

Large Scale Apps with React and
TypeScript
Build Large and Scalable front-ends that leverage
component isolation, a centralized state manager,
internationalization, localization, Custom Component
Libraries, API-client code that easily can switch
between mocked data and live data and more.

Damiano Fusco

This book is for sale at http://leanpub.com/react-typescript

This version was published on 2023-01-30

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

© 2022 - 2023 Damiano Fusco

http://leanpub.com/react-typescript
https://leanpub.com/
https://leanpub.com/manifesto

Contents

LARGE SCALE APPS WITH REACT AND TYPESCRIPT 1

Preface . 3
Goal . 4
Audience . 4
Text Conventions . 5
Thanks . 5
About me . 5

Prerequisites . 6

Companion Code . 7

Chapter 1 - Setting Up The Project . 8
Create Project Wizard . 8
Chapter 1 Recap . 11

Chapter 2 - Your First Component . 12
The Items List . 12
ItemsList Component Requirements . 12
ItemsList Component Code . 13
Main App View . 16
Chapter 2 Recap . 20

Chapter 3 - Data Models and Interfaces . 21
Models Directory . 21
Interface ItemInterface . 22
ItemsList Component . 23
App View . 25
Chapter 3 Recap . 28

Chapter 4 - Adding Events To the Items Component . 29
ItemsList Component . 29

CONTENTS

Chapter 4 Recap . 37

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 38
ItemComponent . 38
ItemComponent Unit Tests . 44
ItemsList component . 50
Chapter 5 Recap . 54

Chapter 6 - Introducing State Management . 55
Store Interfaces . 56
Store Implementation . 60
App.tsx . 66
Items.view.tsx . 67
Back to the App.tsx file . 69
Web Browser . 70
ItemsList.component.tsx . 70
Back to the Web Browser . 71
Loader Component . 71
Chapter 6 Recap . 76

Chapter 7 - Api Client . 77
API Client Overview . 77
Domains . 79
The Main ApiClient . 79
Items domain Api Client . 80
Mock and Live Api Clients . 84
Environment Variables . 90
Api Client Provider . 92
Store Instance updates . 94
Alternatives . 97
Chapter 7 Recap . 105

Chapter 8 - Enhance the Api Client . 106
HttpClient Interfaces and Models . 106
UrlUtils Unit Tests . 123
HttpClient: Unit Tests . 124
ItemsApiClientModel Update . 128
Chapter 8 Recap . 130

Chapter 9 - App Configuration . 131
vite-env.d.ts updates (or env.d.ts) . 131

CONTENTS

.env files updates . 132
Config Interface . 133
Config files . 134
tsconfig.json updates . 138
Config files map . 139
Config provider . 140
Unit Tests . 142
HttpClient code updates . 146
Api Client code updates . 147
Chapter 9 Recap . 150

Chapter 10 - Localization and Internationalization - Language Localization 151
Plugins: i18next, react-i18next . 151
Config updates . 152
Translation JSON data . 154
API Client updates . 156
Updates to ApiClient.interface.ts . 159
Updates to ApiClient instances . 160
i18n initialization and useLocalization hook . 162
main.tsx or index.tsx updates . 168
App.tsx updates . 168
Browser . 170
Chapter 10 Recap . 175

Chapter 11 - Localization and Internationalization - Number and DateTime
Formatters . 176
Directory localization/formatters . 176
Chapter 11 Recap . 190

Chapter 12 - Adding Tailwind CSS . 191
Chapter 12 Recap . 195

Chapter 13 - Intro to Primitives . 196
Atomic Design and Similar Approaches . 196
Conventions . 196
General Strategies . 197
Text Elements . 198
Primitives View . 200
Chapter 13 Recap . 203

Chapter 14 - More Primitives . 204

CONTENTS

Button Elements . 204
Primitives View - update . 206
Toggle/Checkbox Elements . 208
Primitives View - one more update . 210
Chapter 14 Recap . 214

Chapter 15 - A Primitive Modal . 215
Icon: ElIconAlert . 215
Interface ModalProps . 217
File ElModal.ts (note: not .tsx) . 217
File useModal.ts . 224
Updates to Primitives.view.tsx . 225
Browser . 227
Chapter 15 Recap . 230

Chapter 16 - Higher-level components . 231
Item Component - updates . 231
ItemsList Component - updates . 236
Summary . 237
Chapter 16 Recap . 238

Chapter 17 - Creating Component Libraries . 239
Create my-component-library . 239
Chapter 17 Recap . 248

Chapter 18 - Creating a JavaScript library . 249
Create my-js-helpers . 249
Chapter 18 Recap . 258

Chapter 19 - Publish a library as a NPM package . 259
Create an NPM user account . 259
Create an Organization under your NPM profile . 259
Update my-js-helpers package.json . 260
Publishing the library . 260
Consuming your NPM package . 261
Chapter 19 Recap . 262

(More Chapters Coming Soon) . 263

Bonus Chapter - using create-react-app . 264
Env Variables . 266

CONTENTS

Bonus Chapter - Vitest . 268
Remove Jest dependencies and setup files . 268
Add Vitest . 269
Unit Tests updates . 272

Naming Conventions . 275
Coding Standards . 275

Resources . 279
Websites . 279
Blogs . 280
Books . 281

LARGE SCALE APPS WITH REACT
AND TYPESCRIPT
This book is a guide for developers looking to build large-scale front-end applications with
React and TypeScript. With the growth of the web and mobile app development, there is
an increasing demand for robust, scalable, and maintainable front-end solutions. This book
provides a comprehensive approach to building large scale code bases that use React and
TypeScript.

The book covers key concepts and best practices like:

• Building front-ends that can grow to a large code base that is organized and easy to
expand and maintain.

• Development of UI components in isolation using an API client that can easily serve
live data or mocked data.

• Centralized State Manager organized into domain/area modules, providing a unified
and consistent way to manage the application state.

• Internationalization and Localization for language translation and number/dates
formatting according to a specific culture, making it easier to reach a global audience.

• TypeScript type-checking at development time to decrease run-time bugs or errors,
reducing the risk of costly bugs and enhancing the overall quality of the code.

• Directory structure, file, and code naming conventions, ensuring a consistent and
organized project structure for both developers and future maintainers.

• Hooks and Compositional Patterns, providing a flexible and reusable way to imple-
ment functionality in components.

• Components Libraries, allowing developers to build a library of reusable components,
reducing development time and increasing code quality.

• Unit tests for models and components, ensuring code quality and reducing the risk of
regressions.

The book is designed for developers with intermediate to advanced React and TypeScript
skills who are looking to take their applications to the next level. Whether you are building
a new large-scale app or optimizing an existing one, this book will provide you with the
tools and knowledge to achieve your goals. Throughout the book, practical examples and
real-world scenarios are used to illustrate key concepts and best practices, providing you
with a solid understanding of how to build large scale apps with React and TypeScript.

LARGE SCALE APPS WITH REACT AND TYPESCRIPT 2

Copyright © 2022 by Damiano Fusco (first published in January 2022)

All rights reserved. No part of this publicationmay be reproduced, distributed, or transmitted
in any form or by any means, including photocopying, recording, or other electronic or me-
chanical methods, without the prior written permission of the author and publisher, except
in the case of brief quotations embodied in critical reviews and certain other noncommercial
uses permitted by copyright law. For permission requests, write to the author and publisher,
addressed “Attention: Permissions Coordinator,” at the email me@damianofusco.com.

mailto:me@damianofusco.com

Preface
Why React, Vite and what we mean by “large scale apps” in this book.

React is a popular JavaScript library for building user interfaces. It offers several benefits for
developers, such as:

• Declarative code structure: React uses a declarative syntax, making it easier for
developers to understand how the UI should react to changes in data.

• Reusable components: React’s component-based architecture allows for building reusable
UI components, making it easier to maintain and scale the codebase.

• Virtual DOM: React uses a virtual DOM, which optimizes updates and rendering,
resulting in improved performance compared to directly manipulating the actual DOM.

• Server-side rendering: React allows for server-side rendering, improving the initial load
time and making it easier to optimize search engine optimization (SEO).

• Large community: React has a large and active community, which means developers
have access to a wealth of resources, including tutorials, libraries, and support.

Vite is a modern build tool for JavaScript projects that aims to provide fast and efficient
builds. It offers several benefits, including:

• Faster build times and development experience compared to traditional bundlers.
• Lower initial load times, as only the essential code is loaded
• Improved build size, as Vite only includes the necessary code
• Lightweight and optimized for modern web development.

When we refer to “large scale apps”, we mean applications that have a large code base, a
large number of users, and a wide range of functionality. These applications typically require
efficient and scalable code that can handle high traffic and large amounts of data.

In this kind of projects there are several common concerns that arise, such as:

• Code maintenance and scalability
• Code quality and performance
• Code organization and structure

Preface 4

To address these concerns, here we will outline best practices for code organization and
structure, such as using a centralized state manager and implementing strong-type checking
with TypeScript. Additionally, we will focus on writing unit tests for our models and
components, which will help improve code quality and catch bugs early in the development
process.

Our ultimate goal is to build a foundation that can handle the demands of our app and be
easy to expand and maintain as the code base grows.

Goal

The primary aim of this book is to guide you through the process of building a scalable React
application by following best practices for project structure, file organization, naming con-
ventions, state management, type checking with TypeScript, and compositional approaches
using hooks.

Throughout the chapters, we will grow our simple project into a robust, large-scale appli-
cation that is easy to expand and maintain, showcasing how patterns, conventions, and
strategies can lay a solid foundation and keep the code organized and uncluttered.

We will build a TypeScript API client that can seamlessly switch between serving static
mock data and communicating with a live API, allowing for front-end development to
commence even before the back-end API is fully functional. Additionally, we will delve
into topics such as internationalization, localization, and advanced techniques, to round out
our comprehensive guide to building a scalable React application.

IMPORTANT: We will initially write code that allows us to achieve the desired functionality
quickly, even if it requires more code, but then we constantly “rework” it (refactoring) to
improve it and find solutions that allow us to reduce the amount of code used, or to organize
it in a clear and easy way that is easy to expand and maintain. So arm yourself with a lot of
patience!

Audience

The audience for this book is from beginners with some experience in MV* applications,
to intermediate developers. The format is similar to a cookbook, but instead of individual
recipes we’ll go through creating a project and keep enhancing, refactoring, and make
it better as we move forward to more advanced chapters to show different patterns,
architectures, and technologies.

Note: Some of the patterns illustrated here are not specific to React¹, but can applied in any
¹Official website: https://reactjs.org

https://reactjs.org/

Preface 5

application written in TypeScript or JavaScript. For example, most code from Chapters 3,
7, 9 can also be used in Vue.js/Svelte/Angular or other front-end frameworks, and even be
used in NodeJS apps.

Text Conventions

I will highlight most terms or names in bold, rather than define different fonts/styles
depending on whether a term is code, or a directory name or something else.

Thanks

I would like to thank my son for helping me proof read and validate the steps in each chapter
by building the same project. I also would like to thank all the developers that over the time
helped me correct things in the book and provided valuable feedback.

About me

I have worked as a software developer for more than 20 years. I switched career from being a
full time musician when I was 30 years-old and then became a graphic designer, then transi-
tion to a web designer when internet became “a thing”, and for many years after that worked
as full-stack developer using Microsoft .NET, JavaScript, Node.js and many other technolo-
gies. You can read more about me on my personal website https://www.damianofusco.com
and LinkedIn profile https://www.linkedin.com/in/damianofusco/. You will find me also on
Twitter, @damianome, and GitHub github.com/damianof

https://twitter.com/damianome
https://www.github.com/damianof

Prerequisites
This book assumes that you are familiar with the terminal (command prompt onWindows),
have already worked with the Node.js and NPM (Node Package Manager), know how to
install packages, and are familiar with the package.json file.

It also assumes you are familiar with JavaScript, HTML, CSS and in particular with HTML
DOM elements properties and events.

It will also help if you have some preliminary knowledge of TypeScript² as we won’t get
into details about the language itself or all of its features but mostly illustrate how to enforce
type checking at development time with it.

You will need a text editor like VS Code or Sublime Text, better if you have extensions/plu-
gins installed that can help specifically for React/JSX code. For VS Code for example, you
could use extensions like react-vscode-extension-pack³ (just search for it within the VS
code extensions tab).

²https://www.typescriptlang.org
³jawandarajbir.react-vscode-extension-pack

https://www.typescriptlang.org/
https://marketplace.visualstudio.com/items?itemName=jawandarajbir.react-vscode-extension-pack

Companion Code
The entire companion code for the book can be found onGitHub at: github.com/damianof/large-
scale-apps-my-react-project

If you find any errors, or have difficulty completing any of the steps described in the book,
please report them tome through theGitHub issues section here: github.com/damianof/large-
scale-apps-my-react-project/issues

You are also free to reach out to me directly through Twitter at: @damianome

https://github.com/damianof/large-scale-apps-my-react-project
https://github.com/damianof/large-scale-apps-my-react-project
https://github.com/damianof/large-scale-apps-my-react-project/issues
https://github.com/damianof/large-scale-apps-my-react-project/issues
https://www.twitter.com/damianome

Chapter 1 - Setting Up The Project
IMPORTANT: This chapter assumes that you already have installed a recent version
of Node.js on your computer. If you do not have it yet, you can download it here:
https://nodejs.org/en/download/

There are many different ways to create a React app. Here we’ll be leveraging TypeScript and
therefore will need to setup an project with a build/transpile process that will let us make
changes and verify them in real time. You could manually create this project, install all the
npm packages required, create each individual file. However, it is just much easier to do this
by leveraging vite⁴

However, since vite is still relatively new at the time of this book writing, it might be harder
for you to find help as your code-base grows larger, so this is something to keep in mind.

I added a bonus chapter at the end of the boook with instructions on how to setup the
project using create-react-app⁵ instead of vite if you prefer that. Keep in mind that the use
of environment variables (which will cover in chapter 7 and 9), will differ.

Create Project Wizard

To set up the project, use the terminal and execute the following node.js command:

npm init vite@latest

If you do not have already installed the package create-vite@latest⁶ it will prompt you to
install it. In this case, type y and then enter to proceed:

Need to install the following packages:

create-vite@latest

Ok to proceed? (y)

The create-vite wizard will start and will ask you the name of the project. The default is
vite-project, so change this to my-react-project and hit enter:

⁴https://vitejs.dev
⁵https://github.com/facebook/create-react-app
⁶https://www.npmjs.com/package/create-vite

https://nodejs.org/en/download/
https://vitejs.dev/
https://github.com/facebook/create-react-app
https://www.npmjs.com/package/create-vite

Chapter 1 - Setting Up The Project 9

? Project name: › my-react-project

The second step will ask to select a framework. Use the keyboard arrows to scroll down the
list and stop at React, then hit enter:

? Select a framework: › - Use arrow-keys. Return to submit.

Vanilla

Vue

� React

Preact

Lit

Svelte

The third step will asking which “variant” you want o use. Scroll down to TypeScript and
hit enter:

? Select a variant: › - Use arrow-keys. Return to submit.

JavaScript

� TypeScript

This will create a folder called my-react-project which is also the name of our project.
At the end it should display a message similar to this:

Scaffolding project in /Volumes/projects/my-react-project...

Done. Now run:

cd my-react-project

npm install

npm run dev

The first command will navigate to the current sub-directory called my-react-project, the
second one will install all the npm dependencies, the third one will serve the app locally.
You’ll see a message similar to this displayed:

VITE v3.1.4 ready in 303 ms

� Local: http://127.0.0.1:5173/

� Network: use --host to expose

Chapter 1 - Setting Up The Project 10

From theweb browser, navigate to the http://localhost:5173 address and you’ll see application
home page rendered:

The my-react-project has been created with one main view called App.tsx.

http://localhost:5173/

Chapter 1 - Setting Up The Project 11

Chapter 1 Recap

What We Learned

How to create the basic plumbing for a React app using the vite and create-vite@latest

• How to serve the app locally through the command npm run dev

Observations

• The app has been created with only preliminary code
• The app does not do much yet, has only the main App view with some static html in it

Based on these observations, there are a few improvements that will be making into the next
chapter:

Improvements

• Expand our app functionality by creating our first component

Chapter 2 - Your First Component
The Items List

Let’s now pretend we have been giving requirements for our app to have a component
that displays a list of ”items”. We will keep this simple initially and as we move towards
more advanced chapter expand on it to show how we can better structure our application to
support:

• Quick prototyping and development using mocked data
• Component Organization
• Unit Testing
• State Management
• Internationalization support so we can render our user interface using different lan-
guages

• Localization for number and date formatting for different cultures

ItemsList Component Requirements

Your initial version of the ItemsList component, will have to implement the following
requirements (later, in more advanced chapters, we will expand on these as we get into
more advanced topics):

• The component will display a list of items
• An item will have 3 properties:

* id
* name
* selected

• The item name will be displayed to the user
• The user should be able to select/deselect one or more item
• An icon will be shown next to the name to indicate if the item is selected

Chapter 2 - Your First Component 13

ItemsList Component Code

Within the src/components directory, create a sub-directory called items. Within this folder
add a new file called ItemsList.component.tsx⁷

Your directory structure will now look like this:

Within the ItemsList.component.tsx file, paste the following code:

// example using const of type React.FC:

import React from 'react'

export const ItemsListComponent: React.FC<{

items: any[]

}> = (props) => {

return (

<div>

<h3>Items:</h3>

⁷We are following a file naming convention where higher level components’ names are pascal-case and follow this format [Component-
Name].component.tsx - Reference: Naming Conventions section at the end of this book

Chapter 2 - Your First Component 14

{

props.items.map((item, index) => <li key={index}>{item.name}

)

}

</div>

)

}

A few things to notice here. There are different ways to create a React component. You could
just return a function, a class, or like in the example above, a const of type React.FC⁸

NOTE: Deciding whether to use a function or a class might be a matter of personal preference,
or just abiding the coding standard you have defined with your team in your organization.
If you google React.FC vs class you’ll get several blogs/articles where it seems the majority
of developers prefer pure function or classes, rather than React.FC. Going forward, I’ll try to
use classes or functions throughout the book and avoid React.FC (but there might be cases
where I use any of the three)

When using a const of type React.FC, you will need to return the component html wrapped
with parentheses. If using a class, you will need to implement a render function that returns
the html.

For example, using the class syntax, the above component can be re-written as:

// example using class extending component

import React from 'react'

export class ItemsListComponent extends React.Component<{

items: any[]

}> {

constructor(props: {

items: any[]

}) {

super(props)

}

render(): React.ReactNode {

const { items } = this.props

return <div>

<h3>Items:</h3>

⁸React.FC

Chapter 2 - Your First Component 15

{

items.map((item: any, index: number) => <li key={index}>{item.name})

}

</div>

}

}

Please go ahead and replace the code with the above using the class syntax. Then save and
verify everything still renders as before without error in the browser console.

Here is what we are doing int he component code above:

For our html, we are returning a <div> element containing:

• a <h3> element with hard-coded text just saying ”Items:”
• a element with some code that will render all our items as elements.

We use the JavaScript Array nativemapmethod to loop through the Items array and return
an element for each item in the array. The element will display the item name in the
browser. Note how we have to also specify the key attribute which is required to be unique
within a list rendered by React. Here we leverage the fact the the map method returns the
index of the item in the array as the second argument to our handler function (index). The
index is good enough for now to use for the key attribute.

Note that withmap you can either inline the return expression, thus not needing the keyword
return:

items.map((item, index) => <li key={index}>{item.name})

Or you could use {} (curly braces) for the function body, and use the return keyword in this
case:

items.map((item, index) => {

return <li key={index}>{item.name}

})

Which syntax you use is up to your preference. However, remember that in a team, especialy
in a large organization, there will be coding standards that will dictacte how you consistently
write code. You should always abide the standard that you and your team have agreeed upon.

Note also that we declared the items property as an array of any⁹ for now (later we’ll replace
⁹With ‘any’, TypeScript does not enforce type-checking on a property or variable. However, this is considered a bad practice as we lose the main

benefit of TypeScript. There might be exceptions to this rule when using older 3rd party packages/libraries/plugins that do not offer type definitions.
However, even in those cases it would be strongly recommended to provide interfaces and types so that you can still avoid using ‘any’.

Chapter 2 - Your First Component 16

any with an interface we’ll create):

...

{

items: any[] // avoid using "any", in later chapters we'll replace with a TS int\

erface

}

...

Main App View

Open the src/App.tsx file. Replace the entire existing code with this:

//file: src/App.tsx

// component:

function App() {

return (

<div>

...

</div>

);

}

export default App

Let’s start by adding at the top an import to reference our ItemsList.component.tsx:

//file: src/App.tsx

// import reference to your ItemsList component:

import { ItemsListComponent } from './components/items/ItemsList.component'

...

For now, quickly mock some data for our list of items that we will feed to our ItemsList-
Component. For this we instantiate a local variable called items and initialize it with some
hard-coded data¹⁰.

We do this before the App function declaration:

¹⁰Note: using hard-coded data is a bad practice and here we are only doing it to first illustrate how things flow, and later in the next chapters will
remove in favor of best practices and patterns (see Chapter 5)

Chapter 2 - Your First Component 17

//file: src/App.tsx

// import reference to your ItemsList component:

import { ItemsListComponent } from './components/items/ItemsList.component'

// mock data:

const items: any[] = [{

id: 1,

name: 'Item 1'

}, {

id: 2,

name: 'Item 2'

}, {

id: 3,

name: 'Item 3'

}]

// component:

function App() {

...

Finally, we modify the content inside the <div> (within the return statement). Let just add
our ItemsListComponent and pass the hard-coded items data to it through its property
items.

The complete code within the App.tsx file should now look like this:

//file: src/App.tsx

// import reference to your ItemsList component:

import { ItemsListComponent } from './components/items/ItemsList.component'

// mock data:

const items: any[] = [{

id: 1,

name: 'Item 1'

}, {

id: 2,

name: 'Item 2'

}, {

id: 3,

name: 'Item 3'

}]

Chapter 2 - Your First Component 18

// component:

function App() {

return (

<div>

<ItemsListComponent items={items}/>

</div>

);

}

export default App

Update src/main.tsx by removing or commenting the imported index.css file:

import React from 'react'

import ReactDOM from 'react-dom/client'

import App from './App'

// import './index.css' // <-- comment out or remove this line

ReactDOM.createRoot(document.getElementById('root') as HTMLElement).render(

<React.StrictMode>

<App />

</React.StrictMode>

)

Save the file. The web browser will refresh and display our preliminary items list being
rendered more or less like this:

Chapter 2 - Your First Component 19

Chapter 2 - Your First Component 20

Chapter 2 Recap

What We Learned

• How to create a basic component that displays a list of items
• How to consume that component from another component or view

Observations

• The items property within the ItemsList.component.tsx is declared as an array of type
any

• The App.tsx view contains hard-coded data (items) which is also declared as an array
of any

• This means we are not leveraging strong-type checking at development time using
TypeScript interfaces/models/types

Based on these observations, there are a few improvements that we will make in the next
chapters:

Improvements

• Create a TypeScript interface called ItemInterface for enforcing type checking at
development time for our items data

• Update our code so it uses the new ItemInterface interface

Chapter 3 - Data Models and
Interfaces
In this chapter, we will delve into the power of TypeScript by leveraging its strong-type
checking capabilities through the use of interfaces. One of the main challenges with pure
JavaScript is its loosely typed nature, which can lead to unexpected behavior and bugs at
run-time. This is due to the lack of checks on the type or properties of values or objects being
passed around in the code. TypeScript solves this problem by providing developers with the
ability to enforce strict type checking at development time through the use of interfaces,
types, classes, and more.

By incorporating TypeScript into our project, we’ll be able to catch potential issues and bugs
before they reach the production environment, saving us time and resources in debugging
and fixing. Moreover, strong-typing also improves the readability and maintainability of
our code, making it easier for developers to understand the purpose and usage of values
and objects in the codebase. In this chapter, we’ll explore how to use interfaces and types
to implement strong-typing in our project, and how it can help us ensure the reliability and
quality of our code.

Models Directory

To lay the foundation for building large-scale applications, we will start by creating a new
sub-directory under src called models. The organization of files and directories plays a
critical role in the success of large-scale code bases. As such, it’s essential to establish a
consistent naming convention and directory structure from the outset. This will help ensure
that the code remains organized, easy to understand, and maintainable as the application
grows and the number of source files and directories increases.

You and your team are free to determine the standards that work best for you, but it’s crucial
to establish a set of conventions and stick to them. This will save you a significant amount
of time and effort in the long run and prevent confusion and headaches as the application
grows and evolves.

Chapter 3 - Data Models and Interfaces 22

Interface ItemInterface

To create the interface for our items, we will create a new directory called src/models/items
and add a TypeScript file named Item.interface.ts.

It’s worth noting that there are different naming conventions for TypeScript interfaces, with
some preferring to use a suffix like Interface, while others use a prefix like I. In this book, we
will follow the suffix convention, using Item.interface.ts as the file name. However, you are
free to choose your preferred naming convention or align with your organization’s coding
standards.

It’s important to keep each interface in its own file, as this makes it easier to maintain
and manage. For more information on naming conventions, please refer to the Naming
Conventions section at the end of this book.

Your directory structure should now look similar to this:

Let’s write an interface that represents one item that will be rendered in our Item component.
Our interface will have three properties:

• id: this is a unique number for each item in the list
• name: is a string containing the name of the item
• selected: is a boolean value that shows if the user has selected the item

The code for your interface should look like this:

Chapter 3 - Data Models and Interfaces 23

// file: src/models/items/Item.interface.ts

export interface ItemInterface {

id: number

name: string

selected: boolean

}

For now, that is all we need. Since this will only represent a piece of data, we do not need to
implement a class.

NOTE: In this case our ItemInterface only holds fields, but no methods. You can think of this
more like the type struct in language like C or C#. Unfortunately TypeScript does not have
an explicit struct type¹¹ and their guidance is to use interfaces for this.

ItemsList Component

Now that we have our interface, we can finally leverage TypeScript type checking ability by
changing our items property on the items component from any[] to ItemInterface[]. First,
import a reference for ItemInterface:

// file: src/components/items/ItemsList.component.tsx

import React from 'react'

// import reference to our interface

import { ItemInterface } from '../../models/items/Item.interface'

...

Then modify our items property declaration from any[] to ItemInterface[]:

¹¹There have been suggestions presented, but I do not think they will ever add a struct type. See the TypeScript team answers here:
https://github.com/microsoft/TypeScript/issues/22101

Chapter 3 - Data Models and Interfaces 24

// file: src/components/items/ItemsList.component.tsx

// example using const of type React.FC:

import React from 'react'

// import reference to our interface

import { ItemInterface } from '../../models/items/Item.interface'

export const ItemsListComponent: React.FC<{

items: ItemInterface[] // replace any[] with ItemInterface[]

}> = (props) => {

...

The complete update code should look like this:

// file: src/components/items/ItemsList.component.tsx

// example using const of type React.FC:

import React from 'react'

// import reference to our interface

import { ItemInterface } from '../../models/items/Item.interface'

export const ItemsListComponent: React.FC<{

items: ItemInterface[] // replace any[] with ItemInterface[]

}> = (props) => {

return (

<div>

<h3>Items:</h3>

{

props.items.map((item, index) => <li key={index}>{item.name}

)

}

</div>

)

}

Or if you went with the class syntax:

Chapter 3 - Data Models and Interfaces 25

// file: src/components/items/ItemsList.with-class-syntax.tsx

// example using class extending component

import React from 'react'

// import reference to our interface

import { ItemInterface } from '../../models/items/Item.interface'

export class ItemsListComponent extends React.Component<{

items: ItemInterface[] // replace any[] with ItemInterface[]

}> {

constructor(props: {

items: ItemInterface[] // replace any[] with ItemInterface[]

}) {

super(props)

}

render(): React.ReactNode {

const { items } = this.props

return <div>

<h3>Items:</h3>

{

items.map((item: any, index: number) => <li key={index}>{item.name})

}

</div>

}

}

Make sure the terminal does not display any error, and that the web browser refreshed and
no error are displayed in the browser console.

App View

We should also update theApp.tsx code so it uses the ItemInterface interface for the locally
private property also called items.

Please note, that as soon as you change the items property from any[] to ItemInterface[] it will
complain that each item does not correctly implement the interface. This is because we did not
initially include the selected property required by the interface. This is one of the powerful

Chapter 3 - Data Models and Interfaces 26

things of using TypeScript correctly. It will help catch errors like this at development time
rather than run time, increase the code quality and make it less prone to bugs. So make sure
each item has now also a selected field with a default of false.

// file: src/App.tsx

import './App.css'

// import reference to our interface

import { ItemInterface } from './models/items/Item.interface'

// import reference to your ItemsList component:

import { ItemsListComponent } from './components/items/ItemsList.component'

// mock data:

const items: ItemInterface[] = [{ // change any[] to ItemInterface[]

id: 1,

name: 'Item 1',

selected: false // add selected: false to each item

}, {

id: 2,

name: 'Item 2',

selected: false

}, {

id: 3,

name: 'Item 3',

selected: false

}]

...

Again, make sure the terminal does not display any errors, and that the web browser
refreshed and no error are displayed in the browser console. As you make changes is also
a good idea occasionally to do an Empty Cache and Hard Reload by right clicking on the
Chrome refresh icon and selecting the last option:

Chapter 3 - Data Models and Interfaces 27

Chapter 3 - Data Models and Interfaces 28

Chapter 3 Recap

What We Learned

• It’s important to follow files and directories naming convention and structure conven-
tion

• How to leverage TypeScript interfaces and avoid using any so that strong-type
checking is enforced at development time and avoiding potential runtime errors or
hidden bugs

Observations

• The App.tsx contains a local variable that holds hard-coded mocked data that enabled
us to prototype our component quickly

• ItemsList.component.tsx just displays the list of items, but the user has still no ability
to click on them to change their selected property

Based on these observations, there are a few improvements that we will make into the next
chapter:

Improvements

• Update our component so that when a user clicks on an item displayed on the page, the
item selected property will toggle from false to true (and vice versa)

Chapter 4 - Adding Events To the
Items Component
In this chapter we keep building our ItemsList.component.tsx so we can handle when the
user clicks on an item in the list.

ItemsList Component

Start by adding a function called handleItemClick just before the render() function. This
function will handle a click on each of the elements and will toggle the item.selected
property from true to false or vice versa. It will also logs the item id and selected properties
to the console for preliminary debugging:

// file: ItemsList.component.tsx

...

// if using class syntax

handleItemClick (item: ItemInterface) {

item.selected = !item.selected

console.log('handleItemClick', item.id, item.selected)

}

render() {

...

// or if using React.FC syntax:

const handleItemClick = (item: ItemInterface) => {

item.selected = !item.selected

console.log('handleItemClick', item.id, item.selected)

}

return (

...

Then update the return/render section of the render() function by adding an onClick
attribute to the element, pointing to an handler called handleItemClick and passing
a reference to item as the argument:

Chapter 4 - Adding Events To the Items Component 30

// file: ItemsList.component.tsx

...

// if using class syntax:

render(): React.ReactNode {

const { items } = this.props

return (

<div>

<h3>Items:</h3>

{

items.map((item: any, index: number) => <li key={index} onClick={() => t\

his.handleItemClick(item)}>{item.name})

}

</div>

)

}

...

// or if using React.FC syntax:

...

return (

<div>

<h3>Items:</h3>

{

props.items.map((item, index) => <li key={index} onClick={() => handleItem\

Click(item)}>{item.name}

)

}

</div>

)

...

Note that React uses its own syntax for html attributes (because of JSX), and the standard
html onclick event is called onClick (note the letter casing) in React. Additionally, the
onClick attribute expect a method with a specific signature, and we should add wrap it
within an inline funciton in this (or TypeSCript will throw an error):

Chapter 4 - Adding Events To the Items Component 31

() => handleItemClick(item)

Save the file. The web browser should have refreshed, and when clicking on the items in
the list you should see the message being displayed in the browser developer console, and
when clicking multiple time on the same item it should print true then false etc showing that
toggling is working:

Now, we learned how to add a click handler to our component and changing the data item
selected property that way. However, updating the selected property within the onItemSelect
will not cause React to re-render the html. This is because the data we are working with is
not yet reactive.

Let’s verify this. Start by slightly modifying the text output by our list element, outputting
also the selected value within [] (square brackets) like “[]”:

// file: ItemsList.component.tsx

...

props.items.map((item, index) => {

return (

<li key={index}

onClick={() => handleItemClick(item)}>

{item.name} [{ String(item.selected) }] {/* output item.selected n\

ext to the name */}

)

})

...

Note: React is peculiar when rendering some types of properties. If you were trying to
just render item.selected, which is a boolean, without either wrapping with String() or call
item.selected.toString(), then it will never render its value.

Save and check the browser again. Notice that even though after clicking on the list items
you see a message in the console with the updated value for the selected property, the html
is not being re-rendered.

Chapter 4 - Adding Events To the Items Component 32

In order to make our data reactive, we have to use React’s hook useState. Let’s try this. First,
lets modify the code in our ItemsListComponent so that it takes also a second property called
onItemSelect.

While we add onItemSelect property, let’s also refactor a bit and create a type/interface for
our component properties called simply Props. There is no need for a better name as we’ll
not be exporting this type/interface but using it only within the ItemsList.component.tsx
code:

// file: ItemsList.component.tsx

// if using the class syntax:

...

// extract type for component properties:

type Props = {

items: ItemInterface[],

onItemSelect: (item: ItemInterface) => void

}

// remove the type declaration within React.Component<> and replace it with Props.

// also, change the constructor signature to use Props as the type of the props argu\

ment:

export class ItemsListComponent extends React.Component<Props> {

constructor(props: Props) {

super(props)

}

...

// or if using React.FC syntax:

...

// change the function type signature to use Props as the type of the props argument:

export const ItemsListComponent: React.FC<Props> = (props) => {

...

// NOTE: React is perfectly happy with normal function signatures so you could simpl\

y use this if you prefer: export const ItemsListComponent = (props: Props) => { ...

...

Then, modify the function onClick to just invoke the props.onItemSelect functoin that is
passed by the parent component:

Chapter 4 - Adding Events To the Items Component 33

// file: ItemsList.component.tsx

...

handleItemClick (item: ItemInterface) {

this.props.onItemSelect(item) // Note: you need to use the "this" prefix here only\

if using class syntax

}

...

