate for physical face-to-face meetings. Written communication is generally

employed when you are communicating generic information, like the company’s

quarterly performance.

Chapter 13 people and leadership

398

While verbal and written communication is in complete control of the author,

non-verbal communication is driven subconsciously. The words can be saying one

thing while the body is saying completely something else. Mastering non-verbal

communication is another muscle that leaders must work on. All it takes for teams to

decipher whether a leader is trustworthy and honest happens a matter of seconds, and a

leader who has worked hard all their life could lose the support of the team if the non-

verbal cues do not match the words. Gaining it back, if it can be done, takes penance

of sorts. Leaders must make an effort to work on their body language, smile when

necessary, make eye contact, and not embody an attitude that will drive people away.

 Cultivate Group Thinking and Decision Making

Teamwork was previously fostered through team-building activities, which were mostly

physical activities that required the team members to work together to achieve goals.

Today, with hybrid and remote working, bringing the teams to an offsite location can

be challenging. Instead, leaders can bring the team members to work together through

ideation and decision making.

The combination of remote, hybrid, and asynchronous work is the engine that drives

IT delivery in the future. In this scenario, teams getting together to discuss, chit-chat,

and communicate is not natural. Therefore, leaders have to make it intentional where

the ideation or other brainstorming activities are done as a group activity. The power of

multiple brains coming together will make the solution better, and equally importantly,

the achievement that comes out of the exercise will build the team’s collaboration

muscle. Some of the areas where it can be done is during user story grooming sessions,

along with the customer and sprint planning and retrospective sessions.

Extending the concept of team collaboration and understanding the need for digital

teams to self-manage, the decision-making need not be done within the four walls of the

leaders’ group. But rather, involving the team through the process will enhance feelings

of shared responsibility, and psychologically, team members will not be working for the

leaders but for themselves, for the team, and for the objectives. Group decision-making

is a powerful way to build empowered teams and to groom future leaders who can

strengthen digital ways of working.

Chapter 13 people and leadership

399

 Address Problems Head-On

Conflicts happen, even in the best of teams. There is no way around them. They could

be between team members, team members with other stakeholders, customers, or even

leaders. A friend narrated his experience of having to deal with a conflict between a

married couple who were part of the same team. The conflicts between them cropped up

every second day, and the solution was never fully comprehended by both the parties.

Without a positive way forward, the wife eventually moved to a different project.

Leaders, when forced with conflicts, have several tricks up their sleeve to deal with

them. Some prefer to ignore and look the other way, in anticipation of conflicts being

resolved on their own between the parties. This is not an ideal approach because what

the leader is essentially doing is kicking the can down the road. Sooner or later, the

problem will fester and the conflict will only be greater next time around.

Leaders should instead look to resolve conflicts head-on. Take the bull by its horns.

I do not necessarily imply taking a dictatorial approach and passing judgment, but rather

addressing the problem with the affected parties directly. Based on the situation, an

appropriate conflict resolution approach may be applied. For example, if the parties are right

to call out a conflict based on their perspectives, the leader may help find a middle ground

for the parties to agree and move forward. Or if one of the parties is right, then the leader

needs to be assertive in the resolution style. With time being limited, it is paramount that

leaders take conflicts head-on and find solutions that are just and fair to all involved parties.

 Facilitate Learning

Creating a culture of learning and development are the goals. The means to the

goal are for the leaders to lay out the plans for setting up a digital academy. The

roadmap essentially has a plan for training resources with skillsets that align with the

organization’s service and product capabilities. For example, an organization that

predominantly operates on Microsoft Azure would expect all their employees to be

capable of managing Azure services—some on the infrastructure, some on network, and

a select few on native DevOps.

The training plan would still need to be mapped and overlaid with team members’

career aspirations. You don’t want to force a Big Data person to train in depth on

networking, because you wouldn’t see them doing it in a long run, and they wouldn’t be

motivated to learn. Therefore, it goes back to the hiring aspect of hiring the right people,

and after getting the right people onboarded, understanding their career aspirations and

formulating customized training plans based on them.

Chapter 13 people and leadership

400

When I started working in IT back in the early 2000s, training was essentially

classroom based. There was limited training and getting into a training was a matter

of pride. We had to fight, beg and bother our managers to get nominated for trainings.

These days, training is on-demand and self-paced. There are plenty of trainings available

on any given topic. The problem of plenty has taken the sheen off the privilege of getting

trained. Trainings are now seen as a burden, rather than a privilege. Leaders have to

work meticulously with every team member to show how training leads to the work that

is accomplished and to the goals. It is no easy process, but it must be done.

A practical problem that team members often face is that they are asked to give

the training. And the work that is assigned for that particular day does not get shifted

to others, or moved to another date. They are expected to manage the training and the

work. This is definitely a burden and is the fastest way to ensure that team members

detest training. Leaders must be cognizant of the day-to-day activities and lighten

the load during training days. They should also ensure that the entire team, including

customers, knows that certain team members are in training and are not to be disturbed.

 Measure Teamwork Performance

Goals provide a high-level overview of the desired outcomes. The goal will not

necessarily specify what must be done to meet the goal. It simply states what is required,

such as bring in customer excitement and high-quality software. Actions are required

to meet the goals. These actions are referred to as objectives. For example, increase the

customer review ratings by more than ten percent and reduce the software bugs by 20

percent compared to the previous release.

The goals and objectives are generally spun around the outcomes that the team

member is involved in delivering. The SMART principle is leveraged in drafting these

objectives. SMART is an acronym for specific, measurable, achievable, relevant, and

time-bound and is shown in Figure 13-4.

Chapter 13 people and leadership

401

Figure 13-4. SMART objectives

Every objective set forth needs to be spelled out as clearly as possible on the

actions and outcomes to be achieved, and the leader must find a way to measure them.

The objectives must also be relevant to the identified goals, and the targets must be

achievable. If unrealistic targets are set, team members know that they are not going to

succeed in meeting the objectives, and their motivation will sag. Finally, the objectives

need to state the timeframe by which the objectives need to be achieved.

To promote collaboration, leaders must add goals and objectives pertaining to

teamwork. The leaders can be creative in going about it. Under the goal of promoting

collaboration, the objectives could read as follows:

• Establish good relationships with team members and demonstrate

this by introducing at least five team members in a team meeting next

quarter.

• Demonstrate teamwork by identifying initiatives for improvement

along with three other team members before the end of the

calendar year.

• Successfully plan and run the next townhall.

• Prepare and deliver the lessons learned from the project as a team in

the next quarter’s seminar.

Chapter 13 people and leadership

402

 Give Rapid Feedback

Rapid feedback is good and is not restricted to the feedback mechanism in the CI-CD

pipelines. Team members must know how things are progressing, how they are faring

in the changed circumstances of hybrid working, and what they must do to become

better. Therefore, leaders must build a system of feedback that helps receive and

provide feedback between team members, with the customer organization and other

stakeholders. The feedback provided by leaders must not be restricted to the exercise

of appraisal discussions. It must be rapid. Feedback should be provided as soon as the

need to provide it is triggered. Likewise, other feedback channels must not necessarily

wait for an event to provide feedback but ensure that it is swift.

It is not uncommon for team members and other stakeholders to fear repercussions

stemming from the feedback. To ensure psychological safety, leaders must set up

mechanisms to channel feedback anonymously to the intended recipients. Although

digital organizations practice blameless cultures, it is hard for us to draw a line between

objectifying a feedback and personalizing it. Therefore, depending on the team construct

and the nature of the feedback, there should be sufficient provisions to qualify and pass

on the feedback without identifying the provider.

Take care to ensure that the feedback is constructive and not meant to put down a

colleague. The purpose of the feedback process is not to share opinions, however honest

they may be. Feedback providers should think through this aspect and only if it checks

all the positive boxes, should they pass on the feedback.

 Recognize Good Work

No matter how high we climb the career ladder, appreciation and recognition of our

work is essential. Look at it as an extension of the feedback mechanism. Leaders gave

me feedback that I have done an excellent job, but where is the reward? Forget about the

reward, I would like to feel appreciated in front of the customer and my team.

It does not matter if we are talking about a developer, team leader, or a customer

representative. Appreciating good work in the presence of others gives employees the

fuel for more good work. Studies show that being recognized in public for good work

beats salary increases by a long shot. This is another way of making team members feel

like they belong at the company and are an integral part of it.

Chapter 13 people and leadership

403

The onus is on the leaders to establish a framework for recognition. Remember

that without a formal process in place, recognition will not happen, as we get busy in

our work cocoons. Leaders, in coordination with the human resources, should set up

a framework and a process for identifying and rewarding performers. And it must be

practiced diligently.

 Be Authentic
There is a notion that leaders who do not hold back their thoughts, leaders who say it

as is, and leaders who are genuine are authentic and can be trusted. There is another

school of thought that authentic leadership is an innate quality, which means either

leaders can be authentic or not. The choice is not for the leader to make, but the quality

is embedded in some while it is absent in others. Both these notions are far away from

what we consider authentic leadership.

Authenticity is when leaders remain who they are in the midst of any scenario

thrown at them. An authentic leader is somebody who knows their strengths and

leverages that part of their leadership acumen as the situation demands. Authenticity

comes from who we are and how we act, and not how we want to be perceived. I talk

further on the aspects of authentic leadership in the rest of this section.

Steve Jobs is a classic example of an authentic leader. He did not put on a mask for

his followers and the public to see and perceive, as stated by his biographer, Walter

Isaacson. He was generally difficult to be around, and he was highly impatient and

a taskmaster. He has a passion to create products that stood out from the others in

the market. He wanted to deliver perfection through his creation and wanted to do

something great. Generally speaking, people don’t like to be around other people with

Steve’s qualities. But it was different with Steve, even though he told people to their

faces that their ideas were dumb. People stuck around and toiled day and night. They

did not mind his brash behavior because they knew that it came from a good place, a

mind that was set on a vision for the company and for the consumer. The result of this

authentic leadership is that Apple makes top-notch consumer electronics. Through one

man’s authentic leadership, a company took shape and changed the way people used

technology. The authenticity of Steve made people loyal to him, and this loyalty and the

teamwork that ensued is one of the prime reasons for Apple’s unparalleled success.

Chapter 13 people and leadership

404

Steve never claimed to be an authentic leader. In fact, no leader should claim to be

authentic. Because authenticity is a quality that’s recognized from the outside rather

than from within. Authenticity has meaning if others identify the leader that way, rather

than a leader tooting their own horn of authenticity.

 Leading with Authenticity

Leaders have certain traits that make them unique and that makes them what they are.

A leader is expected to lead people. A leader who uses all their leadership traits in the

leadership campaign will remain average at best. An authentic leader is somebody with

a sound head on their shoulders, somebody who knows their strengths, and has the

situational awareness to leverage those traits as they are deemed fit. Authentic leaders

remain true to themselves when showcasing leadership capabilities, but leverage only

those aspects that are necessary, while the rest are safely stacked away. In other words,

leaders do not lose their identity in the midst of adverse situations.

Authentic leaders believe in walking the walk. They do what they say and say what

they do. The rules are not different for others. A leader is authentic when team members

can see the leader demonstrate the aspects that were asked of them. For example, if a

leader expects every team member to communicate swiftly but fails to communicate

with their own team members, that person will seem fake.

 Be Self-Aware

Leaders need to know themselves if the intent is to be authentic. Understanding

themselves will help them assimilate the strengths and weaknesses and take this

knowledge in leading and supporting people. Leadership skills are an outcome of the

experience gained over the years. The practicalities of the long road to leadership would

have taught multiple skills and at varying complexities. Leveraging and displaying the

varied skillsets creates self-awareness, a trait that can be gained through self-effort and

practices such as meditation, yoga, and mindfulness.

In the whitepaper, Authentic Leadership Development: Getting to the Root of Positive

Forms of Leadership, authors Bruce J. Avolio and William L. Gardner observe that self-

awareness is not a destination but a journey toward discovering their own unique

talents, strengths, sense of purpose, core values, beliefs, and desires. Further, to enhance

self-awareness, leaders must practice to:

Chapter 13 people and leadership

405

• Obtain feedback from the people they are connected to. This helps

understand other people’s perspectives who are closely involved.

• Use the down-time to reflect on their own actions and behavior. Take

timeout every day by meditating or simply thinking through their

behaviors and triggers.

• Learn to become self-aware of their feelings. When they are talking

to a team member who is disgruntled and disrespectful, they should

check if there is anger or other feelings lingering.

 History Is Key

It is the experience that makes us who we are and what we turn into. When leaders take

charge, they will have a repository of experiences and baggage that they may not want

to reflect upon. Both of these are invaluable. Leaders can command respect and come

off as authentic when they leverage their experience in dealing with people, issues,

and delivery, among other duties. One way that I find effective to show my true self is

by telling stories. I tell the stories of my past experience, good or bad, and how things

turned out to be. The situation can be as simple as a scope creep discussion with a

customer. By stating the experience, and the learnings that have come through it, I, as a

leader, was able to prepare my team for the upcoming discussions and be as ready as I

could be. The experiences and learnings of the past are stored in the long-term memory,

and by vocalizing them, the learnings can help prepare people for future events.

The experience may not be from the professional world alone. With our team

members, we may share the same language, culture, sporting interests, among others.

We can enhance connections in our teams by drawing on these experiences, and firmly

bonding the relationship between a leader and team members. That said, leaders should

also be cautious about extending their reach to certain topics, and expressing opinions

on topics such as politics, religion, body weight, and other sensitive and polar issues. It

is hard to generalize the topics that could be deemed sensitive, as they depend on the

region and culture. For example, while some cultures are open to talking about religion,

others find it inappropriate to bring religion into the workplace.

Chapter 13 people and leadership

406

 Exert Self-Control

Leaders have to be careful about how much they reveal, which is dependent on the

people, the environment, and the situation. While keeping a certain distance, the

challenge is to also seem authentic. When leaders keep too much distance, they are

perceived as aloof. This can break the barrier between leaders and team members. In

fact, keeping distance is perceived as attractive, and it draws a lot of followers.

Some leaders restrain themselves based on internal standards they live by. Others

are more fluid and set their level of constraints based on their gut feeling. There isn’t a

right or wrong method to determine this, as long as the distance is balanced and works

As a result, leaders should not be rearing to showcase their skills or to confront others.

They should be measured in their responses and wait for the opportune moment to act.

 Summary
This chapter looked at two essential items: people and flexible working and leadership in

the digital age. The flexi-model of working involves remote and asynchronous working.

it’s the new way work happens, and it is here to stay. Organizations and customers have

to take note and make necessary adjustments to this new culture.

Leadership in the digital age has come a long way from where it was a couple of

decades ago. The command and control culture is frowned upon, and servant leadership

is the new style of leading teams.

Chapter 13 people and leadership

407

CHAPTER 14

Techniques and Tools
for Managing Digital
Teams
The previous chapter looked at the new ways of working that turned homes into offices

and made shifts antiquated. Leading such teams and drafting working charters is a

different skill altogether. It requires a nimbleness that allows leaders to pivot decision

making based on the situation, and yet be firmly grounded toward the true north.

This chapter delves further into the changes that teams, leaders, and organizations

must ring in, to accommodate and adapt to digital ways of working. When team

members came into offices, worked together in a physical bay, shared lunch, and other

break times, knowing and understanding people was a lot simpler, and people generally

got WYSIWYG (what you see is what you get). Asking teams to do certain work, such

as chairing meetings, planning, and other tasks, was in some ways easier because the

people were in the forefront. Their body language showed disagreements if any, and

people picked up vibes that helped navigate the events and meetings. With remote

working coming to the fore, it feels like a major weapon in the armory has been taken

away, and the expectation is to deliver similar or better results. To excel, new techniques

and tools are needed, which is the essence of this chapter.

 How Do You Manage Remote Work?
There was a time when teams were co-located, and their work involved interacting and

supporting each other to complete the task on hand. This was further enhanced with

Agile workspaces, where the conventional cubicles made way for open desks.

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9_14

https://doi.org/10.1007/978-1-4842-9072-9_14#DOI

408

The idea was to remove the barriers between people, which allowed them to

communicate freely. Whether Agile workspaces resulted in benefits is a topic to debate,

but what the co-working spaces eased was communication between team members,

and it made Scrum masters able servant leaders, because they knew when there were

impediments right then and there. They could act on them swiftly. Scrum masters could

keep track of the progress, prepare beautiful reports with the latest information, and run

all the ceremonies as planned.

With remote work, the Scrum master, who is the first rung of leadership, is affected

the most. It is quite natural because Scrum masters work with the teams directly to

deliver agreed outcomes, and although there is shared responsibility, Scrum masters are

psychologically considered pseudo project managers. With the teams working remotely,

including the Scrum master, what changes are needed to manage remote work?

 Trust the Teams to Deliver
You must trust the teams to deliver on their promises. Not that the trust factor was absent

earlier. But today, it becomes more critical with teams working remotely.

Trust is a two-way street. While the Scrum master trusts the team members to work

diligently toward their commitments, the team members too should trust the Scrum

master and other leaders to not look over their shoulders and verify the non-delivery

aspects of work. Non-delivery aspects include log in and log out times, checking the logs

to see if the team members are working for the required period of time, cross-checking

social media accounts during sick days, among other things that do not contribute

directly to the delivery of outcomes.

When team members know that leaders have their backs, they are more likely to

ensure that deadlines are met, even if it means working through the night. This was true

when teams worked in the same office, and it is true with people working remotely. The

leaders and the Scrum master must trust the team members to deliver, and be vocal

about trusting them to do the right thing.

Generally, trust is gained slowly and increases over time. Likewise, leaders should

ideally start small—handing over low priority items to begin with. As a leader, do not

micro-manage. Trust the team to deliver and asl them to come up with the goods. With

the leaders leading the way, team members will reciprocate and trust will help the team

achieve their objectives.

Chapter 14 teChniques and tools for Managing digital teaMs

409

Putting trust in the people and people trusting their leaders is an outcome of the

company’s culture. If organizations maintain a culture of trusting their employees

(like for example, not asking employees to submit bills for all claimed expenses), the

employees feel accountable for actions, and will more likely be honest with their work,

leading to a positive environment. Of course, organizations can have certain bad apples.

Culture and norms should be developed for the majority and not for the exceptions.

Simon Sinek, the celebrity motivational speaker, has stated, “A team is not a group of

people who work together. A team is a group of people who trust each other.” To reiterate,

the team has to work as a single group that trusts each other. Google’s internal study of

their teams reveals a similar sentiment.

