

Cloud
Native AI and

Machine Learning on
AWS

Use SageMaker for building ML models,
automate MLOps, and take advantage of

numerous AWS AI services

Premkumar Rangarajan
David Bounds

www.bpbonline.com

http://www.bpbonline.com/

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information
presented. However, the information contained in this book is sold without warranty, either express
or implied. Neither the author, nor BPB Online or its dealers and distributors, will be held liable for
any damages caused or alleged to have been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the companies and
products mentioned in this book by the appropriate use of capitals. However, BPB Online cannot
guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork
119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55513-267

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to
My wife, Sapna Mohan Kumar,

my son Harivatsa Premkumar and
the darling of our home, our cat Phoebe.

Your loving presence is an encouragement and
inspiration that brings out the best in me.

— Premkumar Rangarajan
My wife, Michelle Webb.

I would rather share one lifetime with you than
face all the ages of this world alone.

— David Bounds

About the Authors
Premkumar Rangarajan is a Principal AI/ML specialist solutions
architect at Amazon Web Services and has previously authored the book
Natural Language Processing with AWS AI services. He has 26 years of
experience in the IT industry in a variety of roles, including delivery lead,
integration specialist, and enterprise architect. He helps enterprises of all
sizes adopt AI and ML, and in his spare time dabbles as a guest lecturer
helping students shape their careers.

David Bounds is a Senior Solutions Architect at Amazon Web Services
based out of Atlanta, Georgia. With more than 25 years in IT ranging from
front-line support to Site Reliability Engineering, David has a focus on
operationalization of workloads. He has an unrelenting passion for bringing
AI/ML tools and capabilities to engineers of all experience levels and
backgrounds. When he is not iterating over haiku-generation models, he
runs, works on his 3-D printer, or watches movies with his boxer, Darby. He
is preferential to action movies.

About the Reviewers
Radhakrishnan (Krishna) Gopal is a cloud evangelist, seasoned
technology professional, and mentor with over 23 years of Industry
experience. He has been helping organizations transform the way they work
by adding value and helping to deliver on-time development practices.
Krishna is experienced in all major cloud hyper-scalers including AWS,
Azure, and Google cloud. He holds two patents from the United States
Patent and Trademark Office and many certifications & accreditations in
the areas of Cloud, Data & Analytics. He served as a technical reviewer of
the book “The Definitive Guide to Modernizing Applications on Google
Cloud” from Packt. Krishna is passionate about building cloud-based, data-
intensive applications at scale to deliver business value through cloud
adoption and innovation.

Vamshi Krishna Enabothala is a Sr. Applied AI Specialist Architect at
AWS. He works with customers from different sectors to accelerate high-
impact data, analytics, and machine learning initiatives. He is passionate
about recommendation systems, NLP, and computer vision areas in AI and
ML. Outside of work, Vamshi is an RC enthusiast, building RC equipment
(planes, cars, and drones), and also enjoys gardening.

Acknowledgement
There are a few people we want to thank for the continued and ongoing
support they have given me during the writing of this book. First and
foremost, we would like to thank our families for continuously motivating
and supporting us in writing the book. They have been our pillars of support
during this journey.
We are grateful to the wonderful customers and partners of Amazon Web
Services AI/ML technologies whose feedback helped design some of the
solutions that are discussed in this book. We gratefully acknowledge Mr.
Gopal Krishna and Mr. Vamshi Krishna Enabothala for technically
reviewing and validating the ideas we have discussed in the book.
Our gratitude also goes to the team at BPB Publications for ongoing
support, encouragement and patiently answering our relentless questions on
the publishing process, and in continuously educating us in this momentous
journey.

Preface
The absorption of ML and AI into existing business processes is pretty
successful. Data professionals and cloud engineers are eyeing solutions
with cloud migration as part of the digital transformation strategy.
This book will present the readers with how data developers, data scientists,
and cloud engineers can seamlessly drive the entire ML and AI on AWS,
making maximum use of various AWS machine learning and AI services. In
this book, we will create data lakes, prepare and train ML models, automate
MLOps, prepare for maximum data reusability and reproducibility, and
various other tasks of successful AI deployments.
The book covers use-cases demonstrating effective use of AWS AI/ML
services. Readers will learn to leverage massive scale computing, manage
large data lakes, train ML and AI models, deploy them into production, and
monitor the performance of ML applications. The book also covers how
readers can use the pre-trained models across various applications such as
image recognition, automated data extraction, detection of images/videos,
identifying anomalies, and more. Throughout the book, we use AWS
capabilities such as Amazon Sagemaker, Amazon AI Services, frameworks
such as Pytorch or TF.
This book is divided into 12 chapters across three parts, namely Part 1 -
Know your data, Part 2 - Whose model is it anyway, and Part 3 - To API or
not to API. You will first read how ML and AI evolved in the last two
decades, understand the foundational concepts of computational learning,
and dive deep into what a ML workflow is and how the various stages in
the workflow come together to help design, build and deploy a reliable,
scalable and efficient solution to meet the most popular requirements for AI
and ML today. You will learn by doing, and will be walking through python
code samples, Jupyter notebooks, the AWS Management Console and APIs
to build your solution through the various stages of the ML workflow. The
chapter details are listed below.
Chapter 1 covers the evolution of ML and AI in the last couple of decades,
and an introduction to the ML workflow that enterprises use today to build

world-class ML applications. We will follow this with an introduction to the
AWS AI/ML stack and briefly delve into some of the major services that
address key stages of the ML workflow. These are the services that we will
cover in the rest of this book.
Chapter 2 will introduce the importance of data and its role in building ML
applications. We will learn why “data is the new oil” and learn to leverage
data to unleash the tremendous potential in using ML to transform
enterprises. We will look at the various ways data can be collected,
harvested, curated and stored in a S3 Data Lake in AWS, the different
options to analyze and make sense of the data, and finally prepare it for ML
training and inference. We will follow step by step instructions in executing
these tasks using easy to follow python code examples, Amazon SageMaker
Jupyter notebooks, AWS Lambda and more.
Chapter 3 covers one of the most important aspects of designing a ML
solution which is feature engineering. Features define the inputs and the
output of the ML model and will have to be considered very carefully as
they can directly influence the success of the model predictions. In this
chapter, you will learn what features are, why they are important, how to
select the features that matter, and different techniques for collection,
preparation and usage. We will learn with comprehensive coding examples,
how to apply feature engineering techniques for different ML domains and
problem types. Finally, we will use AWS Glue to automate the feature
engineering tasks.
Chapter 4 covers how to build a highly optimized collection of data
pipelines using a combination of analytics and ML to harvest what we need
for model training at scale but without the overhead of having to deal with
large data volumes. We will show you with coding instructions how to build
your own data pipelines for different types of ML use cases.
Chapter 5 discusses choices in algorithm selection when designing ML
models. If you want to run deep learning you use neural networks but that’s
not a given. So, what are algorithms and neural nets? And how do you
decide what to use? Why? What’s the difference between the two anyway?
Learn how to build powerful predictive models harnessing the power of
Math and Science with detailed code examples in this chapter.
Chapter 6 will cover model training. By this time in the book, you know
your ML problem, you know your data, you have decided what type of

training you need to do and have the algorithm or the neural net ready. It’s
now time to see what happens when the rubber hits the road. For your
specific ML problem, you first have to define the metric you have to
evaluate your model against, and then iterate through a combination of
model training and tuning to reach or exceed that metric. In this chapter, we
will see with actual code examples how to build, train, tune, and evaluate
your ML model using Amazon SageMaker, Jupyter notebooks and Python
code samples.
Chapter 7 will cover AutoML techniques including advanced ML
automation that is in high demand and becoming increasingly mainstream
using Amazon SageMaker Autopilot and Amazon SageMaker Canvas. You
will learn how to use SageMaker Canvas with its point and click visual
interface and SageMaker Autopilot under the hood to automate the entire
ML workflow all at the click of a button. We will also spend some time
reviewing the notebooks automatically generated by SageMaker Autopilot
to understand how the ML workflow was executed.
Chapter 8 covers model deployment strategies. By this time, you have
already completed model training and are ready to use it to make
predictions. You will learn how to predict at scale in real-time and also run
batch predictions for high volume accumulated datasets. You will
understand what needs to be considered when making deployment
decisions, and what are some of the cloud-based deployment strategies to
maximize efficiency and minimize costs.
Chapter 9 covers model inference design and implementation. You will
learn considerations for how your model endpoint will be used, what is the
scale it needs to support, and how you can build containers with model
libraries to serve inference requests. You will learn how to do all of this in
the most cost-effective way and at scale.
Chapter 10 covers sensory cognition AWS AI services. By this time in the
book, you would have gained comprehensive knowledge and experience in
building and deploying powerful ML models that operate at massive scale
to solve diverse challenges across industries. In this chapter we will pivot
from ML to AI to understand how we can leverage the AWS AI services.
Using just an API call that provides ready-made intelligence for a variety of
common use cases, we will build end-to-end solutions in a fraction of the
time it took us to build ML workflows on our own.

Chapter 11 covers AWS AI services for industrial automation. You now
understand how to use AWS AI service API calls to run powerful models
for common sensory cognition use cases, and you will continue in this
chapter to explore some of these AI services that are hugely popular in the
area of industrial automation specifically in predictive maintenance, and
time series forecasting
Chapter 12 covers MLOps. You are now an expert in knowing and
applying AI/ML with AWS for your enterprise use cases. You know how to
approach, design, build and deploy AI and ML solutions. But perhaps the
most important step is learning how to prepare it for production
deployment, and setting up an automated CI/CD pipeline for faster go-to-
market cycles across your business analyst, development, data scientist and
operations team. In this chapter we will use Amazon SageMaker pipelines
and the SageMaker data science SDK to learn how to build end-to-end
MLOps pipelines and in the process also learn some best practices for ML
model development and deployment.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/oq1o1sb
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Cloud-Native-AI-and-Machine-
Learning-on-AWS. In case there's an update to the code, it will be updated
on the existing GitHub repository.
We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.bpbonline.com and as a print book

https://rebrand.ly/oq1o1sb
https://github.com/bpbpublications/Cloud-Native-AI-and-Machine-Learning-on-AWS
https://github.com/bpbpublications
mailto:errata@bpbonline.com
http://www.bpbonline.com/

customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

mailto:business@bpbonline.com
http://www.bpbonline.com/

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book.
Thank you!
For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents
1. Introducing the ML Workflow

Introduction
Structure
Objectives
Evolution of AI and ML
Approaching an ML problem

Supervised Learning
Unsupervised Learning
Reinforcement Learning

Overview of the ML workflow
Common versus custom ML
Data preparation
Training preparation
Model Training
Model monitoring

Introducing AI and ML on AWS
Navigating the ML workflow

Scenario 1 – Timeseries forecasting
Scenario 2 – Sentiment detection

Conclusion
Points to Remember
Multiple Choice Questions

Answers
Further Reading

2. Hydrating the Data Lake
Introduction
Structure
Objectives
Chapter Scenario
The Data Lake
Securing your Buckets

Securing your Data Lake
Data Lakes for Machine Learning
The Importance of Hydration
Setting Up Your AWS Account
Starting Datasets
Streaming Data and the Data Lake

Amazon Kinesis
AWS DataSync
AWS Database Migration Service

AWS Schema Conversion Tool
AWS Snow Family

AWS Snowcone
AWS Snowball
AWS Snowmobile

Uncovering Patterns
Amazon S3 Select
AWS Glue

Glue Crawlers
Glue Databases
Glue Tables

Amazon Athena
Conclusion
Points to Remember
Multiple choice questions

Answers
Further Reading

3. Predicting the Future With Features
Introduction
Structure
Objectives
Technical Requirements

Onboard to SageMaker Studio
Cloning the repository to SageMaker Studio
Creating a S3 bucket and uploading objects

Introducing feature engineering
Feature engineering for NLP

Tokenize and remove punctuations
Convert to lower case
Remove stop words
Perform stemming and lemmatization

Feature engineering for computer vision
Resizing Images
Cropping and tiling images
Rotating images
Converting to grayscale
Converting to RecordIO format
Dimensionality reduction with Principal Component Analysis

Feature engineering for tabular datasets
Exploring the data
Imputing missing values
Feature selection
Feature frequency encoding
Target mean encoding
One hot encoding
Feature scaling
Feature normalization
Binning
Feature correlation
Principal Component Analysis

Conclusion
Points to Remember
Multiple Choice Questions

Answers
Further Reading

4. Orchestrating the Data Continuum
Introduction
Structure
Objectives
Demystifying the data continuum
Running feature engineering with AWS Glue ETL

Building the AWS Glue ETL job
Creating AWS Lambda function with an Amazon S3 trigger

Running the solution
Data profiling with AWS Glue DataBrew
Conclusion
Points to Remember
Multiple Choice Questions

Answers
Further Reading

5. Casting a Deeper Net (Algorithms and Neural Networks)
Introduction
Structure
Objectives
Introducing Algorithms and Neural networks

Deterministic Algorithms
Probabilistic Algorithms
Decision Trees
Entropy and Information gain
Gini Impurity for decision trees
Reduction in variance for regression
Neural Networks

Simplifying the Algorithm versus Neural network conundrum
What ML domain?
What ML use case?
What ML framework?
What ML data features?
Statistical models or decision tree considerations
Deep Learning and neural network considerations for Algorithms

Building ML solutions with Algorithms and Neural Networks
Using Amazon SageMaker Linear Learner Algorithm
Using a Multi-layer Perceptron or MLP neural network

Conclusion
Points to Remember
Multiple Choice Questions

Answers
Further Reading

6. Iteration Makes Intelligence (Model Training and Tuning)

Introduction
Structure
Objectives
The Meaning of Training
What Training Means for Deep Learning
GPU vs CPU
AWS Trainium
Transfer Learning
The Mise en Place of Model Training
Defining Model Training and Evaluation Metrics
Setting Up Model Hyperparameters
Script vs Container
Training Data Storage and Compute
Training Scenarios
Linear Regression
Natural Language Processing
Image Classification

Image Classification Round 2
Conclusion
Points to Remember
Multiple choice questions

Answers
Further Reading

7. Let George Take Over (AutoML in Action)
Introduction
Structure
Objectives
Running AutoML with SageMaker Canvas
Automated Hyperparameter Tuning
Using AutoGluon for AutoML
Conclusion
Points to Remember
Multiple Choice Questions

Answers

8. Blue or Green (Model Deployment Strategies)

Introduction
Chapter Scenario
Structure
Objectives
Inference Options

Testing and Validation
Real Time
Batch
Streaming

Choosing your Compute
Self-Hosted

Amazon SageMaker Endpoint
Inference Recommender
Serverless
Autoscaling

Inference at the Edge
Model Compilation

Deployment Mechanics
Narrative Generation
Linear Regression
Computer Vision

After the Deployment
Model Monitoring
Data Drift
Model Drift
Model Quality

Updating a Deployed Model
Blue/Green Deployments
A/B Testing
Multi-Model Endpoints

Conclusion
Points to Remember
Multiple Choice Questions

Answers
Further Reading

9. Wisdom at Scale with Elastic Inference

Introduction
Structure
Objectives
Understanding SageMaker ML Inference options

SageMaker real-time endpoints for one-model one-container
SageMaker real-time endpoints for multi-model one-container
SageMaker real-time endpoints for multi-model multi-container
SageMaker endpoints for asynchronous inference
SageMaker endpoints for serverless inference
SageMaker transformer for batch inference

