

Developing
Web Components

with Svelte
Building a Library of

Reusable UI Components

Alex Libby

Developing Web Components with Svelte: Building a Library of Reusable

UI Components

ISBN-13 (pbk): 978-1-4842-9038-5 ISBN-13 (electronic): 978-1-4842-9039-2
https://doi.org/10.1007/978-1-4842-9039-2

Copyright © 2023 by Alex Libby

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: James Robinson-Prior
Development Editor: James Markham
Coordinating Editor: Gryffin Winkler

Cover image designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1
New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Alex Libby
Belper, Derbyshire, UK

https://doi.org/10.1007/978-1-4842-9039-2

This is dedicated to my family, with thanks for their
love and support while writing this book.

v

Table of Contents

About the Author ���xi

Acknowledgments ���xiii

Introduction ��xv

Chapter 1: Getting Started ��1

What Are Web Components? ���2

Taking First Steps ���4

Breaking Apart the Code ��5

Background to the Project ��7

Our Approach and Strategy ���8

Determining Our Needs ���10

Setting Up the Project ���11

Understanding What Happened ���13

Integrating a Playground ���14

Understanding What Happened ���17

Summary���18

Chapter 2: Creating Basic Components ��19

Creating the Input Field Component ���20

Breaking the Code Apart ��22

Hooking the Component into Storybook ��23

Understanding What Happened ���27

Adding Variants��29

https://doi.org/10.1007/978-1-4842-9039-2_1
https://doi.org/10.1007/978-1-4842-9039-2_1#Sec1
https://doi.org/10.1007/978-1-4842-9039-2_1#Sec2
https://doi.org/10.1007/978-1-4842-9039-2_1#Sec3
https://doi.org/10.1007/978-1-4842-9039-2_1#Sec4
https://doi.org/10.1007/978-1-4842-9039-2_1#Sec5
https://doi.org/10.1007/978-1-4842-9039-2_1#Sec6
https://doi.org/10.1007/978-1-4842-9039-2_1#Sec7
https://doi.org/10.1007/978-1-4842-9039-2_1#Sec8
https://doi.org/10.1007/978-1-4842-9039-2_1#Sec9
https://doi.org/10.1007/978-1-4842-9039-2_1#Sec10
https://doi.org/10.1007/978-1-4842-9039-2_1#Sec11
https://doi.org/10.1007/978-1-4842-9039-2_2
https://doi.org/10.1007/978-1-4842-9039-2_2#Sec1
https://doi.org/10.1007/978-1-4842-9039-2_2#Sec2
https://doi.org/10.1007/978-1-4842-9039-2_2#Sec3
https://doi.org/10.1007/978-1-4842-9039-2_2#Sec4
https://doi.org/10.1007/978-1-4842-9039-2_2#Sec5

vi

Constructing the Checkbox Component ��31

Exploring the Code ��34

Adding Variations in Storybook ��35

Breaking the Code Apart ��39

Adapting for Radio Buttons ��40

Constructing the Slider Component ��43

Adding the Component to Storybook ���47

Exploring the Code ��50

Summary���51

Chapter 3: Building Action Components ���53

Creating the SelectBox Component ��53

Understanding What Happened ���56

Adding the Component to Storybook ���57

Exploring the Code in Detail ��60

Creating the Spinner Component ��62

Understanding What Happened ���64

Adding the Component to Storybook ���65

Breaking Apart the Code ��68

Creating Variants ���68

Creating the Accordion Component ��74

Understanding What Happened ���78

Adding the Component to Storybook ���79

Reviewing the Code ���82

Summary���83

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9039-2_2#Sec6
https://doi.org/10.1007/978-1-4842-9039-2_2#Sec7
https://doi.org/10.1007/978-1-4842-9039-2_2#Sec8
https://doi.org/10.1007/978-1-4842-9039-2_2#Sec9
https://doi.org/10.1007/978-1-4842-9039-2_2#Sec10
https://doi.org/10.1007/978-1-4842-9039-2_2#Sec11
https://doi.org/10.1007/978-1-4842-9039-2_2#Sec12
https://doi.org/10.1007/978-1-4842-9039-2_2#Sec13
https://doi.org/10.1007/978-1-4842-9039-2_2#Sec14
https://doi.org/10.1007/978-1-4842-9039-2_3
https://doi.org/10.1007/978-1-4842-9039-2_3#Sec1
https://doi.org/10.1007/978-1-4842-9039-2_3#Sec2
https://doi.org/10.1007/978-1-4842-9039-2_3#Sec3
https://doi.org/10.1007/978-1-4842-9039-2_3#Sec4
https://doi.org/10.1007/978-1-4842-9039-2_3#Sec5
https://doi.org/10.1007/978-1-4842-9039-2_3#Sec6
https://doi.org/10.1007/978-1-4842-9039-2_3#Sec7
https://doi.org/10.1007/978-1-4842-9039-2_3#Sec8
https://doi.org/10.1007/978-1-4842-9039-2_3#Sec9
https://doi.org/10.1007/978-1-4842-9039-2_3#Sec11
https://doi.org/10.1007/978-1-4842-9039-2_3#Sec12
https://doi.org/10.1007/978-1-4842-9039-2_3#Sec13
https://doi.org/10.1007/978-1-4842-9039-2_3#Sec14
https://doi.org/10.1007/978-1-4842-9039-2_3#Sec15

vii

Chapter 4: Building the Navigation Components ��������������������������������85

Creating the Breadcrumb Component ���86

Understanding What Happened ���89

Adding the Component to Storybook ���90

Exploring the Code in Detail ��95

Building a SideBar Component ���95

Breaking Apart the Code ��100

Adding the Component to Storybook ���101

Understanding the Changes Made ��106

Constructing the Tabs Component ��107

Exploring the Code Changes ��110

Accessibility – A Note ��111

Hooking the Component into Storybook ��111

Understanding the Changes Made ��114

Creating a Variant ��115

Summary���119

Chapter 5: Creating Notification Components ����������������������������������121

Creating the Alert Component ���122

Sourcing the Icons ���122

Building the Component ��123

Adding the Component to Storybook ���130

Creating a Variant ��133

Creating the Dialog Component ��136

Understanding What Happened ���139

Adding to Storybook ��139

Creating the Tooltip Component ��143

Understanding What Happened ���147

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9039-2_4
https://doi.org/10.1007/978-1-4842-9039-2_4#Sec1
https://doi.org/10.1007/978-1-4842-9039-2_4#Sec2
https://doi.org/10.1007/978-1-4842-9039-2_4#Sec3
https://doi.org/10.1007/978-1-4842-9039-2_4#Sec4
https://doi.org/10.1007/978-1-4842-9039-2_4#Sec5
https://doi.org/10.1007/978-1-4842-9039-2_4#Sec6
https://doi.org/10.1007/978-1-4842-9039-2_4#Sec8
https://doi.org/10.1007/978-1-4842-9039-2_4#Sec9
https://doi.org/10.1007/978-1-4842-9039-2_4#Sec10
https://doi.org/10.1007/978-1-4842-9039-2_4#Sec11
https://doi.org/10.1007/978-1-4842-9039-2_4#Sec12
https://doi.org/10.1007/978-1-4842-9039-2_4#Sec13
https://doi.org/10.1007/978-1-4842-9039-2_4#Sec14
https://doi.org/10.1007/978-1-4842-9039-2_4#Sec15
https://doi.org/10.1007/978-1-4842-9039-2_4#Sec16
https://doi.org/10.1007/978-1-4842-9039-2_5
https://doi.org/10.1007/978-1-4842-9039-2_5#Sec1
https://doi.org/10.1007/978-1-4842-9039-2_5#Sec2
https://doi.org/10.1007/978-1-4842-9039-2_5#Sec3
https://doi.org/10.1007/978-1-4842-9039-2_5#Sec5
https://doi.org/10.1007/978-1-4842-9039-2_5#Sec7
https://doi.org/10.1007/978-1-4842-9039-2_5#Sec9
https://doi.org/10.1007/978-1-4842-9039-2_5#Sec10
https://doi.org/10.1007/978-1-4842-9039-2_5#Sec11
https://doi.org/10.1007/978-1-4842-9039-2_5#Sec12
https://doi.org/10.1007/978-1-4842-9039-2_5#Sec13

viii

Adding the Component to Storybook ���148

Creating a Variant ��152

Summary���154

Chapter 6: Creating Grid Components ��157

Determining the Approach ��157

Building the Table Component ��159

Understanding What Happened ���160

Creating the Grid Component ��161

Breaking Apart the Code ��163

Creating the Cell Component ��164

Understanding What Happened ���166

Adding to Storybook ��167

Adding a Variant ��170

Understanding How It Works ���172

Summary���173

Chapter 7: Writing Documentation ���175

Setting the Scene ��176

Adding Status Badges ���178

Understanding What Happened ���181

Updating Our Documentation – Our Approach ��183

Writing Documentation for Basic Components ���184

Breaking Apart the Changes ��195

Updating Documentation for Action Components ���196

Exploring the Changes Made ���206

Summary���207

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9039-2_5#Sec14
https://doi.org/10.1007/978-1-4842-9039-2_5#Sec16
https://doi.org/10.1007/978-1-4842-9039-2_5#Sec17
https://doi.org/10.1007/978-1-4842-9039-2_6
https://doi.org/10.1007/978-1-4842-9039-2_6#Sec1
https://doi.org/10.1007/978-1-4842-9039-2_6#Sec2
https://doi.org/10.1007/978-1-4842-9039-2_6#Sec3
https://doi.org/10.1007/978-1-4842-9039-2_6#Sec4
https://doi.org/10.1007/978-1-4842-9039-2_6#Sec5
https://doi.org/10.1007/978-1-4842-9039-2_6#Sec6
https://doi.org/10.1007/978-1-4842-9039-2_6#Sec7
https://doi.org/10.1007/978-1-4842-9039-2_6#Sec8
https://doi.org/10.1007/978-1-4842-9039-2_6#Sec10
https://doi.org/10.1007/978-1-4842-9039-2_6#Sec11
https://doi.org/10.1007/978-1-4842-9039-2_6#Sec12
https://doi.org/10.1007/978-1-4842-9039-2_7
https://doi.org/10.1007/978-1-4842-9039-2_7#Sec1
https://doi.org/10.1007/978-1-4842-9039-2_7#Sec2
https://doi.org/10.1007/978-1-4842-9039-2_7#Sec3
https://doi.org/10.1007/978-1-4842-9039-2_7#Sec5
https://doi.org/10.1007/978-1-4842-9039-2_7#Sec6
https://doi.org/10.1007/978-1-4842-9039-2_7#Sec7
https://doi.org/10.1007/978-1-4842-9039-2_7#Sec8
https://doi.org/10.1007/978-1-4842-9039-2_7#Sec9
https://doi.org/10.1007/978-1-4842-9039-2_7#Sec10

ix

Chapter 8: Documenting More Components �������������������������������������209

Adding the Remaining Documentation ���209

Adding Documentation for Notification Components ��210

Exploring the Code Changes in Detail��219

Updating Documentation for Navigation Components ��������������������������������������220

Breaking Apart the Code Changes ���228

Updating Documentation for Grid Components ���230

Understanding What Changed ���233

A Final Tidy-Up ��234

Summary���235

Chapter 9: Testing Components ��237

Setting Up the Testing Environment ��237

Breaking Apart the Code Changes ���240

Testing the Components ���241

Writing Tests for Our Library ��241

Exploring the Changes in Detail ���249

Bundling the Components ���250

Configuring the Build Process ���250

Running the Build Process ��255

Creating Demos in a Test Environment ���261

Breaking Apart the Code ��264

Testing with Other Frameworks ��265

Understanding What Happened ���267

Summary���268

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9039-2_8
https://doi.org/10.1007/978-1-4842-9039-2_8#Sec1
https://doi.org/10.1007/978-1-4842-9039-2_8#Sec2
https://doi.org/10.1007/978-1-4842-9039-2_8#Sec3
https://doi.org/10.1007/978-1-4842-9039-2_8#Sec4
https://doi.org/10.1007/978-1-4842-9039-2_8#Sec5
https://doi.org/10.1007/978-1-4842-9039-2_8#Sec6
https://doi.org/10.1007/978-1-4842-9039-2_8#Sec7
https://doi.org/10.1007/978-1-4842-9039-2_8#Sec8
https://doi.org/10.1007/978-1-4842-9039-2_8#Sec9
https://doi.org/10.1007/978-1-4842-9039-2_9
https://doi.org/10.1007/978-1-4842-9039-2_9#Sec1
https://doi.org/10.1007/978-1-4842-9039-2_9#Sec2
https://doi.org/10.1007/978-1-4842-9039-2_9#Sec3
https://doi.org/10.1007/978-1-4842-9039-2_9#Sec4
https://doi.org/10.1007/978-1-4842-9039-2_9#Sec5
https://doi.org/10.1007/978-1-4842-9039-2_9#Sec6
https://doi.org/10.1007/978-1-4842-9039-2_9#Sec7
https://doi.org/10.1007/978-1-4842-9039-2_9#Sec9
https://doi.org/10.1007/978-1-4842-9039-2_9#Sec11
https://doi.org/10.1007/978-1-4842-9039-2_9#Sec12
https://doi.org/10.1007/978-1-4842-9039-2_9#Sec13
https://doi.org/10.1007/978-1-4842-9039-2_9#Sec14
https://doi.org/10.1007/978-1-4842-9039-2_9#Sec15

x

Chapter 10: Deploying to Production ��271

Performing Final Checks ���271

Understanding the Deployment Process ���273

Publishing to GitHub ��274

Setting Up a GitHub Pages Repository���275

Uploading Components to GitHub ��278

Releasing Components to npm ���284

Building a Demo ��290

Publishing Storybook to Netlify ���294

Setting Up Netlify ���296

Adding Polish to the Repository ��300

Adding a Custom Domain Name ��300

Breaking Apart the Code ��307

Summary���308

Chapter 11: Taking Things Further ���309

Reviewing the Site ��309

Taking the Next Steps – Setting a Road Map ��311

Converting Our Next Component ���312

Dissecting the Code ���316

Adding to Storybook ��317

Understanding the Changes Made ��323

Remember That RadioButton Component? ���325

Adding to Storybook ��329

Breaking Apart the Code ��332

Summary���334

Index ���337

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-9039-2_10
https://doi.org/10.1007/978-1-4842-9039-2_10#Sec1
https://doi.org/10.1007/978-1-4842-9039-2_10#Sec2
https://doi.org/10.1007/978-1-4842-9039-2_10#Sec3
https://doi.org/10.1007/978-1-4842-9039-2_10#Sec4
https://doi.org/10.1007/978-1-4842-9039-2_10#Sec5
https://doi.org/10.1007/978-1-4842-9039-2_10#Sec7
https://doi.org/10.1007/978-1-4842-9039-2_10#Sec8
https://doi.org/10.1007/978-1-4842-9039-2_10#Sec10
https://doi.org/10.1007/978-1-4842-9039-2_10#Sec11
https://doi.org/10.1007/978-1-4842-9039-2_10#Sec13
https://doi.org/10.1007/978-1-4842-9039-2_10#Sec14
https://doi.org/10.1007/978-1-4842-9039-2_10#Sec15
https://doi.org/10.1007/978-1-4842-9039-2_10#Sec16
https://doi.org/10.1007/978-1-4842-9039-2_11
https://doi.org/10.1007/978-1-4842-9039-2_11#Sec1
https://doi.org/10.1007/978-1-4842-9039-2_11#Sec2
https://doi.org/10.1007/978-1-4842-9039-2_11#Sec3
https://doi.org/10.1007/978-1-4842-9039-2_11#Sec4
https://doi.org/10.1007/978-1-4842-9039-2_11#Sec5
https://doi.org/10.1007/978-1-4842-9039-2_11#Sec6
https://doi.org/10.1007/978-1-4842-9039-2_11#Sec7
https://doi.org/10.1007/978-1-4842-9039-2_11#Sec8
https://doi.org/10.1007/978-1-4842-9039-2_11#Sec9
https://doi.org/10.1007/978-1-4842-9039-2_11#Sec10

xi

About the Author

Alex Libby is a front-end engineer and seasoned book author who hails

from England. His passion for all things open source dates back to the

days of his degree studies, where he first came across web development

and has been hooked ever since. His daily work involves extensive use

of React, Node.js, JavaScript, HTML, and CSS. Alex enjoys tinkering with

different open source libraries to see how they work. He has spent a stint

maintaining the jQuery Tools library and enjoys writing about open source

technologies, principally for front-end UI development.

xiii

Acknowledgments

Writing a book can be a long but rewarding process; it is not possible to

complete it without the help of other people. I would like to offer a huge

vote of thanks to my editors – in particular, Shobana Srinivasan, Rami

Morrar, Gryffin Winkler, and James Robinson-Prior; my thanks also to

Tanner Dolby as my technical reviewer, James Markham for his help

during the process, and others at Apress for getting this book into print. All

have made writing this book a painless and enjoyable process, even with

the edits!

My thanks also to my family for being understanding and supporting

me while writing. I frequently spend a lot of late nights writing alone,

or pass up times when I should be with them, so their words of

encouragement and support have been a real help in getting past those

bumps in the road and producing the finished book that you now hold in

your hands.

Lastly, it is particularly poignant that the book was written at a time
when the world is emerging from events of an unprecedented nature,
where memories are still too raw. It was too easy to think about those
who lost the greatest thing we as humans could ever have; life hasn’t
been easy for anyone. Having a project to work on, no matter how
simple or complex it might be, has helped me get through those tough
times and with the hope that we face a new, improved, and hopefully
better future.

xv

Introduction

Developing Web Components with Svelte is for people who want to learn

how to quickly create web components that are efficient and fast using the

upcoming Svelte framework and associated tools.

This project-oriented book simplifies the setting up of a Svelte

component library as a starting point before beginning to explore the

benefits of using Svelte to create components not only usable in this

framework but equally reusable in others such as React, Vue, and Angular.

We can use this as a basis for developing an offer that we can customize

to our needs, across multiple frameworks. It will equip you with a starting

toolset that you can use to create future component libraries, incorporate

the processes into your workflow, and that will allow you to take your

components to the next level.

Throughout this book, I’ll take you on a journey through creating the

base library, before adding a variety of components such as a select box,

tabs, and the typical tooltip components. We will also touch on subjects

such as writing documentation, testing components, and deploying into

production – showing you how easy it is to develop simple components

that we can augment later quickly. With the minimum of fuss and plenty of

practical exercises, we’ll focus on topics such as building the functionality,

styling, testing in a self-contained environment, and more – right through

to producing the final result viewable from any browser!

Developing Web Components with Svelte uses nothing more than

standard JavaScript, CSS, and HTML, three of the most powerful tools

available for developers: you can enhance, extend, and configure your

components as requirements dictate. With Svelte, the art of possible is

only limited by the extent of your imagination and the power of JavaScript,

HTML, and Node.js.

1

CHAPTER 1

Getting Started
Let’s suppose for a moment that you’ve spent any time developing with

frameworks such as React. In that case, I’m sure you will have come across

the principle of creating web components – these self-contained, reusable

packages of code that we can drop into any number of projects, with only

minor tweaks needed to configure the package for use in your project.

Sound familiar?

What if you found yourself creating multiple components and were

beginning to reuse them across multiple projects? We could use them

individually, but that wouldn’t be the most effective way – instead, why not

create a component library?

Creating such a library opens up some real possibilities – we could

build our library around standard components that everyone uses or focus

on a select few that follow a theme, such as forms. At this point, you’re

probably assuming that we’d do something in React, right?

Wrong. Anyone who knows me knows that I like to keep things

simple – while there is nothing technically wrong with React (it’s a great

framework), I want to do something different.

We’re going to build such a component library for this book, but the

framework I’ve elected to use is a relatively new kid on the block – Svelte.

There are many reasons for doing this, but performance is the most

important one – Svelte’s architecture is different from most frameworks,

making it super-fast than many of its rivals. Throughout this book, we’ll

© Alex Libby 2023
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/978-1-4842-9039-2_1

https://doi.org/10.1007/978-1-4842-9039-2_1#DOI

2

explore how to write web components using Svelte, learn how to bring

them together in a unified library, and explore the steps required to release

them to the world at large with minimal effort.

In time-honored tradition, we must start somewhere – there’s no better

place than to kick off with a look at what we will create through this book,

set some boundaries, and get some of the tools and resources ready for

use. Before we do so (and get anyone up to speed, who hasn’t used web

components), let’s first answer this question.

 What Are Web Components?
To answer this question, we have to go back ten years to Fronteers

Conference in 2011, where web components were first introduced to

developers.

There are many ways to describe what a web component is, but I like

the definition given by Riccardo Canella in his article on the Medium

website, where he states that

“…Web components are a set of web platform APIs that allow
you to create new custom, reusable, encapsulated HTML tags
to use in web pages and web apps.”

This definition is just a small part of what they are – in addition, it’s

essential to know that they

• Are based on web standards and will work across

modern browsers

• Can be used with any JavaScript-based framework

Wow – that’s powerful stuff! Gone are the days when we had to use

a React component in a React-based site, or likewise for Angular. Just

imagine: we could build a component in Svelte and then use it in different

frameworks – as long as they are based on JavaScript.

Chapter 1 GettinG Started

3

There is one question, though, that I bet some of you are asking: Why

choose Svelte? It’s a valid question, as Svelte is not so well known as other

frameworks such as React.

However, there are three reasons for choosing this framework:

• It’s a fair bet that many of you use React in some

capacity; we could develop a web component in

React, but we would be missing out on one key factor:

interoperability. We need to build the component in a

different framework, such as Svelte.

• Svelte’s architecture pushes the compilation into the

build process, avoiding the need for a runtime library

when operated in a browser (unlike its competitors

such as React). It means the end code is super-fast –

it doesn’t have the overhead of that library, plus

compiled code is as close as you will get to pure HTML,

CSS, and JavaScript. It helps that Svelte’s developers

decided not to try to reinvent the wheel – if JavaScript

already has a perfectly adequate solution, then Svelte

uses this instead of trying to add a custom equivalent!

• This lightweight architecture also means that any

core dependencies will be minimal compared to

frameworks such as React. Any that we need will be just

those required to operate the framework – it does not

include any extra dependencies for operations such as

manipulating date or time.

Okay – enough talk: let’s crack on with something a little more

practical! Before we get into the nuts and bolts of building our library, let’s

first have a quick peek at a small example I’ve put together to see how a

Svelte-based web component works in more detail.

Chapter 1 GettinG Started

4

 Taking First Steps
For the first demo, I’ve reworked an example by Simon O. available

from GitHub – you can see the original version at https://github.com/

FroyoNom/Svelte-Weather-Forecast. My version is cut down to only

display the current weather, hardcodes the location to New York (Apress’

office!), and uses the luxon date library instead to provide the current date.

RUNNING A DEMO COMPONENT

to run the weather component demo, follow these steps:

 1. First, we need to get a key from OpenWeatherMap.org – head

over to https://home.openweathermap.org/users/

sign_up, and sign up with the correct details (it’s a free

service, although i would recommend a webmail address such

as Gmail!). Make sure you store the key in a safe place, as we

will need it later in this exercise.

 2. next, go ahead and download the archive file from the code

download that accompanies this book – extract the contents to

a new folder, not your project folder.

 3. Once extracted, open the .env file at the root of the folder

you created in step 2, then add your api key from step 1, as

indicated in the file.

 4. Fire up a node.js terminal session, then change the working

folder to that separate folder from the previous step.

 5. at the prompt, enter npm install to install the demo,

and press Enter.

Chapter 1 GettinG Started

https://github.com/FroyoNom/Svelte-Weather-Forecast
https://github.com/FroyoNom/Svelte-Weather-Forecast
https://home.openweathermap.org/users/sign_up
https://home.openweathermap.org/users/sign_up

5

 6. Once done, enter npm run dev at the prompt, and press enter

to run the application. We should see a weather component

displayed on the page if all is well, as shown in Figure 1-1.

Figure 1-1. The OpenWeatherMap component demo

I designed that demo to be a quick and easy start, although, in reality,

it hides a lot of code under the covers. At face value, it would be difficult to

tell if this had been written using Svelte – don’t worry, it has!

To prove this is the case, crack open a copy of the weather-app folder

from the code download, then look at the contents in your text editor.

Don’t worry if you don’t understand it all – it’s more important at this stage

to get a feel for how a Svelte component is structured. We’ll go through it in

more detail when we start creating components in the next chapter.

Spend a few moments reviewing it, then let’s dive into a more detailed

breakdown of the code before continuing with the rest of this chapter.

 Breaking Apart the Code
At first glance, you might be a little bewildered by some of the code in the

example – what does it all do? There is quite a bit of code used, but we only

need to be concerned with what’s in the src folder at this stage.

We went through the usual steps of downloading, extracting, and firing

up the demo in localhost, using standard Node commands to get the demo

running.

Chapter 1 GettinG Started

6

What makes our demo tick, though, is the code within the src folder –

there are other files and folders present, but we will come back to these

later in the book. The src folder is where we store all of the core component

code – ours has lib and assets folders, as well as vite-env.d.ts and

App.svelte. The lib folder holds the code for each component – in this

example, we have two, Date.svelte and Current.svelte.

Although Svelte comes with two files that act as a starting page for

a Svelte site (main.js, in the \src folder, and the index.html file

at root), it’s only the former we will really need to use. The plan for our

library is to display each component using Markdown files in a Storybook

installation, but to also use the index.html file to demonstrate how we

might reference each component outside of a Svelte environment. Don’t

worry too much about the specifics of how we will do this – we will go

through everything in detail over the course of this book! For now, it’s

important to know where our components will be stored, and that we have

two ways to display them in our environment.

there are other files and folders that we will use throughout this
book – some you will recognize, such as package.json. Others may
not be so familiar; we will go through examples throughout this book.

Okay – let’s move on: now that we’ve created a demo component, it’s time

we got stuck into the star attraction for this book: our component library!

Throughout this book, we’ll create the basis for our component and

then flesh it out with a selection of components. There is plenty we could

choose from – indeed, space constraints mean we can’t add them all! The

key is that we’ll learn how to structure our library, add components, test

them, and generally make sure we have something worthwhile toward the

end of the book.

Let’s start first with the background to this project, so we can set the

scene and understand what’s coming up later in the book.

Chapter 1 GettinG Started

7

 Background to the Project
So – where do we begin? Let me introduce you to what we will be creating:

the Cobalt UI library.

This UI library will contain a mix of components – all of these you will

find in use on many websites, particularly e-commerce ones! The great

thing about creating a component library is that you can pick and choose

which components to add; if people don’t like one or are not using it, we

can always deprecate and remove it from the library.

Hopefully, that won’t be the case with the ones I’ve chosen – I’ve listed

them in Table 1-1.

Table 1-1. List of components for our Cobalt UI library

Category Components

Basic Components input box and variations, such as email or

password fields

Checkbox

radio (we’ll cover this one as an adaptation
of the Checkbox component)
Slider

action Components SelectBox

accordion

Spinner

navigation Components Breadcrumbs

SideBar (and hamburger)

tabs

notification Components dialog boxes (such as error, info, warn)

alert

tooltip

Grid Components Grid (row and Column)

Chapter 1 GettinG Started

8

if you’re wondering about the name – it came from an interest i have
in precious stones and a trip to a gemstone museum in prague a few
years ago. they had an incredible array of garnets on display (which
is the national gemstone for the Czech republic), but as a name, i’m
not sure it works so well, hence using Cobalt instead!

Okay – let’s crack on: now that we’ve decided what we will include in

our library, let’s turn our attention to strategy. What approach will we take?

It’s time to decide on some of the tools we will use and our approach for

each component.

 Our Approach and Strategy
As with any project, it’s crucial to have a strategy – we need to decide

where (and how) to take the project. Otherwise, it could quickly become a

disorganized mess!

We could take this project in many different directions; for now, we will

focus on simplicity (mainly as space constraints mean creating something

feature rich and complex in the space of a book would be difficult). With

this in mind, I’ve outlined the approach we will take for this project:

• We’ll be creating a minimum viable product or MVP

approach – this will be enough to get something started

and published, but we can then add to it later.

• I’ve elected to use GitHub and GitHub Pages for

hosting; this is primarily as I already have several

repositories, so using GitHub will help keep things

simple. Feel free to use an alternative such as Bitbucket

or GitLab – both operate similarly to GitHub.

Chapter 1 GettinG Started

9

• An essential theme for this project will be to keep

things simple, at least for now – I would love to create

something complex and full of features, but I won’t

be able to do it justice in this book! For us, it’s more

important to get the groundwork in place and running

first; it will mean that some features we might want are

not present initially (such as using vanilla JavaScript

rather than TypeScript or excluding some properties for

a component). We can always develop and refine the

library later, once the basis is operational.

• For each component, we’ll work on developing code

first. Once done, we’ll then style it before hooking it

into an instance of Storybook as our demonstration

tool. Tests for each component will come later, once we

have built all of the components, in Chapter 8.

• For this library, I’ve elected to use the Cypress testing

suite as a personal choice – there are others out there,

such as testing-library or Jest, which work equally well.

You may have a testing tool you already use, so feel free

to use that instead; the critical point is testing our new

components, not which tool to use!

Okay – I think that’s enough for now: let’s move on! The next task is

to determine what we need in terms of accounts, tools, and the like. As a

developer, you may already have some of these tools installed; feel free to

use them, or use alternatives if you prefer! That aside, let’s take a look at the

list in more detail.

Chapter 1 GettinG Started

https://doi.org/10.1007/978-1-4842-9039-2_8

10

 Determining Our Needs
Before we can get stuck in setting up Svelte and begin building our library,

we need to determine which tools we will use for our project. In a sense,

we need to do a little housekeeping – I loathe housekeeping, but hey:

needs must, as they say!

This list will cover everything needed: I will assume that you will use

the tools outlined in the list for this book. If you already have something

installed, feel free to skip the requirement or use an alternative solution.

Leaving that aside, let’s cover which tools we need to have, alongside

the usual requirements such as Internet access and a decent text editor:

• The first requirement is Node.js (and NPM) – we will

use this to structure our Svelte project and turn code

into components. Please download and install the

version appropriate for your platform: default settings

will suffice for this project.

• We also need an account at GitHub and a valid

email address – we use the latter to validate your

account. Once registered, we will use it to set up

two repositories – one for the code and another for

documentation.

• To publish the component on NPM, we will also need

an account – you can sign up for one at www.npmjs.

com/signup if you don’t already have one.

• A project folder on your PC or laptop – for this book, I

will assume you are using one called cobalt, and it is at

the root of your C: drive. If you want to use something

different, please adjust it to suit as you work through

each exercise.

Chapter 1 GettinG Started

http://www.npmjs.com/signup
http://www.npmjs.com/signup

11

This list should be enough to get us started – anything else we can

download, or I will give you directions at the appropriate time. Let’s crack

on now with the bit I know you’re waiting for: installing Svelte and getting

our library set up.

 Setting Up the Project
The first task in building our library is to get Svelte installed – assuming

you have Node.js installed, we can use NPM to download and install the

framework. Let’s look at the steps involved in more detail as part of the

next exercise.

INSTALLING SVELTE

to get the basis for our library set up, follow these steps:

 1. First, crack open a node.js terminal session, then change to the

root of your C: drive.

 2. at the prompt, go ahead and enter npm create vite@

latest cobalt -- --template svelte, then press enter.

 3. You will first see this question – when prompted, press y to

respond:

Need to install the following packages:

 vite@latest

Ok to proceed? (y)

 4. Svelte will now install – after a few moments, it will prompt

us to run these commands; go ahead and enter each in turn,

pressing enter after each:

Chapter 1 GettinG Started

12

cd cobalt

npm install

npm run dev

 5. When prompted, fire up your browser and navigate to

http://localhost:5173 – if all is well, we should see the

demo site running in our browser, as shown in Figure 1-2.

Figure 1-2. Our Svelte demo site running

 6. Browse to the cobalt folder in your file manager – if all is well,

we should see something akin to the (partial) extract shown in

Figure 1-3.

Chapter 1 GettinG Started

13

Figure 1-3. The initial file listing for our component library

excellent – we now have a basis for building our component library!

although installing Svelte is pretty straightforward in itself, it’s worth exploring

what we achieved in the last demo. With that in mind, let’s take a moment to

review the changes we made in more detail.

 Understanding What Happened
One of the great things about using Svelte is how easy it is to set up a

starting site – everything is done using NPM, a tool many developers will

have already used in their projects, so many commands will look familiar.

The only oddity is that while we created a Svelte site, we downloaded

Vite – what is all that about?

Chapter 1 GettinG Started

14

Vite is the bundling tool used by Svelte to package code ready for

deployment – we ran the npm create command to create what is effectively

a Vite site, but we use a template to format it as a Svelte site. It’s worth

noting that as part of running this command, we had to download Vite –

this is a one-off; we won’t be prompted if we create more Svelte sites.

Once the download had been completed, we then changed into

the cobalt folder and ran a typical npm install command to set up

dependencies. With that done, we then fired up the Svelte development

server, before browsing the results in our browser. We still have a long way

to go, but this last step helps confirm we at least have a solid basis in place,

ready for building our project!

Okay – let’s move on to our next task. We will, of course, be building

components throughout this book, but – how are we going to display

them? We need the means to show them off to potential users to see how

they look and assess if they will suit their requirements.

The best way to do this is to use a tool called Storybook – it’s available

for download from https://storybook.js.org/ and works with various

frameworks, including Svelte. Let’s set up an instance as part of our

next demo.

 Integrating a Playground
If you’ve spent any time developing code – particularly with frameworks

such as React – you may well have come across Storybook.

For the uninitiated, it’s an excellent tool for showcasing any

components we developers write – the tool supports a wide range of

frameworks, including Svelte. We’ll be using it in our project to showcase

the components we create for our library – let’s dive in and explore how to

set it up as part of our next exercise.

Chapter 1 GettinG Started

https://storybook.js.org/

15

SETTING UP STORYBOOK

to set up Storybook for our Svelte project, follow these steps:

 1. First, crack open a node.js terminal session, then change the

working folder to our project area.

 2. at the prompt, enter npx sb init --builder

@storybook/builder-vite and press enter to install

Storybook.

 3. if prompted, press y to proceed (we’re using npx to download

and install, so it needs confirmation to proceed with the

download).

 4. Once installed, Storybook will preconfigure support

automatically.

if Storybook fails to detect Svelte, choose yes and use the arrow
keys to go down to svelte, then press enter to select. Storybook will
manually add support for Svelte.

 5. although we have installed Storybook, if we try to run it, it will

fail with an ugly error:

ERR! Error [ERR_REQUIRE_ESM]: require() of ES Module

C:\cobalt\.storybook\main.js from

C:\cobalt\node_modules\@storybook\core-common\dist\cjs\

utils\interpret-require.js not supported.

to fix it, we have to make a change – first, change the line "type":

"module", to "type": "commonjs", in package.json.

Chapter 1 GettinG Started

16

 6. there are a couple more changes we have to make – the first

is to tell Svelte that we’re creating custom web components.

Crack open vite.config.js at the root of our project folder,

then update the code within as highlighted:

export default defineConfig({

 plugins: [svelte()],

 compilerOptions: {

 customElement: true

 }

})

 7. next, we need to make one more change to the main.js file.

Go ahead and rename it to main.cjs – this turns it into a

CommonJS module, as Storybook has issues running the eSM

modules used by Svelte.

 8. With those updates out of the way, we can now execute npm run

storybook to launch our instance of Storybook. if all is well, we

should see it appear, as shown in the extract in Figure 1-4.

Figure 1-4. Storybook successfully launched

We have one last update to do: delete the ./stories folder. this folder is the

Storybook examples folder, which we don’t need for our project.

Chapter 1 GettinG Started

17

Great – we now have Storybook in place, ready for us to start adding

components! It is a perfect medium to show off the components we create

throughout this book; while installing Storybook is effectively a one-liner,

it’s essential to make sure it installs the proper support for your project!

With that in mind, let’s dive in and explore the changes we made in the

last exercise in more detail to see how Storybook fits into the bigger picture

of our component library.

 Understanding What Happened
So – what did we achieve in the last demo?

We started by running the npx sb init command to download and

set up Storybook; this set up both the application and support for Svelte

automatically. While Storybook supports a wide range of frameworks,

the developers have focused on automating detection for the chosen

framework as part of the installation.

The key to making that automation work lies in detecting the presence

of the correct configuration file – in our case, vite.config.js. To make sure

it works, it’s best to let Storybook install itself into a folder at the root level –

if you browse the file structure, you will see it has created a folder called

.storybook. If we hadn’t, then the automated step could fail, and we might

end up installing Storybook manually into the wrong folder, or not at all!

The next part was a little more complex – Svelte is still a relatively new

framework, so we may encounter a hiccup or two. The error message we

had back in step 5 was caused by Svelte set to use ESM-required syntax,

which is not supported in Storybook.

In this instance, it was easy to fix the problem – we had to alter the

property type in our package.json file. Once we fixed that incompatibility

issue, we removed the demo stories that come with Storybook. We don’t

need these files for the final library, so removing them keeps the setup

tidy. We then rounded out the demo by running the command to launch

Storybook, so we could confirm it launched without issue.

Chapter 1 GettinG Started

18

 Summary
We can see creating components and a library as something of a

rollercoaster – there will be highs and lows, successes, and challenges to

deal with, as we begin to develop what will become our final library. Over

these last few pages, we’ve started to look at our project’s background

and get ourselves ready to create the component library – let’s take

a moment to review what we have learned before beginning the real

development work.

We started with a quick demo of a Svelte component that I had

adapted – this was to get a feel for typical code and how one would run.

We then moved on to discussing the background of our project, before

defining the approach and strategy we would take, along with what we

would need.

We finished by setting up the initial framework ready for use, before

finishing with integrating an instance of Storybook, ready for displaying

our components.

Excellent – we have our initial structure in place, along with confirmed

requirements: it’s time we began the real development! We’ll start with

something simple first: creating the basic components, which we will do in

the next chapter.

Chapter 1 GettinG Started

19

CHAPTER 2

Creating
Basic Components
With our initial project set up, it’s time to start creating and adding

components!

For this (and the next few chapters), we will build some sample

components ready for inclusion in our library. We could have chosen to

include any one of dozens of different components, but to keep things

simple, I’ve decided to pick three to start with: Input box, Checkbox,

and Slider.

For each component, I’ve made a few assumptions in terms of how we

will develop these components:

• Use HTML5 tags where possible.

• Aim to use an MVP approach: features will be missing,

but that will come later.

• Take the approach of developing components, then

adding styles, and finally linking into Storybook.

• Add variants where possible and start documentation

(which we can improve over time).

Keeping this approach in mind, let’s start with the first addition to our

library, which is creating the Input field component.

© Alex Libby 2023
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/978-1-4842-9039-2_2

https://doi.org/10.1007/978-1-4842-9039-2_2#DOI

20

 Creating the Input Field Component
We will start with something simple for our first component – the

ubiquitous input field! You will, of course, see this versatile component

anywhere: it might be as a text box on one website but configured to accept

only email addresses or telephone numbers on other sites.

We’ll keep things simple and start with implementing a plain text field

for now but talk about more ideas later when we hook the component into

Storybook.

BUILDING THE INPUT COMPONENT

To build our Input component, follow these steps:

 1. First, go ahead and create a new folder called lib under the

src folder.

 2. Next, crack open a new file in your text editor, then add this

code – there is a good chunk, so we’ll add it section by

section, starting with a Svelte directive to convert it into a web

component:

<svelte:options tag="cobalt-input" />

 3. Leave the next line blank, then add this script block – this

sets up some export declarations, along with an onInput event

handler:

<script>

 export let label = "Label:";

 export let placeholder = "";

 export let fieldType = "text";

 export let disabled = false;

 export let inputName = "";

 export let fieldID = "";

ChapTer 2 CreaTINg BaSIC CompoNeNTS

21

 function onInput(event) {

 event.target.dispatchEvent(new CustomEvent("oninput",

{ composed: true }));

 }

</script>

 4. once added, skip a line, then add in this markup – this will form

the basis of our component:

<div class="cobalt">

 {#if label}

 <label for={fieldID}>{label}</label>

 {/if}

 <input type={fieldType}

 id={fieldID}

 name={inputName}

 placeholder={placeholder}

 disabled={disabled}

 on:input = {onInput}

 {...$$props}

 >

</div>

 5. miss a line after the closing </div> tag, then add this

styling code:

<style>

 .cobalt { display: flex; flex-direction: row;

 font-family: Arial, Helvetica, sans-serif;

 }

 input[type="text"] { width: 200px; border-radius: 4px;

border-color: #19247c; height: 30px; outline: none; }

 input[type="email"] { width: 200px; border-radius: 4px;

border-color: #19247c; height: 30px; outline: none; }

ChapTer 2 CreaTINg BaSIC CompoNeNTS

22

 label { padding-right: 10px; display: flex; align-self:

center; }

</style>

 6. Save the file as Input.svelte in the Input folder.

We now have an Input component in place – most of it will look

familiar as it is (in the main) standard HTML markup. However, there are

a few exciting features in this code we should cover, so before we get stuck

into testing our new component, let’s look at the code in more detail.

 Breaking the Code Apart
For this exercise, our first task was to create the initial folder structure – it

might seem a little convoluted, but this is so we can take advantage of a

feature unique to Svelte. We touched on this back in Chapter 1 – if we ever

need to reference the lib folder, we can use a special $lib path alias, and

Svelte will automatically find the folder.

Next up, we switched to creating the core component – we started

with adding exports for various values such as fieldType or onInput. This

export keyword makes each value available elsewhere, which will be ideal

for when we test each component later in Storybook.

In the declarations at the top of Input.svelte, you will see that
we’ve provided some values – Svelte will use these by default if no
values are passed into the component when calling it in code.

The final task for this exercise was to add the markup that will form

the basis for the Input component (plus the styles we will use for our

component) – we based it on typical markup for a text input field but

adapted it to reference each exported field. There are two exceptions:

on:input and the {...$$props} spread operator.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

https://doi.org/10.1007/978-1-4842-9039-2_1

23

The former (on:input) is Svelte’s equivalent of a standard oninput

change handler; it works in the same way as plain JavaScript, but the

syntax looks slightly different!

It’s worth noting that you don’t always need to put the callback for
the on:input; changing on:input={on:input} may also work
just as well. If you use this route here, you should also remove the
export declaration for onInput too. The same principle applies for
other components we create later in the book, such as Checkbox.

We also have the {...$$props} operator – this tells Svelte to pass all

remaining prop values into the component. If you’ve worked with the likes

of React, then you will likely be familiar with {...props} – it works in the

same manner.

Okay – let’s move on: next up, we need to test our component. We will

use the Storybook instance we set up in the previous chapter, and it’s a

perfect way to test the original component and add variants – let’s dive in

and take a look in more detail.

 Hooking the Component into Storybook
As tools go, Storybook is an immensely versatile piece of kit. It supports

various frameworks, such as React or Angular, and can also accept content

in several formats (e.g., JavaScript or Markdown).

We should be aware of one thing, though, which is our use of Svelte.

Although we are strictly speaking using SvelteKit (and not Svelte itself),

Storybook support is not quite as mature as other frameworks! Therefore,

it’s important to note that although Svelte itself is supported, you may

find documentation for SvelteKit to not be quite as complete. Some of the

options available for the former don’t work so well for SvelteKit.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

24

Don’t worry, though – Storybook is still perfectly stable and usable for

our needs: we will use Svelte-formatted files to create the Storybook effect

and Markdown content for documentation. It might seem a little confusing

for now, but bear with me – it will all become apparent in the next exercise.

ADDING TO STORYBOOK

To set up the component in the Storybook instance, follow these steps:

 1. First, crack open a new file in your text editor – save it as

Input.stories.mdx in the Input folder from the previous

exercise.

 2. Next, go ahead and add this code – we’ll break it into sections,

starting with three import statements:

 import Input from "./Input.svelte";

 import InputDocs from "./InputDocs.mdx";

 import {

 Meta, Story } from '@storybook/addon-docs';

 3. We can now add a page title, so Storybook knows how to

display our component – for this, leave a line blank, then add

this meta tag:

<Meta

 title = "Cobalt UI Library/Basic Components/Input"

 component={Input}

 parameters={{page: null}}

/>

The parameters entry here hides the default page that shows,
ready for us to add a custom one later in this demo.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

25

 4. In order to render any component in Storybook, we need

to specify a template. We could use different versions for

each component, but for now, we’ll use this one to keep

things simple:

export const Template = (args) => ({

 Component: Input,

 props: args,

});

 5. With a template in place, we can now display our component.

go ahead and add this Story block:

<Story name="Default"

 args = {{

 placeholder: "example text",

 label: "Text:",

 }}

 parameters={{

 docs: {

 page: InputDocs,

 },

 }}>

 {Template.bind({})}

</Story>

 6. We have one more part to add before viewing the results –

documentation. go ahead and create a folder at the root of the

lib folder – call this new folder storybook.