 Google’s Team Effectiveness Study
Google’s HR team wanted to answer a simple question, what makes their teams

effective? They decided to conduct a thorough study (https://rework.withgoogle.

com/blog/five-keys-to-a-successful-google-team/). This study is a well-known

case study in the public domain. This was in 2015, but the revelations were relevant then

and now.

Over a period of two years, the HR team, along with third-party psychologists and

statisticians, interviewed over 200 employees and looked at more than 250 attributes

of 180 teams in Google. It was generally believed that the team composition mattered

if a team were to be effective, say a team of rockstars would outperform a team with

“normal” team members.

The study elucidated a number of patterns. The result was that five key dynamics

made the difference in how effective a team was:

 – Psychological Safety

The team members relied on an environment where they felt safe

taking risks. They did not end up being mocked or embarrassed

by other team members. This is the most important dynamic that

affects team effectiveness. Having reservations in opening up for

fear of retribution means brilliant ideas may not be shared. By not

externalizing such ideas, the team is at a loss, and this can affect

its effectiveness.

Chapter 14 teChniques and tools for Managing digital teaMs

https://rework.withgoogle.com/blog/five-keys-to-a-successful-google-team/
https://rework.withgoogle.com/blog/five-keys-to-a-successful-google-team/

410

Team members lose their confidence and motivation if

psychological safety is low. They are less transparent, and the

natural tendency is to hide things and cover up mistakes for fear

of embarrassment and possible penalty. This is particularly true

in a majority of teams across industries where the rockstars in the

team often do all the talking while others follow orders. A team

cannot truly deliver when barriers restrict team members from

opening up.

Team members who feel safe in a team, in other words, team

members with higher psychological safety, are less likely to

leave organizations. This not only lowers attrition rates but also

preserves precious organizational knowledge.

 – Dependability

Depending on other team members is a matter of trust. If team

members feel they can depend on their team to complete the job,

then there is a great opportunity for the team to collaborate and

work as one.

Dependency further dives into the shared responsibility that

the team has undertaken under Agile delivery. Taking shared

responsibility by principle is one thing, while practicing it whole-

heartedly is something else. When a team can stand up for one

another and not compete in an internal rat race, this is a classic

example of collaboration, and the effectiveness of the team is

bound to improve.

 – Structure and Clarity

Shared responsibility is good, and so is measuring success for

teams altogether than individuals. However, every team member

feels more comfortable when they know their respective roles—

developer, tester, business analyst, Scrum master, and so on.

Keeping the roles fungible appears to be made in the mold of Agile

delivery, but it fails to provide clarity to team members on their

goals and what is it that they have to do to succeed.

Chapter 14 teChniques and tools for Managing digital teaMs

411

Team leaders have to treat every team member as a separate

individual to set a role, define the structure, and lay out the

charter to remove any hint of ambiguity.

 – Meaning

Continuing from the previous dynamic, individual team members

come from varied backgrounds, and each has their own strengths

and weaknesses. They have their own career dreams and the

path they want to tread on. The work they do with the team has to

contribute toward meeting their career success. Or at least, they

need to believe that the work they are performing is leading them

to their dream destination.

Their effectiveness and hence the team’s effectiveness will

improve if the team members are set on their path of defining

meaning to their work they perform, and if they are able to align it

with their career aspirations.

 – Impact

Moving from individual career aspirations to a worldly change

their work brings in matters. The work they do, the software they

are building, what does it change in the world? Will it affect how

Internet banking will be used in the future? Will it change the user

behavior while shopping online? These are some of the pertinent

questions that team members like to get answers for. And with a

clear view of the change that they are able to bring about, their

work motivation goes up, and with it, the team’s effectiveness.

 Respect the Team
Like trust, respect is a two-way street. But unlike trust, which is a natural human

behavior, respect is a learned behavior. It is a habit to cultivate, and to practice. Respect

in the workplace means that the leaders believe that the team members can deliver, and

the deliverables meet the requirements. For team members, respecting leaders means

that they believe that the words are coming from a good place, and following the lead is

the best way forward.

Chapter 14 teChniques and tools for Managing digital teaMs

412

Respecting colleagues is not only about creating a friendly and cheerful environment

to work in. There are numerous benefits, like employee engagement, work stress

reduction, and delivery efficiency among others. A study conducted by Harvard Business

Review (The Leadership Behavior That’s Most Important to Employees (https://hbr.

org/2015/05/the-leadership-behavior-thats-most-important-to-employees))

found that employees engaged better and were far more committed when the leaders

respected them. The study was conducted with over 20,000 subjects across the globe.

The study found that for employees, respect trumps everything else, such as being

recognized and rewarded, the learning and growth opportunities, seeing a brighter

vision, and receiving constructive feedback.

In a remote environment, we may not be sitting under the same roof, and the

nature of the interactions may be different with video calls and text chats. However, the

interactions still happen. People still need to talk to each other. Workplace respect is a

major driver of success.

Respect is about how people conduct themselves during interactions. When a leader

is under tremendous pressure and stress (for whatever reason), and that stress affects

their interactions with their team members, it can be perceived as disrespectful, and can

be detrimental to the organization’s objectives. Therefore, leaders and team members

need to pay attention to their interactions, to ensure that respect does not suffer because

of external factors.

Respect can be shown in a number of ways. Being polite with one another is a good

start. Have the patience to listen to what someone is saying. If a leader is in a meeting but

not listening to what is being said, this can be perceived as disrespectful. If you are late

to a meeting while others wait for you to join, you are being disrespectful of their time.

Ensuring privacy is safe-guarded, not rushing to judge people or their actions, avoiding

talking behind people’s backs, and avoiding foul language are some ways people respect

one another. This is true not just for the work environment but for all situations.

Everybody needs to be aware that with remote working, the only form of

communication is remote. There are no more lunch chats and water cooler

conversations. So, when a team member reaches out through chat, email, or any other

method, the person on the other end must make it a point to respond. Not responding

amounts to lack of respect . Not responding back to emails is one of the most common

ways that employees face disrespect at work. So, care must be taken to respond to

every email that is addressed to you, however trivial or uninteresting the information

might seem.

Chapter 14 teChniques and tools for Managing digital teaMs

https://hbr.org/2015/05/the-leadership-behavior-thats-most-important-to-employees
https://hbr.org/2015/05/the-leadership-behavior-thats-most-important-to-employees

413

When remote work started, people were waiting to turn on their cameras and see

others on the monitor screens. The bottling up of people at homes due to COVID-19

made people desperate to see other people, even if it was remote. People have now used

and overused their cameras and have stopped turning their cameras on. Video fatigue

has set in.

Not turning on the camera is not a form of disrespect. But not turning it on when

the other person has turned it on can be perceived as disrespectful. The expectation

when one person turns on the camera is for the others to turn theirs on as well. Nobody

intends to turn on the camera with the sole reason of showing off themselves. They

probably want to have a face-to-face conversation. At times, we may not be wearing

the right attire or we may have sleepy eyes. Let the other person who has turned on the

camera know that you are unable to turn it on, so the other person gets a chance to either

turn off the camera or be conscious that you have a genuine reason to not turn on the

camera. When I am not camera ready (say if I am eating or not wearing a collared shirt),

I generally say that I am having a bad hair day. People who generally talk to me know

that I have no hair, and they get the humor that I am not camera ready.

 How Do You Hire the Right People?
Hiring employees is a risky proposition. You just need a single rotten apple to spoil the

whole bunch. Not many organizations hire the right set of people—the percentage of

people hired vs. people who are the right fit for the company is small. Add to this another

layer of complexity where hiring is done remotely, and the right fit for the digital age is

still being defined and addressed. How do you hire the right candidate for this job?

This section looks at the best characteristics when hiring someone remotely for the

digital age and how other companies are doing it.

 The Fundamental Challenges with Hiring
Adding new team members to projects and organizations is the same as getting new

family members through marriage or by other means. When new members are inducted,

it is not just the bodies or skills that are brought into the equation, it is their work culture

and their work habits as well. People working for an organization have certain ways of

working, certain communication means, and expectations, among other norms. When

you bring in a new person with opposite ways of working, there is bound to a disconnect

and conflicts will arise.

Chapter 14 teChniques and tools for Managing digital teaMs

414

Conflicts may not necessarily be with the new team member but with existing

team members as well. Some existing team members could be influenced by the new

team member and the changes could result in conflicts. Let’s look at an example. An

organization that is committed to responding quickly to each other brings in a new

employee, who is laid back when it comes to communicating. This person does not

respond as swiftly as others. Their project mates are taken aback at first with the person’s

attitude. After a while, some of them adopt this style of delayed communication. This,

potentially, could change the fabric of the project team. Being lazy in communication is

the easy way out and requires less effort.

People are often swayed toward taking the easy way out, and organizations that

could have taken years to build a certain culture can possibly lose track, and lose out on

the well-entrenched habits with a few bad hires.

Therefore, it is critical for companies and team leaders to put their weight behind the

hiring process to ensure that the company makes the right hiring decision every time.

Yes, there will be mistakes along the way. They need to introduce sufficient parameters

to mitigate bad hiring risks and to ensure that similar mistakes and blunders do not

happen repeatedly. This challenge not only applies to hiring remote teams but also to

traditional teams.

 Cheating on Interviews

With remote hiring, there are opportunities for fraudsters to cheat on the interview or

appear in an interview using a different identity. With the traditional interviewing styles

done remotely, such fraudsters find it easy to wreak havoc. When I was working in an

organization as a service management head, we were conducting telephone interviews

due to lack of time. It was in the evening, and I was interviewing a candidate for the

position of a service manager. I needed somebody strong in ITIL and communication.

Every question I asked was followed by a pause, fillers like yeah, aaa, mmm, and

sometimes he would repeat the question back to me, which was perfectly fine by me. But

what I could hear in the background was clacking on a keyboard, and the answers were

pitch perfect. After a few questions, I had a hunch that the candidate was googling the

questions and was reading the answers out to me. So I changed tact. I asked a scenario

based question, the answer would flow from experience and not from Google. After

some more fillers and clacking, he gave me a horrible answer. I tried another scenario.

Same result. I confronted him and asked him how his answers were perfect for questions

Chapter 14 teChniques and tools for Managing digital teaMs

415

that were textbook based, and any question that was scenario-based were floundered.

He hung up. He knew that I had caught him. During those days, we didn’t have the

luxury of video calls and it was possible for people to cheat on interviews.

After video calls and interviews became commonplace, I wasn’t sure that I could

catch interview cheats. During video interviews, the candidates look at the screen

when they talk, and on the screen, you have the video of the interviewer. So, they are

looking at the screen and not at the camera. So, it is possible that they may be able

to pull up answers on their screen and read out of it. It has happened and during my

interviews reviews, I have caught a few reading from their screens. Poor camera quality

and the light source facing the camera (lens flare) distort the video, and are potential

avenues for interview cheats to prosper. In such situations, interviewers have to ask

scenario based questions, and must insist on candidates crossing their arms during the

interview. During remote interviews, avoid asking direct questions. In fact, I avoid asking

direct technical questions in any form of interview, because you are getting somebody

onboarded for their experience and not their theoretical understanding. Instead, talk

about their experience, and how they dealt with certain problem situations, and the way

candidates answer to such questions, an interviewer should be able to ascertain the

technical quotient of the candidate.

 Identity Fraud

Impersonation is another major hurdle that hurts companies. People who were

interviewed were not the people who turned up and joined the company. It would take

a few months to figure out the fraud owing to poor productivity at job, and the lack of

requisite skills.

Bengaluru is the silicon city of India and boasts of multitude of IT companies making

the city as their offshore base. During the COVID-19 pandemic, while the rest of the

world faced the great resignation, companies in Bengaluru were hiring people in bulk

as cutbacks in the west resulted in new jobs at their offshore sites. An executive at EY

who is close to the hiring market said, “The issue got significantly accentuated with high

attrition and the present remote work culture because of covid. The number of such

impersonation cases I've come across has doubled.”

Companies who faced the brunt of hiring the wrong people resorted to capturing

images during video interviews and comparing the visuals at every interview stage and

during onboarding. The official documents and photo identity proofs are vetted along

with the interview snapshots to ensure that impersonators don’t get through.

Chapter 14 teChniques and tools for Managing digital teaMs

416

The challenge of impersonation plagues bigger organizations that hire in bulk. The

HR involved in sourcing is generally a team, the interviewers too may be disparate,

and not exchange notes directly. The manager may not end up talking to the candidate

until the day they join the company and the team. When the expected results don’t

come through, at that point, investigations begin to ascertain whether the person in the

interview and the person who joined the organization is the same. In one such instance,

a manager was surprised that a new joiner would not turn on the camera, while they

were open to doing it during interviews. After repeated requests, the employee turned on

the camera, and the manager was able to see that the person was different than the one

they interviewed.

There are several identity verification applications that can be used to compare

images. This helps, but frauds are generally a step ahead and they find ways to beat

the system.

 The Automattic Case Study
The company Automattic may not be famous, but their product Wordpress is most

definitely well-known. It is an open-source content management software and it powers

over 48 percent of websites, the world over. My first encounter with WordPress was in

2004, when I became a blogger and built my first blog. The software has come a long

way since then and boasts a great community of contributors who are responsible for

keeping it fresh.

I like the software very much, but this section isn’t about WordPress. The founder

of Wordpress is Matt Mullenweg; he went on to found Automattic in 2005. Apart from

Wordpress, the company owns the likes of Tumble, WooCommerce, Gravatar, Akismet,

and Day One. The company is valued USD 7.5 billion and boasts of over 2,000 employees

across more than 200 cities all over the world at the time of this writing.

Harvard Business Review (https://hbr.org/2014/04/the-ceo-of-automattic-

on-holding-auditions-to-build-a-strong-team) wrote an article on the company’s

transformation. Back in 2014, when working from the office was very much the norm,

the company decided to let their employees work from anywhere (WFA). Although they

had an office in San Francisco, it was mostly meant to be a showpiece for guests. While

the company went remote, they also switched to asynchronous working and abolished

the 9-5 shift working for their employees. They saw the writing on the wall, well before

the rest of the world woke up. The company’s culture did not believe in asking people

Chapter 14 teChniques and tools for Managing digital teaMs

https://hbr.org/2014/04/the-ceo-of-automattic-on-holding-auditions-to-build-a-strong-team
https://hbr.org/2014/04/the-ceo-of-automattic-on-holding-auditions-to-build-a-strong-team

417

to work during certain hours and mimic the way the company intended them to work.

People were measured on outcomes and not process. One of their employees, Scott

Berkun, penned a book called The Year without Pants, which explains the culture of the

company.

Automattic’s hiring was traditional to begin with. They would ask technical

questions, and follow them up with brain teasers and riddles. They relied on past

experience of the candidate to come up with the goods. They even took the candidates

out to lunch. Despite their best efforts, they came up short with the people they hired.

A number of them quit the company in search of greener pastures, while some of them

made others’ lives miserable.

The aha moment appeared when the key personnel of the company put their heads

together to figure out where they were indeed going wrong. They realized an interview

lasting for an hour is not a sample of time and interaction that could point them to their

next employee. Good candidates could flounder and get rejected while average ones

could talk their way into the company’s rolls.

A candidate would go through the normal rigors of matching skills and technical

rounds of interviews. When a candidate got through the initial hurdle, they would be

hired on a contractual basis for about eight weeks. They are not expected to quit their

existing jobs, but are asked to commit to a decent number of hours weekly. They are

treated just like employees with logins and the work is democratically divided between

employees and those on contract. The goal is for the candidates to get a feel for what

they are getting into and for the existing team members and the company to vet the

candidate on the job. The work done by the candidates is not free but are rather paid a

standard rate.

Candidates who agree for the try-outs have cleared their first hurdle of having

an open mind to stretch along with their regular jobs, and show the mettle to prove

their worth. During the entire contract time, there is continuous feedback given to the

candidate. A candidate who accepts the feedback and takes corrective action would have

passed the next hurdle. The team then decides toward the end of the contract whether a

candidate is fit to appear for the final hurdle.

If the team is happy to have a candidate as their long-term team member, then Matt

himself interviews the candidate. He does not pick up a phone or video call a candidate.

The interview is through a text messenger, as the majority of communication in

Automattic is done through a text messenger. Matt is trying look for passion and culture

Chapter 14 teChniques and tools for Managing digital teaMs

418

in the candidate. The majority of those who appear for the final hurdle make it through,

which is a testament to the fact that the try-outs and decision making by the team is a

great success.

Contracting candidates to try out their work in a real environment is a practical

approach to hiring people. The company can fire people if they don’t seem a good

fit—which is the outcome of traditional hiring. But, as I contended earlier, hiring and

onboarding people is not like changing clothes. It takes plenty of effort to hire every

person, and the bonds that are built, the time spent with each other cannot be wasted

away by a hire-and-fire approach.

Dean Sas shared his experience of joining Automattic on this blog (https://

deansas.org/2022/01/02/being-hired-at-automattic/). He explains the process in

minute detail. A worthy read!

 Self-Supervised and Self-Motivated
I stopped tracking the various roles that IT companies have on offer when I started

seeing Happiness Manager and Chief Heart Officer (CHO) emerge from their thinktank

hats. All organizations define their set of roles, at various levels and they are unlikely

to be similar as the next company. No matter what the roles are, and what skillsets are

needed to fulfill the role, there are certain common characteristics that are absolutely

necessary if a digital organization dreams of thriving. The critical characteristics are:

 – Self-supervised

 – Self-motivated

 – Collaborators

 – Communicators

I grouped them in twos because of the synergy that exists between the aforesaid

characteristics. Organizations must find a way to scrutinize candidates based on how

well they display these characteristics. Testing them on an interview call may be difficult,

but not impossible. Or they can employ the Automattic way of hiring, which gives them

real-life exposure to the candidates.

Chapter 14 teChniques and tools for Managing digital teaMs

https://deansas.org/2022/01/02/being-hired-at-automattic/
https://deansas.org/2022/01/02/being-hired-at-automattic/

419

 Self-Supervised

Companies hire people because they can add value through the outcomes that are a

result of the work they perform. They are people and not cattle. Cattle require cowboys

to manage them. People don’t need managers. The role of a people manager is outdated

because companies have started to realize the positive effects of people managing

themselves. Supervising one’s own work makes the individual accountable for their

work. This accountability will make them committed to what they have promised to

deliver. Making and staying committed to work is the biggest form of motivation and

can drive individuals and the teams toward success. Team members will not be order-

takers and this lateral shift has several advantages—including the innovation that is an

outcome of a free-thinking mind.

