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welcome 
Thanks for purchasing the MEAP for Optimization Algorithms: AI techniques for design, 
planning, and control problems. 

Optimization problems are ubiquitous in different aspects of life. This book is written for 
practitioners interested in solving ill-structured search and optimization problems using modern 
derivative-free algorithms. This book will get you up to speed with the core concepts of search 
and optimization and endow you with the ability to deal with practical design, planning and 
control problems. 

Without assuming any prior knowledge of search and optimization and with an intermediate 
knowledge of data structures and Python, this book has been written to take most anyone from 
never solving search and optimization problems to being a well-rounded search and optimization 
practitioner able to select, implement and adapt the right solver for the right problem. 

This book grew out of several courses related to search and optimization taught by me at 
different universities and training centers in industry. My 25 years working as an AI and Robotics 
professor in the academia and as a technical leader in industry have given me a wealth of 
experiences to share with you through this book. 

By the end of the book, you should understand: 

• How to deal with discrete and continuous ill-structured optimization problems using
deterministic and stochastic derivative-free search and optimization techniques

• How to apply deterministic graph search algorithms to solve graph problems

• How to apply nature-inspired algorithms to find optimal or near-optimal solutions for
practical design, planning and control problems

• How to use machine learning methods to solve search and optimization problems

• How to solve the search dilemma by achieving trade-off between search space exploration 
and exploitation using algorithm parameter adaptation

• How to use state-of-the-art Python libraries related to search and optimization
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The book is divided into five parts. Part 1 covers deterministic graph search algorithms. Part 
2 will focus on trajectory-based optimization algorithms giving simulated annealing and tabu 
search as examples. Moving forward, Part 3 introduces evolutionary computing algorithms 
followed by presenting swarm-intelligence algorithms in Part 4. The last part of the book shows 
how machine learning-based methods can be used to solve complex search and optimization 
problems. Throughout this book, a wealth of examples and in-depth case studies are provided 
for both novices and experts. 

 
I do believe that learning is the common ground between the author and the reader. I hope 

that what you’ll get access to will be of immediate use to you. I also look forward to learning 
from your valuable feedback to develop the best book possible. Please let me know your 
thoughts in the liveBook Discussion forum on what’s been written so far and what you’d like to 
see in the rest of the book. 

 
Thanks again for your interest and for purchasing the MEAP! 
 
—Dr. Alaa Khamis 
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Introduction to Search and 
Optimization 

This chapter covers 

• What are search and optimization?
• Why care about search and optimization?
• Going from "toy problems" to real-world solutions
• Defining an optimization problem
• Introducing well-structured problems and ill-structured problems
• Search algorithms and the search dilemma

As human beings, we constantly strive to optimize our everyday lives. Whether it's getting to 
work faster (so you can sleep in a little bit longer), balancing school and leisure time, or even 
budgeting for personal spending, we try to maximize the benefits and minimize the costs. 
Likewise, corporations maximize profits by increasing efficiency and eliminating waste. For 
example, logistics giants like FedEx, UPS, and Amazon spend millions of dollars each year 
researching new ways to trim the cost of delivering packages. Similarly, telecommunications 
agencies seek to determine the optimal placement of crucial infrastructure, like cellular 
towers, to service the maximum number of customers while investing in the minimum level 
of equipment. 

This sort of optimization behavior is not unique to humans; nature likewise tends towards 
efficiency and optimality. Bacterial colonies, comprised of clusters of between 10 million and 
10 billion individual organisms, form an adaptable, complex system that can perform many 
complicated tasks such as foraging, pathfinding, and learning based on external stimuli. 
Insects like ants and honeybees have developed their own unique optimization methods, 
from navigating the shortest path to an existing food source to discovering new food sources 
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in an unknown external environment. Honeybee colonies focus their foraging efforts on only 
the most profitable patches and build their honeycombs with a shape that economizes labor 
and wax. Fish swimming in schools or cruising in the same direction minimize total energy 
usage by exploiting pressure fields created by the other fish. At the same time, migratory 
birds utilize separation, alignment, and cohesion-based optimization to avoid mid-air 
collisions and increase flight endurance. Non-biological phenomena also tend towards 
efficiency. For example, light traveling between two different media will refract along an 
angle that minimizes the travel time. 

As technology has developed, computer-based optimization is now an inescapable reality 
of the digital era. Transportation network companies (TNCs) like Uber, Lyft, and DiDi route 
drivers efficiently during passenger trips and direct drivers to ride-hailing hotspots during idle 
periods to minimize passenger wait time. As urbanization intensifies worldwide, local 
emergency services depend on efficient dispatching and routing platforms to select and route 
the appropriate vehicles, equipment, and personnel to respond to incidents across 
increasingly complex metropolitan road networks. Airliners need to solve several optimization 
problems such as flight planning, fleet assignment, crew scheduling, aircraft routing and 
aircraft maintenance planning. Healthcare systems also handle optimization problems such 
as hospital resource planning, emergency procedure management, patient admission 
scheduling, surgery scheduling and pandemic containment. Industry 4.0, a major customer 
of optimization technology, deals with complex optimization problems such as smart 
scheduling/rescheduling, assembly line balancing, supply-chain optimization, and operational 
efficiency. Smart cities deal with large-scale optimization problems such as stationary asset 
optimal assignments, mobile asset deployment, energy optimization, water control, pollution 
reduction, waste management and bushfire containment. These examples show how 
ubiquitous and important optimization is as a way to maximize operational efficiency in 
different domains. 

1.1 Why care about search and optimization? 
Search is the systematic examination of states, starting from an initial state, and ending 
(hopefully) at the goal state. Optimization techniques are in reality search methods, where 
the goal is to find an optimal or a near-optimal state within the feasible search space. The 
feasible search space is a subset of the optimization problem space where all the problem's 
constraints are satisfied. It's hard to come up with a single industry that doesn't already use 
some form of search or optimization methods, software, or algorithms. It's highly likely that 
somehow in your workplace or industry, you deal with optimization daily; it's just that you 
aren't aware of it. While search and optimization are undoubtedly ubiquitous in almost all 
industries, it may not always be practical to use complicated algorithms to optimize 
processes. For example, consider a small pizzeria that offers a food delivery service to its 
local customers. Let's assume that the restaurant processes around ten deliveries on an 
average weeknight. While efficiency-improving strategies (such as avoiding left turns in left-
driving countries or right turns in right-driving countries, avoiding major intersections, 
avoiding school zones during drop-off and pick-up times, avoiding bridges during lift times 
and favoring downhill roads) may theoretically shorten delivery times and reduce costs, the 
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scale of the problem is so tiny that implementing these kinds of changes may not lead to 
noticeable impact. 

In larger scale problems such as fleet assignment and dispatching, multi-criteria 
stochastic vehicle routing, resource allocation, crew scheduling, applying search and 
optimization techniques to a problem must be a qualified decision. Some firms or industries 
may not benefit from excessive process changes due to a lack of expertise or resources to 
implement those changes. There may also be the concern of a potential lack of follow-
through from stakeholders. Implementing the changes could also cost more than the savings 
obtained through the optimization process. Later in this book, we will see how these costs 
can be accounted for when developing search and optimization algorithms. 

Without assuming any prior knowledge of search and optimization and with an 
intermediate knowledge of data structures and Python, this book has been written to take 
most anyone from never solving search and optimization problems to being a well-rounded 
search and optimization practitioner able to select, implement and adapt the right solver for 
the right problem. For managers or professionals involved in the high-level technological 
decisions at their workplace, these skills can be critical in understanding software-based 
approaches, their opportunities, and limitations when discussing process improvement. In 
contrast, IT professionals will find these skills more directly applicable when considering 
options for developing or selecting new software suites and technologies for in-house use. 
The following subsection describes the methodology we will follow throughout this book. 

1.2 Going from toy problem to the real world 
When discussing algorithms, many books and references will often present them as a formal 
definition and then apply them to so-called "toy problems." These trivial problems are helpful 
because they often deal with smaller datasets and search spaces while being solvable by 
hand iteration. This book seeks to follow a similar approach but takes it one step further by 
presenting real-world data implementations. Whenever possible, resources such as real-
world datasets and values are used to illustrate the direct applicability and practical 
drawbacks of the algorithms discussed. Initially, the scaled-down toy problems help the 
reader appreciate the step-by-step operations involved in the various algorithms. Later, the 
real-world Python implementations teach the reader how to use multiple datasets and Python 
libraries to address the increased complexity and scope of actual data. 

As illustrated in Figure 1.1, source of inspiration of each search or optimization algorithm 
is highlighted followed by presenting the algorithm pseudocode, algorithm parameters and 
heuristics used. Algorithm pros and cons and adaptation methods are then described. The 
book contains many examples that allow the learners to fully understand how each algorithm 
works by carrying out iterations by hand on a scaled-down version of the problem. It also 
includes many programming exercises in a special problem/solution/discussion format to 
understand how a scaled-up version of the problem previously solved by hand can be solved 
using Python. Through programming, learners can optimally tune the algorithm and study its 
performance and scalability. 
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Figure 1.1 Book methodology. Each algorithm will be introduced following a structure that goes from 
explanation to application. 

Throughout this book, several classical and real-world optimization problems are 
considered to show how to use search and optimization algorithms discussed in the book. 
Figure 1.2 shows examples of these optimization/search problems. 

Real-world design problems or strategic functions deal with situations when time is not as 
important as the quality of the solution and users are willing to wait (sometimes even a few 
days) to get optimal solutions. Planning problems or tactical functions need to be solved in a 
time span between a few seconds to a few minutes. While control problems or operational 
functions need to be solved repetitively and quickly, in a time span between few milliseconds 
to a few seconds. In order to find a solution during such a short period of time, optimality is 
usually traded in for speed gains. In the next chapter, more thorough discussion of these 
problem types is provided. 

4
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Figure 1.2 Examples of classical optimization and real-world optimization/search problems. 

It is highly recommended that you first perform the necessary hand iterations for the 
examples following each algorithm and then try to recreate the Python implementations 
yourself. Feel free to play around with the parameters and problem scale in the code; one of 
the advantages of running optimization algorithms through software is the ability to tune for 
optimality. 

1.3 Basic ingredients of optimization problems 
Optimization refers to the practice of finding the “best” solutions to a given problem, where 
“best” usually means satisfactory or acceptable, possibly subject to a given set of 
constraints. The solutions can be classified into feasible, optimal, and near-optimal solutions. 

• Feasible solutions are solutions that satisfy all the given constraints.
• Optimal solutions are both feasible and provide the best objective function value
• Near-optimal solutions are feasible solutions that provide a superior objective

function value but are not necessarily the best.

A global optimum, or a global minimum in case of minimization problems, is the best of a 
set of candidate solutions. A search space may combine multiple global minima, strong local 
minima, and weak local minima as illustrated in Figure 1.3. 
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Figure 1.3 Feasible/acceptable solutions fall within the constraints of the problem. Search spaces may display 
a combination of global, strong local, and weak local minima. 

These optimum seeking methods, also known as optimization techniques, are generally 
studied as a part of operations research (OR). OR, also referred to as decision or 
management science, is a field that originated at the beginning of World War II due to the 
urgent need for assignment of scarce resources in military operations. It is a branch of 
mathematics concerned with applying advanced scientific analytical methods to decision-
making and management problems to find the best or optimal solutions. 

Optimization problems can generally be stated as follows: 
Find X which optimizes ƒ 
Subject to a possible set of equality and inequality constraints: 

gi(X)= 0, i=1,2,…,m 
hj(X)<=0, j=1,2,…,p 

Equation 1.1 
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where 

• X=(x1, x2,…,xn)T is the vector representing the decision variables
• ƒ(X)=(ƒ1(X), ƒ2(X),…, ƒM(X)) is the vector of objectives to be optimized
• gi(X) is a set of equality constraints
• hj(X) is a set of inequality constraints

The following subsections describe three main components of optimization problems:
decision variables, objective functions, and constraints. 

1.3.1 Decision Variables 
Decision variables represents a set of unknowns or variables that affect the objective 
function's value. If X represents the unknowns, also referred to as the independent variables, 
then f(X) quantifies the quality of the candidate solution or feasible solution. 

Example: Assume that an event organizer is planning a conference on Search and 
Optimization Algorithms. The organizer plans to pay a for fixed costs (venue rental, security, 
and guest speaking fees) and b for variable costs (pamphlet, lanyard, ID badge, catered 
lunch) that depend on the number of participants. Based on past conferences, the organizer 
predicts that demand for tickets will be as follows: 

Q=5,000-20x 

Equation 1.2 

Where x is the ticket price and Q is the expected number of tickets to be sold. Thus, the 
company expects the following scenarios: 

• if the company charges nothing or x=0, the company will give away 5,000 tickets for
free;

• If the ticket price is x=$250, the company will get no attendees as the expected
number of tickets to be sold will be zero and

• If the ticket price x<$250, the company will sell some number of tickets
0<=Q<=5,000.

The profit f(x) the event organizer can expect to earn can be calculated according to the 
following: 

Profit=Revenue-Costs 

Equation 1.3 

where Revenue=Qx and costs=a+Qb. Altogether, the profit (or objective) function looks 
like this: 

f(x)=-20x2+ (5,000+20b)x -5,000b-a, xLB<=x<=xUB 

Equation 1.4 
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In this problem, there is a single decision variable x, which is the price of the ticket. The 
predefined parameters include fixed costs a and variable costs b. The ticket price lower 
bound xLB and upper bound xUB are considered boundary constraints. Solving this 
optimization problem focuses on finding the best value of x that maximizes the profit ƒ(x). 

1.3.2 Objective Functions 
An objective function ƒ(x), also known as the criterion or merit function or utility function or 
cost function, stands for the quantity to be optimized. Without loss of generality, 
optimization can be interpreted as the minimization of a value since the maximization of a 
primal function ƒ(x) can be just the minimization of a dual problem generated after applying 
mathematical operations on ƒ(x). This means that if the primal is a minimization problem 
then the dual is a maximization problem (and vice versa). According to this duality aspect of 
optimization problems, a solution x’ which is the minimum for the primal minimization 
problem is also, at the same time, the maximum for the dual maximization problem as 
illustrated in Figure 1.4. Moreover, simple mathematical operations like addition, subtraction, 
multiplication, or division do not change the value of the optimal point. For example, 
multiplying or divide ƒ(x) by a positive constant c or adding or subtracting a positive 
constant c to or from ƒ(x) does not change the optimal value of the decision variable as 
illustrated in Figure 1.4. 

8
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Figure 1.4 Duality principle and mathematical operations on an optimization problem. 

Example: In the earlier ticket pricing problem, assume that: a=50,000, b=60, xLB =0 and 
xUB=250. Using these values, we have a profit function: ƒ(x)=-20x2+6,200x-350,000. 
Following derivative-based approach, we can simply derive the function to find its maximum: 
dƒ/dx=-40x+6,200=0 or 40x=6,200. Thus, the optimal number of tickets to sell is 155, 
which yields a net profit of $130,500 as shown in Figure 1.5. 
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Figure 1.5 Ticket pricing problem. The optimal pricing which maximizes profits is $155 per ticket. 

In ticket pricing problem, we have a single objective function to be optimized, which is 
the profit. In this case, the problem is called mono-objective optimization problem. An 
optimization problem involving multiple objective functions is known as a multi-objective 
optimization problem. For example, assume that we want to design an electric vehicle (EV). 
This design problem’s objective functions can be minimizing acceleration time and 
maximizing EPA driving range. The acceleration time is the time in seconds the EV takes to 
accelerate from 0 to 60 mph. EPA range is the approximate number of miles that a vehicle 
can travel in combined city and highway driving (using a mix of 55% highway and 45% city 
driving) before needing to be recharged according to the Environmental Protection Agency 
(EPA)'s testing methodology. Decision variables can include the size of the wheel, the power 
of the electric motor, and the battery's capacity. A bigger battery is needed to extend the 
driving range of the EV, which adds extra weight, and therefore the acceleration time 
increases. In this example, the two objectives are conflicting as we need to minimize 
acceleration time and maximize the EPA range as shown in Figure 1.6. 
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Figure 1.6 Electric vehicle design problem for maximizing EPA range and minimizing acceleration time. 

This multi-objective optimization problem can be handled using a preference-based multi-
objective optimization procedure or by using a Pareto optimization approach. In the former 
approach, duality principle is applied first to transform all the conflicting objectives for 
maximization (e.g., maximizing the EPA range and the inverse of the acceleration time) or 
minimization (e.g., minimizing the acceleration time and the inverse of the EPA range) and 
then combine these multiple objectives into a single or overall objective function by using a 
relative preference vector or a weighting scheme to scalarize the multiple objectives. For 
example, you may give more weight for EPA range over the acceleration time. However, 
finding this preference vector or weights is subjective and sometimes is not straightforward. 
The latter approach relies on finding multiple trade-off optimal solutions and chooses one 
using higher-level information. This procedure tries to find the best tradeoff by reducing the 
number of alternatives to an optimal set of non-dominated solutions known as the Pareto 
Frontier, which can be used to take strategic decisions in multi-objective space. Multi-
objective optimization will be discussed in later chapters. 

Constraint-satisfaction problems (CSP) do not define an explicit objective function. 
Instead, the goal is to find a solution that satisfies a given set of constraints. The N-queen 
problem is an example of CSP. In this problem, the aim is to put n queens on an n x n board 
with no two queens on the same row, column, or diagonal. This 4x4 Queen CSP problem has 
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256 possible solutions (44) and two optimal solutions. Neither of the two optimal solutions is 
inherently or objectively better than the other. The only requirement of the problem is to 
satisfy the given constraints. 

1.3.3 Constraints 
Constrained optimization problems have a set of equality and/or inequality constraints gi(X), 
lj(X) that restrict the values assigned to the unknowns. In addition, most problems have a 
set of boundary constraints, which define the domain of values for each variable. 
Furthermore, constraints can be hard (must be satisfied) or soft (desirable to satisfy). 
Consider the following examples from a school timetabling problem: 

• Not having multiple lectures in the same room at the same time is a hard constraint
• Not having a teacher give multiple lectures at the same time is also a hard

constraint
• Guaranteeing a minimum of three teaching days for every teacher may be a soft

constraint
• Locating back-to-back lectures in nearby rooms may be a soft constraint
• Avoiding scheduling very early or very late lectures may also be a soft constraint

As another example of hard and soft constraints, navigation apps such as Google Maps,
Apple Maps, Waze, or HERE WeGo may allow users to set preferences for routing. 

• Avoiding ferries, toll roads, and highways would be hard constraints
• Avoiding busy intersections, highways during rush hour, or school zones during drop-

off and pick-up times might be soft constraints

Soft constraints can be modeled by incorporating a reward/penalty function as part of the 
objective function. The function rewards solutions that satisfy the soft constraints and 
penalize those that do not. 

Example: Assume that there are 10 parcels to be loaded in the cargo bike from Figure 
1.7. Each parcel has its own weight, profit, and efficiency value (profit per kg). The goal is to 
select the parcels to be loaded in such a way that the utility function ƒ1 is maximized and the 
weight function ƒ2 is minimized. This is a classic example of a combinatorial problem. 

𝑓𝑓1 = ∑𝑛𝑛 𝐸𝐸𝑖𝑖𝑖𝑖=0  

Equation 1.5 

where n is the total number of packages and Ei is the efficiency of package i 

𝑓𝑓2 = ��𝑤𝑤𝑖𝑖 − 𝐶𝐶
𝑛𝑛

𝑖𝑖=0

� ,     50 is added 𝑖𝑖𝑓𝑓𝑓𝑓 ��𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=0

> 𝐶𝐶�

Equation 1.6 
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where ωi is the weight of package i and C is the maximum capacity of the bike. A penalty of 
50 is added if and only if the total weight of the added parcels exceeds the maximum 
capacity. 

Figure 1.7 The cargo bike loading problem is an example of a problem with a soft constraint. While the weight 
of the packages can exceed the bike’s capacity, a penalty will be applied when the bike is overweight. 

Soft constraints can also be used to make the search algorithm more adaptive. For 
example, the severity of the penalty can be dynamically changed as the algorithm 
progresses, imposing less strict penalties at first to encourage exploration, while becoming 
more severe near the end to generate a result largely bound by the constraint. 

1.4 Well-structured problems vs. Ill-structured problems 
We can further classify optimization problems based on their structure, and the procedure 
that exists (or doesn’t exist) for solving them. The following subsections introduced well-
structured and ill-structured problems. 

1.4.1 Well-structured problems (WSP) 
In “The Structure of Ill Structured Problems” (Artificial Intelligence, 1973), Herbert Simon 
describes the six main characteristics of WSPs: 

• There is a definite criterion for testing any proposed solution and a mechanizable
process for applying the criterion.

• There is at least one problem space in which the initial problem state, the goal state,
and all other states that may be reached, or considered, in the course of attempting a
solution of the problem can be represented.

• Attainable state changes (legal moves) can be represented in a problem space, as
transitions from given states to the states directly attainable from them. But
considerable moves, whether legal or not, can also be represented—that is, all
transitions from one considerable state to another.

13
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• Any knowledge that the problem solver can acquire about the problem can be
represented in one or more problem spaces.

• If the actual problem involves acting upon the external world, then the definition of
state changes and of the effects upon the state of applying any operator reflects with
complete accuracy in one or more problem spaces the laws (laws of nature) that
govern the external world.

• All these conditions hold in the strong sense that the basic processes postulated
require only practicable amounts of computation and the information postulated is
effectively available to the processes—that is, available with the help of only
practicable amounts of search.

Assume that we are planning a robotic pick-and-place task in an inspection system. In 
this scenario, the robot waits until receiving a signal from a presence sensor, which indicates 
the existence of a defected workpiece over the conveyer belt. The robot stops the conveyer 
belt and picks the defected piece and deposits it in a waste box. The robot reactivates the 
movement of the conveyer belt after depositing the defected piece. After the operation, the 
robot returns to its initial position and the cycle repeats itself again. As illustrated in Figure 
1.8, this problem has the following well-structured components: 

• Feasible States: position and speed of the robot arm and orientation and status
(open or close and orientation) of its end-effector (gripper)

• Operator (successor): robot arm motion control command to move from one point
to another following a certain singularity-free trajectory (positions or joint angles in
space and motion speed) and end-effector control (orientation and open or close).

• Goal: pick and place a defected workpiece regardless its orientation
• Solution/Path: optimal sequence through state space for fastest pick-and-place

operation
• Stopping Criteria: defected workpiece is picked from the conveyer belt and is placed

in the waste box and robot returns to home position
• Evaluation Criteria: pick-and-place duration and/or success rate of pick-and-place

process.
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Figure 1.8 A well-structured problem will have a defined problem space, operators, and evaluation criteria. 

As you can see, the work environment is highly structured, static and fully observable. An 
optimal pick-and-place plan can be generated and executed with high level of certainty. This 
pick-and-place problem can be considered as WSP. 

1.4.2 Ill-structured Problems (ISP) 
Ill-structured problems (ISPs) are complex discrete/continuous problems without algorithmic 
solutions/general problem solvers. Ill-structured problems are characterized by one or more 
of the following characteristics: 

• Problem space with different views of problems, unclear goal, multimodality, and
dynamic nature.

• Lack of exact differentiable mathematical models and/or well-proven algorithmic
solutions

• Solutions are contradictory, consequence difficult to predict and risk difficult or
impossible to calculate resulting in lack of clear evaluation criteria

• Considerable data imperfection in terms of uncertainty, partial observability,
vagueness, incomplete information, ambiguity and/or unpredictability makes
monitoring the execution of the solutions difficult and sometimes impossible.

• Computational intractability

Example: Assume that we need to find the optimal dispatching of four elevators to serve
users between ten floors as illustrated in Figure 1.9. This is a classic example of a problem 
too large to solve using traditional means. 
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Figure 1.9 Elevator dispatching problem. With four elevator cars and ten floors, this problem has 1022 possible 
states. 

In this problem, the following objective functions can be considered in this optimal 
dispatching problem: 

• Minimizing the average waiting time: how long the user waits before getting on an 
elevator 

• Minimizing the average system time: how long the user waits before being dropped 
off at the destination floor 

• Minimizing the percentage of the users whose waiting time exceeds 60 seconds. 
• Ensuring fairness in serving all the users of the elevators. 

This optimal dispatching problem is an example of ISP as the problem space has a 
dynamic nature and partial observability; it is impossible to predict the user calls and 
destinations. Moreover, the search space is huge due to the extremely high number of 
possible states. There are 1022 possible states: 

• 218 possible combinations of the 18 hall call buttons, i.e., up, and down buttons, at 
each floor except the first and the last floor. 

• 240 possible combinations of the 40 elevator buttons if each elevator has 10 buttons. 
• 184 possible combinations of the position and directions of the elevators. 

The total number of states for a problem as simple as dispatching this small building’s 
elevators is more than the number of stars in the universe! 
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1.4.3 WSP but practically ISP 
The Traveling Salesman Problem (TSP) is an example of a problem that may be well-
structured in principle, but in practice becomes ill-structured. This is because of the 
impractical amount of computational power required to solve this problem in real-time. 

Example: Assume that there is a traveling salesman assigned to visit a list of n cities. 
The salesman would like to make sales calls to all these cities in the minimum amount of 
time, as salespeople are generally paid by commission rather than hourly. Furthermore, the 
tour of the cities may be asymmetric; the time it takes to go from city A to city B may not be 
the same as the reverse, due to infrastructure, traffic patterns, and one-way streets. For 
example, with 13 cities to visit, the problem may seem trivial at first. However, upon closer 
examination it is revealed that the search space for this TSP results in 13!=6,227,020,800
different possible routes to be examined in case of using naive algorithms! However, 
dynamic programming algorithms enable reduced complexity as we will see in the next 
chapter. 

This book largely focuses on ISPs and WSPs but practically ISPs kinds of problems, for a 
few reasons: 

• Well-structured problems tend to have well-known solving algorithms that often
provide a trivial, step-by-step procedure for solving WSPs. As such, there often
already exist very efficient and well-known solutions to these kinds of problems.
Moreover, several WSPs can be also solved using derivative-based generic solvers.

• The amount of computational power needed to solve well-structured problems is often
negligible or very manageable at worst. Especially with the continued improvement of
consumer-grade computers, not to mention the vast resources available through
cloud computing and distributed processing, well-structured problems often do not
have to settle for “near-optimal” solutions due to computational bottlenecks.

• Most problems in the real world are ill-structured problems, as the problem scope,
state, and environment are dynamic and partially observable with certain degrees of
uncertainties. Solutions or algorithms for ill-structured problems therefore have much
more applicability to real-world scenarios, and there is a greater incentive to finding
solutions to these problems.

