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Preface

The idea for the Life Sciences book series came about in December 2015, when I was in 
the process of developing new teaching concepts for my computer science lecture. While 
searching for suitable literature, I noticed that although there is a wide range of books, 
workshops, and online tutorials for the C++ programming language on the market, none 
of them meet the needs of my students.

Each of the offerings in itself, of course, serves its purpose and is sometimes more and 
sometimes less successful, but all of them assume that readers have an intrinsic motivation 
to become involved in computer science.

However, this motivation cannot necessarily be assumed for students who take com-
puter science as a minor in an interdisciplinary degree program. As diverse as the compo-
sition of subjects in an interdisciplinary degree program is, so diverse are the careers of 
students who have completed these programs. Not all of them focus on software develop-
ment, and some will probably never write another program after graduation.

In these courses, it is important to provide students with a different motivation as to 
why they should pursue computer science.

However, this problem does not only affect computer science, but all basic subjects of 
an interdisciplinary course of studies. Consequently, it makes sense to build up a common 
teaching concept that extends across different basic subjects. The idea is to define tasks 
that originate from the respective courses of study and then to break them down into prob-
lems of the basic subjects. In this way, the individual books can function on their own as 
textbooks for their field of application, but in interaction with the other volumes they can 
offer a self-contained description of solutions for subject-specific problems. You, the 
reader of these lines, thus have the possibility to concentrate only on the works that are 
really interesting for you. The subject-specific problems provide motivation to deal with 
the respective basic subject.

I am very happy that I was able to win over a number of colleagues to help me realize 
my idea. Thus, in addition to the book on computer science, other books are appearing 
with the subjects of physics and mathematics. The future will show whether the list will 
become even longer.
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Of course, I would be very pleased if the teaching concept of the books would simplify 
your entry into the basic subjects. Therefore, I wish you much fun and success in reading 
the book and learning the basics of computer science.

I have tried to adapt the book to the best of my knowledge and belief to the needs of 
students in the minor subject. I would like to express my sincere thanks to two of my stu-
dents, Ms. Lea Jungnickel and Ms. Sandra Kerstin Spangenberg, who read the book from 
a student’s perspective and pointed out the incomprehensible passages to me.

Prof. Dr. Holger Kohlhoff and Prof. Dr. Jürgen Lorenz supported me in terms of content 
during the troubleshooting. I would also like to thank them from the bottom of my heart.

Reinbek� Boris Tolg   
August 2018

Preface
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1How to Work with This Book

This question certainly cannot be answered the same way for everyone, because each per-
son reading this book has different prior knowledge and needs in terms of how knowledge 
should be imparted. Therefore, perhaps the first important thing is who should read 
this book:

The book is intended for people who are confronted with the subject of computer sci-
ence and programming either in the course of studies, training, purely out of interest, or 
for other reasons. Presumably, computer science is a minor subject and is not the central 
topic of your interest. I assume that you have no or very little basic knowledge. I also 
assume that the subject of computer science has not played a significant role in your life to 
date. You may even have always been somewhat suspicious of the subject and the people 
who deal with it.

If you have the opportunity, try not to go through the book alone, but find a study group. 
First of all, it is more pleasant when several people support each other in working through 
a new and perhaps even unpopular topic. However, experience has shown that it also 
improves learning when they try to explain to each other what they have already under-
stood. Whenever you are struggling for words when explaining something, you haven’t 
really understood it yet and should look at the topic in question again.

The important thing is that you try to explain everything in your own words. If you do 
not have a study group, pets or an empty chair are also suitable.

How do you work with the book now?
The book is divided into three major sections. In the first part of the book, some basics 

are taught. You should read the chapter on syntax diagrams right at the beginning, because 
you will need this knowledge in the second part of the book.

The Unified Modelling Language (Object Management Group 2018), called UML for 
short, is a graphical language that will enable you to represent complex processes in 

© The Author(s), under exclusive license to Springer Fachmedien Wiesbaden 
GmbH, part of Springer Nature 2023
B. Tolg, Computer science to the Point, 
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programs simply and clearly. It consists of many different types of diagrams, but only 
three of them will be presented in this book. The use case diagrams document one of the 
first steps on the way to a new software project; they are easy to understand but are not 
needed until the third part of the book. The activity diagrams provide a detailed description 
of program flows and are used as early as the second part of the book. The class diagrams 
require knowledge of classes, so you should wait until you have completed the second part 
of the book to use them.

At the end of the first part you will find a short introduction to competence orientation 
and Bloom’s taxonomy levels. There, it is explained how the exercises in this book are 
conceptualized and which conclusions you can draw for yourself.

The second part of the book explains the basics of the programming language C++. If 
you have no experience with C++ you should work through this part of the book from front 
to back. The later chapters always build on the knowledge of the previous ones. 
Occasionally, however, there is content in a topic that you do not necessarily have to 
understand the first time you work through it. These chapters deepen the knowledge and 
are marked as advanced in the headings.

But before you start reading the second part of the book, you should get a development 
environment for the language C++. There are free development environments for every 
major operating system. The examples in this book were tested with the free Microsoft 
Visual Studio 2017 Community Development Environment (Microsoft 2017), which can 
be used on Windows systems. Other free development environments include Code::Blocks 
(Code::Blocks 2017) for Windows, Xcode (Apple Distribution International 2017) for 
macOS, and the platform-independent development environment Eclipse CDT (Eclipse 
Foundation 2017). However, this list is by no means exhaustive.

In the third part of the book, the knowledge from the previous two parts is used to face 
subject-related problems. There, it is explained what a more complex task might look like 
and how you can get to a practical implementation step by step.

1  How to Work with This Book
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2Documentation of Languages and Programs

2.1	� Syntax Diagrams

In computer science, syntax diagrams are used to graphically represent the structure of 
statements. The term syntax already suggests that it is about how words become sentences. 
However, syntax diagrams go one step further and are also used to first define what is 
meant by the term “word”.

In Fig. 2.1, some terms are first defined that can be reused in other diagrams. The term 
to be defined is always placed above the diagram, followed by a colon.

The arrows in the diagram indicate the direction in which the diagram can be traversed. 
It is not allowed to move against the direction of the arrows. The first diagram on the left 
defines the term lowercase. It shows various paths leading from the left to the right edge 
of the diagram, each pointing to a circle. Within the circles, or more precisely within rect-
angles with rounded corners, characters or text are specified to be rendered exactly as 
defined in the diagram. In this case, they are all letters of the alphabet in their lower-
case form.

The other two diagrams define analogously the meaning of the word uppercase as a 
letter of the alphabet in the capitalized form, or the word digit as a digit between 0 and 9.

After these terms have been defined, they can be used in further diagrams. In Fig. 2.2, 
the two terms lowercase and uppercase are used to define the term letter.

If terms are to be used that have already been defined in other diagrams, these terms are 
written in a simple rectangular box. Thus, according to this definition, the term letter 
denotes either an uppercase letter or a lowercase letter.

However, the syntax diagrams also allow more complex syntactic constructs to be 
described. The programming language C++ allows you to specify names for functions and 
variables that can be used in programs. The names may consist of letters, digits and the 

© The Author(s), under exclusive license to Springer Fachmedien Wiesbaden 
GmbH, part of Springer Nature 2023
B. Tolg, Computer science to the Point, 
https://doi.org/10.1007/978-3-658-38443-2_2
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Lower case: Upper case: Digit:

a

b

c

d

y

z

A

B

D

Z

0

1

2

3

8

9

Y

C

Fig. 2.1  Syntax diagram for the definition of lower and upper case letters as well as digits

Letter:

Uppercase

Lowercase

Fig. 2.2  Syntax diagram for 
the definition of a letter as 
either a lowercase or upper-
case letter

underscore. However, variable or function names must never begin with a digit. This struc-
ture is shown in Fig. 2.3 with the aid of a syntax diagram.

Starting from the left margin, in the first part of the diagram there is a choice between 
a letter and the underscore, which corresponds to the first allowed character of a variable 
name. In the second part, there is a choice between all three options. Just before the right 
edge of the diagram, there is an additional arrow that allows to return before the selection 
of the three options. This arrow represents an optional loop, so the selection can be repeated 
as many times as desired. In other words, the variable name can be of any length and it is 
possible to use a digit, a letter or an underscore for every character except the first.

For example, a valid variable name according to this definition would be _TesT5, while 
the variable name 1_test would be invalid because it starts with a digit.

In this book, syntax diagrams are used at various points to illustrate the structure of 
statements. However, the term statement itself is not defined, although it is used in some 
diagrams. This is due to the fact that many language elements introduced in the second 
part of the book are statements that can be inserted at the appropriate place. In addition, 
many other language elements exist beyond the scope of the book that also fall under this 
term. Consequently, a complete definition of the term by a syntax diagram would be con-
fusing and would not help to understand the language C++.

For the same reason, no syntax diagrams were prepared for some statements or data 
structures, such as the classes in Chap. 10. In these cases, however, the structure is clarified 
with the aid of examples.

Some syntax diagrams use the term block, which is defined in Fig. 2.4.
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Variable name:

Letter
Letter

Digit

Fig. 2.3  Syntax diagram for the definition of function and variable names in

Block:

Statement

Fig. 2.4  Syntax diagram for 
the definition of a state-
ment block

It is a sequence of statements enclosed by curly braces. However, within the curly 
braces there is also a path that leads past the statement. This means that the statement is 
optional and can therefore be omitted. In this case, the block consists of only one pair of 
curly braces.

2.2	� Unified Modelling Language (UML)

The Unified Modelling Language, or UML for short, is a graphical language that can be 
used to model and describe software systems. Since complex systems are described 
through this modeling, the design and creation of the description of a software system is 
also called software architecture. The UML defines various types of diagrams and expres-
sions that enable even non-computer scientists to understand the relationships in complex 
systems. The first version of UML was essentially driven by three people. Grady Booch, 
Ivar Jacobson and James Rumbaugh (“The Three Amigos”) had initially developed their 
own modeling languages, which they later merged into the common language UML.

The specification and further development of UML is carried out by the Object 
Management Group (Object Management Group 2018).

In UML, a rough distinction is made between two types of diagrams, the structure dia-
grams, which take a static view of the individual components of a software and relate them 
to each other, and the behavior diagrams, which describe communication and dynamic 
processes. In the following, an overview of all diagrams of the UML is given with a short 
description. However, some of the diagrams describe relationships that require more expe-
rience than can be provided by reading this book. Therefore, the descriptions are only 
intended to provide a rough estimate.
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•	 Structure charts
–– Class diagram – Models the relationships of classes and their interfaces.
–– Component diagram  – Describes the relationships of more complex components 

(which can be described by class diagrams) and their interfaces.
–– Object diagram – Describes, among other things, the assignment of the attributes of 

a class to certain objects.
–– Profile Diagram – Allows you to define extensions for applying UML to specific 

systems, called profiles.
–– Composite Structure Diagram – Describes the internal parts of a complex compo-

nent and their relationships to each other and to the outside world.
–– Deployment Diagram – Describes the distribution of software across multiple com-

puters for complex systems.
–– Package Diagram – A flexible diagram that allows you to combine other diagrams or 

descriptions into one Package and describe connections to other Packages.
•	 Behaviour charts

–– Use Case Diagram – Gives an overview of the actors and with what goal they use a 
software.

–– Activity Diagram – Describes the individual actions and their relationships that must 
be performed when implementing a use case.

–– State Machine diagram – Describes the various states of a finite state machine.
–– Interaction diagrams
–– Sequence diagram – Describes which objects communicate with which messages. 

The focus is on the clear representation of the chronological sequence of the 
messages.

–– Communication Diagram  – Also represents communication between objects, but 
with an emphasis on the relationships between objects.

–– Interaction Overview Diagram – Can combine elements from the activity diagram 
with those from other interaction diagrams to describe complex processes inside and 
outside components.

–– Timing Diagram – Represents the changes of states of objects on a timeline.

In larger software projects, the use of these diagrams is useful to better plan and document 
the software. The communication between different developer groups is also improved by 
the easily understandable diagrams. For the introduction to computer science, however, 
only three types of diagrams will initially be described and applied in more detail.

2.2.1	� The Use Case Diagram

Use case diagrams are created at a very early stage of software development. They are 
used to approach the tasks of a software system by documenting what types of people will 
interact with the system. For each of these actors, use cases are then identified in which 
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use case example

Actor

Use case

Fig. 2.5  Use case diagram with one actor and one use case

use case Open image

Users

Display File Selection

<<include>> <<include>>

<<include>>

Open image

Display Image

Load image

Fig. 2.6  Use case diagram for loading an image with partial use cases

they will interact with the software. In Fig. 2.5, an actor, represented by a stick figure, and 
a use case are documented.

The use case is always symbolized by an ellipse. The relationship between actor and 
use case is represented by a solid line called association.

All diagrams of the UML are enclosed by a solid frame, in the upper left corner of 
which an abbreviation for the diagram, as well as a description for the displayed content 
can be found. This description is always enclosed by a near-rectangular box whose lower 
right corner is indented. In this case, use case stands for the use case diagram and example 
for the short description. Instead of use case, the UML also allows the abbreviation uc.

In Fig. 2.6, a concrete use case for an image processing software is now to be described, 
which will additionally be extended by several partial use cases.
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The use case described is intended to describe the opening of an image, so the name 
was set accordingly in the upper left corner of the diagram. The user (or users) of the soft-
ware to be created was associated with this use case.

However, the Open Image use case is composed of several sub-aspects that may also be 
relevant in other use cases. Therefore, it may be useful to document these sub-aspects as 
individual sub-use cases. In this way, common aspects of different use cases can be 
highlighted.

In this example, the Open Image use case additionally includes the Display File 
Selection, Load Image, and Display Image use cases. The connection is represented in the 
diagram by a directed connection in the form of a dashed line with a black arrowhead. The 
arrowhead points from the parent use case to the sub use case. The connection must be 
marked with the note <<include> > .

Optional use cases can also be modeled using use case diagrams. For example, it may 
be necessary to display a help function when an appropriate selection is made. But also the 
selection of a certain file format can be an extension of the described use case.

In this case, the UML provides that the use case is traversed by a horizontal line. The 
upper part still contains the name of the use case, while so-called extension points can be 
listed in the lower part. This list is always introduced with the term extension points.

In Fig. 2.7 the use case diagram is extended by the optional use case Select file format.
First, the use case Display file selection was divided into two areas as described before. 

In addition, the extension point Selection has been added. This name is assigned so that it 

use case Open image

Users

Display File Selection
extension points

selection 

Open image

Select file format

Display Image

Load image

condition: user selects other 
file format extension 
point: selection

<<extend>>

<<include>>

<<include>><<include>>

Fig. 2.7  Use case diagram for loading an image with partial use cases and extension for file format 
selection
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can be referred to later at another point. In addition, it is of course useful to assign a name 
that makes it clear what can trigger the optional use case.

The new use case Select file format must now be connected to the main use case with a 
directed connection. The representation is identical to the <<include> > −connection, but 
points from the extension to the main use case and is marked with the <<include> > note.

In addition, a comment field is inserted that is attached to the <<include> > −connec-
tion with a dashed line. The comment field specifies with condition: the circumstances 
under which the extension is executed and defines the extension point to which the exten-
sion belongs.

With very complex software systems, it is easy to lose track of what is going on and it 
is very important to break the software down into components that are responsible for 
specific tasks.

In this case, it is of course also important in the use cases that the components affected 
by the various use cases can be documented. The UML allows the documentation of 
responsible software components in use case diagrams by drawing simple rectangles 
around the affected use cases.

Figure 2.8 shows the already known example in a simplified form and supplemented by 
the Responsible Software Component.

Within the rectangle, all use cases concerning the software component can be docu-
mented. The name of the software component must be documented in the upper left cor-
ner. The keyword <<Subsystem> > makes it clear that it is a software component.

The use case diagrams of UML can actually do much more than has been described so 
far, but this description should suffice for a start. A complete documentation can be found 
in the respective current UML specification (Object Management Group 2018).

use case Open image

Users Open image

<<Subsystem:>>
User interface

Fig. 2.8  Use case diagram for loading an image and assigning the responsible component
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2.2.2	� The Activity Diagram

The use case diagrams serve as a first very rough estimate of the tasks of the software 
system. And even if the use case diagrams already offer a variety of possibilities, they are 
still not sufficient to describe functional processes in detail.

For each use case, many small steps must be performed in a specific sequence, which 
depend on conditions, partly run in parallel or open up different choices. To be able to 
describe this in detail, activity diagrams are needed. To describe some basic elements first, 
Fig. 2.9 shows a very abstract activity diagram for the use case Open image.

In the upper left corner, the name for the diagram is defined. The abbreviation act, or 
the word activity, makes it clear that this is an activity diagram. This type of diagram 
always requires a starting point at which processing begins. One way to do this is to have 
a starting node, which is represented as a completely filled black circle. Starting from this 
node a token travels along the directed connection, which is called edge, or activity edge.

A token is a marker or data container that moves through the network. If the token 
encounters an activity node, this node is activated and executed. All other nodes are inac-
tive. In this first example diagram, the activity node was called Open Image and was rep-
resented by a rectangle with rounded corners. What exactly happens inside this activity 
node can be shown in a later diagram.

After the activity Open Image is completed, the token follows the edge again and meets 
the end node, which ends the parent activity.

The start and end nodes belong to the so-called control nodes, which serve to control 
the movement of the tokens within the diagram. Activity nodes, like open image are called 
executable nodes.

The activity diagram in Fig. 2.10 is intended to specify in more detail what happens 
within the activity Open image. In order to make it clear that we are dealing with the pro-
cesses within a node, a further frame has been inserted to represent the boundaries of the 
activity node. Additionally, some new display elements have to be introduced.

First, since its version 2.0, UML distinguishes between control flows and object flows. 
The control flows determine when activity nodes are executed. The tokens of the control 
flows originate in the start nodes and end in the end nodes. On their way they activate the 
activity nodes, are redirected by decision nodes, or possibly even sent to two parallel paths 
by a fork.

In addition, however, UML allows object flows to define which data is exchanged 
between different activity nodes. For this purpose, the activity nodes are extended by small 
rectangles, the so-called pins, each of which stands for a parameter that either leaves the 

act Open image 

Open image

Fig. 2.9  Activity diagram for 
loading an image
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Display file
selection

Fig. 2.10  Activity diagram for the processes within the activity Open image (part 1)

node or reaches it. In the diagram, object flows can always be recognized by the fact that 
they begin and end at pins, while control flows are connected directly to the activity node.

Decision nodes are represented by a diamond. These nodes allow to redirect the control 
flow under certain conditions. These conditions, called guards, must be written inside 
square brackets on the edges leaving the decision node.

In the following, a distinction is made between object tokens for object flows and con-
trol tokens for control flows.

After the activity node Open image has been activated, a control token is created in the 
start node that follows the edge to the decision node. If a selection of the file format is 
desired, the control token follows the corresponding edge. Within the activity node Select 
file format, an object token is generated that determines the file format. This leaves the 
activity node via the corresponding pin and is transferred to the input pin of the activity 
node Display file selection. When the activity node Select file format has finished its activ-
ity, the control token moves over the edge to the activity node Display file selection and 
activates it.

Alternatively, the activity node Display file selection can be activated directly if no 
selection of the file format is desired. In this case, no object token is transferred to the 
node. This empty or unset object is also called null.

What happens inside the node Display file selection is described in more detail in 
Fig. 2.13. First, however, the further process after the file selection has been completed is 
to be considered. For this purpose, the diagram in Fig. 2.10 is supplemented so that the 
diagram shown in Fig. 2.11 results.

Two new pins have been added to the activity node so that it can generate two object 
tokens. One of the two object tokens transports the selected file name to the next activity 
node Load image. However, the second object token is much more exciting. It transports 
the information whether the selected file should actually be opened and has either the 
value “true” (true) or “false” (false). This information is forwarded to a decision node.

2.2  Unified Modelling Language (UML)
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act Open image

Open image

[otherwise]

[Select file
format]

Select file
format

File format

Display file
selection

Open file

p. i. e.

File name

Load image

[true]

[false]

Fig. 2.11  Activity diagram for the processes within the activity Open image (part 2)

When the activity node Display file selection has completed its tasks, a control token 
also moves to the decision node. Thus, an object token and a control token now move to 
the decision node. The edge of the control flow has been labeled with the three letters p. i. 
e. This stands for primary incoming edge and states that the decision node forwards only 
the control flow. However, the object flow is used to make the decision and is called deci-
sion input flow.

If the selected file is actually to be opened, the control token is forwarded to the Load 
Image activity node. Otherwise, the activity is canceled.

Figure 2.12 now shows the complete sequence of the activity Open image.
Load image also creates two object tokens. One of them transports the loaded image to 

the activity node Display image. The second object token is transported again to a decision 
node that decides whether the image should be displayed or not. The object token contains 
information about whether the image was loaded successfully. However, this can fail for 
various reasons. Perhaps an external drive has been removed in the meantime and the file 
can no longer be read. It is also possible that the selected file was not an image at all. In 
these cases, of course, the Load Image activity node could not complete its task success-
fully and there is no image to display.

The construction of the decision node is analogous to the previous example. The node 
has two inputs, each carrying a control token and an object token. Again, the control flow 
is the one that is forwarded, while the object flow is only used for decision making.

It is often useful to document the tasks of individual activity nodes even more precisely. 
In the example, this certainly applies to each activity node shown in Fig. 2.12. For the 
introduction of the activity diagrams, however, only one further activity node is to be 
documented in more detail. Figure 2.13 shows the processes within the node Display file 
selection.

The edge of the activity has again been shown within the diagram to make it clear that 
these are processes within a node. In addition, however, there are rectangular nodes on the 
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act Open image

Open image

[else]

[Select file
format]

Select file 
format

File format

[false]

[true]

Display image Image

Load image
p. i. e.

Open image successfully

File name

Display file 
selection

Open file

[true]

[false]p. i. e.

Fig. 2.12  Complete activity diagram for the processes within the activity Open image

edge of the activity. These are called object nodes and represent the pins from Fig. 2.12. 
They are therefore the inputs and outputs of the activity’s object flows.

Directly after the input object node File Format, the object token reaches a decision 
node. Unlike all other decision nodes described so far, this decision node is located on an 
object flow. Its behavior is not changed by this, but this decision node can only redirect 
object tokens. In this case, it distinguishes between two cases. If no object token was 
passed to the activity, the file format is null. The object token is redirected to the object 
node Default file format and transmitted to the activity node Filter file selection.

In this representation, the activity node has no pins. This notation is permitted in UML 
if an object flow runs explicitly through an object node. In this case, the node takes over 
the task of the pin.

If a file format was passed to the activity node Display file selection, this object token 
is passed to Filter file selection.

The control flow of the activity starts at the start node as soon as the activity is activated 
in the parent diagram. The control token first reaches the activity node Filter file selection. 
This activity generates an object token with the selected file, which is transmitted to the 
output pin.

After completion of the activity, the control token moves on to the decision node, which 
checks whether the file should be opened or not. In the first case, the object token moves to 
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Display file selection

Display file selection

Filter file
selection

[File format !=
null]

[otherwise]

File format

Default file
format

[otherwise]

[Open file]
TRUE

true

false

FALSE

File
name

Open
file

Fig. 2.13  Activity diagram for the processes within the activity Display file selection

the action TRUE. An activity that cannot be shown in more detail is called an action. The 
action TRUE generates the object token true and forwards it to the output pin Open file. 
The control flow is terminated after the action is exited.

The action FALSE behaves similarly, except that an object token false is passed to the 
output pin.

To fully describe the activity, all activities would need to be represented by diagrams.
For activity diagrams, the statement about use case diagrams applies even more. The 

UML offers many more elements and notations that extend the possibilities of activity 
diagrams. The representation in this book is only a small part of it, but it already allows the 
representation of complex processes. Again, full documentation can be found in the latest 
UML specification (Object Management Group 2018).

However, three important elements of activity diagrams that have not been mentioned 
so far will be added in the following two chapters.

Connectors
When describing complex processes, the many different control and data flows can easily 
form a confusing network. As soon as it is no longer possible to represent the connections 
without intersections, the comprehensibility of the represented information suffers addi-
tionally. The UML therefore allows the use of so-called connectors, which are shown in 
Fig. 2.14.
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act Connector

AA

Fig. 2.14  Connectors in an 
activity diagram

act Fork and Join
Fig. 2.15  Fork and Join in an 
Activity Diagram

A connector is represented by a circle containing an identifier. If a flow is directed into 
a connector, it can reappear at exactly any point in the diagram by again inserting a con-
nector with the same identifier. For the activity diagram, the connection is considered to be 
a continuous flow. However, the clarity of the representation is significantly increased.

Fork and Join
Occasionally, the results of object or control flows are required at different points in an 
activity, because processes are to take place in parallel or objects have to be processed at 
two points. UML offers the possibility of splitting a flow with the help of a fork or merging 
it again with the help of a join. In Fig. 2.15, a control flow is split using a fork and then 
merged again using a join. Both are represented by thick black lines that split or join flows.

In a fork, a flow can be split into multiple flows without changing the nature of the flow. 
If a control flow is split, only control flows are created. Object flows behave in the same way.

A join ensures without further description that the processing only continues when a 
token is present on all incoming flows. Incoming flows are therefore synchronized. If there 
is at least one object flow among the incoming flows, the outgoing flow is always an object 
flow. The result is a control flow if only control flows lead into the join node.

2.2.3	� The Class Diagram

Once the processes of the use cases have been described using the activity diagrams, pro-
gram structures in which these processes take place must emerge at some point. In order 
to document the various classes and their relationships to one another, class diagrams are 
used in UML.

This type of diagram describes the static structure of programs developed using object-
oriented approaches. The idea of object-oriented programming and the classes in C++ are 
described in Chap. 10. Without this knowledge, some of the concepts described here, such 
as inheritance or abstract classes, are difficult to understand.
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In addition, the class diagrams are already very close to the actual implementation, 
although it is irrelevant with which language the diagrams are later realized. When reading 
the description, the question therefore often arises as to how a concrete issue can be imple-
mented. However, this is not decisive at first. More important are the considerations which 
functions and variables are theoretically needed.

Class diagrams are already very close to the actual implementation in the program 
code. This even goes so far that many UML design programs offer the option to generate 
class diagrams from already written source code. This is called reverse engineering and 
makes it clear that the diagrams should have been there before. The reverse case is also 
offered, in that the associated source code is immediately generated from a diagram. 
Consequently, this process is called forward engineering.

Figure 2.16 shows a class diagram that illustrates three different ways in which classes 
may be represented in diagrams.

A frame is also drawn around this diagram type. The keyword class makes it clear that 
this is a UML class diagram.

In the simplest case, a class is represented by a simple rectangle. The name of the class 
is written in bold in the center of the field. This representation can be useful if a large 
number of classes appear on a diagram and a detailed representation of individual classes 
would reduce clarity.

At a very early stage of software development, however, it can also make sense to ini-
tially document all tasks in the form of class names without specifying them in more detail.

The second class representation already offers more information. A second rectangle 
lists the variables that belong to the class. In UML, these are called attributes. First, the 
name of an attribute is written down, followed by a colon and then the respective data type. 
In a third rectangle, the functions of the class are listed, the so-called operations. These are 
indicated by the two round brackets at the end. Function parameters are inserted within the 
brackets in the already known notation (name, colon, data type). In this representation, the 
visibility levels of the attributes and operations are missing.

Fig. 2.16  Class diagram for the different display options of a class
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These are added in the third display variant. The plus sign (+) stands for the visibility 
level public,1 the hash sign (#) for the visibility level protected2 and the minus sign (−) for 
the visibility level private.3 In this display, the rectangle for the attributes is given the head-
ing attributes and the rectangle for the operations is given the heading operations.

The third representation is particularly suitable if a part of the software is to be described 
in great detail, since all attributes and operations are represented. Connections between 
classes can also be easily traced if it is already apparent from the attributes that the data 
type of an attribute corresponds to another class.

Now the example Open image is to be concretized by a class diagram. Figure 2.17 
shows the classes with which the task is to be solved.

The class Frontend shall implement all tasks that involve a direct interaction with the 
user, while the class Image is responsible for all image operations. Finally, the display of 
image data shall be done by the class View. This structure has proven itself for data pro-
cessing software, which is why it belongs to the standard designs of software architecture. 

1 Full access to the elements from inside and outside the class.
2 Full access to the elements from inside the class. Access from outside the class is prevented.
3 Full access to the elements from within the class. Access from outside is not allowed, as with pro-
tected. In addition, the element cannot be inherited. The term is explained again in detail in connec-
tion with the classes.

Open image

Fig. 2.17  Class diagram for the use case Open image (part 1)
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The technical term for such standard designs is design pattern. This particular design pat-
tern is called a model view controller.

The role of the controller is taken over by the class Frontend. It controls the processes 
between the different classes. In this example, the class stores a list of images in the attri-
bute m_images and a list of views in the attribute m_views.

Since the data type of the attribute m_images is the class Image, which is also shown in 
the diagram, a directed association between the class Frontend and the class Image was 
inserted into the diagram. The association is represented graphically by a solid line with 
an arrowhead. The direction indicates that the class Frontend has a reference to the class 
Image, but not vice versa.

At the end of the association is a label −m_images which makes it clear that the rela-
tionship was established by this attribute.

The numbers below the association are called multiplicities and mean in this case that 
an object of the class Frontend can be connected to any number of objects of the class 
Image. Here, means that 0..* also no connection is allowed.

From the point of view of an image processing program, this modeling makes sense 
insofar as the program certainly has not yet loaded any images at startup. Later, during 
operation, no maximum number of images is given to the users by the modeling.

A similar association has been added between the Frontend class and the View class. 
This allows multiple views of the images to be managed simultaneously.

The class Frontend must, as already mentioned, additionally implement the tasks that 
require direct user interaction. In this example, these tasks are handled by the operations 
openImage and selectFile, which correspond to the activity nodes Open Image and Display 
File Selection from Fig. 2.12.

The next steps of processing take place within the Image class. This class is responsible 
for loading, saving and editing the image data. To do this, it needs attributes that can store 
all the necessary information about the stored image.

In one of the simplest cases, this is the image data itself, stored in the attribute m_
imageData, and the width and height of the image, stored in m_width and m_height.

The first operation loadImage implements the activity node Load Image from Fig. 2.12. 
For the second operation getImageData there is no equivalent in the activity diagrams yet. 
However, it is necessary that an external class that is to display the image can somehow get 
the image data.

The third class in the diagram is responsible for displaying images and thus fulfills the 
tasks of the activity node Display image from Fig. 2.12. The class requires an attribute 
m_image in which the image to be displayed is stored. This connection between the two 
classes is again represented by an additional association. The multiplicities at the ends of 
the association make it clear that an object of the class Image is uniquely assigned to an 
object of the class View.

The operations show and hide are used to open and close the image display. The View 
constructor passes the image object to be displayed to the View class.

With these three classes, the use case Open image can be realized in a software system.
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However, two additional display elements are needed to complete the basics of class 
diagrams. For this reason, the use case is to be extended a little.

In a real image processing software, images are usually displayed in windows of the 
respective operating system. These windows are usually realized by classes in the soft-
ware. However, as the images are edited, the displayed contents change occasionally and 
the display must be adapted.

Of course, each image can now be assigned the class in which it is displayed, but this 
solution is not very flexible. If the image can be displayed in several different classes, this 
solution quickly becomes confusing. But even for this case there is a design model that 
solves the problem, the so-called Observer Pattern.

To do this, an abstract class is defined that acts as an independent interface for all 
classes that need to be updated. Updating occurs whenever the data of a model, in this case 
the image, changes.

The screen can now keep a list of interfaces without worrying about what classes might 
be behind them. Every time the data changes, the list is passed through to inform about 
the update.

Figure 2.18 extends the already known class diagram by an Observer Pattern, with the 
help of which the class View can be informed about every change in the data of the class Image.

Open image

Fig. 2.18  Complete class diagram for the use case Open image
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To do this, we first introduce an abstract class (see Sect. 10.5) IObserver, which has 
only one operation update(). The capital “I” in front of the name of the class makes it clear 
that this is the definition of an interface. However, this naming is only a convention of 
good practice to make interfaces easier to identify within the later program.

To ensure that the class is actually defined as an abstract class within the UML, it is 
necessary to note the keyword abstract in curly brackets under the name of the class.

An attribute is now added to the Image class in which all interfaces that are to be 
informed about an update can be stored. In this example, the attribute was named m_
observers and has the data type IObserver. In addition to the attribute, an association was 
added that refers from the class Image to the class IObserver. The multiplicities determine 
that a connection to several interfaces is possible.

In addition, an operation addObserver must be added, which can be used to add a new 
observer to the list.

Now the View class is to inherit from the IObserver class so that it can be added as an 
interface to the Observer list of the Image class. This is indicated in UML by a directed 
connection called generalization. This connection is represented by a solid line with a 
framed arrowhead at the end. The arrowhead points from the derived class to the base 
class, i.e. from the specialization to the generalization.

Finally, the update operation is added to the View class to implement the inherited 
interface.

Once again, many representation elements of UML have not been mentioned, yet a 
very complex example has already been created. The complete documentation of a UML 
class diagram can be found in the respective current UML specification (Object 
Management Group 2018).

2  Documentation of Languages and Programs
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3Taxonomy Levels

The exercises in this book are intended to enable you to assess your own abilities. This 
requires that you can decide for yourself whether you have solved a task or not. In addi-
tion, you should receive feedback about which skills are tested with the respective tasks.

In 1956, the American psychologist Benjamin Bloom developed a system of six cogni-
tive taxonomy levels that can be used to categorize learning objectives (Bloom et al. 1956).

The first level is knowledge and describes the ability to remember and reproduce what 
has been learned. At the second level, comprehension, facts can be described and explained. 
The third level, application, is about using what has been learned to solve concrete prob-
lems. The fourth level is analysis. Here it is a matter of distinguishing and comparing 
different solutions. At the fifth level, Synthesis, several solutions can be combined to a 
common solution. And in the last stage, the evaluation, own solutions can be developed 
and existing solutions can be evaluated.

Gerwald Lichtenberg and Oliver Reis highlight in Lichtenberg and Reis 2016 that in 
addition to the categorization into taxonomy levels, a further scale is necessary for the 
assessment. These levels can be defined individually for each taxonomy level. However, 
this procedure requires that another person exists who can assess the responses.

Since you should be able to use this book to assess your own learning success, 
Lichtenberg and Reis have simplified the procedure somewhat.

Each task in this book has been assigned a taxonomy level, which you can identify by 
a pyramid located above each task. Table 3.1 shows the different taxonomy levels and how 
they are marked in the exercises. In addition, the table shows you which criteria you can 
use to assess whether you have solved the task or not.

For each correct solution you can give yourself one point in the respective taxonomy 
level for a chapter.
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Table 3.1  The taxonomy levels for cognitive learning objectives according to Bloom

Description Symbol
Knowledge
All terms correctly used and coherently reproduced

Comprehension
The task explained with a proper rationale

Application
Calculating the correct result and applying the correct solution method

Analysis
Creating a correct hypothesis

Synthesis
Create a feasible proposal. If necessary, provide proof by testing

Evaluation
Development of a target-oriented solution idea

Knowledge

EvaluateUnderstand

Apply Synthesize

Analyze

5

4

3

2

1

0

Fig. 3.1  Network diagram for self-assessment using taxonomy levels

In the exercises, you will find a network diagram for each chapter, as shown in Fig. 3.1. 
The black line shows you the maximum number of points you can get in a taxonomy level 
in this chapter.
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After you have worked through the tasks and scored them for yourself, you can com-
pare your score with the chart. Your scores for the respective taxonomy levels show you in 
which areas you were able to collect points. With the assessment criteria from Table 3.1, 
your results thus correspond approximately to level 3 according to Lichtenberg and 
Reis (2016).

3  Taxonomy Levels
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4The Language

This chapter introduces all the basic language elements of C++. It is intended both as a 
reference work for the problems presented in Part III and as an introduction to the pro-
gramming language. For this purpose, the individual language elements are introduced 
with the help of small examples. The acquired knowledge can be checked with the help of 
the exercises in the self-test. As explained in the previous part of the book, the tasks are 
marked with taxonomy levels so that you can better assess your own abilities.

The C++ language is an extension of the C language. The C language was developed in 
the early 1970s and follows a procedural programming paradigm. At the end of the 1970s, 
the C language was extended by Bjarne Stroustroup with the so-called object-oriented 
programming paradigm. What object orientation means exactly is explained in Chap. 10 
about classes. However, the first chapters of this part first deal with the procedural devel-
opment of programs.

Various commercial or non-commercial development environments are available for 
developing C++ programs. Each of these development environments occasionally changes 
the way the C++ programs are to be written, and sometimes their appearance. Some sup-
port you by already generating program frames through the development environment, 
while others do not. To keep this book as independent as possible of the particular develop-
ment environment, no particular development environment is assumed. Of course, this has 
the disadvantage that the programs presented will only run with slight modifications in 
certain development environments.

The programming language C++ is a so-called compiler language. This means that a 
program, more precisely the source code, is translated by another program, the compiler, 
into a language that can be understood by the processor on which the program is to run. 
The source code can consist of several files. The header files contain only abstract infor-
mation, comparable to the table of contents of a book. The cpp files, on the other hand, 
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contain the complete definition of the program elements, practically the book chapters that 
match the table of contents.

In C++, the translation takes place in three steps. First, the preprocessor makes modifi-
cations to the source code that enable the compiler to work, but would make it more dif-
ficult for the programmer to read the source code. In the second step, the now modified 
source code is translated by a compiler. The result of this translation are object files, which 
in principle could already be understood by the processor. However, some programming 
elements extend over several files, so that open ends (so-called links) arise. These open 
ends still have to be connected, this is done in the last step by the linker. The result of these 
steps is either an executable program or a library. The latter also consists of executable 
code, but has no main function where the program could start. You will learn what a main 
function is in the following Sect. 4.1.

4.1	� The First Program

Following an old tradition in learning programming languages, the first program a student 
of a new programming language should write is a Hello World!-program. The program 
does nothing more than print the aforementioned script to the console. Listing 4.1 shows 
the corresponding source code.

Listing 4.1  The Hello World! Program

 1   # include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     cout << " Hello World !" << endl ;
 8
 9     cin .get ();
10
11     return 0;
12   }

Much of what is explained in this section appears again elsewhere and usually in more 
detail. Nevertheless, each command of the program is to be examined roughly at first, in 
order to enable an introduction to the language C++.

The program starts with the preprocessor command, or the preprocessor directive 
#include. When editing the source code, the preprocessor recognizes the #include com-
mand and replaces the line of source code with the complete contents of the file iostream. 
The filename following the #include command may be enclosed in angle brackets 
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(#include < filename>) or in quotes (#include “filename”). The difference between the 
two notations is the number of directories that are searched to find the file.

If angle brackets are used, only those directories are searched which are passed to the 
compiler by the development environment when it is called or, if the search is unsuccess-
ful, which are specified by a certain environment variable. This usually does not include 
the directories where your own project is located. The quotes specify a different search 
order. Here, the directory where the file containing the #include is located is searched first. 
This is followed by the directories of all other files opened by #include, and only then the 
directories that are also searched with the angle brackets.

The quotation marks thus specify a larger search radius. In the examples, angle brackets 
are nevertheless always used when possible.

The iostream file defines the cout, cin, and endl statements, which could not be used 
without the #include.

The third line of the program contains the command using namespace std;. A namespace 
can be created around certain elements of the C++ language. In principle, it works similar 
to a family name. In this case, the namespace std has been defined in the file iostream 
around the statements cout, cin, and endl. Therefore, if the cout command is to be called, 
the std namespace would always have to be called first. The call would be std::cout. Since 
this can become unreadable with many namespaces, C++ allows to do without naming the 
namespace if this was announced beforehand by the using namespace command.

In general, all statements in C++ must be terminated by a semicolon. However, as is 
almost always the case, there are exceptions to this rule. For example, preprocessor state-
ments such as #include do not require a semicolon, and this is not always the case after 
curly braces.

In line five of the program follows the line int main() and then some commands enclosed 
by curly braces. As mentioned before, the C language and also its extension C++ support 
a procedural programming paradigm. In this case, this means that programs can consist of 
several parts called procedures, or functions. These parts perform certain tasks and are 
given a name. This name can be chosen arbitrarily within the limits described in the syntax 
diagram 2.3 on page 6. However, it is advisable to use the name to describe the function’s 
task in summary form. This simplifies the work with the program considerably.

A function can, as may be known from mathematics, receive values and also return 
them in various ways. The line int main() causes the definition of such a function. This is 
the most important function of the program, the so-called main function. It is the entry 
point to your C++ program and every program must have such a function somewhere. No 
matter where it is located within your source code, the program always starts there.

The definition consists of four important areas. First comes the int. This is a variable 
type that can store positive and negative integers. In this case, it is used to define the return 
value of the function. When this function is called, it is clear to the caller that the result of 
the call will be an integer.

The second area is the main. This is the name of the function, which can normally be 
freely chosen within the described limits (syntax diagram 2.3). In the case of the main 
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function, however, this name is subject to additional restrictions. In order for the main 
function to be recognized as such, the name main must be chosen.

In third place come the brackets (), which in this example remain empty for the time 
being. Nevertheless, they are very important for the definition, because they make it clear 
that a function is to be defined. In later examples, the values to be passed to the function, 
the so-called parameter list, will be inside these brackets. From mathematics, you may be 
familiar with the y = f(x) typical function definition, which works on the same principle. 
Inside the parentheses is also in mathematics the parameter that is to be passed.

Finally comes the area inside the curly braces in lines six through twelve. The curly 
braces mark the function body. This is the area that defines what is to happen when the 
function is called. Program statements can only be inside functions because that is the only 
way a defined program flow can occur. Instructions outside of a function could not be 
processed meaningfully, since it would not be clear when they are to be executed.

Within the function, three commands are executed. First cout ≪ “Hello World!” ≪ endl;.
The command cout is defined, as already mentioned, in the file iostream, which was 

inserted in the first line by #include. It causes an output in a text console. The individual 
outputs can now be written after the cout, separatedby ≪ from each other. In the example, 
the text Hello World! is to be printed. To mark the output as text, quotation marks must be 
placed around the text (“Hello World!”). Finally, you want to jump to the next line. In 
word processing software, this would be done by pressing the Enter key. In the program 
this is done by the command endl.

What does the program do so far? It starts in the main function and prints a text on the 
screen. Thus it has fulfilled its desired purpose. Now the program could terminate itself 
directly, but this would happen so fast that nobody could read the text. So it is necessary 
to wait for an interaction of the user before the program is terminated. This purpose is 
served by line nine of the program cin.get();, which waits for the user to press the Enter key.

The command cin, like cout, comes from the file iostream. However, the command 
does not write a value to the text console, but reads a value from there. The round brackets 
of the get() function make it clear that it is a function call, which again takes no parame-
ters. The dot between both commands shows that the function get() is provided by cin and 
could not be called alone.

Line nine is not required in every case and every development environment. Some 
development environments leave the text console open after the program has finished, so 
that the result remains visible. In the sample programs in this book, the command has been 
omitted. If your development environment closes the console immediately after execution, 
you only need to write the line cin.get(); directly before the return in the sample programs.

In line 11 now follows the last command of the program return 0;. This command ter-
minates the function and returns the value 0 to the caller. In the function definition in line 
5, the main function was defined by the int to return an integer. This definition is now satis-
fied by the 0.

Again, the main function is special because it is called by the operating system when 
the program starts. The operating system expects the return of the value 0  in case the 
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program was executed properly. Any other value is considered an error, even if the operat-
ing system cannot interpret this value. When developing a program, care should therefore 
be taken to ensure that there is documentation of the possible return values so that error 
codes can be interpreted.

4.2	� A Few More Tips

First, check whether your development environment automatically closes the text console 
after executing the program. If this is the case, you must add the line cin.get(); before the 
line return 0; in all the sample programs in this book.

You may have noticed that the source code in Listing 4.1 follows a certain structure. 
Curly braces, for example, always stand alone on a line and the closing brace always 
stands exactly below the opening one, thus enclosing a block. Within a block, all lines are 
indented so that they are also placed one above the other.

This is by no means assumed by C++. Listing 4.2 works the same way as Listing 4.1, 
and you can judge the readability for yourself.

Listing 4.2  The Hello World! Program, Different

1   # include <iostream >
2   using namespace std;int main ()
3   {cout <<" Hello World !"<< endl ;cin.get (); return 0;}

It is wise to follow certain conventions from the beginning. In this book, certain rules 
are followed consistently and I will refer to them at the appropriate time. There are cer-
tainly different points of view on the details of the conventions, and you may eventually 
develop your own rules. For starters, however, I recommend that you try to imitate the 
style of the program examples shown here.

Use spaces, tabs and new lines to increase the readability of your programs. For the 
compiler, these characters, called whitespaces, are in most cases unimportant. However, 
they are indispensable for the readability and maintainability of programs.

This also includes adding comments to your own programs. In C++ there are two pos-
sible types of comments.

•	 Single-line comments started by //. The rest of the line is now interpreted as a comment 
and is no longer subject to C++ language rules.

•	 Multiline comments started by the string /* and ended by */.

Listing 4.3 shows the familiar Hello World! program with comments.
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Listing 4.3  The Hello World! Program with Comments

 1   /*
 2   Author : Boris Tolg and many before and after him. 
 3   Title : Hello World ! 
 4   Date : 02.03. - - - -
 5   Language : C++
 6   ...
 7   */
 8
 9   # include <iostream >
10
11   using namespace std;
12
13   int main () // Main program
14   {
15     cout << " Hello World !" << endl ; // Text output
16
17     cin .get (); // Waiting for user input
18
19     return 0; // End of the program , Status ok
20   }

You should get into the habit of commenting your own programs in detail from the 
beginning. You should take care that the comments should give an abstract description of 
the contents. A comment alphabetical sorting of the words for several instructions in a 
small program section facilitates the understanding of a program much more than a com-
ment Here the value 0 is returned before the line return 0;.

In addition, you should frequently have your programs compiled by the development 
environment. This has two main advantages:

•	 You will recognize very quickly if you have written something wrong in your program.
•	 Since the error messages of the compiler or linker are often not very clear, the area you 

have to search for the error is manageably small.
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5Variables

Short and Sweet

•	 Variables allow you to store values within programs.
•	 There are different types of variables.
•	 Variables of a certain type have a fixed value range.
•	 A variable type also specifies the type of values that can be stored:

–– Integers,
–– Comma numbers,
–– Truth values,
–– Letters.

•	 Possible sources of error:

When converting values of a certain type to another, content may be lost.

Variables are one of the most important elements of any programming language. They 
are used to store values, to pass them on or to assign meaningful names to certain values. 
In Listing 5.1, various variables are defined and initialized.

Listing 5.1 Variable Definition and Initialization

 1   // global variables
 2   int a;      // Definition
 3   int b = 10; // Definition and initialization
 4
 5   int main() // Main program
 6   {
 7     // local variables
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 8     int x; // Definition
 9     int y = 0; // Definition and initialization
10   }

Before a variable can be used in C++, it must first be defined somewhere in the pro-
gram. Two pieces of information are needed for this:

•	 The type of the variable (e.g. int), which determines how much memory is required for 
the variable and which values are to be stored in it.

•	 The name with which the variable is to be addressed in the future. Names may contain 
letters, numbers and underscores, but may not begin with a number.

In line two, a variable with the already known variable type int for integers and the name 
a is defined by int a;. In addition to the definition, the variable can also be initialized 
immediately. This is done in line three by int b = 10;. The variable b is not only defined as 
an integer, but also initialized with the value 10. Variables that have not been initialized 
have a random content. Therefore, get into the habit of always initializing variables. This 
will help you to avoid errors, especially at the beginning.

Now the position of the definition or initialization decides about the scope of the vari-
able. If a variable is defined outside of a function, it is considered a global variable. This 
means that it is known and can be accessed in every function of the program.

If the variable is defined or initialized within a function, it is referred to as a local vari-
able that can only be used within the function. In addition, the lifetime of the variable is 
also dependent on that of the associated function. It is created when the function is called 
and destroyed when the function terminates. If local variables use the same name as global 
variables, a confusing situation arises: For the duration of the function call, the name is 
used to address the local variable. During the function, this variable can be read and 
changed. When the function ends, the local variable is deleted again and the global vari-
able with the same name remains. Its value has not changed.

If such a situation occurs, it makes sense to search the immediate vicinity to find all 
definitions for variables of that name. Normally, the closest variable definition will then be 
responsible for the variable you are looking for.

This makes working with global variables problematic. Also the memory usage is 
mostly not optimal, because the variables always exist. Much more effective are local 
variables, which only exist when they are needed. A final example is parallel function 
calls, which can cause major difficulties with global variables.

All this has led to global variables being considered a bad programming style. There is 
practically no case where a better solution could not be found. The best thing to do is to 
get into the habit of doing without global variables right away.

5  Variables
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5.1	� Variable Types

The C++ language, like many other programming languages, distinguishes between inte-
ger and real data types. The amount of memory used determines how large the value range 
is that can be mapped by the respective variable type. Table 5.1 gives an overview of the 
most important data types of the C++ language.

As you can see from the second column of the table, many variable sizes are not speci-
fied by the C++ language standard and may vary depending on the compiler used. The 
third column shows the values used in this book.

•	 The variable type void is used as a placeholder. It does not express a special variable 
type and has no defined size. For this reason, no variables of type void can be defined. 
Nevertheless, it is of great importance for functions and pointers and will be described 
in more detail in Chaps. 8 and 9.

•	 The variable type bool can be used to store the results of logical expressions. They can 
either take the value true, or false. They become relevant in Chaps. 6 and 9.

•	 Variables of the type char are used to store individual letters or text characters. The let-
ters are assigned to numbers. The assignment is based on the so-called American 
Standard Code for Information Interchange, ASCII for short. To mark single text char-
acters in C++, single quotation marks are needed. For example, if the letter a is to be 
assigned to the variable letter, this is done in C++ by initializing char letter = ‘a’;.

•	 The variable types short, int, long and long long can be used to store integers. The 
number range that can be covered by the respective variable types is larger the more 
bytes the variable type occupies. The integer data types can hold positive and negative 
values. However, if only positive values are to be represented, the keyword unsigned 
can be prefixed to the variable definition. In this case, twice as many positive-only val-
ues are available. This is explained in more detail in Sect. 5.5 on number systems.

Table 5.1  Variable types of the C++ language

Variable type Size (definition) Size (assumption) (bytes)
void – –
bool Mostly 1 byte 1
char 1 byte 1
short At least 2 bytes 2
int At least 2 bytes 4
long At least 4 bytes 4
long long At least 8 bytes 8
float 4 bytes 4
double 8 bytes 8
long double Mostly 10 bytes 10
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•	 float, double and long double are the names of the real-valued data types. These data 
types are so-called floating point numbers. Since the memory requirement is also fixed 
for these variable types, a large number of decimal places can be stored for small num-
bers. For large numbers, however, the decimal point is shifted further and further to the 
right so that the large amount can be mapped. This reduces the accuracy in the decimal 
area. The decimal point therefore flows from small and exact to large and imprecise.

To determine exactly how much memory a variable type or variable occupies, the sizeof 
function can be used. For example, sizeof(int) returns the value 4, while sizeof(data) 
returns the size of the variable data.

5.2	� Type Conversion

Sometimes it may be useful to interpret one variable type as another variable type for a 
particular operation. For example, if the contents of a double variable are copied into an int 
variable, the compiler will warn that data loss is imminent because the decimal places will 
be lost. Through a type conversion, a so-called typecast, the data type for this one operation 
is interpreted differently, so that the compiler no longer needs to generate a warning.

An explicit type conversion is performed by writing the new data type in round brackets 
in front of the new expression to be interpreted. Listing 5.2 shows two examples of such a 
type conversion. First, lines 8 and 9 initialize two variables v and x, where v is of type int 
and is given the value 97, while x is defined as double and initialized to 3.5.

Listing 5.2 An Example of Type Conversions

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Variable definition and initialization
 8     int v = 97;
 9     double x = 3.5;
10
11     cout << v << " << (char)v << endl;
12     // Output: 97 a
13
14     cout << x << " << (int)x << endl;
15     // Output: 3.5 3
16
17     return 0;
18   }
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The values of the variables are now printed in lines 11 and 14. The first output is 
unchanged, so that the stored value is displayed. In line 11, the variable v is then converted 
into a letter by (char) in the second output. According to the ASCII table, 97 corresponds 
to a, which is also printed.

In line 14, the variable x is converted to an integer by (int) so that the decimal part dis-
appears in the output.

In addition to the explicit type conversion, there is also an implicit type conversion. This 
type conversion is necessary in many places, but is not obviously visible in the source 
code. This makes implicit type conversion a potential source of errors.

For example, if values of type int are written to a variable of type short, the type conver-
sion is performed implicitly. However, the number range of a 4-byte int variable is much 
larger than that of a 2-byte short variable. It can therefore happen that the numbers are 
larger than the number range that can be represented by short. This is called overflow. If 
the numbers are smaller than the representable range, this is called underflow.

In the case of a direct value assignment, the error may still be easy to detect. However, 
it would also be possible that the error occurs during an arithmetic operation and the prob-
lem is not obviously recognizable. However, since there is no program error due to the 
implicit type conversion, the compiler will not display an error, but only a warning. The 
problem only becomes visible when the program behaves strangely in certain situations.

However, implicit type conversion also allows many conveniences in the source code. 
For example, if a variable of type double is defined and initialized with the line double 
value = 5;, the value 5 is an integer of type int. This value is implicitly converted to a value 
of type double by a type conversion. The reverse case is also conceivable: int value = 5.3;. 
Here, too, an implicit type conversion takes place. However, the compiler will warn that 
the conversion from double to int will cause a loss of data. This warning can be prevented 
by an explicit type conversion: int value = (int)5.3;.

5.3	� Enumerations

When developing programs it is often necessary to store different states. Examples are 
controls for the current color of a traffic light or an elevator. In such programs, the read-
ability of the program is increased by giving the individual states meaningful names. With 
the help of the enumeration type enum it is possible to give names to a number of different 
states very easily.