Running Inference with SageMaker Hosting
Setting up IAM permissions
Inference with real-time endpoints
Inference with serverless endpoints
Inference with Batch Transform
Adding a SageMaker Elastic Inference (EI) accelerator

Conclusion
Points to Remember
Multiple Choice Questions

Answers
Further Reading

10. Adding Intelligence with Sensory Cognition
Introduction
Structure
Objectives
Introducing AWS AI services

Amazon Transcribe for automatic speech recognition
Amazon Rekognition for computer vision
Amazon Translate for machine translation
Amazon Polly for text to speech
Amazon Comprehend for deriving insights

Adding sensory cognition to your applications
Setting up IAM permissions
Using Amazon Transcribe for speech recognition
Using Amazon Rekognition for computer vision
Using Amazon Translate for language translation

Using Amazon Polly for speech generation
Using Amazon Comprehend for deriving insights

Conclusion
Points to Remember
Multiple Choice Questions

Answers

11. AI for Industrial Automation
Introduction
Structure
Objectives
Overview of AI for Industrial Automation
Cost of Poor Quality or COPQ

Improve product quality
Prevent manufacturing failures

Quality Control with Amazon Lookout for Vision
Predictive Analytics with Amazon Lookout for Equipment
Conclusion
Points to Remember
Multiple Choice Questions

Answers

12. Operationalized Model Assembly (MLOps and Best Practices)
Introduction
Chapter Scenario
Structure
Objectives
MLOps Defined
Orchestration Options

Amazon SageMaker Pipelines
AWS CodePipeline
AWS Step Functions

AWS Step Functions Data Science SDK
Apache Airflow Workflows

Phase Discrimination
Data Transformation
Model Training

Model Evaluation
Model Artifact Management
Model Deploy

Best Practices using the AWS Well-Architected Lens for Machine
Learning

Conclusion
Multiple Choice Questions

Answers
Further Reading

Index

CHAPTER 1
Introducing the ML Workflow

Introduction
Machine Learning or ML is simply the art and science of teaching machines
to learn patterns in data (numbers, images, text, and so on) and using these
patterns to either predict an outcome or infer a label. In comparison to
regular programming that enables machines to perform a particular task
really well, ML teaches machines to be intelligent and derive previously
unseen relationships in data. Consider, for example, the process of
withdrawing cash from your bank Automated Teller Machine (ATM). You
insert your card, the machine asks for your PIN, you enter the PIN, the
machine validates the PIN and if it is valid, presents you the banking menu.
This is an example of regular programming. The bank's ATM software
understands your card and the account number it’s linked to, knows your
PIN and validates if it’s correctly entered, and finally, displays the banking
menu. The software has been designed to perform this task repetitively and
accurately.
However, the software is not learning from how users interact with its
functions, nor is it trained to look for patterns in usage. So, even if this card
is inserted into an ATM located in an entirely different country compared to
where is it regularly used from, the ATM software will happily disburse cash
if the PIN is found to be valid. This, of course, is a problem because it might
not be you using the ATM but someone who has stolen your card details and
is accessing your account without your knowledge. And this is where ML is
really helpful; it can understand that there is something abnormal with this
usage pattern, and it triggers an alert. Not only anomaly detection, ML
models can be trained to detect fraud in banking and credit card transactions,
classify images, predict movie genres, detect sentiment in text, detect objects
from images and videos, recognize audio, track player movements in sports,
and even drive vehicles autonomously.

In this book, we will learn with practical examples and detailed instructions
how to build a ML workflow step by step and apply it for a variety of
business use cases. But first, we need to understand some foundational
concepts of ML and Artificial Intelligence or AI: how did it come about,
how did it evolve, how did cloud computing make ML more accessible and
how to leverage the Amazon Web Services (AWS) AI/ML services to build
our ML solutions. We also need to learn some of the best practices to
determine if ML is the right fit for a business problem, and how to navigate
the plethora of options available to build ML solutions today. We will cover
these introductory concepts in the following sections.

Structure
In this chapter, we will dive deep into the following topics:

Evolution of AI and ML
Approaching an ML problem
Overview of the ML workflow
Introducing AI and ML on AWS
Navigating the ML highway

Objectives
The goal of this chapter is help raise awareness on what ML and AI mean at
the foundational level and serve as a refresher for key concepts. Whether
you are hearing about ML for the first time, or you are an experienced
practitioner, this chapter will help you quickly come up to speed and be
better prepared to get your hands dirty applying concepts and building your
own ML solutions in the subsequent chapters. This chapter is primarily
theoretical, so it is more reading and assimilating than doing. When we get
to Chapter 2, Hydrating Your Data Lake, which will be hands-on, we will
provide instructions on how to get started with AWS.

Evolution of AI and ML
It all started with the game of chess! It is indeed interesting as to why
computer engineers often use chess to test their designs for intelligent
computers. Why not say a game of monopoly or scrabble? It might probably

be because chess is a game of skill rather than of recall or chance. The
author is not an avid chess player but understands how the pieces move and
what the rules are. In chess, the strategy of the consequence of the move is
more important than the tactical act of the move itself. You need not only
determine your move but also predict your opponent's retaliatory move, and
then firm up strategies to counter that and so on. In this analogy, ML
determines the play strategy, and regular programming executes it. But hold
on, we seem to be digressing!! How is chess and ML connected? To
understand this, let's time travel back to the 1960s, when the Beatles ruled
the music industry.
While the world was in rapture with hits like "Yesterday" and "Let it be",
Richard Greenblatt created the first artificial intelligence (AI) chess program
to play humans in a tournament setting in a different corner of the world.
Even though we have been fantasizing about creating an intelligent machine
to play chess as early as the 18th century, the seeds for Greenblatt's work
were sown in 1950, when Alan Turing, often considered the father of
computer science and AI, wrote the world's first program to play chess.
Since GUI was unheard of in those days, Turing himself had to play the role
of the computer and translate moves based on outputs from his algorithm.
The keyword here is "algorithm", which is at the core of how ML works. In
the typical sense, an algorithm is an automation of a set of dependent actions
that process inputs and derive outputs. Another important element without
which an algorithm cannot work, is the data that constitutes the inputs and is
a consequence of the outputs. Algorithms define what the task is and how
should it be performed. In the context of chess, the algorithm would be
aware of the rules, the roles of the various pieces, and how a move is to be
executed. The data, on the other hand, would be the current position of the
various pieces on the board, and the knowledge associated with historical
game play strategies and moves that players train on.
As you can see, algorithm and data must work in tandem to create a
successful play; this is true with ML as well. The learning aspect of ML is
the algorithm powering through the data to uncover a generalized function
that can help it interpret how the inputs (a set of columns in the data) can
help derive an output (a target column we want to predict). When a function
has been arrived at with adequate accuracy, the algorithm is considered
learned and is exposed to previously unseen data of input columns only, to
predict the target column or the output. And this is at the crux of machine

learning or ML. Simple, right? It may appear so because all we seem to be
doing is taking a few mathematical functions, coding them
programmatically, throwing a bunch of data at them repeatedly, hoping that a
pattern may be established. For example, a Decision Tree is a very common
algorithm in ML used for classification (predict a class) or regression
(predict a value) problems. In simple terms, Decision Trees (shown in
Figure 1.1) are how a flow chart of decisions lead to an outcome, which can
either be a class or a value based on the problem we are trying to solve. It
primarily helps a model understand the generalization in the data that leads
to a particular decision or a target value with the model learning from
features that are tagged with decision labels in the training dataset:

Figure 1.1: Decision Tree to determine cuisine choices

There are, however, major challenges to be overcome at every step of the
way until we get to a working version of a ML model. The biggest of them is
infrastructure or the hardware power needed to accomplish a ML training

task. Until the mid-2000s, before the cloud gained popularity, only the
largest and the most well-funded enterprises had the capability to set up
infrastructure at the scale needed to run ML training. Costs were driven up
by the need for petabyte scale data storage, high-performance computing
hardware (lots of high-powered cores in a cluster) for distributed architecture
to reduce training time, and processing power at the scale of TERAFLOPS
(trillion floating point operations per second) or even petaflops. According
to this interesting article
(https://visual.ly/community/Infographics/technology/cost-data-storage-
through-years) accessed on February 2022, the cost of 1MB of storage
evolved from $10,000 in 1956 to $0.0006 in 2005. And yet, for large-scale
ML training that needed 100s of terabytes or petabytes of data, storage costs
alone were in the $100K to $500K range in the 2000s. Add this to the price
of processing power, and it cost $82 per GFLOPS in 2003 (according to this
article https://aiimpacts.org/wikipedia-history-of-gflops-costs/ accessed in
February 2022), which equals approximately $100K in compute alone;
quickly, the initial investments for ML became unmanageable except for
large enterprises.
That's why ML remained a peripheral technology until the advent of cloud
computing. AWS is a pioneer in democratizing the power of high-
performance computing and making it accessible for everyone, which paved
the way for ML to become mainstream. Today, companies of all sizes and
across industries are harnessing the power and capabilities of ML for a
diverse set of use cases, and the list of ML applications keeps growing. With
pay-as-you-go pricing and the agility of spinning up infrastructure in
minutes globally, the possibilities are endless. For example, it only costs
$28.15 to run an hour of ML training on a p3.16x.large instance that's one of
the most powerful high-performance instances in the cloud today with 8
V100 Tensor Core GPUs, 64 vCPUs, and 25 Gbps of networking
performance.
When we continue to examine some of the other challenges ML faced in the
past, we see why AWS's cloud native AI/ML services have gained popularity
and have been widely adopted across enterprises. After solving infrastructure
challenges, organizations struggled to hire experts with the skill sets required
to create ML algorithms, that is, a combination of advanced mathematics
and programming. We are talking about scientists with PhD in Computer
Science who were actively working in applied research. They were very rare

https://visual.ly/community/Infographics/technology/cost-data-storage-through-years
https://aiimpacts.org/wikipedia-history-of-gflops-costs/

to find (and still are), and affordability was an issue for all but big
enterprises. The consequence of both the infrastructure and skill set
requirement led to ML projects taking a long time to complete. Additionally,
the data that was key to run ML training was often in diverse and disparate
sources internal and external to the organization, and the technical capability
to bring this data together for analysis and manipulation was both time-
consuming and costly.
AWS AI/ML capabilities are built to remove these obstacles and make it
easy for organizations to adopt ML and transform their business. First, we
saw how infrastructure provisioning is easy and cost-effective with pay-as-
you-go pricing and agility. To solve issues with ML skill shortages, AWS
offers the AI services layer that provides pre-trained ML models available
behind an API call for common ML use cases like image classification,
object detection, and natural language processing. To make it easy for those
developers and data scientists who want to build and train ML models
without having to worry about complex mathematical functions, Amazon
SageMaker is an AWS service that provides the capability to execute end-to-
end ML workflow tasks within an integrated development environment built
for ML and comes with algorithms. And since the AI/ML services are
natively integrated with the rest of the AWS services, it is very easy to ingest
data from various sources, transform and analyse the data, derive features,
run pre-processing tasks, and then use it for ML training. We will see how to
do this in detail in the subsequent sections and throughout this book.
As ML started becoming mainstream with the cloud gaining popularity, the
scope of ML use cases increased in complexity with demand for more
intelligent applications like autonomous driving, cancer detection, and
climate research. This led to the development of deep learning models that
could learn billions of parameters. This needed a layered architecture that
could learn complexities in the data more deeply, so the neural network was
born. It is deep learning and neural networks that powered the AI revolution
in the past decade. Neural networks or Artificial Neural Networks (ANN)
are a mathematical representation of how the human brain is understood to
work in a compute context. Neurons are stacked in a combination of input,
output and hidden layers. Each neuron in a hidden layer is provided an input
of the sum product of outputs from the previous layer. Random co-efficients
called as weights are also assigned to the neuron in the current layer to
which a static bias is added and this combined value is passed to an

activation function that determines the output that will be passed to the next
layer. The following image shows a representation of how neural networks
are constructed:

Figure 1.2: A simple three-layer neural network for binary classification

There are different types of activation functions, such as Rectified Linear
Unit (ReLU), Sigmoid and Hyperbolic Tangent, that are used for deep
learning networks; ReLU is the most commonly used today. There are

different types of neural networks available based on the type of deep
learning task, with some of the most popular ones being Convolutional
Neural Networks (CNNs) for image processing, Recurrent Neural
Networks (RNNs) for speech/text processing, and sequence to sequence that
use a combination of RNNs for language translation tasks. For in-depth
information about neural networks and activation functions, refer to the
training curriculum offered by AWS Machine Learning University at
https://aws.amazon.com/machine-learning/mlu/.
While deep learning was gaining momentum, companies were also
developing ML frameworks to make it easy for developers and data
scientists to assemble the algorithms and neural networks for ML training.
Some of the most popular ML frameworks are Apache MXNet
(https://mxnet.apache.org/versions/1.9.0/), Google Tensorflow
(https://www.tensorflow.org/overview/), and Facebook's PyTorch
(https://pytorch.org/). There are other frameworks like Scikit Learn
(https://scikit-learn.org/stable/) for common ML tasks and Deep Graph
Library (https://www.dgl.ai/) for graph-based neural networks that are also
quite popular among ML enthusiasts. All these frameworks are supported by
AWS for building your ML solution. Based on the type of ML requirement,
you can use a combination of algorithms, neural networks and frameworks.
For your reference, the following table shows how the ML frameworks are
applied for common ML use cases. These should be used as suggestions, and
depending on a scenario, there are multiple ways to do the same thing:

ML topic ML use case ML
framework/library

Algorithm/Neural
network

Computer Vision Image classification TensorFlow Keras,
MXNet, PyTorch

CNN

Object detection TensorFlow object
detection, MXNet
GluonCV, PyTorch
Detectron2

CNN, Single Shot
Detector (SSD), You
Only Look Once
(YOLO)

Instance segmentation TensorFlow object
detection, MXNet
GluonCV, PyTorch

Mask R-CNN

Natural Language
Understanding

Automated speech
recognition

TensorFlow, MXNet
LSTM, PyTorch

RNN, Long Short-
Term Memory (LSTM)

Machine translation TensorFlow, MXNet,
PyTorch

RNN, Neural Machine
Translation,

https://mxnet.apache.org/versions/1.9.0/
https://www.tensorflow.org/overview/
https://pytorch.org/
https://scikit-learn.org/stable/
https://www.dgl.ai/

Sequence2Sequence

Natural Language
Processing

Sentiment analysis TensorFlow Keras,
MXNet Gluon,
PyTorch

RNN, CNN, Support
Vector Machines
(SVM)

Text classification TensorFlow Keras,
MXNet Gluon,
PyTorch

Amazon SageMaker
Blazing Text, FastText,
SVM, RNN, Random
Forest

Tabular data Regression TensorFlow Keras,
MXNet, PyTorch

Linear Regression,
Decision Trees,
XGBoost, Multilayer
Perceptron (MLP)

Classification TensorFlow Keras,
MXNet, PyTorch

Linear Regression,
Decision Trees,
XGBoost, MLP

Table 1.1: Mapping of ML use cases to frameworks and algorithms

The alert reader in you might be wondering why we mentioned the music
band Beatles in an earlier paragraph. How is music and ML connected? You
will be surprised to know that the reach of AI and ML is not limited to
industrial applications; it encompasses the artistic dimension as well. For
example, AWS DeepComposer, a service to educate the capabilities of ML,
not only enhances music composed by humans but also creates entirely new
notes and tunes from a basic input piece that you provide. Take a look at the
following figure, which shows how you can compose music using ML with
DeepComposer:

Figure 1.3: AWS DeepComposer Music Studio

DeepComposer uses a variety of ML techniques, such as Generative
Adversarial Networks (GANs), Auto Regressive Convolutional Neural
Network (AR-CNNs) and Transformers to do this. GANs enable the
creation of new music in the form of accompaniments to the original track
by setting up two neural networks to compete against each other with one
network using unsupervised learning and the other using supervised
learning. With AR-CNNs, music generation is viewed as a time series
problem, with notes from the past along with all embellishments that
currently exist used to predict the notes that need to be generated.
Transformers, introduced in 2017, are an advancement that overcomes
constraints with CNNs and RNNs. The transformer architectrure allows data
to be processed in parallel and accounts for variable length sequences and
long-term dependencies in the data, which is important in music. You can
check out https://aws.amazon.com/deepcomposer/ if you are interested to
learn more and try it out yourself.
Now that we have piqued your interest, it is time to take a deeper look at
understanding where to start. ML has been around for a while, and the
choices available make it overwhelming to determine the right roadmap for
your ML project. That's why the approach is as important as the execution.
In the next section, we will learn how to approach a business challenge and
determine whether ML is the right fit for a solution, what some of the best
practices to make this determination are, whether ML is indeed the right
approach, and what the next steps are.

