

MEAP Edition
Manning Early Access Program
Optimization Algorithms

AI techniques for design, planning, and control problems

Version 2

Copyright 2023 Manning Publications

For more information on this and other Manning titles go to
manning.com

©Manning Publications Co. To comment go to liveBook

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://www.manning.com/

©Manning Publications Co. To comment go to liveBook

welcome
Thanks for purchasing the MEAP for Optimization Algorithms: AI techniques for design,
planning, and control problems.

Optimization problems are ubiquitous in different aspects of life. This book is written for
practitioners interested in solving ill-structured search and optimization problems using modern
derivative-free algorithms. This book will get you up to speed with the core concepts of search
and optimization and endow you with the ability to deal with practical design, planning and
control problems.

Without assuming any prior knowledge of search and optimization and with an intermediate
knowledge of data structures and Python, this book has been written to take most anyone from
never solving search and optimization problems to being a well-rounded search and optimization
practitioner able to select, implement and adapt the right solver for the right problem.

This book grew out of several courses related to search and optimization taught by me at
different universities and training centers in industry. My 25 years working as an AI and Robotics
professor in the academia and as a technical leader in industry have given me a wealth of
experiences to share with you through this book.

By the end of the book, you should understand:

• How to deal with discrete and continuous ill-structured optimization problems using
deterministic and stochastic derivative-free search and optimization techniques

• How to apply deterministic graph search algorithms to solve graph problems

• How to apply nature-inspired algorithms to find optimal or near-optimal solutions for
practical design, planning and control problems

• How to use machine learning methods to solve search and optimization problems

• How to solve the search dilemma by achieving trade-off between search space exploration
and exploitation using algorithm parameter adaptation

• How to use state-of-the-art Python libraries related to search and optimization

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

The book is divided into five parts. Part 1 covers deterministic graph search algorithms. Part
2 will focus on trajectory-based optimization algorithms giving simulated annealing and tabu
search as examples. Moving forward, Part 3 introduces evolutionary computing algorithms
followed by presenting swarm-intelligence algorithms in Part 4. The last part of the book shows
how machine learning-based methods can be used to solve complex search and optimization
problems. Throughout this book, a wealth of examples and in-depth case studies are provided
for both novices and experts.

I do believe that learning is the common ground between the author and the reader. I hope

that what you’ll get access to will be of immediate use to you. I also look forward to learning
from your valuable feedback to develop the best book possible. Please let me know your
thoughts in the liveBook Discussion forum on what’s been written so far and what you’d like to
see in the rest of the book.

Thanks again for your interest and for purchasing the MEAP!

—Dr. Alaa Khamis

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

brief contents
1 Introduction to Search and Optimization

PART 1: DETERMINISTIC SEARCH ALGORITHMS

2 A Deeper Look at Search and Optimization

3 Blind Search Algorithms

4 Informed Search Algorithms

PART 2: TRAJECTORY-BASED ALGORITHMS

5 Simulated Annealing

6 Tabu Search

PART 3: EVOLUTIONARY COMPUTING ALGORITHMS

7 Simple Genetic Algorithm

8 Genetic Algorithm Variants

PART 4: SWARM INTELLIGENCE ALGORITHMS

9 Particle Swarm Optimization

10 Ant Colony Optimization

PART 5: MACHINE LEARNING-BASED METHODS

11 Introduction to Machine Learning

12 Machine Learning for Search and Optimization

APPENDIXES

A Search and Optimization Libraries in Python

B Benchmarks and Datasets

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

C Solutions to Exercises

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Introduction to Search and
Optimization

This chapter covers

• What are search and optimization?
• Why care about search and optimization?
• Going from "toy problems" to real-world solutions
• Defining an optimization problem
• Introducing well-structured problems and ill-structured problems
• Search algorithms and the search dilemma

As human beings, we constantly strive to optimize our everyday lives. Whether it's getting to
work faster (so you can sleep in a little bit longer), balancing school and leisure time, or even
budgeting for personal spending, we try to maximize the benefits and minimize the costs.
Likewise, corporations maximize profits by increasing efficiency and eliminating waste. For
example, logistics giants like FedEx, UPS, and Amazon spend millions of dollars each year
researching new ways to trim the cost of delivering packages. Similarly, telecommunications
agencies seek to determine the optimal placement of crucial infrastructure, like cellular
towers, to service the maximum number of customers while investing in the minimum level
of equipment.

This sort of optimization behavior is not unique to humans; nature likewise tends towards
efficiency and optimality. Bacterial colonies, comprised of clusters of between 10 million and
10 billion individual organisms, form an adaptable, complex system that can perform many
complicated tasks such as foraging, pathfinding, and learning based on external stimuli.
Insects like ants and honeybees have developed their own unique optimization methods,
from navigating the shortest path to an existing food source to discovering new food sources

1

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

in an unknown external environment. Honeybee colonies focus their foraging efforts on only
the most profitable patches and build their honeycombs with a shape that economizes labor
and wax. Fish swimming in schools or cruising in the same direction minimize total energy
usage by exploiting pressure fields created by the other fish. At the same time, migratory
birds utilize separation, alignment, and cohesion-based optimization to avoid mid-air
collisions and increase flight endurance. Non-biological phenomena also tend towards
efficiency. For example, light traveling between two different media will refract along an
angle that minimizes the travel time.

As technology has developed, computer-based optimization is now an inescapable reality
of the digital era. Transportation network companies (TNCs) like Uber, Lyft, and DiDi route
drivers efficiently during passenger trips and direct drivers to ride-hailing hotspots during idle
periods to minimize passenger wait time. As urbanization intensifies worldwide, local
emergency services depend on efficient dispatching and routing platforms to select and route
the appropriate vehicles, equipment, and personnel to respond to incidents across
increasingly complex metropolitan road networks. Airliners need to solve several optimization
problems such as flight planning, fleet assignment, crew scheduling, aircraft routing and
aircraft maintenance planning. Healthcare systems also handle optimization problems such
as hospital resource planning, emergency procedure management, patient admission
scheduling, surgery scheduling and pandemic containment. Industry 4.0, a major customer
of optimization technology, deals with complex optimization problems such as smart
scheduling/rescheduling, assembly line balancing, supply-chain optimization, and operational
efficiency. Smart cities deal with large-scale optimization problems such as stationary asset
optimal assignments, mobile asset deployment, energy optimization, water control, pollution
reduction, waste management and bushfire containment. These examples show how
ubiquitous and important optimization is as a way to maximize operational efficiency in
different domains.

1.1 Why care about search and optimization?
Search is the systematic examination of states, starting from an initial state, and ending
(hopefully) at the goal state. Optimization techniques are in reality search methods, where
the goal is to find an optimal or a near-optimal state within the feasible search space. The
feasible search space is a subset of the optimization problem space where all the problem's
constraints are satisfied. It's hard to come up with a single industry that doesn't already use
some form of search or optimization methods, software, or algorithms. It's highly likely that
somehow in your workplace or industry, you deal with optimization daily; it's just that you
aren't aware of it. While search and optimization are undoubtedly ubiquitous in almost all
industries, it may not always be practical to use complicated algorithms to optimize
processes. For example, consider a small pizzeria that offers a food delivery service to its
local customers. Let's assume that the restaurant processes around ten deliveries on an
average weeknight. While efficiency-improving strategies (such as avoiding left turns in left-
driving countries or right turns in right-driving countries, avoiding major intersections,
avoiding school zones during drop-off and pick-up times, avoiding bridges during lift times
and favoring downhill roads) may theoretically shorten delivery times and reduce costs, the

2

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

scale of the problem is so tiny that implementing these kinds of changes may not lead to
noticeable impact.

In larger scale problems such as fleet assignment and dispatching, multi-criteria
stochastic vehicle routing, resource allocation, crew scheduling, applying search and
optimization techniques to a problem must be a qualified decision. Some firms or industries
may not benefit from excessive process changes due to a lack of expertise or resources to
implement those changes. There may also be the concern of a potential lack of follow-
through from stakeholders. Implementing the changes could also cost more than the savings
obtained through the optimization process. Later in this book, we will see how these costs
can be accounted for when developing search and optimization algorithms.

Without assuming any prior knowledge of search and optimization and with an
intermediate knowledge of data structures and Python, this book has been written to take
most anyone from never solving search and optimization problems to being a well-rounded
search and optimization practitioner able to select, implement and adapt the right solver for
the right problem. For managers or professionals involved in the high-level technological
decisions at their workplace, these skills can be critical in understanding software-based
approaches, their opportunities, and limitations when discussing process improvement. In
contrast, IT professionals will find these skills more directly applicable when considering
options for developing or selecting new software suites and technologies for in-house use.
The following subsection describes the methodology we will follow throughout this book.

1.2 Going from toy problem to the real world
When discussing algorithms, many books and references will often present them as a formal
definition and then apply them to so-called "toy problems." These trivial problems are helpful
because they often deal with smaller datasets and search spaces while being solvable by
hand iteration. This book seeks to follow a similar approach but takes it one step further by
presenting real-world data implementations. Whenever possible, resources such as real-
world datasets and values are used to illustrate the direct applicability and practical
drawbacks of the algorithms discussed. Initially, the scaled-down toy problems help the
reader appreciate the step-by-step operations involved in the various algorithms. Later, the
real-world Python implementations teach the reader how to use multiple datasets and Python
libraries to address the increased complexity and scope of actual data.

As illustrated in Figure 1.1, source of inspiration of each search or optimization algorithm
is highlighted followed by presenting the algorithm pseudocode, algorithm parameters and
heuristics used. Algorithm pros and cons and adaptation methods are then described. The
book contains many examples that allow the learners to fully understand how each algorithm
works by carrying out iterations by hand on a scaled-down version of the problem. It also
includes many programming exercises in a special problem/solution/discussion format to
understand how a scaled-up version of the problem previously solved by hand can be solved
using Python. Through programming, learners can optimally tune the algorithm and study its
performance and scalability.

3

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.1 Book methodology. Each algorithm will be introduced following a structure that goes from
explanation to application.

Throughout this book, several classical and real-world optimization problems are
considered to show how to use search and optimization algorithms discussed in the book.
Figure 1.2 shows examples of these optimization/search problems.

Real-world design problems or strategic functions deal with situations when time is not as
important as the quality of the solution and users are willing to wait (sometimes even a few
days) to get optimal solutions. Planning problems or tactical functions need to be solved in a
time span between a few seconds to a few minutes. While control problems or operational
functions need to be solved repetitively and quickly, in a time span between few milliseconds
to a few seconds. In order to find a solution during such a short period of time, optimality is
usually traded in for speed gains. In the next chapter, more thorough discussion of these
problem types is provided.

4

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.2 Examples of classical optimization and real-world optimization/search problems.

It is highly recommended that you first perform the necessary hand iterations for the
examples following each algorithm and then try to recreate the Python implementations
yourself. Feel free to play around with the parameters and problem scale in the code; one of
the advantages of running optimization algorithms through software is the ability to tune for
optimality.

1.3 Basic ingredients of optimization problems
Optimization refers to the practice of finding the “best” solutions to a given problem, where
“best” usually means satisfactory or acceptable, possibly subject to a given set of
constraints. The solutions can be classified into feasible, optimal, and near-optimal solutions.

• Feasible solutions are solutions that satisfy all the given constraints.
• Optimal solutions are both feasible and provide the best objective function value
• Near-optimal solutions are feasible solutions that provide a superior objective

function value but are not necessarily the best.

A global optimum, or a global minimum in case of minimization problems, is the best of a
set of candidate solutions. A search space may combine multiple global minima, strong local
minima, and weak local minima as illustrated in Figure 1.3.

5

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.3 Feasible/acceptable solutions fall within the constraints of the problem. Search spaces may display
a combination of global, strong local, and weak local minima.

These optimum seeking methods, also known as optimization techniques, are generally
studied as a part of operations research (OR). OR, also referred to as decision or
management science, is a field that originated at the beginning of World War II due to the
urgent need for assignment of scarce resources in military operations. It is a branch of
mathematics concerned with applying advanced scientific analytical methods to decision-
making and management problems to find the best or optimal solutions.

Optimization problems can generally be stated as follows:
Find X which optimizes ƒ
Subject to a possible set of equality and inequality constraints:

gi(X)= 0, i=1,2,…,m
hj(X)<=0, j=1,2,…,p

Equation 1.1

6

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

where

• X=(x1, x2,…,xn)T is the vector representing the decision variables
• ƒ(X)=(ƒ1(X), ƒ2(X),…, ƒM(X)) is the vector of objectives to be optimized
• gi(X) is a set of equality constraints
• hj(X) is a set of inequality constraints

The following subsections describe three main components of optimization problems:
decision variables, objective functions, and constraints.

1.3.1 Decision Variables
Decision variables represents a set of unknowns or variables that affect the objective
function's value. If X represents the unknowns, also referred to as the independent variables,
then f(X) quantifies the quality of the candidate solution or feasible solution.

Example: Assume that an event organizer is planning a conference on Search and
Optimization Algorithms. The organizer plans to pay a for fixed costs (venue rental, security,
and guest speaking fees) and b for variable costs (pamphlet, lanyard, ID badge, catered
lunch) that depend on the number of participants. Based on past conferences, the organizer
predicts that demand for tickets will be as follows:

Q=5,000-20x

Equation 1.2

Where x is the ticket price and Q is the expected number of tickets to be sold. Thus, the
company expects the following scenarios:

• if the company charges nothing or x=0, the company will give away 5,000 tickets for
free;

• If the ticket price is x=$250, the company will get no attendees as the expected
number of tickets to be sold will be zero and

• If the ticket price x<$250, the company will sell some number of tickets
0<=Q<=5,000.

The profit f(x) the event organizer can expect to earn can be calculated according to the
following:

Profit=Revenue-Costs

Equation 1.3

where Revenue=Qx and costs=a+Qb. Altogether, the profit (or objective) function looks
like this:

f(x)=-20x2+ (5,000+20b)x -5,000b-a, xLB<=x<=xUB

Equation 1.4

7

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

In this problem, there is a single decision variable x, which is the price of the ticket. The
predefined parameters include fixed costs a and variable costs b. The ticket price lower
bound xLB and upper bound xUB are considered boundary constraints. Solving this
optimization problem focuses on finding the best value of x that maximizes the profit ƒ(x).

1.3.2 Objective Functions
An objective function ƒ(x), also known as the criterion or merit function or utility function or
cost function, stands for the quantity to be optimized. Without loss of generality,
optimization can be interpreted as the minimization of a value since the maximization of a
primal function ƒ(x) can be just the minimization of a dual problem generated after applying
mathematical operations on ƒ(x). This means that if the primal is a minimization problem
then the dual is a maximization problem (and vice versa). According to this duality aspect of
optimization problems, a solution x’ which is the minimum for the primal minimization
problem is also, at the same time, the maximum for the dual maximization problem as
illustrated in Figure 1.4. Moreover, simple mathematical operations like addition, subtraction,
multiplication, or division do not change the value of the optimal point. For example,
multiplying or divide ƒ(x) by a positive constant c or adding or subtracting a positive
constant c to or from ƒ(x) does not change the optimal value of the decision variable as
illustrated in Figure 1.4.

8

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.4 Duality principle and mathematical operations on an optimization problem.

Example: In the earlier ticket pricing problem, assume that: a=50,000, b=60, xLB =0 and
xUB=250. Using these values, we have a profit function: ƒ(x)=-20x2+6,200x-350,000.
Following derivative-based approach, we can simply derive the function to find its maximum:
dƒ/dx=-40x+6,200=0 or 40x=6,200. Thus, the optimal number of tickets to sell is 155,
which yields a net profit of $130,500 as shown in Figure 1.5.

9

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.5 Ticket pricing problem. The optimal pricing which maximizes profits is $155 per ticket.

In ticket pricing problem, we have a single objective function to be optimized, which is
the profit. In this case, the problem is called mono-objective optimization problem. An
optimization problem involving multiple objective functions is known as a multi-objective
optimization problem. For example, assume that we want to design an electric vehicle (EV).
This design problem’s objective functions can be minimizing acceleration time and
maximizing EPA driving range. The acceleration time is the time in seconds the EV takes to
accelerate from 0 to 60 mph. EPA range is the approximate number of miles that a vehicle
can travel in combined city and highway driving (using a mix of 55% highway and 45% city
driving) before needing to be recharged according to the Environmental Protection Agency
(EPA)'s testing methodology. Decision variables can include the size of the wheel, the power
of the electric motor, and the battery's capacity. A bigger battery is needed to extend the
driving range of the EV, which adds extra weight, and therefore the acceleration time
increases. In this example, the two objectives are conflicting as we need to minimize
acceleration time and maximize the EPA range as shown in Figure 1.6.

10

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.6 Electric vehicle design problem for maximizing EPA range and minimizing acceleration time.

This multi-objective optimization problem can be handled using a preference-based multi-
objective optimization procedure or by using a Pareto optimization approach. In the former
approach, duality principle is applied first to transform all the conflicting objectives for
maximization (e.g., maximizing the EPA range and the inverse of the acceleration time) or
minimization (e.g., minimizing the acceleration time and the inverse of the EPA range) and
then combine these multiple objectives into a single or overall objective function by using a
relative preference vector or a weighting scheme to scalarize the multiple objectives. For
example, you may give more weight for EPA range over the acceleration time. However,
finding this preference vector or weights is subjective and sometimes is not straightforward.
The latter approach relies on finding multiple trade-off optimal solutions and chooses one
using higher-level information. This procedure tries to find the best tradeoff by reducing the
number of alternatives to an optimal set of non-dominated solutions known as the Pareto
Frontier, which can be used to take strategic decisions in multi-objective space. Multi-
objective optimization will be discussed in later chapters.

Constraint-satisfaction problems (CSP) do not define an explicit objective function.
Instead, the goal is to find a solution that satisfies a given set of constraints. The N-queen
problem is an example of CSP. In this problem, the aim is to put n queens on an n x n board
with no two queens on the same row, column, or diagonal. This 4x4 Queen CSP problem has

11

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

256 possible solutions (44) and two optimal solutions. Neither of the two optimal solutions is
inherently or objectively better than the other. The only requirement of the problem is to
satisfy the given constraints.

1.3.3 Constraints
Constrained optimization problems have a set of equality and/or inequality constraints gi(X),
lj(X) that restrict the values assigned to the unknowns. In addition, most problems have a
set of boundary constraints, which define the domain of values for each variable.
Furthermore, constraints can be hard (must be satisfied) or soft (desirable to satisfy).
Consider the following examples from a school timetabling problem:

• Not having multiple lectures in the same room at the same time is a hard constraint
• Not having a teacher give multiple lectures at the same time is also a hard

constraint
• Guaranteeing a minimum of three teaching days for every teacher may be a soft

constraint
• Locating back-to-back lectures in nearby rooms may be a soft constraint
• Avoiding scheduling very early or very late lectures may also be a soft constraint

As another example of hard and soft constraints, navigation apps such as Google Maps,
Apple Maps, Waze, or HERE WeGo may allow users to set preferences for routing.

• Avoiding ferries, toll roads, and highways would be hard constraints
• Avoiding busy intersections, highways during rush hour, or school zones during drop-

off and pick-up times might be soft constraints

Soft constraints can be modeled by incorporating a reward/penalty function as part of the
objective function. The function rewards solutions that satisfy the soft constraints and
penalize those that do not.

Example: Assume that there are 10 parcels to be loaded in the cargo bike from Figure
1.7. Each parcel has its own weight, profit, and efficiency value (profit per kg). The goal is to
select the parcels to be loaded in such a way that the utility function ƒ1 is maximized and the
weight function ƒ2 is minimized. This is a classic example of a combinatorial problem.

𝑓𝑓1 = ∑𝑛𝑛 𝐸𝐸𝑖𝑖𝑖𝑖=0

Equation 1.5

where n is the total number of packages and Ei is the efficiency of package i

𝑓𝑓2 = ��𝑤𝑤𝑖𝑖 − 𝐶𝐶
𝑛𝑛

𝑖𝑖=0

� , 50 is added 𝑖𝑖𝑓𝑓𝑓𝑓 ��𝑤𝑤𝑖𝑖

𝑛𝑛

𝑖𝑖=0

> 𝐶𝐶�

Equation 1.6

12

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

where ωi is the weight of package i and C is the maximum capacity of the bike. A penalty of
50 is added if and only if the total weight of the added parcels exceeds the maximum
capacity.

Figure 1.7 The cargo bike loading problem is an example of a problem with a soft constraint. While the weight
of the packages can exceed the bike’s capacity, a penalty will be applied when the bike is overweight.

Soft constraints can also be used to make the search algorithm more adaptive. For
example, the severity of the penalty can be dynamically changed as the algorithm
progresses, imposing less strict penalties at first to encourage exploration, while becoming
more severe near the end to generate a result largely bound by the constraint.

1.4 Well-structured problems vs. Ill-structured problems
We can further classify optimization problems based on their structure, and the procedure
that exists (or doesn’t exist) for solving them. The following subsections introduced well-
structured and ill-structured problems.

1.4.1 Well-structured problems (WSP)
In “The Structure of Ill Structured Problems” (Artificial Intelligence, 1973), Herbert Simon
describes the six main characteristics of WSPs:

• There is a definite criterion for testing any proposed solution and a mechanizable
process for applying the criterion.

• There is at least one problem space in which the initial problem state, the goal state,
and all other states that may be reached, or considered, in the course of attempting a
solution of the problem can be represented.

• Attainable state changes (legal moves) can be represented in a problem space, as
transitions from given states to the states directly attainable from them. But
considerable moves, whether legal or not, can also be represented—that is, all
transitions from one considerable state to another.

13

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

• Any knowledge that the problem solver can acquire about the problem can be
represented in one or more problem spaces.

• If the actual problem involves acting upon the external world, then the definition of
state changes and of the effects upon the state of applying any operator reflects with
complete accuracy in one or more problem spaces the laws (laws of nature) that
govern the external world.

• All these conditions hold in the strong sense that the basic processes postulated
require only practicable amounts of computation and the information postulated is
effectively available to the processes—that is, available with the help of only
practicable amounts of search.

Assume that we are planning a robotic pick-and-place task in an inspection system. In
this scenario, the robot waits until receiving a signal from a presence sensor, which indicates
the existence of a defected workpiece over the conveyer belt. The robot stops the conveyer
belt and picks the defected piece and deposits it in a waste box. The robot reactivates the
movement of the conveyer belt after depositing the defected piece. After the operation, the
robot returns to its initial position and the cycle repeats itself again. As illustrated in Figure
1.8, this problem has the following well-structured components:

• Feasible States: position and speed of the robot arm and orientation and status
(open or close and orientation) of its end-effector (gripper)

• Operator (successor): robot arm motion control command to move from one point
to another following a certain singularity-free trajectory (positions or joint angles in
space and motion speed) and end-effector control (orientation and open or close).

• Goal: pick and place a defected workpiece regardless its orientation
• Solution/Path: optimal sequence through state space for fastest pick-and-place

operation
• Stopping Criteria: defected workpiece is picked from the conveyer belt and is placed

in the waste box and robot returns to home position
• Evaluation Criteria: pick-and-place duration and/or success rate of pick-and-place

process.

14

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.8 A well-structured problem will have a defined problem space, operators, and evaluation criteria.

As you can see, the work environment is highly structured, static and fully observable. An
optimal pick-and-place plan can be generated and executed with high level of certainty. This
pick-and-place problem can be considered as WSP.

1.4.2 Ill-structured Problems (ISP)
Ill-structured problems (ISPs) are complex discrete/continuous problems without algorithmic
solutions/general problem solvers. Ill-structured problems are characterized by one or more
of the following characteristics:

• Problem space with different views of problems, unclear goal, multimodality, and
dynamic nature.

• Lack of exact differentiable mathematical models and/or well-proven algorithmic
solutions

• Solutions are contradictory, consequence difficult to predict and risk difficult or
impossible to calculate resulting in lack of clear evaluation criteria

• Considerable data imperfection in terms of uncertainty, partial observability,
vagueness, incomplete information, ambiguity and/or unpredictability makes
monitoring the execution of the solutions difficult and sometimes impossible.

• Computational intractability

Example: Assume that we need to find the optimal dispatching of four elevators to serve
users between ten floors as illustrated in Figure 1.9. This is a classic example of a problem
too large to solve using traditional means.

15

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.9 Elevator dispatching problem. With four elevator cars and ten floors, this problem has 1022 possible
states.

In this problem, the following objective functions can be considered in this optimal
dispatching problem:

• Minimizing the average waiting time: how long the user waits before getting on an
elevator

• Minimizing the average system time: how long the user waits before being dropped
off at the destination floor

• Minimizing the percentage of the users whose waiting time exceeds 60 seconds.
• Ensuring fairness in serving all the users of the elevators.

This optimal dispatching problem is an example of ISP as the problem space has a
dynamic nature and partial observability; it is impossible to predict the user calls and
destinations. Moreover, the search space is huge due to the extremely high number of
possible states. There are 1022 possible states:

• 218 possible combinations of the 18 hall call buttons, i.e., up, and down buttons, at
each floor except the first and the last floor.

• 240 possible combinations of the 40 elevator buttons if each elevator has 10 buttons.
• 184 possible combinations of the position and directions of the elevators.

The total number of states for a problem as simple as dispatching this small building’s
elevators is more than the number of stars in the universe!

16

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

1.4.3 WSP but practically ISP
The Traveling Salesman Problem (TSP) is an example of a problem that may be well-
structured in principle, but in practice becomes ill-structured. This is because of the
impractical amount of computational power required to solve this problem in real-time.

Example: Assume that there is a traveling salesman assigned to visit a list of n cities.
The salesman would like to make sales calls to all these cities in the minimum amount of
time, as salespeople are generally paid by commission rather than hourly. Furthermore, the
tour of the cities may be asymmetric; the time it takes to go from city A to city B may not be
the same as the reverse, due to infrastructure, traffic patterns, and one-way streets. For
example, with 13 cities to visit, the problem may seem trivial at first. However, upon closer
examination it is revealed that the search space for this TSP results in 13!=6,227,020,800
different possible routes to be examined in case of using naive algorithms! However,
dynamic programming algorithms enable reduced complexity as we will see in the next
chapter.

This book largely focuses on ISPs and WSPs but practically ISPs kinds of problems, for a
few reasons:

• Well-structured problems tend to have well-known solving algorithms that often
provide a trivial, step-by-step procedure for solving WSPs. As such, there often
already exist very efficient and well-known solutions to these kinds of problems.
Moreover, several WSPs can be also solved using derivative-based generic solvers.

• The amount of computational power needed to solve well-structured problems is often
negligible or very manageable at worst. Especially with the continued improvement of
consumer-grade computers, not to mention the vast resources available through
cloud computing and distributed processing, well-structured problems often do not
have to settle for “near-optimal” solutions due to computational bottlenecks.