Listing 5.3 defines an enumeration for the different floors of a building. This is done 
using the keyword enum followed by a name for the enumeration, in this case Floor. 
Within the curly braces then follows an enumeration of various terms to be defined for the 
enumeration. The enum statement creates a new variable type that can be used in the rest 
of the program. The new variable type can take on the values defined within the curly braces.

5.3 � Enumerations
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Listing 5.3 An Enumeration for Different Floors

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   // Definition of a new enumeration type
 6   enum Floor
 7   {
 8     BASEMENT ,
 9     FIRST FLOOR ,
10     SECONDFLOOR ,
11     TOPFLOOR
12   };
13
14   int main ()
15   {
16     // Initialization of an enumeration variable
17     Floor elevator = BASEMENT;
18
19     // Output of the variable content
20     cout << elevator << endl;
21
22     return 0;
23   }

Within the main program, a variable of type Floor can now be created and initialized. 
In this example it is called elevator and initialized with the value BASEMENT. An enum 
always assigns integer values starting with 0 to the various states. The output of the pro-
gram is therefore simply 0.

It would also be possible to assign a number directly to the elevator variable, but this 
would first have to be converted to a value of type Floor by a type conversion. The 
line reads:

elevator = (Floor)1;

The variable elevator has then assumed the value FIRSTFLOOR. However, the goal of an 
enumeration, namely to increase the readability of the program code, is thereby led ad 
absurdum.

Enumerations can also be used to specify meaningful labels for the return values of 
functions. For example, the main function always returns a value with the statement return 
0; which can provide the user with additional information about the reason for the end of 
the program. The 0 stands for an error-free program flow.
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If different types of errors may occur, it may be useful to assign a range of numbers to 
each type of error. Input or output errors then lie in the range 10–49, errors in the calcula-
tion in the range 50–99, etc. Enumerations therefore make it possible to assign concrete 
values to the various elements of the enumeration. All subsequent elements are then sim-
ply numbered in ascending order.

An enumeration for various error cases might look like this, as shown in Listing 5.4.

Listing 5.4 An Enumeration for Error Codes

 1   // ...
 2   // Definition of a new enumeration type
 3   // for error states
 4   enum Errors
 5   {
 6     OK ,
 7     ERROR_READFILE = 10,
 8     ERROR_WRITEFILE ,
 9     ERROR_CALCDATA = 50,
10     ERROR_CALCFFT
11   };
12   // ...

In this example, the elements of the enumeration are assigned the following values:
If the statement return ERROR_WRITEFILE; were now written in the main function, 

the program would terminate. It would be printed via the console that the program has 
terminated with the code 11. If a table with the error codes exists, the user would now 
know what kind of error occurred.

If further errors are added in the course of development, these can simply be added to 
the corresponding areas. In this way, they are automatically assigned numbers that lie in 
the correct number range without the already existing codes being changed. In order for 
this to work, generous number ranges must of course already be selected during planning 
so that the limits of the ranges are not reached at some point.

In addition, it would be easier to read the program code, since the statement return 
ERROR_WRITEFILE; is also more meaningful within the program code than the state-
ment return 11;.

5.4	� Advanced: const, external and static

In the programming language C++ there are further keywords, which are necessary in 
certain situations for the definition of variables.

5.4 � Advanced: const, external and static
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5.4.1	� const

A very simple and obvious keyword by name is const. And first of all, its function is 
indeed simple and obvious. If the keyword is written in front of a variable type during defi-
nition or initialization, this variable is defined as a constant. The value of the variable can-
not be changed after initialization. For this reason, constants must always be initialized 
when they are defined.

This is useful if, for example, mathematical constants such as π or e are to be defined, 
or if certain values are frequently required in your own program and these are to be 
replaced by a constant to improve maintainability and readability. Listing 5.5 shows the 
two alternative notations for initializing a constant.

Listing 5.5 Defining and Initializing Constants with the const Keyword

1   int main ()
2   {
3     const int N = 25; // Definition and
4                       // Initialization of the constant N
5     int const M = 25; // alternative notation
6
7     return 0;
8   }

In line 3, the intuitive notation is used, where the keyword const is written before the 
type of the variable. The alternative notation in line 4 seems somewhat unusual at first, but 
has exactly the same effect. In both notations, the respective variables become constants. 
However, for later more complicated use cases, the alternative notation in line 4 is much 
easier to understand. These use cases will be referred to again in later chapters. They con-
cern pointers, which are treated in Chap. 11, functions (Chap. 9) and classes (Chap. 10).

5.4.2	� external

Before a variable can be used in the C++ programming language, it must first be made 
known to the compiler. There are three different ways in which this can be done.

•	 During the declaration, only the name of a new variable is made known to the compiler. 
However, no concrete variable is created, i.e. no memory is provided for it. This must 
happen elsewhere so that the variable can actually be used. To declare a variable, the 
keyword external must be used in C++, e.g. external double x;.

•	 The definition creates a new variable by both making the name known (i.e., declaring 
it) and reserving the required memory. If a variable is created by, for example, double 
x;, it is a definition. The variable can be used directly afterwards.
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•	 In addition to the definition, a variable can be assigned an initial value from the begin-
ning. This value assignment when defining a variable is called initialization. An exam-
ple of this is double x = 3.5;.

Programs can quickly become very complex and extend over several files or libraries. 
Occasionally it may then be useful to work with a variable that has already been defined 
elsewhere in the program. In this case, only the name would have to be made known so 
that it can be used.

This decalaration is done by the keyword external. Programs 5.6 and 5.7 show an 
example of this use case. In a project consisting of several files, there is a cpp file in which 
a global variable num_Values has been defined (Listing 5.6). In the main program, the 
value of this variable is to be printed. By declaring the variable on line 5 in Listing 5.7, the 
name of the variable is made known. However, no new variable is created; instead, refer-
ence is made to the existing one. The value 25 is then printed in line 13 of the program.

Listing 5.6 file1.cpp

1   // Definition of the global variables
2   int num_values = 25;
3
4   //...

Listing 5.7 main.cpp

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   external int num_values;
 6
 7   int main ()
 8   {
 9     // The value can be output ,
10     // although there is no direct connection
11     // between the files within
12     // of the same project exists.
13
14     cout << num_values;
15
16     return 0;
17   }
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As mentioned at the beginning of Chap. 5, however, working with global variables is 
problematic. The mechanisms described in this and the next subchapter can be imple-
mented much better in C++ using classes.

5.4.3	� static

The keyword static has three major use cases, which are very different. Two of them relate 
to later chapters, namely functions in Chap. 9 and classes in Chap. 10. These use cases are 
described there.

The third use case relates to global variables, and directly to the previous example in 
programs 5.6 and 5.7. If global variables are defined within a file, as in this example, they 
are always accessible from other files by the keyword external. This may not always make 
sense and it may be in the interest of the programmer to prevent this.

If line 2 in Listing 5.6 were replaced with the line static int num_Values = 25;, the vari-
able num_Values would be protected from access from outside the file and the example 
would no longer work.

With global variables, the keyword static thus serves to protect against access from 
other files.

5.5	� Advanced: An Introduction to Number Systems

To understand variables, it is important to have an idea of how numbers are represented 
and processed within the computer. Everyone has certainly heard of the zeros and ones, 
but how does it work exactly?

The required calculation methods are already taught in elementary school, but mostly 
only for the decimal number system. For the computer, however, the binary or hexadeci-
mal number system is much more important. The binary number system only knows the 
digits 1 and 0. On the computer, this corresponds to a bit, which can also only assume the 
values 0 and 1. If eight bits are combined, this is called a byte. For the number of bytes that 
make up the different types of variables, see Sect. 5.1.

First of all, we will take a closer look at the decimal number system. It has the number 
10 as its base and uses the digits 0 to 9. The digit 0 only stands for a value if it follows one 
of the other digits. Then it turns ones into tens and tens into hundreds. If it were to precede 
another digit, this would be an unusual representation, but would not change the value of 
the number.

If now counting is considered, at first every digit from 0 to 9 is used once at the place 
for single digits. After that there is an overflow, because the digits have run out. An addi-
tional digit is added in front of it and used to represent multiples of the number ten. So the 
second digit can be read as a digit multiplied by the base to become a tens digit. Again, the 
ones are incremented with each digit to end up with the tens increased by one. If at some 
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Fig. 5.1  Counting digit by digit in the decimal number system

point the tens digits are no longer sufficient, a digit is added to represent hundreds, and so 
on. The hundreds place corresponds exactly to the digit multiplied by the base squared. A 
thousand represents the base to the power of three, etc. Figure 5.1 shows the principle.

In the binary number system, counting works according to exactly the same principle, 
but it uses the base 2. As with the decimal number system, there is no digit for the base 
itself, so only the digits 0 and 1 are available. Again, the ones are incremented first, but 
reach the overflow after the digit 1. The binary number system also adds an additional 
digit, which is also multiplied by the base, which is the two, this time. Figure 5.2 shows 
the counting principle of the binary numbers.

With this scheme, a binary number can easily be transformed into a decimal number. To 
do this, simply read the digits from right to left in this representation.1 The first digit is 
multiplied by 20, then the second digit is multiplied by 21 and the values are added, and so 
on. The result of this sum is the decimal representation of the number. To avoid confusion, 
numbers are written in curly brackets when calculating with different number systems, 
and the base of the number system is added. This is usually placed in subscript after the 
closing parenthesis. Figure 5.3 shows an example of a conversion of a binary number into 
a decimal number.

Conversely, decimal numbers can be converted into the new number system by a 
repeated division with the base of the target number system. Decisive here are always the 
integer remainders that result from the division. Figure 5.4 shows how the transformation 

1 The direction of reading depends on the type of number representation on the computer. A distinc-
tion is made between MSB first and LSB first. MSB stands for Most Significant Bit, i.e. the bit with 
the highest significance, and LSB for Least Significant Bit. The LSB always stands for the bit that 
represents the ones digit. This is particularly relevant when numbers are to be exchanged between 
different computer systems that use a different number representation.
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Fig. 5.2  Counting digit by 
digit in the binary num-
ber system

{10011101}2
= {1 · 27}10 + {1 · 24}10 + {1 · 23}10 + {1 · 22}10 + {1 · 20}10

= {128}10 + {16}10 + {8}10 + {4}10 + {1}10
= {157}10

Fig. 5.3  Converting a binary number to a decimal number

is carried out using the decimal number 42 as an example. First, the number 42 is divided 
by 2. The result is 21, and since the division is smooth, the integer remainder is 0. Next, 
the result of the division, i.e., 21, is divided by 2 again. The integer result is 10 and since 
the division is not smooth, the integer remainder is 1. This procedure is repeated until the 
result of the division is 0. The resulting remainders are now the binary number we are 
looking for, read from bottom to top.

Why is that? In the first division, the number was divided by 2. The resulting remainder 
therefore provides information about whether the number is divisible by 2 as an integer. 
The same information is also contained in the last bit of a binary number, because only 
with this bit can an odd number be generated. A new division then results in divisibility 
by 4, etc.

5.5.1	� Addition and Multiplication

The addition and multiplication of binary numbers can be carried out according to exactly 
the same principle as was already taught in primary school. The only differences are the 
smaller range of available digits and the resulting changes in the rules for carrying over.

Thus the binary addition of the numbers {1}2 and {1}2 already results in a carryover of 
{1}2, since the binary representation of the number {2}10 is {10}2. The same applies to a 
result of because of the binary representation {11}2. Figure 5.5 shows the binary addition 
using the example of the numbers {157}10 and {46}10.

The rules of multiplication also correspond to those of written multiplication of whole 
numbers from primary school. Two numbers are multiplied by multiplying the digits of the 
left number individually by the digits of the right number and moving them to the corre-
sponding place. Finally, all the numbers are added up. Figure 5.6 shows multiplication 
using the numbers {10}10 and {13}10.

Again, when adding up, it should be noted that the binary number system makes it 
easier for carryovers to occur.
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42 : 2 = 21 Remainder: 0
21 : 2 = 10 Remainder: 1
10 : 2 = 5 Remainder: 0
5 : 2 = 2 Remainder: 1
2 : 2 = 1 Remainder: 0
1 : 2 = 0 Remainder: 1

{42}10 = {00101010}2

Fig. 5.4  Converting a decimal 
number into a binary number

Binary

1 0 0 1 1 1 0 1
+ 00 01 11 01 11 10 10 0

1 1 0 0 1 0 1 1

Decimal

1 5 7
+ 01 41 6

2 0 3

Fig. 5.5  Addition of 
binary numbers

5.5.2	� Subtraction

To be able to subtract two binary numbers, it makes sense to first develop a representation 
for negative numbers. On the one hand, the subtraction can then ideally be interpreted by 
an addition with a negative number. On the other hand, negative numbers are needed to be 
able to represent the results of the subtraction. It should also be noted that the size of a 
number on a computer is limited by the number of bits used. Consequently, it is necessary 
to reinterpret the existing number representations and divide them as equally as possible 
between negative and positive numbers. In order for the mathematical operations to con-
tinue to work, an interpretation must be found that does not change the order of the num-
bers in a ring representation, as in Fig. 5.7.

This is achieved by inverting each bit of a number individually. A 0 thus becomes a 1 
and vice versa. Thus, the first half of the numbers is interpreted as positive numbers in 
each representation, the second half as negative numbers. Numbers that begin with a 1 are 
thus considered negative, numbers that begin with a 0 are considered positive. This repre-
sentation of negative binary numbers is called the (B-1) complement, where B stands for 
the base of the number system. Binary numbers are consequently referred to as the ones 
complement. Figure 5.9 shows the now changed interpretation of the binary number pat-
terns. It is clear that the order of the numbers on the ring has not been changed. However, 
the number 0 appears both as a negative and as a positive number.

To prevent this, an additional 1 is added after the inversion of a binary number. This 
shifts the representation of the negative numbers, so that there is now no longer a negative 
interpretation of 0. The resulting representation is called B-complement, or two’s comple-
ment, and is shown in Fig. 5.9c. Figure 5.8 shows the conversion of the number 92 to two’s 
complement. The back conversion of the number is −92 done by exactly the same steps.

In the context of this book it shall be assumed that for the representation of negative 
numbers the two’s complement representation is used. But even so, there are two possible 
interpretations for the individual bit patterns, namely once as a negative number, or as a 
large positive number. This circumstance makes it necessary to tell the computer whether 
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Binary

1 0 1 0 · 1 1 0 1
1 0 1 0

0 0 0 0
1 0 1 0

1 0 1 0
1 0 0 0 0 0 1 0

Decimal

1 0 · 1 3
3 0

1 0
1 3 0

Fig. 5.6  Multiplication of 
binary numbers

Fig. 5.7  Ring representation 
of 3-bit binary numbers

{92}10 { 0 1 0 1 1 1 0 0 }2
invert { 1 0 1 0 0 0 1 1 }2
+{1}10 { 0 0 0 0 0 0 0 1 }2
{−92}10 { 1 0 1 0 0 1 0 0 }2

{−92}10 { 1 0 1 0 0 1 0 0 }2
invert { 0 1 0 1 1 0 1 1 }2
+{1}10 { 0 0 0 0 0 0 0 1 }2
{92}10 { 0 1 0 1 1 1 0 0 }2

Fig. 5.8  Conversion of binary numbers in two’s complement

negative numbers are to be represented or not. In the variable declaration, it is therefore 
initially assumed that both positive and negative numbers are to be used. If this is not 
desired, the keyword unsigned can be prepended to the definition of an integer variable. 
The contents of this variable are then always interpreted as a positive number.

5.5.3	� Hexadecimal Numbers

The hexadecimal number system with base 16 works exactly like the already known num-
ber systems with base 10 or 2. However, for some applications in computer science it has 
advantages to use the hexadecimal number representation. The background is that com-
puters are based on the binary number system and many representations are bytes, i.e. 
combinations of eight bits each. Since the hexadecimal number system has a base of 16, 
24 bytes can always be represented in hexadecimal by two digits (Fig. 5.9).
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a b c

Fig. 5.9  Representation of positive and negative binary numbers (a) without consideration of a 
sign, (b) in one’s complement and (c) in two’s complement

Table 5.2  Digit assignment in the hexadecimal number system

Hexadecimal Decimal
F 15
E 14
D 13
C 12
B 11
A 10
9 9
8 8
7 7
6 6
5 5
4 4
3 3
2 2
1 1
0 0

First, however, to the digits. A hexadecimal number must be able to represent sixteen 
different states with only one digit. Since the decimal digits 0–9 can only represent ten 
states, the missing states are represented by letters. The letter A represents a 10 in hexa-
decimal, B represents an 11, and so on. Finally, the letter F stands for 15. Table 5.2 shows 
the mapping of decimal numbers to unique hexadecimal digits.

The conversion of a hexadecimal number into a decimal number follows the algorithm 
already known from Fig. 5.3 and is shown in Fig. 5.10 for hexadecimal numbers.
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{9D}16
= {9 · 161}10 + {13 · 160}10

= {144}10 + {13}10
= {157}10

Fig. 5.10  Converting 
hexadecimal numbers to 
decimal numbers

42 : 16 = 2 Rest: A
21 : 16 = 0 Rest: 2

{42}10 = { 0010 1010 }2
{42}10 = { 2 A }16

Fig. 5.11  Converting decimal or binary numbers to hexadecimal numbers

Conversely, decimal numbers can again be converted into a hexadecimal number by 
multiple division with base 16 and evaluation of the remainders, as already described for 
Fig. 5.4. However, there is a quick way to convert binary numbers into hexadecimal num-
bers. Since the base of the hexadecimal numbers equals 24, binary numbers can be divided 
into groups of four and then translated into hexadecimal numbers group by group. Always 
start with the bit that has the least significance. If the last group does not consist of four 
digits, it can be filled with 0 for positive numbers or with 1 for negative numbers. In simple 
terms, the last bit is always copied until the last group of four is full. Figure 5.11 shows 
this as an example for the conversion of the number 42.
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5.1	� Variable Definition

What is the minimum information required to create a variable in a C++ program?

5.2	� Memory

How much memory is occupied by variables of type:

	(a)	 char
	(b)	 short
	(c)	 float
	(d)	 int
	(e)	 void

5.3	� Typecast

What does an explicit typecast do and what is the notation in a C++ program?

 

5.4	� Enumerations

Explain in your own words the advantages of enumerations!

5.5	� Variable Definition in C++

Explain the differences between the terms declaration, definition and initialization in rela-
tion to variables in C++!
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5.6	� Number Systems

Justify why the number {10}B in any number system with base B ≥ 2 is always exactly 
equal to the value of base B in the decimal number system!

5.7	� The Duotrigesimal Number System

Make a table for all possible digits in the duotrigesimal number system with base 32 and 
assign the digits to their respective value in the decimal number system with base 10!

 

5.8	� Print the Memory Requirement

Modify the Hello World! program to display the memory usage for different variable types 
on the screen using the sizeof statement!

The output should look like this:

Memory requirements of the variables:
bool = 1
char = 1
short = 2
int = 4
long = 4
long long = 8
float = 4
double = 8

long double = 8

5.9	� Print the ASCII Codes

Print the numbers 97 through 105 to the screen and, as shown in Listing 5.2, convert the 
numbers to variables of type char! using an explicit typecast.

The output should look like this:

97 = a
98 = b
99 = c
100 = d
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101 = e
102 = f
103 = g
104 = h

105 = i

5.10	� Number System Conversion

Convert the following numbers into the respective target number system!

	(a)	 {27}10 = {?}2

	(b)	 {11010010}2 = {?}16

	(c)	 {6A}16 = {?}2

	(d)	 {127}8 = {?}10

5.11	� Binary Addition and Subtraction

Convert the following numbers into the binary number system and perform the calcula-
tions in the binary number system! After the calculation, convert the results back into deci-
mal numbers and check the results!

In this task, each task part counts as a single point for the overall score.

	(a)	 47 + 80 =
	(b)	 4 – 73 =

5.6 � Exercises
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6Branches

Short and Sweet

•	 Branching can be used to make decisions in programs.
•	 Decisions are made based on logical expressions.
•	 A logical expression knows only the two states true or false.
•	 The if statement allows you to distinguish between two states.
•	 The switch-case statement can distinguish between different constant states, which 

must be encoded with integers.

One of the most important tasks of a program is to make decisions. These can be simple 
decisions that only relate the value of one variable against another value, or complicated 
decisions that consist of several interconnected individual decisions. In this chapter, you 
will learn what operators exist to evaluate and combine expressions. You will also learn 
about the if statement and the switch-case statement, which can be used to implement 
alternative sequences in a program.

6.1	� Operators for Comparisons and Logical Operations

In order to be able to make decisions using the C++ programming language, statements, 
or expressions, must first be defined that can be either true or false. In C++, there is a sepa-
rate variable type bool for this purpose, which can assume the values true and false. Since 
a bool variable occupies more than one bit of memory, the value 0 is interpreted as false 
and any other value as true. To formulate an expression using variables, comparison 
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Table 6.1  Comparison operators of the language

Operation Description
A ==B Checks whether two expressions A and B are identical
A > B Checks whether expression A is larger than expression B
A < B Checks if expression A is smaller than expression B
A >= B Checks whether expression A is greater than or equal to 

expression B
A <= B Checks whether expression A is less than or equal to 

expression B
A != B Checks if expression A is not equal to expression B

Table 6.2  Logical operators of the language

Operation Description
A && B (logical AND) checks if both expressions are true
A || B (logical OR) checks whether at least one of the 

expressions is true
!A (logical NOT) inverts the statement of the expression

operators are available for evaluation by the program. Table 6.1 shows a list of the com-
parison operators that can be used in C++.

Especially the first comparison operation, the ==, is a popular source of errors. In C++, 
the simple = assigns a value to a variable. The == checks whether two values are identical. 
However, because of the definition of true as not equal to 0 and false as 0, a value assign-
ment can also be interpreted as a logical expression. If the variable is assigned the value 0, 
the expression would be false, otherwise true. Thus, there is no error message indicating 
that there is a high probability that what was intended was not evaluated.

Very often it happens that a single expression is not sufficient to describe a condition. 
In this case, several expressions must be linked together. In this case, the program must be 
informed by means of logical expressions in which way this linkage is to be carried out. 
Table 6.2 shows a list of the logical operators that can be used in C++.

There are also common sources of error in these logical operations. In mathematics, 
expressions like 5 < x < 10 are used to express that x should be between 5 and 10. However, 
in the C++ language, this expression does not work. It would first check if 5 < x holds. This 
is either true or false, so the result would be true with a value of 1 or false with a value of 
0. Then it would check if 0 or 1 is less than 10, which would be true in either case. The 
correct notation in C++ is 5 < x &  & x < 10, when checking whether x is between 5 and 
10. It is therefore important to always link individual expressions, as presented in Table 6.1, 
using the logical operators from Table 6.2 if more complex expressions are to be created.

Brackets should also be used to make the order of operations more visible. This can 
improve the maintainability and readability of the program code without much effort.
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6.2	� if-statements

In order to be able to decide between two alternatives based on an expression, the C++ 
language has the if statement. Figure 6.1 shows the representation of this form of branch-
ing in the form of a UML activity diagram. Immediately after the start, the first thing to do 
is to get user input, which is to be stored in the variable x. The next step is the branching, 
which takes place after the if statement. This is followed by the branch, which allows two 
alternative program paths. In this example, the branching is to be carried out depending on 
the value of x entered. If the value of x is less than or equal to 10, this is to be printed to 
the console, otherwise it is to be printed that the value is greater than 10. Immediately 
afterwards, the program is to terminate.

Figure 6.2 shows the syntax diagram for the if statement. The command always begins 
with the keyword if, followed by a condition in round brackets. This is followed by either 
a single statement, or a statement block, i.e. several statements enclosed by curly brackets. 
Optionally, this can be followed by an else, which is also followed by a command or a 
block. The syntax diagram for a block was presented in Fig. 2.4 on page 7.

Listing 6.1 shows the activity diagram shown in Fig. 6.1 as a C++ implementation. The 
if branch exploits a comparison operation known from Sect. 6.1 to check whether the value 
of x is less than or equal to 10. Since only a single statement follows, no block needs to be 
inserted, i.e. the curly braces can be omitted. It is sufficient to formulate the output directly. 
If the condition is not met, the output specified in the else branch is executed.

act if statement

User input: x

[else]

Output:
x is greater
than 10

Output:
x is less
than or

equal to 10

[if x <= 10]

Fig. 6.1  Activity diagram for 
a simple if statement

6.2  �if-statements
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if Expression Statement

Block Block

else Statement

Fig. 6.2  Syntax diagram for the if statement

Listing 6.1  Implementing the Example Shown in Fig. 6.1 with an if Statement

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Variable definition and initialization
 8     int x = 0;
 9
10    // Reading a user input
11    // from the console into the variable x
12    cin > > x;
13
14    // Case distinction
15    if (x < = 10)
16      cout << “x is less than or equal to 10”;
17    else
18      cout << “x is greater than 10”;
19  }

Of course, with the C++ language, multiple if statements can also be nested within each 
other. Listing 6.2 adds another distinction to the example. If the value of x is now less than 
or equal to 10, a further if statement distinguishes whether the value is really less than 10, 
in which case the corresponding output occurs, or whether the value is equal to 10, also 
with corresponding output.

Listing 6.2  Addition of Nested if Statements to the Example Shown in Fig. 6.1

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Variable definition and initialization
 8     int x = 0;
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 9
10     // Reading a user input
11     // from the console into the variable x
12     cin > > x;
13
14     // Case distinction
15     if (x < = 10)
16       if (x < 10)
17         cout << “x is less than 10”;
18       else
19         cout << “x is equal to 10”;
20     else
21       cout << “x is greater than 10”;
22   }

As can be seen in the example, it is not always easy to keep track of many if statements 
that are nested within each other. It is therefore advisable to consistently indent the areas 
that are within the if statement. The use of curly braces can also improve clarity, even if 
this is not absolutely necessary in this example.

Occasionally it happens that in programs a case distinction has to be made, which 
assigns an individual reaction to each case. Figure 6.3 shows such a case distinction for a 
very simplified travel agency (the possible destinations were chosen randomly and the 

act switch-case statement

User input destination: R

[R = ‘M’] Maldives
Price: 100€

Hokkaido
Price 150€

Tuvalu
Price 200€

[R = 'H’]

[R = 'T’]

[other]
Price 0€

-

Fig. 6.3  Activity diagram for 
a case distinction

6.2 � if-statements
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prices are, of course, nonsense). Suppose the user is asked to specify a destination, which 
directly determines the price of the trip. In this case, several if-branches can be placed in 
sequence to make this case distinction.

Listing 6.3 implements the example in Fig. 6.3 using several if statements. It should be 
noted that the else if statement is a normal if written in an else branch. So there are two 
independent statements. This could also be made clear by a different indentation.

Listing 6.3  Case Discrimination Using if Statements, Based on Fig. 6.3

 1   int main ()
 2   {
 3     // Variable definition and initialization
 4     double Price = 0.0;
 5     char R = “;
 6
 7     // Reading a user input
 8     // from the console into the variable R
 9     cin > > R;
10
11     // multiple case distinction
12     if (R == ‘M’) Price = 100.0;
13     else if (R == ‘H’) Price = 150.0;
14     else if (R == ‘T’) Price = 200.0;
15     else price = 0.0;
16
17     return 0;
18   }

The type of the variable R is char, from which it follows that no numbers can be stored 
in this variable, but individual letters, or rather characters. If the content of the variable R is 
now to be checked in a comparison, it must be made clear that a variable is being compared 
with a character. For this reason, single quotation marks must be placed around the character.

Example:

if (R == a) // checks whether the value of the variable R
            // is identical to that of the variable a
if (R == ‘a’) // checks whether the value of the variable R

             // corresponds to the letter a

6.3	� switch-case statements

With the help of the switch-case statement, case distinctions can be implemented particu-
larly easily, as shown in Fig. 6.3. In this example, a very simple travel agency is to be 
implemented, which offers three randomly selected destinations. The prices have been 
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switch:

case:

default:

switch

case

case

casedefault

default Statement

constant expression

break

breakStatement

Expression( )

{ }

:

:

;

;

Fig. 6.4  Syntax diagram for the switch-case statement

intentionally chosen differently to allow for four different scenarios. As Listing 6.3 shows, 
case distinctions can also be made using the if statement, but this quickly becomes confus-
ing if several conditions are to lead to the same result. The switch-case statement opens up 
many new possibilities here.

Figure 6.4 first shows the syntax diagram for the switch-case statement. The complex-
ity of the diagram already suggests that there are many different ways to use the statement. 
First, the keyword switch must always be specified, followed by an expression in round 
brackets that can assume various values. It is important to note that these values must 
either correspond to an integer data type, or it must be possible to convert the expression 
into such a type. Of course, this condition also applies to variables of type char, or to the 
enumerations introduced in Sect. 5.3. A statement block is now defined in curly brackets, 
describing how to react to different cases.

Within the statement block, a new case distinction can be started with the statement case. 
This must be followed by a constant expression describing the value to be processed in this 
case. It must be underlined that only constant expressions are allowed, variables or even 
comparison operations must not be used. This must be followed by a colon. Now any num-
ber of statements can follow, which are relevant for this case. However, it is not necessary 
that statements actually follow. This has to do with the now following keyword break, which 
closes this case. The break ensures that the case distinction ends at this point. However, if it 
is omitted, the code intended for the next case distinction would be executed, and so on. This 
makes it possible to write several case statements in a row, all to be executed with the same 
code, or to add code successively depending on which case has been reached.

It may well be intentional that multiple instances of the switch-case statement result in 
the same behavior. Listing 6.5 on page 72 shows an example of this. This special case is 
called fallthrough in computer science. It should always be marked by a comment, since 
otherwise it is not possible to recognize whether the fallthrough is intended or whether a 
break was simply forgotten.

If none of the cases described by case occurs, the keyword default followed by a colon 
can be used to define a case that should occur in all other cases. This case can also be 
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terminated by a break. Since the keyword default may only be specified once, but there 
may be any number of case statements before or after it, it was necessary to divide the 
syntax diagram into a total of three areas.

Listing 6.4 implements the example from Fig. 6.3 using a switch-case statement. Since 
different prices are required for each destination, a break was set after each case distinc-
tion. If an incorrect entry is made, the price is set to 0. Of course, this is not necessary in 
this simple program because the price was already initialized to 0 at the beginning. 
However, in a larger program, into which this example could be integrated, it makes sense 
to handle an error case in one way or another.

Listing 6.4 The Case Distinction from Fig. 6.3 Using a switch-case statement

 1   int main ()
 2   {
 3     // Variable definition and initialization
 4     double Price = 0.0;
 5     char R = “;
 6
 7     // Entering the destination
 8     cin > > R;
 9
10     switch(R)
11     {
12       case ‘M’: // Trip to the Maldives
13         Price = 100.0;
14         break;
15       case ‘H’: // Trip to Hokkaido
16         Price = 150.0;
17         break;
18       case ‘T’: // Trip to Tuvalu
19         Price = 200.0;
20         break;
21       default: // Interception of the error case
22         Price = 0.0;
23         break;
24     }
25
26     // further program code
27
28     return 0;
29   }

Now, if all destinations cost the same price, the instructions and the break instructions 
could be omitted for the other cases. Listing 6.5 shows a modified program that 
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distinguishes only between the case where any destination was specified or an incorrect 
entry was made.

Listing 6.5  Case Discrimination for Equal Prices Using switch-case

 1   int main ()
 2   {
 3     // Variable definition and initialization
 4     double Price = 0.0;
 5     char R = “;
 6
 7     // Entering the destination
 8     cin > > R;
 9
10     switch(R)
11     {
12       case ‘M’: // Trip to the Maldives
13       case ‘H’: // Trip to Hokkaido
14       case ‘T’: // Trip to Tuvalu
15                 // Fallthrough
16         Price = 100.0;
17         break;
18       default: // Interception of the error case
19         Price = 0.0;
20         break;
21     }
22
23     return 0;
24   }

6.3 � switch-case statements
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Network diagram for the self-assessment of this chapter

6.1	� Comparisons

How can you check in C++ by logical comparison operations whether an expression A

	(a)	 is equal to an expression B,
	(b)	 is less than or equal to an expression B; or
	(c)	 is not equal to an expression B?

6.2	� Instruction Blocks

What is a statement block and how does it differ from a statement?
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6.3	� Comparisons

Explain the difference between = and == in the C++ language!

6.4	� Branches

The C++s language has two different instructions that are used to make decisions in pro-
grams. What are the names of the two instructions and what are the differences.

 

6.5	� if statement

Before you start programming this task, you should develop an activity diagram that 
describes the program flow!

You receive one point each for the activity diagram and the program.
Write a program that first prompts the user to enter his height k in meters. This value is 

to be stored in a variable of type double by a user input. Then the user is to enter his weight 
g in kilograms; this value is also to be stored in a variable of type double. Now the body 
mass index is to be calculated by the formula

	
doublebmi g k k� � ��/ ; 	

The following outputs are now to be generated with the help of an if statement:
If the is BMI < 18.5 so the word underweight shall be printed.
Otherwise, it is to be checked whether the BMI < 25. In this case, the word normal 

weight is to be printed.
If neither of the first two cases applies, check whether the BMI < 30, then the word 

overweight should be printed.
In any other case, the word obesity should be issued.
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6.6	� switch-case statement

Before you start implementing this task, you should develop an activity diagram that 
describes the program flow!

You receive one point each for the activity diagram and the program.
Create an enumeration with the values CELLAR, GROUNDFLOOR, LABS, and 

OFFICES and name the enumeration HOUSE.
Now generate an output asking the user to select the floor he wants to go to. In doing 

so, print the various options, for example:

cout << “Cellar: ” << CELLAR << endl;

Store the user input in a variable of type int. Then make a case distinction using a 
switch-case statement. The following outputs are to be produced:

Underground for the basement,
Ground level for the ground floor,
Over ground for laboratories and offices, as well as
Wrong entry! for every other case.
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7Loops

Short and Sweet

•	 Loops execute instructions repeatedly.
•	 The C++ language knows three types of loops.
•	 A distinction is made between head-controlled and foot-controlled loops:

–– head controlled
while-loop
for-loop

–– foot controlled
do-while loop

•	 Possible sources of error:
Especially with while and do-while loops there is the danger of an infinite loop, because 
often the incrementing of the loop variables is forgotten.

When implementing software, certain parts of the program often need to be executed 
repeatedly. Sometimes it is possible to specify exactly how often the code must be repeated. 
A simple example of this is when the values of a function are to be printed for all integers 
in the interval from 0 to 10. Figure 7.1 shows an activity diagram that illustrates the pro-
cess. First, the value x is set to 0. Then the function value of x is printed. It does not matter 
for the example which function it is. Next, the termination condition is checked by com-
paring whether the value x is less than 10. If the condition is true, the program remains in 
the loop and again prints a function value for the now increased x. Otherwise, the program 
is terminated.

In other cases, however, only the termination condition is known, but not how long it 
takes for this condition to occur. For example, if the contents of an unknown file are to be 
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act loops

Set x = 0

Output function value for x

Increase x by 1

[if x <= 10]

[other]

Fig. 7.1  Activity diagram for 
repeated output of func-
tion values

read in line by line, reading is to stop at the end of the file. Since the file is unknown, it 
could just as easily contain a book as it could be empty.

In C++, various loop types are available that allow you to execute parts of the program 
repeatedly. In principle, any loop type can be used for any application, but it can be very 
inconvenient if the wrong loop type is chosen.

The given examples show that the termination condition plays an important role in 
loops. This means that there is a state at the beginning of the loop, which is changed in the 
course of the loop and which satisfies the termination condition at some point.

In C++, a distinction is made between head-controlled and foot-controlled loops. The 
names are explained by the fact that a loop always begins with a loop head, followed by 
the loop body and at the end the loop foot. The name always refers to the point in the loop 
at which the termination condition is checked. C++ knows three different types of loops, 
which are introduced in the following.

7.1	� do-while loops

The do-while loop is the only foot-controlled loop that exists in C++. Figure 7.2 shows the 
syntax diagram for this type of loop. A do-while loop always begins with the keyword do, 
followed by a statement, or statements within curly braces, to repeat. This is followed by 
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do Statement

Block

while Expression( ) ;

Fig. 7.2  Syntax diagram for the do-while loop

the while statement and, inside round brackets, an expression describing the termination 
condition. At the end of the do-while loop, there must always be a semicolon to complete 
the statement.

Foot-controlled loops have the property that the loop body is traversed first before the 
termination condition is checked. In contrast to the other loop types, the body of a do-
while loop is traversed at least once, regardless of whether the termination condition is 
met or not.

Listing 7.1 converts the activity diagram shown in Fig. 7.1 into C++ code using a do-
while loop.

Listing 7.1  Solving the Example Shown in Fig. 7.1 with a do-while loop

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Variable definition and initialization
 8     int x = 0;
 9
10     // Loop head
11     do
12     {
13       // Loop body
14       cout << f(x);
15       x = x + 1;
16     }
17     // Loop foot
18     while (x <= 10);
19   }

Typical Applications
Since the body of the do-while loop is traversed at least once, it should be used in cases 
where this is exactly what is required. A typical example of this is user input.

If boundary conditions apply to a user input, such as that a value should be within a 
specified interval, then the query must be repeated until the input is within that interval. 

7.1 � do-while loops
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How many repetitions the user needs to do this is not known. There must also be user input 
in each case, regardless of whether the current value of the variable would already satisfy 
the termination condition.

In Listing 7.2, a user input is expected in the interval of [0, 10]. The variable x is already 
initialized with 0 and would fulfill the termination condition. Nevertheless, at least one 
user input must occur before the termination condition can be checked.

Listing 7.2  User Annotation with Constraints with a do-while loop

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Variable definition and initialization
 8     int x = 0;
 9
10     // Loop head
11     do
12     {
13       // Loop body
14       cout << “Please enter a number “
15            << “between 0 and 10: “;
16       cin >> x;
17     }
18     // Loop foot
19     while (x < 0 || x > 10);
20   }

7.2	� while-loops

The while-loops belong to the head-controlled loops. With this loop type, the termination 
condition is checked before the loop body is executed. It is therefore possible that the loop 
body is never reached if the termination condition has already been fulfilled at the begin-
ning. Figure 7.3 shows the syntax diagram for this loop type.

while ( Expression ) Statement

Block

Fig. 7.3  Syntax diagram for 
the while-loop
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The loop is introduced with the keyword while, followed by an expression in round 
brackets that describes the termination condition. This is followed by the loop body, which 
consists of either a single statement, or a block of statements within curly braces. 
Listing 7.3 shows the implementation of the activity diagram shown in Fig. 7.1 using a 
while-loop.

Listing 7.3  Solving the Example Shown in Fig. 7.1 with a while loop

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Variable definition and initialization
 8     int x = 0;
 9
10     // Loop head
11     while (x <= 10)
12     {
13       // Loop body
14       cout << f(x);
15       x++;
16     }
17   }

Typical Applications
The while-loops are commonly used in situations that meet two conditions. First, there is 
a clearly defined termination condition that establishes the end of the loop. Second, it is 
unknown how many passes of the loop are needed to reach this end.

An illustrative example is reading data from a file. The termination condition is clearly 
defined: When the end of the file has been reached, reading must stop. However, the num-
ber of passes is not known unless there is additional information about the file. The file 
could be empty or contain several gigabytes of data.

Another, less demanding, example comes from the field of approximation methods in 
numerical mathematics. Approximation methods are always used when no exact solution 
can be found, or it would be extremely difficult to find one.

Listing 7.4 shows a very simple approximation procedure for finding the root of the 
number 8. Without thinking further, one can assume that the solution will be found some-
where within the interval [0, 8]. Let the lower bound be called a, and the upper bound b. 
The program should now push the limits towards each other in such a way that they 
approach the correct result from above and below.

7.2 � while-loops
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Listing 7.4  Example of a Simple Approximation Procedure using a while loop

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Variable definition and initialization
 8     double a = 0.0;
 9     double b = 8.0;
10     double c = 0.0;
11
12     // Loop head
13     // The termination condition checks the distance
14     // of the two interval limits
15     while (b - a > 0.000001)
16     {
17       // Loop body
18
19       // Calculation of the value in the
20       // Middle of the interval
21       c = (a + b) / 2.0;
22
23       if (c*c > 8.0)
24         // Replacing the upper limit
25         b = c;
26       else
27         // Replacing the lower limit
28         a = c;
29     }
30
31     cout << c << endl;
32   }

The termination condition is then very simple: The program should terminate if the 
distance from the upper to the lower limit is smaller than a specified maximum error. In 
this example, the maximum error is 0.000001.

However, the number of loop passes required to achieve this goal is not known pre-
cisely without further consideration. If the boundaries of the interval are already close 
enough to each other, then no single pass of the loop would be necessary. If the boundaries 
are unfavorable, a very large number of passes may be necessary.

In the loop body, the interval is reduced with each pass. For this purpose, the middle of 
the current interval is calculated and stored in the variable c The value in c is thus the test 
value for the searched root of the number 8. If c2 is now greater than the value 8, then it 
follows that c is greater than the searched root. In this case, the upper interval boundary b 
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is moved to c. Otherwise, the lower interval boundary a is shifted to c. With each further 
loop pass, one of the two limits converges to the searched result until the termination con-
dition is finally fulfilled.

7.3	� for-loops

The for-loop also belongs to the head-controlled loops. The syntax diagram is shown in 
Fig. 7.4. It is easy to see that its structure differs from that of the other two loop types. The 
keyword for is followed by three statements, each separated by semicolons. The individual 
statements, labeled A, B, and C in the figure, are optional. However, the semicolons must 
be specified in each case.

•	 Instruction A is executed before the loop passes begin. Very often a count variable is 
initialized here.

•	 Instruction B contains the termination condition, which is checked before each 
loop pass.

•	 Instruction C is executed after each loop pass. In many cases, the variable initialized in 
instruction A is changed here, so that the termination condition is fulfilled at some point.

Since the for-loop is very often used to count up or down variables, it is also called a count-
ing loop. Listing 7.5 shows the implementation of the activity diagram shown in Fig. 7.1 
using a for-loop.

Listing 7.5  Solution of the Example Shown in Fig. 7.1 with a for loop

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Loop head
 8     for (int x = 0;x <= 10;x++)
 9     {
10       // Loop body
11       cout << f(x);
12     }
13   }

for ( A ; B ; C ) Statement

Block

Fig. 7.4  Syntax diagram for the for-loop
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The first instruction defines and initializes the loop variable x with the value 0. As a 
termination condition, the second instruction specifies that the loop should run as long as 
the value of x is less than or equal to the value 10. The third statement x++ is a very abbre-
viated notation of the statement x = x + 1. If the value of x is to be incremented with 
another value, e.g. 2, the statement x + = 2 could also be used as an abbreviated notation.

Typical Applications
The representation of mathematical formulas, as shown in Listing 7.5, is already a very 
typical example of the use of the for-loop. Even though the same task can be performed 
with any type of loop, it is noticeable that the implementation with the for-loop turns out 
to be very concise and clear.

Other typical use cases for for-loops are described in Sect. 8 about the so-called arrays. 
Many operations performed on arrays require the use of loops, and the for-loop is often the 
best choice.

Multidimensional formulas can also be represented well by for-loops. For this purpose, 
several loops can be nested within each other. This works with all loop types presented and 
will be carried out here with the for-loop as an example. Listing 7.6 shows such an 
implementation.

Listing 7.6  Representing a Function with Two Variables Using for loops

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Loop for the y-values
 8     for (int y = 0;y < 5;y++)
 9     {
10       // Loop for the x-values
11       for (int x = 0;x < 5;x++)
12       {
13         // Output of the function values
14         cout << "(" << x << ", " << y << ")" << "\t";
15       }
16       cout << endl;
17     }
18   }

The outer loop traverses the rows of the plot and increments the variable y on each pass. 
Inside the outer loop two things happen: The inner loop runs through each column and 

7  Loops

http://dx.doi.org/10.1007/978-3-658-24131-5_8


75

(0, 0) (1, 0) (2, 0) (3, 0) (4, 0)
(0, 1) (1, 1) (2, 1) (3, 1) (4, 1)
(0, 2) (1, 2) (2, 2) (3, 2) (4, 2)
(0, 3) (1, 3) (2, 3) (3, 3) (4, 3)
(0, 4) (1, 4) (2, 4) (3, 4) (4, 4)

a

(0, 0) (1, 0)
(0, 1) (1, 1)
(0, 2) (1, 2)
(0, 3) (1, 3)
(0, 4) (1, 4)

b

(0, 0) (1, 0) (3, 0) (4, 0)
(0, 1) (1, 1) (3, 1) (4, 1)
(0, 2) (1, 2) (3, 2) (4, 2)
(0, 3) (1, 3) (3, 3) (4, 3)
(0, 4) (1, 4) (3, 4) (4, 4)

c

Fig. 7.5  Output of the various programs for function output. (a) Listing 7.6, (b) Listing 7.7, (c) 
Listing 7.8

prints the value of the x- and the y-coordinate in brackets. To keep a little space between 
the outputs, \t adds another tab.1

After each run of the inner loop, an end of line is brought about in the outer loop. 
Figure 7.5a shows the result.

7.4	� continue and break

When running through loops, it can sometimes make sense to interrupt or skip the run. For 
example, if an error is detected while a loop is being run, it no longer makes sense to run 
the rest of the loop. An error message should be displayed and the loop should be inter-
rupted. In principle, this could also be realized by an if-query, which would execute a part 
of the loop content only if the error case has not occurred. However, this can sometimes be 
cumbersome to implement.

The break command can be used to interrupt a loop immediately. If several loops are 
nested within each other, only the loop in which the break statement is located is affected. 
Example Listing 7.7 modifies Listing 7.6 so that the inner loop is broken when the third 
column is reached. Figure 7.5b shows the modified output of the program.

Listing 7.7  Modifying Listing 7.5 Using break

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Loop for passing through the lines

1 The text console is divided into several columns, which can be jumped to by the tabulator. This 
gives the output a tidier appearance. However, if the output of the function is of different lengths, it 
can happen that one of the outputs extends beyond a tabulator position, so that an offset occurs for 
the subsequent outputs. In such cases, the length of the output should be limited.

7.4 � continue and break
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 8     for (int y = 0;y < 5;y++)
 9     {
10       // Loop for passing through the columns
11       for (int x = 0;x < 5;x++)
12       {
13         // Interruption of the loop in the
14         // third column using break
15         if (x == 2) break;
16
17         // Output of the function values
18         cout << "(" << x << ", " << y << ")" << "\t";
19       }
20       cout << endl;
21     }
22   }

The continue command behaves similarly to the break command, but only skips the 
current pass of the loop and allows the loop itself to continue. All commands that follow 
the continue command are skipped.

Listing 7.8 modifies Listing 7.6 to skip the output of the third column. Figure 7.5c 
shows the correspondingly modified output.

Listing 7.8  Modifying Listing 7.5 Using continue

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Loop for passing through the lines
 8     for (int y = 0;y < 5;y++)
 9     {
10       // Loop for passing through the columns
11       for (int x = 0;x < 5;x++)
12       {
13         // Skip the loop contents of the
14         // third column using continue
15         if (x == 2) continue;
16
17         // Output of the function values
18         cout << "(" << x << ", " << y << ")" << "\t";
19       }
20       cout << endl;
21     }
22   }
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Network diagram for the self-assessment of this chapter

 

7.1	� Loops

Name the three ways to implement loops in C++ and classify them as head or foot con-
trolled loops.

7.2	� Use Cases

Name a typical use case for each of the three loops.
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7.3	� Loop Types

Explain in your own words the difference between head-controlled and foot-
controlled loops!

7.4	� Endless Loops

Explain how an infinite loop is created!

 

7.5	� Elevator

Take the program from Exercise 6.6 and modify it so that you are asked for the floor to 
which you want to go until you make an invalid entry. The program should also remember 
the floor you are currently on. If you select the current floor again, the message “You are 
currently here” should appear instead of the usual text.

7.6	� Printing of the Character Mapping Table

In this task, each task part counts as a single point for the overall score.

	(a)	 Write a program that loops through the numbers 0 to 255 and outputs them to the 
console. In addition, as in Exercise 5.9, the values are to be converted to char vari-
ables by a typecast and also output.

	(b)	 Complete your program so that the output is in 2 columns.
	(c)	 Complete your program so that the output is in 3 columns.

 

7.7	� Program Analysis

Look at the following program and try to figure out what this program does. The point is 
not to describe the program line by line, but to get an accurate picture of what the goal of 
the program shown is. Of course, you can just type out the program and try it out, but that 
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is not the goal of the exercise. The program uses instructions that you do not yet know. You 
may, of course, research them.

Listing 7.9  Program with Unknown Task

 1   #include <iostream >
 2
 3   using namespace std.;
 4
 5   int main ()
 6   {
 7     const int N = 21;
 8
 9     for (int y = 0; y < N; y++)
10     {
11       for (int x = 0; x < N; x++)
12       {
13         int dx = x - N / 2;
14         int dy = y - N / 2;
15
16         if (sqrt(dx * dx + dy * dy) < N*0.4 &&
17             sqrt(dx * dx + dy * dy) > N*0.1)
18         {
19            cout << “*”;
20         }
21         else
22         {
23            cout << ““;
24         }
25       }
26       cout << endl;
27     }
28
29     return 0;
30   }
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7.8	� Output of the Character Mapping Table

Add a user input of the number of columns s to your program from Exercise 7.5. The value 
should be an integer and lie in the interval [1; 10]. Then the output is to be in s columns.
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8Arrays

Short and Sweet

•	 Arrays store N data under a common name.
•	 The entries of an array are called elements.
•	 An array can extend into several dimensions.
•	 Also texts are nothing else than an array of N characters.
•	 Indices are used to obtain individual data.
•	 Loops are often1 used for access.
•	 The smallest index of a field is always 0.
•	 The highest index of a field is always N − 1.
•	 Possible sources of error:

No check is made to see if the index is within bounds when the array is accessed.

If programs are to process data, it is often necessary to manage many values that all 
have the same variable type. If, for example, a temperature curve is to be recorded in an 
experiment over a period of one minute, with a new temperature value being measured 
every 5 s, this results in a table of values as shown in Table 8.1.

Now this problem is still very manageable. It would be possible to create 13 variables 
of the type unsigned int for the time and of the type double for the temperature. But this 

1 The for loop is used very often for several reasons. On the one hand, a fixed number of elements 
must always be passed through for arrays. Secondly, the for loop with its loop header offers a very 
compact representation of all relevant information. In addition, the loop variable is changed in the 
loop header, thus reducing the risk of it being forgotten.

© The Author(s), under exclusive license to Springer Fachmedien Wiesbaden 
GmbH, part of Springer Nature 2023
B. Tolg, Computer science to the Point, 
https://doi.org/10.1007/978-3-658-38443-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-38443-2_8&domain=pdf
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Table 8.1  Measured temperature curve for an experiment

Time (s) Temperature (°C)
0 1.00
5 1.42
10 2.01
15 2.86
20 4.06
25 5.75
30 8.17
35 11.59
40 16.44
45 23.34
50 33.12
55 46.99
60 66.69

approach would not be very flexible and at the latest if the measurement should cover 
several days, the resulting program would no longer make sense with this approach.

In mathematics, there is a very simple solution to this problem. The name of a series of 
measurements is given an index to make it clear that there are many values involved. The 
name Ti, with i = 1, …, N could thus stand for the measured temperatures and T4 for the 
fourth measured temperature. In our example N = 13, would thus be the number of mea-
sured values.

The same approach was chosen for many programming languages. In computer sci-
ence, the term for a group of values that are all addressed with a name and an index is 
array,2 the values within the array are called elements. For the programming language, it 
is important that the index can be clearly distinguished from the name of the array. In the 
C++ programming language, the index is therefore always written in square brackets after 
the name of the array.

The Ti known from mathematics was written in C++ thus T[j], but with the difference 
that in C++ the index j always starts at 0 and ends at N − 1. The fourth value of the mea-
surement T4 would therefore be T[3] in C++.

Listing 8.1 creates various arrays and shows different ways to initialize them.

Listing 8.1  Defining and Initializing Arrays

 1   #include <iostream >
 2
 3   using namespace std;

2 In fact, both terms are used absolutely equally. In my personal use of language, however, I use the 
word array much more frequently. For the book, however, I didn’t want to keep switching between 
German and English terms, so I’ll stick with the term field. However, it is best to get used to 
both terms.
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 4
 5   int main ()
 6   {
 7     // define a constant for the array size
 8     const unsigned int N = 13;
 9
10     // Initialization of an array with predefined
11     // Values
12     unsigned int time[N] = { 0, 5, 10, 15
13                             , 20, 25, 30, 35
14                             , 40, 45, 50, 55, 60};
15
16     // Initialization of an array with the value 0
17     double T[N] = { 0.0 };
18
19     // Initialization of the array with a
20     // for -loop
21     for (int i = 0 ; i < N ; i++)
22     {
23       cout << "Please enter the temperature after "
24            << time[i] << "s on: ";
25        cin >> T[i];
26     }
27   }

In line 8, an auxiliary constant N is first initialized with the value 13 for the array size. 
This is very useful if the array is to be looped through later. In this case, the auxiliary con-
stant N can always be used as a reference. If the array size is to be adjusted, an adjustment 
at one point is sufficient. Variable values are not allowed when defining arrays, so the vari-
able must be provided with the keyword const. Of course, instead of the constant N, the 
value 13 can always be written. This makes it clear that the length of such an array cannot 
easily be changed at runtime. How arrays with variable size are created is explained in 
Chap. 11.

For the example with the measured temperatures, we need an array in which we can 
store the times for the measurements. To define an array, we need to write the number of 
elements that the array should consist of in square brackets after the names of the vari-
ables, as in line 11.

At this point there are often misunderstandings. According to this definition, the array 
time consists of N (i.e. 13) elements. However, the valid indices are the values 0 to 12.