Now, open the App.tsx file and lets modify some code in here. Start by importing a reference
at the top to the hook useState:

import { useState } from 'react'

Then remove our mock data array. Instead, within the function App(), add this code:

// file: App.tsx

...

// begin: remove code block

// mock data:

// const items: ItemInterface[] = [{

// id: 1,

// name: 'Item 1',

// selected: false

// }, {

// id: 2,

// name: 'Item 2',

// selected: false

// }, {

// id: 3,

// name: 'Item 3',

// selected: false

// }]

// end: remove code block

function App() {

// begin: add code block

// add the useState declaration here passing our mock-data array as an argument

const [items, setItems] = useState<ItemInterface[]>([{

id: 1,

name: 'Item 1',

selected: true

}, {

Chapter 4 - Adding Events To the Items Component 34

id: 2,

name: 'Item 2',

selected: false

}, {

id: 3,

name: 'Item 3',

selected: false

}])

// end: add code block

...

Whatwe are doing here is invoke the hookuseState, specifying the type to be ItemInterface[],
and pass our initial mock data array in it. The useState hook returns an array where the first
parameter is a reference to your data, in this case items, the second parameter is a funciton
that allow to update the data, in this case we called it setState.

Now let’s add a function called onItemSelect. Since we are already within a function (App),
we can either declare is as a arrow functoin stored into a const, or as a pure function:

// file: App.tsx

...

// either as:

function onItemSelect (item: ItemInterface) {

...

// or as:

const onItemSelect = (item: ItemInterface) => {

....

Let’s go with an arrow function. Here is the full code for the function:

// file: App.tsx

...

// begin: add code block

const onItemSelect = (item: ItemInterface) => {

const updatedItems = [...items]

const found = updatedItems.find(o => o.id === item.id) as ItemInterface

found.selected = !item.selected

setItems(updatedItems)

console.log('App.tsx: onItemSelect', found.id, found.selected, updatedItems)

}

// end: add code block

Chapter 4 - Adding Events To the Items Component 35

...

Finally, modify the return() section to pass our onItemSelect handler function through a
property with the same on ItemsListComponent:

// file: App.tsx

...

return (

<div className="App">

<ItemsListComponent items={items} onItemSelect={onItemSelect}/>

</div>

)

Here is the full update code of App.tsx:

// file: src/App.tsx

import { useState } from 'react'

// import reference to our interface

import { ItemInterface } from './models/items/Item.interface'

// import reference to your ItemsList component:

import { ItemsListComponent } from './components/items/ItemsList.component'

// component:

function App() {

// add the useState declaration here passing our mock-data array as an argument

const [items, setItems] = useState<ItemInterface[]>([{

id: 1,

name: 'Item 1',

selected: true

}, {

id: 2,

name: 'Item 2',

selected: false

}, {

id: 3,

name: 'Item 3',

selected: false

}])

const onItemSelect = (item: ItemInterface) => {

const updatedItems = [...items]

Chapter 4 - Adding Events To the Items Component 36

const found = updatedItems.find(o => o.id === item.id) as ItemInterface

found.selected = !item.selected

setItems(updatedItems)

console.log('App.tsx: onItemSelect', found.id, found.selected, updatedItems)

}

return (

<div>

<ItemsListComponent items={items} onItemSelect={onItemSelect}/>

</div>

);

}

export default App

Save the file, and check the web browser. This time, you can see the html re-rendering and
the correct value, either true/false, displayed next to each item as you click on them.

Chapter 4 - Adding Events To the Items Component 37

Chapter 4 Recap

What We Learned

• How to add a click handler to our ItemsList component
• How to manipulate the item.selected property through our click handler
• How to use the React hook useState to create a reactive property named items, and a
method to update the React state

Observations

• The items selected property is being manipulated directly within our component
• We need a more centralized way to handle changes on the data and state of the
application

Based on these observations, there are a few improvements that we will make in the next
chapters:

Improvements

• Implement a state manager to control our application state from a centralized place

Chapter 5 - Intro to Unit Testing
While Refactoring a Bit
We will now delve into writing unit tests for our project. Unit tests serve as a critical aspect
of ensuring the stability and reliability of our code. In this book, we will cover two main
categories of unit tests:

• Unit tests for models, classes, structures, and interfaces (such as the API client and
helpers)

• Unit tests for React components

Note: It’s worth mentioning that there is a third category of tests, known as end-to-end (e2e)
tests, but we will not be covering those in this book.

Our first step will be to write unit tests for our React components. We will start with
the ItemsList component and while doing so, we will make some refactors to improve its
implementation. The unit tests will validate the changes we make, ensuring that our code
remains functional and free of bugs.

ItemComponent

Remember how in our ItemsList component we have a loop that creates elements, one
for each item in our items property? Let’s extract the code for the element and create
a child component just for that. Let’s start by adding a new file called Item.component.tsx
under the src/components/items/children directory:

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 39

Paste the following code in the Item.component.tsx file:

// file: Item.component.tsx

import React from 'react'

// import reference to our interface

import { ItemInterface } from '../../../models/items/Item.interface'

// component props type:

type Props = {

testid: string

model: ItemInterface,

onItemSelect: (item: ItemInterface) => void

}

// example using class syntax

export class ItemComponent extends React.Component<Props> {

constructor(props: Props) {

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 40

super(props)

}

get cssClass () {

let css = 'item'

if (this.props.model?.selected) {

css += ' selected'

}

return css.trim()

}

handleItemClick (item: ItemInterface) {

this.props.onItemSelect(item)

}

render(): React.ReactNode {

const { model } = this.props

const testid = this.props.testid || 'not-set'

return (

<li data-testid={testid} className={this.cssClass} onClick={() => this.handleI\

temClick(model)}>

<div className="selected-indicator">*</div>

<div className="name">{model.name}</div>

)

}

}

Note: we added also a testid property that will bind to the data-testid property of the outer
html DOM element of our component. This will make it easier to select the element during
the unit tests or automation tests.

We just created a template for a single element. We also enhanced this a bit by replacing
the rendering of the name with binding { item.name } with two child <div> elements:

- one to display the Item name
- one that will show a star icon (we are just using a char here, but in the next chapters we’ll
be replacing this with real icons from the font library material-icons)

Then we added a computed property called cssClass that will return the string ”item”
or ”item selected”. We then bind this to the className attribute, based on whether
the model.selected property is true or false: <li className={this.cssClass} onClick={() ⇒
this.handleItemClick(model)}>

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 41

This will have the effect to render the element in two possible ways:

- <li class=”item”> (when not selected)
- <li class=”item selected”> (when selected)

We also bind to the click event with onClick binding and in the local onClick handler we
just invoke the parent handler through the prop onItemSelect and pass it the model as
the argument (props.model). We will then handle this in the parent component (ItemsList
component as before).

App.css

Let’s also replace the content of the file App.css with this quick-and-dirty css:

/* file: App.css */

.App {

padding: 20px;

}

ul {

padding-inline-start: 0;

margin-block-start: 0;

margin-block-end: 0;

margin-inline-start: 0px;

margin-inline-end: 0px;

padding-inline-start: 0px;

}

li.item {

padding: 5px;

outline: solid 1px #eee;

display: flex;

align-items: center;

height: 30px;

cursor: pointer;

transition: background-color 0.3s ease;

}

li.item .name {

margin-left: 6px;

}

li.item .selected-indicator {

font-size: 2em;

line-height: 0.5em;

margin: 10px 8px 0 8px;

color: lightgray;

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 42

}

li.item.selected .selected-indicator {

color: skyblue;

}

li.item:hover {

background-color: #eee;

}

Note: the css above is just a quick-and-dirty bit of styling so we can make our list look a bit
prettier for now. In later chapters we’ll introduce TailwindCSS and keep working with that
instead of writing our own css.

Within the src/App.tsx you went to restore/uncomment the line we commented out or
removed in earlier chapters:

// file: src/App.tsx

import './App.css' // <-- restore this import

...

Install npm dependencies for unit tests

Let’s install Vitest and other npm libraries we need to be able to run the unit tests:

npm i -D vitest jsdom @testing-library/react @testing-library/user-event @types/jest

Configuration

Now we need to configure a few things to be able to run unit tests.

tsconfig.json file

Add “vite/client” and “vitest/globals” to tsconfig.json compilerOptions types:

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 43

// file: my-react-project/tsconfig.json

...

"compilerOptions": {

...

"baseUrl": ".",

"paths": {

"@/*": [

"src/*"

]

},

"types": [

"react",

"vite/client",

"vitest/globals"

]

...

vite.config.js files

Add “test” section with the following settings to the vite.config.js files:

// file: my-react-project/vite.config.js (and any other vite.config.xyz.js file)

/// <reference types="vitest" />

/// <reference types="vite/client" />

import { defineConfig } from 'vite'

import react from '@vitejs/plugin-react'

// https://vitejs.dev/config/

export default defineConfig({

plugins: [

react()

],

test: {

globals: true,

environment: 'jsdom',

exclude: [

'node_modules'

]

}

})

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 44

package.json

Within the package.json file, add the following command shortcuts within the script section:

...

"scripts": {

...

"test": "vitest run",

"test-watch": "npm run test -- --watch"

}

...

ItemComponent Unit Tests

Now, let’s add our first unit tests for our newly created component.

Within the same directory where our Item.component.tsx is located, add two new files:

• one called Item.rendering.test.tsx
• one called Item.behavior.test.tsx

Your directory structure will look now ike this:

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 45

NOTE: Jest has become quite old at this point and hard to work with epecially in Vite as it
requires a lot of dependencies and setup. I strongly suggest to use Vitest¹² and added a bonus
chapter at the end of the book with instructions on how to do this. Furthermore, additional
unit tests will add in the more advanced chapters will be using Vitest.

Item.rendering.test.tsx

Open the file Item.rendering.test.tsx and paste the following code in it:

¹²https://vitest.dev

https://vitest.dev/

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 46

// file: Item.rendering.test.tsx

import { render, screen, prettyDOM } from '@testing-library/react'

// import reference to our interface

import { ItemInterface } from '../../../models/items/Item.interface'

// import reference to your Item component:

import { ItemComponent } from './Item.component'

describe('Item.component: rendering' , () => {

it('renders an Item text correctly', () => {

const testid = 'unit-test-item'

const model: ItemInterface = {

id: 1,

name: 'Unit test item 1',

selected: false

}

// render component

render(<ItemComponent testid={testid} model={model} onItemSelect={() => {}} />)

// get element reference by testid

const liElement = screen.getByTestId(testid)

// test

expect(liElement).not.toBeNull()

// get element children

const children = liElement.children

expect(children).toHaveLength(2)

expect(children.item(1)?.innerHTML).toContain('Unit test item 1')

})

it('renders an Item indicator correctly', () => {

const testid = 'unit-test-item'

const model: ItemInterface = {

id: 1,

name: 'Unit test item 2',

selected: false

}

// render component

render(<ItemComponent testid={testid} model={model} onItemSelect={() => {}} />)

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 47

// get element reference by testid

const liElement = screen.getByTestId(testid)

// test

expect(liElement).not.toBeNull()

// get element children

const children = liElement.children

expect(children).toHaveLength(2)

expect(children.item(0)?.innerHTML).toEqual('*')

})

// we'll add more here in a second

})

...

Note: we are leveraging here the React testing-library¹³, make sure you install the necessary
dependencies (see the repository for the book code on GitHub).

We test that the component renders the data model properties as expected. For now, we are
checking if the entire text rendered by the component contains the model.name and also that
there is an element rendering the *. This is not very precise as our component later might
render additional labels and our test might match these instead resulting in possible false
positives.

Note: These example are just to get you started. Later you can look at more precise ways to
test what our component has rendered or even trigger events on them.

Run our unit tests from the terminal with this command:

npm run test

It should run the unit tests and print the results on the terminal, similar to this:

¹³https://testing-library.com/docs/react-testing-library/intro

https://testing-library.com/docs/react-testing-library/intro

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 48

> vitest run

RUN v0.23.4 /my-react-project/

✓ src/components/items/children/Item.rendering.test.tsx (2)

Test Files 1 passed (1)

Tests 2 passed (2)

Start at 08:45:41

Duration 829ms (transform 269ms, setup 0ms, collect 132ms, tests 15ms)

Let’s add two more tests within the same file to check that the component has the expected
CSS classes.
Test to check that it has the class ”selected” when item.selected is true, and that does NOT
have the css class ”selected” when item.selected is false:

// file: Item.rendering.test.tsx

...

describe('Item.component: rendering' , () => {

...

it('has expected css class when selected is true', () => {

const testid = 'unit-test-item'

const model: ItemInterface = {

id: 1,

name: 'Unit test item 3',

selected: true

}

// render component

render(<ItemComponent testid={testid} model={model} onItemSelect={() => {}} />)

// get element reference by testid

const liElement = screen.getByTestId(testid)

// test

expect(liElement).not.toBeNull()

// check that the element class attribute has the expected value

expect(liElement.className).toContain('selected')

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 49

})

it('has expected css class when selected is false', () => {

const testid = 'unit-test-item'

const model: ItemInterface = {

id: 1,

name: 'Unit test item 3',

selected: false

}

// render component

render(<ItemComponent testid={testid} model={model} onItemSelect={() => {}} />)

// get element reference by testid

const liElement = screen.getByTestId(testid)

// test

expect(liElement).not.toBeNull()

// check that the element class attribute does not contain 'selected'

expect(liElement.className).not.toContain('selected')

})

})

Item.behavior.test.tsx

We can also test the behavior of our component by programmatifcally triggering the onClick
event. Let’s open the file Item.behavior.test.tsx and paste the following code in it:

// file: Item.behavior.test.tsx

import { render, fireEvent, prettyDOM } from '@testing-library/react'

// import reference to our interface

import { ItemInterface } from '../../../models/items/Item.interface'

// import reference to your Item component:

import { ItemComponent } from './Item.component'

describe('Item.component: behavior' , () => {

// test our component click event

it('click event invokes onItemSelect handler as expected', () => {

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 50

const model: ItemInterface = {

id: 1,

name: 'Unit test item 1',

selected: false

}

// create a spy function with vitest.fn()

const onItemSelect = vitest.fn()

const testid = 'unit-test-item'

// render our component

const { container } = render(<ItemComponent testid={testid} model={model} onItem\

Select={onItemSelect} />)

// get a reference to the element

const liElement = container.firstChild as HTMLElement

// fire click

fireEvent.click(liElement)

// check test result

expect(onItemSelect).toHaveBeenCalledTimes(1)

})

})

Save and check the test results and make sure all pass (if you had stopped it, run npm run

test again).

ItemsList component

Now we can finally modify our ItemsList.component.tsx to consume our newly created
Item component. Import a reference to ItemComponent, then replace the return section
within the items.map to use our component instead of the element:

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 51

// file: ItemsList.component.tsx

import React from 'react'

// import reference to our interface

import { ItemInterface } from '../../models/items/Item.interface'

// import reference to your Item component:

import { ItemComponent } from './children/Item.component'

// if using class syntax:

type Props = {

items: ItemInterface[],

onItemSelect: (item: ItemInterface) => void

}

export class ItemsListComponent extends React.Component<Props> {

constructor(props: Props) {

super(props)

}

handleItemClick (item: ItemInterface) {

this.props.onItemSelect(item)

}

render(): React.ReactNode {

const { items } = this.props

return (

<div>

<h3>Items:</h3>

{

items.map((item: any, index: number) => {

// remove this line:

// return <li key={index} onClick={() => this.handleItemClick(item)}>{\

item.name}

// replace with this line that replaces with <ItemComponent>:

return <ItemComponent testid={`item-${ item.id }`} key={index} model={\

item} onItemSelect={() => this.handleItemClick(item)}></ItemComponent>

})

}

</div>

)

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 52

}

}

// if using function syntax:

type Props = {

items: ItemInterface[],

onItemSelect: (item: ItemInterface) => void

}

export const ItemsListComponent: React.FC<Props> = (props) => {

const handleItemClick = (item: ItemInterface) => {

props.onItemSelect(item)

}

return (

<div>

<h3>Items:</h3>

{

props.items.map((item, index) => {

// remove this return block:

// return (

// <li key={index}

// onClick={() => handleItemClick(item)}>

// {item.name} [{ String(item.selected) }] {/* output item.selecte\

d next to the name */}

//

//)

// add this return block:

return (

<ItemComponent testid={`item-${ item.id }`} key={index} model={item} o\

nItemSelect={() => handleItemClick(item)}></ItemComponent>

)

})

}

</div>

)

}

In the web browser, the list should now render similar to this (here we are showing it after
we clicked on the 2nd item element and is now selected):

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 53

Chapter 5 - Intro to Unit Testing While Refactoring a Bit 54

Chapter 5 Recap

What We Learned

• How to write unit tests against a component
• How to test that components render specific DOM elements, or have specific text, or
attributes like CSS classes, etc.

• How to test events on our components by programmatically triggering them with
fireEvent (from React Testing Library)

• How to re-factor parts of a component to create a child component and use unit tests
to validate our changes

Observations

• We did not test our ItemsList.component.tsx or more advanced behaviors

Based on these observations, there are a few improvements that you could make:

Improvements

• Add additional unit tests for ItemsList.component.tsx as well

Chapter 6 - Introducing State
Management
One of the most important part of an app that will grow large is to decided how to manage
its state.

For many years in MV* frameworks like React¹⁴ or Vue¹⁵ etc. that meant using a state
manager that usually implemented the Flux¹⁶ State Management pattern.

With React that usually meant using Redux¹⁷, while with Vue it meant using Vuex¹⁸, even
though nowadays there are other alternatives (inluding building your own custom state In
Vue using just Vue reactive¹⁹, or the useState²⁰ hooks in React, etc).

Flux offers an architectural pattern that is a slight modification of the observer-observable
pattern and it is not a library or a framework.

Single source of truth:

The most important reason to implement a centralized state manager is to have a “single
source of truth” for the application state/data. This simply means that our application state
has only one global, centralized source. The responsibility of changing that state is only in
the hand of our state manager. That means you can expect a consistent behavior in your app
as the source of your data cannot be changed outside the state manager.

Unfortunately, Redux comes with a learning curve, complexity, and during the years
alternatives have come up that offer simpler ways to manage the app state. There has been
also a lot of debate where is it really worth it for most small to medium apps. I’d argue that is
most likely a valid choice for large scale apps. However, It is outside the scope of this book to
tell you which statemanagement solution you should use for your application. If you work
in an organization, it will most likely be that the team will dictate that decision, or maybe
they already have a code base that use Redux or another state manager.

Just remember that there are alternative likeMobX²¹, pullstate²² and others. You should at
¹⁴https://reactjs.org
¹⁵https://vuejs.org
¹⁶https://facebook.github.io/flux
¹⁷https://redux.js.org
¹⁸https://vuex.vuejs.org
¹⁹https://vuejs.org/v2/guide/reactivity.html
²⁰https://reactjs.org/docs/hooks-state.html
²¹https://mobx.js.org
²²[https://lostpebble.github.io/pullstate

https://reactjs.org/
https://vuejs.org/
https://facebook.github.io/flux
https://redux.js.org/
https://vuex.vuejs.org/
https://vuejs.org/v2/guide/reactivity.html
https://reactjs.org/docs/hooks-state.html
https://mobx.js.org/

Chapter 6 - Introducing State Management 56

least research and analyze the pros/cons of each and decide which might best serve your
specific needs.

In this book, we’ll start by using a library called Redux Toolkit²³ which makes working
with Redux much simpler. We’ll implement our own peculiar centralized state manager by
leveraging Redux Toolkit that will help us deliver the goals of this book. For this, we’ll create
a set of interfaces and a structure that will allow use to keep our state manager organized
into modules/domains.

Note: Just remember to be open minded to different ideas, but also challenge them, and take
time to explore your own ideas as well. Different patterns and code organization strategy can
be implemented, and some might be better or worse than others. This is always the case when
writing code in general, but even more important when writing state managements patterns.

Let’s start by stopping the running application and installing the required npm packages for
Redux Toolkit which are react-redux and @reduxjs/toolkit:

npm install @reduxjs/toolkit react-redux

Now let’s proceed creating our store interfaces and implementations.

Store Interfaces

One thing I learned frommy past experience using React, Angular, Vue.js, Svelete, and more,
is that there are some advantages adopting a certain flow that is closer to Flux, but does not
have to follow it to the letter. We definitely won’t need this in every component, as in some
cases using just local state is the right thing to do. But we’ll need it for global state changes
on which many components within the same app will depend on.

One things that often drives the code pattern is the framework itself. Especially React has a
peculiar way as a lot of plumbing has to happen within the React context itself for React to
be aware of changes. Other frameworks are more flexible in this (Vue 3 reactive for example)
and are less prone to drive your architectural and patterns decisisions, thus allowing more
easily to decouple your state manager from the actual framework. There are many libraries
out there that have been trying to improve decoupling React from the state manager. You
are again welcome to research them and explore different ideas etc.

In this chapter we’ll offer a bit of an opinionated structure, but I found that is helps better
understanding how the data and events flow, especially to beginners.

Let’s try to implement a state manager that follow more or less this pattern:

²³https://redux-toolkit.js.org

https://redux-toolkit.js.org/

Chapter 6 - Introducing State Management 57

• we will invoke an action on our state manager from a component
• the state manager will perform some tasks within that action
• the state manager will commit a change to our state
• the state manager will be organized into modules (each module will represent a
domain/area of the application. I.e. items, authors, companies, projects, products,
categories, etc)

Start creating all the interfaces we need so we can better understand the abstraction of what
we are trying to accomplish.

Items Store Interfaces

We will create first the interfaces for the items store module. Create the directory src/s-
tore/items. Inside here, create a directory called models.

ItemsState.interface.ts

Here add a file called ItemsState.interface.ts and paste the following code in it:

Chapter 6 - Introducing State Management 58

// file: src/store/items/models/ItemsState.interface.ts

import { ItemInterface } from '../../../models/items/Item.interface'

/**

* @name ItemsStateInterface

* @description Interface represnets our Items state

*/

export interface ItemsStateInterface {

loading: boolean

items: ItemInterface[]

}

In the code above we just export an interface that represents our Items domain state. This
will be an object with a property called items which will contain an array of objects of type
ItemInterface., and one called loadingwhich is a boolean and will indicate if we are loading
data or not (so that we can eventually display a loading indicator/component in the UI).

Finally, let’s add an index.ts²⁴ to just export our interfaces:

// file: src/store/items/models/index.ts

export * from './ItemsState.interface'

Root Store Interfaces

Create now the root store interfaces. Create the directory src/store/root. Inside here, create
a directory called models.

²⁴index.ts files that just export code from the same folder are called “Barrels” files

Chapter 6 - Introducing State Management 59

RootStore.interface.ts

Here add a file called RootState.interface.ts and paste the following code in it:

// file: src/store/root/models/RootStore.interface.ts

import { ItemsStoreInterface } from '../../items'

// additional domain store interfaces will be imported here as needed

/**

* @name RootStoreInterface

* @description Interface represents our root state manager (store)

*/

export interface RootStoreInterface {

itemsStore: ItemsStoreInterface

// additional domain store modules will be added here as needed

}

Note that this interface will represent an object that wrap references to each individual
domain module. In this case, we only have one for now called itemsStore.

Here too add a barrel index.ts file to just export the RooStore interface:

Chapter 6 - Introducing State Management 60

// file: src/store/root/models/index.ts

export * from './RootStore.interface'

Store Implementation

Now let’s write the implementations for our interfaces.

Items Store instance

Let’s implement the items store module.

Items.slice.ts

The term slice is specific to Redux Toolkit. Ultimately what we care about is that the
reducers in here are just used to perform the final mutations to our state in a synchronous
way.

Within the directory, create a file called Items.slice.ts and paste the following code in it:

// src/store/items/Items.slice.ts

// import createSlice and PayloadAction from redux toolkit

import { createSlice, PayloadAction } from '@reduxjs/toolkit'

// import out items state interface, and the item interface

import { ItemsStateInterface } from './models'

import { ItemInterface } from '../../models/items/Item.interface'

// create an object that represents our initial items state

const initialItemsState: ItemsStateInterface = {

loading: false,

items: []

}

// create the itemsStoreSlice with createSlice:

export const itemsStoreSlice = createSlice({

name: 'itemsStoreSlice',

initialState: initialItemsState,

reducers: {

// reducers are functions that commit final mutations to the state

Chapter 6 - Introducing State Management 61

// These will commit final mutation/changes to the state

setLoading: (state, action: PayloadAction<boolean>) => {

state.loading = action.payload

},

setItems: (state, action: PayloadAction<ItemInterface[]>) => {

// update our state:

// set our items

state.items = action.payload || []

// set loading to false so the loader will be hidden in the UI

state.loading = false

},

setItemSelected: (state, action: PayloadAction<ItemInterface>) => {

const item = action.payload

const found = state.items.find((o) => o.id === item.id) as ItemInterface

found.selected = !found.selected

}

}

})

As you can see in the code above, we use Redux Toolkit createSlice to setup our store module
by specifying the name, the initialState, and the reducers. Reducers are simply functions
that commit the final mutations to the state. Reducer is a terminology specific to Redux.
These are usually called in other ways in other state management frameworks (mutations
in Vuex for example). It helps thinking of reducers as function that commit the final changes
to your state in a synchronousway, and they are only invoked from the store actions (which,
on the other hand, are asynchronous).

Note that in the store implementation (Items.store.ts) we’ll extract the slice “actions” into a lo-
cal variable namedmutations to avoid confusion (i.e. const mutations = itemsStoreSlice.actions)

Items.store.ts

Add another files called Items.store.ts and paste the following code in it:

Chapter 6 - Introducing State Management 62

// src/store/items/Items.store.ts

// import hooks useSelector and useDispatch from react-redux

import { useSelector } from 'react-redux'

import { Dispatch } from 'react'

// import a reference to our RootStateInterface

import { RootStateInterface } from '../root'

// import a reference to our ItemInterface

import { ItemInterface } from '../../models/items/Item.interface'

// import a refence to our itemsStoreSlice

import { itemsStoreSlice } from './Items.slice'

/**

* @name useItemsActions

* @description

* Actions hook that allows us to invoke the Items store actions from our components

*/

export function useItemsActions(commit: Dispatch<any>) {

// get a reference to our slice actions (which are really our mutations/commits)

const mutations = itemsStoreSlice.actions

// our items store actions implementation:

const actions = {

loadItems: async () => {

// set loading to true

commit(mutations.setLoading(true))

// mock some data

const mockItems: ItemInterface[] = [{

id: 1,

name: 'Item 1',

selected: false

}, {

id: 2,

name: 'Item 2',

selected: false

}, {

id: 3,

name: 'Item 3',

selected: false

}]

Chapter 6 - Introducing State Management 63

// let's pretend we called some API end-point

// and it takes 1 second to return the data

// by using javascript setTimeout with 1000 for the milliseconds option

setTimeout(() => {

// commit our mutation by setting state.items to the data loaded

commit(mutations.setItems(mockItems))

}, 1000)

},

toggleItemSelected: async (item: ItemInterface) => {

console.log('ItemsStore: action: toggleItemSelected', item)

commit(mutations.setItemSelected(item))

}

}

// return our store actions

return actions

}

// hook to allows us to consume read-only state properties from our components

export function useItemsGetters() {

// return our store getters

return {

loading: useSelector((s: RootStateInterface) => s.itemsState.loading),

items: useSelector((s: RootStateInterface) => s.itemsState.items)

}

}

/**

* @name ItemsStoreInterface

* @description Interface represents our Items store module

*/

export interface ItemsStoreInterface {

actions: ReturnType<typeof useItemsActions> // use TS type inference

getters: ReturnType<typeof useItemsGetters> // use TS type inference

}

We are following a pattern here where we export two hooks:

• useItemsActions (used to initiate a state change from components or other store
modules)

• useItemsGetters (used to retrieve data from the store only from components)

Chapter 6 - Introducing State Management 64

This gives us the power to use actions also from both components and other store modules.
Additionally, use getters only from components.

Note that in the code above, we also export an interface called ItemsStoreInterface
leveraging TypeScript type inference.

Here too add a barrel index.ts file to export the itemsStoreSlice instance and useItemsStore
hook:

// file: src/store/items/index.ts

export * from './Items.slice'

export * from './Items.store'

Root Store Instance

Let’s now implement our root store instance.

Root.store.ts

Inside the directory src/store/root add a file calledRoot.store.ts and paste the following code
in it:

// file: src/store/root/Root.store.ts

// import configureStore from redux toolkit

import { configureStore } from '@reduxjs/toolkit'

import { useDispatch } from 'react-redux'

// import our root store interface

import { RootStoreInterface } from './models'

// import our modules slices and actions/getters

import { itemsStoreSlice, useItemsActions, useItemsGetters } from '../items/'

// configure root redux store for the whole app.

// this will be consumed by App.tsx

export const rootStore = configureStore({

reducer: {

// add reducers here

itemsState: itemsStoreSlice.reducer

// keep adding more domain-specific reducers here as needed

}

Chapter 6 - Introducing State Management 65

})

// Infer the `RootStateInterface` type from the store itself (rootStore.getState)

// thus avoiding to explicitely having to create an additional interface for the

export type RootStateInterface = ReturnType<typeof rootStore.getState>

// hook that returns our root store instance and will allow us to consume our app st\

ore from our components

export function useAppStore(): RootStoreInterface {

// note: we are callin dispatch "commit" here, as it make more sense to call it th\

is way

// feel free to just call it dispatch if you prefer

const commit = useDispatch()

return {

itemsStore: {

actions: useItemsActions(commit),

getters: useItemsGetters()

},

// additional domain store modules will be added here as needed

}

}

// infer the type of the entire app state

type IAppState = ReturnType<typeof rootStore.getState>

/**

* @name getAppState

* @description

* Returnss a snapshot of the current app state (non-reactive)

* This will be used mainly across store modules (i.e. items/etc)

* In components we'll usually use getters, not this.

* @returns

*/

export function getAppState(): IAppState {

const appState = rootStore.getState()

return {

...appState

}

}

In the code above, notice how we ultimately export a hook called useAppStore. This will
return our root store that conains all the domain-specific stores (itemsStore etc). Here we use

Chapter 6 - Introducing State Management 66

the interface RootStoreInterface which was created earlier through TypeScript inference.

Additionally, we also export function called getAppState that returns a read-only non-
reactive snapshot of the current state. This allows us to read the state from other store
modules. We should not use this in components but only from other store modules.
Components will most of the time use only getters.

Add a barrel index.ts file to export our root store hooks and getAppState:

// file: src/store/root/index.ts

export * from './Root.store'

Up one directory, finally add one last barrel index.ts file at src/store/index.ts to export only
the root store:

// file: src/store/index.ts

export * from './root'

Let’s now go back to our components and start consuming our state.

App.tsx

First we have to modify our App.tsx code so we can “provide” the Redux store to our React
app.

Add the following two imports to get a reference to the Redux Provider, and a reference to
out rootStore instance:

// file: App.tsx

// import a reference to Redux Provider and our rootStore

import { Provider } from 'react-redux'

import { rootStore } from './store'

...

Then, in the render function we need to wrap the existing root <div> with our Redux
Provider:

Chapter 6 - Introducing State Management 67

// file: App.tsx

...

return (

<Provider store={rootStore}>{/* wrap the root App element with Redux store provi\

der */}

<div className="App">

...

</div>

</Provider>

)

...

For now just save. We are going to add another component called Items.view.tsx and then
come back to our App.tsx for more changes.

Items.view.tsx

First we are going to add a new directory called views under src.

Here we add a new higher-level component called Items.view.tsx. Your directory structure
will be like this:

Note that in React anything is a component andwe could have just called this Items.component.tsx
and put it under component/items. This is only for organizational purposes. We are really free
to organize the code as we see fit. In this case I also wanted to better separate what the lower
components are doing and accessing the global state only in the higher-level component.

Chapter 6 - Introducing State Management 68

Paste the following code within the file Items.view.tsx:

// file: src/views/Items.view.tsx

// import hook useEffect from react

import { useEffect } from 'react'

// import a reference to our ItemInterface

import { ItemInterface } from '../models/items/Item.interface'

// import a reference to your ItemsList component:

import { ItemsListComponent } from '../components/items/ItemsList.component'

// import our useAppStore hook from our store

import { useAppStore } from '../store'

// ItemsView component:

function ItemsView() {

// get a reference to our itemsStore instanceusing our useAppStore() hook:

const {

itemsStore

} = useAppStore()

// get a reference to the items state data through our itemsStore getters:

const {

loading,

items

} = itemsStore.getters

// item select event handler

const onItemSelect = (item: ItemInterface) => {

itemsStore.actions.toggleItemSelected(item)

}

// use React useEffect to invoke our itemsStore loadItems action only once after t\

his component is rendered:

useEffect(() => {

itemsStore.actions.loadItems()

}, []); // <-- empty array means 'run once'

// return our render function containing our ItemslistComponent as we did earlier \

in the App.tsx file

return (

<div>

<ItemsListComponent items={items} onItemSelect={onItemSelect} />

</div>

Chapter 6 - Introducing State Management 69

)

}

export default ItemsView

In the code above we are basically rendering the same itemsListComponent as we did earlier
in the App.tsx file. However, here we are consuming the data from our items store and
invoking our store actions that will mutate our data.

Back to the App.tsx file

Let’s finally modify the App.tsx so we can consume our ItemsView component in it. Replace
the entire content of the file with this:

// file: App.tsx

// import our app.css

import './App.css'

// import a reference to Redux Proivder and our rootStore

import { Provider } from 'react-redux'

import { rootStore } from './store'

// import a reference to our ItemsView component

import ItemsView from './views/Items.view'

// App component:

function App() {

return (

<Provider store={rootStore}>{/* wrap the root App element with Redux store provi\

der */}

<div className="App">

<ItemsView />

</div>

</Provider>

)

}

export default App

Save the file.

Chapter 6 - Introducing State Management 70

Web Browser

The web browser should refresh and display the content similar to before. Notice that now it
will take about 1 second before the items will be rendered. This is because in our loadItems
action implementation we used a setTimeout with a 1 second delay to simulate a possible
call to an API for example.

ItemsList.component.tsx

Let’s add a property to our ItemsList.component.tsx called loading of type boolean:

// file: ItemsList.component.tsx

...

export class ItemsListComponent extends React.Component<{

loading: boolean, // add this

items: ItemInterface[],

onItemSelect: (item: ItemInterface) => void

}> {

constructor(props: {

loading: boolean, // add this

items: ItemInterface[],

onItemSelect: (item: ItemInterface) => void

}) {

super(props)

}

...