• Most problems in the real world are ill-structured problems, as the problem scope,
state, and environment are dynamic and partially observable with certain degrees of
uncertainties. Solutions or algorithms for ill-structured problems therefore have much
more applicability to real-world scenarios, and there is a greater incentive to finding
solutions to these problems.

Most of the algorithms explored in this book are derivative-free and stochastic; they use
randomness in their parameters and decision processes. These are often well-suited to
solving ill-structured problems, as the randomness of their initial states and operators allow
the algorithms to escape local minima and find optimal or near-optimal solutions. On the
other hand, deterministic algorithms use well-defined and procedural paths to reach
solutions, and generally are not well suited for ISPs as they either cannot work in unknown
search spaces or are unable to return solutions in a reasonable amount of time.

1.5 Search Algorithms and the Search Dilemma
The goal of any optimization method is to assign values to decision variables so that the
objective function is optimized. To achieve this, optimization algorithms search the solution
space for candidate solutions. Constraints are simply limitations on specific regions in the

17

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

search space. Thus, all optimization techniques are in reality just search methods, where the
goal is to find feasible solutions to satisfy constraints and maximizes (or minimizes) the
objective functions. We define “search” as the systematic examination of feasible states,
starting from the initial state, and ending (hopefully) at the goal state. However, while we
explore the feasible search space, the question is if we find a few reasonably good
neighboring solutions, should we exploit this region or should we explore more looking for
better solutions in other regions of the feasible search space?

This exploration-exploitation or diversification-intensification dilemma is one of the most
important problems in search and optimization and in life as well. We apply exploration-
exploitation tactics in our life. When we move to a new city, we start by exploring different
stores and restaurants and then focus on shortlisted options around us. During midlife crisis,
some middle-aged individuals start to feel bored getting stuck in daily routine and lifestyle
without clear satisfactory accomplishment and tend to take more explorative actions. US
immigration system tries to avoid exploiting specific segments of applicants (e.g., family,
skilled-workers, refugees and asylees) and enables more diversity through computer-
generated lottery. In social insects like honeybees, foraging for food sources is performed by
two different worker groups, recruits and scouts (5-25% of the foragers). Recruits focus on a
specific food source while scouts are novelty seekers who keep scouting around for rich
nectar. In search and optimization, exploration-exploitation dilemma represents the tradeoff
between exploring new unvisited states/solutions in the search space and exploiting the elite
solutions found in a certain neighborhood in the search space (Figure 1.10).

Exploration (or diversification) is the process of investigating new regions in the feasible
search space with the hope of finding other promising solutions. On the other hand,
exploitation (or intensification) is the process of directing the search agent to focus on an
attractive region of the search space where good solutions have been already found.

18

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 1.10 Search Dilemma. There is always a tradeoff between branching out to new areas of the search
space or focusing on an area with known “good” or elite solutions.

Local search algorithms are exploitation/intensification algorithms that can be easily
trapped in local optima if the search landscape is multimodal. On the other extreme, random
search algorithms keep exploring the search space with a high chance of reaching global
optima at the cost of the impractical search time. Generally speaking, explorative algorithms
can find global optima at the cost of processing time, while exploitative algorithms risk
getting stuck at local minima.

19

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

1.6 Summary
• Optimization is a search process for finding the “best” solutions to a problem that

provide the best objective function values, possibly subject to a given set of hard
(must be satisfied) and soft (desirable to satisfy) constraints.

• Ill-structured problems are complex, discrete, or continuous problems without exact
differentiable mathematical models and/or algorithmic solutions or general problem
solvers. They usually have dynamic and/or partially observable large search spaces
that cannot be handled by classical optimization methods.

• Stochastic algorithms are non-greedy algorithms that explicitly use randomness to
find the global optimal or near-optimal solution in a reasonably practical time. In
many real-life applications, quickly finding a near-optimal solution is better than
spending a large amount of time in search for an optimal solution.

• Two key concepts you’ll see frequently in future chapters are
exploration/diversification and exploitation/intensification. Handling this search
dilemma by achieving a trade-off between exploration and exploitation will allow the
algorithm to find optimal or near-optimal solutions without getting trapped in local
optima in an attractive region of the search space and without spending large amount
of time.

20

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

A Deeper Look at Search and
Optimization

This chapter covers

• Classifying optimization problems based on different criteria.
• Classifying search and optimization algorithms based on the way the search space is

explored and how deterministic the algorithm is.
• Introducing heuristics, meta-heuristics, and heuristic search strategies.
• A first look at nature-inspired search and optimization algorithms.

Before we dive into the problems and algorithms that we hinted at in Chapter 1, it useful to
first understand how we “talk” about these problems and algorithms. Classifying a problem
allows us to group similar problems together, and potentially exploit already-existing
solutions. For example, a Travelling Salesman Problem(TSP) problem involving geographic
values (i.e., cities and roads) may be used as a model to find the minimum length of the
wires connecting the pins in very large-scale integration (VLSI) design. The same can be said
for classifying the algorithms themselves, as grouping algorithms with similar properties
allows us to easily identify the right algorithm to solve the problem and meeting expectation
in terms of quality of the solution and permissible search time for example. Throughout this
chapter, we discuss common classifications of optimization problems and algorithms.
Heuristics and meta-heuristics are also introduced as general algorithmic framework or high-
level strategies that guide the search process. Many of these strategies are inspired from
nature so we shed some lights on nature inspired algorithms. Let’s start by discussing how
we can classify optimization problems based on different criteria in the first section.

21

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

2.1 Optimization Problem Classification
Optimization is everywhere! In everyday life, you may face different kinds of optimization
problems. For example, you may like to set the AC thermostat at a certain degree to stay
comfortable and at the same time to save energy. You may select light fixtures and adjust
the light level to reduce energy costs. When you start driving your electric vehicle (EV), you
search for the fastest route and/or most energy-efficient route that takes you to your
destination. Before arriving to your destination, you may look for a parking spot that is
affordable and provides shortest walking distance to the destination and offers EV charging
and preferably is underground. These optimization problems have different levels of
complexities that mainly depend on the type of the problem. As mentioned in the previous
chapter, the process of optimization selects decision variables from a given feasible search
space in such a way as to optimize (minimize or maximize) a given objective function, or in
some cases, multiple objective functions. Search and optimization problems are
characterized by three main components, namely, decision variables or design vector,
objective functions or criteria to be optimized, and a set of hard and soft constraints to be
satisfied. The nature of these three components, the permissible time to solve the problem
and the expected quality of the solutions lead to different types of optimization problems, as
shown in Figure 2.1.

22

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.1 Optimization problem classification. An optimization problem can be broken down into its
constituent parts, which form the basis of the classification of such problems.

The following subsections explain these types in greater detail and provide examples for
each type of optimization problem.

2.1.1 Number and Type of Decision Variables
According to the number of decision variables, optimization problems can be broadly grouped
into univariate (single variable) or multivariate problems (multiple decision variables). For
example, vehicle speed, acceleration, and tire pressure are among the parameters that
impact a vehicle’s fuel economy, where fuel economy refers to how far a vehicle can travel
on a specific amount of fuel. According to the US Department of Energy, controlling the
speed and acceleration of a vehicle can improve its fuel economy by 15%–30% at highway
speeds, and 10%–40% in stop-and-go traffic. A study by the National Highway Traffic Safety
Administration (NHTSA) in the USA found that a 1% decrease in tire pressure correlated to a

23

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

0.3% reduction in fuel economy. If we are only looking for the optimal vehicle speed for
maximum fuel economy, the problem is a univariate optimization problem. Finding the
optimal speed and optimal acceleration for maximum fuel economy is a bivariate
optimization problem, while finding optimal speed, acceleration, and tire pressure is a
multivariate problem.

Problem classification also varies according to the type of the decision variables. A
continuous problem involves continuous-valued variables where xj ∈ R. In contrast, if xj ∈ Z,
the problem is an integer, or discrete optimization problem. A mixed-integer problem has
both continuous-valued and integer-valued variables. For example, optimizing elevator speed
and acceleration (continuous variables) and the sequence of picking up passengers (discrete
variable) is a mixed-integer problem. Problems where the solutions are sets, combinations,
or permutations of integer-valued variables are referred to as combinatorial optimization
problems.

24

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Combination vs. Permutation
Combinatorics is the branch of mathematics studying both combination and permutation of a set of elements. The
main difference between combination and permutation is the order. If the order of the elements doesn’t matter, it is a
combination, and if the order does matter, it is a permutation. Thus, permutations are ordered combinations.
Depending on whether repetition of these elements is allowed or not, we can have different forms of combinations
and permutations as shown in Figure 2.2.

Figure 2.2 Combinations and permutations. Both combinations and permutations have variants with and without
repetition. The difference lies in the fact that permutations respect order and are thus ordered combinations.

For example, assume that we are designing a fitness plan to include multiple fitness activities. Five types of fitness

exercises are available to be included in the fitness plan, namely, jogging, swimming, biking, yoga, and aerobics. In a
weekly plan, if we are to choose only 3 out of these 5 exercises and the repetition is allowed, the number of possible
combinations will be: (n+r-1)!/r!(n-1)! = (5+3-1)!/3!(5-1)! = 7!/(3!×4!) =35. This means that we can generate 35
different fitness plans by selecting 3 out of the available 5 exercises and by allowing repetition.

However, if repetition is not allowed, the number of possible combinations will be: C(n,r)=n!/r!(n-r)!=5!/(3!×2!)=10.

This formula is often called “n choose r” (such as “5 choose 3’) and is also known as the “Binomial Coefficient”. This
means that we can generate only 10 plans if we don’t want to repeat any of the exercises.

In both cases of combination with and without repetition, the fitness plan doesn’t include the order of performing

the included exercises. If we are to respect specific order, the plan in this case will take the form of a permutation. If
repeating exercises is allowed, the number of possible permutations to select 3 exercises out of the 5 available
exercises will be: nr=53=125. However, if repetition is not allowed, the number of possible permutations will be:
P(n,r)=n!/(n-r)!=5!/(5-3)!=60.

Combinatorics can be implemented fairly easily in Python using code from scratch, but there are excellent

resources available in the form of libraries, such as sympy. For example, the Binomial Coefficient can be calculated in
sympy using the following simple code:

from sympy import binomial
print(binomial(5,3))

See Appendix-A and the documentation for sympy for more on implementing combinatorics in Python.

25

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

The Traveling Salesman Problem (TSP) is a common example of combinational problems
whose solution is a permutation, or a sequence of cities to be visited. In TSP, given n cities,
a traveling salesman must visit the n cities and then return home, making a loop (round
trip). The salesman would like to travel in the most efficient way (fastest, cheapest, shortest
distance, or some other criterion). The search space in TSP is very large. For example, let’s
assume the traveling salesman is to visit the 13 major cities in the Greater Toronto Area
(GTA) as illustrated in Figure 2.3.

TSP can be classified into symmetric TSP (STSP) and asymmetric (ATSP). In the STSP,
the distance between two cities is the same in each opposite direction, forming an undirected
graph. This symmetry halves the number of possible solutions. ATSP is a strict generalization
of the symmetric version. In the ATSP, paths may not exist in both directions or the
distances might be different, forming a directed graph. Traffic collisions, one-way streets,
bridges and airfares for cities with different departure and arrival fees are examples of how
this symmetry could break down.

Figure 2.3 TSP in Greater Toronto Area (GTA). The traveling salesman must visit all the 13 cities, and wishes to
select the “best” path, whether that be distance, time, or some other criterion.

The naive solution’s complexity is O(n!). These means that there are n!=13!=
6,227,020,800 possible tours in case of ATSP. This makes both STSP and ATSP, NP-hard
problems. However, dynamic programming (DP) algorithms enable reduced complexity.
Dynamic programming is a method of solving optimization problems by breaking them down
into smaller subproblems and solving each subproblem independently. For example, the
complexity of Bellman-Held-Karp algorithm [1] is of O(2n×n²). Different solvers and
algorithms with different level of computational complexities and approximation ratios such
as Concorde TSP Solver, 2-opt/3-opt algorithm, branch and bound algorithms, Christofides
algorithm or Christofides–Serdyukov algorithm, Bellman–Held–Karp algorithm, Lin-Kernighan
algorithm, metaheuristics-based algorithms, graph neural networks or deep reinforcement
learning methods. For example, Christofides algorithm [2] is a polynomial-time

26

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

approximation algorithm that produces a solution to the TSP that is guaranteed to be no
more than 50% longer than the optimal solution with a time complexity of O(n3). See
Appendix-A for solution of TSP using Christofides algorithm implemented in networkx. We
will discuss how to solve TSP using a number of these algorithms throughout this book.

TSP is used as a platform for the study of general methods that can be applied to a wide
range of discrete optimization problems. These problems include, but are not limited to,
microchips manufacturing, permutation flow shop scheduling, arranging school bus routes to
pick up children in a school district, assignment of routes for airplanes, transportation of
farming equipment, scheduling of service calls, meal delivery, and the routing of trucks for
parcel delivery and pickup. For example, the Capacitated Vehicle Routing Problem (CVRP) is
a generalization of the TSP where one has to serve a set of customers using a fleet of
homogeneous vehicles based at a common depot. Each customer has a certain demand for
goods which are initially located at the depot. The task is to design vehicle routes starting
and ending at the depot such that all customer demands are fulfilled. Later in this book,
several examples are given to show how to solve TSP and its variants using stochastic
approaches.

27

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Problem Types
Decision problems are commonly classified based on their levels of complexities. These classes can be also applied
to optimization problems given the fact that optimization problems can be converted into decision-making problems.
For example, the optimization problem whose objective is to find an optimal or near-optimal solution within a feasible
search space can be paraphrased as a decision-making problem, which answers the question: “Is there is an optimal
or a near-optimal solution within the feasible search space?” The answer will be {“yes” or “no”} or {“True” or “False”}. A
generally-accepted notion of algorithm's efficiency is that its running time is polynomial. Problems that can be solved
in polynomial time are known as tractable. Figure 2.4 shows different types of problems and gives examples of
commonly used benchmark/toy and real-life application of each type.

Figure 2.4 Problem classes based on hardness and completeness. Problems can be categorized into NP-hard, NP-
complete, NP, or P.

For example, a complexity class P represents all decision problems that can be solved in polynomial time by

deterministic algorithms (i.e., algorithms that do not guess at a solution). The NP or Nondeterministic Polynomial
problems are problems whose solutions are hard to find but easy to verify and are solved by a non-deterministic
algorithm in polynomial time. NP-complete problems are problems that are both NP-hard and verifiable in polynomial
time. Finally, a problem is NP-hard if it is at least as hard as the hardest problem in NP-complete. NP-hard problems
are usually solved by approximation or heuristic solvers as it is hard to find efficient exact algorithms to solve such
kind of problems.

Clustering is an example of combinatorial problems whose solution takes the form of a
combination where the order doesn’t matter. In clustering, given n objects, we need to group
them in k groups (clusters) in such a way that all objects in a single group or cluster have a
“natural”' relation to one another, and objects not in the same group are somehow different.
This means that the objects will be grouped based on some similarity or dissimilarity metric.
The following formula is known as a Stirling number of the second kind (or Stirling partition

28

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

number) and gives the number of ways to partition a set of n objects into k non-empty
subsets:

𝑆𝑆(𝑛𝑛, 𝑘𝑘) = �
𝑛𝑛
𝑘𝑘� =

1
𝑘𝑘!�(−1)𝑖𝑖 �

𝑘𝑘
𝑖𝑖 � (𝑘𝑘 − 𝑖𝑖)𝑛𝑛

𝑘𝑘

𝑖𝑖=0

Equation 2.1

Let's consider smart cart clustering as an example. Shopping and luggage carts are
commonly found in shopping malls and large airports. Shoppers or travelers pick up these
carts at designated points and leave them in arbitrary places. It is a considerable task to re-
collect them, and it is therefore beneficial if a “smarter” version of these carts could draw
themselves together automatically to the nearest assembly points as illustrated in Figure 2.5.

Figure 2.5 Smart Cart Clustering. Unused shopping or luggage carts congregate near designated assembly
points to make collection and redistribution easier.

In practice, this problem is considered an NP-hard problem, as the search space can be
very large based on the number of available carts and number of assembly points. In order
to cluster these carts effectively, the centers of clustering (centroids) must be found. The
carts in each cluster will then be directed to the assembly point closest to the centroids. For
example, assume that there are 50 carts to be clustered around 4 assembly points. This
means that n=50 and c=4. Stirling numbers can be generated using the sympy library. To do
so, simply call the stirling function on two numbers n and k.

29

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

from sympy.functions.combinatorial.numbers import stirling
print(stirling(50,4))
print(stirling(100,4))

The number is 5.3×1028 and if n is increased to 100, the number becomes 6.7×1058.
Enumerating all possible partitions for large problems is practically not feasible.

2.1.2 Landscape and Number of Objective Functions
Objective function’s landscape represents the distribution of values of the objective function
in the feasible search space. When you walk over this landscape, you find the optimal
solution or the global minima in the lowest valley of the landscape assuming that you are
dealing with a minimization problem or in the highest peak of the landscape in case of a
maximization problem. According to the landscape of the objective function, if there exists
only one clear global optimal solution, the problem is unimodal (e.g., convex and concave
functions). On the other hand, in a multimodal problem, more than one optimum exists. The
objective function is called deceptive when the global minimum lies in a very narrow valley
and at the same time there exists a strong local minimum with a wide basin of attraction
such that the value of objective function is close to the value of objective function at global
minimum [3]. Figure 2.6 is a 3D visualization of the landscapes of unimodal, multimodal, and
deceptive functions generated using Python generated by Listing 2.1. Complete listing is
available in the GitHub repo of the book.

Listing 2.1 Examples of Objective Functions

import numpy as np
import math
import matplotlib.pyplot as plt

def objective_unimodal(x, y): #A
return x**2.0 + y**2.0

def objective_multimodal(x, y): #B
return np.sin(x) * np.cos(y)

def objective_deceptive(x, y): #C
return (1-(abs((np.sin(math.pi*(x-2))*np.sin(math.pi*(y-2)))/(math.pi*math.pi*(x-2)*(y-

2))))**5)*(2+(x-7)**2+2*(y-7)**2)

#A Unimodal function
#B Multimodal function
#C Deceptive function [3]

30

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.6 Unimodal, multimodal, and deceptive functions. Unimodal functions have one global optimum,
while multimodal functions can have many. Deceptive functions contain false optima close to the value of
objective function at global minimum, which can cause some algorithms to get stuck.

If the quantity to be optimized is expressed using only one objective function, the
problem is referred to as a mono-objective or single-objective optimization problem (such as
convex or concave functions). A multi-objective problem specifies multiple objectives to be
simultaneously optimized. Problems without an explicit objective function are called
Constraint-Satisfaction Problems (CSP). The goal in this case is to find a solution that
satisfies a given set of constraints. The N-queen problem is an example of CSP. In this
problem, the aim is to put n queens on an n×n board with no two queens on the same row,
column, or diagonal, as illustrated in Figure 2.7. In this 4-queen problem, there are 5
conflicts in the first state ({Q1,Q2}, {Q1,Q3},{Q2,Q3},{Q2,Q4} and {Q3,Q4}). After
moving Q4, the number of conflicts reduces by 2 and after moving Q3, the number of
conflicts is only 1, which is between Q1 and Q2.

Figure 2.7 N-Queen Problem. This problem has no objective function, rather, only a set of constraints that
must be satisfied.

By keep moving or placing the pieces, we can reach to the goal state where number of
conflicts is zero, which means that there is no any queen that could attach any other queen

31

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

horizontally, vertically or diagonally. Listing 2.2 is a Python implementation of the 4-Queen
problem.

Listing 2.2 N-Queen CSP

from copy import deepcopy
import math
import matplotlib.pyplot as plt
import numpy as np

board_size = 4
board = np.full((board_size, board_size), False) #A

def can_attack(board, row, col):
if any(board[row]): #B

return True #B

offset = col - row #C
if any(np.diagonal(board, offset)): #C

return True #C
offset = (len(board) - 1 - col) - row #C
if any(np.diagonal(np.fliplr(board), offset)): #C

return True #C

return False

board[0][0] = True #D
col = 1
states = [deepcopy(board)]
while col < board_size:

row = 0
while row < board_size:

if not can_attack(board, row, col): #E
board[row][col] = True
col += 1
states.append(deepcopy(board))
break

row += 1
if row == board_size: #F

board = np.delete(board, 0, 1)
new_col = [[False]] * board_size
board = np.append(board, new_col, 1)
states.append(deepcopy(board))
col -= 1
continue

#A Create an nxn board
#B Check existing on the same row
#C Check diagonals
#D First column is trivial
#E The piece can be placed in this column
#F The piece cannot be placed in this column

We define a function called can_attack to detect if a newly placed piece can attack a
previously placed piece. A piece can attack another piece if it is in the same row, column, or
diagonal.

32

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.8 N-Queens Solution. The first piece is trivially placed in the first position. The second piece must be
placed either in the 3rd position or the 4th position, as the first two can be attacked. By placing it in the 3rd

position however, the 3rd piece cannot be placed. Thus, the first piece is removed (the board is “slid” one
column over), and we reattempt. This continues until a solution is found.

The full code for this problem, including the code used to generate visualizations, can be
found in the code file for Listing 2.2. The solution algorithm is as follows:

1. Moving from top to bottom in a column, the algorithm attempts to place the piece
while avoiding conflicts. For the first column, this will default to Q1 = 0.

2. Moving to the next column, if a piece cannot be placed at row 0, it will be placed at
row 1, and so on.

3. When a piece has been placed, the algorithm moves to the next column.
4. If it is impossible to place a piece in a given column, the first column of the entire

board is removed, and the current column is reattempted.

Constraint programming solvers available in Google OR-Tools can be also used to solve
this n×n queen problem. Listing 2.3 shows the steps of the solution using OR-Tools.

33

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Listing 2.3 Solving N-Queen problem using OR-Tools

import numpy as np
import matplotlib.pyplot as plt
import math
from ortools.sat.python import cp_model #A

board_size = 4 #B

model = cp_model.CpModel() #C

queens = [model.NewIntVar(0, board_size - 1, 'x%i' % i) for i in range(board_size)] #D

model.AddAllDifferent(queens) #E

model.AddAllDifferent(queens[i] + i for i in range(board_size))
model.AddAllDifferent(queens[i] - i for i in range(board_size))

solver = cp_model.CpSolver() #G
solver.parameters.enumerate_all_solutions = True #G
solver.Solve(model) #G

all_queens = range(board_size) #F
state=[]
for i in all_queens:

for j in all_queens:
if solver.Value(queens[j]) == i:

There is a queen in column j, row i.
state.append(True)

else:
state.append(None)

states=np.array(state).reshape(-1, board_size)
fig = plt.figure(figsize=(5,5)) #H
markers = [

x.tolist().index(True) if True in x.tolist() else None
for x in np.transpose(states)

] #H
res = np.add.outer(range(board_size), range(board_size)) % 2 #H
plt.imshow(res, cmap="binary_r") #H
plt.xticks([]) #H
plt.yticks([]) #H
plt.plot(markers, marker="*", linestyle="None", markersize=100/board_size, color="y") #H

#A imports a constraint programming solver that uses SAT (satisfiability) methods.
#B Set board size for nxn Queeen problem.
#C Define a solver
#D Define the variables. The array index represents the column, and the value is the row.
#E Define the constraint: all rows must be different
#F Define the constraint: no two queens can be on the same diagonal.
#G Solve the model.
#H Visualize the solution

Running this code produces the following output:

34

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.9 N-Queens solution using OR-Tools.

More information about Google OR-Tools is available in Appendix A.

2.1.3 Constraints
Constrained problems have equality and/or inequality hard or soft constraints. Hard
constraints must be satisfied, while soft constraints are nice to satisfy (but are not
mandatory). If there are no constraints to be considered aside from the boundary
constraints, the problem is an unconstrained optimization problem. Let’s revisit the ticket
pricing problem introduced in subsection 1.3.1 of the previous chapter. There a wide range of
derivative-based solvers in Python that can handle such kind of differentiable mathematical
optimization problem (see Appendix A). Listing 2.4 shows how to solve this simple ticket
pricing problem using SciPy. SciPy is a library containing a collection of valuable tools for all
things computation.

Listing 2.4 Optimal Ticket Pricing

import numpy as np
import scipy.optimize as opt
import matplotlib.pyplot as plt

def f(x): #A
return -(-20*x**2+6200*x-350000)/1000

res=opt.minimize_scalar(f, method='bounded', bounds=[0, 250]) #B

print("Optimal Ticket Price ($): %.2f" % res.x)
print("Profit f(x) in K$: %.2f" % -res.fun)

#A The objective function, which is required by ‘minimize_scalar’ to be a minimization function
#B ‘bounded’ method is the constrained minimization procedure that finds the solution

Running this code produces the following output:

35

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Optimal Ticket Price ($): 155.00
Profit f(x) in K$: 130.50

This code finds the optimal ticket price in the range between $0 and $250 that maximizes
the profit. As you may have noticed the profit formula is converted into a minimization
problem by adding a negative sign in the objective function to match with the minimize
function in scipy.optimize. A minus sign was added in print function to convert it back into
profit.

What if we imposed an equality constraint on this problem? Let’s assume that due to
incredible international demand for our event, we now consider using a different event
planning company and opening up virtual attendance for our conference, so that
international guests can also participate. Interested participants can now choose between
attending the event in person or joining via live stream. All participants, whether in-person
or virtual, will still receive a physical welcome package, which is limited to 10,000 units.
Thus, in order to ensure a “full” event, we must either sell 10,000 in person tickets, 10,000
virtual tickets, or some combination thereof. This new event company is charging us a
$1,000,000 flat rate for the event, and thus we want to sell as many tickets as possible
(exactly 10,000). Below are the equations associated with this problem:

Let x be the number of physical ticket sales, and y be the number of virtual ticket sales.
Additionally, let f(x,y) be the function for profits generated from the event, where

f(x,y)=155x+(0.001x3/2+70)y-1000000

Equation 2.2

Essentially, we earn $155 profit on in-person attendance, and the profit for online
attendance is $70, but increases by some amount the more physical attendance we have
(let’s say that as the event looks “more crowded”, we can charge more for online attendees).

Assuming that we’re adding the constraint function: x+y≤10000, which shows that the
combined ticket sales cannot exceed 10,000. The problem is now a bivariate mono-objective
constrained optimization problem. It is possible to convert this constrained optimization
problem to unconstrained optimization using Lagrange multiplier λ. We can use sympy to
implement Lagrange multipliers to solve for the optimal mix of virtual and physical ticket
sales. The idea is to take the partial derivatives of the objective functions and the constraints
with respect to the decision variables x and y to form the unconstrained optimization
equations to be used by the SymPy solver as illustrated in Figure 2.10.

36

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.10 Steps of solving ticket pricing problem using Lagrange method

Listing 2.5 shows the Python implementation using SymPy. SymPy is an open-source
Python library for symbolic mathematics. Capabilities include, but are not limited to,
statistics, physics, geometry, calculus, equation solving, combinatorics, discrete math,
cryptograph and parsing. See Appendix-A for more information about SymPy.