Since the values were specified in this example, the array can also be initialized imme-
diately during the definition in line 12. One possibility of initialization is to assign the 
values to the array in curly brackets and separated by commas. However, this notation is 
only allowed for initialization. If only some values are to be initialized, fewer values can 
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be placed in the parentheses. The remaining values are then initialized to 0. However, it is 
never permitted to write too many values in the brackets.

In line 17, the array for the measured temperatures is also defined with 13 elements. 
Since the temperatures are not yet known, all elements of the array are initialized with 0 
by the empty curly brackets.

From line 21, the values of the array T are read in using a for loop. In the loop header, 
the count variable i is defined and initialized so that it runs through the value range from 0 
to N − 1. Within the loop, an explanatory text is printed and the value for the number of 
seconds is taken from the array time at the ith position. Then, in line 25, the user input is 
stored in the ith element of the array T.

After the program has been run, the values stored in T can be used for various further 
calculations. For example, it would be possible to determine the mean or standard devia-
tion of the temperature.

The values of an array are always arranged directly one after the other in memory. If an 
array consists of 10 elements of type int and an int occupies 4 bytes of memory, the array 
will occupy 10 ⋅ 4 bytes =40 bytes of memory. The exact amount of memory used can be 
determined using the sizeof function. For example, sizeof(T) in Listing 8.1 returns the 
value 13 ⋅ 4 bytes =52 bytes.

8.1	� Strings

In Chap. 5 the variable type char was already introduced, which can store single letters. Of 
course, for many applications it is not sufficient to store only single letters, instead whole 
words are needed.

Now a word is nothing else than an ordered set of letters, or more generally, characters. 
In principle, this is exactly what is created by an array. In the C programming language, 
words are also represented in exactly this way, by a simple array with the variable type 
char. These arrays are called C-strings. In the C++ programming language, there is a sepa-
rate string data type for this purpose, which provides additional functionality. However, 
C-strings are still used, so the string variable type is not a replacement, but more an addi-
tion that simplifies the use of strings.

Since a C-string is a normal array, its length cannot be changed easily during the run-
time of the program. Therefore, the length of such a C-string is always defined in such a 
way that in the special application case every possible text would fit into it in any case. 
Now the array is too large for many texts and it must still be defined when the text ends 
within a too large array. This is achieved by writing the value 0 after the text in the array. 
This is done automatically in many cases, such as value assignment. Since the 0 marks the 
end of a text, we also speak of null-terminated strings.

Also the length of a text cannot be derived immediately from the size of the array, 
because the array size always represents only the maximum size. To find out the length of 
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a text, a loop would have to go through the text and count all characters until the value 0 is 
found. Listing 8.2 shows how the length of a text in a C-string can be determined.

Listing 8.2  Using C strings

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Auxiliary variable , to determine the length
 8     int length = -1;
 9
10     // Assignment of a sample text to a C - String
11     char text [1024] = "This is a sample text ";
12
13     for (int i = 0 ; i < 1024 ; i++)
14     {
15       // The first 0 in the array is used as the length of the text.
16       // saved
17       if (text[i] == 0)
18       {
19          length = i;
20          break;
21       }
22     }
23
24     cout << "The text: " << text << endl << "consists of "
25          << length << " characters !" << endl;
26   }

In line 8, an auxiliary variable of type int is first defined and initialized with the value 
−1. In line 11, an array with 1024 elements of type char is then defined and initialized with 
a sample text.

From line 13 onwards, a for loop follows, which runs through the array once com-
pletely. If the value of the text array at position i is 0, length is set to the current value of i 
and the loop is terminated with the statement break;. This ensures that only the first 0 in 
the text array causes the value of the length variable to change. It should also be noted that 
text[i] is compared with the number 0 as the end for the text. Should be compared to the 
text character ‘0’, the number would have to be enclosed in single quotes to mark it as char.

The same task is now solved in Listing 8.3 using a C++ string.

8.1 � Strings
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Listing 8.3  Using C++ strings

 1   #include <iostream >
 2   #include <string >
 3
 4   using namespace std;
 5
 6   int main ()
 7   {
 8     // Assignment of a sample text to a C - String
 9     string text = "This is a sample text ";
10
11     cout << "The text: " << text << endl << "consists of "
12          << text.length () << " characters !" << endl;
13   }

In order to be able to use the data type string, the library string must first be included, 
as in line 2. Like many other standard C++ libraries, string also uses the namespace std. It 
is therefore advisable to use namespace std; to ensure that the namespace does not have to 
be named with every call. In line 9, a variable of type string is now created and initialized 
with the same text as in the example Listing 8.2.

In line 11, the result is printed directly, since the variable type string provides a function 
length(), which determines the length of the contained text. The call is made in line 12 by 
text.length(). Functions are described in more detail in Chap. 9.

Although the variable text in Listing 8.3 is now a string, the individual letters of the text 
can still be accessed using the square brackets. The for loop from Listing 8.2 would there-
fore also work in Listing 8.3.

When processing character strings and especially when sorting, the fact that each char-
acter is assigned a number that can be used synonymously is helpful. Table 8.2 shows an 
excerpt from the ASCII table.

As can be seen from the table, the upper case letters are in the interval [65; 90] and the 
lower case letters are in the interval [97; 122]. The characters ‘0’ to ‘9’ are in the interval 
[48; 57].

Since each letter and number sign is now assigned to a number, the computer can work 
internally with these numbers. So the query if ('A′   < 'B′) … would actually be true, since 
it corresponds to the query if (65 < 66) … .

8.2	� Multidimensional Arrays

For various tasks, it may be necessary for an array to have more than one dimension. For 
example, if the data of a computertomograph are to be analyzed, three dimensions are 
needed to assign a value for the absorption coefficient to each point in space. In 
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Table 8.2  Extract from the ASCII character assignment table

Characters Code Characters Code Characters Code
‘0’ 48 ‘A’ 65 ‘a’ 97
‘1’ 49 ‘B’ 66 ‘b’ 98
‘2’ 50 ‘C’ 67 ‘c’ 99
‘3’ 51 ‘D’ 68 ‘d’ 100
‘4’ 52 ‘E’ 69 ‘e’ 101
‘5’ 53 ‘F’ 70 ‘f’ 102
‘6’ 54 ‘G’ 71 ‘g’ 103
‘7’ 55 ‘H’ 72 ‘h’ 104
‘8’ 56 ‘I’ 73 ‘i’ 105
‘9’ 57 ‘J’ 74 ‘j’ 106
… … … … … …
… … ‘X’ 88 ‘x’ 120
… … ‘Y’ 89 ‘y’ 121
… … ‘Z’ 90 ‘z’ 122

mathematics, there are functions that assign a value for the z-coordinate to each 
x-coordinate and to each y-coordinate, and so on.

To create an array with multiple dimensions in C++, simply specify all dimensions one 
after the other in square brackets when defining a new array. The definition int array2d[5]
[10]; would thus create a two-dimensional array with 5 ⋅ 10 elements. Accessing an array 
with two or more dimensions is done analogously to one-dimensional arrays by specifying 
the respective indices in square brackets. Here, too, the counting of the indices starts at 0.

As an example, the mathematical function z x y� �2 2  is to be stored in a two-
dimensional array. Listing 8.4 shows an example implementation.

Listing 8.4  Applying a multidimensional array in C++

 1   #include <iostream >
 2   // in the cmath library there are
 3   // mathematical functions , e.g. sqrt
 4   // to calculate the root
 5   #include <cmath >
 6
 7   using namespace std;
 8
 9   int main ()
10   {
11     // Auxiliary variables for the expansion of the array
12     const int Y = 50;
13     const int X = 50;
14
15     // Definition of the two-dimensional array

8.2 � Multidimensional Arrays
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16      double z[Y][X] = {0.0};
17
18      // Calculation of the function values for all (x, y)
19      // Coordinate pairs
20      for (int y = 0; y < Y; y++)
21      {
22        for (int x = 0; x < X; x++)
23        {
24          z[y][x] = sqrt(x*x + y*y);
25        }
26      }
27   }

The two-dimensional array required for the results of the calculation is defined in line 
12. To define the size of the two dimensions, the auxiliary variables X and Y are used, 
which were initialized in lines 8 and 9.

From line 16, the calculation of the function values begins with the help of two nested 
loops. In line 20, the function values are assigned to the individual array elements; access 
is provided by specifying the indices in square brackets in each case.

8.3	� Multidimensional Arrays with Strings

In programs that are to process texts, it can come to the situation that inputs are distributed 
over several variables of the type string. For example, it may be necessary to manage a 
series of inputs that must then be sorted according to certain criteria. In these cases, the 
program also works in principle with multidimensional arrays. If C-strings are used, it is 
obvious that a multidimensional array is involved. The line char words[N][M] would pro-
duce an array capable of holding N words of length M. The example Listing 8.5 shows how 
multidimensional strings can be used.

Listing 8.5  Multidimensional strings with C strings

 1   #include <iostream >
 2   //# include <string >
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Auxiliary variables for the expansion of the array
 8     const unsigned int N = 5;
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 9     const unsigned int M = 255;
10     // Initialization of the array
11     char words[N][M]
12       = { "this", "is", "a", "test", "!" };
13     // string words[N]
14     // = { "this", "is", "a", "test", "!" };
15
16     // Output of all words of the array
17     for (int i = 0; i < N; i++)
18     {
19       cout << words[i] << endl;
20     }
21
22     // Output of all words of the array Variant 2
23     for (int i = 0; i < N; i++)
24     {
25       int j = 0;
26       while (j < N && words[i][j] != 0)
27       {
28         cout << words[i][j];
29         j++;
30       }
31       cout << endl;
32     }
33   }

In line 11, a multidimensional array of type char is created and initialized with a series 
of words. The words are separated with commas and written in double quotes so that they 
are recognized as strings. The array has the size 5 ⋅ 255, as defined by the constants in lines 
8 and 9. Alternatively, C++ strings can be used in this example. To do this, line 11 must be 
commented out and line 13 activated and the preprocessor directive #include < string > added.

If the words are now simply to be printed, there is a simplified notation to do this. Since 
the C-strings always end when the value 0 is in the array, a simple loop as in line 17 is 
sufficient to realize the output, since the end of the word can be recognized by the printing 
operation.

In line 23, the output of the complete words also takes place. The result is identical to 
that achieved in line 17 by a single loop. In this case, however, each letter is printed indi-
vidually. The inner while loop runs through the respective words until either the end of the 
dimension is reached or the value 0 is found in an element.

Since the type string offers many additional functions compared to C-strings and is 
easier to use, it is advisable to use this data type, especially at the beginning.

8.3 � Multidimensional Arrays with Strings
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�Exercises
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Network diagram for the self-assessment of this chapter

 

8.1	� Indices

In which interval are the indices of an array defined by the line int array[15]; located?

8.2	� Strings

By which character is the end of a text in a C-string marked and what are these strings 
therefore called?

8.3	� ASCII Table

What is represented in the ASCII table?
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8.4	� Letter Comparison

Explain why a comparison of two letters, as in if(‘a’ < ‘b’) … works!

8.5	� Function Values

In a program, the values of a function are to be calculated and printed. After this output, 
the function values are no longer required. Is an array required for this program?

Give reasons for your answer!

8.6	� Numbers and Characters

Explain the difference between the number 9 and the character ‘9’ in

 

8.7	� Random Numbers

Create a program in which an array of type int with N = 100 elements is created. Now loop 
through each element of the array with a for loop and assign the value rand() % 1000 to 
each element. The rand() function generates a random integer. The modulo operation % 
calculates the remainder when divided by the number 1000. The result is a number that lies 
in the interval [0; 999].

Add up the numbers in a second loop and divide the result by N. Enter the result of your 
program with the hint

Mean value of random numbers: x

on the console. Replace the x with the calculated value.
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8.8	� Largest Initial Letter

Write a program that reads 10 words into an array of the data type string. Afterwards, the 
words are to be searched within your program, so that the word with the first letter is found 
and output, which can be found last in the alphabet.

 

8.9	 �Program Analysis

Analyze the following program. To do this, try to find out what the individual program 
lines do in terms of content and deduce the task of the program.

Commands have been used that you do not know yet. Try to research them.
Do not type the program, but try to understand what is happening without assistance!

 1   #include <iostream >
 2   #include <time.h>
 3
 4   using namespace std;
 5
 6   int main ()
 7   {
 8     srand(time (0));
 9
10     const int N = 1000;
11     double values[N] = { 0.0 };
12
13     for (int i = 0; i < N; i++)
14     {
15       values[i] = (( double )(margin () % 1000)) / 100.0;
16     }
17
18     for (int i = 0; i < N; i++)
19     {
20       for (int j = 0; j < N - 1; j++)
21       {
22         if (values[j] > values[j + 1])
23         {
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24           double h = values[j];
25           values[j] = values[j + 1];
26           values[j + 1] = h;
27         }
28       }
29     }
30
31     for (int i = 0; i < N; i++)
32     {
33       cout << values[i] << endl;
34     }
35
36     return 0;
37   }

 

8.10	� Word Lengths

Write a program that generates N = 1000 words with a random length of at least 3 and at 
most 10 lowercase letters and stores them in an array.

Then your program should determine the mean word length and the standard deviation 
of all word lengths and print them together with the words on the screen.

The formula for the arithmetic mean is:

	
x

N
x

i

N

i�
�

�

�1

0

1

	
(8.1)

The formula for the standard deviation is:
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9Functions

Short and Sweet

•	 A function is declared by:
–– Return type
–– Name
–– Parameters in round brackets.

•	 Functions can be used to structure programs.
•	 Functions can be used again and again.

The more complex the tasks that are to be solved by computers become, the more complex 
the programs that are to solve these tasks also become.1 In complex software systems, 
there are many tasks that must be executed at different points in a program. For example, 
it may be necessary to print an error message at several places, which should always fol-
low a certain pattern. For example:

    ERROR: A file could not be opened!
    Do you want to continue (y/n)?

The beginning of the line should always be the same. However, the error message at the 
end may change, depending on the specific case.

Now, of course, it is easy to copy these few lines into the program wherever an error 
message is to be printed. After that, only the text of the error would have to be changed. 

1 Malicious tongues claim that many of the problems solved by computers would not exist with-
out them.
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But what happens if the structure of the entire output is to change? From now on, the out-
put should always look like this, for example:

    ERROR:
    -------
    A file could not be opened!
    -------
    Do you want to continue (y/n)?

In this case, you search your entire program for the error outputs in order to change 
them. Of course, depending on how complex your program already is, there’s always a risk 
that you’ll miss some output or other. And there are much more complex parts of a pro-
gram that can be repeated.

It is obvious that repetitive program sections should be written only once so that they 
can be reused. In addition, these related sections should be assigned names so that it is 
easy to see what they do. And as the example already shows, it may be necessary for these 
program sections to be passed values, or to return values. All these tasks are performed by 
functions.

Figure 9.1 shows the syntax diagram for functions in C++.
The function header always consists of three parts:

•	 The return type determines what kind of value is returned by the function. The function 
always has only one return type and can only return one value of this type. Basically, a 
function here behaves like a corresponding variable but with the difference that the 
returned value is still calculated by the function. There may also be functions where it 
makes no sense for them to return a value. In that case, a return value must still be 
specified, which is then void. The word void stands as a placeholder if no data type is 
to be returned.

•	 The name of the function determines how the function will be called in the future 
within the program. It makes sense to choose a name that describes the function’s task 
as briefly as possible.

•	 Within round brackets, parameters can be specified to be passed to the function. It may 
happen that this is not necessary for certain functions. In this case, however, the paren-
theses must still follow the name of the function. If several parameters are to be passed, 
they must be separated by commas.

Fig. 9.1  Syntax diagram for 
functions
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Listing 9.1 shows the implementation of a function that implements the error message 
from the previous example.

Listing 9.1  An Error Message Function

 1   #include <iostream >
 2   #include <string >
 3
 4   using namespace std;
 5
 6   // Implementation of the error function
 7   bool error(string errormessage)
 8   {
 9     char result;
10
11     cout << "ERROR :" << endl;
12     cout << "-------" << endl;
13     cout << errormessage << endl;
14     cout << "-------" << endl;
15     cout << "Do you want to continue (y/n)?" << endl;
16     cin >> result;
17
18     if (result == 'y')
19     {
20       return true;
21     }
22
23     return false;
24   }
25
26   // Main function
27   int main ()
28   {
29     // ...
30     bool goOn = error (" A file could not ...!");
31
32     if (goOn == false)
33     {
34       return 10;
35     }
36     // ...
37   }

If a function is to be written, it must always be clarified first which value the function 
is to return. In the example, the error message is to query whether the program should 
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continue after the error. Of course, it would be possible to pass directly through the result 
of the user input, but if the required input changes at some point, the subsequent process-
ing may no longer be correct. For this reason, it makes sense to choose a slightly more 
abstract return. The variable type bool lends itself to this, as it only distinguishes between 
true and false. Within the function it can then be decided what is true or false in this case.

After that, a meaningful name for the function must be found. Since the example is 
about an error output, the name error is suitable. It is important that the function is 
declared2 before it is used for the first time, in this case before the main function.

Now it must be decided which parameters the function requires. In this example, the 
function fulfills a specific task, it is to print an error message. This error output should 
always follow the same pattern, but the text of the error message depends on which error 
has occurred. This is the decisive criterion for a parameter. The function itself cannot know 
which error has occurred, consequently it cannot decide on the text of the error message. 
This information must come from outside, and that is a function parameter.

The function error was implemented after all these considerations. In line 9 an auxil-
iary variable is created within the function to read in the later user input. A common ques-
tion is whether it is at all possible to create a variable of type char in a function of type 
bool. And the answer is that one has nothing to do with the other. The type of the return 
value only refers to the value that the function will eventually return to the place from 
where it was called. The command for this is return. Lines 20 and 23 specify the return 
value of the function, and those values must actually match the type of the function, which 
in this case is bool. However, what the function does beforehand, and which variables it 
uses for this, is not specified.

The function itself does the output of the error message in lines 11 to 15 according to 
the required pattern. In line 16 the user input is queried and in line 18 it is checked whether 
the letter ‘j’ was entered. In this case the function returns the value true, in any other case 
the value false.

The main function starts at line 27 and is structured exactly like the error function. The 
return type of the function is int, the name of the function is main and the empty round 
brackets after the name signal that the function does not take any parameters.

What exactly is to be implemented with this program is not important at this point, so 
lines 29 and 36 indicate that something is happening there.

In line 30 the variable goOn of the type bool is created. It is assigned the return value 
of the error function after it has been called with the parameter “A file could not be …!” 
The function call causes the function to be jumped into first and its code to be executed. 
Only after the function has been completed does it continue in the main function.

Line 32 checks if the function returned the value false, in which case the main function 
would exit and return the value 10 to the caller.

2 A distinction is also made between the declaration and definition of functions. The declaration only 
creates a function prototype, which is described in Sect. 9.2 on page 100.
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Repetition: The caller for main is always the operating system. The operating system 
expects the return value 0 from a program, if the program was terminated properly. Any 
other value is interpreted as an error message. Of course, the operating system cannot do 
anything with the returned error, it will just print the value. Therefore, when writing a 
program, it makes sense to create a documentation of the possible return values in order to 
be able to interpret the value. In this case, the value 10 corresponds to an abort after a 
failed file operation. In the end, however, it does not matter which value is used, as long as 
it is documented what it means.

9.1	� Overloading Functions

Occasionally, situations arise where the solution for a task can be solved differently well 
or efficiently depending on the type of the parameter passed. Sometimes it is also neces-
sary to call a task with different parameter configurations, because the output data can be 
in different formats, for example as a vector or as a set of coordinates. For these cases C++ 
has the possibility to overload functions.

This means that several functions may have the same name if only the function param-
eters within the round brackets differ in number, order or types. The name and the param-
eter list, where the number of parameters, their order and type are relevant, are called the 
signature of the function. However, two functions do not differ if the parameters are of the 
same type but have different names, or if two functions differ only in the return type. This 
information is not part of the signature.

An admittedly not very creative but simple example of overloaded functions is given in 
Listing 9.2. The program generates the following outputs one after the other.

This is an int
This is a double
This is a string

Listing 9.2 Overloading Functions

 1   void distinguish(int v)
 2   {
 3   cout << "This is an int" << endl;
 4   }
 5
 6   void distinguish(double v)
 7   {
 8        cout << “This is a double” << endl;
 9   }
10
11   void distinguish(string v)
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12   {
13        cout << “This is a string” << endl;
14   }
15
16   // The following function cannot be defined ,
17   // since it differs only by the return value of
18   // of the first function.
19   int distinguish(int v)
20   {
21     cout << “This is an int” << endl;
22   }
23
24   int main ()
25   {
26     distinguish (3);
27     distinguish (3.5);
28     distinguish ("t");
29   }

9.2	� Function Prototypes

Larger programs consist of many different functions, which also frequently call each other. 
Sooner or later, a problem arises that cannot be solved with previous knowledge. Listing 
9.3 shows such a situation in a very simplified way.

Listing 9.3 Reciprocal Function Call

 1   // Function a needs function b to work.
 2   void a()
 3   {
 4     // ...
 5     b();
 6     // ...
 7   }
 8
 9   // Function b requires function a to work.
10   void b()
11   {
12     // ...
13     a();
14     // ...
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15   }
16
17   // Main function
18   int main ()
19   {
20     // ...
21     a();
22     // ...
23   }

Of course, such a program would cause an error just by having the functions simply call 
each other in an uncontrolled manner. The program would get stuck and crash almost 
immediately with an error message. In this example, we will therefore assume that the 
mutual call is necessary and depends on previously defined conditions.

Nevertheless, a problem arises due to the mutual dependency. A function cannot be 
used until it has been declared before it is first used. However, since the functions call each 
other, there is no sequence that would resolve this problem.

What we have learned so far is the so-called definition of a function. Here, both the 
function header and the function body are defined. In addition to the definition, however, 
it is also possible to declare functions. The declaration makes it possible to first define the 
most important information for the function, so that the compiler can check that the func-
tion has been applied correctly when translating the program. This works even if it has not 
yet been defined what the function is actually supposed to do.

All important information is summarized in the header of a function. To declare a func-
tion, only this information must be specified. Instead of the function body, however, only 
a semicolon follows in the declaration. The following information must be given in the 
declaration:

•	 The return type must be specified so that the translation can check that the context of 
the function is correct. For example, a function with return type void does not produce 
a value that could be stored in a variable.

•	 The name of the function is important to recognize the function and to prevent typ-
ing errors.

•	 The parameters must be declared within round brackets. However, it is not necessary to 
assign names to the parameters for a declaration. The type of the parameters and the 
correct order are sufficient for a check during translation. However, it is still possible to 
specify these names already in the declaration.

A function declaration is also called a function prototype. Examples of function proto-
types can be found in Listing 9.4.
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Listing 9.4 Examples of Function Declarations

 1   // A function declaration without specifying the
 2   // Parameter names.
 3   void a(int , double );
 4
 5   // A function declaration with specification of the
 6   // Parameter names. Recommended for maintenance
 7   // and readability reasons.
 8   int b(double x, double y);
 9
10   // Definition of the function a
11   void a(int i, double k)
12   {
13     // ...
14   }
15
16   // Definition of the function b
17   int b(double x, double y)
18   {
19     // ...
20   }
21
22   // Main function
23   int main ()
24   {
25     // ...
26   }

After the functions have been declared, they can be used immediately. However, the 
definition of the function must be done somewhere within the program, otherwise the 
program cannot be compiled completely. Later programs will consist of several files. We 
then speak of projects. The function definition can then also take place in other proj-
ect files.

9.3	� References and Arrays as Function Parameters

Functions have the limitation that they have only one fixed return value. The return value 
behaves rather like the type of a variable. When a function is called, it may calculate a 
result of a certain type. The return value specifies that type. In the rest of the program, the 
function call can now be viewed as using a variable of the appropriate type.

Nevertheless, it is often necessary for a function to calculate several values and return 
them to the calling location. In C++ this is done via a so-called call by reference. This term 
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describes a special notation in the parameter definition of a function within the round 
brackets. Previously, parameters were always defined by first specifying the variable type 
and then the variable name. This type of definition is called Call by Value.

With Call by Value, new variables of the corresponding type are created within the 
function. If parameters are passed when the function is called, these values are simply 
copied into the new variables of the function. When the function finishes its task, the return 
type is copied to the calling location and all function variables are deleted. Since the call 
by value works with local copies of the values, which are deleted at the end of the function 
call, all changes to the parameter values are lost after the function ends.

Each variable can also be passed to a function with a call by reference. To indicate this, 
an ampersand (&) must be inserted between the type and the parameter name. In this case, 
no new variable is created. Instead, the function parameter refers to the original variable 
that was passed to the function. Within the function, the variable can then be addressed 
with the name of the function parameter, and at the point of the call with the name assigned 
there. In principle, two names refer to the same variable after a call by reference. Of 
course, it is always possible to use both Call by Value and Call by Reference when defining 
the function parameters.

Listing 9.5 shows the definition of function parameters that are passed by call by refer-
ence. A function prototype was created in the program to illustrate the notation of a call by 
reference in a function declaration.

Listing 9.5 The Exchange of Two Values

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   // A function declaration for a call by reference.
 6   void swap(int&, int &);
 7
 8   // Main function
 9   int main ()
10   {
11     int val1 = 5;
12     int val2 = 10;
13
14     cout << val1 << ", " << val2 << ", ";
15
16     swap(val1 , val2 );
17
18     cout << val1 << ", " << val2;
19
20     // ERROR:
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21     // swap(5, 10);
22     return 0;
23   }
24
25   // Definition of the swap function
26   void swap(int& a, int& b)
27   {
28     int h = a;
29     a = b;
30     b = h;
31   }

In line 4 of the program the function prototype for the function swap is created. The 
names of the function parameters do not have to be specified, but it is necessary to write 
the ampersand after the parameter type to make it clear that this parameter is to use Call 
by Reference. An alternative notation with parameter names is given in line 6.

Inside the main function in line 16, the swap function is called with the variables val1 
and val2 previously defined and initialized. After calling the function, the values of the two 
variables are swapped so that the output of the program is 5, 10, 10, 5.

An important special case is indicated in line 21. Since the call by reference creates a 
second name for a variable, a variable must exist to which the reference can refer. 
Consequently, passing constant values is no longer possible for function parameters that 
use call by reference.

In line 26 follows the definition of the function swap. It performs a so-called triangular 
swap. This swap requires an auxiliary variable h, in which the value of a variable a is tem-
porarily stored. Afterwards, the value in variable a is overwritten with the value of variable 
b.Finally, the value cached in h can be copied to b. After the triangle swap, a and b have 
swapped their contents.

The use of Call by Reference has another advantage. If only a reference is created 
instead of a copy, this can of course be done much faster. For this reason, it can make sense 
to pass a reference even if the value is not to be changed within the function. In this case, 
the keyword const can be used to prevent the parameter from being changed within the 
function. A function header with a constant reference would be declared by void f(const int 
& a);. However, due to the somewhat confusing definition of the const keyword in C++, 
the function header void f(int const & a); would also produce exactly the same result.

9.3.1	� Arrays as Parameters

Arrays are also allowed as function parameters. Unlike other variables, however, arrays 
are always passed by reference. It is therefore not possible to change the values of the 
array within the function without this change also occurring at the calling point.
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Listing 9.6 shows declarations and definitions of functions that take one-dimensional 
arrays as parameters. In addition to the normal option of omitting the names of the param-
eters in the declaration, there is also the option of specifying the size of the array (as in the 
case of the function f in Listing 9.5), or omitting it (as in the case of the function g). 
However, there is no difference in the result between these two variants. Since C++ does 
not check the size of an array and it is even possible to pass smaller or larger arrays to the 
function, this specification can also lead to confusion.

Listing 9.6 Functions with Arrays

 1   // Function declarations with arrays.
 2   void f(int [5]); void g(int []);
 3
 4   // Main function.
 5   int main ().
 6   {
 7     int values [5];
 8
 9     f(values);
10     g(values);
11   }.
12
13   // Definition of the function f.
14   void f(int w[5]).
15   {.
16     //...
17   }.
18   // Definition of the function g.
19   void g(int w[]).
20   {.
21     //...
22   }.

If it is to be ensured that the values of an array cannot be changed, the keyword const 
can also be used here. The function declaration void f(const int w[]); or void f(int const 
w[]); would prevent values of the array from being changed within the function.

For multi-dimensional arrays, the size of the array can only be omitted for the first 
dimension. C++ is otherwise unable to resolve the coordinates of the array correctly. A 
declaration of a function that takes a multidimensional array of size 5 ⋅ 5 as a parameter 
could consequently be void f(int w[][5]); or void f(int w[5][5]);.
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9.4	� Advanced: Pre-assigned Function Parameters

Functions can significantly simplify programs and by the possibility to pass parameters, 
they can additionally adapt their behavior individually to the needs of the respective situ-
ation. However, it can happen that the various functions should actually behave almost 
always the same and should only do something different in exceptional cases.

An example could be a function that is to write a series of hyphens as a separator line 
in the console. The separator line should always consist of twenty hyphens, but for a single 
output the length of the separator line must be only ten hyphens. For this case C++ offers 
the possibility to assign default values to function parameters.

Listing 9.7 defines a separator function that implements the previously described 
example. In the function prototype, the parameter b is preset to the value 20. This default 
value must not be repeated in the function definition. Only if no function prototype exists, 
the preassignment must be made in the function definition.

Listing 9.7 Predefined Parameters for Functions

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   // Function declarations with preassignment.
 6   void separator(int b = 20);
 7
 8   // Main function
 9   int main ()
10   {
11     separator ();
12     separator (10);
13   }
14
15   // Definition of the separator function
16   void separator(int b)
17   {
18     for (int i=0;i<b;i++)
19     {
20       cout << "-";
21     }
22     cout << endl;
23   }
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When the separator function is called, the parameter no longer needs to be specified. In 
this case the value 20 is set automatically. If a value other than 20 is to be used, the func-
tion can be called as usual by specifying the parameter value.

A special situation arises when several parameters are to be preassigned. Here it must 
be ensured that preassigned parameters must always be at the end of the parameter list. 
Since preassigned parameters can be omitted when calling, it would otherwise not always 
be possible to assign the subsequent parameters correctly. There is also a special feature in 
the function call. If the value of the last parameter is to be changed, values must still be 
passed for all other parameters in this case, even if they are already preassigned. Listing 
9.8 shows some examples.

Listing 9.8 Examples of Preassigned Function Parameters

 1   // Function declarations
 2
 3   // OK
 4   void test1(int a = 0, int b = 1);
 5
 6   // Not OK
 7   void test2(int x = 0, int y = 0, double r);
 8
 9   // OK
10   void test3(int x, int y, double r = 1.0);
11
12   // OK
13   void test4(int x, int y = 0, double r = 1.0);
14
15   // OK
16   void test5(int x = 0, int y = 0, double r = 1.0);
17
18   // Function calls
19   test1 (5);       // OK a = 5, b = 1
20   test5 (3);       // OK , if x should be 3
21                    // Not OK , if r = 3.0 is required
22   test5(0, 0, 3.0) // OK x = 0, y = 0, r = 3.0

9.5	� Advanced: Variadic Functions

In some rare cases, it may be necessary to write a function whose number of parameters 
cannot be specified in advance. Such a function is called a variadic function. An example 
of this is the printf function, which produces output to the console. The first parameter of 
the printf function is a char field that specifies a text into which values are to be inserted 
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at certain positions. The places where values are to be inserted are marked by predefined 
special characters in the text. The values to be inserted then follow as additional parame-
ters when the function is called. The function call.

printf(“% i values were created”, 5);

would, for example, produce the output 5 values were created on the console. In this 
case, the predefined special character %i means that a parameter is to be inserted into the 
text as an integer.

Of course, with such a function it is not clear how many parameters are to be inserted 
into the text. Specifying the number or types of parameters would result in an unrealizable 
number of combinations, all of which would have to be covered by individual functions. 
To prevent this, C++ offers the possibility of defining functions that have a variable num-
ber of parameters.

Although this is a very helpful offering of C++, it is still not easy to use and error prone 
because of the many unknowns.

Listing 9.9 implements a variadic function that is to calculate the sum of n numbers. In 
order to be able to develop a function with a variable number of parameters, the library 
stdarg.h must be included, since the functions required for this are otherwise not available. 
Even with these functions, C++ offers no way of finding out how many parameters have 
been passed to the function. For this reason, it makes sense to query this information with 
the first parameter, which is defined as an int. This is followed by three items in the param-
eter list to make it clear that any number of additional parameters can follow here. The 
function prototype and the function definition header hardly differ in these functions.

Listing 9.9 An Example of a Variadic Function

 1   #include <iostream >
 2   #include <stdarg.h>
 3
 4   using namespace std;
 5
 6   // Function prototype
 7   double sum(int n, ...);
 8
 9   // Definition of a variadic function
10   double sum(int n, ...)
11   {
12     double result = 0;
13
14     va_list parameterList;
15     va_start(parameterList , n);
16
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17     for (int i = 0; i<n; i++)
18     {
19       double summand = va_arg(parameterList , double);
20       result += summand;
21     }
22     va_end(parameterList);
23
24     return result;
25   }
26
27   // Main function
28   int main ()
29   {
30     cout << sum(5, 1.0, 2.0, 3.0, 4.0, 5.0);
31   }

To be able to store a parameter list, a variable of the type va_list is required. In the cur-
rent example, the variable is called parameterList. This variable must be initialized using 
the va_start function. The function requires two parameters, firstly the parameter list to be 
initialized and secondly the variable n. However, the variable n does not specify how many 
parameters are to be taken over, but is the name of the parameter after which the variable 
parameter list is to begin. It is important to de-initialize the parameter list using the va_end 
function before exiting the function.

In order to calculate the sum of the passed parameters in the example program, each 
individual parameter must be evaluated. The function va_arg always returns the next 
parameter from the parameter list that is passed to the function. In addition, the function 
must be told how the parameter is to be interpreted. In our example the value should be 
interpreted as double. This is another source of error: It is not possible to determine the 
actual variable type. The example program only works if the passed values can actually be 
interpreted as double. Additionally, not all variable types can be used, char, int and double 
work, but float does not.

To get the n parameters that were passed, the function is called within a for loop. Again, 
C++ does not check whether the number of parameters passed actually corresponds to the 
value n.

Within the main function the function is called with some test values. The output of the 
program is 15 as expected.

9.6	� Advanced: Recursive Calls

The basic principle of recursion is very simple to understand at first glance. An operation 
is recursive if the same rules are applied over and over again to a data set. In C++, recur-
sive functions are, in the simplest case, those that call themselves over and over again. In 
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more complicated cases, multiple functions can call each other to solve a problem recur-
sively. Listing 9.3 was already such a recursive example. However, to understand in detail 
what recursion means and to solve your own problems recursively, a deeper understanding 
and some experience is needed.

First of all, it is important to understand that every function that is called stores a set of 
information in memory, called the stack, or stack memory. The name for this memory was 
cleverly chosen because new information is always placed “on top” of the stack and only 
this information can be easily retrieved. There is also talk of “LIFO” in this context. This 
means Last In First Out, the last information that was put down is the first to be removed. 
Just like a stack of plates.

A function’s information includes the return value, the function parameters, the func-
tion’s local variables, and the return address, which indicates where the program must 
jump when the function has finished. This is done anew for each function call, even if a 
single function calls itself over and over again. So even though a function is called the 
same thing, new variables are created on the stack for each new call, and they can have 
individual values.

Another insight is that this memory is limited. Thus, there cannot be an infinite number 
of function calls in succession. On the contrary, a function that calls itself without limit 
will cause a crash practically immediately.

So why should a problem be solved recursively if it is difficult to understand and there 
is also the risk of a memory-induced crash? In fact, simple problems such as factorial 
computation or Fibonacci numbers, which at first sight invite to be solved recursively, are 
often very inefficient if a recursive approach is chosen. These problems can be solved 
much more efficiently using a loop. This approach is called iterative.

However, for more complex problems, such as sorting numbers, very efficient recursive 
solutions can be found, such as the Quicksort algorithm. There are also recursive data 
structures that are commonly used and can be searched very efficiently using recursive 
approaches.

To get started, however, it is useful to begin with a simple example, even if it is not 
efficient: The factorial of a number n is calculated by multiplying all numbers from 1 to n 
together. From this, a recursive rule can be derived:

	
n n n with! !, !� � �� � �1 1 1 	 (9.1)

The factorial of a number n can be calculated by multiplying n by the factorial of the 
number n − 1, where the factorial of the number 1 is defined as 1. This rule translates 
directly into the recursive Listing 9.10.
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Listing 9.10 Recursive Solution of the Faculty Calculation

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   // recursive faculty calculation
 6   unsigned int faculty(unsigned int n)
 7   {
 8     if (n == 1) return 1;
 9
10     return n * faculty(n - 1);
11   }
12
13   // Main function
14   int main ()
15   {
16     cout << faculty (5) << endl;
17   }

The function faculty recursively calculates the factorial of the number n. It is important 
to note that there is a non-recursive path in addition to the recursive path that calls the 
faculty function again. This non-recursive path is chosen if the number n passed has a 
value of 1, since that value is already fixed. It ensures that the function does not make any 
further recursive calls after a finite number of calls.

If the value of the variable n does not equal 1, the function calculates the result of the 
product of n and the recursive call to the function faculty with the parameter n − 1. This 
function calls itself with the parameter n − 2 and so on until the parameter eventually 
equals 1. After that, each function in turn returns the result of its calculations, until at the 
end the factorial is completely calculated.

An iterative solution to the faculty problem is presented in Listing 9.11. By using a 
loop, the problem can be solved much more efficiently because it requires much less mem-
ory. The iterative solution does require three int variables to compute the result. However, 
the recursive solution requires one int variable for each function call.

Listing 9.11 Iterative Solution of the Faculty Calculation

 1   #include <iostream >
 2
 3   using namespace std;
 4
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 5   // iterative faculty calculation
 6   unsigned int faculty(unsigned int n)
 7   {
 8     unsigned int result = n;
 9
10     for (int i = n-1;i>1;i--)
11     {
12       result *= i;
13     }
14
15     return result;
16   }
17
18   // Main function
19   int main ()
20   {
21     cout << faculty (5) << endl;
22   }

9.7	� Advanced: static

Within functions, the keyword static has a different meaning than with global variables. If 
a variable is created and initialized as a static variable within a function, this variable is not 
created anew with each function call and deleted after the function is completed. Instead, 
the variable is created and initialized only once, when the function is called for the first 
time.3 From that point on, the variable exists and is not deleted until the program terminates.

Static variables can be used to store state within functions that is passed from function 
call to function call. For example, a static variable can be used to count how many times a 
particular function has been called. Listing 9.12 implements the callCount function.

Listing 9.12 Using Static Variables to Count Function Calls

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   void callCount ()

3 In fact, the initialization of static variables is not limited to function bodies. The rules explained 
here apply to all static variables that are created inside blocks, i.e., inside curly braces.
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 6   {
 7     static int count = 0;
 8     count ++;
 9
10     cout << “Function call: “ << count << endl;
11   }
12
13   // Main function
14   int main ()
15   {
16     for (int i = 0; i < 10; i++)
17     {
18       callCount ();
19     }
20   }

Within the function, the static variable count is created first and initialized with 0. This 
initialization is located within the function, but is only called once during the first function 
call and is ignored thereafter.

With each function call, the value of the variable is incremented by 1 and printed to the 
console.

Within the main function, the callCount function is called 10 times in a row within a 
loop. The output of the program is:

  Function call: 1
  Function call: 2
  Function call: 3
  Function call: 4
  Function call: 5
  Function call: 6
  Function call: 7
  Function call: 8
  Function call: 9
  Function call: 10

So the static variable actually retains its value between function calls, counting the 
number of times the function is called.
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9.1	� Function Prototype

List the information needed to create a functional prototype.

9.2	� Return Value

Write down the function header of a function f that has no return type. Three variables are 
to be passed as parameters, which have the types int, double, and char. You are to indicate 
the function body by curly brackets.
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9.3	� Call by Reference

What is meant by the term Call by Reference?

 

9.4	� Variadic Functions

Explain in your own words what properties a variadic function has!

9.5	� Recursion

What is the difference between a recursive and an iterative solution?

9.6	 �static

Explain the meaning of the term static in the context of functions!

9.7	� Function Overloads

What is meant by “overloaded functions”?

 

9.8	� Input and Output Functions

Write a program in which two functions are used to perform the inputs and outputs 
respectively.

To do this, first implement an input function that is to read in text from the console and 
return it to the caller as a return value. Use the getline(cin, text); statement to read in the 
text, since the operator 〉〉 would interrupt the input at the spaces.

The second function, output, is to receive the text and output it to the screen. There 
should be a row of hyphens above and below the text, which is exactly as long as the out-
put text.
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Within the main function, the input function is to be called first and the result is to be 
stored in a variable of the type string. Before the output function is called, all spaces (‘’) 
in the input text are to be replaced by asterisks (‘*’).

9.9	� Recursion

Design a program that calls the recursion function in the main function and passes it the 
parameter 0.

	(a)	 Now write the function recursion, which takes a parameter c of type int. It is to call 
itself with the parameter c + 1 if the value of c is less than 100. After the call has been 
made, the value of c is to be printed to the screen.

	(b)	 Modify the program so that the output of the variable c occurs before the recursive 
call. Explain the modified output!

 

9.10	� Program Analysis

Analyze the following program. To do this, try to find out what the individual program 
lines do in terms of content and deduce the task of the program.

Commands have been used that you don’t know yet. Try to research them!
Do not type the program, but try to understand what is happening without assistance!

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int func(int val[], int s, int e)
 6   {
 7     if ((e - s) == 0) return val[s];
 8
 9     int h = (e + s) / 2;
10     int e1 = func(val , s, h);
11     int e2 = func(val, h + 1, e);
12
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13     return e1 + e2;
14   }
15
16   int main ()
17   {
18     const int N = 100;
19     int values[N];
20
21     for (int i = 0; i < N; i++)
22     {
23       values[i] = i + 1;
24     }
25
26     cout << "Result: " << func(values , 0, N - 1)
27          << endl;
28
29     return 0;
30   }

 

9.11	� Output of Parameters of a Variadic Function

In this task, you are to develop the variadic function myPrint, which takes one parameter 
of type string and then allows the user to pass any number of additional parameters.

Within the function, the string is to be run through and printed to the console character 
by character. Whenever there is an asterisk (‘*’) in the function, however, not the asterisk 
is to be printed, but one of the additional parameters, which is always to be interpreted as int.

The main function should call myPrint with the parameters (“− + −*− + −*− + −*”, 
1, 2, 3).
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10Classes and Structures

Short and Sweet

•	 A class describes a blueprint for objects.
•	 It creates a new self-defined data type (the string data type is a good example).
•	 An object, or instance, is a concrete manifestation of a class (e.g., a string variable that 

stores a specific text).
•	 In addition to data, a class can have functions.
•	 There are a number of specialized functions in a class:

–– The constructor initializes an object of a class
–– The destructor de-initializes an object of a class
–– The operators allow, among other things, the definition of mathematical connec-

tions, comparisons or relations (+, − , ∗ , /, = , =  = , [], …).

So far in this book, programs have been presented that consist of individual instructions 
that are grouped into functions. This type of programming is called procedural program-
ming, since functions are often also called procedures in computer science. At the begin-
ning of the nineties of the last century, however, the term object-oriented programming 
appeared.

The idea of object-oriented programming is to combine data and functions that belong 
together in terms of content in a common structure, the class. The class serves as a blue-
print for objects that can actually store and manipulate data. This type of programming 
allows a new approach to the structure of a program and a different idea of data structures.

An illustrative example that can be used for a class is a vector in a two-dimensional 
coordinate system. First, it must be determined what data make up such a vector. For the 
vector, this is obviously the two coordinates x and y.
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Every vector in a two-dimensional coordinate system has these two properties. In addi-
tion, further information can be derived from these two properties, such as the length of 
the vector, or its angle to the x-axis. Furthermore, there are a number of mathematical 
functions defined for vectors, such as addition, subtraction or scalar product, as well as 
relations, such as the equality of two vectors.

In procedural programming, the data and the functions that actually belong to it would 
have no relation to each other. Different coordinate pairs can be stored in a multidimen-
sional array, while functions on this array would take over the arithmetic operations.

With the help of a class, however, a new data type Vector2D can be defined, which 
combines both the data and the associated functions in a single structure. When program-
ming with classes, a distinction is made between functions and variables “inside” and 
“outside” of classes. Functions and variables that are declared as part of the class when the 
class is declared are called member functions, or methods, and member variables, or attri-
butes. Especially with member variables, it is good practice to indicate by the name of the 
variable that it is a variable within the class. For this reason, all member variables in this 
book are preceded by “m_”.

There are different ways where classes can be placed within a program. In principle, it 
is possible to write all classes and the main function in a single file. However, this quickly 
becomes confusing even for smaller projects. It is also possible to write almost all func-
tions of the class within the class declaration. However, the C++ language offers the pos-
sibility to split classes into two independent files, which can then be included in other files. 
This notation is used consistently in this book, so that example programs now always 
consist of at least three parts. Each class has a header and a cpp file. In addition, there is 
the main program, which is located in its own cpp file.

Most development environments allow you to automatically generate the files needed 
for a class. Mostly, the declaration and the implementation of the class is also prepared 
automatically.

The class declaration is located in the file Vector2D.h, a so-called header file. In this 
book, header files have been used several times, always in connection with the #include 
statement. The header files contain the class declaration, or more graphically, a sort of 
table of contents for the class. In the class declaration, all variables and functions that the 
class should have are declared. The example Listing 10.1 shows the header file for the 
class Vector2D.

Listing 10.1  The Vector2D Class (Vector2D.h)

 1   // Include -Guard
 2   #ifndef _VECTOR2D_H
 3   #define _VECTOR2D_H
 4
 5   // Class declaration
 6   class Vector2D
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 7   {
 8   public:
 9     // Variable declaration
10     double m_x;
11     double m_y;
12   };
13
14   // End of the Include -Guard
15   #endif // _VECTOR2D_H

The header file starts with some preprocessor commands called include-guards, which 
perform an important task. They prevent a class from being declared more than once. This 
mechanism is necessary because every file in which the class will be used later must have 
an #include statement that includes the Vector2D.h header file. When the preprocessor 
encounters an #include statement, it copies the contents of the specified file to the location 
of the #include statement. Consequently, if there were no include guard, every #include 
statement would attempt to declare the class again. This would already fail on the second 
attempt.

So how exactly does the include guard work? The first statement #ifndef stands for if 
not defined. This statement checks if the following text _VECTOR2D_H has not been 
defined yet. When the preprocessor encounters this statement for the first time, the text is 
of course not defined yet.1 In this case, the statement is correct and the following text is 
processed unchanged. The second statement that follows is then the #define statement, 
which ensures that the corresponding text is defined immediately. So for all following 
#include statements the #ifndef statement will fail and ignore the complete text up to the 
#endif statement.

Some preprocessors support the non-standard #pragma once command, which also has 
the properties of an include guard. In this case, the header file must only start with this 
command to prevent multiple declarations.

The actual class declaration begins with the class statement followed by the name of 
the class. Within curly brackets, the functions and variables can then be declared. The class 
declaration is concluded with a semicolon.

The first statement within the class is a visibility level keyword, a very important con-
cept in object-oriented programming: data encapsulation. This concept puts the responsi-
bility for the data completely in the hands of the class. In C++, this means that when you 
program a class, you can specify which data can and cannot be read and modified from 
outside the class. There are three so-called visibility levels:

1 Since, among other things, terms can be defined by included libraries, it is important that unam-
biguous expressions are chosen.
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•	 public: The keyword public specifies that these attributes and methods should be pub-
licly accessible. They can be used by functions outside the class as well as by member 
functions within the class.

•	 protected: Variables and functions declared after the keyword protected are protected 
from external access. They may only be used by member functions declared within 
the class.

•	 private: Variables and functions declared after the keyword private initially behave as 
if they had been declared after the keyword protected. External access is prevented; 
only member functions of the class may access these elements. In addition, elements 
declared after the private keyword are not inherited. Inheritance of class properties is 
another important concept in object-oriented programming, and is explained in more 
detail in Sect. 10.4.

The different visibility levels can be used as often as desired during a class declaration. A 
visibility level is valid until it is replaced by another one. If no visibility level is specified 
for a class, the level is private. This means that each element of a class has a visibility 
level. To avoid errors, however, you should always specify the visibility level explicitly.

The concept of data encapsulation allows you to declare helper functions and member 
variables that can only be used within the class. As long as a single person is working on 
a program, this may not seem like a good idea, since that person can access everything at 
any time anyway. And also knows the program perfectly. But if more than one person is 
working on a project, the classes of the others are comparable to a black box, whose con-
tent is not necessarily known in detail. If then the call of a helper function has to be pre-
pared, or the call of the function alone would not produce a meaningful result, it is 
important to protect this helper function. Instead, a public member function should be 
provided that does all the preparation, or performs the calls in the correct order.

In the case of member variables, a decision must be made as to whether the value range 
of the variable is restricted or whether other variables may be affected by the change of a 
variable value. If either of these applies to a member variable, access from outside the class 
should be prevented. Instead, public auxiliary functions should be written to allow access.

The current example deals with a vector in a two-dimensional coordinate system. The 
class has only two member variables m_x and m_y, whose value range is not restricted and 
whose values are independent of each other. Therefore, there is no reason to protect these 
member variables from access. The declaration of the member variables is done as already 
known, by first specifying the data type followed by the name of the variable. The state-
ment is terminated with a semicolon.

The second file shown in Listing 10.2 is the so-called cpp file, in which the member 
functions of the class are implemented. Since there are currently no member functions, 
this file is almost empty for now. The #include statement makes sure that the class declara-
tion is known in the cpp file. Until now, #include statements always used angle brackets to 
specify the filename. Whether brackets or quotes are used depends on where to look for the 
files. Angle brackets are used to search paths defined by the development environment or 
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the compiler. They are always used when standard libraries are included. With quotes the 
search radius is increased, the directory where the file with the #include statement is 
located and sometimes others are searched as well. The quotation marks are always used 
when header files of the own project are to be included.

Listing 10.2  The Vector2D class (Vector2D.cpp)

1 #include "Vector2D.h"

To obtain an executable program, there must still be a main function, which in this case 
should be in the file Project.cpp and is shown in Listing 10.3.

Listing 10.3  The Main Program (Project.cpp)

 1   #include <iostream >
 2   #include "Vector2D.h"
 3
 4   using namespace std;
 5
 6   // Main function
 7   int main ()
 8   {
 9     Vector2D v1;
10
11     // ...
12
13     // Read in values
14     cin >> v1.m_x;
15     cin >> v1.m_y;
16   }

To use the new class, the header file of the class Vector2D must be included using the 
#include statement. Within the main function an object of the class Vector2D is now cre-
ated by a variable definition and named v1. Since the member variables m_x and m_y of 
the class Vector2D have been declared as public, access is also possible from within the 
main function. To access the member variables of an object, the name of the object must 
first be written, in this example v1, followed by a dot and the name of the member variable 
to be accessed. The dot serves as a “door opener” into the object.

In principle, m_x and m_y within the main program now behave like normal variables 
with a slightly longer name. However, these variables are assigned to object v1. It would 
now be easy to create a second object v2, which would in turn have two member variables. 
Since both objects belong to the class Vector2D, it is easier to think of the objects as vec-
tors and work with them. With two arrays of type double it would be more difficult to see 
the connection or to interpret four values as two vectors.
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10.1	� Constructors and Destructors

In Chap. 5 of this book it is already recommended to always initialize variables. This 
advice also makes sense for classes. Since only the class has access to its variables in any 
case, there must therefore be a way for a class to perform variable initialization. But it is 
not only variables that need to be initialized. More complex classes may require more 
elaborate configurations to be made when a new object is created. It may also be important 
to de-initialize elements when an object of a class is deleted.

To achieve this, the C++ language has two types of functions, the constructors and the 
destructor. It is certain that the first function called for a new object is a constructor. 
Similarly, it is certain that the last function called before an object is deleted is the destruc-
tor. Both of these functions are called only once in the life cycle of an object. There can be 
multiple constructors that allow an object to be initialized in different ways. However, 
there is always only one destructor.

Listing 10.4 adds some constructors and a destructor to the previous example. Both the 
constructors and the destructor have some special features regarding the return type and 
the name. Both the constructors and the destructor have no return type, not even void. The 
name of a constructor always corresponds exactly to the class name. If there are multiple 
constructors, the normal function overloading rules introduced in Sect. 9.1 apply. All con-
structors must have different parameter configurations. The name of a destructor is also the 
same as the class name, but the name is always preceded by a tilde (~).

Listing 10.4  Constructors and Destructor of the Vector2D Class (Vector2D.h)

 1   // Include -Guard
 2   #ifndef _VECTOR2D_H
 3   #define _VECTOR2D_H
 4
 5   // Class declaration
 6   class Vector2D
 7   {
 8   public:
 9     // Standard constructor
10     Vector2D ();
11     // various constructors
12     Vector2D(double x, double y);
13     // Conversion constructor
14     explicit Vector2D(double l);
15     // Copy constructor
16     Vector2D(const Vector2D &v);
17
18     // Destructor
19     ~Vector2D ();
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20
21     double m_x;
22     double m_y;
23   };
24
25   // End of the Include -Guard
26   #endif // _VECTOR2D_H

In this example it makes sense to offer several constructors. It may be that a new vector 
is to be created without further configuration. In this case, the constructor that does not 
take any parameters is used. This constructor is called the default constructor and exists 
even if it is not defined. In fact, it was already used in Listing 10.3 when object v1 was 
created. However, this automatically generated variant of the default constructor does not 
perform variable initialization. Therefore, it still makes sense to implement the default 
constructor yourself, since this is the only way to initialize your own variables in a mean-
ingful way. The example in Listing 10.3 also makes it clear that constructors are called 
differently than other functions. Although only the variable type and the variable name are 
specified, this already corresponds to a constructor call without the round brackets indicat-
ing a function call.

In some cases it is easier if an object can be created right away with the correct configu-
ration. In the case of a vector, the position could already be available in Cartesian coordi-
nates. For this reason the second constructor was created.