Approaching an ML problem
After having learned some core concepts of ML and how cloud computing
made it popular, we need to ask ourselves if ML is the answer to every
problem out there. Considering how accessible it is and the excitement of
what's possible, we may be tempted to use ML for every challenge we are
asked to solve, but this is not a rational approach, as ML projects take time
because of their iterative nature and have cost implications depending on
what's needed. So, the first question we need to ask is, "Is this really a ML
problem"?
Suppose you are an AI/ML specialist at a big retailer, and your manager
wants you to build an ML solution for inventory optimization as the retailer

has recently suffered losses due to inadequate demand/supply management
within stores and among suppliers. So, you first set out to investigate if this
situation really requires ML. You identify two facets to this problem: issues
with the inventory allocation system in correctly matching demand from the
stores with the suppliers, and the lack of demand forecasting capability
within the organization. When you perform a root cause analysis of the
inventory allocation issue, you notice that there were demand spikes from
the stores many times during the past year due to panic buying, the
pandemic, and other external factors that severely impacted the price
elasticity of several commodities. This caused the inventory allocation
system to directly escalate to the suppliers who were already impacted by
ongoing labour issues and input shortages.
Your investigation shows that you don't need ML to fix the inventory
allocation issue. The system just needed to be tuned to moderate inventory
replenishment in a much more streamlined fashion, along with a threshold
established to alert supervisors whenever demand spikes are encountered.
But you also realize that ML can add value in this situation by means of a
demand forecasting solution that can predict inventory needs. And to take
this forward, you start learning about Amazon Forecast
(https://aws.amazon.com/forecast/), a fully managed automated ML
powered time series forecasting service from AWS. We will cover this in
Chapter 11, AI for Industrial Automation, of this book.
So, how do you know what ML is necessary for and what can be solved by
regular programming? To answer this question, let us first understand the
different types of ML, how they map to business challenges they can solve,
and where do they fit in the broader context of solution development. You
can think of ML as a collection of tools, processes, frameworks, techniques,
and APIs that aid in the development of applied Artificial Intelligence
solutions. Any entity that does not have consciousness but can learn and
evolve from its inputs is considered to be Artificially Intelligent. In this
context, ML enables AI to be what it is. But it does not stop there. As we
saw in a previous section, with the advent of cloud computing and ML
becoming very popular, technology evolved into Deep Learning (DL) to
solve bigger problems and enable complex learning across billions of
parameters. While ML dabbled with frameworks and algorithms, DL
brought on the heavy equipment with neural networks, distributed training,
data parallelism, and so on. And it was DL that took a previously relatively

weak attempt at AI (for example, a robotic sounding voice in the case of
text-to-speech) and made it more human-like, thereby truly revolutionizing
the field of AI. Refer Figure 1.4 that shows relationship between AI, ML
and DL:

Figure 1.4: AI, ML and DL

In essence, DL is a subset of ML, and they both contribute to the realm of
AI. When you build neural networks to train large-scale models, you are
performing deep learning. An example is text summarization with natural
language processing using Transformer models. When you are using
algorithms to perform small- to medium-scale tasks like using Decision
Trees to predict a particular outcome, it is ML. ML and DL can be further
categorized based on how they learn a generalization approach. We will
discuss the most common categories in the following subsections.

Supervised Learning
When you train a model by providing labeled data for the target column you
want it to predict, it is called supervised learning. You are telling the model
to learn an approximation function for predicting the target value using a set

of labelled input values as a training dataset. Suppose the problem is to
predict house prices; you train a model with historical data of house prices
along with input values like the size of the house, location, schools nearby
and accessibility. Since the historical data has the house price as labels in the
training dataset, it can approximate the relationship between the input values
and the house prices.
Example Algorithms: XGBoost, Linear Regression, Naïve Bayes, Support
Vector Machines
Common Uses: sentiment analysis, movie genre prediction, cancer
prediction, churn prediction

Unsupervised Learning
When you train a model without labels in the data, it is called unsupervised
learning. This technique is primarily used for clustering or anomaly
detection requirements. Suppose you have a large demographic dataset of
people and want to determine the major factors that influence the grouping
of individual datapoints; clustering is a good way to determine that. If there
are commonalities in the data based on age, race, gender, employment status,
and so on, the clustering will uncover that. Or if you want to determine what
causes surge pricing to activate in your rideshare dataset, an unsupervised
learning algorithm can help you isolate those spikes. Apart from anomalies
and clustering, unsupervised learning applies to the nearest neighbours,
dimensionality reduction and more.
Example Algorithms: K-means Clustering, K-Nearest Neighbours,
Principal Component Analysis, Random Cut Forest
Common Uses: Fraud prediction, anomaly detection, data distribution
analysis

Reinforcement Learning
Here, the learning is achieved by an iterative process of interaction and
incentivization between an agent and its environment. A reward function
determines the incentivization. An agent in an environment is rewarded if it
takes the right action (from a list of actions available to the agent), and it is
penalized if it takes the wrong action. There are two networks that work
together to implement the learning. The agent's value network is set up to

maximize reward and hence, the value. The policy network learns the
outcome for every input action that the agent takes. This type of learning is
similar to the real-life situation of training a dog. If it behaves well, you give
it a snack; if it does something bad, you punish it. This way, the dog learns
good behaviour.
Example Algorithms: Proximal Policy Optimization, Deep Q Network
Common Uses: Autonomous driving, gaming, drones
Now that we understand different types of ML and what they can be used
for, let’s tackle the question that you will face as you start helping your own
customers adopt ML: "to ML or not to ML". To make your decision easier,
the following table addresses common situations when you will face this
question and the considerations that will help you make the right decision for
your projects:

Customer need Probable use case To ML or not to ML? Why?

Trading portfolio
tracking

Track the portfolio
position across several
trades and provide
status updates on gains
and losses

No ML ML works based on
derivatives and
predictions. This use
case is an ask to keep
track of gains and
losses across trades.
Regular programming
can help with this.

Predicting stock prices Predict future stock
prices

ML Here, we are asked to
predict the future
values based on
historical performance,
which is what ML
excels at.

Determining tax codes
for product categories

Look up tax codes
based on product
information

No ML There is no need to
predict or derive
anything here. It is a
lookup function of a
pre-determined value
based on a
combination of input
values.

Automating inspection
of machine parts

Monitor, detect and
alert defective machine
parts

ML This needs intelligence
to analyze pictures or
videos to determine the
condition of what's

being looked at, so ML
is needed.

Determining new
product features to
support

Identify market
interest for new
product lines or
features

No ML While ML can assist in
modeling information,
the actual decision
needs to be made by a
logical analysis of the
underlying factors.

Utility usage tracking
and billing

Track customer usage
of utilities and
generate monthly bills

No ML There are meters that
can track usage and
provide this
information. The
billing amount can be
calculated based on
rate categories and
usage.

Table 1.2: To ML or not to ML

“If I had one hour to save the world, I would spend fifty-five minutes
defining the problem and only five minutes finding the solution.“

– Albert Einstein

A lot to absorb, right? Maybe. But that was us just scratching the surface of
ML's potential. We are now about to get into the weeds of what ML really is,
and how to build world-class ML applications that are secure, reliable and
scalable. A methodical approach is helpful when setting out to solve a
complex ML problem that often comprises a multitude of moving parts. Not
only does it provide guidance on what needs to be done, but it also informs
us how to do it, what is the sequence that must be followed, what needs to be
prioritized and what are the tools that help us achieve the task. In the next
section, we will learn about the ML workflow, the key components of ML
solution building and how to use it to deliver success in your ML projects.

Overview of the ML workflow
If you have never worked on an AI/ML project before, you are in the right
place. If you have worked on a ML project before but want to learn how to
execute it end to end, like some of the largest enterprises, you are still in the
right place. Simply put, everything starts, lives in and ends with the ML
workflow. If there is such a thing as the 10 commandments here, that would

be defined by the ML workflow. Why is it so important? Because it gives
you a blueprint of everything you need to implement your project. Think of
it as a checklist of tasks with prescriptive guidance on how to go about
designing and implementing ML solutions. Without further ado, let’s dive
right in. Refer Figure 1.5 for an overview of the ML workflow:

Figure 1.5: AI/ML Workflow with AWS services

As you can see, it's a pretty crowded picture with many boxes and arrows
and a lot text. But there is a logical simplicity to the whole thing that we will
attempt to highlight in the following subsections, which will hopefully
demystify this picture for you.

Common versus custom ML
First things first. A business need must exist that prompts the creation of an
ML project. Do not be tempted to try out ML in your organization just
because it’s a cool thing to do or because of the fear of missing out. If you
just want to learn about the technology, of course, go ahead. You may
expand on an existing business need to improve efficiency using ML. For
example, when solving an inventory management issue, you may use ML to
implement demand forecasting to increase efficiency in your operations. For
more details, you can refer to the previous section, Approaching an ML
problem:

Figure 1.6: AWS AI services for common solutions

Once there is a clear need and we have adequately understood the problem,
we must determine if it can be addressed by a common ML solution or one
that needs custom development. The following table guides you on the
common problem types for which AWS provides pre-trained ML models
called AWS AI services by means of an API that you can easily include in
your application without having to worry about model training. We will
discuss the AWS AI services in the next section:

ML problem type ML sub type ML use case

Sensory Cognition Computer Vision Image classification, object detection

Speech Speech to text

Text to speech

Text Sentiment detection, entity recognition, text
classification

Machine translation

Text extraction

Intelligent search

Chatbots Conversational interfaces

Enterprise/Industrial Business tools Fraud detection

Recommendations

Forecasting

Anomaly detection

Industrial intelligence Predictive monitoring

Predictive analytics

Healthcare Text analytics

Speech analytics

Healthcare analytics

Operations Development
intelligence

Code optimization

IT operations optimization

Table 1.3: Common ML problems and use cases

If the ML problem needs a custom solution, that is, if it cannot be addressed
by a common solution discussed earlier, we will have to execute the steps in
the ML workflow, starting with data preparation and followed by model
training, deployment and optionally, monitoring. That is why our ML
workflow is grouped into three major areas: data preparation, model training
and model monitoring. Each of the tasks share functions among these
groups. Note, as shown in the following image, that as you proceed to each
of the tasks in the groups, you have to repeatedly iterate back, as indicated
by the pink arrows:

Figure 1.7: ML workflow is an iterative process

This is because ML is, by default, an iterative process. You start by setting a
target accuracy (or other metrics based on the algorithm) your model needs
to reach, and you work through the tasks iteratively to reach that accuracy.
Sometimes you think you have all the data you need, and the algorithm
seems to be right for the data and the problem, but your model may end up
overfitting during training. It means you need to come back to data
collection to introduce errors/outliers in the data; that's why we have the
repeated iterations. We will discuss the tasks of the ML workflow in the next
few subsections.

Data preparation
In this book, we will be showing you how to perform each step with the help
of live code examples, but in short, data collection is the process of
determining what data you need to train a model, identifying where this data
resides in your enterprise, and determining how you can source this data into
a Data Lake storage on AWS. In the next chapter, we will discuss how you
can build your own data lake on AWS and how you an ingest data into this
data lake. Data lakes are built on Amazon S3 object stores that can grow to
any scale and provide eleven 9s of durability for your data. For more details,
you can refer to https://aws.amazon.com/products/storage/data-lake-
storage/. In the following image, we see the main steps that we need to
perform as part of the data preparation phase of the ML workflow:

Figure 1.8: Prepare data

Now that you have the data you need in your data lake, the next step is to
pre-process the data. When data arrives in a data lake, it is not transformed
from its source format and is not immediately usable for your ML training.
You typically perform transformations at the time of data extraction. So, this
step is crucial in getting you the right quality of data. If your ML task type is
Supervised Learning, this is the step when you add labels (values for the

target column that you want the model to predict) to your dataset if they do
not already exist. AWS provides purpose built services to help you with data
pre-processing tasks, such as Amazon SageMaker Ground Truth
(https://aws.amazon.com/sagemaker/data-labeling/) for data labelling,
AWS Glue for managed ETL (https://aws.amazon.com/glue), Amazon
EMR (https://aws.amazon.com/emr/) for map reduce, SageMaker Data
Wrangler (https://aws.amazon.com/sagemaker/data-wrangler/) that
provides pre-built transformations, and SageMaker Processing
(https://docs.aws.amazon.com/sagemaker/latest/dg/processing-job.html)
that provides a fully managed infrastructure for running data transformation,
scaling, normalization and other data manipulation tasks using its built-in
Scikit Learn container or PySpark applications.
In order to validate that our data pre-processing task has indeed yielded the
right collection of columns/features that best correlates with what we want to
predict and that we have the requisite volume, range, and scale of data for
our ML training, we need to visualize the data, understand what the outliers
are, determine the distribution topology and prune the data so that we get it
to the shape we need. This is the next task in our ML workflow, and it is
called data analysis and visualization. AWS provides Amazon QuickSight
(https://aws.amazon.com/quicksight/), a BI service for creating intelligent
dashboards from your data, including the ability to create histograms,
heatmaps, scatter plots, box plots, and so on.

NOTE: There is an interim decision to be made before you proceed
with the next task when you are implementing your ML workflow. If
you want to fully automate the task of feature engineering, model
training and evaluation, you will use an AutoML option like the
Amazon SageMaker Autopilot
(https://aws.amazon.com/sagemaker/autopilot/) or AutoGluon
(https://auto.gluon.ai/stable/index.html). We will cover this in detail in
Chapter 8, Let George Take Over. On the contrary, if you like the
flexibility that you have when training and tuning the model yourself,
you can proceed with the rest of the tasks in the workflow.