Now within the <h3> element, add a one-way binding using the single curly braces to print
out the value of the loading property:

Chapter 6 - Introducing State Management 71

// file: ItemsList.component.tsx

...

render(): React.ReactNode {

const { loading, items } = this.props // include loading here

return <div>

<h3>Items - loading: { String(loading) }:</h3>

...

Back to the Web Browser

Now, when we refresh the browser, we’ll first see a blank list, but in the header we’ll see the
textMy items - loading: true:

After 1 second the items will render and the h3 element will display the text My items -
loading: false:

Loader Component

Let’s create a quick-and-dirty loader component that we can show to indicate a loading
operation.

Create the directory src/components/shared. Within this directory create a file called
Loader.component.tsx. Within the file, paste the following code:

Chapter 6 - Introducing State Management 72

// file: Loader.component.tsx

import React from 'react'

// Loader component

export class Loader extends React.Component {

render(): React.ReactNode {

return <div className="loader">

<div className="bounceball"></div>

</div>

}

}

Save the file. Now open the App.css file and append the following css to the existing code:

/* begin: loader component */

.loader {

display: inline-block;

}

.loader .bounceball {

position: relative;

width: 30px;

}

.loader .bounceball:before {

position: absolute;

content: '';

top: 0;

width: 30px;

height: 30px;

border-radius: 50%;

background-color: #61dafa;

transform-origin: 50%;

animation: bounce 500ms alternate infinite ease;

}

@keyframes bounce {

0% {

top: 60px;

height: 10px;

border-radius: 60px 60px 20px 20px;

transform: scaleX(2);

}

25% {

height: 60px;

Chapter 6 - Introducing State Management 73

border-radius: 50%;

transform: scaleX(1);

}

100% {

top: 0;

}

}

/* end: loader component */

This provides a basic loader that uses pure CSS for the animation. You are free to use an
animated gif, or svg image, or font-icon etc. In later chapter we might modify this to
implement a versin that uses TailwindCSS.

Now, lets go back into our ItemsList.component.tsx code and import a reference to our new
Loader component, and update our render() function as follow (complete code):

// file: ItemsList.component.tsx

import React from 'react'

// import reference to our interface

import { ItemInterface } from '../../models/items/Item.interface'

// import reference to your Item component:

import { ItemComponent } from './children/Item.component'

// import a reference to our Loader component:

import { Loader } from '../shared/Loader.component'

// ItemsList component

export class ItemsListComponent extends React.Component<{

loading: boolean,

items: ItemInterface[],

onItemSelect: (item: ItemInterface) => void

}> {

constructor(props: {

loading: boolean,

items: ItemInterface[],

onItemSelect: (item: ItemInterface) => void

}) {

super(props)

}

handleItemClick (item: ItemInterface) {

this.props.onItemSelect(item)

}

Chapter 6 - Introducing State Management 74

render(): React.ReactNode {

const { loading, items } = this.props

let element

if (loading) {

// render Loader

element = <Loader />

} else {

// render

element =

{

items.map((item, index) => {

return <ItemComponent key={index} model={item} onItemSelect={() => this.\

handleItemClick(item)}></ItemComponent>

})

}

}

return <div>

<h3>Items - loading: { String(loading) }:</h3>

{element}

</div>

}

}

Save the file and the refreshed the web pagewill show the loader bouncing for about 1 second
before it renders the items:

Then the loader will hide and the items list is rendered:

Chapter 6 - Introducing State Management 75

Congratulations on completing this chapter and learning how to build a state manager
organized into domains to easily manage the application state in a consistent and predictable
way. It’s a long chapter, the concepts outlined here require a lot of code to implement, and
not everyone gets through it in a straightforward fashion the first time around. In the next
chapters we will try to improve this code even more so arm yourself with a lot of patience!

Chapter 6 - Introducing State Management 76

Chapter 6 Recap

What We Learned

• How to create a centralized state manager organized into modules, leveraging Redux
Toolkit

• How to use our state manager to update our Items state
• How to create actions and reducers (reducers are just final mutations/commits of state
changes)

• How to invoke state actions from our components
• How to use a loading property on our state to provide feedback to the user about long-
running processes through a loader (animation)

• How to create a simple and reusable Loader component

Observations

• We are still using hard-coded data (mockItems within the actions in the store/item-
s/Items.store.ts file), instead of loading the data through an API client

Based on these observations, there are a few improvements wewill make in the next chapters:

Improvements

• Create an API client that can serve mocked data for quick front-end development and
prototyping, and an API client that can communicate with real API end-points

Chapter 7 - Api Client
So far we have worked by manipulating the app state/data through our state manager (store).
However, we are still ”pretending” to load data by using a mockItems variable with hard-
coded mock data within our loadItems action, and using the setTimeout trick to add a bit
of delay before returning the data (so we have at least 1 second to show our Loader to the
user).

In the real world, we’ll be most likely writing a component that has to load the data from
a server-side API end-point. At the same time, we do not want to lose our ability to do
quick prototyping and development of our front-end, even if the server-side API has not
been developed yet. Now there are different ways of accomplishing this. Some people like
to use mock data returned by a real API (there are packages and services out there that do
just this²⁵). Others prefer to have 2 different implementations for each API client, one that
returns the mocked data (either by loading from disk or invoking a mocked API service),
and one that returns the live data from the real server API. We’ll be implementing the latter
pattern in this chapter so we have better control on our data and also have better control on
different scenarios.

Another pattern is to create a separate API client for each area of our application. This will
enable for better separation of concerns, avoid code cluttering, more easily write unit tests
against each client. This is the pattern we’ll be following in this book, but remember this is
not the only way to accomplish this. You should always evaluate what is the best solution
for your specific requirements and evaluate that it fits your needs.

You should also read about Domain Driver Design, even though this book is not strictly
following DDD principles, still the overall idea here is to try to keep code organized by
application domain.

API Client Overview

Here is an overview of our API client architecture:
²⁵JsonPlaceHolder or miragejs for example

https://jsonplaceholder.typicode.com/
https://miragejs.com/

Chapter 7 - Api Client 78

API Client module will read the custom environment variable called VITE_API_CLIENT
and there are two possible outcomes:

• when VITE_API_CLIENT is Mock: it will return the Mock API Client
• when VITE_API_CLIENT is Live: it will return the Live API Client

Chapter 7 - Api Client 79

Domains

We’ll create a global ApiClient that wraps additional clients organized by application
domain. Our ApiClient will have for example a property called items which is the actual
API client for the Items domain. As our application grows, we’ll be adding more domains
specific API clients.

Our goal is to eventually consume our API client code from our store in this way:

apiClient

.items

.fetchItems()

Here we have an instance of our mainApiClientInterface. We then access its items property
which is the domain-specific API client (of type ItemsApiClientInterface) and call its
methods or access its properties.

Later, if for example need to add a new people domain, we will add a people property to our
main ApiClientInterface that points to an instance of PeopleApiClientInterface. Then we
will be able to call its methods like this:

apiClient

.people

.fetchPeople()

As you can see, this makes the code much more concise and readable.

NOTE: This might seem to complicate things at first. However, remember that the scope of
this book is to build a foundation for large-scale applications. Our primary goal is a solid
code organization and structuring to avoid cluttering as the code might grow very large with
many files.

The Main ApiClient

Create the directory src/api-client/models. Inside this directory, create the fileApiClient.interface.ts
with the following code:

Chapter 7 - Api Client 80

// file: src/api-client/models/ApiClient.interface.ts

import { ItemsApiClientInterface } from './items'

/**

* @Name ApiClientInterface

* @description

* Interface wraps all api client modules into one places for keeping code organized.

*/

export interface ApiClientInterface {

items: ItemsApiClientInterface

}

As you can see in the code above, our ApiClient will have a property called items of type
ItemsApiClientInterface, which will be the API client specific to the Items domain.

Now let’s create the the Items API client.

Items domain Api Client

Now we create the interfaces and model that defines a domain-specific API client.

Create the directory src/api-client/models/items. Inside thisd directory, create the follow-
ing files:

• index.ts
• ItemsApiClient.interface.ts
• ItemsApiClient.model.ts
• ItemsApiClientOptions.interface.ts

Your directory structure will look like this:

Following is the the description and code for each of the files.

ItemsApiClientOptions.interface.ts

In order to avoid using hard-coded strings, and to enforce type-checking at development
time, we’ll be using interface ItemsApiClientOptionsInterface for the values that indicates
the API end-points consumed by the ItemsApiClient. Also, we’ll have a mockDelay
parameter that we can use to simulate the delay when loading data from static json files.
Here is the code:

Chapter 7 - Api Client 81

// file: src/api-client/models/items/ItemsApiClientOptions.interface.ts

/**

* @Name ItemsApiClientEndpoints

* @description

* Interface for the Items urls used to avoid hard-coded strings

*/

export interface ItemsApiClientEndpoints {

fetchItems: string

}

/**

* @Name ItemsApiClientOptions

* @description

* Interface for the Items api client options (includes endpoints used to avoid hard\

-coded strings)

*/

export interface ItemsApiClientOptions {

mockDelay?: number

endpoints: ItemsApiClientEndpoints

}

ItemsApiClient.interface.ts

This is the interface for our ItemsApiClient. Our interface requires implementing a method
called fetchItems the will return a list of items. Here is the code to paste into ItemsApi-
Client.interface.ts:

// file: src/api-client/models/items/ItemsApiClient.interface.ts

import { ItemInterface } from '../../../models/items/Item.interface'

/**

* @Name ItemsApiClientInterface

* @description

* Interface for the Items api client module

*/

export interface ItemsApiClientInterface {

fetchItems: () => Promise<ItemInterface[]>

}

Chapter 7 - Api Client 82

ItemsApiClient.model.ts

This is the model (class) for our ItemsApiClient which implements our Items API client
interface.

For the initial version of this, we will be using a third-part open-source NPM package called
axios. This is just a library that allows to make Ajax call in a much easier way. Let’s go
back to the terminal, from within my-react-project directory, and install axios with the
command:

npm install axios --save

NOTE: we will improve this even more later to avoid having references to a third-party
NPM package spread throughout the code. Also note, we are showing here to use a 3rd
party package like axios on purpose, instead of the browser built-in fetch api, to show in
later chapters how we should always try to abstract and encapsulate dependencies to avoid
polluting our code.

Back to the editor, open ItemsApiClient.model.ts and start importing all the things we need:

// file: src/api-client/models/items/ItemsApiClient.model.ts

import axios, { AxiosRequestConfig, AxiosError, AxiosResponse } from 'axios'

import { ItemsApiClientOptions, ItemsApiClientEndpoints } from './ItemsApiClientOpti\

ons.interface'

import { ItemsApiClientInterface } from './ItemsApiClient.interface'

import { ItemInterface } from '../../../models/items/Item.interface'

…

And here is the class that implement our ItemsApiClientInterface:

Chapter 7 - Api Client 83

// file: src/api-client/models/items/ItemsApiClient.model.ts

...

/**

* @Name ItemsApiClientModel

* @description

* Implements the ItemsApiClientInterface interface

*/

export class ItemsApiClientModel implements ItemsApiClientInterface {

private readonly endpoints!: ItemsApiClientOptions

private readonly mockDelay: number = 0

constructor(options: ItemsApiClientOptions) {

this.endpoints = options.endpoints

if (options.mockDelay) {

this.mockDelay = options.mockDelay

}

}

fetchItems(): Promise<ItemInterface[]> {

return new Promise<ItemInterface[]>((resolve) => {

const endpoint = this.endpoints.fetchItems

// axios options

const options: AxiosRequestConfig = {

headers: {

}

}

axios

.get(endpoint, options)

.then((response: AxiosResponse) => {

if (!this.mockDelay) {

resolve(response.data as ItemInterface[])

} else {

setTimeout(() => {

resolve(response.data as ItemInterface[])

}, this.mockDelay)

}

})

.catch((error: any) => {

console.error('ItemsApiClient: HttpClient: Get: error', error)

})

Chapter 7 - Api Client 84

})

}

}

index.ts (barrel file)

This just exports all our interfaces andmodels under items/ so that we canmore easily import
them later in other parts of the code:

// file: src/api-client/models/items/index.ts

export * from './ItemsApiClientOptions.interface'

export * from './ItemsApiClient.interface'

export * from './ItemsApiClient.model'

Mock and Live Api Clients

Now that we have defined our models for ApiClientInterface and ItemsApiClientInter-
face, let’s implement a mechanism that will allow us to either use a mock api-client that
returns static json data, or a live api-client that returns data from as real API.

Under the src/api-client directory, create two new sub-directories called:

• mock (this will contain our mock implementations to return static json data)
• live (this will contain the implementation that call the real API end-points)

We’ll be writing a mock implementation of our ApiClientInterface and its child Item-
sApiClientInterface. We’ll be also instantiating either the mock or live api-client based
on config..

Mock Api Client

Items domain mock API instance

Within the mock directory, add a child directory called items, and within that one create a
new file named index.ts. Your directory structure should look like this:

Chapter 7 - Api Client 85

Inside the src/api-client/mock/items/index.ts file, paste the following code:

// file: src/api-client/mock/items/index.ts

import {

ItemsApiClientOptions,

ItemsApiClientInterface,

ItemsApiClientModel

} from '../../models/items'

const options: ItemsApiClientOptions = {

endpoints: {

fetchItems: '/static/mock-data/items/items.json'

},

mockDelay: 1000

}

// instantiate the ItemsApiClient pointing at the url that returns static json mock \

data

const itemsApiClient: ItemsApiClientInterface = new ItemsApiClientModel(options)

// export our instance

export {

itemsApiClient

}

Here we import all our interfaces and models, then we instantiate a variable called options

Chapter 7 - Api Client 86

of type ItemsApiClientOptions that holds the API end-points values and the mockDelay
option. In this case, since this is the mock implementation, for fetchItems we will point
to some static json file with the mock data. Note that we have only fetchItems, but we
could have multiple end-points. For now we’ll focus only on returning data. Later, in more
advanced chapter I’ll show you how to do something similar for CRUD operations.

We then create an instance of our ItemsApiClient class by passing our options instance into
the constructor (as you can see, later in our live implementation we’ll pass an instance of
ItemsApiClientOptions that contains the paths/urls to the real end-points)

Finally, we just export our instance called itemsApiClient.

Mock API instance

Now let’s move one directory up, under src/api-client/mock and create another index.ts
file here. Your directory structure should look like this:

Inside the src/api-client/mock/index.ts file, paste the following code:

// file: src/api-client/mock/index.ts

import { ApiClientInterface } from '../models/ApiClient.interface'

import { itemsApiClient } from './items'

// create an instance of our main ApiClient that wraps the mock child clients

const apiMockClient: ApiClientInterface = {

items: itemsApiClient

}

// export our instance

Chapter 7 - Api Client 87

export {

apiMockClient

}

This is the mock implementation of our main ApiClient that wraps that items client.

Herewe import ourApiClientInterface interface, and ourmock instance of ItemsApiClient.
We then create an instance of our ApiClientInterface that is called apiMockClient because
it will use the mock implementation of the ItemsApiClient.

Live Api Client

Items domain live API instance

Similar to what we did with our mock api client, we’ll be implementing the live api client
now. Note that the live directory structure will be the same as themock directory structure.

Create directory src/api-client/live/items and here add a new file named index.ts. Your
directory structure should look like this:

Inside the src/api-client/live/items/index.ts file, paste the following code:

Chapter 7 - Api Client 88

// file: src/api-client/live/items/index.ts

import {

ItemsApiClientOptions,

ItemsApiClientInterface,

ItemsApiClientModel

} from '../../models/items'

const options: ItemsApiClientOptions = {

endpoints: {

// this should be pointing to the live API end-point

fetchItems: '/path/to/your/real/api/end-point'

}

}

// instantiate the ItemsApiClient pointing at the url that returns live data

const itemsApiClient: ItemsApiClientInterface = new ItemsApiClientModel(options)

// export our instance

export {

itemsApiClient

}

NOTE: this code is almost exactly the same as the mock client. The only difference is the
fetchItems property that here says for now “/path/to/your/real/api/end-point”. You’ll replace
this with the actual value of your real server API end-point url/path. If you do not have one
yet, leave the current value as a place holder and updated once in the future you’ll have your
server API ready.

Live API instance

Now let’s move one directory up, under src/api-client/live and create another index.ts file
here. Your directory structure should look like this:

Chapter 7 - Api Client 89

Inside the src/api-client/live/index.ts file, paste the following code:

// file: src/api-client/live/index.ts

import { ApiClientInterface } from '../models'

// import module instances

import { itemsApiClient } from './items'

// create an instance of our main ApiClient that wraps the live child clients

const apiLiveClient: ApiClientInterface = {

items: itemsApiClient

}

// export our instance

export {

apiLiveClient

}

This code is also almost identical to the related mock index.ts file. The only exceptions are:

1. We use the live ItemsApiClient from api-client/live-items
2. We name the instance apiLiveClient for more clarity

We then just export our apiLiveClient instance.

In a bit we’ll be adding one final index.ts at the root of src/api-client that will act as our
API client “provider”. This will return either the mock or the live instance based on an
environemnt variable. So let’s first setup some things to work with environment variables.

Chapter 7 - Api Client 90

Environment Variables

Since Vite uses dotenv²⁶ to load environment variables, we’ll have to create two .env files²⁷
at root of your src directory:

.env.dev # loaded when mode is dev for local development

.env.production # loaded when mode is production

Inside the .env.mock put the following:

file src/.env.dev

VITE_API_CLIENT=mock

Inside the .env.production put the following:

file src/.env.production

VITE_API_CLIENT=live

You might have to add declarations for the import.meta.env types within the src/vite-
env.d.ts file²⁸:

// file: src/vite-env.d.ts

/// <reference types="vite/client" />

/// <reference types="react" />

// types for Vite env variables:

// (reference: https://vitejs.dev/guide/env-and-mode.html#intellisense-for-typescrip\

t)

interface ImportMetaEnv {

readonly VITE_API_CLIENT: string

// more env variables...

}

interface ImportMeta {

readonly env: ImportMetaEnv

}

²⁶https://github.com/motdotla/dotenv
²⁷https://vitejs.dev/guide/env-and-mode.html#production-replacement
²⁸https://vitejs.dev/guide/env-and-mode.html#intellisense-for-typescript

https://github.com/motdotla/dotenv
https://vitejs.dev/guide/env-and-mode.html#intellisense-for-typescript

Chapter 7 - Api Client 91

NOTE: Only variables prefixed with VITE_ are exposed to the Vite-processed code.²⁹

We’ll be now able to access the value of our environment variables in TypeScript with
import.meta.env (i.e. import.meta.dev.VITE_API_CLIENT). Before we can do this, we need
to do one final change in our package.json scripts configurationso it will correctly set the
expected environment variables when running locally for development with npm start, or
when building for production with npm run build. The current content of your script section
should be like this:

file: package.json

...

"scripts": {

"start": "npm run dev",

"dev": "vite --mode mock", // here add --mode mock

"build": "tsc && vite build --mode production", // here add --mode production

...

},

...

Change the dev command to:

"dev": "vite --mode mock",

Change the build command to:

"build": "tsc && vite build --mode production"

Optional: You could also add a build-mock command that uses the mock api client, if you are
do not plan to have a real API in your project, or maybe to test new front-end functionality
in production when the server API is not yet ready:

"build-mock": "tsc && vite build --mode mock"

Note: when running the app, if you make a change to the –mode value in the package.json,
or the values within the .env files, you’ll have to stop it with CTRL+C and restart with npm
start for changes to take into effect.

One last thing: we put our .env files within the src/ directory for now. To make sure Vite
is aware of where they are, open the vite.config.ts file and make sure the envDir option is
configured with the following value (we added this at the end of Chapter 5, but is a good
idea to verify that is there):

²⁹import.meta.env

https://vitejs.dev/guide/env-and-mode.html#:~:text=only%20variables%20prefixed%20with%20VITE_

Chapter 7 - Api Client 92

// file: vite.config.js

/// <reference types="vite/client" />

import { defineConfig } from "vite"

import reactRefresh from "@vitejs/plugin-react-refresh"

// https://vitejs.dev/config/

export default defineConfig({

plugins: [reactRefresh()],

envDir: './src/' // <-- make sure this is there

})

To test that the configuration is working, temporarily modify the App.tsx code to ourput all
the content of the import.meta.env like this:

// file: src/App.tsx

...

<div className="App">

[{JSON.stringify(import.meta.env)}] <!-- add this to output the current content \

of import.meta.env -->

...

Stop the app with CTRL+C and run it again with npm start. Verify that in the browser our
App.tsx renders something like this at the top:

[{"VITE_API_CLIENT":"mock","BASE_URL":"/","MODE":"mock","DEV":true,"PROD":false, ...

As you can see, our VITE_API_CLIENT environment variable contains the correct value
“mock” and we are able to read this in our views or other client-side code.

Now remove the code we just added to App.tsx and let’s proceed creating our Api Client
Provider.

Api Client Provider

Now we need one final index.ts that will server our main API client factory and return
either the mock or the live API client based on an environment variable (later you might

Chapter 7 - Api Client 93

find easier to drive this with different configuration files). Create an the file at the root of
src/api-client:

Inside the src/api-client/index.ts file, import a reference to our ApiClientInterface inter-
face, and both the instances for the mock and the live clients:

// file: src/api-client/index.ts

import { ApiClientInterface } from './models'

import { apiMockClient } from './mock'

import { apiLiveClient } from './live'

...

Now we will add some code that will export either the mock or live clients based on the
VITE_API_CLIENT environment variable:

// file: src/api-client/index.ts

...

let env: string = 'mock'

// Note: Vite uses import.meta.env (reference: https://vitejs.dev/guide/env-and-mode\

.html)

// optional: you can console.log the content of import.meta.env to inspect its value\

s like this: console.log('import.meta.env', JSON.stringify(import.meta.env))

if (import.meta.env && import.meta.env.VITE_API_CLIENT) {

env = import.meta.env.VITE_API_CLIENT.trim()

}

// return either the live or the mock client

let apiClient: ApiClientInterface

if (env === 'live') {

Chapter 7 - Api Client 94

apiClient = apiLiveClient

} else {

// default is always apiMockClient

apiClient = apiMockClient

}

export {

apiClient

}

Now let’s proceed to update our store to consume the data from our newly created Api
Client.

Store Instance updates

Back into our src/store/items/Items.store.ts code, we can now finally remove the reference
to the hard-coded data and use our new API client to retrieve these data. Start by adding an
import for our apiClient (note how we no longer have to worry about using the mock or
the live one, the system we’ll handle that automatically based on the VITE_API_CLIENT
environment variable we created earlier):

// src/store/items/Items.store.ts

...

// import a reference to our apiClient instance

import { apiClient } from '../../api-client'

...

Then, within the loadItems action, remove the hard-codedmockItems variable and its data.
Then remove the setTimeout lines with the call to commit(setItems(mockItems)).

Replace the loadItems codewith a call to apiClient.items.fetchItems and this time dispatch/-
commit setItems passing it the data returned by our fetchItems:

Chapter 7 - Api Client 95

// src/store/items/Items.store.ts

...

// our items store actions implementation:

const actions: ItemsStoreActionsInterface = {

// action that we invoke to load the items from an api:

loadItems: async () => {

// set loading to true

commit(mutations.setLoading(true))

// begin: remove code

// mock some data

const mockItems: ItemInterface[] = [{

id: 1,

name: 'Item 1',

selected: false

}, {

id: 2,

name: 'Item 2',

selected: false

}, {

id: 3,

name: 'Item 3',

selected: false

}]

// let's pretend we called some API end-point

// and it takes 1 second to return the data

// by using javascript setTimeout with 1000 for the milliseconds option

setTimeout(() => {

// commit our mutations by setting state.items to the data loaded

commit(mutations.setItems(mockItems))

}, 1000)

// end: remove code

// begin: add code

// invoke our API cient fetchItems to load the data from an API end-point

const data = await apiClient.items.fetchItems()

// commit our mutations by setting state.items to the data loaded

commit(mutations.setItems(data))

// end: add code

},

Chapter 7 - Api Client 96

...

We also need to create a data folder from where ourmock api-client will load the static json
files.

If you remember, earlier during our Mock Api Client implementation we set the urls
fetchItems end-point path to be /static/mock-data/items/items.json.

We need to create a directory called static under our public folder, because that is what app
considers our root directory to be when running the application. Within the static directory
create a sub-directory called mock-data, within mock-data add one more sub-directory
called items. Here create a file called items.json.

Within the items.json files and paste in the following data:

File: public/static/mock-data/items/items.json:

[{

"id": 1,

"name": "Item 1",

"selected": false

}, {

"id": 2,

"name": "Item 2",

"selected": false

}, {

"id": 3,

"name": "Item 3",

"selected": false

}, {

"id": 4,

"name": "Item 4",

"selected": false

}, {

"id": 5,

"name": "Item 5",

"selected": false

}]

Make sure there are no errors in the terminal. If needed stop it with CTRL-C and run again
with npm start. The browser should display a loader, then render our items list as before,
but this time should display 5 items (because the data now is loaded through our Api client
from the file public/static/mock-data/items/items.json):

Chapter 7 - Api Client 97

Notice how powerful is this pattern we just implemented as it allows us to easily build our
front-end components in isolation without a real API, and later everything we’ll just work
with a live API client that returns the same data structure as our static json data.

Alternatives

There are other ways in which you could use a mocked API. There are services or libraries
out there that can help you build a mocked API like Miragejs or JSONPlaceHolder³⁰, and
you could simplify the code here by having only one apiClient that uses either mock or live
API end-points based on environment variables only etc. Some of these alternatives require
running an additional server app that will serve your mocked API.

I opted to show you how you can do this using static .json files that are located in the same
project under public/static/mock-data as this gives you a lot of flexibility to play around
with different things when you are starting out. The other thing is that by having a specific
implementation of the mock apiClient you do not have to necessarily return the .json files,
but you could simulate fake responses or pretend to have saved or deleted an item without
actually modifying any static data (so it will be just in memory, and when you refresh the
web browser the data would be reloaded as in its original state).

Additionally, this gives you the flexibility to use either: static JSON files, or maybe for the
url end points use something like Miragejs etc for some of the API clients.

You can research alternatives as you see fit and make the decision you feel works better
for you, but remember you are not confined to one way or another if you keep following
the patterns I am showing you in this book. Indeed, let me finish by adding a few more
instructions on how to use for example an NPM package called json-server.

³⁰JsonPlaceHolder or miragejs for example

https://jsonplaceholder.typicode.com/
https://miragejs.com/

Chapter 7 - Api Client 98

Alternative: using json-server

Let’s start by install json-server:

npm install -D json-server

Now let’s rename the vite.config.ts file to vite.config.jsonserver.ts. Make 2 more copies of
this file and name one vite.config.mock.ts and the other vite.config.production.ts:

The content for vite.config.mock.ts will be:

/// <reference types="vitest" />

/// <reference types="vite/client" />

import { defineConfig } from 'vite'

import react from '@vitejs/plugin-react'

import { fileURLToPath, URL } from 'url'

// https://vitejs.dev/config/

export default defineConfig({

plugins: [react()],

envDir: './src/',

resolve: {

alias: {

// @ts-ignore

'@': fileURLToPath(new URL('./src', import.meta.url)),

},

},

server: {

port: 3000,

origin: 'http://localhost:3000/',

open: 'http://localhost:3000/'

},

test: {

Chapter 7 - Api Client 99

globals: true,

environment: 'jsdom',

exclude: [

'node_modules'

]

}

})

The content for vite.config.production.ts will be:

/// <reference types="vitest" />

/// <reference types="vite/client" />

import { defineConfig } from 'vite'

import react from '@vitejs/plugin-react'

import { fileURLToPath, URL } from 'url'

// https://vitejs.dev/config/

export default defineConfig({

plugins: [react()],

envDir: './src/',

resolve: {

alias: {

// @ts-ignore

'@': fileURLToPath(new URL('./src', import.meta.url)),

},

},

test: {

globals: true,

environment: 'jsdom',

exclude: [

'node_modules'

]

}

})

The content for vite.config.jsonserver.ts will be:

Chapter 7 - Api Client 100

/// <reference types="vitest" />

/// <reference types="vite/client" />

import { defineConfig } from 'vite'

import react from '@vitejs/plugin-react'

import { fileURLToPath, URL } from 'url'

// https://vitejs.dev/config/

export default defineConfig({

plugins: [react()],

envDir: './src/',

resolve: {

alias: {

// @ts-ignore

'@': fileURLToPath(new URL('./src', import.meta.url)),

},

},

server: {

port: 3000,

origin: 'http://localhost:3000/',

open: 'http://localhost:3000/',

proxy: {

'/jsonserver': {

target: 'http://localhost:3111',

changeOrigin: true,

secure: false,

ws: false,

rewrite: (path) => path.replace(/^\/jsonserver/, '')

}

}

},

test: {

globals: true,

environment: 'jsdom',

exclude: [

'node_modules'

]

}

})

Note how the main difference in the vite.config.jsonserver.ts is the addition of the proxy
section:

Chapter 7 - Api Client 101

...

proxy: {

'/jsonserver': {

target: 'http://localhost:3111',

changeOrigin: true,

secure: false,

ws: false,

rewrite: (path) => path.replace(/^\/jsonserver/, '')

}

}

...

This is telling Vite to proxy all the requests for endpoints that start with /jsonserver to the
url http://localhost:3111 (this is where the json-server API will run from)

Modify tsconfig.node.json include section like this (if you don’t have this file, please create
it):

{

"compilerOptions": {

"composite": true,

"module": "esnext",

"moduleResolution": "node"

},

"include": [

"vite.config.jsonserver.ts",

"vite.config.mock.ts",

"vite.config.production.ts"

]

}

Modify tsconfig.json to reference also tsconfig.node.json:

{

...

"references": [{ "path": "./tsconfig.node.json" }]

}

Modify the script section of the package.json file to have two additional commands:

Chapter 7 - Api Client 102

• with-jsonserver (we’ll use this to run the app using the vite.config.jsonserver.ts)
• json-server-api (with this we’ll start json-server on port 3111)

Also update the current command to explicitely set which Vite config file to use with –config:

...

"scripts": {

"dev": "vite --config vite.config.mock.ts --mode mock",

"build": "tsc && vite build --config vite.config.production.ts --mode productio\

n",

"build-beta": "tsc && vite build --config vite.config.production.ts --mode beta\

",

"build-local": "tsc && vite build --config vite.config.production.ts --mode loc\

alapis",

"build-mock": "tsc && vite build --config vite.config.mock.ts --mode mock",

"preview": "vite preview --config vite.config.mock.ts --mode mock",

"start": "npm run dev",

"start-local": "vite --config vite.config.production.ts --mode localapis",

"with-jsonserver": "vite --config vite.config.jsonserver.ts --mode jsonserver",

"json-server-api": "json-server --port 3111 --watch json-server/db.json",

...

Create json-server data under src/json-server/db.json with this:

// file: src/json-server/db.json

{

"items": [

{

"id": 1,

"name": "Item 1 from json-server",

"selected": false

},

{

"id": 2,

"name": "Item 2 from json-server",

"selected": false

},

{

"id": 3,

Chapter 7 - Api Client 103

"name": "Item 3 from json-server",

"selected": false

},

{

"id": 4,

"name": "Item 4 from json-server",

"selected": false

},

{

"id": 5,

"name": "Item 5 from json-server",

"selected": false

}

]

}

Now to finally test it, temporarily modify the file src/api-client/mock/items/index.ts to use
/jsonserver/items for the fetchItems url:

// file: src/api-client/mock/items/index.ts

...

const options: ItemsApiClientOptions = {

endpoints: {

//fetchItems: '/static/mock-data/items/items.json' // <-- comment this line out

fetchItems: '/jsonserver/items' // <-- add this line

},

mockDelay: 1000

}

...

Note: we’ll drive the API urls end-points through a much better configuration strategy in the
next chapters.

Now stop the app, and this time open 2 terminal windows:

• in terminal one, execute npm run json-server-api (this will run json-server API on
port 3111)

• in therminal two, execute npm run with-jsonserver (this will start our app but tell
Vite to use the vite.config.jsonserver.ts which contains our proxy configuration)

Chapter 7 - Api Client 104

The browser should now display:

NOTE: Do not forget to revert your change for the URL end-pointwithin the file src/api-client/mock/items/index.ts.
Later, when we introduce the apllication configuration in the next chapters, we’ll drive
the end-points from configuration and will not have to modify eny code to test different
environments.

Chapter 7 - Api Client 105

Chapter 7 Recap

What We Learned

• How to implement an apiClient that automatically can serve either mock or real data
depending on environment variables configuration

• How to continue enforcing type checking at development time with TypeScript inter-
faces and models

• How to structure directories and files in an organized way
• How to invoke our api client from the store

Observations

• We have a reference to a third NPM package (axios) in our ItemsApiClientmode and if
we keep following this pattern we’ll keep polluting new api client implementations for
different areas with references to this NPM package in several parts of our code. This
will cause a build up in technical debt that will make it harder to later replace axios
with something else one day we’ll have to. This might happen either because axioswill
no longer be supported, or maybe better NPM packages will be available that we want
o use in its place. Either way, we should structure our code in a way so that we can
more easily replace axios with something else without having to change a lot of code
in too many places.

Based on these observations, there are a few improvements that will be making into the next
two chapters:

Improvements

• Create an HttpClient model that implements an HttpClientInterface where we can
encapsulate the reference to axios all in one place and make it easier to change later if
we find the need to use a different NPM package.

Chapter 8 - Enhance the Api Client
From the previous chapter recap, we observed that the ItemsApiClient contains hard-coded
references to the axios NPM package. We understand that is not a good practice to follow
as, when adding more API clients, we do not want to have references to a 3rd party NPM
packages spread throughout our code.

Imagine if we had built a huge code base with many components and state modules and
now we wanted to using something like Fetch Api³¹ or another library insteaf of axios. We
would have to replace all the calls that use axios in our entire code base.

What we need to do is abstract the http client methods into their own implementation that
we can then consume from our ItemsApiClient and future API clients implementations that
we’ll be adding later.