Conversion constructors are always needed when it should be possible to convert a 
value or an object of a certain type into another. They always have exactly one parameter 
of the type that is to be converted into an object of the class. In this case, a single double 
value is to be interpreted as a vector that is parallel to the x-axis and has length l. The C++ 
language will now use this constructor to automatically convert values of type double to a 
Vector2D in a function call, for example, should that be necessary. Such calls and conver-
sions are called implicit calls. It may be that such conversion constructors are needed, but 
implicit calls are not desired by the C++ language or even cause errors. For this case the 
keyword explicit exists. It ensures that C++ cannot call the constructor automatically, but 
that a conversion must be written explicitly in the program.

The explicit conversion is done by a type conversion, or a typecast.
The fourth constructor is the so-called copy constructor. The copy constructor is also 

generated automatically, even if it was not explicitly defined. Its task is very simple, it cre-
ates an exact copy of an object. Normally, this task is very easy to solve by simply copying 
the complete memory area containing an object to the position of the new object. The size 
of an object is known from the class declaration and the internal structure of the objects is 
also always identical. However, there can be major problems if custom memory is reserved, 
as then the automatic copy will no longer work. This is explained in more detail in Sect. 
11.8. However, the basic structure of a copy constructor should be explained here.
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The copy constructor has a very important task in the C++ language. Whenever a 
parameter is passed or a return value is returned in a function call, a copy of the corre-
sponding variable must be created. If the variable is an object of a class, the copy construc-
tor is always called without this being explicitly specified in the program.

A copy constructor always has a single parameter. This parameter always has the type 
of the class itself and must be passed by reference. If the parameter were not passed by 
reference, a copy of the object would have to be created when the copy constructor func-
tion is called. However, this would require the copy constructor, which is just being 
defined.

With newer compilers, it must also be ensured that the value passed cannot be changed 
by marking the reference as constant with the keyword const.

The destructor does not perform any task in the current example and was only declared 
for the sake of completeness.

A definition must now be implemented for each of the constructors and the destructor. 
This is done in the cpp file shown in Listing 10.5.

Listing 10.5  Constructors and Destructor of the Vector2D Class (Vector2D.cpp)

 1   #include "Vector2D.h"
 2
 3   // Standard constructor
 4   Vector2D :: Vector2D ()
 5   // Initialization
 6   : m_x (0.0)
 7   , m_y (0.0)
 8   {
 9     // Value assignment
10     m_x = 0.0;
11     m_y = 0.0;
12   }
13
14   // various constructors
15   Vector2D :: Vector2D(double x, double y)
16   : m_x(x)
17   , m_y(y)
18   {
19   }
20
21   // Conversion constructor
22   /* explicit */ Vector2D :: Vector2D(double l)
23   : m_x(l.0)
24   , m_y (0.0)
25   {
26   }
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27
28   // Copy constructor
29   Vector2D :: Vector2D(const Vector2D &v)
30   : m_x(v.m_x)
31   , m_y(v.m_y)
32   {
33   }
34
35   // Destructor
36   Vector2D ::~ Vector2D ()
37   {
38   }

The first special feature is found directly in the function name of the constructors. To 
make clear that a function is defined here, which was declared within the class Vector2D, 
the name of the class must be prefixed with two colons.

Since each object is created by exactly one of the constructors, a variable initialization 
must take place in each of the constructors, which uses the passed function parameters. 
There are two ways to assign values to the variables. First, it is possible to assign a value 
within the function body of a constructor. In the standard constructor of program 10.5, 
such a value assignment was made for all parameters as an example. At first, this seems to 
be the intuitive way, but it has the disadvantage that constant values of the class cannot be 
assigned values this way. This only works for the initialization, which is regulated for 
constructors by a special notation.

To initialize variables in a constructor, a colon can be written after the parameter list of 
the function to start the initialization. This is followed by the names of the variables to be 
initialized, separated by commas, and the initial values in round brackets. This notation is 
called initialization list.

Since no parameters are passed with the standard constructor, the variables can be ini-
tialized with freely selectable values. Without information, it is best to create a null vector.

In the next constructor, two parameters for the x and y coordinates are passed. Here we 
can see why it makes sense, among other things, to provide the names of the member 
variables with an m_. It is now clear that the local function parameters are called x and y 
and the member variables of the class are called m_x and m_y. Within the constructor, the 
member variables must now only be initialized with the values of the matching function 
parameters.

The conversion constructor should transform a double value l into a vector parallel to 
the x-axis with length l. This is done very easily by writing the value l directly into the 
member variable m_x, while m_y is given the value 0. It is important to note at this point 
that the keyword explicit must not be repeated again in the function definition. Nevertheless, 
in order to point out that this constructor may only be called explicitly, the keyword was 
inserted as a comment in the header.
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The copy constructor has only one parameter v, which is of the type of the self-written 
class Vector2D and is passed by reference. As already shown in the example Listing 10.3, 
the member variables of a class object can be accessed using a point. Since both the passed 
Vector2D and the new object have the same member variables, all member variables of v 
can thus be used to initialize their corresponding member variables in the new object. 
There is only one peculiarity here. Since the copy constructor is part of the class, it is 
always considered a member function of the class. So even if two objects of the class are 
being processed here, the copy constructor always has access to all member variables. 
Even if they have been declared with the visibility level protected or private.

The destructor is defined for the sake of completeness. In this example, however, it will 
not fulfill any function and therefore remains empty.

In the main function of the program 10.6 the different constructors can now be tested.
The first four objects created in the program use the constructors in the order they were 

created in the class. First the default constructor, then the constructor that takes Cartesian 
coordinates, followed by the conversion constructor and the copy constructor. These calls 
are relatively obvious, except for the fact that no parentheses need to be appended when 
the default constructor is called.

It is less obvious that a copy of the vector v2 is created when the function output is 
called. Here C++ automatically calls the copy constructor.

The value assignment v3 = 5 actually does not work because the conversion constructor 
has been marked explicit. If the explicit keyword in Listing 10.4 were omitted, the line 
would work because the conversion constructor could then be called implicitly.

The subsequent value assignment v3 = Vector2D(5), on the other hand, always works 
because the conversion constructor is called explicitly (Listing 10.6).

Listing 10.6  The Main Program (Project.cpp)

 1   #include <iostream >
 2   #include "Vector2D.h"
 3
 4   using namespace std;
 5
 6   void output(Vector2D v);
 7
 8   // Main function
 9   int main ()
10   {
11     Vector2D v1; // Standard constructor
12     Vector2D v2(2.1, 3.2); // Constructor
13     Vector2D v3 (2.3); // Conversion constructor
14     Vector2D v4(v2); // Copy constructor
15
16     output(v2);
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17
18     v3 = 5; // Works only , without explicit
19     v3 = Vector2D (5);
20     // ...
21   }
22
23   void output(Vector2D v)
24   {
25     //...
26   }

10.2	� Member Functions

Further values are to be derived from the member variables of the vector. For example, the 
length or angle of the vector can be calculated in polar coordinates. In addition, the pos-
sible value range of the vectors is restricted to the interval from −10 to 10 on both coordi-
nate axes. Thus it is now necessary to protect the member variables of the class from 
external access.

In general, it is good practice to prefix the names of functions that return values from 
the class with the prefix get. Similarly, function names of functions that set values within 
the class should start with the prefix set. This is not mandatory by any means, but it makes 
it easier to keep track.

Listing 10.7 shows the modified class declaration. In addition to the constructors and 
destructor, a number of function prototypes have been added. The function prototypes 
behave exactly as described in Sect. 9.2. Each function that returns a value has been given 
a name beginning with the prefix get. The function that changes the values of the vector 
starts with the prefix set. The notation in which the first word of a name is written in lower 
case and then each subsequent word is started with an uppercase letter is called camel case 
notation. It is a naming convention commonly used in computer science.

Listing 10.7  Member Functions of the Vector2D Class (Vector2D.h)

 1   // Include -Guard
 2   #ifndef _VECTOR2D_H
 3   #define _VECTOR2D_H
 4
 5   // Class declaration
 6   class Vector2D
 7   {
 8   public:
 9     // Standard constructor
10     Vector2D ();
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11     // various constructors
12     Vector2D(double x, double y);
13     // Conversion constructor
14     explicit Vector2D(double l);
15     // Copy constructor
16     Vector2D(Vector2D &v);
17
18     // Destructor
19     ~Vector2D ();
20
21     // Member functions
22     double getAngle ();
23     double getLength ();
24     double getX ();
25     double getY ();
26
27     void setCartesian(double x, double y);
28
29   protected:
30     double m_x;
31     double m_y;
32   };
33
34   // End of the Include -Guard
35   #endif // _VECTOR2D_H

The member variables m_x and m_y have now been declared as protected to prevent 
direct access to the variables from outside the class. The access is now indirect. The getX 
or setCartesian function can be accessed from outside the class because they have been 
declared as public. These member functions of the class in turn have access to the pro-
tected member variables.2

This seems to be cumbersome at first sight, but this approach has a big advantage. 
Within the functions, it can be checked whether the values that are to be set are within the 
permitted limits. This allows the class to ensure that the values stored in an object of the 
class always comply with the rules.

Of course, it is possible to extend the class with many useful member functions. 
However, the functions shown are sufficient for this example.

2 Some of my students have problems at the beginning to understand why these functions have no 
parameters. The background is that these functions are always applied to an object of the class. The 
information they are supposed to reflect or change is already present in the object. Nevertheless, 
there may of course be situations in which additional information needs to be transported via the 
parameters, even in the case of a class function. This works in exactly the same way as for all 
functions.
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The implementation of the member functions is done in the cpp file of the class and shown 
in programs 10.8 and 10.9. Since some mathematical functions are used in the new functions, 
a new library must be included with #include, the cmath library. It allows the use of functions 
like sin or cos for sine and cosine, sqrt, which stands for square root, and many more.3

The default constructor remains unchanged in this example because it always sets the 
member variables to 0, which is within the allowed interval. However, the constructor that 
takes two coordinates x and y must now check whether the values are within the interval. 
Since the setCartesian(…) function must also check the bounds, it makes sense to call the 
function directly in the constructor. This way, the checking of the interval bounds only needs 
to be done in the setCartesian(…) function. On the one hand this saves a duplicate implemen-
tation, but on the other hand it also avoids errors. In larger programs, duplicate implementa-
tions can easily result in errors being fixed in only one place, while others are forgotten. 
Awareness of this should be developed so that such situations are avoided (Listing 10.8).

Listing 10.8  Modifications to the Constructors of the Vector2D Class 
(Vector2D.cpp)

 1   #include "Vector2D.h"
 2   #include <cmath >
 3
 4   // Definition of a constant for Pi
 5   const double PI = 3.1415926535897932384626433832795;
 6
 7   // Standard constructor
 8   // ...
 9
10   // different constructors
11   Vector2D :: Vector2D(double x, double y)
12   {
13     setCartesian(x, y);
14   }
15
16   // Conversion constructor
17   /* explicit */ Vector2D :: Vector2D(double l)
18   {
19     setCartesian(l, 0);
20   }
21

3 In some implementations, mathematical constants are also defined, but not in all. Sometimes these 
constants cannot be accessed directly, a specific expression must be defined before the cmath library 
can be included. Often this expression is #define _USE_MATH_DEFINES. However, since this is 
not standardized, this book refrained from using one of the variants to give a general introduction to 
C++. Instead, a constant PI was defined and used.
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22   // Copy constructor
23   // ...
24
25   // Destructor
26   // ...
27
28   // ...

The conversion constructor must now also observe the specified interval limits, so the 
same solution was chosen here. Listing 10.9 now shows the new member functions of 
the class.

Listing 10.9  Member Functions of the Vector2D Class (Vector2D.cpp)

 1   // ...
 2
 3   double Vector2D :: getAngle ()
 4   {
 5     return atan2(m_y , m_x) * 180 / PI;
 6   }
 7
 8   double Vector2D :: getLength ()
 9   {
10     return sqrt(m_x * m_x + m_y * m_y);
11   }
12
13   double Vector2D ::getX ()
14   {
15     return m_x;
16   }
17
18   double Vector2D ::getY ()
19   {
20     return m_x;
21   }
22
23   void Vector2D :: setCartesian(double x, double y)
24   {
25     if (x > 10) x = 10;
26     if (x < -10) x = -10;
27     if (y > 10) y = 10;
28     if (y < -10) y = -10;
29
30     m_x = x;
31     m_y = y;
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32   }

The function getAngle(…) calculates the angle of the vector to the positive x-axis using 
a function called atan2(…). This function, just like the atan(…) function, calculates the 
arc tangent, but differs in the function parameters. While the function atan(…) takes only 
one parameter, which is calculated from m _ y/m _ x, the function atan2(…) takes the 
values m_y and m_x in this order in two separate parameters. The background is that the 
atan(…) function can only distinguish between two quadrants of the coordinate system 
because of the two signs. For the atan2(…) function, four different sign combinations can 
arise, which allow to distinguish between all four quadrants of the coordinate system. A 
mathematical explanation for all formulas used here can be found in Papula (2014).

With the help of the function getLength(…) the length of the vector can be calculated 
by the Pythagorean theorem. The length thus also corresponds to the radius required for 
the polar coordinates.

To query the current values of the member variables, the functions getX() and getY() 
can now be used. Since this is the only task of these functions, the implementation is very 
short. Since values of the function must be stored in memory for each function call, this 
means that a small amount of additional time is required to organize the function call. For 
very small functions, of course, the organizational overhead is proportionally much greater 
than for functions in which a lot happens. The C++ language therefore offers the possibil-
ity of using the clarity of a function without suffering a loss of speed. For very small func-
tions, the keyword inline can be prepended to the class declaration in the header file. This 
keyword, like explicit, is also prefixed only in the declaration, not in the definition. In this 
case, the compiler can decide whether to make a function call or to copy the function’s 
code directly to the call location. In the header file, the program line would then be inline 
double getX();, or inline double getY();.

The function setCartesian(…) now ensures with some if-statements that the values 
with which the member variables are initialized are always in the interval from −10 to 10.

In the main function in Listing 10.10, the member functions can be tested. Since the 
member variables are now protected, direct access is no longer possible. Two auxiliary 
variables x and y are needed to read in the values.4

Listing 10.10  The Main Program (Project.cpp)

 1   #include <iostream >
 2   #include "Vector2D.h"
 3
 4   using namespace std;
 5

4 This is a common procedure for more complex programs that have a graphical user interface, since 
the input is often not read in the format that will be processed later.
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 6   // Main function
 7   int main ()
 8   {
 9     Vector2D v1; // Standard constructor
10
11     // Auxiliary variables
12     double x = 0.0;
13     double y = 0.0;
14
15     // Output
16     // Value input
17     cin >> x;
18     cin >> y;
19
20     v1.setCartesian(x, y);
21
22     cout << "Vector length: " << v1.getLength () << endl;
23   }

With the help of the function setCartesian(…) the read values can then be passed to the 
vector. The resulting vector length can be calculated using the getLength() function.

10.3	� Operators

For classes that represent constructs from mathematics, it is important that the mathemati-
cal operations defined for these constructs can also be realized in the classes. Of course, it 
is always possible to write functions that perform the operations, but it would be much 
more intuitive if the normal mathematical operations could also be performed using the 
usual notation. To realize this, there are special functions for classes in the C++ language 
that differ from other functions both in terms of programming and usage. They make it 
possible to implement mathematical operations in the usual notation. This special type of 
function is called an operator.

In addition to the mathematical operations, there are other possible applications for 
operators that make it possible to reinterpret language elements of C++ for your own 
classes. When operators are implemented for their own classes, this is called operator 
overloading. A non-exhaustive list of operators that can be overloaded in C++ is shown in 
Table 10.1.

To illustrate how operators work, the Vector2D class will now be extended. In Listing 
10.11, the declarations for the operators have been added to the header file. Parts of the 
program have been replaced by comments this time to highlight the new parts of the pro-
gram. These parts of the program are unchanged from Listing 10.7.
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Table 10.1  Overloadable operators of the language C++

Type Operators
Arithmetic operators +, −, *, /, %, ++, −−, Sign: +, −
Assignment operators =, +=, −=, *=, /=, %=, &=, |=, ˆ=, <<=, >>=
Comparison operators ==, !=, >, <, >=, <=
Logical operators !, &&, ||
Bit operators ∼, &, |, ˆ, <<, >>
Field operators []

Listing 10.11  Operators of the Vector2D Class (Vector2D.h)

 1   // Include -Guard
 2   #include <iostream >
 3
 4   using namespace std;
 5
 6   // Class declaration
 7   class Vector2D
 8   {
 9   public:
10     // ...
11
12     // Array operator
13     double operator []( int n);
14     // Scalar multiplication
15     Vector2D operator *( double right );
16     // Scalar product
17     double operator *( Vector2D right );
18
19     // external operators
20     friend ostream &operator <<( ostream &out , Vector2D );
21     friend Vector2D operator *( double left , Vector2D right );
22
23   protected:
24     // ...
25   };
26
27   // Output operator
28   ostream &operator <<( ostream &out , Vector2D right );
29
30   // Scalar multiplication
31   Vector2D operator *( double left , Vector2D right );
32
33   // End of the Include -Guard
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What makes operators confusing, especially for beginners, is the fact that operators can 
be declared in two different ways. In addition, for some of the operators only one of the 
two declaration options is selectable. Why this is so will be explained a little later. First of 
all, it must be understood how an operator basically works.

The names and calls of operators work differently from other functions to mimic the 
typical notation of mathematical functions. To make this clear, it is easier to start with the 
operators that are declared outside of classes. As an example, let’s define a multiplication 
of two vectors whose result should be the scalar product. The exact mathematical explana-
tion of what a scalar product is can be found in Papula (2014). For this example, only the 
formula 10.1 is important for the time being.
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(10.1)

Now there are three questions two be answered:

•	 Which variable type can be used to describe the result of the multiplication?
•	 What type of variable is on the left side of the multiplication sign?
•	 What type of variable is on the right side of the multiplication sign?

For this example, these questions can be easily answered by looking at the formula. To the 
left and right of the multiplication sign is a vector and the result of the multiplication is a 
real number. The vectors are best represented by the class Vector2D, which is being devel-
oped here, and for the real number a variable of type double is a good choice. These 
answers can be translated directly into a declaration for an operator. The basic structure of 
a global operator, i.e. an operator declared outside a class, is:

  Return type operator* (typeL nameL, typeR nameR);

In this specific example, it can be translated into:

  double operator* (Vector2D left, Vector2D right);

Calling such an operator in another function is now very untypical to other functions:

Listing 10.12 Calling an Operator

1   Vector2D left (1 ,0);
2   Vector2D right (2 ,2);
3
4   double returnvalue = left * right;

So when an operator is called, the return value is used normally. However, the name of the 
operator is not operator* when it is called, but just *. The parameters are not written in paren-
theses after the function call, but without parentheses to the left and right of the operator. The 
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first parameter of the declaration always corresponds to the value to the left of the operator 
and the second parameter always corresponds to the value to the right of the operator.

If the same operator is now declared within a class, the first parameter is always auto-
matically of the type of the class itself. The declaration within the class would be

  double operator* (Vector2D right);

The implementation of the two operators is also slightly different, as Listing 10.12 
shows using the example of a scalar multiplication. However, the function call of the 
operator is still the same as in Listing 10.11, except that the left parameter must now be of 
type Vector2D. In fact, the compiler even recognizes from the left parameter in which class 
to search for a declaration of the corresponding multiplication.

Now, in mathematics, there are operations that always have the same result, regardless of 
the order of the parameters. These operations are called commutative. However, this is not 
true for all operations. Therefore it is important that C++ offers the possibility to distinguish 
between the different parameter orders. Since when an operator is declared inside a class, the 
left parameter, which must also be left when called, is always of the type of the class, some 
operators must be declared outside the class. There is, in fact, another restriction to consider. 
An operator that is declared inside a class only makes sense if one of the two parameters is 
of the type of the class. However, this cannot be guaranteed for operators where both param-
eters can be freely chosen. Therefore, it is consistent to declare them outside of classes.

But now another problem arises. If an operator is declared outside a class, then it has no 
access to the protected elements of the class. However, this would be desirable if, for 
example, mathematical operations are involved where only a different sequence should be 
realized. Therefore C++ offers the possibility to declare functions and classes within a 
class, which should be allowed access to protected elements. The keyword for this excep-
tion is friend. Within the program 10.11 there is an additional line within the class for all 
operators declared outside the class. This line consists of the keyword friend and a func-
tion prototype. Since these prototypes are unique, this allows you to specify the functions 
that are to be “friends” of the class.

For the friend declaration, the visibility level is irrelevant. The result is identical whether 
the declaration is made in a public, protected, or private realm. The “friendship” is also not 
transitive. This means that the “friends” of a friendly class do not automatically become 
“friends” of their own class. Additionally, “friendship” cannot be inherited. If a class 
inherits from a friendly class, a “friendship” does not automatically exist with its own 
class. What inheritance means exactly is explained in Sect. 10.4 and is not important here.

Listing 10.11 shows an example of five different operators, three of which are declared 
within the class. The first operator is an array operator and makes it possible to write 
square brackets after an object of the class, as if it were an array with two elements.

The second operator is to enable a scalar multiplication, i.e. a product of a vector with 
a scalar, as in formula 10.2. Since the operator was declared within the class, the left 
parameter must therefore always be of type Vector2D. Thus, this operator could be used to 
enable the arithmetic operation vector times scalar, but the reverse notation scalar times 
vector could not. Listing 10.13 shows both cases in the application.
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Listing 10.13  Calling Scalar Multiplication

1   Vector2D left (1 ,0);
2
3   // OK
4   Vector2D returnvalue = left * 5;
5
6   // Not OK
7   Vector2D returnvalue2 = 5 * left;
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To enable the second case as well, an external operator double operator∗ (double left, 
Vector2D right); was defined, which has a scalar as first parameter and a vector as second 
parameter.

For the third operator, which is to realize the scalar product shown in formula 10.1, 
there is only one declaration, because both parameters are vectors and therefore the order 
does not matter.

A special operator is the output operator, which must also be declared outside of a class. 
It is based on the class ostream whose object cout has already been used several times. 
With the help of the output operator, it should be possible to print an object of the class 
Vector2D directly through cout. This is not possible so far, because of course nobody 
defined how to deal with a class Vector2D when implementing cout. With the help of this 
operator, however, this can be done.

In Listing 10.14 now follows the implementation of the operators. Here, too, the already 
known functions were replaced by three dots, since no changes were made to the previous 
programs.

Listing 10.14  Implementing the Operators of the Vector2D Class (Vector2D.cpp)

 1   #include "Vector2D.h"
 2   #include <cmath >
 3   // ...
 4
 5   // Array operator
 6   double Vector2D :: operator []( int n)
 7   {
 8     if (n == 0) return m_x;
 9     if (n == 1) return m_y;
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10
11     return nan ("");
12   }
13
14   // Scalar multiplication
15   Vector2D Vector2D :: operator *( double right)
16   {
17     Vector2D result;
18
19     result.m_x = m_x * right;
20     result.m_y = m_y * right;
21
22     return result;
23   }
24
25   // Scalar product
26   double Vector2D :: operator *( Vector2D right)
27   {
28     return m_x * right.m_x + m_y * right.m_y;
29   }
30
31   // Output operator
32   ostream &operator <<(ostream &out , Vector2D right)
33   {
34   out << "Vector2D (" << right.m_x
35       << ", " << right.m_y << ")";
36
37     return out;
38   }
39
40   // Scalar multiplication
41   Vector2D operator *( double left , Vector2D right)
42   {
43     return right * left;
44   }

It is noticeable that only the operators, whose declaration takes place within the class, 
were supplemented by the prefix Vector2D::. The operators declared outside the class are 
global functions, which must not get this addition, because they are not part of the class.

The field operator is invoked by adding square brackets with an index after the name of 
an object. So an object v1 of class Vector2D could be used like an array by the array opera-
tor. The following lines:
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  Vector2D v1(3.2, 1.5);

  cout << v1[0] << " : " << v1[1] << " : " << v1[2] << endl;

shall produce the output:

  3.2 : 1.5 : nan

Here nan stands for not a number and is intended to make clear that there is no element 
of the vector for this index. The operator itself only checks the value of the parameter n. 
For n = 0 the value of m_x is returned and for n = 1 the value of m_y. In any other case, the 
value nan is returned using the nan("") function provided by C++.

The operator for scalar multiplication corresponds to the typical structure of mathemat-
ical operators. First, a variable of the return value type is created to store the result. In the 
second step, the values for the result are calculated. In this case, by multiplying the mem-
ber variables of the class m_x and m_y by the parameter r. Since the multiplication was 
declared within the class and therefore has only one function parameter, the left parameter 
of the operator is always the object of the class itself. Finally, the calculated result value 
only has to be returned as a result.

The scalar product is calculated in a very similar way. However, since the calculation 
of the result value is so short, no additional variable is created, but the result is calculated 
directly after the return statement. Again, the left parameter of the operation is the object 
of the class, so the member variables m_x and m_y are used directly. The right parameter 
r was passed as a function parameter. Since the operator is part of the class Vector2D, the 
protected member variables can be accessed directly, so that the calculation can be per-
formed according to formula 10.1.

The output operator << has several meanings in the C++ language. For numbers, such 
as int, which can be interpreted as binary numbers, it is used to shift all bits of the number 
a certain number of places to the left. However, for classes, the operator is also used for 
printing with the help of the ostream class. If the operator is used for the latter, the operator 
must follow the rules of the ostream class. A stream first collects information and usually 
releases it in blocks. If an output operator is to be written, an object of the class ostream 
must be passed as a reference as the first parameter, so that when it is written cout <  < v1;, 
the first parameter, in this case cout, is changed by the call. In addition, the passed object 
must also be returned, so the return type must also be ostream&, so that a concatenated 
notation, as cout <  < v1 <  < endl; works.

Within the operator, the ostream reference, called out in this example, can be used in 
the same way as cout. Output can be produced using data types known to ostream, such as 
string, int, or double. Finally, after the output has been made as desired, the ostream object 
must be returned with the return statement.
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The last operator for scalar multiplication was written to be able to write the scalar to 
the first position in a multiplication as well. However, the result of both notations is identi-
cal, because the multiplication of a scalar with a vector is commutative. Again, the arith-
metic operation should not be implemented twice, because this could lead to an error later. 
So the operator internally only reverses the order of the parameters and returns the result 
of the already implemented operator as return value.

In the main function of Listing 10.15, the new operators can now be tested.

Listing 10.15  The Main Program (Project.cpp)

 1   #include <iostream >
 2   #include "Vector2D.h"
 3
 4   using namespace std;
 5
 6   // Main function
 7   int main ()
 8   {
 9     // Variable definition and initialization
10     Vector2D v1(1, 0);
11     Vector2D v2(2, 2);
12
13     // Output operator
14     cout << "v1: " << v1 << endl
15          << "v2: " << v2 << endl;
16     // Scalar product
17     cout << "Scalar product: " << v1 * v2 << endl;
18     // Scalar multiplication
19     cout << "5 * v1: " << 5 * v1 << endl;
20     cout << "v1 * 5: " << v1 * 5 << endl;
21     // Array operator
22     cout << "v1.m_x: " << v1[0] << endl;
23     cout << "v1.m_y: " << v1[1] << endl;
24     cout << "Error: " << v1[2] << endl;
25   }

The main function begins by first creating two vectors. The first vector runs parallel to 
the x-axis and has the length 1, while the second vector is at a 45° angleto the first vector 
with the length 8 2 828≈ . . The first thing to test is the output operator. Without the 
operator, it would not be permissible to write an object of class Vector2D directly into a 
cout statement. However, with the help of the operator, the output can be implemented this 
way. The complete output of the program is:
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  v1: Vector2D(1, 0)
  v2: Vector2D(2, 2)
  Scalar product: 2
  5 * v1: Vector2D(5, 0)
  v1 * 5: Vector2D(5, 0)
  v1.m_x: 1
  v1.m_y: 0
  Error: nan

where the first two lines are generated by the output operator.
The scalar product calculates a result of 2. This value can be checked by calculating the 

arc cosine of the quotient of the scalar product and the product of the two vector lengths. 
The result is the angle between the two vectors and its magnitude is as 
expected acos 2 1 8 45/ .�� �� � � �

To test scalar multiplication, the vector v1 is multiplied once by the number 5 from each 
side, increasing its length by a factor of 5 in both cases.

Finally, the individual elements of the vector v1 can now be obtained using square 
brackets, as if v1 were an array. If an index is specified that is neither 0 nor 1, nan is 
returned as the error value.

To be able to implement further operators, it is absolutely necessary to have a basic 
understanding of pointers. For this reason, the implementation of further operators is con-
tinued in Sect. 11.8.2.

10.4	� Inheritance and Polymorphism

An important concept of object-oriented programming is the ability of classes to inherit 
their properties to other classes. These “inheritors” then have the ability to add new prop-
erties and functions to the class without changing the original class, called the base class. 
But that’s not all. It is even possible to replace functions that exist in the base class with 
new functions with the same name and different functionality. This concept is called 
polymorphism.

If two classes have the same member functions, this alone does not indicate that the two 
classes should inherit from each other. As an example, we will mention two classes that 
can draw a triangle or a circle in the console. Both classes have identical functions, they 
can calculate the area and the perimeter and both classes have a function paint, with which 
either a triangle or a circle is drawn. Inheritance makes no sense here, because both classes 
have little relation to each other and store completely different data.5

5 In this case, however, it may be useful to define a class as an interface from which both classes can 
inherit.
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What does inheritance mean in object-oriented programming and especially in C++? 
When a class inherits from another class, it automatically receives all member variables 
and member functions that were declared and defined in the other class within the visibil-
ity levels public or protected. However, all attributes and methods from the visibility level 
private are not accessible to the inheriting class. Therefore, if a class A inherits from a 
class B that only uses the visibility levels public or protected, A can immediately do every-
thing that B can do. This concept is particularly useful if class A is an extension of class B 
in terms of content, and many of class B’s properties can actually be adopted in a mean-
ingful way.

The great strength of this system is that C++ remembers that class A possesses certain 
properties of B. If a reference of type B is now expected in a function call, an object of 
class A can also be passed because of the inheritance. Within the function, any property 
that B offers can then be used. However, the behavior depends on the class of the object 
that was passed.

This description is very theoretical and abstract, and will be made concrete in an exam-
ple in a moment. However, the basic idea that the type of a passed variable using inheri-
tance does not always correspond to the type expected by the function should be kept 
in mind.

Particularly good examples of inheritance are systems that need to manage various 
display windows, buttons, text fields, and more, since these very classes reuse many prop-
erties of the other windows. Each window has a certain width and height, reacts somehow 
to the attempt to move it and much more. Unfortunately, this example in particular is very 
complex and not suitable for beginners.

A less complex example results from a classification system that is to record the stu-
dents and staff of a university. Here, it makes sense to collect the basic data that must be 
stored for both students and staff in a class person, from which the other two classes stu-
dent and staff can inherit.

In Listing 10.16, the class person is declared. The include-guards have been shortened 
by comments in the following, but are to be implemented analogously to the previous 
examples. Of course, much more information and functionality could be implemented in 
the class, but since the topic here is inheritance, the example will be kept small. First of all, 
with this class, it makes no sense to provide a default constructor, since an entry for a 
person of which nothing is known is unnecessary. So in this example, you can only create 
people whose data is completely known.

Listing 10.16  Declaration of the Class person (person.h)

 1   // Include -Guard
 2   #include <string >
 3
 4   using namespace std;
 5
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 6   // Class declaration
 7   class person
 8   {
 9   public:
10     // Constructor
11     person(string firstName , string lastName );
12     // Destructor
13     virtual ~person ();
14
15     virtual void print ();
16
17     string getFirstName ();
18     string getLastName ();
19   protected:
20     // Name
21     string m_firstName;
22     string m_lastName;
23   };
24   // End of the include guard

When declaring the destructor, a new keyword is used: virtual. This keyword identifies 
functions that may be redefined by the inheriting class. For classes in which at least one 
function is declared as virtual, a table is created, the so-called virtual function table or 
vtable. In this table C++ remembers which functions were implemented by the current 
class and which were not.

It was mentioned earlier that the type of the passed variable does not always have to 
match the expected type when inheritance is involved. With the help of the table, C++ can 
remember which function to use even if the type of the variable does not match expecta-
tions. If the virtual keyword is missing, functions in inheriting classes can still be reimple-
mented. However, in this case the entry in the vtable is missing. If an object from an 
inheriting class is now passed to a function that expects a variable of the type of the base 
class, the function of the base class is called.

The behavior is similar for destructors. If the destructor is virtual, an object can be 
deleted even if the type of the object is not known. In this case, the vtable can be used to 
check which destructor is the correct one.

The print function serves as an example of polymorphism and is to be overridden in the 
inheriting classes, therefore it was also declared as virtual. The two get functions are 
intended to allow the first and last name of the person to be queried individually. These 
functions are to be inherited unchanged, without being able to be changed.

The implementation of the class person is shown in Listing 10.17. As with other key-
words, virtual is specified only in the declaration and is not repeated again in the defini-
tion. In the example program, the keyword was nevertheless written as a comment before 
the function. This is a good practice, which simplifies the work with complex programs, 
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since it serves the clarity. The constructor initializes the member variables using the passed 
parameters and the destructor has no task in this example either.

Listing 10.17  Implementation of the person Class (person.cpp)

 1   #include "person.h"
 2   #include <iostream >
 3
 4   using namespace std;
 5
 6   person :: person(string firstName , string lastName)
 7   : m_firstName(firstName)
 8   , m_lastName(lastName)
 9   {
10   }
11
12   /* virtual */ person ::~ person ()
13   {
14   }
15
16   /* virtual */ void person :: print ()
17   {
18     cout << "person (" << m_firstName
19          << " << m_lastName << ")" << endl;
20   }
21
22   string person :: getFirstName ()
23   {
24     return m_firstName;
25   }
26
27   string person :: getLastName ()
28   {
29     return m_lastName
30   }

The print function prints the name of the class in the console, as well as the first and last 
name within round brackets. The functions getFirstName and getLastName return only the 
content of the corresponding member variable.

Listing 10.18 now shows the class student, which is to inherit and add all properties of 
the class person. First of all, the header file of the class person must be included using an 
#include statement, otherwise the class person would not be known. By this inclusion also 
the datatype string is automatically known, because it was also included in the header file 
of person.
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Listing 10.18  Declaration of the Class student (student.h)

 1   // Include -Guard
 2   #include "person.h"
 3
 4   using namespace std;
 5
 6   // Class declaration
 7   class student : public person
 8   {
 9   public:
10     // Constructor
11     student(string firstName , string lastName
12             , int matriculationNumber );
13     // Destructor
14     virtual ~student ();
15
16     virtual void print ();
17
18     int getMatriculationNumber ();
19   protected:
20     // Matriculation number
21     int m_matriculationNumber;
22   };
23   // End of the Include -Guard

When declaring the class student, it must now be made clear that the class is to inherit 
from person. This is done by adding a colon after the keyword class and the name of the 
class, followed by a visibility level and the name of the base class to inherit from. This is 
followed by the normal class declaration.

The visibility levels for inheritance are also public, protected, and private, although 
public is almost always used as the visibility level for inheritance. With the visibility level 
protected, all elements of the visibility levels public and protected of the base class are 
inherited, but are all assigned the visibility level protected in the inheriting class. This 
means that none of the elements can be accessed from outside. The same happens with the 
visibility level private, except that all elements receive the visibility level private and 
would therefore no longer be inherited. Additionally, classes that inherit private from a 
base class can no longer be used as objects of the base class, as with the other visibility 
levels. This is a severe restriction of the possible functionality, which is only needed in the 
rarest of cases.

All member variables of the class person are now also available in the class student, so 
first and last names can already be stored. However, students have an additional matricula-
tion number, which a person does not have. For this reason, an additional member variable 
m_matriculationNumber of type int is declared.
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The constructor of the class student should again only be callable if all information 
about the students is available, so that it also contains the matriculation number as a func-
tion parameter in addition to the first and last name.

Since the member functions of the class person were also inherited, the class student 
already has the functions getFirstname and getLastname, so that these do not have to be 
declared again. In addition, the class student should have the function getMatriculation-
Number, with which the matriculation number can be queried.

The implementation of the student class is shown in Listing 10.19. And the first pecu-
liarity occurs right away in the constructor. The variables m_firstName and m_lastName 
were declared only in the base class person, but not in the inheriting class student. For this 
reason, the two variables must not be initialized during initialization, that is, after the 
colon and before the body of the constructor. In general, it can happen that inheritance is 
from an unknown class, so that it is not clear what actually happens in the constructor of 
the base class. It is therefore advisable to rely on the base class constructor when initial-
izing the base class variables. The constructor of the base class may be called during ini-
tialization. In this case, the values of the firstName and lastName parameters are simply 
passed through. The constructor does the initialization. Within the class student only the 
initialization of the member variable m_matriculationNumber has to be added.

Listing 10.19  Implementation of the student Class (student.cpp)

 1   #include <iostream >
 2   #include "student.h"
 3
 4   using namespace std;
 5
 6   student :: student(string firstName , string lastName
 7              , int matriculationNumber)
 8   : person(firstName , lastName)
 9   , m_matriculationNumber(matriculationNumber)
10   {
11   }
12
13
14   /* virtual */ student ::~ student ()
15   {
16   }
17
18   /* virtual */ void student :: print ()
19   {
20     cout << "Student (" << m_firstName << " "
21          << m_lastName
22          << ", Matriculation number: "
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23          << m_matriculationNumber << ")" << endl;
24   }
25
26   int student :: getMatriculationNumber ()
27   {
28     return m_matriculationNumber;
29   }

Generally, in an inheritance hierarchy, if a class has inherited from other classes, the 
constructor of the base class is always called first. After that, each constructor follows the 
path of the hierarchy, up to the constructor of the class whose object is currently being 
created. For the destructors, the path is the other way around. Here, the destructor of the 
current class is called first, and the destructor of the base class is called last.

The function print has been newly implemented for the students. It now prints the name 
and the matriculation number. Occasionally it can be useful if the functions of the base 
class can be used without having to rewrite everything in the inheriting class. The C++ 
language therefore allows access to the members of the base class in an inheriting class, 
even if they are overwritten by your own functions. To allow access, the name of the base 
class must first be written, followed by two colons6 and the name of the element from the 
base class. The function print could also have been implemented as follows:

/*virtual*/ void student::print()
{
  person::print();
  cout << ", matriculation number: "
<< m_matriculationNumber << endl;
  }

In this implementation, the person::print(); statement would first produce the output 
through the print function of the person class. After the closing parenthesis of the output, 
a new line would then begin and the output of the matriculation number would follow there.

The getMatriculationNumber function returns the value of the member variable, analo-
gous to the other get functions.

To test the classes and their functions, a function testInherit was written, which is called 
by the main function in Listing 10.20. First, the classes person and student are made 
known by including their header files so that they can be used.

Listing 10.20  The Main Program (Project.cpp)

 1   #include "person.h"
 2   #include "student.h"

6 This is also used in the cpp files to make it clear that a function belongs to a particular class.
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 3
 4   void testInherit(person &p)
 5   {
 6     p.print ();
 7   }
 8
 9   // Main function
10   int main ()
11   {
12     person p(" Maxima", "Sampleman ");
13     student s("Max", "Samplewife", 1234567);
14
15     testInherit(p);
16     testInherit(s);
17   }

The function testInherit takes a reference of type person as parameter. Within the func-
tion nothing more is done than calling the print function of the passed object. If the param-
eter in line 4 is passed as a call by reference, objects of class student can also be passed. 
Since these are still the original objects, the modified functions of the class student are also 
called in this case. If the object were passed by Call by Value, a function call with the class 
student would still work, but the object would be copied to an object of the class person. 
The result would always be a call to the function print of the class person.7

In the main function, a variable p of the type person and a variable s of the type student 
are created with sample values. Then the function testInherit is called with both variables. 
The output of the program is:

  Person(Maxima Sampleman)
  Student(Max Samplewife, matriculation number: 1234567)

So the concept of polymorphism has been successfully applied here. Although the 
function expects an object of the class person in both cases, the combination of inheritance 
and passing by reference allows an output to take place here that is dependent on the 
class passed.

If the alternative print function of the class student was used, which shares the imple-
mentation of the base class, the output would change.

  Person(Maxima Sampleman)
  Person(Max Samplewife)
  , matriculation number: 1234567

7 With other classes, however, various problems can occur with this procedure. It would therefore be 
advisable to define the type conversion exactly in the class.
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In this case, the student class would first produce the output defined in the person class, 
and then the supplementary output from the student class.

10.5	� Advanced: Abstract Classes

If inheritance hierarchies are implemented, in which many classes inherit from each other, 
it is often useful to define interfaces that specify exactly which functions must be imple-
mented and which must not. Often, however, these interface classes have no task of their 
own, so that on the one hand there is no meaningful implementation for the functions and, 
in addition, it should be prevented that objects of this class can be created at all. In C++, 
such classes are called abstract.

An example of such a situation are the already mentioned graphic objects, such as line, 
polygon or circle. All these objects should have a common interface that allows to calcu-
late properties, such as the area or the perimeter, and to draw the objects. In C++ it is pos-
sible to declare a class that defines this interface. If all graphic objects then inherit from 
this interface class, it is ensured that all graphic objects adhere to the same rules.

The declaration of interfaces has another advantage. When a class is implemented that 
will later work with the graphic objects, this class only needs to know the interface and not 
all possible classes that inherit from the interface at some point. Since all inheriting classes 
must always adhere to the interface, it is ensured that the processing works in any case.

Listing 10.21 shows the declaration of an interface class for the graphics objects. Again, 
only a few functions have been implemented to make the concept clear.

Listing 10.21  Declaration of an Abstract Class (IgraphicObject.h)

 1   // Include -Guard
 2   #include <string >
 3
 4   using namespace std;
 5
 6   // Class declaration
 7   class IgraphicObject
 8   {
 9   public:
10     // Constructor
11   IgraphicObject ();
12   // Destructor
13   virtual ~IgraphicObject ();
14
15   virtual void print () = 0;
16   virtual double getArea () = 0;
17   virtual double getPerimeter () = 0;
18
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19     string getClassName ();
20   protected:
21     // Class designation
22     int m_className;
23   };
24   // End of the include guard

It has proven to be good practice to identify interface classes by their names. One way 
to do this is to prefix the name of the class with a capital I for interface. Of course, this is 
not mandatory and it has no effect on the class. However, it makes it easier to keep track 
of things in large projects.

The constructor and destructor are implemented normally for abstract classes, even if 
the tasks are usually limited to initializing and deinitializing some variables. Of course, it 
depends on the concrete situation, but since an abstract class is created as the base class of 
an inheritance, it makes sense to think about declaring the destructor as virtual and do this 
in case of doubt.

To make the class abstract, functions of the class must be declared as virtual and then set to 
0. Such functions are called purely virtual. The =0; at the end of a function declaration means 
that no implementation exists for this function within the class. In fact, an implementation may 
still exist, but only the class inheriting from the base class may refer to it.

The very existence of a single purely virtual function ensures that no objects of the 
class may be created and that the class is therefore abstract. In this example, the function 
getClassName was added to illustrate this. There can still be any number of functions that 
are fully implemented, but the class is still abstract.

Listing 10.22 implements the constructor, destructor, and getClassName function of the 
abstract class.

Listing 10.22  Implementing an Abstract Class (IgraphicObject.cpp)

 1   #include "IgraphicObject.h"
 2
 3   IgraphicObject :: IgraphicObject ()
 4   : m_className (" IgraphicObject ")
 5   {
 6   }
 7
 8   /* virtual */ IgraphicObject ::~ IgraphicObject ()
 9   {
10   }
11
12   string getClassName ()
13   {
14     return m_className;
15   }
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The constructor simply initializes the member variable m_className with the name of 
the class, which can be queried by the function getClassName. Such a construction often 
proves to be useful when output of the program is to be created in log files during debug-
ging. This way it can always be traced which class is responsible for a process. Of course, 
inheriting classes must adapt the content of the member variable m_className accord-
ingly for the system to work.

Definitions for purely virtual functions could still be added to the implementation if 
there are implementations that can be reused in many inheriting classes. However, this is 
not necessary and only makes sense in a few cases.

10.6	� Advanced: Structures

The C++ language is an extension of the C language and has adopted its language ele-
ments. In C, it was already possible to create more complex data types by combining 
several variables using the struct keyword. Listing 10.23 shows an example of such a 
structure.

Listing 10.23  An Example of a struct Data Structure

1   struct Container {
2     int id;
3     double value;
4   }

Confusion often arises about when to use a struct and when to use a class in C++, and 
what the difference actually is between these two constructs. In the C++ language, the dif-
ference is actually minimal. With a class, if nothing else is specified, the visibility level is 
private. Even with inheritance, a class would be inherited private if nothing else is speci-
fied. With a struct, the visibility level is public in both cases without further specification. 
Otherwise, the two constructs behave identically. Everything else discussed in the previ-
ous chapters can be applied to classes as well as to structures.

So what’s the point of the two constructs, isn’t it enough to use classes? In princi-
ple, yes.

However, the two constructs can be used to indicate different types of classes. If a con-
struct is to be developed that has constructors, operators and functions, a class should be 
used. It represents the idea of object-oriented programming with all the associated 
possibilities.

Occasionally, however, it may be necessary to design a data container that is intended 
to bundle some data for a specific application purpose, but does not require any functions 
or operators. Access to all elements of this container should be possible directly, at best a 
constructor and destructor are helpful. In these cases, many programmers use a struct.
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10.7	� Advanced: const and static

The two keywords const and static have already been introduced elsewhere in this book. 
In the context of classes, however, some special features are added, which will be intro-
duced in this chapter.

10.7.1 � const

If constant objects of a class are created, C++ must be able to recognize which functions 
change the state of the object and which do not. A get function that only returns the content 
of a variable could be called without problems, but a set function could not. However, 
since get and set have no meaning for C++, this is not a working criterion.

Functions that are also to be usable with constant objects must be explicitly marked by 
the keyword const. This procedure is called const correctness. In Listing 10.24, the 
Vector2D class is modified so that functions that do not change the state of the class can 
also be called on constant objects.

Listing 10.24  Declaring the Vector2D Class Using const correctness (Vector2D.h)

 1   // Include -Guard
 2   // Class declaration
 3   class Vector2D
 4   {
 5   public:
 6     // Constructors and Destructors
 7
 8     // Member functions
 9     double getAngle () const;
10     double getLength () const;
11     double getX () const;
12     double getY () const;
13
14     void setCartesian(double x, double y);
15
16   protected:
17     // Variable declaration
18   };
19   // End of the Include -Guard

The constructors and destructor of the class are obviously functions that change the 
state of the object, as variables are initialized or deinitialized. But all get functions can be 
complemented by the keyword const, since they do not change the respective object.
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However, the set(…) function allows the state of the object to be changed, so the const 
keyword must not be added to this function.

Unlike other keywords such as inline or virtual, const must also be specified when 
implementing the respective function. This is shown as an example in Listing 10.25.

Listing 10.25  Member Functions of the Vector2D Class Considering const correct-
ness (Vector2D.cpp)

 1   // ...
 2   double Vector2D :: getAngle () const
 3   {
 4     return atan2(m_y , m_x) * 180 / PI;
 5   }
 6   // ...
 7   void Vector2D :: setCartesian(double x, double y)
 8   {
 9     //...
10     m_x = x;
11     m_y = y;
12   }

Classes can additionally contain member variables that have been marked as constant. 
In contrast to variables, these constants can only be assigned a value by the initialization 
list in the constructor. A value assignment is neither allowed in the constructor, nor in the 
rest of the class.

10.7.2 � static

Until now, all member variables and member functions described in this book have been 
bound to an object. This means that although the class declares functions and variables, an 
object must be created in order to actually use the variables and functions.

However, there can also be data and functions that can be assigned to a specific class 
but are independent of individual objects. An example of this is a count variable that is to 
count all objects of a certain class. In principle, this is quite simple: Each time an object of 
a class is created or destroyed, a variable must be incremented or decremented by one. But 
this only works if this variable is the same variable for all objects of the class. And that’s 
exactly what the keyword static makes possible.

It is similar for functions declared as static. The functions can be called without an 
object of the class existing. Since static functions belong to the class and not to a specific 
object, only static variables of the class can be used within a static function. However, you 
can pass function parameters as normal.

Listing 10.26 shows the declaration of a class whose only job is to count how many 
objects of the class exist.
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Listing 10.26  Declaration of the Class counter (counter.h)

 1   // Include -Guard
 2   // Class declaration
 3   class counter
 4   {
 5   public:
 6     // Constructor
 7     counter ();
 8     // Destructor
 9     ~counter ();
10
11     static int getCount ();
12
13   protected:
14     static int m_count;
15   };
16   // End of the Include -Guard

The constructor and destructor have been declared normally. The class should have a 
static variable m_count, which should count the number of objects of the class. In addition, 
there should be a function getCount, which should also be static, and with whose help the 
value of the variable m_count can be queried.

Static variables cannot be initialized in the constructor of a class like normal variables. 
The compiler prevents this, but even if not, it would not make sense. If static variables 
were initialized in the constructor, this would happen with every new object and that would 
go against the idea of a static variable. Instead, static variables are initialized like global 
variables. To make it clear that they are variables of a class, the name of the variable must 
be preceded by the name of the class followed by two colons. In Listing 10.27, this is 
implemented immediately after the #include statement.

Listing 10.27  Implementation of the counter Class (counter.cpp)

 1   #include "counter.h"
 2
 3   // Initialization of a static variable
 4   int counter :: m_count = 0;
 5
 6   counter :: counter ()
 7   {
 8     m_count ++;
 9   }
10
11   counter ::~ counter ()
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12   {
13     m_count --;
14   }
15
16   /* static */ int counter :: getCount ()
17   {
18   return m_count;
19   }

Within the constructor, the static variable m_count is increased by the value 1. Since the 
variable is the same for all objects, it is counted how many objects of the class were cre-
ated. So that this value is still correct when objects of the class are deleted, it is necessary 
to decrease the value of the variable m_count by 1 again within the destructor.

The function getCount was declared as a static function. As with inline and virtual, 
static is not repeated again in the function definition. Within the function, function param-
eters and static member variables and functions can be accessed. In this example, only the 
value of the variable m_count is to be returned.

In the main function of Listing 10.28, the functions of the class are now tested.

Listing 10.28  Test Program for the counter Class (project.cpp)

 1   #include <iostream >
 2   #include "counter.h"
 3
 4   using namespace std;
 5
 6   // Main function
 7   int main ()
 8   {
 9     cout << counter :: getCount () << endl;
10
11     counter c1;
12     counter c2;
13     counter c3;
14
15     cout << counter :: getCount () << endl;
16
17     for (int i = 0; i < 5; i++)
18     {
19       counter c;
20       cout << counter :: getCount () << endl;
21     }
22
23     system (" pause ");
24   }
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As can be clearly seen, the getCount function is called before the first object of the class 
has been created. The output corresponds to the value 0, since the static variable has only been 
initialized so far. Following this output, three objects of the class counter are created and again 
the return value of the function getCount is printed. The result is now 3, as expected, since the 
variable value was increased by 1 with each constructor call (Listings 10.29 and 10.30).

Within the following loop, an object of the class counter is created at each loop pass and 
the function getCount is called to print its return value. However, no ascending numbers 4, 
5, … are printed, but always the number 4. Since the object is defined within the loop body, 
the object only exists for exactly one loop pass. Thus, an object of the class is created with 
each run, but it is also deleted again immediately. Each time the constructor is called, the 
variable value is increased by 1, but at the end of the loop, the value is decreased by 1 when 
the destructor is called. The total number of currently existing objects does not change.

This successfully tests all the functions of the class. The complete output of the 
program is:

0
3
4
4
4
4
4
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Network diagram for the self-assessment of this chapter

 

10.1	� Visibility Levels

Name the different visibility levels for classes in C++ and what they mean!

10.2	� Operators

What is the meaning of the term operator in a class in C++?

10.3	� Include Guards

What is an include guard and what is it designed to prevent?

10.4	� Abstract Classes

State the meaning of the term “abstract class”!

 

10.5	� Member Variables

Explain how member variables differ from other variables in a class!

10.6	� Constructors

Explain the purpose of the constructor of a class and how it differs from other functions!
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10.7	� Classes and Structures

Identify differences between classes and structures in C++!

10.8	� Polymorphism

Explain the concept of polymorphism!

10.9	� Polymorphism

Explain the function of the keyword static for classes!

 

10.10	� The Class point2D

Write your own class, which should be named point2D. The class should have two mem-
ber variables m _ x and, m _ y both of which should be of type double. The visibility level 
of the member variables should prevent the variables from being accessed from outside 
the class.

Also develop three constructors for the class:

•	 The first constructor should do without parameters and initialize the two variables with 
the value 0.0 each.

•	 The second constructor should be able to fill the member variables with meaningful 
values during initialization. Therefore, the constructor should receive two variables x 
and y and copy the values into the member variables.

•	 The third constructor is to be a copy constructor.

Two points are to be added with the help of an operator +. The result should be a new point 
whose coordinates correspond to the sum of the two point coordinates.

The operator ∗ is to calculate the scalar product by s a b a b a bx x y y� � � �� �



. The result 
is therefore a variable of type double.

Also, write an operator that you can use to print the contents of the class with cout. The 
output should be in the form: point2D(x, y).

Try to use and test the different functions in your main program!
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10.11	� The Circle Class

In this task, another class is to be developed, which is to be named circle. The class is to 
have two member variables. The first variable m_center, which shall be of type point2D 
from Exercise 10.10, shall store the center of the circle. The second variable m _ r is to 
store the radius as a double.

Three constructors are to be implemented:

•	 The first constructor does not need any parameters and shall set the center to the coor-
dinates (0.0; 0.0). The radius should have the value 1.0.

•	 With the second constructor an initialization should be possible, therefore three vari-
ables of the type double should be passed. Thus the x, y and r values are to be passed.

•	 The third constructor is also to be used for initialization. The passing parameters shall 
be the center point, as point2D, and the radius, as double.