Listing 2.5 Maximizing Profits using Lagrange Multipliers

import numpy as np
import sympy as sym

x,y=sym.var('x, y', positive=True) #A

f=155*x+(0.001*x**sym.Rational(3,2)+70)*y-1000000 #B

g=x+y-10000 #C

lamda=sym.symbols('lambda') #D
Lagr=f-lamda*g

grad_Lagr=[sym.diff(Lagr,var) for var in [x,y]] #E
eqs=grad_Lagr+[g]

sol=sym.solve(eqs,[x,y,lamda], dict=True) #F

def getValueOf(k, L):
for d in L:

if k in d:
return d[k]

print the value of the objective function
profit=[f.subs(p) for p in sol]

print("optimal number of physical ticket sales: x = %.0f" % getValueOf(x, sol))
print("optimal number of online ticket sales: y = %.0f" % getValueOf(y, sol))
print("Expected profil: f(x,y) = $%.4f" % profit[0])

37

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

#A define decision variables
#B define the ticket pricing objective function
#C define equality constraint
#D Lagrange multiplier
#E taking the partial derivatives
#F solving these 3 equations in 3 variables (x,y,lambda) using sympy

By solving the above three equations, we get x and y values that correspond to the
optimized quantities for virtual and physical ticket sales. From Listing 2.5, we can see that
the best way to sell tickets is to sell 6,424 in-person tickets and 3,576 online ticket profits.
This results in a maximum profit of $2,087,260.533.

2.1.4 Linearity of Objective Functions and Constraints
If all the objective functions and all associated constraint conditions are linear, the
optimization problem is categorized as a linear optimization problem or Linear Programming
Problem (LPP or LP), where the goal is to find the optimal value of a linear function subject to
linear constraints. Blending problems are a typical application of mixed integer linear
programming (MILP) where a number of ingredients are to be blended or mixed to obtain a
product with certain characteristics or properties. In the animal feed mix problem described
in [4], it is required to determine the optimum amounts of three ingredients to include in an
animal feed mix. The possible ingredients, their nutritive contents (in kilograms of nutrient
per kilograms of ingredient) and the unit cost are shown in Table 2.1.

Table 2.1 Animal Feed Mix Problem

Ingredients
Nutritive content and price of ingredients

Calcium (kg/kg) Protein (kg/kg) Fiber (kg/kg) Unit cost (cents/kg)

Corn 0.001 0.09 0.02 30.5

Limestone 0.38 0.0 0.0 10.0

Soybean meal 0.002 0.50 0.08 90.0

The mixture must meet the following restrictions:

• Calcium — at least 0.8% but not more than 1.2%.
• Protein — at least 22%.
• Fiber — at most 5%.

The problem is to find the mixture that satisfies these constraints while minimizing cost.
The decision variables are x1, x2 and x3, which are proportions of Limestone, Corn and
Soybean meal in the mixture respectively.

Objective Function: minimize f = 30.5x1 + 10x2 + 90x3
Subject to the following constraints:

• Calcium limits: 0.008<=0.001x1+0.38x2+0.002x3 <=0.012
• Protein constraint: 0.09x1+0.5x3 >=0.22
• Fiber constraint: 0.02x1+0.08x3 <=0.05
• Non-negativity restriction: x1, x2, x3 >= 0

38

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

• Conservation: x1+x2+x3=1

In this problem, both the objective function and the constraints are linear so we call it
linear programming problem. There are several Python libraries that can be used for solving
mathematical optimization problems (see Appendix A). Let’s consider solving the animal feed
mix problem using PuLP. PuLP is a Python linear programming library. It allows users to
define linear programming problems and to solve them using optimization algorithms such as
COIN-OR's linear and integer programming solvers. See Appendix A for more information
about PuLP and other mathematical programming solvers. Listing 2.6 shows the steps of
solving the animal feed mix problem using PuLP.

Listing 2.6 Solving Linear Programming Problem using PuLP

from pulp import *

model = LpProblem("Animal_Feed_Mix_Problem", LpMinimize) #A

x1 = LpVariable('Corn', lowBound = 0, upBound = 1, cat='Continous') #B
x2 = LpVariable('Limestone', lowBound = 0, upBound = 1, cat='Continous') #B
x3 = LpVariable('Soybean meal', lowBound = 0, upBound = 1, cat='Continous') #B

model += 30.5*x1 + 10.0*x2 + 90*x3, 'Cost' #C

model +=0.008 <= 0.001*x1 + 0.38*x2 + 0.002*x3 <= 0.012, 'Calcium limits' #D
model += 0.09*x1 + 0.5*x3 >=0.22, 'Minimum protein' #D
model += 0.02*x1 + 0.08*x3 <=0.05, 'Maximum fiber' #D
model += x1+x2+x3 == 1, 'Conservation' #D

model.solve() #E

for v in model.variables(): #F
print(v.name, '=', round(v.varValue,2)*100, '%') #F

print('Total cost of the mixture per kg = ', round(value(model.objective), 2), '$') #F

#A Create a linear programming model
#B Define 3 variables that represents the percentage of each ingredients Corn, Limestone and Soybean meal in the

mixture.
#C Define total cost as the objective function to be minimize
#D Add the constraints
#E Solve the problem using PuLP's choice of Solver
#F Print the results (the optimal percentages of the ingredients and the cost of the mixture per kg)

As you can see in this listing, we start by importing PuLP and creating a model as linear
programming problem. We then define LP Variables with the specified associated parameters
such as name, lower bound and upper bound on each variable’s range and type of the
variable (e.g., Integer, Binary or Continuous). A solver is then used to solve the problem.
PuLP supports several solvers such as GLPK, GUROBI, CPLEX and MOSEK. The default solver
in PuLP is Cbc (Coin-or branch and cut). Running this code gives the following output:

Corn = 65.0%
Limestone = 3.0%
Soybean_meal = 32.0%
Total cost of the mixture per kg = 49.16$

39

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

If one of the objective functions or at least one of the constraints is non-linear, the
problem is considered a non-linear optimization problem or nonlinear programming problem
(NLP) and it's harder to solve compared to a linear problem. A special case of NLP is called
Quadratic Programming (QP) when the objective function is quadratic. For example, the Plant
Layout Problem (PLP) or Facility Location Problem (FLP) is a quadratic assignment problem
(QAP) that aims at assigning different facilities (departments) F to different locations L in
order to minimize a given function cost such as the total material handling cost as shown in
Figure 2.11.

Assume that ωij is the frequency of interaction or the flow of products between these
facilities and df(i)f(j) is the distance between facilities i and j and. The material handling cost
is:

MHCij=flow×distance=ωij×df(i)f(j)

Equation 2.3

Figure 2.11 Plant Layout Problem. What is the optimal location for each department that minimizes the
overall material handling costs?

and total material handling cost (TMHC) is the summation of all the material handling
costs inside the material handling cost matrix. In matrix notation, the problem can be
formulated as:

Find X which minimizes trace(WXDXT)

40

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Where X represents the assignment vector, W is the flow matrix and D is the distance
matrix. Trace is the sum of elements on the main diagonal (from the upper left to the lower
right) of the resultant material handling cost matrix.

In a more general case, NLP includes non-linear objective functions and/or at least
nonlinear constraints of any form. For example, imagine you’re designing a landmine
detection and disposal Unmanned Ground Vehicle (UGV) [5]. In outdoor applications like
humanitarian demining, UGVs should be able to navigate through rough terrain. Sandy soils
or rocky terrain with obstacles, some steep inclines, ditches, and culverts can be difficult to
negotiate by the vehicle. This urges the need to carefully design the locomotion system of
the vehicles to guarantee motion fluidity. Assume that you are in charge of finding optimal
values for the wheel parameters (e.g., wheel diameter, breadth width and wheel loading)
that will lead to:

• minimize the wheel sinkage, which is the maximum sinkage of the wheel in the soil
that it is moving on;

• minimize motion resistance, which is the overall resistance faced by the UGV unit due
to the different components of resistance (compaction, gravitational, etc.);

• minimize drive torque, which is the required driving torque from the actuating motors
per each wheel;

• minimize drive power, which is the required driving power from the actuating motors
per each wheel and

• maximize the slope negotiability that represents the maximum slope that can be
climbed by the UGV unit considering its weight, as well as the soil parameters.

Due to availability in the markets and/or manufacturability concerns and costs, the wheel
diameter should be in the range of 4-8.2 inches, breadth width in the range of 3-5 inches,
and wheel loading in the range of 22-24 pounds per wheel. This wheel design problem
(Figure 2.12) can be stated as following:

Find X which optimizes ƒ, subject to a possible set of boundary constraints. Where X is a
vector that is composed of a number of design/decision variables such as

x1=wheel diameter, x1 ∈[4.8,2]
x2=breadth width, x2∈ [3,5]
x3=wheel loading, x3∈ [22,24]
We can also consider the objective functions ƒ={ƒ1, ƒ2,…}. For example, the function for

wheel sinkage might look like this:

𝑓𝑓1 = (3𝑥𝑥3
(3−𝑛𝑛)(𝑘𝑘𝑐𝑐+𝑥𝑥2𝑘𝑘𝜑𝜑√𝑥𝑥1)

)
2

(2𝑛𝑛+1)

Equation 2.4

where n is the exponent of sinkage, kc is the cohesive modulus of soil deformation, and
kφ is frictional modulus of soil deformation. This problem is considered to be non-linear since
the objective function is non-linear.

41

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.12 MineProbe wheel design problem [5].

The catenary problem [6] is another example of a non-linear optimization problem. A
catenary is a flexible hanging object composed of multiple parts, such as a chain or
telephone cable (Figure 2.13). In this problem, we are provided with n+1 homogenous
beams with lengths d1, d2 ,…, dn+1>0, and masses m1,m2,…,mn+1>0, which are connected by
joints G1,G2,…,Gn+1.The location of each joint is represented by the Cartesian coordinates
(xi,yi,zi). The ends of the catenary are G1 and Gn+1, which have the same y and z values (they
are at the same height and line with each other).

Figure 2.13 Finite Catenary Problem. The catenary (or chain) is suspended from two points G1 and Gn+1 [6].

Assuming that beam lengths and masses are predefined parameters, the goal is to look
for stable equilibrium positions in the field of gravity, i.e., those where the potential energy is
minimized. The problem can be stated as follows:

42

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Find 𝑌𝑌 that minimizes ∑ 𝑚𝑚𝑖𝑖𝛾𝛾
𝑦𝑦𝑖𝑖+𝑦𝑦𝑖𝑖−1

2
, 𝛾𝛾 > 0𝑛𝑛+1

𝑖𝑖=1

Equation 2.5

subject to the following constraints:

gi=(xi-xi-1)2+(yi-yi-1)2+(zi-zi-1)2-di2 =0 , i=1,2,…,n+1

Equation 2.6

Where γ is the gravitational constant. The non-linearity of the constraints makes this
problem non-linear despite having a linear objective function.

2.1.5 Expected Quality and Permissible Time of the Solution
Optimization problems can also be categorized according to the expected quality of the
solutions and the time given to find the solutions. Figure 2.14 shows three main types of
problems, namely, design problems/strategic functions, planning problems/tactical functions
and control problems/operational functions.

Figure 2.14 Qualities of solutions vs. Search Time. Some types of problems require fast computations but do
not require incredibly accurate results, while others (such as design problems) allow more processing time in
return for higher accuracy.

In design problems, time is not as important as the quality of the solution and users are
willing to wait (sometimes even a few days) to get an optimal, or near-optimal result. These
problems can be solved offline, and the optimization process is usually carried out only once
in a long time. Examples of design problems include political districting, vehicle design, class

43

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

scheduling, asset allocation, resource planning, assembly line balancing, inventory
management, flight scheduling and political districting.

Let’s discuss political districting as a design problem in more details. Districting is the
problem of grouping small geographic areas, called basic units, into larger geographic
clusters, called districts, in a way that the latter are acceptable according to relevant
planning criteria [7]. Typical examples for basic units are customers, streets, or zip code
areas. Examples of these criteria may include:

• Balance or equity in terms of demographic background, equitable size, balanced
workload, equal sales potentials, or number of customers, for example.

• Contiguity to enable travelling between the basic units of the district without having to
leave the district.

• Compactness to enable having round-shaped or square shaped undistorted districts
without holes.

• Respect of boundaries such as administrative boundaries, railroads, rivers, mountains,
etc.

• Socio-economic heterogeneity to have a better representation of residents with
different income revenues, ethnicity, concerns, or views.

Political districting, school districting, districting for health services, districting for EV
charging stations, districting for micro mobility (e.g., e-bikes and e-scooters) stations and
districting for sales or delivery are examples of districting problems. Political districting is an
issue that has plagued societies since the advent of representative democracy in the Roman
Republic. In a representative democracy, officials are nominated and elected to power to
represent the interests of the people who elected them. In order to have a greater say when
deciding on matters that concern the entire state, the party system came about, which
defines a political platform on which each nominee will use to differentiate themselves from
competitors. Manipulating the shape of electoral districts to determine the outcome of an
election is called gerrymandering (named after early 19th Massachusetts governor Elbridge
Gerry who redrew the map of the Senate’s districts in 1810 in order to weaken the opposing
federalist party). Figure 2.15 shows how manipulating the shape of the districts can sway the
vote in favor of a decision that otherwise wouldn’t have won.

Figure 2.15 Example of Gerrymandering. The two major political parties, Shield and Bell try to gain an
advantage by manipulating the district boundaries to suppress undesired interests, and to promote their own.

44

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

To avoid gerrymandering, an effective and transparent political districting strategy is
needed to generate a solution that preserves the integrity of individual sub-districts and
divides the population into almost equal voting populations in a reproducible way. In many
countries, electoral districts are reviewed from time to time to reflect changes and
movements in the country’s population. For example, the Constitution of Canada requires
that federal electoral districts be reviewed after each decennial (10-year) census.

Political districting is defined as aggregating n sub-regions of a territory into m electoral
districts subject to the following constraints:

• The districts should have near-equal voting population,
• The socio-economic homogeneity inside each district as well as the integrity of

different communities should be maximized,
• The districts have to be compact, and the sub-regions of each district have to be

contiguous, and
• Sub-regions should be considered as indivisible political units and their boundaries

should be respected.

The problem can be formulated as an optimization problem in which a function that
quantifies the above factors is maximized. An example of this function is:

F(x)= αpop ƒpop(x)+ αcomp ƒcomp(x)+ αsoc ƒsoc(x)+ αint ƒint(x)+ αsim ƒsim(x)

Equation 2.7

Where x is a solution to the problem or the electoral districts, αi are user-specified
multipliers 0≤αi≤1, ƒpop, ƒcomp, ƒsoc, ƒint and ƒsim are functions that quantify the population
equality, the compactness of districts, the socio-economic homogeneity, the integrity of
different communities, and the similarity to existing districts, respectively. In the upcoming
chapters, we will show how to handle optimal multi-criteria assignment design problems
using offline optimization algorithms.

Planning problems need to be solved relatively faster compared to design problems, in a
time span from a few seconds to a few minutes. To find a solution during such a short period
of time, optimality is usually traded for speed gains. Examples of planning problems include
vehicle motion planning, emergency vehicle dispatching and routing, patient admission
scheduling, surgery scheduling and crew scheduling. Let’s consider ridesharing problem as an
example of planning problem. Ridesharing involves a fleet of pay-per-use vehicles and a set
of passengers with predefined pick up and drop off points (Figure 2.16). For such a set of
passengers and drivers, the dispatch service of the application will have to assign a set of
passengers in specific orders to each driver to maximize the total revenue earned by the
drivers and minimize the number of trips missed. The ridesharing problem is a multi-
objective constrained optimization problem. A non-comprehensive list of optimization goals
for ridesharing includes:

• Minimizing the total travel distance/time of drivers’ trips
• Minimizing the total travel time of passengers’ trips
• Maximizing the number of matched (served) requests
• Minimizing the cost for the drivers’ trips

45

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

• Minimizing the cost for the passengers’ trips
• Maximizing driver’s earning
• Minimizing passenger’s waiting time
• Minimizing the total number of drivers required

For the ride-sharing problem, both the search time and the quality of the solutions are
important. On many popular ridesharing platforms, dozens if not hundreds of users may be
simultaneously searching for rides at the same place in a given district. Overly costly and
time-consuming solutions will lead to higher operating costs (i.e., employing more drivers
than necessary, calling in drivers from other districts) as well as the potential for lost
business (bad user experiences may dissuade passengers from using the platform a second
time), and high driver turnover rate.

Figure 2.16 Ridesharing Problem. This planning problem needs to be solved in a shorter amount of time, as
delays could mean lost trips and a bad user experience.

In practice, the assignment of drivers to passengers goes well beyond distance between
passenger and driver, but may also include factors such as driver reliability, passenger
rating, vehicle type, as well as pickup location and destination location types. For example, a
customer going to the airport may request a larger vehicle to accommodate luggage. In the
upcoming chapters, we will discuss how to solve planning problems using different search
and optimization algorithms.

Control problems require very fast solutions in real-time. In most of the cases, this
means in a time span between a few milliseconds or less, to a few seconds. Vehicle

46

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

lateral/longitudinal motion control, surgical robot motion control, disruptions management
and ad hoc communication relaying are examples of control problems. Online optimization
algorithms are required to handle such kinds of problems. Optimization tasks in both
planning and control problems are often carried out repetitively – new orders will, for
instance, continuously arrive in a production facility and need to be scheduled to machines in
a way that minimizes the waiting time of all jobs. Communication replaying can be
considered as a control problem. Imagine a real-world situation where a swarm of
Unmanned Aerial Vehicles (UAVs) or Micro Aerial Vehicles (MAVs) is deployed to search
victims trapped on untraversable terrain after a natural disaster like an earthquake,
avalanche, tsunami, tornado, wildfire, etc. The mission consists of two phases: a search
phase and a relay phase. During the search phase, MAVs will conduct search according to the
deployment algorithm. When a target is found, the swarm of MAVs self-organizes to utilize
their range-limited communication capabilities for setting up an ad hoc communication relay
network between the victim and the base station as illustrated in Figure 2.17.

Figure 2.17 Communications Relaying Problem. A swarm of MAVs must form an ad hoc communication replay
between a base station and a trapped victim. The movement of MAVs is a control problem that must be solved
repeatedly, multiple times per second. In this case, speed is more important than accuracy, as minor errors
can be immediately corrected during the next cycle.

During the search space, MAVs can be deployed in such a way that maximizes the area
coverage. After detecting a victim, MAVs can be repositioned to maximize the victim's
visibility. The ad hoc communication relay network is then established based to maximize the
radio coverage in the swarm and to find the shortest path between the MAV that detected
the victim and the base station considering the following assumptions:

47

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

• MAVs are capable of situational awareness by combining data from three noise-prone
sensors: magnetic compass for direction, speedometer for speed, and altimeter for
altitude.

• MAVs are capable of communicating via a standard protocol such as IEEE 802.11b
with a limited range of 100m communication radius.

• MAVs are capable of relaying ground signals as well as control signals sent amongst
MAVs.

• MAVs have enough onboard power to sustain 30 minutes of continuous flight, at which
point it must return to the base to recharge. However, the sustainment of flight is
variable with respect to the amount of signaling completed during flight.

• MAVs are capable of quickly accelerating to a constant flight speed of 10m/s.
• MAVs are not capable of hovering and have a minimum turn radius of approximately

10m.

For control problems such as MAV repositioning, search time is of paramount importance.
As the MAVs cannot hover and thus must remain in constant motion, delayed decisions may
lead to unexpected situations, such as mid-air collisions or loss of signal. As instructions are
sent (or repeated) every few milliseconds, the MAV must be able to decide its next move
within that span of time. MAVs must account only for its current position, target position, and
velocity, but also consider obstacles, communications signal strength, as well as wind and
other environmental effects. Minor errors are acceptable, as they can be corrected in
subsequent searches. In the upcoming chapters, we will discuss how to solve control
problems.

This book will largely focus on complex, ill-structured problems that cannot be handled by
traditional mathematical optimization or derivative-based solvers, and will give examples of
different design, planning and control problems in various domains. Next, we’ll take a look at
how search and optimization algorithms are classified.

2.2 Search and Optimization Algorithm Classification
When we search, we try to examine different states to find a path from the start/initial state
to the goal state. Very often, an optimization algorithm searches for an optimum solution by
iteratively transforming a current state or a candidate solution into a new, hopefully better,
solution. Search algorithms can be classified based on the way the search space is explored.

• Local Search uses only local information of the search space surrounding the current
solution to produce new solutions. Since only local information is used, local search
algorithms (also known as local optimizers) locate local optima (which may or may
not be a global optima).

• Global Search uses more information about the search space to locate global optima.
In other words, global search algorithms explore the entire search space, while local
search algorithms only exploit neighborhoods.

Yet another classification includes deterministic and stochastic algorithms as illustrated in
Figure 2.18.

48

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.18 Deterministic vs. stochastic Algorithms. Deterministic algorithms follow a set procedure, and the
results are repeatable, while stochastic searches have elements of randomness built into the algorithms.

• Deterministic Algorithms follow a rigorous procedure in its path, and both the
values of its design variables and its functions are repeatable. For the same starting
point, they will follow the same path whether you run the program today or
tomorrow. Examples include, but are not limited to graphical methods, gradient and
Hessian based methods, penalty methods, gradient projection methods, and graph
search methods. Graph search methods can be further subdivided into blind search
methods (depth-first, breadth-first, Dijkstra) and informed search methods (hill
climbing, beam search, Best-first, A*, contraction hierarchies). Deterministic methods
are covered in Part-I of this book.

• Stochastic Algorithms explicitly use randomness in their parameters and/or
decision-making process. For example, genetic algorithms use some pseudo-random
numbers, resulting in individual paths that are not exactly repeatable. With stochastic
algorithms, the time taken to obtain an optimal solution cannot be accurately foretold.
Solutions do not always get better, and stochastic algorithms sometimes miss the
opportunity to find optimal solutions. This behavior can be advantageous, however, to
avoid becoming trapped in local optima. Examples of stochastic algorithms include
tabu search, simulated annealing, genetic algorithms, differential evolution
algorithms, particle swarm optimization, ant colony optimization, artificial bee colony,
firefly algorithm, etc. Most statistical machine learning algorithms are stochastic
because they make use of randomness during learning stage and they make

49

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

predictions during inference stage with a certain level of uncertainty. Moreover, some
machine learning models are like people unpredictable. Models trained using human
behavior-based data as independent variables are more likely unpredictable compared
to those trained using independent variables that strictly follow physics laws. For
example, human intent recognition model is less predictable compared to a model
that predict the stress-stain curve of a material. So, due to the uncertainty associated
with machine learning predictions, machine learning-based algorithms used in solving
optimization problems can be considered as stochastic methods. Stochastic algorithms
are covered in parts II, III, IV and V of this book.

Treasure Hunting Mission
The search for an optimal solution in a given search space can be likened to a treasure hunting mission. Imagine you
and a group of friends decided to visit an island looking for a pirates’ treasure.

All the areas on the island (except the active volcano area) correspond to the feasible search space of the

optimization problem. The treasure corresponds to the optimal solution to be found in this feasible space. You and
your friends are the “search agents” launched to search for the solution, each following different search approaches.
If you don’t have any information that can guide you while searching, you are following a blind/uninformed search
approach, which is usually inefficient and time consuming. If you know that the pirates used to hide the treasure in
elevated spots, you can then directly climb up to the steepest cliff and try to reach the highest peak. This scenario
corresponds to the classical hill-climbing technique (informed search). You can also follow a trial-and-error approach
looking for some hints and keep moving from one place to another plausible place until you find the treasure
(trajectory-based search).

If you do not want to take the risk of getting nothing and decide to collaborate and share information with your

friends instead of doing the treasure-hunting alone, you will be following a population-based search approach. While
working in a team, you may notice that some treasure hunters show better performance than others. In this case, only
good performing hunters can be kept, and new ones can be recruited to replace the less performing hunters. This is
akin to evolutionary algorithms such as genetic algorithms where the fittest hunters survive. Alternatively, you and
other friends can try to emulate the success of the outperforming hunters in each area of the treasure island without
getting rid of any team members and without recruiting new ones. This scenario uses the so-called swarm intelligence
and corresponds to the population-based optimization algorithms such as ant colony optimization and particle swarm
optimization.

You alone or with the help of your friends can build a mental model based on historical data of previous and

similar treasure hunting missions or train a reward predictor based on try-&-error interaction with the treasure island
(search space) taking the strength of the signal from the metal detector as a reward indicator. After a few iterations,
you will learn to maximize the reward from the predictor and improve your behavior until you fulfill the desired goal
and find the treasure. This corresponds to a machine learning-based approach to be explained in Part-4 of this book.

50

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

2.3 Heuristics and Meta-heuristics
The word heuristic comes from the Greek word heuriskein, which means “to find or discover”.
The past tense of this verb, eureka, was used by the Greek mathematician, physicist,
engineer, astronomer, and inventor Archimedes who was so excited with the discovery of the
Buoyancy Law that he jumped out of his bath shouting loudly “Eureka! Eureka!” (I have
found it! I have found it!). Heuristics (also known as “mental shortcuts” or “rules of thumb")
are solution strategies, seeking methods, or rules that can facilitate finding acceptable
(optimal or near-optimal) solutions to a complex problem in a reasonably practical time.
Despite the fact that heuristics can seek near-optimal solutions at a reasonable
computational cost, they cannot guarantee either feasibility or degree of optimality.

The term “metaheuristic” comes from the composition of two Greek words: meta which
means “beyond, on a higher level”, and heuristics. It's a term coined by Fred Glover,
inventor of Tabu Search (see Chapter 6) to refer to high-level strategies used to guide and
modify other heuristics to enhance their performance. Their goal is to efficiently explore the
search space in order to find optimal or near-optimal solutions. Metaheuristics may
incorporate mechanisms to achieve tradeoff between exploration/diversification and
exploitation/intensification of the search space to avoid getting trapped in confined areas of
the search space, at the same time finding the optimal or near-optimal solutions in
reasonable time. Finding this proper balance of diversification and intensification is a crucial
issue in heuristics as discussed in section 1.5. Metaheuristic algorithms are often global
optimizers that can be applied to different linear and non-linear optimization problems with
relatively few modifications to make them adapted to a specific problem. These algorithms
are often robust to problem size, problem instance and random variables.

Let’s assume that we have 6 objects with different sizes (2,4,3,6,5 and 1) and we need to
pack them into a minimum number of bins. Each bin has a limited size of 7 so the total size
of the object in the bin should be 7 or less. If we have n objects, there are n! possible ways
of packing the objects. The minimum number of bins we need is called lower bound. To
calculate this lower bound, you need to find the total number of object sizes
(2+4+3+6+5+1=21). Then the lower bound is 21/7=3 bins. This means that we need at
least 3 bins to pack these objects. Figure 2.19 illustrates two heuristics that can be used to
solve this bin packing problem.