Most of the algorithms explored in this book are derivative-free and stochastic; they use 
randomness in their parameters and decision processes. These are often well-suited to 
solving ill-structured problems, as the randomness of their initial states and operators allow 
the algorithms to escape local minima and find optimal or near-optimal solutions. On the 
other hand, deterministic algorithms use well-defined and procedural paths to reach 
solutions, and generally are not well suited for ISPs as they either cannot work in unknown 
search spaces or are unable to return solutions in a reasonable amount of time. 

1.5 Search Algorithms and the Search Dilemma 
The goal of any optimization method is to assign values to decision variables so that the 
objective function is optimized. To achieve this, optimization algorithms search the solution 
space for candidate solutions. Constraints are simply limitations on specific regions in the 
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search space. Thus, all optimization techniques are in reality just search methods, where the 
goal is to find feasible solutions to satisfy constraints and maximizes (or minimizes) the 
objective functions. We define “search” as the systematic examination of feasible states, 
starting from the initial state, and ending (hopefully) at the goal state. However, while we 
explore the feasible search space, the question is if we find a few reasonably good 
neighboring solutions, should we exploit this region or should we explore more looking for 
better solutions in other regions of the feasible search space? 

This exploration-exploitation or diversification-intensification dilemma is one of the most 
important problems in search and optimization and in life as well. We apply exploration-
exploitation tactics in our life. When we move to a new city, we start by exploring different 
stores and restaurants and then focus on shortlisted options around us. During midlife crisis, 
some middle-aged individuals start to feel bored getting stuck in daily routine and lifestyle 
without clear satisfactory accomplishment and tend to take more explorative actions. US 
immigration system tries to avoid exploiting specific segments of applicants (e.g., family, 
skilled-workers, refugees and asylees) and enables more diversity through computer-
generated lottery. In social insects like honeybees, foraging for food sources is performed by 
two different worker groups, recruits and scouts (5-25% of the foragers). Recruits focus on a 
specific food source while scouts are novelty seekers who keep scouting around for rich 
nectar. In search and optimization, exploration-exploitation dilemma represents the tradeoff 
between exploring new unvisited states/solutions in the search space and exploiting the elite 
solutions found in a certain neighborhood in the search space (Figure 1.10). 

Exploration (or diversification) is the process of investigating new regions in the feasible 
search space with the hope of finding other promising solutions. On the other hand, 
exploitation (or intensification) is the process of directing the search agent to focus on an 
attractive region of the search space where good solutions have been already found. 
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Figure 1.10 Search Dilemma. There is always a tradeoff between branching out to new areas of the search 
space or focusing on an area with known “good” or elite solutions. 

Local search algorithms are exploitation/intensification algorithms that can be easily 
trapped in local optima if the search landscape is multimodal. On the other extreme, random 
search algorithms keep exploring the search space with a high chance of reaching global 
optima at the cost of the impractical search time. Generally speaking, explorative algorithms 
can find global optima at the cost of processing time, while exploitative algorithms risk 
getting stuck at local minima. 
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1.6 Summary 
• Optimization is a search process for finding the “best” solutions to a problem that

provide the best objective function values, possibly subject to a given set of hard
(must be satisfied) and soft (desirable to satisfy) constraints.

• Ill-structured problems are complex, discrete, or continuous problems without exact
differentiable mathematical models and/or algorithmic solutions or general problem
solvers. They usually have dynamic and/or partially observable large search spaces
that cannot be handled by classical optimization methods.

• Stochastic algorithms are non-greedy algorithms that explicitly use randomness to
find the global optimal or near-optimal solution in a reasonably practical time. In
many real-life applications, quickly finding a near-optimal solution is better than
spending a large amount of time in search for an optimal solution.

• Two key concepts you’ll see frequently in future chapters are
exploration/diversification and exploitation/intensification. Handling this search
dilemma by achieving a trade-off between exploration and exploitation will allow the
algorithm to find optimal or near-optimal solutions without getting trapped in local
optima in an attractive region of the search space and without spending large amount
of time.
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A Deeper Look at Search and 
Optimization 

This chapter covers 

• Classifying optimization problems based on different criteria.
• Classifying search and optimization algorithms based on the way the search space is

explored and how deterministic the algorithm is.
• Introducing heuristics, meta-heuristics, and heuristic search strategies.
• A first look at nature-inspired search and optimization algorithms.

Before we dive into the problems and algorithms that we hinted at in Chapter 1, it useful to 
first understand how we “talk” about these problems and algorithms. Classifying a problem 
allows us to group similar problems together, and potentially exploit already-existing 
solutions. For example, a Travelling Salesman Problem(TSP) problem involving geographic 
values (i.e., cities and roads) may be used as a model to find the minimum length of the 
wires connecting the pins in very large-scale integration (VLSI) design. The same can be said 
for classifying the algorithms themselves, as grouping algorithms with similar properties 
allows us to easily identify the right algorithm to solve the problem and meeting expectation 
in terms of quality of the solution and permissible search time for example. Throughout this 
chapter, we discuss common classifications of optimization problems and algorithms. 
Heuristics and meta-heuristics are also introduced as general algorithmic framework or high-
level strategies that guide the search process. Many of these strategies are inspired from 
nature so we shed some lights on nature inspired algorithms. Let’s start by discussing how 
we can classify optimization problems based on different criteria in the first section. 
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2.1 Optimization Problem Classification 
Optimization is everywhere!  In everyday life, you may face different kinds of optimization 
problems. For example, you may like to set the AC thermostat at a certain degree to stay 
comfortable and at the same time to save energy. You may select light fixtures and adjust 
the light level to reduce energy costs. When you start driving your electric vehicle (EV), you 
search for the fastest route and/or most energy-efficient route that takes you to your 
destination. Before arriving to your destination, you may look for a parking spot that is 
affordable and provides shortest walking distance to the destination and offers EV charging 
and preferably is underground. These optimization problems have different levels of 
complexities that mainly depend on the type of the problem. As mentioned in the previous 
chapter, the process of optimization selects decision variables from a given feasible search 
space in such a way as to optimize (minimize or maximize) a given objective function, or in 
some cases, multiple objective functions. Search and optimization problems are 
characterized by three main components, namely, decision variables or design vector, 
objective functions or criteria to be optimized, and a set of hard and soft constraints to be 
satisfied. The nature of these three components, the permissible time to solve the problem 
and the expected quality of the solutions lead to different types of optimization problems, as 
shown in Figure 2.1. 
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Figure 2.1 Optimization problem classification. An optimization problem can be broken down into its 
constituent parts, which form the basis of the classification of such problems. 

The following subsections explain these types in greater detail and provide examples for 
each type of optimization problem. 

2.1.1 Number and Type of Decision Variables 
According to the number of decision variables, optimization problems can be broadly grouped 
into univariate (single variable) or multivariate problems (multiple decision variables). For 
example, vehicle speed, acceleration, and tire pressure are among the parameters that 
impact a vehicle’s fuel economy, where fuel economy refers to how far a vehicle can travel 
on a specific amount of fuel. According to the US Department of Energy, controlling the 
speed and acceleration of a vehicle can improve its fuel economy by 15%–30% at highway 
speeds, and 10%–40% in stop-and-go traffic. A study by the National Highway Traffic Safety 
Administration (NHTSA) in the USA found that a 1% decrease in tire pressure correlated to a 
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0.3% reduction in fuel economy. If we are only looking for the optimal vehicle speed for 
maximum fuel economy, the problem is a univariate optimization problem. Finding the 
optimal speed and optimal acceleration for maximum fuel economy is a bivariate 
optimization problem, while finding optimal speed, acceleration, and tire pressure is a 
multivariate problem. 

Problem classification also varies according to the type of the decision variables. A 
continuous problem involves continuous-valued variables where xj ∈ R. In contrast, if xj ∈ Z, 
the problem is an integer, or discrete optimization problem. A mixed-integer problem has 
both continuous-valued and integer-valued variables. For example, optimizing elevator speed 
and acceleration (continuous variables) and the sequence of picking up passengers (discrete 
variable) is a mixed-integer problem. Problems where the solutions are sets, combinations, 
or permutations of integer-valued variables are referred to as combinatorial optimization 
problems. 
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Combination vs. Permutation 
Combinatorics is the branch of mathematics studying both combination and permutation of a set of elements. The 
main difference between combination and permutation is the order. If the order of the elements doesn’t matter, it is a 
combination, and if the order does matter, it is a permutation. Thus, permutations are ordered combinations. 
Depending on whether repetition of these elements is allowed or not, we can have different forms of combinations 
and permutations as shown in Figure 2.2. 

 

 
Figure 2.2 Combinations and permutations. Both combinations and permutations have variants with and without 
repetition. The difference lies in the fact that permutations respect order and are thus ordered combinations. 

 
For example, assume that we are designing a fitness plan to include multiple fitness activities. Five types of fitness 

exercises are available to be included in the fitness plan, namely, jogging, swimming, biking, yoga, and aerobics. In a 
weekly plan, if we are to choose only 3 out of these 5 exercises and the repetition is allowed, the number of possible 
combinations will be: (n+r-1)!/r!(n-1)! = (5+3-1)!/3!(5-1)! = 7!/(3!×4!) =35. This means that we can generate 35 
different fitness plans by selecting 3 out of the available 5 exercises and by allowing repetition. 

 
However, if repetition is not allowed, the number of possible combinations will be: C(n,r)=n!/r!(n-r)!=5!/(3!×2!)=10. 

This formula is often called “n choose r” (such as “5 choose 3’) and is also known as the “Binomial Coefficient”. This 
means that we can generate only 10 plans if we don’t want to repeat any of the exercises. 

 
In both cases of combination with and without repetition, the fitness plan doesn’t include the order of performing 

the included exercises. If we are to respect specific order, the plan in this case will take the form of a permutation. If 
repeating exercises is allowed, the number of possible permutations to select 3 exercises out of the 5 available 
exercises will be: nr=53=125. However, if repetition is not allowed, the number of possible permutations will be: 
P(n,r)=n!/(n-r)!=5!/(5-3)!=60. 

 
Combinatorics can be implemented fairly easily in Python using code from scratch, but there are excellent 

resources available in the form of libraries, such as sympy. For example, the Binomial Coefficient can be calculated in 
sympy using the following simple code: 

 
from sympy import binomial 
print(binomial(5,3)) 

 
See Appendix-A and the documentation for sympy for more on implementing combinatorics in Python. 
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The Traveling Salesman Problem (TSP) is a common example of combinational problems 
whose solution is a permutation, or a sequence of cities to be visited. In TSP, given n cities, 
a traveling salesman must visit the n cities and then return home, making a loop (round 
trip). The salesman would like to travel in the most efficient way (fastest, cheapest, shortest 
distance, or some other criterion). The search space in TSP is very large. For example, let’s 
assume the traveling salesman is to visit the 13 major cities in the Greater Toronto Area 
(GTA) as illustrated in Figure 2.3. 

TSP can be classified into symmetric TSP (STSP) and asymmetric (ATSP). In the STSP, 
the distance between two cities is the same in each opposite direction, forming an undirected 
graph. This symmetry halves the number of possible solutions. ATSP is a strict generalization 
of the symmetric version. In the ATSP, paths may not exist in both directions or the 
distances might be different, forming a directed graph. Traffic collisions, one-way streets, 
bridges and airfares for cities with different departure and arrival fees are examples of how 
this symmetry could break down. 

Figure 2.3 TSP in Greater Toronto Area (GTA). The traveling salesman must visit all the 13 cities, and wishes to 
select the “best” path, whether that be distance, time, or some other criterion. 

The naive solution’s complexity is O(n!). These means that there are n!=13!=
6,227,020,800 possible tours in case of ATSP.  This makes both STSP and ATSP, NP-hard 
problems. However, dynamic programming (DP) algorithms enable reduced complexity. 
Dynamic programming is a method of solving optimization problems by breaking them down 
into smaller subproblems and solving each subproblem independently. For example, the 
complexity of Bellman-Held-Karp algorithm [1] is of O(2n×n²). Different solvers and 
algorithms with different level of computational complexities and approximation ratios such 
as Concorde TSP Solver, 2-opt/3-opt algorithm, branch and bound algorithms, Christofides 
algorithm or Christofides–Serdyukov algorithm, Bellman–Held–Karp algorithm, Lin-Kernighan 
algorithm, metaheuristics-based algorithms, graph neural networks or deep reinforcement 
learning methods. For example, Christofides algorithm [2] is a polynomial-time 
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approximation algorithm that produces a solution to the TSP that is guaranteed to be no 
more than 50% longer than the optimal solution with a time complexity of O(n3). See 
Appendix-A for solution of TSP using Christofides algorithm implemented in networkx. We 
will discuss how to solve TSP using a number of these algorithms throughout this book. 

TSP is used as a platform for the study of general methods that can be applied to a wide 
range of discrete optimization problems. These problems include, but are not limited to, 
microchips manufacturing, permutation flow shop scheduling, arranging school bus routes to 
pick up children in a school district, assignment of routes for airplanes, transportation of 
farming equipment, scheduling of service calls, meal delivery, and the routing of trucks for 
parcel delivery and pickup. For example, the Capacitated Vehicle Routing Problem (CVRP) is 
a generalization of the TSP where one has to serve a set of customers using a fleet of 
homogeneous vehicles based at a common depot. Each customer has a certain demand for 
goods which are initially located at the depot. The task is to design vehicle routes starting 
and ending at the depot such that all customer demands are fulfilled. Later in this book, 
several examples are given to show how to solve TSP and its variants using stochastic 
approaches. 
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Problem Types 
Decision problems are commonly classified based on their levels of complexities. These classes can be also applied 
to optimization problems given the fact that optimization problems can be converted into decision-making problems. 
For example, the optimization problem whose objective is to find an optimal or near-optimal solution within a feasible 
search space can be paraphrased as a decision-making problem, which answers the question: “Is there is an optimal 
or a near-optimal solution within the feasible search space?” The answer will be {“yes” or “no”} or {“True” or “False”}. A 
generally-accepted notion of algorithm's efficiency is that its running time is polynomial. Problems that can be solved 
in polynomial time are known as tractable. Figure 2.4 shows different types of problems and gives examples of 
commonly used benchmark/toy and real-life application of each type. 

 

 
Figure 2.4 Problem classes based on hardness and completeness. Problems can be categorized into NP-hard, NP-
complete, NP, or P. 

 
For example, a complexity class P represents all decision problems that can be solved in polynomial time by 

deterministic algorithms (i.e., algorithms that do not guess at a solution). The NP or Nondeterministic Polynomial 
problems are problems whose solutions are hard to find but easy to verify and are solved by a non-deterministic 
algorithm in polynomial time. NP-complete problems are problems that are both NP-hard and verifiable in polynomial 
time. Finally, a problem is NP-hard if it is at least as hard as the hardest problem in NP-complete. NP-hard problems 
are usually solved by approximation or heuristic solvers as it is hard to find efficient exact algorithms to solve such 
kind of problems. 
 

Clustering is an example of combinatorial problems whose solution takes the form of a 
combination where the order doesn’t matter. In clustering, given n objects, we need to group 
them in k groups (clusters) in such a way that all objects in a single group or cluster have a 
“natural”' relation to one another, and objects not in the same group are somehow different. 
This means that the objects will be grouped based on some similarity or dissimilarity metric. 
The following formula is known as a Stirling number of the second kind (or Stirling partition 
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number) and gives the number of ways to partition a set of n objects into k non-empty 
subsets: 

𝑆𝑆(𝑛𝑛, 𝑘𝑘) = �
𝑛𝑛
𝑘𝑘� =

1
𝑘𝑘!�(−1)𝑖𝑖 �

𝑘𝑘
𝑖𝑖 � (𝑘𝑘 − 𝑖𝑖)𝑛𝑛

𝑘𝑘

𝑖𝑖=0

Equation 2.1 

Let's consider smart cart clustering as an example. Shopping and luggage carts are 
commonly found in shopping malls and large airports. Shoppers or travelers pick up these 
carts at designated points and leave them in arbitrary places. It is a considerable task to re-
collect them, and it is therefore beneficial if a “smarter” version of these carts could draw 
themselves together automatically to the nearest assembly points as illustrated in Figure 2.5. 

Figure 2.5 Smart Cart Clustering. Unused shopping or luggage carts congregate near designated assembly 
points to make collection and redistribution easier. 

In practice, this problem is considered an NP-hard problem, as the search space can be 
very large based on the number of available carts and number of assembly points. In order 
to cluster these carts effectively, the centers of clustering (centroids) must be found. The 
carts in each cluster will then be directed to the assembly point closest to the centroids. For 
example, assume that there are 50 carts to be clustered around 4 assembly points. This 
means that n=50 and c=4. Stirling numbers can be generated using the sympy library. To do 
so, simply call the stirling function on two numbers n and k. 

29

https://livebook.manning.com/#!/book/optimization-algorithms/discussion


©Manning Publications Co.  To comment go to  liveBook 

from sympy.functions.combinatorial.numbers import stirling 
print(stirling(50,4)) 
print(stirling(100,4)) 

The number is 5.3×1028 and if n is increased to 100, the number becomes 6.7×1058. 
Enumerating all possible partitions for large problems is practically not feasible. 

2.1.2 Landscape and Number of Objective Functions 
Objective function’s landscape represents the distribution of values of the objective function 
in the feasible search space. When you walk over this landscape, you find the optimal 
solution or the global minima in the lowest valley of the landscape assuming that you are 
dealing with a minimization problem or in the highest peak of the landscape in case of a 
maximization problem. According to the landscape of the objective function, if there exists 
only one clear global optimal solution, the problem is unimodal (e.g., convex and concave 
functions). On the other hand, in a multimodal problem, more than one optimum exists. The 
objective function is called deceptive when the global minimum lies in a very narrow valley 
and at the same time there exists a strong local minimum with a wide basin of attraction 
such that the value of objective function is close to the value of objective function at global 
minimum [3]. Figure 2.6 is a 3D visualization of the landscapes of unimodal, multimodal, and 
deceptive functions generated using Python generated by Listing 2.1. Complete listing is 
available in the GitHub repo of the book. 

Listing 2.1 Examples of Objective Functions 

import numpy as np 
import math 
import matplotlib.pyplot as plt 

def objective_unimodal(x, y):    #A 
return x**2.0 + y**2.0 

def objective_multimodal(x, y):  #B 
return np.sin(x) * np.cos(y) 

def objective_deceptive(x, y):    #C 
return (1-(abs((np.sin(math.pi*(x-2))*np.sin(math.pi*(y-2)))/(math.pi*math.pi*(x-2)*(y-

2))))**5)*(2+(x-7)**2+2*(y-7)**2) 

#A Unimodal function 
#B Multimodal function 
#C Deceptive function [3] 
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Figure 2.6 Unimodal, multimodal, and deceptive functions. Unimodal functions have one global optimum, 
while multimodal functions can have many. Deceptive functions contain false optima close to the value of 
objective function at global minimum, which can cause some algorithms to get stuck. 

If the quantity to be optimized is expressed using only one objective function, the 
problem is referred to as a mono-objective or single-objective optimization problem (such as 
convex or concave functions). A multi-objective problem specifies multiple objectives to be 
simultaneously optimized. Problems without an explicit objective function are called 
Constraint-Satisfaction Problems (CSP). The goal in this case is to find a solution that 
satisfies a given set of constraints. The N-queen problem is an example of CSP. In this 
problem, the aim is to put n queens on an n×n board with no two queens on the same row, 
column, or diagonal, as illustrated in Figure 2.7. In this 4-queen problem, there are 5 
conflicts in the first state ({Q1,Q2}, {Q1,Q3},{Q2,Q3},{Q2,Q4} and {Q3,Q4}).  After 
moving Q4, the number of conflicts reduces by 2 and after moving Q3, the number of 
conflicts is only 1, which is between Q1 and Q2. 

Figure 2.7 N-Queen Problem. This problem has no objective function, rather, only a set of constraints that 
must be satisfied. 

By keep moving or placing the pieces, we can reach to the goal state where number of 
conflicts is zero, which means that there is no any queen that could attach any other queen 
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horizontally, vertically or diagonally. Listing 2.2 is a Python implementation of the 4-Queen 
problem. 

Listing 2.2 N-Queen CSP 

from copy import deepcopy 
import math 
import matplotlib.pyplot as plt 
import numpy as np 

board_size = 4 
board = np.full((board_size, board_size), False)    #A 

def can_attack(board, row, col): 
if any(board[row]):    #B 

return True    #B 

offset = col - row    #C 
if any(np.diagonal(board, offset)):    #C 

return True    #C 
offset = (len(board) - 1 - col) - row    #C 
if any(np.diagonal(np.fliplr(board), offset)):    #C 

return True    #C 

return False 

board[0][0] = True    #D 
col = 1 
states = [deepcopy(board)] 
while col < board_size: 

row = 0 
while row < board_size: 

if not can_attack(board, row, col):    #E 
board[row][col] = True 
col += 1 
states.append(deepcopy(board)) 
break 

row += 1 
if row == board_size:    #F 

board = np.delete(board, 0, 1) 
new_col = [[False]] * board_size 
board = np.append(board, new_col, 1) 
states.append(deepcopy(board)) 
col -= 1 
continue 

#A Create an nxn board 
#B Check existing on the same row 
#C Check diagonals 
#D First column is trivial 
#E The piece can be placed in this column 
#F The piece cannot be placed in this column 

We define a function called can_attack to detect if a newly placed piece can attack a 
previously placed piece. A piece can attack another piece if it is in the same row, column, or 
diagonal. 
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Figure 2.8 N-Queens Solution. The first piece is trivially placed in the first position. The second piece must be 
placed either in the 3rd position or the 4th position, as the first two can be attacked. By placing it in the 3rd

position however, the 3rd piece cannot be placed. Thus, the first piece is removed (the board is “slid” one 
column over), and we reattempt. This continues until a solution is found. 

The full code for this problem, including the code used to generate visualizations, can be 
found in the code file for Listing 2.2. The solution algorithm is as follows: 

1. Moving from top to bottom in a column, the algorithm attempts to place the piece 
while avoiding conflicts. For the first column, this will default to Q1 = 0. 

2. Moving to the next column, if a piece cannot be placed at row 0, it will be placed at 
row 1, and so on. 

3. When a piece has been placed, the algorithm moves to the next column. 
4. If it is impossible to place a piece in a given column, the first column of the entire 

board is removed, and the current column is reattempted. 

Constraint programming solvers available in Google OR-Tools can be also used to solve 
this n×n queen problem. Listing 2.3 shows the steps of the solution using OR-Tools. 
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Listing 2.3 Solving N-Queen problem using OR-Tools 

import numpy as np 
import matplotlib.pyplot as plt 
import math 
from ortools.sat.python import cp_model #A 

board_size = 4 #B 

model = cp_model.CpModel() #C 

queens = [model.NewIntVar(0, board_size - 1, 'x%i' % i) for i in range(board_size)] #D 

model.AddAllDifferent(queens) #E 

model.AddAllDifferent(queens[i] + i for i in range(board_size)) 
model.AddAllDifferent(queens[i] - i for i in range(board_size)) 

solver = cp_model.CpSolver() #G 
solver.parameters.enumerate_all_solutions = True #G 
solver.Solve(model) #G 

all_queens = range(board_size)    #F 
state=[] 
for i in all_queens: 

for j in all_queens: 
if solver.Value(queens[j]) == i: 

# There is a queen in column j, row i. 
state.append(True) 

else: 
state.append(None) 

states=np.array(state).reshape(-1, board_size) 
fig = plt.figure(figsize=(5,5)) #H 
markers = [ 

x.tolist().index(True) if True in x.tolist() else None
for x in np.transpose(states) 

] #H 
res = np.add.outer(range(board_size), range(board_size)) % 2 #H 
plt.imshow(res, cmap="binary_r") #H 
plt.xticks([]) #H 
plt.yticks([]) #H 
plt.plot(markers, marker="*", linestyle="None", markersize=100/board_size, color="y") #H 

#A imports a constraint programming solver that uses SAT (satisfiability) methods. 
#B Set board size for nxn Queeen problem. 
#C Define a solver 
#D Define the variables. The array index represents the column, and the value is the row. 
#E Define the constraint: all rows must be different 
#F Define the constraint: no two queens can be on the same diagonal. 
#G Solve the model. 
#H Visualize the solution 

Running this code produces the following output: 
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Figure 2.9 N-Queens solution using OR-Tools. 

More information about Google OR-Tools is available in Appendix A. 

2.1.3 Constraints 
Constrained problems have equality and/or inequality hard or soft constraints. Hard 
constraints must be satisfied, while soft constraints are nice to satisfy (but are not 
mandatory). If there are no constraints to be considered aside from the boundary 
constraints, the problem is an unconstrained optimization problem. Let’s revisit the ticket 
pricing problem introduced in subsection 1.3.1 of the previous chapter. There a wide range of 
derivative-based solvers in Python that can handle such kind of differentiable mathematical 
optimization problem (see Appendix A). Listing 2.4 shows how to solve this simple ticket 
pricing problem using SciPy. SciPy is a library containing a collection of valuable tools for all 
things computation. 

Listing 2.4 Optimal Ticket Pricing 

import numpy as np 
import scipy.optimize as opt 
import matplotlib.pyplot as plt 

def f(x): #A 
return -(-20*x**2+6200*x-350000)/1000 

res=opt.minimize_scalar(f, method='bounded', bounds=[0, 250]) #B 

print("Optimal Ticket Price ($): %.2f" % res.x) 
print("Profit f(x) in K$: %.2f" % -res.fun) 

#A The objective function, which is required by ‘minimize_scalar’ to be a minimization function 
#B ‘bounded’ method is the constrained minimization procedure that finds the solution 

Running this code produces the following output: 
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Optimal Ticket Price ($): 155.00 
Profit f(x) in K$: 130.50 

This code finds the optimal ticket price in the range between $0 and $250 that maximizes 
the profit. As you may have noticed the profit formula is converted into a minimization 
problem by adding a negative sign in the objective function to match with the minimize
function in scipy.optimize. A minus sign was added in print function to convert it back into 
profit. 

What if we imposed an equality constraint on this problem? Let’s assume that due to 
incredible international demand for our event, we now consider using a different event 
planning company and opening up virtual attendance for our conference, so that 
international guests can also participate. Interested participants can now choose between 
attending the event in person or joining via live stream. All participants, whether in-person 
or virtual, will still receive a physical welcome package, which is limited to 10,000 units. 
Thus, in order to ensure a “full” event, we must either sell 10,000 in person tickets, 10,000 
virtual tickets, or some combination thereof. This new event company is charging us a 
$1,000,000 flat rate for the event, and thus we want to sell as many tickets as possible 
(exactly 10,000). Below are the equations associated with this problem: 

Let x be the number of physical ticket sales, and y be the number of virtual ticket sales. 
Additionally, let f(x,y) be the function for profits generated from the event, where 

f(x,y)=155x+(0.001x3/2+70)y-1000000 

Equation 2.2 

Essentially, we earn $155 profit on in-person attendance, and the profit for online 
attendance is $70, but increases by some amount the more physical attendance we have 
(let’s say that as the event looks “more crowded”, we can charge more for online attendees). 