The area function is to calculate the area of the circle using the formula A = π ⋅ r2.
With the function perimeter the circumference of the circle is to be determined by the 

formula U = 2 ⋅ π ⋅ r.
Also, write an operator that you can use to print the contents of the class with cout. The 

output should be in the form: circle(point2D(x, y), r).
Try to use and test the different functions in your main program!

 

10.12	� Program Analysis

Analyze the following program. To do this, try to find out what the individual program 
lines do in terms of content and deduce the task of the program.

Commands have been used that you don’t know yet. Try to research them!
Do not type the program, but try to understand what is happening without assistance!

Riddle.h

 1   // Include -Guard
 2   #include <string >
 3
 4   using namespace std;
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 5
 6   class Riddle
 7   {
 8   public:
 9     Riddle(string data );
10
11     friend ostream& operator <<( ostream &out , Riddle r);
12   protected:
13     string m_data;
14   };
15
16   ostream& operator <<( ostream &out , Riddle r);

Riddle.cpp

 1   #include "Riddle.h" #include <iostream >
 2
 3   Riddle :: Riddle(string data)
 4   {
 5       char k;
 6
 7       for (int i = 0; i < data.length (); i++)
 8     {
 9       k = data[i];
10
11       if (k >= 97 && k <= 122)
12         k = 65 + (k - 94) % 26;
13       else
14         if (k >= 65 && k <= 90)
15           k = 65 + (k - 62) % 26;
16
17     m_data += k;
18     }
19   }
20
21   ostream& operator <<(ostream &out , Riddle r)
22   {
23   char k;
24
25   for (int i = 0; i < r.m_data.length (); i++)
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26     {
27      k = r.m_data[i];
28
29      if (k >= 65 && k <= 90)
30       k = 65 + (k - 42) % 26;
31
32       out << k;
33     }
34
35   return out;
36   }
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11Pointer

Short and Sweet

•	 The memory of a program is roughly divided into four areas
–– Program code
–– Global variables
–– The stack for functions and local variables
–– The heap for dynamically created memory areas

•	 Each memory location has an address
•	 Pointers make it possible to remember certain addresses
•	 Possible sources of error:

Errors can easily occur when working with pointers.
•	 Possible sources of error:

The errors caused by pointers are very difficult to find in most cases.

In all previous chapters, variables were created inside or outside functions or as part of 
classes. Most of these variables are stored in a specific area of main memory called the 
stack. The stack is subject to a number of constraints that allow it to be accessed quickly. 
First, the stack is limited in size and second, access always follows the so-called Last In, 
First Out (LIFO) principle. This means that the data that was last stored on the stack is 
always on top and is the first to leave the stack. The stack is available in its fixed size for 
the entire runtime of the program.

For each function call, data is stored on the stack for the respective function. This data 
includes the position to which the program must return when the function is terminated, 
the function parameters and the local variables of the function. When a function is termi-
nated, all of this data is removed from the stack again. Since only one function can be 
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active at a time, the data of the current function is always on top of the stack. Thus, the 
existence of the local variables and parameters is linked to the execution time of the 
respective function.

Global variables, which are created outside of functions, must exist over the entire 
runtime of the program and are stored in their own memory area. The same applies to the 
program code, which is also stored in its own area of main memory.

However, very many applications require variables whose lifetime is not coupled to 
functions and whose size far exceeds that of the stack. In addition, these variables should 
not exist during the entire runtime of the program, but only when they are needed. An 
example of this is an application that is supposed to load and process images. The size of 
an image with the resolution 1920 ⋅ 1080 pixels is about 8 MB uncompressed at 4 bytes 
per pixel. The usual size for the stack is 1 MB. Thus it would not be possible to store such 
an image on the stack. In addition, applications of this type should be able to manage sev-
eral images in the vast majority of cases, which can be loaded and closed again during the 
program runtime.

To enable such applications, memory can be requested dynamically, which is created 
on the so-called heap. Memory that is requested in this way is allocated to the program 
until the memory is explicitly released again by the program. Since in this case the pro-
gram itself must remember where the requested memory is located, so-called pointers are 
required. Working with pointers opens many new possibilities, but also many new sources 
of errors, which are very difficult to find in programs. For this reason it is necessary to 
develop a basic understanding of working with pointers and memory.

First of all, in the memory of a computer, each byte is numbered consecutively. In prin-
ciple, this numbering is comparable to the house numbers in a street, so that the term 
address is also used here. Each variable that is created in the program must be stored at an 
address and occupies a certain amount of memory there, depending on the variable type. 
Table 5.1 in Chap. 5 shows the memory consumption for each variable type. If, for exam-
ple, a 4-byte variable such as an int is stored at a certain address, the next 3 bytes are also 
occupied by this variable and can no longer be used for other data (see Fig. 11.1).

The addresses of the individual bytes have been indicated by N, N + 1, … in this figure. 
In fact the hexadecimal number system is often used for the representation of adresses. 
Even if this representation is a hurdle at the beginning, it increases the readability of such 
addresses later on. Since each byte consists of 8 bits, a byte can always be represented by 
two hexadecimal digits.

Each variable created in the example programs is therefore located at a specific address 
within the memory. In C++, the address of a variable can always be accessed using the 

Fig. 11.1  Schematic representation of a variable in the main memory
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ampersand symbol. In the main function of Listing 11.1, a variable of type int is created 
with the name data and initialized with the value 0.

Listing 11.1  Output of a Memory Address

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   // Main function
 6   int main ()
 7   {
 8     // Variable definition and initialization
 9     int data = 0;
10
11     // Output of the memory address
12     // of the variable data
13     cout << &data << endl;
14
15     return 0;
16   }

The statement cout <  <  & data <  < endl; is used to print the address where the data of 
the variable data is located on the console. The output of the program is.

  0136FA74

Since the output is hexadecimal, the variable was therefore stored at the decimally rep-
resented memory address 20,380,276. The address is located in the stack of the program. 
If the memory contents were printed with the associated addresses, the result shown in 
Table 11.1 would be obtained.

Table 11.1  Memory allocation by Listing 11.1

Area Address (hex) Address (dec) Data (hex) Data (dec)
Stack 0136FA79 20,380,281 ? ?

0136FA78 20,380,280 ? ?
0136FA77 20,380,279 00 0
0136FA76 20,380,278 00 0
0136FA75 20,380,277 00 0
0136FA74 20,380,276 00 0
0136FA73 20,380,275 ? ?
0136FA72 20,380,274 ? ?
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In the surrounding memory areas there are any values that are not known. But at the 4 
bytes, which are occupied by the int variable, there must be the numerical value 0, because 
all 4 bytes of the variable must represent this number.

To claim a memory area on the heap, the new instruction followed by a variable type 
must be used. This instruction attempts to allocate memory on the heap and returns the 
starting address of the memory area if successful. This address must now be saved in a 
suitable variable, a pointer, so that the memory can be accessed. To declare a pointer, a 
normal variable of the type to be at the saved address is first created. The only difference 
is that a ∗ is inserted between the type and the name of the variable. It does not matter 
whether the ∗ is inserted directly at the variable type, the name, or even separated by spaces 
from both.

The asterisk causes a pointer variable to be created whose memory consumption no 
longer has anything to do with the named type, but only with the size of a memory address. 
In a 32-bit system, an address consists of 4 bytes; in a 64-bit system, an address consists 
of 8 bytes. A pointer of the type char* therefore requires just as much memory as a pointer 
variable of the type int*, although the data types char and int differ in terms of memory 
consumption.

In Listing 11.2, a pointer variable of type int* is created with the name data and initial-
ized with the result of the new statement. The new statement creates a four-byte area of 
memory on the heap by adding int(0) and initializes it with the value 0. If the new state-
ment is able to reserve the memory successfully, it returns the start address of the area as 
a return value.

Listing 11.2  Creating a Variable on the Heap

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   // Main function
 6   int main ()
 7   {
 8     // Variable definition and initialization
 9     int* data = new int (0);
10
11     // Output of the memory address
12     // of the variable data
13     cout << &data << endl;
14
15     // Output of the memory address
16     // that was saved in data
17     cout << data << endl;
18
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19     // Output of the value
20     // that was stored on the heap
21     cout << *data << endl;
22
23     // Release of the heap memory
24     delete data;
25     data = 0;
26
27     return 0;
28   }

Next, three outputs follow through the program. The pointer variable data is a normal 
variable that is stored on the stack. The address of this variable is printed first by the 
instruction cout <  <  & data <  < endl;. The variable data stores an address that is on the 
heap and was generated by the new statement. This content of the variable data is printed 
by the statement cout <  < data <  < endl;. The last thing to be printed is the content of the 
memory address on the heap, i.e. 0. To achieve this, the name of the pointer variable is 
preceded by ∗. The variable is dereferenced. This name describes an indirect access. First, 
the contents of the variable data are interpreted as an address, then the contents of this 
address are interpreted as int (since data is a pointer of type int*) and returned. The state-
ment cout <  <  ∗ data <  < endl; prints the result to the console.

Finally, the memory area on the heap must be manually freed when it is no longer 
needed. This is done with the instruction delete data;. However, this statement only 
releases the memory area at the corresponding address. The now invalid address is still 
stored in the pointer variable data. Accessing this address again may cause an error, but 
under certain circumstances it may not. If the memory area is used by the program else-
where in the meantime, another data set may be corrupted. This can lead to errors that only 
cause effects much later. For this reason, the best approach is to set a pointer variable to 
the value 0 immediately after the memory area has been released. This address is always 
invalid for access and will cause a program crash should an attempt be made to access it. 
This sounds like a problem because a program crash is obviously undesirable. In fact, 
however, an error is desirable in this case, because it is located exactly at the point where 
the program crashes. Thus, the error can be quickly detected and corrected.

This approach is also useful when pointers are not used immediately. A golden rule 
should be: A pointer either has a valid value, or it contains the value 0.

The program generates the following output:

  0115F7C0
  03232E10
  0

Figure 11.2 shows the memory allocation of Listing 11.2 schematically. Table  11.2 
shows the contents of the individual memory locations in both hexadecimal and decimal 
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Stack: Address:

Byte:

Heap: Address:

Byte:

32 Bit pointer

int

0115F7C0

03232E10

10 2E 23 03

00 00 0000

Fig. 11.2  Schematic representation of the memory allocation by Listing 11.2

Table 11.2  Memory allocation by Listing 11.2

Area Address (hex) Address (dec) Data (hex) Data (dec)
Heap 03232E15 52,637,205 ? ?

03232E14 52,637,204 ? ?
03232E13 52,637,203 00 0
03232E12 52,637,202 00 0
03232E11 52,637,201 00 0
03232E10 52,637,200 00 0
03232E0F 52,637,199 ? ?
03232E0E 52,637,198 ? ?
… … … …

Stack 0115F7C5 18,216,901 ? ?
0115F7C4 18,216,900 ? ?
0115F7C3 18,216,899 03 3
0115F7C2 18,216,898 23 35
0115F7C1 18,216,897 2E 46
0115F7C0 18,216,896 10 16
0115F7BF 18,216,895 ? ?
0115F7BE 18,216,894 ? ?

notation. The content of the variable data is located on the stack from address 0115F7C0. 
If the content of the memory is read from the back to the front, the result is the address 03 
23 2E 10, which is located on the heap and in which the value 0 was stored.

Here another advantage of the hexadecimal notation becomes apparent. In hexadeci-
mal, the values of the individual bytes can be directly appended to each other, so that they 
result in the target address. The values of the decimal notation do not allow this direct 
translation into a decimal address.
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11.1	� Type Conversion

The type of a pointer has a different meaning than the type of a “normal” variable. In the 
case of the “normal” variable, the variable type determines the size of the memory con-
sumption and the way in which the content of the variable is interpreted. A double is a real 
number that occupies 8 bytes of memory according to Table 5.1.

With a pointer variable, the size of the memory space is determined exclusively by 
whether the program is created for 32-bit systems or for 64-bit systems. The memory con-
sumption is 4 bytes in the first case and 8 bytes in the second. The type of the pointer vari-
able is only used for how the content of the stored target address is to be interpreted. If a 
pointer has the type int* then, starting from the stored address, the next four bytes are 
combined and interpreted as an integer.

For this reason it is possible to create a pointer of type void∗. With a “normal” variable, 
the compiler could not decide how much memory to provide for the variable. Therefore, 
there can be no variables of type void. But with a void* pointer, the size is already fixed. 
However, it would not be possible for the compiler to interpret the contents of this pointer. 
The use of void∗ pointers is more widespread than it might seem at first glance. They are 
always used when the content of a pointer does not need to be edited, or there can be dif-
ferent types of pointers that are to be processed in a function, for example.

To process the contents of a void∗ pointer, the variable type must be changed by a type 
conversion so that the compiler can interpret the contents. In Listing 11.3, a pointer of type 
void∗ is created and initialized using a new statement. The new statement, of course, 
requires a variable type to create memory on the heap. In this example, the new statement 
creates and returns an address of type int∗. Since the void∗ pointer makes no assumption 
about the contents of the memory address, value assignment in this direction is allowed.

Listing 11.3  Type Conversion of a Pointer Variable

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // The value assignment from int* to void* works
 8     void* pointer = new int (25);
 9
10     // The value assignment from void* to int* works
11     // only if the type is explicitly converted.
12     int* pointer2 = (int*) pointer;
13
14     // The direct output causes an error
15     // cout << *pointer << endl;
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16
17     // If the type of the pointer is changed ,
18     // so the output is not a problem.
19     cout << *(int*) pointer << endl;
20
21     delete pointer;
22     pointer = 0;
23     pointer2 = 0;
24
25     return 0;
26   }

Next, a variable pointer2 of type int∗ is to be created by int∗po int er2 = (int∗)po int er; 
and initialized with the content of the variable pointer. Since pointer2 makes the assump-
tion that there is a value of type int at the stored destination address, but the variable 
pointer makes no such assumption, the variable pointer must be explicitly converted to 
type int∗. Otherwise, the compiler will generate an error message.

Dereferencing the variable pointer, as in the commented out line cout  <    <   ∗  zei-
ger <  < endl;, is also not allowed because of the uninterpretable type void∗.

However, if the pointer is converted to int∗ type as in the line cout <  <  ∗ (int∗)po int e
r <  < endl;, the result can be interpreted and printed. It is noteworthy that first the type of 
the pointer is converted and only then it is dereferenced. As expected, the program gener-
ates the output 25.

Finally, the created memory must be released again. Since the variables pointer and 
pointer2 refer to the same address, the delete statement may of course only be applied to 
one of the two variables. Afterwards, however, both variables should receive the value 0 in 
order to prevent incorrect accesses to the released memory.

11.2	� const

Since pointers, just like references, allow direct access to memory, it is also necessary here 
to have the option of preventing write access. As with other examples, the const keyword 
can also be used for pointers.

If a simple pointer variable is declared, there are three different positions where the 
keyword const may be placed. However, two of these positions lead to the same result. In 
Listing 11.4, the different variants of constant pointer variables were created.

Listing 11.4  Various Constant Pointer Variables

 1   #include <iostream >
 2
 3   using namespace std;
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 4
 5   int main ()
 6   {
 7     // Value constant , address variable
 8     const int * pointer1 = new int (0);
 9     // Value constant , address variable
10     int const * pointer2 = new int (0);
11     // Value variable , address constant
12     int* const pointer3 = new int (0);
13
14     // *pointer1 = 5; // Not OK
15     // *pointer2 = 5; // Not OK
16     *pointer3 = 5;
17
18     cout << *pointer1 << endl
19          << *pointer2 << endl
20          << *pointer3 << endl;
21
22     delete pointer1;
23     delete pointer2;
24     delete pointer3;
25
26     pointer1 = 0;
27     pointer2 = 0;
28     // pointer3 = 0;
29
30     return 0;
31   }

The first two lines const int * pointer1 = new int(0); and int const * pointer2 = new 
int(0); do exactly the same thing. In both cases, a pointer variable is created where it is not 
allowed to change the contents of the stored address. For this reason, the lines ∗po int er1 = 5; 
and ∗po int er2 = 5; are commented out. But it is allowed to change the address itself. It 
would therefore be possible to assign the address of another int variable to the variable, 
but its content would not be allowed to be changed either.

Both notations refer to the int, the second notation being the one that is easier to under-
stand. Normally, the keyword const always refers to the element that is to the left of the 
keyword. Only for the first element, in this case the int, it is additionally allowed to drag 
the keyword in front of the element it refers to.

By the line int* const pointer3 = new int(0); a pointer variable is initialized, where the 
content of the memory address may be changed, but not the stored address. So it is easily 
possible to change the value on the heap from 0 to 5 by using the line ∗po int er3 = 5;. Also 
in this notation, the keyword refers to the element directly to the left of it, in this case the 
star symbolizing the address.
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The output of the program is.

  0
  0
  5

because only the content of the memory area pointed to by pointer3 was allowed to be 
changed.

After the memory areas have been released again by the delete statements, the stored 
addresses are to be set to 0  in order to prevent erroneous accesses. However, since the 
address stored in pointer3 is constant, the line po int er3 = 0; cannot be executed.

Of course, it is also possible to combine both expressions to create a pointer where 
neither the address nor its contents may be changed. The corresponding line would be int 
const * const pointer4 = new int(0);.

11.3	� Arrays

With the previous arrays it was not possible to let the size of the array be entered during 
the runtime of the program, because the compiler only accepted constant array sizes. 
However, especially with arrays it makes sense to adapt the size individually to the require-
ments. If, for example, a data set was created that was to store 1 MB of data, the program 
would crash immediately, since no further memory would be available on the stack. 
Increasing the size of the stack would also be an insufficient solution, because on the one 
hand this memory is permanently occupied by the program and on the other hand the same 
problem would then simply occur a little later. In addition, memory of this size is often 
only needed when the program has to load and process a certain data set (perhaps an 
image). When that record is no longer needed, the memory can be freed. In Listing 11.5, 
an array of dynamic size is created. To do this, an auxiliary variable n is first created to 
store the size of the array. Unlike Listing 8.1, the variable n no longer needs to be declared 
as const. Next, the program is to read in a value for the array size n.

Listing 11.5  Creating a Dynamic Array

 1   #include "stdafx.h"
 2   #include <iostream >
 3
 4   using namespace std;
 5
 6   int main ()
 7   {
 8     // Variable definition and initialization
 9     // for the array size
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10     unsigned int n = 0;
11
12     // Entering the array size
13     cout << “Please enter the size “
14          << “of the record:” << endl;
15     cin >> n;
16
17     // Initialization of a dynamic array
18     int* data = new int[n];
19
20     // Initialization of all array values with 0
21     for (int i = 0; i < n; i++)
22     {
23       data[i] = 0;
24     }
25
26     // Release Memory
27     delete [] data;
28     data = 0;
29
30     return 0;
31   }

Now a pointer variable data of type int* is created and initialized using the new state-
ment. The use of square brackets after the variable type makes it clear that an array is to be 
created on the heap. The variable n specifies the number of elements and the variable type 
int specifies the memory consumption per element. Thus, the statement new int[n] attempts 
to allocate n∗4Bytes on the heap. After initialization, arrays on the stack and on the heap 
behave exactly the same again.

To clarify this, all elements of the array data are initialized with the value 0 in the pro-
gram by the following for-loop. To do this, all indices 0, …, n − 1 are passed through once. 
As with all arrays, access is made by combining the array name and the index in square 
brackets. In this example, by data[i].

However, since the array was created on the heap, the memory must be released manu-
ally, as with all pointer variables. This is done by the instruction delete[], which makes it 
clear that not only the specified address, but also an array is to be released again.

Figure 11.3 shows the memory allocation of the program directly after the initialization 
of the array. A 4-byte address is stored on the stack in a 32-bit system. In the program, this 
is the pointer variable data. The content of this variable points to an address on the heap. 
There, because of the chosen variable type int, groups of 4 bytes are always interpreted as 
an integer. If the value 6 is chosen for the size of the array n, the situation shown results. 
For reasons of clarity, only the initial addresses of the respective integer values have been 
drawn in the figure.
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Stack: Address:

Heap: Address:

Byte:

Byte:

Address:

Byte:

Address:

Byte:

32 Bit pointer
88 17 17 03

intint

int int

int int

00FBF8D0

03171788 0317178C

00 00 00 0000 00 00 00

00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00

03171798

03171790 03171794

0317179C

Fig. 11.3  Schematic representation of the memory allocation by Listing 11.5 for n = 6

11.4	� Pointer Arithmetic

In the C++ language, all pointers behave very similarly to arrays. It is even possible to use 
the square brackets even if a pointer was not created as an array. This is because when 
square brackets are written after a pointer, the target address being searched for is calcu-
lated using a simple formula that can be applied in any case. If a program contains the line.

  pointer[n] = 15;

then the formula with which the destination address can be calculated is always

	
Destination addressSize n of the data type� � � � � � �� �   

	
(11.1)

With this notation, access is always indirect. This means that the content of the target 
address is changed, just as with an array.

This type of memory access is very dangerous, since it is absolutely necessary to know 
exactly which positions can be accessed safely. It would be very easy to access behind a 
reserved memory area and thus generate arbitrarily complex errors. However, this form of 
memory access also offers great advantages, especially if the type of the pointer is changed. 
The following Listing 11.6 shows an example of such an access.

11  Pointer



175

Listing 11.6  Output of a Memory Area Byte by Byte

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Initialize an int pointer
 8     int *data = new int (4223);
 9
10     // Initialize an unsigned char pointer
11     // with the address of data
12     unsigned char* bytes = (unsigned char *) data;
13
14     // Output of stack position and contents
15     cout << "Stack: " << &data << “ : “ << data << endl;
16
17     // Output of heap positions and contents
18     // Byte by byte
19     for (int i = 0; i < 4; i++)
20     {
21       cout << "Heap: " << (int *)& bytes[3-i]
22            << “ : “ << (int)bytes[3-i] << endl;
23     }
24
25     // Release Memory
26     delete data;
27     data = 0;
28
29     return 0;
30   }

First, a pointer of type int* is created by the line int *data = new int(4223); and initial-
ized using the new statement. On the heap, the memory space for a 4-byte variable of type 
int is created and the reserved address is stored in data. In the line unsigned char* 
bytes = (unsigned char*)data; another variable with the name bytes is created and initial-
ized with the same address to which data already points. For this to work, a type conver-
sion from int* to unsigned char* must be performed on data.

Both variables now differ when accessing the memory contents using the square brack-
ets, since formula 11.1 depends on the size of the data type. Since data is of type int*, the 
address would be increased by the value 4 by data[1]. In contrast, bytes is of type unsigned 
char*, so bytes[1] would only increase the address by the value 1. This makes it possible 
to look at the bytes that make up the integer value in memory individually.
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The line cout < <″Stack:″ <  <  & data < <″:″ <  < data <  < endl; first prints the address 
at which the variable data is stored on the stack and then, followed by a colon, the value 
stored at this address. The latter, of course, corresponds exactly to the address on the heap 
at which the storage location for the integer value was created.

In the following for loop, the count variable i now runs through the values 0, 1, 2, 3 in 
order to be able to output the individual bytes of the integer. The statement 
(int*)&bytes[3 −  i] achieves the following: bytes[3 −  i] accesses the address that was 
increased by 3 − i bytes. This serves only the cosmetic purpose that the values are to be 
printed in descending order from top to bottom, thus starting at the largest address. The 
statement &bytes[3 − i] now does not print the content of the corresponding address, but 
the address itself. However, since it is a variable of type unsigned char*, cout tries to print 
it using text characters. To prevent this, (int*)&bytes[3 − i] performs a type conversion to 
an int* so that a hexadecimal address is printed.

Almost the same meaning has the instruction (int)bytes[3 − i]. The only difference is 
that the value is to be printed here, not the address. The type conversion to the type int is 
carried out accordingly.

Finally, the created memory space on the heap is released again and the stored address 
is overwritten with 0.

The output of the program looks like this:

  Stack: 00AFF7EC : 00DBCEA0
  Heap:  00DBCEA3 : 0
  Heap:  00DBCEA2 : 0
  Heap:  00DBCEA1 : 16
  Heap:  00DBCEA0 : 127

On the stack at address 00AFF7EC the address 00DBCEA0 is stored, which is located 
on the heap. A variable of type int was created at this address, which is stored at addresses 
00DBCEA0 to 00DBCEA3. If the contents of these memory addresses (i.e. 0 0 16,127) 
are represented hexadecimally, the result is the number 00 00 10 7F and this corresponds 
exactly to the expected number 4223.

Pointers can also be modified using the increment and decrement operators ++ and −−. 
In addition, values can be added and subtracted. With all these operators, however, it is not 
the specified value n that is added or subtracted, but n times the variable type of the pointer. 
This sounds complicated at first, but in practical use it is quite simple. When writing a 
program, it is not necessary to pay attention to the size of the variable type to access the 
next element. In any case a 1 is added. Internally, the pointer is then increased by the 
required number of bytes.

So the for loop in Listing 11.6 could also be replaced with the following source code:
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  // Output of heap positions and content
  // Byte by Byte
  bytes += 3;

  for (int i = 0; i < 4; i++)
  {
    cout << "Heap: " << (int*)bytes << “ : “
         << (int)*bytes << endl;
    bytes--;
  }

The output of the program after this change would be identical to that of program 11.6. 
However, the second variant is faster, because the access can be made directly to the 
address stored in the variable bytes, whereas in the first variant the target address has to be 
calculated twice by formula 11.1.

11.5	� Advanced: Multidimensional Arrays

Multidimensional arrays are even a bit more challenging if they are to be created on the 
heap. This is due to the fact that there are several variants that can be used to create a mul-
tidimensional array in memory. Each of these variants has very specific advantages and 
disadvantages that affect the properties of speed, flexibility, and comprehensibility.

It is therefore important to understand exactly how C++ works with the different vari-
ants in order to make the right choice for your own problem.

11.5.1 � Variant 1: Pointer to Arrays

One way to create N-dimensional arrays in C++ is to create a pointer to an N − 1-dimensional 
array. The advantage of this variant is that the memory is reserved contiguously. Thus, 
memory accesses always occur in the same region of memory, which speeds up access. 
However, only the size of the first dimension is freely and dynamically selectable. The 
sizes of the other N − 1dimensions must be as constant as if they were reserved on the 
stack. This is due to the fact that the N − 1 dimensions of the array in this variant are 
implemented using the variable type of the pointer. This must have a constant size so that 
formula 11.1 can be applied.

In addition, the notation for reserving such an array, while consistent within the lan-
guage, is not immediately obvious. In Listing 11.7, a two-dimensional array is created on 
the heap by creating a pointer of variable type int[1024]*.
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Listing 11.7  Creating a Multidimensional Dynamic Array

 1   int main ()
 2   {
 3     // Variable definition and initialization
 4     // for the array size
 5     unsigned int sizeY = 1024;
 6     const unsigned int sizeX = 1024;
 7
 8     // Initialization of a dynamic array
 9     int (* data )[ sizeX] = new int[sizeY ][ sizeX ];
10
11     // Initialization of all elements
12     for (int i = 0; i < sizeY; i++)
13     {
14       for (int j = 0; j < sizeX; j++)
15       {
16         data[i][j] = 0;
17       }
18     }
19
20     // Release Memory
21     delete [] data;
22     data = 0;
23
24     return 0;
25   }

First, the dimensions of the array are set to the value 1024 by the variable sizeY and the 
constant sizeX. The constant sizeX serves as the constant size of the pointer type.

The initialization of the array is performed by line 8 int (*data)[sizeX] = new int[sizeY]
[sizeX];. Here, three conventions of the C++ language clash, making the resulting notation 
difficult to read. The first convention states that the type of the pointer must always pre-
cede the star symbol. The second convention states that the dimension of an array must 
always come after the name of the array, and the third convention states that the asterisk 
belongs to the type of the pointer, not its name. These three conventions conflict here. The 
solution int (*data)[sizeX] is the resolution of the conflict. The variable type is specified 
by int at the beginning and [sizeX] at the end. This satisfies the conventions for the variable 
type and the position of the array dimension. Now it must be made clear that a pointer is 
to be created. This is done by defining the name of the variable in round brackets preceded 
by an asterisk. The result is a pointer variable with the name data and the variable type 
int[sizeX]*.

After the unusual initialization of the array, the pointer to the array can be used as it is 
already known from two-dimensional array from the stack. Within a double for-loop 
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starting at line 11, all elements of the array are assigned the value 0. The line data[i]
[j] = 0; can be interpreted as follows: data[i] returns a pointer to an array of type int and 
size sizeX = 1024. Because of the variable type int[1024], the address stored in data is 
incremented by i∗4096 bytes according to formula 11.1 and thus points to the i + 1-th 
array. Then [j] accesses the element that is located j∗4 bytes after this address, and this is 
exactly the element at position [i][j].

Finally, the memory is released again and the pointer is set to address 0.
Figure 11.4 shows how the memory is occupied by this variant.
The pointer on the stack is located at address 00F3FBF0 and points to address 

035C4040, which is located on the heap. Starting at this address, a contiguous block of 
memory has been reserved, consisting of 1024 blocks along the vertical axis, all of which 
have the variable type int[1024] and thus consist of 4096 bytes. As a result, the addresses 
at the beginning of the line always differ by the value 4096.

This variant offers the advantage that the memory is reserved contiguously and, apart 
from the unusual initialization, can be addressed in exactly the same way as other multi-
dimensional arrays. However, only the size of the first dimension is freely selectable. All 
other dimensions must have a constant size. Care must also be taken when initializing int 
(*data)[sizeX] = new int[sizeY][sizeX]; that the array dimensions on the left side of the 
equal sign have the same size and order as in the memory request on the right side of the 
equal sign. For example, expansion to three dimensions would be achieved by int (*data)
[sizeY][sizeX]  =  new int[sizeZ][sizeY][sizeX]; with variable sizeZ and constant sizeX 
and sizeY.

Stack: Address:

Byte:

Heap: Address:

Byte:

Address:

Byte:

32 Bit pointer

int[sizeX]

int[sizeX]

int[sizeX]

00 00 00

00 00 00

00 00 00

00 00

035C5040

035C4040

039C3040

00 00 00 00 00 00

40 40 5C 03

00F3FBF0

Address:

Byte:

00

Fig. 11.4  Schematic representation of the memory allocation by Listing 11.7
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11.5.2 � Variant 2: Pointer to Pointer

The second variant can be seen as a further development of the one-dimensional arrays on 
the heap. Up to now, a pointer was created on the stack that pointed to an address on the 
heap at which memory space was reserved for an array. If this array were to consist of 
pointers that point to arrays on the heap, it would be possible to create a two-dimensional 
array whose extent could even be selected individually for each line.

The idea can also be extended to arbitrary dimensions by pointers pointing to pointers 
pointing to pointers, and so on. However, the disadvantage of this variant is that the 
reserved memory is not contiguous. For this reason, accessing each element may be slowed 
down by accesses at different positions in the memory. In addition, with each new dimen-
sion a new level of pointers is added, making it difficult to understand the resulting data 
structure, especially at the beginning.

In Listing 11.8, a two-dimensional array is created by applying variant 2 described in 
this chapter. To do this, two auxiliary variables sizeX and sizeY are again first created and 
initialized with the value 1024. None of the array dimensions need be constant, and in fact 
it would even be possible to use a different value for sizeX in each line. But the example 
should not become unnecessarily complicated.

Listing 11.8  Creating a Multidimensional Dynamic Array (Advanced Variant)

 1   int main ()
 2   {
 3     // Variable definition and initialization
 4     // for the array size
 5     unsigned int sizeY = 1024;
 6     unsigned int sizeX = 1024;
 7
 8     // Initialization of a dynamic array
 9     int** data = new int*[ sizeY ];
10
11     // Initialization of all arrays
12     for (int i = 0; i < sizeY; i++)
13     {
14       data[i] = new int[sizeX ];
15     }
16
17     // Initialization of all elements
18     for (int i = 0; i < sizeY; i++)
19     {
20       for (int j = 0; j < sizeX; j++)
21       {
22         data[i][j] = 0;

11  Pointer



181

23       }
24     }
25
26     // Release of all arrays
27     for (int i = 0; i < sizeY; i++)
28     {
29       delete [] data[i];
30       data[i] = 0;
31     }
32
33     // Release Memory
34     delete [] data;
35     data = 0;
36
37     return 0;
38   }

The eighth line int** data = new int*[sizeY]; creates a new pointer variable data of 
type int**. This notation seems strange at first glance, but it consistently continues what 
has already been described for the previous pointer variables. The second asterisk specifies 
that it is a pointer variable, preceded by the type that is expected at this address. And in this 
case, this is again a pointer, which again points to a value of type int. So a value of the 
type int*.

This notation is also consistently continued with the new statement. Here, memory is 
requested on the heap for an array of type int*. This is an array of pointers that can point 
to values of type int. However, this is only the first step of the initialization, because behind 
the now created pointers there is of course still no memory in which values can be stored.

This does not happen until the following for loop in line 11. Here, all pointers of the 
array are now initialized by data[i] = new int[sizeX];. This again requests memory on the 
heap for an array of type int with sizeX elements. The returned address is stored in the i-th 
pointer of data. Through this two-step process, it is also obvious why the reserved memory 
is not necessarily contiguous. Memory is reserved by sizeY + 1 individual requests. The 
requested memory blocks are contiguous, but they are always reserved where there is just 
enough space, so that in the worst case the array is spread over sizeY + 1 disjoint areas.

Figure 11.5 shows the memory allocation generated by Listing 11.8.
The variable data was created on the stack at address 00 CF F9 64 and the address of 

the memory created on the heap 03 06 F0 88 was stored in it.
At this address there are now as many pointers in the heap as were specified by 

sizeY. These pointers are exceptionally displayed on top of each other in this illustration in 
order to have space for the next pointers. Each of these pointers points to its own memory 
address, where an array with elements of type int has been created. The size of the array 
corresponds exactly to the value of sizeX.
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Fig. 11.5  Schematic representation of the memory allocation by Listing 11.8

For each arrow in the figure, a new statement was used, which could be located in a 
different memory area. If the number of arrows in this variant is compared with those from 
variants 1 or 3, it is immediately apparent that this solution is the least contiguous and thus 
potentially the slowest.

However, the access to the individual elements of the array is also carried out in this 
variant according to the already known scheme. Within the two loops in lines 17 and 19 
the value 0 can be assigned to the elements of the two-dimensional array by data[i]
[j] = 0;. In doing so, data returns a pointer to an array whose (i + 1) th element is accessed. 
The result is again a pointer to an array. Here, the (j + 1) -th element is accessed by assign-
ing the value 0.

In this variant, the memory must also be released in two steps. First, starting at line 26, 
the memory of all lines must be released in a loop by delete[] data[i];. Here, too, the 
stored address should be replaced with the value 0 by data[i] = 0; in order to prevent errors.

Only then the memory from line 33 for the array of pointers can be released again by 
delete[] data; and protected against incorrect access by data = 0;. With a different order, 
the addresses of the lines would be lost and the memory could no longer be released.

This variant makes it possible to design very flexible array. At the same time, this 
approach is slow and a lot of pointers are used. This ensures that a certain sequence must 
be followed when creating and deleting the array. If this sequence is not adhered to, situa-
tions arise in which memory can no longer be released.
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11.5.3 � Variant 3: Virtual Dimensions

In addition to the variants already presented, there is a third possibility to create multidi-
mensional arrays. While in the first variant the size of a dimension must be constant and in 
the second variant at the expense of the speed even every single line can have its own 
dimension, the third variant is flexible and fast in all dimensions. To achieve this, we first 
consider how a multidimensional array works in the first place. In memory all bytes are 
numbered in a row, so a very long wall-shelf is more suitable as a model, because it has 
only one extension. So a multidimensional array must somehow fit into this long wall shelf.

Figure 11.6 shows how the bytes can be arranged in a two-dimensional array. The fields 
with grey background represent the extension of the array in x and y direction. Thus the 
array is to have the size N ⋅ N, using N = 8, with the indices i and j, which can assume the 
values 0, …, 7 = N − 1 respectively.

The fields with a white background represent the bytes that are located one after the 
other in memory and are simply numbered consecutively. It is easy to see that the number 
of the first byte in each line always corresponds to a multiple of N = 8. Even more pre-
cisely, the number of the first byte always corresponds exactly to i ⋅ N. If the value of j is 
added, the exact number of each byte within the array can be determined depending on 
i and j.

If a two-dimensional array is to be mapped into a one-dimensional memory, this can be 
done line by line. The position of the byte within the linear memory is given by for-
mula 11.2.

	
Byteposition i j i sizeX j, 	 (11.2)

Fig. 11.6  Structure of a 
multidimensional array in a 
one-dimensional memory
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This makes it possible to create a virtual two-dimensional array by creating a one-
dimensional array of size sizeY ⋅ sizeX. The position of a byte within a two-dimensional 
array can be calculated depending on i and j using formula 11.2. It is also possible to 
extend this solution approach to other dimensions. For example, a third dimension can be 
added by placing another array on top of the existing one. The formula would then be 
extended to formula 11.3.

	
Byteposition i j k k sizeY sizeX i sizeY j, , 	 (11.3)

The spatial notion of dimensions >3 is difficult, but the extension of the formula is easy 
to perform.

Listing 11.9 shows how this third variant can be implemented in C++ for a two-
dimensional array. First, two auxiliary variables sizeX and sizeY are initialized with the 
value 1024 in this program as well in order to define the dimensions of the array.

Listing 11.9  Creating a Virtual Multidimensional Dynamic Array (Programmer’s 
Variant)

 1   int main ()
 2   {
 3     // Variable definition and initialization
 4     // for the array size
 5     unsigned int sizeY = 1024;
 6     unsigned int sizeX = 1024;
 7
 8     // Initialization of a dynamic array
 9     int* data = new int[sizeY*sizeX ];
10
11     // Initialization of all elements
12     for (int i = 0; i < sizeY; i++)
13     {
14       for (int j = 0; j < sizeX; j++)
15       {
16         data[i * sizeX + j] = 0;
17       }
18     }
19
20     // Release Memory
21     delete [] data;
22     data = 0;
23
24     return 0;
25   }
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Fig. 11.7  Schematic representation of the memory allocation by Listing 11.9

Now, line 8 int* data = new int[sizeY*sizeX]; creates a one-dimensional array with size 
sizeY ⋅ sizeX on the heap. The address of the array is stored in the pointer variable data.

In order to be able to initialize the elements of the array, it would of course be possible 
to create a single loop whose counting variable runs through all indices from 0 to 
sizeY ⋅ sizeX − 1. For this example program, however, two nested loops are to be used from 
line 11 onwards in order to clarify the access via two coordinates. As in the examples 
before, the variable i is used for the row and the variable j for the column. The elements of 
the array are accessed using formula 11.2, which converts the two-dimensional coordi-
nates into the one-dimensional array position. The corresponding line in the program, in 
which all elements of the array are assigned the value 0, is data[i * sizeX + j] = 0;.

Figure 11.7 shows the memory allocation of Listing 11.9. In principle, the memory 
allocation is identical to that of Listing 11.5, except that in this example the number of 
elements was made dependent on the two dimensions of the virtual array. On the stack, the 
heap address of the reserved memory area 02 F4 20 40 is stored in the variable data at 
address 00 93 FB F4. This is followed by contiguous sizeY ⋅ sizeX values of type int whose 
addresses are always 4 bytes apart.

In this program, too, the reserved memory space is released again at the end by delete[] 
data; and the stored address is deleted by data = 0;.

Using this solution, it is very easy to create dynamic multidimensional arrays, which 
can also be addressed as one-dimensional arrays if it offers advantages. The only disad-
vantage of this solution is that the conversion of the two-dimensional coordinates has to be 
done manually. However, with the help of formula 11.2 this is no problem and an exten-
sion to higher dimensions is also easily possible.

11.6	� Advanced: malloc, realloc, free and memcpy

For certain applications, the dynamic reservation of a specific memory area with flexible 
size is not yet sufficient to accomplish the task. If the size of the required memory can only 
be estimated when the program is started, it may be necessary to adjust the size of the 
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reserved memory at runtime. In this case it is necessary to request new memory later. 
However, this new memory should complement and be related to the existing memory, 
which is not always possible. If such a situation arises, a completely new memory area of 
the desired size must be requested. The contents of the old memory area must be copied to 
the new area and the old memory space released.

In the C language, there are the functions malloc, realloc, free and memcpy for this 
application purpose. Thus C++, as a further development of C, can of course also handle 
these instructions.

The instructions malloc and free basically perform the same tasks as new and delete in 
C++. With malloc memory is reserved on the heap and with free this memory is released 
again. The two statements new and delete, however, can be overwritten as operators of a 
class. The functionality of new and delete is therefore not guaranteed. For this reason, you 
should never use new and delete, or malloc and free, together.

The function realloc makes it possible to increase or decrease an already reserved 
memory area. If a larger memory area is requested that cannot be accommodated at the 
previous position, a new area is reserved in the memory and the contents are copied from 
the old to the new position. The old memory area is released in this case. It is important to 
note that if no new memory can be reserved, a pointer to address 0, a null pointer, is 
returned. However, in this case, the old memory is not freed. For this case, the old address 
should be preserved in any case.

The memcpy function can copy an entire memory area from one address to another. 
Since the instruction copies a usually large memory area and does not interpret the con-
tents of the memory, this instruction can be executed quickly.

Listing 11.10 creates a one-dimensional array using malloc and free. The program is to 
accept numbers from the console until the number 0 is entered. In this case, the input is to 
be aborted. To be able to store all numbers, a one-dimensional array is needed, but its 
required size is unknown. Of course, no memory should be wasted, reserving 1 GB of 
main memory just for this task would certainly be unreasonable. Nor would it be sufficient 
for a very patient person. The solution is an array whose size can be adjusted as needed.

Listing 11.10  Creating a Growing Dynamic Array with malloc and realloc

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Variable definition and initialization
 8     unsigned int index = 0;
 9     unsigned int value = 0;
10     unsigned int size = 5;
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11
12     // Memory reservation with malloc
13     int* data = (int*) malloc(size * sizeof(int ));
14
15     do
16     {
17       // User input number unknown
18       cout << “Please enter a value: “ << endl;
19       cout << “( end input with 0)” << endl;
20       cin >> value;
21
22       // When the end of the reserved area is reached
23       // a size adjustment must be made.
24       if (index >= size)
25       {
26        size += 5;
27        data = (int*) realloc(data , size * sizeof(int ));
28       }
29
30       // save the value
31       data[index] = input;
32
33       // new writing position
34       if (value != 0)
35       {
36         index ++;
37       }
38     } while (value > 0);
39
40     // Release Memory
41     free(data );
42     data = 0;
43
44     return 0;
45   }

First, some variables are created and initialized in the program. In the variable index the 
position is to be stored, at which the next number within the array must be stored. Initially, 
this is of course the position 0. At the same time, the variable of course also remembers 
how many values have already been stored. This would make sense if all values are to be 
printed later.

The value from the console is to be read into the variable value and the variable size is 
to store the actual size of the array. At the beginning of the program it is assumed that an 
average person enters a maximum of 5 numbers and then loses interest.
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By line 13 int* data = (int*)malloc(size * sizeof(int)); memory is now reserved on the 
heap. The function malloc takes as parameter the number of bytes to be reserved. In this 
case size ⋅ sizeof(int). The function sizeof always returns the size of the passed data type in 
bytes, in this example 4. The return value of the function malloc is always a pointer of type 
void*, since in this case it is to be stored in a pointer of type int*, an explicit type conver-
sion must take place.

Now, starting at line 15, a do-while loop follows, which continues to run as long as the 
value of the variable value is greater than 0. Within the loop, an action statement is first 
printed to the console and a value is read into the variable value.

Next, in line 24, if (index size) >= checks whether the current position to be written to 
is still within the previously reserved limits of the array. If this is not the case, the size of 
the array is increased by the value 5. The size of the reserved memory is then adjusted to 
the new size by data = (int*)realloc(data, size * sizeof(int));. The realloc function takes 
two parameters. The first parameter is the address whose memory area is to be changed. 
The second parameter is the new size of the memory area in bytes. Again, the return type 
is a void* type pointer, so an explicit type conversion must be performed.

In order not to make the program unnecessarily complicated, it was omitted here to 
save the old address before the new memory area is reserved. In a “real” application this 
would have to be done of course.

After the if statement, it is ensured that the array is in any case large enough to store the 
new value. This is inserted into the array in line 31 by data[index] = input; at the position 
index. Finally, it is checked whether a value other than 0 was entered and, if necessary, the 
position of the index is increased by the value 1.

At the end of the program, the reserved memory is released again by free(data);. The 
function free takes the address of the memory area to be released as a parameter, but leaves 
the value of the pointer variable untouched. Therefore, the value of the address should also 
be deleted here by data = 0;.

Listing 11.11 provides a simple example of copying a memory area using memcpy. 
This is done by first using malloc to create two arrays on the heap, each of size size = 100.

Listing 11.11  Copying a Memory Area with memcpy

 1   int main ()
 2   {
 3     // Variable definition and initialization.
 4     unsigned int size = 100;
 5
 6     // Memory reservation with malloc
 7     int* source = (int*) malloc(size * sizeof(int));
 8     int* destination = (int*) malloc(size * sizeof(int));
 9
10     // Initialization of the array
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11     for (int i = 0; i < size; i++)
12     {
13       source[i] = 0;
14     }
15
16     // Copying the memory contents
17     memcpy(destination, source, size * sizeof(int));
18
19     // Release Memory
20     free(source);
21     source = 0;
22
23     free(destination);
24     destination = 0;
25
26     return 0;
27   }

All elements of the source array are assigned the value 0 using a for loop and the array 
is initialized. Now the second array destination is also to be initialized by copying the 
memory area of the first array into the memory area of the second array.

This is done by the line memcpy(destination, source, size * sizeof(int));. The memcpy 
function takes three parameters. The first two parameters specify the destination address 
and the source address between which the copy operation is to take place. The copy opera-
tion occurs from source to destination. The third parameter specifies the number of bytes 
to copy. In this example, the number of bytes corresponds to the size of the array, but this 
is not a requirement for the function.

Finally, as in the previous example programs, the reserved memory is released again 
and the stored addresses are overwritten with the value 0.

11.7	� Functions

Functions deal with pointers in several ways. Of course, pointers can be passed as param-
eters to functions. The behaviour is similar to the call by reference described in Sect. 9.3 
and is called call by pointer.

However, it is also possible to create pointers to functions in order to pass them to 
another function or class, for example. This makes it possible to dynamically define func-
tions that should be called when a certain event occurs.

These two application purposes will be described in more detail in the following two 
chapters.
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11.7.1 � Call by Pointer

When pointers are passed to functions, they initially have a similar effect to the references 
introduced in Sect. 9.3. Since a pointer passes the address of a memory location, the 
changes made to the contents naturally cross the boundaries of the function. It is therefore 
just as possible to pass pointers to have a sub-function change the contents of a variable.

Listing 9.5 was introduced in Sect. 9.3 and can be solved just as well using pointers. 
The result is shown slightly modified in Listing 11.12.

Listing 11.12  Swapping Two Values Using Pointers

 1   // A function declaration for a call by pointer
 2   void swap(int*, int *);
 3
 4   // Main function
 5   int main ()
 6   {
 7     // Variable definition and initialization
 8     int value1 = 5;
 9     int value2 = 10;
10
11     // Transfer of addresses
12     swap (&value1 , &value2);
13
14     return 0;
15   }
16
17   // Definition of the function swap
18   void swap(int* a, int* b)
19   {
20     // Swapping the contents
21     int h = *a;
22     *a = *b;
23     *b = h;
24   }

In the function declaration void swap(int*, int*); the& symbols are replaced by aster-
isks to indicate the passed parameters as pointers. Since the two variables value1 and 
value2 were created on the stack, the function call swap(&value1,&value2); must now be 
preceded by the ampersand to get the addresses of the variables.

Within the swap function, the pointers must be dereferenced by preceding asterisks, as 
in *a = *b;, to swap the contents of the pointers. Overall, the use of pointers makes the 
function more unwieldy than a call by reference.
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The background is that this is not a situation where a Call by Pointer would be used. 
Basically, the two concepts Call by Reference and Call by Pointer serve the same purpose. 
It is also possible to work with both concepts in any situation, but using the wrong concept 
can make a program unwieldy.

The program should therefore be analyzed in detail. If no pointers are used in the whole 
program, a call by reference is the right choice. If the program only uses pointer variables 
in relation to the function, a call by pointer is the better choice in most cases. If no clear 
choice can be made, functions with both concepts can also be offered.

11.7.2 � Function Pointer

The C++ language makes it possible to create pointers to functions. This allows functions 
to be stored and used like normal variables. A typical use case for a function pointer is a 
so-called callback function.

Here, a function of a program or a class executes a certain operation. After the opera-
tion is finished, several classes of the software are to be informed about the end of the 
operation. Of course, it would be possible to write the order of function calls for the 
respective classes hard into the program. However, it would be much more elegant if an 
array of function pointers existed. Each class that wants to be informed can then add the 
address of a function to this array, or remove it again. The number of calls could then be 
limited to the classes that are really interested in the result.

However, the application just presented is too complicated for the first practical exam-
ple of a function pointer. Therefore, Listing 11.13 first creates and uses a function pointer 
for a simple function.

Listing 11.13  Declaring and Using Function Pointers

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   // Example function
 6   int sum(int a, int b)
 7   {
 8     return a + b;
 9   }
10
11   // Example function 2
12   int mul(int a, int b)
13   {
14       return a * b;
15   }
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16
17   int main ()
18   {
19     // Declaration of a function pointer
20     int(* fpointer )(int , int);
21
22     // Value assignment of a function by
23     fpointer = sum;
24     // or
25     fpointer = &sum;
26
27     // The pointer works for all functions
28     // with the same characteristics
29     fpointer = mul;
30
31     // Application of the function pointer
32     cout << fpointer (3, 7) << endl;
33
34     return 0;
35   }

Function pointers are always created for a specific type of function. This means that the 
important features of a function, such as the passing parameters and the return type, must 
also be specified for the function pointer. By int sum(int a, int b), a simple function is 
defined that returns a value of type int and takes two parameters of type int. This function 
calculates the sum of the two passed values.

If another function with the same characteristics is defined, as for example by int 
mul(int a, int b), the function pointer can also be used for this function.

Within the main function, a function pointer is now defined by int(*fpointer)(int, int);, 
which sets the characteristics for the functions it can point to. First, the return type is speci-
fied by int. The name of the function pointer must be specified with an asterisk inside 
parentheses. This is followed by the variable types of the function parameters in round 
brackets. In this example, the pointer can point to a function with return type int, which 
expects two parameters of type int.

The value assignment of a function to the pointer is done by fpointer = sum;. The name 
of the function is assigned to the pointer like a normal value. Alternatively, it is also per-
missible to prefix the name of the function with an ampersand, as in fpointer = &sum;. 
However, this is by no means necessary.

The second function can also be used to assign a value by fpointer = mul; because it has 
the characteristics specified for the pointer.

Now the name of the pointer can be used like a function. cout <  < fpointer(3, 7) <  < e
ndl; This is shown in the line as an example. The call of the function pointed to by fpointer 
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is done like an ordinary function call and also the return value can be processed normally. 
In this example, the output of the program is 21.

However, functions often do not create single pointers, instead function pointers to the 
same function type are often needed in multiple places. If functions with several parame-
ters are involved, errors can easily occur. It is therefore useful to create a new variable type 
for functions of a certain type. In C++, the typedef statement exists for defining new vari-
able types. Listing 11.14 shows the use of the typedef statement for function pointers.

Listing 11.14  Declaring and Using Function Pointers Using typedef

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   // Example function
 6   int sum(int a, int b)
 7   {
 8     return a + b;
 9   }
10
11   typedef int(* fpointer )(int , int);
12
13   int main ()
14   {
15     // Declaration of a function pointer
16     fpointer fp;
17
18     // Value assignment of a function by
19     fp = sum;
20
21     // Application of the function pointer
22     cout << fp(3, 7) << endl;
23
24     return 0;
25   }

In this example, typedef int(*fpointer)(int, int); creates a new variable type. The defini-
tion of the variable type is the same as the definition of the already familiar function 
pointer from Listing 11.13. The characteristics of the functions that the pointer can refer 
to are also identical. However, in this example, the name fpointer specifies the name for a 
variable type rather than a variable.

In the main function, this variable type can now be used to create a function pointer 
with the name fp using fpointer fp;. The value assignment and application of this function 
pointer is now analogous to Listing 11.13.
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Since function pointers can now be used like any other variable type through the typedef 
statement, it is also easy to create arrays of function pointers.

11.8	� Classes

The topic classes was already treated in detail in Chap. 10. Nevertheless, it makes sense to 
open the chapter again after the pointers have been introduced.

So far it has already been shown that the use of pointers is always worthwhile when 
large memory areas are to be created dynamically. This has led, for example, to the fact 
that the size of arrays could be freely specified during runtime and even changed subse-
quently. The possibilities of the arrays were thus extended by the use of pointers.

A similar thing happens with classes. However, a first obvious change is the notation 
used to access the member functions and variables of the class when it has been created on 
the heap. On p. 133, as part of the description of the Vector2D class in Listing, a main 
function was presented in which an object of the class was created and used. This program 
is now to be modified so that the object of the class is created on the heap. Listing 11.15 
shows the new version of the program.

Listing 11.15  The Main Program (Project.cpp)

 1   #include <iostream >
 2   #include "Vector2D.h"
 3
 4   using namespace std;
 5
 6   // Main function
 7   int main ()
 8   {
 9     // Variable definition and initialization
10     Vector2D* v1 = new Vector2D ();
11
12     // Auxiliary variables
13     double x = 0.0;
14     double y = 0.0;
15
16     // Output
17     // Value input
18     cin >> x;
19     cin >> y;
20
21     v1 ->setCartesian(x, y);
22
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23     cout << “Vector length: “ << v1 ->getLength () << endl;
24
25     // Release Memory
26     delete v1;
27     v1 = 0;
28
29     return 0;
30   }

To create a pointer to an object of class Vector2D, the original line 10 Vector2D v1; is 
changed to Vector2D* v1 = new Vector2D();. The variable v1 now has the variable type 
Vector2D* and an object of the class is created on the heap using the new statement.