There are multiple ways we could do this, but the most straigh-forward way is to create a
class that wraps our calls done with axios in one place. We’ll call this the HttpClient class
and here we’ll implement code that allow us to perform http requests using axios for now. If
later we have to switch to a different NPM library or use the Fetch API etc, we’ll jsut need
to update the code without our HttpClient. Ass long as we do not change the signature of
our HttpClient methods, everything should still work as before without having to change
the code that consumes our HttpClient throughout our application.

Here I will show you how this pattern works by offering both an implementation that uses
axios and one that uses the browser Fetch API. Then in the net chapter will drive which
client we use through the app configuration.

HttpClient Interfaces and Models

Create the directory src/http-client/models. Within this directory, create the following files

• Constants.ts
• HttpRequestParams.interface.ts
• UrlUtils.ts
• HttpClient.interface.ts
• HttpClient.axios.ts

³¹https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API

Chapter 8 - Enhance the Api Client 107

• HttpClient.fetch.ts
• index.ts

Your directory structure will look like this:

Following is the the description and code for each of the files.

Constants.ts

Within the Constants.ts file, we’ll add an enum representing the type of http request we
want our HttpClient to execute. For now we just add the 4 most common http verbs:
get/post/put/delete:

Chapter 8 - Enhance the Api Client 108

// file: src/http-client/models/HttpRequestType.ts

/**

* @name HttpRequestType

* @description

* The type of http request we need to execute in our HttpClient request method

*/

export const enum HttpRequestType {

get,

post,

put,

delete,

patch

}

...

We’ll also add two readonly objects to avoid using hard-coded strings later:

// file: src/http-client/models/HttpRequestType.ts

...

// http content types

export const HttpContentTypes = Object.freeze({

applicationJson: 'application/json',

formUrlEncoded: 'application/x-www-form-urlencoded;charset=UTF-8'

})

// constant for http request methods names

export const HttpRequestMethods = Object.freeze({

get: 'GET',

post: 'POST',

put: 'PUT',

delete: 'DELETE',

patch: 'PATCH'

})

HttpRequestParams.interface.ts

TheHttpRequestParamsInterfacewill allow us to pass parameters to the HttpClient request
method. These are things like the type of request (GET/POST/etc), the API endpoint, an

Chapter 8 - Enhance the Api Client 109

optional payload (if POST or PUT), and a flag that indicates if the request must include an
authentication token.

// file: src/http-client/models/HttpRequestParams.interface.ts

import { HttpRequestType } from './Constants'

/**

* @name HttpRequestParamsInterface

* @description

* Interface represents an object we'll use to pass arguments into our HttpClient re\

quest method.

* This allow us to specify the type of request we want to execute, the end-point ur\

l,

* if the request should include an authentication token, and an optional payload (i\

f POST or PUT for example)

*/

export interface HttpRequestParamsInterface<P = void> {

requestType: HttpRequestType

endpoint: string

requiresToken: boolean

headers?: { [key: string]: string }

payload?: P

mockDelay?: number

}

NOTE: With **P ** we are trying to enfore more type-checking with TypeScript when we’ll
consume this, at the same time we need to add as P = void as this is not always required.

UrlUtils.ts

This mainly contains an helper to dynamically build urls with parameters:

Chapter 8 - Enhance the Api Client 110

// file: src/http-client/models/UrlUtils.ts

export interface UrlUtilsInterface {

getFullUrlWithParams(baseUrl: string, params: { [key: string]: number | string }):\

string

}

export const UrlUtils: UrlUtilsInterface = {

/**

* @name getFullUrlWithParams

* @description Returns the full formatted url for an API end-point

* by replacing parameters place holder with the actual values.

* @param baseUrl The base API end-point witht he params placeholders like {projec\

tId}

* @param params The request params object with the key/value entries for each par\

ameter

* @returns The fully formatted API end-point url with the actual parameter values

*/

getFullUrlWithParams: (baseUrl: string, params: { [key: string]: number | string }\

): string => {

const keys: string[] = Object.keys(params || {})

if ((baseUrl || '').indexOf('[') === -1 || keys.length === 0) {

return baseUrl

}

let fullUrl = baseUrl

keys.forEach((key) => {

fullUrl = fullUrl.replace(`[${key}]`, (params[key] || 'null').toString())

})

return fullUrl

}

}

Note: you could alternatively implement getFullUrlWithParams using the JavaScript built-in
Url.

HttpClient.interface.ts

The HttpClientInterface is the interface that defines the methods that the HttpClient will
have to implement. Therewill be only onemethod called requestwhich can execute different
types of http request based on the parameters argument provided, and returns a Promise³²
with the results (if any):

³²https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Chapter 8 - Enhance the Api Client 111

// files: src/http-client/models/HttpClient.interface.ts

import { HttpRequestParamsInterface } from './HttpRequestParams.interface'

/**

* @name HttpClientConfigInterface

* @description

* We'll drive the HttpClient from configuration in later chapters.

*/

export interface HttpClientConfigInterface {

tokenKey: string

clientType: string

}

/**

* @name HttpClientInterface

* @description

* Represents our HttpClient.

*/

export interface HttpClientInterface {

/**

* @name request

* @description

* A method that executes different types of http requests (i.e. GET/POST/etc)

* based on the parameters argument.

* The type R specify the type of the result returned

* The type P specify the type of payload if any

* @returns A Promise<R> as the implementation of this method will be async.

*/

request<R, P = void>(parameters: HttpRequestParamsInterface<P>): Promise<R>

}

Note: in the code above the request method can take 2 generic types. The first one, R, define
the type of the result/data returned. The second, P, is optional and defines the type of the
payload (if any) passed with the parameters argument.

HttpClient.axios.ts

The HttpClientAxios is the class that implements our HttpClientInterface using axios.
Since the code here is longer, let me split in multiple parts.

First the import section:

Chapter 8 - Enhance the Api Client 112

// file: src/http-client/models/HttpClient.axios.ts

import axios, {

AxiosRequestConfig,

AxiosResponse

} from 'axios'

import { HttpRequestParamsInterface } from './HttpRequestParams.interface'

import { HttpClientInterface, HttpClientConfigInterface } from './HttpClient.interfa\

ce'

import { HttpRequestType, HttpContentTypes } from './Constants'

import { UrlUtils } from './UrlUtils'

/**

* @name HttpClientAxios

* @description

* Wraps http client functionality to avoid directly using a third party npm package\

like axios

* and simplify replacement in the future if such npm package would stop being devel\

oped or other reasons

*/

export class HttpClientAxios implements HttpClientInterface {

constructor() {

// OPTIONAL for now: Add request interceptor to handle errors or other things fo\

r each request in one place

}

/**

* @name request

* @description

* A method that executes different types of http requests (i.e. GET/POST/etc)

* based on the parameters argument.

* The type R specify the type of the result returned

* The type P specify the type of payload if any

* @returns A Promise<R> as the implementation of this method will be async.

*/

async request<R, P>(parameters: HttpRequestParamsInterface<P>): Promise<R> {

// use destructuring to extract our parameters into local variables

const { requestType, endpoint, requiresToken, payload, headers, mockDelay } = pa\

rameters

// use helper to build the fullUrl with request parameters derived from the payl\

Chapter 8 - Enhance the Api Client 113

oad

const fullUrl = UrlUtils.getFullUrlWithParams(endpoint, payload as any)

console.log('HttpClientAxios: fullUrl: ', fullUrl, payload)

// set axios options

const options: AxiosRequestConfig = {

headers: {},

maxRedirects: 0

}

if (headers) {

options.headers = {

//...options.headers,

...headers

}

}

// set headers Authorization

if (requiresToken && options.headers) {

options.withCredentials = true

// optional: you could add coded here to set the Authorization header with a b\

earer token

// options.headers.Authorization = `bearer ${ JwtHelpers.getJwtToken() }`

}

let result!: R

try {

switch(requestType) {

// TODO: implement a case statement for each request type

default: {

console.warn('HttpClientAxios: invalid requestType argument or request typ\

e not implemented')

}

}

} catch (e) {

console.error('HttpClientAxios: exception', e)

throw Error('HttpClientAxios: exception')

}

if ((mockDelay || 0) > 0) {

Chapter 8 - Enhance the Api Client 114

return new Promise<R>((resolve) => {

setTimeout(() => {

resolve(result)

}, mockDelay)

})

}

return result

}

}

Note how we added a constructor placeholder, but not doing anything with it yet. Later, you
could add things like request interceptors within the contructor so you can log or capture
errors in one place. One more thing to notice is that we are using a try/catch block and just
log the error in the console, but we are not gracefully rejecting the promise return by our
request method. You are welcome to enhance and improve this code as you see fit based on
your sepcific requirements.

The implementation of the request method starts by destructuring our request parameters,
creates the fullUrl, setting some axios options, optionally setting an Authorization header
(commented out for now, but to show how you can do that if you need it), and a switch
statement that will execute the type of request we want. Let’s implement now the different
type of requests within each case block of our switch statement.

The get implementation:

// file: src/http-client/models/HttpClient.axios.ts

...

// executes a get request:

case HttpRequestType.get: {

const response = await axios.get(fullUrl, options)

result = response?.data as R

break

}

...

The post implementation:

Chapter 8 - Enhance the Api Client 115

// file: src/http-client/models/HttpClient.axios.ts

...

// executes a post request:

case HttpRequestType.post: {

const response = await axios.post(fullUrl, payload, options)

result = response?.data as R

break

}

...

The put implementation:

// file: src/http-client/models/HttpClient.axios.ts

...

// executes a put request:

case HttpRequestType.put: {

const response = await axios.put(fullUrl, payload, options)

result = response?.data as R

break

}

...

The delete implementation:

// file: src/http-client/models/HttpClient.axios.ts

...

// executes a delete request:

case HttpRequestType.delete: {

const response = await axios.delete(fullUrl, options)

result = response?.data as R

break

}

...

The patch implementation:

Chapter 8 - Enhance the Api Client 116

// file: src/http-client/models/HttpClient.axios.ts

...

// executes a patch request:

case HttpRequestType.patch: {

const response = await axios.patch(fullUrl, payload, options)

result = response?.data as R

break

}

...

HttpClient.fetch.ts

TheHttpClientFetch is the class that implements ourHttpClientInterface using fetch. Since
the code here is longer, let me split in multiple parts.

// file: src/http-client/models/HttpClient.fetch.ts

import { HttpRequestParamsInterface } from './HttpRequestParams.interface'

import { HttpClientInterface, HttpClientConfigInterface } from './HttpClient.interfa\

ce'

import { HttpRequestType, HttpRequestMethods, HttpContentTypes } from './Constants'

import { UrlUtils } from './UrlUtils'

/**

* @name HttpClientFetch

* @description

* Wraps http client functionality to avoid directly using fetch

* and simplify replacement in the future if such npm package would stop being devel\

oped or other reasons

*/

export class HttpClientFetch implements HttpClientInterface {

constructor() {

// OPTIONAL for now: Add request interceptor to handle errors or other things fo\

r each request in one place

}

/**

* @name request

* @description

Chapter 8 - Enhance the Api Client 117

* A method that executes different types of http requests (i.e. GET/POST/etc)

* based on the parameters argument.

* The type R specify the type of the result returned

* The type P specify the type of payload if any

* @returns A Promise<R> as the implementation of this method will be async.

*/

async request<R, P = void>(parameters: HttpRequestParamsInterface<P>): Promise<R> {

// use destructuring to extract our parameters into local variables

const { requestType, endpoint, requiresToken, payload, headers, mockDelay } = pa\

rameters

// use helper to build the fullUrl with request parameters derived from the payl\

oad

const fullUrl = UrlUtils.getFullUrlWithParams(endpoint, payload as any)

console.log('HttpClientFetch: fullUrl: ', fullUrl, payload)

// set fetch options

const options: RequestInit = {

credentials: 'include',

redirect: 'follow',

headers: {}

}

if (headers) {

options.headers = {

...headers

}

}

if (!options.headers?.hasOwnProperty('Content-Type')) {

// default to content-type json

options.headers = {

...headers,

'Content-Type': HttpContentTypes.applicationJson

}

}

// set headers Authorization

if (requiresToken && options.headers) {

// optional: you could add coded here to set the Authorization header with a b\

earer token

// options.headers.Authorization = `bearer ${ JwtHelpers.getJwtToken() }`

}

Chapter 8 - Enhance the Api Client 118

let result!: R

// helper for checking if response is being redirected (302) in fetch

const checkRedirect = async (resp: any) => {

if (resp.redirected) {

// if so, redirect to response url

document.location = resp.url

return true

}

return false

}

try {

switch (requestType) {

// TODO: implement a case statement for each request type

default: {

console.warn('HttpClientFetch: invalid requestType argument or request typ\

e not implemented')

}

}

} catch (e) {

//console.error('HttpClientFetch: exception', e)

throw Error('HttpClientFetch: exception')

}

if ((mockDelay || 0) > 0) {

return new Promise<R>((resolve) => {

setTimeout(() => {

resolve(result)

}, mockDelay)

})

}

return result

}

}

The implementation of the request method starts by destructuring our request parameters,
creates the fullUrl, setting some fetch options, optionally setting an Authorization header
(commented out for now, but to show how you can do that if you need it), and a switch

Chapter 8 - Enhance the Api Client 119

statement that will execute the type of request we want. Let’s implement now the different
type of requests within each case block of our switch statement.

The get implementation:

// file: src/http-client/models/HttpClient.fetch.ts

...

// executes a get request:

case HttpRequestType.get: {

options.method = HttpRequestMethods.get

const response = (await fetch(fullUrl, options)) as any

const redirected = await checkRedirect(response)

if (!redirected) {

result = (await response.json()) as R

}

break

}

...

The post implementation:

// file: src/http-client/models/HttpClient.fetch.ts

...

// executes a post request:

case HttpRequestType.post: {

options.method = HttpRequestMethods.post

options.body = typeof payload === 'string' ? payload : JSON.stringify(payload)

const response = (await fetch(fullUrl, options)) as any

const redirected = await checkRedirect(response)

if (!redirected) {

result = (await response.json()) as R

}

break

}

...

The put implementation:

Chapter 8 - Enhance the Api Client 120

// file: src/http-client/models/HttpClient.fetch.ts

...

// executes a put request:

case HttpRequestType.put: {

options.method = HttpRequestMethods.put

options.body = typeof payload === 'string' ? payload : JSON.stringify(payload)

const response = (await fetch(fullUrl, options)) as any

const redirected = await checkRedirect(response)

if (!redirected) {

result = (await response.json()) as R

}

break

}

...

The delete implementation:

// file: src/http-client/models/HttpClient.fetch.ts

...

// executes a delete request:

case HttpRequestType.delete: {

options.method = HttpRequestMethods.delete

const response = (await fetch(fullUrl, options)) as any

const redirected = await checkRedirect(response)

if (!redirected) {

result = (await response.json()) as R

}

break

}

...

The patch implementation:

Chapter 8 - Enhance the Api Client 121

// file: src/http-client/models/HttpClient.fetch.ts

...

// executes a patch request:

case HttpRequestType.patch: {

options.method = HttpRequestMethods.patch

options.body = typeof payload === 'string' ? payload : JSON.stringify(payload)

const response = (await fetch(fullUrl, options)) as any

const redirected = await checkRedirect(response)

if (!redirected) {

result = (await response.json()) as R

}

break

}

...

http-client/models/index.ts (barrel file)

Inside the index file paste the following to export all the enums/ interfaces/models:

// file: src/http-client/models/index.ts

export * from './Constants'

export * from './HttpClient.axios'

export * from './HttpClient.fetch'

export * from './HttpClient.interface'

export * from './HttpRequestParams.interface'

export * from './UrlUtils'

http-client/index.ts (client factory)

Add another index file under src/http-client:

Chapter 8 - Enhance the Api Client 122

This file contains the export of a single instance of our HttpClient. This is what we’ll
be consuming in our API client. For now, we’ll create an instance of the HttpClient.fetch
implementation, but in later chapters we’ll drive this from configuration (appConfig):

// file: src/http-client/index.ts

import { HttpClientInterface } from './models/HttpClient.interface'

//import { appConfig } from '@/app-config'

import { HttpClientAxios } from './models/HttpClient.axios'

import { HttpClientFetch } from './models/HttpClient.fetch'

// export all our interfaces/models/enums

export * from './models'

let _httpClient: HttpClientInterface | undefined = undefined

// export out hook

export const useHttpClient = () => {

if (!_httpClient) {

// export instance of HttpClientInterface

const clientType = 'fetch'

// const clientType = config.httpClient.clientType // later will drive from conf\

ig

// if you'd like to use axios, set "clientType": "axios" within the config files\

httpClient section

if (clientType === 'fetch') {

_httpClient = new HttpClientFetch()

} else if (clientType === 'axios') {

_httpClient = new HttpClientAxios()

Chapter 8 - Enhance the Api Client 123

}

}

return _httpClient as HttpClientInterface

}

UrlUtils Unit Tests

Create the directory tests/unit/http-client directory and add a new file called UrlU-
tils.getFullUrlWithParams.test.ts with the following:

// file: src/tests/unit/http-client/UrlUtils.getFullUrlWithParams.test.ts

import { UrlUtils } from '@/http-client'

describe('UrlUtils: getFullUrlWithParams', () => {

it('should return fullUrl formatted as expected with one param', () => {

const endpoint = 'https://unit-test-api/v1/domain/[catalogId]/[partId]'

const params = {

catalogId: 5346782,

partId: 'abcde23'

}

const result = UrlUtils.getFullUrlWithParams(endpoint, params)

expect('https://unit-test-api/v1/domain/5346782/abcde23').toEqual(result)

})

// test our component click event

it('should return fullUrl formatted as expected with multiple params', () => {

const endpoint = 'https://unit-test-api/v1/domain/[country]/[state]/[cityId]'

const params = {

country: 'USA',

state: 'NY',

cityId: 'gtref345ytr'

}

const result = UrlUtils.getFullUrlWithParams(endpoint, params)

expect('https://unit-test-api/v1/domain/USA/NY/gtref345ytr').toEqual(result)

})

})

Chapter 8 - Enhance the Api Client 124

HttpClient: Unit Tests

We need to add unit tests against HttpClientAxios and HttpClientFetch before we can
re-factor the ItemApiClient code to use it.

HttpClientAxios tests

Testing a successful ”get” response

Within the directory tests/unit/http-client directory create a sub-directory called axios-
client and here and add a new file called AxiosClient.request.get.test.ts. Within the file,
paste the following code:

// file: src/tests/unit/http-client/axios-client/AxiosClient.request.get.test.ts

import axios from 'axios'

import { HttpClientAxios, HttpRequestType, HttpRequestParamsInterface } from '@/http\

-client'

let mockRequestParams: HttpRequestParamsInterface<any> = {

requestType: HttpRequestType.get,

endpoint: 'path/to/a/get/api/endpoint',

requiresToken: false

}

describe('HttpClient: axios-client: request: get', () => {

const httpClient = new HttpClientAxios()

it('should execute get request succesfully', () => {

vitest

.spyOn(axios, 'get')

.mockImplementation(async () => Promise.resolve({ data: `request completed: ${\

mockRequestParams.endpoint}` }))

httpClient

.request(mockRequestParams)

.then((response) => {

//console.debug('response:', response)

expect(response).toEqual(`request completed: ${mockRequestParams.endpoint}`)

})

.catch((error) => {

Chapter 8 - Enhance the Api Client 125

console.info('AxiosClient.request.get.test.ts: error', error)

})

})

...

Testing an unsuccessful ”get” response

Within the same file, add the following code:

// file: src/tests/unit/http-client/axios-client/AxiosClient.request.get.test.ts

...

describe('HttpClient: axios-client: request: get', () => {

...

it('get should throw error on rejection', () => {

vitest

.spyOn(axios, 'get')

.mockImplementation(async () => Promise.reject({ data: `request completed: ${m\

ockRequestParams.endpoint}` }))

httpClient.request(mockRequestParams).catch((error) => {

expect(error).toBeDefined()

expect(error.toString()).toEqual('Error: HttpClientAxios: exception')

})

})

})

Testing a successful ”post” response

Within the directory tests/unit/http-client/axios-client directory and add a new file called
AxiosClient.request.post.test.ts. Within the file, paste the following code:

Chapter 8 - Enhance the Api Client 126

// file: src/tests/unit/http-client/axios-client/AxiosClient.request.post.test.ts

import axios from 'axios'

import { HttpClientAxios, HttpRequestType, HttpRequestParamsInterface } from '@/http\

-client'

let mockRequestParams: HttpRequestParamsInterface<any> = {

requestType: HttpRequestType.post,

endpoint: 'path/to/a/post/api/endpoint',

requiresToken: false,

payload: {}

}

type P = typeof mockRequestParams.payload

describe('HttpClient: axios-client: request: post', () => {

const httpClient = new HttpClientAxios()

it('should execute post request succesfully', () => {

vitest

.spyOn(axios, 'post')

.mockImplementation(async () => Promise.resolve({ data: `request completed: ${\

mockRequestParams.endpoint}` }))

httpClient

.request<string, P>(mockRequestParams)

.then((response) => {

//console.debug('response:', response)

expect(response).toEqual(`request completed: ${mockRequestParams.endpoint}`)

})

.catch((error) => {

console.info('AxiosClient.request.post.test.ts: post error', error)

})

})

})

Note: you can keep adding more test in a similar way for the rest of the request type like
PUT/DELETE/etc

Chapter 8 - Enhance the Api Client 127

HttpClientFetch tests

Testing “get” responses

Within the directory tests/unit/http-client directory create a sub-directory called fetch-
client and here and add a new file called FetchClient.request.get.test.ts. Within the file,
paste the following code:

// file: src/tests/unit/http-client/fetch-client/FetchClient.request.get.test.ts

import { HttpClientFetch, HttpRequestType, HttpRequestParamsInterface, HttpRequestMe\

thods } from '@/http-client'

let mockRequestParams: HttpRequestParamsInterface<any> = {

requestType: HttpRequestType.get,

endpoint: 'path/to/a/get/api/endpoint',

requiresToken: false

}

describe('HttpClient: axios-client: request: get', (done) => {

const httpClient = new HttpClientFetch()

it('should execute get request succesfully', async () => {

// could not find an easy way to use spyOn for fetch so overriding global.fetch

// save original fetch

const unmockedFetch = global.fetch || (() => {})

global.fetch = unmockedFetch

const expectedResult = {

result: `request completed: ${mockRequestParams.endpoint}`

}

vitest

.spyOn(global, 'fetch')

.mockImplementation(async () => Promise.resolve({

redirected: false,

json: () => Promise.resolve(JSON.stringify(expectedResult))

} as any))

try {

const response = await httpClient.request(mockRequestParams)

Chapter 8 - Enhance the Api Client 128

expect(response).not.toBeNull()

expect(response).toEqual(expectedResult)

} catch (error) {

console.info('AxiosClient.request.get.test.ts: error', error)

}

// restore globa.fetch

global.fetch = unmockedFetch

})

it('get should throw error on rejection', () => {

// could not find an easy way to use spyOn for fetch so overriding global.fetch

// save original fetch

const unmockedFetch = global.fetch || (() => {})

global.fetch = unmockedFetch

vitest

.spyOn(global, 'fetch')

.mockImplementation(async () => Promise.reject())

httpClient.request(mockRequestParams).catch((error) => {

expect(error).toBeDefined()

expect(error.toString()).toEqual('Error: HttpClientFetch: exception')

})

})

})

And so on, you can keep adding more unit tests for each request type like you did for the
axios-client.

We can finally change our ItemApiClient so it uses our newly implemented HttpClient
instead of axios.

ItemsApiClientModel Update

Open the file src/api-client/models/items/ItemsApiClient.model.ts.
Remove the import axios line and replace it with an import for ourHttpClient instance and
the HttpRequestParamsInterface:

Chapter 8 - Enhance the Api Client 129

// file: src/api-client/models/items/ItemsApiClient.model.ts

import axios, { AxiosRequestConfig, AxiosError, AxiosResponse } from 'axios' // <-- \

remove this line

import { useHttpClient, HttpRequestType, HttpRequestParamsInterface } from '@/http-c\

lient' // <-- add this line

Then replace the fetchItems implementation with the following:

// file: src/api-client/models/items/ItemsApiClient.model.ts

...

fetchItems(): Promise<ItemInterface[]> {

const requestParameters: HttpRequestParamsInterface = {

requestType: HttpRequestType.get,

endpoint: this.endpoints.fetchItems,

requiresToken: false,

mockDelay: this.mockDelay

}

return useHttpClient().request<ItemInterface[]>(requestParameters)

}

...

This creates a const variable to hold ourHttpRequestParamsInterface parameters, and then
return the call to httpClient.request (which is already a Promise, so we do not have to do
anything else here):

Now, make sure there are no errors in the terminal and the browser refreshes correctly and
load the data correctly.

Chapter 8 - Enhance the Api Client 130

Chapter 8 Recap

What We Learned

• How to abstract an http client into interfaces and models that are generic
• How to implement the HttpClientInterface into a model that encapsulate the use of
a 3rd party package in one place. We show this by implement two different clients:
HttpClientAxios and HttpClientFetch.

• How to use vitest.spyON for stubs so we can test the HttpClient request method
responses for different scenarios.

Observations

• We did not write unit tests against the HttpClient put/delete/patch methods
• We did not write unit tests against the ItemsApiClientModel

Based on these observations, there are a few improvements that you could make on your
own:

Improvements

• Add unit tests against the HttpClient put/delete/patch methods as well
• Add unit tests against the ItemsApiClient methods as well
• Experiment by adding another HttpClient implementation that uses another Ajax
library other than axios or fetch and then and modify the file src/http-client/index.ts
so that it instantiate this one instead of the axios or fetch implementation. Then verify
that the app still run as expected.

Chapter 9 - App Configuration
We need now to add a way to configure our app through configuration files for different
environments (i.e. mock, beta, production, etc).

NOTE: The code in this chapter is not just specific to React. These concepts can be applied to
any front-end app (i.e. React/Vue/Svelte/Angular/etc).

As you recall from Chapter 7, we extended import.meta.env declaration types (file src/vite-
env.d.ts) to include a new variable called VITE_API_CLIENT. This currently drives the
selection of the API client at run time (mock or live). As you can imagine, as we add more
configuration, we might end adding a lot of new variables prefixed with VITE_. This works,
but can quickly become very hard to manage, especially for large configurations that will
drive many settings.

A better approach is to drive the entire configuration through only one variable that we
are going to call VITE_APP_CONFIG. We’ll store all the settings in dedicated JSON files.
We’ll have one configuration file for each environment (mock/beta/production/etc) and then
load that dynamically at run-time (or build time) based on our new VITE_APP_CONFIG
environment variable.

vite-env.d.ts updates (or env.d.ts)

Let’s start by modifying the code within the Vite types declarations file. Rename the current
variable VITE_API_CLIENT to VITE_APP_CONFIG:

// file: src/vite-env.d.ts (or src/env.d.ts)

...

// types for Vite env variables:

// (reference: https://vitejs.dev/guide/env-and-mode.html#intellisense-for-typescrip\

t)

interface ImportMetaEnv {

readonly VITE_APP_CONFIG: string // rename this from VITE_API_CLIENT to VITE_APP_C\

ONFIG

// more env variables...

Chapter 9 - App Configuration 132

}

interface ImportMeta {

readonly env: ImportMetaEnv

}

.env files updates

Make sure to also update each ‘.env’ file by renaming VITE_API_CLIENT to VITE_APP_-
CONFIG:

// file: src/.env.mock

VITE_APP_CONFIG=mock

// file: src/.env.production

VITE_APP_CONFIG=production

Add also three additional files, .env.jsonserver, .env.localapis and .env.beta:

// file: src/.env.jsonserver

VITE_APP_CONFIG=jsonserver

// file: src/.env.localapis

VITE_APP_CONFIG=localapis

// file: src/.env.beta

VITE_APP_CONFIG=beta

Note: remember that VITE read from the .env files based on the –mode flag specified in
the scripts shortcut (within the package.json file). Here we did not add any command for
localapis or beta. But you could add things like start-local or build-beta etc:

Chapter 9 - App Configuration 133

// file: package.json

...

"scripts": {

"start": "npm run dev",

"dev": "vite --config vite.config.mock.ts --mode mock",

"build": "tsc && vite build --config vite.config.production.ts --mode production\

",

"build-mock": "tsc && vite build --config vite.config.mock.ts --mode mock",

"build-beta": "tsc && vite build --config vite.config.production.ts --mode beta"\

, /* you could add this */

"start-local": "vite --config vite.config.production.ts --mode localapis", /* yo\

u could add this */

"preview": "vite preview --config vite.config.mock.ts --mode mock",

"test": "vitest run --config vite.config.mock.ts --mode mock",

"test-watch": "vitest watch --config vite.config.mock.ts --mode mock",

"test-coverage": "vitest run --coverage --config vite.config.mock.ts --mode mock\

",

}

...

Config Interface

Create the directory src/config/models/ and under this directory create a file called
Config.interface.ts. This contains the declaration for our config interface. You will keep
expanding this as you add more settings or app domains (i.e. like Items), for now let’s just
have the interface contain four sections:

• global: this will be for settings that span all domains
• httpClient: this is for things related to the HttpClient
• apiClient: this is for things related to the ApiClient
• items: this is for the Items domain settings (as we add more functionality/components
etc we will add more areas/domains similar to this)

For the items section, we’ll have only the apiClientOptions child section for now. This will
be of type ItemsApiClientOptions.

Here is the code for the src/config/models/Config.interface.ts file:

Chapter 9 - App Configuration 134

// file: src/config/models/Config.interface.ts

import {

ItemsApiClientOptions // NOTE: we'll create this a bit later

} from '@/api-client/models'

export interface HttpClientConfigInterface {

tokenKey: string

clientType: string

}

/**

* @Name ConfigInterface

* @description

* Describes the structure of a configuration file

*/

export interface ConfigInterface {

global: {

// ... things that are not specific to a single app domain

version: number

}

httpClient: HttpClientConfigInterface,

apiClient: {

type: string

}

items: {

apiClientOptions: ItemsApiClientOptions

}

}

Config files

Now create a sub-directory called config-files under this directory. The full path for this
will be src/config/config-files/

Inside this directory, add 4 JSON files with the following names:

• mock.json

Chapter 9 - App Configuration 135

• jsonserver.json
• localapis.json
• beta.json
• production.json

The content of each file will have to match what is required by our ConfigInterface. In
a little bit we’ll be also adding some unit tests against this files to make sure they are as
expected.

Here is the content of each file:

mock.json

// file: src/config/config-files/mock.json

{

"global": {

"version": 0.103

},

"httpClient": {

"tokenKey": "myapp-token",

"clientType": "fetch"

},

"apiClient": {

"type": "mock"

},

"items": {

"apiClientOptions": {

"endpoints": {

"fetchItems": "/static/mock-data/items/items.json"

},

"mockDelay": 250

}

}

}

jsonserver.json

Chapter 9 - App Configuration 136

// file: src/config/config-files/jsonserver.json

{

"global": {

"version": 0.1

},

"httpClient": {

"tokenKey": "myapp-token",

"clientType": "fetch"

},

"apiClient": {

"type": "live"

},

"items": {

"apiClientOptions": {

"endpoints": {

"fetchItems": "/jsonserver/items"

},

"mockDelay": 0

}

}

}

localapis.json

// file: src/config/config-files/localapis.json

{

"global": {

"version": 0.1

},

"httpClient": {

"tokenKey": "myapp-token",

"clientType": "fetch"

},

"apiClient": {

"type": "live"

},

Chapter 9 - App Configuration 137

"items": {

"apiClientOptions": {

"endpoints": {

"fetchItems": "http://api.localhost:4111/items"

},

"mockDelay": 0

}

}

}

beta.json

// file: src/config/config-files/beta.json

{

"global": {

"version": 0.1

},

"httpClient": {

"tokenKey": "myapp-token",

"clientType": "fetch"

},

"apiClient": {

"type": "live"

},

"items": {

"apiClientOptions": {

"endpoints": {

"fetchItems": "/path/to/your/real/BETA/api/and-point"

},

"mockDelay": 0

}

}

}

production.json

Chapter 9 - App Configuration 138

// file: src/config/config-files/production.json

{

"global": {

"version": 0.1

},

"httpClient": {

"tokenKey": "myapp-token",

"clientType": "fetch"

},

"apiClient": {

"type": "live"

},

"items": {

"apiClientOptions": {

"endpoints": {

"fetchItems": "/path/to/your/real/PRODUCTION/api/and-point"

},

"mockDelay": 0

}

}

}

tsconfig.json updates

In the next section, we’ll be loading the individual config files through import statements.
In order to enable this in TypeScript, we have to modify the tsconfig.json file located
in the root of your project. We need to add option resolveJsonModule with true to the
compilerOptions section:

Chapter 9 - App Configuration 139

{

"compilerOptions": {

...

"resolveJsonModule": true, /* this allows to import .json file as if they were .\

ts files: using to load config files */

}

...

NOTE: your tsconfig.json might already have the resolveJsonModule flag, if so just make sure
that is set to true.

Config files map

Within the directory src/config/ add a file called config-files-map.ts.
Here we just import a reference to each of the configuration JSON files and create either a
strategy pattern or a JavaScript Map that contains a map to our files by environment key
(here we are showing this withMap):

// file: src/config/config-files-map.ts

// import a reference to our Config interface:

import { ConfigInterface } from './models/Config.interface'

// individual environments configs:

import configMock from './config-files/mock.json'

import configJsonServer from './config-files/jsonserver.json'

import configLocal from './config-files/localapis.json'

import configBeta from './config-files/beta.json'

import configProduction from './config-files/production.json'

// example with javascript Map()

export const configFilesMap: Map<string, ConfigInterface> = new Map<string, ConfigIn\

terface>([

['mock', configMock],

['jsonserver', configJsonServer],

['localapis', configLocal],

['beta', configBeta],

['production', configProduction]

])

Chapter 9 - App Configuration 140

Config provider

File utils.ts

Add a new file called utils.ts under src/config. Here we implement an helper function called
getAppConfigKey that will return the value of our VITE_APP_CONFIG environment
variable.

// file: src/config/utils.ts

// helper to read the value of REACT_APP_CONFIG (or VITE_APP_CONFIG if using vite)

export function getAppConfigKey() {

// if using webpack:

// let env: string = 'mock'

// // @ts-ignore

// if (process.env && process.env.REACT_APP_CONFIG) {

// // @ts-ignore

// env = process.env.REACT_APP_CONFIG.trim()

// }

// return env

// Note: Vite uses import.meta.env (reference: https://vitejs.dev/guide/env-and-mo\

de.html)

// optional: you can console.log the content of import.meta.env to inspect its val\

ues like this: console.log('import.meta.env', JSON.stringify(import.meta.env))

// @ts-ignore

return (import.meta.env.VITE_APP_CONFIG || '').trim()

}

Note that by wrapping this in one place, we could easily re-use this code in a project created
with webpack. Since that uses process.env instead of Vite’s import.meta.env we just need to
uncomment the related code above and comment out the one that uses import.meta.env.