First-fit heuristics packs the objects following their order without taking into consideration
the size. This results in the need for 4 bins that are not fully utilized as there are 7 spaces
left in 3 of these bins. If we apply first-fit decreasing heuristic, we will order the objects
based on their sizes and pack following this order. This heuristic allows us to pack all the
objects in only 3 fully utilized bins, which is the lower bound.

51

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.19 Handling bin packing problem using first-first and first-fit decreasing heuristics.

In the previous example, all the objects have the same height. However, in more
generalized version, let’s consider objects with different width and height as illustrated in
Figure 2.20.

Figure 2.20 Bin packing problem. Using heuristics allows us to solve the problem much faster than with a
brute-force approach. However, some heuristic functions may result in infeasible or suboptimal solutions and
they do not guarantee optimality.

52

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Applying heuristics such as smallest-first can allow us to load the container much faster,
as illustrated in Figure 2.20. Some heuristics do not guarantee optimality (i.e., heuristics like
largest-first gives a sub-optimal solution, as one object is left out). This can be considered as
infeasible solution if we need to load all the objects into the container or sub-optimal solution
if the objective is to load as many objects as we can.

To solve this problem in Python, let’s first define the objects, the containers, and what it
means to place an object inside of a container. For the sake of simplicity, Listing 2.7 avoids
custom classes and uses numpy arrays instead.

Listing 2.7 Bin Packing Problem

import numpy
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.colors import rgb2hex

width = 4 #A
height = 8 #A
container = numpy.full((height,width), 0) #A

objects = [[3,1],[3,3],[5,1],[4,2],[3,2]] #B

def fit(container, object, obj_index, rotate=True): #C
obj_w = object[0] #C
obj_h = object[1] #C
for i in range(height - obj_h + 1): #C

for j in range(width - obj_w + 1): #C
placement = container[i : i + obj_h, j : j + obj_w] #C
if placement.sum() == 0: #C

container[i : i + obj_h, j : j + obj_w] = obj_index #C
return True #C

return fit(container, object[::-1], obj_index, rotate=False) #C

#A Define the dimensions of the container and initialize the numpy array to 0s.
#B Represent objects to be placed as [width, height].
#C The fit function places objects into the container, either through direct placement, shifting, or rotation.

The fit function attempts to write a value to a 2D slice of the container, provided that there
are no values in that slice already (the sum is 0). If that fails, it shifts along the container
from top to bottom, left to right and tries again. As a last resort, it tries the same but with
the object rotated by 90 degrees.

The first heuristic prioritizes fitting by object area, descending:

def largest_first(container, objects):
excluded = []
assigned = []
objects.sort(key=lambda obj: obj[0] * obj[1], reverse=True) #A
for obj in objects:

if not fit(container, obj, objects.index(obj) + 1):
excluded.append(objects.index(obj) + 1) #B

else:
assigned.append(objects.index(obj) + 1)

if excluded: print(f"Items excluded: {len(excluded)}")
visualize(numpy.flip(container, axis=0), assigned) #C

53

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

#A Sort elements by area, descending
#B Some objects may not fit; we can keep track of them using a list
#C Visualize the filled container

The code for visualizing this result can be found in the full code files for Listing 2.7 available
on the GitHub repo of the book.

Figure 2.21 Bin Packing using the Largest-first heuristic. One object has been excluded, as it does not fit into
the remaining space.

The second heuristic sorts first by width, and then by total area, ascending:

def smallest_width_first(container, objects):
excluded = []
assigned = []
objects.sort(key=lambda obj: (obj[0], obj[0] * obj[1])) #A
for obj in objects:

if not fit(container, obj, objects.index(obj) + 1):
excluded.append(objects.index(obj) + 1)

else:
assigned.append(objects.index(obj) + 1)

if excluded: print(f"Items excluded: {len(excluded)}")
visualize(numpy.flip(container, axis=0), assigned) #B

#A Sort by width as primary key, and then by area, ascending
#B Visualize the solution

The smallest_width_first heuristic manages to successfully fit all the objects into the
container, as shown in Figure 2.22.

54

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.22 Bin Packing Problem using Smallest-first. All five objects have been successfully placed into the
container.

Different heuristic search strategies can be used to generate candidate solutions. These
strategies include, but are not limited to, search by repeated solution construction (e.g.,
graph search, ant colony optimization), search by repeated solution modification (e.g., tabu
search, simulated annealing, genetic algorithm, and particle swarm optimization) and search
by repeated solution recombination (e.g., genetic algorithm and differential evolution).

Considering the cargo bike load problem discussed in subsection 1.3.3 of the previous
chapter, we can order the items to be delivered based on their efficiency (profit per kg) as
shown in Table 2.2.

Table 2.2 Packages ranked by efficiency. The efficiency of a package is defined as the profit per
kilogram.

Item Weight (kg) Profit ($) Efficiency ($/kg)

10 7.8 20.9 2.68

7 4.9 10.3 2.10

4 10 12.12 1.21

1 14.6 14.54 1

8 16.5 13.5 0.82

6 9.6 7.4 0.77

2 20 15.26 0.76

9 8.77 6.6 0.75

3 8.5 5.8 0.68

5 13 8.2 0.63

55

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Following a repeated solution construction-based heuristic search strategy, we can start by
applying a greedy principle and pick items based on its efficiency until we reach the
maximum payload of the cargo bike (100 kg) as a hard constraint. The steps for this are
shown in Table 2.3.

Table 2.3 Repeated Solution Construction. Packages are added to the bike until the maximum
capacity is reached.

Step Item Add? Total Weight (kg) Total Profit ($)

1 10 Yes 7.8 20.9

2 7 Yes 12.7 31.2

3 4 Yes 22.7 43.32

4 1 Yes 37.3 57.86

5 8 Yes 53.8 71.36

6 6 Yes 63.4 78.76

7 2 Yes 83.4 94.02

8 9 Yes 92.17 100.62

9 3 No (100.67) -

10 5 No (113.67) -

We finally obtain the following subset of items: 10, 7, 4, 1, 8, 6, 2 and 9. This can also be
written as: (1,1,0,1,0,1,1,1,1,1), which when read from left to right shows that we include
items 1, 2, 4, 6, 7, 8, 9 and 10 (and exclude items 3 and 5). This results in a total profit of
$100.62 and weight of 92.17kg. We can generate more solutions by repeating the process of
adding objects starting from an empty container.

In the case of repeated solution modification-based heuristic search strategy, instead of
creating one or more solutions completely from scratch, one could also think about ways of
modifying an already available feasible solution. Consider the previous solution generated for
the cargo-bike problem: (1,1,0,1,0,1,1,1,1,1). We know that this feasible solution is not
optimal, but how can we improve it? This can be achieved for instance by removing item 9
from the cargo bike and adding item 5. This process of removing and adding results in a new
solution: (1,1,0,1,1,1,1,1,0,1) with a total profit of $102.22 and a weight of 96.4 kg.

Following search by repeated solution recombination, existing solutions are combined as
a way to generate new solutions to progress in the search space. Suppose the following two
solutions are given:

S1= (1,1,1,1,1,0,0,1,0,1) with weight 75.8 kg. and a profit of $75.78 and
S2= (0,1,0,1,1,0,1,1,1,1) with weight 80.97 kg and a profit of $86.88.

56

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 2.23 Repeated solution recombination. Taking the first two elements of S1 and adding it to the last
eight elements of S2 yields a new, better solution.

As illustrated in Figure 2.23, to get a new solution we can take the configuration of the
first two items of S1 and the last eight items of S2. This means that we include items 1, 2, 4,
5,7, 8, 9 and 10 in the new solution and exclude items 3 and 6. This yields a new solution:
S3= (1,1,0,1,1,0,1,1,1,1) with a weight of 95.57 kg and a higher profit of $101.42.

2.4 Nature-inspired Algorithms
Nature is the ultimate source of inspiration. Problems in nature are usually ill-structured,
dynamic, partially observable, non-linear, multimodal, multi-objectives with hard and soft
constraints and with no or limited access to global information. Nature-inspired algorithms
are computational models that mimic or reverse engineer the intelligent behaviors observed
in nature. Examples include molecular dynamics, cooperative foraging, division of labor, self-
replication, immunity, biological evolution, learning, flocking, schooling, and self-
organization, just to name just a few.

Molecular dynamics (the science of simulating the motions of a system of particles
applies) and thermal annealing inspired scientists to create optimization algorithm called
simulated annealing to be discussed in chapter 5 of this book. Evolutionary computation
algorithms such as Genetic Algorithm (GA), Genetic Programming (GP), Evolutionary
Programming (EP), Evolutionary Strategies (ES), Differential Evolution (DE), Cultural
Algorithms (CA) and Co-evolution (CoE) are created by inspiration from evolutionary biology
(the study of the evolutionary processes) and biological evolution. Part-III of the books
covered a number of evolutionary computing algorithms.

Ethology (the study of animal behavior) is the main source of inspiration of swarm
intelligence algorithms such as Particle Swarm Optimization (PSO), Ant Colony Optimization
(ACO), Artificial bee colony (ABC), Bat algorithm (BA), Social Spider Optimization (SSO),
Firefly algorithm (FA), Butterfly Optimization Algorithm (BOA), Dragonfly Algorithm (DA),
Krill Herd (KH), Shuffled Frog Leaping Algorithm (SFLA), Fish School Search (FSS), Dolphin

57

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Partner Optimization (DPO), Dolphin Swarm Optimization Algorithm (DSOA), Cat Swarm
Optimization (CSO), Monkey Search Lion Optimization Algorithm (LOA), Cuckoo Search (CS),
Cuckoo Optimization Algorithm (COA), Wolf Search Algorithm (WSA) and Grey Wolf
Optimizer (GWO). Swarm intelligence-based search and optimization algorithms are covered
in Part-IV of the book.

Neural networks are simplified brain models that can be used to solve search and
optimization problem as described in Part-V of the book. Tabu Search explained in Chapter 6
is based on evolving memory (adaptive memory and responsive exploration) which is studied
in behavioral psychology (the science of behavior and mind). Reinforcement learning,
another branch of machine learning inspired by behaviorist psychology, is used to solve
search and optimization problem as discussed in Part-V.

Other nature-inspired search and optimization algorithms include, but are not limited to,
Bacterial foraging optimization algorithm (BFO), Bacterial Swarming Algorithm (BSA),
Biogeography-based optimization (BBO), Invasive Weed Optimization (IWO), Flower
Pollination Algorithm (FPA), Forest Optimization Algorithm (FOA), Water Flow-like Algorithm
(WFA), Water Cycle Algorithm (WCA), Brainstorm Optimization Algorithm (BSO), Stochastic
diffusion search (SDS), Alliance Algorithm (AA) , Black-Hole algorithm (BH), Black Hole
Mechanics Optimization (BHMO), Adaptive Black Hole Algorithm, Improved Black Hole
algorithm (IBH), Levy Flight Black Hole (LBH), Multiple population levy black hole (MLBH),
Spiral Galaxy-Based Search Algorithm (GbSA), Galaxy-based Search Algorithm (GSA), Big-
Bang Big-Crunch (BBBC), Ray Optimization (RO), Quantum Annealing (QA), Quantum-
Inspired Genetic Algorithm (QGA), Quantum-Inspired Evolutionary Algorithm (QEA),
Quantum Swarm Evolutionary Algorithm (QSE) and Quantum-Inspired Particle Swarm
Optimization (QPSO). For a comprehensive list of metaheuristic algorithms, the reader is
referred to [8]. This is really a long list of algorithms to be covered in one book. There are a
lot of similarities between these algorithms though. The following algorithms and their
variants will be covered in this book:

• Graph Search Methods (blind/uninformed search and informed search algorithms)
• Simulated Annealing (SA)
• Tab Search (TS)
• Genetic algorithm (GA)
• Particle Swarm Optimization (PSO)
• Ant Colony Optimization (ACO)
• Graph Neural Networks (GNN)
• Attention Mechanisms
• (Deep) Reinforcement learning

Throughout this book, several real-world problems will be discussed to show how to apply
these algorithms in real life applications.

58

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

2.5 Exercises
1. MCQs: Choose the correct answer for each of the following questions.

1.1. _________ is the class of decision problems that can be solved by non-deterministic
polynomial algorithms and whose solutions are hard to find but easy to verify.

a. P

b. NP

c. co-NP

d. NP-Complete

e. NP-hard

1.2. Which of the following benchmark/toy problems is not NP complete?

a. Bin packing

b. Knapsack problem

c. Minimum spanning tree

d. Hamiltonian circuit

e. Vertex cover problem

1.3. _________ is the class of decision problems whose “No” answer can be verified in
polynomial time.

a. P

b. NP

c. co-NP

d. NP-Complete

e. NP-hard

1.4. Which of the following real-world problems is NP-hard?

a. Image matching

b. Single Machine Scheduling

c. Combinational Equivalence Checking

d. Capacitated Vehicle Routing Problem (CVRP)

e. Container/truck loading

1.5. _________ is a theory that focuses on classifying computational problems according to
their resource usage, and relating these classes to each other.

a. Optimization complexity

b. Time complexity

c. Computational complexity

59

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

d. Operation Research

e. Decision complexity

2. Describe the following search and optimization problems in terms of decision variable
(univariate, bivariate, multivariate); objective functions (mono-objective, multi-objective,
no objective function or constraint-satisfaction problem), constraints (hard constraints,
soft constraints, both hard and soft constraints, unconstrained); linearity (Linear
Programming (LP), Quadratic Programming (QP), Non-linear Programming (NLP)).

a) Minimize y+cos(x2), sin(x)-xy and 1/(x+y)2

b) Maximize 2-exp(1-x3) subject to -3≤x<10

c) Maximize 3*x-y/5 subject to -2≤x<3, 0<y≤3 and x+y=4

d) The knapsack problem is an example of combinatorial problem whose solution takes
the form of a combination where the order doesn’t matter. Let’s assume a number of
items, each with a utility and a weight to be packed into a bag of limited capacity as
illustrated in Figure 2.24.

Figure 2.24. Each item has a utility and a weight, and we want to maximize the utility of the contents of the
knapsack. The problem is constrained by the capacity of the bag.

e) The school districting problem consists in determining the groups of students
attending each school of a school board located over a given territory in a way that
maximizes contiguity of school sectors taking into consideration a number of hard
constraints such as school capacity for each grade and class capacity. Walkability and
keeping students in the same school from year to year are considered as a soft
constraint in this problem.

3. For the following optimization problem, state the type of the problem based on the
permissible time to solve the problem and the expected quality of the solutions (design,
planning or control problem). Suggest the appropriate algorithm required to handle the
stated optimization problem (offline versus offline).

a) Finding the optimal wind park design where number and types of wind turbines need
to be chosen and placed considering the given wind conditions and wind park area.

60

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

b) Finding multiple vehicle routes starting and ending at different depots such that all
customer demands are fulfilled.

c) Creating a fitness assistant for runners and cyclists that seamlessly automates the
multiple tasks involved in planning fitness activities. The planner assesses an athlete’s
current fitness level and individual training goals in order to create a fitness plan. The
planner also generates and recommends geographical routes that are both popular
and customized to the user’s goals, level, and scheduled time, thus reducing the
challenges involved in the planning stage. The suggested fitness plans are
continuously adapting based on each user’s progress within their fitness goals, thus
keeping the athlete challenged and motivated.

d) Given demand and revenues for every origin-destination pair over time-of-the-day
and day-of-the-week, route information distances, times, operating restrictions,
aircraft characteristics and operating costs and operational and managerial
constraints. We need to find a set of flights with departure and arrival times and
aircraft assignment which maximize profits.

e) Finding the optimal schedule for delivery cargo-bikes, semi- and fully autonomous
last-mile delivery trucks, self-driving delivery robots/droids, delivery drones, e-
Palette, postal delivery, driverless deliveries, and privately owned AV to maximize
customer satisfaction and minimize delivery cost taking into consideration the
capacity of the vehicle, type of delivery service (couple of days delivery, next-day
delivery, or same-day delivery with some extra surcharge), delivery time, drop-off
locations, and so on.

f) Planning on-demand responsive transit during pandemics to support the
transportation of essential workers and essential trips to pharmacies and grocery
stores for the general public especially the elderly taking into consideration store
operating hours, capacity, and online delivery options.

g) Finding a collision-free path for a vehicle from a start position to a given goal position,
amid a collection of obstacles in such a way that minimizes estimated time of arrival
and the consumed energy.

h) Planning a trip itinerary is perhaps the most challenging and time-consuming task
when it comes to traveling. It is always ideal to optimize the visitor’s time by visiting
the best attractions available; however, choosing from a large pool of highly rated
sites significantly makes the decision-making process more difficult. This problem can
be addressed by the development of a trip planner that minimizes total commute
time, maximizes the average ratings of attractions contained in a solution, and
maximizes the duration spent at each of these attractions and effectively minimizes
idle time when someone visits a city.

i) Finding school bus loading patterns/schedules such that the number of routes is
minimized, the total distance traveled by all buses is kept at minimum, no bus is
overloaded, and the time required to traverse any route does not exceed a maximum
allowed policy.

61

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

j) Minimizing deadheading for shared mobility companies (minimize the miles driven
with no passenger) or for delivery services providers (minimize the models driven
without cargo)

k) Planning/replanning of transport corridors and city streets to accommodate more
pedestrians, cyclists, and riders in shared transportation and less cars

l) Finding the optimal placement of for bus stops, traffic sensors, micro mobility
stations, EV charging stations, air taxi takeoff and landing locations, walking routes
and cycling lanes for active mobility.

4. Modify Listing 2.6 to define the animal feed mix problem data using Python dictionaries or
to read the problem data from a csv file.

2.6 Summary
• Search and optimization problems can be classified based on number of decision

variables (univariate, multivariate problems), type of decision variables (continuous,
discrete, mixed-integer), number of objective functions (mono-objective, multi-
objective, constraint-satisfaction problems), landscape of objective function
(unimodal, multimodal, deceptive), number of constraints (unconstrained and
constrained problems) and linearity of objective functions and constraints (linear
problems and nonlinear problems).

• Based on expected quality of solutions and the permissible search time to find the
solutions, optimization problems can also be categorized into design
problems/strategic functions, planning/tactical problems, and control
problems/operational functions.

• Search and optimization algorithms can be classified based on the way the search
space is explored (local versus global search), corresponding optimization speeds
(online versus offline search/optimization), determinism of the algorithm
(deterministic versus stochastic).

• Heuristics (also known as “mental shortcuts” or “rules of thumb") facilitate finding
acceptable (optimal or near-optimal) solutions to a complex problem in a reasonably
practical time.

• Metaheuristics are high-level strategies used to guide and modify other heuristics to
enhance their performance.

• Nature-inspired algorithms are computational models that mimic or reverse engineer
the intelligent behaviors observed in nature to solve complex ill-structured problems.

[1] M. Held and R. M. Karp, "A dynamic programming approach to sequencing problems,"
Journal of the Society for Industrial and Applied mathematics, 10(1), 196-210, 1962.

[2] M. T. Goodrich and R. Tamassia, “The christofides approximation algorithm,” Algorithm
Design and Applications. Wiley, 513-514, 2015.

[3] Damavandi, N., & Safavi-Naeini, S. (2005). A hybrid evolutionary programming method
for circuit optimization. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(5),
902-910.

62

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

[4] Paul A. Jensen. Operations Research Models and Methods. University of Texas at Austin,
2004.

[5] Alaa Khamis and Mohammed Ashraf, "A differential evolution-based approach to design
all-terrain ground vehicle wheels," 2017 IEEE International Conference on Autonomous Robot
Systems and Competitions (ICARSC). IEEE, 2017.

[6] K. Veselić, "Finite catenary and the method of Lagrange," SIAM review 37.2 (1995): 224-
229.

[7] J. Kalcsics and Z. Ríos-Mercado Roger, “Districting problems,” Location science. Springer,
Cham, 2019. 705-743.

[8] S. M. Almufti, “Historical survey on metaheuristics algorithms,” International Journal of
Scientific World, 7(1), 1, 2019.

63

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Blind Search Algorithms

This chapter covers

• Applying different graph types for practical use
• Graph search algorithms
• Using graph traversal algorithms to explore the structure of a tree or a graph and to find a

path between two nodes
• Using blind search algorithms to find the shortest path between two nodes in a graph
• Solving a real-world routing problem using graph search algorithms

You have already been introduced to deterministic and stochastic algorithms in chapter 2. In
this chapter, we will focus on deterministic algorithms, specifically blind search algorithms,
and their applications in exploring tree or graph structures and finding the shortest path
between nodes. Using these algorithms, you can explore a maze from an initial state to a
goal state, solve N-puzzle problems, figure out the distance between you and any other
person on a social media graph, search a family tree to determine the exact relationship
between any two people who are related or find the shortest path between any origin (e.g.,
your home) and any destination (e.g., your workplace or any other point of interest). Blind
search algorithms are important as they are often more efficient and reasonable to use when
dealing with simple, well-defined problems.

3.1 Introduction to Graphs
A graph is a non-linear data structure that consists of three sets: vertices (sometimes called
nodes), edges (sometimes called links), and a set representing relations between vertices
and edges. A graph can be represented mathematically by G where G=(V,E). For a graph G,
V represents the set of nodes or vertices, and E represents the set of edges or links. Various
attributes can also be added as components to the edge tuple, such as edge length, capacity,

64

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

or any other unique properties (i.e., road material). Graphs can be classified into undirected,
directed, multi-graph, acyclic, and hypergraphs.

An undirected graph is one where a set of nodes are connected using bidirectional edges.
This means that the order of two connected nodes is not essential. A tree, as a specialized
case of a graph, is a connected graph with no circuits and no self-loops. In graph theory, a
self-loop, also called a circuit, is an edge in a graph that connects a vertex/node to itself. In
other words, it is an edge that has the same starting vertex and ending vertex. Trees are
usually considered as undirected graphs. networkx is a commonly used Python library for
creating, manipulating, and studying the structure, dynamics, and functions of graphs and
complex networks (see Appendix A). The following example shows how to use networkx to
create an undirected graph.

Listing 3.1 Creating an undirected graph using networkx

import networkx as nx

graph = nx.Graph()

nodes = list(range(5)) #A
graph.add_nodes_from(nodes)

edges = [(0,1),(1,2), (1,3), (2,3),(3,4)] #B
graph.add_edges_from(edges)

nx.draw_networkx(graph, font_color="white")

#A Generate a list of nodes from 0 to 4
#B Define a list of edges

The output of the code is shown in Figure 3.1.

Figure 3.1 Undirected graph.

A directed graph is a graph in which a set of nodes are connected using directional edges.
Directed graphs have many applications. For example, directed graphs are used to represent
flow constraints (e.g., one-way streets) relations (e.g., causal relationships) and

65

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

dependencies (e.g., some tasks depend on the completion of other tasks). This example
shows how to use networkx to create a directed graph.

Listing 3.2 Creating a directed graph using networkx

import networkx as nx

graph = nx.DiGraph() #A
nodes = list(range(5))
edges = [(0,1),(1,2), (1,3), (2,3),(3,4)]
graph.add_edges_from(edges)
graph.add_nodes_from(nodes)
nx.draw_networkx(graph, font_color="white")

#A DiGraph allows for directed edges

Code output is shown in Figure 3.2. Note the arrows indicating edge direction.

Figure 3.2 A directed graph.

A multi-graph is a graph in which multiple edges may connect the same pair of vertices.
These edges are called parallel edges. Multi-graphs can be used to represent complex
relationships between nodes such as multiple parallel roads between two locations in traffic
routing, multiple capacities and demands in resource allocation problems and multiple
relationships between individuals in social networks to name just a few. Unfortunately,
networkx is not particularly good at visualizing multi-graphs with parallel edges. This
example shows how to use networkx in conjunction with matplotlib to create a multi-graph.

66

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Listing 3.3 Creating a multi-graph using networkx

import networkx as nx
import matplotlib.pyplot as plt

graph = nx.MultiGraph()
nodes = list(range(5))
edges = [(0,1),(0,1),(4,3),(1,2), (1,3), (2,3),(3,4),(0,1)]
graph.add_nodes_from(nodes)
graph.add_edges_from(edges)

pos = nx.kamada_kawai_layout(graph) #A
ax = plt.gca()

for e in graph.edges: #B
ax.annotate("",xy=pos[e[0]], xycoords='data', xytext=pos[e[1]], textcoords='data',
arrowprops=dict(arrowstyle="-", connectionstyle=f"arc3, rad={0.3*e[2]}"),zorder=1)
#B

nx.draw_networkx_nodes(graph, pos) #C
nx.draw_networkx_labels(graph,pos, font_color='w') #C

plt.show()

#A Node positions are generated using Kamada-Kawai path-length cost-function.
#B Draw each edge one at a time, modifying the curvature of the edge based on its index (i.e. the 2nd edge between

nodes 0 and 1)
#C Draw nodes and node labels

It is worth noting that kamada_kawai_layout attempts to position nodes on the space so that
the geometric (Euclidean) distance between them is as close as possible to the graph-
theoretic (path) distance between them. Figure 3.3 shows an example of a multi-graph
generated by the code.

Figure 3.3 Example of a multi-graph. Notice the three parallel edges connecting nodes 0 and 1, as well as the
two edges connecting nodes 3 and 4.

67

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

As the name implies, an acyclic graph is a graph without cycles. A cycle in a graph is a path
that starts and ends at the same node and traverses through at least one other node. In task
scheduling, acyclic graphs can be used to represent the relationships between tasks where
each node represents a task and each directed edge represents a precedence constraint. This
constraint means that the task represented by the end node cannot start until the task
represented by the start node is completed. Assembly line balancing problem is discussed in
Chapter 6 as an example of scheduling problems. Listing 3.4 shows how to use networkx to
create and verify an acyclic graph.

Listing 3.4 Creating an acyclic graph using networkx

import networkx as nx

graph = nx.DiGraph()
nodes = list(range(5))
edges = [(0,1), (0,2),(4,1),(1,2),(2,3)]
graph.add_nodes_from(nodes)
graph.add_edges_from(edges)
nx.draw_kamada_kawai(graph, with_labels=True, font_color='w')

nx.is_directed_acyclic_graph(graph) #A

#A Check if the graph is acyclic

An example of an acyclic graph is shown in Figure 3.4

Figure 3.4 An acyclic graph. There is no path that cycles back to any starting node.

A hypergraph is a generalization of a graph in which the generalized edges (called
hyperedges) can join any number of nodes. Hypergraphs are used to represent complex
networks to capture higher-order many-to-many relationships in several domains such as
social media, information systems, computational geometry, computational pathology, and
neuroscience. For example, a group of people working on a project can be represented by a

68

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

hypergraph. Each person is represented by a node and the project is represented by a
hyperedge. The hyperedge connects all the people working on the project, regardless of how
many people are working on it. The hyperedge can also contain other attributes such as the
project's name, the start and end date, the budget, etc.