Assuming that we’re adding the constraint function: x+y≤10000, which shows that the 
combined ticket sales cannot exceed 10,000. The problem is now a bivariate mono-objective 
constrained optimization problem. It is possible to convert this constrained optimization 
problem to unconstrained optimization using Lagrange multiplier λ. We can use sympy to 
implement Lagrange multipliers to solve for the optimal mix of virtual and physical ticket 
sales. The idea is to take the partial derivatives of the objective functions and the constraints 
with respect to the decision variables x and y to form the unconstrained optimization 
equations to be used by the SymPy solver as illustrated in Figure 2.10. 
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Figure 2.10 Steps of solving ticket pricing problem using Lagrange method 

Listing 2.5 shows the Python implementation using SymPy. SymPy is an open-source 
Python library for symbolic mathematics. Capabilities include, but are not limited to, 
statistics, physics, geometry, calculus, equation solving, combinatorics, discrete math, 
cryptograph and parsing. See Appendix-A for more information about SymPy. 

Listing 2.5 Maximizing Profits using Lagrange Multipliers 

import numpy as np 
import sympy as sym 

x,y=sym.var('x, y', positive=True) #A 

f=155*x+(0.001*x**sym.Rational(3,2)+70)*y-1000000 #B 

g=x+y-10000 #C 

lamda=sym.symbols('lambda') #D 
Lagr=f-lamda*g 

grad_Lagr=[sym.diff(Lagr,var) for var in [x,y]] #E 
eqs=grad_Lagr+[g] 

sol=sym.solve(eqs,[x,y,lamda], dict=True) #F 
 

def getValueOf(k, L): 
for d in L: 

if k in d: 
return d[k] 

# print the value of the objective function 
profit=[f.subs(p) for p in sol] 

print("optimal number of physical ticket sales: x = %.0f" % getValueOf(x, sol)) 
print("optimal number of online ticket sales: y = %.0f" % getValueOf(y, sol)) 
print("Expected profil: f(x,y) = $%.4f" % profit[0]) 
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#A define decision variables 
#B define the ticket pricing objective function 
#C define equality constraint 
#D Lagrange multiplier 
#E taking the partial derivatives 
#F solving these 3 equations in 3 variables (x,y,lambda) using sympy 

By solving the above three equations, we get x and y values that correspond to the 
optimized quantities for virtual and physical ticket sales. From Listing 2.5, we can see that 
the best way to sell tickets is to sell 6,424 in-person tickets and 3,576 online ticket profits. 
This results in a maximum profit of $2,087,260.533. 

2.1.4 Linearity of Objective Functions and Constraints 
If all the objective functions and all associated constraint conditions are linear, the 
optimization problem is categorized as a linear optimization problem or Linear Programming 
Problem (LPP or LP), where the goal is to find the optimal value of a linear function subject to 
linear constraints. Blending problems are a typical application of mixed integer linear 
programming (MILP) where a number of ingredients are to be blended or mixed to obtain a 
product with certain characteristics or properties.  In the animal feed mix problem described 
in [4], it is required to determine the optimum amounts of three ingredients to include in an 
animal feed mix. The possible ingredients, their nutritive contents (in kilograms of nutrient 
per kilograms of ingredient) and the unit cost are shown in Table 2.1. 

Table 2.1 Animal Feed Mix Problem 

Ingredients 
Nutritive content and price of ingredients 

Calcium (kg/kg) Protein (kg/kg) Fiber (kg/kg) Unit cost (cents/kg) 

Corn 0.001 0.09 0.02 30.5 

Limestone 0.38 0.0 0.0 10.0 

Soybean meal 0.002 0.50 0.08 90.0 

The mixture must meet the following restrictions: 

• Calcium — at least 0.8% but not more than 1.2%.
• Protein — at least 22%.
• Fiber — at most 5%.

The problem is to find the mixture that satisfies these constraints while minimizing cost.
The decision variables are x1, x2 and x3, which are proportions of Limestone, Corn and 
Soybean meal in the mixture respectively. 

Objective Function: minimize f = 30.5x1 + 10x2 + 90x3 
Subject to the following constraints: 

• Calcium limits: 0.008<=0.001x1+0.38x2+0.002x3 <=0.012
• Protein constraint: 0.09x1+0.5x3 >=0.22
• Fiber constraint: 0.02x1+0.08x3 <=0.05
• Non-negativity restriction: x1, x2, x3 >= 0
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• Conservation: x1+x2+x3=1 

In this problem, both the objective function and the constraints are linear so we call it 
linear programming problem. There are several Python libraries that can be used for solving 
mathematical optimization problems (see Appendix A). Let’s consider solving the animal feed 
mix problem using PuLP. PuLP is a Python linear programming library. It allows users to 
define linear programming problems and to solve them using optimization algorithms such as 
COIN-OR's linear and integer programming solvers. See Appendix A for more information 
about PuLP and other mathematical programming solvers. Listing 2.6 shows the steps of 
solving the animal feed mix problem using PuLP. 

Listing 2.6 Solving Linear Programming Problem using PuLP 

from pulp import * 

model = LpProblem("Animal_Feed_Mix_Problem", LpMinimize) #A 

x1 = LpVariable('Corn', lowBound = 0, upBound = 1, cat='Continous') #B 
x2 = LpVariable('Limestone', lowBound = 0, upBound = 1, cat='Continous') #B 
x3 = LpVariable('Soybean meal', lowBound = 0, upBound = 1, cat='Continous') #B 

model += 30.5*x1 + 10.0*x2 + 90*x3, 'Cost' #C 

model +=0.008 <= 0.001*x1 + 0.38*x2 + 0.002*x3 <= 0.012, 'Calcium limits' #D 
model += 0.09*x1 + 0.5*x3 >=0.22, 'Minimum protein' #D 
model += 0.02*x1 + 0.08*x3 <=0.05, 'Maximum fiber' #D 
model += x1+x2+x3 == 1, 'Conservation' #D 

model.solve() #E 

for v in model.variables(): #F 
print(v.name, '=', round(v.varValue,2)*100, '%') #F 
 

print('Total cost of the mixture per kg = ', round(value(model.objective), 2), '$')  #F 

#A Create a linear programming model 
#B Define 3 variables that represents the percentage of each ingredients Corn, Limestone and Soybean meal in the 

mixture. 
#C Define total cost as the objective function to be minimize 
#D Add the constraints 
#E Solve the problem using PuLP's choice of Solver 
#F Print the results (the optimal percentages of the ingredients and the cost of the mixture per kg) 

As you can see in this listing, we start by importing PuLP and creating a model as linear 
programming problem. We then define LP Variables with the specified associated parameters 
such as name, lower bound and upper bound on each variable’s range and type of the 
variable (e.g., Integer, Binary or Continuous). A solver is then used to solve the problem. 
PuLP supports several solvers such as GLPK, GUROBI, CPLEX and MOSEK. The default solver 
in PuLP is Cbc (Coin-or branch and cut). Running this code gives the following output: 

Corn = 65.0% 
Limestone = 3.0% 
Soybean_meal = 32.0% 
Total cost of the mixture per kg = 49.16$ 
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If one of the objective functions or at least one of the constraints is non-linear, the 
problem is considered a non-linear optimization problem or nonlinear programming problem 
(NLP) and it's harder to solve compared to a linear problem. A special case of NLP is called 
Quadratic Programming (QP) when the objective function is quadratic. For example, the Plant 
Layout Problem (PLP) or Facility Location Problem (FLP) is a quadratic assignment problem 
(QAP) that aims at assigning different facilities (departments) F to different locations L in 
order to minimize a given function cost such as the total material handling cost as shown in 
Figure 2.11. 

Assume that ωij is the frequency of interaction or the flow of products between these 
facilities and df(i)f(j) is the distance between facilities i and j and. The material handling cost 
is: 

MHCij=flow×distance=ωij×df(i)f(j) 

Equation 2.3 

Figure 2.11 Plant Layout Problem. What is the optimal location for each department that minimizes the 
overall material handling costs? 

and total material handling cost (TMHC) is the summation of all the material handling 
costs inside the material handling cost matrix. In matrix notation, the problem can be 
formulated as: 

Find X which minimizes trace(WXDXT) 
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Where X represents the assignment vector, W is the flow matrix and D is the distance 
matrix. Trace is the sum of elements on the main diagonal (from the upper left to the lower 
right) of the resultant material handling cost matrix. 

In a more general case, NLP includes non-linear objective functions and/or at least 
nonlinear constraints of any form. For example, imagine you’re designing a landmine 
detection and disposal Unmanned Ground Vehicle (UGV) [5]. In outdoor applications like 
humanitarian demining, UGVs should be able to navigate through rough terrain. Sandy soils 
or rocky terrain with obstacles, some steep inclines, ditches, and culverts can be difficult to 
negotiate by the vehicle. This urges the need to carefully design the locomotion system of 
the vehicles to guarantee motion fluidity. Assume that you are in charge of finding optimal 
values for the wheel parameters (e.g., wheel diameter, breadth width and wheel loading) 
that will lead to: 

• minimize the wheel sinkage, which is the maximum sinkage of the wheel in the soil 
that it is moving on; 

• minimize motion resistance, which is the overall resistance faced by the UGV unit due 
to the different components of resistance (compaction, gravitational, etc.); 

• minimize drive torque, which is the required driving torque from the actuating motors 
per each wheel; 

• minimize drive power, which is the required driving power from the actuating motors 
per each wheel and 

• maximize the slope negotiability that represents the maximum slope that can be 
climbed by the UGV unit considering its weight, as well as the soil parameters. 

Due to availability in the markets and/or manufacturability concerns and costs, the wheel 
diameter should be in the range of 4-8.2 inches, breadth width in the range of 3-5 inches, 
and wheel loading in the range of 22-24 pounds per wheel.  This wheel design problem 
(Figure 2.12) can be stated as following: 

Find X which optimizes ƒ, subject to a possible set of boundary constraints. Where X is a 
vector that is composed of a number of design/decision variables such as 

x1=wheel diameter, x1 ∈[4.8,2] 
x2=breadth width, x2∈ [3,5] 
x3=wheel loading, x3∈ [22,24] 
We can also consider the objective functions ƒ={ƒ1, ƒ2,…}. For example, the function for 

wheel sinkage might look like this: 

𝑓𝑓1 = ( 3𝑥𝑥3
(3−𝑛𝑛)(𝑘𝑘𝑐𝑐+𝑥𝑥2𝑘𝑘𝜑𝜑√𝑥𝑥1)

)
2

(2𝑛𝑛+1)  

Equation 2.4 

where n is the exponent of sinkage, kc is the cohesive modulus of soil deformation, and 
kφ is frictional modulus of soil deformation. This problem is considered to be non-linear since 
the objective function is non-linear. 
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Figure 2.12 MineProbe wheel design problem [5]. 

The catenary problem [6] is another example of a non-linear optimization problem. A 
catenary is a flexible hanging object composed of multiple parts, such as a chain or 
telephone cable (Figure 2.13). In this problem, we are provided with n+1 homogenous 
beams with lengths d1, d2 ,…, dn+1>0, and masses m1,m2,…,mn+1>0, which are connected by 
joints G1,G2,…,Gn+1.The location of each joint is represented by the Cartesian coordinates 
(xi,yi,zi). The ends of the catenary are G1 and Gn+1, which have the same y and z values (they 
are at the same height and line with each other). 

Figure 2.13 Finite Catenary Problem. The catenary (or chain) is suspended from two points G1 and Gn+1 [6]. 

Assuming that beam lengths and masses are predefined parameters, the goal is to look 
for stable equilibrium positions in the field of gravity, i.e., those where the potential energy is 
minimized. The problem can be stated as follows: 
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Find 𝑌𝑌 that minimizes ∑ 𝑚𝑚𝑖𝑖𝛾𝛾
𝑦𝑦𝑖𝑖+𝑦𝑦𝑖𝑖−1

2
,     𝛾𝛾 > 0𝑛𝑛+1

𝑖𝑖=1

Equation 2.5 

subject to the following constraints: 

gi=(xi-xi-1)2+(yi-yi-1)2+(zi-zi-1)2-di2 =0 , i=1,2,…,n+1 

Equation 2.6 

Where γ is the gravitational constant. The non-linearity of the constraints makes this 
problem non-linear despite having a linear objective function. 

2.1.5 Expected Quality and Permissible Time of the Solution 
Optimization problems can also be categorized according to the expected quality of the 
solutions and the time given to find the solutions. Figure 2.14 shows three main types of 
problems, namely, design problems/strategic functions, planning problems/tactical functions 
and control problems/operational functions. 

Figure 2.14 Qualities of solutions vs. Search Time. Some types of problems require fast computations but do 
not require incredibly accurate results, while others (such as design problems) allow more processing time in 
return for higher accuracy. 

In design problems, time is not as important as the quality of the solution and users are 
willing to wait (sometimes even a few days) to get an optimal, or near-optimal result. These 
problems can be solved offline, and the optimization process is usually carried out only once 
in a long time. Examples of design problems include political districting, vehicle design, class 
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scheduling, asset allocation, resource planning, assembly line balancing, inventory 
management, flight scheduling and political districting. 

Let’s discuss political districting as a design problem in more details. Districting is the 
problem of grouping small geographic areas, called basic units, into larger geographic 
clusters, called districts, in a way that the latter are acceptable according to relevant 
planning criteria [7]. Typical examples for basic units are customers, streets, or zip code 
areas. Examples of these criteria may include: 

• Balance or equity in terms of demographic background, equitable size, balanced 
workload, equal sales potentials, or number of customers, for example. 

• Contiguity to enable travelling between the basic units of the district without having to 
leave the district. 

• Compactness to enable having round-shaped or square shaped undistorted districts 
without holes. 

• Respect of boundaries such as administrative boundaries, railroads, rivers, mountains, 
etc. 

• Socio-economic heterogeneity to have a better representation of residents with 
different income revenues, ethnicity, concerns, or views. 

Political districting, school districting, districting for health services, districting for EV 
charging stations, districting for micro mobility (e.g., e-bikes and e-scooters) stations and 
districting for sales or delivery are examples of districting problems. Political districting is an 
issue that has plagued societies since the advent of representative democracy in the Roman 
Republic. In a representative democracy, officials are nominated and elected to power to 
represent the interests of the people who elected them. In order to have a greater say when 
deciding on matters that concern the entire state, the party system came about, which 
defines a political platform on which each nominee will use to differentiate themselves from 
competitors. Manipulating the shape of electoral districts to determine the outcome of an 
election is called gerrymandering (named after early 19th Massachusetts governor Elbridge 
Gerry who redrew the map of the Senate’s districts in 1810 in order to weaken the opposing 
federalist party). Figure 2.15 shows how manipulating the shape of the districts can sway the 
vote in favor of a decision that otherwise wouldn’t have won. 

Figure 2.15 Example of Gerrymandering. The two major political parties, Shield and Bell try to gain an 
advantage by manipulating the district boundaries to suppress undesired interests, and to promote their own. 
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To avoid gerrymandering, an effective and transparent political districting strategy is 
needed to generate a solution that preserves the integrity of individual sub-districts and 
divides the population into almost equal voting populations in a reproducible way. In many 
countries, electoral districts are reviewed from time to time to reflect changes and 
movements in the country’s population. For example, the Constitution of Canada requires 
that federal electoral districts be reviewed after each decennial (10-year) census. 

Political districting is defined as aggregating n sub-regions of a territory into m electoral 
districts subject to the following constraints: 

• The districts should have near-equal voting population, 
• The socio-economic homogeneity inside each district as well as the integrity of 

different communities should be maximized, 
• The districts have to be compact, and the sub-regions of each district have to be 

contiguous, and 
• Sub-regions should be considered as indivisible political units and their boundaries 

should be respected. 

The problem can be formulated as an optimization problem in which a function that 
quantifies the above factors is maximized. An example of this function is: 

F(x)= αpop ƒpop(x)+ αcomp ƒcomp(x)+ αsoc ƒsoc(x)+ αint ƒint(x)+ αsim ƒsim(x) 

Equation 2.7 

Where x is a solution to the problem or the electoral districts, αi are user-specified 
multipliers 0≤αi≤1, ƒpop, ƒcomp, ƒsoc, ƒint and ƒsim are functions that quantify the population 
equality, the compactness of districts, the socio-economic homogeneity, the integrity of 
different communities, and the similarity to existing districts, respectively. In the upcoming 
chapters, we will show how to handle optimal multi-criteria assignment design problems 
using offline optimization algorithms. 

Planning problems need to be solved relatively faster compared to design problems, in a 
time span from a few seconds to a few minutes. To find a solution during such a short period 
of time, optimality is usually traded for speed gains. Examples of planning problems include 
vehicle motion planning, emergency vehicle dispatching and routing, patient admission 
scheduling, surgery scheduling and crew scheduling. Let’s consider ridesharing problem as an 
example of planning problem. Ridesharing involves a fleet of pay-per-use vehicles and a set 
of passengers with predefined pick up and drop off points (Figure 2.16). For such a set of 
passengers and drivers, the dispatch service of the application will have to assign a set of 
passengers in specific orders to each driver to maximize the total revenue earned by the 
drivers and minimize the number of trips missed. The ridesharing problem is a multi-
objective constrained optimization problem. A non-comprehensive list of optimization goals 
for ridesharing includes: 

• Minimizing the total travel distance/time of drivers’ trips 
• Minimizing the total travel time of passengers’ trips 
• Maximizing the number of matched (served) requests 
• Minimizing the cost for the drivers’ trips 
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• Minimizing the cost for the passengers’ trips 
• Maximizing driver’s earning 
• Minimizing passenger’s waiting time 
• Minimizing the total number of drivers required 

For the ride-sharing problem, both the search time and the quality of the solutions are 
important. On many popular ridesharing platforms, dozens if not hundreds of users may be 
simultaneously searching for rides at the same place in a given district. Overly costly and 
time-consuming solutions will lead to higher operating costs (i.e., employing more drivers 
than necessary, calling in drivers from other districts) as well as the potential for lost 
business (bad user experiences may dissuade passengers from using the platform a second 
time), and high driver turnover rate. 

Figure 2.16 Ridesharing Problem. This planning problem needs to be solved in a shorter amount of time, as 
delays could mean lost trips and a bad user experience. 

In practice, the assignment of drivers to passengers goes well beyond distance between 
passenger and driver, but may also include factors such as driver reliability, passenger 
rating, vehicle type, as well as pickup location and destination location types. For example, a 
customer going to the airport may request a larger vehicle to accommodate luggage. In the 
upcoming chapters, we will discuss how to solve planning problems using different search 
and optimization algorithms. 

Control problems require very fast solutions in real-time. In most of the cases, this 
means in a time span between a few milliseconds or less, to a few seconds. Vehicle 
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lateral/longitudinal motion control, surgical robot motion control, disruptions management 
and ad hoc communication relaying are examples of control problems. Online optimization 
algorithms are required to handle such kinds of problems. Optimization tasks in both 
planning and control problems are often carried out repetitively – new orders will, for 
instance, continuously arrive in a production facility and need to be scheduled to machines in 
a way that minimizes the waiting time of all jobs. Communication replaying can be 
considered as a control problem.  Imagine a real-world situation where a swarm of 
Unmanned Aerial Vehicles (UAVs) or Micro Aerial Vehicles (MAVs) is deployed to search 
victims trapped on untraversable terrain after a natural disaster like an earthquake, 
avalanche, tsunami, tornado, wildfire, etc. The mission consists of two phases: a search 
phase and a relay phase. During the search phase, MAVs will conduct search according to the 
deployment algorithm. When a target is found, the swarm of MAVs self-organizes to utilize 
their range-limited communication capabilities for setting up an ad hoc communication relay 
network between the victim and the base station as illustrated in Figure 2.17. 

Figure 2.17 Communications Relaying Problem. A swarm of MAVs must form an ad hoc communication replay 
between a base station and a trapped victim. The movement of MAVs is a control problem that must be solved 
repeatedly, multiple times per second. In this case, speed is more important than accuracy, as minor errors 
can be immediately corrected during the next cycle. 

During the search space, MAVs can be deployed in such a way that maximizes the area 
coverage. After detecting a victim, MAVs can be repositioned to maximize the victim's 
visibility. The ad hoc communication relay network is then established based to maximize the 
radio coverage in the swarm and to find the shortest path between the MAV that detected 
the victim and the base station considering the following assumptions: 
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• MAVs are capable of situational awareness by combining data from three noise-prone
sensors: magnetic compass for direction, speedometer for speed, and altimeter for
altitude.

• MAVs are capable of communicating via a standard protocol such as IEEE 802.11b
with a limited range of 100m communication radius.

• MAVs are capable of relaying ground signals as well as control signals sent amongst
MAVs.

• MAVs have enough onboard power to sustain 30 minutes of continuous flight, at which
point it must return to the base to recharge. However, the sustainment of flight is
variable with respect to the amount of signaling completed during flight.

• MAVs are capable of quickly accelerating to a constant flight speed of 10m/s.
• MAVs are not capable of hovering and have a minimum turn radius of approximately

10m.

For control problems such as MAV repositioning, search time is of paramount importance. 
As the MAVs cannot hover and thus must remain in constant motion, delayed decisions may 
lead to unexpected situations, such as mid-air collisions or loss of signal. As instructions are 
sent (or repeated) every few milliseconds, the MAV must be able to decide its next move 
within that span of time. MAVs must account only for its current position, target position, and 
velocity, but also consider obstacles, communications signal strength, as well as wind and 
other environmental effects. Minor errors are acceptable, as they can be corrected in 
subsequent searches. In the upcoming chapters, we will discuss how to solve control 
problems. 

This book will largely focus on complex, ill-structured problems that cannot be handled by 
traditional mathematical optimization or derivative-based solvers, and will give examples of 
different design, planning and control problems in various domains. Next, we’ll take a look at 
how search and optimization algorithms are classified. 

2.2 Search and Optimization Algorithm Classification 
When we search, we try to examine different states to find a path from the start/initial state 
to the goal state. Very often, an optimization algorithm searches for an optimum solution by 
iteratively transforming a current state or a candidate solution into a new, hopefully better, 
solution. Search algorithms can be classified based on the way the search space is explored. 

• Local Search uses only local information of the search space surrounding the current
solution to produce new solutions. Since only local information is used, local search
algorithms (also known as local optimizers) locate local optima (which may or may
not be a global optima).

• Global Search uses more information about the search space to locate global optima.
In other words, global search algorithms explore the entire search space, while local
search algorithms only exploit neighborhoods.

Yet another classification includes deterministic and stochastic algorithms as illustrated in 
Figure 2.18. 
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Figure 2.18 Deterministic vs. stochastic Algorithms. Deterministic algorithms follow a set procedure, and the 
results are repeatable, while stochastic searches have elements of randomness built into the algorithms. 

• Deterministic Algorithms follow a rigorous procedure in its path, and both the 
values of its design variables and its functions are repeatable. For the same starting 
point, they will follow the same path whether you run the program today or 
tomorrow. Examples include, but are not limited to graphical methods, gradient and 
Hessian based methods, penalty methods, gradient projection methods, and graph 
search methods. Graph search methods can be further subdivided into blind search 
methods (depth-first, breadth-first, Dijkstra) and informed search methods (hill 
climbing, beam search, Best-first, A*, contraction hierarchies). Deterministic methods 
are covered in Part-I of this book. 

• Stochastic Algorithms explicitly use randomness in their parameters and/or 
decision-making process. For example, genetic algorithms use some pseudo-random 
numbers, resulting in individual paths that are not exactly repeatable. With stochastic 
algorithms, the time taken to obtain an optimal solution cannot be accurately foretold. 
Solutions do not always get better, and stochastic algorithms sometimes miss the 
opportunity to find optimal solutions. This behavior can be advantageous, however, to 
avoid becoming trapped in local optima. Examples of stochastic algorithms include 
tabu search, simulated annealing, genetic algorithms, differential evolution 
algorithms, particle swarm optimization, ant colony optimization, artificial bee colony, 
firefly algorithm, etc. Most statistical machine learning algorithms are stochastic 
because they make use of randomness during learning stage and they make 
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predictions during inference stage with a certain level of uncertainty. Moreover, some 
machine learning models are like people unpredictable. Models trained using human 
behavior-based data as independent variables are more likely unpredictable compared 
to those trained using independent variables that strictly follow physics laws. For 
example, human intent recognition model is less predictable compared to a model 
that predict the stress-stain curve of a material. So, due to the uncertainty associated 
with machine learning predictions, machine learning-based algorithms used in solving 
optimization problems can be considered as stochastic methods. Stochastic algorithms 
are covered in parts II, III, IV and V of this book. 

Treasure Hunting Mission 
The search for an optimal solution in a given search space can be likened to a treasure hunting mission. Imagine you 
and a group of friends decided to visit an island looking for a pirates’ treasure. 

 
All the areas on the island (except the active volcano area) correspond to the feasible search space of the 

optimization problem. The treasure corresponds to the optimal solution to be found in this feasible space. You and 
your friends are the “search agents” launched to search for the solution, each following different search approaches. 
If you don’t have any information that can guide you while searching, you are following a blind/uninformed search 
approach, which is usually inefficient and time consuming. If you know that the pirates used to hide the treasure in 
elevated spots, you can then directly climb up to the steepest cliff and try to reach the highest peak. This scenario 
corresponds to the classical hill-climbing technique (informed search). You can also follow a trial-and-error approach 
looking for some hints and keep moving from one place to another plausible place until you find the treasure 
(trajectory-based search). 

 
If you do not want to take the risk of getting nothing and decide to collaborate and share information with your 

friends instead of doing the treasure-hunting alone, you will be following a population-based search approach. While 
working in a team, you may notice that some treasure hunters show better performance than others. In this case, only 
good performing hunters can be kept, and new ones can be recruited to replace the less performing hunters. This is 
akin to evolutionary algorithms such as genetic algorithms where the fittest hunters survive. Alternatively, you and 
other friends can try to emulate the success of the outperforming hunters in each area of the treasure island without 
getting rid of any team members and without recruiting new ones. This scenario uses the so-called swarm intelligence 
and corresponds to the population-based optimization algorithms such as ant colony optimization and particle swarm 
optimization. 