File index.ts (config provider)

Still within src/config directory, add another file called index.ts. Here we’ll be consuming
the JSON file that matches the environment specified by the current VITE_APP_CONFIG
value.

Let’s start by importing a reference to ConfigInterface, configFilesMap, and our helper
getAppConfigKey:

Chapter 9 - App Configuration 141

// file: src/config/index.ts

// returns appropriate config based on env VITE_APP_CONFIG

// import a reference to our Config interface:

import { ConfigInterface } from './models/Config.interface'

// import reference to configFilesMap

import { configFilesMap } from './config-files-map'

// import reference to our getAppConfigKey helper function

import { getAppConfigKey } from './utils'

...

Then add a check and throw and error if our map does not contain an entry for the current
environment key:

// file: src/config/index.ts

...

if (!configFilesMap.has(getAppConfigKey())) {

throw Error(`Could not find config for VITE_APP_CONFIG key "${ getAppConfigKey() }\

"`)

}

...

Finally we export an instance of our ConfigInterface called config:

// file: src/config/index.ts

...

export const config = configFilesMap.get(getAppConfigKey()) as ConfigInterface

Here is the entire content of src/config/index.ts:

Chapter 9 - App Configuration 142

// file: src/config/index.ts

// returns appropriate config based on env VITE_APP_CONFIG

// import a reference to our Config interface:

import { ConfigInterface } from './models/Config.interface'

// import reference to configFilesMap

import { configFilesMap } from './config-files-map'

// import reference to our getAppConfigKey helper function

import { getAppConfigKey } from './utils'

// optional: you can console.log the content of import.meta.env to inspect its value:

console.log(`------ env ---- "${getAppConfigKey()}"`)

if (!configFilesMap.has(getAppConfigKey())) {

throw Error(`Could not find config for VITE_APP_CONFIG key "${getAppConfigKey()}"`)

}

export const config = configFilesMap.get(getAppConfigKey()) as ConfigInterface

Unit Tests

Le’s now write a few unit tests to validate that our config is being set as expected. This will
also validate that the config JSON files contains the expected data structure.

Unit Tests against configsMap

Create directory tests/unit/config and add a new file called Config.configsMap.spec.ts.
Here we’ll be testing that our configsMap instance contains at least one entry for each
environment, as expected:

Chapter 9 - App Configuration 143

// file: src/tests/unit/config/config-files-map.test.ts

import { configFilesMap } from '@/config/config-files-map'

describe('configFilesMap', () => {

it('instance should have "mock" key', () => {

expect(configFilesMap.has('mock')).toBe(true)

})

it('instance should have "jsonserver" key', () => {

expect(configFilesMap.has('jsonserver')).toBe(true)

})

it('instance should have "localapis" key', () => {

expect(configFilesMap.has('localapis')).toBe(true)

})

it('instance should have "beta" key', () => {

expect(configFilesMap.has('beta')).toBe(true)

})

it('instance should have "production" key', () => {

expect(configFilesMap.has('production')).toBe(true)

})

}

Unit Tests against Config instances by environment

Note: if using Jest, we cannot just write unit tests against the config instance already created
in the src/config/index.ts file because Jest will throw the following error:

SyntaxError: Cannot use 'import.meta' outside a module

Note: Jest does not understand VITE’s import.meta.dev our of the box. There are discussion
on the web if you google this and some people are using plugins or specific babel config etc.
Here will simply do not test the config instance from the src/config/index.ts file but create a
new one in our unit tests

Vitest does not have this issue but I thought it was worth mentioning it.

To be safe in either case, we will write our unit tests by creating an instance of ConfigIn-
terface within the unit tests. We can easily do this by specifying the environment key as a
hard-coded string to the map.get method, i.e. configFilesMap.get('mock').

Chapter 9 - App Configuration 144

Tests config.mock.test.ts

Still under directory tests/unit/config add another file called config.mock.test.ts with the
following code:

// file: src/tests/unit/config/config.mock.test.ts

// import the Config interface

import { ConfigInterface } from '@/config/models/Config.interface'

// import a reference to the confiFilesMap

import { configFilesMap } from '@/config/config-files-map'

describe('config: mock', () => {

const config: ConfigInterface = configFilesMap.get('mock') as ConfigInterface

it('instance should have "global" section', () => {

expect(config).toHaveProperty('global')

})

it('instance should have "httpClient" section', () => {

expect(config).toHaveProperty('httpClient')

})

it('instance should have "items" section', () => {

expect(config).toHaveProperty('items')

})

describe('global', () => {

const section = config.global

it('section should have "version" property', () => {

expect(section).toHaveProperty('version')

expect(typeof section.version).toBe('number')

expect(section.version).toBeGreaterThan(0)

})

})

describe('httpClient', () => {

const section = config.httpClient

it('section should have "tokenKey" property', () => {

expect(section).toHaveProperty('tokenKey')

})

it('section should have "clientType" property', () => {

Chapter 9 - App Configuration 145

expect(section).toHaveProperty('clientType')

})

})

describe('apiClient', () => {

const section = config.apiClient

it('section should have "type" property', () => {

expect(section).toHaveProperty('type')

})

})

describe('items', () => {

const section = config.items

it('section should have "apiClientOptions" property', () => {

expect(section).toHaveProperty('apiClientOptions')

})

describe('apiClientOptions', () => {

const apiClientOptions = section.apiClientOptions

describe('endpoints', () => {

const endpoints = apiClientOptions.endpoints

it('section should have "fetchItems" property', () => {

expect(endpoints).toHaveProperty('fetchItems')

// verify that fetchItems url is a string and has a reasonable length

expect(typeof endpoints.fetchItems).toBe('string')

expect(endpoints.fetchItems.length).toBeGreaterThan(10)

})

})

})

})

})

Run the unit tests with npm run test: and verify all succeed:

Chapter 9 - App Configuration 146

// terminal output:

...

Test Files 8 passed (8)

Tests 25 passed (24)

Time 1.18s (in thread 77ms, 1537.16%)

...

Please keep adding additional unit tests for each environment (i.e. config.jsonserver.test.ts,
config.production.test.ts etc).

HttpClient code updates

file src/http-client/index.ts

Now we need to update the file src/http-client/index.ts and remove the hard-coded value
for the clientType variable. We’ll be instead reading the value from the config instance
(config.httpClient.type):

// file: src/http-client/index.ts

import { HttpClientInterface } from './models/HttpClient.interface'

import { config } from '@/config' // <-- uncomment (or add) this line

import { HttpClientAxios } from './models/HttpClient.axios'

import { HttpClientFetch } from './models/HttpClient.fetch'

// export all our interfaces/models/enums

export * from './models'

let _httpClient: HttpClientInterface | undefined = undefined

// export out hook

export const useHttpClient = () => {

if (!_httpClient) {

// export instance of HttpClientInterface

const clientType = 'fetch' // <-- uncomment this line

const clientType: string = 'fetch' // <-- remove this line

Chapter 9 - App Configuration 147

// if you'd like to use axios, set "clientType": "axios" within the config files\

(section "httpClient")

if (clientType === 'fetch') {

_httpClient = new HttpClientFetch()

} else if (clientType === 'axios') {

_httpClient = new HttpClientAxios()

}

}

return _httpClient as HttpClientInterface

}

Api Client code updates

file src/api-client/index.ts

Update also the file src/api-client/index.ts and remove the code currently using the
previous env variable and replace it by consuming our value from the config instance
(config.apiClient.type). Here is the updated code:

// file: src/api-client/index.ts

import { ApiClientInterface } from './models'

import { apiMockClient } from './mock'

import { apiLiveClient } from './live'

import { config } from '@/config'

// return either the live or the mock client

let apiClient: ApiClientInterface

if (config.apiClient.type === 'live') { // this time we just read our config.apiClie\

nt.type

apiClient = apiLiveClient

} else {

// default is always apiMockClient

apiClient = apiMockClient

}

export { apiClient }

Chapter 9 - App Configuration 148

file src/api-client/mock/items/index.ts

Update the code that returns the mock Items API client instance to use the apiClientOptions
from the config:

// file: src/api-client/mock/items/index.ts

import { config } from '@/config' // <-- add this line

import {

ItemsApiClientInterface,

ItemsApiClientModel

} from '../../models/items'

// remove this block:

// const options: ItemsApiClientOptions = {

// mockDelay: 250,

// endpoints: {

// fetchItems: '/static/mock-data/items/items.json'

// }

// }

// instantiate the ItemsApiClient pointing at the url that returns static json mock \

data

const itemsApiClient: ItemsApiClientInterface = new ItemsApiClientModel(config.items\

.apiClientOptions) // <-- this time we'll pass the options from the config

// export our instance

export {

itemsApiClient

}

file src/api-client/live/items/index.ts

Similarly, update the code that returns the live Items API client instance to use the
apiClientOptions from the config:

Chapter 9 - App Configuration 149

// file: src/api-client/live/items/index.ts

// import a reference to the app config

import { config } from '@/config'

import { ItemsApiClientInterface, ItemsApiClientModel } from '../../models'

// instantiate the ItemsApiClient pointing at the url that returns static json live \

data

const itemsApiClient: ItemsApiClientInterface = new ItemsApiClientModel(config.items\

.apiClientOptions)

// export our instance

export { itemsApiClient }

IMPORTANT: At this point, thanks to the new way of driving things through the config, the
code in both files src/api-client/live/items/index.ts and src/api-client/mock/items/index.ts
is basically identical. In later chapters we will simplify and reduce the amount of code we
initially created to serve either mock or live data. But for now, we’ll keep the duplicated
code to avoid making this chapter too long.

Now make sure you run all the unit tests again, then serve the app again to make sure all
compiles and works as before.

Chapter 9 - App Configuration 150

Chapter 9 Recap

What We Learned

• We learned how to use static JSON files to have multiple configuration settings, one for
each environment

• How to dynamically return the appropriate config file based on the new environment
variable VITE_APP_CONFIG

• How to add option resolveJsonModule to the theTypeScript tsconfig.json file, section
compilerOptions to allow importing static JSON files through import statement

• How to write unit tests against our configuration code

Observations

• For now our configuration is pretty small, but might grow larger as the application itself
grows and we need to add more configurable options.

• We did not write unit tests again each config file like we did for config.mock.test.ts

Improvements

• Going forwardwe’ll be expanding the configuration as we keep growing our application
components and logic.

• You can write additional unit tests similar to config.mock.test.ts for beta and production
as well (i.e. config.beta.test.ts, config.mock.production.ts, etc)

Chapter 10 - Localization and
Internationalization - Language
Localization
“Localization refers to the adaptation of a product, application or document content to meet
the language, cultural and other requirements of a specific target market (a locale)…”

“…Internationalization is the design and development of a product, application or document
content that enables easy localization for target audiences that vary in culture, region, or
language” ³³

NOTE: This chapter applies to you only if the application you are working on will be used
or marketed to multiple countries and it is desired to present labels in the local language, as
well as date/number formats in the local culture.

Most modern applications that target multiple countries or cultures are architected in a way
that is easy to present the UI in different languages and also present values like numbers or
dates formatted as expected by the culture specific to that country (hence, localized).

In this book we’ll first leverage plugins that allows us to present labels in different languages
(i18next, react-i18next) and later we’ll add also a custom plugin based on the Intl API
(supported by most modern browsers) to provide for numbers/date formatting functionality
based on different locales (cultures).

Plugins: i18next, react-i18next

There are many JavaScript libraries out there that simplify localization of a frontend
app, but the most widely used is the i18n library. The organization i18next³⁴ main-
tains a very nice React plugin called react-i18next, which is published on NPM here
https://www.npmjs.com/package/react-i18next³⁵

In this book we’ll be creating an hook that wraps around react-i18next an additional
code. This will allow us to avoid code cluttering and greatly simplify how we localize our
components in our React application.

³³https://www.w3.org/International/questions/qa-i18n
³⁴https://github.com/i18next
³⁵https://github.com/i18next/react-i18next

https://www.npmjs.com/package/react-i18next
https://www.w3.org/International/questions/qa-i18n
https://github.com/i18next
https://github.com/i18next/react-i18next

Chapter 10 - Localization and Internationalization - Language Localization 152

Let’s start by first adding the i18next and react-i18next NPM packages to our application.
We need to use the command npm install -save i18next react-i18next.

We need to use the -save option as we want this to be saved as part of the app ”dependencies”
in the package.json:

npm install --save i18next react-i18next

Now, before we proceed creating our boostrapping code for i18n and our useLocalization
hook, let’s first make a few changes to our application configuration.

Config updates

ConfigInterface

Wewill be introducing a concept of versioning here to dynamically drive different versions of
data, introduce/retire views and components overtime, or expire cached data on the browser.
You will see this in action first shortly when we’ll use to expire our translation data stored
in the browser cache.

Let’s add a field called version to our global section (note: we might have added this already
in the one of previous chapters):

// file: src/config/models/Config.interface.ts

...

export interface ConfigInterface {

global: {

version: number // add this line

}

...

Let’s also add a new section called localization like this:

Chapter 10 - Localization and Internationalization - Language Localization 153

// file: src/config/models/Config.interface.ts

...

export interface ConfigInterface {

global: {

version: number

}

...

// add this block:

localization: {

apiClientOptions: LocalizationApiClientOptions

locales: { key: string, isDefault: boolean }[]

localStorageCache: { enabled: boolean, expirationInMinutes: number }

}

...

Here we reference a apiClientOptions. We don’t have this yet. We’ll add a new API client
module called localization shortly.

First, let’s finish updating the code related to the configuration.

file mock.json

Let’s add the data we need in the src/config/files/mock.json as per our ConfigInterface
updates:

// file: src/config/config-files/mock.json

{

"global": {

"version": 0.1 // add this line

},

...

// begin: add the localization section

"localization": {

"apiClientOptions": {

"endpoints": {

Chapter 10 - Localization and Internationalization - Language Localization 154

"fetchTranslation": "/static/mock-data/localization/[namespace]/[key].json"

},

"mockDelay": 250

},

"locales": [

// each of this objects represent a locale available in our app

{ "key": "en-US", "isDefault": true },

{ "key": "it-IT", "isDefault": false },

{ "key": "fr-FR", "isDefault": false },

{ "key": "es-ES", "isDefault": false }

],

"localStorageCache": {

// these are settings we'll use to cache JSON locale translation data into loc\

aleStorage

"enabled": true,

"expirationInMinutes": 60

}

}

// end: add the localization section

}

Please feel free to also update the beta.json/production.json/localapis.json files as well, and
possibly add unit tests to validate your changes. Note that we have also an array called
localeswhich hold a list of object that represent each of the locales available in or application.
We also have a section caled localeStorageCache that we’ll use to drive how we cache the
locale translation JSON data into the browser localStorage.³⁶

Translation JSON data

Note that for the fetchTranslation end-point, we’ll use two parameters: [namespace] and
[key].
We’ll create the files under /public/static/mock-data/localization/.
For the [namespace] parameter we’ll always use ‘translation’ in our case, so go ahead and cre-
ate a sub-directory called translation at the path /public/static/mock-data/localization/translation.
Then, add 4 files:

• en-US.json
• es-ES.json
• fr-FR.json

³⁶https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage

Chapter 10 - Localization and Internationalization - Language Localization 155

• it-IT.json

Here is the content for the en-US.json one:

// file: public/static/mock-data/localization/translation/en-US.json

{

"locale.selector.en-US": "English",

"locale.selector.it-IT": "Italian",

"locale.selector.fr-FR": "French",

"locale.selector.es-ES": "Spanish",

"home.welcome": "Welcome: this message is localized in English",

"navigation.home": "Home",

"navigation.about": "About",

"items.list.header": "My Items"

}

Here is the content for the es-ES.json one:

// file: public/static/mock-data/localization/translation/es-ES.json

{

"locale.selector.en-US": "Inglés",

"locale.selector.it-IT": "Italiano",

"locale.selector.fr-FR": "Francés",

"locale.selector.es-ES": "Español",

"home.welcome": "Bienvenido: this message is localized in Spanish",

"navigation.home": "Inicio",

"navigation.about": "Acerca de",

"items.list.header": "Mis cosas"

}

Here is the content for the fr-FR.json one:

Chapter 10 - Localization and Internationalization - Language Localization 156

// file: public/static/mock-data/localization/translation/fr-FR.json

{

"locale.selector.en-US": "Anglais",

"locale.selector.it-IT": "Italien",

"locale.selector.fr-FR": "Français",

"locale.selector.es-ES": "Espagnol",

"home.welcome": "Bienvenue: this message is localized in French",

"navigation.home": "Accueil",

"navigation.about": "À propos de nous",

"items.list.header": "Mes articles"

}

Here is the content for the it-IT.json one:

// file: public/static/mock-data/localization/translation/it-IT.json

{

"locale.selector.en-US": "Inglese",

"locale.selector.it-IT": "Italiano",

"locale.selector.fr-FR": "Francese",

"locale.selector.es-ES": "Spagnolo",

"home.welcome": "Benvenuti: this message is localized in Italian",

"navigation.home": "Home",

"navigation.about": "Chi Siamo",

"items.list.header": "I miei articoli"

}

We now have to add a new API client module for loading our localization data.

API Client updates

Create the directory src/api-client/models/localization.
Here we’ll create the interfaces and model for our localization API module.
Add the following 4 files:

• LocalizationApiClient.interface.ts

Chapter 10 - Localization and Internationalization - Language Localization 157

• LocalizationApiClientOptions.interface.ts
• LocalizationApiClient.model.ts
• index.ts

file LocalizationApiClient.interface.ts

Our localization API client will exposes one method called fetchTranslation:

// file: src/api-client/models/localization/LocalizationApiClient.interface.ts

/**

* @Name LocalizationApiClientInterface

* @description

* Interface for the Localization api client module

*/

export interface LocalizationApiClientInterface {

fetchTranslation: (namespace: string, key: string) => Promise<{ [key: string]: str\

ing }>

}

file LocalizationApiClientOptions.interface.ts

Here we have the itnerfaces for the API client configuration:

// file: src/api-client/models/localization/LocalizationApiClientOptions.interface.ts

export interface LocalizationApiClientEndpoints {

fetchTranslation: string

}

/**

* @Name LocalizationApiClientOptions

* @description

* Interface for the Localization api client options (includes endpoints used to avo\

id hard-coded strings)

*/

export interface LocalizationApiClientOptions {

mockDelay?: number

endpoints: LocalizationApiClientEndpoints

}

Chapter 10 - Localization and Internationalization - Language Localization 158

file LocalizationApiClient.model.ts

Here is the implementation of our localization API client:

// file: src/api-client/models/localization/LocalizationApiClient.model.ts

import { useHttpClient, HttpRequestParamsInterface, HttpRequestType } from '@/http-c\

lient'

import { LocalizationApiClientOptions, LocalizationApiClientEndpoints } from './Loca\

lizationApiClientOptions.interface'

import { LocalizationApiClientInterface } from './LocalizationApiClient.interface'

/**

* @Name LocalizationApiClientModel

* @description

* Implements the LocalizationApiClientInterface interface

*/

export class LocalizationApiClientModel implements LocalizationApiClientInterface {

private readonly endpoints!: LocalizationApiClientEndpoints

private readonly mockDelay: number = 0

constructor(options: LocalizationApiClientOptions) {

this.endpoints = options.endpoints

if (options.mockDelay) {

this.mockDelay = options.mockDelay

}

}

fetchTranslation(namespace: string, key: string): Promise<{ [key: string]: string \

}> {

const requestParameters: HttpRequestParamsInterface = {

requestType: HttpRequestType.get,

endpoint: this.endpoints.fetchTranslation,

requiresToken: false,

payload: {

namespace,

key

} as any,

mockDelay: this.mockDelay

}

return useHttpClient().request<{ [key: string]: string }>(requestParameters)

Chapter 10 - Localization and Internationalization - Language Localization 159

}

}

file src/api-client/models/localization/index.ts

Just a barrel file:

// file: src/api-client/models/localization/index.ts

export * from './LocalizationApiClientOptions.interface'

export * from './LocalizationApiClient.interface'

export * from './LocalizationApiClient.model'

Updates to ApiClient.interface.ts

Import and add our localization module:

// file: src/api-client/models/ApiClient.interface.ts

import { LocalizationApiClientInterface } from './localization'

import { ItemsApiClientInterface } from './items'

/**

* @Name ApiClientInterface

* @description

* Interface wraps all api client modules into one places for keeping code organized.

*/

export interface ApiClientInterface {

localization: LocalizationApiClientInterface

items: ItemsApiClientInterface

}

Updates to the main models barrel file
(api-client/models/index.ts)

Chapter 10 - Localization and Internationalization - Language Localization 160

// file: src/api-client/models/index.ts

export * from './ApiClient.interface'

export * from './localization'

export * from './items'

Updates to ApiClient instances

localization mock instance
(api-client/mock/localization/index.ts)

Create the file api-client/mock/localization/index.ts with this code:

// file: src/api-client/mock/localization/index.ts

// import a reference to the app config

import { config } from '@/config'

import { LocalizationApiClientInterface, LocalizationApiClientModel } from '../../mo\

dels'

// instantiate the LocalizationApiClient pointing at the url that returns static jso\

n mock data

const localizationApiClient: LocalizationApiClientInterface = new LocalizationApiCli\

entModel(config.localization.apiClientOptions)

// export our instance

export { localizationApiClient }

mock instance (api-client/mock/index.ts)

Update the code within the api-client/mock/index.ts file like this:

Chapter 10 - Localization and Internationalization - Language Localization 161

// file: src/api-client/mock/index.ts

import { ApiClientInterface } from '../models'

// import module instances

import { localizationApiClient } from './localization'

import { itemsApiClient } from './items'

// create an instance of our main ApiClient that wraps the mock child clients

const apiMockClient: ApiClientInterface = {

localization: localizationApiClient,

items: itemsApiClient

}

// export our instance

export { apiMockClient }

live instance (api-client/live/index.ts)

Update the code within the api-client/live/index.ts file like this :

// file: src/api-client/live/index.ts

// import a reference to the app config

import { config } from '@/config'

import {

ApiClientInterface,

LocalizationApiClientModel,

ItemsApiClientModel

} from '../models'

// create an instance of our main ApiClient that wraps the live child clients

const apiLiveClient: ApiClientInterface = {

localization: new LocalizationApiClientModel(config.localization.apiClientOptions),

items: new ItemsApiClientModel(config.items.apiClientOptions)

}

// export our instance

export { apiLiveClient }

Note: for the live instance going forward we’ll just initialize the client modules within this
file so you can go ahead and delete theapi-client/live/items sub-directory.

Chapter 10 - Localization and Internationalization - Language Localization 162

i18n initialization and useLocalization hook

Create the directory src/localization. Inside the localization folder we’ll create the following
files:

• I18n.init.ts
• useLocalization.ts
• index.ts

file i18n.init.ts

For the i18n.init.ts code, we’ll start by importing a few types and utils from both i18next
and react-i18next. Also import reference to our config and apiClient:

// file: src/localization/i18n.init.ts

import { initReactI18next } from 'react-i18next'

import i18n, {

BackendModule,

Services,

TOptions,

InitOptions,

ReadCallback

} from 'i18next'

import { config } from '../config'

import { apiClient } from '../api-client'

...

Let’s get a reference to the localeStorageCache configuration:

Chapter 10 - Localization and Internationalization - Language Localization 163

// file: src/localization/i18n.init.ts

...

// get reference to out localization config

const localStorageConfig = config.localization.localStorageCache

...

Create a constant that we’ll use as the key for saving or retrieving information about the
user preferred locale from the browser localStorage:

// file: src/localization/i18n.init.ts

...

// key that will use to save the user preferred locale id

export const userPreferredLocaleStorageKey = 'user-lcid'

...

Add two helper methods used to retrieve or save the user preferred locale id to localStorage,
called getUserPreferredLocale and setUserPreferredLocale:

// file: src/localization/i18n.init.ts

...

// helper method to retrieve the user preferred locale from localStorage

export const getUserPreferredLocale = () => {

// get a reference from the available locales array from our config

const availableLocales = config.localization.locales

// try to retrive from local storage if they have one saved

const preferredLocale = localStorage.getItem(userPreferredLocaleStorageKey)

if (!preferredLocale) {

// if not, use the default locale from config

const defaultLocale = availableLocales.find(o => o.isDefault)?.key

return defaultLocale

}

return preferredLocale

}

// helper to save the user preferred locale to localStorage

export const setUserPreferredLocale = (lcid: string) => {

localStorage.setItem(userPreferredLocaleStorageKey, lcid)

Chapter 10 - Localization and Internationalization - Language Localization 164

}

...

Note that in getUserPreferredLocale we return the default locale from config if there is not
preferred locale in localStorage yet

Add an helper called getLocaleData that will help us load JSON translation data for a specific
locale from an API and cache it into localStorage (so subsequent calls to this method will
retrieve the JSON data from cache):

// file: src/localization/i18n.init.ts

...

// helper to get JSON locale translation data

const getLocaleData = async (namespace: string, lcid: string): Promise<Object> => {

// try to get it from locale storage

// dynamic key we use to cache the actual locale JSON data in the browser local st\

orage

const localeStorageKey = `lcid-data-${ lcid }`

// retrieve JSON as string

const cacheEntryStr = localStorage.getItem(localeStorageKey) || '{}'

// a variable to hold the parsed JSON data:

let cacheEntry: { appVersion: number, expiresAt: number, json: string } = { appVer\

sion: -1, expiresAt: 0, json: '' }

// if localeStorage is enabled through config, then proced trying parsing the cac\

heEntryStr

if (localStorageConfig.enabled) {

try {

cacheEntry = JSON.parse(cacheEntryStr)

} catch (e) {

console.warn('error parsing data', cacheEntryStr)

}

}

// check if we have cacheEntry and if matches app version and also did not expire

if (cacheEntry && cacheEntry.appVersion === config.global.version && cacheEntry.ex\

piresAt - Date.now() > 0) {

// return value from cache

return cacheEntry.json

} else {

// retrieve data from API end point (or CDN etc)

Chapter 10 - Localization and Internationalization - Language Localization 165

const translationData = await apiClient.localization.fetchTranslation(namespace,\

lcid)

// if localeStorage is enabled ...

if (localStorageConfig.enabled) {

// cache the translation data into localStorage

const dt = new Date()

// calculate expiration by adding N minutes as per config expirationInMinutes

const expiresAt = dt.setMinutes(dt.getMinutes() + Number(localStorageConfig.ex\

pirationInMinutes))

// save our data to localStorage

localStorage.setItem(localeStorageKey, JSON.stringify({

appVersion: config.global.version,

expiresAt: expiresAt,

json: translationData

}))

}

// return value we retrieved from API

return translationData

}

}

...

Create a custom backendModule that will invoke our helper getLocaleDatawhen i18n need
to load JSON translation data for a new locale:

// file: src/localization/i18n.init.ts

...

// custom backend module that allow us to use our own api client

const backendModule: BackendModule = {

type: 'backend',

init(services: Services, backendOptions: TOptions, i18nextOptions: InitOptions): v\

oid {

},

read(language: string, namespace: string, callback: ReadCallback): void {

console.log('backendModule read', language, namespace)

const key = language

// invoke our helper method

getLocaleData(namespace, key).then(obj => callback(null, obj))

Chapter 10 - Localization and Internationalization - Language Localization 166

}

}

...

Note that in a small application with very small translation files, you might want to just to
import them and add them as resources to the i18n initialization. Here, I am showing you
how to load them through the API client on demand and cache them in localStorage with
an expiration and versioning.

Finally initialize i18n:

// file: src/localization/i18n.init.ts

...

i18n

.use(initReactI18next) // passes i18n down to react-i18next

.use(backendModule) // use our custom backend module

.init({

lng: getUserPreferredLocale(), // invoke our helper to get the user preferred lo\

cale (or the default)

fallbackLng: 'en-US',

keySeparator: false,

interpolation: {

escapeValue: false

},

load: 'currentOnly'

});

file useLocalization.ts

Here we’ll just export what we need, similar to a hook, and enable us to easily consume the
different locale translations in our components:

Chapter 10 - Localization and Internationalization - Language Localization 167

// file: src/localization/useLocalization.ts

import { useTranslation } from 'react-i18next'

import i18n from 'i18next'

import { config } from '../config'

// import references to our localeStorage helpers:

import {

getUserPreferredLocale,

setUserPreferredLocale

} from './i18n.init'

// useLocalization hook

export function useLocalization () {

// we have to invoke react-i18next's useTranslation here

const instance = useTranslation('translation')

return {

t: instance.t, //returna the t translator function from useTranslation

currentLocale: i18n.language, // return the current locale from i18n

changeLocale: (lcid: string) => { // return helper method changeLocale

i18n.changeLanguage(lcid)

// also save the user preference

setUserPreferredLocale(lcid)

},

locales: config.localization.locales, // retrun vailable locales from our config

getUserPreferredLocale

}

}

file src/localization/index.ts (barrel file)

Just a barrel file to export our hook (in one of the next chapters will be exporting additional
things like formatters here as well):

// file: src/localization/index.ts

export * from './useLocalization'

Chapter 10 - Localization and Internationalization - Language Localization 168

main.tsx or index.tsx updates

Here we just to import the initialization code, and also wrap our <App/> with a Suspense³⁷
element that will show a loading message while the i18n code is initialized and the initial
JSON locale data is loaded:

import React from 'react'

import ReactDOM from 'react-dom'

import './index.css'

import App from './App'

// add this line:

import './localization/i18n.init'

ReactDOM.render(

<React.StrictMode>

<React.Suspense fallback="loading">

<App />

</React.Suspense>

</React.StrictMode>,

document.getElementById('root')

)

NOTE: Suspense allows you specify a <Loader> or other JSX.Element for the “fallback”
attribute

App.tsx updates

Let’s now consume our useLocalization within the App.tsx file by adding a quick way to
change locale and also display the translated home welcome message:

³⁷https://reactjs.org/docs/react-api.html#reactsuspense

https://reactjs.org/docs/react-api.html#reactsuspense

Chapter 10 - Localization and Internationalization - Language Localization 169

// file: src/App.tsx

...

// import a reference to useLocalization

import { useLocalization } from './localization/useLocalization'

...

// App component:

function App() {

// get what we need from useLocalization:

const {

t,

locales,

currentLocale,

getUserPreferredLocale,

changeLocale,

} = useLocalization()

// on load, check if locale has been set. If not invoke changeLocale

$: if (!$isLocaleLoaded) {

changeLocale(getUserPreferredLocale())

}

// an event handler from changing the locale from our locale-selector

const onLocaleClick = (lcid: string) => {

changeLocale(lcid)

}

return (

<Provider store={rootStore}>

<div className="App">

<div className="locale-selector">

{ /* loop through the locales and create a radio button for each locale */

locales.map((item) => {

const radioId = `radio-locale-${item.key}`

return (

<label key={item.key} htmlFor={radioId} className="cursor-pointer" o\

nClick={() => onLocaleClick(item.key)}>

<input type="radio" id={radioId} radioGroup={currentLocale} name="\

locale" value={item.key} checked={ currentLocale === item.key } onChange={() => {}} \

/>

{

Chapter 10 - Localization and Internationalization - Language Localization 170

/* use the t function to translate the label of this radio */

t(`locale.selector.${ item.key }`)

}

</label>

)

})

}

</div>

<h1>{ t('home.welcome') } {/* update this to use the t function to translate\

our welcome message */}

<ItemsView />

</div>

</Provider>

)

You can similarly update the ItemsList.component.tsx code as well to use the translations.
I’ll let you do that on your own. You can always refer tot he github repo if you need help.

Browser

Now run the app and you will see something like this:

Now right-click and select inspect to open the Chrome dev tools, then select the Application
tab, then Local storage > http://localhost:3000 note how our code has cached the en-US JSON
data in localStorage and saved the current locale id under user-lcid:

Chapter 10 - Localization and Internationalization - Language Localization 171

If you select a different locale, i.e. French, it should display the translated labels:

Now in the Local Storage inspector in the Chrome console, again notice how the fr-FR locale
data has been also saved to localeStorage and the user preferred locale saved under user-lcid
has been also updated:

Chapter 10 - Localization and Internationalization - Language Localization 172

If you switch on the Netwrok tab in the Chrome console, you can see how our API client
has loaded the data from static/mock-data/localization/translation/fr-FR.json:

Test that our caching logic is working:

To test that our code will load the user-preferred locale from local storage, along with the
save JSON translation data, clear the Network tab and then refresh the Chrome tab with F5.
Note how the network tab will NOT show a call to the static JSON file this time because our
code is actually loading the data from localStorage this time:

Chapter 10 - Localization and Internationalization - Language Localization 173

Also not how the selected locale is French:

Important

Remember that if you add additional keys to your translation files, or modify the data
in any way, you’ll have to either clear your local storage (if you are just playing with
things locally), or increment that Application Configuration version in the config files
(global section). The localStorage cache will also expire eventually based on the con-
fig.localization.localStorageCache.expirationInMinutes value.

For a new deploy, incrementing the version will make sure that the logic we added in our
useLocalization code will ignore the currently cached data from localStorage and re-load
fresh data through the AP. Here for example I increase it from 0.102 to 0.103:

Chapter 10 - Localization and Internationalization - Language Localization 174

Note: you dont have to use decimals for your version. You are free to just use integer2 like 1,
2, etc.

Chapter 10 - Localization and Internationalization - Language Localization 175

Chapter 10 Recap

What We Learned

• How to add the i18n plugins to our application
• How to wrap initialization code for i18n and lazy-loading of JSON translation data
through our API client

• How to cache translation JSON data into localStorage with versioning and expiration
• How to drive available locales through configuration
• How to use multiple locale settings for text translation in order to localize our UI labels
• How to switch to different locales

Observations

• We did not add unit tests around switching locale through the radio buttons
• We did not create a component for switching locale

Improvements

• Add additional unit tests
• Extract the code that loops through each locale and adds a radio button (div with
className set to locale-selector) into its own component and add unit tests against
this. Maybe in your application requirements this has to be a dropdown instead of a
radio group, so it is up to you how you will implement this.