 7. You will notice in the previous step, we call InputDocs,

having imported it at the top of the file – extract a copy of

InputDocs.mdx from the code download and drop it into the

storybook folder.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

26

It contains some rudimentary documentation in markdown format –
we’ll talk more about this when we review the code.

 8. Save and close the file. Next, switch to your Node.js terminal

session, then set the working folder to our cobalt project area.

 9. at the prompt, enter npm run storybook and hit enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click on the Input

link on the left to display the Default variant we just created, as

shown in Figure 2-1.

Figure 2-1. Displaying the Input component in Storybook

Just a heads-up – you will notice that although I’ve specified
http://localhost:6006 as the UrL, it does redirect on loading –
this is perfectly normal; it’s easier to use the short form in text!

ChapTer 2 CreaTINg BaSIC CompoNeNTS

27

 10. Now click on the Docs link at the top of the page, just above

our component – if all is well, we should see an extract of the

documentation appear, as in Figure 2-2.

Figure 2-2. An extract of documentation for the Input component

Excellent – things are starting to take shape now! We now have the first

of many components set up in Storybook: it might be a simple one, but

that doesn’t matter! The critical point here is that we have a sound basis for

building and developing our components.

In the meantime, now would be an excellent opportunity to review the

code changes we have made so far. We’ve already talked about the core

component, but we’ve covered some valuable features in the Storybook

implementation, so let’s take some time to review the code in more detail.

 Understanding What Happened
Cast your mind back to the beginning of the previous exercise, where I

mentioned that we would use Markdown for our documentation.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

28

In that last exercise, we added a copy of the documentation file directly

from the code download – you might be surprised to see that what we’ve

used is not a strict Markdown syntax but more of a Storybook- flavored

version. As we are using Svelte, this is the best way to get both documentation

and code examples into the same document. We can use a JavaScript

format, but it’s a little more limiting since we can’t show code samples in the

documentation (at least not yet).

Leaving that aside, let’s dive into the InputDocs.mdx file that we

extracted from the code download and look at some of the contents. We

start with a simple import from the Storybook package:

import { Story, Preview } from '@storybook/addon-docs/blocks';

We then have our title formatted by the use of a single # mark, as per

standard Markdown syntax:

Input

This file is a documentation-only "MDX" file to customize

Storybook's [DocsPage](https://storybook.js.org/docs/react/

writing-docs/docs-page#replacing-docspage).

We mainly use Markdown throughout the document, with entries such

as the links and H2 tag in this block. For example:

Input

Button is the primary component. It has four possible states.

- [Text](#text)

Things get a little more interesting in this next block, where we

implement <Preview> tags. It tells Storybook to create a code extract using

the ID of the Default example:

ChapTer 2 CreaTINg BaSIC CompoNeNTS

29

Text

This is text for our text input field component

<!-- the IDs can be retrieved from the URL when opening a

story -->

<Preview>

 <Story id="cobalt-ui-library-basic-components-input--

default" />

</Preview>

The simplest way to get the ID is to take the full UrL of the
Storybook page with the instance of our component – in our case,
it was http://localhost:6006/?path=/docs/cobalt-ui-
library-basic-components-input--default. Simply keep
the part highlighted, and drop the rest – you now have the ID.

Hopefully, this now makes sense! In summary, we use the Svelte(Kit)

format for rendering the component in the Canvas tab of our Storybook

page and add any documentation in Markdown format, with an

appropriate link to the file from the parameters block within each story.

Okay – we’ve almost finished with this component, but there is one

more task we should take a look at: How can we add a variant for our

component?

 Adding Variants
It is something you will hear about when creating component libraries

such as ours and which highlights the importance of good planning:

variants. So what are they?

ChapTer 2 CreaTINg BaSIC CompoNeNTS

30

They are just variations on a theme – we can use elements such as

Input fields for plain text, email addresses, or even choosing colors! The

trick here is to understand what each element can support and make

sure we have sufficient properties to support that variation. For example,

if we wanted to add email support to our component, we might create

something like this in Storybook:

<Story name="Email"

 args={{

 placeholder: 'email@example.com',

 label: 'Email:',

 fieldType: 'email',

 onInput: () => alert('this is an email field')

 }}

 parameters={{

 docs: {

 page: InputDocs

 },

 }}>

 {Template.bind({})} />

Notice that I’ve highlighted several fields which we would need to

change? We don’t need to add any new properties; we can just pass

different values via the existing properties.

With this in mind, think about how we might add new stories for not

showing a label or disabling the component. How might we change the

story values? To give you a head start, here are a couple of hints:

• We only need to add one new property; all others do

not need to change.

• The documentation parameters don’t need to be

changed – they will still point to the same file, no matter

which variant we use.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

31

Check out the Input.stories.mdx file in the code download for
the answers if you are stuck!

Okay – time to move on; let’s turn our attention to creating our next

component: the humble checkbox. It’s a component that features everywhere,

on millions of forms and pages all over the Internet; it’s straightforward to

construct something as a starting point for future development.

 Constructing the Checkbox Component
We’ve made good progress so far – it might seem like we’ve covered a lot

for a simple Input field component, but don’t worry: things will get easier

as we go through the next few components.

For this next tool in this chapter, we will use the same principles

as before to help keep things simple and prepare the base for future

development. First, let’s start setting up the core component, ready for

deployment into Storybook.

BUILDING THE BUTTON COMPONENT

adding a checkbox component is easy to do – we can use similar techniques

to the Input component we created earlier in this chapter. To do so, follow

these steps:

 1. First, create a folder called Checkbox under the

components folder.

 2. Next, crack open your text editor, and create a new file called

Checkbox.svelte. add the following code to this file,

beginning with the <script> block, to import a stylesheet and

define some exported variables:

ChapTer 2 CreaTINg BaSIC CompoNeNTS

32

<svelte:options tag="cobalt-checkbox" />

<script>

 export let checked = true;

 export let label = "This is a default checkbox";

 export let disabled = false;

 function onChange(event) {

 event.target.dispatchEvent(new

CustomEvent("onchange", { composed: true }));

 }

 $: checked = checked !== false;

</script>

 3. We can now add in the markup that will form the basis of our

component – for this, add this code below the <script> block,

missing a line first:

<div class="cobalt">

 <input

 type="checkbox"

 id="name"

 {checked}

 {disabled}

 on:change = {onChange}

 {...$$props}

 />

 <label for="name">

 {label}

 </label>

</div>

ChapTer 2 CreaTINg BaSIC CompoNeNTS

33

 4. There is one last step for us to complete, which is to add some

styling. Leave a line blank after the closing </label> tag, then

add this block of code:

<style>

 .cobalt {

 display: flex;

 align-items: center;

 font-family: Arial, Helvetica, sans-serif;

 }

 input[type="checkbox"] {

 -webkit-appearance: none;

 appearance: none;

 margin: 0;

 font: inherit;

 color: currentColor;

 width: 18px;

 height: 18px;

 border: 2px solid currentColor;

 border-radius: 2px;

 transform: translateY(-1px);

 display: grid;

 place-content: center;

 }

 input[type="checkbox"]::before {

 content: "";

 width: 10px;

 height: 10px;

 clip-path: polygon(14% 44%, 0 65%, 50% 100%, 100%

16%, 80% 0%, 43% 62%);

 transform: scale(0);

 transform-origin: bottom left;

 transition: 120ms transform ease-in-out;

ChapTer 2 CreaTINg BaSIC CompoNeNTS

34

 box-shadow: inset 16px 16px #6666ff;

 }

 input[type="checkbox"]:checked::before {

 transform: scale(1);

 }

 input[type="checkbox"]:disabled {

 color: #959495;

 cursor: not-allowed;

 }

 label {

 margin-left: 5px;

 }

</style>

 5. Save the file and close it – the component is now in place.

We now have a component in place, ready to test – granted, it’s

not a complex one, but the key here is to focus on creating the basis for

something we can then develop over time. In the meantime, let’s pause

for a moment to review the code we added in the last demo – you will see

some similarities to the previous component, but it’s worth reiterating

through them as practice!

 Exploring the Code
The first task was to create a folder for our new component – inside this,

we added Checkbox.svelte, which contains the code for our component.

We added an import for the stylesheet, followed by exports for several

variables, including checked and label, which we make available for

consumption in code, such as in Storybook.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

35

We then added the HTML markup for the component before switching

to extracting a copy of the stylesheet from the code download and adding it

to our component folder.

Although our code uses the same format as the previous component,

there are three things I want to highlight: the order of properties, the use of

on:change, and the use of the {...$$props} spread operator.

I’m a great believer in keeping consistency when it comes to coding –

not only is using a proper naming convention worthwhile but keeping the

same order of values is equally important. It keeps things tidier and makes

it easier to trace issues if you have random values being passed between

components! You will notice that I put the on:change event handler after

the properties and then leave the $$props spread operator until last. It

helps to ensure we collect all prop values in the right order.

Okay – let’s move on: it’s time to test our component using the

Storybook instance we set up in the previous chapter. We’ll use similar

techniques as before, which helps make it quicker to add – let’s dive in and

explore the steps required in more detail.

 Adding Variations in Storybook
From the first component, we’ve already seen that setting up an instance

in Storybook is relatively straightforward. Once we get past choosing which

formats to use when creating the first component, we can reuse most of its

code for subsequent additions to the library. To see what I mean, check out

the next exercise, where we add the newly created Checkbox component to

Storybook.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

36

ADDING VARIATIONS

To add in variations for our Checkbox component, follow these steps:

 1. First, crack open a new file in your text editor, then add in this

code – as before, we will go though it in blocks, starting with

the declarations:

import Checkbox from "./Checkbox.svelte";

import CheckboxDocs from "./CheckboxDocs.mdx";

import {

 Meta,

 Story } from '@storybook/addon-docs';

 2. Next, leave a line blank, then add the title for the page where

we will render our component in Storybook:

<Meta

 title="Cobalt UI Library/Basic Components/Checkbox"

 component={Checkbox}

 parameters={{page: null}}

/>

 3. To tender the component, we need to first define a template –

that is taken care of with this markup:

export const Template = (args) => ({

 Component: Checkbox,

 props: args,

});

 4. We can now render the Checkbox component – we will add it

as a Default instance, with no additional parameters, save for a

checked property, and an onChange event:

ChapTer 2 CreaTINg BaSIC CompoNeNTS

37

<Story

 name="Default"

 args={{

 checked: true,

 onClick: () => alert('this is a text field')

 }}

 parameters={{

 docs: {

 page: CheckboxDocs

 }

 }}>

 {Template.bind({})}

</Story>

Note here that the onChange reference is not the actual event
handler but a reference to the one in our component – we use this
parameter to pass the function through to the actual event handler in
the component.

 5. Save the file as Checkbox.stories.mdx in the

Checkbox folder.

 6. We have one further step to complete before we can preview

the results – we need to add the CheckboxDocs.mdx file,

referenced in step 4. extract a copy of this file from the code

download, then drop it in the Checkbox folder.

 7. Next, switch to your Node.js terminal session, then make sure

the working folder is set to our cobalt project area.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

38

 8. at the prompt, enter npm run storybook and hit enter – if

all is well, we should see Storybook display in our browser at

http://localhost:6006/. Click on the Checkbox link on

the left to display the Default variant we just created, as shown

in Figure 2-3.

Figure 2-3. Displaying the new Checkbox component in Storybook

 9. We’ve added one variant into Storybook for this component,

but what others could we add? I’ve given you a big clue in

Figure 2-3. as another hint, we only need to switch around

which properties we pass into the component from within each

Story that we add to the Checkbox instance in Storybook.

The code download contains the expanded version if you need any
inspiration!

We’ve now added our second component; we’ve almost finished the

Basic Components section for our library! There is one more we will add

shortly, but before doing so, let’s first break for a moment to review the

code we added in the last demo in more detail.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

39

 Breaking the Code Apart
So – what did we achieve in the last demo? We began by adding

some imports to the Storybook file for the component itself, plus the

CheckboxDocs.mdx documentation file and some tags required for

displaying our component. Next up, we added a title for the Storybook

page and a simple template; we need the latter to tell Svelte how to render

our component.

With the template in place, we then added the Story. It uses <Story>

tags from Storybook into which we pass an args object, with values for

the checked and onChange properties. We also pass in a parameters

option – we use this to tell Storybook to parse in the CheckboxDocs.mdx

documentation file as a replacement for the one it creates by default

for Svelte.

In the <Meta...> tag object, you will notice that we pass a similar
parameters value, but this time set docs: null. It probably isn’t
necessary, but it is a useful belt-and-braces approach to ensuring we
display the correct documentation in Storybook.

We then rounded out the demo by adding the Checkbox.mdx

documentation file before executing the command to build and run

Storybook with the latest updates for our components.

Okay – let’s move on: we’re done with Checkbox, so it’s time to start

on the next component: Slider. We could build one from the ground

up, but that seems an overly complicated way to do it; why not use an

alternative that is available natively in most modern browsers?

ChapTer 2 CreaTINg BaSIC CompoNeNTS

40

 Adapting for Radio Buttons
Hold on a moment – before we do that, I want to try a little experiment.

As I’m sure you’re aware, HTML markup for radio buttons is based

on the ubiquitous <input...> tag, but instead, we pass in a type of radio.

Logic says that based on our current code, we should therefore be able to

create something similar, right?

Well, the answer is yes and no – the basic principle stays the same, but

there are a few changes we need to make. Figure 2-4 shows how a radio

component would appear if we added one to Storybook.

Figure 2-4. Adding a RadioButton component

If we had used the same process as the checkbox component, we

would have ended up with just one radio button: not right! The changes

we need to make will create a group of radio buttons instead, which will

be more aligned with our needs. To understand these changes, let’s walk

through a version I’ve set up in more detail.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

41

WALKTHROUGH: ADDING A RADIO COMPONENT

To set up our component, let’s walk through the steps required:

 1. First, go ahead and extract a copy of the RadioButton folder

code from the code download – add the folder to the root of the

components folder in our project folder.

 2. Crack open the RadioButton.svelte file – inside, we can

see an import for styles (similar to our previous components).

 3. The first change is to specify (and export) options and

userSelected. We use the former to iterate through

the options object that contains the “data”; we use

userSelected to grab the value of the selected option.

We also have the slugify constant, but this is just to help provide an
ID for each radio button, should we need to test for the contents.

 4. The real change comes, though, in the markup – inside the

cobalt <div> element (which we use for each component),

we first use a Svelte #each statement to iterate through each

value in the options array and create <input> options for

each returned value (in this case, 3). Note that we changed the

type to radio, which we would expect to do anyway for radio

buttons.

 5. however, we do have the addition of bind:group – this is a

Svelte directive that does pretty much what it says on the tin.

It binds a reference to each value in the group and updates

userSelected each time we change which option is selected.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

42

The rest of the code is self-explanatory or similar to other components –

this includes the use of the ...$props spread operator that we’ve used

elsewhere in this chapter. So – what does this mean for Storybook? Let’s walk

through how we would import our component into Storybook:

 1. Crack open a copy of Radiobutton.stories.mdx from the

code download that comes with this book.

 2. We have similar imports – the first references functions

required for Storybook to operate, and the second imports the

component into our code.

 3. We then specify two values – one to store the selected option

in our radio button and an options array object to store the data

required for our radio buttons.

 4. a little further down, we use the same <Meta...> tag as

before for the title.

 5. The real change comes in the template – this time, we need to

specify both the options array and add bind:userSelected

to update radioValue each time we change it in the demo.

 6. The <Story...> block also looks a little empty of code –

we’ve not implemented any variants this time, nor need to pass

in any extra parameters. however, we could add code to create

a variant, such as disabling the radio buttons individually or as

a group.

So – as you can see from the code, there are some subtle but important

differences: it means that while it would be nice to use the same format as

in previous components, it’s not always possible!

ChapTer 2 CreaTINg BaSIC CompoNeNTS

43

Okay – let’s crack on: for this chapter’s third and final component,

we will explore creating a Slider component. It’s not one you’re likely to

see as often as the others, particularly on e-commerce sites, but it is still

an equally important tool to have in the toolbox. Let’s dive in and take a

closer look at how we might set up such a component.

 Constructing the Slider Component
If we’re tasked with constructing a Slider component, it’s easy to think we

might have to build something from the ground up. It’s a perfectly valid

supposition; we can control what features to add and how we construct

them. It will result in a lot more code, though, when most browsers already

natively support the HTML range element – let’s see what happens when

we use it to create our next component.

BUILDING THE SLIDER COMPONENT

To build the final component for this chapter, follow these steps:

 1. First, create a new folder called Slider under the

components folder, at the same level as the previous two

components.

 2. Next, crack open your text editor, then add this code – we’ll do

this in blocks, starting with importing the stylesheet and setting

some exported declarations:

<svelte:options tag="cobalt-slider" />

<script>

 export let id = undefined;

 export let min = 0;

 export let max = 100;

ChapTer 2 CreaTINg BaSIC CompoNeNTS

44

 export let step = 1;

 export let val = 50;

 export let disabled = false;

</script>

 3. With the declarations in place, we can now add the markup

used to render our component:

<div class="cobalt">

 <input

 type="range"

 id="{id}" {min} {max} {step}

 name="{id}"

 bind:value={val}

 disabled = {disabled}

 />

 <label for="{id}">{val}</label>

</div>

 4. There is one last change to make, which is to add some styling.

Leave a line blank after the closing </div> tag, then add

this code:

<style>

 .cobalt {

 display: flex;

 flex-direction: row;

 font-family: Arial, Helvetica, sans-serif;

 }

 input[type="range"] {

 -webkit-appearance: none;

 width: 160px;

 height: 20px;

 margin: 10px 50px;

ChapTer 2 CreaTINg BaSIC CompoNeNTS

45

 background: linear-gradient(to right, #19247c 0%,

#19247c 100%);

 background-size: 150px 10px;

 background-position: center;

 background-repeat: no-repeat;

 overflow: hidden;

 outline: none;

 }

 input[type="range"]::-webkit-slider-thumb {

 -webkit-appearance: none;

 height: 20px;

 width: 20px;

 border-radius: 50%;

 cursor: ew-resize;

 box-shadow: 0 0 2px 0 #555;

 transition: background 0.3s ease-in-out;

 background: #6666ff;

 position: relative;

 z-index: 3;

 box-shadow: 0 0 5px 0 rgba(0, 0, 0, 0.3);

 }

 input[type="range"]::-moz-range-thumb {

 -webkit-appearance: none;

 height: 20px;

 width: 20px;

 border-radius: 50%;

 background: #6666ff;

 cursor: ew-resize;

 box-shadow: 0 0 2px 0 #555;

 transition: background 0.3s ease-in-out;

 }

ChapTer 2 CreaTINg BaSIC CompoNeNTS

46

 input[type="range"]::-ms-thumb {

 -webkit-appearance: none;

 height: 20px;

 width: 20px;

 border-radius: 50%;

 background: #6666ff;

 cursor: ew-resize;

 box-shadow: 0 0 2px 0 #555;

 transition: background 0.3s ease-in-out;

 }

 input[type="range"]::-webkit-slider-thumb:hover,

 input[type="range"]::-moz-range-thumb:hover,

 input[type="range"]::-ms-thumb:hover {

 background: #9393ff;

 }

 /* Input Track */

 input[type="range"]::-webkit-slider-runnable-track {

 -webkit-appearance: none;

 box-shadow: none;

 border: none;

 background: transparent;

 }

 input[type="range"]::-moz-range-track {

 -webkit-appearance: none;

 box-shadow: none;

 border: none;

 background: transparent;

 }

ChapTer 2 CreaTINg BaSIC CompoNeNTS

47

 input[type="range"]::-ms-track {

 -webkit-appearance: none;

 box-shadow: none;

 border: none;

 background: transparent;

 }

</style>

 5. Save the file as slider.svelte, then close all

open files.

Cool – our slider component is now in place. We need to add it to our

Storybook instance to see it operate. Fortunately, this is easy to do – we can

use similar code to that used for the previous two components; let’s look at

what’s required for the next exercise.

 Adding the Component to Storybook
Adding in the new Slider component is straightforward – thanks to careful

planning, we can reuse a copy of the previous code for Checkbox and Input

but change the references to Slider.

Taking this approach cuts down the development time – sure, we

will likely want to update content to make it a little more unique, but that

comes later. Let’s focus on getting the basics in place as part of the next

exercise.

SETTING UP THE SLIDER IN STORYBOOK

With the component now in place, we can now add the component and

documentation to Storybook:

 1. First, create a new file called Slider.stories.mdx at the

root of the Slider folder.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

48

 2. Next, go ahead and add this code – we’ll break it down section

by section, beginning with the relevant imports:

import Slider from './Slider.svelte';

import SliderDocs from './SliderDocs.mdx';

import { Meta, Story, Template } from '@storybook/

addon-docs';

 3. We now need to add a title for our Storybook page – add this

meta tag in, first leaving a blank line:

<Meta

 title="Cobalt UI Library/Basic Components/Slider"

 component={Slider}

 parameters={{page: null}}

/>

 4. as before, we need to add a template to tell Svelte how to

render the component:

export const Template = (args) => ({

 Component: Slider,

 props: args,

});

 5. With the template in place, we can now add in the Story code to

render our new Slider component:

<Story name="Default"

 args={{

 val: 1,

 min: 0,

 max: 100,

 step: 10

 }}

ChapTer 2 CreaTINg BaSIC CompoNeNTS

49

 parameters={{

 docs: {

 page: SliderDocs

 },

 }}>

 {Template.bind({})}

</Story>

 6. Let’s add a variant – take a copy of the code from step 5, then

miss a line and paste it into the file. Change the Story name to

“Disabled,” then add disabled: true below the line step:

10 (and before the closing brackets).

 7. Save the file. Next, we need to grab a copy of the

documentation file for this component – it’s in the code

download as SliderDocs.mdx, so save a copy into the

Slider folder.

 8. once done, switch to your Node.js terminal session, then make

sure the working folder is set to our cobalt project area.

 9. at the prompt, enter npm run storybook and hit enter – if

all is well, we should see Storybook fire up in our browser at

http://localhost:6006/. Click on the Checkbox link on

the left to display the Default variant we just created, as shown

in Figure 2-5.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

50

Figure 2-5. Displaying the Slider component in Storybook

Great – we’ve created the first set of components for our library! Things

are shaping up well; we have a solid basis for developing the code at a

later date. In the next chapter, we will focus on adding the next batch of

components, but for now, let’s round out this chapter with a final look at

the changes made in the last exercise.

 Exploring the Code
Adding components to our Storybook instance should be a little more

familiar now – the key to it is preparing the code for the first, which we can

reuse in subsequent components.

Keeping that thought in mind, we started by creating the Slider.

stories.mdx file for Storybook, into which we first added some imports

(component, documentation, and some features required from

Storybook). We then added a title using the <Meta.../> tag, into which

we told it how to set up the navigation in Storybook and that we would be

using the Slider component. At the same time, we also set the page value to

null to hide the default documentation page generated by Storybook.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

51

Next up, we then created a template – something we built for the first

component and which you will see added for all future components. We

then set up our initial <Story..> block, which we labeled Default. Usually,

we would use this to refer to a component out of the box, with no changes –

this isn’t possible here, though, as we need to provide some values:

something to bear in mind!

We then switched to creating a variant – we talked about how this

should be straightforward, given our desire to use consistent code, and

that this should make adding variants easier. We then rounded out the

demo by adding a prepared SliderDocs.mdx documentation file before

firing up Storybook and previewing the results in a browser.

 Summary
In Chapter 1, I mentioned that creating components and a library can be a

rollercoaster. As we develop what will become our final library, there will

be highs and lows, successes, and challenges to overcome. Over these last

few pages, we’ve started that journey to add in our component – let’s take

a moment to review what we learned in this chapter.

The focus throughout this chapter was creating the code for each

component – we started with constructing the code for a typical Input field

before hooking it into our Storybook instance and adding in some variants

to showcase how we can make our component more useful.

We then moved to create our second component, the Checkbox: this

followed essentially the same format, but we also touched on how we

might adapt the code to create a RadioButton component. As both share

similar properties, one might forgive us for thinking it should be easy, but a

closer inspection revealed this is not the case!

The third and final component we covered for this chapter was the

Slider – we worked through creating the core component. Adding it

to Storybook was more straightforward, though, as this is one of those

ChapTer 2 CreaTINg BaSIC CompoNeNTS

https://doi.org/10.1007/978-1-4842-9039-2_1

52

components where we have to provide values for it to operate at all, not

just because we want to change how it works; it’s something to bear in

mind when creating tools for our toolbox.

Okay – let’s move on: it’s time for a bit of action! You might have to

pardon the pun there, as it wasn’t the best lead-in to what we will cover in

the next chapter. Suffice to say, we will focus on components that show a

little action in some way (yes – there’s the link). Intrigued? Stay with me,

and I will reveal it all in the next chapter.

ChapTer 2 CreaTINg BaSIC CompoNeNTS

53

CHAPTER 3

Building
Action Components
Lights, camera, action…

Okay – we’re not about to create the next movie blockbuster! Instead,

it’s the turn of the next batch of components we will be building, which all

have some form of action (if you pardon the pun).

In the previous chapter, we started by creating some simple

components based on standard HTML5 elements, but which we could

refine into more complex versions as the library grows more mature over

time. Our next batch of components are a little more involved and show

a moving part in (most) respects – hence the reference to the title of this

chapter!

Over the following few pages, we will, in turn, create SelectBox,

Spinner, and Accordion components – let’s begin with the SelectBox.

 Creating the SelectBox Component
The typical select box type component is one you will find everywhere

online. It, of course, is perfect for choosing options on e-commerce

websites, such as the size of shoes, quantity of a particular item, or whether

we want standard or expedited delivery. To construct this component, I’ve

elected to use the standard HTML <select> element; let’s make a start on

building it as part of the next exercise.

© Alex Libby 2023
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/978-1-4842-9039-2_3

https://doi.org/10.1007/978-1-4842-9039-2_3#DOI

54

BUILDING THE SELECTBOX COMPONENT

To build our SelectBox component, follow these steps:

 1. First, create a new folder called SelectBox at the root of the

lib folder.

 2. Next, crack open a new file and add this code – we’ll start

with adding a tag to turn our code into a web component and

creating a few variables for export:

<svelte:options tag="cobalt-selectbox" />

<script>

 export let options = [];

 export let displayText = a => a.text;

 export let index = 0;

 3. Miss a line, then add in this little function and the closing

script tag:

 function onChange(event) {

 event.target.dispatchEvent(new

CustomEvent("onchange", { composed: true }));

 }

</script>

 4. We can now add the markup for our component – much of this

standard HTML markup, but it does include some Svelte tags:

<div class="cobalt">

 <select bind:value={index} {disabled}

on:change={onChange}>

 {#each options as option, i}

 <option value={i}>{displayText(option)}</option>

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

55

 {/each}

 </select>

</div>

 5. Next, we need to add some styling. Leave a line blank, then add

this code:

<style>

 .cobalt {

 display: flex;

 }

 select {

 padding: 5px 100px 5px 5px; /* 100px required to make

sure image displays */

 font-size: 16px;

 border: 1px solid #19247c;

 height: 34px;

 border-radius: 10px;

 -webkit-appearance: none;

 -moz-appearance: none;

 appearance: none;

 background: url("./icon.png") 96% / 15% no-repeat

#9393ff;

 }

</style>

 6. Save the file as SelectBox.svelte, then close the file.

 7. We also need one more file – in the code download, go ahead

and extract a copy of icon.png from the SelectBox folder. You

will have seen a reference to it in the styling from the previous

step: all will become clear once we hook our component into

Storybook.

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

56

We now have our component in place, although you will notice that

we’ve not yet tested it – we will do that once we hook the component into

our Storybook instance. For now, let’s take some time out to review the

code in more detail – there are some exciting features present, which are

helpful to know!

 Understanding What Happened
So far, we’ve added three components to our library – hopefully, by now,

you will start to see some similarities in the steps we take, which will help

speed up the process of getting out an initial version of a component!

The SelectBox component we created in the last exercise is no different –

we first created a component folder before setting up the file for our

component. We then exported several variables required for operating our

SelectBox component in this file.

Next up, we added the markup for our component – most of this is

standard HTML for select boxes, but there are a couple of points of note.

We first bind the value of value to the <select> element; data flows

typically from parent to child in Svelte, but this allows it to flow both ways

(and update on any change). We then have a Svelte #each.../each block,

which iterates through the <option...> tag to display the values from

our options array that we will pass into the component. The displayText

function extracts the relevant value from the options array. The SelectBox

component knows which display value to show and what to set as the

value property for that entry.

Last but by no means least, we also added a set of style rules for our

component – these use our theme color plus set a few attributes so that our

component at least renders correctly on the page.

Okay, let’s crack on: we have our component in place and some

rudimentary styling. It’s time to test our code, so let’s fire up Storybook

and set up an entry for our component.

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

57

 Adding the Component to Storybook
Right – where were we? Ah yes…adding our component to Storybook.

One of the benefits of careful planning is that we can reuse existing code –

to date, we’ve created three components, which all use the same format when

hooking them into Storybook. It might seem a little repetitious, but don’t

forget: reusability means we can be a lot more agile! I will come back to this

when we review the changes made shortly, but for now, let’s work through

setting up our new component in Storybook as part of the next demo.

LINKING INTO STORYBOOK

adding the component into Storybook is straightforward – we will reuse

the existing code format from previous examples, with only minor changes

needed. To see what i mean, let’s set up the SelectBox component we created

just now using these steps:

 1. First, go ahead and create a new file, then add this code – as

before, we have a reasonable chunk to add. Let’s start with

the initial <script> block to import the component and

documentation, along with some functions from Storybook:

 import SelectBox from "./SelectBox.svelte";

 import SelectBoxDocs from "./SelectBoxDocs.mdx";

 import { Meta, Story } from '@storybook/addon-docs';

 2. Next, leave a line blank, then add this <Meta> tag – it adds a

title, sets the component we want to use, and blocks the default

documentation page from being displayed:

<Meta

 title = "Cobalt UI Library/Action Components/SelectBox"

 component={SelectBox}

 parameters={{ page: null }}

/>

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

58

 3. With the initial configuration in place, we can now focus on our

component – as before, we first need to add a template. Skip a

line, then add this block in – it’s similar to previous examples,

with only a minor change of component:

export const Template = (args) => ({

 Component: SelectBox,

 props: args,

});

 4. We can now render our component – for this, we will use the

<Story> tag. go ahead and add this block:

<Story name="Default"

 args={{

 options: [{"text":"aaa"},{"text":"bbb"},{"text":"

ccc"}],

 }}

 parameters={{

 docs: {

 page: SelectBoxDocs

 },

 }}

/>

 5. Let’s also add a second story – this one will disable the

component:

<Story name="Disabled"

 args={{

 options: [{"text":"aaa"},{"text":"bbb"},{"text":"

ccc"}],

 disabled: true

 }}

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

59

 parameters={{

 docs: {

 page: SelectBoxDocs

 },

 }}

/>

 6. Save the file as SelectBox.stories.mdx, then close the file.

 7. You will see from the code that we’ve specified a file as our

documentation but haven’t yet added it. We need to extract a

copy of SelectBoxDocs.mdx from the code download, then

drop it into the SelectBox folder.

 8. We have everything in place, so let’s test it! Switch to a Node.

js terminal session, then set the working folder to our cobalt

project area.

 9. at the prompt, enter npm run storybook and hit enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click on the default

link under SelectBox on the left to display the variant we just

created, as shown in Figure 3-1.

Figure 3-1. The SelectBox component on display in Storybook

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

60

And voila! Our new component is rendering in Storybook…. But hold

on: I see some interesting effects there…an image and curved borders?

Indeed – while researching for this book, I came across a nifty little trick to

display an icon and restyle the drop-down box.

Granted, I’ve not added properties to the code to allow us to set these

changes as part of initializing the component, but it shouldn’t be too

difficult to do so at a later date. In the meantime, let’s dig into the code in

more detail before we continue with creating the next component in this

chapter.

 Exploring the Code in Detail
To hook our SelectBox component, we began by creating our

Storybook page – into this, we imported our component, along with the

documentation (written in Markdown format) and some functions from

Storybook to help support the documentation.

Next, we added a <Meta> tag, which contains the tags needed to

display the component page in the correct order. The Cobalt UI Library

is a reference to the top title, with Basic as the subtitle and, of course,

SelectBox as the name for our component’s page.

We then moved on to the critical part – our template. It’s primarily the

same as previous components; after all, there is no need (at this time) to

make it any more complicated! We then added a Story block, into which

we passed our options array as an args, along with setting the page value

to SelectBoxDocs to display our custom documentation page. We repeated

this step to add a second story – this time, we marked it as Disabled and

added the disabled parameter to disable our component. This parameter

we set as false by default, so we only need to specify it when we need to

override the property.

As the final few steps, we saved and closed all files before extracting

a copy of the SelectBoxDocs.mdx documentation file, before launching

Storybook and previewing the results in our browser.

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

61

Before we change tack and explore our next component, I want to

cover a few points of note:

• You will have noticed that we used the HTML5 native

element as a basis for our component. It does present

a question: Is this the best approach? I don’t think

there is a right or wrong answer: it will depend on the

browsers you want (or have) to support. I hope that

they will be recent (within the last two to three years),

so the issue of supporting HTML5 should not even be

an issue. The great thing about our MVP approach is

that we could decide to convert to a custom, ground-up

component; only time will tell!

• You will also notice that I’ve included vendor-prefixed

versions of the appearance property within our CSS. In

this case, they aren’t strictly necessary; we could easily

remove them, as long as we don’t need to support

older browsers. There is an icon displayed within our

SelectBox component in our component – this was

not part of the original plan but a bonus. It came from

an article posted by someone on Stack Overflow as

an example of how we might want to customize our

SelectBox component – this all depends on how we

want to develop the codebase in the future. In the

same vein, we set the padding-right value (as part of

padding) to 100px. This change was only necessary to

display the icon correctly – if we didn’t want to include

an icon, we could change it to something else later.

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

62

if, however, we should find ourselves supporting older ones, then a
quick check at https://caniuse.com/?search=appearance
will confirm if we need to make any changes!

Right, let’s move on – we’re making great progress, with our second

component now in place and working. It’s for us to look at the next one

in this bunch. It’s one where we could get into a spin if we’re not careful

(oops – sorry about the pun!). Yes, our next one is a spinner – essential if

you need to render a lot of data on the page that might take a while to load.

 Creating the Spinner Component
I’m sure you will have seen data returned on some websites that takes a

while to display, right?

We could display that data, but a better UX experience is to render a

loading element (or spinner) while we retrieve that data. Fortunately, it’s

easy enough to create the basis for something we can develop later – let’s

look at the code required to construct our component.

BUILDING THE SPINNER

To set up our spinner component, follow these steps:

 1. First, create a new folder called Spinner inside the \src\lib

folder of our project area – this is where we will store the code

for our component.

 2. Next, crack open a new file, and add this code – we’ll go

through it block by block, starting with some declarations we

export for using within the component:

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

https://caniuse.com/?search=appearance

63

<svelte:options tag="cobalt-spinner" />

<script>

 export let color = "#19247c";

 export let duration = "0.75s";

 export let size = "60";

</script>

 3. Next, we need to add the markup for our component, so leave a

line blank and add this code:

<div class="cobalt">

 <div

 class="circle"

 style="--size: {size}px; --color: {color};

--duration: {duration}" />

</div>

 4. To finish off the basic component, we need to add some

styling – go ahead and leave a line blank, then add these rules:

<style>

 .circle {

 height: var(--size);

 width: var(--size);

 border-color: var(--color) transparent var(--color)

var(--color);

 border-width: calc(var(--size) / 12);

 border-style: solid;

 border-radius: 50%;

 animation: var(--duration) linear 0s infinite normal

none running rotateCircle;

 }

 @keyframes rotateCircle {

 0% {

 transform: rotate(0);

 }

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

64

 100% {

 transform: rotate(360deg);

 }

 }

</style>

 5. Save the file as Spinner.svelte in the Spinner folder, then

close it.

We now have our Spinner component in place – although a large part

of it is standard HTML and CSS, it does include a few exciting techniques

of note. Let’s pause for a moment and review the code to understand how

it all hangs together in more detail.

 Understanding What Happened
We began by creating our Spinner component folder, into which we started

to assemble the core component code – the first task was to add a bunch of

exports for properties we will use later, such as color, duration, and size.

These have default string values applied, but two of these will change;

more on this in a moment.

Next, we then added the markup for our component – this uses the

CSS variables function var() to turn what are string-formatted values

(size, color, and duration) into variables in the format var(--XX). The

XX is the variable’s name; in this case, we use all three exported variables

to style our spinner – for example, color would appear in the markup as

var(--color).

The remaining CSS code is standard, so it should be reasonably self-

explanatory – we use a custom @keyframe called rotateCircle to animate

our spinner. The only property of interest, though, is border, where we

specify three properties – we can effectively treat these as three parts of the

circle. Change one, and we change a third of the wheel, which can lead to

some interesting effects!

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

65

We then finished by adding the markup – spinners typically don’t

need anything more than an empty <div> element; as long as we style it

correctly, it will show as our intended spinner in a browser.

 Adding the Component to Storybook
We have the code in place for our component, so it’s time to add it to our

Storybook instance. The process for doing this is pretty much the same as

the previous components, so the code will look a little more familiar by

now – let’s dive in and take a look in more detail.

HOOKING THE COMPONENT INTO STORYBOOK

adding our Spinner into Storybook is straightforward as we’re able to reuse

much of the same code as before – to see what i mean, follow these steps:

 1. First, go ahead and create a new file, then add this code –

as before, we have a reasonable chunk to add. Let’s start

with the initial import block to import the component and

documentation, along with some functions from Storybook:

import Spinner from './Spinner.svelte';

import SpinnerDocs from './SpinnerDocs.mdx';

import { Meta, Story, Template } from

'@storybook/addon-docs';

 2. Next, we need to add our <Meta> tag – as before, it adds a

title, sets the name of the component we want to use in the

navigation, and blocks the default documentation page from

being displayed:

<Meta

 title="Cobalt UI Library/Action Components/Spinner"

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

66

 component={Spinner}

 parameters={{page: null}}

/>

 3. With the initial configuration in place, we can set up our

component – we first need to add our template, which only

requires a minor change of component:

export const Template = (args) => ({

 Component: Spinner,

 props: args,

});

 4. We can now render our component – for this, we will use

the <Story> tag and pass into it the properties required to

configure our spinner component. go ahead and add this block:

<Story name="Default"

 args={{

 color: "#19247c",

 duration: "0.75s",

 size: "40"

 }}

 parameters={{

 docs: { page: SpinnerDocs },

 }}

/>

 5. Save the file as Spinner.stories.mdx in the \src\lib\

storybook folder, then close the file.

 6. You will see from the code that we’ve specified a file as our

documentation but haven’t yet added it. We need to extract a

copy of SpinnerDocs.mdx from the code download and then

drop it into the \src\lib\storybook folder.

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

67

 7. We have everything in place, so let’s test it! Switch to a Node.

js terminal session, then set the working folder to our cobalt

project area.

 8. at the prompt, enter npm run storybook and hit enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click on the default

link under Spinner on the left to display the variant we just

created, as shown in the screenshot in Figure 3-2.

Figure 3-2. Displaying the Spinner component in Storybook

Excellent – the Spinner is now hopefully in and working: it’s a shame

that we can’t see it spin in print, so hopefully, it works as expected for you

on screen! One thing to note about this component is that we can add

variants, but there is a twist.

Remember how with SelectBox, we added a disabled property as

a variant? We disable the component, but it still looks like the same

SelectBox. If we add a variant with Spinner, it will look different from our

original spinner – to see what I mean, we will add a variant shortly. Before

we do that, let’s quickly review the code changes we made in the last

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

68

demo in more detail. Much of what we added will start to look familiar

(remember that point earlier about reusability!), but it’s still worth looking

to recap what we added in the demo.

 Breaking Apart the Code
Adding our Spinner control to Storybook should now be a relatively

familiar process – as before, we start by creating our Storybook page and

importing the component, documentation, and some functions from

Storybook to help support the documentation.

We then added a <Meta> tag with properties to display the component

page in the proper order. In the same way, as we did for SelectBox, we

set Cobalt UI Library for the top title, with Action Components as

the subtitle for our group and, of course, Spinner as the name for our

component’s page.

We then moved on to the critical part – our template; here, we added

a Story block, into which we passed the color, size, and duration

properties. At the same time, we also set the page value to SpinnerDocs

to display our custom documentation page. As the final few steps, we

saved and closed all files before extracting a copy of the SpinnerDocs.mdx

documentation file and launching Storybook to preview the results in our

browser.

 Creating Variants
We set up the Spinner component to operate in Storybook in that last

demo. The process should be relatively familiar, as we’ve tried to keep

it similar for all components. However, remember how I stated that if

we added a variant for Spinner, it would likely be very different from

something added for SelectBox?

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

69

Spinner is one of those components where we probably wouldn’t

enable or disable a component, such as for SelectBox. Instead, we focus

on timing, color, size, and duration, resulting in a different look and feel!

It might sound a little confusing, but trust me – the following exercise will

make it much more apparent, so let’s dive in and take a look.

"CHANGING THE LOOK"

i’ve titled this next exercise slightly differently than the others, but with good

reason. although we will be creating a variant, it looks so different from the

original that it could equally be a separate component in its own right! That

aside, here’s what we need to do to add that new variant to our demo:

 1. First, crack open Spinner.svelte, then locate the last export

statement, and add this line before the closing </script> tag:

 const range = (size, startAt = 0) =>

 [...Array(size).keys()].map(i => i + startAt);

 2. Scroll down to the line starting @keyframes rotate…, then

change the word rotate for rotateCircle.

 3. in the .circle declaration just above it, go to the end of the

line, then change the word rotate to rotateCircle.

 4. Next, we need to add the CSS for our variant – go ahead and

add this below the rotate block:

 .jumper {

 height: var(--size);

 width: var(--size);

 border-radius: 100%;

 animation-fill-mode: both;

 position: absolute;

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

70

 opacity: 0;

 background-color: var(--color);

 animation: bounce var(--duration) linear infinite;

 }

 @keyframes bounce {

 0% { opacity: 0; transform: scale(0); }

 5% { opacity: 1; }

 100% { opacity: 0; transform: scale(1); }

 }

 5. Scroll down to pretty much the bottom – we need to add

markup and tweak the existing code. First, find this line: <div

class="cobalt">

 6. amend the original <div class = "circle"…> block to look

like this – changes are marked in bold:

 <!-- Circle spinner -->

 {#if variant == "circle"}

 <div>

 <div

 class="circle"

 style="--size: {size}px; --color: {color};

--duration: {duration}"

 />

 </div>

 {/if}

 7. Leave a line blank after that closing {/if} tag, then add this

code for our variant:

 <!-- Jumper spinner -->

 {#if variant =="jumper"}

 <div style="--size: {size}px; --color: {color};

--duration: {duration};">

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

71

 {#each range(3, 1) as version}

 <div

 class="jumper"

 style="animation-delay: {(1 / 3) * (version -

1) + "px"};"

 />

 {/each}

 </div>

 {/if}

Note This should be before the closing </div> tag at the end of
the page!

 8. Save and close the file. Fortunately, the changes required for

Storybook are not so complex! For this, crack open Spinner.

stories.mdx, then scroll to the bottom of the page and add

this block:

<Story name = "Jumper"

 args={{

 color: "#19247c",

 duration: "1s",

 size: "60",

 variant: "jumper"

 }}

 parameters={{

 docs: { page: SpinnerDocs },

 }}

/>

 9. We have everything in place, so let’s test it! Switch to a Node.

js terminal session, then set the working folder to our cobalt

project area.

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

72

 10. at the prompt, enter npm run storybook and hit enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/.

 11. Click on the Jumper link under Spinner on the left to display

the variant we just created, as shown in the screenshot in

Figure 3-3.