Training preparation

https://auto.gluon.ai/stable/index.html

At this stage in the workflow, you have your data transformed and ready, and
you have a reasonable idea of the model you want to train. The next set of
tasks are shown in the following image:

Figure 1.9: Prepare for training

Before you can begin training, you need to validate that the input data
columns (also called features) in your training dataset are good enough for
the model to approximate to the target values you want to predict. The

technique we follow to do this is called feature engineering. Based on the
problem and the data, there are different types of feature engineering tasks,
such as scaling, normalization for tabular numerical datasets, stop word
removal, stemming, lemmatization for text-based datasets, scaling, and
resizing for images. You can also perform feature selection, removal,
adjusting for missing values, and so on. AWS provides a feature to help with
this as part of the Amazon SageMaker service; it is called Feature Store
(https://aws.amazon.com/sagemaker/feature-store/). With Amazon
SageMaker Data Wrangler and the Feature Store, you can integrate the data
pre-processing and the feature engineering tasks, collect your features, and
even reuse them for similar ML tasks.
We now get into an exciting area of the workflow: algorithm selection. To be
fair, you might have already decided on an algorithm when you defined the
ML problem. However, this is a good time to revisit that decision
considering all that you know about your data now. And the choices are
many. For example, if you are trying to train a classifier, do you want to use
Amazon SageMaker's built-in Linear Regression or XGBoost, or do you
want to bring in a Support Vector Machine, or Naïve Bayes or Random
Forest? How do you know what will work best with your data? You may
have an idea, but you need to be sure.

Hint: An alternative approach at this stage would be to use AutoML,
which trains candidate models using many algorithms and
hyperparameter (specific configuration parameters that define how a
model learns) combinations and recommends the best performing
model.

So how do you move forward? It’s simple. You iterate through different
algorithms and select the best performing one based on the target accuracy
you need. Remember that the keyword in ML is iteration!
The next step goes hand-in-hand with algorithm selection. They are not two
separate tasks and are often executed jointly. Hyperparameter tuning or
hyperparameter optimization is the process of training several candidate
models with varying hyperparameter configurations (parameters that define
how a model learns) to determine which combination of hyperparameters
yields the best results for the algorithm and the data in meeting our target
accuracy. Thankfully, Amazon SageMaker provides an easy-to-use API

(https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-
tuning.html) that you can leverage to add hyperparameter tuning during
model training.

Model Training
The next step is model training; for the most part this, can be considered a
placeholder task because you might have already begun training earlier. If
you used AutoML or if your hyperparameter tuning task yielded the desired
result, you can skip this step and directly go to model evaluation and
deployment. If not, use this step to try different combinations of algorithms
and hyperparameters to reach the right model based on the target evaluation
metric. The tasks to be performed during this stage are shown in the
following image:

Figure 1.10: Model training and deployment

Also, in this stage, you would use the full scope of the training dataset, split
up a percentage for blind test at evaluation time, and run the model training
activity. Amazon SageMaker
(https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-
training.html) provides an SDK
(https://sagemaker.readthedocs.io/en/stable/overview.html) and several
class of training instances (https://aws.amazon.com/sagemaker/pricing/)

https://sagemaker.readthedocs.io/en/stable/overview.html

that you can use to define your estimators, hyperparameters and run fit to
start model training on managed infrastructure.
Before you trained your model, you split your data to create a blind test
dataset of say 15% to 20% of your total training data. The model has not
seen this blind test data yet because it was removed from your training
dataset. In this step, we will run model evaluation on this data and compare
model predictions with the original training labels (also called ground truth
data) for the blind test data to compute metrics and evaluate if the model is
good enough to be deployed to production or needs more work. We talked
about accuracy as one of the metrics earlier. For classification problems,
accuracy has the tendency to be influenced by distribution of the class labels
and hence, is not a good neural metric. A better choice would be AUC (area
under the receiver operating characteristic curve) that plots True Positive
Rates and False Positive Rates (for more details, refer to
https://docs.aws.amazon.com/machine-learning/latest/dg/binary-model-
insights.html) for various classification thresholds and is more balanced. So,
based on what type of model you are training, decide the evaluation metric,
run your blind test data against the model, get the predicted labels, compare
them with the original training labels, calculate the AUC, and compare it
with your target value to complete the evaluation.
You are almost at the end of the ML workflow. At this stage, you have
collected and prepared the data, identified features, selected the algorithm,
performed hyperparameter tuning, and trained and evaluated your model. It
appears that it meets the business need based on the evaluation metric. You
are now all set to deploy the model into production for inference. Amazon
SageMaker provides several options based on your infrastructure needs,
inference types, and project requirements. With SageMaker deployment
(https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-
deployment.html), you can set up endpoints (APIs with infrastructure
provisioned for your trained model) for real-time inference. You can also use
serverless inference with SageMaker if the traffic is unpredictable. You can
also configure asynchronous inference and batch transform based on request
routing frequency. There are additional choices to optimize inference costs
by setting up a multi-model endpoint or creating an inference pipeline, and
you can also configure autoscaling for your endpoints.
At this stage, you have completed the main tasks in your ML project
development, and your model is deployed in production and serving

inference requests efficiently. Over time, you will see a deviation between
the baseline distribution the model was trained with and the empirical
distribution of its inference response. This is called a data drift; it occurs if
models see new data coming in that is different from the training dataset, or
if the underlying business context changes. The next few tasks help with
monitoring model performance and automating the mitigation by means of
active learning frameworks.

Model monitoring
Traditionally, monitoring was considered an optional step, but it is becoming
more mainstream these days due to the proliferation of AI and ML in every
aspect of how businesses are run today. As shown in the following image,
the ML workflow recommends monitoring, detecting drift and bias, and
implementing active learning to ensure that models are aligned with the
requirements:

Figure 1.11: Model monitoring stage in the AI/ML workflow

You can easily set up a model monitoring solution with Amazon
SageMaker model monitor

(https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html)
to monitor data quality at the feature or column level using statistics like
mean, median, max, min, std_dev and more. You can also monitor model
quality by comparing the evaluation metrics you originally calculated during
training with the metrics the SageMaker model monitor can generate for you
during inference based on the type of your ML problem.
An area that is being frequently discussed in the ML community is bias in
models. Bias, as the term suggests, is the tendency to lean toward a
particular outcome even though there is no influence toward this outcome in
the data distribution. Amazon SageMaker provides a feature called Clarify
(https://aws.amazon.com/sagemaker/clarify/) that helps you automatically
monitor for bias in your models, throws alerts if it finds any bias and enables
taking actions to correct it. You can monitor for bias drift, which is defined
as the variance between the ground truth or baseline distribution and the
distribution of the inference requests (or real-world data that the model did
not see during training). You can also monitor for feature attribution drift,
which is the variance in the correlation of specific features (or columns) in
relation to the values in the predicted feature or column between the baseline
distribution and the real-world data that the model sees during inference.
Both the model monitor and bias detection steps mentioned here alert us to
issues with how the model is performing but do not autocorrect the model’s
behaviour. They do provide us with the options needed to automate the
model update task. In addition to monitoring your models, there are
instances at least initially to have a team of experts called as human in the
loop for ML, reviewing/auditing your model predictions, and updating the
values as required before sending the results to downstream applications.
Amazon Augmented AI or Amazon A2I
(https://aws.amazon.com/augmented-ai/) is a service that enables adding a
human workflow to our ML process. You can take the corrected prediction
values and add them back to the training dataset to automatically trigger
retraining of your models. Typically, you set up a retraining pipeline that is
triggered based on alerts from model monitoring or/and bias detection or/and
the human workflow. This is called active learning.
That concludes our discussion of the ML workflow. It was a long section,
and we thank you for your patience. Needless to say, knowing this workflow
thoroughly will enable you to be highly successful as you build your own
ML projects in your career. In this section, we reviewed the importance of a

business need and the importance of determining if our ML problem was a
common one or custom. For common requirements, we saw the different
categories of solutions and saw how we have different AWS AI services to
address specific areas. We also saw that in the case of a custom requirement,
we need to navigate through the ML workflow, and we reviewed the steps to
perform data preparation, feature engineering, model training, deployment,
and model monitoring. We also learnt the names of the key AWS services
for ML development. In the next section, we will dive a little deeper into the
AWS AI/ML stack.

Introducing AI and ML on AWS
Welcome back dear readers!! We hope you are enjoying the book so far. In
this section, we will introduce you to your toolbox that will help you become
awesome ML engineers and data scientists. That's right, we are going to
learn about the AWS AI/ML capabilities and offerings. We know that we
have been name dropping some of these services in earlier sections and you
may be wondering what all these service names and ML buzz words mean.
Fear not, help is at hand. In this section, we will clarify (pun intended) what
these services and features are for, and how to use them.
There are broad and deep offerings of services and features in the AI/ML
space at AWS, and in order to make it easy for us to understand and select
what we need, the capabilities are categorized into three layers stacked on
top of each other, with the bottom layer offering maximum flexibility but
minimal abstraction. This layer of capabilities is for ML experts who are
interested in tinkering with ML frameworks, like to build their own
algorithms and want to manage training and deployment infrastructure on
their own. For compute options, AWS offers some of the most powerful
compute instances available in the cloud today for ML training. The
following picture shows compute instance options that have more than six
GPUs each:

Figure 1.12: Example list of GPU instances in AWS

When we look at options for deep learning containers, AWS provides a
comprehensive list of pre-built container images across all the major ML
frameworks for various training needs. These are called Deep Learning
Containers. A full list of available containers is provided in this GitHub
repository at https://github.com/aws/deep-learning-
containers/blob/master/available_images.md.
If containers are not your choice and you would rather deploy machine
images on to your compute instances to set up your training, AWS has
options for this with a selection of Deep Learning AMIs (Amazon
Machine Images). The following picture provides an example list of these
images. AWS Marketplace (a catalogue of tools and AMIs that you can
purchase and deploy into your AWS account) and the community have an
ever increasing list of options to choose from:

https://github.com/aws/deep-learning-containers/blob/master/available_images.md

Figure 1.13: Deep Learning AMIs

In addition to compute, AWS offers custom designed chipsets to optimize
your ML training (https://aws.amazon.com/machine-learning/trainium/)
and inference (https://aws.amazon.com/machine-learning/inferentia/).
So, the ML experts have a multitude of options to build their custom training
and inference workflows at the bottom layer of the AWS AI/ML stack.
The middle layer of the stack is for ML practitioners who are willing to
compromise on the flexibility a little bit to leverage the advantage of
powerful abstractions that help their ML journey get to production quickly
and easily. Amazon SageMaker is the main service that encompasses the
middle layer with purpose-built features that address every step of the ML
workflow we discussed in the previous section. Amazon SageMaker is a
fully managed, secure, scalable and reliable service for all kinds of ML
needs. To make it easier for you to think about this, the following table
documents the key SageMaker feature for each step of our ML workflow.
This is only a subset of features of Amazon SageMaker. As we go through
the subsequent chapters in the book, we will learn about additional
SageMaker features, such as using SageMaker Studio, which is the first IDE
for ML development, SageMaker Autopilot for AutoML, and more. For a

full list of SageMaker capabilities, you can refer to
https://aws.amazon.com/sagemaker/faqs:

ML workflow task Amazon SageMaker
feature(s)

Feature overview

Data Labeling GroundTruth Automated data labeling as well as options to
crowd source data labelers through Mechanical
Turk, and also setting up your own private
labeling team for image, text, tabular and other
custom labeling requirements

Data Pre-processing SageMaker Processing Managed infrastructure and containers that
support PySpark, Scikit-Learn and other
packages for running various processing tasks,
including data preparation, model evaluation,
and feature engineering

Data Transformation Data Wrangler Provides 100s of pre-built transformation maps
for common data processing needs in
preparation for ML training

Feature Engineering Data Wrangler and
Feature Store

Provides pre-built transformations for many
frequently used feature engineering tasks and the
ability to store and reuse features using the
purpose-built Feature Store for ML

Algorithm Selection Built-in algorithms and
bring your own

Provides support for 17 built-in algorithms
across popular ML training use cases, and
options to bring your own algorithms, or
purchase from AWS Marketplace

Hyperparameter
Tuning

Automatic Model
Tuning

Easy-to-use API abstraction for hyperparameter
tuning using random search and Bayesian
regression methods

Model Training Algorithms, Debugger,
Experiments, Training
containers

Apart from pre-built algorithms, support for a
wide variety of deep learning containers, the
ability to automate debugging and deep profiling
of training jobs, and set up experiments and
trials to track progress of training tasks

Model Evaluation SageMaker SDK,
SageMaker Processing

Chatbot implementation using ML with easy and
intuitive interface to build highly intelligent
conversational interfaces

Model Deployment Production Variants,
real-time endpoints,
multi-model endpoints,
inference pipelines,
serverless inference,
asynchronous

A wide variety of model deployment options,
including serverless, asynchronous, real-time
and batch, with the ability to perform A/B
testing, Canary deployments, and automated
version deployments

inference, batch
transform

Model Monitoring Model Monitor Automated monitoring of models for data
quality and model quality issues, and alerting

Bias Detection Clarify Automated monitoring of bias drift, feature
attribution and alerting

Active Learning Amazon A2I Enables setting up a human workflow to
review/audit and update ML predictions

Table 1.4: SageMaker features mapping to ML workflow tasks

At the top layer of the AWS AI/ML stack, we have services that are pre-
trained ML models or/and provide easy-to-use abstractions for model
training and deployment without the need for ML expertise to use these
services. These are called AWS AI services. We covered this at a high level
in the ML workflow section, but here we expand on the table to provide
details on specific AI services that can be leveraged for common ML
requirements:

ML
problem

type

ML sub
type

ML use case AWS AI
Service

Service overview

Sensory
Cognition

Computer
Vision

Image
classification,
object detection

Rekognition Pre-trained ML models available as
an API for automating a variety of
video and image processing tasks to
infer intelligent insights

Speech Speech to text Transcribe Converts pre-recorded and
streaming conversations to text
transcripts using pre-trained ML
models available as an API

Text to speech Polly Creates life-like speech from text in
various voices and inflections using
pre-trained ML by means of an API

Text Sentiment
detection, entity
recognition, text
classification

Comprehend Natural language processing
(NLP) service pre-trained for entity
recognition, classification,
sentiment, grammar and language
detection with transfer learning
capabilities

Machine
translation

Translate Pre-trained ML service that
provides language translations
capabilities using an API

Text extraction Textract Intelligent text extraction from a
variety of document types and
images using pre-trained ML
models

Intelligent
search

Kendra Enterprise search service powered
by NLP indexes using pre-trained
ML models with natural language
query capabilities

Chatbots Conversational
interfaces

Lex Chatbot implementation using ML
with easy and intuitive interface to
build highly intelligent
conversational interfaces

Business
tools

Fraud detection Fraud
Detector

Fully managed service for detecting
and monitoring eCommerce fraud
with a simplified interface for
model building with no ML
expertise required

Recommendatio
ns

Personalize Fully managed service for detecting
and monitoring eCommerce fraud
with a simplified interface for
model building with no ML
expertise required

Forecasting Forecast Fully managed service for detecting
and monitoring eCommerce fraud
with a simplified interface for
model building with no ML
expertise required

Anomaly
detection

Lookout for
Metrics

Fully managed service for detecting
and monitoring eCommerce fraud
with a simplified interface for
model building with no ML
expertise required

Industrial
intelligence

Predictive
monitoring

AWS
Panorama

Hardware and SDK for adding ML
based intelligence to factory floor
and on-premises camera systems

Amazon
Monitron

Sensors and pre-trained ML for
industrial equipment monitoring
and proactive maintenance

Amazon
Lookout for
Vision

Custom ML pre-trained for
industrial anomaly detection using
computer vision

Predictive
analytics

Amazon
Lookout for

ML service that provides intuitive
capabilities for developing custom

Equipment models for detecting equipment
anomalies with no ML expertise
required

Healthcare Text analytics Comprehend
Medical

Pre-trained ML available as an API
to extract insights from unstructured
healthcare text inputs

Speech
analytics

Transcribe
Medical

Pre-trained ML model with an API
to convert speech to text,
specifically designed for healthcare
conversations

Healthcare
analytics

Healthlake Intelligent content repository and
healthcare analytics service with
capabilities to query and analyze
data using NLP, transcription,
creating BI dashboards and running
ML models at scale for a variety of
business needs

Developmen
t
intelligence

Code
optimization

CodeGuru Developer tool that uses ML to
identify security issues and
performance bottlenecks in code; no
ML training required

IT Operations
optimization

DevOps
Guru

Operations tool to help optimize
operations and improve application
availability using ML

Table 1.5: AWS AI services for common ML use cases

As you can see, we have a lot of choices and deep features within each AWS
AI/ML service to help with our ML journey. It may seem overwhelming to
begin with, but the good news is that you don't need to know all these
services to build your ML solution. You just need to know what to choose
when and deep dive into your selection of services and features for a specific
project. We want to help you with the ability to make that determination, and
we will cover that in the next section of this chapter.