 
You alone or with the help of your friends can build a mental model based on historical data of previous and 

similar treasure hunting missions or train a reward predictor based on try-&-error interaction with the treasure island 
(search space) taking the strength of the signal from the metal detector as a reward indicator. After a few iterations, 
you will learn to maximize the reward from the predictor and improve your behavior until you fulfill the desired goal 
and find the treasure. This corresponds to a machine learning-based approach to be explained in Part-4 of this book. 
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2.3 Heuristics and Meta-heuristics 
The word heuristic comes from the Greek word heuriskein, which means “to find or discover”. 
The past tense of this verb, eureka, was used by the Greek mathematician, physicist, 
engineer, astronomer, and inventor Archimedes who was so excited with the discovery of the 
Buoyancy Law that he jumped out of his bath shouting loudly “Eureka! Eureka!” (I have 
found it! I have found it!). Heuristics (also known as “mental shortcuts” or “rules of thumb") 
are solution strategies, seeking methods, or rules that can facilitate finding acceptable 
(optimal or near-optimal) solutions to a complex problem in a reasonably practical time. 
Despite the fact that heuristics can seek near-optimal solutions at a reasonable 
computational cost, they cannot guarantee either feasibility or degree of optimality. 

The term “metaheuristic” comes from the composition of two Greek words: meta which 
means “beyond, on a higher level”, and heuristics. It's a term coined by Fred Glover, 
inventor of Tabu Search (see Chapter 6) to refer to high-level strategies used to guide and 
modify other heuristics to enhance their performance. Their goal is to efficiently explore the 
search space in order to find optimal or near-optimal solutions. Metaheuristics may 
incorporate mechanisms to achieve tradeoff between exploration/diversification and 
exploitation/intensification of the search space to avoid getting trapped in confined areas of 
the search space, at the same time finding the optimal or near-optimal solutions in 
reasonable time. Finding this proper balance of diversification and intensification is a crucial 
issue in heuristics as discussed in section 1.5. Metaheuristic algorithms are often global 
optimizers that can be applied to different linear and non-linear optimization problems with 
relatively few modifications to make them adapted to a specific problem. These algorithms 
are often robust to problem size, problem instance and random variables. 

Let’s assume that we have 6 objects with different sizes (2,4,3,6,5 and 1) and we need to 
pack them into a minimum number of bins. Each bin has a limited size of 7 so the total size 
of the object in the bin should be 7 or less. If we have n objects, there are n! possible ways 
of packing the objects. The minimum number of bins we need is called lower bound. To 
calculate this lower bound, you need to find the total number of object sizes 
(2+4+3+6+5+1=21). Then the lower bound is 21/7=3 bins. This means that we need at 
least 3 bins to pack these objects. Figure 2.19 illustrates two heuristics that can be used to 
solve this bin packing problem. 

First-fit heuristics packs the objects following their order without taking into consideration 
the size. This results in the need for 4 bins that are not fully utilized as there are 7 spaces 
left in 3 of these bins. If we apply first-fit decreasing heuristic, we will order the objects 
based on their sizes and pack following this order. This heuristic allows us to pack all the 
objects in only 3 fully utilized bins, which is the lower bound. 
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Figure 2.19 Handling bin packing problem using first-first and first-fit decreasing heuristics. 

In the previous example, all the objects have the same height. However, in more 
generalized version, let’s consider objects with different width and height as illustrated in 
Figure 2.20. 

Figure 2.20 Bin packing problem. Using heuristics allows us to solve the problem much faster than with a 
brute-force approach. However, some heuristic functions may result in infeasible or suboptimal solutions and 
they do not guarantee optimality. 
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Applying heuristics such as smallest-first can allow us to load the container much faster, 
as illustrated in Figure 2.20. Some heuristics do not guarantee optimality (i.e., heuristics like 
largest-first gives a sub-optimal solution, as one object is left out). This can be considered as 
infeasible solution if we need to load all the objects into the container or sub-optimal solution 
if the objective is to load as many objects as we can. 

To solve this problem in Python, let’s first define the objects, the containers, and what it 
means to place an object inside of a container. For the sake of simplicity, Listing 2.7 avoids 
custom classes and uses numpy arrays instead. 

Listing 2.7 Bin Packing Problem 

import numpy 
import matplotlib.pyplot as plt 
from matplotlib import cm 
from matplotlib.colors import rgb2hex 

width = 4    #A 
height = 8    #A 
container = numpy.full((height,width), 0)    #A 

objects = [[3,1],[3,3],[5,1],[4,2],[3,2]]    #B 

def fit(container, object, obj_index, rotate=True):    #C 
obj_w = object[0]    #C 
obj_h = object[1]    #C 
for i in range(height - obj_h + 1):    #C 

for j in range(width - obj_w + 1):    #C 
placement = container[i : i + obj_h, j : j + obj_w]    #C 
if placement.sum() == 0:    #C 

container[i : i + obj_h, j : j + obj_w] = obj_index    #C 
return True    #C 

return fit(container, object[::-1], obj_index, rotate=False)    #C 

#A Define the dimensions of the container and initialize the numpy array to 0s. 
#B Represent objects to be placed as [width, height]. 
#C The fit function places objects into the container, either through direct placement, shifting, or rotation. 

The fit function attempts to write a value to a 2D slice of the container, provided that there 
are no values in that slice already (the sum is 0). If that fails, it shifts along the container 
from top to bottom, left to right and tries again. As a last resort, it tries the same but with 
the object rotated by 90 degrees. 

The first heuristic prioritizes fitting by object area, descending: 

def largest_first(container, objects): 
excluded = [] 
assigned = [] 
objects.sort(key=lambda obj: obj[0] * obj[1], reverse=True)    #A 
for obj in objects: 

if not fit(container, obj, objects.index(obj) + 1): 
excluded.append(objects.index(obj) + 1)    #B 

else: 
assigned.append(objects.index(obj) + 1) 

if excluded: print(f"Items excluded: {len(excluded)}") 
visualize(numpy.flip(container, axis=0), assigned)    #C 
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#A Sort elements by area, descending 
#B Some objects may not fit; we can keep track of them using a list 
#C Visualize the filled container 

The code for visualizing this result can be found in the full code files for Listing 2.7 available 
on the GitHub repo of the book. 

Figure 2.21 Bin Packing using the Largest-first heuristic. One object has been excluded, as it does not fit into 
the remaining space. 

The second heuristic sorts first by width, and then by total area, ascending: 

def smallest_width_first(container, objects): 
excluded = [] 
assigned = [] 
objects.sort(key=lambda obj: (obj[0], obj[0] * obj[1]))    #A 
for obj in objects: 

if not fit(container, obj, objects.index(obj) + 1): 
excluded.append(objects.index(obj) + 1) 

else: 
assigned.append(objects.index(obj) + 1) 

if excluded: print(f"Items excluded: {len(excluded)}") 
visualize(numpy.flip(container, axis=0), assigned)    #B 

#A Sort by width as primary key, and then by area, ascending 
#B Visualize the solution 

The smallest_width_first heuristic manages to successfully fit all the objects into the 
container, as shown in Figure 2.22. 
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Figure 2.22 Bin Packing Problem using Smallest-first. All five objects have been successfully placed into the 
container. 

Different heuristic search strategies can be used to generate candidate solutions. These 
strategies include, but are not limited to, search by repeated solution construction (e.g., 
graph search, ant colony optimization), search by repeated solution modification (e.g., tabu 
search, simulated annealing, genetic algorithm, and particle swarm optimization) and search 
by repeated solution recombination (e.g., genetic algorithm and differential evolution). 

Considering the cargo bike load problem discussed in subsection 1.3.3 of the previous 
chapter, we can order the items to be delivered based on their efficiency (profit per kg) as 
shown in Table 2.2. 

Table 2.2 Packages ranked by efficiency. The efficiency of a package is defined as the profit per 
kilogram. 

Item Weight (kg) Profit ($) Efficiency ($/kg) 

10 7.8 20.9 2.68 

7 4.9 10.3 2.10 

4 10 12.12 1.21 

1 14.6 14.54 1 

8 16.5 13.5 0.82 

6 9.6 7.4 0.77 

2 20 15.26 0.76 

9 8.77 6.6 0.75 

3 8.5 5.8 0.68 

5 13 8.2 0.63 
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Following a repeated solution construction-based heuristic search strategy, we can start by 
applying a greedy principle and pick items based on its efficiency until we reach the 
maximum payload of the cargo bike (100 kg) as a hard constraint. The steps for this are 
shown in Table 2.3. 

Table 2.3 Repeated Solution Construction. Packages are added to the bike until the maximum 
capacity is reached. 

Step Item Add? Total Weight (kg) Total Profit ($) 

1 10 Yes 7.8 20.9 

2 7 Yes 12.7 31.2 

3 4 Yes 22.7 43.32 

4 1 Yes 37.3 57.86 

5 8 Yes 53.8 71.36 

6 6 Yes 63.4 78.76 

7 2 Yes 83.4 94.02 

8 9 Yes 92.17 100.62 

9 3 No (100.67) - 

10 5 No (113.67) - 

We finally obtain the following subset of items: 10, 7, 4, 1, 8, 6, 2 and 9. This can also be 
written as: (1,1,0,1,0,1,1,1,1,1), which when read from left to right shows that we include 
items 1, 2, 4, 6, 7, 8, 9 and 10 (and exclude items 3 and 5). This results in a total profit of 
$100.62 and weight of 92.17kg. We can generate more solutions by repeating the process of 
adding objects starting from an empty container. 

In the case of repeated solution modification-based heuristic search strategy, instead of 
creating one or more solutions completely from scratch, one could also think about ways of 
modifying an already available feasible solution. Consider the previous solution generated for 
the cargo-bike problem: (1,1,0,1,0,1,1,1,1,1). We know that this feasible solution is not 
optimal, but how can we improve it? This can be achieved for instance by removing item 9 
from the cargo bike and adding item 5. This process of removing and adding results in a new 
solution: (1,1,0,1,1,1,1,1,0,1) with a total profit of $102.22 and a weight of 96.4 kg. 

Following search by repeated solution recombination, existing solutions are combined as 
a way to generate new solutions to progress in the search space. Suppose the following two 
solutions are given: 

S1= (1,1,1,1,1,0,0,1,0,1) with weight 75.8 kg. and a profit of $75.78 and 
S2= (0,1,0,1,1,0,1,1,1,1) with weight 80.97 kg and a profit of $86.88. 
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Figure 2.23 Repeated solution recombination. Taking the first two elements of S1 and adding it to the last 
eight elements of S2 yields a new, better solution. 

As illustrated in Figure 2.23, to get a new solution we can take the configuration of the 
first two items of S1 and the last eight items of S2. This means that we include items 1, 2, 4, 
5,7, 8, 9 and 10 in the new solution and exclude items 3 and 6. This yields a new solution: 
S3= (1,1,0,1,1,0,1,1,1,1) with a weight of 95.57 kg and a higher profit of $101.42. 

2.4 Nature-inspired Algorithms 
Nature is the ultimate source of inspiration. Problems in nature are usually ill-structured, 
dynamic, partially observable, non-linear, multimodal, multi-objectives with hard and soft 
constraints and with no or limited access to global information. Nature-inspired algorithms 
are computational models that mimic or reverse engineer the intelligent behaviors observed 
in nature. Examples include molecular dynamics, cooperative foraging, division of labor, self-
replication, immunity, biological evolution, learning, flocking, schooling, and self-
organization, just to name just a few. 

Molecular dynamics (the science of simulating the motions of a system of particles 
applies) and thermal annealing inspired scientists to create optimization algorithm called 
simulated annealing to be discussed in chapter 5 of this book.  Evolutionary computation 
algorithms such as Genetic Algorithm (GA), Genetic Programming (GP), Evolutionary 
Programming (EP), Evolutionary Strategies (ES), Differential Evolution (DE), Cultural 
Algorithms (CA) and Co-evolution (CoE) are created by inspiration from evolutionary biology 
(the study of the evolutionary processes) and biological evolution. Part-III of the books 
covered a number of evolutionary computing algorithms. 

Ethology (the study of animal behavior) is the main source of inspiration of swarm 
intelligence algorithms such as Particle Swarm Optimization (PSO), Ant Colony Optimization 
(ACO), Artificial bee colony (ABC), Bat algorithm (BA), Social Spider Optimization (SSO), 
Firefly algorithm (FA), Butterfly Optimization Algorithm (BOA), Dragonfly Algorithm (DA), 
Krill Herd (KH), Shuffled Frog Leaping Algorithm (SFLA), Fish School Search (FSS), Dolphin 
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Partner Optimization (DPO), Dolphin Swarm Optimization Algorithm (DSOA), Cat Swarm 
Optimization (CSO), Monkey Search Lion Optimization Algorithm (LOA), Cuckoo Search (CS), 
Cuckoo Optimization Algorithm (COA), Wolf Search Algorithm (WSA) and Grey Wolf 
Optimizer (GWO). Swarm intelligence-based search and optimization algorithms are covered 
in Part-IV of the book. 

Neural networks are simplified brain models that can be used to solve search and 
optimization problem as described in Part-V of the book. Tabu Search explained in Chapter 6 
is based on evolving memory (adaptive memory and responsive exploration) which is studied 
in behavioral psychology (the science of behavior and mind). Reinforcement learning, 
another branch of machine learning inspired by behaviorist psychology, is used to solve 
search and optimization problem as discussed in Part-V. 

Other nature-inspired search and optimization algorithms include, but are not limited to, 
Bacterial foraging optimization algorithm (BFO), Bacterial Swarming Algorithm (BSA), 
Biogeography-based optimization (BBO), Invasive Weed Optimization (IWO), Flower 
Pollination Algorithm (FPA), Forest Optimization Algorithm (FOA), Water Flow-like Algorithm 
(WFA), Water Cycle Algorithm (WCA), Brainstorm Optimization Algorithm (BSO), Stochastic 
diffusion search (SDS), Alliance Algorithm (AA) , Black-Hole algorithm (BH), Black Hole 
Mechanics Optimization (BHMO), Adaptive Black Hole Algorithm, Improved Black Hole 
algorithm (IBH), Levy Flight Black Hole (LBH), Multiple population levy black hole (MLBH), 
Spiral Galaxy-Based Search Algorithm (GbSA), Galaxy-based Search Algorithm (GSA), Big-
Bang Big-Crunch (BBBC),  Ray Optimization (RO), Quantum Annealing (QA), Quantum-
Inspired Genetic Algorithm (QGA), Quantum-Inspired Evolutionary Algorithm (QEA), 
Quantum Swarm Evolutionary Algorithm (QSE) and Quantum-Inspired Particle Swarm 
Optimization (QPSO). For a comprehensive list of metaheuristic algorithms, the reader is 
referred to [8]. This is really a long list of algorithms to be covered in one book. There are a 
lot of similarities between these algorithms though. The following algorithms and their 
variants will be covered in this book: 

• Graph Search Methods (blind/uninformed search and informed search algorithms) 
• Simulated Annealing (SA) 
• Tab Search (TS) 
• Genetic algorithm (GA) 
• Particle Swarm Optimization (PSO) 
• Ant Colony Optimization (ACO) 
• Graph Neural Networks (GNN) 
• Attention Mechanisms 
• (Deep) Reinforcement learning 

Throughout this book, several real-world problems will be discussed to show how to apply 
these algorithms in real life applications. 
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2.5 Exercises 
1. MCQs: Choose the correct answer for each of the following questions.

1.1. _________ is the class of decision problems that can be solved by non-deterministic 
polynomial algorithms and whose solutions are hard to find but easy to verify. 

a. P

b. NP

c. co-NP

d. NP-Complete

e. NP-hard

1.2. Which of the following benchmark/toy problems is not NP complete? 

a. Bin packing

b. Knapsack problem

c. Minimum spanning tree

d. Hamiltonian circuit

e. Vertex cover problem

1.3. _________ is the class of decision problems whose “No” answer can be verified in 
polynomial time. 

a. P

b. NP

c. co-NP

d. NP-Complete

e. NP-hard

1.4. Which of the following real-world problems is NP-hard? 

a. Image matching

b. Single Machine Scheduling

c. Combinational Equivalence Checking

d. Capacitated Vehicle Routing Problem (CVRP)

e. Container/truck loading

1.5. _________ is a theory that focuses on classifying computational problems according to 
their resource usage, and relating these classes to each other. 

a. Optimization complexity

b. Time complexity

c. Computational complexity
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d. Operation Research 

e. Decision complexity 

2. Describe the following search and optimization problems in terms of decision variable 
(univariate, bivariate, multivariate); objective functions (mono-objective, multi-objective, 
no objective function or constraint-satisfaction problem), constraints (hard constraints, 
soft constraints, both hard and soft constraints, unconstrained); linearity (Linear 
Programming (LP), Quadratic Programming (QP), Non-linear Programming (NLP)). 

a) Minimize y+cos(x2), sin(x)-xy and 1/(x+y)2 

b) Maximize 2-exp(1-x3) subject to -3≤x<10 

c) Maximize 3*x-y/5 subject to -2≤x<3, 0<y≤3 and x+y=4 

d) The knapsack problem is an example of combinatorial problem whose solution takes 
the form of a combination where the order doesn’t matter. Let’s assume a number of 
items, each with a utility and a weight to be packed into a bag of limited capacity as 
illustrated in Figure 2.24. 

Figure 2.24. Each item has a utility and a weight, and we want to maximize the utility of the contents of the 
knapsack. The problem is constrained by the capacity of the bag. 

e) The school districting problem consists in determining the groups of students 
attending each school of a school board located over a given territory in a way that 
maximizes contiguity of school sectors taking into consideration a number of hard 
constraints such as school capacity for each grade and class capacity. Walkability and 
keeping students in the same school from year to year are considered as a soft 
constraint in this problem. 

3. For the following optimization problem, state the type of the problem based on the 
permissible time to solve the problem and the expected quality of the solutions (design, 
planning or control problem). Suggest the appropriate algorithm required to handle the 
stated optimization problem (offline versus offline). 

a) Finding the optimal wind park design where number and types of wind turbines need 
to be chosen and placed considering the given wind conditions and wind park area. 
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b) Finding multiple vehicle routes starting and ending at different depots such that all 
customer demands are fulfilled. 

c) Creating a fitness assistant for runners and cyclists that seamlessly automates the 
multiple tasks involved in planning fitness activities. The planner assesses an athlete’s 
current fitness level and individual training goals in order to create a fitness plan. The 
planner also generates and recommends geographical routes that are both popular 
and customized to the user’s goals, level, and scheduled time, thus reducing the 
challenges involved in the planning stage. The suggested fitness plans are 
continuously adapting based on each user’s progress within their fitness goals, thus 
keeping the athlete challenged and motivated. 

d) Given demand and revenues for every origin-destination pair over time-of-the-day 
and day-of-the-week, route information distances, times, operating restrictions, 
aircraft characteristics and operating costs and operational and managerial 
constraints. We need to find a set of flights with departure and arrival times and 
aircraft assignment which maximize profits. 

e) Finding the optimal schedule for delivery cargo-bikes, semi- and fully autonomous 
last-mile delivery trucks, self-driving delivery robots/droids, delivery drones, e-
Palette, postal delivery, driverless deliveries, and privately owned AV to maximize 
customer satisfaction and minimize delivery cost taking into consideration the 
capacity of the vehicle, type of delivery service (couple of days delivery, next-day 
delivery, or same-day delivery with some extra surcharge), delivery time, drop-off 
locations, and so on. 

f) Planning on-demand responsive transit during pandemics to support the 
transportation of essential workers and essential trips to pharmacies and grocery 
stores for the general public especially the elderly taking into consideration store 
operating hours, capacity, and online delivery options. 

g) Finding a collision-free path for a vehicle from a start position to a given goal position, 
amid a collection of obstacles in such a way that minimizes estimated time of arrival 
and the consumed energy. 

h) Planning a trip itinerary is perhaps the most challenging and time-consuming task 
when it comes to traveling. It is always ideal to optimize the visitor’s time by visiting 
the best attractions available; however, choosing from a large pool of highly rated 
sites significantly makes the decision-making process more difficult. This problem can 
be addressed by the development of a trip planner that minimizes total commute 
time, maximizes the average ratings of attractions contained in a solution, and 
maximizes the duration spent at each of these attractions and effectively minimizes 
idle time when someone visits a city. 

i) Finding school bus loading patterns/schedules such that the number of routes is 
minimized, the total distance traveled by all buses is kept at minimum, no bus is 
overloaded, and the time required to traverse any route does not exceed a maximum 
allowed policy. 
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j) Minimizing deadheading for shared mobility companies (minimize the miles driven 
with no passenger) or for delivery services providers (minimize the models driven 
without cargo) 

k) Planning/replanning of transport corridors and city streets to accommodate more 
pedestrians, cyclists, and riders in shared transportation and less cars 

l) Finding the optimal placement of for bus stops, traffic sensors, micro mobility 
stations, EV charging stations, air taxi takeoff and landing locations, walking routes 
and cycling lanes for active mobility. 

4. Modify Listing 2.6 to define the animal feed mix problem data using Python dictionaries or 
to read the problem data from a csv file. 

2.6 Summary 
• Search and optimization problems can be classified based on number of decision 

variables (univariate, multivariate problems), type of decision variables (continuous, 
discrete, mixed-integer), number of objective functions (mono-objective, multi-
objective, constraint-satisfaction problems), landscape of objective function 
(unimodal, multimodal, deceptive), number of constraints (unconstrained and 
constrained problems) and linearity of objective functions and constraints (linear 
problems and nonlinear problems). 

• Based on expected quality of solutions and the permissible search time to find the 
solutions, optimization problems can also be categorized into design 
problems/strategic functions, planning/tactical problems, and control 
problems/operational functions. 

• Search and optimization algorithms can be classified based on the way the search 
space is explored (local versus global search), corresponding optimization speeds 
(online versus offline search/optimization), determinism of the algorithm 
(deterministic versus stochastic). 

• Heuristics (also known as “mental shortcuts” or “rules of thumb") facilitate finding 
acceptable (optimal or near-optimal) solutions to a complex problem in a reasonably 
practical time. 

• Metaheuristics are high-level strategies used to guide and modify other heuristics to 
enhance their performance. 

• Nature-inspired algorithms are computational models that mimic or reverse engineer 
the intelligent behaviors observed in nature to solve complex ill-structured problems. 
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Blind Search Algorithms 

This chapter covers 

• Applying different graph types for practical use 
• Graph search algorithms 
• Using graph traversal algorithms to explore the structure of a tree or a graph and to find a 

path between two nodes 
• Using blind search algorithms to find the shortest path between two nodes in a graph 
• Solving a real-world routing problem using graph search algorithms 

You have already been introduced to deterministic and stochastic algorithms in chapter 2. In 
this chapter, we will focus on deterministic algorithms, specifically blind search algorithms, 
and their applications in exploring tree or graph structures and finding the shortest path 
between nodes. Using these algorithms, you can explore a maze from an initial state to a 
goal state, solve N-puzzle problems, figure out the distance between you and any other 
person on a social media graph, search a family tree to determine the exact relationship 
between any two people who are related or find the shortest path between any origin (e.g., 
your home) and any destination (e.g., your workplace or any other point of interest). Blind 
search algorithms are important as they are often more efficient and reasonable to use when 
dealing with simple, well-defined problems. 

3.1 Introduction to Graphs 
A graph is a non-linear data structure that consists of three sets: vertices (sometimes called 
nodes), edges (sometimes called links), and a set representing relations between vertices 
and edges. A graph can be represented mathematically by G where G=(V,E). For a graph G, 
V represents the set of nodes or vertices, and E represents the set of edges or links. Various 
attributes can also be added as components to the edge tuple, such as edge length, capacity, 
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or any other unique properties (i.e., road material). Graphs can be classified into undirected, 
directed, multi-graph, acyclic, and hypergraphs. 

An undirected graph is one where a set of nodes are connected using bidirectional edges. 
This means that the order of two connected nodes is not essential. A tree, as a specialized 
case of a graph, is a connected graph with no circuits and no self-loops. In graph theory, a 
self-loop, also called a circuit, is an edge in a graph that connects a vertex/node to itself. In 
other words, it is an edge that has the same starting vertex and ending vertex. Trees are 
usually considered as undirected graphs. networkx is a commonly used Python library for 
creating, manipulating, and studying the structure, dynamics, and functions of graphs and 
complex networks (see Appendix A). The following example shows how to use networkx to 
create an undirected graph. 

Listing 3.1 Creating an undirected graph using networkx 

import networkx as nx 

graph = nx.Graph() 

nodes = list(range(5))    #A 
graph.add_nodes_from(nodes) 

edges = [(0,1),(1,2), (1,3), (2,3),(3,4)]    #B 
graph.add_edges_from(edges) 

nx.draw_networkx(graph, font_color="white") 

#A Generate a list of nodes from 0 to 4 
#B Define a list of edges 

The output of the code is shown in Figure 3.1. 

Figure 3.1 Undirected graph. 

A directed graph is a graph in which a set of nodes are connected using directional edges. 
Directed graphs have many applications. For example, directed graphs are used to represent 
flow constraints (e.g., one-way streets) relations (e.g., causal relationships) and 
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dependencies (e.g., some tasks depend on the completion of other tasks). This example 
shows how to use networkx to create a directed graph. 

Listing 3.2 Creating a directed graph using networkx 

import networkx as nx 

graph = nx.DiGraph()    #A 
nodes = list(range(5)) 
edges = [(0,1),(1,2), (1,3), (2,3),(3,4)] 
graph.add_edges_from(edges) 
graph.add_nodes_from(nodes) 
nx.draw_networkx(graph, font_color="white") 

#A DiGraph allows for directed edges 

Code output is shown in Figure 3.2. Note the arrows indicating edge direction. 

Figure 3.2 A directed graph. 

A multi-graph is a graph in which multiple edges may connect the same pair of vertices. 
These edges are called parallel edges. Multi-graphs can be used to represent complex 
relationships between nodes such as multiple parallel roads between two locations in traffic 
routing, multiple capacities and demands in resource allocation problems and multiple 
relationships between individuals in social networks to name just a few. Unfortunately, 
networkx is not particularly good at visualizing multi-graphs with parallel edges. This 
example shows how to use networkx in conjunction with matplotlib to create a multi-graph. 
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Listing 3.3 Creating a multi-graph using networkx 

import networkx as nx 
import matplotlib.pyplot as plt 

graph = nx.MultiGraph() 
nodes = list(range(5)) 
edges = [(0,1),(0,1),(4,3),(1,2), (1,3), (2,3),(3,4),(0,1)] 
graph.add_nodes_from(nodes) 
graph.add_edges_from(edges) 

pos = nx.kamada_kawai_layout(graph)     #A 
ax = plt.gca() 

for e in graph.edges:      #B 
ax.annotate("",xy=pos[e[0]], xycoords='data', xytext=pos[e[1]], textcoords='data', 
arrowprops=dict(arrowstyle="-", connectionstyle=f"arc3, rad={0.3*e[2]}"),zorder=1) 
#B 

nx.draw_networkx_nodes(graph, pos)     #C 
nx.draw_networkx_labels(graph,pos, font_color='w')     #C 

plt.show() 

#A Node positions are generated using Kamada-Kawai path-length cost-function. 
#B Draw each edge one at a time, modifying the curvature of the edge based on its index (i.e. the 2nd edge between 

nodes 0 and 1) 
#C Draw nodes and node labels 

It is worth noting that kamada_kawai_layout attempts to position nodes on the space so that 
the geometric (Euclidean) distance between them is as close as possible to the graph-
theoretic (path) distance between them. Figure 3.3 shows an example of a multi-graph 
generated by the code. 