Figure 3-3. Displaying the Spinner variant

Wow – our Spinner looks different now! This is the beauty of this

component: even though the core markup is largely the same, varying the

properties we pass in can render something completely different.

 Breaking Apart the Code

We began with adding an exported variable called variant, which we will

use to specify which variant to run when calling our component. We also

added a new const for range – this is used in the new effect to create a

splash effect as part of our animation. At the same time, we renamed the

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

73

original rotate @keyframes block to rotateCircle – this wasn’t essential,

but it helps provide a better separation of concerns once we add the

@keyframes block for our new variant.

We then switched to adding the CSS styles required for the variant –

this came in two parts, starting with creating the basis for the spinner,

followed by that new @keyframes block to animate it.

We then modified the markup – first, we wrapped the original markup

in a Svelte {#if}...{/else} block before adding the new markup for our

variant.

Take a closer look at the markup for our variant: there are a couple

of interesting points of note. We use CSS variables throughout, such

as --size or --color. We also defined exported variables at the top of

the file in the same name, so a statement such as --color: {color}

becomes --color: #19247c in code. The feature of interest, though, is the

#each block:

 {#each range(3, 1) as version}

 <div

 class="jumper"

 style="animation-delay: {(1 / 3) * (version - 1)

+ "px"};"

 />

 {/each}

Here, we use a standard Svelte {#each…as} block, similar to React

but with slightly different syntax. But the real magic happens in the

animation-delay style. Our block iterates through three instances of the

div (range(3,1) equates to 3, 2, 1); the calculation provides a gradual step

effect, similar to jumping into a puddle of water, hence the name of the

animation!

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

74

 Creating the Accordion Component
Let me ask you a question.

Hands up, how often have you been on a website where the author (or

company) has added a ton of information but given no thought about its

display? You take one look and think, “ugh – time to vote with my feet…,”

as they say!

That example might sound a little extreme, but I’ve been on

thousands of sites over the years, where I still see designers display a lot of

information with little regard to how they lay it out on the page. One way to

fix that could be to use an instance of what we will be developing next: an

Accordion.

These are great for storing a lot of information – such as product specs,

reviews, and the like – in a compact manner, and we can select which tab

to display for further details. Accordions are not challenging to create,

although they require more code than we’ve done so far. To see what I

mean, let’s dive in and look at creating one as our next component.

BUILDING THE ACCORDION COMPONENT

To set up our accordion component, follow these steps:

 1. First, create a new folder called Accordion inside the \src\

lib\ folder within our project area – this is where we will store

the code for our component.

 2. at the same time, create a new folder called

AccordionItem – this should be stored inside the \src\

lib folder.

 3. Next, crack open a new file and add this code – we’ll go

through it block by block, starting with some declarations we

export for use within the component:

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

75

<svelte:options tag="cobalt-accordion" />

<script>

 import AccordionItem from './AccordionItem.svelte'

 export let data = [];

</script>

<div class="cobalt-accordion">

 {#each data as entry}

 <AccordionItem title={entry.title} entry={entry.

text} />

 {/each}

</div>

 4. Next, miss a line, then add this block – it will provide some

basic styling for our accordion container:

<style>

 .cobalt-accordion {

 display: flex;

 flex-direction: column;

 width: 500px;

 }

</style>

 5. Save the file as Accordion.svelte, then close the file.

 6. You will notice from that code a reference to

AccordionItem – we now need to create that component. For

this, go ahead and crack open a new file, then add this code:

<svelte:options tag="cobalt-accordionitem" />

<script>

 import { slide } from "svelte/transition";

 import accordionData from "./accordiondata.json";

 export const data = accordionData;

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

76

 export let entry = "";

 export let title = "";

 let isOpen = false

 const toggle = () => isOpen = !isOpen

</script>

 7. Last but by no means least, we need to add the markup for our

component – this first block defines the button used to open

and close each list item:

<button on:click={toggle} aria-expanded={isOpen}>

 <svg

 width="20"

 height="20"

 fill="none"

 stroke-linecap="round"

 stroke-linejoin="round"

 stroke-width="2"

 viewBox="0 0 24 24"

 stroke="currentColor">

 <path d="M9 5l7 7-7 7"></path>

 </svg>

 {entry[0]}

</button>

 8. This second part triggers an animation if the button is opened

by the user:

{#if isOpen}

 <ul transition:slide={{ duration: 300 }}>

 {#each entry[1] as item}

 {item}

 {/each}

{/if}

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

77

 9. We need to add some styling – for this, miss a line after the

closing {/if}, then add this code:

<style>

 svg { transition: transform 0.2s ease-in; }

 [aria-expanded="true"] svg {

 transform: rotate(0.25turn);

 }

 button.accordionItem { display: flex; align-items:

center; background-color: #6666ff; color: #ffffff;

border: none; }

 button[aria-expanded="false"].accordionItem

{ margin-bottom: 2px; }

 button.accordionItem:hover { background-color:

#19247c; }

 ul { border: 1px solid #6666ff; margin: 0; margin-

bottom: 2px; padding: 20px 20px 20px 40px; }

</style>

 10. Save the file as AccordionItem.svelte in the

AccordionItem folder, then close it.

Great – we can knock another component off the list of tasks to

create our library! This one is a little special, though, as it is a composite

component, or one made up of more than one subcomponent (all of the

others are single component based).

This structure change does present one interesting point – how do we

pass data down and make sure any that should stay local to their parent

do stay local? Before we move on to the next and final component for this

chapter, now’s a perfect opportunity to review the code to see how our

component hangs together in more detail.

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

78

 Understanding What Happened
So far, all of the components we’ve added have had one thing in common.

They are effectively unitary components, or, for those of you familiar with

it, atomic components (if you follow the Atomic Design principles created

by Brad Frost, which you can see at https://bradfrost.com/blog/post/

atomic-web-design/). Our Accordion component is the odd one out, as

this is a molecule – we combined several elements to form our component.

To understand the difference, let’s break down the steps we took:

we started with the requisite folder creation (as before) before creating

Accordion.svelte – this contained an import to the AccordionItem atom

(or subcomponent), along with some test data for the Accordion.

<script>

 import AccordionItem from './AccordionItem.svelte'

 export let data = []

</script>

It’s worth noting that we could change the format of the data presented

in our Accordion – for example, we could replace the data export shown

previously with this:

 import accordionData from "./accordiondata.json";

 export let data = accordionData;

This would allow us to import data from an external JSON file – why is

this significant? Well, the answer lies in how we can pass data to a Svelte

web component – it can only be in string format, so passing boolean

values, for example, isn’t allowed!

Moving on, we then set up the markup for each item within the

Accordion. We iterate through the data block using a Svelte #each

function while at the same time destructuring each item as an instance of

entry. This we pass into the AccordionItem component as a value for the

title prop.

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

https://bradfrost.com/blog/post/atomic-web-design/
https://bradfrost.com/blog/post/atomic-web-design/

79

When we explore the AccordionItem component, things get more

interesting – here, we have two imports: one for the slide transition effect

and another for the stylesheet. We then export entry (which we use to pass

down the values to each instance of AccordionItem) and title (the heading

for each bar in the Accordion) before defining a scoped variable isOpen for

use within the Accordion component.

Next up, we then moved on to creating the markup for the button

that acts as the trigger for each Accordion item. It contains an SVG of

the chevron icon wrapped inside a button, followed by a Svelte #if…/

if block to iterate through each entry and display it in the body of the

Accordion item.

 Adding the Component to Storybook
We have the code in place for our Accordion, so let’s add it to our

Storybook instance without further ado. The process for doing this is

pretty much the same as the previous components, so hopefully, the code

will start to look more familiar by now – let’s jump in and explore what’s

required in more detail.

LINKING INTO STORYBOOK

Setting up the accordion to work in Storybook should be straightforward as

we’re using the same code process as other components. We only need to

make small changes to our code to reflect using a new component – to see

what i mean, follow these steps:

 1. First, go ahead and create a new file in the same way as we’ve

done before, then add this code – we’ll start with the initial

<script> block to import the component and documentation,

along with some functions from Storybook:

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

80

 import AccordionDocs from "./AccordionDocs.mdx";

 import Accordion from "./Accordion.svelte";

 import AccordionItem from "./AccordionItem.svelte";

 import { Meta, Story } from '@storybook/addon-docs';

 2. Next, we need to add our <Meta> tag – as before, it adds

a title, defines the navigation for our Storybook page, sets

the name of the component, and prevents Storybook from

displaying the default documentation page:

<Meta

 title="Cobalt UI Library/Action Components/Accordion"

 component={Accordion}

 parameters={{page: null}}

 />

 3. With the initial configuration in place, we can set up the

accordion – we first need to insert the template, with only

minor changes of component name required:

export const Template = (args) => ({

 Component: Accordion,

 props: args,

});

 4. We can now render our component – for this, we will use the

same <Story> tag as before and into it pass the properties

required to configure our accordion component. go ahead and

add this block:

<Story name="Default"

 args={{

 open: false,

 data: [

 {

 "title": "Heading 1",

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

81

 "text": "aorem ipsum dolor sit amet, consectetur

adipiscing elit. Sed malesuada, nulla sed lacinia

accumsan, ligula arcu interdum urna, eget rhoncus sapien

orci scelerisque metus."

 },

 {

 "title": "Heading 2",

 "text": "In bibendum commodo orci nec semper.

Nam magna mauris, ornare eu semper sit amet, vehicula

sed metus"

 },

 {

 "title": "Heading 3",

 "text": "Mauris tortor mi, scelerisque nec metus

nec, finibus euismod lacus. Maecenas non porttitor arcu"

 }

]

 }}

 parameters={{

 docs: { page: AccordionDocs },

 }}

/>

 5. Save the file as Accordion.stories.mdx in the \src\

lib\storybook folder, then close the file.

 6. as with previous components, we need to extract a copy of

AccordionDocs.mdx from the code download and then drop

it into the accordion folder. The markdown in this file will add a

page ready for us to insert documentation for our component.

 7. Switch to a Node.js terminal session, then set the working

folder to our cobalt project area.

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

82

 8. at the prompt, enter npm run storybook and hit enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click on the default

link under Spinner on the left to display the variant we just

created, as shown in Figure 3-4.

Figure 3-4. The Accordion component on display in Storybook

We’re starting to cook now, to coin that phrase! We’ve created the code

for all three components for this chapter and added them to our Storybook

instance. Before moving on to the next chapter and exploring our next

batch of features, let’s review the changes made in the last demo to see

how our Accordion component hooks into Storybook.

 Reviewing the Code
Adding an Accordion component to Storybook should now be a relatively

familiar process – as before, we start by creating our Storybook page and

importing the feature, documentation, and some functions from Storybook

to help support the documentation.

We then added a <Meta> tag with properties to display the component

page in the correct order. In the same way, as we did for SelectBox,

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

83

we set Cobalt UI Library for the top title, with Action Components

as the subtitle for our group and Accordion as the name for our group

component’s page.

We then moved on to the critical part – our template; here, we added

a Story block, into which we passed the open and data properties to

control when the Accordion is open and the data to display. At the same

time, we also set the page value to AccordionDocs to display our custom

documentation page. As the final few steps, we saved and closed all files

before extracting a copy of the AccordionDocs.mdx documentation and

launching Storybook to preview the results in our browser.

 Summary
“And that’s a wrap…!”

Yes, indeed – we’ve added all three Action components to our library; each

has its respective page in our Storybook instance. It means we’ve reached

the halfway point in constructing features for our library, with only two

more categories to add later in the book. Before we get on building the

next category of components, let’s take a moment to review what we have

learned in this chapter.

As we saw back in the previous chapter, the focus is on adding each

component to our library and setting it up in Storybook. We started with

the SelectBox component before swiftly moving on to creating the Spinner

component. It was a little more involved as we explored adding a new

variant – we learned that even though we use the same markup, changes in

styling effectively meant we had the equivalent of a new component.

We explored setting up an Accordion component for the third and

final component in this chapter. It was a little more complex, as we had to

create two components: the main Accordion as the parent container and

AccordionItem for displaying each item in the Accordion component.

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

84

Okay, let’s crack with creating the next batch: next up is our

navigation- based component group. We’ll look at creating components

such as a navigation bar and buttons, a menu and tabs, and more –

intrigued? Stay with me, and I promise to navigate you through all in the

next chapter if you pardon that terrible pun!

CHapTer 3 BuiLdiNg aCTioN CoMpoNeNTS

85

CHAPTER 4

Building
the Navigation
Components

“I may not have gone where I intended to go, but I think I have
ended up where I needed to be.”

That quote by the author Douglas Adams, from his 1988 detective novel,

The Long Dark Tea-Time of the Soul, may have had a somewhat humorous

edge, but I think it’s an apt phrase to describe the theme for this chapter –

they are all about navigation.

Good navigation is essential for any site – we can produce all manner

of different components (such as the ones we’ve built so far) for different

pages, but if we can’t navigate to them, we might as well pack up and

go home!

Over the following few pages, we will build three components – a

set of Tabs, a Breadcrumb trail, and a SideBar menu. We will use similar

methods throughout to help keep consistency and make it easier to

develop; let’s start with the Breadcrumb component.

© Alex Libby 2023
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/978-1-4842-9039-2_4

https://doi.org/10.1007/978-1-4842-9039-2_4#DOI

86

 Creating the Breadcrumb Component
Hands up – how often have you had to navigate around a large website

that has less than ideal navigation? I’m sure you will have done it at

least once….

We would typically navigate using links or menu options, but we might

also use breadcrumbs. This latter navigation scheme shows where we

are on a site, making it easier to go back and forth without remembering

which menu option to choose or which link to click. Breadcrumbs (or

breadcrumb trails) have only been around for around 20 years, but the

term comes from the Hansel and Gretel tale, where two children leave a

breadcrumb trail to find their way home. It seems somewhat ironic that a

feature synonymous with larger websites dates back from the early 19th

century!

But I digress. We’re going to create a simple Breadcrumb component

for our first navigation component. We’ll base it around a standard HTML

unordered list, with a bit of styling and the option to use a custom image

for the divider. Let’s dive in and look at how to create it in more detail.

For the custom image, I’ve used two SVG icons from the Ionic library
at https://ionic.io/ionicons; they are arrow- forward-
outline.svg and chevron-forward-outline.svg. Both are in
the code download; feel free to use alternatives if you prefer, but you
will need to adjust the code to suit.

BUILDING THE BREADCRUMB TRAIL COMPONENT

To build our Breadcrumb component, follow these steps:

 1. First, create a new folder called Breadcrumbs at the root of

the components folder.

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

https://ionic.io/ionicons

87

 2. next, crack open a new file and add this code – we’ll start with

importing the stylesheet, creating a few variables for export,

and adding some default data from a JSon file:

<svelte:options tag="cobalt-breadcrumbs" />

<script>

 import arrow from './icons/arrow-forward-outline.svg';

 export let divider = "/";

 export let image = false;

 import breadcrumbItemsData from "./

breadcrumbsdata.json";

 export let breadcrumbItems = [];

 if (breadcrumbItems == []) {

 breadcrumbItems = breadcrumbItemsData;

 }

</script>

 3. We can now add the markup for our component – much of this

standard hTml markup, but it does include some Svelte tags.

The first takes care of checking to see if we display a custom

image or plain text as a divider:

<div class="cobalt">

 <ul class="breadcrumb">

 {#each breadcrumbItems as breadcrumbItem, i}

 <!-- Breadcrumb divider -->

 {#if i !== 0}

 {#if !image}

 {divider}

 {/if}

 {#if image}

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

88

 <img src={arrow} alt='arrow' height=15

width=15 />

 {/if}

 {/if}

 4. The second part of this block iterates through each item, to

determine if it is the link or end tag:

 <!-- Render each breadcrumb -->

 {#if i === breadcrumbItems.length - 1}

 {breadcrumbItem.text}

 {:else}

 { breadcrumbItem.text}

 {/if}

 {/each}

</div>

 5. next, miss a line after the closing </div>, and add these

style rules:

<style>

 .cobalt { display: flex; font-family: Arial, Helvetica,

sans-serif; }

 ul.breadcrumb { padding: 10px 16px; list-style: none;

background-color: #eee; }

 ul.breadcrumb li { display: inline; font-size: 18px; }

 ul.breadcrumb li a { color: #19247c; text-

decoration: none; }

 ul.breadcrumb li a:hover {

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

89

 color: #9393ff;

 text-decoration: underline;

 }

 ul.breadcrumb li span {

 display: inline;

 padding: 8px;

 }

</style>

 6. Save the file as Breadcrumbs.svelte, then close any open

files. We need two more files – go ahead and extract copies of

arrow-forward-outline.svg and chevron-forward-

outline.svg from the code download, and put them into a

new folder called icons, under the Breadcrumbs folder.

Excellent – we have our component in place, along with the two icons

we need to test the custom image option of our component. The next task

is to try it to make sure it works; as before, we’ll work through adding it

to our Storybook instance. Before we get to that, let’s take a moment to

review the code changes made – most of it should be self-explanatory, but

some interesting Svelte techniques within the code are worth exploring in

more detail.

 Understanding What Happened
At first glance, you might feel a little confused with the number of

conditional blocks in this component – it does feel like we’ve gone a little

overboard in using them!

The reality is that we need to perform a lot of checks – the key to

making this component work lies in the #each block we use inside the

cobalt <div> element. We started by creating our component folder before

adding the core component file, which contains an import for an image

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

90

used in the component. We then created two exported variables (image

and divider) to control if we display an image or text-based divider. At

the same time, we also added an import for data from a JSON file and an

export for breadcrumbItems.

What’s going on with these data checks, I hear you ask? The answer

lies in how we source our data – we would provide this when calling the

component (in our case, from Storybook). If, however, we don’t provide

data (and which assumes therefore that the object breadcrumbItems will

be empty), we then source default data from a JSON file. I could have

provided this in the component, but sourcing it from a JSON file allows us

to maintain separation of concerns.

The real magic then happens in the #each block that comes next –

we iterate through the object, first checking to see if we need to display

a divider. If the position of i (the index) is zero, we don’t show one;

otherwise, we display either a text or image-based divider, depending on

what we set in the image or divider properties.

Once we’ve confirmed what to display, we then iterate through the

object – we show a text label if the index matches the position of the last

item or a link for all other entries. We end up with links for each entry in

the chain, except for the last item, which indicates our chosen page.

To round off the task, we added some basic styling in an external

stylesheet, along with two images, ready for us to test when adding the

component to Storybook.

 Adding the Component to Storybook
I know I’ve mentioned this before, but one of the benefits of careful

planning is making code reusable; we’ve used the same format for all

of the components created so far. Keeping this level of reusability is

perfect for making development more rapid; after all, why reinvent the

wheel unnecessarily? On that note, let’s continue with our Breadcrumb

component and set it up to work in our Storybook instance.

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

91

ADDING TO STORYBOOK

To get our Breadcrumb component working in Storybook, follow these steps:

 1. First, go ahead and create a new file, then add this code – as

before, we have a reasonable chunk to add. let’s start with

the initial declaration block to import the component and

documentation, along with some functions from Storybook:

 import Breadcrumbs from "../Breadcrumbs/Breadcrumbs.

svelte";

 import BreadcrumbsDocs from "./BreadcrumbsDocs.mdx";

 import { Meta, Story } from '@storybook/addon-docs';

</script>

 2. This next bit should be very familiar by now – leave a line

blank, then add this <Meta> tag. as before, it adds a title,

sets the component we want to use, and blocks the default

documentation page from being displayed:

<Meta

 title="Cobalt UI Library/Navigation Components/

Breadcrumbs"

 component={Breadcrumbs}

 parameters={{page: null}}

/>

 3. With the initial configuration in place, we can now focus on our

component – as before, we first need to add a template. Skip a

line, then add this block in – it’s similar to previous examples,

with only a minor change of component:

<Template let:args>

 <Breadcrumbs {...args} />

</Template>

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

92

 4. We can now render our component – for this, we will use the

<Story> tag. Go ahead and add this block:

<Story

 name="Default"

 args={{

 image: false,

 image: false,

 breadcrumbItems = [

 { href: "/", text: "Dashboard" },

 { href: "/reports", text: "Annual reports" },

 { href: "/reports/2019", text: "2019" },

]; }}

 parameters={{

 docs: {

 page: BreadcrumbsDocs

 },

 }}

/>

 5. let’s also add a second story – this one will show a custom

image instead of a text-based character as our divider:

<Story

 name="Custom image"

 args={{

 image: true,

 breadcrumbItems = [

 { href: "/", text: "Dashboard" },

 { href: "/reports", text: "Annual reports" },

 { href: "/reports/2019", text: "2019" },

];

 }}

 parameters={{

 docs: {

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

93

 page: BreadcrumbsDocs

 },

 }}

/>

 6. Save the file as Breadcrumbs.stories.svelte in the /

src/lib/storybook folder, then close the file.

 7. You will see from the code that we’ve specified

BreadcrumbsDocs.mdx as our documentation file but haven’t

yet added it. Go ahead and extract a copy of the file from the

code download, then drop it into the Breadcrumbs folder.

 8. We have everything in place, so let’s test it! Switch to a node.

js terminal session, then set the working folder to our cobalt

project area.

 9. at the prompt, enter npm run Storybook and hit enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click on the default

link under SelectBox on the left to display the variant we just

created, as shown in Figure 4-1.

Figure 4-1. Displaying the Breadcrumb component with a
standard divider

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

94

 10. Click on the Custom image link on the left – this variant swaps

out the double slash and replaces it with a custom image, as

shown in Figure 4-2.

You will note we added two images when creating the initial
component – try swapping the images over in the code. You may
need to adjust the styling a little, but the critical point here is that we
can use any SVG icon as our divider – we could even modify the code
to pass in an image name too!

It never ceases to amaze me how a standard element that has been

around for decades is something we can turn into a useful feature with

little more than a couple of functions and some styling!

List elements are incredibly versatile; Svelte’s light touch means

that we can create all kinds of components with minimal extra code.

This concept was no different for the Breadcrumb component we’ve

just made – let’s take a moment to review the code in more detail before

cracking on with our next navigation component.

Figure 4-2. The Breadcrumb variant displayed with a custom image

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

95

 Exploring the Code in Detail
Much of this component follows a similar pattern to the others that we’ve

already created – we started with the now-familiar script block to import

the placeholder documentation, an instance of the component, and some

functions from the core Storybook framework. At the same time, we also

added an items object with some sample data, which we use to display our

Breadcrumb component.

Next up, we added the usual Meta tag, which contains the details

needed for the navigation in Storybook, the name of the component we

will use (Breadcrumbs), and an entry to block the default documentation

page generated by Storybook. We also inserted our template – we changed

the name of the component we use, but otherwise, it is identical to other

components used in our library.

For the last part, we added two Story blocks to display instances of our

Breadcrumb component – the first one, called Default, is set to render

a double slash as our divider instead of an image. It is also the case in

the second example (Custom image). However, as we also set the image

property to true, this overrides the divider property to display an image

when previewing the results in a browser.

Okay – let’s move on: our next component is one you are likely to find

more on a mobile device, but that doesn’t matter. Sidebars still have a

crucial role in helping us navigate a website, so they are a perfect tool to

have in our library. They require more work to set up, but it’s worth the

effort: let’s dive in and look at how we might create such a component for

our library.

 Building a SideBar Component
Cast your mind back quite a few years – remember the days when as

developers, all we had to worry about navigation was to create something

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

96

for desktops? With mobile usage exploding, it is ever more critical that we

can create a usable navigation for this platform. There is no better way to

do it than using a hamburger menu, such as our next component.

To create one, we will have to set up not one but two components:

a hamburger icon and the sidebar itself. We’ll do this over a two-part

exercise, with breaks in between – let’s crack on with part 1, which is to

create the hamburger component.

BUILDING THE SIDEBAR MENU COMPONENT – PART 1: THE HAMBURGER

To construct the hamburger icon and menu button, follow these steps:

 1. First, we need to create a SideBar folder for our component –

go ahead and add one under /src/lib in our project area.

 2. For this component, crack open a new file and add this code –

we need to add two variables for export, along with the

svelte:options directive and a check to determine if the

sidebar is open or closed:

<svelte:options tag="cobalt-hamburger" />

<script>

 export let openSideBar = "false";

 export let open = false;

 openSideBar == "false" ? !open : open;

</script>

 3. next, miss a line, then add this markup for our button:

<button class:open on:click={() => open = !open}>

 <svg width=32 height=24>

 <line id="top" x1=0 y1=2 x2=32 y2=2/>

 <line id="middle" x1=0 y1=12 x2=24 y2=12/>

 <line id="bottom" x1=0 y1=22 x2=32 y2=22/>

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

97

 </svg>

</button>

 4. With the button in place, all we need to add for this component

is some styling – go ahead and drop these rules in the file,

missing a line first:

<style>

 button { color: #a0aec0; margin-right: 16px; border-

style: none; }

 button:hover { color: #4a5568; cursor:pointer;

z-index: 20; }

 button:focus { outline: none }

 svg { min-height: 24px; transition: transform 0.3s

ease- in- out; }

 svg line { stroke: currentColor; stroke-width: 3;

transition: transform 0.3s ease-in-out }

 .open svg { transform: scale(0.7) }

 .open #top {

 transform: translate(6px, 0px) rotate(45deg)

 }

 .open #middle { opacity: 0; }

 .open #bottom { transform: translate(-12px, 9px)

rotate(-45deg) }

</style>

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

98

 5. Save the file as Hamburger.svelte in the same SideBar

folder and close it.

That’s component number one down, one left to go! We now have

the hamburger button set up, so the only component left to create is our

sidebar.

One of the great things about Svelte is that it doesn’t try to overload

HTML markup with a lot of extra cruft – this makes creating components

such as our SideBar very clean! To see what I mean, let’s look at what’s

involved in the next part of this exercise.

BUILDING THE SIDEBAR MENU COMPONENT – PART 2: THE SIDEBAR

To construct our final part of this component, the sidebar, follow these steps:

 1. For this component, crack open a new file and add this code –

unlike other components, we only need to add an open variable

for export:

<svelte:options tag="cobalt-sidebar" />

<script>

 import { fly } from "svelte/transition";

 export let show = "true";

 let sidebar_show = show === "true";

</script>

 2. next up, miss a line, then add this markup for our component –

this will render the menu in the sidebar, when opened, along

with the contents of any hTml markup provided when calling

the component:

<cobalt-hamburger on:click={() => (sidebar_show =

!sidebar_show)} />

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

99

{#if sidebar_show}

 <nav transition:fly={{ x: 250, opacity: 1 }}>

 <slot />

 </nav>

{/if}

 3. To finish off the component, we need to add some basic

styling – add these rules into the bottom of the file:

<style>

 nav {

 position: fixed;

 top: 0;

 right: 0;

 height: 100%;

 padding: 32px 16px 9.6px;

 border-left: 1px solid #aaa;

 background: #fff;

 overflow-y: auto;

 width: 160px;

 box-shadow: 2px 3px 3px 3px #000000;

 }

</style>

 4. Save the file as SideBar.svelte in the same SideBar folder

and close it.

That might have seemed like a lengthy exercise (even if it was over two

parts), but we now have our component in place! It looks like a lot of code,

and indeed, much of it is standard HTML markup and CSS styling. We do

use a few Svelte features within – let’s take a closer look at the code we

used to understand how it all hangs together in our demo.

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

100

 Breaking Apart the Code
Until now, most of the components we have created have been fairly

simple affairs – the core functionality in a plug-in, styling in a supporting

stylesheet, and documentation in a Markdown file. This last component

turned things on its head, as we had to create two components, instead of

just one – let’s pause to review the code.

We began with creating our Hamburger icon component – inside

this, we added a svelte:options directive to allow us to use it as a web

component, before setting a variable open (which we default to false).

Next, we added a button with an on:click event handler – this we set

to not only add or remove the open class (based on what the variable was

set to) but also flip that open value to the opposite, each time we clicked

the button. It means that we can set a class against the button to control

how the sidebar is shown, as well as add some animation effects to the

button. We then finish this part with adding the SVG for the hamburger

lines and styling to control the animation.

In part 2, we focus on creating the star of the show (so to speak) –

our sidebar. This contains some interesting Svelte code – we start with

importing the fly animation from Svelte itself, along with exporting the

show property, which we set to determine if the sidebar is hidden or visible

when calling the component.

We then call the cobalt-hamburger component – note that we used

the web component name here to ensure it works outside of a Svelte

environment. At the same time, we added an event handler to trigger an

on:click to flip the sidebar_show value to true or false. If it is the former,

we fly in a nav element and display anything passed into the component,

through the <slot /> element – this is just a placeholder directive that

displays anything, so we do need to be careful with what we tell the

component to render! To finish off, we added some basic styling – this

could be improved in time but will be sufficient to display our sidebar for

the purposes of this book.

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

101

 Using a Style Library – A Postscript

Before we move on to adding our new SideBar component, there is one

more point I want to cover – our styling. You might be wondering where

I’m heading with this, but there is a reason: Should we use a library? Let

me explain what I mean.

While researching for this book, I played around with adding the ever-

popular Tailwind CSS library, using this as a link:

<svelte:head>

 <link href="https://unpkg.com/tailwindcss@^1.0/dist/tailwind.

min.css" rel="stylesheet"/>

</svelte:head>

Initially, this felt good – it’s a well-known library used across

thousands of sites. But something made me wonder if this was the route

I wanted to take. Why? One key point: dependency. Sure, it’s a sound

library, but I’m old-fashioned when it comes to coding; I like to have more

control over how my markup looks. Tailwind can add a lot of extra markup

code and a dependency to my project, and I wanted to be in control of

both, not the other way around!

 Adding the Component to Storybook
By now, much of the code we need to use should be very familiar – it might

seem like we’re repeating ourselves, but this reusability makes it quicker to

create our components. It’s at this point that we would normally be adding

our component to Storybook, in much the same way as we have done for

previous examples. Only except this time, we’re not going to do that.

Yes, you heard it correctly – we’re going to break from the norm and

run our demo outside of Storybook! This might sound a little weird, given

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

102

the format we’ve used so far, but “there is method in the madness,” as I’m

sure someone once said. Building it this way does raise a few interesting

questions, which we will explore later, but for now – let’s crack on with

setting up the demo for our SideBar component.

DEMOING THE SIDEBAR COMPONENT

We will construct this demo using the following files – these should be present

already, but as a precaution, make sure you have these two files before

continuing with this demo:

\index.html

\src\main.js

To get our Breadcrumb component working in a demo, follow these steps:

 1. First, crack open main.js from within the \src folder –

remove any code within, and replace it with this:

export * from './lib/SideBar/SideBar.svelte'

export * from './lib/SideBar/Hamburger.svelte'

 2. Save the file and close it. next, open the index.html file

at the root of the project folder; we need to make a series of

changes to this file. First, go ahead and change the content for

the <title> tag:

<title>Web Component Test Page</title>

 3. next, add this style block immediately below the <title> tags:

 <style>

 body { margin: 0; }

 main { font-family: sans-serif; margin: 0px 15px; }

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

103

 #hamburger { background-color: #6666ff; display:

flex; padding: 5px; }

 </style>

 4. Scroll down to the opening <body> tag, then immediately

below it, add this block:

 <div id="hamburger">

 <cobalt-sidebar show="false">

 <p>About</p>

 <p>Work</p>

 <p>Blog</p>

 <p>Contact</p>

 </cobalt-sidebar>

 </div>

 5. For completeness, we should add some dummy text, so we can

see what happens when we open the menu. Go ahead and add

this block immediately below the code from the previous step:

 <main>

 <h1>Testing Page:</h1>

 <p>This page is to test calling each web component

outside of a Svelte / Storybook environment</p>

 <p>Lorem ipsum dolor sit amet, consectetur

adipiscing elit. Ut vehicula nulla dolor, sed facilisis

nibh tincidunt vel. Maecenas vel ex nisi. Suspendisse

tincidunt gravida enim id viverra...<p>

 <p>Aenean vitae laoreet tellus. Aliquam et leo vel

justo lobortis feugiat eget ut purus. Curabitur molestie

tempus mauris sit amet viverra... </p>

 </main>

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

104

I’ve shortened the dummy text displayed here for brevity – the full
version is available in the code download for this book.

 6. make sure you have this line present below the dummy text

block – it should already be in the code:

<script type="module" src="/src/main.js"></script>

 7. Save and close the file. We have everything in place, so let’s

test it! Switch to a node.js terminal session, then set the

working folder to our cobalt project area.

 8. at the prompt, enter npm run dev and hit enter – if all is well,

we should see Storybook launch and display in our browser at

http://localhost:5173/. Click on the button at the top left in

the blue menu to open the menu (Figure 4-3) – the styling we’ve

used is to provide a more authentic look and feel. I’ve added some

lorem Ipsum dummy text for a more authentic look and feel.

Figure 4-3. Displaying the SideBar component with a
standard divider

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

105

 9. Click on the three-lined hamburger icon on the left – our

SideBar slides in to display four links (Figure 4-4).

That might have seemed like a lot of work, but we now have a working

component on display. There is one thing, though – while the code

should be reasonably familiar by now, it does raise a couple of interesting

questions around how we implemented it, particularly with the call to the

second component in our template.

Before we crack on with the third and final component for this chapter,

let’s take some time to review the code changes and understand how it all

works in more detail.

Figure 4-4. The SideBar displayed, with four links present

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

106

 Understanding the Changes Made
This is one of those occasions where we break with habit and do

something completely different – normally, we would have set up our

component in Storybook, but adding it to a pure HTML demo makes for a

nice change!

For this demo, we first had to set up main.js – this was to export all

of the components from one central point, which makes it simpler to

reference them in our calls. We then set up a basic HTML markup file with

some simple styling – nothing too onerous, but enough to make the demo

look somewhere near presentable!

Next up, we then added our sidebar markup – we first added a

<div> with an id of hamburger, inside of which we then call the SideBar

component using its web component name. The latter is important, as

we’re running the demo outside of Svelte, so the standard Svelte name

won’t work. It means though that we could call this component from

inside any JavaScript framework, such as Vue, Angular, or React – I will

come back to this later in the book.

To round off the demo, we then added some dummy markup inside

a <main> block – this isn’t essential, but it helps show off the effect of the

sidebar better. We then checked to make sure we had a script reference

to main.js – we noted this should already be present, but as it is a critical

part of the demo, it was worth checking to make sure it was present. This

completed the changes, so at this point, we fired up the development

server to preview the results in our browser.

Okay – let’s crack on: we have one more component to build in this

chapter. This one should be no stranger, as it’s used all over the web; it’s

time to take a look at how we might construct a Tabs component using

Svelte, for our library.

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

107

 Constructing the Tabs Component
If you buy anything online, such as books or products from the likes

of Amazon, then I can guarantee you will see instances of our next

component: Tabs. Tab components may only serve one purpose, but they

serve it well – they are a perfect way to display a lot of information in a

small area while allowing you to choose to view specific tabs as your needs

dictate.

For the last component in this chapter, we will build a simple Tabs

component. The basic structure is built around an unordered list and

<div> tags, but we need some Svelte magic to make it hang together – let’s

look at how we create such a component in our next exercise.

BUILDING THE TABS COMPONENT

To construct our Tabs component, follow these steps:

 1. To start, go ahead and create a new folder called Tabs, inside

the \src\lib folder within our project area.

 2. next, crack open a new file and add this code – unlike other

components, we need to add a little more code, plus a new

function, onMount, and a click handler:

<svelte:options tag="cobalt-tabs" />

<script>

 import tabItems from "./tabsdata.json";

 export let activeTabValue = "0";

 export let items;

 export let vertical = false;

 if (items == null) {

 items = tabItems;

 }

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

108

 const handleClick = tabValue => () =>

(activeTabValue = tabValue);

</script>

 3. next up, miss a line, then add the markup to render our Tabs

component:

<div class="cobalt" class:vertical>

 {#each Object.entries(items) as [id,item]}

 <li class={activeTabValue === id ?

"active" : ""}>

 {JSON.stringify(items[id].name).replace(/

['"]+/g, "")}

 {/each}

 <div class="content">

 {#each Object.entries(items) as [id, text]}

 {#if activeTabValue === id}

 {JSON.stringify(items[id].text).replace(/

['"]+/g, "")}

 {/if}

 {/each} </div>

</div>

 4. To finish off the component, we need to add some basic

styling – we first add our library’s theme colors, followed by

some rudimentary styling:

.cobalt { display: block; }

ul {

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

109

 display: flex;

 flex-wrap: wrap;

 padding-left: 0;

 margin-bottom: 0;

 list-style: none;

 border-bottom: 1px solid #dee2e6;

}

.content {

 padding: 10px; }

span {

 border: 1px solid transparent;

 border-top-left-radius: 4px;

 border-top-right-radius: 4px;

 display: block;

 padding: 8px 16px;

 cursor: pointer;

}

span:hover {

 border-color: #e9ecef #e9ecef #dee2e6;

 background-color: #9393ff;

}

li.active > span { color: #ffffff; background-color:

#19247c;; border-color: #dee2e6 #dee2e6 #fff; }

 5. Save the file as Tabs.svelte in the same Tabs folder and

close it.

Great – that’s the first part done! We now have a Tabs component ready

to pull into Storybook and test that it works as expected. This next stage

should be relatively familiar by now, so let’s crack on with adding the new

component to Storybook without further ado.

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

110

 Exploring the Code Changes
In some ways, building a Tabs component is almost a game of two

halves – although we are building one component, we have to construct

code for two parts: the tab header (or tab itself) and the tab content area.

Fortunately, Svelte makes this very easy, with not too much markup

required!

We started by creating the requisite folder before starting to add code

to what would become our core component. The first block took care of

setting up two exported values – items[] and activeTabValue – as well

as adding the <svelte:options> directive to tell Svelte we are creating

a web component. At the same time, we also import an instance of our

source data from a JSON file – this allows us to maintain separation of

concerns. We then implement a check on items – if this happens to be

null (as in we’ve not passed anything when calling the component), we

set it to use the default data in the JSON file. We also add a handleClick

event handler to switch between tabs, based on which tabvalue is set.

Next up, we then added the markup for our component, which is based

on an unordered list. We first iterate through each item and set an active

class on the list item, depending on whether the tab has been clicked. At

the same time, we display item.value as the header for each tab and then

iterate through items and use ActiveTabValue to determine which content

area to display as the tab in our browser.

You will notice the presence of .replace(…) when we display the
text – this is purely to remove the quotes around each text entry from
the JSon file. It’s a little hacky and means we can’t display quotes in
the tab panel, but it works!

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

111

 Accessibility – A Note
So far, we’ve developed a good set of components, but there is one thing

we’ve not covered: accessibility.

Accessibility is of course an essential part of any component – with one

in five people living with a disability, illness, or long-term impairment, we

risk excluding up to 20% of the population if they can’t use a site due to

inaccessible components!

It does raise some important questions about how far we go – we

can’t cater for every impairment, so where do we draw the line? Making

component accessible is a big task; not only do we need to add the right

tags, but we also need to decide to what level we strive to attain.

It’s part of the reason why I’ve not included accessibility for now;

I felt it more important to get core functionality working and then add

accessibility later. Some might argue that this isn’t the right approach, but I

think it’s important to make sure any component you develop functions as

expected, before fine-tuning it and making it more accessible.

 Hooking the Component into Storybook
With the component now constructed, adding the Tabs component to

our Storybook instance should be straightforward. We will use the same

process as for previous components, which will help speed up the process.

Let’s look at the steps involved in more detail, so we can check to see if the

Tabs component works as expected in Storybook.

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

112

HOOKING INTO STORYBOOK

To get our Tabs component working in Storybook, follow these steps:

 1. First, go ahead and create a new file, then add this code – as

before, we have a reasonable chunk to add. We’ll start with

adding the initial component imports, some functions from

Storybook, and link in placeholder documentation:

 import Tabs from "../Tabs/Tabs.svelte";

 import TabsDocs from "./TabsDocs.mdx";

 import { Meta, Story } from '@storybook/addon-docs';''

 2. This next bit should be very familiar by now – leave a line

blank, then add this <Meta> tag. as before, it adds a title,

sets the component we want to use, and blocks the default

documentation page from being displayed:

<Meta

 title = "Cobalt UI Library/Navigation Components/Tabs"

 component={Tabs}

 parameters={{ page: null }}

/>

 3. With the initial configuration in place, we can now focus on our

component – as before, we first need to add a template. Skip a

line, then add this block in – it’s similar to previous examples,

but with a change of component and the passing of that

example data into our component:

export const Template = (args) => ({

 Component: Tabs,

 props: args,

});

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

113

 4. We can now render our component – for this, we will use the

<Story> tag. Go ahead and add this block:

<Story

 name="Default"

 args={{

 vertical: false,

 items: [

 { "id": 1, "name": "Tab 1", "text": "This is

a test"},

 { "id": 2, "name": "Tab 2", "text": "Here is

tab 2"},

 { "id": 3, "name": "Tab 3", "text": "And this is

tab 3"},

],

 }}

 parameters={{

 docs: {

 page: TabsDocs,

 },

 }}

/>

 5. Save the file as Tabs.stories.svelte, then close the file.

 6. You will see from the code that we’ve specified a file as our

documentation but haven’t yet added it. We need to extract a

copy of TabsDocs.mdx from the code download and then drop

it into the Tabs folder.

 7. We have everything in place, so let’s test it! Switch to a node.

js terminal session, then set the working folder to our cobalt

project area.

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

114

 8. at the prompt, enter npm run storybook and hit enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click on the default

link under the Tabs entry on the left to display the component

we just created, as shown in Figure 4-5.

There – that doesn’t look too shabby, does it? Granted, it doesn’t have

all of the features other Tabs components may have, but that will come in

time; we’ve created a solid base for further development.

That isn’t the end of it, though – there is scope to add a variation of our

component, which we will do momentarily. Before we do so, let’s pause

for a moment to review the code changes we just made to see how the Tabs

component renders in Storybook in more detail.

 Understanding the Changes Made
By now, I’m sure you will be familiar with how we can add our component

to Storybook – so much so that with a little trial and error, you could jump

ahead and add it without too much help! Joking aside, it’s good to review

the changes we made, so let’s dive in and check out the code in more detail.

Figure 4-5. The new Tab component on display in Storybook

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

115

We started by adding a call to the Tabs component, along with

importing the placeholder Tabs documentation file and a few features

from Storybook. So far, nothing particularly new; the only real change here

is the tabItems data object we assign and will pass into the component.

The rest of the Storybook code is very similar to other components –

we include the <Meta> tag as before (albeit referencing the Tab component

this time) and a template for displaying the component on the page. We

then add our Story block – for Tabs, it’s a simple setup, with only the

need to pass in the parameters to block the default documentation page

produced by Storybook.

To round things off, we extracted a copy of the placeholder TabsDocs.

mdx documentation file before running up the Storybook development

server and previewing the results in our browser.

 Creating a Variant
For the last demo in this chapter, we’re going to modify how our Tabs

component looks – in many cases, we would display the component

horizontally, but there may be occasions where displaying the tab “heads”

on the side would be a preferred option.

Fortunately, the changes needed to implement our new variant are

pretty straightforward; let’s crack on and implement them so we can see

how our new variant appears in Storybook.

CREATING A VARIANT

To add our variant, follow these steps:

 1. First, crack open the Tabs.svelte file, then add this line

immediately below the last export:

export let vertical = false;

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

116

 2. next, scroll down to the opening <div> tag for the markup;

amend the code as highlighted:

<div class="cobalt" class:vertical>

 3. Save the file and close it. Switch to the Tabs.stories.mdx

file, then scroll down to the end of the file.

 4. In the default story, add this immediately before the parameters

call, like this:

<Story name="Default"

 args={{

 vertical: false

 items: [

 { "id": 1, "name": "Tab 1", "text":

"This is a test"},

 { "id": 2, "name": "Tab 2", "text":

"Here is tab 2"},

 { "id": 3, "name": "Tab 3", "text":

"And this is tab 3"},

],

 }}

 5. leave a line blank after that story, then add this new story code:

<Story

 name="Vertical"

 args={{

 vertical: true,

 items: [

 { "id": 1, "name": "Tab 1", "text": "This is

a test"},

 { "id": 2, "name": "Tab 2", "text": "Here is

tab 2"},

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

117

 { "id": 3, "name": "Tab 3", "text": "And this

is tab 3"},

],

 }}

 parameters={{

 docs: {

 page: TabsDocs,

 },

 }}

/>

 6. Save the file and close it. Crack open the tabs.css file, then

scroll to the bottom – go ahead and add these style rules:

/* variant */

div.cobalt.vertical { display: flex; }

div.cobalt.vertical ul {

 flex-direction: column;

 border-bottom: none;

 align-self: baseline;

 margin-top: 0;

}

div.cobalt.vertical div.content { width: 300px;

height: 200px; }

div.cobalt.vertical ul li span { border-top-left-radius:

0; border-top-right-radius: 0; }

 7. We have everything in place, so let’s test it! Save and close the

file, then switch to a node.js terminal session, and make sure

the working folder points to our cobalt project area.