Navigating the ML workflow
In this section, we will teach you how to prepare for ML solutioning.
Considering the vastness of the AI/ML landscape, the ever-growing list of
requirements it can solve for, and the countless choices we have in being
able to design and develop a solution, it can be daunting when we start
trying to organize the whole thing into a process. The ML workflow is

designed to help you with exactly that. But even with the guidance of the
workflow, how do you, for example, decide between using Amazon
Comprehend for your NLP task and using Amazon SageMaker Blazing Text
algorithm? What options do we have for time series forecasting, and how do
we choose one over the other? In this section, we will take two of the most
popular ML use cases (timeseries and NLP) and show you how to navigate
toward a solutioning process for them. This is based on the author's own
experience and curated over the years helping many customers adopt AWS
AI/ML solutions. To make it fun, we will model this exercise using a
Decision Tree algorithm. Feel free to convert this into a tabular dataset and
train your own model to automatically predict the navigation pathway!!

Scenario 1 – Timeseries forecasting
In this scenario, once we have ratified the business need, the first thing we
need to check is whether historical data is present, as it’s a timeseries
problem. Without the historical dataset, this use case is non-starter. We then
check whether it’s a common requirement, which it is, and discuss how the
team wants to move forward. If the interest is to save time, we go with
Amazon Forecast AutoML; if we want to use the common solution but try
algorithms on our own, we go for the "select an algorithm"
(https://docs.aws.amazon.com/forecast/latest/dg/aws-forecast-choosing-
recipes.html) option in Amazon Forecast. On the other hand, if the team
does not want to go with the common solution and wants to train on their
own, we follow the SageMaker navigation pathway. It will take us through
the steps in the ML workflow we discussed earlier. Both these options are
depicted in the following image:

Figure 1.14: Navigation pathway for timeseries forecasting

Scenario 2 – Sentiment detection
For this scenario, we realize it’s a text-based dataset and so, we understand it
to be a Natural Language Processing (NLP) problem. Like before, we first
check if it’s a common requirement, which it is, and discuss the options to
move forward. If the interest is to save time and cost, we go with Amazon
Comprehend Detect Sentiment
(https://docs.aws.amazon.com/comprehend/latest/dg/API_DetectSentim

ent.html), which is a ready-to-use API with a pre-trained model behind it.
All we have to do is include the API call in our application. If the customer
team wants to run their own training but are fine to use the common
solution, they can train a custom classifier in Amazon Comprehend. If the
team wants greater flexibility during model training, they can go the route of
SageMaker and the BlazingText built-in algorithm
(https://docs.aws.amazon.com/sagemaker/latest/dg/blazingtext.html). To
enable active learning, we have the option to use Amazon A2I to configure a
human workflow for reviewing model predictions and making updates, and
this can be fed back for retraining the model with the updated dataset. These
options are depicted in the following image:

Figure 1.15: Navigation pathway for sentiment detection

With time and experience, you will be able to reach a point when these
navigation pathways are embedded into how you think. Keep in mind that
the AI/ML landscape is evolving rapidly, so you need to keep yourself
updated; this book is a great first step in that direction.

Conclusion
I know you are eagerly waiting to get hands-on with AI/ML on AWS and
build some cool and innovative solutions. But just like in any academic
education, you need to study a bit of theory before you can start practicing.
And that was the purpose of this chapter, specifically the part about ML
workflow, because that is what this whole book is about: how to build an
end-to-end ML solution in the cloud by going through the various steps in
the ML workflow. In the next chapter, we will tackle the first stage of the
ML workflow with instructions and code snippets on what it takes to build
an Amazon S3 data lake and hydrate the data lake by ingesting data from
various sources. It is now time to get our hands dirty with some ML
development. Fasten your seat belts!

Points to Remember
Here is a summary of the key points to remember from this chapter:

We were first introduced to the concepts of ML and AI.
We then learned how this technology evolved through the years, and
how advancements in cloud computing led to the broad adoption of
ML across organizations of all sizes and in all industries.
We then read about deep learning, algorithms, neural networks and
how you can compose music using ML with AWS DeepComposer.
Subsequently, we discussed how to approach an ML problem and why
the problem definition is one of the most important parts of an ML
project.
We followed this by discussing the ML workflow, the various stages
and the tasks within these stages that guide us in running an ML project
in depth.
We discussed the different types of ML problems, use cases and how
we can use AWS AI services with no ML expertise to build common

ML solutions.
We then read about the AWS AI/ML stack, the objectives for each
layer in the stack and how to leverage them based on our needs.
We finally talked about solution navigation pathways and with the help
of a couple of examples, learnt how to develop a navigation pathway
for some popular ML use cases.

Multiple Choice Questions
Use these questions to enhance your knowledge of what we covered in
this chapter.

1. How are AI and ML related?

a. These are two independent techniques for training computers to
perform new tasks

b. ML is a subset of AI and is one way of how AI could be
implemented

c. AI is a subset of ML and is one way of how it could be
implemented

d. They are completely unrelated and mean different things

2. What is an Artificial Neural Network?

a. It is an algorithm approach created by connecting neurons in
layers, activated by mathematical functions for training machine
learning and deep learning tasks.

b. It is a technique to describe how the human brain works.
c. It is a network of computers connected using neural approaches.
d. It is an artificial computer.

3. Which of these tasks is NOT a part of the ML workflow?

a. Feature engineering
b. Data updates
c. Algorithm selection
d. Model training and tuning

4. What is the most important task in the ML workflow?

a. Model training
b. Inference
c. Feature engineering
d. Defining the ML problem

5. You need to be an expert in data science or ML to use the AWS AI
services. Is this true or false?

a. True
b. False

Answers
1. b
2. a
3. b
4. d
5. b

Further Reading
Edwards, Benj. “A Brief History of Computer Chess.” PCWorld, 6 May
2013, https://www.pcworld.com/article/451599/a-brief-history-of-
computer-chess.html.
“Richard Greenblatt.” Richard Greenblatt - Chessprogramming Wiki,
https://www.chessprogramming.org/Richard_Greenblatt.
Alan Turing - Biography. Maths History. (n.d.). Retrieved February 13,
2022, from https://mathshistory.st-andrews.ac.uk/Biographies/Turing/

https://www.pcworld.com/article/451599/a-brief-history-of-computer-chess.html
https://www.chessprogramming.org/Richard_Greenblatt
https://mathshistory.st-andrews.ac.uk/Biographies/Turing/

CHAPTER 2
Hydrating the Data Lake

Introduction
Before we can get started training our machine learning model, we need to
identify, assemble, curate, and prepare the data we will use as input. We
could use that data where it rests, in various relational and non-relational
data stores, data warehouses, object stores or file systems, but we know that
we also need a data store of our own to keep our engineered feature sets, to
share data between teams, and for it to act as input to our training. Many of
the existing data stores require that we apply their schema when we write
and have problems keeping up with the transfer speeds that machine learning
needs to be efficient.
Enter the Data Lake. It is necessary not just for Machine Learning projects; a
Data Lake is a data storage application on its own with features that make it
suitable for Machine Learning projects. Primarily, it does not require that we
apply any one schema to our data on write, meaning we can retrieve our
data, transform it as we need for our projects, and then write it back
transformed. It also uses fine-grained access controls that allow individual
teams to have access and control of the data that they need.
Machine Learning projects do not need an object store like a Data Lake, but
as an organization’s AI/ML capabilities expand, using one ensures speed,
agility, and flexibility. On Amazon Web Services, the kernel of the Data
Lake is Amazon Simple Storage Service (S3). You will also use the
Amazon Key Management Service (KMS) to encrypt the S3 Bucket at rest
and the Amazon Identity and Access Management (IAM) service to
control access to the bucket. Amazon has a pre-built solution for a Data Lake
(linked in the Further Reading section) which your organization can use or
extend to get started easily.
In this chapter, we will set up our Data Lake on AWS and then explore tools
we can use to export data from its existing data stores and manage it on our
Data Lake.

Structure
In this chapter, we will discuss the following topics:

What is a Data Lake?
Why does Machine Learning need a Data Lake?
How do you create a Data Lake on AWS?
How do you get data into your Data Lake?
Additional considerations for Data Lake operations

Objectives
The goal of this chapter is to set the foundation for your Machine Learning
projects by creating a repository for your source data, transformed data, and
trained machine learning models. We will review the concept of the Data
Lake itself and understand why it is a desirable storage method for Machine
Learning projects. We will also review the methods for initial data moving to
your Data Lake, often called hydration, and the different tools that can be
used for the task. Finally, we will uncover methods for analyzing the data in
your Data Lake and the similar services we can use to transform your data in
preparation for your Machine Learning Projects.
To try the examples in this section, refer to the Technical Requirements
section in Chapter 1: Introducing the ML Workflow, to sign in to the AWS
management console, execute the steps create a SageMaker studio domain,
and execute cloning the repository to SageMaker Studio to get started. Click
on the folder that corresponds to this chapter number. If you see multiple
notebooks, the section title corresponds to the notebook name for easy
identification. You can also passively follow the code samples using the
GitHub repository provided at the beginning of the book.

Chapter Scenario
Consider a database engineer who is part of a large enterprise company.
They are solely responsible for the maintenance, management, and tuning of
an on-premises legacy, monolithic relational database. They have kept this
database running smoothly for over a decade, carefully curating and
protecting it from abuse, but they have been given a new set of requirements
that have left them unsure on how to proceed. They have been directed to
create a schema-on-read Data Lake that includes fine-grained access
controls, contains structured and unstructured data, keeps a version history
of the data written to the Lake, is encrypted at rest, and supports analytics on
the stored data without needing to specify a schema across the different data
sets.
For this scenario, it is important to note that the database engineer is a Virgo.
A quick search across your trusted sources reveals a lot about Data Lakes
and how they enable analytics, Machine Learning, data analysis, and other
activities, but very little about how to manage the Lake itself.

The Data Lake
At its simplest, a Data Lake is a data repository. You could use a database,
data store, storage device, or any other repository as a Data Lake, but there
are several factors that make object storage optimal.
The first part of a Data LakeData Lake is the ability to store data in its raw
or unaltered form. This enables schema-on-read versus applying a schema
on writing to the lake like you would for a relational database. It also means
that various teams can use the Data LakeLake to access the original data, the
data at various stages of transformation, and in its final form ready to be
ingested into their projects. Additionally, it means that any form of that data
along that journey can be used as input for projects by that team or other
teams.
This makes your data objects artifacts unto themselves, just like your code
objects. These objects can (and should be) be versioned, packaged, and
managed alongside your code or machine learning projects. Refer to Figure
2.1:

Figure 2.1: Example diagram of a Data Lake

The next part of a Data Lake is that it needs to be able to accept data in any
format. It should be able to store structured data (csv, database exports,
tabular files), unstructured data (images, audio files, text transcripts), or
semi-structured data (json, yaml, xml). Finally, the Data Lake must be able
to access the data on a per-object or even object version. This allows you to
store controlled data in your Data Lake and manage who can view, access, or
change individual data objects. For creating a Data Lake on AWS, the
service of choice is the Simple Storage Service or S3. S3 is an object store
that replicates your data across three Availability Zones to achieve eleven 9’s
of availability. S3 also offers different tiers with reducing costs that allow
you to control the overall resiliency and cost of your stored objects.
On AWS, an Availability Zone is a collection of one or more Data Centers
within a Region that are clustered together and connected via low latency
dedicated metro fiber. They have redundant resources and are intended to
provide high availability to applications within the Region.
Refer to Figure 2.2, which shows AWS Global Infrastructure layers:

Figure 2.2: AWS Global Infrastructure Layers

This level of control and flexibility, along with the ability to control access
on a per user, per bucket, per key, or per object level, make it the clear
choice for a Data Lake on S3.

NOTE: Ransomware and Data Lakes - A key counter-tactic to project
your data against Ransomware attacks is to keep an immutable data
store. On S3, this can be accomplished in a few ways, but the most
direct way is via a cross-region replication setup with versioning and
Object-Locking active. This means that if your data objects are
corrupted, you can retrieve the last uncorrupted version from your
immutable data store.

Securing your Buckets
Social media and news sites are littered with examples of organizations
exposing their data via S3 bucket configurations. Considering your security
policy regarding your Data Lake now will save you heartache later. It is
important to remember that by default, your buckets and all the objects
within them are private. Making them public (readable by anyone in the
world) requires action and should be carefully considered before activating
or, more appropriately, being prevented entirely. Amazon S3 bucket access
can be managed via policies attached to resources, such as buckets, keys, or
tags, and policies attached to users. In the case of resource-based policies,

also known as bucket policies, you write a policy document, an example of
which is given as follows, and attach it to a specific bucket. In the case of
user-based policies, and example of which is given as follows, you will
create the policy in the Identity and Access Management (IAM) service
and attach them to your users, roles or groups. In both cases, regular review
of your policies is crucial to ensuring that you have the appropriately scoped
permissions.
Here is an example bucket policy, allowing user EngineerCarl access to any
files that start with the /carl/ key in the S3 bucket data-lake-example-
bucket:
{

"Version": "2012-10-17",

"Id": "BucketPolicyAllowCarlAccess",

"Statement": [

{

"Sid": "ExampleStatement01",

"Effect": "Allow",

"Principal": {

"AWS": "arn:aws:iam::11223344556677:user/EngineerCarl"

},

"Action": [

"s3:GetObject",

"s3:GetBucketLocation"

],

"Resource": [

"arn:aws:s3:::data-lake-example-bucket/carl/*"

]

}

]

}

Following is an example user policy that allows the user with the attached
policy to access all buckets owned by the user, except the one called
private-bucket:
{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Action": ["s3:ListAllMyBuckets"],

"Resource": "arn:aws:s3:::*"

},

{

"Effect": "Allow",

"Action": [

"s3:ListBucket",

"s3:GetBucketLocation"

],

"Resource": "arn:aws:s3:::*"

},

{

"Effect": "Deny",

"Action": "s3:*",

"Resource": [

"arn:aws:s3:::private-bucket/*",

"arn:aws:s3:::private-bucket"

]

}

]

}

Securing your Data Lake
Beyond the core S3 bucket(s), the full details of creating, managing, and
using a Data Lake are a whole book by itself, but the initial considerations
should include the following:

Encryption at rest using AWS Key Management Service (KMS):
Make sure that you identify the compliance or regulatory requirements
of your data, especially if it contains Personally Identifiable
Information (PII).
Object Versioning: Keeping a history of versions can be key if an
accidental overwrite happens. You can also refer to the previous
versions of an object when you need to identify the changing
dimensions of your data.