Self-supervision is not the end goal but rather the beginning of what is to come. The

objective is to build a team that can manage, challenge, innovate, and deliver without

getting prodded by project managers and delivery leads. Such a team is well situated to

work in an Agile fashion, which roughly translates to keeping their ears to the ground

and pivoting based on the customer’s likes and dislikes. A team full of self- supervised

individuals will tend to be self-autonomous by DNA and will be in a position to take full

responsibility of their successes and failures.

A self-supervised team may not have managers and leaders who pass commands

and demand updates. Rather, such a team will be ably supported by the leadership

to provide them every opportunity to succeed including the deployment of Agile and

DevOps coaches who can guide the team in their ways of working.

What are the tell-tale signs that a team has achieved the self-autonomous stage?

When you form a team, you wouldn’t be in a position to understand the maturity

from a self-supervision angle. However, you should have an intuition as a leader who put

the team together. It is therefore important to slowly release the rope of control as the

team starts to bond and work as a team. Holding onto control is addictive but it does no

good to the team, the morale, the outcomes, and the overall working environment. The

signs that you should look for to determine a team’s self-supervision stage is through

their collective decision-making ability, the trust between the team members, and

the flow of information (communication) in the team. If these three aspects begin to

flourish, it should be proof that the team is well formed. They are in their performing

stage and can be depended on.

Chapter 14 teChniques and tools for Managing digital teaMs

420

 Self-Motivated

Motivation is a by-product of self-autonomous teams. Team members are high on

energy and are on constant lookout for the next big thing. The support they need is

vision from their leaders to put them on a path that takes them to new places. They don’t

need to be motivated by external factors. The motivation comes from within, and they

have the energy, the interest, and the motivation to do it all on their own. For example,

a project demands leveraging on a new technology, and the team members do not

possess the necessary skills. A team that is self-motivated learns the technology and

start to implement it in the project without a push from the management to tread the

direction of learning and implementation. I have come across a few teams that learned

and applied the learning on the job successfully. It doesn’t necessarily take skill but the

willpower and motivation to make things happen, even in the wake of uncertainty.

As a leader, here are some things that you can do to transform your team into a self-

motivated team:

 1. Give the team the autonomy to make collective decisions. The

decision could be on their style of working, times when they meet,

the artifacts they produce, among others.

 2. The team must get the respect they deserve. As a leader, you must

respect the team and their decisions. Instead of doubting the

intentions, determine the rationale behind the decisions that you

deem questionable. Unless leaders and other stakeholders respect

the team for what they are and how they deliver, the team will not

have the cudgels to build their motivational muscle.

 3. Share the vision of the organization, the product roadmap, and the

goals and objectives that the team is expected to march toward.

Teams find meaning when they can see the flagpole and the

crown perched upon it.

 4. Include personal or team learning goals for the individuals to

embark upon. A learning organization is an organization that

grows, and the learning motivates the team to do greater things.

 5. Provide constructive feedback at every possible juncture. We have

discussed the power of providing rapid feedback in the earlier

chapters. It is an essential component for self-motivated teams to

continue performing.

Chapter 14 teChniques and tools for Managing digital teaMs

421

 6. Every team member has strengths—not referring to technical skills,

which is the primary reason for their inclusion in the team. One

team member could be good at analyzing requirements, another at

problem solving, and so on. Employing ways of working will help

form a team that is built around the strengths of individuals.

 7. Reward the team when it is due. Recognitions are important for

every individual to motivate them to do greater things at work

and at life. One of my mentors was a fascinating character and he

never missed praising his team members or other people he met

before starting a conversation. The praise was not hollow. It came

from a good place and was grounded on facts.

 8. Penalizing people for the things that go awry is the fastest way to

demotivate them. Don’t do it unless it is absolutely unavoidable.

 9. As a leader, it is important to keep track of the team, check in on

regular intervals, and show that you care. You should do it in a way

that you don’t present a picture of micromanagement or being

nosey, but rather somebody who is genuinely interested in the

affairs of the team.

 10. People are going to have bad days. They are going to reach out

to you for comfort. Help the team approach the problem as an

opportunity, to change the perspective of the situation to find a

solution rather than dwell on the difficult situation. This is a life

skill that can keep people motivated.

 Collaborators and Communicators
The games of chess and golf are single-player games. This is unlike the game of football/

soccer, where you need eleven players to perform at a certain level to win matches. The mid-

fielders must ensure possession of the ball and deliver it to the strikers with great precision.

The defenders must guard the post along with the goalie. In all, it’s a game that requires

teamwork. Digital ways of working are more like football and nothing like Chess. The entire

project team must work as one unit to come close to succeeding. The project team is like

a gear system, where one gear turns the other, and then the next one gets moving at a

faster rate. In other words, digital teams have to collaborate, there is no way around it.

Chapter 14 teChniques and tools for Managing digital teaMs

422

To begin with, collaboration is about sharing information. You aren’t really building

a house, which starts with a foundation, followed by walls, roof, stairs, interiors, and

so on—you get the drift? Building a house is a sequential activity, and collaboration

has a minimal role. Digital working is like constructing a bridge. The bridge that you

construct is not done sequentially starting from one end. You start to construct the

bridge from both ends, and the parts in between simultaneously. This exercise would

take a great amount of accuracy to ensure that the bridge connects seamlessly between

the parts that are getting built simultaneously, which is a byproduct of high-level of

information exchange and collaboration. Throughout the construction journey, all the

team members must communicate, at every step, multiple times in a time period, and

communicate well by providing the exact data points, feedback, ideas, and solutions

among others. No wonder digital projects take a great deal of collaboration and high

precision communication to succeed.

Building a bridge is a physical activity. You can see the pillars, the piers, and the

girders. It requires precise solution designs and equally precise construction. Seeing and

building physical components is a level of comfort compared to digital projects where

the designs, builds, and releases are all abstract. The team needs to be able to connect

the dots of abstract components and do it seamlessly and accurately. This, in my view,

is more complicated and complex compared to building bridges and other marvels that

are built non-sequentially.

According to Francesca Gino (https://hbr.org/2019/11/cracking-the-code-

of-sustained-collaboration), collaboration is natural for people with certain mental

attitudes. They are:

 – Respect for colleagues and their work

 – Being open to experimenting on ideas generated by others

 – Sensitivity of your actions toward colleagues’ work and objectives

The reality is that most people are obsessed with their own ideas and are not open to

accepting others’ ideas. So, experimenting their ideas is a long shot! Collaboration may

come naturally to a few people, so this doesn’t mean that the rest of them should stay

away from the digital industry. You can learn to collaborate, and leaders must pave the

way for this. Especially when they hire people, while they scrutinize the collaboration

aspects, they must also note a candidate’s ability and willingness to learn.

Chapter 14 teChniques and tools for Managing digital teaMs

https://hbr.org/2019/11/cracking-the-code-of-sustained-collaboration
https://hbr.org/2019/11/cracking-the-code-of-sustained-collaboration

423

 Learning to Collaborate

Early in my career, during meetings, if I had something to share, I would wait for a prime

opportunity to share it with the members in the meeting. I would rehearse the words

in my mind, think about where I should pause for maximum effect, and how I would

present it. And like a cheetah that would wait for an opportune moment to pounce on its

prey, I would wait for a long pause, or an opening to start talking. Throughout this entire

process, there were other people in the meeting, and they were sharing information,

sharing important thoughts that did not hit my ears. I was deaf to their words and alert

to jump in to talk. Even when I chaired meetings, I made sure that my ideas were heard

early and gravitated the meetings toward my ideas and away from differing views.

What I did in my younger days should possibly be made a case study of what-

not- to- do in meetings. Francesca Gino contends that leaders should train their team

members to listen to each other, rather than focusing on their talk. By not listening, you

are disrespecting other team members and possibly distancing them from you. They

wouldn’t like to work somebody who doesn’t respect, and the team will effectively be

working as multiple individuals, which brings down the delivery effectiveness.

If you lose your train of thought, write it down so you can refer to it when you need to

speak. Listen to others’ ideas and try to get more info on the ideas shared by asking more

questions. If their ideas make sense, and if the general mood in the room is positive

toward the idea, think through whether what you have is worthy to be shared at this

point. The critical aspect to focus is not on highlighting yourself with the sharing of your

ideas but to think on the lines of your contribution in the meeting toward the objective

set forth.

The common reason why we do not listen to others is because we believe that we are

smarter, and others do not have anything valuable to contribute. Try to understand what

other people are trying to share, there is a good possibility that their views are going to

drive more value to what you are building as a team, there is also a possibility that your

understanding of the topic on hand was not aligned.

To collaborate successfully, everybody on the team must truly believe that everybody

in the team is equally brilliant, have unique perspectives and ideas, they care about

others and the objective on hand, and are fully committed. Most importantly, do

not judge others. This needs to be default setting irrespective of people’s roles and

designations.

Chapter 14 teChniques and tools for Managing digital teaMs

424

In a collaborative team, giving and receiving feedback should be seamless, unbiased

and without the intention of putting down colleagues. Giving and receiving feedback is

an art, and it needs to be learnt as well. Feedback given should be devoid of judgment,

and possibly be accompanied with suggestions. When people receive feedback, they

should know that the people giving feedback have their best interests at heart, and are

not acts of one-upmanship.

 Communicating as a CSF

Communication has long been considered a soft skill that embellishes and buttresses the

hard technical skills. This was not true earlier during the waterfall years and it definitely

isn’t true now. Communication is a glue that holds digital work together. It is the bond

that brings together various elements of a work product together. It is not an enabler but

the core. When a hiring decision is made, communication needs to be on top of the list,

and should be a decisive factor before rolling out the offer.

Good communicators don't just speak well. It is the message that they are trying to

convey that should matter. I knew an individual who spoke well. His voice was music

to others’ ears, and he brought a definite level of professionalism to the table. When I

worked with him, I realized that his message lacked substance. It didn’t contain specifics

but was rather generic—using wordsmithing to mask the actual message. Leaders need

to hear the underlying message and make sense of it before making a hiring decision.

Not all good communicators are great orators. There are different types of

communication and the exercise of making a communication an essential aspect is not

to choose orators. Remember Matt Mullenweg’s interview using text messaging—he

was testing the communication most prevalent approach at Automattic. Likewise, when

candidates are interviewed, hear what they are saying rather than how they are saying

it. When I was running operations for a client, I worked with an incident manager who

liked to document minutes, note actions, and update tickets. When I read his updates,

I rarely had follow-up questions. His updates were complete, clear, concise, and

importantly, he was able to predict the possible follow-up questions that some of the

stakeholders may have, and would provide details around scenarios as well. I worked

with others during the same tenure, who were excellent in writing process documents

and standard operating procedures, but were average orators. People may be great

communicators but not in all the forms, so it is important to hire appropriately.

Chapter 14 teChniques and tools for Managing digital teaMs

425

Then there are communication preferences. Similar to how we have synchronous

and asynchronous ways of working, there is synchronous and asynchronous

communication. A video meeting is synchronous in nature because the information is

exchanged in real-time. Communicating over email is asynchronous in nature because

the exchange takes place when the team members are able to respond to emails.

Christoph Riedl and Anita Williams Woolley conducted a study (https://

behavioralscientist.org/bursty-communication-can-help-remote-teams-thrive/)

involving 260 software engineers spread across geographies. They were given a task—to

develop an algorithm that could recommend the ideal contents of a medical kit on a

space flight. Some participants were offered cash prizes in order to study the effect of

perks on the quality of the delivery. Work efficiency picked up briefly, but the quality of

the outcome was unchanged. Clearly, cash incentives (or perks to generalize) did not

improve quality.

However, what did the trick was bursty communication. It is a term that the

researchers coined which means bursts of back and forth communication between

team members—similar to the rapid feedback concept that is leveraged in DevOps.

The teams that employed bursty communication for exchanging information and ideas

did well, and the quality of the product improved a great deal. The teams that did not

lagged behind, and the quality remained the same. Reading this data points to quick and

rapid communication having a direct effect on the quality of the work product. The data

pointed out to a 24 percent increase in work efficiency when bursts were involved.

What the bursty communication is doing is aligning the thoughts and activities of

team members and fostering collaboration. Team members get the necessary input and

information to carry their work full stride. This also points to remote teams doing great

when they are able to collaborate well.

Bursty communication or synchronous communication need not be over voice or

video call. During the study, it was found that email exchanges were rapid and bursty

in nature, and although it is categorized as asynchronous, it was used effectively as a

synchronous form of communication.

 Managing Virtual Meetings
I wouldn’t go so far as to state that meetings are time wasters, but the time spent meeting

is time that people are not working. It is a deterrent to productive use of time. So, should

we stop meetings altogether? No, there is a place for meetings, and its place is right at the

Chapter 14 teChniques and tools for Managing digital teaMs

https://behavioralscientist.org/bursty-communication-can-help-remote-teams-thrive/
https://behavioralscientist.org/bursty-communication-can-help-remote-teams-thrive/

426

end. Meetings should be set up if the other forms of communications fall short. Meetings

should be your last resort. My personal preference for communication is text messaging

through collaboration tools, then email, then phone calls/calls on collaboration tools,

then meetings.

My preference is also dependent on the type of message that I am trying to send.

Information to be passed or received is usually not urgent, so asynchronous forms of

communication using text messaging or emails generally work. If it’s urgent, I generally

call people using collaboration tools or via their cell phones. This is the fastest way to

get a hold of people (if they are available). If nothing works, there needs to be a bit of

planning, advance notice and carving out a slot for scheduling meetings. I talk about it

more later in this section.

The need for meetings has been necessitated by remote working more than ever.

Information exchange used to take place informally by the water cooler and over a cup of

coffee. All these are now on track to be done to be through meetings.

Physical meetings are tiresome because of the effort required to plan, schedule, and

to run them. A level of complexity for physical meetings is the location to meet in, its

availability and participants’ availability in the location. For people who shuttle between

meetings, imagine the time and effort needed to move between buildings and floors.

All this is wasted clock time, which is a potential saving in virtual meetings. There are

debates in various circles on the effectiveness of virtual meetings over physical ones, the

number of people who are siding with virtual outnumber those with physical meeting

preference.

The argument for virtual meetings is its dynamism and the agility with which

meetings can be scheduled and run. With teams spread across the globe, virtual

meetings should be the norm and should not be seen as a rainy-day backup for physical

meetings.

The proponents of physical meetings argue that they are impersonal, attendees

lose focus and attention, and they are prone to technical glitches. The arguments on

both sides are true, and as we move forward in the digital ways of working, we should

acknowledge and accept that there is place for both kinds of meetings. Co-located

teams may find it comfortable to attend physical meetings, and meetings involving

executives and CXOs fair better physically because of the physical interaction and the

potential impact.

Chapter 14 teChniques and tools for Managing digital teaMs

427

 How to Run Virtual Meetings Effectively
The pandemic has been a great teacher and has taught us how virtual meetings are to be

run. When the pandemic started, participants mostly knew how to join meetings, but did

not exploit the complete feature set of the meeting software. There were certain rumors

in select circles on the security aspects of certain meeting platforms but over a period of

time, they have been dispelled, and teams have started to use its features increasingly.

Either with physical or virtual meetings, the basic etiquette that is not followed

enough is accepting or declining meetings. The meeting host needs to know who is

attending and who isn’t, because there is a potential to either reschedule or postpone a

meeting based on the attendance. Managing virtual meetings is an art. The following are

some of the areas that need to be covered reasonably to manage effective meetings.

 Meeting Platform

There are a number of virtual meeting platforms—Microsoft Teams, Google Meet, Cisco

Webex, and Zoom being the popular ones. The feature set among the platforms is more

or less similar. The audio and video quality are alike. Certain organizations have opted

for one over the other, so the choice of a platform is removed. Suppose this isn’t the case.

The meeting host needs to consider the features used during the meeting and choose

accordingly. Microsoft Teams has an intuitive interface integrated with chat feature that

remains as is even after the meeting has concluded. The participants can use the chat

feature to continue discussing ideas long after the meeting is over. This is definitely a

feature that would sway me toward MS Teams over the other biggies that do not include

this feature. Also, some of the platforms may not be available in certain geographies,

which could be a main consideration as well.

 Technical Setup

There are constraints with our workspaces. Many people work in their bedrooms or in

an empty room. The acoustics may not be studio class, but there are certain things that

you can do to make the meeting experience better. The majority use laptops that have an

integrated webcam and a microphone, which works well for the most part. Users of this

setup need to ensure that they remain closely rooted to the laptop, as the microphones

that are situated on the display screen are not very sensitive.

Chapter 14 teChniques and tools for Managing digital teaMs

428

If you are using a docking station plugged with an external camera and microphone,

opt for a non-wide angle camera mounted at eye-level. Webcams generally come with

generic microphones, which do a decent job just like the laptop integrated ones. If you

are going for a separate microphone setup, ensure it is a unidirectional microphone to

avoid picking up feedback and other disturbances. If you don’t want to invest in external

microphones (as they can be expensive), any decent headphone with mic would do as

well. I personally try to avoid it, as it tends to hurt my earlobes after long hours of usage.

Yes, I spend a good number of hours in meetings.

Suppose you are sitting in an empty room. There is a possibility of echoing, which

can be disturbing to other participants. Consider adding furniture or acoustic panels to

the room.

 Meeting Plan

A meeting needs to be planned after careful consideration. If the objective can be

achieved by shooting some emails back and forth, go for emails rather than a meeting.

After determining that a meeting is required, schedule the meeting at least 48 hours

ahead of time. This time will help the participants prepare for the meeting (if needed), or

move other meetings around if they are busy.

Every meeting invite should be thought through from the objective it is serving.

What is it that you want to achieve in this meeting? Based on the answer to this question,

the agenda needs to be set, and should go out along with the meeting invite. If there is

preparatory work that needs to be done by the participants, call it out loud and clear.

The goal is to make the most of the meeting and make the most of the time that is being

invested.

Invite only those who have a role to play in a meeting. I have seen a practice that is

rampant across organizations, inviting people just because they are part of a team or

could influence others in joining the meeting. Every participant’s time is precious, and

the meeting host needs to respect that fact.