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

118

 8. at the prompt, enter npm run storybook and hit enter – if

all is well, we should see Storybook launch and display in our

browser at http://localhost:6006/. Click on the Vertical

link under the Tabs entry on the left to display the component

we just created, as shown in Figure 4-6.

Perfect – with only a few minor changes (and of which most were CSS

based), we have a new variant for our Tabs component! Sure, this is only

one variant, and with a bit of work, we could add more variants (such

as different tabs, language support, and so on). It does show that with

minimal changes, we can turn an existing component into something

different and usable by developers consuming our library.

So – how did we get here? We started by adding an exported variable

vertical – this would be the trigger to tell the component to display our

tab set horizontally or vertically. We then updated the opening <div> tag

Figure 4-6. The new variant for the Tabs component

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

119

for our markup to use the class: directive; similar to before, this tells the

component to include the vertical class if our variable vertical is true.

Next up, we then added a new markup block for our variant – into this,

we pass the vertical variable, which is set to true. We then added a handful

of styles to re-render the Tabs in a vertical format. That’s one of the

great things about Svelte – most of the work is done using CSS, with only

minimal markup required to refactor our component!

 Summary
“And that’s the end of this journey, ladies and gentlemen. I
hope you’ve enjoyed what you’ve seen…”

Creating excellent navigation for a site is essential – it’s the bread and butter

we need to help customers find what they want and keep them within

the confines of our site. To help with that, we’ve created three Navigation

components for our library; each has its respective page in our Storybook

instance. We’re now over halfway, with only one more component category to

add to our library! Before we get on building the next category of components,

let’s take a moment to review what we have learned in this chapter.

As we saw back in the previous chapter, the focus is on adding each

component to our library and setting it up in Storybook. We started with

creating the Breadcrumbs trail component before swiftly moving on to

building the more complex SideBar component.

We explored setting up a Tabs component for the third and final tool

in our toolbox. It was a little more involved as we examined adding a new

variant – we learned that even though we use the same markup, changes in

styling effectively meant we had the equivalent of a new component.

Okay, let’s crack with creating the penultimate batch of components:

the notification group. We’ll look at creating components such as an

overlay, modal dialog boxes, and more – intrigued? Stay with me, and I’ll

reveal it all in the next chapter.

ChapTer 4 BuIldInG The naVIGaTIon ComponenTS

121

CHAPTER 5

Creating Notification
Components
I spend many an hour reading and researching for the books I’ve written –

I’ve come across all manner of different articles, views, and ideas; too

many to count! There was, however, one thing that I found that I think is

very apt for this chapter:

“You can be happy with less and miserable with more.”

This little gem, from the author and entrepreneur Robert Gill, is

perfect for the following few pages – particularly when I say we’re going

to look at creating notification components! One hopes that we never get

any indicating an error of some kind; indeed, the less we get, the more

we’re happy!

Keeping that thought, for now, we’re going to work our way through

creating three more components – an Alert, Dialog, and Tooltip. Much of

what you are about to see will reuse many of the principles we’ve already

covered, so without further ado, let’s crack on with creating the first, which

is the Alert component.

© Alex Libby 2023
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/978-1-4842-9039-2_5

https://doi.org/10.1007/978-1-4842-9039-2_5#DOI

122

 Creating the Alert Component
An essential part of the user experience for anyone browsing a website

is making sure we keep them informed. While we expect things to run

smoothly, there will be occasions where we have to notify our customers if

there is a problem! We need an Alert component – we’re going to develop a

suitable tool for our component toolbox using the standard HTML5 dialog

element.

We could build something from the ground up, but there’s no need

to do so when most recent browsers natively support the dialog element.

In our next exercise, we can use that to construct our Alert component.

Before we assemble the code, there is one small point we should cover

first, relating to the icons we use in the exercise.

 Sourcing the Icons
Our Alert component will use a couple of SVG icons from the Ionicons

library at https://ionic.io/ionicons, which we used back in Chapter 4.

I’ve picked two, and edited versions of them for the exercise; these will be

available in the code download, along with the (renamed) originals.

If you want to use different ones, browse to the link and enter “alert”

or “warn” in the search box. It will come back with at least two options – to

download the SVGs, click on one of the icons, then hit the SVG icon to the

right of the brown box that appears at the foot of the screen in Figure 5-1.

Figure 5-1. The download icon on the Ionic website

Chapter 5 Creating notifiCation Components

https://ionic.io/ionicons
https://doi.org/10.1007/978-1-4842-9039-2_4

123

You will need to update the SVG markup used in one of the files in the

next exercise – I will point out which one, at the appropriate point. Okay –

with that in mind, let’s begin with the next exercise to construct our Alert

component.

 Building the Component
Although we’re building what should be a simple Alert component, the

code we need to use is a little more complex than some of our other

components! We will have to create a few files and add the SVGs we talked

about just now – we’ll start with creating the core component first.

BUILDING THE ALERT COMPONENT

to construct our alert component, follow these steps:

 1. first, create a new folder called Alert at the root of the

components folder.

 2. next, crack open a new file and add this code – we’ll start

with importing an icon component and setting a few variables

for export:

<svelte:options tag="cobalt-alert" />

<script>

 import Icon from "./Icon.svelte";

 export let show;

 export let icon;

 export let close;

 export let type = "";

 export let title = "";

Chapter 5 Creating notifiCation Components

124

 export let description = "";

 let showAnimation = true;

 let typeClass;

 3. next, leave a line blank, then add the second part of our

script block:

 // Convert string value to boolean where appropriate

 let showIcon = JSON.parse(icon);

 switch (type) {

 case "warn":

 typeClass = "alert-warn";

 break;

 case "dark":

 typeClass = "alert-dark";

 break;

 case "error":

 typeClass = "alert-error";

 break;

 case "info":

 typeClass = "alert-info";

 break;

 case "success":

 typeClass = "alert-success";

 break;

 default:

 typeClass = "";

 }

 const classes = ["alert", typeClass, showAnimation ?

"fade- in" : ""]

 .filter((klass) => klass.length)

 .join(" ");

 const closeAlert = () => {

Chapter 5 Creating notifiCation Components

125

 show = false;

 };

</script>

 4. We can now add the markup for our component – much of this

standard htmL markup, but with a few svelte tags in the mix.

miss a line, then add this block:

{#if show}

 <dialog open on:click={close} class={classes}

role="alert">

 <div class="icon">

 {#if showIcon}<Icon iconType={type} />{/if}

 </div>

 <div class="message">

 {title}

 {description}

 </div>

 <div>

 <button on:click={closeAlert}>✖</button>

 </div>

 </dialog>

{/if}

 5. We have one more section to add, which is the styling. for

this, leave a blank line after the code from step 4, then add

this block:

<style>

 dialog { min-width: 300px; display: flex; justify-

content: space-between; font-family: Arial, Helvetica,

sans-serif; border: none; }

Chapter 5 Creating notifiCation Components

126

 button { background: none; border: none; font-

size: 21px; }

 .icon { margin-right: 10px; }

 .message { display: flex; flex-direction:

column; line- height: 24px; min-width: 300px; }

 .fade-in { animation: fade-in 2000ms both; }

 @keyframes fade-in {

 from {

 opacity: 0%;

 }

 }

 .alert-warn { background: #ffeb3b; color: #000000; }

 .alert-info { background: #2196f3; color: #ffffff; }

</style>

 6. save the file as Alert.svelte, then close it. next, crack open

a new file and add this code – this time we first need to set

three exported variables before adding what will be the markup

for the first of two icons we add to our component:

<svelte:options tag="cobalt-icon" />

<script>

 export let width = "24px";

 export let height = "24px";

 export let iconType = "";

 let icons = [

 {

 box: 512,

 name: "info",

Chapter 5 Creating notifiCation Components

127

 svg: `<path d="M248 64C146.39 64 64 146.39 64

248s82.39 184 184 184 184-82.39 184-184S349.61 64

248 64z" fill="none" stroke="currentColor" stroke-

miterlimit="10" stroke-width="32"/><path fill="none"

stroke="#ffffff" stroke- linecap="round" stroke-

linejoin="round" stroke-width="32" d="M220 220h32v116"/>

 <path fill="none" stroke="currentColor" stroke-

linecap="round" stroke-miterlimit="10" stroke-width="32"

d="M208 340h88" /><path d="M248 130a26 26 0 1026 26 26 26

0 00-26-26z" fill="#ffffff" />`,

 },

 7. next up, add these lines – this will form the second icon for

our demo:

 {

 box: 512,

 name: "warn",

 svg: `<path d="M448 256c0-106-86-192-192-192S64

150 64 256s86 192 192 192 192-86 192-192z"

stroke="#000000" fill="none" stroke-miterlimit="10"

stroke-width="32"/><path d="M250.26 166.05L256

288l5.73-121.95a5.74 5.74 0 00-5.79-6h0a5.74 5.74 0

00-5.68 6z" fill="none" stroke="currentColor" stroke-

linecap="round" stroke- linejoin="round" stroke-

width="32"/><path d="M256 367.91a20 20 0 1120-20 20 20 0

01-20 20z" fill="#000000" />`,

 },

];

 let displayIcon = icons.find((e) => e.name ===

iconType);

</script>

Chapter 5 Creating notifiCation Components

128

the markup is available in the code download, so you don’t have to
edit manually! if you were feeling brave enough and decided to use a
different sVg, it’s in this file you will need to update the markup. the
values shown against the two svg: properties in this code block are
the ones you will need to update.

 8. With the sVg markup in place, we now need to call it – for this,

miss a line, then add this markup:

<svg

 class={$$props.class}

 {width}

 {height}

 viewBox="0 0 {displayIcon.box} {displayIcon.box}">

 {@html displayIcon.svg}

</svg>

 9. save the file as Icon.svelte in the alert folder, and close it.

 10. Close any open files.

Great – we have our component in place, ready to test! Although

much of the code consists of standard HTML markup and CSS styling,

there are a few interesting points where we use Svelte syntax. Before we

add our component to Storybook, let’s take some time to review the code

and understand how it all works – I know the SVG part will appear a little

confusing at first!

 Understanding What Happened

In an ideal world, we would never need to display alerts to people using a

site or online application – everything would run smoothly, customers get

what they want and where they need to be and leave happy and content….

Chapter 5 Creating notifiCation Components

129

However, the reality is that it is all a pipe dream and that we still need

to display the occasional alert! With that in mind, and to construct our

component, we started by creating the usual component folder before

setting some variables for export. At the same time, we imported an Icon

component and set two variables for use internally.

Next up, we set up a somewhat lengthy switch statement for type

– this works out what class to set based on the value assigned to type.

For example, if we had passed in warn, then the class applied to the

component would be alert-warn and so on. We then concatenate all of

the classes together, ready for use in our component.

We then moved on to adding the markup for our component – this

is where things get a little more complex. We wrap everything in a Svelte

if block; if show is set to true, we render the component; otherwise, we

hide it. The core part of the component is built around an HTML5 dialog

element, into which we pass the classes we set earlier, along with setting

an on:click event handler to close the alert. The rest of the markup is

standard HTML, with the exception of the second Svelte if block and

the event handler assigned to the close button. To round off that part, we

then add some basic styling, which includes a simple animation to render

the alert.

Next up, we created Icon.svelte – this contained the markup for two

SVGs, with three exported properties so we can control the width, height,

and iconType from outside the component file. The magic happens in the

displayIcons function, where we filter icons based on the iconType name

passed into the component.

Once filtered, we render an SVG icon using the prop values and

content from the icons object. We then rounded out the demo by adding

a copy of the stylesheet alert.css from the code download – this contained

the styles for the main Alert component and some additional styles we will

use later in this chapter.

Chapter 5 Creating notifiCation Components

130

Right – let’s crack on: we still have plenty to do! It’s time we tested our

component to ensure it works, so as with others, let’s dive in and hook our

component into Storybook.

 Adding the Component to Storybook
So far, we’ve created the core Alert component, added some styling, and

sourced three SVGs to act as icons when displaying the Alert. We’re now at

a stage where we can test the component, so as before, let’s crack on with

adding an instance to Storybook so we can prove it works as we expect.

ADDING TO STORYBOOK

to get our alert component working in storybook, follow these steps:

 1. first, go ahead and create a new file, then add this code – as

before, we have a reasonable chunk to add. Let’s start with the

initial block to import the component and documentation, along

with some functions from storybook:

import Alert from '../Alert/Alert.svelte';

import AlertDocs from "./AlertDocs.mdx";

import { Meta, Story } from '@storybook/addon-docs';

 2. this next bit should be very familiar by now – leave a line

blank, then add this <Meta> tag. as before, it adds a title,

sets the component we want to use, and blocks the default

documentation page from being displayed:

<Meta

 title = "Cobalt UI Library/Notification

Components/Alert"

 component={Alert}

 parameters={{page: null}}

/>

Chapter 5 Creating notifiCation Components

131

 3. With the initial configuration in place, we can now focus on our

component – as before, we first need to add a template. skip a

line, then add this block:

export const Template = (args) => ({

 Component: Alert,

 props: args,

});

 4. We can now render our component – for this, we will use the

now-familiar <Story> tag. miss a line, then add this code:

<Story

 name="Info"

 args={{

 show: true,

 description: "An info description",

 title: "Simple Info",

 icon: "true",

 type: "info",

 }}

 parameters={{

 docs: {

 page: AlertDocs

 }

 }}>

 {Template.bind({})}

</Story>

 5. save the file as Alert.stories.mdx, then close the file.

 6. You will see from the code that we’ve specified a file as our

documentation but haven’t yet added it. We need to extract a

copy of AlertDocs.mdx from the code download and then

drop it into the alert folder.

Chapter 5 Creating notifiCation Components

132

 7. We have everything in place, so let’s test it! switch to a node.

js terminal session, then set the working folder to our cobalt

project area.

 8. at the prompt, enter npm run storybook and hit enter – if

all is well, we should see storybook launch and display in our

browser at http://localhost:6006/. Click on the Default

link under alert on the left to display the variant we just created,

as shown in figure 5-2.

Excellent – we now have a working component ready for others to

use. It’s a simple affair (even if the code might say otherwise) but essential

addition to our library!

However, if we had to display any alerts, then it wouldn’t just be

information ones – what about warnings, or success messages, for

example? Fortunately, these are easy to add as variants – we will add one

shortly. Let’s first examine the code we created to get the component

working in Storybook in more detail.

Figure 5-2. Displaying the new Alert warning in Storybook

Chapter 5 Creating notifiCation Components

133

 Exploring the Code Changes

Much of this component follows a similar pattern to the others we’ve

already created – we started with the now-familiar script block to import

the placeholder documentation, an instance of the component, and

some functions from the core Storybook framework. At the same time, we

added an item object with some sample data, which we use to display our

Breadcrumb component.

Next up, we added the usual Meta tag, which contains the details

needed for the navigation in Storybook, the name of the component we

will use (Alert), and an entry to block the default documentation page

generated by Storybook. We also inserted our template – we changed

the name of the component we use, but otherwise, it is identical to other

components used in our library.

For the last part, we added a Story block to display an instance of

our Alert component. This one, called Info, is set to render a simple

informational alert against a predefined blue background (defined within

the component itself). We pass into this component several values, such as

title, description, and type, to define what the alert should display.

Okay – let’s move on: our next component is one you are likely to find

more on a mobile device, but that doesn’t matter. Sidebars still have a

crucial role in helping us navigate a website, so they are a perfect tool to

have in our library. They require more work to set up, but it’s worth the

effort: let’s dive in and look at how we might create such a component for

our library.

 Creating a Variant
Cast your mind back to the end of the last section but one – remember how

I said it’s easy to add different variants for the Alert component, such as

displaying a warning message instead?

Chapter 5 Creating notifiCation Components

134

Well – we won’t need to change the structure as such but tell the Alert

component to use different values to display the desired message. It’s easy

enough to effect the changes, so let’s dive in and add a variant to display a

warning message in our component.

CONSTRUCTING THE VARIANT

to add our variant, follow these steps:

 1. first, crack open Alerts.svelte, then scroll to the bottom of

the page.

 2. add a blank line, then this code – this will display a warning

style message in our component:

<Story

 name="Warning"

 args={{

 show: true,

 description: "An warning message",

 title: "Simple warning",

 icon: "true",

 type: "warn",

 }}

 parameters={{

 docs: {

 page: AlertDocs

 }

 }}>

 {Template.bind({})}

</Story>

Chapter 5 Creating notifiCation Components

135

 3. We have everything in place, so let’s test it! save and close the

file, then switch to a node.js terminal session, and make sure

the working folder points to our cobalt project area.

 4. at the prompt, enter npm run storybook and hit enter – if

all is well, we should see storybook launch and display in our

browser at http://localhost:6006/. Click on the Warning

link under the alert entry on the left to display the component

we just created, as shown in figure 5-3.

Perfect – it shows that with only a few styling changes (and, of course,

the message we display), we can express something that looks a little

different and customize it to our needs.

A question, though: notice anything about the styling, say…how we

achieved it? Some of you will undoubtedly see that we didn’t add any

styling for the variants, yet each appeared in its own colors. How did we

manage to apply styling? That is indeed a good question and one that uses

a clever feature in Svelte – let’s take a moment to explore that and the rest

of the variant code in more detail.

Figure 5-3. Displaying the Warning variant of our Alert component

Chapter 5 Creating notifiCation Components

136

 Breaking Apart the Code

As demos go, this is probably one of the simplest we’ve created so far –

we’ve not even had to add any styles, as we made these available when we

created the original component!

Most of the work hangs off step 2, where we added a new Story block to

display a warn variant. In both cases, we changed only the icon and type

parameters; the rest stayed the same as the original default Alert.

Let’s move on: we still have two more components to add to our

library. The next one we’ll look at could still be classed as an Alert

component but really suited for more complex occasions when you really

need to present more dialog to your user.

 Creating the Dialog Component
Okay, the lead-in to this chapter was a little corny, but on a more serious

note, the name of our next component is a Dialog component! (It’s good to

talk, but I digress.)

Leaving aside any references to talking for the moment, the Dialog

component is perfect for displaying more complex messages, although

these will be disruptive. Dialogs are usually designed to be modal and

must be cleared before a user can continue with their task. While they do

provide feedback, it’s also worth noting that we should not use dialogs to

excess; they must be used when necessary, so we don’t irritate our users!

The Dialog component is straightforward to create but needs a good

chunk of code – let’s dive in and take a look.

BUILDING THE TOAST COMPONENT

to build our toast component, follow these steps:

 1. first, create a new folder under components, called Dialog.

Chapter 5 Creating notifiCation Components

137

 2. extract a copy of the Closeicon.svelte file from the code

download that accompanies this book. save it in the root of the

Dialog folder.

 3. next, crack open a new file and add this code – we have a good

chunk to cover, so we will add it in sections, starting with an

export, one import, and setting a local variable:

<svelte:options tag="cobalt-dialog" />

<script>

 import CloseIcon from "./Close.svelte";

 export let show = "true";

 let showDialog = show == "true";

</script>

 4. next, leave a line blank, then add this markup:

<button on:click={() => (showDialog = !showDialog)}>Show

dialog</button>

{#if showDialog}

 <div class="cobalt">

 <div id="background" />

 <div id="modal">

 <div class="header">

 <h3>Modal title</h3>

 <button

 type="button"

 class="close"

 on:click={() => (showDialog = false)}

 >

 <CloseIcon />

 </button>

 </div>

 <p>Click on the X to close me</p>

Chapter 5 Creating notifiCation Components

138

 </div>

 </div>

{/if}

 5. finally (for this file), skip a line, then add this block of styles:

<style>

 .cobalt { font-family: Arial, Helvetica, sans-serif; }

 @keyframes fadein {

 from { opacity: 0; }

 to { opacity: 1; }

 }

 #background { position: fixed; z-index: 1; top:

0; left: 0; width: 100vw; height: 100vh; background-

color: rgba(0, 0, 0, 0.7); animation: fadein 0.5s; }

 #modal { position: fixed; z-index: 2; top:

50%; left: 50%; transform: translate(-50%,

-50%); background: #fff; padding: 10px; width:

400px; height: 250px; }

 .header { display: flex; justify-content: space-

between; border-bottom: 1px solid #c4c4c4; }

 #modal div button { display: contents; color:

#19247c; }

 #modal div button:hover { color: #9393ff; }

</style>

 6. save the file as Dialog.svelte, then close it.

Great – we have a component in place, but I can imagine what your

first question will be: What does it all do? We’ve covered quite a bit of code

over the last few pages, so let’s kick back for a moment and take a closer

look at the changes we made to understand how it all hangs together.

Chapter 5 Creating notifiCation Components

139

 Understanding What Happened
So – what did we achieve in that last demo? We kicked off by first creating

the now-familiar component folder and file before extracting a copy

of the CloseIcon file from the code download – this we will use in our

component. We then set up a script block in the component file, to import

CloseIcon, and set an exported variable show and an internal showDialog

variable.

Next up, we then set our markup – we started by defining a button

element, which has an event handler to show or hide the Dialog

component, each time we click the button. In the main markup, we wrap

our code in a Svelte if block – this controls when the code is rendered

based on the value of showDialog.

Inside the dialog markup, we set a title along with a button which we

use to close the dialog and some content within. It’s worth noting that (for

now) the content has been hard-coded; in a future iteration, we should

make these values more dynamic! We then round out the demo with some

basic styling to set elements such as animation and the background for the

modal dialog.

At this point, we now have a working component – the next step is to

test it. As before, let’s crack on and hook it into our Storybook instance.

 Adding to Storybook
So now that we’ve created our Dialog component, how do we get it into

Storybook? We’ll use the same process as we’ve done before, but this time,

we won’t be adding any variants. Dialogs are more for displaying content,

rather than producing different designs that are not consistent, which

could confuse our users! With that in mind, let’s jump in and take a look at

the steps to set up our component in more detail.

Chapter 5 Creating notifiCation Components

140

ADDING TO STORYBOOK

to get our Dialog component working in storybook, follow these steps:

 1. first, go ahead and create a new file, then add this code – as

before, we have a reasonable chunk to add. Let’s start with the

initial block to import the component and documentation, along

with some functions from storybook:

import Dialog from "../Dialog/Dialog.svelte";

import DialogDocs from "./DialogDocs.mdx";

import { Meta, Story } from '@storybook/addon-docs';

 2. this next bit should be very familiar by now – leave a line

blank, then add this <Meta> tag. as before, it adds a title,

sets the component we want to use, and blocks the default

documentation page from being displayed:

<Meta

 title="Cobalt UI Library/Notification Components/Dialog"

 component={Dialog}

 parameters={{ page: null }}

/>

 3. With the initial configuration in place, we can now focus on our

component – as before, we first need to add a template. skip a

line, then add this block in – it’s similar to previous examples,

with only a minor change of component and the addition of a

button to trigger our alerts:

export const Template = (args) => ({

 Component: Dialog,

 props: args,

});

Chapter 5 Creating notifiCation Components

141

 4. We can now render our component – for this, we will use the

<Story> tag. go ahead and add this block:

<Story name="Default"

 args={{

 showDialog: "false",

 }}

 parameters={{

 docs: {

 page: DialogDocs

 },

 }}

/>

 5. save the file as Dialog.stories.svelte, then close the file.

 6. You will see from the code that we’ve specified a file as our

documentation but haven’t yet added it. We need to extract a

copy of DialogDocs.mdx from the code download, then drop

it into the toast folder.

 7. We have everything in place, so let’s test it! switch to a node.

js terminal session, then set the working folder to our cobalt

project area.

 8. at the prompt, enter npm run Storybook and hit enter – if

all is well, we should see storybook launch and display in our

browser at http://localhost:6006/. Click on the success

link under toast on the left to display the variant we just

created, as shown in figure 5-4.

Chapter 5 Creating notifiCation Components

142

Figure 5-4. Displaying our Dialog Alert component

Perfect – that’s the first iteration of our Dialog component done, ready

for use! For now, we’ve not added any variants, although with a little care,

we could perhaps change the formatting, or even add another button

(such as an OK or Cancel), perhaps?

That thought aside, we’re almost done with creating components

for the Notifications part of our library; before we move on to the next

category, there is one more we’ll develop. This next component might

seem an intriguing choice for some, but it does notify people – and you

have to have one in your toolkit at some point! I’m talking about the

Tooltip component – over the following few pages, we will develop our

own version for the library.

Chapter 5 Creating notifiCation Components

143

 Creating the Tooltip Component
The ubiquitous tooltip has been around for years – it’s one of those

components that just works! It’s not meant to offer anything outrageously

different or complex, but it is still valuable as a tool for our toolbox.

This time though, we’re not going to use a standard HTML5 element

like <dialog> (primarily as one doesn’t exist for tooltip) but instead build

our component from scratch. We’re also not going to create a standard

Tooltip component, but one we might use to help guide visitors through

our site. For example, if we had to ask age (for age-restricted sites, such

as breweries), we could explain why we need the information. Setting up

the component is a little more complex, but most of the code required is

standard HTML – let’s dive in and take a look.

BUILDING THE TOOLTIP COMPONENT

to set up our tooltip component, follow these steps:

 1. first, create a new folder called Tooltip at the root of the

src/lib folder.

 2. next, crack open a new file and add this code – we’ll start

with importing the fade function from svelte, creating a few

variables for export, and setting some placeholder variables for

use within the component:

<svelte:options tag="cobalt-tooltip" />

<script>

 import { fade } from "svelte/transition";

 export let id = "tooltip";

 export let label;

 export let tip;

 export let timeout = "400";

Chapter 5 Creating notifiCation Components

144

 export let showHTML = "false";

 let displayHTML = JSON.parse(showHTML);

 let active = false;

 let enterTrigger;

 let leaveTrigger;

 3. We still need to add the second half of our script – for

this, leave a line blank, then add this code. We have four

functions, which take care of when the mouse or keyboard is

used – the first two are the equivalent of onmouseenter and

onKeyboardDown:

 function handleKeydown(e) {

 if (e.key === "Escape") {

 active = false;

 e.target.blur();

 }

 }

 function handleMouseEnter() {

 enterTrigger = setTimeout(() => {

 active = true;

 }, parseInt(timeout, 0));

 }

 4. Leave a line blank, then add the remaining two functions – they

deal with onmouseLeave and handling interaction:

 function handleMouseLeave() {

 if (enterTrigger) {

 clearTimeout(enterTrigger);

 enterTrigger = null;

 }

 leaveTrigger = setTimeout(() => {

Chapter 5 Creating notifiCation Components

145

 active = false;

 }, parseInt(timeout, 0));

 }

 function handleInteraction() {

 if (leaveTrigger) {

 clearTimeout(leaveTrigger);

 leaveTrigger = null;

 }

 }

</script>

 5. We can now add the markup for our component – much of this

standard htmL markup, but it does include some svelte tags.

We’ll do it in two sections – first, leave a new line blank, then

add this code:

<div class="tooltip">

 <button

 aria-describedby={id}

 type="button"

 class="trigger"

 on:click={() => (active = true)}

 on:keydown={handleKeydown}

 on:mouseenter={handleMouseEnter}

 on:mouseleave={handleMouseLeave}

 >

 ?

 </button>

 6. immediately after the previous block, add the remaining code

for our markup:

 <div aria-hidden={!active} {id} role="tooltip" aria-

label={label}>

 {#if active}

Chapter 5 Creating notifiCation Components

146

 <div

 transition:fade

 class="content"

 on:mouseenter={handleInteraction}

 on:mouseleave={handleMouseLeave}

 >

 {#if displayHTML}

 {@html tip}

 {:else}

 {tip}

 {/if}

 </div>

 {/if}

 </div>

</div>""""""""""""

 7. for the last part of this component, we need to style it – we

only need a handful of styles, so leave a line blank and add

these rules:

<style>

 .tooltip { position: relative; z-index: 2; }

 .trigger { padding: 0; margin: 0; width: 19px; height:

19px; line-height: 15px; font-size: 17px; text-align:

center; background-color: transparent; border-radius:

50%; border: 3px solid #666666; color: #999999; cursor:

pointer; font- weight: bold; }

 .content { all: initial; position: absolute; left: 0;

top: 100%; width: 300px; margin-top: 10px;

padding: 10px; border-radius: 8px; box-shadow: rgba(0, 0,

0, 0.24) 0px 3px 8px; font-size: 14px; font-family:

Arial, Helvetica, sans-serif; }

 .trigger:focus { outline: 2px solid #000; }

Chapter 5 Creating notifiCation Components

147

 [role="tooltip"]:empty { display: none; }

</style>

 8. save the file as Tooltip.svelte, then close the file.

 9. Close any files you have open.

Excellent – we have our component in place. The next task is to try

it to make sure it works; as before, we’ll work through adding it to our

Storybook instance.

Before we get to that, let’s take a moment to review the code changes

made – most of it should be self-explanatory, but some interesting Svelte

techniques within the code are worth exploring in more detail.

 Understanding What Happened
As components go, this is probably one of the more complex components

to put together for our library – it’s a real mix of HTML markup and

Svelte script!

To get there, we created our file before adding a host of exported

variables, to set values such as the tooltip message, timeout, and whether

we want to show HTML or plain text in the tooltip. At the same time, we

also set some internal variables to help manage the Tooltip component.

We also created a set of functions – these are primarily to handle mouse or

keyboard interaction when using the component.

Next up came the markup – as mentioned in the introduction, this is

custom but made up of some key elements – we have a button element for

the question mark. We pass various properties into this element, such as

type, class, and aria-describedby. We also set several event handlers to

manage keyboard and mouse interaction.

In the main block of markup, we set our container div, inside of which

we have our tooltip – this is set to fade in or out depending on what value

we set for active. This also contains an if block, to determine if we can

Chapter 5 Creating notifiCation Components

148

show HTML code, or should show plain text; this is controlled by the

displayHTML value. To finish, we then added a set of CSS style rules to

make our tooltip look at least presentable when displayed in the browser.

 Adding the Component to Storybook
You should hopefully know the drill by now – it’s time to test our

component!

We can do this in several ways; for our next exercise, we will use the

default placement value at the bottom left of our example button. For the

variant (which will come shortly), we will add a story to Storybook that

allows the display of custom HTML in the tooltip. Let’s start with setting up

a default instance of our Tooltip component in Storybook.

ADDING TO STORYBOOK

to get our tooltip component working in storybook, follow these steps:

 1. first, go ahead and create a new file, then add this code – as

before, we have a reasonable chunk to add. Let’s start with the

initial block to import the component and documentation, along

with some functions from storybook:

import Tooltip from "../Tooltip/Tooltip.svelte";

import TooltipDocs from "./TooltipDocs.mdx";

import { Meta, Story } from '@storybook/addon-docs';

 2. this next bit should be very familiar by now – leave a line

blank, then add this <Meta> tag. as before, it adds a title,

sets the component we want to use, and blocks the default

documentation page from being displayed:

Chapter 5 Creating notifiCation Components

149

<Meta

 title="Cobalt UI Library/Notification Components/

Tooltip"

 component={Tooltip}

 parameters={{ page: null }}

/>

 3. With the initial configuration in place, we can now focus on our

component – as before, we first need to add a template. skip a

line, then add this block in – it’s similar to previous examples,

but with a few changes:

export const Template = (args) => ({

 Component: Tooltip,

 props: args,

});

 4. We can now render our component – for this, we will use the

<Story> tag. go ahead and add this block:

<Story

 name="Default"

 args={{

 tip: '<p>This is an informational tooltip - to

learn more click here<p>',

 showHTML: "false",

 timeout": "400",

 label": "more info",

 }}

 parameters={{

 docs: {

 page: TooltipDocs,

 },

 }}

/>

Chapter 5 Creating notifiCation Components

150

 5. save the file as Tooltip.stories.svelte, then close

the file.

 6. You will see from the code that we’ve specified a file as our

documentation but haven’t yet added it. We need to extract a

copy of TooltipDocs.mdx from the code download and then

drop it into the Tooltip folder.

 7. We have everything in place, so let’s test it! switch to a node.

js terminal session, then set the working folder to our cobalt

project area.

 8. at the prompt, enter npm run Storybook and hit enter – if

all is well, we should see storybook launch and display in our

browser at http://localhost:6006/. Click on the Default

link under selectBox on the left to display the variant we just

created, as shown in figure 5-5.

 9. When you run the demo for the first time, you may notice that

the tooltip is not 100% visible; this is easy to fix. Crack open the

preview-head.html file in the ./storybook folder, and add

this code at the bottom:

Figure 5-5. Displaying the Tooltip component in Storybook

Chapter 5 Creating notifiCation Components

151

<style>

 .innerZoomElementWrapper {

 height: 200px;

 }

</style>

 10. save the file and refresh your browser – you will find that each

story preview window will now be larger, to better fit the demo.

as it so happens, this fix will also resolve the same issue with the
spinner component, which you may have seen earlier in the book!

Great – we should now have our Tooltip component displayed in

Storybook! This is a useful addition to our library and one we should

be able to expand in the future; we might want to control where the tip

displays, for example. However, that’s for another time – for now, let’s take

a moment to review the code changes before cracking on with the next

component.

 Exploring the Code Changes

At first glance, adding our Tooltip component should be easy. Indeed,

we’ve added a few components already, so as we’re using the same

process, we should be able to add it and variants without too much

difficulty.

To get us started, we first created our story file before adding the

imports for the component, our placeholder documentation file, and some

functions from Storybook.

This next part should be very familiar by now – we add the usual

<Meta> tag, which sets the component we want to use and blocks

Storybook from creating the default documentation page. We then added

a template – it’s very similar to previous ones, to tell it which component

Chapter 5 Creating notifiCation Components

152

to use and to pass in any prop values set as arguments. We then finish

the demo by adding a Story block for the default instance of our Tooltip

component, along with our documentation file, before previewing the

results in a browser.

 Creating a Variant
Throughout this book, we’ve added a few variants to components along

the way. In many cases, these have been as additional entries in Storybook.

Our Tooltip component is no different – although we will create a

second “story” for it, we are in reality copying most of the code from the

original story and changing a single value! To see what I mean, let’s dive in

and take a look.

CONSTRUCTING THE VARIANT

to add a variant for the tooltip component, follow these steps:

 1. first, go ahead and crack open Tooltip.stories.svelte –

scroll down to the bottom of the file.

 2. Leave a line blank, then add in this block of code:

<Story

 name="Show HTML"

 args={{

 tip: '<p>This is an informational tooltip - learn more</p>',

 showHTML: "true",

 timeout: "400",

 label: "more info",

}}

Chapter 5 Creating notifiCation Components

153

parameters={{

 docs: {

 page: TooltipDocs,

 },

 }}

/>

 3. save and close any files open.

 4. We have everything in place, so let’s test it! switch to a node.

js terminal session, then set the working folder to our cobalt

project area.

 5. at the prompt, enter npm run storybook and hit enter – if

all is well, we should see storybook launch and display in our

browser at http://localhost:6006/. Click on the Default

link under selectBox on the left to display the variant we just

created, as shown in figure 5-6.

Figure 5-6. Displaying the custom version of our Tooltip component

Chapter 5 Creating notifiCation Components

154

Excellent – we’ve completed our Tooltip component and tested it: it’s

now ready for use. That brings us to the close of this chapter and where we

move on to what will be the next batch of components to add, but before

we do so, let’s quickly cover off the changes made in this last demo. The

only change we had to effect was to change showHTML from "false" to

"true"; this triggers the displayHTML check in our code, so allowing us to

use HTML. The rest of the code is the same, albeit with slightly different

markup; you will notice though that the markup is rendered properly this

time, not as plain text in our demo.

 Summary
No one likes getting more notifications than is necessary – it’s essential

to get the balance right. Otherwise, we are likely to end up irritating our

customers! We still need to have something available, and while getting

the balance right is something that only comes with testing, we can at least

ensure we have suitable components available for use.

To help with that, we’ve created three components for our library;

each has its respective page in our Storybook instance. It brings us up

to the penultimate component group in our library, with only one more

component category to add to our library! Before we build the final

category of components, let’s take a moment to review what we have

learned in this chapter.

As we saw in the previous chapter, the focus is on adding each

component to our library and setting it up in Storybook. We started with

creating the Alert trail component before swiftly moving on to building the

more complex Notification component. Both follow the same principle of

displaying a notification, but they each do it differently, and choosing the

best one to use will depend on where we need to use it.

Chapter 5 Creating notifiCation Components

155

We explored setting up a Tooltip component as this category’s third

and final tool. This one ended up being a little more limiting, as we

couldn’t set up a separate variant in Storybook; this is something we

should consider prioritizing in future development. Despite this, we found

that we can still create a suitable variant with only minimal changes, even

if we can’t display it in Storybook at the same time as the default version.

Okay, let’s crack with creating the final batch of components: the Grids

group. It will depart a little from the usual practice as we’re only going to

make a single component this time! But – this is one component that will

be flexible and allow us to create different layouts. Intrigued? Stay with me,

and I will explain all in the next chapter.

Chapter 5 Creating notifiCation Components

157

CHAPTER 6

Creating
Grid Components
So far, we’ve created a reasonably sized collection of components, most of

which we’ve added to Storybook and checked that they run as expected

in a browser. We have one more set of components to create before

we update the documentation in the next chapter – the last batch of

components is an ImageGrid.

Hold on a moment. That’s just one component, right? Well, yes – and

no: it is one component, but due to how Web Components work in Svelte,

we need to make it from no less than three components!

I’m sure you’re probably a little confused by now – don’t worry: we will

still use the same approach as before, but this time, I’ll show you how with

a bit of planning, we can bring all three components together to create a

starting point for our ImageGrid component. Let’s begin with setting the

scene for the construction of this component.

 Determining the Approach
When I started researching for this chapter, I had initially planned to

create a layout grid component (or set of components). However, this soon

proved too large for this book’s scope – it would have meant subsuming

© Alex Libby 2023
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/978-1-4842-9039-2_6

https://doi.org/10.1007/978-1-4842-9039-2_6#DOI

158

a large part of the CSS Grid or CSS Flexbox layout concepts, which could

almost form a book itself! So – how can I scale this back to something more

manageable?

I was still keen to use native CSS standards where possible and not use

third-party libraries to help keep the component light and dependency-

free (so to speak). One component came to mind that fitted the bill –

what about an ImageGrid? We can use these in e-commerce sites to

display products; this is a perfect fit for using CSS Grid to build a working

component. Sure, we could do this from scratch, but why reinvent the

wheel when someone has something you can use?

So – how to make this a set of components? Well, two quirks helped in

this respect:

• Svelte web components can only accept string-based

prop values. You will undoubtedly see from each

component we’ve created that we only pass string

values; this is why!

• Storybook doesn’t make it easy to showcase multiple

components in a single story – there are cases for React,

but support for Svelte doesn’t seem to be at the same

level (at least at the time of writing). To work around

this, we can create a container component; into this,

we can call the child components we need for creating

our ImageGrid.

With this in mind, let’s begin with building the first of our three

components – the Table component, which will act as our container for the

ImageGrid.

Chapter 6 Creating grid Components

159

 Building the Table Component
As always, we must start somewhere – we know Storybook doesn’t make

it easy to display composite components in the same format as individual

ones, so it makes sense to create our container component for the

ImageGrid.

This first component will be a relatively lightweight one, to begin with,

but one I am sure we can develop in the future – along with the two child

components we will create later in this chapter. Let’s dive in and look at

what is involved in more detail.

BUILDING THE TABLE COMPONENT

to construct our table component, follow these steps:

 1. First, create a new folder called Table at the root of the

components folder.

 2. next, open a new file and add this code – save it as Table.

svelte. We’ll start with setting the svelte:options tag,

followed by importing two components and setting four

variables for export:

<svelte:options tag="cobalt-table" />

<script>

 import Grid from "./Grid.svelte";

 import Cell from "./Cell.svelte";

 export let columnCount = "4";

 export let rowCount = "4";

 export let itemCount = "";

 export let border = "";

 export let placeholderImages = "false";

</script>

Chapter 6 Creating grid Components

160

 3. next, we have the markup – first, miss a line, then add this

block of code:

<Grid columns={columnCount} rows={rowCount} {border}>

 {#each { length: parseInt(itemCount, 0) } as _, i}

 <Cell {placeholderImages} />

 {/each}

</Grid>

 4. please save the file and close it.

That was a short exercise – it doesn’t look like it does much at face

value! It still performs an important role, though – to understand how it fits

into the larger picture, let’s take a moment to review the code changes in

more detail.

 Understanding What Happened
Although this last exercise was brief, it serves an important role – you may

remember earlier my comments about Storybook not making it easy to

host a component made up of subcomponents, such as ours. In this case,

we managed to get around it by using the Table component as a container

for everything else. We may use the Cell and Grid components too, but as

far as Storybook is concerned, we host everything inside Table.

In terms of code, there is very little going on in this component – we set

the now-familiar svelte:options tag before importing both the Grid and

Cell components into our component. We then set five variables for export,

including columnCount, rowCount, and border.

The (other) important part of this component, though, is in the call

to <Grid...> – here, we pass into it values for columnCount (number of

columns), rowCount (number of rows), and border (dictates if one should

be displayed). We then iterate through itemCount, having converted it

Chapter 6 Creating grid Components

161

from a string to an integer; for each instance of itemCount, we call the Cell

component and tell it whether it should display placeholder images when

viewing the component in our browser.

Okay – let’s move on: we’ve referenced the Grid and Cell components

in our last demo, but the Table component won’t work yet, as neither Cell

nor Grid exists yet! That’s easy to fix: let’s dive in and look at setting up

both; we’ll start with Grid as the next component.

 Creating the Grid Component
With the container component now complete, we can focus on the second

component for this chapter – the Grid component. It will act as a container

too, but this one reformats each cell into the correct order based on what

we set using Flexbox. Setting up this component is a little more complex

than the previous one, so let’s dive in and take a look.

CONSTRUCTING THE GRID COMPONENT

We have the initial table component in place – the next one to develop is the

grid component. to set this component up, work through these steps:

 1. First, create a new file called Grid.svelte inside the \src\

components\Table folder.

 2. next, crack open a new file and add this code – we’ll start with

setting the svelte:options tag, followed by setting four

variables for export and two for internal use in the component:

<svelte:options tag="cobalt-grid" />

<script>

 export let columns = "2";

 export let rows = "4";

 export let border = "1px solid #000000";

Chapter 6 Creating grid Components

162

 let colInt = parseInt(columns, 0);

 let rowInt = parseInt(rows, 0);

</script>

 3. next, we need to add the markup for our component – skip a

line, then add this code:

<div

 style="

 grid-template-rows: repeat({rowInt}, 1fr);

 grid-template-columns: repeat({colInt}, auto);

 border: {border};

 "

>

 <slot />

</div>

 4. to finish off the component, let’s add some styling – we’re

hard- coding most of the properties for now, but with the

intention that if we develop the component further, we can

make them dynamic:

<style>

 div {

 font-family: Arial, Helvetica, sans-serif;

 display: grid;

 grid-column-gap: 10px;

 grid-row-gap: 5px;

 grid-auto-flow: column;

 border: 1px solid black;

 }

</style>

 5. go ahead and save and close the file – the changes for this

component are complete.

Chapter 6 Creating grid Components

163

Excellent – that’s two components down, one left to complete for our

ImageGrid! We base most of this component around standard HTML

markup and CSS styling, but there are a couple of exciting code features

we’ve used – let’s review the code changes we made to understand how

they work in more detail.

 Breaking Apart the Code
There is one thing I love about Svelte – we could have spent time creating

an elaborate Grid component, but instead, Svelte allows us to use existing

techniques such as CSS Grid, with very little need for extra coding to make

it all work!

To build our Grid component, we began first by adding the now-

familiar svelte:options tag before creating three variables for export:

columns, rows, and border. These will take care of the number of columns

we should display, the number of rows that should be present, and

whether our table should have a border.

We then converted the column and row values from strings to

integers – this is necessary, as we can only pass strings between Svelte

web components. We get around it by converting these strings into the

respective types within each component.