This changes the notation for accessing the class members. Instead of the dot (.), an 
arrow (−>) is now used. The line 21 v1.setCartesian(x, y);, thus becomes 
v1−>setCartesian(x, y);. The same applies to line 23 cout << “Vector length:” << v1.get-
Length() << endl;, which is changed to cout << “Vector length:” << v1 −> getLength() 
<< endl;.

Since the object was created on the heap, the memory must be manually released again 
by delete v1;. And of course the address should also be deleted in this example by v1 = 0; 
to prevent incorrect accesses.

Nothing changes within the class declaration. The description of the class itself is inde-
pendent of where the object is created.

11.8.1 � Polymorphism

The full use of polymorphism is actually only possible when pointers are used. If the type 
of a pointer is a class A, then this pointer can also point to objects of classes that inherit 
from the class A. Of course, this pointer can then only be used to call functions that have 
already been declared in class A, but in many cases this is exactly what is needed.

In Listing 11.16, an abstract class is defined to provide an interface for objects to be 
drawn into the console. To keep the class as small as possible, no .cpp file was created. 
Instead, the definitions of the constructor and destructor were written directly to the 
header file.

Listing 11.16  The Abstract Class Object (Object.h)

 1   // Include Guard
 2   class Object
 3   {
 4   public:
 5     Object () {};
 6     virtual ~Object () {};
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 7
 8     virtual void paint () = 0;
 9   };

It is indeed possible for each function within a class to write the complete definition in 
the header file. However, the clarity of the header file suffers in most cases as a result, so 
it is not advisable to get into the habit of this style. However, for a small abstract class 
whose constructor and destructor remain empty, this is possible without loss of clarity .

So the line Object() {};is the definition of the constructor, where the empty curly braces 
make it clear that nothing happens in the constructor. Likewise, the line virtual ~ Object() 
{}; defines the destructor. The keyword virtual clarifies that C++ must look in the vtable 
at runtime to see which destructor must be called.

With the last function, which is only declared, the class becomes abstract, because in 
line 8 virtual void paint() = 0; the function paint is assigned the value 0. So there is no 
implementation for this function within the class, consequently the function must be vir-
tual, so that a definition can be added in inheriting classes.

Now two classes are to inherit from the class Object. On the one hand the class Cube, 
which is shown in the programs 11.17 and 11.18, and the class Circle, whose implementa-
tion is in the programs 11.19 and 11.20. Both classes differ only in details, so that a 
detailed description is carried out only for the class Circle.

Listing 11.17  The Inheriting Class Cube (Cube.h)

 1   // Include Guard
 2   #include "Object.h"
 3
 4   class Cube : public Object
 5   {
 6   public:
 7     Cube ();
 8     ~Cube ();
 9
10     void paint ();
11   };

Listing 11.18  The Inheriting Class Cube (Cube.cpp)

 1   #include "Cube.h"
 2  #include <iostream >
 3
 4   using namespace std;
 5
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 6   Cube :: Cube ()
 7     :Object ()
 8   {
 9   }
10
11   Cube ::~ Cube ()
12   {
13   }
14
15   void Cube :: paint ()
16   {
17     cout << "****" << endl
18          << "****" << endl
19          << "****" << endl
20          << "****" << endl;
21   }

In the header file of the Circle class, shown in Listing 11.19, the line class Circle: pub-
lic Object first specifies that the Circle class should inherit from the Object class. The class 
is to have a constructor and a destructor, as well as an implementation of the paint func-
tion, which was not defined in the abstract class Object.

Listing 11.19  The Inheriting Class Circle (Circle.h)

 1   // Include Guard
 2   #include "Object.h"
 3
 4   class Circle : public Object
 5   {
 6   public:
 7     Circle ();
 8     ~Circle ();
 9
10     void paint ();
11   };

Listing 11.20  The Inheriting Circle Class (Circle.cpp)

 1   #include "Circle.h"
 2   #include <iostream >
 3
 4   using namespace std;
 5
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 6   Circle :: Circle ()
 7     : Object ()
 8   {
 9   }
10
11
12   Circle ::~ Circle ()
13   {
14   }
15
16   void Circle :: paint ()
17   {
18     cout << " ** " << endl
19          << "****" << endl
20          << "****" << endl
21          << " ** " << endl;
22   }

Within the .cpp file, it is specified for the constructor that the constructor of the base 
class is to be called as the only action. If an object of the Circle class is called, the con-
structor of the base class is executed first, before the constructor of the Circle class is 
executed. This also makes sense, since the base class may have to make configurations that 
are required in the inheriting class.

The destructor of the Circle class should not execute any statement. Nevertheless, after 
the destructor of the Circle class, the destructor of the base class is executed. This is 
because the destructor in the base class has been declared as virtual. If this were not the 
case, only one of the two destructors would be called. Which one is called depends on the 
variable type that is used to delete the corresponding object. More on this in a moment 
when the main program is explained.

In the paint function, only a cout statement prints a simple circle to the console.
All instructions and concepts used in programs 11.16 to 11.20 have already been 

explained in the previous chapters of this book. If you find anything unfamiliar while read-
ing, it is best to refer back to the relevant chapter.

Listing 11.21 now uses all of the previously defined classes to fully explain the concept 
of polymorphism.

Listing 11.21  The Main Program (Project.cpp)

 1   #include "Object.h"
 2   #include "Cube.h"
 3   #include "Circle.h"
 4
 5   int main ()
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 6   {
 7     // Variable initialization
 8     const unsigned int N = 10;
 9     Object* objects[N];
10
11     // Initialization of the individual objects
12     // of the array depending on the array position
13     for (int i = 0; i < N; i++)
14     {
15       if (i % 2 == 0)
16       {
17       objects[i] = new Cube ();
18       }
19       else
20       {
21       objects[i] = new Circle ();
22       }
23     }
24
25     // Call all paint functions
26     for (int i = 0; i < N; i++)
27     {
28       objects[i]->paint ();
29     }
30
31     // Release Memory for all
32     // array elements
33     for (int i = 0; i < N; i++)
34     {
35       delete objects[i];
36       objects[i] = 0;
37     }
38
39     return 0;
40   }

First, the header files of the classes are included so that they can be used in the main 
program. Thereby the file Object.h should not have been included, because it was already 
included by the header files of the two inheriting classes.

Two variables are initialized in the main program: First, the constant N, which is to 
determine the size of an array, and the array objects. The array objects represents an array 
variant that has not yet been discussed. The array is created on the stack, so its size must 
be constant. However, its elements consist of pointers that will later point to objects that 
are created on the heap. The array has the variable type Object*, so it is a pointer to an 
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object of an abstract class that cannot itself be created as an object. The explanation is the 
same as for the void pointers. Since no concrete object is created here, but only a pointer 
that has a fixed size, it is also possible to create pointers to actually impossible targets, 
such as something undefined (void), or an abstract class.

Within the for loop starting at line 13, the elements of the array are initialized by alter-
nately creating objects of type Cube and Circle on the heap and assigning their addresses 
to the array elements. This works because both classes have inherited from the class Object 
and thus the classes have a common interface. The abstract function paint is implemented 
in both classes, so that objects of the classes can be created.

In the following loop starting at line 26, the paint function is called by each element of 
the array. This will alternately print cubes and circles to the console. In general, any func-
tion defined in the abstract class could now be called, since it must be defined either there 
or in one of the two inheriting classes. So, with the help of abstract classes and polymor-
phism, it is possible to define interfaces that all inheriting classes must adhere to. Pointers 
to the abstract class, or interface, can be used to pass objects to functions, or otherwise 
process them. However, the functionality of the passed objects depends on the individual 
implementation within the inheriting class.

This opens up many new possibilities, as action sequences can be further abstracted in 
this way. However, a little experience and a larger project are necessary to recognize and 
appreciate the possibilities that arise from this.

The program closes by deleting the memory of all reserved objects from line 33 and 
overwriting the stored address with the value 0.

11.8.2 � Operators

Some operators and their implementations have already been presented in Sect. 10.3. 
However, some implementations require the use of pointers. For this reason, the example 
implementations of the operators are continued in this chapter after the necessary terms 
have been introduced.

Arithmetic Operators
Many of the arithmetic operators can be implemented in a similar way to the examples 
presented in Sect. 10.3. However, for some of the operators, very individual solutions have 
been chosen. For example, the increment operator ++ and the decrement operator −−, 
which increase or decrease the variable value by 1, have two possible notations in C++, 
which are shown in Listing 11.22.

Listing 11.22  The Main Program (Project.cpp)

 1   #include <iostream >
 2
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 3   using namespace std;
 4
 5   // Main function
 6   int main ()
 7   {
 8     int a = 0;
 9     int b = 0;
10
11     cout << a++ << endl;
12     cout << ++b << endl;
13     cout << a << endl;
14     cout << b << endl;
15   }

The output of this program is:

  0
  1
  1
  1

The background is that the increment a + + is done after the output by cout, while the 
increment + + b is done before the output. For the last two outputs, both variables have the 
value 1.

To distinguish between these two notations in C++, a way was chosen that does not 
seem intuitive at first glance. Listing 11.23 shows the declaration of the two possible incre-
ment operators.

Listing 11.23  Declarations of the Decrement Operators (Vector2D.h)

1   //...
2
3   Vector2D& operator ++(); // represents ++a;
4   Vector2D operator ++( int); // represents a++;
5
6   // ...

The first of the two operators returns a reference to the object of the Vector2D class, 
while the second operator creates a copy of the object and takes an int parameter that is 
used to distinguish the two operators. However, the parameter has no further meaning for 
the operator itself. The implementation of the two operators is shown in Listing 11.24.
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Listing 11.24  Implementing the Decrement Operators (Vector2D.cpp)

 1   // ...
 2
 3   // represents ++a;
 4   Vector2D& Vector2D :: operator ++()
 5   {
 6     double v = getLength ();
 7     *this = *this * ((v + 1) / v);
 8     return *this;
 9   }
10
11   // represents a++;
12   Vector2D Vector2D :: operator ++( int)
13   {
14     Vector2D result = *this;
15
16     double v = getLength ();
17     *this = *this * ((v + 1) / v);
18
19     return result;
20   }
21
22   // ...

With both operators the length of the vector is to be increased by the value 1. For both 
operators the length of the vector is calculated by double v = getLength(); and stored in the 
variable v.

To extend the vector by the value 1, formula 11.4 must be applied. For this purpose it is 
useful to use the already defined operator for scalar multiplication. However, this requires 
an object of type Vector2D, which can be multiplied by the scalar. However, this object 
was previously only known outside the class.
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Since this problem occurs frequently, the C++ language offers each object of a class the 
possibility to use a pointer to itself. This pointer has the name this and always means the 
object whose function was just called.

The line *this = *this * ((v + 1)/v); implements formula 11.4. The pointer this is deref-
erenced by the preceding asterisk and thus refers to the data that is hidden behind the 
pointer. In other words, to the object of the class Vector2D. The scalar multiplication 
operator is applied to this object, multiplying each element of the vector by the value 
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. The result is again stored in the dereferenced pointer, which is 
the object itself.

The vector on which the operator ++ was executed was thus extended by the value 1. 
Now, however, the different behavior expected from both operators must still be mapped.

With the first operator, that is, with + + a, the modified vector can be returned directly 
as a result. The line return *this; may be a bit confusing, but it makes absolute sense. The 
pointer this points to the object itself and is dereferenced by the preceding asterisk. This 
returns an object of type Vector2D, which has an address, and thus corresponds to the 
expected return type Vector2D&.

The second operator a++ must also extend the length of the vector by the value 1, thus 
uses the same calculation steps for the calculation of the longer vector as the first vector. 
However, the return value of the operator should be the original vector, whose length has 
not yet been changed. For this reason, a new object is created in the first line by Vector2D 
result = *this; as a copy of this original vector.

In the following lines the length of the vector is changed and finally the previously 
stored copy is returned by return result;.

Assignment Operators
There are basically two variants of the assignment operators. The first variant combines an 
arithmetic operation with a value assignment and the second variant directly assigns a 
specific value to the object.

As an example for the value assignment with combined arithmetic operation serves 
here the operator +=. The implementations of other operators of this kind depend of course 
on the respective arithmetic operation, but the basic idea is always the same. To emphasize 
the differences to the arithmetic operator +, an implementation of this operator is also 
presented.

The value assignment operator = is different from the assignment operators that per-
form an arithmetic operation in addition to the value assignment, and has more similarities 
with the copy constructor. A sample implementation for this operator will also be pre-
sented here. Listing 11.25 shows the declarations of the operators from the header file of 
class Vector2D.

Listing 11.25  Declarations of the Arithmetic Operator + and the Assignment 
Operators + = and = (Vector2D.h)

 1   //...
 2
 3     // Arithmetic operators
 4     Vector2D operator +( Vector2D r) const;
 5
 6     // Assignment operators
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 7     Vector2D& operator +=( Vector2D r);
 8     void operator =( Vector2D r);
 9
10   // ...

Some differences between the two operators + and += can be seen at first glance. The 
operator + performs a normal vector addition. This means that two vectors 



l  and 


r  are 
linked using addition. The result is a new vector 



e  of type Vector2D. Here, the left oper-
and is the object that performs the operator and the right operand is the function parameter 
called r in the example program. Since this operation does not change the object itself, the 
operator can be performed on constant objects. The declaration Vector2D opera-
tor + (Vector2D r) const; can therefore be supplemented by the keyword const.

The assignment operator += also performs a vector addition of two vectors 


r and 


l . 
However, the result is not a new vector, but the vector 



l  modified by the sum. Since no 
new object is created, the return type of this operator is Vector2D&. In addition, the opera-
tor cannot be executed on constant objects because it modifies the object in question.

The assignment operator = creates a direct copy of the passed parameter r. Since value 
assignment does not usually occur within other arithmetic operations, the return type is 
void. The operator cannot be executed on constant objects either, since its only purpose is 
to change the object on which it is executed.

The implementation of the operators in the .cpp file is shown in Listing 11.26.

Listing 11.26  Implementing the Arithmetic Operator + and the Assignment 
Operators + = and = (Vector2D.cpp)

 1   // ...
 2
 3   // Addition with object copy
 4   Vector2D Vector2D :: operator +( Vector2D r) const
 5   {
 6     Vector2D result;
 7
 8     result.m_x = this ->m_x + r.m_x;
 9     result.m_y = this ->m_y + r.m_y;
10
11     return result;
12   }
13
14   // Addition with value assignment
15   Vector2D& Vector2D :: operator +=( Vector2D r)
16   {
17     this ->m_x += r.m_x;
18     this ->m_y += r.m_y;
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19
20     return *this;
21   }
22
23   // Value assignment
24   void Vector2D :: operator =( Vector2D r)
25   {
26     this ->m_x = r.m_x;
27     this ->m_y = r.m_y;
28   }
29
30   // ...

First, the normal addition of two vectors is implemented with the operator +. Since the 
object itself must not be changed, a new object of type Vector2D is created by Vector2D 
result; in which the result can be stored.

The result is calculated by the formula 11.5 and is implemented in C++ by the lines 8 
result.m_x = this −> m_x + r.m_x; and 9 result.m_y = this −> m_y + r.m_y;. For both 
lines, it would be possible to omit the this − > before m_x and m_y, but this makes it clear 
that they are the variables of the object itself. The operation + between this −> m_x and 
r.m_x; can be applied, since these are variables of type double.
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Finally, return result; returns the calculated vector.
If the operation + is combined with the value assignment, as is the case with the opera-

tor +=, no new object needs to be created. This makes the operator faster, but it cannot be 
used on constant objects.

Formula 11.5 is implemented in this operator by lines 17 this −> m_x += r.m_x; and 18 
this−> m_y += r.m_y;, where the result is stored by += directly in the object itself.

As a result of the calculation, a reference to the now changed object is returned by 
return *this;.

The value-only operator only needs to copy the values of the variables of the object to 
be copied into the variables of the current object. This is done by lines 26 this −> m_x = 
r.m_x; and 27 this −> m_y = r.m_y;.

Comparison Operators
Comparison operators relate the current object A to another object. For this, of course, a 
meaningful comparison between the instances of a class must be possible. If the class 
represents circles, the radius could be used for a size comparison, and for names an alpha-
betical order would be conceivable. However, there may also be situations where there is 
no meaningful sorting. For example, if the class represents something abstract, such as 
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messages that can be sent back and forth between different computers, then a size com-
parison is probably not possible.

In the example in this book, vectors are compared so that a magnitude comparison can 
be implemented, and the equality of two vectors is also uniquely defined. Listing 11.27 
presents the declarations for two operators, == and >. Since in most cases only two mean-
ingful answers are possible when comparing two objects, the return type of both operators 
is bool.

Listing 11.27  Declarations of the Comparison Operators == and >

1   //...
2
3     // Comparison operators
4     bool operator ==( Vector2D r);
5     bool operator >( Vector2D r);
6
7   // ...

The implementation of the two operators is shown in Listing 11.28.

Listing 11.28  Implementing the == and > Comparison Operators

 1   // ...
 2
 3   // Equality
 4   bool Vector2D :: operator ==( Vector2D r)
 5   {
 6     return (this ->m_x == r.m_x) && (this ->m_y == r.m_y);
 7   }
 8
 9   // Inequality (Larger)
10   bool Vector2D ::operator >( Vector2D r)
11   {
12     return this ->getLength () > r.getLength ();
13   }
14
15   // ...

Here, a logical expression is defined in the first operator ==, which checks whether the 
coordinates of both vectors are identical. In this case the result of the expression is true, 
otherwise false.

The second operator compares the magnitudes of both vectors and returns true if the 
magnitude of the left vector is greater than that of the right vector.

Other relational operators can be implemented analogously to this scheme.
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11.9	� Advanced: Unions

The C++ language contains another variant of the class, which, however, has some special 
features. The so-called union is also a complex structure, which connects several variables 
to a common data type. However, the union uses only as much memory as is needed for 
the largest member variable, because all variables are located in exactly the same mem-
ory area.

Because of this peculiarity, the Union has some limitations compared to the normal 
classes. For example, it is not possible to inherit from Unions, or to inherit them. Also the 
definition of virtual functions is not allowed.

The variables of a union must also not be references.
Otherwise, all functions known from normal classes can be defined for unions, includ-

ing constructors, destructors and operators. In most cases, however, a union is only used 
as a data container.

By unifying the variables contained in the union, a particular record can be accessed in 
quite different ways. For example, it is possible to define a variable of type int, together 
with an array of four unsigned chars. This allows a value to be assigned to the int variable, 
which can be worked with in the normal way. At the same time, however, the array can be 
used to address each byte of the integer value individually. Listing 11.29 implements this 
example.

Listing 11.29  Implementing a Union Data Structure

 1   #include <iostream >
 2   #include <iomanip >
 3
 4   using namespace std;
 5
 6   // Definition of the Union
 7   union example
 8   {
 9     unsigned int value;
10     unsigned char part [4];
11     unsigned char first;
12   };
13
14   int main ()
15   {
16     // Variable declaration
17     example test;
18
19     // Assignment of the value
20      // Hexadecimal fe dc ba 98
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21     test.value = 4275878552;
22
23     // Output of the value as int
24     cout << hex << test.value << endl;
25
26     // Output of the value byte by byte
27     for (int i = 0; i < 4; i++)
28     {
29       cout << (int)test.part[i] << " ";
30     }
31
32     cout << endl;
33
34     // Output of the first byte
35     cout << (int)test.first << endl;
36
37     return 0;
38   }

The union is defined similarly to a class, only the keyword class is replaced by the 
keyword union. Then follows the name of the new data type and within curly brackets the 
members are declared. In this example, three different constructs are to be used.

The largest variable always determines the memory consumption of the union. In this 
case, the variable of type unsigned int and the field of type unsigned char occupy exactly 
4 bytes, while the variable of type unsigned char occupies only one byte. The union there-
fore has a size of 4 bytes. The three variables share the same memory within the union.

To illustrate what this means, a variable of the type of the union was created in the main 
program by example test;. The line test.value = 4,275,878,552; initializes the variable test.
value of the union with a value. This value was not chosen randomly, but corresponds 
exactly to the hexadecimal number fe dc ba 98, which therefore covers the full 4 bytes and 
has a different digit at each position.

First, cout << hex << test.value << endl; prints the value of the variable test.value to the 
screen in hexadecimal. This is provided by the keyword hex, which is defined in the library 
iostream, and permanently switches the output stream to hexadecimal output.

Within the for-loop, the content of the array test.part and finally, the content of the vari-
able test.first is printed.

The output of the program reads:

  fedcba98
  98 ba dc fe
  98

11  Pointer
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First the output of the complete integer value is done, which is fedcba98 as expected. 
Then the output is done byte by byte and, as with the pointers, this output is done in 
reverse order 98 ba dc fe. Finally, the first byte of the integer value is printed, the 98.
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Network diagram for the self-assessment of this chapter

 

11.1	� Memory Areas

Name the four areas into which the memory of a program can be divided!

11.2	� Dereferencing

Describe the meaning of the term “dereferencing”!
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11.3	� Multidimensional Arrays

Explain briefly and in your own words the three ways to create a multidimensional array 
on the heap!

11.4	� Function Pointer

Name the instruction that can be used to create function pointers and enumerate the infor-
mation needed to do so!

 

11.5	� Stack and Heap

Explain the difference between the stack memory stack and the heap!

11.6	� Memory Consumption

Calculate the amount of memory required by an image that consists of 1024 × 768 pixels 
and whose pixels encode the color value with 16 bits.

11.7	� Pointer Arithmetic

Explain the peculiarity of pointer arithmetic!

11.8	� Memory Reservation

Summarize why the malloc and free, and new and delete statements should never be used 
together!
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11.9	� Random Numbers

Write a program that creates an array values with N elements, on the heap and initializes 
it in a for loop with random integers in the interval [1; 6]. The number N should be an 
integer in the interval [1; 1000] and should be chosen by the user.

Calculate the average and standard deviation as in Exercise 8.10 and print the values to 
the console.
Release the memory at the end.

11.10	� Random Numbers the Second

Write a program that generates a two-dimensional array values with the dimensions 
Y = 1000 and X = N, on the heap. The number N should be an integer and freely chosen by 
the user in the interval [1; 10]. Use the third variant, that is, the virtual dimensions, to cre-
ate the array. Initialize the array using for loops with random integers in the interval [1; 6].

Calculate the sum of all values in a row and determine the average and standard devia-
tion from the result, as in Exercise 8.10. Print the values to the console.

Release the memory at the end.

 

11.11	� Program Analysis

Analyze the following program. For once, this program has no deeper meaning, it’s just 
about fiddling a bit with the pointers and their possibilities.

Try to figure out what the output of the program is and explain each line!
Do not type the program, but try to understand what is happening without assistance!

 1   # include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6     {
 7     int x = 0;
 8     int y = 0;
 9     int k = 0;
10     double *z = new double (3.0);
11

Exercises



212

12     y = (int)z;
13
14     k = (int )*z;
15
16     x = (int )&y;
17
18     *(( double *)y) *= 2;
19
20     *z /= k;
21
22     cout << ( int )*(( double *)(*( int *)x)) << endl ;
23
24     delete z;
25     z = 0;
26
27     return 0;
28   }

11  Pointer
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12Electrocardiography

After the basics of the C++ language have been taught in the second part of the book, the 
knowledge is now to be applied practically by developing a large coherent program that is 
to fulfill a concrete task. In doing so, the various steps of software development are to be 
gone through, from the analysis of use cases, through the creation of activity and class 
diagrams, to the finished program.

The task of electrocardiography was selected as a typical example from medical tech-
nology. Here, electrical currents are measured via 12 channels at different positions of the 
body. The visualized results enable a doctor to draw conclusions about the state of health 
of the heart muscle.

The 12 channels are composed of the three limb derivations according to Eindhoven 
(All directions are described from the patient’s point of view):

•	 Derivation I: From the right to the left arm
•	 Derivation II: From the right arm to the left leg
•	 Derivation III: From the left arm to the left leg

In addition, there are the three extremity derivations according to Goldberger:

•	 Derivation aVR: From left arm and leg to right arm
•	 Derivation aVL: From left leg and right arm to left arm
•	 Derivation aVF: From right and left arm to left leg

And the six Wilsonian chest wall leads:

© The Author(s), under exclusive license to Springer Fachmedien Wiesbaden 
GmbH, part of Springer Nature 2023
B. Tolg, Computer science to the Point, 
https://doi.org/10.1007/978-3-658-38443-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-658-38443-2_12&domain=pdf
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Fig. 12.1  Heartbeat

•	 V1: Located in the fourth intercostal space, counting from the clavicle, on the right side 
of the sternum.

•	 V2: Placed in the fourth intercostal space, counting from the clavicle, on the left side of 
the sternum.

•	 V3: Is placed exactly between V2 and V4, i.e. on the fifth rib.
•	 V4: Placed in the fifth intercostal space, counting from the clavicle, so that it is exactly 

centered under the left clavicle.
•	 V5: Is placed at the height of V4, so that it lies exactly under the highest point of the 

left-hand axis fold.
•	 V6: Is placed at the level of V4 so that it lies exactly under the middle of the left armpit.

The Eindhoven derivative II ideally generates a course for each heartbeat, as shown in 
Fig. 12.1. The individual phases of the heartbeat are designated in medicine by the letters 
P, Q, R, S and T and represent different cardiac activities. This constantly recurring course 
of the ECG data during a heartbeat with its various phases makes it possible to recognize 
cardiac activity with the aid of pattern recognition algorithms. Ideally, the R wave is par-
ticularly easy to recognize and, if the distances between different R waves are measured, 
provides the possibility to determine the heart rate.

However, various diseases change the course of the data, sometimes dramatically, so 
that detection of the processes in the general case is a non-trivial problem.

This brief introduction should make it possible to roughly interpret the meaning of the 
individual leads and the resulting data. A complete introduction to the complex topic of 
ECG can be found in Gertsch (2008). In this book, the focus will be on the development 
of software that can read and analyze ECG data.

12.1	� Planning the Software Architecture

Before the software is developed, it should first be analyzed what the later software is sup-
posed to do. An unplanned change in the basic structure of the software usually becomes 
more expensive the later it occurs in the development. For this reason, the use cases 
planned for the software should be examined first.

Since even a simple program can quickly become very complex, only the three use 
cases shown in Fig. 12.2 will be considered for this example.

12  Electrocardiography
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use case ECG analysis

Users

Export
results

Analyze ECG
data

Load ECG
data

Fig. 12.2  Use case diagram for ECG analysis
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Incorrect
entry

File name

File name

[otherwise]

[a==1]

[a==2]

[a==3]

[a==4]

a

Fig. 12.3  Activity diagram for the ECG analysis user interface

The user should be able to read ECG data with the help of the program, analyse it to a 
limited extent and export the results.

These three use cases can already be examined and described in more detail. The later 
program needs a kind of main menu, with the help of which a selection can be made 
between the three use cases. The details can be documented in an activity diagram. 
Figure 12.3 shows a possible flow that allows a selection between the use cases.

12.1  Planning the Software Architecture
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In principle, there is no specification in the development of such diagrams as to how 
large or complex they must be designed. Nevertheless, it makes sense, especially at the 
beginning, to approach a problem in several steps. The activity diagram in Fig. 12.3 there-
fore deliberately abstracts some steps in order to describe them more precisely in further 
diagrams. Although this results in many diagrams, these are small and clear in themselves. 
In addition, at the beginning of software development, all problems must first be thought 
through. When creating the diagrams, it may then become apparent that certain cases have 
not yet been considered. Many small diagrams can then be changed more easily than a 
large canvas.

However, at a later stage of the software development it is quite useful to create a large 
overview graphic.

The process in Fig. 12.3 starts at the activity node Display main menu. In principle, this 
would have to be described in more detail, but we will not do so here.

In the case of custom development, there would be concrete requirements for the 
appearance of the program interface that would have to be planned and implemented 
exactly. Here, however, it is first a matter of finding out how the program must be struc-
tured in general.

The main menu is a simple text output that is placed in a class that is responsible for 
user interaction. There obviously needs to be some user input that generates an integer 
value a, which is used to choose between the various options. A separate activity diagram 
would not provide any additional information here.

The object and control flow of the activity node Representation Main Menu is routed to 
a decision node after the activity is completed. Based on the value of a, this redistributes 
the control flow into one of four different flows.

The simplest case occurs for a == 4. In this case, the activity and thus the entire pro-
gram is terminated.

In all other cases, various activity nodes are traversed, which always lead back to the 
representation of the main menu at the end. However, the various activity nodes differ 
greatly in their complexity. Should a value be entered for which no action is defined, an 
error message must be issued and returned to the main menu.

In the event that data is to be imported or exported, a file must of course first be selected. 
For this purpose, there are two activity nodes Select import file and Select export file that 
perform this task. Both nodes must generate a file name that can be passed on to the fol-
lowing nodes. The detailed description of these two activity nodes can be created without 
further research and is given in Figs. 12.4 and 12.5.

The remaining three activity nodes Load ECG data, Analyze ECG data, and Export 
results are much more complicated, as no information is yet available about the data for-
mat or how to analyze the data. This investigation takes place in three separate 
subchapters.

The two activities Select import or export file are very similar in their basic structure. 
First, a file path must be selected for import or export, which is then forwarded to a file 
selection. The File Selection activity node in both diagrams refers to the same activity 
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act Select import file

Select import file

Define
import path

Import
path

File selection File name

Fig. 12.4  Activity diagram for selecting an import file

act Select export file

Select export file

Define
export path

Export
path

File selection File name

Fig. 12.5  Activity diagram for selecting an export file

described in Fig. 12.6. A separate diagram can also be created for the selection of the path 
for import and export, in which it can be described how exactly the selection is to be made. 
For this example, a fixed file path is to be selected in both cases, which is passed to the file 
selection. Thus, no further diagrams are required for these activity nodes.

The file selection is to take place via the console. The path moves via an object flow in 
the first activity node User input. There the user gets the possibility to enter a file name. 
This is completed with the path and forwarded to the output pin, after which the activity 
is ended.

With the previous considerations, a class diagram can already be created. Once again, 
the Model-View-Controller design pattern is used as the basis. Figure 12.7 shows the first 
draft of the class diagram.

All tasks discussed so far are assigned to a class Frontend, which is responsible for user 
interaction. The complete management of the ECG data is done by the class ECG-Data.
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Frontend

class EKG Analyse

Attributes
-m_dataset : ECGData

operations 
+Frontend() 
+~Frontend() 
+showMainMenu() -
-selectFile(path : string)

-m_dataset

ECGData

Attributes

operations
+loadECGData(filename : string) 
+analyze() 
+storeResults(filename : string)

1 1

Fig. 12.7  First draft for a class diagram for ECG analysis

act file selection

File selection

Path

User input File name

Fig. 12.6  Activity diagram for file selection

The class Frontend has exactly one object m_dataset of the class ECG-Data. In addi-
tion, the class has a constructor and a destructor, a function showMainMenu, which is 
responsible for the main menu control and the auxiliary function selectFile, in which the 
file selection is to be implemented.

The class Frontend can already be realized as a program, since all further tasks must be 
realized within the class ECG-Data. This class can currently only be defined as a frame. 
In the following chapters the contents of the class will be examined in more detail.

Listings 12.1 and 12.2 show the translation of the previous diagrams into the lan-
guage C++.
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Listing 12.1  The Frontend class (Frontend.h)

 1 #include "ECGData.h"
 2 #include <string >
 3
 4 using namespace std;
 5
 6 class Frontend
 7 {
 8 public:
 9 Frontend ();
10 Frontend ();
11
12 void showMainMenu ();
13
14 private:
15 string selectFile(string filter );
16
17 ECGData m_dataset;
18 };

Listing 12.2  The Frontend class (Frontend.cpp)

 1 #include "Frontend.h"
 2 #include "windows.h"
 3 #include <iostream >
 4 #include <filesystem >
 5
 6 using namespace std;
 7
 8 Frontend :: Frontend ()
 9 {
10 }
11
12
13 Frontend ::~ Frontend ()
14 {
15 }
16
17 void Frontend :: showMainMenu ()
18 {
19 // Variable definition and initialization
20 int a = 0;
21 string path = "";

12.1  Planning the Software Architecture
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22 string filename = "";
23
24 for (;;)
25 {
26 // Main menu display
27 system ("cls ");
28
29 cout << "Welcome to the ECG "
30 << "analysis program !" << endl;
31 cout << "You have the following options "
32 << "at disposal :" << endl;
33 cout << "1: Load ECG data" << endl;
34 cout << "2: Analyze ECG data" << endl;
35 cout << "3: Export results" << endl;
36 cout << "4: End program" << endl << endl;
37 cout << "Please make your selection :"
38 << endl;
39 cin >> a;
40
41 // Decision node
42 switch (a)
43 {
44 case 1: // [a==1]
45 // Select import file
46 path = "C:\ import \\"; // Set import path
47 filename = selectFile(path ); // File selection
48
49 // Loading ECG data
50 m_dataset.loadECGData(filename );
51 break;
52 case 2: // [a==2]
53 // Analyzing ECG data
54 m_dataset.analyze ();
55 break;
56 case 3: // [a==3]
57 // Select export file
58 path = "C:\ export \"; // Set export path
59 filename = selectFile(path ); // File selection
60
61 // Export results
62 m_dataset.storeResults(filename );
63 break;
64 case 4: // [a==4]
65 return;
66 break;
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67 default: // [else]
68 cout << endl << "unknown input !"
69 << endl << endl;
70 cin.get ();
71 break;
72 }
73 } // Return to the main menu
74 }
75
76 string Frontend :: selectFile(string path /* input pin */)
77 {
78 // User input
79 string filename = "";
80
81 cout << "Please enter a filename:"
82 << endl;
83 cin >> filename;
84
85 // Data for output pin
86 return path + filename;
87 }

The header file is a direct translation from the class diagram 12.7. All operations and 
attributes have been declared with their respective visibility levels as member variables 
and member functions in the class.

The definitions of the functions use the information from the various activity diagrams. 
The comments within the program always refer to the names of the activity nodes that 
were realized at this point.

12.2	� Loading the ECG Data

In order to be able to load ECG data, it must first be researched in which format the data 
is usually stored and which information is stored in the files. Then a decision must be made 
as to which file formats are to be supported.

A search on the Internet showed that the website Physionet (Goldberger et al. 2000) 
provides a database with different physiological data sets. More precisely, the database of 
the Physikalisch-Technische Bundesanstalt (PTB) (Bousseljot et al. 1995) will be used for 
this book.

All datasets available there are stored in the MIT format .dat, the specification of which 
is also available via Physionet (Moody 2018). In addition, there is a software package that 
can be used to access these data, the so-called WFDB.

12.2  Loading the ECG Data
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12.2.1	� Description of the MIT Format

The MIT format divides the stored data into several files. The header file, which has the 
extension .hea, contains general information in text format. Among other things, it con-
tains information on how many data records a recorded channel consists of and in which 
file this data can be found.

Comments can be introduced in any line by the hash character (#) at the beginning of 
the line. For this example, these lines are to be collected in a string.

The first line of the header file, the so-called record line, contains general information 
for all data records to which the file refers. Figure 12.8 shows its structure as a syntax 
diagram.

The complex structure of this line arises from the fact that many elements are optional 
and can only appear under certain circumstances. The elements mean in detail:

•	 Record name: The name of the data record, can consist of letters, numbers and under-
scores. Data type: string.

•	 Number of segments: Data records can consist of several segments. In this case, the 
record line would be followed by segment specification lines. Otherwise, signal speci-
fication lines would follow. In this book, segmented files are not supported, so files with 
this field could not be loaded. Data type: int.

•	 Signal count: The number of recorded channels. Data type: int.
•	 Sample rate: Indicates the number of samples per second per signal. Data type: double.

record line:

Record name

Number of
segments/

Signal count

Sample rate

Counter
frequency

Counter
value

Sample count per signal

Time

Date

/

( )

Fig. 12.8  Syntax diagram for the structure of the record line
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•	 Counter frequency: The counter frequency is used by the WFDB software package to 
transfer strings that are in the so-called standard time format into the time of the data 
recording. If the value is not specified, it corresponds to the sample frequency. This 
value is to be ignored by the software described here. Data type: double.

•	 Counter value: The value defines the counter value to be assumed at the first sample. 
If it is not present, the value 0 is assumed. This value is also to be ignored by the soft-
ware described here. Data type: double.

•	 Sample count per signal: Specifies how many samples a signal consists of. Is consid-
ered undefined if the value is 0 or not present. Data type: int.

•	 Time: Start time of the recording in the format HH:MM:SS with a 24-hour time speci-
fication. If the time is not specified, 0:0:0 is assumed. Data type: string.

•	 Date: The date of the recording in the format DD/MM/YYYY. Data type: string.

The record line is usually followed by several lines containing information for each 
recorded signal or segment. Since the segments are to be ignored for the example in this 
book, they are always followed by so-called signal specification lines, the structure of 
which is shown in the syntax diagram in Fig. 12.9.

The elements of this line mean:

•	 File name: The name of the file in which the signal was saved. Several signals can be 
combined in one file, so it is important to read this value in each line. Data type: string.

•	 Format: The format specifies how many bits were used to store the signal amplitude. 
Possible values are: 8, 16, 24, 32, 61, 80, 160, 212, 310, 311. In this book only the 
format 16 shall be supported. Data type: int.

•	 Sample Factor: Individual signals may have a higher sampling rate than others. In this 
case, the sample factor indicates the number of samples that were stored instead of a 
normal sample. The default value is 1. Data type: unsigned int.

•	 Offset: In most cases all signals of a recording are synchronous. The offset offers the 
possibility to specify the number of additional samples for individual signals whose 
recording has already started earlier. The value is always positive and indicates how 
many additional samples were recorded before the first common sample of all signals. 
The default value is 0. Data type: int.

•	 Byteoffset: The byte offset specifies the number of bytes from the beginning of the file 
to the first sampled data. The value is normally 0 and is not created by the WFDB. Data 
type: int.

•	 AD gain: To transform analog signals into digital data, an analog-to-digital (AD) con-
verter is used. The AD gain specifies how much the digitized value changes when the 
recorded analog signal changes by the value of one unit. If the value is 0, or is not speci-
fied, the default value is 200. data type: double.

•	 Base value: The base value specifies the sample value that would correspond to the 
value 0 of the analog data. If it is not specified, it is assumed to correspond to the AD 
zero value. Data type: int.
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Signal specification line:
File Format

Sample factor

Offset Byteoffset

AD gain

Base value Unit

AD bit resolution

AD-zero

Initial 
value
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Description

: +

( ) /

x

Fig. 12.9  Syntax diagram for the structure of the signal specification line

•	 Unit: A text describing the unit of the analog signal. If the unit is not specified, the 
default value is mV Data type: string.

•	 AD bit resolution: Specifies the bit resolution of the digitized data. If the value is miss-
ing, the value 12, 10 or 8 is assumed depending on the selected format. For the example 
in this book, the default value is 12. Data type: int.

•	 AD-zero: The AD-zero value corresponds to the sample value that exactly matches the 
average value of the possible analog input signal of the AD-converter used. Data 
type: int.

•	 Initial value: Specifies the value of the first sample of the recording. Certain formats 
do not store the absolute values, but always the difference to the previous value. In this 
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case, an initial value is required. The format 16 used in this example does not need this 
value. The value is assumed to be AD zero if it does not exist. Data type: int.

•	 Checksum: A 16 bit checksum of all samples in the recording. This value can be used 
to check if the values in the file have been corrupted. This value is ignored in this 
example. Data type: int.

•	 Block size: Specifies whether the data must be read in blocks of the specified size. The 
default value, which is also assumed in this book, is 0. Data type: int.

•	 Description: A text that describes the stored signal. Data type: string.

In addition to the header file, there are two other files. The .dat file and the .xyz file, both 
of which contain the stored signals. The format 16 stores the values in 16-bit format. The 
two’s complement is used, the least significant byte is at the beginning and sign bits are 
multiplied to fill the 16 bits if necessary.

12.2.2	� Extension of the Software Architecture

With the information from the file format specification, the software architecture can be 
further developed. First, the activity diagram for loading ECG data shown in Fig. 12.10 
can be developed.

The MIT file format splits into several files, a header file and several data files, which 
are described in more detail in the header file. Consequently, the header file must first be 
opened in an activity node in order to obtain all further information.

Of course, this can fail for a number of reasons. For example, there could be an error in 
the file name, or the file could be on a removable disk that has since been removed. In any 
case, a decision node must be used to check whether the file was loaded successfully. To 
do this, the object flow is split. One object token moves to the decision node, another to the 
next activity node, where it can be processed further. If the loading of the file failed, a mes-
sage should appear on the screen, otherwise the file can be read out.

The individual lines of the header file follow a certain structure, which was presented 
in Figs. 12.8 and 12.9. This structure must be analysed by the software and broken down 
into information that is easier for the program to understand. A software component that 
does this is called a parser. The process itself is called parsing.

In this case, two different pieces of information are generated during this process. First 
of all, it can always be evaluated whether the parsing was successful. In the event of an 
error, a message can be issued.

In addition, the header file describes which signals were recorded and how they are 
distributed among the individual files. A set of signals located within a file is called a 
group. This information is needed for further processing so that the correct data can be 
extracted from the files.

If the parsing of the header file was successful, the file with the data for each group 
must now be opened and the associated signals read out. This process is basically very 
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Fig. 12.10  Activity diagram for importing ECG data

similar to reading the header file, even though the Read data activity node is very different 
from the Parse header file activity node.

However, this process must be repeated as long as there are still groups whose data 
must be read in. When all data of all groups have been read in, the activity can be success-
fully completed.

There are some nodes in this diagram that could be described in more detail. However, 
this will not be done here, as the file format is already very comprehensively documented 
by the syntax diagrams and the specification (Moody 2018).

In addition to the new activity diagram, the class diagram in Fig. 12.7 can now also be 
extended. Through the specification, new knowledge about the structure of the data struc-
ture could be gained. This new information has been incorporated into the class diagram 
in Fig. 12.11.
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Fig. 12.11  First further development of the class diagram for ECG analysis

A new class Signal was created, in which the information of one recorded signal can be 
stored. The attributes of this class are mainly composed of the information of the signal 
specification line shown in Fig. 12.9. These attributes are supplemented by an array of int 
values in which the recorded data can be stored. All attributes of this class have been 
assigned the visibility level public, since this class only serves as a data container for the 
class ECGData and, apart from the value initialization, has no logic of its own.

The class ECGData can now also be filled with more content. The attributes of this 
class are largely composed of the information of the record line shown in Fig. 12.8. The 
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attributes are supplemented by a string m_info, in which the comments of the record line 
are to be stored, and by a field m_signalList of type Signal[], in which the list of the loaded 
signals is stored.

In addition, operations are added that enable the reading of header and data files. 
Furthermore, an operation clear() is added, with which the attributes of the class are to be 
reset to the initial state.

During the actual implementation it will become apparent that it may be useful to add 
further auxiliary functions. However, these functions would contribute neither to the 
understanding nor to the overview in this diagram.

12.2.3	� Implementation of the Loading Function

The next step is to implement the new functions and classes. For this purpose, the new 
class Signal is to be created first. Listing 12.3 shows the header file of the class.

Listing 12.3  The Signal class (Signal.h)

 1 #include <string >
 2 #include <vector >
 3 using namespace std;
 4
 5 class Signal
 6 {
 7 public:
 8 Signal ();
 9 Signal ();
10
11 // Signal Specification Line Data
12 string m_filename;
13 int m_format;
14 int m_samplesPerFrame;
15 int m_skew;
16 int m_byteOffset;
17 double m_ADCGain;
18 int m_baseline;
19 string m_units;
20 int m_ADCResolution;
21 int m_ADCZero;
22 int m_initialValue;
23 int m_checksum;
24 int m_blockSize;
25 string m_description;
26
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27 // Signal data
28 vector <int> m_data;
29 };

Most function and variable declarations are made as described in the second part of this 
book. However, the variable m_data has the previously unknown variable type 
vector < int > .

This variable type represents a class implemented in the C++ Standard Template 
Library, called STL. In this library there are some very useful classes, which simplify the 
implementation of many problems significantly.

The class vector has the properties of an array, but additionally offers the possibility to 
append new values to the array at any time (m_data.push_back(5);) or to query its current 
size (m_data.size();). The name of the variable type is followed by additional information 
in angle brackets. The array should consist of variables of type int. Individual elements of 
the vector are accessed, as with any other array, by specifying the index in square brackets 
(m_data[0]; returns the first element, for example).

If the data type to be processed in a class can be freely selected within angle brackets, 
then it is a so-called template class. This explains the name of the standard template library.

Listing 12.4 shows the implementation of the definition of the Signal class, which 
essentially consists of a constructor and a destructor.

Listing 12.4  The Signal class (Signal.cpp)

 1 #include "Signal.h"
 2
 3 Signal :: Signal ()
 4 : m_filename ("")
 5 , m_format (16)
 6 , m_samplesPerFrame (1)
 7 , m_skew (0)
 8 , m_byteOffset (0)
 9 , m_ADCGain (200)
10 , m_baseline (0)
11 , m_units ("mV")
12 , m_ADCResolution (12)
13 , m_ADCZero (0)
14 , m_initialValue (0)
15 , m_checksum (0)
16 , m_blockSize (0)
17 , m_description ("")
18 {
19 }
20
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21
22 Signal :: Signal ()
23 {
24 m_data.clear ();
25 }

Within the constructor, all member variables are assigned default values taken directly 
from the MIT format specification. Within the destructor, the clear() function of the vector 
class is called, which deletes all elements of the field. This call is not strictly necessary for 
values of type int, since the function call does not cause the vector to free the memory it 
occupies. This only happens when the object m_data ceases to exist, i.e. a short time later.

However, if there are variables with a different data type stored in the vector, such as 
custom classes, calling the clear() function will ensure that their destructors are called and 
thus given the opportunity to free their memory. For this reason, it makes sense if freeing 
all array elements is done as a matter of principle as a good practice.

The ECGData class is now provided with attributes, operations, and logic for the first 
time. The implementation of the header file is shown in Listing 12.5.

Listing 12.5 The ECGData class (ECGData.h)

 1 #include "Signal.h"
 2 #include <string >
 3 #include <vector >
 4 #include <map >
 5
 6 using namespace std;
 7
 8 class ECGData
 9 {
10 public:
11 ECGData ();
12 ECGData ();
13
14 // Main access functions for the
15 // three use cases
16 void loadECGData(string filename );
17 void analyze ();
18 void storeResults(string filename );
19
20 private:
21 void clear ();
22
23 // Reading in the header file
24 bool readHeaderFile(string filename );
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25
26 // Auxiliary functions for disassembling a
27 // Line into individual text sections
28 bool parseLine(string line );
29 vector <string> getChunks(string line );
30
31 // Auxiliary functions for reading in a
32 // record line
33 bool parseRecordLine(vector <string> chunks );
34 bool parseRecordName(string chunk );
35 bool parseSignals(string chunk );
36 bool parseSamplingFrequency(string chunk );
37 bool parseNumberOfSamples(string chunk );
38 bool parseTime(string chunk );
39 bool parseDate(string chunk );
40
41 // Auxiliary functions for reading in a
42 // Signal Specification Line
43 bool parseSignalSpecificationLine
44 (vector <string> chunks );
45 bool parseFileName(string chunk );
46 bool parseFormat(string chunk );
47 bool parseADCGain(string chunk );
48 bool parseADCResolution(string chunk );
49 bool parseADCZero(string chunk );
50 bool parseInitialValue(string chunk );
51 bool parseChecksum(string chunk );
52 bool parseBlockSize(string chunk );
53 bool parseDescription(string chunk );
54
55 // Reading in the data files
56 bool readDataFile(string filename );
57
58 // Auxiliary variables for loading the data
59 vector <Signal> m_signalList;
60 map <string , vector <int >> m_groups;
61 bool m_recordLine;
62
63 // Data of the record Line
64 string m_name;
65 int m_segments;
66 int m_signals;
67 double m_sampling_frequency;
68 double m_counter_frequency;
69 double m_base_counter;
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70 int m_numberOfSamples;
71 string m_time;
72 string m_date;
73 string m_info;
74 };

The ECGData class essentially declares in the header file the functions already pre-
sented in Fig. 12.11. However, in order to read the information of the MIT header file, 
some auxiliary functions have been added. The parseLine and getChunks functions break 
a read line into small, contiguous sections that can be more easily parsed. The auxiliary 
functions, whose names begin with parse … then analyze these subsections in detail.

In addition to the already known vector, another new data type from the STL is found in 
the auxiliary variables for reading in the data. The data structure map also has many proper-
ties of an array, but adds another new feature. Two variable types can be defined within the 
angle brackets, in this case a string and a vector 〈int〉. The first of the two data types specifies 
the form in which the indices of the array are to be stored, the second data type specifies the 
type of data stored. So in this case an array of int values is assigned to a text.

The concept is to be clarified with an example. First the signal information from the 
MIT header file is read into the array m_signalList. At the same time, the variable m_
groups is used to store which signals are assigned to a particular file. Table 12.1 shows 
how the storage should work.

Table 12.1  Information storage of signal data

m_signalList
Index Signal
0 I
1 II
2 III
3 aVR
4 aVL
5 aVF
6 V1
7 V2
8 V3
9 V4
10 V5
11 V6
12 vx
13 vy
14 vz
m_groups
File Signal index
data.dat 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
data.xyz 12, 13, 14
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The upper table shows the signals, in the order they were defined in the MIT header file 
at the respective index positions 0–14. The lower table shows that signals 0–11 are assigned 
to the data.dat file, while signals 12–14 are assigned to the data.xyz file. These last three 
signals complete the 12-lead ECG with the three leads according to Frank (Bousseljot 
et al. 1995; Gertsch 2008).

The remaining attributes correspond to the data stored in the record line.
The following Listing 12.6 shows the definition of the class ECGData. It was refrained 

from splitting the source code into small sections to allow a coherent overview of the pro-
gram. The description of the individual functions follows the program.