Object Storage Classes: Amazon S3 has several storage classes
offering a range of availability and cost optimization. Additionally, S3
offers Storage Lifecycle Rules, allowing you to manage the storage
class per object. You can move objects to a lower costing tier when
they reach a certain age, including older versions of files. S3 also offers
Intelligent Tiering, which uses your usage patterns to determine the
most cost-effective tier.

Data Lakes for Machine Learning
Now you have a Data Lake, but why is it especially useful for Machine
Learning Projects? To answer this question, we can look at the process of
machine learning itself. The overall process is typically broken into two
phases: a model build phase and a model deploy phase. In the early stages of
your Machine Learning project, you will likely manage both phases in a
single Jupyter Notebook.
On AWS, you can use SageMaker Notebook Instances, SageMaker Studio, a
standalone EC2 instance, or Glue Development Endpoints to host your
Jupyter Notebooks. In that notebook, you will usually combine the initial
data collection, formatting, feature engineering, model training, model
deployment, and model validation to allow you and your team to iteratively
experiment with your project quickly. We will cover these items in further
detail in the later chapters, but a Data Lake is ideal as a storage solution for
this because it allows you to keep your data in its transformed state at each
part of the process. This allows the same data to be used for multiple
projects by different teams instead of recreating the data from the various
sources. For example, suppose you are collecting temperature data for
multiple geographic locations around the world. You could start by
converting this data to JSON format, and then removing locations not
relevant to you and selecting noon each day as your data set. You could save
this data back to your Data Lake to be ingested by your model training
process, which would allow another team to use the original temperature
data for another project or use your transformed data as a starting point.
One important note on Data Lakes is that they are not intended to be
replacements for all data repositories. They should be used for data objects
and for your materialized data across various data sources, but they act as the
center of the various data sources inside and outside your organization. This

is typically referred to as Lake House architecture. In this setup, you might
take some data from a relational database, join it with a third-party or
external data set, enrich it with the data you have in your data warehouse,
and finally, drop any data not associated with customers in your customer
management system.

The Importance of Hydration
Once you have a Data Lake, the next phase is to populate it with data, often
referred to as Hydrating the Data Lake. This is the process of initial
movement of collected data that will be needed as separate objects to your
Data Lake. For most projects, this will be downloading your selected Data
Set and storing it in your Data Lake. It can also involve retrieving your
dataset from an existing data source, such as a relational database, data
warehouse, or external data store, performing any transformations as
detailed later in the chapter, and adding it to your Data Lake. This initial set
creates the initial step of treating your data objects as projects and
deliverable artifacts on their own. As your data is decoupled from the
workings of your applications and Machine Learning projects, it can be
processed, versioned, transformed, and managed on its own, without being
part of your Machine Learning life cycle.

Setting Up Your AWS Account
To build your Data Lake and hydrate it, you will need an AWS account. To
get started, open the AWS home page (https://aws.amazon.com/) and
choose Create an AWS Account.

NOTE: Root Account Email Address: If you are working in an
organization or with a team, consider using a distribution list for the
initial email address in case team members are added or removed.

On that page, you will enter your email address, a strong password, and a
name for your AWS Account. Verify that the information is correct, and then
click Continue. Now, you will enter your contact information and select if
this is a Business or Personal account, as shown in Figure 2.3:

Figure 2.3: Signing up for an AWS Account

Personal and Business accounts have the same services and settings enabled.
For business accounts, make sure that you enter contact and phone numbers

for your business rather than a personal number.
Once you click on Continue, you will add your contact information, and
then select Continue and carefully read the AWS Customer Agreement
before clicking on Continue. Once your account is created, you will get an
email confirmation. Once you receive it, you can sign in using the email
address and password you entered during account creation.
On first sign in, you will need to enter your payment method before using
any of the AWS Services, and then you will need to verify the phone number
you added during account creation. Once you agree to the verification, an
automated system will call the listed phone number and read off a PIN that
you will need to enter on the page.
Lastly, you need to choose your AWS support plan (add details) and click on
Complete Sign Up. It can take up to 24 hours to activate your account, but it
will typically complete in a few minutes.
Once your account is fully activated, you can sign in and use all the services.
This creates what is called a root account. This is a full-fledged account for
all purposes, but it is a best practice to create an organizational structure or
series of sub-accounts and account groupings called organizational units.
This allows you to control not only what happens using an AWS account as
a limiting radius but also to have easy visibility into the cost and usage of
each account.

Tip: Multi-Factor Authentication: Before you go any further, ensure
that you have an extremely secure password and have added multi-
factor authentication on your root account. If someone gets access to
your root account, they can lock you out and charge any amount they
wish to the card you added during setup. Check the AWS subreddit,
and you will see a non-stop list of posts with titles like “Surprise bill!”
and requests on how to undo the damages. The short version is to use
MFA and a very secure password. Set them up now.

The easiest way to set up guard rails for what can happen in your AWS
accounts and your initial organizational structure is to use AWS Control
Tower. Start by selecting the most appropriate region for your general use
and navigating to the Control Tower landing page
(https://console.aws.amazon.com/controltower). Choose the option to set
up your landing zone and the wizard will guide you through the rest of the

process. This will include setting up your Organizational Units (OUs),
which are logical groupings of your accounts, as well as AWS Single Sign
On access for any users you invite to your accounts.

Tip: Don’t be Admin: Yes, it is easier. Don’t do it. It is too easy to make
mistakes, invoke things in regions you don’t intend to, and interfere
with infrastructure you don’t mean to. Create a user for yourself and
start with a managed policy for the job function you want to perform,
adding permissions when you need them. After a while, you can use
the AWS IAM Access Analyzer to create a custom policy that only
includes permission to do the things you need to.

Finally, set up an account in an existing or new organizational unit that you
will use for your Machine Learning experiments. It is a best practice to set
up a billing alarm
(https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/m
onitor_estimated_charges_with_cloudwatch.html) to ensure that you do
not have any surprise charges and so that you get a reminder to shut down
any unnecessary infrastructure. Thankfully, the newly released AWS console
home page includes cost and usage metrics to make it easier to keep an eye
on this.

Starting Datasets
A dataset is simply a collection of data. There are several publicly available
datasets, three of which we will be using in this and the following chapters.
There are also several dataset search providers, such as Hugging Face
Datasets, Kaggle, Google Dataset Search, AWS Public Datasets, and
VisualData.
The datasets we will be using in the following chapters are listed here:

The Wine Quality Dataset:
https://archive.ics.uci.edu/ml/datasets/wine+quality
Titanic Dataset:
https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/problem
12.html
MNist Dataset: http://yann.lecun.com/exdb/mnist/

https://archive.ics.uci.edu/ml/datasets/wine+quality
https://web.stanford.edu/class/archive/cs/cs109/cs109.1166/problem12.html
http://yann.lecun.com/exdb/mnist/

PLAsTiCC Astronomical Classification Dataset:
https://www.kaggle.com/c/PLAsTiCC-2018/data

You can use these links to download these datasets and store them in your
Data Lake, along with other sets that you choose to use with other projects.
Refer to Figure 2.4:

Figure 2.4: Welcome screen for Lake Formation

There are several AWS Services that are considered in scope for Data Lake
Hydration, and, like most things, there are many ways to accomplish the
same goal in AWS. Returning to the scenario given at the beginning of the
chapter, we can consider the task from the perspective of the database
engineer who has chosen to use the AWS Lake Formation service to create
the Data Lake. Refer to Figure 2.5:

Figure 2.5: Setting up your Data Lake with Lake Formation

Our first task when getting ready to implement AWS Lake Formation is to
create a Role role for the service to use on our behalf. When you sign in to
AWS, you assume a Role, a type of persona that identifies the groups of
permission sets we have in our accounts, also known as policies. AWS
services are no different. Each service needs a role that it can assume (also
known as a trust relationship) that also defines what it is allowed to do in
your account. Just like users, it is important that services only have the
permissions to do what they absolutely need to do with specific resources.
If you have existing S3 buckets, you can also register them as sources in
your Data Lake, also known as Data Lake locations. This is particularly
useful in cases where there are existing buckets that were used for data

https://www.kaggle.com/c/PLAsTiCC-2018/data

sources in the past that can now be consolidated in your Data Lake. Refer to
Figure 2.6:

Figure 2.6: Registering a bucket with Lake Formation

Our database engineer closely follows the AWS documentation for setting
up Lake Formation (https://docs.aws.amazon.com/lake-
formation/latest/dg/getting-started-setup.html), creating a role for the
service, a Data Lake administrator (themselves), initial users (their team
members), the actual S3 bucket used for storing objects, and the optional
governed tables configuration. They then download the datasets linked
above, loading them into the Data Lake for the upcoming machine learning
projects.
Lake formation gives you several powerful optionsas shown in the following
image:

Data Catalog: This is the same as Glue Databases and Tables,
described later in this chapter.

Register and ingest: This is the ability to register S3 buckets as
sources for your Data Lake, transform data using predefined templates
and links to AWS Glue Crawlers and Jobs, described later in this
chapter.
Permissions: Centralized access control for your Data Lake. Controls
can be applied for users and applications by role, which can be applied
at the table and row level. Refer to Figure 2.7:

Figure 2.7: Functions of Lake Formation

Happy with their work, our database engineer checks their email to see that a
brand new ticket has been assigned to them. IT Leadership, ecstatic with the
quick implementation of the Data Lake, have identified the following
additional data sources to add to the expanding lake:

Clickstream data stored in DynamoDB in another AWS Account

Current and historical log data for various cloud-native and on-
premises applications
Historical flat files in a network filesystem storage array in an aging
colocation facility
Cold-storage archival files in branch offices with extremely limited
connectivity

In addition, several teams have requested the ability to view the
characteristics of the data files loaded in the Data Lake and extract data from
them without downloading them locally. Luckily, our database engineer, now
an emerging Cloud Architect, has this book on hand and is ready to take on
these new requests.

Streaming Data and the Data Lake
Clickstream data, or any ongoing data stream for that matter, can be ingested
into the Data Lake via Amazon Kinesis. It is possible, of course, to create a
one-time export of data from the existing data repository, but then an almost
immediate request would come in for a refresh of the data, creating an
endless loop of task repetition. In addition, some data sources receive rapid,
ongoing updates, also known as streaming. These are particularly suited for
a transport mechanism that can scale to support them.

Amazon Kinesis
Enter the AWS service family: Amazon Kinesis. A collection of similar
services, Amazon Kinesis is a data transport, transform, and analysis
mechanism. Using the services included, you can connect to data sources
and scale as needed to deliver that data in its raw or transformed state to
your target location. You can even chain the respective Amazon Kinesis
services together to create more complex data streaming applications:

Kinesis Data Streams allows you to serverless stream data sources like
logs, processes, events, or updates to your target location. That location
can be another data repository, such as S3, or another AWS service.
The main benefit is that Kinesis scales to meet your needs, allowing
you to decouple the respective portions of your workload. Kinesis Data

Streams allows for two modes of operation: on-demand and
provisioned.

On-demand is exactly what it sounds like, no capacity planning
and can scale up to gigabytes of read/write operations per minute.
Kinesis handles the capacity management for you; use on-demand
for spiky, unpredictable data streams.
Provisioned is where you specify the number of shards, which are
uniquely identified data records in a single Kinesis stream. Shards
have a defined capacity: max read of 2MB per second and max
write of 1MB per second; use provisioned for predictable, steady-
state data streams.

Kinesis Data Firehose is a high-speed data delivery system custom
made for moving data from its source to analytics services, data
warehouses, or even Data Lakes.
Kinesis Data Analytics allows you to create insights from your data
mid-stream using the Apache Flink.
Kinesis Video Streams is custom-made for managing, converting, and
storing real-time video streams.

In this case, Amazon Kinesis Data Streams and Kinesis Firehose is the
choice to migrate clickstream data from Amazon DynamoDB to our Data
Lake. Kinesis Data Streams will act as the consumer, collecting and
managing the input of item-level changes in DynamoDB, delivering them to
Kinesis Firehose for high-speed delivery into the Data Lake. DynamoDB
also features a convenient integration with Kinesis Data Streams, meaning
we do not need to write any custom integration between the two services. In
DynamoDB, simply click on the Overview of your chosen table, and then
click on Manage streaming to Kinesis to get started. If needed, you can
also integrate Kinesis Data Firehose with a compute resource like the
serverless option, Amazon Lambda, to perform any data transformations that
are needed, such as compressing, updating, or enriching the data before
being written to its location in the Data Lake. An example Python3 script for
creating a Kinesis Data Stream has been included in the GitHub repo
associated with this book.

AWS DataSync

Now that the clickstream data is flowing into the Data Lake, we can focus on
the log data stored in on–premises storage locations. We could again
leverage Amazon Kinesis to migrate the data, but in this case, the data is
historical and accompanied by application artifacts that provide context to
the data. For this, we can leverage AWS DataSync to migrate the data into
our Data Lake. DataSync is meant to be deployed as a virtual machine to an
on-premises compute service that has an NFS, or SMB mount attached.
Using the DataSync agent running on the virtual machine, files and folders
can be identified for transfer to your AWS account, targeting S3, Amazon
Elastic File System, or AWS FSx for Windows or Lustre.
Once we have the agent configured with the data we want to move and the
target location, that is, our Data Lake, the DataSync agent connects to the
DataSync service and writes the data to the selected location. AWS
DataSync also supports scheduled tasks, so a daily transfer of any new log
files can be created.

AWS Database Migration Service
In situations where our source data is in on-premises or in cloud databases
like Oracle, MS SQL, MySQL, MariaDB, PostgreSQL, SAP, or DB/2, the
AWS Database Migration Service can be leveraged for one-time or ongoing
data migration (also referred to as change data capture, or CDC). In order to
use the service, we first define a source object, giving the connection details
and information about our source database. We then create a target object,
giving connection details and information about our target location, which in
this case is S3, the Data Lake. We also create a replication instance. This is
the compute resource that will be performing the actual migration,
conversion, mapping, and writing to the target location. You can use the
same replication instance for multiple tasks, but make sure it has sufficient
networking, CPU, and memory resources to keep up with the data being
migrated.
Finally, you will create the replication task, tying the source, target, and
replication instance together, specifying the type of replication: one-time full
migration, change data capture only, or full migration with ongoing changes.
AWS also recently released the Database Migration Studio, a visual interface
for managing migration tasks, simplifying the overall process. At the time of
this book being written, the Database Migration Studio is in preview, so

make sure it has the features you need before using, especially in your
production workloads. AWS DMS Fleet Advisor is a component that allows
you to collect and manage data about multiple database environments,
whether on-premises or in the cloud, and prepare it for migration tasks.

AWS Schema Conversion Tool
Another service that is in scope for this task is the AWS Schema Conversion
Tool. Rather than a service that runs in your AWS Account, it is a tool you
can download and use to assess existing database structure as well as map
those database sctructures to new targets, identifying which portions can be
converted automatically and which ones need manual intervention. This tool
is particularly useful when you need to migrate from one data source with a
strict schema to another with a similarly strict schema. Examples include
from Oracle to Amazon Redshift, Apache Cassandra to Amazon
DynamoDB, and SAP ASE to Aurora PostgreSQL. For our example,
PostgreSQL to S3, our data will be written in CSV, which meets our
business outcome needs, so we do not need to use the AWS SCT.
Once done with the database migration, our database engineer can move on
to migrating the log and flat files from the various remote facilities. AWS
DataSync is a possibility, but with limited internet bandwidth and the lack of
local virtualization, it would be a slow process at best. The files aren’t
needed immediately, but they will be needed before the end of the current
fiscal year.
Looks like it is time for a Snowstorm.