Figure 3.3 Example of a multi-graph. Notice the three parallel edges connecting nodes 0 and 1, as well as the 
two edges connecting nodes 3 and 4. 
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As the name implies, an acyclic graph is a graph without cycles. A cycle in a graph is a path 
that starts and ends at the same node and traverses through at least one other node. In task 
scheduling, acyclic graphs can be used to represent the relationships between tasks where 
each node represents a task and each directed edge represents a precedence constraint. This 
constraint means that the task represented by the end node cannot start until the task 
represented by the start node is completed. Assembly line balancing problem is discussed in 
Chapter 6 as an example of scheduling problems.  Listing 3.4 shows how to use networkx to 
create and verify an acyclic graph. 

Listing 3.4 Creating an acyclic graph using networkx 

import networkx as nx 

graph = nx.DiGraph() 
nodes = list(range(5)) 
edges = [(0,1), (0,2),(4,1),(1,2),(2,3)] 
graph.add_nodes_from(nodes) 
graph.add_edges_from(edges) 
nx.draw_kamada_kawai(graph, with_labels=True, font_color='w') 

nx.is_directed_acyclic_graph(graph)     #A 

#A Check if the graph is acyclic 

An example of an acyclic graph is shown in Figure 3.4 

Figure 3.4 An acyclic graph. There is no path that cycles back to any starting node. 

A hypergraph is a generalization of a graph in which the generalized edges (called 
hyperedges) can join any number of nodes. Hypergraphs are used to represent complex 
networks to capture higher-order many-to-many relationships in several domains such as 
social media, information systems, computational geometry, computational pathology, and 
neuroscience. For example, a group of people working on a project can be represented by a 
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hypergraph. Each person is represented by a node and the project is represented by a 
hyperedge. The hyperedge connects all the people working on the project, regardless of how 
many people are working on it. The hyperedge can also contain other attributes such as the 
project's name, the start and end date, the budget, etc. 

The following example shows how to use HyperNetX (HNX) to create a hypergraph. HNX
is a Python library that enables modeling the entities and relationships found in complex 
networks as hypergraphs. 

Listing 3.5 Creating a hypergraph using hypernetx 

import hypernetx as hnx 

data = { 
0: ("A","B","G"), 
1: ("A","C","D","E","F"), 
2: ("B","F"), 
3: ("A","B","D","E","F","G") 

}    #A 
H = hnx.Hypergraph(data) #B 
hnx.draw(H)   #C 

#A The data for the hypergraph comes as a key-value pair of hyperedge name-hyperedge node groups 
#B creates a hypergraph for the provided data 
#C visualize the hypergraph 

Figure 3.5 shows an example of a hypergraph. 

Figure 3.5 An example of a hypergraph. Hyperedges can connect more than two nodes, such as hyperedge 0, 
which links nodes A, B, and G. 
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Graphs can also be weighted or unweighted. In a weighted graph, a weight is assigned to 
each edge. For example, in the case of road networks, the edges can be weighted, meaning 
that they can have a value that represents the cost of traversing the road. This value can be 
distance, time, or any other metric. In telecommunications networks, the weight might 
represent the cost of utilizing that edge or the strength of the connections between the 
communication devices. Listing 3.6 shows how to create and visualize a weighted graph 
between telecommunication devices. The weights in this example represent the speed of 
connected between the devices in Mbps. 

Listing 3.6 Creating a weighted graph using networkx 

import networkx as nx 
import matplotlib.pyplot as plt 

G = nx.Graph() #A 

G.add_node("Device1", pos=(0,0)) #B 
G.add_node("Device2", pos=(0,2)) #B 
G.add_node("Device3", pos=(2,0)) #B 
G.add_node("Device4", pos=(2,2)) #B 

G.add_weighted_edges_from([("Device1", "Device2", 45.69), 
("Device1", "Device3", 56.34), 
("Device2", "Device4", 18.5)]) #C 

pos = nx.get_node_attributes(G, 'pos') #D 
nx.draw(G, pos, with_labels=True) #E 
nx.draw_networkx_edge_labels(G, pos, edge_labels={(u, v): d['weight'] for u, v, d in 

G.edges(data=True)}) #E 
plt.show() #E 

#A Create an empty weighted graph 
#B Add nodes to the graph (representing devices) 
#C Add weighted edges to the graph (representing connections) 
#D Get node position attributes from graph 
#E Draw the graph 

Running this code generated the weighted graph shown in Figure 3.6. 
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Figure 3.6 Example of a weighted graph. 

Graphs are everywhere. Search engines like Google see the internet as a giant graph where 
each web page is a node, and two pages are joined by an edge if there is a link from one 
page to the other. A social media platform like Facebook treats each user profile as a node 
on a social graph, and two nodes are said to be connected if they are each other's friends or 
have social ties. The concept of "following" a user, such as on a platform like Twitter, can be 
represented by a directional edge, where user A can follow user B, but the reverse is not 
necessarily true. Table 3.1 shows the meanings of nodes and edges on different platforms 
like Facebook, Twitter, LinkedIn, Instagram and TikTok. 
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Table 3.1 Examples of graphs in the context of social media 

Social Media Platform Nodes Edges Type of Edge 

Facebook Users, groups, posts 
and events 

Friendship, group 
membership, 
messages, creation of 
posts and reactions on 
posts 

Undirected: like or react or 
a comment 
Directed: friend request 

Twitter Users, groups, 
unregistered persons 
and posts 

Following, group 
membership, 
messages, creation of 
posts and reactions on 
posts 

Undirected: a mention or a 
retweet 
Directed: following 
relationship (when you 
follow a person, he/she 
does not automatically 
follow you back) 

LinkedIn Users, groups, 
unregistered persons, 
posts, skills and jobs 

Connections, group 
membership, posting, 
reactions on posts, 
messages, 
endorsement, 
invitations, 
recommending job 

Undirected: an 
endorsement or a 
recommendation 
Directed: connection 

Instagram Users, comment, 
container for publishing 
a post, hashtag, media 
(e.g., photo, video, 
story, or album), page 
(Facebook page) 

Following, occurrences 
of two hashtags in the 
same post. 

Undirected: like or a 
comment 
Directed: follow relationship 

TikTok Users, hashtags, 
locations, and 
keywords 

Relationships between 
users such as following, 
liking, and commenting 

Undirected: like or a 
comment 
Directed: follow relationship 

In a road network, graph nodes represent landmarks such as intersections and points of 
interest (POI), and the edges represent the roads. In road network graph, most of the edges 
are directed, meaning that they have a specific direction, and they may have additional 
information such as length, speed limit, capacity, etc. Each edge is a two-endpoint 
connection between two nodes, where the direction of the edge represents the direction of 
traffic flow. A route is a sequence of edges connecting the origin node to the destination 
node. osmnx is a Python library developed to simplify the retrieving and manipulating of data 
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from OpenStreetMap (OSM). OpenStreetMap is a crowdsourced geographic database of the 
world (see Appendix B). osmnx offers the ability to download filtered data from OSM and 
returns the network as a networkx graph data structure. It can also convert a text descriptor 
of a place into a networkx graph (see Appendix A). Let’s use the University of Toronto as an 
example as you can see in Lisitng 3.7. 

Listing 3.7 University of Toronto example 

import osmnx 

place_name = "University of Toronto" 

graph = osmnx.graph_from_address(place_name) #A 
osmnx.plot_graph(graph,figsize=(10,10)) 

#A graph_from_address can also take city names and mailing addresses as input 

Figure 3.7 shows open street map of the area around St. George Campus of University of 
Toronto. 

Figure 3.7 St. George Campus - University of Toronto 

The graph shows the edges and nodes of the road network surrounding the University of 
Toronto’s St. George campus in downtown Toronto. While it may look visually interesting, it 
lacks the context of surrounding geographic features. Let’s use a folium map (see Appendix 
A) as a base layer to provide street names, neighborhood names, and even building
footprints.
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graph = osmnx.graph_from_address(place_name) 
osmnx.folium.plot_graph_folium(graph) 

Figure 3.8 shows road network surrounding the University of Toronto’s St. George campus. 

Figure 3.8 Road network around St. George Campus - University of Toronto 

Suppose you want to get from one location to another on this campus. For example, starting 
at the King Edward VII Equestrian Statue near Queen’s Park, you need to cross the campus 
to attend a lecture at the Bahen Centre for Information Technology. Later in this chapter, 
you will see how you can calculate the shortest path between these two points. For now, let’s 
just plot these two locations on the map using folium (see Appendix A): 

Listing 3.8 plot with folium 

import folium 

center=(43.662643, -79.395689) #A 
source_point = (43.664527, -79.392442) #B 
destination_point = (43.659659, -79.397669) #C 

m = folium.Map(location=center, zoom_start=15) #D 
folium.Marker(location=source_point,icon=folium.Icon(color='red',icon='camera', 

prefix='fa')).add_to(m) #E 
folium.Marker(location=center,icon=folium.Icon(color='blue',icon='graduation-cap', 

prefix='fa')).add_to(m) #E 
folium.Marker(location=destination_point,icon=folium.Icon(color='green',icon='university', 

prefix='fa')).add_to(m) #E 

m 

#A The GPS coordinates (latitude and longitude) of University of Toronto 
#B The GPS coordinates of the Equestrian Statue as a source point 
#C The GPS coordinates of the Bahen Centre for Information Technology as destination 
#D Create a map centered around a specified point 
#E Add markers with icons 
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Figure 3.9 shows folium map and markers. 

Figure 3.9 Visualizing points of interest using folium markers 

The actual output of the code is interactive, and allows for features such as zooming, 
panning, and even layer filtering (when enabled). Appendix A provides more details about 
map visualization libraries in Python. 

3.2 Graph Search 
As previously mentioned in Chapter 2, search algorithms can be broadly classified into 
deterministic and stochastic algorithms. In deterministic search, the search algorithm follows 
a rigorous procedure and its path and values of both design variables and the functions are 
repeatable. The algorithm will follow the same path for the same starting point whether you 
run the program, whether it's today or ten years in the future. On the other hand, in 
stochastic search, the algorithm always has some randomness, and the solution is not 
exactly repeatable. This means that each time, you run the algorithm, you may get slightly 
different results. 

Based on the availability of information about the search space or domain knowledge 
(e.g., the distance from the current state to the goal), deterministic search algorithms can be 
broadly classified into blind (or uninformed) and informed search, as illustrated in Figure 
3.10. Some of these algorithms, such as Kruskal’s MST algorithm, will be covered in later 
chapters. 
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Figure 3.10 Graph Search Methods. 

This chapter focuses on blind search algorithms. Blind search (also known as uninformed 
search) is a search approach where no information about the search space is needed. The 
blind search terminates once the first solution is found. However, the search space may 
contain numerous valid but non-optimal solutions. Thus, a blind search may return a solution 
that meets all the requirements but does so in a non-optimal way. An optimal solution can be 
found by running the blind search following an exhaustive search or brute-force strategy to 
find all the feasible solutions, which can then be compared to select the best one. This is 
similar to applying British Museum algorithm, which follows the human problem-solving 
strategy by checking all possibilities one by one. Given the fact that blind search treats every 
node in the graph/tree equally, this search approach is often referred to as uniform search. 

Breadth-first Search (BFS), Depth-first Search (DFS), Depth-limited Search (DLS), 
Iterative Deepening Search (IDS) or Iterative Deepening Depth First Search (IDDFS), 
Dijkstra algorithm, Uniform-cost Search (UCS), and Bidirectional Search (BS) are examples 
of blind search algorithm. BFS is a graph traversal algorithm that builds the search tree by 
levels. 

• DFS is a graph traversal algorithm that first explores nodes going through one 
adjacent of the root, then next adjacent until it finds a solution or until it reaches a 
dead end. 

• DLS is a DFS with a predetermined depth limit. 
• IDDFS combines DFS's space efficiency and BFS's fast search by incrementing the 

depth limit until the goal is reached. 
• Dijkstra's algorithm solves the single-source shortest path problem for a weighted 

graph with non-negative edge costs. 
• UCS is a variant of Dijkstra's algorithm that uses the lowest cumulative cost to find a 

path from the source to the destination. It is equivalent to the BFS algorithm if the 
path cost of all edges is the same. 
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• BS is a combination of forward and backward search. It searches forward from the 
start and backward from the goal simultaneously. 

The following sections discuss graph traversal algorithms and shortest path algorithms, 
focusing on BFS, DFS, Dijkstra algorithm, UCS, and BS as examples of blind search 
approaches. 

3.3 Graph Traversal Algorithms 
Graph traversal is the process of exploring the structure of a tree or a graph by visiting the 
nodes following a specific, well-defined rule. This category of graph search algorithms only 
seeks to find a path between two nodes without optimizing for the length of the final route. 

3.3.1 Breadth-first Search (BFS) 
BFS is an algorithm where the traversal starts at a specified node (i.e., the source or starting 
node) and continues along with the graph layerwise, thus exploring all of the current node’s 
neighboring nodes (those directly connected to the current node). The algorithm then 
searches the next-level neighbor nodes if a result is not found. This algorithm finds a solution 
if one exists, assuming that a finite number of successors/branches always follow any node. 
Algorithm 3.1 shows the BFS steps. 

Algorithm 3.1 Breadth-first Search (BFS) Algorithm 

BREADTH-FIRST-SEARCH(source,destination) return a route 

queue ← a FIFO initialized with source node 
explored ← empty 
found ← False 

while queue is not empty and found is False do 
node ← queue.dequeue() 
add node to explored 
for child in node.expand() do 
if child is not in explored and child is not in queue then 

if child is destination then 
route ← child route() 
found ← True 

add child to queue 
return route 

BFS uses the queue as a data structure to maintain the states to be explored. A queue is a 
First-In-First-Out (FIFO) data structure, where the node that has been sitting on the queue 
for the longest time is the next node to be expanded.  BFS dequeue a state off the queue, 
then enqueue its successors back on the queue. 

Let's consider the 8-puzzle (sometimes called sliding-block, tile-puzzle) problem. The 
puzzle consists of an area divided into a 3x3 grid. Tiles are numbered 1 through 8, except for 
an empty (or blank) tile. The blank tile can be moved by swapping its position with any tile 
directly adjacent (up, down, left, right). The puzzle's goal is to place the tiles so that they are 
arranged in order. Variations of the puzzle allow the empty tile to end up either at the first or 
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last position. This problem is an example of a well-structured problem (WSP) with the 
following well-defined components: 

• States: location of blank and location of the eight tiles 
• Operator (successor): blank moves left, right, up, and down 
• Goal: match the state given by the Goal state 
• Solution/Path: sequence through state space 
• Stopping Criteria: ordered puzzle (reached Goal state) 
• Evaluation Criteria: number of steps or path cost (the path length). 

Figure 3.11 illustrates the BFS steps to solve the 8-puzzle problem and the search tree 
traversal order. In this figure, the state represents the physical configuration of the 8-puzzle 
and each node in the search tree is a data structure that includes information about parent, 
children, depth and cost of path from initial state to this node. Level-1 nodes are generated 
from left to right by moving the blank title left, up and right respectively. Moving forward, 
level 2 nodes are generated by expanding the previously generated nodes in level 1 avoiding 
the previously explored nodes. We keep repeating this procedure to traverse all the possible 
nodes or until we hit the goal (the blue grid). The number of steps to reach the goal will 
depend mainly on the initial state of the 8-puzzle board. The highlighted numbers show the 
order of traverse. As you may notice, BFS progresses horizontally before we proceed 
vertically. 

Figure 3.11 Using BFS to solve 8-puzzle problem 
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The following example utilizes a generic BFS algorithm developed for this book, which can be 
found in the search-optimization-tools python package (see Appendix A for installation 
instructions). The algorithm takes a starting and goal state as inputs and returns a Solution
object. The Solution object contains the actual result and some performance metrics, such as 
processing time, maximum space used, and the number of solution states explored. We also 
import the State class and visualize function from the eight_puzzle_problem.py file 
included in the code folder for this chapter available at the GitHub repo of the book. This file 
helps manage some data structures and utility functions and allows us to reuse this 
problem's structure later on with different algorithms. 

Listing 3.9 Solving 8-puzzle problem using BFS 

from optimization_algorithms_tools.algorithms.graph_search import BFS    #A 

init_state = [[1,4,2], [3,7,5], [6,0,8]] 

goal_state = [[0,1,2], [3,4,5], [6,7,8]] 

init_state = State(init_state)  #B 
goal_state = State(goal_state) 

if not init_state.is_solvable():    #C 
print(“This puzzle is not solvable.”) 

else: 

solution = BFS(init_state, goal_state) 
print(f"Process time: {solution.time} s") 
print(f"Space required: {solution.space} bytes") 
print(f"Explored states: {solution.explored}") 
visualize(solution.result) #D 

#A The BFS algorithm used here is imported from a library called search-optimization-tools (see Appendix A for 
installation instructions). 

#B See State class in the complete listing 
#C Some boards are not solvable 
#D See visualization function in the complete listing 

The following is an example solution, given the above inputs: 

Process time: 0.015625 s 
Space required: 624 bytes 
Explored states: 7 

Figure 3.12 shows the state changes following the BFS algorithm. 
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Figure 3.12 Step-by-step BFS solution using Python. BFS searches for a solution but does not consider 
optimality. 

To really understand how BFS works, let's consider a simple path planning problem. This 
problem addresses finding a collision-free path for a mobile robot or an autonomous vehicle 
from a start position to a given destination amidst a collection of obstacles. 

• Step-1: Adding source node to the queue (Figure 3.13) 

Figure 3.13 Solving path planning problem using BFS – Step 1 

• Step-2: Exploring S node as E and SE nodes are obstructive (Figure 3.14) 
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Figure 3.14 Solving path planning problem using BFS – Step 2 

• Step-3: Taking S out (First-In-First-Out) and exploring its neighboring nodes (S and 
SE) as E is an obstructive node (Figure 3.15). 

Figure 3.15 Solving path planning problem using BFS – Step 3 

• Step-4: Taking S out (First-In-First-Out) and exploring its neighboring nodes (S and 
SE) (Figure 3.16). 
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Figure 3.16 Solving path planning problem using BFS – Step 4 

• Step-5: Taking SE out (First-In-First-Out) and exploring its neighboring nodes (E and 
NE) (Figure 3.17). 

Figure 3.17 Solving path planning problem using BFS – Step 5 

• Step-6: The FIFO queue continues until the goal node is found (Figure 3.18). 
Assuming the goal node is E, we can trace back up the tree to find the path from the 
source node to the goal, which will be Start-S-SE-E. 
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Figure 3.18 Solving path planning problem using BFS – Final route 

In BFS, every node generated must remain in memory. The number of nodes generated is at 
most: O(bd), where b represents the maximum branching factor for each node (i.e., the 
number of children the node has) and d is the depth one must expand to reach the goal. In 
the previous example, with E as a goal node (b=2, d=3), the total number of traversed 
nodes is 23=8, including the start node. 

Aside from the ability to solve the problem at hand, algorithm efficiency is evaluated 
based on run-time (time complexity), memory requirements, and the number of primitive 
operations to solve the problem in the worst case. Examples of these primitive operations 
include, but are not limited to, expression evaluation, variable value assignment, array 
indexing, and method/function calls.  Table 3.2 shows examples of algorithm complexities. 
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Table 3.2 Algorithm complexity 

Notation Name Effectiveness Description Examples 

O(1) Constant Excellent Running time does not depend on 
the input size. As the input size 
grows, the number of operations 
does not get impacted. 

Variable declaration 
Accessing an array 
element 
Retrieving information 
from a hash-table lookup 
Insertion and removal from 
a queue 
pushing and popping on a 
stack 

O(log n) Logarithmic High As the input size grows, the 
number of operations grows very 
slowly. Whenever n doubles or 
tripled, etc., the running time 
increases by a constant. 

Binary search 

O(nc), 
0<c<1 

Fractional 
power/ 
sublinear 

High As the input size grows, the 
number of operations is replicated 
in multiplication 

Testing Graph 
Connectedness 
Approximating the number 
of connected components 
in graph 
Approximating the weight 
of the minimum spanning 
tree (MST) 

O(n) Linear Medium As the input size grows, the 
number of operations increases 
linearly. Whenever n doubles, the 
running time doubles. 

Print out an array’s 
elements 
Simple search 
Kadane’s Algorithm 

 
O(n log 
n)=O(log 
n!) 

Linearithmi
c, loglinear 
or 
quasilinear 

Medium 
 
As the input size grows, the 
number of operations increases 
slightly faster than linear. 

 
Merge sort 
Heapsort 
Timsort 

O(nc), c>1 Polynomial 
or algebraic 

Low As the input size grows, the 
number of operations increases as 
the exponent increases 

Minimum spanning tree 
(MST) 
Matrix determinant 
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O(n2) Quadratic Low Whenever n doubles, the running 
time increases fourfold. Quadratic 
function is practical for use only on 
small problems 

Selection sort 
Bubble sort 
Insertion sort 

O(n3) Cubic Low Whenever n doubles, the running 
time increases eightfold. Cubic 
function is practical for use only on 
small problems 

Matrix multiplication 

O(cn), c>1 Exponential Very Low As the input size grows, the 
number of operations increases 
exponentially. It is slow and usually 
not appropriate for practical use. 

Power Set 
Towers of the Hanoi 
Password cracking 
Brute force search 

O(n!) Factorial Extremely 
Low 

Extremely slow as all possible 
permutations of the input data 
need to be checked. Factorial 
algorithm is even worse than the 
exponential function. 

Travelling salesman 
problem Permutations of a 
string 

Big O notation 
Big O notation describes the performance or complexity of an algorithm, usually under the worst-case scenario. Big O 
notation helps us answer the question: “Will the algorithm scale?”. To obtain the big O notation for a function f(x), if 
f(x) is a sum of several terms, the one with the largest growth rate is kept, and all others omitted. Moreover, if f(x) is a 
product of several factors, any constants (terms in the product that do not depend on x) are omitted. For example, 
recalling the ticket pricing problem presented in Chapter 1: f(x)=-20x2+6200x-350000. This function is the sum of 
three terms: -20x2+6200x-350000. Of these three terms, the one with the highest growth rate is the one with the 
largest exponent as a function of x, namely -20x2. We now apply the second rule: -20x2 is a product of -20 and x2 in 
which the first factor does not depend on x. Dropping this factor results in the simplified form x2. Thus, we say that f(x) 
is a big-oh of x2 or mathematically, we can write f(x)∈O(x2) (pronounced “Order n squared” or “O of n squared”), which 
represents a quadratic complexity. 
 

Figure 3.19 shows examples of big O notations: 
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Figure 3.19 Examples of big O notations 

Assume a computer with processor speed of one million operations per second is used to 
handle a problem of size n = 20,000. Table 3.3 shows the running time according to the big-
O notation of the algorithm used to solve this problem. 

Table 3.3 Algorithm complexity and the running time 

Big-O Running time 

O(1) 10-6 seconds 

O(log n) 14×10-6 seconds 

O(n) 0.02 seconds 

O(n log n)=O(log n!) 0.028 seconds 

O(n2) 6.66 minutes 

O(n3) 92.6 days 

O(cn), c=2 1262.137e+6015 years 

O(n!) 5768.665 e+77331 years 

For a huge workspace where the goal is deep, the number of nodes could expand 
exponentially and demand a large memory requirement. In terms of time complexity, For a 
graph G=(V,E), BFS has a running time of O(|V|+|E|), since each vertex is enqueued at 
most once and each edge is checked either once (for directed graph) or at most twice (for 
undirected graph). Time and space complexity of BFS are also defined in terms of branching 
factor b and depth of the shallowest goal d. Time complexity is O(bd) and space complexity is 
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O(bd) as well.  Let's take a graph with a constant branching factor b=5, nodes of size 1 
Kilobyte, and a limit of 1,000 nodes scanned per second. The total number of nodes N is 
given by the following equation: 

N=(b(d+1)-1)/(b-1) 

Equation 3.1 

Table 3.4 shows the time and memory requirements to traverse this graph using BFS. 

Table 3.4 BFS time and space complexity 

Depth d Nodes N Time Memory 

2 31 31 ms 31 KB 

4 781 0.781 second 0.78 megabytes 

6 19531 5.43 hours 19.5 megabytes 

8 488281 56.5 days 488 megabytes 

10 12207031 3.87 years 12.2 gigabytes 

12 305175781 96.77 years 305 gigabytes 

14 7629394531 2419.26 years 7.63 terabytes 

Next, we’ll take a look at the counterpart to the BFS algorithm, which searches deep into a 
graph first, rather than breadth-wise. 

3.3.2 Depth-first Search (DFS) 
The DFS algorithm is a recursive algorithm that uses the idea of backtracking. It involves 
exhaustive searches of all the nodes by going as deep as possible into the graph. Then, when 
it reaches the last layer with no result (i.e., dead-end is reached), it “backtracks” up a layer 
and continues the search. In DFS, the deepest nodes are expanded first and nodes of equal 
depth are ordered arbitrarily. Algorithm 3.2 shows the DFS steps. 
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Algorithm 3.2 Depth-first Search (DFS) Algorithm 

DEPTH-FIRST-SEARCH (source,destination) return a route 

Stack ← a LIFO initialized with sourcenode 
Explored ← empty 
Found ← False 
while stack is not empty and found is False do 

node ← stack.pop() 
add node to explored 
for child in node.expand() do 

if child is not in explored and child is not in stack then 
if child is destination then 

route ← child.route() 
found ← True 

add child to stack 
return route 

As you may have noticed, the only difference between DFS and BFS is in how the data 
structure works. Rather than working down layer by layer (FIFO), DFS drills down to the 
bottom-most layer and moves its way back to the starting node, using a Last-In-First-Out 
(LIFO) data structure known as a stack. The stack contains the list of discovered nodes. The 
most recently discovered node is put (pushed) on top of the LIFO stack. The next node to be 
expanded is then taken (popped) from the top of the stack, and all of its successors are 
added to the stack. Revisiting the 8-puzzle problem, Figure 3.20 shows the DFS solution for 
this problem. As you can see, when the algorithm reaches a dead-end or terminal node 
(node #7), it goes back to the last decision point (node #3) and proceeds with another 
alternative (node #8 and so on). In this example, a depth bound of 5 is placed to constrain 
the node expansion. This depth bound makes nodes #6, 7, 10, 11, 13, 14, 16, 17, 22, 23, 
26 and 27 terminal nodes in the search tree (i.e., there have no successors). 