Listing 12.6  The ECGData class (ECGData.cpp)

 1 #include "stdafx.h"
 2 #include "ECGData.h"
 3 #include <iostream >
 4 #include <fstream >
 5
 6 using namespace std;
 7
 8 // Constructor
 9 ECGData :: ECGData ()
10 {
11 // The clear () function is used for both
12 // the deletion of data used ,
13 // as well as for the initialization of the class
14 clear ();
15 }
16
17 // Destructor
18 ECGData ::~ ECGData ()
19 {
20 clear ();
21 }
22
23 // Initialization of the variables
24 void ECGData :: clear ()
25 {
26 m_recordLine = false;
27 m_name = "";
28 m_segments = 0;
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29 m_signals = 0;
30 m_sampling_frequency = 250;
31 m_counter_frequency = 250;
32 m_base_counter = 0;
33 m_numberOfSamples = 0;
34 m_time = "";
35 m_date = "";
36 m_info = "";
37
38 m_signalList.clear ();
39 m_groups.clear ();
40 }
41
42 // Conversion of the activity diagram Load ECG data
43 void ECGData :: loadECGData(string filename)
44 {
45 // Open header file and
46 // Decision node
47 if (! readHeaderFile(filename ))
48 {
49 // deleting data that may already have been recorded
50 clear ();
51
52 // Activity node error output
53 cout << "Failed to load header !"
54 << endl << endl;
55 cin.get ();
56
57 return;
58 }
59
60 // Open .dat file and
61 // Decision node
62 if (! readDataFile(filename ))
63 {
64 // delete any data already recorded
65 clear ();
66
67 // Activity node error output
68 cout << "Failed to load data !"
69 << endl << endl;
70 cin.get ();
71
72 return;
73 }
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74
75 cout << m_info << endl;
76
77 cin.get ();
78 }
79
80 // not yet implemented
81 void ECGData :: analyze (){}
82
83 // not yet implemented
84 void ECGData :: storeResults(string filename ){
85 }
86
87 bool ECGData :: readHeaderFile(string filename)
88 {
89 // delete already existing data
90 clear ();
91
92 fstream file;
93 string line = "";
94
95 // Open header file
96 file.open(filename , ios::in);
97
98 // Decision node
99 if (file.is_open ())
100 {
101 // Repeat until the end of the file
102 // (end of file - eof)
103 // was not reached
104 while (! file.eof ())
105 {
106 // Reading a line
107 getline(file , line );
108
109 // Analyzing the line
110 // Decision node
111 if (! parseLine(line ))
112 {
113 // Closing the file
114 file.close ();
115 return false;
116 }
117 }
118 // Closing the file
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119 file.close ();
120 }
121 else
122 // Abort , if the file
123 // could not be opened
124 return false;
125
126 return true;
127 }
128
129 bool ECGData :: parseLine(string line)
130 {
131 // If the file starts with a # ,
132 // or empty
133 if (line.find('#') == 0 || line.length () == 0)
134 {
135 // Save as comment
136 m_info += line + "\n";
137 }
138 else
139 {
140 if (m_recordLine)
141 {
142 // should be a Signal Specification Line
143 if (! parseSignalSpecificationLine
144 (getChunks(line )))
145 return false;
146 }
147 else
148 {
149 // If no record line yet
150 // was analyzed
151 // it should be a record line
152 if (! parseRecordLine(getChunks(line )))
153 return false;
154 m_recordLine = true;
155 }
156 }
157 return true;
158 }
159
160 vector <string> ECGData :: getChunks(string line)
161 {
162 int pos = 0;
163 string chunk = "";
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164 vector <string> chunks;
165
166 // as long as the line still contains characters
167 while (line.length () > 0)
168 {
169 // Finding the last space
170 pos = line.find_last_of(' ');
171
172 if (pos != string :: npos)
173 {
174 // if there was a space
175 // the array is filled with the part
176 // after the space
177 chunks.push_back(
178 line.substr(pos + 1, string :: npos ));
179 // and is subsequently shortened
180 line = line.substr(0, pos);
181 }
182 else
183 {
184 // without spaces the remaining
185 // line taken over
186 chunks.push_back(line );
187 line = "";
188 }
189 }
190
191 return chunks;
192 }
193
194 bool ECGData :: parseRecordLine(vector <string > chunks)
195 {
196 int pos = chunks.size () - 1;
197
198 // analyzes the individual sections of the
199 // record line these are now available as parts in
200 // the array chunks
201 if (pos >= 0)
202 {
203 if (! parseRecordName(chunks[pos ]))
204 return false;
205 pos --;
206 }
207 if (pos >= 0)
208 {
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209 if (! parseSignals(chunks[pos ]))
210 return false;
211 pos --;
212 }
213 if (pos >= 0)
214 {
215 if (! parseSamplingFrequency(chunks[pos ]))
216 return false;
217 pos --;
218 }
219 if (pos >= 0)
220 {
221 if (! parseNumberOfSamples(chunks[pos ]))
222 return false;
223 pos --;
224 }
225 if (pos >= 0)
226 {
227 if (! parseTime(chunks[pos ]))
228 return false;
229 pos --;
230 }
231 if (pos >= 0)
232 {
233 if (! parseDate(chunks[pos ]))
234 return false;
235 pos --;
236 }
237
238 return true;
239 }
240
241 bool ECGData :: parseRecordName(string chunk)
242 {
243 char name [2048];
244 // analyzes the format of the record name
245 sscanf_s(chunk.c_str ()
246 , "%s/%i"
247 , &name
248 , sizeof(name)
249 , &m_segments );
250
251 m_name = name;
252
253 return true;
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254 }
255
256 bool ECGData :: parseSignals(string chunk)
257 {
258 // analyzes the format of the number of signals
259 sscanf_s(chunk.c_str(), "%i", &m_signals );
260
261 return true;
262 }
263
264 bool ECGData :: parseSamplingFrequency(string chunk)
265 {
266 // analyzes the format of the sample rate
267 sscanf_s(chunk.c_str ()
268 , "%f/%f(%f)"
269 , &m_sampling_frequency
270 , &m_counter_frequency
271 , &m_base_counter );
272
273 return true;
274 }
275
276 bool ECGData :: parseNumberOfSamples(string chunk)
277 {
278 // analyzes the format of the number of samples per signal
279 sscanf_s(chunk.c_str(), "%i", &m_numberOfSamples );
280
281 return true;
282 }
283
284 bool ECGData :: parseTime(string chunk)
285 {
286 // analyzes the format of time
287 m_time = chunk;
288
289 return true;
290 }
291
292 bool ECGData :: parseDate(string chunk)
293 {
294 // analyzes the format of the date
295 m_date = chunk;
296
297 return true;
298 }
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299
300 bool ECGData :: parseSignalSpecificationLine
301 (vector <string> chunks)
302 {
303 int pos = chunks.size () - 1;
304
305 m_signalList.push_back(Signal ());
306
307 // analyzes the individual sections of the signal
308 // Specification line
309 // these are now as parts in the array chunks
310 if (pos >= 0)
311 {
312 if (! parseFileName(chunks[pos ]))
313 return false;
314 pos --;
315 }
316 if (pos >= 0)
317 {
318 if (! parseFormat (chunks[pos ]))
319 return false;
320 pos --;
321 }
322 if (pos >= 0)
323 {
324 if (! parseADCGain(chunks[pos ]))
325 return false;
326 pos --;
327 }
328 if (pos >= 0)
329 {
330 if (! parseADCResolution(chunks[pos ]))
331 return false;
332 pos --;
333 }
334 if (pos >= 0)
335 {
336 if (! parseADCZero(chunks[pos ]))
337 return false;
338 pos --;
339 }
340 if (pos >= 0)
341 {
342 if (! parseInitialValue (chunks[pos ]))
343 return false;
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344 pos --;
345 }
346 if (pos >= 0)
347 {
348 if (! parseChecksum(chunks[pos ]))
349 return false;
350 pos --;
351 }
352 if (pos >= 0)
353 {
354 if (! parseBlockSize (chunks[pos ]))
355 return false;
356 pos --;
357 }
358 if (pos >= 0)
359 {
360 if (! parseDescription (chunks[pos ]))
361 return false;
362 pos --;
363 }
364
365 m_groups[m_signalList.back (). m_filename]
366 .push_back(m_signalList.size () -1);
367
368 return true;
369 }
370
371 bool ECGData :: parseFileName(string chunk)
372 {
373 // analyzes the format the file name
374 m_signalList.back (). m_filename = chunk;
375
376 return true;
377 }
378
379 bool ECGData :: parseFormat (string chunk)
380 {
381 // analyzes the format of the data
382 sscanf_s(chunk.c_str(), "%ix%i:%i+%i"
383 , &m_signalList.back (). m_format
384 , &m_signalList.back (). m_samplesPerFrame
385 , &m_signalList.back (). m_skew
386 , &m_signalList.back (). m_byteOffset );
387
388 if (m_signalList.back (). m_format != 16) return false;

12.2  Loading the ECG Data



244

389
390 return true;
391 }
392
393 bool ECGData :: parseADCGain(string chunk)
394 {
395 char unit [2048];
396
397
398 // the format analyzes the AD increase
399 int r = sscanf_s(chunk.c_str(), "%f(%i)/%s"
400 , &m_signalList.back (). m_ADCGain
401 , &m_signalList.back (). m_baseline
402 , &unit
403 , sizeof(unit ));
404
405 if (r == 3) m_signalList.back (). m_units = unit;
406
407 return true;
408 }
409
410 bool ECGData :: parseADCResolution(string chunk)
411 {
412 // analyzes the format of the AD bit resolution
413 sscanf_s(chunk.c_str ()
414 , "%i"
415 , &m_signalList.back (). m_ADCResolution );
416
417 return true;
418 }
419
420 bool ECGData :: parseADCZero(string chunk)
421 {
422 // analyzes the format of the AD -zero value
423 sscanf_s(chunk.c_str ()
424 , "%i"
425 , &m_signalList.back (). m_ADCZero );
426
427 return true;
428 }
429
430 bool ECGData :: parseInitialValue(string chunk)
431 {
432 // analyzes the format of the initial value
433 scanf_s(chunk.c_str ()
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434 , "%i"
435 , &m_signalList.back (). m_initialValue );
436
437 return true;
438 }
439
440 bool ECGData :: parseChecksum(string chunk)
441 {
442 // analyzes the format of the checksum
443 scanf_s(chunk.c_str ()
444 , "%i"
445 , &m_signalList.back (). m_checksum );
446
447 return true;
448 }
449
450 bool ECGData :: parseBlockSize(string chunk)
451 {
452 // analyzes the format of the block size
453 scanf_s(chunk.c_str ()
454 , "%i"
455 , &m_signalList.back (). m_blockSize );
456
457 return true;
458 }
459 bool ECGData :: parseDescription(string chunk)
460 {
461 // analyzes the format of the description
462 m_signalList.back (). m_description = chunk;
463
464 return true;
465 }
466
467 // opens and reads a data file
468 bool ECGData :: readDataFile(string filename)
469 {
470 string path = "";
471 string openFile = "";
472 fstream file;
473 int readSamples = 0;
474 char lsB = 0;
475 char msB = 0;
476 short sample = 0;
477
478 // Extract the path from the filename
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479 path = filename.substr (0
480 , filename.find_last_of ( '\\ ')+1);
481
482 // new loop type
483 for (auto group : m_groups)
484 {
485 // As long as groups are still available
486 if (group.second.size () > 0)
487 {
488 // Open .dat file
489 file.open(path + group.first
490 , ios::in | ios:: binary );
491 if (! file.is_open ()) return false;
492
493 // Reading the signals from the file
494 while (! file.eof ())
495 {
496 for (int i = 0; i < group.second.size (); i++)
497 {
498 file.get(lsB);
499 file.get(msB);
500
501 // convert the two bytes into one
502 // two byte value
503 sample = (msB << 8) | lsB;
504
505 // Saving the value
506 m_signalList[group.second[i]]
507 .m_data.push_back(sample );
508 }
509 }
510
511 // Closing the file
512 file.close ();
513 }
514 }
515
516 return true;
517 }

Constructor, destructor and clear()
The task of the constructor is to initialize the member variables of the class, while the 
destructor is to free memory that may still be occupied by the object.
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In this program, a function is also needed to ensure that the object of the class is returned 
to the start state if, for example, the loading of the data fails.

For this reason a function clear() was written, which initializes the variables and clears 
the two arrays m_signalList and m_groups, i.e. restores the start configuration.

This function can be called from the constructor, the destructor, and from any other 
function to return the object to its start state.

loadECGData(string filename)
The loadECGData function implements the activity diagram in Fig. 12.10 at an abstract 
level. The activity nodes for loading and parsing the MIT header file have been offloaded 
to the readHeaderFile function. This function returns a bool value that the function can 
use to decide whether the load and parse were successful.

If the function was not successful, the return value is false. In this case, the variables of 
the class are set back to their initial state by the clear() function and an error message 
is issued.

If the MIT header file is successfully read in and analyzed, an attempt is made to open 
and read out the associated files that contain the signal data. There is also an output in case 
of error.

If both actions are successful, the content of the collected information is printed from 
the comments of the MIT-HEader file and the function is terminated.

analyze() and storeResults()
The contents of these functions will not be discussed until the next two chapters, so only 
empty functions have been implemented so far.

readHeaderFile(string filename)
The function resets the variables of the class to the initial state first, in case a record has 
already been loaded.

After that, an attempt is made to open a file. For this purpose C++ offers the class 
fstream. This class is very closely related to the classes istream (cin) and ostream (cout), 
since it inherits from both classes.

In the function a variable file of the type fstream is created, with the help of which files 
can now be opened and read.

The open function of the fstream class allows a file to be opened. The first parameter is 
a text containing the full path and the file name. The second parameter contains informa-
tion about how the file should be opened. In this case, the predefined value ios::in signals 
that it is about reading the contents of the file.

With the help of the function is_open it can now be checked whether the opening of the 
file was successful. In this case the data can be read out. Otherwise the function should 
abort with a false as return value.

Since it is not known how much data is contained in the file, a while loop is used. The 
termination condition checks whether the end of file [eof] has not yet been reached.
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Within the loop, the getline function reads a complete line of data from the file opened 
with file and stores it in the variable line. For this purpose, data is read from the file until 
the character for an end of line (“\n”) is found.

Finally, the parseLine function attempts to parse the contents of the line. If this is not 
successful, the file is closed by file.close() and terminated with false as return value.

parseLine(string line)
The task of the function parseLine is to distinguish how a read line from the MIT header 
file should be parsed.

First, it is checked whether the line starts with a hash (#) or is empty. The first case can 
be checked by using the find function provided by the class string. The return value cor-
responds either to the text position of the found character or to the predefined value 
string::npos. To check the second case, the length of the line is evaluated using the length 
function. If the length of the line is zero, the line is empty. In both cases the line is evalu-
ated as a comment and appended to the string m_info.

Otherwise it is checked whether the bool variable m_recordLine contains the value 
true. This is only the case if a record line has already been read in. Consequently, the cur-
rent line can only be a signal specification line, which is first preprocessed by the getC-
hunks function and then passed to the corresponding function for analysis.

If the analysis of the line fails, the function terminates with the return value false.
The last option occurs if no record line has been read yet. In this case the line is also 

preprocessed by the getChunks function and passed to the corresponding analysis func-
tion. If this is successful, the value of the variable m_recordLine is set to true and the 
function exits with the return value true.

getChunks(string line)
A line within the record line, or the signal specification line, consists of several parame-
ters, some of which are separated by special characters, such as a colon or brackets, or 
by spaces.

The getChunks function is supposed to break the line at the spaces and store the indi-
vidual pieces (chunks) in a vector 〈string〉, that is, an array of texts.

To do this, the line is run through with a while loop as long as the line is not empty, i.e. 
as long as its length is greater than zero.

The find_last_of function is provided by the string class and finds the last occurrence of 
a character within a text. The return value is either the position of the character or the 
constant value string::npos.

If a space character could be found, then the text must be cut at this position. This task 
is performed by the substr function. The first parameter specifies the start position from 
which the text is to be taken and the second parameter specifies the number of characters 
to be cut. If this parameter is string::npos, the text is cut to the end.

The cut piece is attached to the end of the chunks array with the push_back function.
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The line is then shortened to the appropriate position by storing the result of substr(0, 
pos) back into the line itself.

If no space is found, the last piece of text has been reached. This is appended to the 
array in full. The rest of the line can then be deleted. If this point is reached, the loop con-
dition of the while loop will no longer apply in the next step, since the line length now 
corresponds to zero.

The function terminates by returning the array containing the collected pieces of text to 
the calling function.

parseRecordLine(vector<string> chunks)
In this function, the individual pieces of the record line are now analyzed in sequence. To 
do this, the start position is first placed at the end of the array, since the function getChunks 
splits the line from back to front.

The decomposition procedure strictly follows the syntax defined in Fig. 12.8 on page 
224. All elements which are connected by special characters are located in a chunk and are 
extracted together in a subfunction.

The individual steps always follow the same pattern. First, it is checked whether the 
current position is greater than or equal to zero. Then a piece of text exists that can be 
analyzed. In this case, the piece of text is passed to the corresponding sub-function, which 
attempts to extract the contents. If this fails, the function exits with the return value false.

Otherwise, the position is decreased by the value one and it continues with the next 
section of the line.

This structure was chosen because the individual parts of the line, although largely 
optional, can only appear in a single order. Later parts of the line can only appear if the 
sections before them are available. For this reason, editing can also be aborted at any time 
without any problems.

At the end the function returns true.

parseRecordName(string chunk) to parseDate(string chunk)
After crunching and simplifying the data stage by stage, these functions now take care of 
the actual extraction of information.

For this purpose a C++ function called sscanf_s is used. The function can take an 
unlimited number of parameters, but needs at least the first two.

The first parameter is the text to be parsed and must be passed as an array of type char. 
The class string does not correspond to this data type, but can be converted to the required 
type by the function c_str().

The second parameter is a so-called format string and also an array of type char. 
However, it is usually passed directly as text in quotes.

This text describes how the first parameter is to be interpreted. Special characters mark 
information that is to be extracted from the text. The character “%i” stands for a value of 
type int, the character “%f” for a double and the character “%s” for a field of type char. 
Between these characters the expected formatting can be specified.
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For example, “%f/%f(%f)” means to try to find a double value in the first parameter, 
followed by a slash and another double, then another double in parentheses.

The sscanf_s function now attempts to extract these values and store them in the appro-
priate order in its function parameters. These parameters must be passed as pointers. 
However, since the attributes of the class are not pointers, the variable names must be 
preceded by an ampersand.

An exception must be considered for text extraction with “%s”. Here one parameter 
must be an array of the type char, but then the size of the array must also be passed, so that 
the function sscanf_s does not accidentally exceed the array size. For this purpose the C++ 
function sizeof is used for example in the function parseRecordName.

The return value of the function corresponds to the number of values found in the text. 
Since many parameters are optional in the record line, it can easily happen that values can-
not be extracted. However, all of these parameters are to be ignored in this example, so the 
return value does not have to be evaluated.

parseSignalSpecificationLine(vector<string> chunks)
The structure of this function is basically identical to that of the function parseRecordLine. 
Here, too, the start position is set at the end of the array and the line is then analyzed piece 
by piece.

The analysis of the line strictly follows the structure shown in Fig. 12.9.
In addition, an object of the class Signal is created with each call of this function and 

appended to the end of the signal list m_signalList. Since the information of the Signal 
Specification Line is to be stored in the objects of the Signal class, a separate object must 
be created for each signal.

After a row has been successfully analyzed, an entry must also be stored in the group 
table m_groups. The data type string was defined as the index for the group table. The 
name of the file in which the signal is stored is to be stored in it. Behind this index there 
should be a list with index positions, which indicate which signals are in this file (see 
Table 12.1).

The current signal is always the last entry in the list. This can be obtained by m_sig-
nalList.back() and is of type Signal. In the Signal class, after the successful analysis of the 
Signal Specification line, the associated file name was stored in the member variable m_
filename. This now serves as an index for the group table m_groups[m_signalList”“.
back()”“.m_filename].

The index of the current signal in the signal list is stored in the array at the position of 
the file name. Since this is always the last signal, the position can be calculated by m_sig-
nalList.size()-1.

The function ends with the return value true, provided that no error occurred while 
parsing the line.
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parseFileName(string chunk) to parseDescription(string chunk)
The functions parseFileName to parseDescription parse the individual sections of the 
Signal Specification line using the function sscan_f, as described earlier.

The only difference now is that the variables in which the values are to be stored are 
located in an object of the Signal class. First, the correct object must be selected in order 
to be able to access the variable.

As already mentioned, the current object is always at the end of the signal list and can 
be queried by m_signalList.back(). Afterwards only the correct attribute must be com-
pleted with a dot.

readDataFile(string fileName)
In the last function the contents of the data files are read in. In this sample program only 
the already described format 16 is supported. This simplifies the function considerably.

First, some auxiliary variables are created whose meaning is explained when they 
are needed.

In the parameter filename the path and the file name are passed, which were entered via 
the console. The same path is required for the data files, but the file name must be replaced.

For this reason, the subst function is used to extract the pure pathname by cutting out 
the beginning of the filename variable until the last appearance of the “\\” character.

What follows is a variation of the already familiar for loop, which has only been part of 
the C++ language since 2011, and which greatly simplifies the use of the map data 
structure.

The structure is simple: First, a loop is started by the keyword for. In the loop header, 
however, the expression known from the for loop does not follow.

Instead, the keyword auto is used first in the brackets, followed by the name of a vari-
able (group in this example). This is followed by a colon and the name of a data structure 
to be traversed. In this case, the map m_groups.

Within the loop, there will now be a different entry of the map in the variable group on 
each run. The variable has two member variables. The index of the map is stored in the 
variable first, in this case the file name as a string, and the value of the map is stored in the 
variable second. This was defined as a vector 〈int〉 when the variable m_groups was 
declared.

Within the loop, it is first checked whether signals exist at all for the current group 
object. This is checked by querying the number of elements in the vector with group.sec-
ond.size(). Only if elements exist, the opening and reading of the file makes sense.

Next, the file is opened. To do this, the file name must be appended to the already 
extracted file path. This is done by path + group.first. Since the data of the data files are 
not stored as texts, but binary, this must be explicitly specified when opening the file. This 
is done by connecting the two values ios::in and ios::binary with a binary OR.

The value ios::in corresponds to the numerical value 1, while ios::binary corresponds 
to the numerical value 32. Both numbers are necessarily powers of two. In binary, the two 
numbers correspond to the bit sequence 0000 0001, and 0010 0000, respectively. Thus, 
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both numbers each consist of a bit sequence with only a single one. If these two numbers 
are combined with the binary OR, the result is the bit sequence 0010 0001. Based on this 
bit sequence, the open function can recognize which options were selected for opening the 
file. Values that are linked and processed in this way are called flags.

If the file cannot be opened, the function terminates with the return value false.
To read out the data, a while loop is used again, which runs through the file to the end.
The data within the file is arranged so that the first value for the first signal is followed 

by the first value for the second signal. The order of the signals is identical to the order in 
the MIT header file. If all signals have been passed through once, the second value for each 
signal follows, and so on.

In the implementation, a for loop is used to step through the list of signal indices from 
the beginning to the end.

Each value in the file is stored in two bytes, the first of which contains the bits with 
lower values and the second the bits with higher values. This ordering of the bytes is called 
little-endian. The reverse order is called big-endian.

Unfortunately, the already known operation 〉〉 cannot be used for reading the data, 
because it would skip supposed spaces. However, since the file was saved in binary, there 
are no spaces.

Instead, the get function must be used, which reads exactly one byte from the file. After 
the byte with the least significant bits (lsB) has been read, the byte with the most signifi-
cant bits (msB) follows.

Both bytes must now be combined to form a short. This is done by shifting the msB by 
8 bits to the left by (msB 〈〈 8) and linking it to the lsB with a binary OR.

The byte sequence 17 FE, which consists of the two bytes 0001 0111 and 1111 1110 in 
binary form, is to serve as an example. The second of the two bytes is shifted 8 bits to the 
left, resulting in the bit sequence 1111 1110 0000 0000. If this bit sequence is linked to the 
first byte by a binary OR, the result is the bit sequence 1111 1110 0001 0111. This corre-
sponds to the number −489. In the example data used, this corresponds exactly to the 
control value that can be taken from the header file.

Next, the value must be stored in the correct object of the Signal class. Since the loop 
variable i passes through the list of signal indices, the correct index is located at the posi-
tion group.second[i]. If this position is queried from the field m_signalList, the object 
searched for results. After that, the read value only has to be appended to the array of the 
signal data by .m_data.push_back(sample).

Finally, the open file is closed and the return value true is returned to the calling 
function.

If everything went successfully, all data is now within the data structures of the program.
Of course, this implementation does not yet meet the requirements of a professional 

software. Many special and error cases were ignored. However, this was also not the goal.
With the implementation presented here a relatively simple possibility should be shown 

to read in data of the MIT format.
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12.3	� Data Analysis

Now that the ECG data can be read into the software, thought can be given to the process-
ing of the data. Here, too, the program should be limited to the essentials. When process-
ing data, more or less complex mathematical procedures are often required. These 
procedures must be understood in order to be able to implement them in a program. For 
this reason, the applied procedure of the Fast Fourier Transformation is explained in detail 
in this chapter.

Since the read-in data are very noisy, a possibility should be found to highlight the 
interesting signals more clearly. One possibility for this is the so-called Fourier transfor-
mation (FT). In the FT, a continuous function f(t) represented over time t is transformed by 
integration into a function F(ω) dependent on the angular frequency ω. With the help of 
this transformation, the frequencies that make up the signal can be determined, so that 
only the frequencies relevant to the ECG remain through a filter operation. Afterwards, an 
inverse Fourier transform (IFT) could be used to recover the now filtered signal.

An easy introduction to this topic is provided by the derivation of the Fourier series 
presented in Papula (2015).

However, the read-in data is not in the form of a continuous function. Instead, values 
h(tk) = hk were recorded at certain discrete points in time tk and stored in a file. However, 
the FT can also be used for this type of data by means of a transformation. It is then called 
a discrete Fourier transform (DFT). Equation 12.1 shows the central formula of the DFT.
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The values n and k are integer values with n, k ∈ {0, 1, 2, …, N − 1} and correspond to 
the indices of the respective time points tk, respectively the frequencies fn. The time tk can 

be calculated by the formula t
k

Rk = , where R ∈ ℕ stands for the sampling rate. The fre-

quency results from the formula f n
R

Nn = , with N ∈ ℕ recorded values. A very nice rep-

resentation of the DFT can be found in Smith (1997).
The result of the DFT are complex values Hn = a + ib, which contain the amplitude and 

the phase angle for the respective frequency. The amplitude results from the magnitude of 

the complex number to # #H a bn � �2 2 , while the phase angle can be calculated in C++ 
via the function atan2(b, a).

The inverse DFT (IDFT), which can be used to transform the individual frequencies 
back into the time domain, is shown in Eq. 12.2. The formula differs from the normal DFT 
equation only by one sign and one factor.
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In principle, formulas 12.1 and 12.2 can be used directly for an implementation of the 
DFT, or IDFT. However, in computer science, an implementation has gained acceptance 
that is traced back to an article by James Cooley and John Tuckey (Cooley and Tukey 
1965). This implementation uses various properties of the complex numbers to speed up 
the computation of the DFT. For this reason, the method is called Fast Fourier Transform 
(FFT). A number of FFT variants exist, the simplest and most intuitive of which will be 
implemented here.

To speed up the DFT, the sum in formula 12.1 is first split into two summands, as 
shown in Eq. 12.3, adding up the even and odd parts of the formula respectively. A closer 
look then reveals that the exponent of the e-function can first be multiplied out and then 
decomposed to give a product of two e-functions. The exponent of the first e-function is 
then only dependent on n and can be drawn before the sum. After the decomposition, the 
second e-function is identical to the one in the sum of the even parts.
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If a measurement series with N elements is to be transferred into the frequency space 
by the FFT, two data series must be generated from the data series, each consisting only of 
the even or odd elements of the original data series. These are subdivided again, and again, 
and again, until the data series consist of only a single element. In this case, k is always 0 
and the e-function takes the value 1. Thus, the Fourier transform of a one-element data 
series is the element itself. To then form the Fourier transforms for longer data series, only 
the sum of the even element with the product of gn and the odd element must be formed 
according to formula 12.3.

The principle according to which this algorithm works is called Divide & Conquer. A 
problem is divided into smaller problems until the solution of the smallest subproblem is 
quite simple and the more complex solutions can be assembled from the parts. The imple-
mentation of this concrete algorithm can be realized very easily and directly with a recur-
sive function.

Basically, the procedure uses two values from the original data series to generate a new, 
complex value. The assumption is obvious that only half the size of the data series can be 
generated in this way, because how should the information content be doubled by the 
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procedure? Eq. 12.4 examines the case in which the value n is in the upper half of the data 

series, i.e. shifted by the value N

2
.
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In the equation, the value n
N

+
2

 is inserted instead of n, otherwise the equation remains 

unchanged. Again, the exponents of the e-functions can be multiplied out and decom-
posed, so that the original e-functions reappear. The exponents of the split-off e-functions 
then consist only of constant parts, or the value k, which, however, is always multiplied by 
2π, so that the result of the e-function is always a constant 1 or −1.

If the function proportions are then combined as in Eq. 12.3, it can be seen that the 
second half of the data can be calculated quite easily from the first half by simply convert-
ing the sum to a difference.

For the procedure to work, the size of the data series cannot, of course, be chosen com-
pletely freely, because the repeated halving of the data series must always lead to one-
element data series in the end. The size N of the data series must therefore always be a 
power of two. In most cases, however, this can be ensured without any problems, since it 
can already be taken into account when planning an experiment.

In the articles by Goovaerts et al. (1976), by Thakor et al. (1983) or in the description 
of the Pan-Tompkins algorithm for the detection of the QRS complex (Pan and Tompkins 
1985), it is indicated that the QRS complex can be found in a frequency range of 5–15 Hz. 
After the read-in data set has been decomposed into its frequencies using the FFT, the cor-
responding frequency band can be filtered out using a band-pass filter.

Finally, the data must be back-transformed using inverse FFT (IFFT) to represent the 
QRS complex.

12.3.1	� Extension of the Software Architecture

Although analyzing data is a very challenging task from a mathematical point of view, 
developing a software architecture for the example program in this book is, however, very 
straightforward. Figure  12.12 shows an activity diagram that describes the processes 
within the Analyze ECG Data activity node.
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act Analyze ECG data

Analyze ECG data

Prepare data

FFT

Frequencies Frequencies

QRS filter IFFT

Data set of size

Fig. 12.12  Activity diagram for the analysis of ECG data

After the node has been activated, the read-in data must first be prepared to enable the 
application of the Fast Fourier Transformation. For this purpose, the size of the read-in 
data set must be determined and the next smaller power of two must be found. Then, a 
portion of the original data must be transformed into a new data set whose size corre-
sponds to a power of two and which is either smaller than or equal to the original size.

Of course, it would also be possible here to allow the user to select between different 
window sizes and an exact positioning of the data window, but the software should not 
become unnecessarily complicated. A check whether data have already been read in is not 
necessary, since in the worst case a data set of length 0 would be transformed.

After the data has been processed, the Fast Fourier Transform is performed on the new 
data set. This transforms the time signal into its frequencies. Now a band-pass filter can be 
used, which fades out all frequencies outside the range of 5–15 Hz.

Finally, the frequencies must be converted back into a temporal signal by the IFFT, in 
which the QRS complex should now be more prominent. This ends the activity of the node.

The class diagram must be extended with some additional functions, as shown in 
Fig. 12.13.

First of all, the class ECGData has to be extended by two operations, which realize the 
normal and the inverse Fast Fourier Transformation. In addition, a function for the QRS 
filter is to be implemented. All three functions require an array of complex numbers on 
which they can perform their operations.

The individual steps of the calculation are to be saved in the Signal class so that the data 
can be printed later. Two new attributes are added for this purpose. The array m_freq is to 
store the frequencies after the FFT, while the array m_processedData is to save the result 
of the entire conversion. Both arrays must be able to store complex numbers.
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Fig. 12.13  Second development of the class diagram for ECG analysis

12.3.2	� Implementation of the Fast Fourier Transformation

The changes in the Signal class are easy to implement because only two new arrays need 
to be added. Listing 12.7 shows the changes in the header file of the Signal class.
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Listing 12.7  The Signal class (Signal.h)

 1 // ...
 2 #include <string >
 3 #include <vector >
 4 #include <complex >
 5 using namespace std;
 6
 7 class Signal
 8 {
 9 public:
10 Signal ();
11 ~Signal ();
12
13 // Signal Specification Line Data
14 // ...
15
16 // Signal data
17 vector <int> m_data;
18
19 // Frequency spectrum
20 vector <complex <double >> m_freq;
21
22 // Processed data
23 vector <complex <double >> m_processedData;
24 };

To be able to store the results, arrays of complex numbers have to be created. For the 
arrays, the data type vector has already been introduced, which is provided by the standard 
template library. In addition, the data type complex is now to be used, which can store 
complex numbers.

The declaration of the variable m_freq can now be interpreted as creating a complex 
number complex〈double〉 whose real and imaginary parts are stored in variables of type 
double. The declaration vector 〈complex 〈double〉〉 m_freq; creates an array of such com-
plex numbers and gives the array the name m_freq.

The .cpp file of the Signal class is shown in Listing 12.8.

Listing 12.8  The Signal class (Signal.cpp)

1 // ...
2
3 Signal ::~ Signal ()
4 {
5 m_data.clear ();
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6 m_freq.clear ();
7 m_processedData.clear ();
8 }

The changes are limited to the destructor of the Signal class, in which the new data 
arrays are now also cleared before the object is deleted.

A number of new function declarations must first be created in the ECGData class. 
Listing 12.9 shows the changes in the class header file.

Listing 12.9 The ECGData class (ECGData.h)

 1 #include "Signal.h"
 2 #include <string >
 3 #include <vector >
 4 #include <map >
 5 #include <complex >
 6
 7 using namespace std;
 8
 9 class ECGData
10 {
11 public:
12 // ...
13
14 void analyze ();
15
16 // ...
17 private:
18 // ...
19
20 // Fast Fourier Transformation
21 void fft(vector <complex <double >> &signalData );
22 void ifft(vector <complex <double >> &signalData );
23 void ifft_r(vector <complex <double >> &signalData );
24
25 // Filter
26 void QRSFilter(vector <complex <double >> &signalData );
27
28 // ...
29 };

Essentially, the functions are generated that were already planned in the software archi-
tecture. However, the IFFT was split into two functions, since their calculation must be 
implemented recursively. This is done in the function ifft_r. Finally, however, the result 
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must be multiplied by a factor. For this purpose, the function ifft was implemented, which 
is also used for calling the IFFT.

All functions use references to arrays of complex numbers as transfer parameters, as 
they are already used in the Signal class. The references are necessary so that the changes 
within the functions also remain outside the function.

The changes in the .cpp file are again very extensive. The presentation in Listing 12.10 
is therefore limited to the newly added functions. An explanation of the individual func-
tions follows after the program.

Listing 12.10  The ECGData class (ECGData.cpp)

 1 #include "stdafx.h"
 2 #include "ECGData.h"
 3 #include <iostream >
 4 #include <fstream >
 5
 6 using namespace std;
 7
 8 const double M_PI = 3.14159265358979323846;
 9
10 // ...
11
12 void ECGData :: analyze ()
13 {
14 // Run and conversion of all loaded
15 // Signals
16 for (int i = 0; i < m_signalList.size (); i++)
17 {
18 // Calculation of the next lower power of two
19 int twoExp = log2(m_signalList[i]. m_data.size ());
20 int maxIndex = pow(2, twoExp );
21
22 // Create an auxiliary array for the data
23 vector <complex <double >> signalData;
24
25 // Copying the data series up to the calculated
26 // Power of two into the auxiliary array
27 for (int j = 0; j < maxIndex; j++)
28 {
29 signalData.push_back(
30 (double)m_signalList[i]. m_data[j] /
31 m_signalList[i]. m_ADCGain );
32 }
33
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34 // Carrying out the FFT
35 fft(signalData );
36
37 // Saving the result in the data series
38 m_signalList[i]. m_freq = signalData;
39
40 // Applying the QRS filter
41 QRSFilter(signalData );
42
43 // Back transformation of the data
44 ifft(signalData );
45
46 // Saving the result in the data series
47 m_signalList[i]. m_processedData = signalData;
48 }
49
50 cout << "Analysis completed successfully !"
51 << endl << endl;
52
53 cin.get ();
54 }
55
56 void ECGData ::fft(vector <complex <double >> &signalData)
57 {
58 // Termination for one-element data series
59 if (signalData.size () == 1) return;
60
61 // Auxiliary arrays for even and odd
62 // Elements
63 vector <complex <double >> odd;
64 vector <complex <double >> even;
65
66 // Auxiliary variable for half the array size
67 int N = signalData.size () / 2;
68
69 // Copying the even and odd elements
70 // in the auxiliary arrays
71 for (int i = 0; i < N; i++)
72 {
73 even.push_back(signalData [2 * i]);
74 odd.push_back(signalData [2 * i + 1]);
75 }
76
77 // Recursive call of the FFT
78 fft(even );
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79 fft(odd);
80
81 // Combining the results
82 for (int i = 0; i < N; i++)
83 {
84 complex <double> g = polar (( double )1,
85 (double)-M_PI * i / N);
86 signalData[i] = even[i] + g * odd[i];
87 signalData[i + N] = even[i] - g * odd[i];
88 }
89 }
90
91 void ECGData :: ifft(vector <complex <double >> &signalData)
92 {
93 // recursive calculation of the IFFT
94 ifft_r(signalData );
95
96 // Multiplication of the result by the
97 // Prefactor 1 / N
98 for (int i = 0; i < signalData.size (); i++)
99 {
100 signalData[i] /= signalData.size ();
101 }
102 }
103
104 void ECGData :: ifft_r(vector <complex <double >> &signalData)
105 {
106 // Termination for one-element data series
107 if (signalData.size () == 1) return;
108
109 // Auxiliary arrays for even and odd
110 // Elements
111 vector <complex <double >> odd;
112 vector <complex <double >> even;
113
114 // Auxiliary variable for half the array size
115 int N = signalData.size () / 2;
116
117 // Copying the even and odd elements
118 // to the auxiliary arrays
119 for (int i = 0; i < N; i++)
120 {
121 even.push_back(signalData [2 * i]);
122 odd.push_back(signalData [2 * i + 1]);
123 }
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124
125 // Recursive call of the IFFT
126 ifft_r(even );
127 ifft_r(odd);
128
129 // Combining the results
130 for (int i = 0; i < N; i++)
131 {
132 complex <double> g = polar (( double )1,
133 (double)M_PI * i / N);
134 signalData[i] = even[i] + g * odd[i];
135 signalData[i + N] = even[i] - g * odd[i];
136 }
137 }
138
139 void ECGData :: QRSFilter
140 (vector <complex <double >> &signalData)
141 {
142 // Auxiliary variable for half the array size
143 int N = signalData.size () / 2;
144 // Calculation of the index for 5Hz
145 int i_min = 5 * signalData.size () /
146 m_sampling_frequency ;
147 // Calculation of the index for 15 Hz
148 int i_max = 15 * signalData.size () /
149 m_sampling_frequency ;
150
151 // Blanking of all frequencies outside the
152 // desired spectrum
153 for (int i = 0; i < N; i++)
154 {
155 if (i < i_min || i > i_max)
156 {
157 signalData[i] = 0;
158 signalData[i + N] = 0;
159 }
160 }
161 }
162
163 // ...

analyze()
In the analyze function, the list of all loaded signals must be traversed in order to perform 
the analysis on all data sets.

12.3  Data Analysis
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To do this, the power of two must first be found that represents the size of the data array 
as well as possible. From this, the index can be calculated up to which the data can be 
evaluated.

All elements of the record up to this index are stored in an auxiliary array of complex 
numbers, which is required for further processing.

Since the stored data is raw data resulting from digitization by the AD converter, it must 
still be divided by the AD increment to restore the value of the original analog signal.

Now the FFT can be performed to calculate the frequencies of the signal. These are to 
be saved for later output in the Signal class.

The QRSFilter function then restricts the frequencies to the range of 5–15 Hz and the 
ifft function converts them back into a time signal. This result is also to be saved for 
later output.

fft(vector <complex double >> & signalData)
The function fft is based on an implementation of Rosettacode (2019) and puts into prac-
tice the considerations from Eqs. 12.3 and 12.4.

If the signal is divided further and further into even and odd elements, one-element data 
series will eventually result. In this case, the calculation may terminate because the result 
corresponds to the one element.

Otherwise, two auxiliary arrays must be created in which the even and odd elements 
can be saved. This is done using a for loop that splits the elements into the auxiliary arrays 
according to their position.

The FFT can then be applied recursively to the two subarrays. If the arrays still consist 
of several elements, they are now split. Otherwise, the one element is returned as the result.

Finally, the results of the recursive calls are combined into a complex number. For this 
purpose, the formula from Eq. 12.3 is used for the first half of the data, while at the same 
time the results of the second half of the data are calculated using Eq. 12.4.

ifft(vector <complex <double>> & signalData)
To calculate the inverse FFT, a very similar procedure must be gone through as with the 
normal FFT. However, the result must be multiplied once by the factor 1

N
.

For this reason, the procedure was distributed over two functions. In the function ifft, 
the function ifft_r is called first, which (similar to the normal FFT) initially takes over the 
recursive calculation of the data.

Finally, each element of the data series is divided by the value N within a loop.

ifft_r(vector <complex <double >> & signalData)
The calculation of the recursive part of the inverse FFT is identical to that in the function 
fft, except for one sign.
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QRSFilter(vector <complex <double >> & signalData)
To limit the frequency spectrum, different methods can of course be used. In professional 
software, it would make sense to implement different tools individually in order to then 
combine them into more complex processes.

In this example, a separate function could be written for a high and low pass filter. The 
QRS filter would then only have to execute both in succession to achieve the desired band-
pass effect.

In this example, however, a specialized function is to be developed.
For this purpose, the indices at which the frequencies 5 Hz and 15 Hz are located are 

calculated first.
The FFT assumes in its calculation that the transferred data series comprises exactly 

one second. In this case, exactly the value for the frequency 1 Hz would also be found at 
index position 1.

If the recorded signal is longer than one second, the index position must be divided by 
the number of recorded seconds to obtain the frequency. The number of seconds results 
from the total number of data (signalData.size()) divided by the number of recordings per 
second (m_sampling_frequency).

So the equation can be rearranged to calculate the index position from the desired 
frequency.
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i
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·
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.
·
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m sampling frequency

� �
_ _ 	 (12.5)

Finally, only all values outside of these index positions must be set to 0. Note that this 
process must be applied to the upper and lower half of the data as before.

12.4	� Exporting the Results

When exporting the results, it is important to choose an export format that can be pro-
cessed as easily as possible. The .csv format is a good choice here. The abbreviation stands 
for Comma-Separated-Values and describes a data format in which different values can be 
sorted in columns by separating them with commas.

In fact, however, the separation of values often takes place by other characters as well, 
and most spreadsheet programs allow you to freely choose the separator when importing 
such a file. Common separators are semicolons or tabs.

During import and data analysis, three different data sets were generated for each signal 
to be exported together.

•	 The raw data from the measurement, which must be converted to analog data 
before export.

•	 The frequencies calculated by the Fast Fourier Transform.
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•	 The back-transformed data after the QRS filter was applied.

All three records are in arrays.
Since most spreadsheet programs assume that long data sets are in columns, the data 

should be arranged accordingly.

12.4.1	� Extension of the Software Architecture

In order to be able to export the data, a file must be opened, as was already the case with 
the data import. This can lead to various errors, even if the file to be written to is newly 
created.

For example, what happens if the file already exists, no write permissions have been 
granted in the destination folder, and so on.

Figure 12.14 shows the activity diagram for the Export Results activity node.
First, an attempt is made to open the .csv file. If this fails, an error output must occur 

and the processing of the activity must be terminated.
Otherwise, you can continue with the export of the data.
The class diagram does not need to be changed because the storeResults function was 

planned into the architecture from the beginning.

12.4.2	� Implementation of the Export Function

Listing 12.11 shows the adjustments made to the header file to export the data.

act Export results

Export results

open .csv file

File

p.i.e
[File

open]
Export data

Error output

File name

[otherwise]

Fig. 12.14  Activity diagram for exporting the results
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Listing 12.11  The ECGData class (ECGData.h)

 1 #include "Signal.h"
 2 #include <string >
 3 #include <vector >
 4 #include <map >
 5 #include <complex >
 6
 7 using namespace std;
 8
 9 class ECGData
10 {
11 public:
12 // ...
13
14 void storeResults(string filename );
15
16 // ...
17 private:
18 // ...
19
20 // Output
21 void printHeadline(fstream &file ,
22 string unit ,
23 string postfix );
24
25 // ...
26 };

In principle, the export can be handled in a single function. However, in order to 
improve clarity, the function printHeadline has been added, which is intended to allow 
standardized headlines to be printed for the table.

Listing 12.12 shows the implementation of the export function in the .cpp file of the 
ECGData class. The explanation of the functions follows the program text.

Listing 12.12  The ECGData class (ECGData.cpp)

 1 #include "stdafx.h"
 2 #include "ECGData.h"
 3 #include <iostream >
 4 #include <fstream >
 5
 6 using namespace std;
 7
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 8 const double M_PI = 3.14159265358979323846;
 9
10 // ...
11
12 void ECGData :: storeResults(string filename)
13 {
14 // Variable declaration
15 fstream file;
16
17 // Opening the file for export
18 file.open(filename , ios::out);
19
20 // If the file could be opened
21 if (file.is_open ())
22 {
23 // Output of the headings for the
24 // three data blocks
25 printHeadline(file , "t (s)", "");
26 printHeadline(file , "f (HZ)", "_f ");
27 printHeadline(file , "t (s)", "_p ");
28
29 file << endl;
30
31 // Run through all read-in data records
32 for (int i = 0; i < m_numberOfSamples ; i++)
33 {
34 // Output of the time in seconds
35 file << double(i) / m_sampling_frequency << ";";
36
37 // Output of the read-in data for
38 // any signal
39 for (int j = 0; j < m_signalList.size (); j++)
40 {
41 // Confirmation prompt , so that the length of the
42 // data record can never be exceeded
43 // 
44 if (i < m_signalList[j]. m_data.size ())
45 file << double(m_signalList[j]. m_data[i]) /
46 m_signalList[j]. m_ADCGain << ";";
47 else
48 file << ";";
49 }
50
51 // Frequency output
52 file << double(i) * m_sampling_frequency /

12  Electrocardiography



269

53 m_numberOfSamples << ";";
54
55 // Output of the calculated frequency spectra
56 // for each signal
57 for (int j = 0; j < m_signalList.size (); j++)
58 {
59 // Confirmation prompt , so that the length of the
60 // half of the data set can never be exceeded
61 // 
62 // Data in the second half 
63 // do not bring any new insights
64 if (i < m_signalList[j]. m_freq.size () / 2)
65 file << double(abs(m_signalList[j]. m_freq[i]))
66 << ";";
67 else
68 file << ";";
69 }
70
71 // Output of the time in seconds
72 file << double(i) / m_sampling_frequency << ";";
73
74 // Output of the retransformed data
75 // for each signal
76 for (int j = 0; j < m_signalList.size (); j++)
77 {
78 // Confirmation prompt , so that the length of the
79 // data record can never be exceeded
80 //
81 if (i < m_signalList[j]. m_processedData.size ())
82 file << double(m_signalList[j].
83 m_processedData[i].real ())
84 << ";";
85 else
86 file << ";";
87 }
88
89 file << endl;
90 }
91
92 // Closing the open file
93 file.close ();
94
95 cout << "Data export completed successfully !"
96 << endl << endl;
97
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98 cin.get ();
99 }
100 else
101 {
102 // Error message
103 cout << "Data export failed !"
104 << endl << endl;
105
106 cin.get ();
107 }
108 }
109
110 void ECGData :: printHeadline(fstream &file ,
111 string unit ,
112 string postfix)
113 {
114 // Output of the unit for the x-axis
115 file << unit << ";";
116
117 // Output of the headings of the individual signals
118 for (int j = 0; j < m_signalList.size (); j++)
119 {
120 file << m_signalList[j]. m_description
121 << postfix << ";";
122 }
123 }
124
125 // ...

storeResults(string filename)
The function first tries to open the file whose name was entered by the user. If this is suc-
cessful, the various data records are exported. Otherwise, the function issues an error mes-
sage and cancels further processing.

The function must always process a row completely before jumping to the next row, 
since a return to a previous row would be extremely time-consuming. Since the data is to 
be in the columns, this means that the first element for each data record must be printed 
first, then the second, and so on.

The headings are to be found in the first row. For this reason, a series of headings is 
created for each data record. The first data set consists of the read-in signal data for each 
signal. The unit of the x-axis is the time in seconds. The second data set consists of the 
calculated frequencies for each signal. The unit of the x-axis is the frequency in hertz. In 
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addition, each heading should have the suffix _f to indicate that it is the frequencies. The 
third data set is the back-transformed signals after the QRS filter. The unit of the x-axis is 
again the time in seconds. All headings should have the addition _p (for processed).

All possible indices are now run through in an outer loop. The maximum value m_num-
berOfSamples was read in from the MIT file.

First, the x-coordinate of the first data set is calculated. The time in seconds results 
from the current index divided by the number of signals per second.

After that, the i-th element of the signal data is printed for each signal. These are still 
divided by the AD increment to obtain the values of the analog signal. A safety query pre-
vents access beyond the end of the array, should an array be unexpectedly shorter than 
the others.

The x-coordinates of the second data set are the frequencies. These result from the cur-
rent index divided by the length of the recording in seconds. This is calculated by dividing 
the number of signals by the number of signals per second.

For each signal, the data is now printed. Since the frequencies are complex numbers, 
the real and imaginary parts would have to be printed. Instead, the abs function calculates 
the magnitude of the complex number. This corresponds to the amplitude of the oscillation 
at the corresponding frequency.

For this data set, only half of the data is printed because the second half has symmetry 
to the first half.

For the third data set, the time in seconds is calculated again to determine the values of 
the x-axis.

Here, too, the data are printed individually for each signal. After the reverse transforma-
tion, the imaginary parts of all numbers should have the value 0. For this reason, only the 
real part of the complex numbers is printed by the function .real().

Individual data are separated from each other by semicolons. This ensures that later 
each value ends up in its own column. The end of a line is inserted with endl.

After all data has been printed, the file is closed and a success message is printed.

printHeadline(fstream&file, string unit, string postfix)
The output of the headings always follows the same pattern, therefore this functionality 
has been outsourced to a separate function.

The parameters of the function describe the file to be written to, the unit of the values 
of the x-axis and a supplementary text to be appended to the normal name of the heading.

First the unit of the x-axis is printed and separated from the other outputs by a semico-
lon. Then the descriptions of each signal read in are printed as a heading and provided with 
the supplementary text. The separation of the individual headings is again done by 
semicolons.

No endl is printed in the function, since the function should not determine the end of a 
line. This allows the output of the headings for the three data sets in one line.

12.4  Exporting the Results



272

12.4.3	� Presentation of the Results

Now that all requirements for the sample program have been met, a look at the finished 
system is to be taken. In principle, compiling should already be done frequently during the 
development of a program in order to detect typing errors in the program as early as pos-
sible. In addition, the area to be searched is significantly smaller if the program is com-
piled frequently.

But after the program has been compiled, it does not necessarily do what it is supposed 
to do. Extensive tests of the functionality should therefore always be planned. It is best to 
plan standardized tests that cover every part of the program if possible. Since the program 
developed here is very simple, only each part of the program needs to be called once to 
cover all parts of the program. In addition, however, at least one attempt should be made 
at each input to willfully enter something incorrect.

The program reports with the main menu and a prompt:

Welcome to the ECG analysis program!
The following options are available to you:
1. Load ECG data
2. Analyze ECG data
3. Export results
4. Exit program
Please make your selection:

A small bug has already been built into the prompt so you can find and fix something.
After the program has been tested, we will have a look at the results. Figure 12.15 

shows an ECG signal downloaded from the Physionet website (Goldberger et al. 2000) 
from the Physikalisch-Technische Bundesanstalt (PTB) database (Bousseljot et al. 1995). 
The figure shows an I-extremity derivative in a 12-lead ECG according to Eindhoven.

As can be clearly seen, the signal is very noisy and the individual phases of the QRS 
complex can only be recognised with difficulty, even with the human eye. For this reason, 

Fig. 12.15  Representation of a noisy I derivative to Eindhoven
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the frequency spectrum, which is shown in Fig. 12.16, will first be calculated with the aid 
of the program developed here.

The higher a value is displayed on the y-axis, the greater is the amplitude of the oscil-
lation with the corresponding frequency. The sum of all oscillations results in the original 
signal. It can be clearly seen that the oscillations with the greatest amplitude are to be 
found in the range up to approx. 15 Hz. Part of this range is cut out by the QRS filter and 
the sum of the remaining oscillations gives a new signal, which is freed from higher fre-
quencies with lower amplitude. The result is shown in Fig. 12.17.

Overall, the amplitude of the oscillation has decreased, but the individual heartbeats 
with the QRS complexes resulting in the signal can now be detected much more easily.

If this were a professional software, the project would of course be far from finished. 
More analyses can be implemented and a graphical interface that simplifies the operation 
would certainly also be an advantage. Computer science is a very broad field with many 
specializations and with this book you have only taken the first step into this world.

I hope you have fun and good luck exploring the world of computer science!

Fig. 12.16  Plot of the amplitude of the frequency spectrum of the I derivative

Fig. 12.17  Representation of the I-derivation after application of the QRS filter
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�Solutions

�Chapter 5

 
�Variable Definition

In order to create a variable in a C++ program, at least two pieces of information are 
required.

•	 First, the data type must be known so that it is determined how much memory is 
required for the variable and how the data it contains is to be interpreted.

•	 Secondly, a unique name must be defined for the variable so that the compiler can rec-
ognize when the variable is to be accessed.

�Memory
The individual variable types occupy the following amount of memory:

	(a)	 A char occupies exactly 1 byte of memory.
	(b)	 For a short, the size depends on the processor used, but is usually in the range of 2 to 

8 bytes and is less than or equal to an int.
	(c)	 The memory usage of a float s is 4 bytes.
	(d)	 The data type int behaves like the data type short. Depending on the processor, the 

data type has a size of 2 to 8 bytes, and is greater than or equal to short.
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	(e)	 A variable of type void cannot be created because the variable type does not occupy 
any memory.

�Typecast
A typecast makes a variable of type A look like a variable of type B for the duration of an 
operation. In C++, a typecast is created by writing the new variable type in round brackets 
before the value to be interpreted. An example looks like this:

  / ...
  double value = 3.5;
  cout << (int)value << endl;
  // ...

 

�Enumerations
Constant values are often required in programs to code different states. It quickly becomes 
confusing if only numbers are used, as it is easy to forget what a number stands for. If the 
numbers are stored in variables, the programmer is still responsible for ensuring that there 
are no duplicates in the numbers.

An enumeration allows the programmer to assign names to constant values and let the 
C++ language manage the associated numbers. This increases the readability of programs, 
which are also easier to maintain as a result.

�Variable Definition in C++
A declaration merely tells the compiler that a variable exists somewhere that has the cor-
responding name and type. However, this variable is not created by the declaration. If the 
variable is only declared, but never defined, it cannot be used. The definition ensures that 
the variable with the specified type and name is actually created somewhere in memory so 
that it can be worked with. With the help of initialization, a variable can be given a defined 
start value when it is defined.

�Number Systems
The reasoning is very easy if we look again at the process by which a number in the base 
B number system is converted into a decimal number. In this process, the individual digits 
of the number are multiplied in sequence by powers of base B and added up. Generally 
speaking, the formula is
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where the numbers to zn − 1 represent the digits of the z0 number. So for the number 10 in 
every number system the following applies

	
10 1 0 1

10
10
1

10
0

10
1

10� � � � � �
B

B B B B· · · 	

�The Duotrigonal Number System
As with the hexadecimal number system, letters must be added to the individual digits to 
assign all 32 numbers to a single digit. The table reads:

Duotrigesimal Decimal Duotrigesimal Decimal

 

�Print the Memory Requirement
In order to output the individual variable types with their memory requirements, a series 
of cout instructions must be used. The first output is always the text of the variable name 
with an equal sign, followed by the sizeof statement, which also takes the variable type as 
a parameter.

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     cout << "Memory requirements of variable :" << endl;
 8     cout << "bool = " << sizeof(bool) << endl;

Solutions
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 9     cout << "char = " << sizeof(char) << endl;
10     cout << "short = " << sizeof(short) << endl;
11     cout << "int = " << sizeof(int) << endl;
12     cout << "long = " << sizeof(long) << endl;
13     cout << "long long = " << sizeof(long long) << endl;
14     cout << "float = " << sizeof(float) << endl;
15     cout << "double = " << sizeof(double) << endl;
16     cout << "long double = " << sizeof(long double) << endl;
17
18     return 0;
19   }

�Print the ASCII Codes
To implement the output, the line from Listing 5.2 can be adopted directly, in which the 
number 97 is converted to a value of type char. The variable can be replaced by a constant 
number. After that, the line only has to be copied a few times in succession and slightly 
modified.

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     cout << 97 << "\t= " << (char )97 << endl;
 8     cout << 98 << "\t= " << (char )98 << endl;
 9     cout << 99 << "\t= " << (char )99 << endl;
10     cout << 100 << "\t= " << (char )100 << endl;
11     cout << 101 << "\t= " << (char )101 << endl;
12     cout << 102 << "\t= " << (char )102 << endl;
13     cout << 103 << "\t= " << (char )103 << endl;
14     cout << 104 << "\t= " << (char )104 << endl;
15     cout << 105 << "\t= " << (char )105 << endl;
16
17     return 0;
18   }

�Number System Conversion
The solutions for the tasks are as follows:
(a)

27 2 13 1

13 2 6 1

6 2 3 0

3 2 1 1

1 2 0 1
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27 00011011
10 2
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(b)
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(d)
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127 87
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�Binary Addition and Subtraction
The solutions always follow the same scheme. First, the numbers must be converted into 
binary numbers. Then follows a binary addition and the reverse conversion.