Chapter 11 - Localization and
Internationalization - Number and
DateTime Formatters
In this chapter we are going to expand our support for localization by adding Number and
DateTime value formatters. We’ll leverage the Intl API³⁸ which is supported by all major
web browsers.

We’ll build a hook called useFormatters that will make it easier to consume different kind of
formatters based on the currently selected locale.

Note: this is the same code from a plugin I published here and you could use it in other apps
in the future without coding it yourself if you prefer: @builtwithjavascript/formatters

Note also that the code in this chapter is re-usable in any framework, not just React, as it
does not have any dependency on React.

Directory localization/formatters

Start by creating a directory under src/localization called formatters. Inside this directory
create the following files:

• useDateTimeFormatters.ts
• useNumberFormatters.ts
• index.ts

We’ll create the 2 main hooks useDateTimeFormatters and useNumberFormatters and
then just export them together as useFormatters from the index.ts file.

File: useDateTimeFormatters.ts

For date-time formatters we’ll wrap around Intl.DateTimeFormat and make it easier to
consume it. We’ll cache each instance of Intl.DateTimeFormat by localeId and the different
options to avoid keeping re-instantiating it everytime (this is for performance reasons).

³⁸https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl

https://www.npmjs.com/package/@builtwithjavascript/formatters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Intl

Chapter 11 - Localization and Internationalization - Number and DateTime Formatters 177

For this reason, we need to first add a method that return a valid and unique cache key that
uses localeId and the different options that might be passed when consuming it. The cache
key will be a string in the format [localeId]-[dateStyle]-[timeStyle]:

// file: src/formatters/useDateTimeFormatters.ts

export type DayNameFormatType = 'long' | 'short' | 'narrow' | undefined

export type MonthNameFormatType = 'long' | 'short' | 'narrow' | 'numeric' | '2-digit\

' | undefined

const defaultDateStyle = 'short' // 'full', 'long', 'medium', 'short'

// helper to calculate the cache key for the datetime Intl.DateTimeFormat instances

export const getDateTimeFormattersCacheKey = (params: { lcid: string; dateStyle?: st\

ring; timeStyle?: string }) => {

let { lcid, dateStyle, timeStyle } = params

dateStyle = (dateStyle || defaultDateStyle).trim().toLowerCase()

timeStyle = (timeStyle || '').trim().toLowerCase()

let cacheKey = `${lcid}-${dateStyle}`

if (timeStyle.length) {

cacheKey = `${cacheKey}-${timeStyle}`

}

return cacheKey.trim().toLowerCase()

}

...

We can then add the code for the useDateTimeFormatters hook. This will return an
object with 3 methods: datetime, dayNames, monthNames. Here is the preliminary
implementation with just datetime:

// file: src/formatters/useDateTimeFormatters.ts

...

// hook to export the datetime, dayNames, monthNames utils

export const useDateTimeFormatters = (localeId: string) => {

const _lcid = localeId

const _cache = new Map<string, Intl.DateTimeFormat>()

return {

Chapter 11 - Localization and Internationalization - Number and DateTime Formatters 178

dateTime: (dateStyle?: string, timeStyle?: string) => {

dateStyle = (dateStyle || defaultDateStyle).trim().toLowerCase()

timeStyle = (timeStyle || '').trim().toLowerCase()

const cacheKey = getDateTimeFormattersCacheKey({

lcid: _lcid,

dateStyle,

timeStyle

})

if (!_cache.has(cacheKey)) {

// if not in our cache yet, create it and cache it

let options: { dateStyle?: string; timeStyle?: string } = {}

if (dateStyle.length) {

options.dateStyle = dateStyle

}

if (timeStyle.length) {

options.timeStyle = timeStyle

}

// cache instance

const instance = new Intl.DateTimeFormat(_lcid, options as Intl.DateTimeForm\

atOptions)

_cache.set(cacheKey, instance)

}

// return instance from cache

return _cache.get(cacheKey) as Intl.DateTimeFormat

},

// ... we'll be adding also dayNames and monthNames here shortly

}

}

Now let’s also return dayNames and monthNames:

Chapter 11 - Localization and Internationalization - Number and DateTime Formatters 179

// file: src/formatters/useDateTimeFormatters.ts

...

// hook to export the datetime, dayNames, monthNames utils

export const useDateTimeFormatters = (localeId: string) => {

const _lcid = localeId

const _cache = new Map<string, Intl.DateTimeFormat>()

// add these two to cache also dayName and monthNames

const _cacheDayNames = new Map<string, { id: number; name: string }[]>()

const _cacheMonthNames = new Map<string, { id: number; name: string }[]>()

return {

dateTime: (dateStyle?: string, timeStyle?: string) => {

...

},

dayNames: (format: DayNameFormatType = 'long') => {

if (!_cacheDayNames.has(format)) {

// if not in our cache yet, create it and cache it

const items: { id: number; name: string }[] = []

for (let i = 0; i < 7; i++) {

// start from March 1st 1970 which is a Sunday

// calculate day and pad string start with zero

const strDay = (i + 1).toString().padStart(2, '0')

const date = new Date(`1970-03-${ strDay }T00:00:00.000Z`)

const name = date.toLocaleString(_lcid, { weekday: format, timeZone: 'UTC'\

})

items.push({ id: i, name })

}

_cacheDayNames.set(format, items)

}

// return cached items

return _cacheDayNames.get(format) as { id: number; name: string }[]

},

monthNames: (format: MonthNameFormatType = 'long') => {

if (!_cacheMonthNames.has(format)) {

// if not in our cache yet, create it and cache it

const items: { id: number; name: string }[] = []

for (let i = 0; i < 12; i++) {

// calculate month and pad string start with zero

Chapter 11 - Localization and Internationalization - Number and DateTime Formatters 180

const strMonth = (i + 1).toString().padStart(2, '0')

const date = new Date(`1970-${ strMonth }-01T00:00:00.000Z`)

const name = date.toLocaleString(_lcid, { month: format, timeZone: 'UTC' })

items.push({ id: i, name })

}

_cacheMonthNames.set(format, items)

}

// return cached items

return _cacheMonthNames.get(format) as { id: number; name: string }[]

}

}

}

As you can see in the code above we leverage date.toLocaleString to get either the day or
month name. We use a calculated date from March 1st 1970 (which is a Sunday) to get the
correct weekday name, and from January 1st 1970 to get the correct month name (irrelevant
of the current user time zone).

File: useNumberFormatters.ts

For number formatters, similar to what we did for datetime in the previous section, we’ll
wrap around Intl.NumberFormat . We’ll cache each instance of Intl.NumberFormat by
localeId and the different options to avoid keeping re-instantiating it everytime (again for
performance reasons).

Similaor to the datetime formatters hook, we’ll need a function here as well that calculate
the cache key dynamically. This is a bit more complex as it takes into account a few more
parameters:

// file: src/formatters/useNumberFormatters.ts

const defaultcurrencyDisplay = 'symbol' // 'symbol', 'narrowSymbol', 'code', 'name'

// helper to calculate the cache key for the datetime Intl.NumberFormat instances

export const getNumberFormattersCacheKey = (params: {

lcid: string

style?: string

currency?: string

currencyDisplay?: string

minimumFractionDigits: number

maximumFractionDigits: number

Chapter 11 - Localization and Internationalization - Number and DateTime Formatters 181

}) => {

let { lcid, style, currency, currencyDisplay, minimumFractionDigits, maximumFracti\

onDigits } = params

style = (style || 'decimal').trim().toLowerCase()

currency = (currency || '').trim()

currencyDisplay = (currencyDisplay || defaultcurrencyDisplay).trim()

let cacheKey = `${lcid}-${style}`

if (currency.length > 0) {

cacheKey = `${cacheKey}-${currency}`

if (currencyDisplay.length > 0) {

cacheKey = `${cacheKey}-${currencyDisplay}`

}

}

cacheKey = `${cacheKey}-${minimumFractionDigits}-${maximumFractionDigits}`.trim().\

toLowerCase()

return cacheKey

}

...

We can then add the code for the useNumberFormatters hook. This will return an object
with 4 methods: whole, decimal, currency, percent. Here we start by implementing a
private method called _privateGetFormatter that will use to avoid code duplication. This
method also contains the logic to retrieve/set the instance into the cache:

// file: src/formatters/useNumberFormatters.ts

...

// hook to export the various number formatters utils

export const useNumberFormatters = (localeId: string) => {

const _lcid = localeId

const _cache = new Map<string, Intl.NumberFormat>()

const _privateGetFormatter = (params: {

style?: string

currency?: string

currencyDisplay?: string

minimumFractionDigits: number

maximumFractionDigits: number

}) => {

Chapter 11 - Localization and Internationalization - Number and DateTime Formatters 182

let { style, currency, currencyDisplay, minimumFractionDigits, maximumFractionDi\

gits } = params

style = (style || 'decimal').trim().toLowerCase()

currency = (currency || '').trim()

currencyDisplay = (currencyDisplay || defaultcurrencyDisplay).trim()

let cacheKey = getNumberFormattersCacheKey({

lcid: _lcid,

style,

currency,

currencyDisplay,

minimumFractionDigits,

maximumFractionDigits

})

if (!_cache.has(cacheKey)) {

// if not in our cache yet, create it and cache it

let options: Intl.NumberFormatOptions = {

style,

minimumFractionDigits,

maximumFractionDigits

}

if (currency.length > 0) {

options.currency = currency

if (currencyDisplay.length > 0) {

options.currencyDisplay = currencyDisplay

}

}

// cache instance

const instance = new Intl.NumberFormat(_lcid, options)

_cache.set(cacheKey, instance)

}

// return instance from cache

return _cache.get(cacheKey) as Intl.NumberFormat

}

...

Then we can add the code to export our 4 utility methods by using the private method to
construct each instance with the various options:

Chapter 11 - Localization and Internationalization - Number and DateTime Formatters 183

// file: src/formatters/useNumberFormatters.ts

...

return {

whole: () => {

return _privateGetFormatter({

style: 'decimal',

minimumFractionDigits: 0,

maximumFractionDigits: 0

})

},

decimal: (minimumFractionDigits: number = 0, maximumFractionDigits: number = 2) \

=> {

return _privateGetFormatter({

style: 'decimal',

minimumFractionDigits,

maximumFractionDigits

})

},

currency: (

currency: string,

currencyDisplay?: string,

minimumFractionDigits: number = 0,

maximumFractionDigits: number = 2

) => {

return _privateGetFormatter({

style: 'currency',

currency,

currencyDisplay,

minimumFractionDigits,

maximumFractionDigits

})

},

percent: (minimumFractionDigits: number = 0, maximumFractionDigits: number = 2) \

=> {

return _privateGetFormatter({

style: 'percent',

minimumFractionDigits,

maximumFractionDigits

})

},

Chapter 11 - Localization and Internationalization - Number and DateTime Formatters 184

unescapeResult(result: string) {

return (result || '').replace(/\xa0/g, ' ').replace(/\u202f/g, ' ')

}

}

}

File: index.ts

For convenience, here we just export a global hook called useFormatters:

// file: src/formatters/index.ts

import { useDateTimeFormatters } from './useDateTimeFormatters'

import { useNumberFormatters } from './useNumberFormatters'

export const useFormatters = () => {

return {

useDateTimeFormatters,

useNumberFormatters

}

}

Note: this step is optional. You could just import individually either useDateTimeFormatters
or useNumberFormatters when consuming them.

Later, when we need to consume our formatters, we can just import them as:

import {

useLocalization,

useDateTimeFormatters,

useNumberFormatters

} from '@/localization/formatters'

Component DebugFormatters.component.tsx

Let’s now create a component that we can just use to visually debug the output of the
formatters. Here will also use the useLocalization hook to get the currentLocale. Then
we’ll have some computed properties that will return the correct formatters based on the
currentLocale:

Chapter 11 - Localization and Internationalization - Number and DateTime Formatters 185

// file: src/components/shared/DebugFormatters.component.tsx

import React from 'react'

import {

useLocalization,

useDateTimeFormatters,

useNumberFormatters

} from '@/localization'

export function DebugFormatters(props: {

show: boolean

}) {

// get what we need from useLocalization:

const { currentLocale } = useLocalization()

const dateTimeFormatter = (dateStyle: string = 'long', timeStyle: string = '') => {

return useDateTimeFormatters(currentLocale).dateTime(dateStyle, timeStyle)

}

const dayNames = () => {

return useDateTimeFormatters(currentLocale)

.dayNames()

.map(o => o.name)

.join(', ')

}

const monthNames = () => {

return useDateTimeFormatters(currentLocale)

.monthNames()

.map(o => o.name)

.join(', ')

}

const wholeNumberFormatter = () => {

return useNumberFormatters(currentLocale).whole()

}

const decimalNumberFormatter = () => {

return useNumberFormatters(currentLocale).decimal()

}

const currencyNumberFormatter = (currency: string = 'USD') => {

return useNumberFormatters(currentLocale).currency(currency)

}

const percentNumberFormatter = () => {

return useNumberFormatters(currentLocale).percent()

}

Chapter 11 - Localization and Internationalization - Number and DateTime Formatters 186

if (props.show) {

return (

<div>

<h3>Debugging formatters:</h3>

<div>Whole: { wholeNumberFormatter().format(123456789.321654) }</div>

<div>Decimal: { decimalNumberFormatter().format(123456789.321654) }</div>

<div>percent: { percentNumberFormatter().format(1254.987654) }</div>

<div>currency (USD): { currencyNumberFormatter().format(123456789.321654) }<\

/div>

<div>currency (CAD): { currencyNumberFormatter('CAD').format(123456789.32165\

4) }</div>

<div>currency (EUR): { currencyNumberFormatter('EUR').format(123456789.32165\

4) }</div>

<div>currency (CNY): { currencyNumberFormatter('CNY').format(123456789.32165\

4) }</div>

<div>currency (JPY): { currencyNumberFormatter('JPY').format(123456789.32165\

4) }</div>

<div>currency (INR): { currencyNumberFormatter('INR').format(123456789.32165\

4) }</div>

<div>currency (CHF): { currencyNumberFormatter('CHF').format(123456789.32165\

4) }</div>

<div>date-time (default): { dateTimeFormatter().format(new Date()) }</div>

<div>date-time (full): { dateTimeFormatter('full').format(new Date()) }</div>

<div>date-time (full + long time): { dateTimeFormatter('full', 'long').forma\

t(new Date()) }</div>

<div>day names: { dayNames() }</div>

<div>month names: { monthNames() }</div>

</div>

)

} else {

return null

}

}

Updates to App.tsx

Now we can import the DebugFormatters component and render it within our App.tsx to
quickly visually debug that the formatters are working as expected:

Chapter 11 - Localization and Internationalization - Number and DateTime Formatters 187

// file: src/App.tsx

...

import { DebugFormatters } from '@/components/shared/DebugFormatters.component'

// App component:

function App() {

...

return (

<Provider store={rootStore}>

{/* wrap the root App element with Redux store provider */}

<div className="App">

<LocaleSelector locales={locales} currentLocale={currentLocale} onLocaleClic\

k={onLocaleClick} t={t} />

<h1>{t('home.welcome')}</h1> {/* update this to use the t function to transl\

ate our welcome message */}

<ItemsView />

<DebugFormatters show={true} /> {/* add this line here */ }

</div>

</Provider>

)

}

export default App

If you now run the app you will see the DebugFormatters rendering information at the
bottom of the page:

Chapter 11 - Localization and Internationalization - Number and DateTime Formatters 188

And of course, if you select a different locale (i.e. French) you’ll see the formatters displaying
the value as per the current locale culture:

Chapter 11 - Localization and Internationalization - Number and DateTime Formatters 189

Chapter 11 - Localization and Internationalization - Number and DateTime Formatters 190

Chapter 11 Recap

What We Learned

• How to add code that wraps around Intl API DateTimeFormat and NumberFormat
• How to format values according to the current locale using the formatters we created

Observations

• We did not add unit tests against our formatters

Improvements

• Add unit tests again the formatters hooks

Chapter 12 - Adding Tailwind CSS
Going forward, we are going to use Tailwind CSS³⁹ as it makes it so easy to design
components without having to mess with the CSS directly. We would eventually need to
remove also the older CSS we wrote during the previous chapter, but there is no harm for
now in leaving that there. But for our primitives library and new higher-level components,
it will be written exclusively using Tailwind CSS.

To add TailwindCSS to our existing project execute this command. This will install the latest
tailwindcss, postcss and autoprefixer npm packages:

npm install -D tailwindcss@latest postcss@latest autoprefixer@latest

Then let’s init the Tailwind CSS configuration files. The following command will create the
preliminary tailwind.config.js and postcss.config.js:

npx tailwindcss init -p

Open the file tailwind.config.js and verify it has been created. Ensure the content is like
this:

// file: src/tailwind.config.js

module.exports = {

content: ['./src/**/*.{html,js,ts,tsx}'], /* you might have to add this */

theme: {

extend: {},

},

plugins: [],

}

Also verify that postcss.config.js has been created and the content is like this:

³⁹Tailwind CSS Official Website

https://tailwindcss.com/

Chapter 12 - Adding Tailwind CSS 192

// file: src/postcss.config.js

module.exports = {

plugins: {

tailwindcss: {},

autoprefixer: {},

},

}

Then, under src, create a new directory called tailwind and move the app.css file into it. The
final path of this will be src/tailwind/app.css. Open the file and make sure contains this
code:

/* file: src/tailwind/app.css */

@import 'tailwindcss/base';

@import 'tailwindcss/components';

@import 'tailwindcss/utilities';

@import './other.css'; /* note: we create this file in one of the next steps below */

Within the main.tsx file: remove the existing reference to the old index.css and import a
reference to the new tailwind/app.css file:

// file: src/main.tsx

import React from 'react'

import ReactDOM from 'react-dom'

import './index.css' // <-- remove this line

import './tailwind/app.css' // <-- add this line

...

Delete the old src/index.css form the project.

Move the old src/App.css file into the src/tailwind folder and rename it other.css. Remove
the .App and .cursor-pointer classes from this file:

Chapter 12 - Adding Tailwind CSS 193

/* file: src/tailwind/other.css */

// remove the following .App and .cursor-pointer classes:

.App {

padding: 20px;

}

.cursor-pointer {

cursor: pointer;

}

...

Within the App.tsx file: remove the reference to the old src/App.css file:

// file: src/App.tsx

import * as React from 'react'

// import our App.css // <- remove this line

import './App.css' // <- remove this line

...

Finally, to test that Tailwind CSS has been added and it is working, add the classes m-2 p-2

border-2 border-red-500 to the div element within the App.tsx file:

// file: src/App.tsx

...

return (

<Provider store={rootStore}>

<div className="app m-2 p-2 border-2 border-red-500"> { /* add css classes her\

e */}

...

To confirm that Tailwind CSS is being add correctly, run the application and verify that it
renders like this:

Chapter 12 - Adding Tailwind CSS 194

Chapter 12 - Adding Tailwind CSS 195

Chapter 12 Recap

What We Learned

• We learned how to add Tailwind CSS to our existing project

Observations

• We did not talk about how to add support for something like Sass/Scss

Based on these observations, there are a few improvements that can be done:

Improvements

• You could learn how to add Sass/Scss if you do not want to use Tailwind CSS

Chapter 13 - Intro to Primitives
This chapter covers concepts on how to write and organize the most primitive components
(i.e. Inputs, Buttons etc) in order to create a foundation for higher-level and more complex
components.

Atomic Design and Similar Approaches

The way you can think of and organize your components might follow one or more
methodologies. One methodology that has seen an increase in adoption recently is Atomic
Design originally introduced by Brad Frost⁴⁰. The great Alba Silvente⁴¹ has also a terrific
post about this that I strongly recommend you check out. You are free to follow this or other
methodologies either strictly or more losely, as well as chose to implement your own or even
use a mix of ideas from different ones.

In my personal and pragmatical way, I found over the years that all I really need is a
foundation of the most primitive elements liek buttons/textboxes/dropdowns/etc. These
primitives should be as simple as possible, even though in some cases the might contain
quite a bit of logic to determine how they render. In my world, primitives are more or less
the same as the Atoms in Atomic Design.

Then, you can build your higher level components by “composing” them from the primitives.

This is what I’ll be describing in this chapter. We’ll build a collection of primitives that are
simply Buttons, Inputs and similar and see what better strategies we can use there to reduce
the amount of code we have to write and maintain. We’ll then explore in the next chapters
how to build higher-level components from these.

Conventions

One of the convention we will follow is to put all our primitive components under the
directory src/components/primitives

⁴⁰Brad Frost - Atomic Design https://bradfrost.com/blog/post/atomic-web-design/
⁴¹Alba Silvente - How to structure a Vue.js app using Atomic Design and TailwindCSS https://vuedose.tips/how-to-structure-a-vue-js-app-using-

atomic-design-and-tailwindcss

Chapter 13 - Intro to Primitives 197

Within this directory we’ll have sub-directories (folders) that leep the components organized
by category. I.e. buttons will be under src/components/primitives/buttons, inputs will be
under src/components/primitives/inputs etc.

We’ll follow also a naming convention where each .vue file that represents a primitive will
start with the El prefix. I.e. ElText.tsx, ElIcon.tsx, etc. In this case El is for “element”. You
are of course free to decide your own naming convention. But I strongly suggest using some
kind of prefix to more quickly identify a primitive by just looking at its file name when it
is open in your editor.

Create the following 5 sub-directories to get started:

• src/components/primitives/buttons
• src/components/primitives/text
• src/components/primitives/modals
• src/components/primitives/inputs
• src/components/primitives/icons

General Strategies

One of the things we are going to consistently need in each primitive is the main CSS class
property. Often, this will have to be a computed property that returns the appropriate value
based on other conditions. For example, a Button might have to render with an additional
“disabled” CSS class if its disabled property is true.

For consistency, every time a primitive needs a dynamic CSS class, we’ll add a computed
property called cssClass that will return the appropriate value based on various conditions.

Here is a code example for an hypotethical Button component:

export function SomeButton (props: SomeButtonProps) {

const {

label

} = props

const disabled = props.disabled || false

// a computed property to return a different css class based on the selected value

const cssClass = (): string => {

// here we concatenate the default CSS with 'disabled' only if disabled is true

const defaultClasses = 'p-6' // in TailwindCSS this means we want a padding of 6

return `${ defaultClasses } ${ disabled ? 'disabled' : '' }`.trim()

Chapter 13 - Intro to Primitives 198

// alternativately, you could use an array that is initialized with

// the default CSS, and if disabled is true, then add 'disabled'

// and return the result by joining the array with space as the separator

// (I usually favor this approach especially when there

// is more than one check and additional logic)

const result = ['p-6']

if (disabled) {

// these are the button CSS classes when disabled

result.push('disabled')

}

return result.join(' ').trim()

}

// click handler

const handleClick = () => {

// proceed only if the button is not disabled, otherwise ignore the click

if (!disabled) {

// invoke onClicked function from props

onClicked(id)

}

}

return (

<button type="button"

disabled={disabled}

className={cssClass()} >

{ label }

</button>

)

}

Text Elements

Let’s start creating one element for each group as a starting point and thenwe’ll keep building
more elements from there.

Create a file called ElText.tsx under directory src/components/primitives/text.

For the code, use the following:

Chapter 13 - Intro to Primitives 199

// file: src/components/primitives/text/ElText.tsx

import * as React from 'react'

type ElTextProps = {

testid?: string

id?: string

tag: string

text: string

addCss?: string

}

interface ComponentProps extends React.HTMLAttributes<HTMLOrSVGElement> {

as?: React.ElementType

id?: string

'data-testid': string

}

const Component: React.FC<ComponentProps> = ({ as: Tag = 'p', ...otherProps }) => {

return <Tag {...otherProps} />

}

export function ElText (props: ElTextProps) {

const {

id,

tag,

text

} = props

const testid = props.testid || 'testid-not-set'

const addCss = (props.addCss || '').trim()

// a computed property the returns the css class value of this component root elem\

ent

const cssClass = (): string => {

const cssClasses = ['p-1']

if ((addCss || '').trim().length > 0) {

cssClasses.push(addCss.trim())

}

return cssClasses.join(' ').trim()

}

return (

<Component as={tag as any} id={id} data-testid={testid} className={cssClass()}>{\

Chapter 13 - Intro to Primitives 200

text}</Component>

)

}

Here our logic within the computed cssClass property is a bit more complex. Our component
also has a property called addCss (for additional Css) that can be used to specifyCSS classes
for our component in addition to the ones internally set initially to the const cssClasses
variable.Within the cssClass computed property we check if a value for the property addCss
has been provided. If so, we add its value to our computed value.

Here is an example on how we’ll consume our ElText component:

<ElText tag="h2" addCss="text-red-500" text="Here ElText will render an <h2> element\

"/>

As you can see we specified the value “text-red-500” for the addCss property. Thus, the final
computed value for the cssClass will be “p-1 text-red-500”.

Furthermore, since we are rendering the component dynamically based on the tag property
specified, we can render our text as any valid Html element we wish for. In the example
above, we specified the tag property to be “h2” and thus it will render an <h2> element. Or
we could have specified a tag value of “p” and it will render as a <p> element etc.

Primitives View

Let’s create a view where we can consume our primitives so that we can visually debug and
prototype them as we develop them. This view can become apoint of reference for our basic
library of primitives from which we will build more complex components later.

Create the following file:

• src/views/Primitives.view.tsx

The initial code for this file is the following:

Chapter 13 - Intro to Primitives 201

// file: src/views/Primitives.view.tsx

import * as React from 'react'

import { ElText } from '@/components/primitives/text/ElText'

// Primitives View:

function PrimitivesView() {

// return our render function

return (

<div className="primitives">

<ElText tag="h1" addCss="text-gray-500" text="Primitives"/>

<ElText tag="h2" addCss="text-gray-500" text="ElText examples:"/>

<div className="p-6 border">

<ElText tag="h2" addCss="text-red-500" text="Here ElText will render a <h2> \

element"/>

<ElText tag="p" addCss="text-red-700" text="Here ElText will render a <p> el\

ement"/>

</div>

</div>

)

}

export default PrimitivesView

Let’s now temporarily import the Primites view in our App.tsx and replace the ItemsList
with it so we can verify it renders correctly:

// file: src/App.tsx

...

import ItemsView from '@/views/Items.view'

// import a reference for the Primitives View

import PrimitivesView from '@/views/Primitives.view'

...

return (

<Provider store={rootStore}>

<div className="app m-2 p-2 border-2 border-red-500">

...

<PrimitivesView /> { /* temporarily replace ItemsList with PrimitivesView */\

}

Chapter 13 - Intro to Primitives 202

...

Now run the application and navigate to the Primitives view to see what we got. If all
worked as expected, you should see something like this:

As you can see, the two ElText elements are rendered with different HTML tags. The first one
as <h2> while the second one as a <p> element. We also specified some additional CSS class
through their addCss property. The first has “text-red-500” which is a red, and the second
one “text-red-700” which is a darker red in the default TailwindCSS colors.

Chapter 13 - Intro to Primitives 203

Chapter 13 Recap

What We Learned

• We talked a bit about about atomic design
• We learned how to structure a directory of primitive elements from which we’ll build
higher-level components that are more complex

Observations

• We only created one primitive called ElText

Based on these observations, there are a few improvements that can be done:

Improvements

• We need to create a few more primitives
• We need to start consuming these primitives in higher-level components

Chapter 14 - More Primitives
Let’s add now a few more primitives. This is just to give you some idea about the direction
to take to build your own foundation library from which you can then derive all your higher
level components.

Button Elements

Let’s start for now by creating a button element for our primitives library, similar to how we
created the ElText in the previous chapter.

Create a file called ElButton.tsx under directory src/components/primitives/buttons.

For the code, use the following:

// file: src/components/primitives/buttons/ElButton.tsx

type ElButtonProps = {

testid?: string

id: string

label: string

disabled?: boolean

addCss?: string

onClicked: Function

}

export function ElButton (props: ElButtonProps) {

const { id, label, onClicked } = props

const testid = props.testid || 'testid-not-set'

const disabled = props.disabled || false

const buttonType = props.buttonType || 'primary'

const addCss = (props.addCss || '').trim()

// a computed property to return a different css class based on the selected value

const cssClass = (): string => {

const result = ['font-bold py-1 px-2 inline-flex justify-center rounded-md borde\

r shadow-sm focus:outline-none focus:ring-2 focus:ring-offset-2']

if (disabled) {

// these are the button CSS classes when disabled

Chapter 14 - More Primitives 205

result.push('bg-gray-500 text-gray-300 opacity-50 cursor-not-allowed')

} else {

// these are the button CSS classes when enabled

result.push('bg-blue-500 text-white hover:bg-blue-400 focus:ring-blue-300')

}

// addCss will have additional CSS classes

// we want to apply from where we consume this component

if (addCss.length > 0) {

result.push(addCss)

}

return result.join(' ').trim()

}

// click handler

const handleClick = () => {

// proceed only if the button is not disabled, otherwise ignore the click

if (!disabled) {

onClicked(id)

}

}

return (

<button type="button"

aria-label={ label }

data-testid={ testid }

disabled={disabled}

className={cssClass()}

onClick={() => handleClick()}>

{ label }

</button>

)

}

Here as you can see we start having a bit more complexity than what we had in ElText.
First, we have an handleClickmethod that calls the onClicked function when the button is
clicked. This way, we can handle the click in the parent component where we will consume
this primitive.

We have an addCss property (like we have in the ElText primitive), and a label property
which is for the text of the button label. We also have a disabled boolean property to render
the button either as enabled or disabled. Then we use this property in two places:

Chapter 14 - More Primitives 206

• Within the handleClick method, we make sure we proceed only if the button is not
disabled

• Within the computed cssClass property, we check if the disabled property value is true
to render a different set of CSS classes (with TailwindCSS here we set the text to gray
with text-gray-300 for example, and a few other changes)

Here is an example on how we’ll consume our ElButton component:

<ElButton id="my-button-1" disabled={false} label="This is a button" onClicked={onBu\

ttonClicked}/>

I hope you start seeing the power of organizing and building primitives this way. Ahead
we’ll soon compose higher-level components out of these primitives and you will see how
easier to manage this will be, plus the code will be much cleaner and encapsulated.

Primitives View - update

Within the primitives view, let’s now consume the ElButton as in the example above so we
can visually prototype the different button states.

Modify the file code within src/views/Primitives.tsx:

// file: src/views/Primitives.view.tsx

import * as React from 'react'

import { ElText } from '@/components/primitives/text/ElText'

import { ElButton } from '@/components/primitives/buttons/ElButton'

// Primitives View:

function PrimitivesView() {

// add this handler:

const onButtonClicked = (args: any) => {

console.log('onButtonClicked', args)

}

// return our render function

return (

<div className="primitives">

<ElText tag="h1" addCss="text-gray-500" text="Primitives"/>

<ElText tag="h2" addCss="text-gray-500" text="ElText examples:"/>

Chapter 14 - More Primitives 207

<div className="p-6 border">

<ElText tag="h2" addCss="text-red-500" text="Here ElText will render a <h2> \

element"/>

<ElText tag="p" addCss="text-red-700" text="Here ElText will render a <p> el\

ement"/>

</div>

{ /* begin: add code block */ }

<ElText tag="h2" addCss="text-gray-500" text="ElButton examples:"/>

<div className="p-6 border">

<ElButton id="my-button-1" disabled={false} label="This is a button" onClick\

ed={onButtonClicked}/>

<ElButton id="my-button-2" disabled={true} label="This is a disabled button"\

addCss="ml-2" onClicked={onButtonClicked}/>

</div>

{ /* end: add code block */ }

</div>

)

}

export default PrimitivesView

Now run the application and navigate to the Primitives view to see what we got. If all
worked as expected, you should see something like this:

As you can see, the buttons are rendered with our specified label text, and the one on the
right is rendering as “disabled” (Note that we also specified a margin-left with the addCss
property using TailwindCSS ml-2 value).

Chapter 14 - More Primitives 208

NOTE: I did not add a handler for @clicked event yet, but you are welcome to add one in the
Primitives view and log a message to the console to test that is working

Toggle/Checkbox Elements

Let’s add one more primitive called ElToggle that will behave like a checkbox but looks like
a toggle.

Create a file called ElToggle.tsx under directory src/components/primitives/toggles.

For the code, use the following:

// file: src/components/primitives/toggles/ElToggle.tsx

type ElToggleProps = {

testid?: string

id: string

checked?: boolean

disabled?: boolean

addCss?: string

onClicked: Function

}

export function ElToggle (props: ElToggleProps) {

const { id, onClicked } = props

const testid = props.testid || 'testid-not-set'

const disabled = props.disabled || false

const checked = props.checked || false

const addCss = (props.addCss || '').trim()

// a computed property to return a different css class based on the selected value

const cssClass = (): string => {

const result = ['relative inline-flex flex-shrink-0 h-6 w-12 border-1 rounded-fu\

ll cursor-pointer transition-colors duration-200 focus:outline-none']

if (checked) {

result.push('bg-green-400')

} else {

result.push('bg-gray-300')

}

if (disabled) {

result.push('opacity-40 cursor-not-allowed')

}

if (addCss.length > 0) {

Chapter 14 - More Primitives 209

result.push(addCss.trim())

}

return result.join(' ').trim()

}

const innerCssClass = (): string => {

const result = ['bg-white shadow pointer-events-none inline-block h-6 w-6 rounde\

d-full transform ring-0 transition duration-200']

if (checked) {

result.push('translate-x-6')

} else {

result.push('translate-x-0')

}

return result.join(' ').trim()

}

// click handler

const handleClick = () => {

// proceed only if the button is not disabled, otherwise ignore the click

if (!disabled) {

onClicked(id)

}

}

return (

<button type="button"

role="checkbox"

data-testid={ testid }

aria-checked={ checked }

disabled={disabled}

className={cssClass()}

onClick={() => handleClick()}>

</button>

)

}

As you can see this looks a lot similar to the ElButton primitive we created earlier.
Here too we have an handleClick method that invokes the onClicked function when the
toggle is clicked. This way, we can handle the click in the parent component where we will
consume this primitive.