 Meeting Props

In the digital ways of working, I find it hard to agree that we can have effective meetings

without props. These could be presentations or certain templates that capture data or

a whiteboarding tool so participants can contribute collaboratively. A presentation is

a minimum requirement and the meeting host must ensure that it is in place before

the meeting begins. What is even better is when the presentation is shared with all the

Chapter 14 teChniques and tools for Managing digital teaMs

429

participants. It will make the meeting efficient as the participants can directly get into

discussing the differing views and the way forward rather than having to learn about the

contents of the presentation during the meeting.

A mural board is a great addition to virtual meetings. It helps collaborate actively

during the meeting. Of course, not every meeting requires the use of a mural board, but

if collaboration is an expectation, a mural board is a good option.

 Ground Rules

If there are a number of participants in a meeting, it is recommended that the meeting

host draw up the ground rules and communicate them to the group during the meeting

or along with the meeting invitation.

Ground rules can be as simple as participants keeping their microphones on

mute when others are talking, keeping their camera on, and raising their hands before

speaking.

If the meeting is being recorded, call this out before the meeting begins. It is a good

etiquette to get agreement from all participants before recording. Some participants may

not be comfortable with the meeting being recorded or some organization/country rules

may not permit meetings to be recorded.

 Meeting Etiquette

Virtual meetings are generally held from the comfort of our homes. So, it is possible that

the participants may have just woken up to attend the meeting. It is therefore preferred

to keep a professional outlook when you are in meetings with the camera turned on.

When you are on a video call, look at the camera when you talk and not at your screen.

I know that it is natural for us to address others by looking at their faces, but with virtual

meetings, you need to see them eye to eye, and that effect can be brought about by

looking into the camera. It takes some practice getting used to looking at the lens while

you speak.

Whether there are ground rules in a meeting or not, keep your microphone on

mute unless you are speaking. It can be annoying to have disturbances flow through

participants while other members are talking. Also, raise your hand to talk, so that

the current speaker or the meeting host can ask you to speak at the end of a logical

conclusion.

Chapter 14 teChniques and tools for Managing digital teaMs

430

Most importantly, we are meeting virtually using our laptops, where email and chat

messages keep flowing in. We might have the urge to respond back to them as soon

as the notification pops up, because we are in listening mode and not talking. Resist

this urge, and if possible, turn off your notifications or the application itself to avoid

getting distracted. I have heard participants asking for things to be repeated when it was

said slowly and clearly the first time. This is annoying because it is not only a waste of

everybody’s time, but it also is a form of disrespecting other participants. If you need to

respond to an email or take a phone call during a meeting, let others know that you are

away from the meeting using the chat window.

The meeting host must also ensure that the topic discussed is on the agenda and

not a digression. It is quite common for people to be taken over by emotion and discuss

topics that lie outside of the agenda. Generally, you will find the dominant speakers

move the meeting in a direction of their choosing. The meeting host needs to keep such

things in check, and ensure that the goals of the meeting are moving toward completion.

 Meeting Initiation

Meetings have to be initiated by the meeting host alone providing the context to the

meeting, calling out what the objectives are, and the ground rules (if any). Depending

on the people attending the meeting, a round of introductions needs to be on the cards.

The introductions should not be a lengthy narrative of experience and span of control. It

should be the name, geography, and the role/designation.

Depending on the participants in a meeting, an ice breaker could be a good call.

This situation may arise if the participants are not known to each other, and if there is a

certain level of tension in the virtual room.

 Note Taking

My favorite aspect of a virtual meeting is the ability to take notes collaboratively.

Platforms such as MS Teams have integrated a meeting notes feature inside the meeting.

Anybody in the meeting can take notes, and everybody else can tracking them. Suppose

additions need to be made; others can jump in and start making changes right away.

There is no need of the minute taker to publish the minutes and receive feedback about

changes. More importantly, the meeting notes remain in the same meeting construct,

and can be referred to/modified by participants even after the meeting is closed.

Chapter 14 teChniques and tools for Managing digital teaMs

431

 Summary
This chapter was not about theory but about the practical aspects of managing a digital

team. The majority of digital teams work remotely these days, and for this model to

thrive and continue working, organizations and leaders have to create an environment,

put things in place, and consistently work with the team to enhance the remote working

experience. This extends to the routine task of hiring the right team members and

running virtual meetings. The Automattic case study is an excellent example of how

the conventional means of hiring may not be the right way to hire people who work

remotely, and who work in a culture that is entirely different from what it was a few years

earlier.

Chapter 14 teChniques and tools for Managing digital teaMs

433

CHAPTER 15

Adopting a Product-Led
Approach
For organizations to thrive, they need to focus on a pivotal aspect that will allow them

to grow roots and put their strategies in place. Organizations often put customers first,

they meet customers’ needs and change strategies around what customers want. So

does it mean that they are a customer-centric organization? Yes, they are. In fact, every

organization survives because of its customers. But an organization that relies on

customers alone, or rather an organization that is basing its approach on an outside

entity alone, is not going to last long. Even with the best of efforts, customers may

switch to a competitor, or the company may go bankrupt, which would threaten the IT

provider’s existence. Primarily looking outward toward customers is a recipe for disaster.

Organizations need to balance this outlook with an inward-looking approach for their

growth and everything else that makes them players in the market.

Organizations can broadly be classified under services or products. A company like

ManpowerGroup is in the service industry of recruitment. They find the right people for

organizations that are looking to hire. They act as a bridge between the candidates and

the companies. Their offering in simplest terms is a service that understands customers

implicit and explicit requirements and finds possible candidates who fit the bill. Such

an organization grows through their service offerings, and their growth trajectory

is centered around services. How they conceive their offerings, shape their service

offerings, and execute on their offerings determines their fate. This is an example of a

service-led approach.

On the other hand, we have a product-led organization which is gaining steam and is

considered as the key pivot for organizations to grow and outperform in the digital age. A

product-based organization centers its strategy around a product, and whatever decisions

it undertakes, it does so through the lens of the product. LinkedIn is a website that is

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9_15

https://doi.org/10.1007/978-1-4842-9072-9_15#DOI

434

social media for professionals, it is a place for recruiters to find prospective candidates, a

platform for companies to showcase their capabilities, and a channel for sales partners

to find leads. For LinkedIn, their existence remains on the basis of their website, which

is the product they are centering around. All the various interactions between various

stakeholders happen through this product. The experience of using the product by these

stakeholders is defined by what the product can do and how effectively it gets done. The

LinkedIn site has seen thousands (if not more) changes—to their features, UI, algorithms,

and so on. These changes have been brought about from user feedback and a great

deal of backroom ideation. LinkedIn is a classic example of a company that follows the

product-led approach, which is discussed in the rest of this chapter.

A company could be in the business of selling products and sales could

happen through cold calling, making visits to key personnel, or through targeted

communications. A used-car showroom that houses multiple brands of cars is an

example of such a company. Then there are companies that are into marketing. Their

job is to market products and services, and they center their growth around their ability

to bring positive interest to products and services by the potential market. WebFX is a

digital marketing company that helps businesses promote their interests. Viewing sales-

led and marketing-led approaches through a different perspective, we could categorize

them broadly under service or product led companies. For instance, a company that

sells, like the used car showroom, is a service that is being offered for car owners who

are looking to sell, and car buyers who are looking for used cars. It is perhaps a service

company. WebFX has become what they are today based on their Internet presence

(website), which is mostly driven directly by customers who interact directly with the

product (website). The customer experience is through the website and perhaps it can

also be considered a product-led company.

The trend that we see in the market today is that organizations are looking to

transform themselves into product-led companies. Gartner suggests (https://

www.gartner.com/smarterwithgartner/how-to-become-a-product-centric-

organization) that organizations should look to become product-centric to be in the

best position to transform their digital businesses. They state that organizations should

look beyond the current and transactional aspects of the business and focus heavily on

developing their products, which will be the vehicles for future success.

Chapter 15 adopting a produCt-Led approaCh

https://www.gartner.com/smarterwithgartner/how-to-become-a-product-centric-organization
https://www.gartner.com/smarterwithgartner/how-to-become-a-product-centric-organization
https://www.gartner.com/smarterwithgartner/how-to-become-a-product-centric-organization

435

 What Exactly Is a Product-Led Approach?
The product-led approach does not give guidance on how to build products. It is an

operating model that makes products the center of the company’s universe, around

which all other activities center, including the customer experience. Like how DevOps

is more of a culture than a technology or any other aspect, this product-led approach

requires a different thinking, which we refer to as a product mindset.

A product-based company strategizes the company’s objectives and goals around the

product. There are several digital examples of companies, like hotels.com and LinkedIn,

whose identity is their product, and rightly so. Customers interact and experience with

such companies through their product and product alone. If these companies want to

diversify, they can add more features to execute their plans on their existing products or

create additional products to meet their end goals. Yes, you read that right. A product-

led company does not necessarily mean that they need to put all their bets on a single

product. They can have as many products as needed at their disposal. Look at Google

and Amazon, for example. They have several products in their armory. At the time of

this writing, Google has 71 products in a stable state. They started with Google Search as

their initial product and have added products over the years. They have retired several

products as well, such as Picasa and Google+. By the time you are reading this, do not

surprised to find that products have been added or removed from their repository.

 Why Should Companies Swivel Around Products?
There has been a fundamental shift in the way consumers use products. A few decades

ago, procuring software was seen as an investment by companies. It was generally a

one-time expenditure and the companies realized perpetual revenue through the services

and maintenance they provided. In this period, you typically had the sales folks who

made the pitch and followed it up with promises until the transactions were confirmed.

This was the time when every software purchase went through the CIO’s office and there

were elaborate approval processes to onboard into a company’s environment.

Around 10-15 years ago, there was a shift in software use. Web applications hosted on

cloud infrastructures were introduced. The increasing costs of data center maintenance

and development of bespoke applications gave way to increased dependence on web

applications that were hosted centrally (generally) by the product manufacturers. This

further changed the licensing model from one-time to period based. This was attractive

because companies could hold on to their purses as the payments were spread over

Chapter 15 adopting a produCt-Led approaCh

436

years, and it prevented companies from having to invest heavily. The risks associated

with this approach were also mitigated. The CIO owned and controlled software

acquisition started to lighten up with individual teams and service lines opting for the

tools of their choice. In fact, it was no longer considered a tool or utility for the team to

deliver work, but rather a necessity to innovate and deliver.

The digital age can also be referred to as the age of tools because we depend on

not just one but several of them. Take a look at the applications on your phone. How

many applications do you use? I have a few dozen at least, and although these products

appear to stand on their own, they don’t. They are often integrated. A particular software

program may leverage Google’s sign-in service to authenticate users and may be

integrated with PayPal or a UPI (unified payments interface) system to make payments.

Google AdSense may fetch data (anonymously?) from other applications to display

contextual ads. You can find several such examples just by looking at your phone, so

imagine the depth of integration at an enterprise level. The digital age is the era of

connectedness, an era where tools can be tightly knit and data flows are seamlessly

integrated. In this period, there is all the more need to make the products as the center,

and build an operating model around them.

Think about this—earlier software product investments or expenditures were quite

hefty. Once a customer made a decision to move in a certain direction, there was no

turning back. The digital age has moved into a subscription model where switching

software products is like picking treats from a menu in a restaurant. You can have one this

month, and change your mind the next. A software manufacturer is therefore forced to

be on their toes and never let their guard down. The product should be attractive today,

next month, and the next year too. This requires continuous innovation and faster feature

delivery cycles. Product companies therefore need to remain competitive at all times to

remain relevant in the market. They need to have their ears to the ground to hear what

customers are saying. They need to know what the competition is doing. They need to be

aware of the governances that could affect them. The decision-making process should be

based on solid on-the-ground information and not based on gut feelings. In short, they

need to be on top of their game to be a force to reckon with. Based on all the information

received, they must act swiftly to be competitive and to retain and gain customers.

The marketing for software products does not take the traditional route either.

Floating ads on television, print, and digital channels just won’t do it anymore. The

customer needs more proof that the software serves a purpose before making a buy

decision. They offer the software on a trial basis, or even better is to offer the software

Chapter 15 adopting a produCt-Led approaCh

437

for free with limited features. As the users get accustomed to it, the dependence on

the software product increases, new habits form, and the quest for more will lead to a

decision to buy the software. When customers start to see the value behind software

products, they become the brand ambassadors of it by sharing the experience with

their circle of influence. The digital play is a double-edged sword. While the customers

have the option to pull the plug anytime, the manufacturers don’t have to go hard after

potential customers. If the software is worth it, a tactical play like offering freemiums

will do the trick. YouTube is a good example. The product is free and is synonymous

with video streaming. They offered a premium version of the software in 2014 for a small

fee. The users could experience ad-free experience and access to certain titles that are

restricted behind the paywall. You can try the Premium version of YouTube for free for a

limited time—between 1 and 3 months depending on the time of the promotion. I watch

plenty of stuff on YouTube and I can be quite impatient with the ads, especially those

that interrupt midway through the videos. I signed up for Premium with a three-month

trial period. The ad-free experience of YouTube was great. I loved the experience and to

top it off, I could listen to YouTube with my phone screen turned off, another feature that

I adored. I have now become a paying customer and more importantly, I turned some of

my team members and friends into Premium subscribers as well.

The digital age is all about balance between external perspective and internal

introspection. While sales and marketing is sorted out through testing by fire, the

internal processes needs to stand up and be counted. Digital products run on data,

and every click of a button, every feature accessed, and all events have to be recorded,

analyzed, and feed into the decision making process. The recommendation videos

on YouTube are one such feature. Based on the type of videos we watch, more videos

are placed on our home screens. I used to follow a couple of YouTube channels that

are about fitness and body building. Thanks to the recommendations by the YouTube

algorithms, I have come across many such channels that I find worthwhile. As a

user, I can see value from this feature. For YouTube developers, their data analysis

systems ideally measure all the instances of recommendations being clicked on, and

repeated videos watched on such channels. Based on the information gathered and

analyzed, their algorithms can be tweaked to serve customers better. The other aspect

of introduction of new features that has continued on from the DevOps period is the

approach to releasing new major versions. A/B testing and feature flags are some

techniques that have continued to dominate.

Chapter 15 adopting a produCt-Led approaCh

438

 Why Should Products Exist?
A product should exist if it meets a business objective, if it can solve a problem for a

customer or improve some aspect of life experience in customer’s current view. Every

initiative undertaken by software companies must therefore be clear about the business

objectives they are trying to meet with the products. What is fancy these days is to get the

funding for new projects, assemble teams, and move swiftly toward execution. The best

of project management principles is applied to track the delivery. These practices were

deemed good maybe a decade or two ago, but in the digital age, software companies

should take a closer look at what they are building, why they are building it, and how

they are going to proceed building.

You cannot build products with the project management approach, what is the need

of the hour is product management, which will enable you to think about products,

think holistically and measure differently. Author of Project to Product: How to Survive

and Thrive in the Age of Digital Disruption with the Flow Framework (IT Revolution

Press, 2018), Mik Kersten believes that project management tracks and measures triple

constraints that are irrelevant. Tracking the number of activities completed and the

budget consumed gives a sense of fulfillment that is superficial. These do not give the

real story, the story of how the customer is receiving the output.

Product management, on the other hand, opts to measure the difference the product

is making to the customers. The measurements are external, based on feedback from

customers, rather than relying on metrics arising from triple constraints. A typical

project plan executes a plan based on the features that need to be developed. A product

roadmap is dynamic and is flexible enough to swivel based on the customer feedback.

In product management, you assess success based on the value delivered to the

customer. This is in the form of feedback, which is expected to be subjective in nature.

Therefore, it is important to give the customer access at the earliest opportunity—say in

a beta stage with a limited set of features. A minimum viable product (MVP) is built and

to test the waters, it is released to users—maybe a few or the whole public depending

on the strategy the company wants to take. Invite users to experience the application

before it goes mainstream. In my experience, users are often willing to don the role of

beta testers and are eager to provide feedback. It’s a win-win situation with the software

manufacturer accomplishing live user testing, where an exhaustive testing cycle can

often take plenty of time and resources.

Chapter 15 adopting a produCt-Led approaCh

439

Risks exist in both project and product management methodologies. In project

management, it is more pronounced with the appetite to taking risks is limited to the

conceived project activities—triple constraints. In product management, there is a long

rope. You release an MVP to customers. They provide feedback. You can then release

another MVP and then another. You can dig at it as long as it takes to get the right mix

of features that help customers solve their problems and create a positive impression.

The risks are further mitigated in product management by building product teams. A

product team is a mix of cross-functional team members who come together to work as

one team and for the product. Unlike project management, they do not sit in a matrix

environment, and are not generally stretched between projects. And while the project

teams require a certain strength depending on the size and budget, a product team often

starts small and incrementally grows as the product starts to mature.

 The DNA of a Product-Led Company
A company that is into software development can choose to take a path that is

conventional and well tread or they can take a rollercoaster ride called product

management that is apt for the digital age. It is a rollercoaster in a good sense that the

road to fruition is an iterative exercise with no exact destination. The ride is filled with

successes and failures, and most importantly, it celebrates successes and includes

lessons.

A company that professes to undertake a product-led approach needs to tick off a

few things. There are number of features that such a company must indulge in, and the

critical ones are shown in Figure 15-1.

Figure 15-1. DNA of a product company

Chapter 15 adopting a produCt-Led approaCh

440

 Product Is King

The product needs to have a seat at the table. Companies have to make business

decisions through the lens of the product. By giving the product its rightful place, the

product gets the right priority and focus to grow. There could be one product or multiple

products for a company to manage, but the business decisions have to be made through

their products and products alone.

LinkedIn is a product based company and their business actions should be driven

to align with the product’s roadmap and the value it delivers to its users. If the company

intends to monetize further, their revenue plan will be drawn using the product—maybe

like charging certain professionals a monthly subscription fee, similar to Elon Musk’s

plan to charge blue tick holders. If the company intends to expand further to students,

they can make feature changes on the existing LinkedIn product or create a new product.

When a company makes all its decision around a product, the product gets the right

attention. If LinkedIn was to monetize by hiring talent specialists to work as a consulting

company, they would lose their focus where the product is not receiving undivided

attention and focus.

 Obsess Over Data

There was a time when collecting data was not as rampant as it is today. We used to read

and analyze the limited data that was available for trends and opportunities. Today, all

the toolsets that we leverage are powerful to capture data that becomes hard to consume

all of it. In other words, there is more data than needed, and sifting through what is

required versus the junk is the critical success factor.