In both directions, if the sign is negative, do not forget the two’s complement.
	(a)	 Conversion of decimal numbers into the binary number system:

47 2 23 1

23 2 11 1

11 2 5 1

5 2 2 1

2 2 1 0

1 2 0 1

80 2 40 0
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2 20 0

20 2 10 0

10 2 5 0

5 2 2 1

2 2 1 0

1 2 0 1
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Addition of the two binary numbers using the school method:

0 0 1 0 1 1 1 1

0 1 0 1 0 0 0 0

0 1 1 1 1 1 1 1
0 0 0 0 0 0 0+

	

Conversion of the calculated binary number into the decimal number system:

01111111 0 2 12 12 12 12 12 12 12
2

7 6 5 4 3 2 1 0� � � � � � � � � �· · · · · · · · 	
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01111111 127
2 10
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Comparison of the results in decimal numbers:

47 80 127� � 	

	(b)	 Conversion of decimal numbers into the binary number system:

4 2 2 0

2 2 1 0

1 2 0 1

73 2 36 1

36 2 18 0
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9 2 4 1
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Conversion of the negative number with the help of the two’s complement:

73 01001001

10110110

1 10110111

73 1

10 2
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00110111
2

� � 	

Addition of the two binary numbers using the school method:

0 0 0 0 0 1 0 0

1 0 1 1 0 1 1 1

1 0 1 1 1 0 1 1
0 0 0 0 1 0 0+

	

Since the result starts with a 1, it must be a negative number. This is converted to a positive 
number using the two’s complement:

10111011

01000100

1 01000101
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� �

�� � � �
invert

	

Convert the calculated binary number to the decimal number system (keeping in mind that 
the result of the calculation was negative):

01000101 0 2 12 0 2 0 2 0 2 12 0 2 12
2

7 6 5 4 3 2 1 0� � � � � � � � � �· · · · · · · · 	

01000101 69
2 10

� � � � � 	
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Comparison of the results in decimal numbers:

4 73 69� � � 	

�Chapter 6

 
�Comparisons

If two expressions A and B are given in C++, the comparisons are done with logical com-
parison operators.

	(a)	 A == B checks whether two expressions are equal. So the expression asks a question. 
This should not be confused with A = B, this sets two expressions equal. This is called 
value assignment.
	(b)	 A <= B checks whether the expression A is less than or equal to the expression B.
	(c)	 A !  = B checks whether an expression A is not equal to an expression B.

�Instruction Blocks
A statement block consists of several statements enclosed in curly braces.

 

�Comparisons
The expression is A = B used to assign a value. This means that the expression A on the left 
side is assigned the value B on the right side.

In contrast to this is A =  = B a logical expression. This expression is true if and only 
if the value of A is equal to the value of B. Otherwise, the expression is false.

�Branches
The first instruction that can be used to create program branches in C++ is the if instruc-
tion. With the help of this statement, a logical expression can be evaluated. If the expres-
sion is true, other instructions can be executed than if the expression is false. Thus, an if 
statement can be used to distinguish between two different cases.

The second statement is the switch-case statement, which can distinguish between sev-
eral cases. However, there is the restriction that the different cases must be distinguished 
by constant integer values. Comma numbers or variable expressions are not allowed. 
However, single text characters in char variables are permitted.
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�if-statement
First, an activity diagram should be developed for the application.

act Exercise 6.5

Enter height
Size

Input
weight

Weight

Calculate
BMI

[else] [else]

[else]

Underweight

Normal weight

Overweight

Obesity
 

To implement the program, all that remains to be done now is to convert the diagram 
into code . The types and the names of the variables are already given in the task and the 
text of the output can be freely chosen. The formula for calculating the body mass index is 
also already included in the task.

With the case distinction at the end, care must be taken that the later cases, as can 
bmi < 25 only occur if the previous cases have already been excluded. For this reason, later 
if statements must be placed in the else branch of the previous if statement.

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Variable definition and initialization
 8     double k = 0.0;
 9     double g = 0.0;
10
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11     // User input size
12     cout << "Please enter your "
13          << "body size in meters!" << endl;
14     
15 
16     cin >> k;
17
18     // User input weight
19     cout << "Please enter your weight"
20          << "in kilograms!" << endl;
21  
22 
23     cin >> g;
24
25     // Formula from the task
26     double bmi = g / (k * k);
27
28     // Case distinction
29     if (bmi < 18.5)
30       cout << "underweight" << endl;
31     else if (bmi < 25)
32       cout << "normal weight" << endl;
33     else if (bmi < 30)
34       cout << "overweight" << endl;
35     else cout << "obesity" << endl;
36
37     return 0;
38   }

�switch-case Statement
First, an activity diagram should be developed for the application.

The task can be easily solved with the help of the activity diagram and the task defini-
tions. Thus, the enumeration at the beginning of the program can be taken to a large extent 
from the task text. The variable type for the input variable is also mentioned, as well as part 
of the output for the user.

Solutions



284

act Exercise 6.6

Enter
floor 

Floor
[Floor 
CELLAR]

GROUND FLOOR] 
[Floor 

[Floor 
LABS
Floor 
OFFICES

[else]

Underground

Ground 

Overground

Wrong 
input  

With the switch-case statement, two cases can be combined. This is made clear in the 
task by the fact that two elements of the enumeration are to produce the same output.

The hint Wrong input! for every other case refers to the possibility of the switch-case 
statement to process default cases as well.

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   // Enumeration from the task
 6   enum house
 7   {
 8     CELLAR ,
 9     GROUNDFLOOR ,
10     LABS
11     OFFICES
12   };
13
14   int main ()
15   {
16     // Variable definition and initialization
17     int e = 0;
18
19     // User input
20     cout << "Please select the floor, "
21          << "you want to go to !" << endl;
22     cout << "Cellar: " << CELLAR << endl;
23     cout << "Ground floor: " << GROUNDFLOOR << endl;
24     cout << "Labs: " << LABS << endl;
25     cout << "Offices: " << OFFICES << endl;
26     cin >> e;
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27
28     // Case discrimination with switch
29     switch (e)
30     {
31     case CELLAR:
32       cout << "underground" << endl;
33       break;
34     case GROUNDFLOOR:
35       cout << "Ground level" << endl;
36       break;
37     // Since the output is identical, you can
38     // the cases are combined
39     // Fallthrough
40     case LABS:
41     case OFFICES:
42       cout << "overground" << endl;
43       break;
44     // For the case of any input
45     default:
46       cout << "Wrong input !" << endl;
47       break;
48     }
49
50     return 0;
51   }

�Chapter 7

 
�Loops

In C++, there are the following three loops, each of which belongs to the head- or foot-
controlled category:

•	 head controlled
–– while-loop
–– for-loop

•	 foot controlled
–– do-while loop
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�Use Cases

•	 while-loop: Reading a file from disk, or reaching a convergence condition in a numeri-
cal algorithm. In both cases, the termination condition is clearly defined, but the num-
ber of runs is unknown.

•	 do-while loop: A user query where not every input is allowed. Again, the termination 
condition is clear, but the number of passes depends on the user and is unpredictable. 
The loop body must also be run through at least once.

•	 for-loop: The for loop is a counting loop and is particularly suitable when values must 
be counted up or down from a certain start value with a fixed step size to a target value. 
Examples are outputs of function values, or working with fields. However, the latter 
will be discussed in the next chapter.

 

�Loop Types
The difference between head- and foot-controlled loops lies in the time at which the ter-
mination condition is evaluated.

In a head-controlled loop, the evaluation of the termination condition takes place in the 
loop head. This means before the loop body is reached. For this reason, it is possible that 
the loop body is never run through.

In a foot-controlled loop, on the other hand, the loop body is run through first before the 
termination condition is checked. The loop body is therefore always run through at least 
once, regardless of whether the termination condition is fulfilled at the beginning or not.

�Endless Loops
Each loop has a termination criterion that is evaluated either before or after the loop body. 
As long as the termination criterion is not fulfilled, the loop runs.

It follows that a change must occur during the run of a loop so that the termination 
criterion is fulfilled at some point. If this is not the case, for example, because a variable 
no longer changes its value or no more data is read from a file, an infinite loop is created 
whose termination criterion is never met.

 

�Elevator
To achieve the desired functionality, the program only needs to be modified slightly. A do-
while loop must be implemented around the output, the user input and the result evalua-
tion, which runs as long as a valid input is present.
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A second variable must be created in which the current floor can be stored. After the 
input, it must be evaluated whether the input corresponds to the current floor. Only after 
this evaluation may the value of the variable floor be changed.

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   // Enumeration from the task
 6   enum house
 7   {
 8     CELLAR ,
 9     GROUNDFLOOR ,
10     LABS ,
11     OFFICES
12   };
13
14   int main ()
15   {
16     // Variable definition and initialization
17     int e = GROUNDFLOOR ;
18     int etage = GROUNDFLOOR ;
19
20     do
21     {
22       // User input
23       cout << "Please select the floor , "
24            << "you want to go to !" << endl;
25       cout << "Cellar: " << CELLAR << endl;
26       cout << "Ground floor: " << GROUNDFLOOR << endl;
27       cout << "Labs: " << LABS << endl;
28       cout << "Bueros: " << OFFICES << endl;
29       cin >> e;
30
31       // The query checks whether the input of the
32       // current floor corresponds
33       if (e != floor)
34       {
35         // If not , the
36         // Case discrimination with switch
37         switch (e)
38         {
39           case CELLAR:
40             cout << "underground" << endl;
41             break;
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42           case GROUNDFLOOR :
43             cout << "Ground level" << endl;
44             break;
45             // Since the output is identical, you can
46             // the cases are combined
47           case LABS:
48           case OFFICES:
49             cout << "overground" << endl;
50             break;
51         }
52       }
53       else
54         // Otherwise the error message
55         cout << "This is where you are right now !"
56              << endl;
57
58       // The current floor is saved here
59       floor = e;
60     // The program runs as long as there are valid inputs.
61     } while (e >= CELLAR && e <= OFFICES );
62
63     return 0;
64   }

�Printing of the Character Mapping Table

	(a)	 The solution of the first part of the task can be done intuitively. Within a for-loop, 
which runs from 0 to 256, the output occurs, which is already known from Exercise 5.6.9.

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Variable definition and initialization
 8     const int N = 256;
 9
10     // for -loop for passing through the
11     // Numbers
12     for (int i = 0; i < N; i++)
13     {
14     // Output of the number and the typecast
15     // according to the familiar scheme
16     cout << i << "\t" << (char)i << endl;
17     }
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18
19     return 0;
20   }

	(b)	 To change the program so that the character table is output in two columns, only the 
for-loop must be replaced. In the second variant, 256 lines are no longer run through, 
but only half.
Two outputs must now be made for this. In the first column the normal line number can 

be selected. The second column is 
N

2
 offset from the first by exactly one character.

 1   // for -loop for the two-column
 2   // Running through the numbers
 3   for (int i = 0; i < N / 2; i++)
 4   {
 5     // Output of the number and the typecast
 6     // according to the familiar scheme
 7     cout << i << "\t" << (char)i << "\t";
 8     cout << i + N / 2 << "\t"
 9          << (char )(i + N / 2) << "\t";
10     cout << endl;
11   }

	(c)	 With the three-column output, the principle can be continued that was already used 
with the two-column output. However, a problem arises, since 256 3 85 3/ .= . It fol-
lows that with a simple continuation of the principle, a number would be forgotten in 
the output.

The problem can be easily solved by simply outputting an additional line. However, this 
offset by one character must also be added to the other lines, so that the new factor results. 
N/3 + 1.

This immediately results in the next error, because two numbers are surplus in the last 
column. This can be prevented by using an if statement to prevent the number N from being 
exceeded.

 

�Program Analysis
In order to analyze the program, it is important to understand the content of what each line 
of the program does. This information has been written as a comment to the lines in this 
version of the program.

 1   #include <iostream >
 2   // in the cmath library there are
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 3   // mathematical functions , e.g. sqrt
 4   // to calculate the root
 5   #include <cmath >
 6
 7   using namespace std;
 8
 9   int main ()
10   {
11      // Initializes a constant with the value 21.
12      // This limits the loops of the program.
13      const int N = 21;
14
15      // The names of the count variables indicate that
16      // these are x and y coordinates.
17      // The outer loop determines the line
18      for (int y = 0; y < N; y++)
19      {
20        // The inner loop determines the column
21        for (int x = 0; x < N; x++)
22        {
23          // This conversion shifts the interval
24          // of the numbers by N/2 to the top left.
25          // [0;20] becomes [ -10;10].
26          int dx = x - N / 2;
27          int dy = y - N / 2;
28
29          // sqrt calculates the square root of a number
30          // sqrt(dx * dx + dy * dy) corresponds to the theorem
31          // of Pythagoras in C++. The result is the
32          // Size of the distance of the point to the
33          // Origin. Due to the displacement
34          // which is now in the middle of the
35          // Coordinate system
36          // If the distance in the interval
37          // [N*0,1;N*0,4] lies
38          if (sqrt(dx * dx + dy * dy) < N*0.4 &&
39              sqrt(dx * dx + dy * dy) > N*0.1)
40          {
41             // a star is output
42             cout << "*";
43          }
44          else
45          {
46            // otherwise one space
47            cout << " ";
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48          }
49       }
50       // Here a line is terminated
51       cout << endl;
52     }
53
54     return 0;
55   }

According to these considerations, the output is a circle, or an ellipse, with a hole in 
the middle:

 

�Printing of the Character Mapping Table Part 2
To solve this task, you need to understand the principle after each new column shortens the 
number of rows that are printed.

Furthermore, an additional row must be printed if the total number, i.e. N, is not an 
integer divisible by the number of columns.

First, a user input must be implemented that ensures that the input is in the interval [1; 
10]. A do-while loop is suitable for this purpose.

Now the column length must be calculated. The variable is called factor in this pro-
gram. The form chosen in this example is quite short and exploits the fact that the result of 
a logical operation is always true, i.e. 1, or false, i.e. 0.
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Thus, the number of rows is obtained by dividing N by the number of columns s. The 
modulo operation % calculates the integer remainder when dividing N by s. For 256/3, the 
value is 1, since the division is not smooth, and for 256 by 2, the value is 0, since 256 is 
divisible by 2 as an integer.

N % 2 !  = 0 Thus, the expression is true (1) if and only if N is not integer divisible by 
s and 0 otherwise.

I have to admit that this solution does not work on every system. That is why I have also 
included the safe variant in line 25.

The for-loop is supplemented by an inner for-loop that traverses the columns. The out-
put is a continuation of the already known scheme.

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Variable definition and initialization
 8     const int N = 256;
 9     int s = 0;
10     int factor = 0;
11
12     do
13     {
14       // User input
15       cout << "Please specify in how many "
16            << "Columns the output should be !"
17            << endl;
18       cout << "Valid inputs: 1 - 10" << endl;
19       cin >> s;
20     } while (s < 1 || s > 10);
21
22     // Calculation of the number of lines
23     factor = N / s + (N % s != 0);
24
25     // factor = N / s;
26     // if (N % s != 0) factor ++;
27
28     // for -loop for the three-column
29     // Running through the numbers
30     for (int i = 0; i < factor; i++)
31     {
32       for (int j = 0; j < s; j++)
33       {
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34         // Output of the number and the typecast
35         // according to the familiar scheme
36         if (i + j * factor < N)
37           cout << i + j * factor << "\t"
38                << (char )(i + j * factor) << "\t";
39       }
40       cout << endl;
41     }
42
43     return 0;
44   }

�Chapter 8

 
�Indices

When defining an array, the number inside the square brackets indicates the number of 
elements.

The indices must therefore lie in the interval [0; 14].

�Strings
Since the C strings are usually chosen so large that it is unlikely that the expected text will 
exceed these limits, a character is needed to indicate the end of the text within the array. In 
arrays of type char, this end is marked with the number 0. This is why we speak of null-
terminated strings.

�ASCII Table
In the ASCII table, the American Standard Code for Information Interchange is repre-
sented. A mapping of originally 7-bit combinations to representable characters, which was 
later supplemented by various extensions.

 

�Letter Comparison
The comparison of two letters works because all characters of a text are internally repre-
sented by a number code. A comparison of two text characters therefore actually corre-
sponds to the comparison of the two numbers. Since these have a unique mathematical 
relation to each other, the corresponding text characters can also be compared.
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�Function Values
No array is needed to solve this task!

Since the function values are not used further, a storage of the individual values is not 
necessary. Of course, the task could also be solved with the help of an array, but this is not 
necessary for the solution of the problem stated in the task.

�Numbers and Characters
The character “9” is an element from the ASCII table. This means that it is a text character 
that does not correspond to the numerical value 9. Instead, it is assigned to the value 57 in 
the table.

 

�Random Numbers
The implementation follows the task again. First, a constant N = 100 is defined, which is 
used for the definition of the array as well as for the loop passes.

Within the first loop, the array is initialized as specified in the task.
In order to be able to add up the numbers in the second loop, a variable not mentioned 

in the task is required in which the sum can be stored. An int variable could be used here, 
but then the decimal places would be lost during the following division. For this reason, a 
variable of the type double is suitable.

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Variable definition and initialization
 8     const int N = 100;
 9     int array[N] = {0};
10     double sum = 0.0;
11
12     // Initialization of the field
13     for (int i = 0; i < N; i++)
14     {
15       // Assign a random number
16       array[i] = edge () % 1000;
17     }
18
19     // Totaling the array elements
20     for (int i = 0; i < N; i++)
21     {
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22       sum += (double)array[i];
23     }
24
25     // Division by the number of elements
26     sum /= (double)N;
27
28     // Output of the mean value
29     cout << "Mean of random numbers: "
30          << sum << endl;
31
32     return 0;
33   }

�Largest Initial Letter
To solve the task, first the constant N is defined again, then a string array and a string vari-
able for the result output.

The input of the single words is done in a for-loop, which shows the user how many 
words he still has to enter.

The value of the first element of the words array is assigned to the word variable so that 
it has a value entered by the user. To compensate, the search for the word with the largest 
initial letter can start at the second element of the array.

In the following loop, the first letter of the i-th word is compared with the first letter of 
the result word. If the ASCII code of the letter is larger, the result word is set to the current 
word, since this word obviously has the larger initial letter.

 1   #include <iostream >
 2   #include <string >
 3
 4   using namespace std;
 5
 6   int main ()
 7   {
 8     // Variable definition and initialization
 9     const int N = 10;
10     string words[N] = {""};
11     string word = "";
12
13     for (int i = 0; i < N; i++)
14     {
15       cout << "Please enter the "
16            << i + 1 << "th word of "
17            << N << " on:"
18            << endl;
19       cin >> words[i];
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20     }
21
22     // so that the variable with a
23     // valid value is initialized
24     word = words [0];
25
26     for (int i = 1; i < N; i++)
27     {
28       // if the first letter of the i-th is
29       // word is greater than that of the
30       // Result word
31       if (words[i][0] > word [0])
32         // the word should be exchanged
33         word = words[i];
34     }
35
36     // Output
37     cout << "word with the first letter ,"
38          << "furthest back in the alphabet"
39          << "is: "
40          << word << endl;
41
42     return 0;
43   }

 

�Program Analysis
When analyzing the individual program sections, you can arrive at the following results:

The loops are best understood when the analysis is done from the inside out.

 1   #include <iostream >
 2   // the library time.h contains functions ,
 3   // with which time information is requested and
 4   // can be saved
 5   #include <time.h>
 6
 7   using namespace std;
 8
 9   int main ()
10   {
11     // srand initializes the random number generator ,
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12     // which normally always creates the same random -
13     // numbers.
14     // time (0) returns the current time in
15     // seconds since 1.1.1970
16     srand(time (0));
17
18     // Initialization of a double array
19     // with 1000 elements
20     const int N = 1000;
21     double values[N] = { 0.0 };
22
23     // Here are the values of the array
24     // calculated
25     for (int i = 0; i < N; i++)
26     {
27       // rand () % 1000 returns a whole number
28       // in the interval [0;999] , this is written as double
29       // and then divided by 100
30       // the result is a number in the interval
31       // [0.00;9.99]
32       values[i] = (( double )(margin () % 1000)) / 100.0;
33     }
34
35     // (4) This loop lets N times the current largest
36     // element move to the end
37     for (int i = 0; i < N; i++)
38     {
39       // (3) This loop ensures that the
40       // largest element of the array moves to the end
41       // 
42       for (int j = 0; j < N - 1; j++)
43       {
44         // (1) Two elements are compared here ,
45         // which are adjacent to each other
46         // it is checked if the left element is larger
47         // than the right
48         if (values[j] > values[j + 1])
49         {
50           // (2) the two are interchanged
51           double h = values[j];
52           values[j] = values[j + 1];
53           values[j + 1] = h;
54         }
55       }
56     }
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57
58     // the values are output here
59     for (int i = 0; i < N; i++)
60     {
61       cout << values[i] << endl;
62     }
63
64     return 0;
65   }

If all the findings are summarized, it can be concluded that the program creates a series 
of random numbers and then sorts them in ascending order.

The procedure is known in computer science under the name Bubblesort, because the 
largest number in each case, like an air bubble in the water rises to the top. However, the 
algorithm is rarely used in practice, because there are faster methods for sorting numbers.

 

�Word Lengths
To solve this task, the knowledge from several previous chapters must be combined. In 
addition, a little research of your own is required.

Numbers in the interval [3; 10] must be rolled out to determine the word lengths. This 
requires the constant number 3, to which a random number in the interval [0; 7] must be 
added. To calculate random lowercase letters, this principle must be applied again. For 
this, however, it must first be recognized that a random lowercase letter corresponds to a 
random number in the interval [97; 122].

After initialization of the array, all words have length 0, so direct access to the first or 
second letter is not possible. Instead, letters must be appended to the end of the word. This 
is done either with the operator +, or, as in this example, with the operator +=, which com-
bines addition and value assignment.

 1   #include <iostream >
 2   #include <string >
 3   #include <time.h>
 4   #include <cmath >
 5
 6   using namespace std;
 7
 8   int main ()
 9   {
10     // Initialization of the
11     // Random number generator
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12     srand(time (0));
13
14     // Variable definition and initialization
15     const int N = 1000;
16     string words[N] = {""};
17     double x = 0.0;
18     double s = 0.0;
19
20     for (int i = 0; i < N; i++)
21     {
22       // Here the word lengths are diced
23       // The minimum length is 3, so
24       // this value is firmly added up , then
25       // a random number must be added, which is
26       // Maximum 7 is , so rand () % 8
27       int l = 3 + edge () % 8;
28       for (int j = 0; j < l; j++)
29       {
30         // Lower case letters must be used here
31         // to be diced
32         // They lie in the interval [97;122]
33         // Since the words do not yet have a length
34         // the letters must be separated by +=
35         // to be appended
36         words[i] += (char )(97 + margin () % 26);
37       }
38       // Here the lengths are added up ,
39       // in order to find the mean value in the first loop.
40       // to be calculated
41       x += l;
42     }
43     // Completion of the mean value calculation by
44     // Division with the number of elements
45     x /= N;
46
47     for (int i = 0; i < N; i++)
48     {
49       // Part of the calculation of
50       // Standard deviation
51       // pow(a,b) calculates the value a to the power of b
52       s += pow(words[i]. length () - x, 2);
53      }
54     // Completion of the calculation of
55     // Standard deviation
56     s /= N - 1;
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57     s = sqrt(s);
58
59     // Output of words
60     cout << "words :" << endl << endl;
61     for (int i = 0; i < N; i++)
62     {
63       cout << words[i] << endl;
64     }
65
66     // Output of results
67     cout << "Average word length: "
68          << x << endl;
69     cout << "Standard deviation of word lengths: "
70          << s << endl;
71
72     return 0;
73   }

�Chapter 9

 
�Function Prototype

To create a functional prototype, three pieces of information are needed:

•	 The return type of the function
•	 The name of the function
•	 The function parameters (number and type)

�Return Value
Although the function f has no return type, void must still be specified.

No names were given for the function parameters. However, these are important infor-
mation for a function header, so that the parameters can also be used within the function. 
In fact, it would also be permissible to omit them in the function header.

So one possible solution is:

void f(int a, double b, char c)
{}
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�Call by Reference
The term Call by Reference describes the way variables are passed to a function. Normally, 
new variables are created for each function parameter and the passed values are copied 
into these new variables. If the copy is changed, the original remains untouched. This is 
called Call by Value.

In a call by reference, the name of the function parameter is preceded by an ampersand. 
Now no new variable is created, instead the new name refers to the already existing vari-
able. If the value of the variable is now changed within the function, this corresponds to 
accessing the original value, which consequently changes as well.

 

�Variadic Functions
The term “variadic function” describes a function whose parameters are not uniquely 
defined either in number or in type. Instead, the function can accept a variable number of 
parameters. However, it is neither possible to determine the number nor the type of the 
parameters by itself. For this reason, additional parameters or restrictions are necessary to 
evaluate the parameters.

In order to implement variadic functions, the file stdarg.h must be included with the 
preprocessor directive #include.

�Recursion
In a recursive solution, a function f is implemented consisting of a recursive and a non-
recursive path. The recursive path calls the function f again with changed parameters, 
while the non-recursive path interrupts the series of self-calls at certain conditions that 
depend on the task. The recursive solution thus exploits the self-similarity of certain 
actions.

Iteration describes a process that can be solved with the help of a loop. Here, too, a 
principle is applied to a data set again and again.

In principle, suitable problems can be solved recursively as well as iteratively. However, 
the effectiveness of both approaches is strongly dependent on the underlying problem.

�static
A variable that is provided with the attribute static within a function is, in contrast to nor-
mal variables, only created and initialized once within the function. Thus, this variable is 
able to store information over several function calls. For example, it can be used to cause 
a function to count how many times it has been called.

�Function Overloads
In C++ it is possible to define several functions with the same name if they have different 
parameter configurations. However, a distinction only in the return type is not permitted!
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If it can happen that information is available in different forms, such as a text that can 
be available as a string or as an array of type char, then two different functions can be 
offered that can react optimally to the available data types without having to perform a 
type conversion.

 

�Input and Output Functions
In solving this task, the new getline statement is used, with which entire lines including 
spaces can be read in from the console and stored in a string.

The input-function must realize an input, therefore it does not need any parameters, but 
returns the read value.

The output function does not have to return anything, but it needs the text to be printed 
as a parameter.

Since a dashed line is to be printed before and after the text, the help function was 
implemented. This was not explicitly mentioned in the task, however, this recurring task 
fulfills exactly the requirements for the creation of a function.

In the main function, you only have to go through all the characters of the text to 
replace each space with an asterisk.

 1   #include <iostream >
 2   #include <string >
 3
 4   using namespace std;
 5
 6   string input ()
 7   {
 8     // Variable definition and initialization
 9     string text = "";
10
11     // Input according to the task
12     cout << "Please enter text".
13          << endl;
14     getline(cin , text );
15
16     return text;
17   }
18
19   // Auxiliary function
20   void help(int n)
21   {
22     // Output of n hyphens
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23     for (int i = 0; i < n; i++)
24     {
25       cout << "-";
26     }
27     cout << endl;
28   }
29
30   void output(string text)
31   {
32     // Calling the auxiliary function
33     // with the text length
34     help(text.length ());
35     // Text edition
36     cout << text << endl;
37     // The auxiliary function again
38     help(text.length ());
39   }
40
41   int main ()
42   {
43     // Variable definition and initialization
44     // with the input function
45     string text = input ();
46
47     // Replacing spaces with asterisks
48     for (int i = 0; i < text.length (); i++)
49     {
50       if (text[i] == ' ')
51         text[i] = '*';
52     }
53
54     // Output
55     output(text);
56
57     return 0;
58   }

�Recursion
The implementation of the program is simple if the instructions from the task are followed. 
The function recursion is to return nothing, hence the return type void. The function 
parameter c is to be of type int and is named in the task definition.

Within the function, a self-call is to occur if the value of c is less than 100.
In the main function, only the recursive function should be called.
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In task part (a), the output is to follow the recursive branch. As a result, the numbers are 
counted down from 100 to 0 on the screen.

For task part (b), the value should be printed before the recursive branch. Suddenly the 
numbers are incremented from 0 to 100.

This happens for the following reason: In task part (a), the first call to the function runs 
into the recursive branch and calls itself with the value 1. The same happens with the fol-
lowing functions until c takes the value 100.

Only then does the last function call stop running into the recursive branch and reach 
the output and exit. The penultimate function call has then terminated the recursive branch 
and also reaches the output, and so on. The numbers are counted down from 100.

In the task part (b) it runs similarly, only that here the output takes place before the 
recursive branch. For this reason, the numbers are incremented.

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   void recursion(int c)
 6   {
 7     // Output of the parameter
 8     // Task part (b)
 9     // cout << c << endl;
10
11     // recursive branch , if
12     // c < 100
13     if (c < 100)
14       recursion(c + 1);
15
16     // Output of the parameter
17     // Task part (a)
18     cout << c << endl;
19   }
20
21   int main ()
22   {
23     // Calling the recursive function
24     recursion (0);
25
26     return 0;
27   }
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�Program Analysis
When analyzing this program, it makes sense to start at the beginning of the program flow, 
i.e. at the main function. If it is clear what happens there, the examination of the further 
functions can take place. But even with these functions, it makes sense to stick to the order 
given by the program flow.

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int func(int val[], int s, int e)
 6   {
 7     // The function terminates itself ,
 8     // if the first and last index are identical
 9     // In this case the
10     // Indexes describe exactly one element.
11     // Its value is returned.
12     if ((e - s) == 0) return val[s];
13
14     // Here the index is calculated that
15     // lies exactly between the first and the
16     // last index.
17
18     // Because of the integer division
19     // always the smallest value is assumed
20     int h = (e + s) / 2;
21
22     // The function calls itself twice
23     // once with the lower half of the array
24     // and once with the upper half
25     int e1 = func(val , s, h);
26     int e2 = func(val, h + 1, e);
27
28     // Finally, the results are added together.
29     return e1 + e2;
30   }
31
32   int main ()
33   {
34     // Here, an array with N = 100
35     // Values is created
36     const int N = 100;
37     int values[N];
38
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39     // Within the loop, the
40     // Array with the numbers 1 to N
41     // is initialized
42     for (int i = 0; i < N; i++)
43     {
44       values[i] = i + 1;
45     }
46
47     // Finally, the result of the
48     // unknown function is output
49     // The parameters are the array , and the
50     // first and last valid index
51     cout << "Result: " << func(values , 0, N - 1)
52          << endl;
53
54     return 0;
55   }

Since the program splits the array up to one-element arrays and then adds the values in 
sequence, the result must therefore be a sum. Since each value is added only once (even if 
the value occurs several times in sums in the form of a partial result, of course), the result 
must therefore be the sum of the numbers from 1 to 100.

Result: The program calculates the value 5050.

 

�Output of Parameters of a Variadic Function
The solution of this task is not extensive, but understanding the variadic functions is not 
easy. Here it is especially important to follow the sequence of steps to solve the task.

First, the stdarg.h file must be included so that the required functions are available.
The parameter list must be defined as a variable of type va_list and initialized by the 

function va_start. Here especially the second parameter is important, because here the 
name of the string must be given, after which the free parameters begin.

During the evaluation the function va_arg must be used to extract the parameters from 
the list.

Finally, the list must be released again by va_end.

 1   #include <iostream >
 2   #include <string >
 3   #include <stdarg.h>
 4
 5   using namespace std;
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 6
 7   void myPrint(string t, ...)
 8   {
 9     // Definition of the variable list
10     va_list params;
11     // Initialization of the variable list
12     // after the parameter t
13     va_start(params , t);
14
15     // Runs through the passed text
16     for (int i = 0; i < t.length (); i++)
17     {
18       // the sign is not a star
19       if (t[i] != '*')
20         // this is how it is output
21         cout << t[i] << endl;
22       else
23       {
24         // otherwise the next
25         // Parameters output in the list
26         cout << va_arg(params , int)
27              << endl;
28       }
29     }
30
31     // Finally, the list must be
32     // released
33     va_end(params );
34   }
35
36   int main () {
37     // Calling the variadic function
38     myPrint ("-+-*-+-*-+-*", 1, 2, 3);
39
40     return 0;
41   }

If the program is executed, the output is:

-
+
-
1
-
+
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-
2
-
+
-
3

�Chapter 10

 
�Visibility Levels

Three different visibility levels can be applied in classes:

•	 public: All variables and functions defined with this visibility level are accessible from 
outside as well as from inside the class.

•	 protected: The visibility level protected protects variables and functions from access 
from outside the class.

•	 private: In addition to protecting against access from outside the class, the visibility 
level private prevents the corresponding members from being inherited.

�Operators
Operators can be used to perform standard arithmetic, comparison and logic operations in 
classes. The operators are special functions that allow, for example, to use the usual for-
mulations in mathematics, such as A + B.

However, operators can also be used to add functions to existing classes. For example, 
an operator can be used to extend the cout class so that objects of your own classes can be 
printed to the console.

�Include Guards
An include guard is set up by preprocessor directives. First, the #ifndef directive is used to 
check whether a certain term has already been defined. If not, the term is defined by 
#define to prevent the corresponding area from being reached a second time.

Since the header files of classes can be included in several other files, this would have 
the consequence that the corresponding classes cannot be compiled without Include-
Guard. With each inclusion it would be tried again to define the class.
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�Abstract Classes
In C++, an abstract class designates a class in which at least one function has been defined 
as virtual and provided with the addition =0. This has the consequence that the corre-
sponding function is set as part of the interface of the class, but is not defined in the current 
class. This must be done in an inheriting class.

No object can be created from the class itself in this way, the class is “abstract”.

 

�Member Variables
The member variables are specified when the class itself is defined. They are available in 
every function of the class and store information even across function boundaries. Their 
lifetime is directly bound to the object of the class.

All other variables can only be created as parameters or within functions. The lifetime 
of these variables is bound to the respective function.

�Constructors
Several constructors can exist within a class. Exactly one constructor is always called 
when a new object of the class is created. This distinguishes constructors from all other 
functions. A constructor is guaranteed to be called when an object is created, but never 
again after that for this object.

�Classes and Structures
In the C++ language, apart from the name of the construct, there is only one other differ-
ence between classes and structures. The default visibility level of the class is private, that 
of the structure is public.

However, there is a perceived difference for many programmers. Structures are data 
containers that have few, if any, functions and usually leave the data at the public visibil-
ity level.

Classes are more complex entities that protect their data and can perform many differ-
ent tasks with their data.

Strictly speaking, however, this distinction in functionality does not exist.

�Polymorphism
The term polymorphism means multiformity and is very closely related to the term inheri-
tance. It describes the property of functions in different classes that inherit from each other 
to appear with the same name, but always behave differently.

This is related to the virtual keyword, which allows existing functions to be reimple-
mented in inheriting classes. Since functions that have inherited from another class can 
also be passed by reference to their base class, calling a function can have a different effect 
depending on which class was passed.
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�Polymorphism
Normally, variables and functions are bound to an object of a class. This means that values 
are stored for an object and functions are called on a concrete object whose values are then 
worked with.

If, on the other hand, a variable or a function is defined as static, these elements are 
bound to the class itself and can be used without a concrete object of the class having to 
exist. Because of this property, static variables have the same value across all objects of a 
class. This makes it possible, for example, to count the number of objects in a class. To do 
this, you only need to create a static variable that is incremented in each constructor and 
decremented in each destructor. The value of the variable then always corresponds exactly 
to the number of currently existing objects.

 

�The Class point2D
The solution of this task can be taken over to a large extent from the problem definition, if 
the terms, like constructor or operator were understood.

The formulas for the mathematical functions are also given in the task, so that these 
only have to be translated into C++ code.

The example has great similarity to the Vector2D class developed in the book.
In the solution, every reference passed and every function was defined as constant, if 

this was possible. But this is only to give an impression how the keyword const can be used 
in programs.

Solutions that do not apply this consistently should still be considered correct (Listings 
1 and 2).

Listing 1 point2D.h

 1   // Include -Guard
 2   #include <iostream >
 3
 4   using namespace std;
 5
 6   class point2D
 7   {
 8   public:
 9     // Constructor without parameters
10     point2D ();
11     // Constructor for initialization

12     point2D(double x, double y);
13     // Copy Constructor
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14     point2D(const point2D &p);
15
16     // Addition
17     point2D operator +( const point2D &p) const;
18     // Scalar product
19     double operator *( const point2D &p) const;
20     // Output via cout
21     friend ostream& operator <<(ostream &out ,
22                                 const point2D &p);
23   protected:
24     double m_x;
25     double m_y;
26   };
27   // Output via cout
28   ostream& operator <<(ostream &out , const point2D &p);

Listing 2 point2D.cpp

 1   #include "point2D.h"
 2
 3   // Initialization to the origin
 4   point2D :: point2D ()
 5     : m_x (0)
 6     , m_y (0)
 7   {}
 8   // Individual initialization
 9   point2D :: point2D(double x, double y)
10     : m_x(x)
11     , m_y(y)
12   {}
13   // Copy of an existing point2D
14   point2D :: point2D(const point2D &p)
15     : m_x(p.m_x)
16     , m_y(p.m_y)
17   {}
18   // The coordinates of the result point
19   // result from the sum of the coordinates
20   // of the points
21   point2D point2D :: operator +( const point2D &p) const
22   {
23     point2D result;
24
25     result.m_x = m_x + p.m_x;
26     result.m_y = m_y + p.m_y;
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27
28     return result;
29   }
30   // Scalar product calculated according to
31   // specified formula
32   double point2D :: operator *( const point2D &p) const
33   {
34     return m_x * p.m_x + m_y * p.m_y;
35   }
36   // Output function
37   ostream& operator <<(ostream &out , const point2D &p)
38   {
39     out << "point2D (" << p.m_x << ", "
40       << p.m_y << ")";
41
42     return out;
43   }

�The Circle Class
In this task it is important to understand how own classes can be used in other classes. This 
allows complex problems to be distributed among different classes and thus simplified.

The class point2D already does all the tasks that need to be implemented for the point. 
The output is already there and also for the initialization different possibilities are already 
available. In fact, even the initialization could be omitted completely if the coordinates (0, 
0) are to be selected.

The calculation of the area and the circumference can be taken directly from the task. 
These functions can also be provided with the keyword const, since the properties of the 
circle are not changed during the area calculation.

When outputting the circle on the console, the output function of the point can be 
applied directly. This simplifies the output function of the circle (Listings 3 and 4).

Listing 3 circle.h

 1   #include "point2D.h"
 2
 3   class circle
 4   {
 5   public:
 6     // Constructor without parameters
 7     circle ();
 8     // Initialization with single values
 9     circle(double x, double y, double r);
10     // Initialization with the aid of a
11     // point2D and a value
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12     circle(const point2D &p, double r);
13     // Calculation of the area
14     double area () const;
15     // Calculation of the scope
16     double perimeter () const;
17     // Output on the console
18     friend ostream& operator <<( ostream &out , const circle &c);
19   protected:
20     point2D m_center;
21     double m_r;
22   };
23
24   ostream& operator <<( ostream &out , const circle &c);

Listing 4 circle.cpp

 1   #include "circle.h"
 2
 3   // Definition of a constant for Pi
 4   const double PI = 3.1415926535897932384626433832795;
 5   // Initialization of a unit circle in the origin
 6   // In each constructor, any of the constructors defined in point2D
 7   // defined constructors can be used ,
 8   // to initialize the variable m_center
 9   circle :: circle ()
10     : m_center (0, 0)
11     , m_r (1)
12   {}
13   // individual initialization
14   circle :: circle(double x, double y, double r)
15     : m_center(x, y)
16     , m_r(r)
17   {}
18   // individual initialization
19   circle :: circle(const point2D &p, double r)
20     : m_center(p)
21     , m_r(r)
22   {}
23   // Calculation of the area according to the task
24   double circle ::area () const
25   {
26     return PI * m_r * m_r;
27   }
28   // Calculation of the scope according to the task
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29   double circle :: perimeter () const
30   {
31     return 2 * PI * m_r;
32   }
33   // During output, the output function
34   // implemented in point2D can be used.
35   // was
36   ostream& operator <<(ostream &out , const circle &c)
37   {
38     out << "circle (" << c.m_center << ", "
39       << c.m_r << ")";
40
41     return out;
42   }

 

�Program Analysis
The analysis of this program is a bit more difficult than before, because there is no main 
program where the analysis could start. Instead there is a header file and a .cpp file 
(Listings 5 and 6).

Listing 5 Riddle.h

 1   // Include -Guard
 2   #include <iostream >
 3   #include <string >
 4
 5   using namespace std;
 6
 7   class Riddle
 8   {
 9   public:
10     // Constructor
11     Riddle(string data );
12
13     // the output may access the protected
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14     // elements of the class
15     friend ostream& operator <<(ostream &out , Riddle r);
16   protected:
17     // The class stores only one text
18     string m_data;
19   };
20   // Output of the text with an ostream
21   ostream& operator <<(ostream &out , Riddle r);

Listing 6 Riddle.cpp

 1   #include "Riddle.h"
 2
 3   Riddle :: Riddle(string data)
 4   {
 5     char k;
 6
 7     // The loop passes through all letters
 8     // of the transferred text
 9     for (int i = 0; i < data.length (); i++)
10     {
11       // this is the current letter
12       k = data[i];
13
14       // If it is a
15       // Lower case letter
16       if (k >= 97 && k <= 122)
17         // k - 94 shifts the interval
18         // [97;122] to [3;28] the modulo
19         // truncates the trailing characters
20         // and pushes it to the beginning.
21         // Now all characters are in the interval
22         // [0;25]. If 65 is added, they become
23         // Capital letters
24         k = 65 + (k - 94) % 26;
25       else
26         // they are already capital letters
27         if (k >= 65 && k <= 90)
28           // we also shift
29           // but the letters remain
30           // capital letters
31           k = 65 + (k - 62) % 26;
32
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33       // other characters are simply copied
34       m_data += k;
35     }
36   }
37
38   ostream& operator <<(ostream &out , Riddle r)
39   {
40     char k;
41
42     for (int i = 0; i < r.m_data.length (); i++)
43     {
44       k = r.m_data[i];
45
46       // When the program writes its output
47       // there are only capital letters
48       if (k >= 65 && k <= 90)
49         // these are taken from the interval [65;90]
50         // shifted into the interval [23;48].
51         // once again, the modulo
52         // joins the end and the beginning
53         k = 65 + (k - 42) % 26;
54
55       out << k;
56     }
57
58     return out;
59   }

However, the advantage of this program is that there is only one constructor and one 
function, so the order of calls is fixed. Again, the analysis should start from the beginning. 
So in this case with the constructor.

The program encrypts text by turning each letter into an uppercase letter and shifting it 
three places to the right in the alphabet. This very old and insecure encryption is called 
Caesar cipher.

Only the encrypted texts are stored within the data structure. Only for decryption the 
text is converted back into plain text. To do this, all letters are shifted 23 places to the right 
and placed back at the beginning of the alphabet by the modulo.

This corresponds to a shift of three places in the alphabet to the left.

�Chapter 11
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�Memory Areas

The memory of a program is divided into the following four areas:

•	 Program code: This area contains the executable code of the program.
•	 global variables: The global variables get their own memory area, because they differ 

in behavior from other variables.
•	 Stack: All information needed for the execution of a function is stored on the stack, i.e. 

local variables, function parameters and the return address.
•	 Heap: The heap is needed for dynamic memory requests. The program can request new 

memory areas on the heap at any time using statements such as new or malloc, but must 
manage these itself. If requested memory areas are forgotten and not released, the 
memory can fill up.

�Dereferencing
Dereferencing refers to indirect access to a value via a pointer. Normally, a value is stored 
in a variable that is located at a specific address. With a pointer, however, another address 
is stored instead of the value, at which the value is then located.

Dereferencing first jumps to the stored address, then gets the value.

�Multidimensional Arrays
The following three options were presented:

•	 Pointers to arrays: With C++, it is possible to create pointers to fixed-size arrays. In 
this way, a one-dimensional array can be created from pointers whose elements in turn 
point to fixed-size arrays. With this solution, however, part of the array remains on 
the stack.

•	 Pointer to pointer: In this variant, a double pointer must be created, i.e. a pointer that 
points to pointers. Then an array of pointers is created on the heap, which can then be 
initialized individually with their own arrays in a loop. This variant is very flexible, but 
also means a high administration effort and a deeper understanding of pointers.

•	 virtual dimensions: It is possible to create a one-dimensional array on the heap and to 
create the other dimensions virtually by mathematical formulas itself. For this purpose, 
an array of size Y × X is created and then divided into Y pieces of length X by the for-
mula index = x + y ⋅ X.

�Function Pointer
A function pointer can be created using the typedef instruction. However, this is only 
required if a new variable type is to be created.

The information needed to create a function is always the same, therefore it is also 
needed for a function pointer:
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•	 Return type
•	 Name – For a function pointer to be created, the name must be enclosed in parentheses 

and begin with an asterisk.
•	 Function parameters

 

�Stack and Heap
Information required for the execution of functions is stored on the stack memory. This 
information includes the local variables, the function parameters and the return address. 
Since these tasks are of a very basic nature, a definable but fixed contingent of memory is 
available for each program. This memory is organized according to the LIFO principle, 
which means that the information that was stored last is the first to leave the memory. 
Accesses to the stack can be made very quickly because of this ordered structure.

The memory on the heap is only available when it is requested by the program at run-
time. The program can decide when and how much memory it requests. In addition, it can 
release requested memory at any time. Memory can fragment if memory is requested and 
released frequently and the size of the requested areas varies. Also, because of its dynamic 
nature, accesses to the heap are slower than to the stack. On the other hand, the size of the 
requested memory is in principle not limited (the resource itself is of course limited).

�Memory Consumption
If an image consists of 1024  ×  768 pixels, then the number of all pixels is given by 
1024  ⋅  768  =  786.432 pixels. If a pixel consists of 16 bits, i.e. 2 bytes, then 
786432 ⋅ 2 = 1572.864 bytes are needed to store the image. This corresponds to 1536 kilo-
bytes, or 1.5 megabytes.

In computer science, a kilobyte does not consist of 1000 bytes, but of 1024 bytes.

�Pointer Arithmetic
With pointer arithmetic, it should be noted that the size of the data type of the pointer is 
always assumed as the unit. If the value 1 is added to an integer, the result is larger by the 
value 1, as expected.

If the value 1 is added to a pointer of type int, the address contained in it is not increased 
by the value 1, but by the value 1 ⋅ 4 bytes, the size of the stored data type int.

�Memory Reservation
Some implementations of the new instruction use the malloc instruction internally to 
reserve memory. In this case, the memory can also be released again by free. However, this 
is by no means guaranteed. To make matters worse, the new statement can be overwritten 
as an operator at any time. This can happen for a variety of reasons, for example, to 
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implement your own memory management (this is not uncommon in time-critical applica-
tions). The functionality of the new statement is therefore not clearly defined.

For this reason, it is unsafe to mix the different instruction groups and should always be 
avoided.

 

�Random Numbers
To solve the task, the random number generator must first be initialized. The user query for 
the array size must be made early in the program, since the array cannot be created until 
the result of the input is available.

While the array is initialized with random numbers, the values can be summed up in 
parallel in the variable x to prepare the calculation of the expected value.

In a second loop, the standard deviation can then be calculated.
At the end, the results must be printed and the memory released again. It is important 

to use the statement delete[], since the memory for an array is to be released.

 1   #include <iostream>
 2   #include <cmath >
 3   #include <time.h>
 4
 5   using namespace std;
 6
 7   int main ()
 8   {
 9     // Initialization of the random number -
10     // generator
11     srand(time (0));
12
13     // Variable definition and initialization
14     int N = 0;
15     double x = 0.0;
16     double s = 0.0;
17     int *values = 0;
18
19     // User query with interval limits
20     do
21     {
22       cout << "Please enter an integer "
23            << "number between 1 and 1000 :";
24       cin >> N;
25     } while (N < 1 || N > 1000);
26
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27     // Create the array. only now
28     // the size of the array is known.
29     values = new int[N];
30
31     // Loop for array initialization
32     for (int i = 0; i < N; i++)
33     {
34       // Generation of random numbers
35       // in the interval [1;6]
36       values[i] = 1 + edge () % 6;
37       // Summing the values for the
38       // mean value
39       x += values[i];
40     }
41     // Division by the number of elements
42     x /= N;
43
44     // Calculation of the standard deviation
45     for (int i = 0; i < N; i++)
46     {
47       // Summing the squared errors
48       s += pow(values[i] - x, 2);
49     }
50     // Division and extraction of the root
51     s /= (N - 1);
52     s = sqrt(s);
53     // Output of results
54     cout << "Mean value: " << x
55          << endl;
56     cout << "Standard deviation: "
57          << s << endl;
58     // Releasing the memory and deleting it
59     // the address
60     delete [] values;
61     values = 0;
62
63     return 0;
64   }

�Random Numbers the Second
The first steps of this program behave very similarly as in the solution before, so that they 
should not be explained here again.

By choosing a one-dimensional array that is virtually split into several dimensions by 
applying a formula, the programmer gains additional freedom.

Solutions



321

Tasks that are performed the same way for all elements do not have to be solved by 
multiple loops, but can be solved by a single loop. A good example is the value initializa-
tion. All values are to be selected randomly in the interval [1; 6]. A division into rows and 
columns is not necessary for this, therefore a single loop is sufficient.

The calculation of the expected value also behaves similarly. The elements of a row 
would have to be summed up to get the value of the row. After that, the results would have 
to be summed up to calculate the arithmetic mean. The result is identical to the sum of all 
the elements of the array. However, when dividing, care must be taken to divide only by 
the number of rows, as the results should be summed row by row.

When calculating the standard deviation, two loops must actually be used. The sum of 
the elements of each line is needed for the calculation of the squared error to the 
expected value.

 1   #include <iostream >
 2   #include <time.h>
 3   #include <cmath >
 4
 5   using namespace std;
 6
 7   int main ()
 8   {
 9     // Initialization of the
10     // Random number generator
11     srand(time (0));
12
13     // Variable definition and initialization
14     int X = 0;
15     int Y = 1000;
16     double x = 0.0;
17     double s = 0.0;
18     int sum = 0;
19     int *values = 0;
20
21     // User query with interval limits
22     do
23     {
24       cout << "Please enter an "
25            << "integer in the interval "
26            << "1 to 10:" << endl;
27       cin >> X;
28     } while (X < 1 || X > 10);
29
30     // Create the array. only now
31     // the size of the array is known.
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32     values = new int[X*Y];
33
34     // To initialize all values it is sufficient to
35     // do a single loop over all values
36     // The mean value can also be
37     // calculated, since for the arithmetical
38     // mean all values are summed
39     // 
40     for (int i = 0; i < X*Y; i++)
41     {
42       // Generation of random numbers
43       // in the interval [1;6]
44       values[i] = 1 + edge () % 6;
45       // Summing the values for the
46       // mean value
47       x += values[i];
48     }
49     // Important!
50     // Division by the number of lines
51     x /= Y;
52
53     // The calculation of the standard deviation
54     // must be done in two loops
55     for (int i = 0; i < Y; i++)
56     {
57       sum = 0;
58       for (int j = 0; j < X; j++)
59       {
60         // first, the values of a line
61         // must be summed up
62         sum += values[j + i * X];
63       }
64       // Then the squared error
65       // is calculated
66       s += pow(sum - x, 2);
67     }
68     // then the division takes place
69     // and the root is calculated
70     s /= (Y - 1);
71     s = sqrt(s);
72
73     // Output of results
74     cout << "Mean value: " << x
75          << endl;
76     cout << "Standard deviation: "
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77          << s << endl;
78     // Releasing the memory and deleting
79     // the address
80     delete [] values;
81     values = 0;
82
83     return 0;
84   }

 

�Program Analysis
The explanation for the individual program steps was written as a comment to the lines.

 1   #include <iostream >
 2
 3   using namespace std;
 4
 5   int main ()
 6   {
 7     // Variable definition and initialization
 8     // three variables are normal stack variables
 9     // the third lies on the heap
10     int x = 0;
11     int y = 0;
12     int k = 0;
13     double *z = new double (3.0);
14
15     // Since z is a pointer, z contains the address
16     // which was reserved on the heap
17     // This address is converted to an integer
18     // by the typecast and saved in y
19
20     y = (int)z;
21
22     // The dereferencing *z returns the content
23     // of the double , which was created on the heap
24     // this is represented by a typecast
25     // as integer and stored in k
26     // k is now 3;
27     k = (int)*z;
28

Solutions



324

29     // y is on the stack , therefore &y returns
30     // the stack address at which y is located. This
31     // is converted to an integer by a typecast
32     // and stored in x.
33     x = (int)&y;
34
35     // The value stored in y is equal to
36     // the address of y, but is an integer.
37     // The typecast causes the address value to be
38     // interpreted as double.
39     // This works , because the address is valid. Then
40     // the pointer is dereferenced by the preceding asterisk
41     // The result is the numerical value
42     // in y, i.e. 3. This value is multiplied by 2
43     // and stored.
44     // The heap now contains the value 6
45     *(( double *)y) *= 2;
46
47     // The dereferencing of z now returns the value
48     // 6, since it was changed in the step before this one
49     // in k there is the value 3, so the value 2 is now stored
50     // at the address to which z points
51
52     *z /= k;
53
54     // Now the whole chain. In x is the address of
55     // y, this is again interpreted as an address
56     // and dereferenced. The result
57     // is the value in y. This is the address of z
58     // this is used as a pointer of type double
59     // and also dereferenced.
60     // The result is the number 2.0
61     // This is used as an integer and
62     // issued.
63     cout << (int )*(( double *)(*( int*)x)) << endl;
64
65     // Finally, the memory is released and
66     // the address is deleted.
67     delete z;
68     z = 0;
69
70     return 0;
71   }

The output is therefore 2!
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