The key part of this component comes next – most of the hard work

is done using CSS styling, which makes it super-efficient. We set a <div>

element, to which we apply the CSS Grid grid-template-rows and grid-

template- columns attributes. We use these to define the number of rows

and columns to display on the page, using 1fr to set cells of equal spacing

in each case. At the same time, we also set some typical CSS styling that

you might see when using CSS Grid elements – such as display: grid or

grid-row-gap. These are hard-coded for now, but there is no reason why

we might not want to make them more dynamic sometime in the future.

Chapter 6 Creating grid Components

164

You will also notice the presence of <slot /> – this we use to
display whatever htmL or text is rendered inside the call to grid
when using the component.

Right, let’s crack on – we have one more component to create, which

is Cell.

 Creating the Cell Component
At this stage, we now have two of the three components in place – there is

one more component left to add: the Cell component.

This one isn’t as complex as Grid – here, we need to create a container

representing the cell of our grid and determine if we want to show a

placeholder image or leave it blank.

Admittedly, the former is something we might want more control

over, but that’s the beauty of creating a component – it’s something we can

develop further at a later date. For now, though, let’s focus on building the

base cell component, which we will do as part of the next exercise.

CONSTRUCTING THE CELL COMPONENT

We’ve reached the third and final component for this chapter – to set it up,

follow these steps:

 1. First, crack open a new file, saving it as Cell.svelte in the \

src\components\Table folder.

 2. next, go ahead and add this code to the top of that file:

Chapter 6 Creating grid Components

165

<svelte:options tag="cobalt-cell" />

<script>

 export let placeholder = "false";

 let imgHolder = JSON.parse(placeholder);

</script>

 3. We need to add markup for our component – miss a line after

the code from step 2, then add this:

<div class="cell">

 {#if imgHolder}

 <div>

 <img src="https://loremflickr.com/150/160/camera"

alt="placeholder" />

 <div class="description">This is a test image</div>

 </div>

 {:else}

 <slot />

 {/if}

</div>

 4. as the last part, let’s finish our component off with some

styling:

<style>

 .cell { border: 1px solid black; text-align: center; }

 .description { color: #ffffff; background-color:

#6666ff; padding: 2px 0; }

 img { padding: 5px; }

</style>

 5. save the file and close it – we have completed all of the

necessary changes for now.

Chapter 6 Creating grid Components

166

Perfect – we have everything in place, ready to link into Storybook!

Although this last component wasn’t substantial, we can still gain some

valuable tips from this code, so let’s review it in more detail before moving

on to the next stage.

 Understanding What Happened
In that last demo, we created the Cell component, which means we now

have all the constituent elements we need for our ImageGrid component.

This final component was a little more involved than the others – to

construct it, we first added the usual svelte:options tag before setting

two variables (including one for export, placeholder).

You may notice the somewhat interesting use of JSON.parse, mainly

as we’re not using any JSON content in our component! There is a

reason for this – it’s a little hack to convert the original string value for

placeholderImages into a number value (and store it in imgHolder).

We then set a div element as a container before using imgHolder to

determine if the component should display markup for a placeholder

image. If so, we include an image that uses the LoremFlickr website to pick

a random image as our placeholder; I’ve set it to use the camera as a search

term, but we could change it to something else if required. The critical

thing to note is that if a placeholder image is not needed, we use <slot />

to render whatever markup is between the component tags.

Our next task is to add our new ImageGrid component to Storybook, so

we can see how it looks in practice – before we do that, there is one small

point I want to cover: placeholderImages.

You will see from the cell component markup that we’ve added an

option to display placeholder images or our own but have not yet used

it. The reason for this is that we will make use of it in Storybook when we

come to add a variant later in this chapter. It’s all about preparation and

thinking ahead – as you will see, it makes adding our placeholderImages

variant much easier!

Chapter 6 Creating grid Components

167

 Adding to Storybook
By now, I suspect this next part should be somewhat familiar to you –

we’ve added all of our components (except one) to Storybook, so there

isn’t likely to be anything too new for our next task. We’re now at a stage

where we can test the ImageGrid component, so as before, let’s crack

on with adding an instance to Storybook so we can prove it works as

we expect.

HOOKING INTO STORYBOOK

although we’ve created a component, we won’t see how it works until we get

it into our demo. to do so, follow these steps:

 1. First, create a new file, then add this code – as before, we have

a reasonable chunk to add. Let’s start with the initial block to

import the component and documentation, along with some

functions from storybook:

import Table from "../ImageGrid/Table.svelte";

import TableDocs from "./TableDocs.mdx";

import { Meta, Story } from '@storybook/addon-docs';

 2. next, leave a line blank, then add the now-familiar meta tag,

as shown:

<Meta

 title="Cobalt UI Library/Grid Components/ImageGrid"

 component={Table}

 parameters={{page: null}}

/>

Chapter 6 Creating grid Components

168

 3. as in previous demos, we also need to add a template – go

ahead and miss a line, then add this constant declaration:

export const Template = (args) => ({

 Component: Table,

 props: args,

});

 4. We can now add the story to our file, which will render the

component on the page:

<Story name="Default"

 args={{

 columnCount: "1",

 rowCount: "4",

 border: "none",

 placeholderImages: "false",

 itemCount: "12",

 }}

 parameters={{

 docs: {

 page: TableDocs

 },

 }}

/>

 5. save the file as Table.stories.mdx in the \src\lib\storybook

folder, then close the file.

 6. You will see from the code that we’ve specified a file as our

documentation but haven’t yet added it. We need to extract a

copy of TableDocs.mdx from the code download and then

drop it into the alert folder.

Chapter 6 Creating grid Components

169

 7. We have everything in place, so let’s test it! switch to a node.

js terminal session, then set the working folder to our cobalt

project area.

 8. at the prompt, enter npm run storybook and hit enter – if

all is well, we should see storybook launch and display in our

browser at http://localhost:6006/. Click on the default

link under alert on the left to display the variant we just created,

as shown in Figure 6-1.

Figure 6-1. Our newly created ImageGrid component in Storybook

Great – we now have a working ImageGrid component available in our

component library! We’ve covered a good chunk of code in this last demo,

so while most of it will be similar to what we’ve already used earlier in the

book, let’s take a quick look through it as a bit of a refresher for us.

Chapter 6 Creating grid Components

170

 Exploring in Detail

By now, you will hopefully be familiar with most of the steps we’ve used

to add our component to Storybook – using the same format may seem a

little repetitive, but the flip side is that it does make it quicker to replicate

for other components.

In our case, we set up an instance of the Storybook page for the

ImageGrid component, even though we’re using Table as the main

container for our component. We added three imports, namely, the Table

component, documentation, and two functions from the Addon-Docs

component for Storybook.

Next came the usual <Meta> tag – we used this to create a section

called ImageGrid in Storybook and point it to the Table component as the

entry point. We also disabled Storybook from automatically generating its

documentation, as we will replace it shortly.

The most important part came next – we added a template for

our component to render it on-screen; here, we set it to use the Table

component and pass in args as a props call.

To combine it and complete the component, we added an instance

of <Story> to tell Storybook how to render the component and which

props values to use. We told it to use the TableDocs.mdx file as our

documentation; this comes from the code download accompanying

this book.

 Adding a Variant
We now have our ImageGrid displayed in Storybook – it looks good and

resizes well (or at least within the confines of Storybook). The trouble is it

seems a little…well, plain. Can we do anything about this?

Chapter 6 Creating grid Components

171

As it happens, yes, we can – you’ve probably guessed it: we could add a

variant at this point! There is a variant I think would work well here – what

about adding a placeholder image and maybe a label too?

ADDING A VARIANT

to add in both an image and label will require some changes to the story we

set up in storybook – to see what needs changing, follow these steps:

 1. First, crack open Table.stories.mdx from within the \src\

lib\storybook folder – take a copy of the entire “default”

story block, and paste it below, leaving a line blank between

stories.

 2. next, change the story name property from “default” to

“placeholder images.”

 3. the value we need to change is placeholderImages – set

this to true.

 4. save the file, then close it.

 5. We need to test the change – to do so, revert to a node.js

command prompt, then make sure the working folder is set to

our project area if it is not already there.

 6. at the prompt, type npm run storybook, then press enter.

 7. storybook’s development server should fire up – if all is

well, we can preview the results of our change at http://

localhost:6006/. Find the grid entry on the left, then click

on imagegrid ➤ placeholder images to view the new variant

(Figure 6-2).

Chapter 6 Creating grid Components

172

Figure 6-2. The new variant showcased in Storybook

This change looks a little more enticing, wouldn’t you agree? There will

be cases where we aren’t ready to display our images, so having something

in place gives a little more visual interest.

As you will have seen, we’ve used an image placeholder service, so

images are not instant – this would be a perfect candidate for updating to a

fetch feature (more on this later). For now, though, let’s concentrate on the

code changes we made – most of it should be self-explanatory by now, but

it’s still worth reviewing the code in more detail.

 Understanding How It Works
This last demo has to be one of the simplest we’ve done – it might seem a

little long at seven steps, but in reality, we only need to do one thing: copy

and rename the story! A lot of this comes from a little careful preplanning;

it shows that thinking ahead makes a repetitive task easier to complete.

Chapter 6 Creating grid Components

173

Even though we only made one change, it’s still an important one –

we added a new instance of a Story block, but this time changed the

placeholderImages property to true. It tells the component to render

placeholder images from the LoremFlickr service we added earlier, along

with the labels below each picture. This was the only change we needed to

make – we finished by running the usual steps to preview the results in our

browser.

 Summary
Adding the ImageGrid/Table components marks a significant milestone –

we now have all of the components set up in our library and available

in Storybook. It might have taken a while to get there, but we are indeed

there. Or are we? I’ll come back to that question in a moment, but we’ve

covered some important material in this chapter, so let’s pause to review

what we have learned.

We briefly looked at how we would approach this particular group.

We noted a couple of limitations around only accepting string values

and Storybook not making things easy for us, so we decided to create an

ImageGrid component as a basis for the subcomponents in this chapter.

In total, we created three components based on the CSS Grid

framework supported natively in most browsers, which makes them more

lightweight and easier to develop. We started first with Table, which acts as

our entry point for Storybook, and followed this with Grid, then Cell – all

three used minimal markup with styling that you might typically use when

styling with CSS Grid.

We then rounded off the chapter with a look at how to hook the

components into Storybook as the ImageGrid, before adding a simple

variant to display placeholder images in our component.

Chapter 6 Creating grid Components

174

Phew – all the components are now up and running; what’s next? We

are there in terms of development, but it’s time for one of those tasks that I

know people don’t always enjoy…documentation. Yes, it’s time to do some

writing; stay with me as I show you how we use Markdown to create our

documentation within Storybook in the next chapter.

Chapter 6 Creating grid Components

175

CHAPTER 7

Writing
Documentation
Throughout this book, we’ve created a host of new components to form

our component library – they may only be simple ones, but as they say: we

must start somewhere!

There is one important task we need to perform, and that is to

document how these components work. Given we’re using Storybook

(at least for most of them), then we can add some documentation files

to each component, which are accessible from the Docs tab at the top of

Storybook, as shown in Figure 7-1.

Figure 7-1. An example of the Docs tab in Storybook

© Alex Libby 2023
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/978-1-4842-9039-2_7

https://doi.org/10.1007/978-1-4842-9039-2_7#DOI

176

You will no doubt notice that we’ve already done this for most (if not

all) components – the trouble is they are placeholder pages and in dire

need of updating! This updating is easy enough to do – the placeholder

pages we’ve added so far use Markdown, similar to what you might use if

you’re creating pages in GitHub, for example.

Don’t worry if you’re not familiar with Markdown – most of it is text

based, with a relatively simple syntax for creating items such as titles. I’ll

take you through everything step by step as we go through this chapter.

Rather than being too prescriptive about the final article, we’ll keep

each relatively fluid, so you can use them as a basis for expanding and

developing your versions in the future.

Okay – we have plenty to cover: rather than go through each category

of components (which will get a little tedious, I’m sure), we’re going to take

a different approach. In this chapter, we’ll work through two categories

step by step. In Chapter 8, though, the focus will be on you! I’ll provide the

necessary labels and values, but it will be up to you to work through each

of the remaining categories. Don’t worry, though – if you get stuck, all the

answers will be available in the accompanying code download. With all

of that in mind, let’s explore the process we will use for performing the

update for each documentation page.

 Setting the Scene
Cast your mind back to the last component we created – in each instance,

we added a file called XXXXX.stories.mdx to the storybook folder for each

component (where XXXXX is the name of the component, such as Slider).

This file contains our placeholder documentation – each will, of

course, vary depending on the components and variants we create, but all

will have some key elements for consistency:

• Title and introduction (we must start somewhere!)

Chapter 7 Writing DoCumentation

https://doi.org/10.1007/978-1-4842-9039-2_8

177

• Jump links to each variant

• An example of the code for each component or variant

• Add-on badges to confirm status, for example, Stable,

Experimental, etc.

• A list of argument types where appropriate

In addition, do you remember adding a page:null change into each

Storybook file, such as this example?

<Meta

 title="Cobalt UI Library/Basic Components/Checkbox"

 component={Checkbox}

 parameters={{ page: null }}

/>

It allows us to create a custom documentation page for each

component – if we don’t, Storybook will produce most pages

automatically. The autogeneration may not be too much of an issue, but

I’m not sure how much control we will have over the results!

Okay – let’s crack on: now that we know what we need to cover, we’ll

make a start by updating each documentation page. We’ll begin with

the easy Basic group first; before we do so, we need to perform a little

housekeeping.

Copies of all the source files will be in the code download if you
get stuck – but i recommend working through the changes bit by
bit to learn how it hangs together! Documentation should evolve;
we’ll begin with something simple for now, but we can expand and
develop in the future.

Chapter 7 Writing DoCumentation

178

 Adding Status Badges
Our first task is to set up badges – this is one of the features we listed back

in the previous section as something we want to have on all component

pages. The process comes in two parts – in the next exercise, we’ll set up

the feature for use in Storybook; we will add labels later as we go through

the documentation for each component.

ADDING STATUS BADGES

to add status badges, follow these steps – we'll use the Checkbox component

as our example:

 1. First, we need to install the storybook-addon-badges package.

to do this, crack open a node.js terminal session, then change

the working folder to our project area.

 2. at the prompt, run this command:

npm install @geometricpanda/storybook-addon-badges

 3. node will go away and install it – minimize the session, as we

will need it later in this exercise.

 4. once we've installed the package, switch to your editor, and

open the main.js file in the \.storybook folder.

 5. We need to tell Storybook about our new package, so add the

highlighted line as indicated:

 "addons": [

 "@storybook/addon-links",

 "@storybook/addon-essentials",

 "@storybook/addon-interactions",

 "@geometricpanda/storybook-addon-badges",

],

Chapter 7 Writing DoCumentation

179

 6. We have one more configuration change to make – this one is

in \.storybook\preview.js. Crack this file open in your

editor, then add this block immediately before the last closing },

like so:

 matchers: {

 color: /(background|color)$/i,

 date: /Date$/,

 },

 badgesConfig: {

 beta: {

 styles: {

 backgroundColor: '#FFF',

 borderColor: '#018786',

 color: '#018786',

 },

 title: 'Beta',

 },

 deprecated: {

 styles: {

 backgroundColor: '#FFF',

 borderColor: '#6200EE',

 color: '#6200EE',

 },

 title: 'Deprecated',

 },

 },

 },

}

 7. next, open Checkbox.stories.mdx from the \src\lib\

storybook folder in your editor, then add this line immediately

after the last import statement at the top of the file:

import { BADGE } from '@geometricpanda/storybook-

addon-badges';

Chapter 7 Writing DoCumentation

180

 8. Scroll down to the parameters section in the Default story – go

ahead and add the badges: line, as shown:

 parameters={{

 docs: {

 page: CheckboxDocs

 },

 badges: [BADGE.EXPERIMENTAL]

 }}>

 {Template.bind({})}

 9. Save and close all open files. revert to the node.js terminal

session from earlier; then at the prompt, enter npm run

storybook and browse to http://localhost:6006/. if

all is well, we should see the experimental badge shown in

Figure 7-2.

Figure 7-2. An example of a Storybook add-on badge

Great – we can now add badges to our site! At first glance, one marked

EXPERIMENTAL might scare a few people – don’t worry: it’s not intended!

What’s more important here – for now – is the principle of adding badges;

we can easily add new custom badges or override the styles of existing

ones at a later date.

As it happens, we’ve already added two examples (see step 6), so if

you change BADGE.EXPERIMENTAL to BADGE.BETA (from step 8), you will

hopefully see something a little less scary! That aside, this is a valuable

feature in Storybook, so let’s spend a few moments reviewing the changes

in more detail.

Chapter 7 Writing DoCumentation

181

 Understanding What Happened
Since I started working with Storybook several years ago, adding badges

has always been one of my top tasks for customizing Storybook. It gives a

clear, unambiguous way to show what state a plug-in is in, such as Stable,

Experimental, or even (dare I say it) Deprecated.

It is an easy plug-in to install – we first ran a typical npm install

command to download and set up the plug-in. The install is only part

of the story, though, as next, we had to tell Storybook about the plug-

in; we added it to the list of add-ons in the .\storybook\preview.js

configuration file. We then added an interesting block – it’s not something

we will use immediately, but I will return to this in a moment.

To finish the demo, we added an import statement to Checkbox.

stories.mdx (our demo file for this exercise). We followed this by inserting

a badges: property into the <Story> object before saving the file and

restarting Storybook to view the results in our browser.

 Customizing the Badges Plug-in Configuration

Now – cast your mind back a few lines from that explanation: remember I

said we added a block but didn’t use it just yet?

This block was a good example of customizing the configuration for

the Storybook Addon Badges plug-in; here is a reminder of the code:

badgesConfig: {

 beta: {

 styles: {

 backgroundColor: '#FFF',

 borderColor: '#018786',

 color: '#018786',

 },

 title: 'Beta',

 },

Chapter 7 Writing DoCumentation

182

 deprecated: {

 styles: {

 backgroundColor: '#FFF',

 borderColor: '#6200EE',

 color: '#6200EE',

 },

 title: 'Deprecated',

 },

...

At first glance, it might take a moment to work out how it all hangs

together, but it’s simpler than it might appear. We have the badgesConfig

object, inside which we can add as many badge types as we require.

Our example has two at present: beta and deprecated – we might

want to add labels such as Alpha, Windows Only, Mac Only, and so on.

Whatever labels we add will entirely be based on our requirements,

although I would recommend not adding more labels than is necessary!

The key to making it all work is two properties: styles and title. Both

should be self-explanatory, but to confirm, they contain the CSS styles and

title name for each label.

Try changing the BADGE.EXPERIMENTAL to BADGE.BETA, which we set up

in the last exercise – it should look something like this:

 parameters={{

 docs: {

 page: CheckboxDocs

 },

 badges: [BADGE.BETA]

 }}>

 {Template.bind({})}

If all is well, we should see the EXPERIMENTAL label replaced with a

BETA one, as shown in Figure 7-3.

Chapter 7 Writing DoCumentation

183

Figure 7-3. The new BETA label on the Checkbox docs page in
StoryBook

The remaining styles for each label are just standard CSS color

properties – this will vary according to the color palette you’re using for

your site.

i would recommend using heX values, though – a scan through
the Dom of an example suggests that most values for this plug-in
surface as heX values anyway, plus the documentation isn't clear as
to whether the plug-in supports rgBa or other color values.

Okay – let’s crack on with updating the documentation! There is plenty

to do, but as a fair bit is very similar, we’re not going to work through all the

steps for adding documentation. Instead, I will take a different approach

involving some audience participation. Yes, we’re already doing that, but

bear with me, and I will explain.

 Updating Our Documentation –
Our Approach
While researching for this book, it struck me that although we’re adding

relatively simple pages, we still have to work through many steps – many of

which are repetitive, so it will get a little tedious after a while!

Chapter 7 Writing DoCumentation

184

That’s not something I want, so we’re going to take a different

approach. We’ll work through two examples together step by step; for the

remaining three, I’ll only provide specific details required, such as links or

variant names. There is a good reason for doing it this way: not only can

you create copies very easily using search and replace, but also it gives

you a chance to practice creating the pages so that you can be more self-

sufficient.

I know this might sound scary, but trust me – it won’t be! We can easily

create most of the pages using search and replace; the trick is to keep a

consistent layout throughout. Let’s keep that thought in mind while we

make a start on the first group – you will soon see that we use the same

layout for each component, which makes updating very easy.

Don't worry if you get stuck – i will provide copies of all
documentation in the code download accompanying this book.

 Writing Documentation
for Basic Components
For the first set of documentation pages, we will focus on the components

from the Basic group, namely, Checkbox, Input, and Slider.

Most of what we add should be self-explanatory, although I

recommend keeping the spacing as laid out in the examples in the code

download. Markdown text is space specific – not including the correct

spaces can frequently lead to Markdown formatting errors.

For logistical purposes, we’ll work through the process of updating the

documentation as a three-part exercise; each part will focus on a specific

component. With that thought in mind, let’s start working through the

steps required in more detail.

Chapter 7 Writing DoCumentation

185

to help with markdown syntax, i recommend installing a plug-in for
your editor: if you use Visual Studio Code (like i do), then the official
plug-in is called mDX and is free to download and install.

DOCUMENTING BASIC COMPONENTS – PART 1: CHECKBOX

to update the documentation for the Checkbox component, follow these steps:

 1. First, go ahead and open the CheckBoxDocs.mdx file from

within the \src\lib\storybook folder. You can delete the

contents within the file – we will replace them with more up-

to- date content. there is a good chunk of code to add, so we'll

begin with an import for Storybook and the CheckBox.svelte

component itself:

import { ArgsTable, Canvas, Meta, Story } from '@

storybook/addon-docs';

import CheckBox from '../CheckBox/CheckBox.svelte';

 2. next up, miss a line, then add this title – this will ensure we

set up the correct navigation for our plug-in, as well as tell

Storybook which component we're using:

<Meta title="Basic Components/CheckBox"

component={CheckBox} />

 3. once you've added that line, miss another line, then add this

block – it contains some introductory text and some jump links

to the relevant section for each variant (in this case, three):

CheckBox

Checkbox is the primary component. It has three

possible states.

Chapter 7 Writing DoCumentation

186

- [Default](#default)

- [No Label](#no-label)

- [Disabled](#disabled)

 4. next, skip a line, then add this block – this takes care of the

Default variant for our component:

Default

This is the default version of the checkbox component.

<Canvas>

 <Story id="cobalt-ui-library-basic-components-checkbox-

-default-story" />

</Canvas>

 5. repeat the same action as before, but this time, add this

block – this one covers the no Label variant of our Checkbox

component:

No Label

This variant hides the label normally seen with the

CheckBox component.

<Canvas>

 <Story id="cobalt-ui-library-basic-components-checkbox-

-no- label" />

</Canvas>

Chapter 7 Writing DoCumentation

187

 6. Last but by no means least – here's the code for the Disabled

variant:

Disabled Input

This variant disables the CheckBox.

<Canvas>

 <Story id="cobalt-ui-library-basic-components-checkbox-

-disabled" />

</Canvas>

 7. to finish it all off, we need to add one more section – this

lists the various arguments and properties available for this

component:

Properties of component

Below is a list of arguments available for this

component:

<ArgsTable of={CheckBox} />

 8. Save the file and close it – fire up a node.js command prompt;

then at the prompt, switch the working folder to the project

area and run this command: npm run storybook.

 9. if all is well, we should see the documentation appear if we

browse to http://localhost:6006/ and click on the

Default entry for Checkbox on the left, then the Docs tab at the

top (as shown in the extract in Figure 7-4).

Chapter 7 Writing DoCumentation

188

Figure 7-4. An extract of the Checkbox documentation in Storybook

Excellent – we’ve completed the documentation for the first of our

components! Granted, it’s not the complete works of War and Peace,

but it’s a starting point: it also looks a little more presentable. Take a few

moments to catch your breath, grab a drink, and we’ll continue with the

next part of this exercise.

DOCUMENTING BASIC COMPONENTS – PART 2: INPUT

to add the documentation for the input component, follow these steps:

 1. First, go ahead and open the InputDocs.mdx file from

within the \src\lib\storybook folder. You can delete the

contents within the file – we will replace them with more up-

to- date content. there is a good chunk of code to add, so we'll

begin with an import for Storybook and the Input.svelte

component itself:

Chapter 7 Writing DoCumentation

189

import { ArgsTable, Canvas, Meta, Story } from '@

storybook/addon-docs';

import Input from '../Input/Input.svelte';

 2. next up, miss a line, then add this title – this will ensure we

set up the correct navigation for our plug-in, as well as tell

Storybook which component we're using:

<Meta title="Basic Components/Input" component={Input} />

 3. once you've added that line, miss another line, then add this

block – it contains some introductory text and some jump links

to the relevant section for each variant (in this case, four):

Input

Input is the primary component. It has four

possible states.

- [Default](#default)

- [Email](#email)

- [No Label](#no-label)

- [Disabled](#disabled)

 4. next, skip a line, then add this block – this takes care of the

Default variant for our component:

Default

This is the default version of the Input component.

<Canvas>

 <Story id="cobalt-ui-library-basic-components-input--

default- story" />

</Canvas>

Chapter 7 Writing DoCumentation

190

 5. next, skip a line, then add this block – this deals with the email

variant for our component:

Email

This variant formats the Input as an email-driven field.

<Canvas>

 <Story id="cobalt-ui-library-basic-components-input--

email" />

</Canvas>

 6. next, skip a line, then add this block – this section covers the

no Label variant for our component:

No Label

This variant hides the label normally seen with the Input

component.

<Canvas>

 <Story id="cobalt-ui-library-basic-components-input--

no- label" />

</Canvas>

Chapter 7 Writing DoCumentation

191

 7. Last but by no means least, skip a line, then add this block –

this takes care of the Disabled variant for our component:

Disabled Input

This variant disables the Input component.

<Canvas>

 <Story id="cobalt-ui-library-basic-components-input--

disabled" />

</Canvas>

 8. to finish it all off, we need to add one more section – this

lists the various arguments and properties available for this

component:

Properties of component

Below is a list of arguments available for this

component:

<ArgsTable of={Input} />

 9. Save the file and close it – fire up a node.js command prompt;

then at the prompt, switch the working folder to the project

area and run this command: npm run storybook.

 10. if all is well, we should see the documentation appear if we

browse to http://localhost:6006/ and click on the

Default entry for Checkbox on the left, then the Docs tab at the

top (as shown in the extract in Figure 7-5).

Chapter 7 Writing DoCumentation

192

Figure 7-5. Extract of the documentation for Input

Great – two down, one more to go…at least for this group! As

before, take a moment to catch your breath, then let’s continue creating

documentation for this group’s third and final component.

DOCUMENTING BASIC COMPONENTS – PART 3: SLIDER

to add the documentation for the Slider component, follow these steps:

 1. First, go ahead and open the SliderDocs.mdx file from

within the \src\lib\storybook folder. You can delete the

contents within the file – we will replace them with more up-

to- date content. there is a good chunk of code to add, so we'll

begin with an import for Storybook and the Slider.svelte

component itself:

import { ArgsTable, Canvas, Meta, Story } from '@

storybook/addon-docs';

import Slider from '../Slider/Slider.svelte';

Chapter 7 Writing DoCumentation

193

 2. next up, miss a line, then add this title – this will ensure we

set up the correct navigation for our plug-in, as well as tell

Storybook which component we're using:

<Meta title="Basic Components/Slider"

component={Slider} />

 3. once you've added that line, miss another line, then add this

block – it contains some introductory text and some jump links

to the relevant section for each variant (in this case, two):

Slider

Slider is the primary component. It has two

possible states.

- [Default](#default)

- [Disabled](#disabled)

 4. next, skip a line, then add this block – this block deals with the

Default variant for our component:

Default

This is the default version of the Slider component.

<Canvas>

 <Story id="cobalt-ui-library-basic-components-slider--

default-story" />

</Canvas>

Chapter 7 Writing DoCumentation

194

 5. next, skip a line, then add this block – this takes care of the

email variant for our component:

Disabled

This variant disables the Slider component.

<Canvas>

 <Story id="cobalt-ui-library-basic-components-slider--

disabled" />

</Canvas>

 6. as before, to finish it all off, we need to add one more section –

this lists the various arguments and properties available for this

component:

Properties of component

Below is a list of arguments available for this

component:

<ArgsTable of={Slider} />

 7. Save the file and close it – fire up a node.js command prompt;

then at the prompt, switch the working folder to the project

area and run this command: npm run storybook.

 8. if all is well, we should see the documentation appear if we

browse to http://localhost:6006/ and click on the

Default entry for Checkbox on the left, then the Docs tab at the

top (as shown in the extract in Figure 7-6).

Chapter 7 Writing DoCumentation

195

Figure 7-6. Extract of documentation for the Slider component

Perfect – that completes the documentation for our first group!

Although we’ve covered a lot of steps in this lengthy exercise, many of

them are very similar.

It might have felt a little repetitive, but that’s no bad thing – after all,

practice makes perfect, right? That aside, we’ve covered some essential

steps in each part of this exercise, so let’s take a moment to review the

changes we made in more detail.

 Breaking Apart the Changes
Adding documentation is an essential task for any component library – I’ve

seen dozens of repositories in GitHub, for example, where documentation

varies from detailed to practically nonexistent! It’s something that often

doesn’t get the love and attention it needs – after all, who likes writing

documentation?

That aside, over the last exercise, we spent time updating the help

content for each of the Basic group of components. The process was the

same for each, so to avoid repetition, we’ll cover the method used for all

three as a collective, not individually.

Chapter 7 Writing DoCumentation

196

We first started with deleting the contents of the original Markdown

file we created earlier in the book – this we replaced with an import from

Storybook’s addon-docs plug-in and the relevant import for the affected

component (such as Input). We then added the Meta tag entry, which we

use to give the page a title, define the navigation in Storybook, and tell the

story file which component we’re using. At the same time, we also added

an introduction and jump links to each variant for the component.

We then worked through adding the variants – in each example, we

started with the Default (i.e., out-of-the-box) instance before adding

anywhere between one and three different variants. Each variant consisted

of a named anchor, title, introductory sentence, and a Canvas example

of the variant. In the Canvas example, we specified the story’s ID (taken

from the URL) – Storybook then inserts an instance of that story into our

documentation page. To finish the page, we added an ArgsTable entry for

the component before previewing the results in a browser.

the story iD links are case sensitive – they must match what is in
the address bar, including the case. otherwise, they will not operate
correctly.

Okay – let’s crack on with the next set of components: it’s the turn of

the Action group. The process will be very similar to the one we’ve just

used, if not near identical – let’s dive in and take a look.

 Updating Documentation for
Action Components
So far, we’ve completed the documentation for the first group of

components – this is an excellent step in the right direction. We still have

more to do, so let’s focus on the second set of documentation pages, which

cover the Accordion, SelectBox, and Spinner components.

Chapter 7 Writing DoCumentation

197

As before, most of what we add should be self-explanatory; keep

in mind my earlier comment about keeping the spacing as laid out in

the examples in the code download. Markdown text is space specific –

not including the right spaces can frequently lead to Markdown

formatting errors!

In the same way we did for the previous exercise, we’ll work through

the process of updating the documentation in three parts. Each part will

focus on a specific component. With that thought in mind, let’s start

working through the steps required in more detail.

DOCUMENTING ACTION COMPONENTS – PART 1: ACCORDION

to add the documentation for the accordion component, follow these steps:

 1. First, go ahead and open the AccordionDocs.mdx file from

within the \src\lib\storybook folder. You can delete the

contents within the file – we will replace them with more up-

to- date content. there is a good chunk of code to add, so we'll

begin with an import for Storybook and the Input.svelte

component itself:

import { ArgsTable, Canvas, Meta, Story } from

'@storybook/addon-docs';

import Accordion from '../Accordion/Accordion.svelte';

 2. next up, miss a line, then add this title – this will ensure we

set up the correct navigation for our plug-in, as well as tell

Storybook which component we're using:

<Meta title="Basic Components/Accordion"

component={Accordion} />

Chapter 7 Writing DoCumentation

198

 3. once you've added that line, miss another line, then add this

block – it contains some introductory text and some jump links

to the relevant section for each variant (in this case, just one):

Accordion

Accordion is the primary component. It does not yet have

any variants.

- [Default](#default)

 4. next, skip a line, then add this block – this takes care of the

Default variant for our component:

Default

This is the default version of the Accordion component.

<Canvas>

 <Story id="cobalt-ui-library-action-components-

accordion--default-story" />

</Canvas>

 5. as before, to finish it all off, we need to add one more section –

this lists the various arguments and properties available for this

component:

Properties of component

Below is a list of arguments available for this

component:

<ArgsTable of={Accordion} />

 6. Save the file and close it – fire up a node.js command prompt;

then at the prompt, switch the working folder to the project

area and run this command: npm run storybook.

Chapter 7 Writing DoCumentation

199

 7. if all is well, we should see the documentation appear if we

browse to http://localhost:6006/ and click on the

Default entry for accordion on the left, then the Docs tab at the

top (as shown in the extract in Figure 7-7).

Figure 7-7. An extract of documentation for the Accordion
component

Perfect – that’s component number four done, but still plenty more

to do! Take a breather for a moment, or grab a drink – when you’re ready,

we’ll continue with the next component.

Chapter 7 Writing DoCumentation

200

DOCUMENTING ACTION COMPONENTS – PART 2: SELECTBOX

to add the documentation for the SelectBox component, follow these steps:

 1. First, go ahead and open the SelectBoxDocs.mdx file from

within the \src\lib\storybook folder. You can delete the

contents within the file – we will replace them with more

up-to-date content. there is a good chunk of code to add, so

we'll begin with an import for Storybook and the SelectBox.

svelte component itself:

import { ArgsTable, Canvas, Meta, Story } from

'@storybook/addon-docs';

import SelectBox from '../SelectBox/SelectBox.svelte';

 2. next up, miss a line, then add this title – this will ensure we

set up the correct navigation for our plug-in, as well as tell

Storybook which component we're using:

<Meta title="Basic Components/SelectBox"

component={SelectBox} />

 3. once you've added that line, miss another line, then add this

block – it contains some introductory text and some jump links

to the relevant section for each variant (in this case, two):

SelectBox

SelectBox is the primary component. It has two

possible states.

- [Default](#default)

- [Disabled](#disabled)

Chapter 7 Writing DoCumentation

201

 4. next, skip a line, then add this block – this takes care of the

Default variant for our component:

Default

This is the default version of the SelectBox component.

<Canvas>

 <Story id="cobalt-ui-library-action-components-

selectbox--default-story" />

</Canvas>

 5. next, skip a line, then add this block – this takes care of the

Disabled variant for our component:

Disabled

This variant disables the SelectBox component.

<Canvas>

 <Story id="cobalt-ui-library-action-components-

selectbox--disabled" />

</Canvas>

 6. as before, to finish it all off, we need to add one more section –

this lists the various arguments and properties available for this

component:

Properties of component

Below is a list of arguments available for this

component:

<ArgsTable of={SelectBox} />

Chapter 7 Writing DoCumentation

202

 7. Save the file and close it – fire up a node.js command prompt;

then at the prompt, switch the working folder to the project

area and run this command: npm run storybook.

 8. if all is well, we should see the documentation appear if we

browse to http://localhost:6006/ and click on the

Default entry for SelectBox on the left, then the Docs tab at the

top (as shown in the extract in Figure 7-8).

Figure 7-8. An extract of the documentation for SelectBox

Great – that’s another one done: five so far! We still have plenty more

to do, so take a breather for a moment or grab a drink – when you’re ready,

we’ll continue with component number six.

Chapter 7 Writing DoCumentation

203

DOCUMENTING ACTION COMPONENTS – PART 3: SPINNER

to add the documentation for the Spinner component, follow these steps:

 1. First, go ahead and open the SpinnerDocs.mdx file from

within the \src\lib\storybook folder. You can delete the

contents within the file – we will replace them with more up-

to- date content. there is a good chunk of code to add, so we'll

begin with an import for Storybook and the Spinner.svelte

component itself:

import { ArgsTable, Canvas, Meta, Story } from '@

storybook/addon-docs';

import Spinner from '../Spinner/Spinner.svelte';

 2. next up, miss a line, then add this title – this will ensure we

set up the correct navigation for our plug-in, as well as tell

Storybook which component we're using:

<Meta title="Basic Components/Spinner"

component={Spinner} />

 3. once you've added that line, miss another line, then add this

block – it contains some introductory text and some jump links

to the relevant section for each variant (in this case, just two):

Spinner

Spinner is the primary component. It has two

possible states.

- [Default](#default)

- [Jumper](#jumper)

Chapter 7 Writing DoCumentation

204

 4. next, skip a line, then add this block – this takes care of the

Default variant for our component:

Default

This is the default version of the Spinner component.

<Canvas>

 <Story id="cobalt-ui-library-action-components-spinner-

-default-story" />

</Canvas>

 5. next, skip a line, then add this block – this takes care of the

Jumper variant for our component:

Jumper

This variant disables the Spinner component.

<Canvas>

 <Story id="cobalt-ui-library-action-components-spinner-

-jumper" />

</Canvas>

 6. as before, to finish it all off, we need to add one more section –

this lists the various arguments and properties available for this

component:

Properties of component

Below is a list of arguments available for this

component:

<ArgsTable of={Spinner} />

Chapter 7 Writing DoCumentation

205

 7. Save the file and close it – fire up a node.js command prompt;

then at the prompt, switch the working folder to the project

area and run this command: npm run storybook.

 8. if all is well, we should see the documentation appear if we

browse to http://localhost:6006/ and click on the

Default entry for SelectBox on the left, then the Docs tab at the

top (as shown in the extract in Figure 7-9).

Figure 7-9. An extract of the documentation for the Spinner
component

And we can breathe easy now! That’s the end of the Action components

group – we now have six components in our library. We still have more to

do, but before we do so, let’s quickly review the changes made in the last

demo in more detail.

Chapter 7 Writing DoCumentation

206

 Exploring the Changes Made
Adding documentation is an essential task for any component library – I’ve

seen dozens of repositories in GitHub, for example, where documentation

varies from detailed to practically nonexistent! It’s something that often

doesn’t get the love and attention it needs – after all, who likes writing

documentation?

That aside, over the last exercise, we spent time updating the help

content for each of the Basic group of components. The process was the

same for each, so to avoid repetition, we’ll cover the methodology used for

all three as a collective, not individually.

We first started with deleting the contents of the original Markdown

file we created earlier in the book – this we replaced with an import from

Storybook’s addon-docs plug-in and the relevant import for the affected

component (such as Input). We then added the Meta tag entry, which we

use to give the page a title, define the navigation in Storybook, and tell the

story file which component we’re using. At the same time, we also added

an introduction and jump links to each variant for the component.

We then worked through adding the variants – in each example, we

started with the Default (i.e., out-of-the-box) instance before adding

anywhere between one and three different variants. Each variant consisted

of a named anchor, title, introductory sentence, and a Canvas example

of the variant. In the Canvas example, we specified the story’s ID (taken

from the URL) – Storybook then inserts an instance of that story into our

documentation page. To finish the page, we added an ArgsTable entry for

the component before previewing the results in a browser.

the story iD links are case sensitive – they must match what is in
the address bar, including the case. otherwise, they will not operate
correctly.

Chapter 7 Writing DoCumentation

207

 Summary
Documentation of how a component works is an oft-neglected but

essential part of any component library; I’ve lost count of the number

of libraries I’ve seen where the developer provides the bare minimum,

making things awkward for working out how to achieve a task.

Gaps may exist in the documentation from the get-go, but it should

at least be accurate. We covered a lot of material in this chapter, so review

what we have learned.

We started by exploring how to add Storybook badges – we saw how

this is a helpful tool to help identify the state of any component, such as

Experimental, Stable, or (heaven forbid), Deprecated. Adding this feature

was a simple change to make; at the same time, we learned about how to

customize the labels so that we could display our text.

Next up, we began the lengthy process of updating the documentation

files for each component. Given the number involved and the high level

of duplication, we focused on the Basic and Action groups. This was all in

preparation for working through the remaining pages as practice in the

next chapter – I’ll list the details needed, ready for you to work them into

your own version. We’ll then finish with a quick note about tidying up

some loose ends before we begin testing in Chapter 9.

Don’t worry – it might seem complex, but if you remember that I’ve

designed the pages to use the same format, it will be easier than you might

expect! With that thought in mind, stay with me, and let’s move on to

starting those changes in the next chapter.

Chapter 7 Writing DoCumentation

https://doi.org/10.1007/978-1-4842-9039-2_9

209

CHAPTER 8

Documenting More
Components
Throughout this book, we’ve created a host of new components to form

our component library – they may only be simple ones, but as they say: we

must start somewhere!

With all the components in place, we had one important task to

document how each works. We began this in Chapter 7, but we still have

a few groups to complete. It’s at this stage where I turn things over to you!

This chapter will focus on making the remaining changes as practice.

 Adding the Remaining Documentation
Right – it’s at this point where it really is over to you!

So far, we’ve worked through almost half our components – we have

pages in place in Storybook, which we can develop and refine over time.

We still have three categories left to do, which are Notification, Navigation,

and Grid. We will come to the details for each shortly, but first, we must

deal with a minor issue.

Remember how we deliberately didn’t add SideBar as a component

to Storybook? It was primarily because the latter got in the way; we had

to build a demo outside Storybook to show off this component. While

we can create some documentation for this component, it’s unlikely to

© Alex Libby 2023
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/978-1-4842-9039-2_8

https://doi.org/10.1007/978-1-4842-9039-2_7
https://doi.org/10.1007/978-1-4842-9039-2_8#DOI

210

be effective without a fully working demo inside Storybook! It is why

the documentation is minimal for this component – once we get it into

Storybook, we can begin to develop the documentation for it properly.

Keeping that thought in mind, you will hopefully have seen that for

the first two categories, we used the same format throughout. With a bit of

care, we can create copies for the remaining components using search and

replace; now is an excellent time to put that theory to the test.

 Adding Documentation
for Notification Components
For the first of the remaining three groups, we’ll focus on the Notification

components: Dialog, Alert, and Tooltip. We can use a similar process

for all three, as we have already done so far; let’s begin with the Dialog

component.

DOCUMENTING NOTIFICATION COMPONENTS – PART 1: DIALOG

To get the documentation for our Dialog component up to scratch, follow

these steps:

 1. First, crack open the DialogDocs.mdx file from within the

\src\lib\storybook folder – go ahead and replace the

existing @import and <Meta> tags lines with this:

import { ArgsTable, Canvas, Meta, Story } from '@

storybook/addon-docs';

import Dialog from "../Dialog/Dialog.svelte";

<Meta title="Cobalt UI Library/Notification Components/

Dialog" component={Dialog} />

ChapTer 8 DoCumenTing more ComponenTs

211

 2. next, leave a line blank, then add this code – there is a good

chunk to add, so we’ll go through it block by block, beginning

with the shortcut links for each variant:

Dialog

Dialog is the primary component. It has one

possible state.

- [Default](#default)

 3. next is the text for the Default variant:

Default

This is the default version of the Dialog component.

<Canvas>

 <Story id="cobalt-ui-library-notification-components-

dialog--default-story" />

</Canvas>

 4. miss a line, then add this block – it takes care of displaying the

properties of our component:

Properties of component

Below is a list of arguments available for this

component:

<ArgsTable of={Dialog} />

ChapTer 8 DoCumenTing more ComponenTs

212

a tip – although we’ve worked through code, you may notice that
you can create a lot of these files using copies of the spinner.mdx
file and search/replace with the appropriate component name. Take
care though if you do – some properties are case sensitive! all of the
completed files are in the code download that accompanies this book.

 5. save the file, then close it.

 6. once you run the demo in storybook, we should see something

akin to the screenshot shown in Figure 8-1.

Perfect – if all went well, we should have the documentation file in

place for our Dialog component. Take a breather for a moment, and then

when you are ready, let’s continue with Part 2.

Figure 8-1. The Dialog component on display in Storybook

ChapTer 8 DoCumenTing more ComponenTs

213

DOCUMENTING NOTIFICATION COMPONENTS – PART 2: ALERT

To get the documentation for our alert component up to scratch, follow

these steps:

 1. First, crack open the AlertDocs.mdx file from within the

\src\lib\storybook folder – go ahead and replace the

existing @import and <Meta> tags lines with this:

import { ArgsTable, Canvas, Meta, Story } from

'@storybook/addon-docs';

import Alert from "../Alert/Alert.svelte";

<Meta title="Cobalt UI Library/Notification Components/

Alert" component={Alert} />

 2. next, leave a line blank, then add this code – there is a good

chunk to add, so we’ll go through it block by block, beginning

with the shortcut links for each variant:

Alert

Alert is the primary component. It has two

possible states.