The following example shows how to use HyperNetX (HNX) to create a hypergraph. HNX
is a Python library that enables modeling the entities and relationships found in complex
networks as hypergraphs.

Listing 3.5 Creating a hypergraph using hypernetx

import hypernetx as hnx

data = {
0: ("A","B","G"),
1: ("A","C","D","E","F"),
2: ("B","F"),
3: ("A","B","D","E","F","G")

} #A
H = hnx.Hypergraph(data) #B
hnx.draw(H) #C

#A The data for the hypergraph comes as a key-value pair of hyperedge name-hyperedge node groups
#B creates a hypergraph for the provided data
#C visualize the hypergraph

Figure 3.5 shows an example of a hypergraph.

Figure 3.5 An example of a hypergraph. Hyperedges can connect more than two nodes, such as hyperedge 0,
which links nodes A, B, and G.

69

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Graphs can also be weighted or unweighted. In a weighted graph, a weight is assigned to
each edge. For example, in the case of road networks, the edges can be weighted, meaning
that they can have a value that represents the cost of traversing the road. This value can be
distance, time, or any other metric. In telecommunications networks, the weight might
represent the cost of utilizing that edge or the strength of the connections between the
communication devices. Listing 3.6 shows how to create and visualize a weighted graph
between telecommunication devices. The weights in this example represent the speed of
connected between the devices in Mbps.

Listing 3.6 Creating a weighted graph using networkx

import networkx as nx
import matplotlib.pyplot as plt

G = nx.Graph() #A

G.add_node("Device1", pos=(0,0)) #B
G.add_node("Device2", pos=(0,2)) #B
G.add_node("Device3", pos=(2,0)) #B
G.add_node("Device4", pos=(2,2)) #B

G.add_weighted_edges_from([("Device1", "Device2", 45.69),
("Device1", "Device3", 56.34),
("Device2", "Device4", 18.5)]) #C

pos = nx.get_node_attributes(G, 'pos') #D
nx.draw(G, pos, with_labels=True) #E
nx.draw_networkx_edge_labels(G, pos, edge_labels={(u, v): d['weight'] for u, v, d in

G.edges(data=True)}) #E
plt.show() #E

#A Create an empty weighted graph
#B Add nodes to the graph (representing devices)
#C Add weighted edges to the graph (representing connections)
#D Get node position attributes from graph
#E Draw the graph

Running this code generated the weighted graph shown in Figure 3.6.

70

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.6 Example of a weighted graph.

Graphs are everywhere. Search engines like Google see the internet as a giant graph where
each web page is a node, and two pages are joined by an edge if there is a link from one
page to the other. A social media platform like Facebook treats each user profile as a node
on a social graph, and two nodes are said to be connected if they are each other's friends or
have social ties. The concept of "following" a user, such as on a platform like Twitter, can be
represented by a directional edge, where user A can follow user B, but the reverse is not
necessarily true. Table 3.1 shows the meanings of nodes and edges on different platforms
like Facebook, Twitter, LinkedIn, Instagram and TikTok.

71

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Table 3.1 Examples of graphs in the context of social media

Social Media Platform Nodes Edges Type of Edge

Facebook Users, groups, posts
and events

Friendship, group
membership,
messages, creation of
posts and reactions on
posts

Undirected: like or react or
a comment
Directed: friend request

Twitter Users, groups,
unregistered persons
and posts

Following, group
membership,
messages, creation of
posts and reactions on
posts

Undirected: a mention or a
retweet
Directed: following
relationship (when you
follow a person, he/she
does not automatically
follow you back)

LinkedIn Users, groups,
unregistered persons,
posts, skills and jobs

Connections, group
membership, posting,
reactions on posts,
messages,
endorsement,
invitations,
recommending job

Undirected: an
endorsement or a
recommendation
Directed: connection

Instagram Users, comment,
container for publishing
a post, hashtag, media
(e.g., photo, video,
story, or album), page
(Facebook page)

Following, occurrences
of two hashtags in the
same post.

Undirected: like or a
comment
Directed: follow relationship

TikTok Users, hashtags,
locations, and
keywords

Relationships between
users such as following,
liking, and commenting

Undirected: like or a
comment
Directed: follow relationship

In a road network, graph nodes represent landmarks such as intersections and points of
interest (POI), and the edges represent the roads. In road network graph, most of the edges
are directed, meaning that they have a specific direction, and they may have additional
information such as length, speed limit, capacity, etc. Each edge is a two-endpoint
connection between two nodes, where the direction of the edge represents the direction of
traffic flow. A route is a sequence of edges connecting the origin node to the destination
node. osmnx is a Python library developed to simplify the retrieving and manipulating of data

72

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

from OpenStreetMap (OSM). OpenStreetMap is a crowdsourced geographic database of the
world (see Appendix B). osmnx offers the ability to download filtered data from OSM and
returns the network as a networkx graph data structure. It can also convert a text descriptor
of a place into a networkx graph (see Appendix A). Let’s use the University of Toronto as an
example as you can see in Lisitng 3.7.

Listing 3.7 University of Toronto example

import osmnx

place_name = "University of Toronto"

graph = osmnx.graph_from_address(place_name) #A
osmnx.plot_graph(graph,figsize=(10,10))

#A graph_from_address can also take city names and mailing addresses as input

Figure 3.7 shows open street map of the area around St. George Campus of University of
Toronto.

Figure 3.7 St. George Campus - University of Toronto

The graph shows the edges and nodes of the road network surrounding the University of
Toronto’s St. George campus in downtown Toronto. While it may look visually interesting, it
lacks the context of surrounding geographic features. Let’s use a folium map (see Appendix
A) as a base layer to provide street names, neighborhood names, and even building
footprints.

73

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://www.openstreetmap.org/

©Manning Publications Co. To comment go to liveBook

graph = osmnx.graph_from_address(place_name)
osmnx.folium.plot_graph_folium(graph)

Figure 3.8 shows road network surrounding the University of Toronto’s St. George campus.

Figure 3.8 Road network around St. George Campus - University of Toronto

Suppose you want to get from one location to another on this campus. For example, starting
at the King Edward VII Equestrian Statue near Queen’s Park, you need to cross the campus
to attend a lecture at the Bahen Centre for Information Technology. Later in this chapter,
you will see how you can calculate the shortest path between these two points. For now, let’s
just plot these two locations on the map using folium (see Appendix A):

Listing 3.8 plot with folium

import folium

center=(43.662643, -79.395689) #A
source_point = (43.664527, -79.392442) #B
destination_point = (43.659659, -79.397669) #C

m = folium.Map(location=center, zoom_start=15) #D
folium.Marker(location=source_point,icon=folium.Icon(color='red',icon='camera',

prefix='fa')).add_to(m) #E
folium.Marker(location=center,icon=folium.Icon(color='blue',icon='graduation-cap',

prefix='fa')).add_to(m) #E
folium.Marker(location=destination_point,icon=folium.Icon(color='green',icon='university',

prefix='fa')).add_to(m) #E

m

#A The GPS coordinates (latitude and longitude) of University of Toronto
#B The GPS coordinates of the Equestrian Statue as a source point
#C The GPS coordinates of the Bahen Centre for Information Technology as destination
#D Create a map centered around a specified point
#E Add markers with icons

74

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.9 shows folium map and markers.

Figure 3.9 Visualizing points of interest using folium markers

The actual output of the code is interactive, and allows for features such as zooming,
panning, and even layer filtering (when enabled). Appendix A provides more details about
map visualization libraries in Python.

3.2 Graph Search
As previously mentioned in Chapter 2, search algorithms can be broadly classified into
deterministic and stochastic algorithms. In deterministic search, the search algorithm follows
a rigorous procedure and its path and values of both design variables and the functions are
repeatable. The algorithm will follow the same path for the same starting point whether you
run the program, whether it's today or ten years in the future. On the other hand, in
stochastic search, the algorithm always has some randomness, and the solution is not
exactly repeatable. This means that each time, you run the algorithm, you may get slightly
different results.

Based on the availability of information about the search space or domain knowledge
(e.g., the distance from the current state to the goal), deterministic search algorithms can be
broadly classified into blind (or uninformed) and informed search, as illustrated in Figure
3.10. Some of these algorithms, such as Kruskal’s MST algorithm, will be covered in later
chapters.

75

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.10 Graph Search Methods.

This chapter focuses on blind search algorithms. Blind search (also known as uninformed
search) is a search approach where no information about the search space is needed. The
blind search terminates once the first solution is found. However, the search space may
contain numerous valid but non-optimal solutions. Thus, a blind search may return a solution
that meets all the requirements but does so in a non-optimal way. An optimal solution can be
found by running the blind search following an exhaustive search or brute-force strategy to
find all the feasible solutions, which can then be compared to select the best one. This is
similar to applying British Museum algorithm, which follows the human problem-solving
strategy by checking all possibilities one by one. Given the fact that blind search treats every
node in the graph/tree equally, this search approach is often referred to as uniform search.

Breadth-first Search (BFS), Depth-first Search (DFS), Depth-limited Search (DLS),
Iterative Deepening Search (IDS) or Iterative Deepening Depth First Search (IDDFS),
Dijkstra algorithm, Uniform-cost Search (UCS), and Bidirectional Search (BS) are examples
of blind search algorithm. BFS is a graph traversal algorithm that builds the search tree by
levels.

• DFS is a graph traversal algorithm that first explores nodes going through one
adjacent of the root, then next adjacent until it finds a solution or until it reaches a
dead end.

• DLS is a DFS with a predetermined depth limit.
• IDDFS combines DFS's space efficiency and BFS's fast search by incrementing the

depth limit until the goal is reached.
• Dijkstra's algorithm solves the single-source shortest path problem for a weighted

graph with non-negative edge costs.
• UCS is a variant of Dijkstra's algorithm that uses the lowest cumulative cost to find a

path from the source to the destination. It is equivalent to the BFS algorithm if the
path cost of all edges is the same.

76

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

• BS is a combination of forward and backward search. It searches forward from the
start and backward from the goal simultaneously.

The following sections discuss graph traversal algorithms and shortest path algorithms,
focusing on BFS, DFS, Dijkstra algorithm, UCS, and BS as examples of blind search
approaches.

3.3 Graph Traversal Algorithms
Graph traversal is the process of exploring the structure of a tree or a graph by visiting the
nodes following a specific, well-defined rule. This category of graph search algorithms only
seeks to find a path between two nodes without optimizing for the length of the final route.

3.3.1 Breadth-first Search (BFS)
BFS is an algorithm where the traversal starts at a specified node (i.e., the source or starting
node) and continues along with the graph layerwise, thus exploring all of the current node’s
neighboring nodes (those directly connected to the current node). The algorithm then
searches the next-level neighbor nodes if a result is not found. This algorithm finds a solution
if one exists, assuming that a finite number of successors/branches always follow any node.
Algorithm 3.1 shows the BFS steps.

Algorithm 3.1 Breadth-first Search (BFS) Algorithm

BREADTH-FIRST-SEARCH(source,destination) return a route

queue ← a FIFO initialized with source node
explored ← empty
found ← False

while queue is not empty and found is False do
node ← queue.dequeue()
add node to explored
for child in node.expand() do
if child is not in explored and child is not in queue then

if child is destination then
route ← child route()
found ← True

add child to queue
return route

BFS uses the queue as a data structure to maintain the states to be explored. A queue is a
First-In-First-Out (FIFO) data structure, where the node that has been sitting on the queue
for the longest time is the next node to be expanded. BFS dequeue a state off the queue,
then enqueue its successors back on the queue.

Let's consider the 8-puzzle (sometimes called sliding-block, tile-puzzle) problem. The
puzzle consists of an area divided into a 3x3 grid. Tiles are numbered 1 through 8, except for
an empty (or blank) tile. The blank tile can be moved by swapping its position with any tile
directly adjacent (up, down, left, right). The puzzle's goal is to place the tiles so that they are
arranged in order. Variations of the puzzle allow the empty tile to end up either at the first or

77

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

last position. This problem is an example of a well-structured problem (WSP) with the
following well-defined components:

• States: location of blank and location of the eight tiles
• Operator (successor): blank moves left, right, up, and down
• Goal: match the state given by the Goal state
• Solution/Path: sequence through state space
• Stopping Criteria: ordered puzzle (reached Goal state)
• Evaluation Criteria: number of steps or path cost (the path length).

Figure 3.11 illustrates the BFS steps to solve the 8-puzzle problem and the search tree
traversal order. In this figure, the state represents the physical configuration of the 8-puzzle
and each node in the search tree is a data structure that includes information about parent,
children, depth and cost of path from initial state to this node. Level-1 nodes are generated
from left to right by moving the blank title left, up and right respectively. Moving forward,
level 2 nodes are generated by expanding the previously generated nodes in level 1 avoiding
the previously explored nodes. We keep repeating this procedure to traverse all the possible
nodes or until we hit the goal (the blue grid). The number of steps to reach the goal will
depend mainly on the initial state of the 8-puzzle board. The highlighted numbers show the
order of traverse. As you may notice, BFS progresses horizontally before we proceed
vertically.

Figure 3.11 Using BFS to solve 8-puzzle problem

78

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

The following example utilizes a generic BFS algorithm developed for this book, which can be
found in the search-optimization-tools python package (see Appendix A for installation
instructions). The algorithm takes a starting and goal state as inputs and returns a Solution
object. The Solution object contains the actual result and some performance metrics, such as
processing time, maximum space used, and the number of solution states explored. We also
import the State class and visualize function from the eight_puzzle_problem.py file
included in the code folder for this chapter available at the GitHub repo of the book. This file
helps manage some data structures and utility functions and allows us to reuse this
problem's structure later on with different algorithms.

Listing 3.9 Solving 8-puzzle problem using BFS

from optimization_algorithms_tools.algorithms.graph_search import BFS #A

init_state = [[1,4,2], [3,7,5], [6,0,8]]

goal_state = [[0,1,2], [3,4,5], [6,7,8]]

init_state = State(init_state) #B
goal_state = State(goal_state)

if not init_state.is_solvable(): #C
print(“This puzzle is not solvable.”)

else:

solution = BFS(init_state, goal_state)
print(f"Process time: {solution.time} s")
print(f"Space required: {solution.space} bytes")
print(f"Explored states: {solution.explored}")
visualize(solution.result) #D

#A The BFS algorithm used here is imported from a library called search-optimization-tools (see Appendix A for
installation instructions).

#B See State class in the complete listing
#C Some boards are not solvable
#D See visualization function in the complete listing

The following is an example solution, given the above inputs:

Process time: 0.015625 s
Space required: 624 bytes
Explored states: 7

Figure 3.12 shows the state changes following the BFS algorithm.

79

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.12 Step-by-step BFS solution using Python. BFS searches for a solution but does not consider
optimality.

To really understand how BFS works, let's consider a simple path planning problem. This
problem addresses finding a collision-free path for a mobile robot or an autonomous vehicle
from a start position to a given destination amidst a collection of obstacles.

• Step-1: Adding source node to the queue (Figure 3.13)

Figure 3.13 Solving path planning problem using BFS – Step 1

• Step-2: Exploring S node as E and SE nodes are obstructive (Figure 3.14)

80

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.14 Solving path planning problem using BFS – Step 2

• Step-3: Taking S out (First-In-First-Out) and exploring its neighboring nodes (S and
SE) as E is an obstructive node (Figure 3.15).

Figure 3.15 Solving path planning problem using BFS – Step 3

• Step-4: Taking S out (First-In-First-Out) and exploring its neighboring nodes (S and
SE) (Figure 3.16).

81

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.16 Solving path planning problem using BFS – Step 4

• Step-5: Taking SE out (First-In-First-Out) and exploring its neighboring nodes (E and
NE) (Figure 3.17).

Figure 3.17 Solving path planning problem using BFS – Step 5

• Step-6: The FIFO queue continues until the goal node is found (Figure 3.18).
Assuming the goal node is E, we can trace back up the tree to find the path from the
source node to the goal, which will be Start-S-SE-E.

82

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.18 Solving path planning problem using BFS – Final route

In BFS, every node generated must remain in memory. The number of nodes generated is at
most: O(bd), where b represents the maximum branching factor for each node (i.e., the
number of children the node has) and d is the depth one must expand to reach the goal. In
the previous example, with E as a goal node (b=2, d=3), the total number of traversed
nodes is 23=8, including the start node.

Aside from the ability to solve the problem at hand, algorithm efficiency is evaluated
based on run-time (time complexity), memory requirements, and the number of primitive
operations to solve the problem in the worst case. Examples of these primitive operations
include, but are not limited to, expression evaluation, variable value assignment, array
indexing, and method/function calls. Table 3.2 shows examples of algorithm complexities.

83

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Table 3.2 Algorithm complexity

Notation Name Effectiveness Description Examples

O(1) Constant Excellent Running time does not depend on
the input size. As the input size
grows, the number of operations
does not get impacted.

Variable declaration
Accessing an array
element
Retrieving information
from a hash-table lookup
Insertion and removal from
a queue
pushing and popping on a
stack

O(log n) Logarithmic High As the input size grows, the
number of operations grows very
slowly. Whenever n doubles or
tripled, etc., the running time
increases by a constant.

Binary search

O(nc),
0<c<1

Fractional
power/
sublinear

High As the input size grows, the
number of operations is replicated
in multiplication

Testing Graph
Connectedness
Approximating the number
of connected components
in graph
Approximating the weight
of the minimum spanning
tree (MST)

O(n) Linear Medium As the input size grows, the
number of operations increases
linearly. Whenever n doubles, the
running time doubles.

Print out an array’s
elements
Simple search
Kadane’s Algorithm

O(n log
n)=O(log
n!)

Linearithmi
c, loglinear
or
quasilinear

Medium

As the input size grows, the
number of operations increases
slightly faster than linear.

Merge sort
Heapsort
Timsort

O(nc), c>1 Polynomial
or algebraic

Low As the input size grows, the
number of operations increases as
the exponent increases

Minimum spanning tree
(MST)
Matrix determinant

84

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

O(n2) Quadratic Low Whenever n doubles, the running
time increases fourfold. Quadratic
function is practical for use only on
small problems

Selection sort
Bubble sort
Insertion sort

O(n3) Cubic Low Whenever n doubles, the running
time increases eightfold. Cubic
function is practical for use only on
small problems

Matrix multiplication

O(cn), c>1 Exponential Very Low As the input size grows, the
number of operations increases
exponentially. It is slow and usually
not appropriate for practical use.

Power Set
Towers of the Hanoi
Password cracking
Brute force search

O(n!) Factorial Extremely
Low

Extremely slow as all possible
permutations of the input data
need to be checked. Factorial
algorithm is even worse than the
exponential function.

Travelling salesman
problem Permutations of a
string

Big O notation
Big O notation describes the performance or complexity of an algorithm, usually under the worst-case scenario. Big O
notation helps us answer the question: “Will the algorithm scale?”. To obtain the big O notation for a function f(x), if
f(x) is a sum of several terms, the one with the largest growth rate is kept, and all others omitted. Moreover, if f(x) is a
product of several factors, any constants (terms in the product that do not depend on x) are omitted. For example,
recalling the ticket pricing problem presented in Chapter 1: f(x)=-20x2+6200x-350000. This function is the sum of
three terms: -20x2+6200x-350000. Of these three terms, the one with the highest growth rate is the one with the
largest exponent as a function of x, namely -20x2. We now apply the second rule: -20x2 is a product of -20 and x2 in
which the first factor does not depend on x. Dropping this factor results in the simplified form x2. Thus, we say that f(x)
is a big-oh of x2 or mathematically, we can write f(x)∈O(x2) (pronounced “Order n squared” or “O of n squared”), which
represents a quadratic complexity.

Figure 3.19 shows examples of big O notations:

85

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.19 Examples of big O notations

Assume a computer with processor speed of one million operations per second is used to
handle a problem of size n = 20,000. Table 3.3 shows the running time according to the big-
O notation of the algorithm used to solve this problem.

Table 3.3 Algorithm complexity and the running time

Big-O Running time

O(1) 10-6 seconds

O(log n) 14×10-6 seconds

O(n) 0.02 seconds

O(n log n)=O(log n!) 0.028 seconds

O(n2) 6.66 minutes

O(n3) 92.6 days

O(cn), c=2 1262.137e+6015 years

O(n!) 5768.665 e+77331 years

For a huge workspace where the goal is deep, the number of nodes could expand
exponentially and demand a large memory requirement. In terms of time complexity, For a
graph G=(V,E), BFS has a running time of O(|V|+|E|), since each vertex is enqueued at
most once and each edge is checked either once (for directed graph) or at most twice (for
undirected graph). Time and space complexity of BFS are also defined in terms of branching
factor b and depth of the shallowest goal d. Time complexity is O(bd) and space complexity is

86

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

O(bd) as well. Let's take a graph with a constant branching factor b=5, nodes of size 1
Kilobyte, and a limit of 1,000 nodes scanned per second. The total number of nodes N is
given by the following equation:

N=(b(d+1)-1)/(b-1)

Equation 3.1

Table 3.4 shows the time and memory requirements to traverse this graph using BFS.

Table 3.4 BFS time and space complexity

Depth d Nodes N Time Memory

2 31 31 ms 31 KB

4 781 0.781 second 0.78 megabytes

6 19531 5.43 hours 19.5 megabytes

8 488281 56.5 days 488 megabytes

10 12207031 3.87 years 12.2 gigabytes

12 305175781 96.77 years 305 gigabytes

14 7629394531 2419.26 years 7.63 terabytes

Next, we’ll take a look at the counterpart to the BFS algorithm, which searches deep into a
graph first, rather than breadth-wise.

3.3.2 Depth-first Search (DFS)
The DFS algorithm is a recursive algorithm that uses the idea of backtracking. It involves
exhaustive searches of all the nodes by going as deep as possible into the graph. Then, when
it reaches the last layer with no result (i.e., dead-end is reached), it “backtracks” up a layer
and continues the search. In DFS, the deepest nodes are expanded first and nodes of equal
depth are ordered arbitrarily. Algorithm 3.2 shows the DFS steps.

87

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Algorithm 3.2 Depth-first Search (DFS) Algorithm

DEPTH-FIRST-SEARCH (source,destination) return a route

Stack ← a LIFO initialized with sourcenode
Explored ← empty
Found ← False
while stack is not empty and found is False do

node ← stack.pop()
add node to explored
for child in node.expand() do

if child is not in explored and child is not in stack then
if child is destination then

route ← child.route()
found ← True

add child to stack
return route

As you may have noticed, the only difference between DFS and BFS is in how the data
structure works. Rather than working down layer by layer (FIFO), DFS drills down to the
bottom-most layer and moves its way back to the starting node, using a Last-In-First-Out
(LIFO) data structure known as a stack. The stack contains the list of discovered nodes. The
most recently discovered node is put (pushed) on top of the LIFO stack. The next node to be
expanded is then taken (popped) from the top of the stack, and all of its successors are
added to the stack. Revisiting the 8-puzzle problem, Figure 3.20 shows the DFS solution for
this problem. As you can see, when the algorithm reaches a dead-end or terminal node
(node #7), it goes back to the last decision point (node #3) and proceeds with another
alternative (node #8 and so on). In this example, a depth bound of 5 is placed to constrain
the node expansion. This depth bound makes nodes #6, 7, 10, 11, 13, 14, 16, 17, 22, 23,
26 and 27 terminal nodes in the search tree (i.e., there have no successors).

88

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.20 Using DFS to solve 8-puzzle problem

As you can see below, we only need to change the algorithm used (DFS). We’ve also omitted
the solution visualization, the reason for which you’ll see shortly.

89

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Listing 3.10 Solving 8-puzzle problem using DFS

#!pip install optimization_algorithms_tools
from optimization_algorithms_tools.algorithms.graph_search import DFS

init_state = [[1,4,2],[3,7,5],[6,0,8]]
goal_state = [[0,1,2],[3,4,5],[6,7,8]]

init_state = State(init_state)
goal_state = State(goal_state)

if not init_state.is_solvable(): #A
print("This puzzle is not solvable.")

else:
solution = DFS(init_state, goal_state) #B
print(f"Process time: {solution.time} s")
print(f"Space required: {solution.space} bytes")
print(f"Explored states: {solution.explored}")
print(f"Number of steps: {len(solution.result)}")

#A Some puzzles are not solvable
#B The inputs for DFS are the same as for BFS

Here’s an example code run with the above inputs:

Process time: 0.5247 s
Space required: 624 bytes
Explored states: 29
Number of steps: 30

As you can see, DFS is not great when dealing with very deep graphs, where the solution
may be located closer to the top. You can also see why we opted not to visualize the final
solution: there are a lot more steps in the solution than we had in BFS! Because the solution
to this problem was closer to the root node, the solution generated by DFS is a lot more
convoluted (30 steps) than with BFS.

Revisiting the path planning problem, DFS can be used to generate a free of obstacle
path from the start location to the destination as follows:

• Step-1: Adding source node to the stack (Figure 3.21).

90

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.21 Solving path planning problem using DFS – Step 1

• Step-2: Exploring S node as E and SE nodes are obstructive (Figure 3.22).

Figure 3.22 Solving path planning problem using DFS – Step 2

• Step-3: Taking S out (Last-In-First-Out) and exploring its neighboring nodes (S and
SE) as E is an obstructive node (Figure 3.22).

91

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.23 Solving path planning problem using DFS – Step 3

• Step-4: Taking SE out (Last-In-First-Out) and exploring its neighboring nodes (SW, S,
E and NE) (Figure 3.24).

Figure 3.24 Solving path planning problem using DFS – Step 4

• Setp-5: The next node to be expanded would be NE and its successors would be
added to the stack and this loop continues until the goal is found. The LIFO stack
continues until the goal node is found. Once the goal is found, you can then trace
back through the tree to obtain the path for the vehicle to follow.

92

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.25 Solving path planning problem using DFS

DFS usually requires a considerably less amount of memory compared to BFS. This is mainly
because DFS does not always expand out every single node at each depth. However, DFS
could continue down an unbounded branch forever even if the goal is not located on that
branch in case of search tree with infinite depth. One way to handle this problem is to use
constrained depth-first search where the search stops after reaching a certain depth. Time
Complexity is O(bd) where b is the branching factor and d is the maximum depth of the
search tree. This is terrible if d is much larger than b, but if solutions are found deeply in the
tree, it may be much faster than BFS. The space complexity of DFS is O(bd), i.e., linear
space! This space complexity represents the maximum number of nodes to be stored in the
memory. Table 3.5 summarizes a comparison between BFS and DFS.

93

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Table 3.5 BFS versus DFS

 Breadth-first Search (BFS) Depth-first Search (DFS)

Space complexity More expensive Less expensive. Requires only O(d) space
irrespective of number of children per
node.