88

https://livebook.manning.com/#!/book/optimization-algorithms/discussion


©Manning Publications Co.  To comment go to  liveBook 

Figure 3.20 Using DFS to solve 8-puzzle problem 

As you can see below, we only need to change the algorithm used (DFS). We’ve also omitted 
the solution visualization, the reason for which you’ll see shortly. 
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Listing 3.10 Solving 8-puzzle problem using DFS 

#!pip install optimization_algorithms_tools 
from optimization_algorithms_tools.algorithms.graph_search import DFS 

init_state = [[1,4,2],[3,7,5],[6,0,8]] 
goal_state = [[0,1,2],[3,4,5],[6,7,8]] 

init_state = State(init_state) 
goal_state = State(goal_state) 

if not init_state.is_solvable():    #A 
print("This puzzle is not solvable.") 

else: 
solution = DFS(init_state, goal_state)    #B 
print(f"Process time: {solution.time} s") 
print(f"Space required: {solution.space} bytes") 
print(f"Explored states: {solution.explored}") 
print(f"Number of steps: {len(solution.result)}") 

#A Some puzzles are not solvable 
#B The inputs for DFS are the same as for BFS 

Here’s an example code run with the above inputs: 

Process time: 0.5247 s 
Space required: 624 bytes 
Explored states: 29 
Number of steps: 30 

As you can see, DFS is not great when dealing with very deep graphs, where the solution 
may be located closer to the top. You can also see why we opted not to visualize the final 
solution: there are a lot more steps in the solution than we had in BFS! Because the solution 
to this problem was closer to the root node, the solution generated by DFS is a lot more 
convoluted (30 steps) than with BFS. 

Revisiting the path planning problem, DFS can be used to generate a free of obstacle 
path from the start location to the destination as follows: 

• Step-1: Adding source node to the stack (Figure 3.21). 
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Figure 3.21 Solving path planning problem using DFS – Step 1 

• Step-2: Exploring S node as E and SE nodes are obstructive (Figure 3.22). 

Figure 3.22 Solving path planning problem using DFS – Step 2 

• Step-3: Taking S out (Last-In-First-Out) and exploring its neighboring nodes (S and 
SE) as E is an obstructive node (Figure 3.22). 

91

https://livebook.manning.com/#!/book/optimization-algorithms/discussion


©Manning Publications Co.  To comment go to  liveBook 

Figure 3.23 Solving path planning problem using DFS – Step 3 

• Step-4: Taking SE out (Last-In-First-Out) and exploring its neighboring nodes (SW, S, 
E and NE) (Figure 3.24). 

Figure 3.24 Solving path planning problem using DFS – Step 4 

• Setp-5: The next node to be expanded would be NE and its successors would be 
added to the stack and this loop continues until the goal is found. The LIFO stack 
continues until the goal node is found. Once the goal is found, you can then trace 
back through the tree to obtain the path for the vehicle to follow. 
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Figure 3.25 Solving path planning problem using DFS 

DFS usually requires a considerably less amount of memory compared to BFS. This is mainly 
because DFS does not always expand out every single node at each depth. However, DFS 
could continue down an unbounded branch forever even if the goal is not located on that 
branch in case of search tree with infinite depth. One way to handle this problem is to use 
constrained depth-first search where the search stops after reaching a certain depth. Time 
Complexity is O(bd) where b is the branching factor and d is the maximum depth of the 
search tree. This is terrible if d is much larger than b, but if solutions are found deeply in the 
tree, it may be much faster than BFS. The space complexity of DFS is O(bd), i.e., linear 
space! This space complexity represents the maximum number of nodes to be stored in the 
memory. Table 3.5 summarizes a comparison between BFS and DFS. 
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Table 3.5 BFS versus DFS 

 Breadth-first Search (BFS) Depth-first Search (DFS) 

Space complexity More expensive Less expensive. Requires only O(d) space 
irrespective of number of children per 
node. 

Time complexity More time efficient. A vertex at lower level 
(closer to the root) is visited first before 
visiting a vertex that is at higher level (far 
away from the root) 

Less time efficient 

When it is 
preferred 

• If the tree is very deep 

• If the branching factor is not excessive 

• If solution appear at a relatively 
shallow level (i.e, solution/target is 
near to the starting point/source/apex 
node in the tree) 

• Example: search the royal family tree 
for someone who is dead a long time 
ago as he/she would be closer to the 
top of the tree (e.g., King George VI). 

• If the graph/tree is very wide with too 
many adjacent nodes 

• If no path is excessively deep 

• If solutions occur deeply in the tree 
(i.e., the target is far from the source) 

• Example: search the royal family tree 
for someone who is still alive as 
he/she would be on the bottom of 
the tree (e.g., Prince William) 

In applications where the weight of edges in a graph are all equal (e.g., all length 1), BFS 
and DFS algorithms outperform shortest path algorithms like Dijkstra’s in terms of time. 
Shortest path algorithms are explained in the following section. 

3.4 Shortest Path Algorithms 
Dijkstra algorithm, Uniform-Cost Search (UCS) and Bi-directional Dijkstra Search are 
discussed here as examples of blind search algorithms that try to find the shortest path 
between a source node and a destination node. Suppose that you were looking for the 
quickest way to go from home to work. Graph traversal algorithms like BFS and DFS may 
eventually get you to your destination, but they certainly do not optimize for distance 
travelled. The following three algorithms generate provably shortest paths between two 
nodes in a graph. 

3.4.1 Dijkstra Search 
Dijkstra’s algorithm is a graph search algorithm that solves the single-source shortest path 
problem for a fully connected graph with non-negative edge path costs, producing a 
shortest-path tree. Dijkstra’s algorithm was published in 1959 and is named after Dutch 
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computer scientist Edsger Dijkstra. This algorithm is the base of several other graph search 
algorithms commonly used to solve routing problems in popular navigation apps, as 
illustrated in Figure 3.26. The algorithm follows dynamic programming approaches where the 
problem is recursively divided into simple sub-problems. Dijkstra’s algorithm is uninformed, 
meaning it does not need to know the target node beforehand and doesn’t use heuristic 
information. 

Figure 3.26 Dijkstra’s algorithm and its variants 

Algorithm 3.3 shows the steps of the original version of Dijkstra's algorithm to find the 
shortest path between a known single source node to all the other nodes in the graph/tree. 
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Algorithm 3.3 Dijkstra’s Algorithm 

DIJKSTRA-SEARCH(graph,source) return a list of distances 

shortest_dist ← empty 
unrelaxed_nodes ← empty 
seen ← empty 

for node in graph 
shortest_dist[node] = Infinity 
add node to unrelaxed_nodes 

shortest_dist[source] ← 0 

while unrelaxed_nodes is not empty do 
node ← unrelaxed_nodes.pop() 
add node to seen 
for child in node.expand() do 

if child in seen then skip 
distance ← shortest_dist[node] + length of edge to child 
if distance < shortest_dist[child] then 

shortest_dist[child] ← distance 
child.parent ← node 

return shortest_dist 

The Dijkstra algorithm and its variants presented in the code for this book are all modified to 
require a target node. This improves processing time when working with large graphs (i.e., 
road networks). 

Let’s illustrate how Dijkstra’s algorithm finds the shortest path between any two nodes in 
a graph. Priority queue is used to pop the element of the queue with the highest priority 
according to some ordering function (shortest distance between the node and the source 
node in this case). 

• Step 0: Initial list, no predecessors: Priority Queue = {} (Figure 3.27). 

Figure 3.27 Finding shortest path using Dijkstra’s algorithm – Step 0 
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• Step 1: The closest node to the source node is S, add to Priority Queue. Update 
distances and predecessors for A, C and D. Priority Queue = {S} (Figure 3.28). 

Figure 3.28 Finding shortest path using Dijkstra’s algorithm – Step 1 

• Step 2: Next closest node is C, add to Priority Queue. Update distances and 
predecessors for A and D. Priority Queue = {S, C} (Figure 3.29). 

Figure 3.29 Finding shortest path using Dijkstra’s algorithm – Step 2 

• Step 3: Next closest node is D, add to Priority Queue. Update distances and 
predecessor B. Priority Queue = {S, C, D} (Figure 3.30). 
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Figure 3.30 Finding shortest path using Dijkstra’s algorithm – Step 3 

• Step 4: Next closest node is A, add to Priority Queue. Priority Queue = {S, C, D, A}. 
All nodes are now added (Figure 3.31). 

Figure 3.31 Finding shortest path using Dijkstra’s algorithm – Step 4 

• Step 5: Next step is to add the remaining node B to complete the search (Figure 
3.32). 
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Figure 3.32 Finding shortest path using Dijkstra’s algorithm – Step 5 

Once the search is complete, you can choose the goal node and find the shortest path from 
the table. For example, if the goal node is A, the shortest path between S and A is S-C-A 
with length 9. Likewise, if the goal node is B, the shortest path between S and B is S-C-D-B 
with a distance of 10. 

Note that we can’t use Dijkstra search on our 8-puzzle piece problem: it requires 
knowledge of the entire problem space beforehand. While the problem has a finite number of 
possible states (exactly 9!/2), the scale of that solution space makes the Dijkstra search not 
very feasible. 

3.4.2 Uniform-Cost Search (UCS) 
Uniform-Cost Search (UCS) algorithm is a blind search algorithm that uses the lowest 
cumulative cost to find a path from the origin to the destination. Essentially, the algorithm 
organizes nodes to be explored by their cost (with the lowest cost as the highest priority) for 
minimization problems or by their utility (with the highest utility as the highest priority) in 
the case of maximization problems. As nodes are popped from the queue, the node’s children 
are added to the queue. If a child already exists in the priority queue, the priorities of both 
copies of the child are compared, and the lowest cost (highest priority) is accepted. This 
ensures that the path to each child is the shortest one available. We also maintain a visited 
list to avoid revisiting nodes that have already been popped from the queue. Algorithm 3.4 
shows the steps of the UCS algorithm. 
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Algorithm 3.4 Uniform-Cost Search (UCS) Algorithm 

UNIFORM-COST-SEARCH(graph,source,destination) return a route 

priority_queue ← source 
found ← False 
seen ← source 

while priority_queue is not empty and found is False do 
node ← priority_queue.pop() 
seen ← node 
node_cost ← cumulative distance from source 
if node is destination then 

route ← node.route() 
found ← True 

for child in node.expand() do 
if child in priority_queue then 

if child.priority < priority_queue[child].priority then 
priority_queue[child].priority = child.priority 

else 
priority_queue ← child 

priority_queue[child].priority ← node_cost 
return route 

UCS is a variant of Dijkstra's algorithm that is useful for large graphs as it is less time-
consuming and has fewer space requirements. Whereas Dijkstra adds all nodes to the queue 
at the start with an infinite cost, UCS fills the priority queue gradually. For example, consider 
the problem of finding the shortest path between every node pair in a graph. As a graph's 
size and complexity grow, it quickly becomes apparent that UCS is more efficient, as it does 
not require knowing the entire graph beforehand. In Table 3.6, you can see the difference in 
processing time between Dijkstra and UCS on graphs of different sizes. These numbers were 
collected using the code from Listing 3.11 (available on the GitHub repo of the book) on an 
Intel Core i9-9900K at 3.60 GHz without multiprocessing or multithreading. 

Table 3.6 UCS versus Dijkstra 

Graph size= |V| + |E| Dijkstra time Uniform-Cost Search (UCS) time 

108 0.25 s 0.14 s 

628 84.61 s 58.23 s 

1514 2,082.97 s 1,360.98 s 

Note that running UCS on our 8-puzzle piece problem requires a distance property for each 
State (this defaults to 1) and overall generates decent results (around 6.2 kB of space used, 
789 states explored). It is important to note that because the edge lengths are all equal, 
UCS cannot prioritize new nodes to explore. Thus, the solution loses the advantage of 
shortest path algorithms, namely, the ability to optimize for a more compact solution. In the 
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next chapter, you’ll see ways of calculating artificial “distances” between these states, 
ultimately generating solutions found quickly and minimizing the number of steps required. 

3.4.3 Bi-directional Dijkstra Search 
Bidirectional search simultaneously applies forward search and backward search. As 
illustrated in Figure 3.33, it runs a search forward from the source/initial state S→G and 
backward from the goal/final state G→S until they meet. 

Figure 3.33 Bidirectional Dijkstra 

As shown in Figure 3.33, the Dijkstra search space is C1=4πr2 and the bidirectional Dijkstra 
search space is represented by C2+C3=2πr2. This means that we reduce the search space by 
a factor of around two. Algorithm 3.5 shows the steps of the bidirectional Dijkstra algorithm. 
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Algorithm 3.5 Bidirectional Dijkstra Algorithm 

BI-DIRECTIONAL-SEARCH(source,destination) return a route 

frontier_f ← initialized with source 
frontier_b ← initialized with destination 
explored_f ← empty 
explored_b ← empty 
found ← False 
collide ← False 
altr_expand ← False 

while frontier_f is not empty and frontier_b is not empty and not collide and not found do 
if altr_expand then 

node ← frontier_f.pop() 
add node to explored_f 
for child in node.expand() do 

if child in explored_f then continue 
if child is destination then 

route ← child.route() 
found ← True 

if child in explored_b then 
route ← child.route() + reverse(overlapped.route()) 
collide ← True 

add child to frontier_f 
altr_expand ← not altr_expand 

else 
node ← frontier_b.pop() 
add node to explored_b 
for child in node.expand() do 

if child in explored_b then continue 
if child is origin then 

route ← child.route() 
found ← True 

if child in explored_f then 
route ← reverse(child.route()) + overlapped.route() 
collide ← True 

add child to frontier_b 
altr_expand ← not altr_expand 

return route 

This approach is more efficient because of the time complexities involved. For example, a 
BFS search with a constant branching factor b and depth d would have an overall O(bd) space 
complexity. However, by running two BFS searches in opposite directions with only half the 
depth (d/2), the space complexity becomes O(bd/2+bd/2) or simply O(bd/2), which is 
significantly lower. 
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Figure 3.34 Dijkstra vs Bidirectional Dijkstra. Blue represents the forward exploration, while red shows the 
backwards exploration. 

Figure 3.34 shows the difference between Dijkstra and bidirectional Dijkstra algorithms in 
exploring 50,841 nodes in the City of Toronto. 

3.5 Applying Blind Search to Routing Problem 
Puzzle games and simple grid routing problems are nice to understand how an algorithm 
works. However, it's about time we show some real-world examples and outcomes from 
using these algorithms. For example, imagine that you are visiting the King Edward VII 
Equestrian statue at Queen's Park in Toronto when you suddenly remember you have a 
meeting at the Bahen Centre for Information Technology at the University of Toronto. If you 
recall, this problem was initially presented to you when we first introduced road network 
graphs at the beginning of this chapter. There are a couple of assumptions we make when 
offering this problem: 

• You aren't able to open up a navigation app or call a friend for help as your phone is
out of battery.

• You know your destination is somewhere in Toronto, but you have no clue where it is
with reference to your starting location. In later chapters, you'll learn how knowing
your destination's direction helps generate near-optimal solutions in a very short
amount of time.

• Once you start using a rule for routing to your destination, you stick to that rule.

Let's take a look at how we might be able to simulate your pathfinding skills using BFS, DFS, 
Dijkstra, UCS, and Bidirectional Dijkstra. The code for this example is located in Listing 3.11. 
The following figures show the generated routes by these blind search algorithms. 
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Figure 3.35 BFS routing using Python. BFS searches each layer first, before moving to the next. This works 
best for graphs that are not very broad, and has a solution located near the root node. 

Figure 3.36 DFS routing using Python. DFS searches as deep as possible in the graph before “backtracking”. 
This works best when the graph is not very deep, and solutions are located further away from the root node. 
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Figure 3.37 Dijkstra’s, UCS, and Bidirectional Dijkstra’s routing. All three of these algorithms will produce the 
same solution (optimal routing), but handle memory usage and node exploration differently. 

It is worth noting that dijkstra_path function in networkx uses Dijkstra’s method to compute 
the shortest weighted path between two nodes in a graph. Our optimization_algorithms_tools
package also provide implementation for different graph search algorithm such as BFS, DFS, 
Dijkstra, UCS, Bidirectional_Dijkstra. The implementation of Dijkstra's algorithm in 
optimization_algorithms_tools has been modified to work with our OSM data. This is because 
graphs generated from maps will naturally have self-loops and parallel edges. Parallel edges 
may result in a route that is not the shortest available, as the route length depends heavily 
on which parallel edge was chosen when a particular path was generated. In Figure 3.38, the 
shortest path from 0 to 3 may be returned as having a length of 7 if the first edge connecting 
0 and 1 is chosen when calculating that path, versus a length of 3 when selecting the second 
edge. 

Figure 3.38 Parallel edges may be problematic as finding the shortest path depends on which parallel edge 
was selected during graph exploration. 
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Self-loops also cause trouble for the original Dijkstra algorithm. If a graph contains a self-
loop, it may be the case that the shortest path to a node comes from itself. At that point, we 
would be unable to generate a route. 

Figure 3.39 Self-loops may disrupt the chain of “parent-child nodes”, which prevents retracing the route after a 
solution has been found. 

These two issues are generally easy but non-trivial to avoid. For parallel edges, we select the 
edge with the lowest weight (shortest length) and discard any other parallel edge. With self-
loops, we can ignore the loop entirely as negative-weight loops do not exist in most routing 
problems (a road cannot have a negative length), and positive-weight loops cannot be part 
of the shortest path. Additionally, the version of Dijkstra’s used in this book terminates upon 
finding the target node, as opposed to the traditional implementation of Dijkstra’s, which 
ends only when the shortest path from the root node to all other nodes is found. Table 3.7 
compares BFS, DFS, Dijkstra, and UCS with regards to path length, process time, space 
required, and the number of explored nodes. 
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Table 3.7 Comparison between BFS, DFS, Dijkstra and UCS where b is the branching factor, m
is the maximum depth of search tree, d is the shallowest graph depth, E is number of edges and 
V is number of vertices. 

Algorithm Cost (m) Process 
time (s) 

Space 
(bytes) 

Explored 
nodes 

Worst-case 
time 

Worst-case 
space 

Optimality 

BFS 955.962 0.015625 1152 278 O(bd O(bd) O(bd) No 

DFS 3347.482 0.015625 1152 153 O(bm) O(bm) No 

Dijkstra’s 806.892 0.0625 3752 393 O(|E| + |V| 
log |V|) 

O(|V|) Yes 

UCS 0.03125 592 393 O((b + |E|) * d) O(bd) Yes 

Bidirectional 
Dijkstra’s 

0.046875 3752 282 O(bd/2) O(bd/2) Yes 

As you can see from the above results, Dijkstra’s, UCS, and Bidirectional Dijkstra’s 
algorithms produce optimal results, with varying degrees of time and space cost. While both 
BFS and DFS find feasible solutions in the shortest time, the solutions delivered are not 
optimal and, in the case of DFS, not even plausible. On the other hand, DFS requires 
knowing the entire graph beforehand, which is costly and sometimes not very practical. Much 
of selecting an appropriate search algorithm for a specific problem involves determining the 
ideal balance between processing time and space requirements. In later chapters, we’ll look 
at algorithms that produce near-optimal solutions, often used when optimal solutions are 
either impossible or impractical to find. Note that all the above solutions are feasible; they all 
produce a valid (if sometimes convoluted) path from point A to point B. 

In the next chapter, we will show how search can be optimized if we utilize domain-
specific knowledge instead of search blindly. We'll dive right into informed search methods 
showing how to use these algorithms to solve minimum spanning tree and shortest path 
problems. 
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3.6 Exercises 
1. MCQs and T/F: Choose the correct answer for each of the following questions.

1.1. Big O specifically describes the limiting behavior of a function (worst-case scenario) 
when the argument tends towards a particular value or infinity, usually in terms of simpler 
functions. What is the big-O of this expression: nlog(n)+log(2n) 

a. Linearithmic

b. Loglinear

c. Quasilinear

d. All of the above

1.2. Which blind search algorithm implements stack operation for searching the states? 

a. Breadth-first Search (BFS)

b. Uniform-cost Search (UCS)

c. Bidirectional Search (BS)

d. Depth-first search (DFS)

e. None of the mentioned

1.3. A tree is a connected graph with no circuits and no self-loops. 

a. True

b. False

1.4. For very large workspace where the goal is deep within the workspace, the number of 
nodes could expand exponentially and depth-first search will demand a very large memory 
requirement. 

a. True

b. False

1.5. Best-first is a mixed depth and breadth first search that uses heuristic values and 
expands the most desirable unexpanded node. 

a. True

b. False

1.6. In design problems or strategic functions, optimality is usually traded in for speed gains. 

a. True

b. False
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1.7. Graph traversal algorithms outperform shortest path algorithms in applications 
where the weight of edges in a graph are all equal 

a. True

b. False

1.8. In Dijkstra’s algorithm, the priority queue is filled gradually 

a. True

b. False

1.9. When is breadth-first search is optimal? 

a. When there is less number of nodes

b. When all step costs are equal

c. When all step costs are unequal

d. None of the mentioned

1.10 A blind search algorithm that combines DFS’s space-efficiency and BFS’s fast search by 
incrementing the depth limit until the goal is reached. 

a. Depth-limited Search (DLS)

b. Iterative Deepening Search (IDS)

c. Uniform-cost Search (UCS)

d. Bidirectional Search (BS)

e. None of the mentioned

1.11 The name of O(nlogn) is 

a. Logarithmic

b. Exponential

c. Quasilinear

d. None of the above

1.12. Which search algorithm is implemented with an empty first-in-first-out queue? 

a. Depth-first search

b. Breadth-first search

c. Bidirectional search

d. None of the mentioned
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2. Consider the following simplified map shown in Figure 3.40, where edges are labeled
with actual distances between the cities.  State the path to go from city A to city M
produced by BFS and the path produced by DFS.

Figure 3.40 Simplified map. 

3. Find the big O notation for the following functions.

a. 10n+nlog(n)

b. 4+n/5

c. n5-20n3+170n+208

d. n+10log(n)

4. Consider the search space below, where S is the start node and G1 and G2 are goal
nodes. Arcs are labeled with the value of a cost function; the number gives the cost of
traversing the arc. Above each node is the value of a heuristic function; the number gives
the estimate of the distance to the goal. Assume that uninformed search algorithms always
choose the left branch first when there is a choice. For each of depth-first search (DFS) and
breadth-first search (BFS) strategies:

a. indicate which goal state is reached first (if any) and

b. list in order, all the states that are popped off the OPEN list.

110

https://livebook.manning.com/#!/book/optimization-algorithms/discussion


©Manning Publications Co.  To comment go to  liveBook 

Figure 3.41.A graph search exercise 

5. Solve the following crossword puzzle
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Across 

2. a depth first search with a predetermined depth limit 

7. a blind search algorithm that solves the single-source shortest path problem for a 
weighted graph with non-negative edge costs 

8. a search algorithm that combines forward and backward search 

10. a graph traversal algorithm that first explores nodes going through one adjacent of the 
root, then next adjacent until it finds a solution or until it reaches a dead end 

11. a variant of Dijkstra's algorithm that is appropriate for large graphs 

13. a function that is slightly faster than linear complexity 

14. a graph in which multiple edges may connect the same pair of vertices 

15. a Last-In-First-Out (LIFO) data structure 

Down 

1. a search algorithm that combines DFS’s space-efficiency and BFS’s fast search by 
incrementing the depth limit until the goal is reached 

2. a graph used by Twitter to represent following 
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3. a graph traversal search algorithm that is preferred when the tree is deep

4. a generalization of a graph in which generalized edges can join any number of nodes

5. type of graph used in LinkedIn to represent users, groups, unregistered persons, posts,
skills and jobs

6. a notation used to describe the performance or complexity of an algorithm

9. the process of exploring the structure of a tree or a graph by visiting the nodes following a
certain well-defined rule

12. a First-In-First-Out (FIFO) data structure

Hint: Spaces and dashes MUST be used if the answer consists of two or more words. 

3.7 Summary 
• Conventional graph search algorithms (blind and informed search algorithms) are

deterministic search algorithms that explore a graph either for general discovery or
for explicit search.

• Graphs are non-linear data structures that consist of 3 sets: vertices/nodes, edges
and a set representing relations between vertices and edges.

• Blind/uninformed search is a search approach where no information about the search
space is used.

• Breadth-first Search (BFS) is a graph traversal algorithm that examines all the nodes
in a search tree on one level before considering any of the nodes on the next level.

• Depth-first Search (DFS) is a graph traversal algorithm that first explores nodes going
through one adjacent of the root, then next adjacent until it finds a solution or until it
reaches a dead-end.

• Depth-limited Search (DLS) is a constrained DFS with a predetermined depth limit to
prevent exploring of paths that are too long in search tree with infinite depth.

• Iterative Deepening Search (IDS) or Iterative Deepening Depth First Search (IDDFS)
combines DFS's space efficiency and BFS's fast search by incrementing the depth limit
until the goal is reached.

• Dijkstra's algorithm solves the single-source shortest path problem for a weighted
graph with non-negative edge costs.

• Uniform-cost Search (UCS) is a variant of Dijkstra's algorithm that uses the lowest
cumulative cost to find a path from the source to the destination. It is equivalent to
the BFS algorithm if the path cost of all edges is the same.

• Bidirectional Search (BS) is a combination of forward and backward search. It
searches forward from the start and backward from the goal simultaneously.

• Selecting a search algorithm involves determining the target balance between time
complexity, space complexity, prior knowledge about the search space, among other
factors.

• As you progress to Chapter 4, you will start to learn about informed search algorithms
where additional information or heuristic rules are used during the search.
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Search and Optimization Libraries in 
Python 

This appendix covers 

• Setting up the Python environment 
• Mathematical programming solvers 
• Graph and mapping Libraries 
• Metaheuristics Optimization Libraries 
• Machine Learning Libraries 

A.1 Setting up the Python environment 
This book assumes that you already have Python 3.6 or newer installed on your system. For 
installation instructions specific to your operating system, see this Beginner’s Guide. For 
Windows, you can follow these steps to install Python: 

• Step 1: Go to the official website: https://www.python.org/downloads/ 
• Step 2: Select version of Python to install 
• Step 3: Download Python executable installer 
• Step 4: Run executable installer. Make sure you select the Install launcher for all 

users and Add Python 3.8 to PATH checkboxes. 
• Step 5: Verify Python was successfully installed by typing python –V in a command 

prompt 
• Step 6: Verify Pip was installed by typing pip -V in a command prompt 
• Step 7: Install virtualnv by typing pip install virtualenv in a command prompt 

If you are a Linux user, in the terminal, execute the following commands: 
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$ sudo apt update 
$ sudo apt install python3-pip 

Install venv and create a python virtual environment: 

$ sudo apt install python3.8-venv 
$ mkdir <new directory for venv> 
$ python -m venv <path to venv directory> 

Make sure that you replace python3.8 with the version of Python you are using. You can now 
access your virtual environment using the following command: 

$ source <path to venv>/bin/activate 

In case of macOS, Python is already pre-installed in macOS, but if you need to upgrade or 
install a specific version, you can use the macOS terminal as follows: 

$ python -m ensurepip --upgrade 

venv is included with python 3.8+. You can run the following command to create a virtual 
environment: 

$ mkdir <new directory> 
$ python -m venv <path to venv directory> 

You can now access your virtual environment using the following command: 

$ source <path to venv>/bin/activate 

A better option is to install a Python distribution as explained in the next subsection. 