AWS Snow Family
AWS Snowcone, Snowball, and Snowmobile are series of physical devices
that can be transported to your data where it is in the world, loaded with that
data, and then transported back to AWS, where it will be loaded into the
supported target location of your choice. Each of the devices are highly
durable and are designed to withstand significant shipping incidents. They
also come with multiple layers of encryption, preventing unauthorized
access to your data in transit.

AWS Snowcone

The Snowcone is the smallest of the Snow family and is designed to connect
to your network and either transfer data locally or via the internet using the
embedded AWS DataSync client. Once your data has been loaded onto the
Snowcone device, you ship it back to AWS. The device can support up to 14
terabytes of solid-state storage and has local compute capabilities that allow
data processing before shipping it back to AWS.

AWS Snowball
Snowball is the mid-range of the Snow family, available in storage- or
compute-optimized configurations. The Snowball Edge Storage
configuration features up to 80 terabytes of included storage, and like the
Snowcone, has included compute capacity to process data before shipping it
back to AWS.

AWS Snowmobile
Snowmobile is a truck. Yes, a whole shipping container moved via a freight
truck. It is designed for extremely large data transport tasks and up to
exabyte-scale data sets. For our listed use case, the Snowcone has enough
capacity, and since they have sufficient time to complete the task, our
database engineer orders two from inside their AWS account console. They
will coordinate getting them shipped to the first two remote colocation
facilities, getting them hooked to the local network, loaded with the
necessary data, and shipped back to AWS before ordering two more. One the
tasks are finished and the queue is empty, our database engineer ends their
workweek with a feeling of accomplishment and enjoys their weekend,
getting some well-deserved rest. Come Monday morning, however, there is a
brand-new ticket assigned to them: Analytics.
We will cover the majority of analytics in Chapter 3, Predicting the Future
With Features, and Chapter 4, Orchestrating the Data Continuum.
Designing a full-fledged analytics solution is far more than a single ticket.
After a careful review, the task, at first blush, seems much simpler. The users
of the Data Lake are delighted with the ease and simplicity of interacting
with the individual data objects and the ability to store data in its native
format. The only challenge reported so far is that it is difficult to understand
the structure of the folders in the S3 bucket, where the data users they need
might be, and what the starting format of the data is.

Users have suggested the creation of a data dictionary database that would
identify each file, its location, and all the data about the data (also known as
metadata). Our database engineer is tempted but thinks there might be a
better way without creating a completely new data repository to manage.

NOTE: S3 Folders: A very important note about folders in S3 is that
there aren’t any. The user interface for S3 will show “folders” to allow
the concept or organization, but the underlying object store only
contains two pieces of location-based information about the objects:
the bucket and the object’s key. That key includes the entirety of the
object’s path. For example, if you have a bucket called
“uniquetestbucket” with a folder called “testfolder” and a file called
“testfile.jpg”, the object is referenced as the bucket “uniquetest
bucket” and the object key as “testfolder/testfile.jpg”.

NOTE: S3 Key Optimization: Along with the previous note about S3
Folders is the concept of partitioned prefixes. An object’s prefix is just
the first part of the entirety of its key. When objects are read or
scanned, they are scanned in blocks according to the similarity of the
prefixes in the objects you are scanning. This means that if you have a
set of files that all start with “nested/folder/structure/filename”,
followed by an incrementing number and the file extension, you will
likely be scanning all of those similarly named files per operation. The
best way to prevent this is to move the file or folder unique names as
early as possible, akin to
“nested/dateTime/folder/itemNumber/filename” where dateTime is the
actual dateTime stamp and the itemNumber is an incremented
number. This allows you to scan fewer items in your read operations,
speeds up scans, and allows faster I/O operations in your Data Lake.

Uncovering Patterns
We will be getting into full-fledged analytics, feature engineering, and
transforming data and preparing it for Machine Learning projects in Chapter
3, Predicting the Future With Features, and Chapter 4, Orchestrating the
Data Continuum, but we want to provide some context to the data we have
now. Both the Data Lake solution and the Lake Formation service allow us
to add data about our data, also called metadata, to the individual data

objects, which accelerate the data preparation phase of our Machine
Learning projects. We can add additional context pieces, like the name of the
team that owns the data, a minimum refresh date by which the data needs to
be re-retrieved from the source system, the data security level of the data, or
even a Boolean value if the data contains Personally Identifiable
Information (also called PII). These are typically added as tags.

Tip: Tagging is not just for artists. Nearly everything that can be
created in AWS can have tags created with it or added later. Tags are
simple key-value pairs that add context or accompanying information
to the created item. Beyond the context, it is a vital pattern to decide
which tags are basic necessities for the things created in your account
and which ones are optional. This can help you keep track of what
resources are created for which purpose, what team is working on a
particular service, or what part of a workload a service is used for. You
can also use the AWS Tag Manager and Service Control Policies to
enforce your decided tagging standards.

Amazon S3 Select
The AWS Simple Storage Service allows users to retrieve subsets of data
from individual data objects using standard query language, also called SQL
This means that using the console, the provided AWS software development
kits, also known as SDK, or the S3 API, can retrieve selections of your files
using standardized languages, as shown in the following examples.
Normally, you would have to download the file and load it into query
service, but S3 Select bypasses that and allows you to look at the structure of
your files and programmatically retrieve subsections of them, ready to be
used in many analytics, data engineering, and machine learning projects.
Refer to Figure 2.8:

Figure 2.8: Querying a file in your Data Lake with S3 Select

AWS Glue
Like Amazon Kinesis, AWS Glue is the name of a suite of tools and services
designed to prepare, transform, and identify data. It is serverless, which
means there are no compute or storage resources to manage, so your teams
can run both their experiments, directly making changes to the data they
need to run their projects and create automated jobs that repeat those steps
for Machine Learning workflows.
We will only a few tools in the Glue family in this chapter, with more
covered in Chapter 4, Orchestrating the Data Continuum.

Glue Crawlers
Metadata is data about your data, and the ability to easily manage a
repository of metadata is critical to enabling teams consuming the data
stored in your Data Lake. What fields are in a specific file, their data types,
the number of entries, the file format, and the overall schema can be
determined automatically and stored for review. The following image shows
the AWS Glue Console when adding a new Crawler. The crawler will ask for
database and table information to store the resulting metadata in. If you do
not already have a database and table prepared, you can create one when you
create your Crawler. Refer to Figure 2.9:

Figure 2.9: Building a Glue Crawler

You use AWS Glue Crawlers to scan the portions of your Data Lake you
specify. The scanning process populates Tables in the Glue database with the
collected metadata, as shown in Figure 2.10:

Figure 2.10: Review screen when creating a Glue Crawler

Extract, Transform, and Load (ETL) jobs use the Glue Data Catalog as
sources and targets, reading from the data stores defined in the tables. To
create a Glue Crawler from the AWS Glue service home page, choose
Crawlers. From there, you can follow the wizard or manage the individual
elements of the crawler. Once the crawler starts, it will recursively scan the
target location, reading in the individual data objects and collecting the
metadata about them, writing it to the target Glue Table, as shown here (refer
to Figure 2.11):

Figure 2.11: A created Glue Crawler

You can set crawlers to run on demand or on a schedule, enabling you to
refresh your metadata table as new data lands in your Data Lake.

Glue Databases
AWS Glue Databases are collections of metadata tables in your AWS Glue
service. Your AWS Glue Databases can contain tables that aggregate data
from multiple sources in a single data repository or in multiple data

repositories. This means you can collect metadata from multiple locations in
your Data Lake that are logically associated even if they are stored in
different key structures.

Glue Tables
Glue Tables are metadata from one or more sources. You can create tables
manually, as a result of a Glue Crawler, using the CloudFormation
infrastructure as Code service, or via Glue API, as shown in Figure 2.12:

Figure 2.12: A Glue table created from our crawler

When you create the table manually, you can also define the table schema
and the values of each table field. When it is created via a Glue Crawler,
those parameters are created for you.

Amazon Athena
Amazon Athena is a serverless query service that simplifies interacting with
data stored in Amazon S3, such as the data in our Data Lake. You use ANSI
standard SQL to query your data without the need to move it from where it
persists. Even better, Athena reads metadata from the tables in your Glue
Data Catalog, which allows you to interact with that data without moving it
from your Data Lake. With a few minor exceptions, the SQL standard for

Athena is based on the HIVEQL DDL:
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DD
L.
Like most services, you can interact with Athena from the AWS console,
choosing the database and table to query and then writing your queries
directly into the provided web-based editor. Your results will be provided
directly, allowing you to view, combine, and investigate your data. You can
also use the Athena API and the SDK to build Athena interactions into your
applications.
When you first use Athena, you will need to set up an S3 location that
Athena can use to store your query results. This should not be in your Data
Lake, since this data is considered ephemeral, but you can export your
queries and their results to your Data Lake if it would be of use.
Figure 2.13 is an example of a simple query that can be run in the Amazon
Athena console, selecting 10 rows from the chosen data source. This can be
used to get an initial idea of the format of your columns, their names, and the
data types:

Figure 2.13: A basic query against a Glue Table in Athena

While our primary use case for Athena is to provide visibility into our newly
created Data Lake, it can also connect to relational databases using Open
Database Connectivity (ODBC) and Java Database Connectivity
(JDBC), external Hive metastores, and other Athena data source connectors,
as defined in the provided documentation. Figure 2.14 shows some of the
types of ANSI standard SQL that can be used in the Amazon Athena
console. The query is selecting a specific column, counting the entries in

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL

another where values in a third column are between specified valued, and
finally grouped together by the first column:

Figure 2.14: More complex queries are possible with Athena

While there is more to Athena that can be covered in this book, there is one
additional key feature that can be implemented to empower the teams
working on Data and Machine Learning projects: Workgroups.
Here are a few sample Athena queries:

1. Selecting the number of rows in the stellar_coordinate_data_table:
SELECT count(*) as count FROM stellar_coordinate_data_table

2. Selecting data referencing a Glue Table, grouping our stellar data set
and performing simple math expressions to derive additional details:
SELECT DATE, CATEGORY, CONSTELLATION

avg(stellar_coordinate) as coordinate,

avg(stellar_coordinate/stellar_size) as

average_stellar_momentum,

avg(stars_in_constellation) as average_stars,

stellar_size (stars_in_constellation, .99) 99th_percentile

FROM stellar_coordinate_data_table

WHERE DATE > ‘2002%’ AND (TYPE = 'O' OR TYPE = 'A'

GROUP BY CONSTELLATION

ORDER BY 99th_percentile

Athena Workgroups allows you to separate users, teams, or even
applications in Athena, controlling not only what data they have access to
but also allowing them to share their queries and the results of their queries.

Since Athena is charged based on the amount of data scanned, the ability to
set scanning limits in Athena is key to helping with cost control.

Conclusion
In this chapter, we covered the first major part of the ML workflow (which
we learned about in Chapter 1, Introducing the ML Workflow): the data
preparation phase. The most important part of a ML project is data, and first
we need to determine what our data sources are, understand how data is
generated, and how it needs to be curated. Then, we need to devise a
mechanism to source this data into a centralized repository for collection,
processing and consumption. We learned that we can do all this with an
Amazon S3 Data Lake and using the several data ingestion mechanisms that
AWS supports natively. We saw, with the help of code examples, how to set
up a Data Lake, how to ingest data into the Data Lake (a process called
hydration), how to query and view this data, and finally, how to do some
processing before you can feature engineer your datasets for ML.
What’s next you ask? Let’s step into a time machine and take a look at the
future in Chapter 3, Predicting the Future With Features!

Points to Remember
Here’s a summary of what we learned in this chapter:

In this chapter, we introduced the concept of a Data Lake, what
purpose it serves, how to set it up, and how to enable your users to
interact with the data objects in your Data Lake effectively.
A Data Lake is a centralized data repository that allows you to store
your data in its original format: structured, semi-structured, or
unstructured. The Data Lake stores data from all aspects of your
organization and enables users to set a schema to that data when it is
read versus when it is written, meaning that the data is applicable to all
users in all teams. This also allows you to form your data to the project
at hand rather than trying to guess the schema needed.
A Data Lake is also free from compute, memory, or legacy disk
limitations. Without the need for a compute resource pool and memory
allocation, your Data Lake can grow as much as it needs to while

providing the rules necessary to archive data when it is no longer
needed.
Data Lakes also provide functional and relevant security controls by
user, role, project or team. Access, visibility, and permissions can be
controlled down to individual rows of data.
Lastly, Data Lakes integrate natively with tools meant to add additional
contextual information about the data stored and those that allow
visibility into the data.
We also introduced a scenario detailing an experienced database
engineer tasked with the creation of a Data Lake and enabling their
team with its use. At the end of the current sprint, the database engineer
was able to close all the assigned stories, having provided the requested
functionality despite Mercury being in retrograde.

Multiple choice questions
Use these questions to challenge your knowledge of what you learned in this
chapter.

1. What is the difference between a Data Lake and a Data
Warehouse?

a. These are just two names for the same concept.
b. Data Lakes store data in their original format, and Data

Warehouses store processed and transformed data for direct
consumption.

c. Data Lakes store processed and transformed data, and Data
Warehouses store data in their original format.

d. Data Lakes store data for reporting purposes, and Data
Warehouses store data to help with operational processing.