Time complexity More time efficient. A vertex at lower level
(closer to the root) is visited first before
visiting a vertex that is at higher level (far
away from the root)

Less time efficient

When it is
preferred

• If the tree is very deep

• If the branching factor is not excessive

• If solution appear at a relatively
shallow level (i.e, solution/target is
near to the starting point/source/apex
node in the tree)

• Example: search the royal family tree
for someone who is dead a long time
ago as he/she would be closer to the
top of the tree (e.g., King George VI).

• If the graph/tree is very wide with too
many adjacent nodes

• If no path is excessively deep

• If solutions occur deeply in the tree
(i.e., the target is far from the source)

• Example: search the royal family tree
for someone who is still alive as
he/she would be on the bottom of
the tree (e.g., Prince William)

In applications where the weight of edges in a graph are all equal (e.g., all length 1), BFS
and DFS algorithms outperform shortest path algorithms like Dijkstra’s in terms of time.
Shortest path algorithms are explained in the following section.

3.4 Shortest Path Algorithms
Dijkstra algorithm, Uniform-Cost Search (UCS) and Bi-directional Dijkstra Search are
discussed here as examples of blind search algorithms that try to find the shortest path
between a source node and a destination node. Suppose that you were looking for the
quickest way to go from home to work. Graph traversal algorithms like BFS and DFS may
eventually get you to your destination, but they certainly do not optimize for distance
travelled. The following three algorithms generate provably shortest paths between two
nodes in a graph.

3.4.1 Dijkstra Search
Dijkstra’s algorithm is a graph search algorithm that solves the single-source shortest path
problem for a fully connected graph with non-negative edge path costs, producing a
shortest-path tree. Dijkstra’s algorithm was published in 1959 and is named after Dutch

94

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

computer scientist Edsger Dijkstra. This algorithm is the base of several other graph search
algorithms commonly used to solve routing problems in popular navigation apps, as
illustrated in Figure 3.26. The algorithm follows dynamic programming approaches where the
problem is recursively divided into simple sub-problems. Dijkstra’s algorithm is uninformed,
meaning it does not need to know the target node beforehand and doesn’t use heuristic
information.

Figure 3.26 Dijkstra’s algorithm and its variants

Algorithm 3.3 shows the steps of the original version of Dijkstra's algorithm to find the
shortest path between a known single source node to all the other nodes in the graph/tree.

95

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Algorithm 3.3 Dijkstra’s Algorithm

DIJKSTRA-SEARCH(graph,source) return a list of distances

shortest_dist ← empty
unrelaxed_nodes ← empty
seen ← empty

for node in graph
shortest_dist[node] = Infinity
add node to unrelaxed_nodes

shortest_dist[source] ← 0

while unrelaxed_nodes is not empty do
node ← unrelaxed_nodes.pop()
add node to seen
for child in node.expand() do

if child in seen then skip
distance ← shortest_dist[node] + length of edge to child
if distance < shortest_dist[child] then

shortest_dist[child] ← distance
child.parent ← node

return shortest_dist

The Dijkstra algorithm and its variants presented in the code for this book are all modified to
require a target node. This improves processing time when working with large graphs (i.e.,
road networks).

Let’s illustrate how Dijkstra’s algorithm finds the shortest path between any two nodes in
a graph. Priority queue is used to pop the element of the queue with the highest priority
according to some ordering function (shortest distance between the node and the source
node in this case).

• Step 0: Initial list, no predecessors: Priority Queue = {} (Figure 3.27).

Figure 3.27 Finding shortest path using Dijkstra’s algorithm – Step 0

96

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

• Step 1: The closest node to the source node is S, add to Priority Queue. Update
distances and predecessors for A, C and D. Priority Queue = {S} (Figure 3.28).

Figure 3.28 Finding shortest path using Dijkstra’s algorithm – Step 1

• Step 2: Next closest node is C, add to Priority Queue. Update distances and
predecessors for A and D. Priority Queue = {S, C} (Figure 3.29).

Figure 3.29 Finding shortest path using Dijkstra’s algorithm – Step 2

• Step 3: Next closest node is D, add to Priority Queue. Update distances and
predecessor B. Priority Queue = {S, C, D} (Figure 3.30).

97

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.30 Finding shortest path using Dijkstra’s algorithm – Step 3

• Step 4: Next closest node is A, add to Priority Queue. Priority Queue = {S, C, D, A}.
All nodes are now added (Figure 3.31).

Figure 3.31 Finding shortest path using Dijkstra’s algorithm – Step 4

• Step 5: Next step is to add the remaining node B to complete the search (Figure
3.32).

98

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.32 Finding shortest path using Dijkstra’s algorithm – Step 5

Once the search is complete, you can choose the goal node and find the shortest path from
the table. For example, if the goal node is A, the shortest path between S and A is S-C-A
with length 9. Likewise, if the goal node is B, the shortest path between S and B is S-C-D-B
with a distance of 10.

Note that we can’t use Dijkstra search on our 8-puzzle piece problem: it requires
knowledge of the entire problem space beforehand. While the problem has a finite number of
possible states (exactly 9!/2), the scale of that solution space makes the Dijkstra search not
very feasible.

3.4.2 Uniform-Cost Search (UCS)
Uniform-Cost Search (UCS) algorithm is a blind search algorithm that uses the lowest
cumulative cost to find a path from the origin to the destination. Essentially, the algorithm
organizes nodes to be explored by their cost (with the lowest cost as the highest priority) for
minimization problems or by their utility (with the highest utility as the highest priority) in
the case of maximization problems. As nodes are popped from the queue, the node’s children
are added to the queue. If a child already exists in the priority queue, the priorities of both
copies of the child are compared, and the lowest cost (highest priority) is accepted. This
ensures that the path to each child is the shortest one available. We also maintain a visited
list to avoid revisiting nodes that have already been popped from the queue. Algorithm 3.4
shows the steps of the UCS algorithm.

99

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Algorithm 3.4 Uniform-Cost Search (UCS) Algorithm

UNIFORM-COST-SEARCH(graph,source,destination) return a route

priority_queue ← source
found ← False
seen ← source

while priority_queue is not empty and found is False do
node ← priority_queue.pop()
seen ← node
node_cost ← cumulative distance from source
if node is destination then

route ← node.route()
found ← True

for child in node.expand() do
if child in priority_queue then

if child.priority < priority_queue[child].priority then
priority_queue[child].priority = child.priority

else
priority_queue ← child

priority_queue[child].priority ← node_cost
return route

UCS is a variant of Dijkstra's algorithm that is useful for large graphs as it is less time-
consuming and has fewer space requirements. Whereas Dijkstra adds all nodes to the queue
at the start with an infinite cost, UCS fills the priority queue gradually. For example, consider
the problem of finding the shortest path between every node pair in a graph. As a graph's
size and complexity grow, it quickly becomes apparent that UCS is more efficient, as it does
not require knowing the entire graph beforehand. In Table 3.6, you can see the difference in
processing time between Dijkstra and UCS on graphs of different sizes. These numbers were
collected using the code from Listing 3.11 (available on the GitHub repo of the book) on an
Intel Core i9-9900K at 3.60 GHz without multiprocessing or multithreading.

Table 3.6 UCS versus Dijkstra

Graph size= |V| + |E| Dijkstra time Uniform-Cost Search (UCS) time

108 0.25 s 0.14 s

628 84.61 s 58.23 s

1514 2,082.97 s 1,360.98 s

Note that running UCS on our 8-puzzle piece problem requires a distance property for each
State (this defaults to 1) and overall generates decent results (around 6.2 kB of space used,
789 states explored). It is important to note that because the edge lengths are all equal,
UCS cannot prioritize new nodes to explore. Thus, the solution loses the advantage of
shortest path algorithms, namely, the ability to optimize for a more compact solution. In the

100

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

next chapter, you’ll see ways of calculating artificial “distances” between these states,
ultimately generating solutions found quickly and minimizing the number of steps required.

3.4.3 Bi-directional Dijkstra Search
Bidirectional search simultaneously applies forward search and backward search. As
illustrated in Figure 3.33, it runs a search forward from the source/initial state S→G and
backward from the goal/final state G→S until they meet.

Figure 3.33 Bidirectional Dijkstra

As shown in Figure 3.33, the Dijkstra search space is C1=4πr2 and the bidirectional Dijkstra
search space is represented by C2+C3=2πr2. This means that we reduce the search space by
a factor of around two. Algorithm 3.5 shows the steps of the bidirectional Dijkstra algorithm.

101

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Algorithm 3.5 Bidirectional Dijkstra Algorithm

BI-DIRECTIONAL-SEARCH(source,destination) return a route

frontier_f ← initialized with source
frontier_b ← initialized with destination
explored_f ← empty
explored_b ← empty
found ← False
collide ← False
altr_expand ← False

while frontier_f is not empty and frontier_b is not empty and not collide and not found do
if altr_expand then

node ← frontier_f.pop()
add node to explored_f
for child in node.expand() do

if child in explored_f then continue
if child is destination then

route ← child.route()
found ← True

if child in explored_b then
route ← child.route() + reverse(overlapped.route())
collide ← True

add child to frontier_f
altr_expand ← not altr_expand

else
node ← frontier_b.pop()
add node to explored_b
for child in node.expand() do

if child in explored_b then continue
if child is origin then

route ← child.route()
found ← True

if child in explored_f then
route ← reverse(child.route()) + overlapped.route()
collide ← True

add child to frontier_b
altr_expand ← not altr_expand

return route

This approach is more efficient because of the time complexities involved. For example, a
BFS search with a constant branching factor b and depth d would have an overall O(bd) space
complexity. However, by running two BFS searches in opposite directions with only half the
depth (d/2), the space complexity becomes O(bd/2+bd/2) or simply O(bd/2), which is
significantly lower.

102

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.34 Dijkstra vs Bidirectional Dijkstra. Blue represents the forward exploration, while red shows the
backwards exploration.

Figure 3.34 shows the difference between Dijkstra and bidirectional Dijkstra algorithms in
exploring 50,841 nodes in the City of Toronto.

3.5 Applying Blind Search to Routing Problem
Puzzle games and simple grid routing problems are nice to understand how an algorithm
works. However, it's about time we show some real-world examples and outcomes from
using these algorithms. For example, imagine that you are visiting the King Edward VII
Equestrian statue at Queen's Park in Toronto when you suddenly remember you have a
meeting at the Bahen Centre for Information Technology at the University of Toronto. If you
recall, this problem was initially presented to you when we first introduced road network
graphs at the beginning of this chapter. There are a couple of assumptions we make when
offering this problem:

• You aren't able to open up a navigation app or call a friend for help as your phone is
out of battery.

• You know your destination is somewhere in Toronto, but you have no clue where it is
with reference to your starting location. In later chapters, you'll learn how knowing
your destination's direction helps generate near-optimal solutions in a very short
amount of time.

• Once you start using a rule for routing to your destination, you stick to that rule.

Let's take a look at how we might be able to simulate your pathfinding skills using BFS, DFS,
Dijkstra, UCS, and Bidirectional Dijkstra. The code for this example is located in Listing 3.11.
The following figures show the generated routes by these blind search algorithms.

103

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.35 BFS routing using Python. BFS searches each layer first, before moving to the next. This works
best for graphs that are not very broad, and has a solution located near the root node.

Figure 3.36 DFS routing using Python. DFS searches as deep as possible in the graph before “backtracking”.
This works best when the graph is not very deep, and solutions are located further away from the root node.

104

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.37 Dijkstra’s, UCS, and Bidirectional Dijkstra’s routing. All three of these algorithms will produce the
same solution (optimal routing), but handle memory usage and node exploration differently.

It is worth noting that dijkstra_path function in networkx uses Dijkstra’s method to compute
the shortest weighted path between two nodes in a graph. Our optimization_algorithms_tools
package also provide implementation for different graph search algorithm such as BFS, DFS,
Dijkstra, UCS, Bidirectional_Dijkstra. The implementation of Dijkstra's algorithm in
optimization_algorithms_tools has been modified to work with our OSM data. This is because
graphs generated from maps will naturally have self-loops and parallel edges. Parallel edges
may result in a route that is not the shortest available, as the route length depends heavily
on which parallel edge was chosen when a particular path was generated. In Figure 3.38, the
shortest path from 0 to 3 may be returned as having a length of 7 if the first edge connecting
0 and 1 is chosen when calculating that path, versus a length of 3 when selecting the second
edge.

Figure 3.38 Parallel edges may be problematic as finding the shortest path depends on which parallel edge
was selected during graph exploration.

105

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Self-loops also cause trouble for the original Dijkstra algorithm. If a graph contains a self-
loop, it may be the case that the shortest path to a node comes from itself. At that point, we
would be unable to generate a route.

Figure 3.39 Self-loops may disrupt the chain of “parent-child nodes”, which prevents retracing the route after a
solution has been found.

These two issues are generally easy but non-trivial to avoid. For parallel edges, we select the
edge with the lowest weight (shortest length) and discard any other parallel edge. With self-
loops, we can ignore the loop entirely as negative-weight loops do not exist in most routing
problems (a road cannot have a negative length), and positive-weight loops cannot be part
of the shortest path. Additionally, the version of Dijkstra’s used in this book terminates upon
finding the target node, as opposed to the traditional implementation of Dijkstra’s, which
ends only when the shortest path from the root node to all other nodes is found. Table 3.7
compares BFS, DFS, Dijkstra, and UCS with regards to path length, process time, space
required, and the number of explored nodes.

106

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Table 3.7 Comparison between BFS, DFS, Dijkstra and UCS where b is the branching factor, m
is the maximum depth of search tree, d is the shallowest graph depth, E is number of edges and
V is number of vertices.

Algorithm Cost (m) Process
time (s)

Space
(bytes)

Explored
nodes

Worst-case
time

Worst-case
space

Optimality

BFS 955.962 0.015625 1152 278 O(bd O(bd) O(bd) No

DFS 3347.482 0.015625 1152 153 O(bm) O(bm) No

Dijkstra’s 806.892 0.0625 3752 393 O(|E| + |V|
log |V|)

O(|V|) Yes

UCS 0.03125 592 393 O((b + |E|) * d) O(bd) Yes

Bidirectional
Dijkstra’s

0.046875 3752 282 O(bd/2) O(bd/2) Yes

As you can see from the above results, Dijkstra’s, UCS, and Bidirectional Dijkstra’s
algorithms produce optimal results, with varying degrees of time and space cost. While both
BFS and DFS find feasible solutions in the shortest time, the solutions delivered are not
optimal and, in the case of DFS, not even plausible. On the other hand, DFS requires
knowing the entire graph beforehand, which is costly and sometimes not very practical. Much
of selecting an appropriate search algorithm for a specific problem involves determining the
ideal balance between processing time and space requirements. In later chapters, we’ll look
at algorithms that produce near-optimal solutions, often used when optimal solutions are
either impossible or impractical to find. Note that all the above solutions are feasible; they all
produce a valid (if sometimes convoluted) path from point A to point B.

In the next chapter, we will show how search can be optimized if we utilize domain-
specific knowledge instead of search blindly. We'll dive right into informed search methods
showing how to use these algorithms to solve minimum spanning tree and shortest path
problems.

107

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

3.6 Exercises
1. MCQs and T/F: Choose the correct answer for each of the following questions.

1.1. Big O specifically describes the limiting behavior of a function (worst-case scenario)
when the argument tends towards a particular value or infinity, usually in terms of simpler
functions. What is the big-O of this expression: nlog(n)+log(2n)

a. Linearithmic

b. Loglinear

c. Quasilinear

d. All of the above

1.2. Which blind search algorithm implements stack operation for searching the states?

a. Breadth-first Search (BFS)

b. Uniform-cost Search (UCS)

c. Bidirectional Search (BS)

d. Depth-first search (DFS)

e. None of the mentioned

1.3. A tree is a connected graph with no circuits and no self-loops.

a. True

b. False

1.4. For very large workspace where the goal is deep within the workspace, the number of
nodes could expand exponentially and depth-first search will demand a very large memory
requirement.

a. True

b. False

1.5. Best-first is a mixed depth and breadth first search that uses heuristic values and
expands the most desirable unexpanded node.

a. True

b. False

1.6. In design problems or strategic functions, optimality is usually traded in for speed gains.

a. True

b. False

108

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

1.7. Graph traversal algorithms outperform shortest path algorithms in applications
where the weight of edges in a graph are all equal

a. True

b. False

1.8. In Dijkstra’s algorithm, the priority queue is filled gradually

a. True

b. False

1.9. When is breadth-first search is optimal?

a. When there is less number of nodes

b. When all step costs are equal

c. When all step costs are unequal

d. None of the mentioned

1.10 A blind search algorithm that combines DFS’s space-efficiency and BFS’s fast search by
incrementing the depth limit until the goal is reached.

a. Depth-limited Search (DLS)

b. Iterative Deepening Search (IDS)

c. Uniform-cost Search (UCS)

d. Bidirectional Search (BS)

e. None of the mentioned

1.11 The name of O(nlogn) is

a. Logarithmic

b. Exponential

c. Quasilinear

d. None of the above

1.12. Which search algorithm is implemented with an empty first-in-first-out queue?

a. Depth-first search

b. Breadth-first search

c. Bidirectional search

d. None of the mentioned

109

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

2. Consider the following simplified map shown in Figure 3.40, where edges are labeled
with actual distances between the cities. State the path to go from city A to city M
produced by BFS and the path produced by DFS.

Figure 3.40 Simplified map.

3. Find the big O notation for the following functions.

a. 10n+nlog(n)

b. 4+n/5

c. n5-20n3+170n+208

d. n+10log(n)

4. Consider the search space below, where S is the start node and G1 and G2 are goal
nodes. Arcs are labeled with the value of a cost function; the number gives the cost of
traversing the arc. Above each node is the value of a heuristic function; the number gives
the estimate of the distance to the goal. Assume that uninformed search algorithms always
choose the left branch first when there is a choice. For each of depth-first search (DFS) and
breadth-first search (BFS) strategies:

a. indicate which goal state is reached first (if any) and

b. list in order, all the states that are popped off the OPEN list.

110

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure 3.41.A graph search exercise

5. Solve the following crossword puzzle

111

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Across

2. a depth first search with a predetermined depth limit

7. a blind search algorithm that solves the single-source shortest path problem for a
weighted graph with non-negative edge costs

8. a search algorithm that combines forward and backward search

10. a graph traversal algorithm that first explores nodes going through one adjacent of the
root, then next adjacent until it finds a solution or until it reaches a dead end

11. a variant of Dijkstra's algorithm that is appropriate for large graphs

13. a function that is slightly faster than linear complexity

14. a graph in which multiple edges may connect the same pair of vertices

15. a Last-In-First-Out (LIFO) data structure

Down

1. a search algorithm that combines DFS’s space-efficiency and BFS’s fast search by
incrementing the depth limit until the goal is reached

2. a graph used by Twitter to represent following

112

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

3. a graph traversal search algorithm that is preferred when the tree is deep

4. a generalization of a graph in which generalized edges can join any number of nodes

5. type of graph used in LinkedIn to represent users, groups, unregistered persons, posts,
skills and jobs

6. a notation used to describe the performance or complexity of an algorithm

9. the process of exploring the structure of a tree or a graph by visiting the nodes following a
certain well-defined rule

12. a First-In-First-Out (FIFO) data structure

Hint: Spaces and dashes MUST be used if the answer consists of two or more words.

3.7 Summary
• Conventional graph search algorithms (blind and informed search algorithms) are

deterministic search algorithms that explore a graph either for general discovery or
for explicit search.

• Graphs are non-linear data structures that consist of 3 sets: vertices/nodes, edges
and a set representing relations between vertices and edges.

• Blind/uninformed search is a search approach where no information about the search
space is used.

• Breadth-first Search (BFS) is a graph traversal algorithm that examines all the nodes
in a search tree on one level before considering any of the nodes on the next level.

• Depth-first Search (DFS) is a graph traversal algorithm that first explores nodes going
through one adjacent of the root, then next adjacent until it finds a solution or until it
reaches a dead-end.

• Depth-limited Search (DLS) is a constrained DFS with a predetermined depth limit to
prevent exploring of paths that are too long in search tree with infinite depth.

• Iterative Deepening Search (IDS) or Iterative Deepening Depth First Search (IDDFS)
combines DFS's space efficiency and BFS's fast search by incrementing the depth limit
until the goal is reached.

• Dijkstra's algorithm solves the single-source shortest path problem for a weighted
graph with non-negative edge costs.

• Uniform-cost Search (UCS) is a variant of Dijkstra's algorithm that uses the lowest
cumulative cost to find a path from the source to the destination. It is equivalent to
the BFS algorithm if the path cost of all edges is the same.

• Bidirectional Search (BS) is a combination of forward and backward search. It
searches forward from the start and backward from the goal simultaneously.

• Selecting a search algorithm involves determining the target balance between time
complexity, space complexity, prior knowledge about the search space, among other
factors.

• As you progress to Chapter 4, you will start to learn about informed search algorithms
where additional information or heuristic rules are used during the search.

113

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Search and Optimization Libraries in
Python

This appendix covers

• Setting up the Python environment
• Mathematical programming solvers
• Graph and mapping Libraries
• Metaheuristics Optimization Libraries
• Machine Learning Libraries

A.1 Setting up the Python environment
This book assumes that you already have Python 3.6 or newer installed on your system. For
installation instructions specific to your operating system, see this Beginner’s Guide. For
Windows, you can follow these steps to install Python:

• Step 1: Go to the official website: https://www.python.org/downloads/
• Step 2: Select version of Python to install
• Step 3: Download Python executable installer
• Step 4: Run executable installer. Make sure you select the Install launcher for all

users and Add Python 3.8 to PATH checkboxes.
• Step 5: Verify Python was successfully installed by typing python –V in a command

prompt
• Step 6: Verify Pip was installed by typing pip -V in a command prompt
• Step 7: Install virtualnv by typing pip install virtualenv in a command prompt

If you are a Linux user, in the terminal, execute the following commands:

114

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://wiki.python.org/moin/BeginnersGuide/
https://www.python.org/downloads/

©Manning Publications Co. To comment go to liveBook

$ sudo apt update
$ sudo apt install python3-pip

Install venv and create a python virtual environment:

$ sudo apt install python3.8-venv
$ mkdir <new directory for venv>
$ python -m venv <path to venv directory>

Make sure that you replace python3.8 with the version of Python you are using. You can now
access your virtual environment using the following command:

$ source <path to venv>/bin/activate

In case of macOS, Python is already pre-installed in macOS, but if you need to upgrade or
install a specific version, you can use the macOS terminal as follows:

$ python -m ensurepip --upgrade

venv is included with python 3.8+. You can run the following command to create a virtual
environment:

$ mkdir <new directory>
$ python -m venv <path to venv directory>

You can now access your virtual environment using the following command:

$ source <path to venv>/bin/activate

A better option is to install a Python distribution as explained in the next subsection.

A.1.1 Using a Python distribution
Python distribution, such as Anaconda or Miniconda come with a package manager called
conda that allows you to install a wide range of Python packages and manage different
Python environments.

Install conda for your OS using the guide found here. Conda environments are used to
manage multiple installations of different versions of Python packages and their
dependencies. You can create a conda environment with this command:

$ conda create --name <name of env> python=<your version of python>

To access the newly-created environment:

$ conda activate <your env name>

This command allows you to switch or move between environments.

A.1.2 Installing Jupyter Notebook and JupyterLab
Jupyter is a multi-language, open-source web-based platform for interactive programming.
The word "Jupyter" is a loose acronym meaning Julia, Python, and R. All of the code in this
book is stored in Jupyter notebooks (.ipynb files) can be opened and edited using jupyterlab

115

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://conda.io/projects/conda/en/latest/user-guide/install/index.html

©Manning Publications Co. To comment go to liveBook

or Jupyter notebook. Jupyter notebook feels more standalone but JupyterLab feels more like
an IDE. You can install JupyterLab using pip as follows:

$ pip install jupyterlab
$ pip install notebook

Or using conda as follows:

$ conda install -c conda-forge jupyterlab
$ conda install -c conda-forge notebook

You can install the Python ipywidgets package to automatically configure classic Jupyter
Notebook and JupyterLab 3.0 to display ipywidgets using pip or conda as follows:

$ pip install ipywidgets
$ conda install -c conda-forge ipywidgets

If you have an old version of Jupyter notebook installed, you may need to manually enable
the ipywidgets notebook extension with:

$ jupyter nbextension install --user --py widgetsnbextension
$ jupyter nbextension enable --user --py widgetsnbextension

Google Colaboratory (Colab) can also be used. This cloud-based tool allows writing,
executing and sharing Python code through the browser. It also provides free access to GPU
and TPU for increased computational power. You can access Colab by visiting:
https://colab.research.google.com/.

A.1.3 Cloning book repository
You can clone the book code repository as follows:

$git clone https://github.com/Optimization-Algorithms-Book/Code-Listings.git

Many of the operations in this book are long and burdensome to code from scratch.
Oftentimes, they are highly standardized and can benefit from having a helper function take
care of the various intricacies. optimization_algorithms_tools is a python package
developed for this purpose. You can use these supporting tools locally without installing this
package. In this case, you will need to download optimization_algorithms_tools in a local
folder and add this folder to the system path in case of using Jupyter notebook or Jupyter lab
as follows:

import sys
sys.path.insert(0, '../')

In case of Colab, you can mount your Google Drive with:

from google.colab import drive
drive.mount('/content/drive')

Copy optimization_algorithms_tools folder to your Google Drive.
This package is also available on Python Package Index (PyPI) repository here:

https://pypi.org/project/optimization-algorithms-tools/0.0.1/. You can it install as following:

116

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://colab.research.google.com/
https://github.com/Optimization-Algorithms-Book/Code-Listings.git
https://pypi.org/project/optimization-algorithms-tools/0.0.1/

©Manning Publications Co. To comment go to liveBook

$pip install optimization_algorithms_tools

You can then use import command to use these tools. Here is an example:

from optimization_algorithms_tools.problems import TSP
from optimization_algorithms_tools.algorithms import SimulatedAnnealing

The first line import TSP instance from problems module and the second line imports
simulated annealing solver from the algorithms module.

A.2 Mathematical Programming Solvers
Mathematical programming, also known as mathematical optimization, is the process of
finding the best solution to a problem that can be represented in mathematical terms. It
involves formulating a mathematical model of a problem, determining the parameters of the
model, and using mathematical and computational techniques to find the solution that
maximizes or minimizes a particular objective function or set of objective functions subject to
a set of constraints. Linear programming (LP), mixed-integer linear programming (MILP),
and nonlinear programming (NLP) are example of mathematical optimization problems.
There are several Python libraries that can be used for solving mathematical optimization
problems.