All product interactions with the customer need to be captured—every click or page

viewed. This data is gold because it tells you what the customers are interested in. By

knowing what the customers are keen on doing, you can alter/build your products to

meet their needs. Data speaks more than the surveys that are sent out to customers from

time to time. While a customer can say one thing, they may have other things on their

mind. To capture the intent of customer’s actions, data captured through the products is

pure gold.

Chapter 15 adopting a produCt-Led approaCh

441

 Deep Collaboration

Collaboration is an aspect that makes its presence in every digital area. I have discussed

this aspect in various sections in this book, and yet it cannot escape the clutches when

it comes to the makeup of a product-led company. A company that is truly product-

led will find ways to foster collaboration between various stakeholders, and not just a

one-team culture, but by bringing together various parts of the organization to consume

data from the same source, align, and handshake on integration points and build a deep

connection between the teams that build the software and the teams that interact with

customers.

Collaboration between internal facing and external facing teams will give product

companies an edge in building the products. The beauty of product-led companies is

that the alignment of all business decisions around a product applies to congregation of

teams around products, and working as a single unit in the unified success of products.

 Customer Experience

Customers interact with products, and therefore it is key for companies to make the

customer experience as friendly and fruitful as possible. Customers should form their

opinions based entirely on their interactions with the product, and if these opinions are

good, then the product would have created a deep impact for customers to continue

using it.

Amazon’s shopping application is a good example to invoke customer experience.

The company has an intuitive interface. Other aspects of shopping—like modifying and

canceling orders—are in the hands of the users. They treat their customers as king by

providing the controls to their orders, and making the tracking information available at

the touch of a finger. The customer feels empowered and in control of their purchases,

and this experience encourages them to shop more. Contrast this with another

marketplace whose name I wish to withhold. The products are cheaper than Amazon

but the search feature is either missing or is hidden from the customer’s view. Once you

place an order, you have no control other than to track it. If you want to cancel an item,

your options are limited. And there are no options to return a product unless you talk to

a customer agent. Comparing the two experiences, a customer is much more likely to

buy products on Amazon even if the price is higher than from the competitor, who has

not made a good attempt at creating positive customer experiences.

Chapter 15 adopting a produCt-Led approaCh

442

The other aspect of customer experience is to anticipate what the customer would

like to do next. By using data that is available to companies, data scientists can be

employed to make educated predictions on the customer’s future intent and a process of

ideation can follow to identify the upcoming product roadmap.

 Benefits of the Product-Led Approach
The product-led approach is relatively new. It has stood the test of time like other

traditional practices have. However, given the experience of running products through a

product-led approach, there are specific advantages that have been unearthed so far. Yes,

there are several common ones with the DevOps benefits as well, as both are derived

from the same family.

 Enhanced Customer Experience

As the product is the center of the universe, and because the customer engagement is a

derivative of the product experience, you can perhaps affirmatively conclude that you

are putting customers first, considering their recommendations and delivering features

that they need and embellishing the product based on gut instinct.

 Product Growth

Molding a product to the customer’s needs presents you with an opportunity to

understand the customer better. As long as you are on the same wavelength as the

customer, there are several collateral benefits like growth in business—either directly

or through references. Customers praising your products is the fastest way to grow your

business. The other problem that plagues the digital industry is customer retention, and

this too can be handled successfully by delivering products that customers require.

The product-led approach also provides insights into the ways of customer needs,

and this has the potential to generate new ideas for developing new features or new

products. For any product to survive the test of time, it needs to add real features

that solve new problems for customers, and it needs to be differentiated from the

competition, which requires innovative thinking. The product-led approach ticks off all

the boxes and helps achieve product’s goal of surviving and thriving in the coming age.

Chapter 15 adopting a produCt-Led approaCh

443

 Rapid Development

Developing quickly without hindrances, with the freedom to experiment with the aid of

receiving swift feedback, which is a characteristic of DevOps, this adopted practice is a

good product-led approach as well. Quick iterations of development followed by release

to customers is the fastest way to get real on-the-ground feedback. Using feature-flags

and A/B testing, you can create a subset customer base from whom you can expect

feedback, without the need to release to all users.

With rapid development, customers realize value faster, which translates to better

customer experiences, a new customer base, and better customer retention, among

other benefits.

 Understanding Value Streams and Value
Stream Mapping
DevOps and Agile focuses on rapid development while keeping its ears close to the

ground. The prime objective of these practices is to ensure that software development

happens unhindered. To ease the hurdles, impediments are identified and sorted

and automation is introduced. While the practices have shown great promise, there

is a fundamental aspect of the operating model that needs to be considered to make

Agile and DevOps work. Or, in other words, for a product-led approach to work, the

operating model should be designed in a specific manner that allows information to flow

seamlessly and to open all channels of collaboration.

Instead of considering projects, the concept of value streams has taken shape

in a product-led approach. Consider Figure 15-2, which shows the structure of an

organization that operates in a matrix type.

Figure 15-2. Matrix type organization

Chapter 15 adopting a produCt-Led approaCh

444

A matrix type organization is organized based on the capabilities of team members.

You have functions created in such organizations catering to different skillsets. All the

Java developers and architects could be listed under a Java function, ITIL professionals

under the operations function, and manual and automation testers under the testing

function. When a project needs to be stood up, select resources from each of these

functions are handpicked to form a project team. Since projects are temporary, upon

completion of a project, these team members will return to their respective functions.

It works fairly well considering that the team members will have a permanent home

with other team members with the same/similar skillsets. Functions generally exist with

the objective of enhancing capabilities of individuals. On the downside, team members

coming from various functions represent silos. The information that needs to pass from

one team member to another, say for example from a developer to a tester, has to flow

through from one silo to another. This information exchange is far from seamless for

a simple reason that team members from different functions do not easily trust each

other, and hence the collaboration effort toward the project is restricted to sharing

minimal information. This will further result in delays due to multiple handshakes.

More importantly, each of these silos engages in one-upmanship that works to highlight

and showcase their work rather than working together for the outcomes that benefit

the customer. The customer in such cases will not be the center of focus, which is a big

problem.

The solution to this problem is to create value streams.

 An Introduction to Value Streams
During my stay in the United Kingdom, I employed the services of a car cleaning company

that was all manual labor and the efficiency at which they cleaned cars was a treat to

watch. Even when there were a few cars in front of me, I never had to wait for more than

a couple of minutes to get the cleaning started. On the contrary, in the United States, the

car cleaning services were mostly automated. Coming back to the UK car cleaning service,

this company employed at least eight car cleaners. They were not meant to clean eight

different cars in parallel, but rather to focus their efforts on every car that comes through.

As you arrive at the station (or when your turn comes up), the first person rinses the car

with water from a jet stream. Then you move onto the next (like drive through) who applies

soap all over the car’s external surface. Then the third rinses the car with jet stream water.

At the final juncture, you are asked to step out of the car, and four to six people vacuum the

Chapter 15 adopting a produCt-Led approaCh

445

interiors, wipe the internal surface with semi-wet cloth, and dry the external surface—all

in parallel. Before I could realize, I was looking at a clean car—inside and out. From start to

finish, this would take less than ten minutes.

Putting on my analyst hat, I believe that the car cleaning system works so efficiently

(and effectively), because the staff work as a single unit. They have minimal hand- offs,

and the minimal are seamless, and it happens like clockwork. During the final phase of

cleaning and drying, each knew what they were doing and there was no confusion about

the division of labor. I barely saw them talk to each other to discuss what was done, what

needed to be done, and so on. This car cleaning process is an excellent testimonial for

collaborative work that we can use in IT offices. Value to me is a clean car, which is what I

expected as I entered the car cleaning station. The activities they undertook to clean the

car represent the value stream.

A value stream is a series of activities that are undertaken from the initial request

until value is created (for the customer). Value is subjective, and in the eyes of the

customer, something that is beneficial and expected. For example, if the car cleaning

company gives me free car perfume while my car’s cleaning rate is average, the free

product does not make up for the sub-par cleaning service. As a customer, a clean car

is at the core of value and needs to be delivered, anything on top may add value if and

only if the core value is delivered. A value stream therefore is focused on creating value

through the series of steps undertaken from start to finish. Sticking with the example of

the car cleaning service, the value stream looks like Figure 15-3.

Figure 15-3. Value stream illustration

Chapter 15 adopting a produCt-Led approaCh

446

 What Is Value Stream Mapping?
Value streams are visualized to understand how the activities progress, whether the

activities are delayed at a particular stage, and what causes the delay. This visualization

is referred to as value stream mapping.

This method of visualization has its roots in the manufacturing industry and is a

popular concept in the lean manufacturing community. Early in the 20th century, Toyota

was known to have employed this technique in their car manufacturing and assembly

process. As the car goes through the assembly, Toyota engineers identified the reasons

for slow production and where the bottlenecks were formed. It helped them immensely

by identifying the root cause of the delays on the assembly line, and as a result, it

made them productive. They reduced waste associated with delays. As they solved the

problem, the company collaborated better, which was an unintended benefit of the

exercise. An illustration of a value stream map is presented in Figure 15-4.

Figure 15-4. Value stream map illustration in manufacturing (credit:
www.lucidchart.com)

In this manufacturing process, there are four stages: mixing and drying, forming,

glazing, and firing. To carry out manufacturing across all the four stages collectively

takes two minutes and one second. However, in between the stages, there is a certain

wait time. For example, between glazing and firing, there is a wait time of one minute

and eight seconds. The wait time adds up to ten minutes and six seconds. The entire

Chapter 15 adopting a produCt-Led approaCh

http://www.lucidchart.com

447

manufacturing process therefore takes twelve minutes and seven seconds. The actual

value adding work is only two minutes and one second, while the wait time (which is

a waste) is ten minutes and six seconds, which is a non-value activity. The engineers

behind this process can get a better understanding of the delays at every stage, and with

non-value work running at five times the value work, improvements can be brought

about to make the process productive and reduce waste.

In manufacturing, we have physical parts that move through various processing

units and in a software, or digital industry, the setup is similar with sets of activities that

succeed each other. The problems in manufacturing industries—like accumulation of

waste and productivity loss—are common occurrences in digital industries as well. If

value stream mapping could help manufacturing, it can help digital sector as well.

Value stream mapping has been adopted in the product-led approach to help

visualize the development and operational processes. By measuring the process and wait

times, engineering architects are getting a better feel for the loss of productivity, which is

a major factor determining how quickly new software/features can hit the market.

The process of running a value stream mapping exercise and identifying current and

future states, if done well, will lead to better productivity and reduce waste that exists in

the system. However, the bigger collateral benefit is that through the process, while the

architects get a better handle on the system, they develop and can engage in a systems

thinking rather than looking at activities in isolation. A culture of strong collaboration

starts to emerge because the team starts to come together to identify the problem, reflect

on the possibilities, and arrive at solutions that can make them highly successful. The

product team is better placed through this exercise to accurately estimate their velocity

of delivering on features, get a better handle on measuring capacities, and gauge the

complexity of features. It is my experience that teams become a lot more disciplined after

being subjected to the value stream mapping exercise, because they can visualize the ill

effects of not maintaining discipline, like not working in harmony and neglecting certain

aspects of quality and guidelines. Team members will start to trust each other more than

before and communicating about various aspects of work becomes second nature. The

team becomes more efficient and effective, with information flowing both ways, giving

and receiving feedback, and talking through the challenges . Nothing tastes better than

success. With success at their backs, job satisfaction goes through the roof.

Chapter 15 adopting a produCt-Led approaCh

448

 Carrying Out Value Stream Mapping
Before beginning this section, I want to make the disclaimer that this is not a masterclass

for conducting VSM exercises. The intent of this section is to provide a glimpse at how

it is conducted, what is measured, and how the improvements are brought about. Value

stream mapping is a deep topic, and it warrants a book on its own. The mapping exercise

uses several symbols, notations, and rules that are disregarded in this book.

Value stream mapping has evolved over time. There are several elaborate processes

that can be undertaken for a full-fledged VSM implementation. However, the essential

steps are listed here:

 1. Document the current process

 2. Identify value adds and non-value adds

 3. Define a future state

 4. Find the root cause of waste

 5. Identify improvement initiatives

 6. Plan and implement

 7. Measure the value adds and non-value adds again

 Step 1: Document the Current Process

The process starts by identifying the current sets of activities. It includes identifying the

value stream, which essentially means where the trigger for value generation begins, and

where the customers see value.

It is possible that there could be nested value streams. During the identification and

documentation stage, it is critical that every step be documented.

Figure 15-5 illustrates a simple software development process beginning with

ideation until the software is deployed into production. The example also considers that

all the activities take place in a sequential manner, unlike the car washing value stream

in Figure 15-4, where certain activities are executed in parallel.

Chapter 15 adopting a produCt-Led approaCh

449

Figure 15-5. Value stream identification and documentation

Analysts who run VSM exercises first spend time with the team to understand the

flow of activities in the value stream and then they sit and observe if the flow is indeed

going as per the plan. The steps are documented based on the current practice rather

than the documented processes in standard operating procedures.

 Step 2: Identify Value Adds and Non-Value Adds

I talked earlier about the wait times that add to the delays and cause loss of productivity.

It is true but a closer examination of the time spent on activities will typically reveal

the nature of the activity—whether the activity itself is adding value or if it’s a gold-

plated step.

In Figure 15-6, the trigger for value creation starts by creating a wish list and then a

business case is developed for each of the wish list items. During observation, the analyst

identifies that the wish list, although is a trigger, is not considered seriously for building

business cases. During the business case development activity, the product owner and

key users get together and brainstorm to identify the next set of requirements. So in light

of this information, it is possible that the wish list activity is a non-value add activity.

Next up in this step is to accurately measure the processing time—the time taken

by the process step to complete the activity—and the lead time (or wait time), which is

the time between two process steps. During the lead time, the value does not flow, so

basically, the entire flow has stopped, which is potentially a delay and a waste. Also, the

process step itself may not be adding value to the value stream. For example, if you are

creating product documents before deployment that nobody reads, you are appending

time for a non-value add activity.

The output at the end of this step is illustrated in Figure 15-6.

Chapter 15 adopting a produCt-Led approaCh

450

Figure 15-6. Value stream map for a software development process

As per the observed report, the value add activities is 188 days while the lead time/

waiting time between value add activities is 390 days. Combining value add and non-

value add activities provides the cycle time, which in this case is 578 days. The cycle

time points to the time that is required for a wish list item to go through all the hoops of

getting documented, approved, developed, tested, and deployed, and this entire cycle

takes 578 days. The efficiency is calculated as 32 percent (value add/cycle time).

 Step 3: Define a Future State

The VSM objective is to reduce waste and improve productivity. If the current process

is set as a base, and improvements are carried forward on top of the current process,

it does not yield transformative results. Therefore, it is imperative that the analysts sit

down with engineering architects and other stakeholders as necessary to define a future

state that is forward thinking and leverages the digital thinking ways of working.

In the example, a few improvements have been identified, as illustrated in

Figure 15-7.

Chapter 15 adopting a produCt-Led approaCh

451

Figure 15-7. Future state value stream map

The future model considers fewer lead days between certain process activities. And

most importantly, the development model will turn into a hybrid Agile model, where

development and testing is carried out simultaneously, and not one after the other,

as was the practice in the current method. As per the defined future state, the overall

cycle time is estimated to cut down from 578 days to 403 days which is 30 percent more

efficient. Customers can now expect to get their software product 30 percent faster.

The process time has seen an improvement as well, from 188 to 153 days. And the

lead time has reduced significantly from 390 to 250 days. The efficiency of the planned

future state process now stands at 38 percent, which is an increase of 6 percent from the

earlier 32 percent.

Calculating efficiency in the process is an internal metric and does not necessarily

reflect on the efficiency of the value delivered to the customer. From a customer’s

standpoint, the cycle time is absolute and reduction in it matters and the rest of internal

processes like lead and process times are often ignored.

 Step 4: Find the Root Cause of Waste

The current process, which includes process times and lead times, exists because

of various reasons, which could include dependencies on other teams, resource

mobilization, defects and batch uploads, among others. In fact, these external factors are

typically the reasons for lead times, which elongates the overall cycle time.

Chapter 15 adopting a produCt-Led approaCh

452

While the future state plans and sets a vision for reduction and optimization in

each of these areas, they cannot be implemented by the pen stroke. Changes have to

be made elsewhere in the ecosystem to bring about efficiencies in the value stream. To

make those changes, the root cause of the delays needs to be identified. A number of

techniques can be used to identify root cause of issues, including Ishikawa diagrams and

five why techniques.

 Step 5: Identify Improvement Initiatives

The root cause may reflect on the tasks that are switched between multiple developers

in the development of a single user story. This task switching is adding delays owing to

hand-off related to issues and the learning curve between the frontend and backend

developers. An improvement opportunity is to bring in a full stack developer who can do

both parts of the work and cut down on the delays that plague the development efforts in

the current process.

This example shows the importance behind conducting good root cause analysis

exercises. Based on the identified causes, improvement initiatives are to be identified to

move from current to future ways of working.

Drawing up improvement actions should be done as a team. The entire team should

come together, understand the root cause, and find a solution or the way forward to

mitigate it. As the team works together, it strengthens its resolve to make the value

stream more efficient, and the team members end up owning the future state of working

rather than being asked to follow new processes.

 Step 6: Plan and Implement

The next logical step in the value stream mapping exercise is to prioritize all the

improvement actions, plan for their implementation, and go through with them.

One of the blunders that architects/analysts make is to adopt all the changes at once

in a Big Bang approach. This never works when you are trying to tweak multiple aspects

of a process. Team members are people, and people do need time to get used to new

ways of working, even if they support the initiation. The implementation must therefore

happen in a phase-wise manner, typically in the order of priority. Carry out the first

improvement initiatives, and once that settles down, do the next, and so on.

Chapter 15 adopting a produCt-Led approaCh

453

 Step 7: Measure the Value Adds and Non-Value Adds Again

Let’s consider that several changes were brought about, including the composition

of the teams, the processes employed, technologies leveraged, the cutdown in the

number of meetings, and other activities. How does the cycle time stack up now? Does it

immediately follow the timelines designed in the future state?

To find out, another value stream observation exercise needs to be carried out

by VSM analysts. Figure 15-8 illustrates the observed timelines after making all the

identified improvements.

Figure 15-8. Future state actual timelines

When observed, it was found that the cycle time had improved, from 578 days to

423, which is an improvement of 155 days. Customers got the new product/feature 155

days earlier compared to earlier process, which adds value to the customer community.