A.1.1 Using a Python distribution 
Python distribution, such as Anaconda or Miniconda come with a package manager called 
conda that allows you to install a wide range of Python packages and manage different 
Python environments. 

Install conda for your OS using the guide found here. Conda environments are used to 
manage multiple installations of different versions of Python packages and their 
dependencies.  You can create a conda environment with this command: 

$ conda create --name <name of env> python=<your version of python> 

To access the newly-created environment: 

$ conda activate <your env name> 

This command allows you to switch or move between environments. 

A.1.2 Installing Jupyter Notebook and JupyterLab 
Jupyter is a multi-language, open-source web-based platform for interactive programming. 
The word "Jupyter" is a loose acronym meaning Julia, Python, and R. All of the code in this 
book is stored in Jupyter notebooks (.ipynb files) can be opened and edited using jupyterlab 

115

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://conda.io/projects/conda/en/latest/user-guide/install/index.html


©Manning Publications Co.  To comment go to  liveBook 

or Jupyter notebook. Jupyter notebook feels more standalone but JupyterLab feels more like 
an IDE. You can install JupyterLab using pip as follows: 

$ pip install jupyterlab 
$ pip install notebook 

Or using conda as follows: 

$ conda install -c conda-forge jupyterlab 
$ conda install -c conda-forge notebook 

You can install the Python ipywidgets package to automatically configure classic Jupyter 
Notebook and JupyterLab 3.0 to display ipywidgets using pip or conda as follows: 

$ pip install ipywidgets 
$ conda install -c conda-forge ipywidgets 

If you have an old version of Jupyter notebook installed, you may need to manually enable 
the ipywidgets notebook extension with: 

$ jupyter nbextension install --user --py widgetsnbextension 
$ jupyter nbextension enable --user --py widgetsnbextension 

Google Colaboratory (Colab) can also be used. This cloud-based tool allows writing, 
executing and sharing Python code through the browser. It also provides free access to GPU 
and TPU for increased computational power. You can access Colab by visiting: 
https://colab.research.google.com/. 

A.1.3 Cloning book repository 
You can clone the book code repository as follows: 

$git clone https://github.com/Optimization-Algorithms-Book/Code-Listings.git 

Many of the operations in this book are long and burdensome to code from scratch. 
Oftentimes, they are highly standardized and can benefit from having a helper function take 
care of the various intricacies. optimization_algorithms_tools is a python package 
developed for this purpose. You can use these supporting tools locally without installing this 
package. In this case, you will need to download optimization_algorithms_tools in a local 
folder and add this folder to the system path in case of using Jupyter notebook or Jupyter lab 
as follows: 

import sys 
sys.path.insert(0, '../') 

In case of Colab, you can mount your Google Drive with: 

from google.colab import drive 
drive.mount('/content/drive') 

Copy optimization_algorithms_tools folder to your Google Drive. 
This package is also available on Python Package Index (PyPI) repository here: 

https://pypi.org/project/optimization-algorithms-tools/0.0.1/. You can it install as following: 
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$pip install optimization_algorithms_tools 

You can then use import command to use these tools. Here is an example: 

from optimization_algorithms_tools.problems import TSP 
from optimization_algorithms_tools.algorithms import SimulatedAnnealing 

The first line import TSP instance from problems module and the second line imports 
simulated annealing solver from the algorithms module. 

A.2 Mathematical Programming Solvers 
Mathematical programming, also known as mathematical optimization, is the process of 
finding the best solution to a problem that can be represented in mathematical terms. It 
involves formulating a mathematical model of a problem, determining the parameters of the 
model, and using mathematical and computational techniques to find the solution that 
maximizes or minimizes a particular objective function or set of objective functions subject to 
a set of constraints. Linear programming (LP), mixed-integer linear programming (MILP), 
and nonlinear programming (NLP) are example of mathematical optimization problems. 
There are several Python libraries that can be used for solving mathematical optimization 
problems. 

Let’s consider the following production planning example from [C. Guerte el al, 
Applications of Optimization, Chapter 8: Planning problems, 2000]. A small joinery makes 
two different sizes of boxwood chess sets. The small set requires 3 hours of machining on a 
lathe, and the large set requires 2 hours. There are four lathes with skilled operators who 
each work a 40-hour week, so we have 160 lathe-hours per week. The small chess set 
requires 1 kg of boxwood, and the large set requires 3 kg. Unfortunately, boxwood is scarce 
and only 200 kg per week can be obtained. When sold, each of the large chess sets yields a 
profit of $12, and one of the small chess set has a profit of $5. The problem is to decide how 
many sets of each kind should be made each week so as to maximize profit. Let’s assume 
that x1 and x2 are decision variables that represent the number of small and large chess sets 
respectively to make. 

The total profit is the sum of the individual profits from making and selling the x1 small 
sets and the x2 large sets, i.e. Profit = 5x1 + 12x2. However, this profit is subject to the 
following constraints: 

• The total number of hours of machine time we are planning to use is: 3x1 + 2x2. This 
time shouldn’t exceed the maximum of 160 hours of machine time available per week. 
This means that 3x1 + 2x2<=160 (lathe-hours). 

• Only 200 kg of boxwood is available each week. Since small sets use 1 kg for every 
set made, against 3 kg needed to make a large set, so x1 + 3x2<=200 (kg of 
boxwood). 

• The joinery cannot produce a negative number of chess sets, so two further non-
negativity constraints: x1 and x2>=0. 

This linear programming problem can be summarized as follows: 
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Let’s now see how to solve this linear programming using different solvers. 

A.2.1 SciPy 
SciPy is an open-source scientific computing Python library that provides tools for 
optimization, linear algebra, and statistics. SciPy optimize includes solvers for nonlinear 
problems (with support for both local and global optimization algorithms), linear programing, 
constrained and nonlinear least-squares, root finding, and curve fitting. To use SciPy, you 
will need to install it along with its dependencies. You can install SciPy using the pip package 
manager or by using a Python distribution, such as Anaconda or Miniconda, which come with 
SciPy and other scientific libraries pre-installed. 

$pip install scipy 

Listing A.1 shows the steps to solve the car manufacturing problem using SciPy. The code 
defines the coefficient vector c, left hand side (lhs) and right hand side (rhs) of the constraint 
equations. 

Listing A.1 Solving Chess Set Problem using SciPy 

import numpy as np 
import scipy 
from scipy.optimize import linprog 

c = -np.array([5,12]) #A 

lhs_constraints=([3,2], #B 
[1,3]) #C 

rhs_constraints=([160, #D 
200]) #E 

bounds = [(0, scipy.inf), (0, scipy.inf)]  #F 

results = linprog(c=c, A_ub=lhs_constraints, b_ub=rhs_constraints, bounds=bounds, 
method='highs-ds') #G 

print('LP Solution:')  #H 
print(f'Profit: = {-round(results.fun,2)} $')  #H 
print(f'Make {round(results.x[0],0)} small sets, and make {round(results.x[1],0)} large 

sets')  #H 
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LP Solution: 
Profit: = 811.43 $ 
Make 11.0 small sets, and make 63.0 large sets 

The used linprog() function returns a data structure with several attributes such as x: the 
current solution vector, fun: the current value of the objective function, success: True when 
the algorithm has completed successfully. SciPy cannot handle maximization problems. The 
problem must be converted to minimization problem. Moreover, constraints using the 
greater-than-or-equal-to sign cannot be defined directly. Less-than-or-equal-to must be used 
instead. 

A.2.2 PuLP 
PuLP is a linear programming library in Python that allows you to define and solve linear 
optimization problems. There are two main classes in PuLP: LpProblem and LpVariable. PuLP 
variables can be declared individually or as “dictionaries” (variables indexed on another set). 
You can install PuLP using pip as following: 

$pip install pulp 

The following code (part of Listing A.1) shows how to use PuLP to solve the chess set 
problem. 

Listing A.1 Solving Production Planning Problem using PuLP 

#!pip install pulp 
from pulp import LpMaximize, LpProblem, LpVariable, lpSum, LpStatus 

model = LpProblem(name='ChessSet', sense=LpMaximize) #A 

x1 = LpVariable('SmallSet', lowBound = 0, upBound =  None, cat='Integer') #B 
x2 = LpVariable('LargeSet', lowBound = 0, upBound =  None, cat='Integer') #B 

model += (3*x1 + 2*x2 <=160, 'Machining time constraint') #C 
model += (  x1 + 3*x2 <= 200, 'Weight constraint') #C 

profit= 5*x1 + 12*x2 #D 
model.setObjective(profit) #D 

model.solve() #E 

print('LP Solution:') #F 
print(f'Profit: = {model.objective.value()} $') #F 
print(f'Make {x1.value()} small sets, and make {x2.value()} large sets') #F 
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#A Define the model 
#B Ddefine the decision variables 
#C Aadd constraints 
#D Set the profit as the objective function 
#E Solve the optimization problem 
#F Print the solution 

PuLP implements several algorithms for solving linear programming (LP) and mixed-integer 
linear programming (MILP) problems. Examples of these algorithms include COIN-OR 
(Computational Infrastructure for Operations Research), CLP (Coin-or Linear Programming), 
CBC (Coin-or Branch-and-Cut), CPLEX (Cplex for short), GLPK (GNU Linear Programming 
Kit), SCIP (Solving Constraint Integer Programs), HiGHS (Highly Scalable Global Solver), 
Gurobi LP/MIP solver, Mosek Optimizer and XPRESS LP solver. 

There are several other libraries in Python for solving mathematical optimization 
problems. The following list is a non-exhaustive list of other libraries available in Python. 

• OR-Tools: is an open-source software suite for optimization and constraint 
programming developed by Google. It includes a variety of algorithms and tools for 
solving problems in areas such as operations research, transportation, scheduling, 
and logistics. OR-Tools can be used to model and solve linear and integer 
programming problems, as well as constraint programming problems. Examples of 
OR-Tools solvers include GLOP (Google Linear Programming), CBC (Coin-Or Branch 
and Cut), CP-SAT (Constraint Programming - SATisfiability) solver, Max Flow and Min 
Cost Flow solvers, and the Shortest Path solver, BOP (Binary Optimization Problem) 
solver. It is written in C++ and includes interfaces for several programming 
languages, including Python, C#, and Java. See Section A.4 for more details and an 
example. 

• Gurobi: is a commercial optimization software that offers state-of-the-art solvers for 
linear programming, quadratic programming, and mixed integer programming. It has 
a Python interface that can be used to define and solve optimization problems. 

• PYTHON-MIP: is a Python library for solving mixed-integer programming problems. It 
is built on top of the open-source optimization library CBC and allows users to express 
optimization models in a high-level, mathematical programming language. 

• Pyomo: is an open-source optimization modeling language that can be used to define 
and solve mathematical optimization problems in Python. It supports a wide range of 
optimization solvers, including linear programming, mixed integer programming, and 
nonlinear optimization. 

• GEKKO: is a Python package for machine learning and optimization of mixed-integer 
and differential algebraic equations. 

• CVXPY: is an open source Python-embedded modeling language for convex 
optimization problems. It lets you express your problem in a natural way that follows 
the math, rather than in the restrictive standard form required by solvers. 

• PyMathProg: is a mathematical programming environment for Python that enables 
modelling, solving, analyzing, modifying and manipulating linear programming 
problems. 

 

120

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://developers.google.com/optimization
https://www.gurobi.com/documentation/
https://www.python-mip.com/
http://www.pyomo.org/
https://gekko.readthedocs.io/en/latest/
https://www.cvxpy.org/
https://pymprog.sourceforge.net/


©Manning Publications Co.  To comment go to  liveBook 

• Optlang: is a Python library for modeling and solving mathematical optimization 
problems. It provides a common interface to a series of optimization tools, so 
different solver backends can be changed in a transparent way. It is compatible with 
most of the popular optimization solvers like Gurobi, Cplex, and Ipopt (Interior Point 
OPTimizer). 

• Python interface to conic optimization solvers (PICOS): is a Python library for 
modeling and solving optimization problems. It can handle complex problems with 
multiple objectives, and it supports both local and global optimization methods. PICOS 
has interfaces to different solvers such as Gurobi, CPLEX, SCS (Splitting Conic 
Solver), ECOS (Embedded Cone Solver), and MOSEK. 

• CyLP: is is a Python interface to COIN-OR’s Linear and mixed-integer program solvers 
(CLP, CBC, and CGL). COIN-OR (COmputational INfrastructure for Operations 
Research) is a collection of open-source software packages for operations research 
and computational optimization. It includes libraries for linear and integer 
programming, constraint programming, and other optimization techniques. 

• SymPy: is a Python library for symbolic mathematics. It can be used to deal to solve 
equations, handling combinatorics, plotting in 2d/3d, work on polynomials, calculus, 
discrete math, matrices, geometry, parsing, physics, statistics and cryptography. 

• Other libraries: include but are not limited to, MOSEK, CVXOPT, DOcplex, DRAKE, 
Pyscipopt, PyOptim, PyMathProg and NLPy. 

Jupyter notebook Listing A.1_Mathematical_programming_solvers.ipynb included in the 
GitHub repo of the book shows how to use some of these solvers to solve chess set problem. 

A.3 Graph and Mapping Libraries 
The following Python libraries are used in the book to process and visualize graphs, networks 
and geospatial data. 

A.3.1 networkx 
networkx is a library for working with graphs and networks in Python. It provides tools for 
creating, manipulating, and analyzing graph data, as well as for visualizing graph structures. 
networkx also contains approximations of graph properties and heuristic methods for 
optimization. You can install networkx as following: 

$pip install networkx 

Let’s consider TSP problem. Listing A.2 shows the steps of creating a random undirected 
graph for this problem. Each randomly scattered node represents a city to be visited by the 
travelling salesman and the weight of each edge connected the cities is calculated based on 
the Euclidian distance between the nodes using hypot function that calculates the square root 
of the sum of squares. Christofides algorithm is used to solve this TSP instance. This 
algorithm provides a 3/2-approximation of TSP. This means that its solutions will be within a 
factor of 1.5 of the optimal solution length. 
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Listing A.2 Solving TSP using networkx 

import matplotlib.pyplot as plt 
import networkx as nx 
import networkx.algorithms.approximation as nx_app 
import math 

plt.figure(figsize=(10, 7)) 

G = nx.random_geometric_graph(20, radius=0.4, seed=4) #A 
pos = nx.get_node_attributes(G, "pos") 

pos[0] = (0.5, 0.5) #B 

H = G.copy() #C 

for i in range(len(pos)): #D 
for j in range(i + 1, len(pos)): #D 

dist = math.hypot(pos[i][0] - pos[j][0], pos[i][1] - pos[j][1]) #D 
dist = dist #D 
G.add_edge(i, j, weight=dist) #D 

cycle = nx_app.christofides(G, weight="weight") #E 
edge_list = list(nx.utils.pairwise(cycle)) 

nx.draw_networkx_edges(H, pos, edge_color="blue", width=0.5) #F 

nx.draw_networkx( #G 
G, #G 
pos, #G 
with_labels=True, #G 
edgelist=edge_list, #G 
edge_color="red", #G 
node_size=200, #G 
width=3, #G 

) #G 

print("The route of the salesman is:", cycle) #H 
plt.show() 

#A Create a random geometric graph with 20 nodes 
#B Set (0,0) as the home city/depot 
#C Create an independent shallow copy of the graph and attributes 
#D Calculating the distances between the nodes as edge's weight. 
#E Solve tsp using Christofides algorithm 
#F Highlight the closest edges on each node only 
#G Draw the route 
#H Print the route 

Figure A.1 shows the solution of this TSP. 
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Figure A.1 Solving TSP using Christofides algorithm implemented in networkx. The found route is: [0, 10, 7, 2, 
6, 1, 15, 14, 5, 17, 4, 9, 12, 18, 3, 19, 16, 8, 11, 13, 0] 

networkx supports a variety of graph search algorithms and enables performing network 
analyses using packages within the geospatial Python ecosystem. 

A.3.2 osmnx 
osmnx is a Python library developed to ease the process of retrieving and manipulating the 
data from OpenStreetMap (OSM). It offers the ability to download the data (filtered) from 
OSM and returns the network as networkx graph data structure. It is a free and open-source 
geographic data of the world.  You can install OSMnx with conda: 

$ conda config --prepend channels conda-forge 
$ conda create -n ox --strict-channel-priority osmnx 
$ conda activate ox 

osmnx can be used to convert a text descriptor of a place into a networkx graph. Let’s use 
the Times Square in New York City as an example. 

Listing A.2 Creating a networkx graph for Times Square using osmnx 

import osmnx as ox 

place_name = "Times Square, NY" #A 

graph = ox.graph_from_address(place_name, network_type='drive') #B 

ox.plot_graph(graph,figsize=(10,10)) #C 

#A Name of the place or point of interest 
#B networkx graph of the named place 
#C Plot the graph 
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Figure A.2 shows the graph of the Times Square based on driving mode. 

Figure A.2 Times Square Graph wit drivable streets 

network_type allows you to select the type of the street network based on the mobility 
mode: "all_private", "all", "bike", "drive", "drive_service" or "walk". You can highlight all one-
way edges in Time Square street network using these two lines of code: 

ec = ['y' if data['oneway'] else 'w' for u, v, key, data in graph.edges(keys=True, 
data=True)] 

fig, ax = ox.plot_graph(graph, figsize=(10,10), node_size=0, edge_color=ec, 
edge_linewidth=1.5, edge_alpha=0.7) 

Various properties of the graph can be examined, such as the graph type, edge (road) types, 
CRS projection, etc. For example, you can print the graph type using type(graph) and you 
can extract the nodes and edges of the graph as separate structures as follows: 

nodes, edges = o.graph_to_gdfs(graph) 
nodes.head(5) 

We can further drill down to examine each individual node or edge. 

list(graph.nodes(data=True))[1] 
list(graph.edges(data=True))[0] 
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You can also retrieve the street types for the graph: 

print(edges['highway'].value_counts()) 

Running this code line gives the following statistics about the Times Square road network: 

secondary                      236 
residential                    120 
primary                         83 
unclassified                    16 
motorway_link                   12 
tertiary                        10 
motorway                         7 
living_street                    3 
[unclassified, residential]      1 
[motorway_link, primary]         1 
trunk                            1 

More statistics can be generated using osmnx.basic_stats: osmnx.basic_stats(graph) 
GeoDataFrames can be easily converted back to MultiDiGraphs by using 

osmnx.graph_from_gdfs as follows: 

new_graph = ox.graph_from_gdfs(nodes,edges) 
ox.plot_graph(new_graph,figsize=(10,10)) 

This results in the same road network shown in Figure A.2. You can also save the street 
network in different formats as follows: 

ox.plot_graph(graph, figsize=(10,10), show=False, save=True, close=True, 
filepath='./data/TimesSquare.png') #A 

ox.plot_graph(graph, figsize=(10,10), show=False, save=True, close=True, 
filepath='./data/TimesSquare.svg') #B 

ox.save_graph_xml(graph, filepath='./data/TimesSquare.osm') #C 
ox.save_graph_geopackage(graph, filepath='./data/TimesSquare.gpkg') #D 
ox.save_graphml(graph, filepath='./data/TimesSquare.graphml') #E 
ox.save_graph_shapefile(graph, filepath='./data/TimesSquare') #F 

#A Save street network as PNG 
#B Save street network as SVG 
#C Save graph to disk as .osm xml file 
#D Save street network as GeoPackage file for GIS 
#E Save street network as GraphML file for OSMnx or networkx or gephi 
#F Save graph as a shapefile 

A.3.3 GeoPandas 
GeoPandas is an extension to pandas that handles geospatial data by extending the 
datatypes of pandas, and the ability to query and manipulate spatial data. It provides tools 
for reading, writing, and manipulating geospatial data, as well as for visualizing and mapping 
data on a map. You can install GeoPandas using pip or conda as following: 

$conda install geopandas or 
$pip install geopandas 

GeoPandas can handle different geospatial data formats such as Shapefiles (.shp), CSV 
(Comma Separated Values), GeoJSON, ESRI JSON, GeoPackage (.gpkg), GML, GPX (GPS 
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eXchange Format) and KML (Keyhole Markup Language). For example, let’s assume we want 
to read Ontario’s health region data based on a Shapefile than can be downloaed from 
Ontario data catalogue. A Shapefile is a popular geospatial data format for storing vector 
data (such as points, lines, and polygons). It is a widely-used format for storing GIS data 
and is supported by many GIS software packages, including ArcGIS and QGIS. A Shapefile is 
actually a collection of several files with different extensions, including: 

• .shp: the main file that contains the geospatial data (points, lines, or polygons) 
• .shx: the index file that allows for faster access to the data in the .shp file 
• .dbf: the attribute file that contains the attribute data (non-geographic information) 

for each feature in the .shp file 
• .prj: the projection file that defines the coordinate system and projection information 

for the data in the .shp file 
• .sbx: spatial index of the features 

Listing A.2 shows how to read this geospatial data downlaoded from 
https://data.ontario.ca/dataset/ontario-s-health-region-geographic-data and stored in a local 
folder. 

Listing A.2 Reading geospatial data using GeoPandas 

import geopandas as gpd 
ontario = gpd.read_file(r"../Appendix B/data/OntarioHealth/Ontario_Health_Regions.shp") 

Complete listing is available on the book GitHub repo. 

A.3.4 contextily 
contextily is a Python library for adding contextual basemaps to plots created with libraries 
such as Matplotlib, Plotly, and others. For example, contextily can be used to add context 
while we render the Ontario health region data as follows: 

Listing A.2 Rendering data using contextily 

#!pip install contextily 
import contextily as ctx 
ax=ontario.plot(cmap='jet', edgecolor='black', column='REGION', alpha=0.5, legend=True, 

figsize=(10,10)) 
ax.set_title("EPSG:4326, WGS 84") 
ctx.add_basemap(ax, source=ctx.providers.OpenStreetMap.Mapnik, crs=ontario.crs.to_string()) 

Contextily supports several different sources for basemaps. Some of the most commonly 
used sources are: 

• OpenStreetMap (OSM): is the default source for Contextily. It is a free and open-
source map service that provides a variety of different styles, including the default 
"Mapnik" style and other styles such as "Humanitarian" and "Cycle". 

• Stamen: provides a variety of different map styles, including "Toner", "Terrain", and 
"Watercolor". 

• Mapbox: provides a variety of different map styles, including "Streets", "Outdoors", 
and "Satellite". It requires an API key to use. 
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• MapQuest: provides a variety of different map styles, including "OSM" and "Aerial". It 
requires an API key to use. 

• Here: provides a variety of different map styles, including "Normal Day" and "Normal 
Night". It requires an API key to use. 

• Google Maps: provides a variety of different map styles, including "Roadmap", 
"Satellite", and "Terrain". It requires an API key to use. 

A.3.5 folium 
folium is a library for creating interactive maps in Python using the Leaflet.js library. It 
provides tools for reading, writing, and manipulating geospatial data, as well as for 
visualizing and mapping data on a map. Folium can be used to create static or dynamic 
maps, as well as to customize the appearance and behavior of the map. Listing A.2 shows 
how to use folium to visualize Ontario Health regions on a map. 

Listing A.2 Visualizing geospatial data on a map using folium 

#!pip install folium 
import folium 

ontario = ontario.to_crs(epsg=4326) #A 

m = folium.Map(location=[43.67621,-79.40530],zoom_start=7, tiles='cartodbpositron', 
scrollWheelZoom=False, dragging=True) #B 

for index, row in ontario.iterrows(): #C 
sim_geo = gpd.GeoSeries(row['geometry']).simplify(tolerance=0.001) 
geo_j = sim_geo.to_json() 
geo_j = folium.GeoJson(data=geo_j, name=row['REGION'],style_function=lambda x: 

{'fillColor': 'black'}) 
folium.Popup(row['REGION']).add_to(geo_j) 
geo_j.add_to(m) 

m #D 

#A Transform geometries to a new coordinate reference system (CRS) 
#B Set starting location, initial zoom, and base layer source 
#C Simplify each region's polygon as intricate details are unnecessary 
#D Render the map 

Listing A.2_Graph_libraries.ipynb notebook available on the book’s GitHub repo provides 
example of different ways of visualizing geospatial data such as chloropleth map, cartogram 
map, bubble map, hexagonal binning, heat map and cluster map. 

A.3.6 Pyrosm 
Pyrosm is another Python library for reading OpenStreetMap from Protocolbuffer Binary 
Format -files (*.osm.pbf). It can be used to download and read OpenStreetMap data, extract 
features such as roads, buildings, and points of interest, and analyze and visualize the data. 
The main difference between pyrosm and OSMnx is that OSMnx reads the data using an 
OverPass API, whereas pyrosm reads the data from local OSM data dumps that are 
downloaded from the Protocolbuffer Binary Format -files (*.osm.pbf) data providers 
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(Geofabrik, BBBike) and convert it into Geopandas GeoDataFrames. This makes it possible to 
parse OSM data faster and make it more feasible to extract data covering large regions. 
Listing A.2 shows how to use Pyrosm to retrieve OpenStreetMap data about specific region of 
interest. 

Listing A.2 Retrieving OpenStreetData using Pyrosm 

#! pip install pyrosm 
import pyrosm 
place_name = 'Toronto' #A 
file_path = pyrosm.get_data(place_name) #B 
osm = pyrosm.OSM(file_path) #C 

#A Specify the place of interest 
#B Downloaded data from data providers such as Geofabrik, BBBike and store it into a local file 
#C Initialize the OSM object that parses the generated .osm.pbf local file 

Listing A.2_Graph_libraries.ipynb notebook available on the book’s GitHub repo provides 
more examples about how to use Pyrosm. 

A.3.7 Other libraries and tools 
The following list is a non-exhaustive list of other useful libraries and tools to work on 
geospatial data, graphs and networks. 

• Pandana: is a Python library for network analysis that uses contraction hierarchies to 
calculate super-fast travel accessibility metrics and shortest paths. 

• GeoPy: is a Python client for several popular geocoding web services. 
• Graphviz: is a library for creating visualizations of graphs and tree structures in 

Python. It provides tools for defining the structure of a graph, as well as for rendering 
the graph in various formats, such as PNG, PDF, and SVG. Graphviz is a useful tool for 
visualizing algorithms that operate on graphs, such as graph search algorithms and 
graph traversal algorithms. 