Let’s consider the following production planning example from [C. Guerte el al,
Applications of Optimization, Chapter 8: Planning problems, 2000]. A small joinery makes
two different sizes of boxwood chess sets. The small set requires 3 hours of machining on a
lathe, and the large set requires 2 hours. There are four lathes with skilled operators who
each work a 40-hour week, so we have 160 lathe-hours per week. The small chess set
requires 1 kg of boxwood, and the large set requires 3 kg. Unfortunately, boxwood is scarce
and only 200 kg per week can be obtained. When sold, each of the large chess sets yields a
profit of $12, and one of the small chess set has a profit of $5. The problem is to decide how
many sets of each kind should be made each week so as to maximize profit. Let’s assume
that x1 and x2 are decision variables that represent the number of small and large chess sets
respectively to make.

The total profit is the sum of the individual profits from making and selling the x1 small
sets and the x2 large sets, i.e. Profit = 5x1 + 12x2. However, this profit is subject to the
following constraints:

• The total number of hours of machine time we are planning to use is: 3x1 + 2x2. This
time shouldn’t exceed the maximum of 160 hours of machine time available per week.
This means that 3x1 + 2x2<=160 (lathe-hours).

• Only 200 kg of boxwood is available each week. Since small sets use 1 kg for every
set made, against 3 kg needed to make a large set, so x1 + 3x2<=200 (kg of
boxwood).

• The joinery cannot produce a negative number of chess sets, so two further non-
negativity constraints: x1 and x2>=0.

This linear programming problem can be summarized as follows:

117

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Let’s now see how to solve this linear programming using different solvers.

A.2.1 SciPy
SciPy is an open-source scientific computing Python library that provides tools for
optimization, linear algebra, and statistics. SciPy optimize includes solvers for nonlinear
problems (with support for both local and global optimization algorithms), linear programing,
constrained and nonlinear least-squares, root finding, and curve fitting. To use SciPy, you
will need to install it along with its dependencies. You can install SciPy using the pip package
manager or by using a Python distribution, such as Anaconda or Miniconda, which come with
SciPy and other scientific libraries pre-installed.

$pip install scipy

Listing A.1 shows the steps to solve the car manufacturing problem using SciPy. The code
defines the coefficient vector c, left hand side (lhs) and right hand side (rhs) of the constraint
equations.

Listing A.1 Solving Chess Set Problem using SciPy

import numpy as np
import scipy
from scipy.optimize import linprog

c = -np.array([5,12]) #A

lhs_constraints=([3,2], #B
[1,3]) #C

rhs_constraints=([160, #D
200]) #E

bounds = [(0, scipy.inf), (0, scipy.inf)] #F

results = linprog(c=c, A_ub=lhs_constraints, b_ub=rhs_constraints, bounds=bounds,
method='highs-ds') #G

print('LP Solution:') #H
print(f'Profit: = {-round(results.fun,2)} $') #H
print(f'Make {round(results.x[0],0)} small sets, and make {round(results.x[1],0)} large

sets') #H

118

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://scipy.org/

©Manning Publications Co. To comment go to liveBook

LP Solution:
Profit: = 811.43 $
Make 11.0 small sets, and make 63.0 large sets

The used linprog() function returns a data structure with several attributes such as x: the
current solution vector, fun: the current value of the objective function, success: True when
the algorithm has completed successfully. SciPy cannot handle maximization problems. The
problem must be converted to minimization problem. Moreover, constraints using the
greater-than-or-equal-to sign cannot be defined directly. Less-than-or-equal-to must be used
instead.

A.2.2 PuLP
PuLP is a linear programming library in Python that allows you to define and solve linear
optimization problems. There are two main classes in PuLP: LpProblem and LpVariable. PuLP
variables can be declared individually or as “dictionaries” (variables indexed on another set).
You can install PuLP using pip as following:

$pip install pulp

The following code (part of Listing A.1) shows how to use PuLP to solve the chess set
problem.

Listing A.1 Solving Production Planning Problem using PuLP

#!pip install pulp
from pulp import LpMaximize, LpProblem, LpVariable, lpSum, LpStatus

model = LpProblem(name='ChessSet', sense=LpMaximize) #A

x1 = LpVariable('SmallSet', lowBound = 0, upBound = None, cat='Integer') #B
x2 = LpVariable('LargeSet', lowBound = 0, upBound = None, cat='Integer') #B

model += (3*x1 + 2*x2 <=160, 'Machining time constraint') #C
model += (x1 + 3*x2 <= 200, 'Weight constraint') #C

profit= 5*x1 + 12*x2 #D
model.setObjective(profit) #D

model.solve() #E

print('LP Solution:') #F
print(f'Profit: = {model.objective.value()} $') #F
print(f'Make {x1.value()} small sets, and make {x2.value()} large sets') #F

119

#A Declare coefficients of the objective function/profit A profit maximization is converted into minimization problem
as per SciPy requirement

#B Left hand side of machining time constraint
#C Left hand side of weight constraint
#D Right hand side of machining time constraint
#E Right hand side of weight constraint
#F Bounds of the decision variables
#G Solve linear programming pro
#H Print the solution

Running this code give the following results:

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://coin-or.github.io/pulp/

©Manning Publications Co. To comment go to liveBook

#A Define the model
#B Ddefine the decision variables
#C Aadd constraints
#D Set the profit as the objective function
#E Solve the optimization problem
#F Print the solution

PuLP implements several algorithms for solving linear programming (LP) and mixed-integer
linear programming (MILP) problems. Examples of these algorithms include COIN-OR
(Computational Infrastructure for Operations Research), CLP (Coin-or Linear Programming),
CBC (Coin-or Branch-and-Cut), CPLEX (Cplex for short), GLPK (GNU Linear Programming
Kit), SCIP (Solving Constraint Integer Programs), HiGHS (Highly Scalable Global Solver),
Gurobi LP/MIP solver, Mosek Optimizer and XPRESS LP solver.

There are several other libraries in Python for solving mathematical optimization
problems. The following list is a non-exhaustive list of other libraries available in Python.

• OR-Tools: is an open-source software suite for optimization and constraint
programming developed by Google. It includes a variety of algorithms and tools for
solving problems in areas such as operations research, transportation, scheduling,
and logistics. OR-Tools can be used to model and solve linear and integer
programming problems, as well as constraint programming problems. Examples of
OR-Tools solvers include GLOP (Google Linear Programming), CBC (Coin-Or Branch
and Cut), CP-SAT (Constraint Programming - SATisfiability) solver, Max Flow and Min
Cost Flow solvers, and the Shortest Path solver, BOP (Binary Optimization Problem)
solver. It is written in C++ and includes interfaces for several programming
languages, including Python, C#, and Java. See Section A.4 for more details and an
example.

• Gurobi: is a commercial optimization software that offers state-of-the-art solvers for
linear programming, quadratic programming, and mixed integer programming. It has
a Python interface that can be used to define and solve optimization problems.

• PYTHON-MIP: is a Python library for solving mixed-integer programming problems. It
is built on top of the open-source optimization library CBC and allows users to express
optimization models in a high-level, mathematical programming language.

• Pyomo: is an open-source optimization modeling language that can be used to define
and solve mathematical optimization problems in Python. It supports a wide range of
optimization solvers, including linear programming, mixed integer programming, and
nonlinear optimization.

• GEKKO: is a Python package for machine learning and optimization of mixed-integer
and differential algebraic equations.

• CVXPY: is an open source Python-embedded modeling language for convex
optimization problems. It lets you express your problem in a natural way that follows
the math, rather than in the restrictive standard form required by solvers.

• PyMathProg: is a mathematical programming environment for Python that enables
modelling, solving, analyzing, modifying and manipulating linear programming
problems.

120

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://developers.google.com/optimization
https://www.gurobi.com/documentation/
https://www.python-mip.com/
http://www.pyomo.org/
https://gekko.readthedocs.io/en/latest/
https://www.cvxpy.org/
https://pymprog.sourceforge.net/

©Manning Publications Co. To comment go to liveBook

• Optlang: is a Python library for modeling and solving mathematical optimization
problems. It provides a common interface to a series of optimization tools, so
different solver backends can be changed in a transparent way. It is compatible with
most of the popular optimization solvers like Gurobi, Cplex, and Ipopt (Interior Point
OPTimizer).

• Python interface to conic optimization solvers (PICOS): is a Python library for
modeling and solving optimization problems. It can handle complex problems with
multiple objectives, and it supports both local and global optimization methods. PICOS
has interfaces to different solvers such as Gurobi, CPLEX, SCS (Splitting Conic
Solver), ECOS (Embedded Cone Solver), and MOSEK.

• CyLP: is is a Python interface to COIN-OR’s Linear and mixed-integer program solvers
(CLP, CBC, and CGL). COIN-OR (COmputational INfrastructure for Operations
Research) is a collection of open-source software packages for operations research
and computational optimization. It includes libraries for linear and integer
programming, constraint programming, and other optimization techniques.

• SymPy: is a Python library for symbolic mathematics. It can be used to deal to solve
equations, handling combinatorics, plotting in 2d/3d, work on polynomials, calculus,
discrete math, matrices, geometry, parsing, physics, statistics and cryptography.

• Other libraries: include but are not limited to, MOSEK, CVXOPT, DOcplex, DRAKE,
Pyscipopt, PyOptim, PyMathProg and NLPy.

Jupyter notebook Listing A.1_Mathematical_programming_solvers.ipynb included in the
GitHub repo of the book shows how to use some of these solvers to solve chess set problem.

A.3 Graph and Mapping Libraries
The following Python libraries are used in the book to process and visualize graphs, networks
and geospatial data.

A.3.1 networkx
networkx is a library for working with graphs and networks in Python. It provides tools for
creating, manipulating, and analyzing graph data, as well as for visualizing graph structures.
networkx also contains approximations of graph properties and heuristic methods for
optimization. You can install networkx as following:

$pip install networkx

Let’s consider TSP problem. Listing A.2 shows the steps of creating a random undirected
graph for this problem. Each randomly scattered node represents a city to be visited by the
travelling salesman and the weight of each edge connected the cities is calculated based on
the Euclidian distance between the nodes using hypot function that calculates the square root
of the sum of squares. Christofides algorithm is used to solve this TSP instance. This
algorithm provides a 3/2-approximation of TSP. This means that its solutions will be within a
factor of 1.5 of the optimal solution length.

121

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://optlang.readthedocs.io/en/latest/
https://picos-api.gitlab.io/picos/
https://github.com/coin-or/cylp
https://www.sympy.org/en/index.html
https://docs.mosek.com/latest/pythonapi/index.html
https://cvxopt.org/
https://www.ibm.com/docs/en/icos/12.9.0?topic=docplex-python-modeling-api
https://drake.mit.edu/
https://github.com/scipopt/PySCIPOpt
https://pyoptim.readthedocs.io/en/latest/
https://pymprog.sourceforge.net/
https://nlpy.sourceforge.net/
https://networkx.org/

©Manning Publications Co. To comment go to liveBook

Listing A.2 Solving TSP using networkx

import matplotlib.pyplot as plt
import networkx as nx
import networkx.algorithms.approximation as nx_app
import math

plt.figure(figsize=(10, 7))

G = nx.random_geometric_graph(20, radius=0.4, seed=4) #A
pos = nx.get_node_attributes(G, "pos")

pos[0] = (0.5, 0.5) #B

H = G.copy() #C

for i in range(len(pos)): #D
for j in range(i + 1, len(pos)): #D

dist = math.hypot(pos[i][0] - pos[j][0], pos[i][1] - pos[j][1]) #D
dist = dist #D
G.add_edge(i, j, weight=dist) #D

cycle = nx_app.christofides(G, weight="weight") #E
edge_list = list(nx.utils.pairwise(cycle))

nx.draw_networkx_edges(H, pos, edge_color="blue", width=0.5) #F

nx.draw_networkx(#G
G, #G
pos, #G
with_labels=True, #G
edgelist=edge_list, #G
edge_color="red", #G
node_size=200, #G
width=3, #G

) #G

print("The route of the salesman is:", cycle) #H
plt.show()

#A Create a random geometric graph with 20 nodes
#B Set (0,0) as the home city/depot
#C Create an independent shallow copy of the graph and attributes
#D Calculating the distances between the nodes as edge's weight.
#E Solve tsp using Christofides algorithm
#F Highlight the closest edges on each node only
#G Draw the route
#H Print the route

Figure A.1 shows the solution of this TSP.

122

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Figure A.1 Solving TSP using Christofides algorithm implemented in networkx. The found route is: [0, 10, 7, 2,
6, 1, 15, 14, 5, 17, 4, 9, 12, 18, 3, 19, 16, 8, 11, 13, 0]

networkx supports a variety of graph search algorithms and enables performing network
analyses using packages within the geospatial Python ecosystem.

A.3.2 osmnx
osmnx is a Python library developed to ease the process of retrieving and manipulating the
data from OpenStreetMap (OSM). It offers the ability to download the data (filtered) from
OSM and returns the network as networkx graph data structure. It is a free and open-source
geographic data of the world. You can install OSMnx with conda:

$ conda config --prepend channels conda-forge
$ conda create -n ox --strict-channel-priority osmnx
$ conda activate ox

osmnx can be used to convert a text descriptor of a place into a networkx graph. Let’s use
the Times Square in New York City as an example.

Listing A.2 Creating a networkx graph for Times Square using osmnx

import osmnx as ox

place_name = "Times Square, NY" #A

graph = ox.graph_from_address(place_name, network_type='drive') #B

ox.plot_graph(graph,figsize=(10,10)) #C

#A Name of the place or point of interest
#B networkx graph of the named place
#C Plot the graph

123

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://osmnx.readthedocs.io/en/stable/

©Manning Publications Co. To comment go to liveBook

Figure A.2 shows the graph of the Times Square based on driving mode.

Figure A.2 Times Square Graph wit drivable streets

network_type allows you to select the type of the street network based on the mobility
mode: "all_private", "all", "bike", "drive", "drive_service" or "walk". You can highlight all one-
way edges in Time Square street network using these two lines of code:

ec = ['y' if data['oneway'] else 'w' for u, v, key, data in graph.edges(keys=True,
data=True)]

fig, ax = ox.plot_graph(graph, figsize=(10,10), node_size=0, edge_color=ec,
edge_linewidth=1.5, edge_alpha=0.7)

Various properties of the graph can be examined, such as the graph type, edge (road) types,
CRS projection, etc. For example, you can print the graph type using type(graph) and you
can extract the nodes and edges of the graph as separate structures as follows:

nodes, edges = o.graph_to_gdfs(graph)
nodes.head(5)

We can further drill down to examine each individual node or edge.

list(graph.nodes(data=True))[1]
list(graph.edges(data=True))[0]

124

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

You can also retrieve the street types for the graph:

print(edges['highway'].value_counts())

Running this code line gives the following statistics about the Times Square road network:

secondary 236
residential 120
primary 83
unclassified 16
motorway_link 12
tertiary 10
motorway 7
living_street 3
[unclassified, residential] 1
[motorway_link, primary] 1
trunk 1

More statistics can be generated using osmnx.basic_stats: osmnx.basic_stats(graph)
GeoDataFrames can be easily converted back to MultiDiGraphs by using

osmnx.graph_from_gdfs as follows:

new_graph = ox.graph_from_gdfs(nodes,edges)
ox.plot_graph(new_graph,figsize=(10,10))

This results in the same road network shown in Figure A.2. You can also save the street
network in different formats as follows:

ox.plot_graph(graph, figsize=(10,10), show=False, save=True, close=True,
filepath='./data/TimesSquare.png') #A

ox.plot_graph(graph, figsize=(10,10), show=False, save=True, close=True,
filepath='./data/TimesSquare.svg') #B

ox.save_graph_xml(graph, filepath='./data/TimesSquare.osm') #C
ox.save_graph_geopackage(graph, filepath='./data/TimesSquare.gpkg') #D
ox.save_graphml(graph, filepath='./data/TimesSquare.graphml') #E
ox.save_graph_shapefile(graph, filepath='./data/TimesSquare') #F

#A Save street network as PNG
#B Save street network as SVG
#C Save graph to disk as .osm xml file
#D Save street network as GeoPackage file for GIS
#E Save street network as GraphML file for OSMnx or networkx or gephi
#F Save graph as a shapefile

A.3.3 GeoPandas
GeoPandas is an extension to pandas that handles geospatial data by extending the
datatypes of pandas, and the ability to query and manipulate spatial data. It provides tools
for reading, writing, and manipulating geospatial data, as well as for visualizing and mapping
data on a map. You can install GeoPandas using pip or conda as following:

$conda install geopandas or
$pip install geopandas

GeoPandas can handle different geospatial data formats such as Shapefiles (.shp), CSV
(Comma Separated Values), GeoJSON, ESRI JSON, GeoPackage (.gpkg), GML, GPX (GPS

125

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://geopandas.org/en/stable/index.html

©Manning Publications Co. To comment go to liveBook

eXchange Format) and KML (Keyhole Markup Language). For example, let’s assume we want
to read Ontario’s health region data based on a Shapefile than can be downloaed from
Ontario data catalogue. A Shapefile is a popular geospatial data format for storing vector
data (such as points, lines, and polygons). It is a widely-used format for storing GIS data
and is supported by many GIS software packages, including ArcGIS and QGIS. A Shapefile is
actually a collection of several files with different extensions, including:

• .shp: the main file that contains the geospatial data (points, lines, or polygons)
• .shx: the index file that allows for faster access to the data in the .shp file
• .dbf: the attribute file that contains the attribute data (non-geographic information)

for each feature in the .shp file
• .prj: the projection file that defines the coordinate system and projection information

for the data in the .shp file
• .sbx: spatial index of the features

Listing A.2 shows how to read this geospatial data downlaoded from
https://data.ontario.ca/dataset/ontario-s-health-region-geographic-data and stored in a local
folder.

Listing A.2 Reading geospatial data using GeoPandas

import geopandas as gpd
ontario = gpd.read_file(r"../Appendix B/data/OntarioHealth/Ontario_Health_Regions.shp")

Complete listing is available on the book GitHub repo.

A.3.4 contextily
contextily is a Python library for adding contextual basemaps to plots created with libraries
such as Matplotlib, Plotly, and others. For example, contextily can be used to add context
while we render the Ontario health region data as follows:

Listing A.2 Rendering data using contextily

#!pip install contextily
import contextily as ctx
ax=ontario.plot(cmap='jet', edgecolor='black', column='REGION', alpha=0.5, legend=True,

figsize=(10,10))
ax.set_title("EPSG:4326, WGS 84")
ctx.add_basemap(ax, source=ctx.providers.OpenStreetMap.Mapnik, crs=ontario.crs.to_string())

Contextily supports several different sources for basemaps. Some of the most commonly
used sources are:

• OpenStreetMap (OSM): is the default source for Contextily. It is a free and open-
source map service that provides a variety of different styles, including the default
"Mapnik" style and other styles such as "Humanitarian" and "Cycle".

• Stamen: provides a variety of different map styles, including "Toner", "Terrain", and
"Watercolor".

• Mapbox: provides a variety of different map styles, including "Streets", "Outdoors",
and "Satellite". It requires an API key to use.

126

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://data.ontario.ca/dataset/ontario-s-health-region-geographic-data
https://contextily.readthedocs.io/en/latest/

©Manning Publications Co. To comment go to liveBook

• MapQuest: provides a variety of different map styles, including "OSM" and "Aerial". It
requires an API key to use.

• Here: provides a variety of different map styles, including "Normal Day" and "Normal
Night". It requires an API key to use.

• Google Maps: provides a variety of different map styles, including "Roadmap",
"Satellite", and "Terrain". It requires an API key to use.

A.3.5 folium
folium is a library for creating interactive maps in Python using the Leaflet.js library. It
provides tools for reading, writing, and manipulating geospatial data, as well as for
visualizing and mapping data on a map. Folium can be used to create static or dynamic
maps, as well as to customize the appearance and behavior of the map. Listing A.2 shows
how to use folium to visualize Ontario Health regions on a map.

Listing A.2 Visualizing geospatial data on a map using folium

#!pip install folium
import folium

ontario = ontario.to_crs(epsg=4326) #A

m = folium.Map(location=[43.67621,-79.40530],zoom_start=7, tiles='cartodbpositron',
scrollWheelZoom=False, dragging=True) #B

for index, row in ontario.iterrows(): #C
sim_geo = gpd.GeoSeries(row['geometry']).simplify(tolerance=0.001)
geo_j = sim_geo.to_json()
geo_j = folium.GeoJson(data=geo_j, name=row['REGION'],style_function=lambda x:

{'fillColor': 'black'})
folium.Popup(row['REGION']).add_to(geo_j)
geo_j.add_to(m)

m #D

#A Transform geometries to a new coordinate reference system (CRS)
#B Set starting location, initial zoom, and base layer source
#C Simplify each region's polygon as intricate details are unnecessary
#D Render the map

Listing A.2_Graph_libraries.ipynb notebook available on the book’s GitHub repo provides
example of different ways of visualizing geospatial data such as chloropleth map, cartogram
map, bubble map, hexagonal binning, heat map and cluster map.

A.3.6 Pyrosm
Pyrosm is another Python library for reading OpenStreetMap from Protocolbuffer Binary
Format -files (*.osm.pbf). It can be used to download and read OpenStreetMap data, extract
features such as roads, buildings, and points of interest, and analyze and visualize the data.
The main difference between pyrosm and OSMnx is that OSMnx reads the data using an
OverPass API, whereas pyrosm reads the data from local OSM data dumps that are
downloaded from the Protocolbuffer Binary Format -files (*.osm.pbf) data providers

127

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://python-visualization.github.io/folium/
https://pyrosm.readthedocs.io/en/latest/

©Manning Publications Co. To comment go to liveBook

(Geofabrik, BBBike) and convert it into Geopandas GeoDataFrames. This makes it possible to
parse OSM data faster and make it more feasible to extract data covering large regions.
Listing A.2 shows how to use Pyrosm to retrieve OpenStreetMap data about specific region of
interest.

Listing A.2 Retrieving OpenStreetData using Pyrosm

#! pip install pyrosm
import pyrosm
place_name = 'Toronto' #A
file_path = pyrosm.get_data(place_name) #B
osm = pyrosm.OSM(file_path) #C

#A Specify the place of interest
#B Downloaded data from data providers such as Geofabrik, BBBike and store it into a local file
#C Initialize the OSM object that parses the generated .osm.pbf local file

Listing A.2_Graph_libraries.ipynb notebook available on the book’s GitHub repo provides
more examples about how to use Pyrosm.

A.3.7 Other libraries and tools
The following list is a non-exhaustive list of other useful libraries and tools to work on
geospatial data, graphs and networks.

• Pandana: is a Python library for network analysis that uses contraction hierarchies to
calculate super-fast travel accessibility metrics and shortest paths.

• GeoPy: is a Python client for several popular geocoding web services.
• Graphviz: is a library for creating visualizations of graphs and tree structures in

Python. It provides tools for defining the structure of a graph, as well as for rendering
the graph in various formats, such as PNG, PDF, and SVG. Graphviz is a useful tool for
visualizing algorithms that operate on graphs, such as graph search algorithms and
graph traversal algorithms.

• Gephi: is a tool for visualizing and analyzing graphs and networks. It provides a
graphical user interface for defining and customizing the appearance of graphs and
diagrams, as well as for visualizing algorithms and data structures. Gephi can be used
to visualize algorithms that operate on graph data, such as graph search algorithms
and shortest path algorithms.

• Cytoscape: is an open source software platform for visualizing complex networks and
integrating these with any type of attribute data.

• ipyleaflet: is an interactive widgets library that is based on ipywidgets. ipywidgets,
also known as jupyter-widgets or simply widgets, are interactive HTML widgets for
Jupyter notebooks and the IPython kernel. Ipyleaflet brings mapping capabilities to
the notebook and JupyterLab.

• hvplot: if you want to get going through your analysis with geopandas and
dataframes and all that. You should be aware of the significance of working with
vanilla GeoPandas, and that osmnx supports that and yields two dataframes: one for
all your nodes and one for all the edges.

128

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://udst.github.io/pandana/
https://geopy.readthedocs.io/en/stable/
https://graphviz.org/
https://gephi.org/
https://cytoscape.org/
https://github.com/jupyter-widgets/ipyleaflet
https://hvplot.holoviz.org/

©Manning Publications Co. To comment go to liveBook

• mplleaflet: is another leaflet-based library, but it plays really nicely
with matplotlib.

• Cartopy: Cartopy is a library for creating maps and geospatial plots in Python.
• Geoplotlib: Geoplotlib is a library for creating maps and visualizations in Python. It

provides tools for styling and customizing map elements, as well as for overlaying
data on top of maps. Geoplotlib can be used to create static or interactive maps, and
supports a variety of map projections and coordinate systems.

• Shapely: is an open source Python library for performing geometric operation on
objects in the Cartesian plane.

• deck.gl: is an open-source JavaScript library for WebGL-powered large dataset
visualization.

• kepler.gl: is a powerful open source geospatial analysis tool for large-scale data sets.

A.4 Metaheuristics Optimization Libraries
There are several metaheuristics optimization libraries in Python that provide
implementations of different metaheuristic optimization algorithms. Here are examples of
some commonly used libraries.

A.4.1 PySwarms
PySwarms is a library for implementing swarm intelligence algorithms in Python. It provides
tools for defining, training, and evaluating swarm intelligence models, as well as for
visualizing the optimization process. PySwarms supports a variety of swarm intelligence
algorithms, including particle swarm optimization (PSO) and ant colony optimization (ACO).
A.3 shows the steps to solve a function optimization problem using POS implemented in
PySwarms.

129

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://github.com/jwass/mplleaflet
https://scitools.org.uk/cartopy/docs/latest/
https://github.com/andrea-cuttone/geoplotlib
https://shapely.readthedocs.io/en/stable/
https://deckgl.readthedocs.io/en/latest/
https://kepler.gl/
https://pyswarms.readthedocs.io/en/latest/index.html

©Manning Publications Co. To comment go to liveBook

Listing A.3 Solving function optimization using PSO implemented in PySwarms

#!pip install pyswarms
import pyswarms as ps
from pyswarms.utils.functions import single_obj as fx
from pyswarms.utils.plotters import plot_cost_history, plot_contour, plot_surface
from pyswarms.utils.plotters.formatters import Mesher, Designer
import matplotlib.pyplot as plt
from IPython.display import Image #A

options = {'c1':0.5, 'c2':0.3, 'w':0.9} #B
optimizer = ps.single.GlobalBestPSO(n_particles=50, dimensions=2, options=options) #C

optimizer.optimize(fx.sphere, iters=100) #D

plot_cost_history(optimizer.cost_history) #E
plt.show()

m = Mesher(func=fx.sphere, limits=[(-1,1), (-1,1)]) #F
d = Designer(limits=[(-1,1), (-1,1), (-0.1,1)], label=['x-axis', 'y-axis', 'z-axis']) #G

animation = plot_contour(pos_history=optimizer.pos_history, mesher=m, designer=d,
mark=(0,0)) #H

animation.save('solution.gif', writer='imagemagick', fps=10)
Image(url='solution.gif') #I

#A To view animation in a Jupyter notebook
#B Set-up POS as an optimizer with 50 particles and predfined parameters
#C Solve the function optimization problem using PSO
#D Set-up Sphere unimodal function to be optimized using PSO and set up the number of iteration
#E Plot the cost
#F Plot the sphere function's mesh for better plots
#G Adjust figure limits
#H Generate animation for the solution history on a contour
#I Rendering the animation

A.4.2 Sckit-opt
scikit-opt is a library for optimization that provides a simple and flexible interface for defining
and running optimization problems with various metaheuristics such as genetic algorithm,
particle swarm optimization, simulated annealing, ant colony algorithm, immune algorithm
and artificial fish swarm algorithm. scikit-opt can be used to solve both continuous and
discrete problems. Listing A.3 shows the steps to solve a function optimization problem using
scikit-opt.