However, when the process activities were measured, the number of days spent did

not improve, despite bringing in efficiencies in multiple activity areas and running

development and testing in parallel. However, the lead times or non-value added time

reduced from 390 to 235 days, which brought down the cycle time as well. This lead to

further value to the customers. The efficiency of the value stream increased from 32 to 44

percent, while the future state plan predicted an efficiency of 38 percent.

Chapter 15 adopting a produCt-Led approaCh

454

The future state timelines are a north star and to reach the target, it may take

multiple iterations. Or to state plainly, such VSM exercises need to be conducted on a

regular basis to find opportunities for improvement and waste reduction, and to ensure

that the value to customers is maximized.

 Looking at Data and Metrics
As you develop new products or features, how do you know that these features are

accepted by users? Are they making a difference? Is your product selling well because

of your strategy to release features often? These are a sample set of questions that drive

data regarding your products, and in a product-led approach, this data is gold. But the

question becomes, what data should you process rather than where do you get the data?

A credit card product manager who has their ears to the ground will not be ecstatic

when a number of people sign up for their card. The number of people who sign up,

and the number of people who are approved for the credit card are just numbers, and a

quantitative measure that doesn’t tell the real story. People may sign up, but their usage

is driven through a different set of factors. With the competitive market in the offing,

every credit card has a wide range of features. A user chooses to swipe a card based on

the rewards/returns associated with it. User behavior is driven by certain things that

make the card look attractive. I remember in the early 2000s, American Express came up

with a new card that was transparent. At the time, other credit card products were quite

plain vanilla with dull colors. This transparent card was an eye catcher and I used it at

every available opportunity. Presumably the product manager of this American Express

card could measure the outcome—the number of swipes, daily active users (DAU), and

monthly active users (MAU), among others. Product managers should measure the right

things and go after what they really need in order to develop the product further and take

it to new heights.

Data is a double-edged sword. If you know exactly what you are looking for, you can

possibly influence the data collection process to suit favorable responses. For example,

if a product manager is looking to tempt more people into trying software before the

buy decision, they may start luring them with multiple months of freemium experience.

Although this may increase the trial users, they may not all convert to paying users.

I worked at Dell as a technical support specialist. My job was to fix laptop problems for

my customers over the phone. One of the key metrics that we tracked was first time fix

Chapter 15 adopting a produCt-Led approaCh

455

(FTF). After successful resolution of problems, if the same customer returns (with the

same or a different problem) within 48 hours, that would affect my FTF metric. So, I

devised a method to help with the metric. After successfully resolving issues, I would tell

customers to wait for at least 48 hours if they find the same issue or if they encountered

a different one before calling back, as I, their favorite support specialist would be back

to work after my weekly offs. It helped me a bit because I knew what I was measured on.

But it didn’t help the customers or Dell. While it’s important to know what to measure,

if product managers are too close to the data, the data may be interpreted not for what it

represents but based on what it needs to be.

 The Problem of Perspective in the Digital Age
With plenty of product data in our hands, it is often challenging to note which metrics

do help and which ones don’t. Yes, metrics such as revenue are commonly used, but it

doesn’t tell the entire story nor is it important to everybody in the product value stream.

When the pandemic hit, people switched to online shopping. Grocery companies

were not thinking about their revenues or profits, but rather metrics around inventory

management. As people ordered online, grocery stores had to ensure that their products

were available and accessible when the orders rang in. With the brick and mortar

stores, there was certain space restrictions and products were stocked. Shoppers came,

looked, and bought off the shelves. When a product ran out, they opted for alternates or

didn’t buy them at all. With online shopping, the grocer had a problem of maintaining

inventory to ensure that buyers don’t end up paying online only to realize later that the

product was not available. Different situations, different stakeholders, and a different set

of challenges!

Products today have to be built with the ability to derive data from all aspects—

to help further strategy, operational aspects, quality, marketing among others. So, it

becomes imperative that products are embedded with full-fledged analytics engines that

not only capture data but also make sense of it. The upcoming sections look at some of

the common metrics employed today.

Chapter 15 adopting a produCt-Led approaCh

456

 Operational Metrics
These are the metrics that are on the ground; the metrics that reflect the operational

aspects of a product. To get a better handle on how the product is being perceived and

how stable a product is, operational metrics (Figure 15-9) need to be studied and further

actions are initiated based on them.

Figure 15-9. Operational metrics

• Product defects: A product’s stability is defined by the number of

defects, and how often these defects plague users. On Android

phones, when an application stops working, you might have

observed a notification that appears asking either to wait or report

to the manufacturer about the crash. These notifications are the

window for users to communicate to the shop floor engineers.

Engineers behind the scene need to be vigilant, find patterns, and

plug the gap as soon as possible. Bad experiences owing from defects

will drive paying customers away, even if they have been loyal for a

long time.

• Tickets logged: This metric may not represent the true nature of

product stability, but it is a metric worth keeping. Tickets logged

may not correspond to the number of defects, as there could be

defects that users may not have logged in yet. In such cases, the

products need to have built-in mechanisms to proactively auto detect

problems and log tickets. There are several application monitoring

tools on the market, and many product companies build their own

monitoring solutions that are tagged onto the main product.

Chapter 15 adopting a produCt-Led approaCh

457

• Number of releases: A product that releases often can be construed as a

product company that not only has ideas but is also doing well in terms

of putting pen to paper. A product that releases often can do more good

than bad. While new features are introduced and known bugs are fixed,

some users may find it intriguing to try new features. Then there are

others who can get fatigued by constant changes. Product managers

have to play a balancing act to satiate both types of users.

• Product performance: This metric measures the speed at which the

product loads. The product performs its action among other speed

related aspects. During the engineering of products, the DevOps

pipelines take them through the rigor of performance testing that

tests product’s performance in the test conditions. However in the

real world, when different types of devices are used, the work for

the engineering managers is cut out to ensure that the product stays

above the benchmark to keep users from worrying about it.

• Customer satisfaction surveys: One of the most popular metrics around

measures how well customers like the product. Generally a five-star rating

system captures satisfaction levels, and the ripple effects of the rating

can make the product more popular with other users making a buying

decision based on other users’ feedback. On the other hand, a product

can simply be drown out if the feedback coming through is not favorable.

 Usage Metrics
The usage metrics illustrated in Figure 15-10 provide insights into how well the feature

development and marketing translates into users and customers using the product.

Figure 15-10. Usage metrics

Chapter 15 adopting a produCt-Led approaCh

458

• Product usage: Customer satisfaction ratings tell you how well a

product is liked. But that doesn’t translate into regular usage. For

example, I have watched all the thriller movies on Prime Video.

Although I like their interface, the product’s stability and its UI, I

don’t use it often because of the lack of content. When we talk about

usage, generally it is measured on a daily basis (Daily Active Users,

Weekly Active Users and Monthly Active Users). A product like Prime

Video would expect its users to regularly watch on a daily basis—hey

may keenly measure DAU and WAU. A product that does taxes may

indeed measure usage during the fiscal year end and during the tax

payment window.

• Product stickiness: This is the next level of usage metric that measures

how often a user lives out of a product. Some users may not use a

product once or multiple times in a week, but rather use certain

products throughout the day. Take the example of WhatsApp. With

a high adoption rate, all my family, friends, and coworkers are fully

entrenched in WhatsApp. All the messages we share, the forwards

we enjoy, and the birthday wishes are predominantly on WhatsApp.

We have also started calling each other using WhatsApp to avoid long

distance calling charges. Meta, the company that owns WhatsApp,

would look at the stickiness metric as the calling card to introduce

more features that could involve subscription charges. The advantage

of this metric is that people who are sticky to certain products are

loyal to a fault. They don’t move unless there is significant reason to.

So, product companies look for opportunities to make their products

sticky. Talking about moving out of sticky products, a few years

back, there was news that WhatsApp messages were not secure and

a whole lot of people switched to Telegram and Signal. And, as the

news died down, they quietly returned to the comfortable confines of

WhatsApp. Stickiness pays!

• Feature retention rate: A product that is new is shiny, and it is natural

human tendency to try it. Retention rate is a measure that tries to

determine how many users are still using it after a day, two days, and

so on. It is the inverse metric of user churn, a metric that measures

how many users have left. Retention rate is not as straightforward

Chapter 15 adopting a produCt-Led approaCh

459

as some of the metrics that we have discussed thus far. Retention of

product usage depends on the category of users, which is referred

to as the cohort, and the analysis involving them is cohort analysis.

A cohort of college students might have a higher retention rate of

products such as Instagram than a cohort of senior citizens.

• Feature adoption rate: New features or products are released fairly

regularly. The feature adoption rate metric takes into consideration

the number of users who continue to use the feature, or in other

words, have adopted the feature for their regular use. It is a metric

that tells product managers that they have hit gold if the feature

adoption increases over time. In fact, in any product, it is preferred by

product managers that users adopt multiple features, which makes it

harder for them to migrate out of it. For example, I have been using

OneDrive since they introduced it with free 7 GB storage. Since then,

I have paid for their subscription which includes 1 TB of storage data

and five licenses of Office 365. After losing tons of precious data on

portable hard drives, I find OneDrive a memory keeper, and with

multiple computers lying around, there is always a need for MS Office

product. Even though I know that there are other cloud providers that

are much cheaper than OneDrive, my dependence on it has kept me

glued and I have basically adopted it as something that I cannot live

without. Great news for Microsoft!

• Product insights: This is a holistic analysis of a user’s experience

with a product. It includes not only how often users use the product,

but also how comfortable they are with the UI, the features, and the

interactive touchpoints of the product. Before a product is launched,

product companies build variations of the same product, and

will ask select groups of users to try it and provide feedback. The

feedback is received through a detailed survey using the Likert scale

(Figure 15-11). The feedback is analyzed and feature changes are

made before releasing the product on a larger scale.

Chapter 15 adopting a produCt-Led approaCh

460

Figure 15-11. The Likert scale

 Business Metrics
While operational and usage metrics measure the output and outcomes associated with

the product usage phase, business metrics are holistic. They look forward and backward

in time for trends, for a way forward, and of course, at revenue-related metrics. This is

illustrated in Figure 15-12.

Figure 15-12. Business metrics

Chapter 15 adopting a produCt-Led approaCh

461

• Revenue: Measuring revenue is the lifeblood of a product company,

especially in the digital age due to the nature of subscriptions and

dynamic pricing. Revenue is typically measured on a monthly,

quarterly, and annual basis. There are a number of factors that

influence revenue during a certain time. For example, marketing

campaigns are expected to bring in new customers, and with that,

additional revenue. Holidays like Christmas and Diwali are expected

to ring in new customers. This metric by itself is half useful. To

estimate accurately, the marketing campaigns, the time of the year,

and any new rollout of features must be considered.

• Gross margin: This is the money that the company gets after

covering the cost of goods sold. It goes toward product development,

maintenance, research, and infrastructure costs, among others. My

grandfather (and Ben Franklin) used to say that every penny that

you save is like the penny you earned. The saying is apt for product

companies (or any other company for that matter), which should

drive the company to make judicious economic decisions.

• Profitability: While gross margin considers direct expenses alone, the

real deal in a company’s performance is based on its profits or losses.

Profitability considers direct and indirect costs that are attributed

to the development and maintenance of the product. Indirect costs

include seating costs for employees, sales, marketing, and so on.

• Net revenue retention: This measures the revenue that is expected

from repeat business—as in subscription costs on a monthly basis.

If all the existing customers continue to subscribe, a certain monthly

recurring revenue is guaranteed. This is the best case scenario. It

is possible that customers may cancel the subscription or opt for a

cheaper package. It is also possible that new customers sign up or

existing customers choose a more expensive package. In both cases,

the monthly recurring revenue is impacted. Therefore, the product

company must find a factor/formula to consider all the possible cases

to calculate net revenue retention.

Chapter 15 adopting a produCt-Led approaCh

462

• Conversion rate: We have had the concept of shareware and freeware

for a number of years. They either were available for trial for a

limited period of time or had limited features available. The software

manufacturer did not have a good handle on the number of people

who were trying them out. With the dawn of the digital age, where

SaaS products and thick clients strongly linked usage metrics, any

trial period user or free version user who switches over to a paid

version is tracked. This movement from free version to paid version is

called the conversion rate.

• Lifetime value: This metric looks into the future based on the current

crop of customers. It estimates the revenue that the company can

expect from its existing customers over their lifetime. The company

can further enhance the data by adjusting for inflation and new

feature rollouts. This is a key metric that gives the company an

accurate picture of its financial position in the upcoming years and is

used to drive economic decisions.

 Summary
This chapter looked at the product-led approach and covered how the methodology of

product management in conjunction with Agile, DevOps, and the digital transformation

looks at creating and managing products. Product-led companies are organized around

value streams rather than in silos or based on projects. Developing and running value

stream exercises is a continuous process that needs to be undertaken to improve the

cycle team, reduce leads, and deliver value to paying customers. Finally, the chapter

ended with measurements that provide companies information about performance and

how customers feel about their products.

Chapter 15 adopting a produCt-Led approaCh

463

Index

A
A/B testing, 322
Access management, 111
Active monitoring, 174
Adaptation, DevOps, 78, 79
Agile implementation, 7, 8, 317, 370,

390, 391
Agile model

flat hierarchy, 125, 126
no project manager, 126
predictability, 128
product owner, 127, 128
scrum team, 125
single team, 126, 127

Agile project management, 260, 391
incidents, 184
problems, 184
sprint planning, 185
sprints, 185–188
user stories, 183

Agile project management framework, 84
Agile project management

methodologies, 77, 128
Agile project management processes, 23
Agile release train (ART), 185, 257, 292
Amazon, 9, 10, 359, 390, 441
Amazon Web Services (AWS), 34, 84
Ansible, 35
Apache Subversion, 34
Apple, 318
Application management teams, 119, 120

Application support (AS), 21
Architect (ARC), 21, 352, 353
Artifact repository, 165
Artifact repository logical partitioning, 166
Artificial intelligence (AI), 18
Asynchronous work, 369, 370
Authenticity

history, 405
leaders, 404
leadership, 403
self-aware, 404
self-control, 406
team members, 404

Auto deployment, 205
Automation, 4, 13, 65, 156, 157, 349,

350, 355
release management, 297
testing, 28, 29

Automatic case study, 416–418
Automatic’s hiring, 417–419
Auto service station, 69
Availability management process, 95
Azure, 34

B
Bamboo, 35
Batch Sizes, 72
Battle tank framework, 327–329
Behavior-driven development (BDD), 36
Big bang approach, 85, 316, 317, 336, 452
Big Bang deployment, 286–288

© Abhinav Krishna Kaiser 2023
A. Krishna Kaiser, Reinventing ITIL® and DevOps with Digital Transformation,
https://doi.org/10.1007/978-1-4842-9072-9

https://doi.org/10.1007/978-1-4842-9072-9#DOI

464

Big ticket Conflicts, 67
batch sizes, 72
configuration management, 74, 75
continuous deployment process, 75
DevOps, 72
feedback cycle, 73
release management process, 75, 76
sequential vs. concurrent, 72
silo culture, 73, 74

Binary management, 166, 167
Blue-green deployment, 295, 296
BMC Remedy, 249
Brainstorming, 212, 213
Bureaucracy, 391
Bursty communication, 425
Business capacity management, 96–98
Business continuity

management (BCM), 99
Business disruption

business model, 314
business processes, 312
customer value proposition, 314
key resources and processes, 315, 316
profit formula, 315

Business metrics, 460
conversion rate, 462
gross margin, 461
lifetime value, 462
net revenue retention, 461
profitability, 461
revenue, 461

Business relationship management
process, 88

C
Candidates, 417
Capacity management

business, 96–98
component, 98, 99
service, 98

Car cleaning system, 445
Centralized version control

system (CVCS), 32, 163, 164
Change advisory board (CAB), 18, 106,

227, 241, 249–252, 254,
263–265, 267

Change management, 105, 237
CMDB, 241
configuration, 241
emergency changes, 245
normal changes, 244
objectives, 243, 244
protocols, policies, and processes, 243
resources and capabilities, service

assets, 239, 240
scope, 240–242
stakeholders, 237, 241
standard changes, 246, 247
unauthorized changes, 241, 242

Change management, technology
implementation, 354

Change management vs. release
management, 280–282

Chef, 36
Chief data officer (CDO), 358
Coca-Cola company, 348, 349
Co-creation, 64
Collaboration, 344, 345, 384, 441
Collaborative team, 424, 425
Collaborators

digital working, 422
learning, 423, 424

Command-and-control leader, 382, 383
Commercial off-the-shelf (COTS), 120,

163, 389

INDEX

465

Communication, 397, 398, 424, 425
Communicators, 424, 425
Component capacity

management, 99, 100
Comprehensive configuration

management (CCM), 158, 159, 297
Confidentiality, 100
Configuration items (CIs), 140–142, 148
Configuration management

application deployment, 154
automation, 156, 157
CMBD, 151–154
database, 155, 156
decoding IaaS, 153, 154
decoding PaaS, 154
DevOps, 152, 153
team maintenance, 157

Configuration management database
(CMDB), 75, 76, 143, 148, 241

change management, 160, 161
incident management, 161
ITIL-driven services, 159
provisioning environments, 161
SCR, 161

Configuration management system
(CMS), 74, 75, 143, 144, 226

Conflicts, 399, 414
Content delivery networks (CDN), 98
Content management database (CMDB),

241, 255, 276
Continual service improvement (CSI),

56, 57, 111
Continuous deployment process,

75, 76
Contracts, 336
Core service, 44–46
COTS product, 352, 355, 356
COVID-19 pandemic, 364, 378, 413, 415

Cucumber, 36
Culture, automation, lean, measurement,

sharing (CALMS) feature of
DevOps, 12–15

Customer centricity, 346, 347
Customer experience, 441, 442
Customers, 320, 347, 388–390, 442
Customer service, 389
Customer value proposition, 314

D
Daily active users (DAU), 454
Data, 323–325, 358
Database administrator (DBA), 21
Data-to-information-to-knowledge-to-

wisdom (DIKW), 359–361
Decision-making ability, 381, 398
Definition of done (DOD), 188–190
Definition of ready (DOR), 188, 189
Definitions, IT service, 43, 44
Definitive media library (DML), 144,

145, 289
Definitive spares (DS), 145
Deliver service phase, 63, 64
Delivery teams, 299
Dell Digital Transformation Index, 335
Demand management process

alignment, 87
DevOps project, 87
service-based organizations, 86

Deployment, 35, 36
Design coordination, 89–92

availability management, 95
point-based design, 91
service level management, 94
set-based design, 91, 92