We have an addCss property (like we have in the ElButton primitive), and a checked

Chapter 14 - More Primitives 210

property which we’ll use to specify whether the toggle is on or off. We also have a disabled
boolean property to render the toggle as either enabled or disabled. Then we use this
property in two places:

• Within the handleClick method, we make sure we proceed only if the toggle is not
disabled

• Within the computed cssClass property, we check if the disabled property value is true
to render a different set of CSS classes, we do the something similar for the checked
property as well to change the background color of the toggle track

• We have an additional computed property called innerCssClass (this is for the inner
 of the toggle which will render as a white circle). Inside here we check for the
checked property value to determine how much we have to shift the circle horizontally
(through the TailwindCSS translate-x property)

Here is an example on how we’ll consume our ElButton component:

<ElToggle id="my-toggle" checked={somestate.checked} disabled={false} onClicked={onT\

oggleClicked} />

Primitives View - one more update

Within the primitives view, let’s now consume the ElToggle as in the example above so we
can visually prototype the ElToggle.

Modify the file code within src/views/Primitives.tsx so that we add the ElToggle just
created, and some state to better track multiple instance and verify visually that is working.
Here is the full updated code:

// file: src/views/Primitives.view.tsx

import * as React from 'react'

import { ElText } from '@/components/primitives/text/ElText'

import { ElButton } from '@/components/primitives/buttons/ElButton'

import { ElToggle } from '@/components/primitives/toggles/ElToggle'

// Primitives View:

function PrimitivesView() {

// add some state to track the varius instance of ElToggle components

const [state, setState] = React.useState({

toggleItemState: [

{

Chapter 14 - More Primitives 211

id: 'toggle-a',

checked: true

}, {

id: 'toggle-b',

checked: false

}, {

id: 'toggle-c',

checked: false

}

]

})

const onButtonClicked = (id: string) => {

console.log('onButtonClicked', id)

}

// add this event handler to handle when the toggle is clicked

const onToggleClicked = (id: string) => {

console.log(`You clicked the "${id}" toggle`)

const stateItem = state.toggleItemState.find(item => item.id === id)

if (stateItem) {

// toggle the value of the ElToggle that was clicked

stateItem.checked = !stateItem.checked

// update the state

setState({

...state

})

}

}

// return our render function

return (

<div className="primitives">

...

{ /* add this block for the ElToggle instances */ }

<ElText tag="h2" addCss="text-gray-500" text="ElToggle examples:"/>

<div className="p-6 border">

<ElToggle id="toggle-a" checked={state.toggleItemState.find(item => item.id \

=== 'toggle-a')?.checked} disabled={false} onClicked={onToggleClicked} />

<ElToggle id="toggle-b" checked={state.toggleItemState.find(item => item.id \

=== 'toggle-b')?.checked} disabled={true} addCss="ml-2" onClicked={onToggleClicked} \

/>

Chapter 14 - More Primitives 212

<ElToggle id="toggle-c" checked={state.toggleItemState.find(item => item.id \

=== 'toggle-c')?.checked} disabled={false} addCss="ml-2" onClicked={onToggleClicked}\

/>

</div>

</div>

)

}

export default PrimitivesView

Note how here we are using React useState to create a simple local state to track the checked
state of all toggles. Then in the onToggleClicked method we retrieve the state information
for that toggle and invert its current checked value.

Now run the application and navigate to the Primitives view to see what we got. If all worked
as expected, you should see something like this:

You are welcome to keep following this pattern and start creating more complex primitives
like icons, textboxes, dropdowns, lists etc. For now we’ll stop here, and in the next chapter
we’ll start consuming the primitives we have created to compose higher level components.

Optional: You might also want to add a barrel index.ts file under components/primitives and
export all primitives in an organized fashion so that you can simplify your imports like, i.e.
import { ElText, ElButton, ElToggle } from '@/components/primitives':

Chapter 14 - More Primitives 213

// file: src/components/primitives/index.ts

// text

import { ElText } from './text/ElText'

// buttons

import { ElButton } from './buttons/ElButton'

// toggles

import { ElToggle } from './toggles/ElToggle'

export {

// text

ElText,

// buttons

ElButton,

// toggles

ElToggle

}

Chapter 14 - More Primitives 214

Chapter 14 Recap

What We Learned

• We learned how to add additional components to our custom library by adding an
ElButton and ElToggle primitives

• We learned how to render these primitives with different CSS classes conditionally to
other properties like disabled, selected etc

Observations

• We did not consume these primitives in higher level components yet (besides the
Primitive view used to visually prototype them)

Based on these observations, there are a few improvements that can be done:

Improvements

• We need to start consuming these primitives in higher-level coponents
• We need to start consuming the primitives and higher-level components in other
existing component like our initial ItemsList and Item components

Chapter 15 - A Primitive Modal
I wanted to dedicate an additional chapter to creating a Modal component. There are many
ways to create modals in React. There are also plug-ins created by various authors out there.
You are free to choose anything you like of course and skip this chapter completely.

Here, I wanted to introduce a way of creating it a modal component that, in my experience
over the years, has worked out to be one of the best ways in any front-end frameworks,
including Vue.js or Svelte.js.

One of the main difference between a Modal component and a traditional component is that
a Modal must prevent interaction with the rest of the application until the user dismisses the
dialog.

The main use case for a dialog is to prompt the user to confirm an action, which might be
usually destructive, like deleting a record or updating data (thus overwriting existing data,
etc). The Modal will usually present a dialog box with a message and two buttons: one to
confirm the action (primary) and one to cancel the action (secondary).

Our goal is to have a hook called useModal that will return a reference to a shared instance
of a Modal component and we can consume like:

const modal = useModal({ cancelLabel: 'Cancel', confirmLabel: 'Ok' })

...

const result = await modal.prompt('Do you want to delete this record?')

// result will be true if the user has confirmed, otherwise false if they cancelled

We’ll expect the prompt() method to be async and block execution of our code at that line
till a result is returned. Similar to how the native JavaScript prompt works.

We also want to pass an icon to our dialog that will be rendered in the top part of the modal.

Icon: ElIconAlert

Before we start working on the modal code itself, let’s create a preliminary icon icon prim-
itive. Create the file ElIconAlert.tsx under directory src/components/primitives/icons/
and put the following code in it:

Chapter 15 - A Primitive Modal 216

// file: src/components/primitives/icons/ElIcon.tsx

import * as React from 'react'

import { IconProps } from './IconProps'

export function ElIconAlert(props: IconProps) {

const testid = props.testid || 'testid-not-set'

const addCss = (props.addCss || '').trim()

// a computed property the returns the css class value of this component root elem\

ent

const cssClass = (): string => {

const result = ['h-6 w-6 ']

if ((addCss || '').trim().length > 0) {

result.push(addCss)

}

return result.join(' ').trim()

}

return (

<svg data-testid={testid} className={cssClass()} xmlns="http://www.w3.org/2000/s\

vg" fill="none" viewBox="0 0 24 24" stroke="currentColor" aria-hidden="true">

<path strokeLinecap="round" strokeLinejoin="round" strokeWidth="2" d="M12 9v2m\

0 4h.01m-6.938 4h13.856c1.54 0 2.502-1.667 1.732-3L13.732 4c-.77-1.333-2.694-1.333-3\

.464 0L3.34 16c-.77 1.333.192 3 1.732 3z" />

</svg>

)

}

Let’s create a generic interface for all ElIcon primitives we might be creating in addition to
the one above:

// file: src/components/primitives/icons/IconProps.ts

export interface IconProps {

testid?: string

addCss?: string

}

Create also a barrel indexts file within the icons directory with this:

Chapter 15 - A Primitive Modal 217

// file: src/components/primitives/icons/index.ts

export * from './IconProps'

export * from './ElIconAlert'

We’ll be dynamically adding the icon as one of the possible properties passed to our modal
component.

Interface ModalProps

Within the directory src/components/primitives/modals add a new file called Modal-
Props.interface.ts with the following code:

// file: src/components/primitives/modals/ModalProps.interface.ts

import { FunctionComponent, ComponentClass } from 'react'

/**

* @name ModalProps

* @desrciption Interface that represents the public properties of the Modal compone\

nt

*/

export interface ModalProps {

testid?: string

cancelLabel: string

confirmLabel: string

title?: string

longDesc?: string // optional

primaryButtonType?: string // optional, defaults to 'primary'

icon?: string | FunctionComponent<{addCss: string }> | ComponentClass<{ addCss: st\

ring }, any>

iconAddCss?: string

}

File ElModal.ts (note: not .tsx)

Within the same directory, create a file called ElModal.ts (note: not .tsx) with the following
code:

Chapter 15 - A Primitive Modal 218

// file: src/components/primitives/modals/ElModal.ts

import * as React from 'react'

import { ModalProps } from './ModalProps.interface'

import { ElButton } from '../buttons/ElButton'

const getDefaultState = () => {

return {

testid: 'testid-not-set',

cancelLabel: 'Cancel',

confirmLabel: 'Confirm?',

title: 'Do you confirm this action?',

longDesc: undefined, // make sure you return undefined for optional props

primaryButtonType: 'primary',

icon: undefined,

iconAddCss: undefined,

isOpen: false

}

}

interface ModalState extends ModalProps {

isOpen: boolean

}

export class ElModal extends React.Component<ModalProps, ModalState> {

// a variable that will store a reference to a "resolve" from a Promise we created\

in the prompt() method

private privateResolve!: (value: boolean | PromiseLike<boolean>) => void

constructor(props: ModalProps) {

super(props)

// Set the internal state

this.state = {

...getDefaultState(),

...props

}

}

// public updateProps() method used to set the private props from our useModal hook

public updateProps = (updatedProps: ModalProps) => {

this.state = {

...getDefaultState(),

Chapter 15 - A Primitive Modal 219

...updatedProps

}

}

private open = () => {

this.setState({ isOpen: true })

}

private close = () => {

this.setState({ isOpen: false })

}

// handle click from Cancel button

private onCancelClick = () => {

this.close()

this.privateResolve(false)

}

// handle click from Confirm button

private onConfirmClick = () => {

this.close()

this.privateResolve(true)

}

private cssClass = () => {

const result = ['fixed z-10 inset-0 overflow-y-auto transform transition-all']

// might add additional css based on conditions...

return result.join(' ').trim()

}

// public prompt() method:

public prompt = async (title: string) => {

// update internal props

this.setState({ ...this.state, title: title })

// open the modal

this.open()

// return a new promise that will be waited by the consuming code

return new Promise<boolean>((resolve) => {

// here we store a reference to the resolve returned with the Promise to the c\

onsuming code

this.privateResolve = resolve

})

}

Chapter 15 - A Primitive Modal 220

// renders the Icon section

private renderIconSection = () => {

if (!this.state.icon) {

return null

}

return React.createElement('div', {

'key': 'modal-icon-section',

'className': 'mx-auto flex items-center justify-center h-12 w-12 rounded-full \

bg-green-100'

}, [

// child element with the icon

React.createElement(this.state.icon, {

'key': 'modal-icon',

'addCss': this.state.iconAddCss || ''

})

])

}

private renderDescription = () => {

if ((this.state.longDesc || '').trim().length < 1) {

return

}

return React.createElement('div', {

'key': 'modal-long-desc-section',

'className': 'mt-2'

}, [

// description text as <p> element:

React.createElement('p', {

'key': 'modal-long-desc-text',

'className': 'text-sm text-gray-500 text-center'

}, this.state.longDesc)

])

}

// renders the text section with title and longDesc

private renderTextSection = () => {

return React.createElement('div', {

'key': 'modal-text-section',

'className': 'mt-3 text-center sm:mt-5'

}, [

// render title text as <h3> element:

Chapter 15 - A Primitive Modal 221

React.createElement('h3', {

'key': 'modal-title',

'className': 'text-lg leading-6 font-medium'

}, this.state.title),

// render description section

this.renderDescription()

])

}

// renders the buttons section

private renderButtonSection = () => {

return React.createElement('div', {

'key': 'modal-panel',

'className': 'mt-5 sm:mt-6 grid gap-3 sm:grid-cols-2 sm:grid-flow-row-dense'

}, [

// cancel button:

React.createElement(ElButton, {

key: 'btn-modal-cancel',

id: 'btn-modal-cancel',

buttonType: 'secondary',

disabled: false,

label: this.state.cancelLabel,

addCss: 'ml-2',

onClicked: this.onCancelClick

}),

// confirm button:

React.createElement(ElButton, {

key: 'btn-modal-confirm',

id: 'btn-modal-confirm',

buttonType: this.state.primaryButtonType,

disabled: false,

label: this.state.confirmLabel,

addCss: 'ml-2',

onClicked: this.onConfirmClick

})

])

}

private renderModalPanel = () => {

return React.createElement('div', {

'key': 'modal-panel',

'className': 'relative inline-block align-bottom bg-white rounded-lg px-4 pt-5\

pb-4 text-left overflow-hidden shadow-xl sm:my-8 sm:align-middle sm:max-w-lg sm:w-f\

Chapter 15 - A Primitive Modal 222

ull sm:p-6',

}, [

this.renderIconSection(),

this.renderTextSection(),

this.renderButtonSection()

])

}

private renderInnerDiv = () => {

return React.createElement('div', {

'key': 'inner-div',

'className': 'flex items-end justify-center min-h-screen pt-4 px-4 pb-20 text-\

center sm:block sm:p-0'

}, [

// render background overlay:

React.createElement('div', {

'key': 'background-overlay',

'className': 'fixed inset-0 bg-gray-400 bg-opacity-75',

'aria-hidden': true

}),

// render trick:

React.createElement('div', {

'key': 'trick-div',

'className': 'hidden sm:inline-block sm:align-middle sm:h-screen',

'aria-hidden': true

}, '\u200B'), // this renders ​ to allow centering the dialog

// render modal panel

this.renderModalPanel()

])

}

render() {

if (!this.state.isOpen) {

return null

}

// render outer div

return React.createElement('div', {

'data-testid': this.state.testid,

'className': this.cssClass(),

'aria-labelledby': 'modal-title',

'role': 'dialog',

'aria-modal': true

}, this.renderInnerDiv())

Chapter 15 - A Primitive Modal 223

}

}

Note: this component file extension is just .ts and does not use JSX, but rather React’s
createElement⁴² functionality that allow us to create elements programmatically. This will
enable us to more easily consume the ElModal without explicitely adding it to the render
function of the parent component taht is consuming it.

The core concept here is to return a Promise from the prompt() method that will be awaited
in the consuming code till the user clicks on either Cancel or Confirm. The promise will
be resolved when the user clicks on Cancel or Confirm and the result will be either false
(cancelled) or true (confirmed).

In additional to that, we will initialize the props with custom text labels for the Cancel and
Confirm buttons. We can also initialize the title, or optionally set the title when we call
prompt().

Now, for the html part, we’ll just render the content only if the isOpen flag is true:

...

render() {

if (!this.state.isOpen) {

return null

}

// render outer div

return React.createElement('div', {

'data-testid': this.state.testid,

'className': this.cssClass(),

'aria-labelledby': 'modal-title',

'role': 'dialog',

'aria-modal': true

}, this.renderInnerDiv())

}

...

Note: I made some enhancements to the ElButton to render with different css based on a type
classification like primary/secondary/danger etc. Please see the public GitHub repository for
the additional changes

⁴²https://reactjs.org/docs/react-api.html

https://reactjs.org/docs/react-api.html

Chapter 15 - A Primitive Modal 224

File useModal.ts

Create a file called useModal.ts under the same directory (src/components/primitives/-
modals/) with the following code:

// file: src/components/primitives/modals/useModal.ts

import * as React from 'react'

import ReactDOM from 'react-dom'

import { ElModal } from './ElModal'

import { ModalProps } from './ModalProps.interface'

let instance!: any //ElModal

const domTargetId = 'modal'

/**

* @name useModal

* @param props The modal props

* @returns the Modal component instance

*/

export const useModal = (props: ModalProps) => {

if (!instance) {

// get the modal target dom element by id

let domTarget = document.getElementById(domTargetId)

// if not existing yet, create it with vanilla JS

if (!domTarget) {

domTarget = document.createElement('div')

domTarget.setAttribute('id', domTargetId)

document.body.appendChild(domTarget)

}

// create the ElModal instance

const reactModal = React.createElement(ElModal, props, null)

// render instance and store reference once

instance = ReactDOM.render(reactModal, domTarget)

}

// update the Modal props

instance.updateProps(props)

// return the instance

return instance

Chapter 15 - A Primitive Modal 225

}

The code here just makes sure we create only one instance of the ElModal component
(singleton pattern) and also only create a <div> element as the target for the modal. Then
create the modal instance programmatically, invoke its updateProps method to update its
properties through the interal state, and return the instance to the consuming code.

An example on how we will consume our ElModal through the useModal hook is this:

// example:

const modal = useModal({

cancelLabel: 'Cancel',

confirmLabel: 'Confirm',

longDesc: 'This has also a longer description and an icon',

primaryButtonType: 'danger',

icon: ElIconAlert, // here we can use an optional icon

iconAddCss: 'text-red-600' // additional css classes for the icon

})

Let’s now modify the Primitives.view.tsx so we can test a couple of different scenarios, for
two different modals.

Updates to Primitives.view.tsx

Now let’s consume our useModal hook. Open the Primitives.view.tsx file and make the
following changes:

// file: src/views/Primitives.view.tsx

...

// import a reference to ElIconAlert

import { ElIconAlert } from '@/components/primitives/icons/'

// import a reference to useModal

import { useModal } from '@/components/primitives/modals/useModal'

...

const onButtonClicked = (id: string) => {

console.log('onButtonClicked', id)

}

Chapter 15 - A Primitive Modal 226

// add this new handler for the two new Open Modal X buttons we'll add shortly

const onOpenDialogClicked = async (id: string) => {

console.log('PrimitivesView: onOpeanDialogClicked', id)

// handle the new buttons with id "open-modal-x" (we'll be adding shortly)

if (id === 'open-modal-1') {

// here we invoke our useModal with the custom labels for the buttons

const modal = useModal({

cancelLabel: 'Cancel',

confirmLabel: 'Ok',

primaryButtonType: 'danger'

})

// then we invoke modal.prompt() and await it

const result = await modal.prompt('Do you want to delete this record?')

// the result will be true if the user click on COnfirm, or false if click on \

Cancel

console.log('----- PrimitivesView: onButtonClicked: modal-1 prompt result', re\

sult)

} else if (id === 'open-modal-2') {

// here we invoke our useModal with the custom labels for the buttons + icon a\

nd iconAddCss props

const modal = useModal({

cancelLabel: 'Cancel',

confirmLabel: 'Confirm?',

longDesc: 'This has also a longer description and an icon',

icon: ElIconAlert, // here we use the icon component created earlier

iconAddCss: 'text-red-600'

})

// then we invoke modal.prompt() and await it

const result = await modal.prompt('Do you confirm this action?')

// the result will be true if the user click on COnfirm, or false if click on \

Cancel

console.log('----- PrimitivesView: onButtonClicked: modal-2 prompt result', re\

sult)

}

}

...

<div class="p-6 border">

<ElButton id="my-button-1" disabled={false} label="This is a button" onClicked={\

onButtonClicked} />

<ElButton id="my-button-2" disabled={true} label="This is a disabled button" add\

Chapter 15 - A Primitive Modal 227

Css="ml-2" onClicked={onButtonClicked} />

<!-- add these two buttons: -->

<ElButton

id="open-modal-1"

disabled={false}

label="Open modal 1"

addCss="ml-2"

onClicked={onOpenDialogClicked}

/>

<ElButton

id="open-modal-2"

disabled={false}

label="Open modal 2"

addCss="ml-2"

onClicked={onOpenDialogClicked}

/>

...

Browser

The app will now render our 3rd button:

Chapter 15 - A Primitive Modal 228

After clicking on the “Open modal 1” button, you will see a modal rendered without an
icon:

The Modal will block the execution at the await line where we call modal.prompt(). After
clicking Ok, you should see it logging “result true” in the console:

If instead you click on Cancel, it will log “result false”:

If you click on “Open modal 2” button, you will see a modal rendered with the alert icon:

Chapter 15 - A Primitive Modal 229

Note: here the Confirm button type is “primary”, which is teh default for Modal property
“primaryButtonType” when we do not explicitely pass a value for it.

Here too click on Cancel/Confirm and make sure that the console logs “modal-2 result
true/false” as well:

Chapter 15 - A Primitive Modal 230

Chapter 15 Recap

What We Learned

• We learned how to build a Modal component that leverages some of our previous
primitives like ElButton and uses a technique with Promises to block the execution
when we invoke modal.prompt() from the consuming code and return true or false once
the Promise is resolved by clicking on Cancel or Confirm

• We also learned how to use React.createElement⁴³ to programmatically render our
component, instead of using JSX (in this case to more easily consume the modal through
our useModal hook, without having to declaratively add the <ElModal> to our parent
component where we consume it)

Observations

• We did not add unit tests against the Modal component

Based on these observations, there are a few improvements that can be done:

Improvements

• You could write unit tests against the Modal component to verify it renders and behaves
as expected

⁴³https://reactjs.org/docs/react-api.html

https://reactjs.org/docs/react-api.html

Chapter 16 - Higher-level
components
Let’s now consume the primitives we created so far within the Item component.
As we do this, we’ll make any additional adjustment we discover necessary.
Finally, if needed, we might be creating additional primitives that we do not have yet (i.e. a
list)

Item Component - updates

Let’s start by opening the file src/components/items/children/Item.component.tsx and
observe the current HTML template:

// file: src/components/items/children/Item.component.tsx

...

render(): React.ReactNode {

const { model, testid } = this.props

return (

<li data-testid={testid || 'not-set'} className={this.cssClass} onClick={() =>\

this.handleItemClick(model)}>

<div className="selected-indicator">*</div>

<div className="name">{model.name}</div>

)

}

...

There are two elements that can be replaced with our primitives. We could use an ElToggle
for the selected indicator, and an ElText for the name.

First, let’s udpate our imports and also add a components block to the component definition
that includes ElButton and ElText:

Chapter 16 - Higher-level components 232

// file: src/components/items/children/Item.component.tsx

import * as React from 'react'

// import reference to our interface

import { ItemInterface } from '@/models/items/Item.interface'

// add the following two lines:

import { ElText } from '@/components/primitives/text/ElText'

import { ElToggle } from '@/components/primitives/toggles/ElToggle'

...

Then start updating the HTML template as follows:

// file: src/components/items/children/Item.component.tsx

...

render(): React.ReactNode {

const { model, testid } = this.props

return (

<li data-testid={testid || 'not-set'} className={this.cssClass} onClick={() =>\

this.handleItemClick(model)}>

<div className="selected-indicator">*</div>

<!-- remove this line: -->

<div className="name">{model.name}</div>

<!-- add this line: -->

<ElText testid={`${testid}-text`} tag="div" text={model.name} />

)

}

...

Run the application and make sure it still renders the list of items without errors.

Now let’s finish updating the HTML template by replacing the selected indicator with our
ElToggle:

Chapter 16 - Higher-level components 233

// file: src/components/items/children/Item.component.tsx

...

render(): React.ReactNode {

const { model, testid } = this.props

return (

<li data-testid={testid || 'not-set'} className={this.cssClass} onClick={() =>\

this.handleItemClick(model)}>

<!-- remove this line: -->

<div className="selected-indicator">*</div>

<!-- add this line: -->

<ElToggle testid={`${testid}-toggle`} checked={model.selected} />

<ElText testid={`${testid}-text`} tag="div" text={model.name} />

)

}

...

NOTE: we do not have to handle the onClicked event on the ElToggle here as we are already
handling a onClick event on the entire element.

Again, refresh the browser and make sure everything still renders without errors.

It should look currently like this (the layout will be a bit off, so we’ll need to tweak the Item
component CSS and start using TailwindCSS here as well):

Let’s move the toggle to the right side:

Chapter 16 - Higher-level components 234

// file: src/components/items/children/Item.component.tsx

...

<li data-testid={testid || 'not-set'} className={this.cssClass} onClick={() =>\

this.handleItemClick(model)}>

<ElText testid={`${testid}-text`} tag="div" text={model.name} />

<ElToggle testid={`${testid}-toggle`} checked={model.selected} />

...

Let’s add a new property called isLast that we’ll use to better control the border style:

// file: src/components/items/children/Item.component.tsx

...

export class ItemComponent extends React.Component<{

testid?: string

model: ItemInterface

isLast?: boolean // <-- add this line

onItemSelect: (item: ItemInterface) => void

}>

...

Modify the logic within the computed cssClass property:

...

get cssClass() {

// begin: remove code block

let css = 'item'

if (this.props.model?.selected) {

css += ' selected'

}

// end: remove code block

// begin: add code block

let css = 'item flex items-center justify-between cursor-pointer border border-l\

-4 list-none rounded-sm px-3 py-3'

if (this.props.model?.selected) {

css += ' font-bold bg-pink-200 hover:bg-pink-100 selected'

Chapter 16 - Higher-level components 235

} else {

css += ' text-gray-500 hover:bg-gray-100'

}

if (!this.props.isLast) {

css += ' border-b-0'

}

// end: add code block

return css.trim()

}

...

Now, before we proceed, lets remove out all the custom SCSS we wrote at the beginning of
this book for the ItemsList and Item component by removing the ul and li css class blocks
from the file.

/* file: src/tailwind/other.css */

/* start: remove css block */

ul {

list-style-type: none;

margin-block-start: 0;

margin-block-end: 0;

margin-inline-start: 0px;

margin-inline-end: 0px;

padding-inline-start: 0px;

}

li.item {

padding: 5px;

outline: solid 1px #eee;

display: flex;

align-items: center;

height: 30px;

cursor: pointer;

transition: background-color 0.3s ease;

}

li.item .name {

margin-left: 6px;

}

li.item .selected-indicator {

font-size: 2em;

line-height: 0.5em;

Chapter 16 - Higher-level components 236

margin: 10px 8px 0 8px;

color: lightgray;

}

li.item.selected .selected-indicator {

color: skyblue;

}

li.item:hover {

background-color: #eee;

}

/* end: remove css block*/

... // keep the css classes for the loader: .loader, etc

ItemsList Component - updates

We need to do a small update to the ItemsList.component.tsx code as well to pass a value for
the new isLast property of the Item component. We are going to use the index property for
this and comparing it against the total number of items. Modify the HTML template as this:

// file: src/components/items/ItemsList.component.tsx

...

{items.map((item, index) => {

return (

<ItemComponent

key={index}

testid={`items.list.item.${item.id}`}

model={item}

<!-- add the following line: -->

isLast={index === items.length - 1}

onItemSelect={() => this.handleItemClick(item)}

></ItemComponent>

)

})}

...

NOTE: You will have to update also the unit tests accordingly as they would be now failing.
Please see the GitHub repo for the updated unit tests if you need help.

Chapter 16 - Higher-level components 237

Refresh the browser, and if everything is correct it should render like this:

Summary

Let’s reflect a little bit on what we just did. We replaced two HTML elements within the
Item.component.tsxwith our new primitives. By doing this, we effectively “composed” the
higher-level component “Item” from those primitives. I hope you start seeing the pattern
here. Even though this was a very simple example, the sky is really the limit on how you
can better structure your primitives and copose more complex primitives out of those, and
ultimately the higher-level components that consume them.

Chapter 16 - Higher-level components 238

Chapter 16 Recap

What We Learned

• We started to learn how to compose higher-level components by putting together the
primitives we created in the previous chapters.

Observations

• We did not leverage localization and internationalization in our primitives.
• We did not write unit tests against our primitives

Based on these observations, there are a few improvements that can be done:

Improvements

• You can add localization and internationalization support through the i18n plugin as
shown in other chapters

• You can write unit tests against the primitives to further create a solid foundation for
your primitives library

Chapter 17 - Creating Component
Libraries
In this chapter we’ll leverage Vite to create a component library that can be shared across
different projects. Once you know how to create a component library, you could choose to
publish it as an NPM package (either public or private) for more easily sharing it between
different projects, or across departments in your organization.

When creating a component library, there are different approaches and architecture decision
to be made, depending on different factors. One of the main thing to keep in mind is the
dependencies that your library will have (i.e. web framework, state, css frameworks, other
frameworks, etc).

In this chapter we’ll worry about only creating a library with a couple of simple components,
we’ll learn how to build it and package it and how to consume it into our sample project.

In the next chapter we’ll build a more complex component that might require additional
things like state etc.

Create my-component-library

To setup the library project, use the terminal and execute the following command (make sure
you are at the same level of your my-react-project folder):

npm init vite@latest

The create-vite wizard will start and will ask you the name of the project. The default is
vite-project, so change this to my-component-library and hit enter:

? Project name: › my-component-library

The second step will ask to select a framework. Use the keyboard arrows to scroll down the
list and stop at react, then hit enter:

Chapter 17 - Creating Component Libraries 240

? Select a framework: › - Use arrow-keys. Return to submit.

vanilla

vue

� react

preact

lit

svelte

The third step will asking which “variant” you want o use. Scroll down to react-ts (this is
for the version that uses TypeScript) and hit enter:

? Select a variant: › - Use arrow-keys. Return to submit.

react

� react-ts

This will create a folder calledmy-component-librarywhich is also the name of our project.
At the end it should display a message similar to this:

Scaffolding project in /Volumes/projects/my-component-library...

Done. Now run:

cd my-component-library

npm install

npm run dev

The first commandwill navigate to the current sub-directory calledmy-component-library,
the second one will install all the npm dependencies, and we do not need to run the third
one in this case.

Now let’s clean up a few things. We need to remove a few files that we are not going to need
since this is a library, and we’ll also need to update the project configuration so that it can
correctly build and bundle our library.

Remove obsolete files

Remove the following files as they are not needed in a component library:

• index.html
• src/App.tsx
• src/index.css, src/app.css (or style.css)

Chapter 17 - Creating Component Libraries 241

• src/main.tsx
• src/assets/logo.svg (or react.svg)

Remove also the public directory and its content

Add main entry index.ts file

Add new new file under src/ called index.ts that will just export everything from the
components/ sub-directory

// file: src/index.ts

export * from './components'

Update vite.config.ts

Update the Vite’s config file as follows:

// file: vite.config.ts

import { defineConfig } from 'vite'

import react from '@vitejs/plugin-react'

import path from 'path'

// https://vitejs.dev/config/

export default defineConfig({

plugins: [react()],

envDir: './src/',

resolve: {

alias: {

'@': path.resolve(__dirname, 'src/')

},

},

build: {

lib: {

entry: path.resolve(__dirname, 'src/index.ts'),

name: "MyComponentLib",

fileName: (format) => `my-component-lib.${format}.js`,

},

rollupOptions: {

// React should not be bundled with the cmoponent library

Chapter 17 - Creating Component Libraries 242

// tell vite that this is an external dependency

external: ['react'],

output: {

// To expose global variables for use in the UMD builds

// for external dependencies

globals: {

vue: 'React'

}

}

}

}

})

A few things to notice in the config changes above:

• we are telling Vite that the environment directory for the source code is ./src/
• we added a “resolve” block so we can use the @ shortcut to point to src/ and avoid
imports with relative paths (i.e. ../../../)

• we added a “build” block, and this is themost important change for setting up the project
as a library. Here:
– we tell Vite which is the main entry file for our library (src/index.ts),
– set the name of our library to MyComponentLib
– set the name of the main built files to be my-component-lib.${format}.js (where
format will be set dynamically to es or umd)

– set the rollupOptions so that React will not be bundled with our library (we’ll
assume this library is consumed in a project that already uses React thus we do
not want to include it multiple times)

Finally, let’s proceed updating the package.json commands so we can correctly build our
library.

Update package.json commands

Update the package.json file. First, make sure we update the following scripts commands so
that we can correctly build both JavaScript and the TypeScript types:

Chapter 17 - Creating Component Libraries 243

// file: src/package.json

{

"name": "my-component-library",

"version": "0.1.2",

"scripts": {

"clean": "rm -rf ./dist; rm -rf my-component-library-0.1.2.tgz; rm -rf ../my-com\

ponent-library-0.1.2.tgz",

"build-types": "node svelte2tsx.index",

"build-lib": "vite build",

"build": "npm run clean && npm run build-lib && npm run build-types",

"pack": "npm pack; mv my-component-library-0.1.2.tgz ../my-component-library-0.1\

.2.tgz",

"all": "npm run build && npm run pack",

"preversion": "npm run clean",

"version": "npm run build",

"postversion": "npm run pack",

"version-patch": "npm version patch -m \"Patch version\""

}

...

The most important thing to notice here is that we have a master command called “all” that
will run the build and then the pack command. The pack command is optional and will create
a single compressed (tgz) file with all our library code, then copy this up to one directory so
we could more easily consume it from our my-vue-project.

The sub-commands run buy the build command are:

• clean: this will just remove the dist/ folder and the previously packed tgx file
• build-types: this will build the TypeScript types declarations
• build-lib: this will build our React library code
• build: this will run the clean + build-lib + build-types sub-commands

We need to also make changes to package.json so that it can correctly build the project as a
library. We need to add these sectoins/properties:

• files: this tells which directory is the destinatio for the built JavaScript files (dist in our
case)

• types: this indicates the entry file for the TypeScript definitions
• main: this indicates the main entry file for our library (umd module)
• module: this indicates the main entry file for our library (es module)
• exports: this section indicates what our package will export

Chapter 17 - Creating Component Libraries 244

// file: src/package.json

...

"files": [

"dist"

],

"types": "./dist/src/index.d.ts",

"main": "./dist/my-component-lib.umd.js",

"module": "./dist/my-component-lib.es.js",

"exports": {

".": {

"import": [

"./dist/my-component-lib.es.js"

],

"require": "./dist/my-component-lib.umd.js"

},

"./package.json": "./package.json"

},

...

Now let’s add a couple of simple components to our library.

Create Counter.tsx component

Create a new file at src/components/counter/Counter.tsx with the following code:

// file: src/components/counter/Counter.tsx

import * as React from 'react'

export function Counter() {

let [count, setCount] = React.useState(0)

const increment = () => {

setCount(count + 1)

}

return (

<button onClick={increment}>

count is {count}

</button>

Chapter 17 - Creating Component Libraries 245

)

}

Create SampleComp.tsx component

Create a new file at src/components/sample-component/SampleComp.tsx with the following
code

// file: src/components/counter/SampleComp.tsx

import * as React from 'react'

type Props = {

testid?: string

text?: string

}

export function SampleComp(props: Props) {

const testid = props.testid || 'not-set'

const text = props.text || 'not-set'

// a computed property to return the css class

const cssClass = () => {

return `p-2 border border-green-500`

}

return (

<div data-testid={testid} className={cssClass()}>

{ text }

</div>

)

}

Add components/index.ts barrel file

Under components/, add a barrel index.ts file and just export all our components in an
organized way:

Chapter 17 - Creating Component Libraries 246

// file: src/components/index.ts

import Counter from './counter/Counter.tsx'

import SampleComp from './sample-component/SampleComp.tsx'

export {

Counter,

SampleComp

}

Build our library

Now finally run the “build” command (or you could run the “all” command) to compile and
build our library:

npm run build

Consuming our library

To consume our library locally, let’s switch now to our my-react-project and install a
reference to our library by running this command:

npm install -D file:../my-component-library

Then open the file App.tsx and add the following imports at the top:

// file: src/App.tsx

import { Counter, SampleComp } from 'my-component-library'

...