- [Info](#info)

- [Warning](#warning)

 3. next is the text for the info variant:

Info

This is the default version of the Alert component.

<Canvas>

ChapTer 8 DoCumenTing more ComponenTs

214

 <Story id="cobalt-ui-library-notification-components-

alert--info" />

</Canvas>

 4. This next block is the text for the Warning variant of our

component:

Warning

This variant displays the Alert component styled as a

warning.

<Canvas>

 <Story id="cobalt-ui-library-notification-components-

alert--warning" />

</Canvas>

 5. miss a line, then add this block – it takes care of displaying the

properties of our component:

Properties of component

Below is a list of arguments available for this

component:

<ArgsTable of={Alert} />

 6. save and close the file.

 7. once you run the demo in storybook, if all is well, we should

see something akin to the screenshot shown in Figure 8-2,

where we see the blue info alert.

ChapTer 8 DoCumenTing more ComponenTs

215

Figure 8-3. Storybook displaying the yellow Warning alert variant

Figure 8-2. Storybook displaying the Alert component

 8. Clicking on Warning should show the yellow Warning variant

(Figure 8-3).

Perfect – if all went well, we should have the documentation file in

place for our Alert component. Take a breather for a moment, and then

when you are ready, let’s continue with the final part of this group: Part 3.

ChapTer 8 DoCumenTing more ComponenTs

216

DOCUMENTING NOTIFICATION COMPONENTS – PART 3: TOOLTIP

To get the documentation for our Tooltip component up to scratch, follow

these steps:

 1. First, crack open the TooltipDocs.mdx file from within the

\src\lib\storybook folder – go ahead and replace the

existing @import and <Meta> tags lines with this:

import { ArgsTable, Canvas, Meta, Story } from

'@storybook/addon-docs';

import Alert from "../Tooltip/Tooltip.svelte";

<Meta title="Cobalt UI Library/Notification Components/

Tooltip" component={Tooltip} />

 2. next, leave a line blank, then add this code – there is a good

chunk to add, so we’ll go through it block by block, beginning

with the shortcut links for each variant:

Tooltip

Tooltip is the primary component. It has two

possible states.

- [Default](#default)

- [Custom HTML](#customhtml)

 3. next is the text for the Default variant:

Default

This is the default version of the Tooltip component.

<Canvas>

ChapTer 8 DoCumenTing more ComponenTs

217

 <Story id="cobalt-ui-library-notification-components-

tooltip--default-story" />

</Canvas>

 4. We need to add the code for our variant – miss a line, then add

this block:

Custom HTML

This variant allows us to display HTML in the Tooltip

component.

<Canvas>

 <Story id="cobalt-ui-library-notification-components-

tooltip--show-html" />

</Canvas>

 5. Last but by no means least, we need to add the block to take

care of listing the properties for our component:

Properties of component

Below is a list of arguments available for this

component:

<ArgsTable of={Tooltip} />

 6. save and close the file. once you run the demo in storybook,

if all is well, we should see something akin to the screenshot

shown in Figure 8-4, where we see the tooltip display

our content (and what will happen if we use hTmL in the

default mode).

ChapTer 8 DoCumenTing more ComponenTs

218

Figure 8-4. The Tooltip component on display in Storybook

Figure 8-5. The Tooltip variant on display in Storybook

 7. if all is well, we should have a variant on show, too, in

storybook – this is what it should look like when running

(Figure 8-5).

ChapTer 8 DoCumenTing more ComponenTs

219

Perfect – if all went well, we should have the documentation file in

place for our Tooltip component. We’ve covered a lot of code; while much

of it is similar for each component, it’s still important to understand what

we’ve done. With that in mind, let’s review the code changes I hope you

will now have in your documentation files in more detail.

 Exploring the Code Changes in Detail
Documentation, documentation – it’s a thankless task, but someone has

to do it! We shouldn’t gloss over the importance of producing it, though,

as this is what helps others to use it and not waste time trying to find the

answer to a fundamental issue.

Leaving that aside, over the last exercise, we spent time updating the

help content for each of the Notification group of components. The process

was the same for each, so to avoid repetition, we’ll cover the methodology

used for all three as a collective, not individually.

As in the last demo, we started first with deleting the contents of the

original Markdown file we created earlier in the book – this we replaced with

an import from Storybook’s addon-docs plug-in and the relevant import for

the affected component (such as Input). We then added the Meta tag entry,

which we use to give the page a title, define the navigation in Storybook, and

tell the story file which component we’re using. At the same time, we also

added an introduction and jump links to each variant for the component.

In the same way, as we did previously, we then worked through adding

the variants – in each example, we started with the Default (i.e., out-of-the-

box) instance before adding anywhere between one and three different

variants. Each variant consisted of a named anchor, title, introductory

sentence, and a Canvas example of the variant. In the Canvas example, we

specified the story’s ID (taken from the URL) – Storybook then inserts an

instance of that story into our documentation page. To finish off the page,

we added an ArgsTable entry for the component before previewing the

results in a browser.

ChapTer 8 DoCumenTing more ComponenTs

220

The story iD links are case sensitive – they must match what is in
the address bar, including the case. otherwise, they will not operate
correctly.

Okay – let’s crack on with the next set of components: it’s the turn of

the Action group. The process will be very similar to the one we’ve just

used, if not near identical – let’s dive in and take a look.

 Updating Documentation
for Navigation Components
We’ve done one of the groups as an interactive exercise – hopefully,

it wasn’t too scary! We still have two groups to cover, which will be an

excellent way to practice what we learned earlier in this chapter. Let’s

begin with the first of these two groups: the Navigation Components.

DOCUMENTING NAVIGATION COMPONENTS – PART 1: BREADCRUMBS

To update the documentation for our Breadcrumb component, follow

these steps:

 1. First, crack open the BreadcrumbsDocs.mdx file from within

the \src\lib\storybook folder – go ahead and replace the

existing @import and <Meta> tags lines with this:

import { ArgsTable, Canvas, Meta, Story } from

'@storybook/addon-docs';

import Breadcrumbs from "../Breadcrumbs/Breadcrumbs.

svelte";

<Meta title="Cobalt UI Library/Navigation Components/

Breadcrumbs" component={Breadcrumbs} />

ChapTer 8 DoCumenTing more ComponenTs

221

 2. next, leave a line blank, then add this code – there is a good

chunk to add, so we’ll go through it block by block, beginning

with the shortcut links for each variant:

Breadcrumbs

Breadcrumbs is the primary component. It has two

possible states.

- [Default](#default)

- [Custom Image](#customimage)

 3. We have the documentation for two variants to add to our file –

let’s miss a line and then add the first, for the default:

Default

This is the default version of the Breadcrumbs component.

<Canvas>

 <Story id="cobalt-ui-library-navigation-components-

breadcrumbs--default-story" />

</Canvas>

 4. here’s the code for the variant – Custom image:

Custom Image

This variant displays the Breadcrumbs component with a

custom image.

<Canvas>

 <Story id="cobalt-ui-library-navigation-components-

breadcrumbs--custom-image" />

</Canvas>

ChapTer 8 DoCumenTing more ComponenTs

222

 5. To finish off this documentation file, we need to add the

code that will take care of listing all of the properties for the

component:

Properties of component

Below is a list of arguments available for this

component:

<ArgsTable of={Breadcrumbs} />

 6. save and close the file. once you run the demo in storybook,

if all is well, we should see something akin to the screenshot

shown in Figure 8-6, where we see the breadcrumbs on

display.

 7. We should not forget the variant for this component – if all is

well, that will appear in storybook as the screenshot shown in

Figure 8-7.

Figure 8-6. The Breadcrumb component on display in Storybook

ChapTer 8 DoCumenTing more ComponenTs

223

Figure 8-7. The Breadcrumb variant on display in Storybook

If all went well, we should have the documentation file in place for our

Breadcrumb component. Take a breather for a moment, and then when

you are ready, let’s continue with the second part of this group: Tabs.

DOCUMENTING NAVIGATION COMPONENTS – PART 2: TABS

To update the documentation for our Tabs component, follow these steps:

 1. First, crack open the TabsDocs.mdx file from within the

\src\lib\storybook folder – go ahead and replace the

existing @import and <Meta> tags lines with this:

import { ArgsTable, Canvas, Meta, Story } from

'@storybook/addon-docs';

import Tabs from "../Tabs/Tabs.svelte";

<Meta title="Cobalt UI Library/Navigation Components/

Tabs" component={Tabs} />

ChapTer 8 DoCumenTing more ComponenTs

224

 2. next, leave a line blank, then add this code – there is a good

chunk to add, so we’ll go through it block by block, beginning

with the shortcut links for each variant:

Tabs

Tabs is the primary component. It has two

possible states.

- [Default](#default)

- [Vertical](#vertical)

 3. We need to add the documentation for the first of two variants –

let’s begin with the Default:

Default

This is the default version of the Tabs component.

<Canvas>

 <Story id="cobalt-ui-library-navigation-components-

tabs--default-story" />

</Canvas>

 4. next, let’s add the code for the second – this will display the

tabs in a vertical format:

Vertical

This variant displays the Tabs component in a

vertical format.

<Canvas>

 <Story id="cobalt-ui-library-navigation-components-

tabs--vertical" />

</Canvas>

ChapTer 8 DoCumenTing more ComponenTs

225

 5. For the last step, we need to add a section to take care of

displaying the properties of the component:

Properties of component

Below is a list of arguments available for this

component:

<ArgsTable of={Tabs} />

 6. save the file, then close it.

 7. once you run the demo in storybook, if all is well, we should

see the Tabs appear, as shown in Figure 8-8.

 8. The Tabs component comes with a variant – this is what it will

look like in storybook (Figure 8-9).

Figure 8-8. The Tabs component on display in Storybook

ChapTer 8 DoCumenTing more ComponenTs

226

Figure 8-9. The Tabs variant in Storybook

Hopefully, all went well, and you now have the documentation file in

place for the Tabs component! Take a breather for a moment, and then

when you are ready, let’s continue with the final part of this group: Part 3.

So far, we’ve created documentation for each component that follows

a consistent format – the last one for this group will be a little different.

Remember how we built and tested our SideBar component outside

Storybook, owing to issues with rendering it inside the application?

Well, that change also has a knock-on effect here – as we’re not able to

run the component in Storybook correctly (at least not yet), we won’t be

able to include some of the properties we need so that the documentation

will be shorter.

It’s not ideal, but something we need to look at – for now, let’s create

something that we can refine over time as we develop the component.

ChapTer 8 DoCumenTing more ComponenTs

227

DOCUMENTING NAVIGATION COMPONENTS – PART 3: SIDEBAR

To update the documentation for our sideBar component, follow these steps:

 1. First, crack open the SideBarDocs.mdx file from within the

\src\lib\storybook folder – go ahead and replace the

existing @import and <Meta> tags lines with this:

import { ArgsTable, Canvas, Meta, Story } from '@

storybook/addon-docs';

import Tabs from "../SideBar/SideBar.svelte";

<Meta title="Cobalt UI Library/Navigation Components/

SideBar" component={SideBar} />

 2. next, leave a line blank, then add this code – there is a good

chunk to add, so we’ll go through it block by block, beginning

with the shortcut links for each variant:

SideBar

SideBar is the primary component. It only has one

possible state.

- [Default](#default)

 3. next, miss a line, then add this code in for the variant:

Default

This is the default version of the SideBar component.

 4. For the last step, we need to add a section to take care of

displaying the properties of the component:

Properties of component

ChapTer 8 DoCumenTing more ComponenTs

228

Below is a list of arguments available for this

component:

<ArgsTable of={SideBar} />

 5. save the file, then close it.

some may ask why we went to the lengths of adding
documentation – it’s a good question! my answer would be that
we’re thinking ahead; the documentation may not be good now,
but we need to work on the basis that we will get sideBar into
storybook. if we can do this, we will have something we can develop
in the future.

Perfect – if all went well, we should have the documentation file

in place for our Breadcrumb component. We’ve added a fair chunk of

code; while much of it is similar for each component, it’s still important

to understand what we’ve done. With that in mind, let’s review the

code changes I hope you will now have in your documentation files in

more detail.

 Breaking Apart the Code Changes
Throughout this chapter, we’ve created a series of documentation files

in Storybook for our components. We’ve covered all except SideBar – it’s

a shame we can’t include it at the moment, but hopefully, that is just a

temporary measure!

In the last exercise, we spent time updating the help content for each

of the Navigation group of components. The process was the same for

each, so to avoid repetition, we’ll cover the method used for all three as a

collective, not individually.

ChapTer 8 DoCumenTing more ComponenTs

229

As before, we started first with deleting the contents of the original

Markdown file we created earlier in the book – this we replaced with an

import from Storybook’s addon-docs plug-in and the relevant import for

the affected component (such as Input). We then added the Meta tag entry,

which we use to give the page a title, define the navigation in Storybook,

and tell the story file which component we’re using. At the same time,

we also added an introduction and jump links to each variant for the

component.

We then worked through adding the variants – in each example, we

started with the Default (i.e., out-of-the-box) instance before adding

anywhere between one and three different variants. Each variant consisted

of a named anchor, title, introductory sentence, and a Canvas example of

the variant (except for SideBar). In the Canvas example, we specified the

story’s ID, taken from the URL – Storybook then inserted an instance of

that story into our documentation page. To finish off the page, we added

an ArgsTable entry for the component before previewing the results in a

browser.

The story iD links are case sensitive – they must match what is in
the address bar, including the case. otherwise, they will not operate
correctly.

Okay – we have one final set of components to document: the

ImageGrid component. Yes, you read it correctly: I did say one component

name, but with good reason!

We saw in the previous chapter how we created a composite

component from three different, smaller objects; in the same vein, we

will update the documentation for this one component, and not as three

separate items. The process will be very similar to the one we’ve just used,

if not near identical – let’s dive in and take a look.

ChapTer 8 DoCumenTing more ComponenTs

230

 Updating Documentation
for Grid Components
This last category is something of an oddity. You may remember in

Chapter 6 that we talked about creating Grid components, yet we only

created one. Seems a bit odd, no?

Well, this is one of those occasions where we could have gone about

this differently – we could have focused on creating three individual, fully

fledged components and brought them together. Or – as we have done –

create something that we were able to split into three subcomponents.

Both methods have their merits, but it all depends on how you want to

architect or develop your components in the future.

For this reason, you will see from the documentation that I initially

called this group “Grid Components” but then reference a Table

component, which in turn uses a Grid component and a Cell component,

respectively.

The latter two are really dependencies of the Table component – after

all, we can’t have cells without a table, right? I admit that this can make

things a little confusing regarding naming and structure. I’m hoping

that, over time, we can add features and develop each component into

something more standalone and reusable for other projects.

In the meantime, let’s dive in and look at how we can update the

documentation for our ImageGrid component in more detail.

DOCUMENTING THE IMAGEGRID COMPONENT

To update the documentation for our imagegrid component, follow these steps:

 1. First, crack open the TableDocs.mdx file from within the

\src\lib\storybook folder – go ahead and replace the

existing @import and <Meta> tags lines with this:

ChapTer 8 DoCumenTing more ComponenTs

https://doi.org/10.1007/978-1-4842-9039-2_6

231

import { ArgsTable, Canvas, Meta, Story } from '@

storybook/addon-docs';

import Table from "../ImageGrid/Table.svelte";

 2. next, leave a line blank, then add this code – compared to other

components, we don’t have too much to add! We’ll start as

always with the shortcut links for the only variant:

Grid

Grid is the primary component. It has two

possible states.

- [Default](#default)

- [Placeholder Images](#placeholder)

 3. next, miss a line, then add this code for the main (and only)

variant:

Default

This is the default version of the grid component.

<Canvas>

 <Story id="cobalt-ui-library-notification-components-

grid--default-story" />

</Canvas>

 4. Let’s add the second variant, for placeholder images:

Placeholder Images

This variant disables the ImageGrid component.

<Canvas>

ChapTer 8 DoCumenTing more ComponenTs

232

 <Story id="cobalt-ui-library-grid-components-image-

grid--placeholder-images" />

</Canvas>

 5. We’ll finish off by adding the block that takes care of displaying

the properties for our component:

Properties of component

Below is a list of arguments available for this

component:

<ArgsTable of={Table} />

 6. save the file and close it. once you run the demo in storybook,

if all is well, we should see the Tabs appear, as shown in

Figure 8-10.

 7. That last image teased a variant for this component –

Figure 8-11 shows what it will look like in storybook.

Figure 8-10. The ImageGrid component on display in Storybook

ChapTer 8 DoCumenTing more ComponenTs

233

Figure 8-11. The Placeholder Images variant of the ImageGrid
component

Phew – we have at last completed documentation for all of the

components, at least those we can display in Storybook! I know it’s been

an epic undertaking, but it’s one of those necessary evils we all must do at

some point, particularly if we want others to use our code.

At this point, I would heartily recommend taking a breather – let what

we’ve covered sink in, and then when you’re ready, let’s crack on with a

review of what we’ve done. I’m sure you will notice some oddities around

how we’ve created our documents, particularly in the last group; we’ll dive

in and explore the changes in more detail.

 Understanding What Changed
This demo is one of those instances where you would be forgiven for

being a little confused – did we create one composite component or three

smaller ones?

ChapTer 8 DoCumenTing more ComponenTs

234

In reality, we did both: it shows that with some planning, it’s perfectly

possible to create a working component based on others we add to the

library. It does make naming a little more complex, but that’s just part and

parcel of developing composite components.

To document the ImageGrid component, we followed the same process

as previous components. We first updated the imports and Meta tag before

replacing the remaining content with new content from a copy of the Spinner

documentation. This part was necessary to get the correct documentation

format in place, such as the links, anchors, and arguments table.

We then added a Story block into the file: with that block in place, the

last step was to work through the documentation, replacing content or

labels where appropriate. We deliberately kept the same format for each

component throughout to make it easier to search and replace automatically

or manually, where applicable.

We can then preview the results in our browser to confirm that all the

correct links are in place for our ImageGrid component.

 A Final Tidy-Up
“And relax…” – or can we?

Truth be told, it’s very tempting to sit back and rest on our laurels at this

stage, but the reality is that we still have a few more tasks to do! We made

many changes throughout this chapter, so it’s worth spending a little time

just to review the state of the library and perform a little tidying up if we

can – it all helps keep things shipshape!

There are a couple of tasks that come to mind that we should do before

we move on to testing our components in the next chapter:

• We can remove the (now redundant) example stories

from Storybook; these are in the \src\stories\ folder.

Go ahead and delete this folder in its entirety.

ChapTer 8 DoCumenTing more ComponenTs

235

• There may also be a Counter.svelte lurking in the \

src\lib\ folder – we can delete this, as it is a remnant

from the example components added when we set up

the structure.

These may only be small tasks, but every little one helps – the critical

point here is to ensure our code is as tidy as possible and ready for the

testing stage in the next chapter!

 Summary
Phew – we’ve covered a lot over the last two chapters when it comes to

documenting our components!

The reality is that it demonstrates how important it is to have good

documentation – it need not all be present from the get-go, but it should

at least be accurate. We’ve covered a lot of material in this chapter, so let’s

review what we have learned.

This chapter’s focus was on updating each of the existing

documentation files with the values provided in the text. We had worked

through some of the pages in the previous chapter, so this time, it was

reusing the same process but updating with different values where

appropriate. We then rounded off with a quick note about tidying up some

loose ends so that our site is as ready as it can be for the next stage of the

development process.

Talking of the next stage – what is that, I wonder? We’ve written a lot of

code, so it’s time to test it! It’s an essential part of the development process,

but hopefully, not one that will be too testing for us (oops – sorry, another

pun!). There’s plenty more to do, so stay with me, and I will reveal it all in

the next chapter – including a reference to Cyprus – and no, I don’t mean

the country!

ChapTer 8 DoCumenTing more ComponenTs

237

CHAPTER 9

Testing Components
So far, we’ve spent time creating our masterpiece, ready for use, but – can

we be sure it all works? What guarantee do we have that it won’t suddenly

collapse in a heap the first time someone tries to use it?

Before we release our library to the outside world, we need to test

each component to ensure they all work as expected. In this chapter, we

will go through the process of setting up unit testing for our library before

exploring some examples of tests we can write, so end users can see how

each component performs in a real-world capacity.

 Setting Up the Testing Environment
Right – where do we start? Well, the first task is to choose our testing

library. I know this might sound a little odd, given you might already have

a preferred tool and assume that you can just use that, right?

Unfortunately, it would seem not: when testing Svelte web

components, the options are somewhat limited. My original intention

would have been to use my go-to suite: Cypress. However, it throws errors

over using the <svelte:options> directive – pretty much killing any

chance of us using the package!

Instead, I’ve elected to go with Svelte-Testing-Library, available from

https://github.com/testing-library/svelte-testing-library; the

core library is Testing-Library, and this version adapts it for use with Svelte.

It’s pretty straightforward to set up, so without further ado, let’s dive in and

get it installed and configured.

© Alex Libby 2023
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/978-1-4842-9039-2_9

https://github.com/testing-library/svelte-testing-library
https://doi.org/10.1007/978-1-4842-9039-2_9#DOI

238

SETTING UP THE ENVIRONMENT

To get the Svelte Testing Library set up within our project area, follow

these steps:

 1. First, fire up a Node.js command prompt, then change the

working folder to our project folder.

 2. We need to install a host of dependencies – at the prompt, type

this command and press Enter:

npm install @babel/core @babel/preset-env jest babel-jest

svelte-jester jest-environment-jsdom -D

 3. Next, switch to your editor and add the following code to a new

file, saving it as babel.config.cjs:

module.exports = {

 presets: [

 [

 '@babel/preset-env',

 {

 targets: {

 node: 'current',

 },

 },

],

],

}

 4. We also need to set up a new configuration file for Jest – go

ahead and add this code to a new file, saving it as jest.

config.cjs:

module.exports = {

 transform: {

ChapTEr 9 TESTiNg CompoNENTS

239

 '^.+\\.svelte$': 'svelte-jester',

 '^.+\\.js$': 'babel-jest',

 },

 moduleFileExtensions: ['js', 'svelte'],

 testEnvironment: "jsdom",

}

 5. We have one more package to install, which is testing-library/

svelte itself – revert to your Node.js terminal session from

earlier, then run this command:

npm install @testing-library/svelte --D

 6. Crack open package.json, and add this entry below the

build-storybook entry:

 "build-storybook": "build-storybook",

 "test": "jest"

 },

Note the addition of the comma after the end of the build-
storybook line!

 7. There is one last task to do, which is to create a folder for

storing test files – go ahead and add a new folder at the root of

the project area, and call it __test__.

We now have a Testing-Library ready for use – we will test to ensure

it works in the next exercise when we start to write tests for our library.

Before we do so, it’s worth spending some time going through the setup –

there are some interesting points we should cover in more detail.

ChapTEr 9 TESTiNg CompoNENTS

240

 Breaking Apart the Code Changes
Testing our components is an essential part of the development process.

Usually, we could pick any one of a range of testing suites to facilitate this,

but as we’re developing Svelte web components, our choice seems to be a

little more limited. That said, Svelte Testing Library (STL) is a great choice –

what did we need to do to get it set up?

We kicked off by installing a host of dependencies, such as babel(core,

preset-env, and babel-jest) – it seems a lot, but they are all required by

STL. Next, we then set up two configuration files: babel.config.cjs, and

one for Jest, jest.config.cjs. Notice how we use the .cjs extension?

The files are in CommonJS format, which we need when using Node

and Svelte.

We use both files to configure Jest, providing settings such as

processing test files based on their extensions (*.svelte using svelte-

jester and *.js using babel-jest), as well as the test environment Jest

should use (in this case, jsdom).

Note if you’ve used Jest before, you might already be aware that
Jest sets up the jsdom environment by default in versions before
Jest version 28. Newer versions do not install jsdom by default,
hence the extra dependency at the start of the exercise.

The next part is the critical bit where we installed Jest – we had to

install the dependencies first. Otherwise, Jest might not install correctly if

it can’t find them during its installation! To round out the demo, we added

an entry to the script block to allow us to run tests as a shortcut before

creating a folder for sorting tests that we will write in upcoming exercises

in this chapter.

ChapTEr 9 TESTiNg CompoNENTS

241

Okay – let’s crack on: with the testing suite up and running, it’s time to

test it to see if it works as expected. There is no better way to do this than

by writing a test, so let’s dive in and look at what is involved in more detail.

 Testing the Components
So – what should we test? How in-depth should our tests be?

These are both great questions – we’d test absolutely everything in an

ideal world to ensure we have covered all possible eventualities. However,

that isn’t always possible (or even practical) – you can bet that someone

will find a way to use a component that wasn’t in the manner we intended

and so could claim it’s not working as expected! This “use” opens up

that proverbial back-and-forth can of worms about what should have/

shouldn’t be tested…you get the picture.

Leaving that aside (and for reasons of space), let’s start creating the

tests for our library; we’ll focus on the Basic group of components but

touch on the remaining tests at the end of this next demo.

 Writing Tests for Our Library
For this book, we’ll keep each set of tests reasonably simple to start with –

at this stage, it’s more important to ensure we have a good grounding in

place and that we can develop the tests over time.

I know this means that there may be areas where we don’t include

tests, but it’s important to remember that this isn’t a book about testing but

creating web components! It’s an excellent excuse to revisit and iterate on

what we create, to develop the tests into something more refined over time.

We have a lot to cover in this next exercise, but before we make a start,

there are two changes we need to make to our component files.

ChapTEr 9 TESTiNg CompoNENTS

242

PREPARATION FOR TESTING

The changes we need to make are as follows:

 1. First, crack open Checkbox.svelte from within the \src\

lib\Checkbox folder, and look for this line:

type="checkbox"

 2. immediately below it, you should see a value beginning with

id=… – change this to data-testid="checkboxId".

 3. Below this new entry, go ahead and add two more properties:

 name="checkbox-name"

 role="checkbox"

 4. Save and close the file.

 5. Next, open Input.svelte in your editor, then look for this line:

id={fieldID}.

 6. add these two additional lines immediately below the line from

the previous step:

 data-testid="inputId"

 role="textbox"

 7. Save and close the file.

We’ve now completed two crucial changes to help facilitate testing – let’s

move on and begin writing our tests.

ChapTEr 9 TESTiNg CompoNENTS

243

WRITING TESTS

With our basic testing structure in place, we can begin to create our first

tests – to do so, follow these steps:

 1. in your editor, open a new file, and call it Input.test.

js – save it into the __test__ folder we created in the

previous demo.

 2. We have a fair chunk of code to add, so we will do it in

sections – first, add these two imports and a describe

statement:

import { render } from '@testing-library/svelte';

import Input from "../src/lib/Input/Input.svelte";

describe("Tests for Input", () => {

});

 3. Next, immediately below the opening describe line, add this

props block – this we will use to render an instance of our input

component:

 const props = {

 id: "Input",

 class: "cobalt",

 disabled: false,

 placeholder: "example text",

 };

ChapTEr 9 TESTiNg CompoNENTS

244

 4. Leave a line blank after the closing bracket from the props

block, then add this assertion – this will check our component

renders as expected:

 it("should render properly", () => {

 const result = render(Input, props);

 expect(() => result).not.toThrow();

 });

 5. This next assertion checks to see if the placeholder text is as

we have defined:

 it("should show a textbox with correct placeholder

text", () => {

 const result = render(Input, props);

 const inputPlaceholder = screen.getByRole("textbox").

placeholder;

 expect(inputPlaceholder).toEqual("example text");

 })

 6. This last assertion simply takes a snapshot of the component

and checks to see if there are any differences visually:

 it("get a snapshot of component", () => {

 const tree = render(Input, props);

 expect(tree).toMatchSnapshot();

 })

 7. Save the file and close it – that test is complete.

 8. Next, create a new file and save it as Slider.spec.js in the

same __test__ folder as before.

ChapTEr 9 TESTiNg CompoNENTS

245

 9. as we did before, we’ll add the code block by block, beginning

with three imports and the describe statement container:

import { render, screen } from '@testing-library/svelte';

import { fireEvent } from '@testing-library/dom';

import Slider from "../src/lib/Slider/Slider.svelte";

describe("Tests for Slider", () => {

});

 10. Next, immediately below the opening describe statement,

add this props block:

const props = {

 id: "Slider",

};

 11. Leave a line blank, then add this assertion – this tests that our

component renders as expected:

 it("should render properly", () => {

 const result = render(Slider, { props });

 expect(() => result).not.toThrow();

 });

 12. These next two first check that the slider sets the correct value

when moved, and then it takes a snapshot for visual checks:

 it("should show a new value when slider handle moved",

async() => {

 render(Slider, props);

 const slider = screen.getByRole("slider");

 fireEvent.change(slider, {target: {value: '23'}});

 expect(slider.value).toBe('23');

 })

ChapTEr 9 TESTiNg CompoNENTS

246

 it("get a snapshot of component", () => {

 const tree = render(Slider, props);

 expect(tree).toMatchSnapshot();

 })

 13. Save the file and close it – the changes for this test are

complete.

 14. Next, create a new file and save it as Checkbox.spec.js in

the same __test__ folder as before.

 15. as we did before, we’ll add the code block by block, beginning

with two imports and the describe statement container:

import { render, fireEvent, screen } from '@testing-

library/svelte';

import Checkbox from "../src/lib/Checkbox/Checkbox.

svelte";

describe("Tests for Checkbox", () => {

...insert here...

});

 16. We need to add a props block in the same way as we’ve done

before – go ahead and add this code immediately below the

opening describe statement:

 const mockText = "This is a checkbox";

 const props = {

 id: "Checkbox",

 class: "cobalt",

 checked: false,

 };

ChapTEr 9 TESTiNg CompoNENTS

247

 17. Leave a line blank, then add this assertion – this makes sure

our component renders as expected:

 it("should render properly", () => {

 const result = render(Checkbox, { props });

 expect(() => result).not.toThrow();

 });

 18. This next assertion adds a label as a new prop – we test to

make sure this displays correctly:

 it("show show a label with correct text", () => {

 const result = render(Checkbox, { ...props, label:

mockText});

 expect(result).not.toBeNull();

 })

 19. These last two assertions test first that we show a check

when we click the checkbox; the second takes a snapshot for

visual checks:

 it("should show a check when clicked", async() => {

 render(Checkbox, { ...props, label: mockText});

 const checkbox = screen.getByRole("checkbox");

 await fireEvent.click(checkbox);

 expect (checkbox.checked).toBe(true);

 })

 it("get a snapshot of component", () => {

 const tree = render(Checkbox, { ...props, label:

mockText});

 expect(tree).toMatchSnapshot();

 })

});

ChapTEr 9 TESTiNg CompoNENTS

248

 20. We have the remaining tests for our library to add in – these are

all available in the code download accompanying this book. go

ahead and extract the contents of the remaining tests folder in

the code download, then save the files to the __test__ folder.

 21. Save this file and close it – switch to a Node.js terminal

session, and make sure the prompt points to our project area.

 22. at the prompt, enter npm run test and press Enter – if all is

well, we should get a result similar to this:

PASS __test__/Checkbox.spec.js

 PASS __test__/Slider.spec.js

 PASS __test__/Spinner.spec.js

 PASS __test__/Dialog.spec.js

 PASS __test__/Alert.spec.js

 PASS __test__/Input.spec.js

 PASS __test__/Accordion.spec.js

 PASS __test__/Breadcrumbs.spec.js

 ...(rest trimmed for brevity)

Test Suites: 12 passed, 12 total

Tests: 27 passed, 27 total

Snapshots: 42 passed, 42 total

Time: 12.972 s

Ran all test suites.

Congratulations if you managed to get this far – I know we covered a

lot of code in this last demo! This previous demo was undoubtedly a meaty

exercise but an important one: we’re starting to test our code so that others

can have confidence that it works as expected in development. Let’s pause

and explore what we created in more detail.

ChapTEr 9 TESTiNg CompoNENTS

249

 Exploring the Changes in Detail
Most of the code is similar since we have a describe block for each test

and a call to matchSnapshot for each test. So – in among all that, what

did we do?

We started by creating the initial test for the Input component – we

first set two imports: one for the testing library and the other for the

component itself. Next up, we added a props block to pass in properties

for our Input component before writing the first assertion to test that

our component renders as expected. In the second assertion, we render

the component again, but this time search for (and get a reference to)

the placeholder text in the Input component. We then check to ensure it

contains the correct text specified in the props block. To round out that

test, we call the toMatchSnapshot() function to take a snapshot and check

for any visual differences in our component.

In test two from step 8, we follow broadly the same format – we first

create the describe block before setting up our props block. We then check

to make sure that the component renders correctly before making sure that

if we move the slider in the test, it correctly returns 23 as our chosen value.

We finish that test with a call to the toMatchSnapshot() function to take a

snapshot and check for any visual differences in our component.

In the third and final test (for now), we add the two imports for the

testing library and the Checkbox component before setting up the initial

describe block. We then set some mock text to a variable before adding a

props block and the now-familiar test to ensure the component renders as

expected. We then run a similar assertion, but this time add a new label

property to ensure that it displays as expected. For the third test, we then

get an instance of our component before clicking the box and testing to

ascertain that this now correctly registers as checked in our test. We then

round out this test with a final call to toMatchSnapshot, to perform a visual

check on the code in our component.

ChapTEr 9 TESTiNg CompoNENTS

250

Okay – a critical point before we move on: you will notice that I didn’t

go through all of the tests in this chapter in detail. Part of this is for space

reasons, but also, this book isn’t about testing. The critical factor is that

we focus on getting components in place, then testing them. I’ve worked

through a few examples to show you what’s possible; the others use similar

principles and cover the remaining components. On that note, let’s begin

with the next task: explore how we can bundle our components for use in

our projects.

 Bundling the Components
With the testing complete, we can move on to the next stage: bundling our

components. Bundling, I hear you ask – what exactly is that I wonder? It is

where we prepare the components to be released in a format that makes it

easy to drop into projects – let me explain what I mean.

So far, we’ve created Svelte components with just standard CSS, HTML,

and vanilla JavaScript – they work great (except SideBar) in environments

such as Storybook.

However, one of the benefits of Svelte components is the ability to

release them as web components that we can use in other environments,

such as React. To do this, we need to bundle the code into files that we can

consume outside of our development environment – in the same way, we

might import a third-party library into our code. There are several ways to

do this, depending on our requirements; before we explore them, let’s first

set up our library, ready to bundle our components.

 Configuring the Build Process
To bundle our components isn’t a complex process – we need to set up

the main index file for our components and make sure we have a place to

demo our components.

ChapTEr 9 TESTiNg CompoNENTS

251

The latter might sound a little odd, as it’s not something anyone

consuming our components would need to use, but trust me: if that file is

not present, Svelte will complain! With that thought in mind, let’s dive in

and look at what we need to do to get our library ready for bundling.

CONFIGURING THE BUILD PROCESS

To bundle our components ready for use, follow these steps:

 1. First, we need to rename index.html and main.js to

index.old and main.old, so we can create new versions of

both files.

 2. Next, go ahead and create a new file – add the following code:

/* Main components */

export * from './lib/Alert/Alert.svelte'

export * from './lib/Accordion/Accordion.svelte'

export * from './lib/Breadcrumbs/Breadcrumbs.svelte'

export * from './lib/Checkbox/Checkbox.svelte'

export * from './lib/Dialog/Dialog.svelte'

export * from './lib/ImageGrid/Table.svelte'

export * from './lib/Input/Input.svelte'

export * from './lib/SelectBox/SelectBox.svelte'

export * from './lib/Slider/Slider.svelte'

export * from './lib/Spinner/Spinner.svelte'

export * from './lib/Tabs/Tabs.svelte'

export * from './lib/Tooltip/Tooltip.svelte'

/* Ancillary components */

export * from './lib/Alert/Icon.svelte'

export * from './lib/Dialog/Close.svelte'

export * from './lib/ImageGrid/Cell.svelte'

export * from './lib/ImageGrid/Grid.svelte'

ChapTEr 9 TESTiNg CompoNENTS

252

 3. Save this as main.js at the root of the \src folder.

 4. We also need to replace the index.html file – for this, create

a new blank file and add this code. We’ll do it in two parts, with

the main boilerplate first:

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8" />

 <link rel="icon" href="/favicon.ico" />

 <meta name="viewport" content="width=device-width,

initial- scale=1.0" />

 <title>Svelte Web Components Demo</title>

 </head>

 <body>

 </body>

</html>

it might seem strange that we’re not displaying anything between
the <body> tags – there is a valid reason for this: i’ll return to this
shortly.

 5. Save the file as index.html at the root of the project folder –

you can close both index.html and main.js at this point.

 6. We also need to add a new configuration file and update

a second one – create a new file, saving it as vite.lib.

config.js at the root of the project folder. add this code:

import { defineConfig } from 'vite'

import { svelte } from '@sveltejs/vite-plugin-svelte'

ChapTEr 9 TESTiNg CompoNENTS

253

// https://vitejs.dev/config/

export default defineConfig({

 build:{

 lib:{

 entry: './src/main.js',

 name: 'CobaltLibrary',

 }

 },

 plugins: [svelte({

 compilerOptions:{

 customElement: true

 }

 })]

})

 7. Next, crack open vite.config.js, and modify the svelte

object within, so it looks like this:

 svelte({

 compilerOptions: {

 customElement: true,

 },

 }),

 8. Save and close both configuration files – the configuration part

of the process is now complete.

Excellent – we’re ready to bundle! It’s at this point that we will have

some decisions to make. Do we release packages for each component

individually, in groups, or one that covers all components?

If we did the latter, does that mean people have to download the entire

library if they only want one component? That doesn’t seem sensible, but

we need to balance that against maintenance and where package versions

ChapTEr 9 TESTiNg CompoNENTS

254

might diverge if we update one and not the other. It’s just a few questions

we have to ask; before we do so, let’s first explore the changes we’ve made

in more detail.

 Exploring the Changes in Detail

Throughout this book, we’ve created a set of functional components for

our library and tested most (except for SideBar) in Storybook. This is all

good, but most of these components wouldn’t operate if we used them

outside of a Svelte environment. Why? The reason lies in our configuration

– if we didn’t complete the steps we’ve just taken, we will likely have a

space or empty page where our component should be.

To fix this, we first created a central main.js file – we had to discard the

one we used for SideBar, but that can’t be helped (Svelte won’t accept any

other files when it comes to exporting components for bundling).

Inside this file, we added exports to all the critical components – the

core ones such as Alert and Accordion and some subcomponents used by

a handful of the parent components.

Moving on, we then replaced the contents of the index.html file –

Svelte also needs to see this file as part of the bundling process; without it,

it will throw an error. Notice, though, that we didn’t initially put anything

in between the <body> tags because we need the number in the file names

generated as part of the build process; we will not get these until we run

the next demo.

The key to the bundling process is the changes we made to the Vite

configuration. We first added a vite.lib.config.js file; inside this, we

imported two functions from svelte and vite and then defined a setup

for Vite to specify the name of the library and the main entry point for

our components. At the same time, we also added the customElement

property, which we set to true – this is what tells Svelte to make the

component available to other frameworks. Without it, we will end up with

a warning such as this one:

ChapTEr 9 TESTiNg CompoNENTS

255

09:22:07 [vite-plugin-svelte] C:/cobalt/src/lib/Accordion/

Accordion.svelte:1:16 The 'tag' option is used when generating

a custom element. Did you forget the 'customElement: true'

compile option?

To round off the demo, we also modified the vite.config.js file too,

to add in the same customElement property; the significance of this will

become apparent in the next demo.

Right – let’s crack on with running the build process. We have our

configuration in place, so it should just be a matter of running a command,

right? There’s more to executing a single line of code – it all hangs around

how we want to make our code available to others. To see what this means,

let’s dive in and look at the second part of this process in more detail.

 Running the Build Process
Remember how we alluded to the fact that we can run this process in one

of three ways? We could

• Bundle all components together – typically producing

multiple files in the same process

• Generate a single file – larger but easier to move around

for portability

• Generate single files for each component – it creates

more files but keeps them smaller, with less redundant

code to download

The first two options are straightforward – we can run the first now

without any further configuration, and the second only requires changing

the file we run during the process. The third option is a little more

complex; let’s dive in and look at all three to understand what this means

for us in practice.

ChapTEr 9 TESTiNg CompoNENTS

256

RUNNING THE BUILD PROCESS

With the build process set up and ready to go, we can now run it – to do so,

follow these steps:

 1. We’ll start with the all option – fire up a Node.js terminal

prompt, then enter this command and press Enter:

npm run build

 2. if all is well, we should see output similar to this:

> cobalt@0.0.0 build

> vite build

vite v3.0.2 building for production...

✓ 28 modules transformed.

dist/assets/arrow-forward-outline.1b223722.svg 0.25 KiB

dist/index.html 0.46 KiB

dist/assets/index.8ed12653.js 51.18

KiB / gzip: 15.49 KiB

 3. This is good, but we might get more than one JavaScript file

appearing, which is not ideal. We can use the build process to

generate a single JavaScript file to get around it. at the Node.js

terminal prompt, run this command:

$ npm run build -- -c=vite.lib.config.js

 4. if all is well, we should see output similar to this:

> cobalt@0.0.0 build

> vite build "-c=vite.lib.config.js"

vite v3.0.2 building for production...

✓ 26 modules transformed.

dist/cobalt.mjs 69.55 KiB / gzip: 17.05 KiB

dist/cobalt.umd.js 50.89 KiB / gzip: 15.53 KiB

ChapTEr 9 TESTiNg CompoNENTS

257

 5. This is better – but what if we wanted to produce a package

purely for specific components? To do this, we need to make a

change to vite.lib.config.js. Crack this file open, then

replace the contents of the build: option with this code:

export default defineConfig({

 build:{

 rollupOptions: {

 input: ['./src/lib/Accordion/Accordion.svelte',

'./src/lib/Spinner/Spinner.svelte'],

 }},

...

 6. Switch to the Node.js terminal session from earlier in this

demo; then at the prompt, enter this command and press Enter:

npm run build -- -c=vite.lib.config.js

 7. if all is well, we should see output similar to this:

> cobalt@0.0.0 build

> vite build "-c=vite.lib.config.js"

vite v3.0.2 building for production...

✓ 7 modules transformed.

dist/assets/Accordion.3db6c480.js 4.55 KiB / gzip:

1.98 KiB

dist/assets/Spinner.8cd256b1.js 3.14 KiB / gzip:

1.38 KiB

dist/assets/index.d0d80846.js 6.41 KiB / gzip:

2.96 KiB

ChapTEr 9 TESTiNg CompoNENTS

258

With the build process done, it’s time to test it! We already have the

demo in place (we created it as part of running the initial npm run

build command). We need to make one change to it, though, to test

the new file we’ve just built:

 8. First, crack open the index.html from the \src folder in your

editor. Change the src location for Spinner to this:

src="/dist/assets/Spinner.8cd256b1.js"

Note The .XXXXXX.js part of the file name will be whatever was
displayed at the end of step 6 in this demo; if you missed it, check
the Spinner file, which will be in the \dist folder.

 9. Save the file and close it.

 10. Next, switch to a second Node.js terminal session, then change

the working folder to our project area.

 11. at the prompt, enter npm run dev and press Enter.

 12. if all is well, we should see an instance of the Spinner

component running if we browse to http://

localhost:5173/index.html, as shown in Figure 9-1.

Figure 9-1. The newly compiled Spinner component working in
our demo

ChapTEr 9 TESTiNg CompoNENTS

259

This demo looks great, but how can we prove it’s our new component and

that it’s coming from the newly built file? For the more adventurous, feel free

to look at the compiled code from within a developer console. You should

see something similar to that shown in Figure 9-2, where we reference

the component <cobalt-spinner> and the newly generated distribution

component file:

Figure 9-2. Proof that we’re using the newly compiled component

We’ve covered quite a bit there, which has left us with plenty to think

about going forward! There is no right or wrong answer as to which process

we choose to use – it comes back to that age-old chestnut of “it depends."

In this instance, it’s most likely to depend on what people consuming

our components will ask for; we might start with something large and

split off components over time as each one matures. Let’s first review

the changes we made in the last demo – it covers some exciting features

worth learning about when bundling our components into releasable

codeSpinner component .