Developer (DEV), 21, 382

INDEX

466

DevOps, 71, 98, 370, 378, 443
adoption, 104
Agile, 7, 8
automation, 13
CALMS feature, 12
CMBD, 151–154
culture, 5, 6, 12, 13
definitions, 4
for developers, 3
digital transformation, 308, 309
elements, 15–18
incident management, 181–188
ITIL adaptation, 3, 4, 77, 78
lean, 14
measurement, 14, 15
methodology, 132, 393
people, 18–20

CAB, 18
development and operations

team, 18, 19
DevOps team, 20–22

principles, 393
process, 22

Agile, 23
automation vs. continuous

testing, 29, 30
continuous delivery, 26–29
continuous delivery vs.

deployment, 30, 31
continuous deployment, 29–31
continuous integration, 23–26

programming languages, 308
projects, 94
rollback, 4
Rugged DevOps Manifesto, 102
scope, 8, 9
sharing, 15
State of DevOps Report, 10, 11

team structure, 122–124
technology

CVCS, 32
deployment and environment

provisioning, 35, 36
DVCS, 32
hosting services, 34
orchestrators, 35
periodic table, 33, 34
source code repositories, 34
testing, 36
tools, 32–36

testing process, 106
transformation benefits, 9, 10
waterfall project management, 3, 6, 7

DevOps change management process, 263
Agile methodology, 254, 255
change managers, 255
continuous delivery

build and test, 265
change initiation, 265
continuous delivery, 265
deployment and verification, 265
deployment authorization, 265
technical teams, 263

continuous deployment
automated approach, 266, 267
build and test, 268
change initiation and

authorization, 268
change verification and

closure, 268
production, 268

enterprise change manager, 254
organizations, 255
project change management, 256–261
rescue, 256
risk mitigation strategies

INDEX

467

auto-deployment and auto-checks,
262, 263

software quality, 261
standard changes, 269

DevOpsification, 28
DevOps incident management process,

198, 199
accepting, 202
analysis, escalation, and

resolution, 200
auto deployment, 205
continuous integration and continuous

testing, 205
DevOps team, 201
identification, 200
incident manager, 201, 202
post-mortem, 206
prioritization and sprint, 203
Scrum team, code changes and

check-in, 204, 205
DevOps Model

application management function, 129
objectives, 129
organization’s strategy, 132
role mapping, 132–137
scrum team, 129
team composition, 130
team scope, 131

DevOps problem management process,
231, 232

auto-deployment, 235
axe sharpening, 229
bugs, 228
continuous integration and testing, 235
major incidents, 229
problem detection, 233
problem manager, 230–232
product owner, sprint backlog, 234

repetitive incidents, 229
Scrum master, 229
Scrum master, product backlog,

234, 235
Scrum team, 234

DevOps, release management, 290
adaption

ART, 292
continuous delivery, 293
continuous deployment, 292

automation, 297
blue-green deployment, 295, 296
change management, 293, 294
iterative and sequential phases,

291, 292
scope of, 295
teams

delivery, 299
development and operations,

299, 301–304
Jira, 298
operations, 299
productivity, 297
product owners (POs), 302, 303
release manager, 299–302
separate release, 298

DevSecOpsLinformation security
management, 101, 102

Digital age, 455
Digital balance, 324
Digital culture, 336, 341

collaborative, 344, 345
customer centricity, 346, 347
elements, 342
entrepreneurs, 345, 346
innovative, 342, 343
openness, 343, 344

Digital envisioning, 373, 374

INDEX

468

Digital organizations, 381, 382
Digital products, 437
Digital transformation, 308, 309

battle tank, 327–329
big bang approach, 316, 317
business disruption, 312, 313
customers, 320
data, 323–325, 358
DIKW, 359–361
DNA, 341
dynamism, 324
Google Glass, 311–313
hybrid model, 318
in-housing vs. collaboration, 326
innovation, 321, 322
people, 348–351
people centric, 363–365
physical, 318
planning vs. experimentation, 325
problems and opportunities, 312
roadmap vs. agility, 324, 325
seamless integration, 310
synergy, 318
technology, 350–357
value, 320, 321
virtual, 318

Digital transformations, 11
Digital transformation strategy

big bang approach, 330
businesses, 329
context and circumstance, 330
identify opportunities/pain

points, 331–333
observe, refine, and transform, 338

measurements, 339
metrics, 339
recommendations, 340
root cause analysis, 340

partners, 335, 336
planning, 333, 334
project, small, 336, 337
roadmap, 330

Digital world, 386
Distributed version control

system (DVCS), 32, 164, 165
Docking station, 428
Documentation, 448
Dynamic analysis, 25
Dynamic configuration management, 140

E
Early life support, 285
Ecosystem, 452
Emergency change advisory board

(ECAB), 251, 252
Emergency changes, 245
Emergency releases, 285
Employee engagement, 371, 372, 412
Employees, 377
Enablement, 374
Enabling service, 44, 46
Enhancing service, 44, 46, 47
Entrepreneurs, 345, 346
Etsy, 9
Event management, 176, 223, 225

exception, 109
information, 109
warning, 109

Experimentation, 392–395

F
Facebook, 9
Facilities management, 121
Feature adoption rate, 459

INDEX

469

Feature retention rate, 458
Feedback, 347, 402
Financial management process, 86
First time fix (FTF), 454
Flat Hierarchy, 125, 126
Flexi-work model, 372 See also Working,

flexible
digital envisioning, 373, 374
enablement, 374
framework, 373
performance management, 377–379
work culture fitment, 375–377

Functions, 48
in ITIL, 49
vs. processes, 49, 50

Functions in ITIL
application management teams,

119, 120
facilities management, 121
IT operations management, 120–122
service desk, 116–122
technical management

teams, 118, 119
Funding, 333

G
Gallup Workplace survey, 377
Git, 34
GitLab, 374
Goals, 334
Google AdSense, 436
Google Compute Engine, 35
Google Glass, 311–313
Google’s team

dependability, 410
impact, 411
meaning, 411

psychological safety, 409, 410
structure and clarity, 410, 411

Governance, 65
Ground rules, 429
Group thinking, 398

H
Hiring, 413

identity fraud, 415, 416
interviews, cheating, 415, 416

HP LoadRunner, 36

I
Identify opportunities, 331–333
Identity fraud, 415, 416
Implementation partners, 356
Incident management, 169

agile project, 182
cable TV, Internet, and electricity, 170
categorization, 178
closure, 180
diagnosis and investigation, 179, 180
downtime reduction, 170
identification

e-mail/chat, 176
event management, 176
telephone, 176
web interface, 176

incident flow, 193
knowledge, 194–197
levels of support, 191–194
logging, 177, 178
major, 181, 182
monitoring tools, 173, 174
objectives and principles, 171, 172
one team concept, 182

INDEX

470

prioritization, 178
resolution and recovery, 180
service desk, 171
service provider, 170
services, 172
typical process, 174, 175
users reporting, 173
vital role, 170, 171

Incident Management, 110
Incident tickets, 177, 178
Information security management

CIA, 100, 101
DevSecOps, 101
IT innovation, 101
Rugged DevOps, 102
Rugged DevOps Manifesto, 102

Information Technology Infrastructure
Library (ITIL), 39, 71, 100

adaptation, 77, 78
competition, 42, 43
event management process, 109–111
functions, 49, 50, 116–122
incident management, 170
and IT service management, 39, 40
processes, 47, 48
roles, 58, 59
SACM, 139–142
service lifecycle, 50, 51

Infrastructure as a service (IaaS),
70, 153, 154

Infrastructure-as-code (IaC)
model, 85, 121

In-housing vs. collaboration, 326
Innovation, 321, 322, 342, 343, 392–395
Integration, continuous, 23–26
Integrity, 100
Interactive voice response (IVR), 339

Internet service provider (ISP), 44
Interviews, cheating, 415, 416
iPods, 318, 390
Ishikawa diagram

fishbone models, 217–220
on-time flight arrival rate, 219–221
service and marketing industry, 218

ITIL 4, 63–65
ITIL Phases, 81 See also Information

Technology Infrastructure
Library (ITIL)

analysis, 81
features, 82

ITIL service management
framework, 8

ITIL V3, 41, 51, 63–65
ITIL Versions, 41–43
IT operations management, operations

control, 121–123
IT security (SEC), 22
IT service continuity management

(ITSCM), 99, 100
IT service management, 39, 40

J
Jenkins, 35

K
Kepner-Tregoe method, 220, 221
Key performance indicators (KPIs), 94,

371, 372
Knowledge management, 360

configuration management, 194
design documents, 194
ISO certifications, 195
maintaining documents, 194–196

Incident management (cont.)

INDEX

471

minimum documentation, 194
service delivery, 194
storing and retrieval, 197, 198

Knowledge management database
(KMDB), 226, 254

Knowledge management
process, 107, 108

Known error database (KEDB), 211, 227
Known errors, 211
Kodak, 342

L
Leaders, 399, 420–422
Leadership, 379

digital age, 380
motivation, 384–386
organization structure, 380, 381
responsibility, 386, 387
styles, 381–383

Leadership levers
agile and nimble, 390, 391
communication, 397, 398
competition, 387
customer, 388–390
decision making, 398
experimentation and

innovation, 392–395
good work recognition, 402
group thinking, 398
learning, 399, 400
problems, 399
rapid feedback, 402
right team hiring, 396
team charter, 397
team understanding, 396
teamwork performance

measurement, 400, 401

Lean principle, 14
Learnings, 339, 399
Lighthouse project, 337
LinkedIn, 434, 440
Location constraints, 369
Logging, 177, 178
L’Oréal

case study, 351
vs. Estée Lauder, 352

M
Magic link, 310
Major incidents, 181, 182, 223
Major releases, 284
Mapping, 446, 447
Marketing, 436
Matrix organization, 118
Mercurial, 34
Metrics, 334
Microsoft, 71
Microsoft Office, 321
Minimum viable product (MVP), 92, 107,

322, 337, 438
Minority Report, 224
Minor releases, 284
Monthly active users (MAU), 454
Motivation, 384–386, 420–422
MP3 player, 315
MVP approach, 107
MySQL database, 93

N
Netflix, 9, 347
Nimble, 390, 391
Nokia, 342
Nonconformances (NCs), 150

INDEX

472

Non-value adds, 449, 450, 453, 454
Non-verbal communication, 398
Normal change management process

assess and evaluate, 249
authorization, 253
building and testing, 253

CAB, 249–252
ECAB, 251, 252
SCAB, 253, 254

implementation and
verification, 253

review and close, 254
RFC, 249, 250
workflow, 246, 247

Normal changes, 244

O
Office of Government

Commerce (OGC), 40
One-click server creation, 153
One-time investment, 435
Open communication, 344, 345
Operational level agreement (OLA), 94
Operational metrics

customer satisfaction, 457
number of releases, 457
product defects, 456
product performance, 457
tickets, 456

Operations team, 299
Opinions, 332
Organizational change

management (OCM), 331
Organizational culture, 394
Organizations, 374
Organization structure, 380, 381
OS-level configurations, 154

P, Q
Pain points, 331–333
Partners

customer ecosystem, 335
digital culture, 336
responsibilities and contracts, 336

Partnerships, 336
Passive monitoring, 174
People, 18–20

automation, 349, 350
Coca-Cola case study, 348, 349
psychological effect of change, 349

People centric
business processes, 363
COVID-19 pandemic, 364
digital transformation, 363
slogging, 364
work from home, 366

Performance management, 377–379
Personal digital assistants (PDAs), 53
Perspectives, 332, 455
Phased deployment, 286, 287
Phases of release management

deployment, 289
release and deployment planning,

288, 289
release build and test, 288, 289
review and close, 290

Physical meetings, 426
Planning, 428
Planning poker, 187, 188
Planning vs. experimentation, 325
Platform as a service (PaaS), 70
Point-based design, 90
Portfolio of technical investments, 11
Post-implementation

review (PIR), 254

INDEX

473

Predictability, 128
Proactive problem management, 233
Problem analysis techniques, 212

brainstorming, 212, 213
five-why technique

financial mismanagement, 216
flight delays, 214–216
limitations, 216
root-cause, 214

Ishikawa diagram, 217–220
Kepner-Tregoe method, 220, 221

Problem management, 111, 207
CSI, 208
vs. incidents, 209
KEDB, 211
known errors, 211
objectives and principles, 209, 210
permanent solution, 211
RCA, 210
root cause, 210
workaround, 211

Problem-solving and decision-making
(PSDM) technique, 220

Processes, 47–50
Process manager, 59, 60
Process owner, 59
Process practitioner, 60
Product backlog, 185, 186
Product engineering, 11
Product growth, 442
Production environment, 20
Productivity equation, 367
Product-led approach

business, 434
company, 435

collaboration, 441
customer experience, 441, 442
DNA, 439

obsess over data, 440
product based, 440

development, 443
digital age, 436, 437
enhanced customer

experience, 442
growth, 442
marketing, 436
organizations, 433
product management, 438, 439
software use, 435

Product manufacturer, 389
Product owner (PO), 21, 76, 127, 128, 260,

302, 303
Products management, 438, 439
Product team, 447
Product vs. services

DevOps implementations, 67, 71
IT magnet, 68, 69
solution provider, 70
XaaS model, 70

Profit formula, 315
Project change management

ARTs, 257
change control, 256
cost, 258, 259
quality, 260
resource allocation, 258, 259
schedule, 259, 260
scope, 257

Proprietary knowledge, 43
Puppet, 36

R
Reactive problem management, 233
Release and deployment management

process, 105, 281

INDEX

474

Release management
vs. change management, 280–282
deployment options

Big Bang, 286–288
phased approach, 286, 287

early life support, 285
emergency releases, 285
major releases, 284
minor releases, 284
vs. release and deployment

management, 281
release package, 283
release unit, 283, 284

Release package, 283
Release unit, 283
Remote work management

Agile workspaces, 408
Google’s team, 409–411
respect, team, 411–413
trust, 408, 409

Repercussions, 402
Request for change (RFC), 227, 249, 250
Request fulfillment process, 110
Respect, team, 411–413
Responsibilities, 336, 386, 387
Responsible, Accountable, Consulted,

and Informed (RACI)
matrix, 60–62

Retention rate, 458
Revenue, 461
Roadmap vs. agility, 324, 325
Role mapping

DevOps teams scope, 136–138
shared teams scope, 135
strategy and compliance, 133, 134
umbrella teams scope, 134, 135

Root-cause analysis (RCA),
210, 226, 340

S
Scaled Agile Framework (SAFe), 90
Scaling plan, 355
Scrum master (SM), 21, 126, 408
Selenium, 36
Self-aware, 404
Self-control, 406
Self-motivation, 420–422
Self-supervision, 419
Senior management support, 334
Separate release management

team, 298
Servant-leaders, 383
Server admins, 382
Service asset and configuration

management (SACM), 93, 105
accounting, 149
control process, 148
elements, 147, 148
identification, 147, 148
ITIL, 139
models, 146
planning, 146, 147
principles, 140
reporting, 149
scope, 142
verification and audit, 150

Service capacity management, 98
Service catalog management, 93, 94
Service design, 53, 54
Service design phase, analysis

availability management, 95
capacity management, 96–100
design coordination, 89–92
information security

management, 100–102
ITSCM, 99, 100
service catalog management, 93, 94

INDEX

475

service level management, 94, 95
supplier management, 103

Service desk
functional escalation, 117
integral component, ITIL, 116–122

Service integration and
management (SIAM), 103

Service level agreements (SLAs), 44,
79, 94, 95

Service level requirements (SLRs), 94
Service lifecycle, 50, 51, 63
Service management framework, 76

ITIL, 71, 73, 74
product development, 67

Service management framework,
alignment, 81

Service manager (SMG), 22
ServiceNow, 249
Service offerings, 433
Service operation phase, analysis

access management, 111
event management, 108–110
incident management, 110
problem management, 111
request fulfillment, 110

Service operations, 55, 56
Service owner, 58
Service portfolio management

process, 86
Service strategy, 51, 52

design, 53, 54
operations, 55, 56

Service strategy phase, analysis
business relationship management, 88
demand management, 86–88
financial management, 86
service portfolio management, 86
strategy management, 83–89

Service transition, 54, 55
Service transition phase, analysis

change evaluation, 107, 108
change management, 105
knowledge management, 107
release and deployment

management, 105
SACM, 105
transition planning and support, 104
validation and testing, 105, 106

Set-based design (SBD), 90, 92
Seven-step improvement process, 112, 113
Silo culture, 73, 74
Single point of failure (SPOF), 32
Single team, 127, 128
Skynet, 352
SMART principle, 400
Sociotechnical system engineering, 11
Software as a service (SaaS), 70
Software delivery lifecycle (SDLC), 3
Source code management (SCM), 74, 162
Source code repository (SCR), 161

DevOps objectives, 162, 163
storage, 162
tools

CVCS, 163, 165
DVCS, 164, 165

version control systems, 162
Sprint backlog, 186, 203
Sprint planning

capacity and velocity, 186
complexity, 186
DevOps team

contingency, 191
input funnel, 188, 189
SLA, 189
story points, 190
user stories, 190

INDEX

476

DOR and DOD, 188, 189
planning poker, 187, 188
product backlog, 185, 186

Sprint retrospective, 128
Sprints, 185
Standard change advisory board (SCAB),

253, 254, 274, 275
Standard changes, 156, 246, 247

advantage, 269
Agile and DevOps, 270
assessment, 269
candidates, 274
developing change models, 275
enterprise change manager, 270
fatal damages, 269
identifying and managing, 271, 272
implementation, 276, 277
monitoring and auditing,

276, 277
nominating candidates, 273
SCAB” “t, 274
service management

process, 269
standard change qualification, 273

Static analysis, 25
Story point estimation, 186
Strategy management, 83–85

big-bang approach, 85
IaC model, 85
service development in the

Agile, 85
Styles, leadership, 381–383
Supervisors, 377
Supplier management, 103
Swiggy, 347
Synergy, 318
System administrator (SYS), 22

T
Talent code, 367
Team charter, 397
Team members, 385, 394, 421
Team structure

agile model, 125–128
decision-makers, 122
DevOps model, 129–133
traditional model, 123, 124

Teamwork, 401
Teamwork performance measurement,

400, 401
Technical investments, 11
Technical management teams, 118, 119
Technical service catalog, 93
Techniques, digital transformation,

352, 353
Technology implementation

automation, 355
change management, 354
digital transformation, 353
evaluation, 356
golden practices, 353
implementation partners, 356
iterate implementation, 357
scaling plan, 355
timing, 355

Toyota, 446
Toyota Production Systems (TPS), 14
Traditional model

matrix organization, 123
mobilizing a project team, 124

Transformation avenues, 332
Trust, 408, 409
Typical problem management

process, 221, 222
categorization, 225

Sprint planning (cont.)