In the render section, let’s consume our library components:

Chapter 17 - Creating Component Libraries 247

// file: src/App.svelte

...

return (

<Provider store={rootStore}>

<div>

<SampleComp text="This is a sample component from my-component-library" />

<Counter />

</div>

...

Save and run the application. If everything worked and there are no errors, you should see
something like this in the browser (here shown after I clicked two times on the count button):

Chapter 17 - Creating Component Libraries 248

Chapter 17 Recap

What We Learned

• We create a new project calledmy-component-library that will export a couple of simple
components

• We then consumed these components in our my-react-project

Observations

• We did not write unit tests against our components within my-component-library
• We did not publish our component library to NPM.
• We did not write more complex components that leverage other dependencies like
application state or other libraries

Based on these observations, there are a few more things that can be done:

Improvements

• You can add unit tests within the my-component-library and test your components
• You could keep adding more complex components to your library that use application
state or other dependencies

Chapter 18 - Creating a JavaScript
library
Similarly to what we discussed in Chapter 17, we can create a library that we can publish
as an NPM package that does not necessarily contains React components. This might be a
collection of helpers, or a plugin, etc.

As you start building more complex application that will grow to a large code base, it starts
to make sense to be more strict about following principles like Single Responsibility and
Separation of Concerns⁴⁴.

Separating code that can be shared across different applications/projects into its own NPM
package has many advantages, and if you publish it as an open-source project with a
permissive license, other developers might start using it as well, providing more feedback
and reporting or even helping with bugs. This might result in your package growing even
stronger as time goes by.

There are a few downsides as well, like having to maintain a separate code base, having to
publish a new version whenever you add new functionality or fix a bug.

Unless you are working only on one small application, and/or the code within your NPM
package has not utility in other applications (or does not offer much benefits to other
developers), usually the advantages will make it worth it to have it as an NPM package.

Create my-js-helpers

We’ll create a new project called my-js-helpers by following similar to those as at the
beginning of Chapter 17 for my-component-library (just make sure you use the name my-js-
helpers this time).

Please note, this chapter will just illustrate how to create a simple NPM package that
exposes some simple JavaScript helpers, thus the name my-js-helpers. But, of course, you
are welcome to choose whatever name you wish for your NPM package.

One main difference after you run npm init vite@latest and set my-js-helpers as the name,
is to choose vanilla for the framework selection:

⁴⁴https://en.wikipedia.org/wiki/Separation_of_concerns

https://en.wikipedia.org/wiki/Separation_of_concerns

Chapter 18 - Creating a JavaScript library 250

? Select a framework: › - Use arrow-keys. Return to submit.

� vanilla

vue

react

preact

lit

svelte

And then vanilla-ts for the framework “variant”:

? Select a variant: › - Use arrow-keys. Return to submit.

vanilla

� vanilla-ts

After you are done creating the project and have run “npm install”, let’s continue by
removing unecessary files (similarly to Chapter 17)

Remove obsolete files

Remove the following files as they are not needed in a NPM package:

• favicon.svg
• typescript.svg
• app.css (or style.css)
• index.html
• main.ts
• counter.ts

Remove also the public directory and all its contents.

Add main entry index.ts file

Add new new file under src/ called index.ts that export all the source code we want to
exposes from our NPM package. In our case, we’ll export everything from the sub-directory
called helpers (which will create in a bit):

Chapter 18 - Creating a JavaScript library 251

// file: src/index.ts

export * from './helpers'

Update vite.config.ts

Update the Vite’s config file similarly to what we did in Chapter 17 (just make sure to replace
my-component-library with my-js-library). Here is what it should look like:

// file: vite.config.ts

/// <reference types="vitest" />

/// <reference types="vite/client" />

import { defineConfig } from 'vite'

import path from 'path'

// https://vitejs.dev/config/

export default defineConfig({

plugins: [

],

envDir: './src/',

resolve: {

alias: {

'@': path.resolve(__dirname, 'src/')

},

},

test: {

globals: true,

environment: 'jsdom',

exclude: [

'node_modules'

]

},

build: {

lib: {

entry: path.resolve(__dirname, 'src/index.ts'),

name: 'MyJsHelpers',

fileName: (format) => `my-js-helpers.${format}.js`,

},

rollupOptions: {

external: [],

output: {

Chapter 18 - Creating a JavaScript library 252

// Provide global variables to use in the UMD build

// Add external deps here

globals: {

},

},

},

}

})

Update package.json commands

Update the package.json file. First, make sure we update the following scripts commands so
that we can correctly build both JavaScript and the TypeScript types:

// file: src/package.json

{

"name": "my-component-library",

"version": "0.1.2",

"scripts": {

"clean": "rm -rf ./dist; rm -rf my-js-helpers-0.1.2.tgz; rm -rf ../my-js-helpers\

-0.1.2.tgz",

"build-types": "tsc --declaration --emitDeclarationOnly --outDir ./dist",

"build-lib": "vite build",

"build": "npm run clean && npm run build-lib && npm run build-types",

"pack": "npm pack; mv my-js-helpers-0.1.2.tgz ../my-js-helpers-0.1.2.tgz",

"all": "npm run build && npm run pack",

"preversion": "npm run clean",

"version": "npm run build",

"postversion": "npm run pack",

"version-patch": "npm version patch -m \"Patch version\""

}

...

And similarly to Chapter 17, lets add additional configuration so that the project will build
as a library:

Chapter 18 - Creating a JavaScript library 253

// file: src/package.json

...

"files": [

"dist"

],

"types": "./dist/src/index.d.ts",

"main": "./dist/my-js-helpers.umd.js",

"module": "./dist/my-js-helpers.es.js",

"exports": {

".": {

"import": [

"./dist/my-js-helpers.es.js"

],

"require": "./dist/my-js-helpers.umd.js"

},

"./package.json": "./package.json"

},

...

Now let’s add a some JavaScript helpers to our NPM package.

random-id

Create the directory src\helpers\random-id and inside here add a file called random-id.ts

(the full location path will be src/helpers/random-id/random-id.ts) with the following code:

// file: src/helpers/random-id/random-id.ts

export const randomid = (): string => {

let result: string = ''

if (typeof window !== 'undefined' && window.crypto && window.crypto.getRandomValue\

s) {

const array: Uint32Array = new Uint32Array(1)

window.crypto.getRandomValues(array)

result = array[0].toString()

} else {

// throw error

// throw Error('Browser does not support window.crypto.getRandomValues')

// if node, we could use crypto to do the same thing

Chapter 18 - Creating a JavaScript library 254

result = require('crypto').randomBytes(5).toString('hex')

}

// pad the result with zero to make sure is always the same length (11 chars in ou\

r case)

if (result.length < 11) {

result = result.padStart(11, '0')

}

return result

}

Note: this is a very simple function that leverage the web browser native crypto api to generate
a rabdin string. If the browser does not support crypto (or maybe you want to consume this
package in a node.js app), you could either throw an error (commented out in the above code)
or leverage node.js crypto library. We also make syre the string is always 11 chars long, and
if not we leverage the string padStart method to pad the start of the string with zeros

Add also a barrel index.ts file to just export the code from random-id/random-id.ts.

random-id unit tests

Create the directory src\tests\random-id and here add a file called randomid.test.ts with
the following:

// file: src/tests/random-id/randomid.test.ts

import { randomid } from '../../helpers'

describe('id', () => {

it('should return value with expected length', () => {

const result = randomid()

expect(result.length).toEqual(11)

})

it('should return expected value', () => {

// testing 10,000 different ids

const attempts = 10000

const results = []

for (let i = 0; i < attempts; i++) {

const value = randomid()

Chapter 18 - Creating a JavaScript library 255

results.push(value)

}

const distinctResults = new Set([...results])

expect(results.length).toEqual(distinctResults.size)

})

})

Here we have a unit test that ensure the result from randomid() is of the expected length,
which is 11 chars. We also have a unit test that invokes randomid() ten thousand times and
then checks that the distinct results count matches the results count. If these do not match
it means that randomid is in some cases returning a non-unique id and thus fail.

Note: we leverage the JavaScript Set to get rid of potential duplicates.⁴⁵

Before we try to run our tests, let’s install vitest and additional unit-test depedencies we
need with npm install -D vitest @types/jest jsdom and then add the following 2 new
commands to the package.json scripts section:

// file: package.json

{

"name": "@largescaleapps/my-js-helpers",

"version": "0.1.2",

"type": "module",

"scripts": {

...

"test": "vitest run",

"test-watch": "vitest watch",

...

Now finally execute the command npm run test and it should output something like this:

⁴⁵https://dev.to/soyleninjs/3-ways-to-remove-duplicates-in-an-array-in-javascript-259o

https://dev.to/soyleninjs/3-ways-to-remove-duplicates-in-an-array-in-javascript-259o

Chapter 18 - Creating a JavaScript library 256

iMacRetina:my-js-helpers damiano$ npm run test

> @largescaleapps/my-js-helpers@0.1.2 test

> vitest run

RUN v0.19.0 /Volumes/code/large-scale-apps-my-react-project/my-js-helpers

✓ src/tests/random-id/randomid.test.ts (2)

Test Files 1 passed (1)

Tests 2 passed (2)

Time 3.29s (in thread 65ms, 5063.52%)

Build the library

To build the library, just run the command npm run all (note this will also pack the library
into a compressed file with .tgz extension and we could later consume from there or just by
referencing the local directory)

Consuming the my-js-helpers library

Now we have to open the my-react-project and consume our helpers library by referencing
it from a local path. The easiest way is to run the following command npm install -D

file:../my-js-helpers.

Note that we are referencing our helpers library with a relative directory path so it is
important that oyu have create the my-js-helpers project at the same level of my-react-
project.

To test that we can consume our library without problems, open one of the views, maybe
App.tsx, and import a reference to randomid:

import {

randomid

} from 'my-js-helpers'

And then output the value in the UI with some HTML like:

<p>[randomid() result (from my-js-helpers): { randomid() }]</p>

Or maybe you could add the output to the text property of the SampleComp created in the
previous chapter:

Chapter 18 - Creating a JavaScript library 257

<SampleComp text={`This is a sample component from my-component-library: ${ randomid\

() }`} />

The first one will output in the browser something like:

[randomid() result (from my-js-helpers): 03627536338]

And the second one should output something like this:

This is a sample component from my-component-library: 00244391593

Chapter 18 - Creating a JavaScript library 258

Chapter 18 Recap

What We Learned

• We created a new project called my-js-helpers that will export an helper method called
randomid that returns a unique id value

• We wrote some basic unit tests against our randomid helper function
• We then built this library and consumed it in our my-react-project to display in the UI
the value returned by the randomid() helper

Observations

• We did not publish our library to NPM yet.

Based on these observations, there are a few more things that can be done:

Improvements

• In the next chapter will learn how to publish our library to the NPM registry and then
consume it from there

Chapter 19 - Publish a library as a
NPM package
Publishing to the NPM registry is pretty straigh forward. However, there are many different
options like publishing private packages etc that might also interested you. For this, is a
good idea to review the official documentation here: https://docs.npmjs.com/packages-and-
modules/contributing-packages-to-the-registry.

Here we’ll explain only how to publish scoped public packages but will not cover private
packages or unscoped packages.

Create an NPM user account

The first step will be for you to create an NPM user account, if you do not already have
one. You can do this on the NPM signup page at https://www.npmjs.com/signup. If you
need further help with that please see here https://docs.npmjs.com/creating-a-new-npm-
user-account

Create an Organization under your NPM profile

To publish a scoped public package, I would suggest to create a fictitious organization that
you can use to learn how to publish NPM packages. Once you have mastered this and are
more confident, you can better organize your packages under a real organization name or
publish them using your NPM username as the scope (which will have to be prefixed with
the @ char).

On NPM, once you are logged in, click on your avatar and select “Add Organization +”
(alternatively, you can click on Profile, then on the Organizations tab, then on the “+ Add
New Organization” button). Enter a name of your choice in the Organization field and click
on the Create button next to the “Unlimited public packages” option. In the next screen,
where it asks if you want to invite other developers, just click Skip. Your organization is now
created and will show under your Profile (Organizations tab).

https://docs.npmjs.com/packages-and-modules/contributing-packages-to-the-registry
https://docs.npmjs.com/packages-and-modules/contributing-packages-to-the-registry
https://www.npmjs.com/signup
https://docs.npmjs.com/creating-a-new-npm-user-account
https://docs.npmjs.com/creating-a-new-npm-user-account

Chapter 19 - Publish a library as a NPM package 260

Update my-js-helpers package.json

We need to scope our library name. In order to do this, you have to add a prefix to the
name property in the package.json field follow by a slash character. Here you could either
use your NPM username or organization name (note: you have to include the @ char at the
beginning):

// file: package.json

{

"name": "@your-org-name/my-js-helpers", // prefix is in the form @username/ or @or\

gname/

"version": "0.1.21",

...

Publishing the library

First, you’ll have to login to NPM with the command:

npm login

It will prompt you for username, password and email (careful: this email will be public so
feel free to use an email that is different from the one used in the NPM account):

npm notice Log in on https://registry.npmjs.org/

Username: yourusername

Password: yourpassword

Email: (this IS public) youremail

Note: if you have 2FA (two-factor authentication) setup in NPM, it will also prompt you to
enter an OTP code:

npm notice Please use the one-time password (OTP) from your authenticator application

Enter one-time password: [yourOtpCode]

Now you can publish the my-js-helpers package by first navigating to the root of the my-js-
helpers directory, and then execute the command:

Chapter 19 - Publish a library as a NPM package 261

npm publish --access public

If everything goes well, your package will be published on NPM.

Consuming your NPM package

Let’s switch back to the my-react-project code.
Here, we’ll first uninstall the current local references to the my-js-helpers library:

npm uninstall my-js-helpers

Then we can install the one form the NPM registry with:

npm install -D @your-org-name/my-js-helpers

If you run the my-react-project everything should still work as before.

Chapter 19 - Publish a library as a NPM package 262

Chapter 19 Recap

What We Learned

• We learned how to publish our library as an NPM package on the NPM registry using
a user-scope or organization-scope

• We learned how to install our NPM package from the NPM registry and consume it as
we did before when it was installed form the local directory

• We learned how to bump the version of our NPM package and publish a new version
on NPM

Observations

• We did not publish the other library we created in Chapter 17 which is a component
library (my-component-library)

Based on these observations, there are a few more things that you could try:

Improvements

• You can try to publish also the my-component-library as an NPM package and then
consume it from NPM

(More Chapters Coming Soon)

Bonus Chapter - using
create-react-app
NOTE: using create-react-app is quickly becoming old and obsolete. I strongly recommend
you use Vite going forward, but felt to add here instruction on how to use create-react-app if
you are required to do so for some reason.

The package create-react-app⁴⁶ leveragesWebpack to setup a development environment.
If you want to set set up a React project using webpack instead of Vite, use the terminal and
execute the following node.js command:

npx create-react-app another-react-app --template typescript

Note: we are passing the option --template typescript because we want to use TypeScript,
not just vanilla JavaScript.

If you do not have the npm package create-react-app yet, it might prompt you to install it.
In this case, type y and then enter to proceed:

Need to install the following packages:

create-react-app

Ok to proceed? (y)

This will create a folder called another-react-app which is also the name of our project,
install all the required NPM packages, create the configuration files, and stub some prelim-
inary code (src/App.tsx, src/index.tsx, etc). While create-react-app is executing, you will
see a message like this displayed:

Creating a new React app in /volumes/projects/another-react-app.

Installing packages. This might take a couple of minutes.

...

After it has completed, it should output a message similar to this:

⁴⁶https://github.com/facebook/create-react-app

https://github.com/facebook/create-react-app

Bonus Chapter - using create-react-app 265

Success! Created another-react-app at /volumes/projects/another-react-app

Inside that directory, you can run several commands:

npm start

Starts the development server.

npm run build

Bundles the app into static files for production.

npm test

Starts the test runner.

npm run eject

Removes this tool and copies build dependencies, configuration files

and scripts into the app directory. If you do this, you can’t go back!

We suggest that you begin by typing:

cd another-react-app

npm start

Happy hacking!

Execute the command cd another-react-app and then npm start. The first command will
navigate to the current sub-directory called another-react-app, the second will serve the
app. You’ll see a message similar to this displayed:

cd another-react-app

npm start

It should automatically open your web browser and open the address http://localhost:3000/
(if not, please open the browser and navigate to it). You’ll see the application being rendered:

Bonus Chapter - using create-react-app 266

Env Variables

NOTE: Keep in mind that the use of environment variables (which we covered in chapter 7
and 9), will differ from when we used vite. You will have to modify the code that loads the
config based on process.env.REACT_APP_CONFIG instead of vite’ import.meta.dev.VITE_-
APP_CONFIG)

You will want to install the npm package cross-env which allows to set environment
variables across different operating systems using the same syntax.

Differences Between Operating Systems

There are some difference between different operating systems in the way we set environ-
ment variables in the “scripts” commands of our package.json file.

You can see the use of the keyword export. This works onOSX and Linux environment, but
Windows uses a different keyword and syntax.

For example this command:

Bonus Chapter - using create-react-app 267

"start": "export REACT_APP_CONFIG=mock; react-scripts start"

On Windows it would have to be converted to this:

"start": "set \"REACT_APP_CONFIG=mock\" && react-scripts start"

Note how the export keyword becomes set and the semi-colon becomes &&. It is also
recommended to wrap the variable=value expression within escaped quotes, like in \“RE-
ACT_APP_CONFIG=mock\“

You could add additional shortcuts that areWindows specific by prefixing them with win-
like here fore example:

"win-start": "set \"REACT_APP_CONFIG=mock\" && react-scripts start",

However, thanks to the cross-env package, all we have to do is to update the commands to
use the following syntax and stop worrying about specific operating systems:

"start": "cross-env REACT_APP_CONFIG=mock react-scripts start",

"build": "cross-env REACT_APP_CONFIG=production react-scripts build",

"test": "cross-env REACT_APP_CONFIG=mock react-scripts test",

Just remember to be aware that these differences exists if you do not use something like
cross-env.

Bonus Chapter - Vitest
Vitest⁴⁷ has become popular very quicly recently as makes unit-testing in a Vite app much
easier than Jest. Please read more about it on the official website to learn more about its
features.

NOTE: Jest has become quite old at this point and hard to work with epecially in Vite as
it requires a lot of dependencies and setup. I strongly suggest you keep using Vitest going
forward.

Here I am going to guide you on how to replace Jest with Vitest (note that I have already
already done this in the book code repository on GitHub).

Remove Jest dependencies and setup files

First, run the following command to remove all jest dependencies we will no longer need:

npm uninstall --save jest @testing-library/jest-dom @types/jest ts-jest @types/testi\

ng-library__jest-dom

Delete the following directories and files:

• src/jest
• src/jest.config.js
• src/jest.setup.js

tsconfig.json updates

Remove reference to jest types from tsconfig.json compilerOptions:

⁴⁷https://vitest.dev

https://vitest.dev/

Bonus Chapter - Vitest 269

// file: src/tsconfig.json

{

"compilerOptions": {

"target": "ESNext",

"lib": ["DOM", "DOM.Iterable", "ESNext"],

"types": [

"vite/client",

"jest", /* remove this */

"testing-library__jest-dom" /* remove this */

]

...

package.json updates

Remove test commands from package.json scripts section:

// file: src/package.json

{

"name": "my-react-project",

"version": "0.0.0",

"scripts": {

...

"test": "jest src", /* remove this line */

"test:watch": "npm run test -- --watch", /* remove this line */

...

Add Vitest

Install Vitest npm package (note here we also install c8 and jsdom as well as user-event from
testing-library):

npm install --save-dev vitest c8 jsdom @testing-library/user-event

tsconfig.json updates

Add references to Vitest types within the tsconfig.json compilerOptions (also ensure that
skipLibCheck is set to true:

Bonus Chapter - Vitest 270

{

"compilerOptions": {

"target": "ESNext",

"lib": ["DOM", "DOM.Iterable", "ESNext"],

"types": [

"vite/client",

"vite/client", /* add this */

"vitest/globals" /* add this */

],

"skipLibCheck": true, /* make sure you have this and it is set to true */

...

package.json updates

Add new test commands using Vitest within the package.json scripts section:

// file: src/package.json

{

"name": "my-react-project",

"version": "0.0.0",

"scripts": {

...

"test": "vitest run", /* add this line */

"test-watch": "vitest wach", /* add this line */

"test-coverage": "vitest run --coverage", /* add this line */

...

vite.config.js updates

Modify the code within the vite.config.js file. Start by adding 2 references lines, one for vitest
and one for vite/client, at thet op of the file:

/// <reference types="vitest" />

/// <reference types="vite/client" />

...

Then, within the defineComponent section, add test section with as this:

Bonus Chapter - Vitest 271

...

export default defineConfig({

...

test: {

globals: true,

environment: 'jsdom',

exclude: [

'node_modules'

]

}

})

The complete update code within vite.config.js will be this:

/// <reference types="vitest" />

/// <reference types="vite/client" />

import { defineConfig } from 'vite'

import react from '@vitejs/plugin-react'

// https://vitejs.dev/config/

export default defineConfig({

plugins: [react()],

envDir: './src/',

resolve: {

alias: {

'@/*': './src/*',

},

},

test: {

globals: true,

environment: 'jsdom',

exclude: [

'node_modules'

]

}

})

Bonus Chapter - Vitest 272

test-utils code

Add directory src/test-utils and within it create file index.ts. Here we are going to export
all we need in our unit tests from one place, and export also a wrapper around testing-library
render (customRender) that will avoid having to repeat code in our unit tests:

/* eslint-disable import/export */

import { render } from '@testing-library/react'

// return a wrapper to more ea

const customRender = (ui: React.ReactElement, options = {}) =>

render(ui, {

// wrap provider(s) here if needed

wrapper: ({ children }) => children,

...options

})

export * from '@testing-library/react'

export { default as userEvent } from '@testing-library/user-event'

// override render export

export { customRender as render }

Unit Tests updates

Finally, we just need to make a few changes to our unit tests.
In general, these changes will mostly be:

• adding directive @vitest-environment jsdom (only for .tsx components tests)
• importing “render/screen/fireEvent” from our test-utils instead of testing-library
• replacing jest.fn with vitest.fn

• replacing jest.spyOn with vitest.spyOn

Item component unit tests updates

Item.rendering.test.tsx updates

Here, modify the beginning by adding a directive to instruct vitest to use the jsdom
environment, and also import what we need from our test-utils (render/screen, etc):

Bonus Chapter - Vitest 273

// file: src/components/items/children/Item.rendering.test.tsx

// directive to instruct vitest to use the jsdom environment:

// @vitest-environment jsdom

// import references to what we need from our test-utils:

import { render, screen } from '../../../test-utils'

...

Note: Everything else within the unit test code will stay the same.

Item.behavior.test.tsx updates

Here to, modify the beginning by adding a directive to instruct vitest to use the jsdom
environment, and also import what we need from our test-utils (render/fireEvent, etc):

// file: src/components/items/children/Item.behavior.test.tsx

// directive to instruct vitest to use the jsdom environment:

// @vitest-environment jsdom

// import references to what we need from our test-utils:

import { render, fireEvent } from '../../../test-utils'

...

Also, replace jest.fn with vitest.fn:

// file: src/components/items/children/Item.behavior.test.tsx

...

describe('Item.component: behavior', () => {

// test our component click event

it('click event invokes onItemSelect handler as expected', () => {

const model: ItemInterface = {

id: 1,

name: 'Unit test item 1',

selected: false

}

// create a spy function with vitest.fn()

const onItemSelect = vitest.fn() /* replace jest.fn with vitest.fn here */

...

Bonus Chapter - Vitest 274

HttpClient unit tests updates

HttpClient.request.get.test.ts updates

Here we need to replace jest.fn with vitest.fn:

// file: src/tests/unit/http-client/HttpClient.request.get.test.ts

...

describe('HttpClient: request: get', () => {

it('should execute get request succesfully', () => {

// replace jest.spyOn with vitest.spyOn

vitest.spyOn(axios, 'get').mockImplementation(async () =>

Promise.resolve({ data: `request completed: ${mockRequestParams.url}` })

)

...

it(' get should throw error on rejection', () => {

// replace jest.spyOn with vitest.spyOn

vitest.spyOn(axios, 'get').mockImplementation(async () =>

...

HttpClient.request.post.test.ts updates

Here too we need to replace jest.fn with vitest.fn:

// file: src/tests/unit/http-client/HttpClient.request.post.test.ts

...

describe('HttpClient: request: post', () => {

it('should execute post request succesfully', () => {

// replace jest.spyOn with vitest.spyOn

vitest.spyOn(axios, 'post').mockImplementation(async () =>

Promise.resolve({ data: `request completed: ${mockRequestParams.url}` })

)

...

The rest of the unit tests (i.e. UrlUtils.getFullUrlWithParams.test.ts, config-files-map.test.ts,
config.mock.test.ts, etc) should require no changes.

Run the command npm run test to verify that all the unit tests run and succeed.

Naming Conventions
In this book we have been providing some direction on both naming standards for code
elements like interface, classes etc, as well as for directory and file names. Here is a detailed
description of the standard we followed in this book.

NOTE: These are mostly suggestions, a starting point. You should always agree with your
team on the naming conventions and directory structure standards that will work best for
your company. Then the whole team should commit to follow those conventions.

Coding Standards

TypeScript any

Avoid using any and rather always choose an interface/type/class

Interfaces

Interfaces are named with an Interface suffix. For example, an interface representing Item
will be named ItemInterface.

Each interface will be contained in its own file. The file naming convention will be
Item.interface.ts.

Directory/File Naming and Structure

Directory Names

In general, we’ll use lower-case for naming directories. When this contains multiple words,
they will be separated by a hyphen (dash). I.e. order-history

We try to keep code files organized in directories by category (i.e. components, models,
plugins) and sub-directories

Sub-directories are organized by app domain for models, i.e. models/items, models/cus-
tomers, models/order-history, models/locales etc

For components, they are organized by component domain or functionality, i.e. compo-
nents/items, components/locales, components/order-history etc.

Naming Conventions 276

In general, if a model or a component is used across all domains, then the sub-directory name
is shared (or common if you prefer), i.e. components/shared

Primitive components will be under the directory primitives (src/primitives).

File Names

In general, files will be named with a pascal-case convention, I.e. OrderHistory.ts

Barrel files will always be named index.ts (all lower case)

Files that export one instance of a class, or serve as a provider/factory will be also named
index.ts (as long as the folder in which they are contained specify the domain/rea name, i.e.
http-client/index.ts)

Interface File Names

Files containining interfaceswill follow the convention [Name].interface.ts, i.e. Item.interface.ts.

Components File Names

Higher-order components files will be under src/components directory. Their names follow
the convention [ComponentName].component.tsx. I.e. ItemsList.component.tsx

Primitive components will be under src/primitives. Their names follow the convention
El[ComponentName].tsx. I.e. ElButton.tsx, ElTextbox.tsx, etc

Views/Pages File Names

Views files will be under src/views directory.
Their names follow the convention [ViewName].tsx (NOTE: in React, everything is really
a component, including views. The separation is mostly for organization purposes. The way
we consume views and components differs and we talk more about this throughout the book).

Unit Tests file names

For unit tests, we’ll follow the convention [ClassOrComponentBeingTested].test.ts(x). I.e.
ItemsList.test.ts(x) (NOTE that test against models/classes will be stored under tests/unit
directory, while a test against a component will be located where each corresponding
component is)

NOTE: If you have to write many unit tests against the same class or component to test specific
areas (i.e. security, permissions etc) might be a good idea to also split the code into additional

Naming Conventions 277

files named with additional suffixes (as long as you adopt a standard that makes sense and
it’s easy to follow).

This could be a convention to follow in that case: [ClassOrComponentBeingTested].[area-
tested].[condition].[value].test.ts and here are a couple of examples:

• ItemsList.permissions.view.no.ts (to test when user does not have View permisions)
• ItemsList.permissions.view.yes.ts (to test when user has View permisions)

Directory src

Contains the React source code

• src/assets: contains static assets like image files etc (organized in further sub-directories)

src/api: contains the API clients implementations

• src/api/mock: contains the API clients that return mock data
• src/api/live: contains the API clients that communicate with the live API end-points

src/components: contains the higher order components (while primitives are within a sub-
directory)

• src/components/[lowercase-component-name]: directory contains all the files that
make up a specific component. I.e. src/components/items
– src/components/[lowercase-component-name]/children: contains all the sub-
components, if any, consumed only by our main component. I.e. src/compo-
nents/items/children (NOTE: this is not a strict requirement. Might have multiple
sub-directory at the same level as children with more specific names for more
complex component that have many child components)

src/components/primitives: contains all the primitives (i.e. buttons, inputs, etc) organized
in sub-directories by families:

• buttons
• icons
• etc // add more directories as you keep building your primitives foundation

src/models: contains all the pure TypeScript interface/types/classes/models/etc (extension
.ts)

Naming Conventions 278

• src/models/[domain]: contains all the interfaces/classes/etc that are related to a
particular domain, I.e. items

src/store: contains the state manager implementation

• src/store/[domain]: contains the store module implementation for a specific domain,
I.e. items

src/views: contains all the views, except for theApp.tsxwhich is located directly under src/

Directory tests/unit

Contains all the unit tests that are not for components. (each component unit test will be
located at the same level of the corresponding component)

• tests/unit: contains the unit tests against TypeScript models (not components) orga-
nized in sub-directories by domain/area or however you see fit

Resources
Websites

Official React Website:
https://reactjs.org

React testing library:
https://testing-library.com/docs/react-testing-library/intro/

Official TailwindCSS Website:
https://tailwindcss.com

https://reactjs.org/
https://testing-library.com/docs/react-testing-library/intro/
https://tailwindcss.com/

Resources 280

Blogs

Atomic Design

…

Resources 281

Books

…

	Table of Contents
	LARGE SCALE APPS WITH REACT AND TYPESCRIPT
	Preface
	Goal
	Audience
	Text Conventions
	Thanks
	About me

	Prerequisites
	Companion Code
	Chapter 1 - Setting Up The Project
	Create Project Wizard
	Chapter 1 Recap

	Chapter 2 - Your First Component
	The Items List
	ItemsList Component Requirements
	ItemsList Component Code
	Main App View
	Chapter 2 Recap

	Chapter 3 - Data Models and Interfaces
	Models Directory
	Interface ItemInterface
	ItemsList Component
	App View
	Chapter 3 Recap

	Chapter 4 - Adding Events To the Items Component
	ItemsList Component
	Chapter 4 Recap

	Chapter 5 - Intro to Unit Testing While Refactoring a Bit
	ItemComponent
	ItemComponent Unit Tests
	ItemsList component
	Chapter 5 Recap

	Chapter 6 - Introducing State Management
	Store Interfaces
	Store Implementation
	App.tsx
	Items.view.tsx
	Back to the App.tsx file
	Web Browser
	ItemsList.component.tsx
	Back to the Web Browser
	Loader Component
	Chapter 6 Recap

	Chapter 7 - Api Client
	API Client Overview
	Domains
	The Main ApiClient
	Items domain Api Client
	Mock and Live Api Clients
	Environment Variables
	Api Client Provider
	Store Instance updates
	Alternatives
	Chapter 7 Recap

	Chapter 8 - Enhance the Api Client
	HttpClient Interfaces and Models
	UrlUtils Unit Tests
	HttpClient: Unit Tests
	ItemsApiClientModel Update
	Chapter 8 Recap

	Chapter 9 - App Configuration
	vite-env.d.ts updates (or env.d.ts)
	.env files updates
	Config Interface
	Config files
	tsconfig.json updates
	Config files map
	Config provider
	Unit Tests
	HttpClient code updates
	Api Client code updates
	Chapter 9 Recap

	Chapter 10 - Localization and Internationalization - Language Localization
	Plugins: i18next, react-i18next
	Config updates
	Translation JSON data
	API Client updates
	Updates to ApiClient.interface.ts
	Updates to ApiClient instances
	i18n initialization and useLocalization hook
	main.tsx or index.tsx updates
	App.tsx updates
	Browser
	Chapter 10 Recap

	Chapter 11 - Localization and Internationalization - Number and DateTime Formatters
	Directory localization/formatters
	Chapter 11 Recap

	Chapter 12 - Adding Tailwind CSS
	Chapter 12 Recap

	Chapter 13 - Intro to Primitives
	Atomic Design and Similar Approaches
	Conventions
	General Strategies
	Text Elements
	Primitives View
	Chapter 13 Recap

	Chapter 14 - More Primitives
	Button Elements
	Primitives View - update
	Toggle/Checkbox Elements
	Primitives View - one more update
	Chapter 14 Recap

	Chapter 15 - A Primitive Modal
	Icon: ElIconAlert
	Interface ModalProps
	File ElModal.ts (note: not .tsx)
	File useModal.ts
	Updates to Primitives.view.tsx
	Browser
	Chapter 15 Recap

	Chapter 16 - Higher-level components
	Item Component - updates
	ItemsList Component - updates
	Summary
	Chapter 16 Recap

	Chapter 17 - Creating Component Libraries
	Create my-component-library
	Chapter 17 Recap

	Chapter 18 - Creating a JavaScript library
	Create my-js-helpers
	Chapter 18 Recap

	Chapter 19 - Publish a library as a NPM package
	Create an NPM user account
	Create an Organization under your NPM profile
	Update my-js-helpers package.json
	Publishing the library
	Consuming your NPM package
	Chapter 19 Recap

	(More Chapters Coming Soon)
	Bonus Chapter - using create-react-app
	Env Variables

	Bonus Chapter - Vitest
	Remove Jest dependencies and setup files
	Add Vitest
	Unit Tests updates

	Naming Conventions
	Coding Standards

	Resources
	Websites
	Blogs
	Books