ChapTEr 9 TESTiNg CompoNENTS

260

 Breaking Apart the Code

This is one of those occasions where writing code is arguably less

important than the decisions behind it – in our case, what do we do?

We could take this in several ways: we’ve proven that the demo works

with individual components, but as a starting point, it (kind of) makes

sense to have a single file and split it into smaller components once we

develop them. All thoughts aside, it’s still essential to understand how

this part of the process works, so let’s review the code we created in the

previous demo.

We started by simply running the npm run build command without

any further changes – this was possible as it uses the vite.config.js file to

specify how the build should run. It gave us three files – an SVG, the index.

html demo file, and a JavaScript asset file containing the components.

It’s a good starting point, but what if we didn’t want to download

multiple files? To get around this, we switched to the alternative

configuration, vite.lib.config.js, which we set up in the previous

demo. This gives us two files – in both cases, it’s all of the components

bundled into one file but formatted for use as JavaScript modules (either

UMD or MJS, depending on your preference).

Let’s turn this on its head – if we wanted the best of both worlds (i.e.,

one component, one file), is there anything we can do? As it so happens,

there is: we modified the build: options to use a rollupOptions property.

Here, we can specify which components we want to include – in our

example, we listed the files for Accordion and Spinner, but we could

list them for any component in our library. It does mean that we could

have multiple configuration files that group several components in the

same way.

To round out the demo, we ran the final build option, which gave us

the compiled files for Spinner and Accordion. Before running it under

localhost, we used the latter to update the index.html demo to confirm

that the package works as expected in a browser.

ChapTEr 9 TESTiNg CompoNENTS

261

Note also that although we’re referencing the Spinner...js file
we created in step 7 of the last demo, we are using the compiled
Index...js file – the Spinner...js file is referencing this.

Okay – let’s continue: we’ve tested our components and bundled them

into a format suitable for release. It’s time to put these bundles to a proper

test: let’s add them to a demo to see how they perform.

 Creating Demos in a Test Environment
When it comes to testing our component bundle files, there are

several ways we can do this – my preference is to pull them into a

CodeSandbox demo.

As it happens, we’ve already done part of the work required to

facilitate this; the rest of the work will be around hooking the files into a

CodeSandbox demo. Let’s dive in and look at what is involved in more

detail, using the Spinner component as a testbed for our next demo.

CREATING A SANDBOX DEMO

To create a CodeSandbox demo that uses our newly generated files, follow

these steps:

 1. First, go ahead and browse to www.codesandbox.io;

then once you are there, click on Create Sandbox in the top

right corner.

 2. From the list of templates that appears, click on Vanilla, then

wait for it to prepare a new demo.

ChapTEr 9 TESTiNg CompoNENTS

http://www.codesandbox.io

262

 3. Next, we need to upload two files: the Spinner.XXXXX.js

and Index.XXXXX.js files from the \dist folder of your

project area. Click on the arrow pointing upward in the Files

section of the CodeSandbox demo to begin the upload process.

The XXXXX will be the number assigned to your files during the
bundling process.

 4. We now need to create our markup – in the CodeSandbox

demo, click on index.html to select it.

 5. Take a copy of the entire contents of the index.html file in

our project folder, and paste it over the top of what is in the

CodeSandbox demo.

 6. as a final touch, we can upload a favicon file – it’s not

obligatory, but CodeSandbox will complain if one is not present,

so if you want to fix it, upload the one i’ve prepared in the code

download that accompanies this book.

if you want to create your own, you can use an online generator like
the one at https://favicon.io/favicon-generator. i used
the letter C (for cobalt) as the basis for our one.

 7. We should have a file structure in our CodeSandbox demo that

resembles the listing in Figure 9-3.

ChapTEr 9 TESTiNg CompoNENTS

https://favicon.io/favicon-generator

263

Figure 9-3. The file listing for our CodeSandbox demo

 8. hit the refresh button on the right in the CodeSandbox demo

(it’s next to the address bar) to refresh the page – if all is well,

we should see our new component running on the right and the

markup used on the left (as shown in Figure 9-4).

Figure 9-4. The new component and its markup in CodeSandbox

ChapTEr 9 TESTiNg CompoNENTS

264

if you get stuck, feel free to look at my version, which you can
see at https://codesandbox.io/s/condescending-
shtern-1eu87e?file=/index.html.

Phew – that was a slight relief there: I was a little apprehensive about

whether it would all work while researching for this book. However, my

fears were unfounded: it has worked better than I expected!

Even though this was a simple demo, it nevertheless revealed a few

interesting points, so let’s pause to review the code in more detail.

 Breaking Apart the Code
This is one of those occasions where we didn’t have to do a great deal, as

we’d done most of the hard work already! The main focus of this demo was

to set up an example of one of our components to work in a CodeSandbox

demo – we began first by uploading two files, Spinner...js and Index....

js, into a new CodeSandbox window.

Next up, we copied over the markup from our existing HTML file and

added a favicon – the latter wasn’t obligatory, but CodeSandbox complains

if one isn’t present. At the same time, we confirmed that the file directory

matched that shown in the illustration before previewing the results in the

mini browser window within our demo.

Perfect – we’ve completed the initial test, but: the real test is yet to

come! One of Svelte’s features is that any web component we create should

work in a non-Svelte environment, such as a React demo. After all, it is just

plain CSS, HTML, and JavaScript, so why not? Let’s put this to the test and

explore what might happen if we were to consume one of our components

in a React demo.

ChapTEr 9 TESTiNg CompoNENTS

https://codesandbox.io/s/condescending-shtern-1eu87e?file=/index.html
https://codesandbox.io/s/condescending-shtern-1eu87e?file=/index.html

265

 Testing with Other Frameworks
At this point, I must admit to a slight air of trepidation and doubt – I, like

many of you, will be familiar with the fact that React components run

in React demos, Angular ones in Angular, and so on, right? Svelte is an

exception: it claims to run in any framework, so how can we test it?

There are a couple of ways to achieve this, but my preference would be

to create a second CodeSandbox demo, this time using a React template.

Thanks to its predefined template options, CodeSandbox makes this a

cinch to complete, so let’s dive in and take a look at an example using the

Spinner component.

if you get stuck at any point, my version is available in a
CodeSandbox at https://codesandbox.io/s/loving-breeze-
ir8c9w?file=/src/App.js.

USING OUR COMPONENT IN A REACT DEMO

To set up the example, follow these steps:

 1. Browse to www.codesandbox.io; then once you are there,

click on Create Sandbox in the top right corner.

 2. From the list of templates that appears, click on react, then

wait for it to prepare a new demo.

 3. Find the App.js file in the left-hand navigation and click on it

to display it in the editor.

 4. We need to add three files – for this, we need the Spinner.

XXXXX.js and Index.XXXXX.js (where XXXXX is the

number from earlier demos). First, create a folder called dist

at the top level; then inside this, create one called assets.

ChapTEr 9 TESTiNg CompoNENTS

https://codesandbox.io/s/loving-breeze-ir8c9w?file=/src/App.js
https://codesandbox.io/s/loving-breeze-ir8c9w?file=/src/App.js
http://www.codesandbox.io

266

 5. Click on the upward arrow to select and upload the two files

into the assets folder.

You might wonder why i’ve replicated the same folder structure
here when it isn’t entirely necessary. it’s purely to replicate what we
receive when we run the bundling process – keeping it similar helps
prove that the component works as expected outside of Svelte.

 6. With the files imported, switch to App.js in the CodeSandbox

editor. at the top of the file, add this import immediately below

the existing one for styles.css:

import "../dist/assets/Spinner.8cd256b1.js";

 7. Next, find the line with the <h2> tag, and add this code

immediately below it, as highlighted:

<h2>Start editing to see some magic happen!</h2>

<div className="layout">

 <cobalt-spinner

 color="#19247c"

 duration="0.75s"

 size="40"

 variant="circle"

 ></cobalt-spinner>

 </div>

);

}

 8. Switch to the styles.css file in the left navigation, then add

this rule below the one for .App. This will center the spinner on

the page:

ChapTEr 9 TESTiNg CompoNENTS

267

div.layout {

 margin: 0 auto;

 width: 100px;

}

 9. To complete our code, we need to replace the existing src

location in the script tag with this:

<script type="module" src="/dist/assets/

Spinner.8cd256b1.js"></script>

 10. Click on File ➤ Save to save the demo – if all is well, we should

see our spinner running, as shown in Figure 9-5.

Figure 9-5. The Spinner component running inside a React app

Yay – we finally have one of our web components working in a non-

Svelte environment! It might have taken us a while to get there, but in the

tradition of “best things come to those who wait,” we finally got there.

This is one of the best things about Svelte: unlike other frameworks, we

can create reusable components in any framework, including Svelte. On

a more practical matter, there are a few interesting points of note in this

demo, so let’s take a moment to review the code in more detail.

 Understanding What Happened
This last demo might seem to have a sense of déjà vu, but that is to be

expected – most of the hard work in bundling our components we’ve

already done, so all that remains is to add our component into a demo.

ChapTEr 9 TESTiNg CompoNENTS

268

On this occasion, we ran through a similar procedure to the last

CodeSandbox demo, but this time, we created it as a simple React

demo based on one of the templates available in CodeSandbox. We first

began by uploading two files, Spinner...js and Index....js, into a

new CodeSandbox window while replicating the same folder structure

generated during the bundling process.

Instead of copying over the existing markup as we did before, we added

an import to the Spinner file before inserting the Spinner component into

the React markup. We also updated the src location at the bottom of the

demo to point to our Spinner file. Once done, we previewed the results in

the mini browser window to confirm that the Spinner component worked

as expected within our demo.

Notice that i used a different format to call the Spinner component
this time? This change makes it a web component – we specify it in
the svelte:tag options line in each component, and we have to
use it when working in a non-Svelte environment such as react.

 Summary
Testing is essential to creating any code, period – be it a simple one-liner,

right through to a whole website! We need to ensure it works (to the best of

our ability) and does what we expect. We’ve covered a lot of material about

testing our library in this chapter, so let’s review what we have learned.

We started by working through the steps needed to set up our testing

environment – we chose to use Svelte Testing Library, as it’s one of the few

(if indeed the only?) options that I know supports Svelte web components.

A lack of wide choice isn’t ideal, but Svelte is still relatively new, so it

should be a matter of time before other libraries offer similar support.

ChapTEr 9 TESTiNg CompoNENTS

269

Next, we moved on to creating tests – for reasons of space, we focused

on the components in the Basic group to get us started but were able to

extract copies of other tests for the remaining components from the code

download accompanying this book.

We then switched focus to exploring how we can bundle our

components – this is essential to prepare them for use in a production

environment, although we know they are not yet ready for that stage! This

process came in two parts; the first was configuring the build process

before we ran through the building in part 2.

In the last stage, we rounded off the chapter with a look at how to test

our components in an environment outside our current project area. We

began with creating a demo in CodeSandbox, using a Svelte template,

before replicating something similar as a React demo. We saw how the

component worked fine in both cases, proving that Svelte works in pretty

much any environment we might use, unlike other frameworks!

Okay – we’ve come to the end of this chapter, but we have the most

critical part left: release the library into production! The state of our library

is such that we would have other things to do first, but – it’s crucial to

understand how the release process might look for our library. Stay with

me, and I will reveal it all in the next chapter.

ChapTEr 9 TESTiNg CompoNENTS

271

CHAPTER 10

Deploying to
Production
This chapter is the most critical part: we’ve spent all this time creating our

new library, but no one can use it unless released into production!

In this chapter, we will go through releasing our library into the wild

and explore what documentation is required so that others can use the

library for the first time. Let’s start with a simple task: perform some final

checks before we release our code into production.

 Performing Final Checks
Throughout this book, we’ve done some great work in creating our

component library – it would be a shame to release it out into the wild

without at least making sure we’ve tidied up loose ends!

We should do this task by default, but I’ve encountered dozens of

instances where developers haven’t performed this task. For example, I’ve

seen sites containing components without documentation (or minimal at

best), spelling mistakes, or code that isn’t formatted well. I’ve even seen

the occasional spelling mistake too, which isn’t great.

It is a symbolically important step too – we may not need to make any

final changes, but doing the last check is also a way to say, “I’m happy with

what is there and ready to sign off.” Let us be realistic, though: I know our

library still needs work, so we wouldn’t do this until we’re ready to release

to a wider audience.

© Alex Libby 2023
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/978-1-4842-9039-2_10

https://doi.org/10.1007/978-1-4842-9039-2_10#DOI

272

Leaving that aside for a moment, let’s consider what we might want to

do at this point:

• Check each file in the repository: is it still needed, or is

it one that is no longer required, and we can therefore

remove it.

• Do all of the component files have a consistent layout?

For example, I usually start each component with the

<script> block, followed by the markup, and finish

with the <style> block, but you may prefer to change it.

• Are all the file names correctly named (i.e., in title

case), where appropriate?

• Have you pushed up any final changes in your local

version?

• We created a SideBar component but, for various

reasons, couldn’t include it in Storybook: it might be

wise to remove it for now and bring it back when we

can get it working in Storybook.

• We added a .gitignore file earlier in the book: Is this

up to date, or are there any other folders or files we

need to exclude?

We might want to make more changes to tidy up, but this will

depend on your circumstances. The critical point here is that we take the

opportunity to make sure our library is as tidy as possible before we release

it into the wild.

Okay – let’s crack on: now that we’ve completed the final checks for

our site, we should look at deploying our library. Getting our library out

into the wild will require a few steps, such as pushing our code into a

repository, releasing packages, ensuring documentation is good, and

more. Before we get stuck into the various tasks, let’s first take a quick look

at what we need to do in more detail.

Chapter 10 Deploying to proDuCtion

273

 Understanding the Deployment Process
Throughout this chapter, we will transition our library from being a locally

hosted project into something available for others to use (and hopefully

help improve and develop too). From the outset, though, there is one thing

we need to be mindful of.

Although we’ve done a lot to develop our library, I would not consider

it production ready yet. There is plenty more we can add, such as more

extensive testing, making CSS styles more consistent, getting the SideBar

component working inside Storybook, maybe developing the RadioButton

component (remember that one?), and more.

It’s important to note, therefore, that while we will cover the process,

tips, and hints on deployment, we should only do these at the appropriate

moment, when we deem our code to be production ready.

Okay – enough of the doom and gloom: let’s move on! We’ve

mentioned that the process of deployment will include various tasks,

which will include the following:

• GitHub: If we don’t upload our code somewhere,

nobody will be able to use it! I’ve chosen to use GitHub

for convenience (primarily because I already have

many repos on this platform). Feel free to change it

to a different platform, such as GitLab, Azure, or even

Bitbucket.

• We need to release our code in a format that’s easy for

others to use – we have several options:

• We can release as one or more npm packages.

• We also have an opportunity to bundle components

as compiled JavaScript files.

• We could even push code to a Content Delivery

Network (or CDN).

Chapter 10 Deploying to proDuCtion

274

• In addition to releasing code, we should also release

our version of Storybook to a public hosting webspace,

such as Netlify.

There’s plenty to do! It might seem like such, but it’s important to

remember that much of this will be a one-off; once we complete steps such

as setting up GitHub, we can switch to applying updates and new features

throughout the lifetime of the component library.

With that in mind, let’s begin the process by getting a GitHub site set

up and ready for use.

 Publishing to GitHub
Although publishing content on GitHub requires quite a few steps, we can

split the process into two distinct parts – the first is to create the repository

and get it ready for use, while the second is uploading our code.

Let’s focus first on setting up the repository: if you’ve already used sites

such as GitHub, then much of what you will see shortly will be familiar to

you. Before we get stuck in, though, there are a couple of points we should

be aware of as part of setting up our repository:

• Do not feel obliged to use GitHub if you already have

an existing account with sites such as GitLab or Azure;

this part is less about the specifics of the technology but

more about the process of getting our code out into the

wild. For this book, I will assume you are using GitHub

and Netlify; please feel free to adapt where appropriate.

• The instructions over the next few pages are written

for Windows, as this is the author’s regular platform;

please adapt if you use macOS or Linux.

Okay – with that in mind, let’s dive in and start setting up the library’s

repository.

Chapter 10 Deploying to proDuCtion

275

 Setting Up a GitHub Pages Repository
At this point, things start to take shape – we are stepping ever closer to

releasing our site into the wild.

The first task will be to set up a GitHub repository; I will use cobalt

for the account name, so you can see how to configure your version,

particularly if you use a different name. Setting up the repository uses the

standard GitHub process – let’s take a look.

SETTING UP THE REPOSITORY

to set up our github pages account, follow these steps:

 1. the first step is to sign in to your github account using the

details you registered with before this demo; once done,

browse to https://github.com/new to set up a new

repository.

 2. once at the Create a new repository page, go ahead and enter

your repository name (Figure 10-1).

Figure 10-1. Creating the repository

Chapter 10 Deploying to proDuCtion

https://github.com/new

276

 3. github has already populated the owner field – leave this

unchanged.

 4. next, give it a description – it’s optional, so you can skip past it

if you like, and it won’t affect how the demo works.

 5. you should see two fields present: public and private – github

has preselected the former, as private repositories are not

available on a free tier.

 6. next, set all three options under the initialize this repository

with… label – you should end up with a configuration similar to

that shown in Figure 10-2.

Figure 10-2. Settings to use for the new repository

 7. hit Create a repository to generate our new repository.

Chapter 10 Deploying to proDuCtion

277

 8. if all is well, we should end up with a new repository with a url

of https://github.com/alexlibby/cobalt – it should

look something like that shown in Figure 10-3 (allowing for your

username and repository name, if different).

Figure 10-3. Screenshot of our GitHub repository, ready for use

 9. our repository is ready for deployment.

Excellent – we now have a working repository ready to upload content

from our project area.

To achieve this, we worked through the standard process for creating a

GitHub repository, including setting appropriate values for entries such as

name or whether to include a license or .gitignore file.

Chapter 10 Deploying to proDuCtion

https://github.com/alexlibby/cobalt

278

With our repository in place, we can now move on to the next task,

which is to upload our library code – fortunately, this is easy enough to

do, using standard Git commands. I suspect some of this will be familiar

to many of you already; for those new to Git, don’t worry – let’s dive in and

take a closer look at what’s involved.

 Uploading Components to GitHub
With our repository set up and ready for use, it’s time we turned our

attention to uploading our code. We can achieve this in one of several

ways: uploading directly from editors, Git GUI clients, or the Git

command line.

For this next exercise, I will keep it simple and use the Git command

line; feel free to adapt if you already have a process for uploading to

GitHub. Let’s make a start.

UPLOADING TO GITHUB

to upload our code to the repository, follow these steps:

 1. We first need to rename the original cobalt folder to cobalt-

source – this will allow the upload process to continue.

if you already have git installed for your platform, please skip the next
step, and proceed to step 3.

 2. next, we need to install git – head over to

https://git-scm.com/downloads, then download and

install the version appropriate for your platform. When asked,

please accept default settings – this should be sufficient for this

exercise.

Chapter 10 Deploying to proDuCtion

https://git-scm.com/downloads

279

 3. With git installed, fire up a git Bash session, then change the

working folder to the same level as the cobalt-source folder

we renamed in the previous step.

 4. next, we need to clone the empty repository down to your pC

so that we can upload content – for this, enter this command at

the prompt to pull down a copy of the repository:

Git clone https://github.com/XXXXX/cobalt.git

please replace XXXXX with your account name – alternatively, you
can get this url from github by visiting the Code tab, then clicking
on Clone, and hitting the icon to the right of the url to copy the
address.

 5. on pressing enter, you should see something akin to this:

Cloning into 'cobalt'...

remote: Enumerating objects: 5, done.

remote: Counting objects: 100% (5/5), done.

remote: Compressing objects: 100% (5/5), done.

remote: Total 5 (delta 0), reused 0 (delta 0),

pack-reused 0

Receiving objects: 100% (5/5), done.

 6. Switch to your file manager, then copy all of the files from

cobalt-source to cobalt, except for the following:

index.old, node_modules, .vscode, dist

if prompted, overwrite existing files.

Chapter 10 Deploying to proDuCtion

280

 7. With the files copied over, revert to a node.js terminal session,

then change the working folder to the cobalt folder, and run this

command at the prompt:

npm install

 8. once this is complete, we need to add the files together, ready

to push up as a commit to our repository. run this command at

the prompt:

git add .

 9. With the files ready, run this command to bundle the code into

a commit:

git commit -m "Initial release"

…which will produce results akin to this:

[main 4d38b60] Initial release

 103 files changed, 52901 insertions(+), 106 deletions(-)

 rewrite .gitignore (94%)

 create mode 100644 .storybook/main.js

 create mode 100644 .storybook/preview-head.html

 create mode 100644 .storybook/preview.js

 rewrite README.md (100%)

 create mode 100644 __test__/Accordion.spec.js

 create mode 100644 __test__/Alert.spec.js

 create mode 100644 __test__/Breadcrumbs.spec.js

 create mode 100644 __test__/Checkbox.spec.js

Chapter 10 Deploying to proDuCtion

281

 10. Before we can push up, we need to create a pat

(or personal access token) – first, browse to this page:

https://github.com/settings/tokens.

you can also get to this page by clicking on profile ➤ settings ➤
developers setting ➤ personal access tokens. Don’t be tempted to go
to the repository settings page – you must do this within your profile
settings page!

 11. Click on generate a new token, log in if prompted, and enter the

name Cobalt ui for the note field.

 12. Set the expiration as high as you feel comfortable with, or is

permitted in your environment, then click on workflow and repo

as selected scopes. Make a copy of the token – you will need
it – then at the bottom, hit generate token.

 13. Switch to your desktop, then search for a Windows application

named Credential Manager. open it, then click on Windows
Credentials.

please complete either step 14 or step 15, depending on whether
you have an entry for github.com, but not both. once done, please
continue from step 16.

 14. look for an entry marked github.com – if it is there, then edit

it to replace the password with the token you generated in

github. hit Save and close the Manager.

Chapter 10 Deploying to proDuCtion

https://github.com/settings/tokens

282

 15. if you do not have it, then hit add a Windows credential and

enter the details as follows:

Entry Value

internet or network address github.com

your username the username you use to log into your github account

your password your pat token created in step 12

 16. hit Save, then close the Manager.

 17. Switch back to your node.js terminal; then at the prompt, enter

git push.

 18. you will likely be prompted to log into github – click on the

token open when prompted, paste in your pat token, and then

hit enter.

it may appear as a small window, which might be hidden under
others – check your taskbar to see if anything appears.

 19. assuming your login is successful, git will continue to push

items up; if all is well, you should see something akin to this:

Enumerating objects: 131, done.

Counting objects: 100% (131/131), done.

Delta compression using up to 8 threads

Compressing objects: 100% (118/118), done.

Writing objects: 100% (128/128), 429.01 KiB | 5.72

MiB/s, done.

Total 128 (delta 26), reused 0 (delta 0), pack-reused 0

remote: Resolving deltas: 100% (26/26), done.

To https://github.com/alexlibby/cobalt.git

 be80a29..4d38b60 main -> main

Chapter 10 Deploying to proDuCtion

283

 20. Switch to your github repository and check the Code tab to

confirm that all files are present and correct, as shown in the

extract in Figure 10-4.

Figure 10-4. Files uploaded to Git

Phew – that was a mammoth exercise! However, we have now got all of

our content into GitHub, ready for release. It took a bit of doing, but much

of this last demo is a one-off, so we won’t have to do it too often.

With the content available on GitHub, we can now take a breather –

the code is ready for us to start releasing as component packages on npm

or bundling into compiled files we can download and use in demos and

projects. Before we explore that, let’s take a few moments to explore what

we covered in that last demo in more detail.

Chapter 10 Deploying to proDuCtion

284

 Exploring the Code in Detail

So what did we achieve in that monster demo?

We began this exercise with a small but essential step: rename the

cobalt folder. It was necessary to allow us to clone the remote Git folder to

our PC without Git complaining of a folder already present. In hindsight,

though, we could have avoided the need for this, as we could have done

the Git cloning step first; renaming it now means we have a backup copy

just in case anything goes wrong!

Moving on, we installed Git (at least for those who didn’t have it

present already) before cloning the empty cobalt repository down to our

PC. We then copied files from our original project area to the new one

before creating a commit for our new repository. To push them up, we

had to set up a PAT or Personal Access Token; once done, we completed

the upload before checking they had successfully been committed to the

repository.

Okay – let’s crack on: we now have our component code in the

repository, so we can release it for others to use! Other developers can

access the code directly, but what about publishing a component or

two to npm?

 Releasing Components to npm
“Yikes – releasing a component…will it work?”

It’s a perfectly valid question, and I’m sure you will feel a sense of

trepidation as we take that leap into the unknown! But don’t worry,

though – while there may be a few steps involved in releasing our

components, it is a straightforward process, and some of it we will only

need to do for the first time. To understand what I mean, let’s quickly

summarize the steps involved:

Chapter 10 Deploying to proDuCtion

285

• Update our component folder into a monorepo, or a

sub-repository, ready for publishing.

• Set up a configuration file to tell Svelte how to release a

compiled version of our component.

• Publish the component onto npm, ready for use.

The first two steps only need to be done once for each component –

step 3 is the one we will repeat each time we publish a new version of

our component(s) or library. Perfect: now that we know what is involved,

let’s get stuck in! Before we get to writing code, there are a few points of

housekeeping we need to be aware of:

• Please make sure you log into www.npmjs.org with your

account (including two-factor authentication, if you

have it enabled) before you start this exercise.

if you don’t have an account, you will need to create one, which
you can do at www.npmjs.com/signup – there is plenty of
documentation online if you need assistance.

• We should complete the upload to npm after uploading

to GitHub and not before – the upload process relies

on GitHub.

• We will use the Checkbox component as our example –

please feel free to adapt if you want to try a different

component.

• Please create a new folder called compiled at the root

of the Checkbox component folder – this we will use to

store a compiled version of the component.

Chapter 10 Deploying to proDuCtion

http://www.npmjs.org
http://www.npmjs.com/signup

286

We need to be mindful of another point before we get a little trigger-

happy and create packages. We must remember that what we’re building

is still a pre-production version, and we will need to do more work before

releasing a production version.

For this reason, I’ve marked the version in the upcoming exercise as

alpha1, and it’s still important to be aware of the release steps, ready for

when we’re good to release into production. With all that in mind, let’s

crack on with creating our package for upload to npm.

RELEASING TO NPM

to release a component from our library to npm, follow these steps:

 1. First, we need to turn our chosen component into a

"monorepo"; for this, fire up a node.js terminal session, then

change the prompt to the Checkbox component folder within

our project area.

 2. at the prompt, enter this command and press enter:

npm init --y

leave the session open but minimized throughout this exercise – we
will use it a few times.

 3. it creates a package.json file with a few fields

prepopulated – go ahead and open it, then modify it, so it has

these fields:

Note Change XXXXX to your npm account name, where shown.

Chapter 10 Deploying to proDuCtion

287

{

 "name": "@XXXXX/checkbox",

 "version": "1.0.0-alpha1",

 "description": "A simple checkbox component from the

Cobalt library, for Svelte",

 "main": "index.js",

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "repository": {

 "type": "git",

 "url": "git+https://github.com/XXXXX/cobalt.git"

 },

 "keywords": [

 "svelte",

 "react",

 "custom elements",

 "web components"

],

 "author": "Alex Libby",

 "license": "MIT"

}

 4. next, switch to your editor, then create a new file and add

this code:

import { defineConfig } from 'vite'

import { svelte } from '@sveltejs/vite-plugin-svelte'

// https://vitejs.dev/config/

export default defineConfig({

 build:{

 rollupOptions: {

 input: ['./src/lib/Checkbox/Checkbox.svelte'],

 }

Chapter 10 Deploying to proDuCtion

288

 },

 plugins: [svelte({

 compilerOptions:{

 customElement: true

 }

 })]

})

 5. Save the file as vite.checkbox.config.js at the root of

our project area.

 6. revert to your node.js terminal session; then from the root of

the project area, run this command:

npm run build -- -c=vite.checkbox.config.js.

 7. replace index.js with ./compiled/Checkbox.

XXXXXXXX.js, where X is the number in the file name created

during the build.

 8. once complete, look for the \dist folder at the root of your

project.

 9. Copy the Checkbox.XXXXXXXX.js into the compiled folder

we created earlier, within the component folder.

 10. We’re almost there – just a few steps to go! the next task is to

publish the component: revert to your node.js terminal session

and set the working folder to the root of your project area.

 11. at the prompt, enter this command and press enter:

npm publish -access=public

Chapter 10 Deploying to proDuCtion

289

 12. you should see something similar to this response appear,

allowing, of course, for the change in account iD:

 13. at this point, the component is published! to check this is the

case, navigate to www.npmjs.org, then search for @XXXXX/

checkbox, where XXXXX is your account iD. if all is well, we

should see something similar to that shown in Figure 10-5.

Chapter 10 Deploying to proDuCtion

http://www.npmjs.org

290

Figure 10-5. Confirmation that our initial package has been
published

 14. you will also receive a confirmation email if you entered a valid

email address!

Brilliant – we have published our first component! Granted, it’s only an

alpha version, and there is still more we can do to develop and improve on

it, but it’s a good step in the right direction.

 Building a Demo
Of course, though, there is one thing we should do: How about testing if it

works? We know it’s now available on npm, but (as they say) the proof is in

the pudding – we should test it in a demo.

This testing is easy enough to do, so let’s dive in and look at what we

need to do in more detail.

Chapter 10 Deploying to proDuCtion

291

TESTING THE NEW COMPONENT

testing our component is a quick job – to see how, follow these steps:

 1. First, navigate to www.codesandbox.io, then create a new

react site using their template.

 2. next, click inside the add Dependency box on the left, and

start typing the name of your component – in my case, @

alexlibby/checkbox, but yours will be whatever name you

decided to use.

 3. you should see the component’s name appear in a list after

just a few characters – when you do, click on it to add it as a

dependency.

 4. CodeSandbox will install it automatically – this will take a

moment or two, so be patient!

 5. once done, click on the App.svelte entry in the file list at the

top of the page – add a reference to the Checkbox component

as highlighted:

<main>

 <h1>Hello CodeSandbox</h1>

 <h2>Start editing to see some magic happen!</h2>

 <cobalt-checkbox></cobalt-checkbox>

</main>

 6. Wait a few moments for CodeSandbox to save the change – if

all is well, we should see something akin to that shown in

Figure 10-6.

Chapter 10 Deploying to proDuCtion

http://www.codesandbox.io

292

Figure 10-6. The newly published component available from npm

Yes – we have finally arrived! In the hope that this wasn’t too

premature, we now have a working component and have proven it works

in a demo.

What is interesting to note is the use of this component’s web

component reference. We’re not using it as <Checkbox /> (which we

would in a Svelte environment), but by using <cobalt-checkbox></

cobalt-checkbox>. You will also notice that I’ve used the full name, not

the shorthand; I’ve noticed instances where the latter doesn’t work well.

It is why you will see me using the longhand version when referencing

components in a web component capacity.

Okay – let’s move on: we covered a lot of practical steps in the previous

demo, so now’s a perfect opportunity to review the changes in more detail,

understand how they all work, and what we need to do when it comes to

releasing further changes.

 Breaking Apart the Code Changes

Our last demo was a complex affair – who would know that publishing to

npm could require so many steps? In reality, many of these steps will be a

one-off – if not for the repo, at least for each component package we create

and publish to npm.

The key to making this process work is compiling it into a file that other

developers can use. To understand what I mean, let’s take a look at the

changes we made.

Chapter 10 Deploying to proDuCtion

293

We began first by converting the Checkbox folder into its own

monorepo – for the uninitiated, this is effectively a repository within a

larger parent. To do this, we created a package.json, to which we added a

host of fields required for publishing the component as a package.

Next came the addition of the vite.checkbox.config.js file – this tells

Svelte how to compile the component into a format we can pull into

future projects. A key point here is that we created this file purely around

the Checkbox component, but we could equally have included other

components too – we just need to add their names and sources to what

will be a comma-delimited list in the input: field.

We then ran the build process, which resulted in a compiled file – this

we copied from the \dist folder into a new compiled folder, ready for

packaging. At this point, we ran the npm publish command, which created

a package for us on npm. To finish this part of the process, we ran a quick

check to confirm that our package had been published successfully on

npm and that we got a confirmation email to boot!

By comparison, the second part of this process was a far more

straightforward affair – we used CodeSandbox to create a basic React site

using their template. To this, we added the newly published component –

once CodeSandbox had saved the update, we saw the component appear in

the preview window in our browser.

Now that we’ve published our component on npm, there are a couple

of interesting points of note that we should be aware of:

• You will notice that when we check that the component

exists in npm, we only see limited information if

we click through to the package’s page. All of this

is provided by the package’s README file, if one is

available; I’ve gone ahead and pushed one up on my

version of the Checkbox component in the library at

https://github.com/alexlibby/cobalt/tree/main/

src/lib/Checkbox.

Chapter 10 Deploying to proDuCtion

https://github.com/alexlibby/cobalt/tree/main/src/lib/Checkbox
https://github.com/alexlibby/cobalt/tree/main/src/lib/Checkbox

294

• We have had to use the format @XXXXX/YYYYYY to

publish the package, where X is your account name

and Y is the package. This naming is known as a scoped

package – there used to be a time when we didn’t have

to provide the name. Since GitHub took over npm,

GitHub is now enforcing the use of scoped names – in

the background, we are publishing to GitHub Packages,

not npm. It means that we also had to provide the

–access=public tag. Otherwise, the component won’t

publish on what is a free repository.

• An essential part of the publishing process is managing

the version number – I’ve started with 1.0.0-alpha1

to clarify that this is a pre-production version and that

we should assume the usual caveats around using it.

I would recommend researching how to automate

this manual process to get the correct version number

applied for each release automatically. An excellent

example is the semantic-release package available on

npm at www.npmjs.com/package/semantic-release.

Okay – what’s next? Now that we have our component on GitHub, it’s

time to make our component documentation available for others to view

online. The easiest way to do this is by publishing a static version of our

Storybook instance; let’s dive in and look at how we can do this as part of

our next demo.

 Publishing Storybook to Netlify
Wow – I’m sure you’ll agree with me when I say that the last few pages were

a little intense! Nevertheless, the steps we covered were critical to getting

our first component out; we still have work to do in this respect, but that

will come with time.

Chapter 10 Deploying to proDuCtion

http://www.npmjs.com/package/semantic-release

295

In the meantime, we should move on to the next important step:

making our documentation available for others. There are several ways we

could do this, such as hosting on AWS, Vercel, Surge, or Now – I’ve chosen

to use Netlify as I’m a big fan of this tool and have used it in the past.

Getting our content published is straightforward – Netlify links into

GitHub seamlessly, so we need to complete a few steps, and our content

will appear online. Let’s take a look at what is involved in more detail.

at the time of writing, some of this is still in beta – the steps are solid,
although some things may change by the time this book is in print!

PUBLISHING THE COMPONENT STORYBOOK

to publish our instance of Storybook, follow these steps:

 1. We first need to export Storybook as a static application – for

this, fire up a node.js terminal, then change the working folder

to our project area.

 2. at the prompt, enter npm run storybook-build and

press enter.

it may or may not show warnings – we can deal with any later.
the critical point is that it must not show any errors, indicating a
failed build.

 3. let it churn through the process – it will finish with lines similar

to this:

info => Manager built (1.03 min)

info => Output directory: C:\cobalt\storybook-static

Chapter 10 Deploying to proDuCtion

296

 4. node will have created a few files and folders – we need to

push these up to github. at the prompt, enter these commands

and press enter after each:

git add .

git commit -m "Add exported version of Storybook"

git push

assuming no errors appeared, we have our files ready for the next part of the

process: publishing the content for other developers to view and use.

At this stage, we have our Storybook exported content ready for

publication – people won’t see it until we hook it into our hosting. As you

have already noted, I’ve elected to use Netlify; feel free to use a different

system if you prefer!

i recommend selecting one that hooks into github to get the best
from the next exercise.

 Setting Up Netlify
Although Netlify has only been around since 2014, it has quickly become

one of the most popular ways to host content. It’s perfect for hosting our

Jamstack-based site – all of the content is already on GitHub, so we need to

link it to a Netlify account and let it publish the site onto the Internet. Let’s

take a look at what we need to do in more detail.

if you see a reference to XXXXX in the following demo, change it to
your github account name.

Chapter 10 Deploying to proDuCtion

297

SETTING UP NETLIFY

to set up our site, follow these steps:

 1. We first need to sign up – for this, browse to

https://app.netlify.com/signup, then hit github.

 2. When prompted, click yes to authorize netlify to access your

github account.

 3. next, click on add new site, then import an existing project.

 4. at this point, select github, then authorize netlify.

 5. When prompted, enter cobalt – it won’t find it: don’t worry,

this is to be expected! it will prompt for an update that we need

to do to permissions so netlify can access your github site.

 6. Click on Configure netlify on github. Scroll down on the

next window to repository access, then choose only select

repositories ➤ Select repositories ➤ XXXXX\cobalt. if all is well,

you should have settings similar to those shown in Figure 10-7.

Chapter 10 Deploying to proDuCtion

https://app.netlify.com/signup

298

Figure 10-7. The settings for updating permissions for Netlify

 7. once done, hit Save.

 8. on the previous screen, click on XXXXX\cobalt; then in the Basic

build settings, enter the values shown in Figure 10-8.

Figure 10-8. Settings to trigger the build process

Chapter 10 Deploying to proDuCtion

299

 9. once you’ve entered the values, click on “Deploy site.” if

everything goes well, you should be able to deploy and follow

along with the build log – click on the team overview link at the

top of the page, then on the name of the site, and the topmost

entry under production deploys.

 10. assuming no errors pop up and netlify shows a published in

black text against the relevant build, you will be able to see

your site if you click on team overview ➤ the name of your site

(which will be on the left of the site preview image).

Yay – we have published our site! Publishing is only the start, as we will

need to update it as and when we make changes to our components. That

comes later, though; for now, let’s review the code changes we made in

more detail to understand better how this fits into the broader picture.

 Understanding the Changes Made

When it comes to releasing code onto a hosting site, dozens of different

providers are available – sometimes, it can be hard to decide which to

use! Of course, you might already use an existing system, which makes

choosing one a moot choice.

But I digress. I chose to use Netlify as it is one of the more popular

hosting systems: it also links to GitHub seamlessly and has an excellent

API for more custom development.

To get our Storybook instance set up, we first had to sign up – for this,

we used its GitHub authentication process and pointed it at our repository.

All that remained was to provide some values for the basic build process

and hit Deploy site! As the last step, we checked that Netlify published the

site successfully before viewing the final result in our browser.

Chapter 10 Deploying to proDuCtion

300

 Adding Polish to the Repository
Now that we’ve set up our Storybook installation, pushed our code up into

GitHub, and released (albeit an experimental) version of our component,

it’s time to start adding polish to our library so that it looks the best it can

be for people using our library.

We could do different things, such as adding more screenshots, better

documentation, or creating templates for raising issues. Unfortunately,

there’s too much for us to do in the confines of this book, so I’m going to

focus on two items:

• Adding a README for the Checkbox component file

• Installing a custom domain name for the Storybook

installation

There are a few steps required for us to complete both tasks, which we

will do over two separate exercises; let’s dive in and take a look at the first,

which will be adding a custom domain name.

 Adding a Custom Domain Name
Before you all start worrying, I should point out from the outset that adding

a custom domain name is not an essential part of running our site – the

Storybook installation will run perfectly fine with the subdomain URL

given to us by Netlify!

For me, though, adding a custom domain name makes it easier to

access the site, as it is easier to remember; depending on what name you

use, the cost isn’t too expensive either! There are various ways to do this,

depending on whether you want to use a custom subdomain or a top-level

domain from Netlify or provide your own. For simplicity, I will assume that

if you do this step, we will register that name directly through Netlify so

that it can take care of provisioning the domain for us.

Chapter 10 Deploying to proDuCtion

301

Before we start with the purchase and configuration process, there are

a couple of assumptions we should be aware of:

• I’m assuming that the domain name you select is not

already registered to anyone.

• We’re purchasing directly from Netlify, so the DNS and

domain will be held by Netlify.

if either of the aforementioned is different for you, then there will be
other steps you need to follow, such as making sure your host points
the DnS entries to netlify.

Let’s crack on with setting up our custom domain as part of the next

exercise.

ADDING A CUSTOM DOMAIN

to add a custom domain, follow these steps:

 1. From the site overview page, click on Domain settings.

 2. Scroll down to and click the green add custom domain button.

 3. go ahead and enter your chosen domain using the format

shown in the text box.

 4. Click on add payment method; then in the modal, enter your

payment details – note: this will auto-renew at a slightly higher

price in year 2: this is to be expected.

 5. enter your address, then hit Save. Back on the previous screen,

hit register domain now for…, and wait for it to complete.

Chapter 10 Deploying to proDuCtion

302

at this point, netlify will likely state that an SSl/tlS certificate can’t be

provisioned to secure the site until the domain is validated. if you scroll up

the page, you will see the primary DnS entry has changed and that it shows

“Check DnS configuration” against it.

this process requires 24 hours for the newly created domain to
propagate, so you will want to return later to complete the next part
of this process.

assuming you have waited 24 hours, follow these steps to complete the

process:

 1. hit Verify DnS configuration. assuming that it returns

“DnS verification was successful,” click on provision

certificate, twice.

 2. netlify will trigger a request to let’s encrypt to provision the

certificates. you may get a “missing certificate error” – if you

do, cancel and return to the previous Settings page.

 3. Keep refreshing the page – if netlify has managed to provision

the certificate, you will eventually see the “Check DnS

configuration” entry replaced with something similar to that

shown in Figure 10-9.

Chapter 10 Deploying to proDuCtion

303

Figure 10-9. Confirmation that DNS has been updated

 4. take a quick look lower down on that page – you should also

see that the SSl certificate has been successfully provisioned.

please note this period can take up to 24 hours to complete; i was
able to view these details after about five to six hours, but it may be
longer for you.

 5. the real test is to browse to the site – go ahead and browse

to your new domain (in my case, www.cobaltui.dev). if

all is well, we should see our Storybook appear, as shown in

Figure 10-10.

Chapter 10 Deploying to proDuCtion

http://www.cobaltui.dev

304

Figure 10-10. The Storybook installation, under the new domain

Perfect – we have a domain name that points to a working site!

Although we could have stayed with the default name assigned by Netlify,

I’m sure you will agree this one is a much nicer name to use.

Let’s move on and take a look at the second exercise we’ll complete as

part of this process – adding a readme file with a version badge.

ADDING A README WITH VERSION BADGE

to update the documentation readme file for our component, follow

these steps:

 1. We will first begin with adding a version badge for our

component – head over to www.shields.io, then click on

Version at the bottom of the list.

 2. on the next page, you will see a long list of license types –

scroll down until you see the entry for npm (scoped). it’s a

long list, so you might want to use the search option in your

browser!

Chapter 10 Deploying to proDuCtion

http://www.shields.io

305

 3. Click on either the badge or the text to the right; then in the

package name field, enter the name of your package (i will

assume cobalt, but change it if you decide to use something

different).

 4. on the next page, enter your npM account iD in the format of

@XXXXX, then enter the name in the package name field.

 5. if all is well, you should see a black and orange badge appear

with the version number of your package – click on the Copy

Badge url drop-down and select Copy Markdown.

 6. in your editor, create a new file as README.md (note the case),

and save it to the root of the Checkbox folder in \src\lib.

 7. inside the file, add the following text – adjust the name of the

package and the account iD to match your own:

![npm (scoped)](https://img.shields.io/npm/v/@alexlibby/

checkbox)

Checkbox - a component from the Cobalt library

This is a test release of the Checkbox component from my

upcoming book, Creating Web Components with Svelte, to be

published by Apress.

To install, enter this command in a Node.js terminal

session:

`npm install @alexlibby/checkbox`

License: MIT

 8. Save the file – we can always come back and add more later,

but this will be enough to get us started.

 9. We need to push this change up – fire up a node.js terminal

prompt, then change the working folder to the project area.

Chapter 10 Deploying to proDuCtion

306

 10. at the prompt, enter git add . && git commit -m "Add

README", then press enter.

 11. once done, enter git push to complete the upload.

 12. to confirm all is well, browse to your github site, then

navigate to the \src\lib\Checkbox folder – you should

see something akin to that shown in Figure 10-11. i’ve gone

a little further and added a temporary screenshot for the api,

a screenshot of the component, and an extra badge for the

license version.