INDEX

477

closure, 227
investigation and diagnosis, 226
logging

analysis/trending, 225
attributes, 225
event management, 225
partners/suppliers, 225

prioritization, 226
problem detection

analysis/trending, 224
event management, 223
major incidents, 223
partners/suppliers, 224

resolution, 227

U
Uber, 313, 317
Unauthorized changes, 241, 242
Union of mind-sets, 76, 77
Unit testing, 25
UrbanCode Deploy, 35
Usage metrics

feature adoption rate, 459
Likert scale, 460
product insights, 459
product stickness, 458
product usage, 458
retention rate, 458

User acceptance testing (UAT), 289
Users report incidents, 173
User stories, 183
Unified payments interface (UPI), 436

V
Value, 320, 321
Value adds, 449, 450, 453, 454

Value creation principle
image credit, 105
testing, 106

Value stream mapping (VSM), 446, 447
documentation of current process, 448
future model, 451, 452
identification of value adds and

non-value adds, 449, 450, 453, 454
implementation, 448
improvement initiatives, 452
plan and implement, 452
waste, 452

Value streams
car cleaning process, 445
internal surface, 445
matrix type organization, 444
product-led approach, 443
software development, 443
team members, 444

Velocity, 371
Vendor engineering, 11
Virtual meetings

collaboration tools, 426
etiquette, 429, 430
ground rules, 429
initiation, 430
note taking, 430
physical meetings, 426
plan, 428
platforms, 427
props, 428
technical setup, 427, 428

W, X
Waterfall model, 77
WebFX, 434
Web interface, 176

INDEX

478

Workarounds, 211
Work culture fitment, 375–377
Work from anywhere (WFA), 416
Working, flexible

asynchronous work, 370, 371
employee engagement, 371, 372
legacy mode, 368

location constraints, 369
productivity as KPI, 371, 372

Work stress reduction, 412

Y, Z
YouTube, 437

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction to DevOps
	What Exactly Is DevOps?
	DevOps with an Example
	Why DevOps?
	Let’s Look at the Scope
	The Benefits of Transforming into DevOps
	Insight from the State of DevOps Report
	DevOps Principles
	Culture
	Automation
	Lean
	Measurement
	Sharing

	Elements of DevOps
	People
	DevOps Team
	The Basis for a DevOps Team
	An Example of a DevOps Team

	Processes
	Continuous Integration
	An Illustration

	Continuous Delivery
	Who Employs Continuous Delivery?
	Automation Testing vs. Continuous Testing

	Continuous Deployment
	Continuous Delivery vs. Continuous Deployment

	Technology
	Choosing the Right Tool
	Categories of Tools
	Source Code Repositories
	Hosting Services
	Orchestrators
	Deployment and Environment Provisioning
	Testing

	Is DevOps the End of Ops?
	Summary

	Chapter 2: ITIL Basics
	IT Service Management and ITIL
	The Conception of ITIL
	Competition to ITIL
	Understanding Services
	Service Types (Components)
	Core Services
	Enabling Services
	Enhancement Services
	Understanding Processes
	Understanding Functions
	Functions in ITIL
	Processes vs. Functions

	ITIL Service Lifecycle
	Service Strategy
	Service Strategy Processes
	Service Design
	Service Design Processes
	Service Transition
	Service Transition Processes
	Service Operations
	Service Operations Processes
	Continual Service Improvement
	Continual Service Improvement Process

	ITIL Roles
	Service Owner
	Process Owner
	Process Manager
	Process Practitioner

	RACI Matrix
	An Example of RACI
	Tips on RACI Creation

	ITIL V3 and ITIL 4
	The Service Lifecycle Is Dead
	Introducing Practices
	Service Has a New Definition
	Governance Is a New Kid on the Block
	Automation Is In

	Summary

	Chapter 3: ITIL and DevOps: An Analysis
	Product vs. Services
	Big Ticket Conflicts
	Which Is It: Sequential vs. Concurrent?
	Let’s Discuss Batch Sizes
	It’s All About the Feedback
	The Silo Culture
	What Is Configuration Management?
	Continuous Deployment Makes Release Management Irrelevant
	Union of Mindsets
	The Case for ITIL Adaptation with DevOps
	To Conclude
	Summary

	Chapter 4: Integration: Alignment of Processes
	Analysis of ITIL Phases
	Analysis: Service Strategy Phase
	Strategy Management for IT Services
	Service Portfolio Management
	Financial Management for IT Services
	Demand Management
	Business Relationship Management

	Analysis: Service Design Phase
	Design Coordination
	Service Catalog Management
	Service Level Management
	Availability Management
	Capacity Management
	Business Capacity Management
	Service Capacity Management
	Component Capacity Management

	IT Service Continuity Management
	Information Security Management
	DevSecOps
	Rugged DevOps

	Supplier Management

	Analysis: Service Transition Phase
	Transition Planning and Support
	Change Management
	Service Asset and Configuration Management
	Release and Deployment Management
	Service Validation and Testing
	Change Evaluation
	Knowledge Management

	Analysis: Service Operation Phase
	Event Management
	Incident Management
	Request Fulfillment
	Problem Management
	Access Management
	Continual Service Improvement
	The Seven-Step Improvement Process

	Summary

	Chapter 5: Teams and Structures
	A Plunge Into ITIL Functions
	Service Desk
	Technical Management
	Application Management
	IT Operations Management
	IT Operations Control
	Facilities Management

	DevOps Team Structure Revisited
	Traditional Model

	The Agile Model
	Flat Hierarchy
	No Project Manager
	Single Team
	Product Owner
	Predictability

	The DevOps Model
	Composition of a DevOps Team

	ITIL Role Mapping in a DevOps World
	Strategy and Compliance
	Umbrella Teams
	Shared Teams
	DevOps Teams

	Summary

	Chapter 6: Managing Configurations in a DevOps Project
	ITIL Service Asset and Configuration Management Process
	Objectives and Principles
	Service Assets and Configuration Items
	Scope of Service Asset and Configuration Management

	Introducing the CMDB, CMS, DML, and DS
	Configuration Management Database
	Configuration Management System
	Definitive Media Library and Definitive Spares

	Service Asset and Configuration Management Processes
	Step 1: Management and Planning
	Step 2: Configuration Identification
	Step 3: Configuration Control
	Step 4: Status Accounting and Reporting
	Step 5: Verification and Audit

	Why Configuration Management Is Relevant to DevOps
	Configuration Management in a DevOps Sense

	Decoding IaaS
	Decoding PaaS
	Application Deployment and Configuration
	Underlying Configuration Management
	Automation in Configuration Management
	Who Manages DevOps Configurations?
	Comprehensive Configuration Management
	Configuration Management Database
	CMDB for Change Management
	CMDB for Provisioning Environments
	CMDB for Incident Management

	Source Code Repository
	Basics of a Source Code Repository
	What Can Be Stored in a Source Code Repository?

	Good Practices for Achieving DevOps Objectives
	Choosing a Source Code Repository Tool

	Artifact Repository
	Managing Binaries
	Summary

	Chapter 7: Incident Management Adaptation
	What Is ITIL Incident Management?
	Incident Management Is Vital
	Incident Management Is the First Line of Defense
	Digging Deeper Into Incident Management
	Objectives and Principles

	What Constitutes an Incident?
	Who Can Register Incidents?

	A Typical Incident Management Process
	Step 1: Incident Identification
	Step 2: Incident Logging
	Step 3: Incident Categorization
	Step 4: Incident Prioritization
	Step 5: Diagnosis and Investigation
	Step 6: Resolution and Recovery
	Step 7: Incident Closure

	Major Incidents
	Incident Management in DevOps
	Agile Project Management
	User Stories
	Incidents
	Problems
	Sprints
	Sprint Planning
	Sprint Backlog
	Capacity and Velocity
	Determining Complexity
	Estimation Technique: Planning Poker

	DOR and DOD

	Sprint Planning for a DevOps Team
	Plan for What Is Currently on Your Plate
	Keep Some Contingency Aside During the Planning Session

	The Scope of the DevOps Team in Incident Management
	Levels of Support
	Incident Flow

	Knowledge Management at the Core
	ITIL’s Knowledge Management
	What Knowledge to Maintain
	Knowledge Storing and Retrieval

	The DevOps Incident Management Process
	Step 1: Incident Identification
	Step 2: Incident Analysis, Escalation, and Resolution
	Step 3: Incident with DevOps Team
	Step 4: Incident Manager Analyzes and Accepts Incidents
	Steps 5 and 6: The Incident Is Prioritized and Added to the Sprint
	Steps 7 and 8: The Scrum Team Makes Code Changes and Checks In
	Step 9: Continuous Integration and Continuous Testing
	Step 10: Auto Deployment
	Step 11: Post-Mortem

	Summary

	Chapter 8: Problem Management Adaptation
	Introduction to ITIL Problem Management
	Objectives and Principles
	Incidents vs. Problems

	Key Terminologies in Problem Management
	Root Cause
	Root-Cause Analysis
	Known Error
	Known Error Database
	Workarounds
	Permanent Solutions

	Problem Analysis Techniques
	Brainstorming

	The Five-Why Technique
	Applying the Five-Why Technique
	Limitations of the Five-Why Technique

	The Ishikawa Diagram
	The Kepner-Tregoe Method
	A Typical Problem Management Process
	Step 1: Problem Detection
	Event Management
	Major Incidents
	Partners/Suppliers
	Analysis/Trending

	Step 2: Problem Logging
	Event Management
	Partners/Suppliers
	Analysis/Trending

	Step 3: Problem Categorization
	Step 4: Problem Prioritization
	Step 5: Problem Investigation and Diagnosis
	Step 6: Problem Resolution
	Step 7: Problem Closure

	Problem Management in DevOps
	What Are the Possible Problems in a DevOps Project?
	Making the Case for a Problem Manager
	The DevOps Problem Management Process
	Step 1: Problem Detection
	Step 2: Scrum Master Logs the Problem into the Product Backlog
	Steps 3 and 4: Product Owner Prioritizes the Problem and Adds the User Story to the Sprint Backlog
	Step 5: Scrum Team Acts on the Problem
	Steps 6, 7, and 8: Continuous Integration, Testing, and Auto-Deployment

	Summary

	Chapter 9: Managing Changes in a DevOps Project
	What Constitutes a Change?
	Overview of Resources and Capabilities
	Change in Scope

	Why Is Change Management Critical?
	Objectives and Scope of ITIL Change Management
	Types of Changes
	Type 1: Normal Changes
	Type 2: Emergency Changes
	Type 3: Standard Changes

	ITIL Change Management Process
	Step 1: Create a Request for Change
	Step 2: Assess and Evaluate the Change
	Step 3: Authorize the Build and Test It
	Change Advisory Board
	Composition of the Change Advisory Board
	Emergency Change Advisory Board
	Standard Change Advisory Board

	Step 4: Build and Test
	Step 5: Authorize the Implementation
	Step 6: Implement and Verify
	Step 7: Review and Close the Change

	How Are DevOps Changes Different from ITIL Changes?
	The Perceived Problem with ITIL Change Management
	DevOps to the Rescue
	Project Change Management

	Risk Mitigation Strategies
	Auto-Deployment and Auto-Checks

	DevOps Change Management Process
	Change Management Adaption for Continuous Delivery
	Steps 1, 2, and 3: Change Initiation
	Step 4: Build and Test
	Step 5: Deployment Authorization
	Steps 6 and 7: Deployment and Verification
	Continuous Delivery for Maximum Change Governance

	Change Management Adaption for Continuous Deployment
	Steps 1, 2, 3, and 5: Change Initiation and Authorization to Deploy
	Step 4: Build and Test
	Step 6: Deployment to Production
	Step 7: Change Verification and Closure
	Maximum Agility with Standard Changes

	Championing Standard Changes
	Process for Identifying and Managing Standard Changes
	Step 1: Identify Standard Changes
	Step 2: Screen the Candidates
	Step 3: SCAB to Qualify Standard Changes
	Step 4: Develop Change Models for Standard Changes
	Step 5: Implement Standard Changes
	Step 6: Monitoring and Auditing Standard Changes

	Summary

	Chapter 10: Release Management in DevOps
	Change Management vs. Release Management
	Release Management vs. Release and Deployment Management
	The Basics of a Release
	Release Units
	Release Packages

	Types of Releases
	Major Releases
	Minor Releases
	Emergency Releases
	Early Life Support

	Deployment Options
	The Big Bang Option
	The Phased Approach

	The Four Phases of Release Management
	Release and Deployment Planning
	Release Build and Test
	Deployment
	Review and Close

	Releases in DevOps
	Sequential and Iterative Nature of the Process

	Release Management Process Adaption with Iterations
	Using Agile Release Trains
	Applying Release Management to Continuous Deployment
	Applying Release Management to Continuous Delivery

	Expectations from Release Management
	Blue-Green Deployment
	The Scope of Release Management
	Automation of Release Management

	The DevOps Release Management Team
	Release Management Team Structure
	Separate Release Management Team
	Release Management by the Delivery Team
	Release Management by the Operations Team

	Welcome Release Manager, the Role for All Seasons
	Product Owners Are the New Release Managers

	Summary

	Chapter 11: Digital Transformation: The Driver of Business Success
	DevOps and Beyond
	The World of Digital Transformation
	The Curious Case of Magic Link
	What About Google Glass?

	The Right Questions to Ask
	Digital Transformation and Business Disruption
	Business Disruption 101
	Customer Value Proposition
	Profit Formula
	Key Resources and Processes

	Does the Disruption Have to Be Big Bang?
	Is Virtual the Assumed Goal?
	Finding Synergy with Partner Organizations

	Key Focus Areas
	Customers
	Value
	Innovation
	Data

	Balancing All Things Digital
	Roadmap vs. Agility
	Planning vs. Experimentation
	In-Housing vs. Collaboration

	Summary

	Chapter 12: The Digital Transformation Framework
	The Battle Tank Framework
	The Digital Transformation Strategy
	Step 1: Identify Opportunities/Pain Points
	Step 2: Prepare a Game Plan
	Funding
	Senior Management Support
	Goals and Metrics

	Step 3: Seek Out Partners
	Key Ingredient for Partnerships to Work
	Responsibilities and Contracts

	Step 4: Execute a Small Project
	Step 5: Observe, Refine, and Transform
	Measurements and Metrics
	Root Cause Analysis
	Recommendations

	Culture and Digital Culture
	Innovative
	Openness
	Collaborative
	Entrepreneurial
	Customer Centric

	People
	The Coca-Cola Case Study
	The Psychological Effect of Change
	Fear of Automation

	Technology
	The L’Oréal Case Study
	L’Oréal vs. Estée Lauder: A Digital Transformation Comparison
	Techniques and Architectures
	Golden Practices for Technology Implementation
	Manage the Change
	Timing Is Key
	Automation Is Normal
	Plan for Scaling
	Evaluate Technology
	Implementation Partners
	Iterate Implementation

	Data
	DIKW Cycle

	Summary

	Chapter 13: People and Leadership
	Digital Transformation Is People Centric
	The End of Work as We Know it
	The Pitfalls of Legacy Working
	The Talent Code
	The Productivity Equation

	The Flexible Model of Working
	No Fixed Hours or Location Constraints
	Asynchronous Work
	Productivity as a KPI
	Employee Engagement

	The Framework for the Flexi-Work Model
	Digital Envisioning
	Enablement for the Flexible Work Model
	Work Culture Fitment
	The MURAL Story

	Performance Management

	Leadership in the Digital Age
	Organization Structure
	Leadership Style
	Motivation
	Responsibility

	Leadership Levers to Stay Relevant
	The Customer Is Still King
	Agile and Nimble
	Experimentation and Innovation
	Build the Right Team and Foster People in the New Culture
	Hire the Right Team
	Understand the Team
	Agree on a Team Charter
	Communicate Clearly
	Cultivate Group Thinking and Decision Making
	Address Problems Head-On
	Facilitate Learning
	Measure Teamwork Performance
	Give Rapid Feedback
	Recognize Good Work

	Be Authentic
	Leading with Authenticity
	Be Self-Aware
	History Is Key
	Exert Self-Control

	Summary

	Chapter 14: Techniques and Tools for Managing Digital Teams
	How Do You Manage Remote Work?
	Trust the Teams to Deliver
	Google’s Team Effectiveness Study
	Respect the Team

	How Do You Hire the Right People?
	The Fundamental Challenges with Hiring
	Cheating on Interviews
	Identity Fraud

	The Automattic Case Study
	Self-Supervised and Self-Motivated
	Self-Supervised
	Self-Motivated

	Collaborators and Communicators
	Learning to Collaborate
	Communicating as a CSF

	Managing Virtual Meetings
	How to Run Virtual Meetings Effectively
	Meeting Platform
	Technical Setup
	Meeting Plan
	Meeting Props
	Ground Rules
	Meeting Etiquette
	Meeting Initiation
	Note Taking

	Summary

	Chapter 15: Adopting a Product-Led Approach
	What Exactly Is a Product-Led Approach?
	Why Should Companies Swivel Around Products?
	Why Should Products Exist?
	The DNA of a Product-Led Company
	Product Is King
	Obsess Over Data
	Deep Collaboration
	Customer Experience

	Benefits of the Product-Led Approach
	Enhanced Customer Experience
	Product Growth
	Rapid Development

	Understanding Value Streams and Value Stream Mapping
	An Introduction to Value Streams
	What Is Value Stream Mapping?
	Carrying Out Value Stream Mapping
	Step 1: Document the Current Process
	Step 2: Identify Value Adds and Non-Value Adds
	Step 3: Define a Future State
	Step 4: Find the Root Cause of Waste
	Step 5: Identify Improvement Initiatives
	Step 6: Plan and Implement
	Step 7: Measure the Value Adds and Non-Value Adds Again

	Looking at Data and Metrics
	The Problem of Perspective in the Digital Age
	Operational Metrics
	Usage Metrics
	Business Metrics

	Summary

	Index