• Gephi: is a tool for visualizing and analyzing graphs and networks. It provides a 
graphical user interface for defining and customizing the appearance of graphs and 
diagrams, as well as for visualizing algorithms and data structures. Gephi can be used 
to visualize algorithms that operate on graph data, such as graph search algorithms 
and shortest path algorithms. 

• Cytoscape: is an open source software platform for visualizing complex networks and 
integrating these with any type of attribute data. 

• ipyleaflet: is an interactive widgets library that is based on ipywidgets. ipywidgets, 
also known as jupyter-widgets or simply widgets, are interactive HTML widgets for 
Jupyter notebooks and the IPython kernel. Ipyleaflet brings mapping capabilities to 
the notebook and JupyterLab. 

• hvplot: if you want to get going through your analysis with geopandas and 
dataframes and all that. You should be aware of the significance of working with 
vanilla GeoPandas, and that osmnx supports that and yields two dataframes: one for 
all your nodes and one for all the edges. 
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• mplleaflet: is another leaflet-based library, but it plays really nicely 
with matplotlib. 

• Cartopy: Cartopy is a library for creating maps and geospatial plots in Python. 
• Geoplotlib: Geoplotlib is a library for creating maps and visualizations in Python. It 

provides tools for styling and customizing map elements, as well as for overlaying 
data on top of maps. Geoplotlib can be used to create static or interactive maps, and 
supports a variety of map projections and coordinate systems. 

• Shapely: is an open source Python library for performing geometric operation on 
objects in the Cartesian plane. 

• deck.gl: is an open-source JavaScript library for WebGL-powered large dataset 
visualization. 

• kepler.gl: is a powerful open source geospatial analysis tool for large-scale data sets. 

A.4 Metaheuristics Optimization Libraries 
There are several metaheuristics optimization libraries in Python that provide 
implementations of different metaheuristic optimization algorithms. Here are examples of 
some commonly used libraries. 

A.4.1 PySwarms 
PySwarms is a library for implementing swarm intelligence algorithms in Python. It provides 
tools for defining, training, and evaluating swarm intelligence models, as well as for 
visualizing the optimization process. PySwarms supports a variety of swarm intelligence 
algorithms, including particle swarm optimization (PSO) and ant colony optimization (ACO). 
A.3 shows the steps to solve a function optimization problem using POS implemented in 
PySwarms. 
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Listing A.3 Solving function optimization using PSO implemented in PySwarms 

#!pip install pyswarms 
import pyswarms as ps 
from pyswarms.utils.functions import single_obj as fx 
from pyswarms.utils.plotters import plot_cost_history, plot_contour, plot_surface 
from pyswarms.utils.plotters.formatters import Mesher, Designer 
import matplotlib.pyplot as plt 
from IPython.display import Image #A 

options = {'c1':0.5, 'c2':0.3, 'w':0.9} #B 
optimizer = ps.single.GlobalBestPSO(n_particles=50, dimensions=2, options=options) #C 

optimizer.optimize(fx.sphere, iters=100) #D 

plot_cost_history(optimizer.cost_history) #E 
plt.show() 

m = Mesher(func=fx.sphere, limits=[(-1,1), (-1,1)]) #F 
d = Designer(limits=[(-1,1), (-1,1), (-0.1,1)], label=['x-axis', 'y-axis', 'z-axis']) #G 

animation = plot_contour(pos_history=optimizer.pos_history, mesher=m, designer=d, 
mark=(0,0)) #H 

animation.save('solution.gif', writer='imagemagick', fps=10) 
Image(url='solution.gif') #I 

#A To view animation in a Jupyter notebook 
#B Set-up POS as an optimizer with 50 particles and predfined parameters 
#C Solve the function optimization problem using PSO 
#D Set-up Sphere unimodal function to be optimized using PSO and set up the number of iteration 
#E Plot the cost 
#F Plot the sphere function's mesh for better plots 
#G Adjust figure limits 
#H Generate animation for the solution history on a contour 
#I Rendering the animation 

A.4.2 Sckit-opt 
scikit-opt is a library for optimization that provides a simple and flexible interface for defining 
and running optimization problems with various metaheuristics such as genetic algorithm, 
particle swarm optimization, simulated annealing, ant colony algorithm, immune algorithm 
and artificial fish swarm algorithm. scikit-opt can be used to solve both continuous and 
discrete problems. Listing A.3 shows the steps to solve a function optimization problem using 
scikit-opt. 
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Listing A.3 Solving function optimization using simulated annealing in scikit-opt 

#!pip install scikit-opt 
import numpy as np 
import pandas as pd 
import matplotlib.pyplot as plt 
from sko.SA import SA 

obj_func = lambda x: np.sin(x[0]) * np.cos(x[1]) #A 

sa = SA(func=obj_func, x0=np.array([-3, -3]), T_max=1, T_min=1e-9, L=300, 
max_stay_counter=150) #B 

best_x, best_y = sa.run() 
print('best_x:', best_x, 'best_y', best_y) 

plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0)) #C 
plt.show() 

#A Define a multimodal function 
#B Solve using simulated annealing (SA) 
#C Print the result 

Let’s consider the TSP instance shown in Figure A.3. In this TSP, a travelling salesman must 
visit 20 largest US cities starting from a specific city. 

Figure A.3 Travelling Salesman Problem (TSP) for 20 largest US cities. 

Listing A.3 shows the steps to solve this problem using scikit-opt. 
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Listing A.3 Solving TSP using scikit-opt 

import numpy as np 
import matplotlib.pyplot as plt 
from sko.PSO import PSO_TSP 

num_points = len(city_names) #A 
points_coordinate = city_names #A 
pairwise_distances = distances #A 

def cal_total_distance(routine): #B 
num_points, = routine.shape 
return sum([pairwise_distances[routine[i % num_points], routine[(i + 1) % num_points]] 

for i in range(num_points)]) 

pso_tsp = PSO_TSP(func=cal_total_distance, n_dim=num_points, size_pop=200, max_iter=800, 
w=0.8, c1=0.1, c2=0.1) #C 

best_points, best_distance = pso_tsp.run() #C 
best_points_ = np.concatenate([best_points, [best_points[0]]]) 

print('best_distance', best_distance) #D 
print('route', best_points_) #D 

#A Define the TSP problem 
#B The objective function. input routine, return total distance. 
#C Solving the problem using particle swarm optimization (PSO) 
#D Print the solution 

A.4.3 networkx 
networkx introduced in the previous section provides approximations of graph properties and 
heuristic methods for optimization. Example of these heuristics algorithms is simulated 
annealing. Listing A.3 shows the steps to solve TSP using simulated annealing implemented 
in networkx. 

Listing A.3 Solving TSP using simulated annealing networkx 

#!pip install networkx 
import matplotlib.pyplot as plt 
import networkx as nx 
from networkx.algorithms import approximation as approx 

G=nx.Graph() #A 

for i in range(len(city_names)): #B 
for j in range(1,len(city_names)): #B 

G.add_weighted_edges_from({(city_names[i], city_names[j], distances[i][j])}) #B 
G.remove_edges_from(nx.selfloop_edges(G)) #B 

pos = nx.spring_layout(G) #C 

cycle = approx.simulated_annealing_tsp(G, "greedy", source=city_names[0]) #D 
edge_list = list(nx.utils.pairwise(cycle)) #D 
cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle)) #D 

print("The route of the salesman is:", cycle, "with cost of ", cost) #E 
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#A Create a graph 
#B Add weighted edges to the graph and remove selfloop edges 
#C Define pos is a dictionary of positions using using Fruchterman-Reingold force-directed algorithm 
#D Solve TSP using simulated annealing 
#E Print the route and the cost 

A.4.4 Distributed Evolutionary Algorithms in Python (DEAP) 
DEAP is a library for implementing genetic algorithms in Python. It provides tools for 
defining, training, and evaluating genetic algorithm models, as well as for visualizing the 
optimization process. DEAP supports a variety of genetic algorithm techniques, including 
selection, crossover, and mutation. Listing A.3 shows the steps to solve TSP using simulated 
annealing implemented in DEAP. 

Listing A.3 Solving TSP using DEAP 

#!pip install deap 
from deap import base, creator, tools, algorithms 
import random 
import numpy as np 

creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) #A 
creator.create("Individual", list, fitness=creator.FitnessMin) #A 

toolbox = base.Toolbox() #B 
toolbox.register("permutation", random.sample, range(len(city_names)), len(city_names)) #B 
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.permutation) 

#B 
toolbox.register("population", tools.initRepeat, list, toolbox.individual) #B 

def eval_tsp(individual): #C 
total_distance = 0 
for i in range(len(individual)): 

city_1 = individual[i] 
city_2 = individual[(i + 1) % len(individual)] 
total_distance += distances[city_1][city_2] 

return total_distance, 

toolbox.register("evaluate", eval_tsp) #D 
toolbox.register("mate", tools.cxOrdered) #E 
toolbox.register("mutate", tools.mutShuffleIndexes, indpb=0.05) #F 
toolbox.register("select", tools.selTournament, tournsize=3) #G 

pop = toolbox.population(n=50) #H 
hof = tools.HallOfFame(1) #I 
stats = tools.Statistics(lambda ind: ind.fitness.values) 
stats.register("avg", np.mean) 
stats.register("min", np.min) 
stats.register("max", np.max) 

pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=50, 
stats=stats, halloffame=hof, verbose=True) #J 

best_individual = hof[0] 
print("Best solution:") #K 
print("  - Fitness: ", eval_tsp(best_individual)) #K 
print("  - Route: ", [city_names[i] for i in best_individual]) #K 
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#A Create a fitness function that minimizes the total distance 
#B Create the genetic operator functions 
#C Calculate route length 
#D Set evaluation function 
#E Set an ordered crossover 
#F Set shuffle mutation with probability 0.05 
#G Select the best individual among 3 randomly chosen individuals 
#H Set population size 
#I Set hall of fame to select the best individual that ever lived in the population during the evolution 
#J Solve the problem using simple evolutionary algorithm 
#K Print solution 

DEAP includes several built-in algorithms such as Genetic Algorithm (GA), Evolutionary 
Strategy (ES), Genetic Programming (GA), Estimation of Distribution Algorithms (EDA) and 
Particle Swarm Optimization (PSO). 

A.4.5 OR-Tools 
As previously mentioned, OR-Tools (Operations Research Tools) is an open-source library for 
optimization and constraint programming developed by Google. Listing A.3 shows the steps 
to solve TSP using Tabu Search implemented in OR-Tools. 
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Listing A.3 Solving TSP using OR-Tools 

#!pip install --upgrade --user ortools 
import numpy as np 
import matplotlib.pyplot as plt 
from ortools.constraint_solver import pywrapcp 
from ortools.constraint_solver import routing_enums_pb2 

distances2=np.asarray(distances, dtype = 'int') #A 

data = {} #B 
data['distance_matrix'] = distances #B 
data['num_vehicles'] = 1 #B 
data['depot'] = 0 #B 

manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']), data['num_vehicles'], 
data['depot']) #C 

routing = pywrapcp.RoutingModel(manager) #C 

def distance_callback(from_index, to_index): #D 
from_node = manager.IndexToNode(from_index) 
to_node = manager.IndexToNode(to_index) 
return data['distance_matrix'][from_node][to_node] 

transit_callback_index = routing.RegisterTransitCallback(distance_callback) 

routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) 

search_parameters = pywrapcp.DefaultRoutingSearchParameters() 
search_parameters.local_search_metaheuristic = ( 

routing_enums_pb2.LocalSearchMetaheuristic.TABU_SEARCH)  #E 
search_parameters.time_limit.seconds = 30 
search_parameters.log_search = True 

def print_solution(manager, routing, solution): #F 
print('Objective: {} meters'.format(solution.ObjectiveValue())) 
index = routing.Start(0) 
plan_output = 'Route for vehicle 0:\n' 
route_distance = 0 
while not routing.IsEnd(index): 

plan_output += ' {} ->'.format(manager.IndexToNode(index)) 
previous_index = index 
index = solution.Value(routing.NextVar(index)) 
route_distance += routing.GetArcCostForVehicle(previous_index, index, 0) 

plan_output += ' {}\n'.format(manager.IndexToNode(index)) 
print(plan_output) 
plan_output += 'Route distance: {}meters\n'.format(route_distance) 

solution = routing.SolveWithParameters(search_parameters) 
if solution: 

print_solution(manager, routing, solution) 

#A Convert float array into integer array for OR_Tools 
#B Define problem data 
#C Define a constraint programming solver 
#D Get distance between the cities 
#E Set up tabu search as a local search metaherutsic. 
#F Print the solution 
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OR-Tools library also provides some metaheuristics implemented but not as many as 
dedicated metaheuristics frameworks like DEAP. Examples include Simulated Annealing (SA), 
Tabu Search (TS) and Guided Local Search (GLS). 

A.4.6 Other Libraries 
The following list is a non-exhaustive list of other useful libraries and tools to solve 
optimization problems using metaheuristics. 

• simanneal is an open-source Python module for simulated annealing. Listing A.3 
shows the steps to solve TSP using simulated annealing implemented in simanneal. 

• Non-dominated Sorting Genetic Algorithm (NSGA-II): is a solid multi-objective 
algorithm, widely used in many real-world applications. The algorithm is designed to 
find a set of solutions, called the Pareto front, which represents the trade-off between 
multiple conflicting objectives. NSGA-II implementations are available in pymoo and 
DEAP. 

• Python Genetic Algorithms & Differential Evolution (PyGAD): is a library for 
implementing genetic algorithms and differential evolution in Python. It provides tools 
for defining, training, and evaluating genetic algorithm models, as well as for 
visualizing the optimization process. PyGAD supports a variety of genetic algorithm 
techniques, including selection, crossover, and mutation. 

• Library for Evolutionary Algorithms in Python (LEAP): is a general purpose 
Evolutionary algorithms (EAs) package that is simple and easy-to-use. It provides a 
high-level abstraction for defining and running EAs. 

• Pyevolve: is a Python library for implementing and running genetic algorithms that 
provides a simple and flexible API for defining and running genetic algorithms. 

• Genetic Algorithms made Easy (EasyGA): is another Python library for genetic 
algorithms with several built-in genetic operators such as selection, crossover, and 
mutation. It's worth noting that EasyGA and Pyevolve are simple libraries with less 
functionalities and pre-defined problems than other libraries such as DEAP and 
Pymoo. 

• MEAPLY: is a Python library for population meta-heuristic algorithms. 
• swarmlib: implements several swarm optimization algorithms and visualizes their 

(intermediate) solutions. 
• Hive: is a swarm-based optimization algorithm based on the intelligent foraging 

behavior of honey bees. Hive implements the so-called Artificial Bee Colony (ABC) 
• Pants: is a Python3 implementation of the Ant Colony Optimization Meta-Heuristics. 

Listing A.3_Metaheuristics_libraries.ipynb included in the GitHub repo of the book shows how 
to use some of these metaheuristics libraries. 

A.5 Machine Learning Libraries 
Machine learning can be used to solve discrete optimization problems where a ML model is 
trained to output solutions directly from the input usually represented as a graph. To train 
the model, the problem graph needs to be turned first in to feature vector using graph 
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embedding/representation learning methods. Several Python libraries are available and can 
be used for graph embedding and for solving optimization problems. The following subsection 
shed some lights on the commonly used libraries. 

A.5.1 Node2vec 
node2vec is an algorithmic framework for learning low-dimensional representations of nodes 
in a graph. Given any graph, it can learn continuous feature representations for the nodes, 
which can then be used for various downstream machine learning tasks. To install node2vec, 
use the following command: 

$ pip install node2vec 

Alternatively, you can install node2vec by cloning the repository from GitHub and running the 
setup.py file: 

$ git clone https://github.com/aditya-grover/node2vec 
$ cd node2vec 
$ pip install -e . 

The following code illustrates how to use node2vec to learn low-dimensional representations 
of nodes in a graph based on Zachary's karate club dataset. This dataset is a graph-based 
dataset commonly used in network analysis and graph-based machine learning algorithms. It 
represents a social network that contains information about the relationships between 34 
individuals in a karate club. It was created and first described by Wayne W. Zachary in his 
paper "An Information Flow Model for Conflict and Fission in Small Groups" back to 1977, 
and has since become a popular benchmark dataset for evaluating graph-based machine 
learning algorithms. 

Listing A.4 node2vec Example 

import networkx as nx 
from node2vec import Node2Vec 

G = nx.karate_club_graph() #A 

node2vec = Node2Vec(G, dimensions=64, walk_length=30, num_walks=200, workers=4) #B 

model = node2vec.fit(window=10, min_count=1, batch_words=4) #C 

representations_all = model.wv.vectors #D 

representations_specific = model.wv['1'] #E 

print(representations_specific) #F 

#A create a sample graph 
#B create an instance of the Node2Vec class 
#C learn the representations 
#D get the representations of all nodes 
#E get the representations of a specific node 
#F print the representations of a specific node 
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You can visualize the generated low-dimensional representations using dimensionality 
reduction technique such as t-SNE to project the representations onto a 2D or 3D space, and 
then use a visualization library such as Matplotlib to plot the nodes in this space. t-
distributed stochastic neighbor embedding (t-SNE) is a statistical method for visualizing high-
dimensional data by giving each data point a location in a 2d/3d map. Here is an example: 

from sklearn.manifold import TSNE #A 
import matplotlib.pyplot as plt 

tsne = TSNE(n_components=2, learning_rate='auto', init='random', perplexity=3) #B 
reduced_representations = tsne.fit_transform(representations_all) #B 

plt.scatter(reduced_representations[:, 0], reduced_representations[:, 1]) #C 
plt.show() #C 

#A import the requried libraries 
#B perform t-SNE dimensionality reduction 
#C plot the nodes 

Running this code give the following visualization shown in Figure A.4. 

Figure A.4 t-SNE-based visualization for the low-dimensional representations generated by node2vec. 

A.5.2 DeepWalk 
DeepWalk is a random walk-based method for graph embedding based on representation 
learning. In the given example, we use DeepWalk module provided by Karate Club library. 
This library is an unsupervised machine learning extension library for NetworkX. To use 
DeepWalk, you can install KarateClub as follows: 

$ pip install karateclub 
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The following code illustrates how to use DeepWalk. 

Listing A.4 DeepWalk Example 

from karateclub import DeepWalk, Node2Vec #A 
from sklearn.decomposition import PCA #B 
import networkx as nx 
import matplotlib.pyplot as plt 
G=nx.karate_club_graph() #C 

model=DeepWalk(dimensions=128, walk_length=100) #D 
model.fit(G) #D 

embedding=model.get_embedding() #E 

officer=[] #F 
mr=[] #F 
for i in G.nodes: #F 
t=G.nodes[i]['club'] 
officer.append(True if t=='Officer' else False) 
mr.append(False if t=='Officer' else True) 

nodes=list(range(len(G))) 
X=embedding[nodes] 

pca=PCA(n_components=2) #G 
pca_out=pca.fit_transform(X) #G 

plt.figure(figsize=(15, 10)) #H 
plt.scatter(pca_out[:,0][officer],pca_out[:,1][officer]) #H 
plt.scatter(pca_out[:,0][mr],pca_out[:,1][mr]) #H 
plt.show() #H 

#A Import DeepWalk. Noe2Vec is also available 
#B Import Principal Component Analysis (PCA) 
#C Create karate club graph 
#D Define DeepWalk mode and fit the graph 
#E Graph embedding 
#F In KarateClub dataset, member represented by each node belongs can be 'Mr. Hi' or 'Officer' 
#G Dimensionality reduction using Principal Component Analysis (PCA) 
#H Visualize the embedding 

A.5.3 PyG 
PyG (PyTorch Geometric) is a library for implementing graph neural networks in Python using 
the PyTorch deep learning framework. It provides tools for defining, training, and evaluating 
Graph Neural Network (GNN) models, as well as for visualizing the optimization process. PyG 
supports a variety of GNN architectures, including Graph Convolutional Network (GCN) and 
Graph Attention Networks (GATs). You can install PyG as follows: 

$pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f 
https://data.pyg.org/whl/torch-1.13.0+cpu.html 

The following code shows how to use PyG to generate Karate Club graph embedding using 
GCN. 
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Listing A.4 PyG Example 

import networkx as nx 
import matplotlib.pyplot as plt 
import torch 
from torch_geometric.datasets import KarateClub 
from torch_geometric.utils import to_networkx 
from torch.nn import Linear 
from torch_geometric.nn import GCNConv 

dataset = KarateClub() #A 
data = dataset[0] 

class GCN(torch.nn.Module): #B 
def __init__(self): 

super().__init__() 
torch.manual_seed(1234) 
self.conv1 = GCNConv(dataset.num_features, 4) 
self.conv2 = GCNConv(4, 4) 
self.conv3 = GCNConv(4, 2) 
self.classifier = Linear(2, dataset.num_classes) 

def forward(self, x, edge_index): 
h = self.conv1(x, edge_index) 
h = h.tanh() 
h = self.conv2(h, edge_index) 
h = h.tanh() 
h = self.conv3(h, edge_index) 
h = h.tanh() #C 
out = self.classifier(h) #D 

return out, h 

model = GCN() #E 

criterion = torch.nn.CrossEntropyLoss() #F 
optimizer = torch.optim.Adam(model.parameters(), lr=0.01) #G 
optimizer.zero_grad() 

for epoch in range(401): 
out, h = model(data.x, data.edge_index) #H 
loss = criterion(out[data.train_mask], data.y[data.train_mask]) #I 
loss.backward()  #J 
optimizer.step() #K 

h = h.detach().cpu().numpy() #L 
plt.figure(figsize=(15, 10)) #M 
plt.scatter(h[:, 0], h[:, 1], s=140, c=data.y, cmap="Set2") #M 

#A Use karate club dataset 
#B Graph Convolutional Network class 
#C Apply a final (linear) classifier 
#D Final GNN embedding space 
#E Define the model 
#F Define loss criterion 
#G Define optimizer and clear gradient 
#H Perform a single forward pass 
#I Compute the loss solely based on the training nodes 
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#J Derive gradients 
#K Update parameters based on gradients 
#L Convert 'h' from tenser format to numpy format for visualize 
#M Visualize the embedding 

PyG is well-supported library that provides the several features such as common benchmark 
datasets (e.g., KarateClub, CoraFull, Amazon, Reddit, Actor), data handling of graphs, mini-
batches, data transforms and learning methods on graphs (e.g., Node2Vec, MLP, GCN, GAT, 
GraphSAGE, GraphUNet, DeepGCNLayer, GroupAddRev and MetaLayer). 

A.5.4 OpenAI Gym 
OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms. It 
gives you access to variety of environments such as: 

• Classic control: a variety of classic control tasks 
• Box2d: a 2D physics engine 
• MuJoCo: is a physics engine which can do very detailed efficient simulations with 

contacts 
• Algorithmic: a variety of algorithmic tasks, such as learning to copy a sequence 
• Atari: a variety of Atari video games 
• gym-maze: a simple 2D maze environment where an agent finds its way from the 

start position to the goal. 

Gymnasium is a maintained fork of OpenAI’s Gym library. The following code illustrate how 
to use OpenAI Gym. 

Listing A.4 OpenAI Gym Example 

#!pip install gym[all] #A 
import gym 
env = gym.make('MountainCar-v0') #A 

#A Install all included environments 
#B Create an environment 

In this simple example, MountainCar-v0 has discrete actions. You can also use 
MountainCarCoutinous-V0 that has continuous actions corresponding to the force that the car 
is pushed. Complete listing is available in Listing A.4_ML_libraries.ipynb. 

A.5.5 Flow 
Flow is a deep reinforcement learning framework for mixed autonomy traffic. It allows you to 
run deep RL-based control experiments for traffic microsimulation. You can install Flow as 
follows: 

$git clone https://github.com/flow-project/flow.git 
$cd flow 
$conda env create –f environment.yml 
$conda activate flow 
$python setup.py develop 
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Install flow within the environment 

$pip install –e . 

Flow enables studying complex, largescale, and realistic multi-robot control scenarios. It can 
be used to develop controllers that optimize the system-level velocity or other objectives, in 
the presence of different types of vehicles, model noise and road networks such as single-
lane circular tracks, multi-lane circular tracks, figure-eight network, loops with merge 
network and intersections. 

A.5.6 Other libraries 
The following list is a non-exhaustive list of other useful ML libraries: 

• Deep Graph Library (DGL) is a library for implementing graph neural networks in 
Python. It provides tools for defining, training, and evaluating GNN models, as well as 
for visualizing the optimization process. DGL supports a variety of GNN architectures, 
including GCN and GAT. 

• Stanford Network Analysis Platform (SNAP) is a general-purpose, high-performance 
system for analysis and manipulation of large complex networks. SNAP includes a 
number of algorithms for network analysis, such as centrality measures, community 
detection, and graph generation. It is particularly well-suited for large-scale network 
analysis and is used in a variety of fields, including computer science, physics, 
biology, and social science. 

• Spektral is an open-source Python library for graph neural networks (GNNs) built on 
top of TensorFlow and Keras. It is designed to make it easy to implement GNNs in 
research and production. It provides a high-level, user-friendly API for building GNNs, 
as well as a number of pre-built layers and models for common tasks in graph deep 
learning. The library also includes utilities for loading and preprocessing graph data, 
and for visualizing and evaluating the performance of GNNs. 

• Jraph (pronounced “giraffe”) is a lightweight library for working with graph neural 
networks. Jraph (pronounced “giraffe”) is a lightweight library for working with graph 
neural networks and it provide lightweight data structure for working with graphs. You 
can easily work with this library to construct and visualize your graph. 

• TF-Agents is a library for developing RL algorithms in TensorFlow, which includes a 
collection of environments, algorithms, and tools for training RL agents. 

• Keras-RL is a deep reinforcement learning library build in top of Keras. It provides an 
easy-to-use interface for developing and testing RL algorithms. Keras-RL supports a 
variety of RL algorithms such as deep Q-networks (DQN) and actor-critic methods. 
There are also build in environments for testing RL algorithms. 

• pyqlearning is Python library to implement Reinforcement Learning and Deep 
Reinforcement Learning, especially for Q-Learning, Deep Q-Network, and Multi-agent 
Deep Q-Network which can be optimized by annealing models such as Simulated 
Annealing, Adaptive Simulated Annealing, and Quantum Monte Carlo Method. 

• GraphNets is a library for implementing GNNs in Python. It provides tools for defining, 
training, and evaluating GNN models, as well as for visualizing the optimization 
process. GraphNet supports a variety of GNN architectures, including GCN and GAT. 
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Listing A.4_ML_libraries.ipynb notebook available on the book’s GitHub repo provides 
examples about how to install and use some of these libraries. 
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