Figure 10-11. The updated README for the Checkbox component

Wow – we now have a working GitHub repository and Storybook

site and released the first version of our component to our unsuspecting

audience! Congratulations if you managed to get this far; it’s been a lot of

work, but hopefully an enjoyable and worthwhile experience.

Chapter 10 Deploying to proDuCtion

307

However, it is just the start of our journey: there is more we can do!

We’ll touch on some of this in the next chapter, but before we do so, let’s

take a moment to review the changes we made in this demo to understand

how they all hang together.

 Breaking Apart the Code
For me, adding a custom domain is one way to add that extra touch – I

know that many people might be happy with the default URL provided

by services such as Netlify. Don’t get me wrong – this is a perfectly valid

option. However, going that extra distance means your library should

make it a little more memorable and encourage people to return.

That only time will tell – for now, what did we do to get here? We

started by working through Netlify’s standard process for purchasing a

domain name and initiating domain registration. We kicked off a request

for Netlify to provision a certificate using the Let’s Encrypt service; this

initially failed me while researching for this book, but I believe it was just a

matter of waiting for the service to kick in once the domain had replicated

around the Internet.

The lesson here is that it does pay to be patient – I would strongly

recommend making the payment at the end of the day so that you stand

a chance of it being available the following morning! Once the request for

the SSL certificate was provisioned, we ran a quick check to verify that the

site had been updated and was now available via an HTTPS address.

In the second demo, we switched to creating our component’s

README file – we began first by visiting the Shields.io website to generate

a badge with the appropriate version of the current package available on

npm. We took a copy of the link for this badge as Markdown text before

adding it to a new README file; once saved, we committed this to the

repository before checking the results in our browser.

Chapter 10 Deploying to proDuCtion

308

 Summary
Phew – this might have been a long chapter, but we’ve finally reached the

point where our Storybook site and the component library will now be live!

We’ve covered a lot of content in this chapter, so let’s relax for a moment

and review what we have learned.

We began way back when (yes, it does feel like a while ago!) with

a quick discussion around performing the final checks. Not only did

we cover some areas to consider, but we also understood that this is a

symbolic way of confirming that we are ready to sign off the results and

release them into production.

Next up, we moved on to pushing our code into GitHub; we first walked

through the process of setting up the repository before exploring the steps

required to commit our code into our new library. We then switched to

releasing a test component into the npm repository as a package – we

covered the fact that this was an alpha package and a way to explore the

process; we would do this for real once we were ready to release our code.

Moving on, we worked our way through publishing the Storybook

instance to a hosting site, using Netlify as our preferred platform. We first

set up the authorization between GitHub and Netlify before configuring

Netlify to run the build step for Storybook and create our site. As a final

touch, we explored creating a new README file with a version badge

and the steps we would need to take to release our site through a custom

domain for our customers.

And relax! We’ve done most of the hard work now – the library is

available on GitHub, Storybook is hosted on Netlify, and we released our

component’s first instance as a package. There is still more to do, but

the focus of our journey changes – it’s time now to focus on how we can

develop and expand our library. There’s plenty we can do in this respect,

so stay with me, and I’ll reveal more details in the next chapter.

Chapter 10 Deploying to proDuCtion

309

CHAPTER 11

Taking Things Further
We’ve almost reached the end of the book – there is one more question we

should answer: What next? At times like this, I am reminded of the phrase

“the world is our oyster.”

It is up to us to decide where to go next…as well as maybe have a little

fun too! To answer that question, we’ll explore a range of topics, which

might include the following:

• Now we’ve built our library – is there anything we want

to change or improve?

• What’s next – how about setting a road map?

• Converting components from other frameworks

• Revisiting some of what we’ve already done

• Can we optimize specific areas, such as CSS?

These are just some of the questions we should answer – I’m sure I can

think of more! To get us started, let’s first review what we’ve done so far, so

we can see where we might have any gaps that we need to fill.

 Reviewing the Site
Although we completed some of this task during the release process, I can

almost guarantee that there will be things we want to add or change!

© Alex Libby 2023
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/978-1-4842-9039-2_11

https://doi.org/10.1007/978-1-4842-9039-2_11#DOI

310

I’m not talking about adding new components, although that will

come. We must also consider areas such as tidying existing code, leveling

the number of variants for each component, or improving test coverage.

With that in mind, let’s take a quick look at a few likely candidates for

improvement in the immediate future:

• Improve test coverage.

• Implement a dependency update mechanism to keep

the site secure and vulnerability-free (where possible).

• Add more detailed documentation.

• Finish RadioButton – get it working.

• Get SideBar working in Storybook.

• Expand the variants for each component, and level up

to a minimum of three where possible.

• Augment the CSS Grid properties for ImageGrid.

• Release more component packages – individually and

as a whole.

• Realign components into named group for npm – not

under my name, but a collective name of cobaltui (or

similar, depending on availability).

That’s just a small selection of what we could do to improve the code

base within the first three months of release – I’m sure there will be others!

I prefer not to commit to many changes too early and to focus on our gaps

before expanding with new components. (As you will see, I will break

that “preference,” but hey – rules are meant to be broken!) The critical

point here is that we take note of what we need to do and create a plan for

implementing the changes.

Chapter 11 taking things Further

311

You can see a more extensive road map in the github repository, in
roadmap.md, at the root of the library.

The plan doesn’t need to be complex – we could list everything we

want to do and then put rough dates against each one (ideally quarters

rather than months – it helps give yourself some flexibility). Remember

that you will have to keep your promises in some form or another!

 Taking the Next Steps – Setting a Road Map
Ouch – where does one start with setting a road map? The truth is that it

will depend on one of two things:

• Where do you want to take the library?

• What features are others asking for?

Deciding on what to add can be a double-edged sword – there could be

some no-brainer features that you just have to incorporate, or you might

find you want to add something that others will hate!

In some cases, others will make the decision easy – you might find you

want to add components that your colleagues could use in a corporate

environment and that releasing to the outside world will be a bonus.

However, we need to balance this against those instances where you are

in control of what you add – we have to prepare for those who dislike what

you might have in mind. Still, as long as you are transparent about it and

go with the majority decision, you will at least maintain a good audience.

Keeping all of that in mind, let’s pause for a moment to consider some

examples of what we might want as future components in our library:

• Avatar

• Cards – such as for product information

• Progressbar

Chapter 11 taking things Further

312

• Switch

• Tags

• HTML5 form field elements, such as email or telephone

• Popover

• ListBox

I’m sure there will be more, but as mentioned before – let’s not get too

ahead of ourselves! Most of our focus should be on leveling up existing

components and strengthening what we’ve developed

 Converting Our Next Component
Okay – enough talking: we need to get stuck into some coding.

For the first demo of this chapter, we’re going to look at our next

component: Avatar. Usually, I would work through creating one, adding it

to Storybook, and so on…you know the drill by now!

However, that would mean us missing out on a helpful tip when

creating Svelte components. If you’re converting from an existing feature

found on the Internet to Svelte, then forget the lift-and-shift approach.

What do I mean by this? I hear you ask.

Well, it comes down to one simple principle: instead of focusing on

the technical elements, look at the functionality offered by the component.

Svelte requires a different mindset, which can be weird for developers

using other frameworks. You can lift and shift values such as imports (if

appropriate) or variables already declared in the React code, but that’s

probably as much as we can use.

To illustrate this, I’ve picked a React example of an Avatar component,

this one created by the CoreUI team and which is available at https://

github.com/coreui/coreui-react/blob/main/packages/coreui-react/

src/components/avatar/CAvatar.tsx; it uses standard React/TypeScript

Chapter 11 taking things Further

https://github.com/coreui/coreui-react/blob/main/packages/coreui-react/src/components/avatar/CAvatar.tsx
https://github.com/coreui/coreui-react/blob/main/packages/coreui-react/src/components/avatar/CAvatar.tsx
https://github.com/coreui/coreui-react/blob/main/packages/coreui-react/src/components/avatar/CAvatar.tsx

313

to create a simple component. Now, let’s dive in and look at how this

component might look if we rebuilt it in Svelte.

CREATING THE AVATAR COMPONENT

to create our new avatar component, follow these steps:

 1. First, we need to avail ourselves of a suitable avatar image – for

this, look online to see if any image libraries have one that takes

your fancy! i recommend keeping the size as close to 128px

square as possible for this exercise; the file format isn’t critical.

please save the file as avatar.png – if you’ve changed the file

format or name, then please adjust the code to suit.

 2. Once you have a suitable image, drop it into the \public

folder at the root of our project area.

 3. We now need to create a new folder for our component – go

ahead and add one called avatar into the \src\lib\ folder.

 4. next, crack open your editor and create a new file, saving it as

Avatar.svelte in the newly created avatar folder.

 5. in the file, we need to add quite a bit of code – as before, we’ll

do it in sections, starting with the svelte:options tag and a

handful of export statements:

<svelte:options tag="cobalt-avatar" />

<script>

 export let src = "";

 export let status = "available" || "busy" || "away" ||

"unavailable";

 export let statusSize = "small" || "medium" || "large";

Chapter 11 taking things Further

314

 6. next, we need to add a reactive statement block to look after

updating values if the size or status should change:

 $: statusClasses = () => {

 let inputKlasses = [status, statusSize];

 inputKlasses = inputKlasses.filter((klass) =>

klass.length);

 return inputKlasses.join(" ");

 };

</script>

 7. the most important part comes next, which is the markup for

our component:

<div class="cobalt-avatar">

 {#if src}

 {/if}

 <slot />

</div>

 8. We can finish off the component with some styling – the first is

the container for our component and a common style rule for

the indicator:

<style>

 .cobalt-avatar {

 position: relative;

 display: inline-flex;

 align-items: center;

 justify-content: center;

 vertical-align: middle;

 border-radius: 800px;

 width: 32px;

Chapter 11 taking things Further

315

 height: 32px;

 font-size: 12.8px;

 }

 .base {

 border-radius: 800px;

 position: absolute;

 border: 1px solid #373737;

 }

 9. next up, we have two styles for size – small and medium:

 .small {

 width: 8px;

 height: 8px;

 top: 25px;

 right: 0px;

 }

 .medium {

 width: 12px;

 height: 12px;

 top: 22px;

 right: -4px;

 }

 .large {

 width: 16px;

 height: 16px;

 top: 22px;

 right: -4px;

 }

Chapter 11 taking things Further

316

 10. We also need some styling for availability – for this, we have

four rules for available, danger, away, and unavailable:

 .available { background-color: #00ff00; }

 .danger { background-color: #ff0000; }

 .away { background-color: #ffff00; }

 .unavailable { background-color: #ffffff; border: 1px

solid #000000;}

 11. this last style is for the avatar image:

 .avatar-img { width: 100%; height: auto;

border-radius: 800px; }

</style>

 12. save and close the file – we are done with the changes for now,

and we’ll do the first test of our new component shortly when

we link it into storybook.

Perfect – we have a component ready to test; we’ll do this shortly when

we add it to Storybook. Although much of the code should be relatively

familiar by now, there are some critical highlights I want to touch on –

with that in mind, let’s review the changes we made in the last demo in

more detail.

 Dissecting the Code
In our current age of social media, avatars are probably one of the most

widely seen features you will see. It doesn’t matter if they show letters or

a fancy picture; the basic premise of identifying you as a person is still the

same. We’ve taken the opportunity to create such a component for our

library and base it on an original, built using React – let’s take a moment to

review the changes we made in more detail.

Chapter 11 taking things Further

317

We began by looking for a suitable image online – we understood that

it needed to be around 128px square where possible to ensure it works as

expected in our component. Next, we created the component itself – we

began setting the now-familiar svelte:options tag before creating three

variables for export: status, src, and statusSize.

We then moved on to creating a reactive block, which uses the $ keyword

in Svelte – as a reminder, this reacts (hence the name) to any changes in the

current state or value in variables and updates them accordingly.

Next, we added the markup for our demo – this we kept simple for

now, using an if block ({#if}...{/if}) to determine if we should display

an image. Everything else will go in the <slot />, including text, markup,

or other components we might use. We then finished this off with styling –

we created .cobalt-avatar for the container, three styles to cover the size

of the status indicator in our component, and status to cover most of the

presence statuses we might want to use as developers.

There is one last point I want to cover from this component before we

move on: the translation process from React to Svelte. While researching

for this book, I found a great article on using Svelte for those who usually

develop using React. It’s by Sina Farhadi and available on the Plain English

website at https://javascript.plainenglish.io/svelte-for-react-

developers-7edc099e03ed. Suffice to say, Svelte requires a different mindset

to React, which can be a challenge for some; if you get it (so to speak), it

often means a cleaner code result and one that is frequently faster to boot!

 Adding to Storybook
So far, we’ve explored how to create an equivalent Avatar component in

Svelte and seen that it’s not just a lift and shift of existing code but that it’s

better to focus on functionality rather than technical code.

We now need to test our component – as we’ve done previously, there

are two ways we can test it: writing a test case for it using Svelte Testing

Library and adding it to Storybook.

Chapter 11 taking things Further

https://javascript.plainenglish.io/svelte-for-react-developers-7edc099e03ed
https://javascript.plainenglish.io/svelte-for-react-developers-7edc099e03ed

318

LINKING AVATAR INTO STORYBOOK AND ADDING A TEST

to set up our avatar component in storybook, follow these steps:

 1. First, fire up your editor, then create a new file, saving it as

Avatar.stories.mdx in the \src\lib\storybook folder.

 2. We have a lot of code to add, so as usual, we’ll break it

into sections – we’ll start with the imports and the usual

<Meta> tag:

import Avatar from '../Avatar/Avatar.svelte';

import AvatarDocs from './AvatarDocs.mdx';

import { Meta, Story } from '@storybook/addon-docs';

<Meta

 title="Cobalt UI Library/New Components/Avatar"

 component={Avatar}

 parameters={{ page: null }}

/>

 3. to display the component, we need a template to tell storybook

how to display it; for this, miss a line after the code from step 1,

and add this block:

export const Template = (args) => ({

 Component: Avatar,

 props: args,

});

 4. With the template in place, we can add stories for each variant

we want to display. the first one is the default, which displays a

green status to show that the person is available:

<Story

 name="Default"

 args={{

Chapter 11 taking things Further

319

 status: "available",

 statusSize: "small",

 src: "/public/avatar.png"

 }}

 parameters={{

 docs: {

 page: AvatarDocs

 }

 }}>

 {Template.bind({})}

</Story>

 5. next, miss a line, then add this next story – this takes care of

cases where the person is busy and displays a red status:

<Story

 name="Busy"

 args={{

 status: "danger",

 statusSize: "small",

 src: "/public/avatar.png"

 }}

 parameters={{

 docs: {

 page: AvatarDocs

 }

 }}>

 {Template.bind({})}

</Story>

 6. For this next story, we’ll display the unavailable status, which

shows a white circle, but this time in a larger size:

<Story

 name="Unavailable"

 args={{

Chapter 11 taking things Further

320

 status: "unavailable",

 statusSize: "medium",

 src: "/avatar.png"

 }}

 parameters={{

 docs: {

 page: AvatarDocs

 }

 }}>

 {Template.bind({})}

</Story>

 7. For the last example, we’ll display the away symbol in a

medium size – this is a yellow status:

<Story

 name="Away"

 args={{

 status: "away",

 statusSize: "medium",

 src: "/public/avatar.png"

 }}

 parameters={{

 docs: {

 page: AvatarDocs

 }

 }}>

 {Template.bind({})}

</Story>

 8. save and close the file.

 9. We also need a copy of the AvatarDocs.md file as our

documentation – this is available in the code download for

this book, so extract a copy and put it into the \src\lib\

storybook folder.

Chapter 11 taking things Further

321

at this point, we should have a handful of files to push up to our repo – to get

them committed, follow these steps:

 1. next, switch to a node.js terminal session, and change the

working folder to our project area.

 2. We need to push up all of the changes we’ve made so far – at

the prompt, enter git add . and press enter to pull all of our

files together, ready for committal.

 3. next, enter git commit -m "Various changes" to create

a commit and press enter.

 4. Finally, enter git push to upload all of the changes to our

repo – assuming you set up netlify earlier, this will kick in and

build the library.

 5. if all is well, we should see updates appear on our storybook

pages, as shown in Figure 11-1.

Figure 11-1. Storybook with the updated Avatar component on display

Chapter 11 taking things Further

322

We have one last step to perform, which is to add a test – as this is only a

status icon, we’ll keep it simple and set it to run a snapshot for now. to do this,

follow these steps:

 1. Crack open a new file, saving it as Avatar.spec.js in the

__test__ folder at the root of the project folder.

 2. go ahead and add the following code into the file – we’ll begin

with the imports:

import { render, screen } from '@testing-library/svelte';

import Avatar from "../src/lib/Avatar/Avatar.svelte";

 3. next up, let’s add the opening part of the test – this contains a

props declaration for our component:

describe("Tests for Avatar", () => {

 const props = {

 src: "",

 status: "available",

 statusSize: "medium",

 };

 4. We should test it renders correctly – for that, miss a line, then

add this assertion:

 it("should render properly", async() => {

 const result = render(Avatar, { props });

 expect(() => result).not.toThrow();

 });

 5. to close off the test, add this step – it takes a snapshot, which

we can use for visual testing:

 it("get a snapshot of component", () => {

 const tree = render(Avatar, props);

 expect(tree).toMatchSnapshot();

 })

});

Chapter 11 taking things Further

323

 6. save and close the file. switch to your node.js terminal session,

ensuring the working folder is still set to the project area.

 7. at the prompt, enter npm run test and press enter – if all is

well, we should see our tests pass without issue.

 8. next, switch to a node.js terminal session, and change the

working folder to our project area.

 9. We need to push up all of the changes we’ve made so far – at

the prompt, enter git add . and press enter to pull all of our

files together, ready for committal.

 10. next, enter git commit -m "Addition of test and

storybook changes" to create a commit and press enter.

 11. Finally, enter git push to upload all of the changes to our

repo – assuming you set up netlify earlier, this will kick in and

build the library.

Excellent – assuming all went as planned, we now have a new Avatar

component that we’ve written based on the original created in React and

that we’ve plumbed into our Storybook instance.

By now, most of what you’ve seen will seem somewhat familiar,

particularly as we’ve created over 12 components for our library! That said,

it’s still good to review what we’ve created, so let’s pause and dig into the

code in more detail.

 Understanding the Changes Made
Although the last exercise was quite lengthy, most of it covers steps that

we’ve seen before – it may have been for different components, but that

doesn’t matter: reusing the same principles makes life much easier! So

what did we achieve in this latest addition to our library?

Chapter 11 taking things Further

324

We began by creating a story for our instance of Storybook – we

imported a set of functions from Storybook, along with the documentation

file and our component. At the same time, we added the now-familiar

<Meta> tag to tell Storybook where to place the new component in our

setup. You will notice that I’ve used the New Components location; this is

purely to keep any new additions separate from the original components,

at least for now!

Next up, we moved to add various stories to our Story file – all four

follow the same format as others – we call the component and pass in

different values for the src, status, and statusSize arguments. We then

finished the first part of this demo by committing all of the changes thus far

into our repository before previewing the changes on the Netlify site.

We’re not quite finished yet, though – there is still one more addition: a

test! We need to add a test file to our existing collection to show we have at

least basic test coverage for this component.

Adding this test was straightforward – we first created a test spec

file before importing the Svelte Testing Library (as we did for other

components) and the Avatar component. We then added the describe

block, starting with setting some prop values to pass to our component,

before creating the first assertion to test that the component renders

without issue.

We then added a second assertion to get a visual snapshot; once the

test was saved, we ran it to confirm a successful pass before uploading all

changes to our GitHub repository. Before we move on, though, I want to

call out one small but important point: the location of our Avatar image.

You will notice that we put it into the public folder at the top, but there is

no reference in the URL path within our component. What gives?

Well, this is down to the power of Svelte – it is clever enough to know

that the public folder is really for static images, so we will treat this as if it

were the root of any website. It means that even though we used / in the

URL path for our avatar image, it translates to the public folder – Svelte

links to it during the build process.

Chapter 11 taking things Further

325

if we had used a relative urL to this folder, as one might have
expected to do so, then you would get this warning in the console
log: ...files in the public directory are served at
the root path. Instead of /public/avatar.png, use /
avatar.png.

Okay – let’s crack on. By now, I’m sure you will have thought that

we’ve added all of the components we set out to create, right?

Well, perhaps not. All of these changes, exploring possibilities and

generally figuring out what we can do, got me thinking – what if we were to

revisit one particular component for the last time as a kind of encore?

 Remember That RadioButton Component?
Yes, indeed, we did struggle to get our original version of the RadioButton

working – with a bit of time and effort, I’ve managed to fix the problems,

so it now works as expected! Granted, it required a bit of a rewrite, and I’ve

decided to use different styling, but hey – it is now a functional component.

Let’s dive into the code as part of the following exercise to see what has

changed and how I managed to get our version working.

REWRITING THE RADIOBUTTON COMPONENT

to build our replacement radioButton component, follow these steps:

 1. First, we need to rename the original radioButton folder –

change its name to OLDRadioButton. the name isn’t critical

as long as we have a backup copy of it for safekeeping.

 2. next, crack open your editor, and create a new folder, saving it

as RadioButton in the src\lib folder.

Chapter 11 taking things Further

326

 3. We need a new file for our rewritten component – create a

new file inside the new RadioButton folder, saving it as

RadionButton.svelte.

 4. We have a lot of code to add, so let’s begin with the <script>

block, which contains a bunch of variable declarations:

<script>

 export let id;

 export let options = [];

 export let checkedOptions = [];

 export let type = "radio";

 export let legendLabel = "Radio buttons";

</script>

 5. next up, we can add in our markup – for this, leave a line blank,

then add this code:

<fieldset>

 <legend class="legend">{legendLabel}</legend>

 {#each options as { name, value, label }, index}

 <label class="radio-label-wrap">

 <input

 class="radioClasses"

 id="{id}-{name}-{index}"

 {type}

 {name}

 {value}

 checked={checkedOptions.includes(value)}

 on:blur

 on:input

 on:click

 on:focus

 {...$$restProps}

 />

Chapter 11 taking things Further

327

 {label}

 </label>

 {/each}

</fieldset>

 6. Last but by no means least – we need to add some styling! For

this, skip a line, then add this code, starting with some generic

rules for the document, fieldset element, and radio group:

<style>

 *,

 *:before,

 *:after {

 box-sizing: border-box;

 }

 fieldset {

 display: flex;

 flex-direction: column;

 line-height: 1.4;

 }

 .radio-group {

 font-family: Arial, Helvetica, sans-serif;

 }

 7. next comes the main rule for our radio button:

 input[type="radio"] { position: relative;

margin: 0; cursor: pointer; vertical-align: text-top;}

 8. We have a handful of rules that take care of some pseudo-

selectors used in our component:

 input[type="radio"]:before {

 transition: transform 0.4s cubic-bezier(0.45, 1.8,

0.5, 0.75);

Chapter 11 taking things Further

328

 transform: scale(0, 0);

 content: "";

 position: absolute;

 top: 0.14rem;

 left: 0.1rem;

 z-index: 1;

 width: 0.55rem;

 height: 0.55rem;

 background: #16a085;

 border-radius: 50%;

 }

 input[type="radio"]:checked:before {

 transform: scale(1, 1);

 }

 input[type="radio"]:after {

 content: "";

 position: absolute;

 top: -0.1rem;

 left: -0.125rem;

 width: 1rem;

 height: 1rem;

 background: #fff;

 border: 2px solid #e2e2e2;

 border-radius: 50%;

 }

</style>

 9. save and close the file.

Great – we now have our rewritten RadioButton component, which

hopefully works better than the original version! We’re still using a

standard HTML element as the basis for rendering radio buttons, but this

time, the markup is more complete than the original.

Chapter 11 taking things Further

329

It’s worth taking a look at the changes we made this time, but before

we do so, let’s focus first on adding our component to Storybook, so we

can test if it works as expected.

 Adding to Storybook

REWRITING THE RADIOBUTTON COMPONENT

to set up our avatar component in storybook, follow these steps:

 1. First, fire up your editor, then create a new file, saving it as

Avatar.stories.js in the \src\lib\storybook folder.

 2. We have a lot of code to add, so as usual, we’ll break it into

sections – we’ll start with the two imports and declare an

object for event handling:

import RadioButton from "../RadioButton/RadioButton.

svelte";

import { action } from "@storybook/addon-actions";

const actionsData = {

 click: action("click"),

 blur: action("blur"),

 change: action("change"),

 input: action("input"),

 focus: action("focus"),

};

 3. next up, we need to set up the data for our radio button group –

miss a line below the end of the previous step, then add

this code:

const reusableOptions = [

Chapter 11 taking things Further

330

 {

 name: "frequency",

 value: "daily",

 label: "Daily",

 },

 {

 name: "frequency",

 value: "weekly",

 label: "Weekly",

 },

 {

 name: "frequency",

 value: "monthly",

 label: "Monthly",

 },

];

 4. as with previous components, we need to add a Meta tag – this

time, as we’re using a different format of the story block, we

need to add this export statement instead:

export default {

 title: "Cobalt UI Library/New Components/RadioButton",

 component: RadioButton,

};

 5. next up comes the template – this will be similar to previous

examples we’ve created earlier in the book:

const Template = ({ ...args }) => ({

 Component: RadioButton,

 props: args,

 on: {

 ...actionsData,

 },

});

Chapter 11 taking things Further

331

 6. For it to all work, we need to bind that template to a story – this

takes a slightly different format to the usual <story> tag we’ve

used in previous examples:

export const Default = Template.bind({});

Default.args = {

 id: "r1",

 type: "radio",

 options: reusableOptions,

 legendLabel: "Radio legend",

};

 7. save and close the file. next, switch to a node.js terminal

session, and change the working folder to our project area.

 8. We need to push up all of the changes we’ve made so far – at

the prompt, enter git add . and press enter to pull all of our

files together, ready for committal.

 9. next, enter git commit -m "Addition of test and

storybook changes" to create a commit and press enter.

 10. Finally, enter git push to upload all of the changes to our

repo – assuming you set up netlify earlier, this will kick in and

rebuild the library. if all is well, we should see our component

appear when browsing to the netlify site, as shown in

Figure 11-2.

Chapter 11 taking things Further

332

Figure 11-2. The rebuilt RadioButton component in Storybook

And we can relax…! That was sadly the last component, at least for the

book – we’ve covered some great tips throughout these pages and created

some useful features along the way. There will be more to come – but for

that, check out my website at www.cobaltui.dev. (It’s a shameless plug,

but I hope you will visit…!)

That aside, you will notice that this time around, we’ve used a different

format to host our Storybook page for RadioButton. There are some

similarities to what we’ve done before, but they are equally diverse enough

that we should take a moment to digest the changes made in that demo, in

more detail.

 Breaking Apart the Code
When I first wrote the original version of this component, I couldn’t help

but think we should revisit it. After all, it would be a shame to spend time

on it and not get it into a format we can use in Storybook. With some relief,

we’ve managed to achieve something; there are still things to do, such as

writing tests, but we can at least say goodbye to the original!

Chapter 11 taking things Further

http://www.cobaltui.dev

333

The flip side to this is that we’ve had to use a different format

for Storybook – this is one of several changes I’ve implanted in this

component. We began with the usual steps of creating a folder and

placeholder component file before adding a script block that contains a

handful of exported variables, such as id and options.

Next up came the most significant part – the markup. It may look

complex, but we base the markup on a standard HTML5 fieldset, with a

label and input for each entry in our list. We use an {#each...} block to

iterate through each entry – into the <input> element, we pass values such

as type, name, and checked, along with the Svelte on: event handlers. We

round off the first part by applying some simple styling – this takes care

of positioning each element, hiding the original radio, and creating the

replacements styled for our library.

Phew! It might not look like it, but most of that first part contains a lot

of similarities to previous components – the format, exported variables,

use of keywords such as {#each...}, and Svelte event handlers.

This next part is where things get interesting – adding our component

to Storybook. It’s a different format from what we’ve been used to, but the

only way we’ll get our RadioButton component to work is to apply data. So –

how does it all hang together?

We began by creating a story for our instance of Storybook – we

imported the action function from Storybook and our component. We

also created the event and data blocks that we will use to manage events

triggered by our RadioButton components and provide data for the labels

on the screen.

Next up, we added the equivalent of the Meta tag – this time, we use

a default export, which looks different but performs the same task as the

Meta tags we’ve used earlier in the book. You will notice that I’ve used the

New Components location as we did with the Avatar component; this is

purely to keep any new additions separate from the original components,

at least for now!

Chapter 11 taking things Further

334

Next up, we moved to add the template and default story to our Story

file – both follow a different format but use the same principles. The

Template tells Svelte to use the RadioButton component (as before). It

also passes in the args value and details of events triggered by the user

interacting with our component. With the template in place, we bind to it a

story – this we call Default – and use the Template.bind() function to pair

it with our story.

To finish off, we committed all of the changes to GitHub and reviewed

them in the browser once Netlify had rebuilt the site.

 Summary

“All good things must come to an end sometime…”

Although I can’t proclaim to know who said these wise words, their

meaning is very true – yes, sadly, we have indeed come to the end of our

adventure with Svelte web components! We’ve covered a lot over the last

few pages of this book, so let’s take a moment to review what we have

learned.

We began this chapter with a look at reviewing the site – we learned

that it’s essential to have that final check over our content to ensure we

don’t let any (at least apparent) mistakes fall through into production. At

the same time, we understood that this step acts as a way to sign off the

content – we can treat it as confirmation that development has finished

and we’re ready to move our code into production.

Next up, we then talked about setting a road map – I highlighted the

importance of basing this around two critical decisions of what you want

to see in it as the library author or what it might be used for if working in

a corporate environment. We then started converting what will be our

Chapter 11 taking things Further

335

next component – this time, we based it on one originally written in React,

while learning that understanding the component’s functionality is a

better way to translate it into an equivalent in Svelte.

We then finished off by revisiting the RadioButton component – this

was effectively a last “hurrah,” but it also highlighted that we shouldn’t just

focus on new stuff but also get the existing code up to an acceptable level

before committing it to our library.

Phew – we really have come to the end of our adventure! I’ve had a

great time building and writing this book – it’s had its ups and downs while

highlighting that Svelte is still a relatively new technology with a few quirks.

But hey – all frameworks create their own little quirks over time; it’s just a

case of learning how to get around them to achieve your desired result. I

hope you’ve enjoyed the content and found something helpful, as much as

I have, and that you can put it to good use in your future projects.

Chapter 11 taking things Further

337

Index

A
Accordion component

AccordionItem atom, 78
AccordionItem

component, 78, 79
code

documentation, 82
files, 83
<Meta> tag, 82
Story block, 83

composite component, 77
creation, 74, 75, 77
data, 77
data format, 78
designers display, 74
folder creation, 78
import data, 78
information, 74
markup, 78, 79
Storybook, 79–82
unitary components, 78

Action components, 7
Accordion component

(see Accordions component)
SelectBox component

(see SelectBox component)

spinner component
(see Spinner component)

Alert component, 121–123
building the component, 123–128
in Storybook, 130–133
SVG icons, 122
warning variant, 133–135

AlertDocs.mdx, 131, 213
Alert.stories.mdx, 131
Angular, 2, 23, 106, 265
ArgsTable entry, 196, 206, 219, 229
Atomic Design principles, 78
Autogeneration, 177
Avatar component, 311–313,

316–318, 321, 323, 324,
329, 333

B
badgesConfig object, 182
Basic components, 7

checkbox component
(see Checkbox component)

input field component
(see Input field component)

slider component (see Slider
component)

© Alex Libby 2023
A. Libby, Developing Web Components with Svelte,
https://doi.org/10.1007/978-1-4842-9039-2

https://doi.org/10.1007/978-1-4842-9039-2#DOI

338

Breadcrumb component, 119
benefits, 90
code, exploring, 95
conditional blocks, 89
creation, 86, 88, 89
custom image, 89, 94
data checks, 89, 90
divider, 90, 93
folder creation, 89
HTML, 86
links/menu, 86
Storybook, 91–93
Svelte, 94
SVG icons, 86, 94
text label, 90
variables, 90
website, 86

Bundling, 250
build process, 250, 251, 253, 254
compiled component, 259
running build process, 255–258
Spinner component, 258
Vite configuration, 254
writing code, 260

C
Cards, 311
Checkbox component, 51

assumptions, 19
code

CheckboxDocs.mdx file, 39
folder, 34
HTML markup, 35

<Meta...> tag, 39
<Story> tags, 39
naming convention, 35
on, 35
Storybook, 35

creation, 31, 32, 34
radio buttons

creation, 41
HTML markup, 40
Storybook, 40, 42

slugify constant, 41
variations, 35–38

CloseIcon file, 139
CloseIcon.svelte file, 137
Cobalt UI library, 68

components, 7
e-commerce, 7

CodeSandbox, 261, 263–266, 268,
269, 291, 293

columnCount, 160
CSS Flexbox layout, 158
CSS Grid, 158, 163, 173
customElement property, 254, 255

D
Deployment process

GitHub, 273, 274
Developers, 2, 9, 17, 95, 271
Dialog component, 136

CloseIcon file, 139
showDialog, 139
steps, building, 136
in Storybook, 139–142

INDEX

339

Documentation
final checks, 272
spelling, 271

Documentation files
Accordion component, 199
action component, 196, 197
Alert component, 215
Breadcrumb

component, 220–224
Checkbox component, 185–188
components, 184
Dialog component, 210, 212,

213, 216
Grid components, 230
ImageGrid component, 230–233
Input component, 188, 190–192
Navigation components, 220
SelectBox component, 200–202
SideBar component, 227, 228
Slider component, 192–195
Spinner component, 203–205
Tabs component, 225, 226
Tooltip component, 218
updating, 184
variants, 206, 219

E
e-commerce websites, 7, 43, 53, 158

F
Functionality, 100, 111, 312,

317, 335

G
GitHub, publishing, 274

explore code, 284
repository for use, 277
setting repository, 275, 276
upload files, 283
uploading

components, 278–282
GitHub repository, 311, 324, 334
.gitignore file, 272, 277
Grid components, 7

Cell component,
constructing, 164–166

and Cell components, 160, 161
coding, 163, 164
ImageGrid component, 166, 170
placeholderImages, 166
steps, constructing, 161–163
to Storybook, 167–169
variants, 171–173

H
HTML5, 19, 53, 61, 122, 129, 143,

312, 333

I
Icon.svelte, 128, 129
iconType, 129
ImageGrid component, 157–159,

163, 166, 167, 169, 170, 173,
229, 230, 232–234

imgHolder, 166

INDEX

340

Input field component, 51
assumptions, 19
code

adding markup, 22
core component, 22
folder structure, 22
Input.svelte, 22
on, 23
{…$$props} operator, 23

creation, 20–22
documentation file, 28
ID, 29
InputDocs.mdx

file, 28
JavaScript, 23, 28
links/H2 tag, 28
<Preview> tag, 28
Markdown, 28, 29
parameters, 24
Storybook, 23

Markdown, 24, 26
set up, 24–27
Svelte, 23

Svelte, 28, 29
text box, 20
variants, 29–31

Ionicons library, 122

J, K
JSON.parse, 166

L
ListBox, 312
LoremFlickr service, 166, 173

M
MVP approach, 8, 19, 61

N, O
Native CSS standards, 158
Navigation, 50, 65, 80, 85, 119, 133,

196, 206, 209, 220
Navigation components, 7

breadcrumb component (see
Breadcrumb component)

sideBar component (see SideBar
component)

tab component (see Tab
component)

Netlify, 295
changes, 299
code, 307
setting trigger, 298
setting up, 296–298

Notification components, 7
npm

building demo, 290
code changes, 292–294
initial package, 290
new published component, 292

INDEX

341

releasing component, 284, 286
testing component, 291
writing code, 285, 286

npm install command, 14, 181

P, Q
page:null change, 177
Phew, 174, 233, 235, 264, 283, 308,

333, 335
Placeholder documentation, 95,

112, 133, 151, 176
placeholderImages, 166, 171, 173
Popover, 312
Progressbar, 311

R
RadioButton component, 273, 325,

326, 328, 332–335
React app, 267
React components, 2, 265
React framework, 1, 3, 14
rollupOptions property, 260
rowCount, 160

S
SelectBox component

adding markup, 56
benefits, 57
code

files, 60
HTML5, 61

<Meta> tag, 60
Story block, 60
versions, 61

creation, 54, 55
displayText function, 56
folder, 56
importing, 60
HTML <select> element, 53
reusability, 57
Storybook

borders, 60
set up, 57–59

style rules, 56
showDialog, 139
SideBar component, 119, 226, 273

animation, 100
cobalt-hamburger

component, 100
core functionality, 100
CSS styling, 99
demoing, 102–104
divider, 104
<div> tags, 106
dummy markup, 106
elements, 100
Hamburger icon, 96, 97, 100
HTML markup, 98, 99
links, 105
main.js, 106
on: click event handler, 100
reusability, 101
sidebar, 96, 98, 99
Storybook, 101
style library, 101

INDEX

342

Slider component, 51
assumptions, 19
code, exploring, 50, 51
creation, 43–46
Storybook, 47, 49, 50

Spinner component
adding markup, 64
code

documentation, 68
files, 68
<Meta> tag, 68
Story block, 68

creation, 62, 63
data, 62
exports, 64
rotateCircle, 64
SelectBox, 67
Storybook, 65–67
variants

animation-delay style, 73
core markup, 72
creation, 69–72
CSS styles, 73
</div> tag, 71
markup, 73
rotateCircle, 73
SelectBox, 69
splash effect, 72
variables, 73

Status badges, 178–180
Storybook, 130, 132, 133, 139, 140,

147, 148, 151, 154
Accordion component, 79–82
add-on badge, 180

addon-docs plug-in, 196
BETA label, 183
Breadcrumb component, 90–94
Checkbox component, 35–38
Checkbox documentation, 188
consistency, 176
CSS styles, 182
custom domain name, 300–302
Docs tab, 175
downloading, 14
EXPERIMENTAL label, 182
input field component, 23,

24, 26, 27
new domain, 304
npm install command, 181
page:null change, 177
plug-in, 181
publish, 295
readme file, 304–307
SelectBox component, 57–59
set up, 15–17
SideBar, 209
SideBar component, 101–105
Slider component, 47, 48, 50
Spinner component, 65–67
Tabs component, 111–113
updated DNS, 303

Svelte, 324
approach/strategy, 8, 9, 18
architecture, 1, 3
automation, 17
components, 312
demo component, 6
dependencies, 3, 14

INDEX

343

error message, 17
files, 6
GitHub, 4
installation, 11–13
interoperability, 3
Node commands, 5
npx sb init command, 17
package.json, 6, 17
server, 14
src folder, 5, 6
Storybook, 14, 17, 18
tools, 10
version, 4
Vite, 14
weather-app folder, 5
weather component demo, 4, 5
website, 18

SvelteKit, 23
svelte:options tag, 96, 100, 110,

159–161, 163, 166, 237,
313, 317

Svelte syntax, 128
Svelte Testing Library (STL),

237–239, 317, 324, 335
preparation for testing, 242
testing components, 241
web components, 240, 241
writing tests, 241, 243, 245,

247, 248
Svelte web components, 78, 158,

163, 237, 240, 268, 334
Switch, 26, 37, 49, 59, 67, 93, 113,

129, 132, 141, 150, 153, 257,
266, 281, 283, 312, 331

T, U, V
TableDocs.mdx file, 168,

170, 230
Table.stories.mdx, 168, 171
Tabs component

accessibility, 111
adding call, 115
adding variation, 114
code, exploring, 110
creation, 107–109
<div> tags, 107, 118
<Meta> tag, 115
markup block, 119
Story block, 115
Storybook, 111–113
variants, 115–118

Tags, 312
Tailwind, 101
Test coverage, 310, 324
toMatchSnapshot()

function, 249
Tooltip component

code changes, 151
steps, building, 143–147
in Storybook, 148–151
values, 147
variants, 152–154

W, X, Y, Z
Warning message, 133, 134
Web components, 2, 3, 100, 110,

157, 250, 267

INDEX

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	What Are Web Components?
	Taking First Steps
	Breaking Apart the Code

	Background to the Project
	Our Approach and Strategy
	Determining Our Needs
	Setting Up the Project
	Understanding What Happened

	Integrating a Playground
	Understanding What Happened

	Summary

	Chapter 2: Creating Basic Components
	Creating the Input Field Component
	Breaking the Code Apart
	Hooking the Component into Storybook
	Understanding What Happened
	Adding Variants

	Constructing the Checkbox Component
	Exploring the Code
	Adding Variations in Storybook
	Breaking the Code Apart
	Adapting for Radio Buttons

	Constructing the Slider Component
	Adding the Component to Storybook
	Exploring the Code

	Summary

	Chapter 3: Building Action Components
	Creating the SelectBox Component
	Understanding What Happened
	Adding the Component to Storybook
	Exploring the Code in Detail

	Creating the Spinner Component
	Understanding What Happened
	Adding the Component to Storybook
	Breaking Apart the Code
	Creating Variants
	Breaking Apart the Code

	Creating the Accordion Component
	Understanding What Happened
	Adding the Component to Storybook
	Reviewing the Code

	Summary

	Chapter 4: Building the Navigation Components
	Creating the Breadcrumb Component
	Understanding What Happened
	Adding the Component to Storybook
	Exploring the Code in Detail

	Building a SideBar Component
	Breaking Apart the Code
	Using a Style Library – A Postscript

	Adding the Component to Storybook
	Understanding the Changes Made

	Constructing the Tabs Component
	Exploring the Code Changes
	Accessibility – A Note
	Hooking the Component into Storybook
	Understanding the Changes Made
	Creating a Variant

	Summary

	Chapter 5: Creating Notification Components
	Creating the Alert Component
	Sourcing the Icons
	Building the Component
	Understanding What Happened

	Adding the Component to Storybook
	Exploring the Code Changes

	Creating a Variant
	Breaking Apart the Code

	Creating the Dialog Component
	Understanding What Happened
	Adding to Storybook

	Creating the Tooltip Component
	Understanding What Happened
	Adding the Component to Storybook
	Exploring the Code Changes

	Creating a Variant

	Summary

	Chapter 6: Creating Grid Components
	Determining the Approach
	Building the Table Component
	Understanding What Happened

	Creating the Grid Component
	Breaking Apart the Code

	Creating the Cell Component
	Understanding What Happened
	Adding to Storybook
	Exploring in Detail

	Adding a Variant
	Understanding How It Works

	Summary

	Chapter 7: Writing Documentation
	Setting the Scene
	Adding Status Badges
	Understanding What Happened
	Customizing the Badges Plug-in Configuration

	Updating Our Documentation – Our Approach
	Writing Documentation for Basic Components
	Breaking Apart the Changes

	Updating Documentation for Action Components
	Exploring the Changes Made

	Summary

	Chapter 8: Documenting More Components
	Adding the Remaining Documentation
	Adding Documentation for Notification Components
	Exploring the Code Changes in Detail

	Updating Documentation for Navigation Components
	Breaking Apart the Code Changes

	Updating Documentation for Grid Components
	Understanding What Changed

	A Final Tidy-Up
	Summary

	Untitled
	Chapter 9: Testing Components
	Setting Up the Testing Environment
	Breaking Apart the Code Changes

	Testing the Components
	Writing Tests for Our Library
	Exploring the Changes in Detail

	Bundling the Components
	Configuring the Build Process
	Exploring the Changes in Detail

	Running the Build Process
	Breaking Apart the Code

	Creating Demos in a Test Environment
	Breaking Apart the Code

	Testing with Other Frameworks
	Understanding What Happened

	Summary

	Chapter 10: Deploying to Production
	Performing Final Checks
	Understanding the Deployment Process
	Publishing to GitHub
	Setting Up a GitHub Pages Repository
	Uploading Components to GitHub
	Exploring the Code in Detail

	Releasing Components to npm
	Building a Demo
	Breaking Apart the Code Changes

	Publishing Storybook to Netlify
	Setting Up Netlify
	Understanding the Changes Made

	Adding Polish to the Repository
	Adding a Custom Domain Name
	Breaking Apart the Code

	Summary

	Chapter 11: Taking Things Further
	Reviewing the Site
	Taking the Next Steps – Setting a Road Map
	Converting Our Next Component
	Dissecting the Code
	Adding to Storybook
	Understanding the Changes Made

	Remember That RadioButton Component?
	Adding to Storybook
	Breaking Apart the Code

	Summary

	Index