130

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://scikit-opt.github.io/scikit-opt/

©Manning Publications Co. To comment go to liveBook

Listing A.3 Solving function optimization using simulated annealing in scikit-opt

#!pip install scikit-opt
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sko.SA import SA

obj_func = lambda x: np.sin(x[0]) * np.cos(x[1]) #A

sa = SA(func=obj_func, x0=np.array([-3, -3]), T_max=1, T_min=1e-9, L=300,
max_stay_counter=150) #B

best_x, best_y = sa.run()
print('best_x:', best_x, 'best_y', best_y)

plt.plot(pd.DataFrame(sa.best_y_history).cummin(axis=0)) #C
plt.show()

#A Define a multimodal function
#B Solve using simulated annealing (SA)
#C Print the result

Let’s consider the TSP instance shown in Figure A.3. In this TSP, a travelling salesman must
visit 20 largest US cities starting from a specific city.

Figure A.3 Travelling Salesman Problem (TSP) for 20 largest US cities.

Listing A.3 shows the steps to solve this problem using scikit-opt.

131

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

Listing A.3 Solving TSP using scikit-opt

import numpy as np
import matplotlib.pyplot as plt
from sko.PSO import PSO_TSP

num_points = len(city_names) #A
points_coordinate = city_names #A
pairwise_distances = distances #A

def cal_total_distance(routine): #B
num_points, = routine.shape
return sum([pairwise_distances[routine[i % num_points], routine[(i + 1) % num_points]]

for i in range(num_points)])

pso_tsp = PSO_TSP(func=cal_total_distance, n_dim=num_points, size_pop=200, max_iter=800,
w=0.8, c1=0.1, c2=0.1) #C

best_points, best_distance = pso_tsp.run() #C
best_points_ = np.concatenate([best_points, [best_points[0]]])

print('best_distance', best_distance) #D
print('route', best_points_) #D

#A Define the TSP problem
#B The objective function. input routine, return total distance.
#C Solving the problem using particle swarm optimization (PSO)
#D Print the solution

A.4.3 networkx
networkx introduced in the previous section provides approximations of graph properties and
heuristic methods for optimization. Example of these heuristics algorithms is simulated
annealing. Listing A.3 shows the steps to solve TSP using simulated annealing implemented
in networkx.

Listing A.3 Solving TSP using simulated annealing networkx

#!pip install networkx
import matplotlib.pyplot as plt
import networkx as nx
from networkx.algorithms import approximation as approx

G=nx.Graph() #A

for i in range(len(city_names)): #B
for j in range(1,len(city_names)): #B

G.add_weighted_edges_from({(city_names[i], city_names[j], distances[i][j])}) #B
G.remove_edges_from(nx.selfloop_edges(G)) #B

pos = nx.spring_layout(G) #C

cycle = approx.simulated_annealing_tsp(G, "greedy", source=city_names[0]) #D
edge_list = list(nx.utils.pairwise(cycle)) #D
cost = sum(G[n][nbr]["weight"] for n, nbr in nx.utils.pairwise(cycle)) #D

print("The route of the salesman is:", cycle, "with cost of ", cost) #E

132

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

#A Create a graph
#B Add weighted edges to the graph and remove selfloop edges
#C Define pos is a dictionary of positions using using Fruchterman-Reingold force-directed algorithm
#D Solve TSP using simulated annealing
#E Print the route and the cost

A.4.4 Distributed Evolutionary Algorithms in Python (DEAP)
DEAP is a library for implementing genetic algorithms in Python. It provides tools for
defining, training, and evaluating genetic algorithm models, as well as for visualizing the
optimization process. DEAP supports a variety of genetic algorithm techniques, including
selection, crossover, and mutation. Listing A.3 shows the steps to solve TSP using simulated
annealing implemented in DEAP.

Listing A.3 Solving TSP using DEAP

#!pip install deap
from deap import base, creator, tools, algorithms
import random
import numpy as np

creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) #A
creator.create("Individual", list, fitness=creator.FitnessMin) #A

toolbox = base.Toolbox() #B
toolbox.register("permutation", random.sample, range(len(city_names)), len(city_names)) #B
toolbox.register("individual", tools.initIterate, creator.Individual, toolbox.permutation)

#B
toolbox.register("population", tools.initRepeat, list, toolbox.individual) #B

def eval_tsp(individual): #C
total_distance = 0
for i in range(len(individual)):

city_1 = individual[i]
city_2 = individual[(i + 1) % len(individual)]
total_distance += distances[city_1][city_2]

return total_distance,

toolbox.register("evaluate", eval_tsp) #D
toolbox.register("mate", tools.cxOrdered) #E
toolbox.register("mutate", tools.mutShuffleIndexes, indpb=0.05) #F
toolbox.register("select", tools.selTournament, tournsize=3) #G

pop = toolbox.population(n=50) #H
hof = tools.HallOfFame(1) #I
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("min", np.min)
stats.register("max", np.max)

pop, log = algorithms.eaSimple(pop, toolbox, cxpb=0.5, mutpb=0.2, ngen=50,
stats=stats, halloffame=hof, verbose=True) #J

best_individual = hof[0]
print("Best solution:") #K
print(" - Fitness: ", eval_tsp(best_individual)) #K
print(" - Route: ", [city_names[i] for i in best_individual]) #K

133

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://github.com/deap/deap

©Manning Publications Co. To comment go to liveBook

#A Create a fitness function that minimizes the total distance
#B Create the genetic operator functions
#C Calculate route length
#D Set evaluation function
#E Set an ordered crossover
#F Set shuffle mutation with probability 0.05
#G Select the best individual among 3 randomly chosen individuals
#H Set population size
#I Set hall of fame to select the best individual that ever lived in the population during the evolution
#J Solve the problem using simple evolutionary algorithm
#K Print solution

DEAP includes several built-in algorithms such as Genetic Algorithm (GA), Evolutionary
Strategy (ES), Genetic Programming (GA), Estimation of Distribution Algorithms (EDA) and
Particle Swarm Optimization (PSO).

A.4.5 OR-Tools
As previously mentioned, OR-Tools (Operations Research Tools) is an open-source library for
optimization and constraint programming developed by Google. Listing A.3 shows the steps
to solve TSP using Tabu Search implemented in OR-Tools.

134

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://developers.google.com/optimization

©Manning Publications Co. To comment go to liveBook

Listing A.3 Solving TSP using OR-Tools

#!pip install --upgrade --user ortools
import numpy as np
import matplotlib.pyplot as plt
from ortools.constraint_solver import pywrapcp
from ortools.constraint_solver import routing_enums_pb2

distances2=np.asarray(distances, dtype = 'int') #A

data = {} #B
data['distance_matrix'] = distances #B
data['num_vehicles'] = 1 #B
data['depot'] = 0 #B

manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']), data['num_vehicles'],
data['depot']) #C

routing = pywrapcp.RoutingModel(manager) #C

def distance_callback(from_index, to_index): #D
from_node = manager.IndexToNode(from_index)
to_node = manager.IndexToNode(to_index)
return data['distance_matrix'][from_node][to_node]

transit_callback_index = routing.RegisterTransitCallback(distance_callback)

routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

search_parameters = pywrapcp.DefaultRoutingSearchParameters()
search_parameters.local_search_metaheuristic = (

routing_enums_pb2.LocalSearchMetaheuristic.TABU_SEARCH) #E
search_parameters.time_limit.seconds = 30
search_parameters.log_search = True

def print_solution(manager, routing, solution): #F
print('Objective: {} meters'.format(solution.ObjectiveValue()))
index = routing.Start(0)
plan_output = 'Route for vehicle 0:\n'
route_distance = 0
while not routing.IsEnd(index):

plan_output += ' {} ->'.format(manager.IndexToNode(index))
previous_index = index
index = solution.Value(routing.NextVar(index))
route_distance += routing.GetArcCostForVehicle(previous_index, index, 0)

plan_output += ' {}\n'.format(manager.IndexToNode(index))
print(plan_output)
plan_output += 'Route distance: {}meters\n'.format(route_distance)

solution = routing.SolveWithParameters(search_parameters)
if solution:

print_solution(manager, routing, solution)

#A Convert float array into integer array for OR_Tools
#B Define problem data
#C Define a constraint programming solver
#D Get distance between the cities
#E Set up tabu search as a local search metaherutsic.
#F Print the solution

135

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

OR-Tools library also provides some metaheuristics implemented but not as many as
dedicated metaheuristics frameworks like DEAP. Examples include Simulated Annealing (SA),
Tabu Search (TS) and Guided Local Search (GLS).

A.4.6 Other Libraries
The following list is a non-exhaustive list of other useful libraries and tools to solve
optimization problems using metaheuristics.

• simanneal is an open-source Python module for simulated annealing. Listing A.3
shows the steps to solve TSP using simulated annealing implemented in simanneal.

• Non-dominated Sorting Genetic Algorithm (NSGA-II): is a solid multi-objective
algorithm, widely used in many real-world applications. The algorithm is designed to
find a set of solutions, called the Pareto front, which represents the trade-off between
multiple conflicting objectives. NSGA-II implementations are available in pymoo and
DEAP.

• Python Genetic Algorithms & Differential Evolution (PyGAD): is a library for
implementing genetic algorithms and differential evolution in Python. It provides tools
for defining, training, and evaluating genetic algorithm models, as well as for
visualizing the optimization process. PyGAD supports a variety of genetic algorithm
techniques, including selection, crossover, and mutation.

• Library for Evolutionary Algorithms in Python (LEAP): is a general purpose
Evolutionary algorithms (EAs) package that is simple and easy-to-use. It provides a
high-level abstraction for defining and running EAs.

• Pyevolve: is a Python library for implementing and running genetic algorithms that
provides a simple and flexible API for defining and running genetic algorithms.

• Genetic Algorithms made Easy (EasyGA): is another Python library for genetic
algorithms with several built-in genetic operators such as selection, crossover, and
mutation. It's worth noting that EasyGA and Pyevolve are simple libraries with less
functionalities and pre-defined problems than other libraries such as DEAP and
Pymoo.

• MEAPLY: is a Python library for population meta-heuristic algorithms.
• swarmlib: implements several swarm optimization algorithms and visualizes their

(intermediate) solutions.
• Hive: is a swarm-based optimization algorithm based on the intelligent foraging

behavior of honey bees. Hive implements the so-called Artificial Bee Colony (ABC)
• Pants: is a Python3 implementation of the Ant Colony Optimization Meta-Heuristics.

Listing A.3_Metaheuristics_libraries.ipynb included in the GitHub repo of the book shows how
to use some of these metaheuristics libraries.

A.5 Machine Learning Libraries
Machine learning can be used to solve discrete optimization problems where a ML model is
trained to output solutions directly from the input usually represented as a graph. To train
the model, the problem graph needs to be turned first in to feature vector using graph

136

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://github.com/perrygeo/simanneal
https://pymoo.org/algorithms/moo/nsga2.html
https://pygad.readthedocs.io/en/latest/
https://leap-gmu.readthedocs.io/en/latest/index.html
https://pyevolve.sourceforge.net/index.html
https://github.com/danielwilczak101/EasyGA
https://mealpy.readthedocs.io/en/latest/index.html
https://pypi.org/project/swarmlib/
https://rwuilbercq.github.io/Hive/
https://aco-pants.readthedocs.io/en/latest/

©Manning Publications Co. To comment go to liveBook

embedding/representation learning methods. Several Python libraries are available and can
be used for graph embedding and for solving optimization problems. The following subsection
shed some lights on the commonly used libraries.

A.5.1 Node2vec
node2vec is an algorithmic framework for learning low-dimensional representations of nodes
in a graph. Given any graph, it can learn continuous feature representations for the nodes,
which can then be used for various downstream machine learning tasks. To install node2vec,
use the following command:

$ pip install node2vec

Alternatively, you can install node2vec by cloning the repository from GitHub and running the
setup.py file:

$ git clone https://github.com/aditya-grover/node2vec
$ cd node2vec
$ pip install -e .

The following code illustrates how to use node2vec to learn low-dimensional representations
of nodes in a graph based on Zachary's karate club dataset. This dataset is a graph-based
dataset commonly used in network analysis and graph-based machine learning algorithms. It
represents a social network that contains information about the relationships between 34
individuals in a karate club. It was created and first described by Wayne W. Zachary in his
paper "An Information Flow Model for Conflict and Fission in Small Groups" back to 1977,
and has since become a popular benchmark dataset for evaluating graph-based machine
learning algorithms.

Listing A.4 node2vec Example

import networkx as nx
from node2vec import Node2Vec

G = nx.karate_club_graph() #A

node2vec = Node2Vec(G, dimensions=64, walk_length=30, num_walks=200, workers=4) #B

model = node2vec.fit(window=10, min_count=1, batch_words=4) #C

representations_all = model.wv.vectors #D

representations_specific = model.wv['1'] #E

print(representations_specific) #F

#A create a sample graph
#B create an instance of the Node2Vec class
#C learn the representations
#D get the representations of all nodes
#E get the representations of a specific node
#F print the representations of a specific node

137

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://snap.stanford.edu/node2vec/

©Manning Publications Co. To comment go to liveBook

You can visualize the generated low-dimensional representations using dimensionality
reduction technique such as t-SNE to project the representations onto a 2D or 3D space, and
then use a visualization library such as Matplotlib to plot the nodes in this space. t-
distributed stochastic neighbor embedding (t-SNE) is a statistical method for visualizing high-
dimensional data by giving each data point a location in a 2d/3d map. Here is an example:

from sklearn.manifold import TSNE #A
import matplotlib.pyplot as plt

tsne = TSNE(n_components=2, learning_rate='auto', init='random', perplexity=3) #B
reduced_representations = tsne.fit_transform(representations_all) #B

plt.scatter(reduced_representations[:, 0], reduced_representations[:, 1]) #C
plt.show() #C

#A import the requried libraries
#B perform t-SNE dimensionality reduction
#C plot the nodes

Running this code give the following visualization shown in Figure A.4.

Figure A.4 t-SNE-based visualization for the low-dimensional representations generated by node2vec.

A.5.2 DeepWalk
DeepWalk is a random walk-based method for graph embedding based on representation
learning. In the given example, we use DeepWalk module provided by Karate Club library.
This library is an unsupervised machine learning extension library for NetworkX. To use
DeepWalk, you can install KarateClub as follows:

$ pip install karateclub

138

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://karateclub.readthedocs.io/en/latest/

©Manning Publications Co. To comment go to liveBook

The following code illustrates how to use DeepWalk.

Listing A.4 DeepWalk Example

from karateclub import DeepWalk, Node2Vec #A
from sklearn.decomposition import PCA #B
import networkx as nx
import matplotlib.pyplot as plt
G=nx.karate_club_graph() #C

model=DeepWalk(dimensions=128, walk_length=100) #D
model.fit(G) #D

embedding=model.get_embedding() #E

officer=[] #F
mr=[] #F
for i in G.nodes: #F
t=G.nodes[i]['club']
officer.append(True if t=='Officer' else False)
mr.append(False if t=='Officer' else True)

nodes=list(range(len(G)))
X=embedding[nodes]

pca=PCA(n_components=2) #G
pca_out=pca.fit_transform(X) #G

plt.figure(figsize=(15, 10)) #H
plt.scatter(pca_out[:,0][officer],pca_out[:,1][officer]) #H
plt.scatter(pca_out[:,0][mr],pca_out[:,1][mr]) #H
plt.show() #H

#A Import DeepWalk. Noe2Vec is also available
#B Import Principal Component Analysis (PCA)
#C Create karate club graph
#D Define DeepWalk mode and fit the graph
#E Graph embedding
#F In KarateClub dataset, member represented by each node belongs can be 'Mr. Hi' or 'Officer'
#G Dimensionality reduction using Principal Component Analysis (PCA)
#H Visualize the embedding

A.5.3 PyG
PyG (PyTorch Geometric) is a library for implementing graph neural networks in Python using
the PyTorch deep learning framework. It provides tools for defining, training, and evaluating
Graph Neural Network (GNN) models, as well as for visualizing the optimization process. PyG
supports a variety of GNN architectures, including Graph Convolutional Network (GCN) and
Graph Attention Networks (GATs). You can install PyG as follows:

$pip install torch-scatter torch-sparse torch-cluster torch-spline-conv torch-geometric -f
https://data.pyg.org/whl/torch-1.13.0+cpu.html

The following code shows how to use PyG to generate Karate Club graph embedding using
GCN.

139

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://www.pyg.org/
https://data.pyg.org/whl/torch-1.13.0+cpu.html

©Manning Publications Co. To comment go to liveBook

Listing A.4 PyG Example

import networkx as nx
import matplotlib.pyplot as plt
import torch
from torch_geometric.datasets import KarateClub
from torch_geometric.utils import to_networkx
from torch.nn import Linear
from torch_geometric.nn import GCNConv

dataset = KarateClub() #A
data = dataset[0]

class GCN(torch.nn.Module): #B
def __init__(self):

super().__init__()
torch.manual_seed(1234)
self.conv1 = GCNConv(dataset.num_features, 4)
self.conv2 = GCNConv(4, 4)
self.conv3 = GCNConv(4, 2)
self.classifier = Linear(2, dataset.num_classes)

def forward(self, x, edge_index):
h = self.conv1(x, edge_index)
h = h.tanh()
h = self.conv2(h, edge_index)
h = h.tanh()
h = self.conv3(h, edge_index)
h = h.tanh() #C
out = self.classifier(h) #D

return out, h

model = GCN() #E

criterion = torch.nn.CrossEntropyLoss() #F
optimizer = torch.optim.Adam(model.parameters(), lr=0.01) #G
optimizer.zero_grad()

for epoch in range(401):
out, h = model(data.x, data.edge_index) #H
loss = criterion(out[data.train_mask], data.y[data.train_mask]) #I
loss.backward() #J
optimizer.step() #K

h = h.detach().cpu().numpy() #L
plt.figure(figsize=(15, 10)) #M
plt.scatter(h[:, 0], h[:, 1], s=140, c=data.y, cmap="Set2") #M

#A Use karate club dataset
#B Graph Convolutional Network class
#C Apply a final (linear) classifier
#D Final GNN embedding space
#E Define the model
#F Define loss criterion
#G Define optimizer and clear gradient
#H Perform a single forward pass
#I Compute the loss solely based on the training nodes

140

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

©Manning Publications Co. To comment go to liveBook

#J Derive gradients
#K Update parameters based on gradients
#L Convert 'h' from tenser format to numpy format for visualize
#M Visualize the embedding

PyG is well-supported library that provides the several features such as common benchmark
datasets (e.g., KarateClub, CoraFull, Amazon, Reddit, Actor), data handling of graphs, mini-
batches, data transforms and learning methods on graphs (e.g., Node2Vec, MLP, GCN, GAT,
GraphSAGE, GraphUNet, DeepGCNLayer, GroupAddRev and MetaLayer).

A.5.4 OpenAI Gym
OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms. It
gives you access to variety of environments such as:

• Classic control: a variety of classic control tasks
• Box2d: a 2D physics engine
• MuJoCo: is a physics engine which can do very detailed efficient simulations with

contacts
• Algorithmic: a variety of algorithmic tasks, such as learning to copy a sequence
• Atari: a variety of Atari video games
• gym-maze: a simple 2D maze environment where an agent finds its way from the

start position to the goal.

Gymnasium is a maintained fork of OpenAI’s Gym library. The following code illustrate how
to use OpenAI Gym.

Listing A.4 OpenAI Gym Example

#!pip install gym[all] #A
import gym
env = gym.make('MountainCar-v0') #A

#A Install all included environments
#B Create an environment

In this simple example, MountainCar-v0 has discrete actions. You can also use
MountainCarCoutinous-V0 that has continuous actions corresponding to the force that the car
is pushed. Complete listing is available in Listing A.4_ML_libraries.ipynb.

A.5.5 Flow
Flow is a deep reinforcement learning framework for mixed autonomy traffic. It allows you to
run deep RL-based control experiments for traffic microsimulation. You can install Flow as
follows:

$git clone https://github.com/flow-project/flow.git
$cd flow
$conda env create –f environment.yml
$conda activate flow
$python setup.py develop

141

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://github.com/openai/gym
https://gymnasium.farama.org/
https://flow-project.github.io/

©Manning Publications Co. To comment go to liveBook

Install flow within the environment

$pip install –e .

Flow enables studying complex, largescale, and realistic multi-robot control scenarios. It can
be used to develop controllers that optimize the system-level velocity or other objectives, in
the presence of different types of vehicles, model noise and road networks such as single-
lane circular tracks, multi-lane circular tracks, figure-eight network, loops with merge
network and intersections.

A.5.6 Other libraries
The following list is a non-exhaustive list of other useful ML libraries:

• Deep Graph Library (DGL) is a library for implementing graph neural networks in
Python. It provides tools for defining, training, and evaluating GNN models, as well as
for visualizing the optimization process. DGL supports a variety of GNN architectures,
including GCN and GAT.

• Stanford Network Analysis Platform (SNAP) is a general-purpose, high-performance
system for analysis and manipulation of large complex networks. SNAP includes a
number of algorithms for network analysis, such as centrality measures, community
detection, and graph generation. It is particularly well-suited for large-scale network
analysis and is used in a variety of fields, including computer science, physics,
biology, and social science.

• Spektral is an open-source Python library for graph neural networks (GNNs) built on
top of TensorFlow and Keras. It is designed to make it easy to implement GNNs in
research and production. It provides a high-level, user-friendly API for building GNNs,
as well as a number of pre-built layers and models for common tasks in graph deep
learning. The library also includes utilities for loading and preprocessing graph data,
and for visualizing and evaluating the performance of GNNs.

• Jraph (pronounced “giraffe”) is a lightweight library for working with graph neural
networks. Jraph (pronounced “giraffe”) is a lightweight library for working with graph
neural networks and it provide lightweight data structure for working with graphs. You
can easily work with this library to construct and visualize your graph.

• TF-Agents is a library for developing RL algorithms in TensorFlow, which includes a
collection of environments, algorithms, and tools for training RL agents.

• Keras-RL is a deep reinforcement learning library build in top of Keras. It provides an
easy-to-use interface for developing and testing RL algorithms. Keras-RL supports a
variety of RL algorithms such as deep Q-networks (DQN) and actor-critic methods.
There are also build in environments for testing RL algorithms.

• pyqlearning is Python library to implement Reinforcement Learning and Deep
Reinforcement Learning, especially for Q-Learning, Deep Q-Network, and Multi-agent
Deep Q-Network which can be optimized by annealing models such as Simulated
Annealing, Adaptive Simulated Annealing, and Quantum Monte Carlo Method.

• GraphNets is a library for implementing GNNs in Python. It provides tools for defining,
training, and evaluating GNN models, as well as for visualizing the optimization
process. GraphNet supports a variety of GNN architectures, including GCN and GAT.

142

https://livebook.manning.com/#!/book/optimization-algorithms/discussion
https://www.dgl.ai/
https://github.com/snap-stanford/snap
https://graphneural.network/
https://github.com/deepmind/jraph
https://www.tensorflow.org/agents
https://github.com/keras-rl/keras-rl
https://github.com/accel-brain/accel-brain-code/tree/master/Reinforcement-Learning
https://github.com/deepmind/graph_nets

©Manning Publications Co. To comment go to liveBook

Listing A.4_ML_libraries.ipynb notebook available on the book’s GitHub repo provides
examples about how to install and use some of these libraries.

143

https://livebook.manning.com/#!/book/optimization-algorithms/discussion

	Optimization Algorithms MEAP V02
	Copyright
	Welcome
	Brief contents
	Chapter 1: Introduction to Search and Optimization
	1.1 Why care about search and optimization?
	1.2 Going from toy problem to the real world
	1.3 Basic ingredients of optimization problems
	1.3.1 Decision Variables
	1.3.2 Objective Functions
	1.3.3 Constraints

	1.4 Well-structured problems vs. Ill-structured problems
	1.4.1 Well-structured problems (WSP)
	1.4.2 Ill-structured Problems (ISP)
	1.4.3 WSP but practically ISP

	1.5 Search Algorithms and the Search Dilemma
	1.6 Summary

	Chapter 2: A Deeper Look at Search and Optimization
	2.1 Optimization Problem Classification
	2.1.1 Number and Type of Decision Variables
	2.1.2 Landscape and Number of Objective Functions
	2.1.3 Constraints
	2.1.4 Linearity of Objective Functions and Constraints
	2.1.5 Expected Quality and Permissible Time of the Solution

	2.2 Search and Optimization Algorithm Classification
	2.3 Heuristics and Meta-heuristics
	2.4 Nature-inspired Algorithms
	2.5 Exercises
	2.6 Summary

	Chapter 3: Blind Search Algorithms
	3.1 Introduction to Graphs
	3.2 Graph Search
	3.3 Graph Traversal Algorithms
	3.3.1 Breadth-first Search (BFS)
	3.3.2 Depth-first Search (DFS)

	3.4 Shortest Path Algorithms
	3.4.1 Dijkstra Search
	3.4.2 Uniform-Cost Search (UCS)
	3.4.3 Bi-directional Dijkstra Search

	3.5 Applying Blind Search to Routing Problem
	3.6 Exercises
	3.7 Summary

	Appendix A: Search and Optimization Libraries in Python
	A.1 Setting up the Python environment
	A.1.1 Using a Python distribution
	A.1.2 Installing Jupyter Notebook and JupyterLab
	A.1.3 Cloning book repository

	A.2 Mathematical Programming Solvers
	A.2.1 SciPy
	A.2.2 PuLP

	A.3 Graph and Mapping Libraries
	A.3.1 networkx
	A.3.2 osmnx
	A.3.3 GeoPandas
	A.3.4 contextily
	A.3.5 folium
	A.3.6 Pyrosm
	A.3.7 Other libraries and tools

	A.4 Metaheuristics Optimization Libraries
	A.4.1 PySwarms
	A.4.2 Sckit-opt
	A.4.3 networkx
	A.4.4 Distributed Evolutionary Algorithms in Python (DEAP)
	A.4.5 OR-Tools
	A.4.6 Other Libraries

	A.5 Machine Learning Libraries
	A.5.1 Node2vec
	A.5.2 DeepWalk
	A.5.3 PyG
	A.5.4 OpenAI Gym
	A.5.5 Flow
	A.5.6 Other libraries