2. It is impossible to collect and ingest real-time streaming data
directly into a Data Lake.

a. True
b. False

3. Amazon Athena is the service of choice to ingest batch data into an
S3 Data Lake.

a. True
b. False

4. Which of these AWS services CANNOT be used for data ingestion
or processing?

a. Amazon Polly
b. Amazon Athena
c. AWS Lambda
d. Amazon Kinesis

5. What does ETL stand for?

a. Elegant, Transformative, Long-lasting
b. Engines, Transformers, Losses
c. Extract, Transform, Load
d. Empirical, TensorFlow, Latent

Answers
1. b
2. b
3. a
4. a
5. c

Further Reading
Here are a few additional resources for learning how to create and manage a
Data Lake to enable your Machine Learning projects on AWS:

The pre-built AWS Data Lake Solution:
https://aws.amazon.com/solutions/implementations/data-lake-
solution/

Getting started with AWS Lake Formation:
https://aws.amazon.com/blogs/big-data/getting-started-with-aws-
lake-formation/
Access and manage data from multiple accounts from a central AWS
Lake Formation account: https://aws.amazon.com/blogs/big-
data/access-and-manage-data-from-multiple-accounts-from-a-
central-aws-lake-formation-account/
A public Data Lake for analysis of COVID-19 data:
https://aws.amazon.com/blogs/big-data/a-public-data-lake-for-
analysis-of-covid-19-data/
Anonymize and manage data in your Data Lake with Amazon Athena
and AWS Lake: https://aws.amazon.com/blogs/big-data/anonymize-
and-manage-data-in-your-data-lake-with-amazon-athena-and-aws-
lake-formation/
AWS Analytics Services Explained: From Data Lakes to Machine
Learning: https://aws.amazon.com/blogs/apn/aws-analytics-
services-explained-from-data-lakes-to-machine-learning/

CHAPTER 3
Predicting the Future With Features

Introduction
Do you believe in your stars? It is high time that all of us do. According to this
article (https://www.livescience.com/12856-astrology-science-indian-court-
ruling.html, published in 2011, accessed by the author on February 2022), the
Bombay High Court has ruled that astrology is a science. Most, if not all of us,
have looked up our star signs at some point in our lives. Whether or not we
believe in the predictions, there is an inherent curiosity in all of us to understand
what the future holds for us. While the future seems to be an outcome of a choice
we make in the present in general, there are events that seem completely unrelated
as well. And it is this uncertainty that drives us to define and understand it.
Astrology is one way to help understand the future; it is the oldest, most accepted
and time-tested method. We human beings do love to see what is in store, and if
you feel the urge to look up predictions for your star sign, please do.
With machines, there is one big distinction. To understand this, let us look at the
definition of Astrology. It is the art and science of predicting future events in our
lives using the relative positions of stars and planets over time from our birth date
and time as the starting point. A chart is created denoting the planetary positions
at birth, and it is used to derive future events based on perceived positions of
these planetary bodies for the future timeframe in question. So, there is a
semblance of past data being used, but only to define a structure for evaluation
(akin to designing data structures and algorithms in computing). In Machine
Learning or ML, the origination timeframe for the data is not as relevant as the
volume of historical data (or past events) needed. Even more important is the
correlation between the individual attributes in the data to what we want to
predict. These attributes are what are call Features in ML. In simple terms, these
are the columns in your dataset.
For example, let's say you want to predict next year's house prices. To train a ML
model to do this, you would need historical data with attributes like locality,
house size, number of bedrooms, home loan interest rates, loan options, good
schools nearby, accessibility to shops, does it have amenities like swimming pool,
year of construction, and so on. These are the input features. The historical data
will also the contain house prices. This is the target feature. The dataset you use

https://www.livescience.com/12856-astrology-science-indian-court-ruling.html

for training the model (the historical data) will contain both input features and the
target feature. The target feature serves as the label for supervised training of a
ML model. The model will learn to approximate a function to predict the target
feature from the input features in the data. After training, you can use the model
to predict the house price (the target feature) by sending new input values for
house characteristics (the input features).
And that's why the most important aspect of designing a ML solution is feature
engineering or the technique of collecting, harvesting, and transforming features
from your dataset. As we saw earlier, features define the inputs and the output of
the ML model and will have to be considered very carefully as they can directly
influence the success of the model predictions. In the previous chapter, you
learned how to hydrate your data lake using various ingestion mechanisms from
diverse data sources using AWS services. This data that you import contains the
features we need to train our ML models. In this chapter, you will learn what
features are, why they are important, how to select the features that matter, and
different techniques for data collection, preparation and usage. We will dive deep
into feature engineering techniques for various ML types, like Natural Language
Processing or NLP, Computer Vision or CV, and Tabular data. We will learn by
running Python code examples that show various feature engineering tasks in
action and understanding the benefits of these techniques and what to use when.

Structure
In this chapter, we will dive deep into the following topics:

Introducing feature engineering
Feature engineering for NLP
Feature engineering for computer vision
Feature engineering for tabular data

Objectives
By the end of this chapter, you should have a very good grasp on why features are
important in ML, the definition of feature engineering, how to perform some of
the most common feature engineering techniques in different types of ML use
cases with actual code examples such as tabular regression/classification, natural
language processing or NLP, and object detection for computer vision tasks.

Technical Requirements

We are going to be very hands-on in this chapter, and access to an AWS account is
mandatory. Follow the instructions in the Setting up your AWS account section of
Chapter 2, Hydrating Your Data Lake, to sign up for an AWS account. Once you
have signed up, log in to your AWS account using the instructions at
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html.

Onboard to SageMaker Studio
Next, you need to onboard to SageMaker Studio and open your Studio domain to
get started. Follow the instructions in this documentation
(https://docs.aws.amazon.com/sagemaker/latest/dg/onboard-quick-
start.html) for step-by-step instructions; make sure you do not miss any step.

Hint: When you use SageMaker Studio to run ML training jobs or set up
deployment instances, you will incur costs after the free tier limits have
been exceeded. If you want to look at examples of how you can do ML
training without an AWS login, you can try the Amazon SageMaker Studio
Lab. This blog post contains the instructions on how to try it out:
https://towardsdatascience.com/amazon-sagemaker-studio-lab-for-
beginners-b5421b1550d3. Studio Lab is a good way to quickly prototype
your ML use cases, but for trying out all the exercises in this book, you
need access to SageMaker Studio through the AWS Management Console.

Cloning the repository to SageMaker Studio
Once you are logged in to the SageMaker Studio, you need to clone the book's
repository to start running the examples. Follow the steps given here to do this:

1. When you are in SageMaker Studio, you will see a Launcher page with
instructions to get started. From the top menu in the page, click on File, and
then click on New, followed by Terminal. Refer to Figure 3.1:

Figure 3.1: Open Terminal in SageMaker Studio

2. Now, git clone the GitHub repository by executing the command in the
sagemaker-user directory:
“git clone https://github.com/bpbpublications/Cloud-Native-AI-and-
Machine-Learning-on-AWS”

Figure 3.2: Cloning the book GitHub repository

You can now close the Terminal window by clicking on X in the top-right corner
of the window. Then, click on the folder icon on the left pane of the Studio
window; this will bring up the folder for the book, along with the folders for each
chapter. You can navigate to the chapter of your choice to run the examples.

Creating a S3 bucket and uploading objects

https://github.com/bpbpublications/Cloud-Native-AI-and-Machine-Learning-on-AWS

Follow the instructions in this documentation
(https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-
overview.html) to create an Amazon S3 bucket. Almost all the coding chapters
would need a S3 bucket, so it is better to create a bucket and then create multiple
folders in the bucket one for each chapter.

Introducing feature engineering
Have you ever wondered (like the authors did) why do they (the people who
invented ML buzz words) use complicated words like "feature engineering"?
Granted it sounds cool to say it. If you were to say, "I specialize in feature
engineering", you are sure to be treated with respect in the technology community
because the words seem to have an important ring to them. But, why not
something simple like data processing or data transform? It sure seems similar to
what you would do to prepare your data for use in ML training right? Maybe.
Maybe not.
Let's use the age-old adage of any demystification process and try to break it
down. According to thesaurus.com
(https://www.thesaurus.com/browse/feature), the word feature has several
meanings, with the most prominent ones being aspect, item, quality, and attribute.
As you can see, a feature refers to what is an important characteristic or what
qualifies the data. These are the columns and their values in your dataset that
enhance the significance of what your dataset represents as a whole. And that's
exactly what we need for our ML training. There are other considerations before
we arrive at the list of features we need; we will delve into that soon. Now that we
understand the usage of the word feature, you might be thinking, why that specific
word? Why not any other word that has a similar meaning? To answer this, we
need to go to the subject of statistics, which is the foundation for the science
behind ML. Statistics attempts to understand data by using measures like standard
deviation, correlation and variance to explore how it is distributed and mapping
the empirical relationships.
In statistics, datasets are referred to as populations, which are collections of data
points that broadly lay out the scope for a particular question you want to answer
or an experiment you are running. A sample in most cases is a random selection
of data points from the population, but one that most closely represents the
characteristics of the population of which the sample is a subset. In some
instances, you may choose to be intentional about your samples, such as when
you create an evaluation dataset. An observation is a single row of columns or
attributes and indicates one instance of the sample or population. So, a sample is a
collection of observations recorded across dimensions, such as time or other

https://www.thesaurus.com/browse/feature

qualifying categories, that best represents the data. A feature is an attribute or
column within an observation and denotes all recorded values for an attribute or
column in a sample or population. You might be thinking hang on, that was also
complex to understand. If so, our apologies. We will try an alternate approach.
How about "a picture says more than a thousand words"? Refer to Figure 3.3 to
understand the function of a feature in the context of statistics:

Figure 3.3: Tabular data representation in the statistical context for ML

We have talked about what a feature is long enough; let us move on to the second
word: engineering. We all know what the word itself means, but what does it
signify with respect to ML? It is simply whatever you do to get the features to a
meaningful state and make them usable for ML training. Why do we have to do
this? It is so because otherwise, you may not get a model that is able to predict
anything well. The goal of ML is to minimize error in predictions, thereby
meeting the needs of the business problem you are trying to solve. It doesn't
matter how well the model trained; if the prediction is unreliable, it is not usable.
And features are at the core of reliability of a model. So how do we engineer
features? It depends on the ML use case (what are we trying to do?) and the type
of learning required (how can we train the model based on data we have?).
If you recollect what we read in the Approaching a ML problem and Overview of
the ML workflow sections of Chapter 1, Introducing the ML Workflow, we saw
that based on the business or customer’s need and the use case, you can select
supervised learning, unsupervised learning or reinforcement learning, and the ML
problem types/sub-types are varied, such as computer vision, speech, business
tools, and industrial intelligence. These play a role in determining the types of
features we work with, and the business need directly drives the features we
select. In the following few subsections, we will explore common feature
engineering techniques for these use cases.

Feature engineering for NLP
NLP is the approach or a collection of techniques to enable machines to
intelligently cognize text-based data and derive contextual relationships. Some of
the most popular uses of NLP are sentiment analysis (detecting the sentiment in a
sentence or a paragraph), topic modeling (predicting the topic for a text
document), classification (categorizing documents into classes or groups based on
the document subject), and entity recognition (selecting words in documents that
can be attributed to particular type, such as a person, place and date). The primary
premise of a NLP model training involves converting text in the training
document set into tokens or vector embeddings (machines do not understand text;
they only understand numbers; embeddings are the numerical representations of
words in a document based on frequency, similarity, and positioning of the word
in relation to its neighbouring words). Depending on the learning objective
(sentiment analysis or topic modelling for example), train to learn either the label
corresponding to the group of words or common topics. In the subsequent
chapters in this book, we will learn how to build some of these models; but first,
we need to understand how we feature engineer for NLP training.
For example, let us consider an objective to train a model that can identify the
author by providing quotes from their books as input. This means we need to train
a text classifier. The following table is a sample of how our training dataset may
look:

Quote Author

Learning does not make one learned: there are those
who have knowledge and those who have
understanding. The first requires memory and the
second philosophy.

Alexandre Dumas

For all evils there are two remedies - time and
silence.

Alexandre Dumas

and as imagination bodies forth the forms of things
unknown, the poet's pen turns them to shape, and
gives to airy nothing a local habitation and a name

William Shakespeare

Table 1.1: NLP text classification dataset

Remember that the NLP model doesn't really care about how beautiful your text
looks; it only needs to convert it into numbers (embeddings) and learn the
relationships between vector embeddings of the Quote and the Author features.
During feature engineering, we try and make training process easy by making the
text as succinct as possible without losing the relationships or meaning. The
following image depicts the various stages of a typical text feature engineering

task. Use this as a general guideline, but you may want to perform additional
steps based on your specific requirement. Refer to Figure 3.4:

Figure 3.4: NLP feature engineering stages

Tokenize and remove punctuations
As a first step, let us tokenize our quotes into words (you may want to tokenize
them into sentences before you tokenize into words) and remove any
"unnecessary" punctuations (because we cannot convert them into numbers and
even if we did, it would not help) from our text data above. To try the examples in
this chapter, refer to the Technical Requirements section at the beginning of this
chapter to sign in to the AWS management console, execute the steps in onboard
to SageMaker studio, and execute cloning the repository to SageMaker Studio to
get started. Click on the folder that corresponds to this chapter number. If you see
multiple notebooks, the section title corresponds to the notebook name for easy
identification. You can also passively follow the code samples using the GitHub
repository provided at the beginning of the book.
If you are trying this locally, install Python
(https://wiki.python.org/moin/BeginnersGuide/Download) before you proceed.
We will install the Natural Language Toolkit (http://www.nltk.org/) Python
library, import the data that the library needs, and run the code to remove the
punctuations. Execute the following code after you have installed Python and
nltk:
import the nltk library after you have installed it

import nltk

download the library subset that is needed for word tokenization

nltk.download('punkt')

import the word tokenization function

from nltk.tokenize import word_tokenize

creating a list of our quotes from the input dataset

quotes = ["Learning does not make one learned: there are those who

have knowledge and those who have understanding. The first requires

memory and the second philosophy.","For all evils there are two

remedies - time and silence.","and as imagination bodies forth the

forms of things unknown, the poet's pen turns them to shape, and

gives to airy nothing a local habitation and a name"]

define a list for feature engineering output

fe1_quotes = []

for quote in quotes:

get the word tokens from each quote

r_words = word_tokenize(quote)

remove punctuations

https://wiki.python.org/moin/BeginnersGuide/Download
http://www.nltk.org/

p_words = [w for w in r_words if w.isalpha()]

p_removed = ''

put the words with punctuations removed back into a sentence

for p_word in p_words:

p_removed += ' ' + p_word

fe1_quotes.append(p_removed)

print(p_removed)

The following table shows how our text dataset would look like with the
punctuations removed:

Quote Author

Learning does not make one learned there are those who have
knowledge and those who have understanding The first
requires memory and the second philosophy

Alexandre Dumas

For all evils there are two remedies time and silence Alexandre Dumas

and as imagination bodies forth the forms of things unknown
the poet pen turns them to shape and gives to airy nothing a
local habitation and a name

William Shakespeare

Table 1.2: NLP text classification dataset without punctuations

Convert to lower case
During training, the NLP algorithm you choose will convert the words from your
text into vector embeddings, as we discussed earlier in this chapter. A good
approach would be to keep the inputs to this process as unambiguous as possible
by converting text to one case only throughout the dataset. Execute the following
code block to convert the quotes from your dataset to lower case. The Author
column will be one-hot encoded (refer to the Tabular data feature engineering
subsection) into integers prior to training:
fe2_quotes = []

for quote in fe1_quotes:

fe2_quotes.append(quote.lower())

print(fe2_quotes)

The following table shows how our text dataset would look in lower case with
punctuations removed:

Quote Author

learning does not make one learned there are those who have
knowledge and those who have understanding the first requires
memory and the second philosophy

Alexandre Dumas

for all evils there are two remedies time and silence Alexandre Dumas

and as imagination bodies forth the forms of things unknown
the poet pen turns them to shape and gives to airy nothing a
local habitation and a name

William Shakespeare

Table 1.3: NLP text classification dataset in lower case

Remove stop words
Stop words are frequently used words in text that do not mean anything on their
own but help in structuring the sentence. In the preceding sentence, stop words
were "are", "in", "on", "in", and "the". You get the gist. The nltk library provides
a useful function to list stop words and also to remove these from our text dataset.
Execute the following code to remove stop words:
download the stopwords library

nltk.download('stopwords')

import the word tokenization function

from nltk.tokenize import word_tokenize

import the stop words function

from nltk.corpus import stopwords

Define a new list for storing quotes with the stop words removed

fe3_quotes = []

get the full list of stop words in the English language

stop_ws = set(stopwords.words('english'))

for quote in fe2_quotes:

words = word_tokenize(quote)

s_words = [word for word in words if not word in stop_ws]

s_removed = ''

for s_word in s_words:

s_removed += ' ' + s_word

fe3_quotes.append(s_removed)

print(fe3_quotes)

The following table shows how our text dataset would look with stop words
removed:

Quote Author

learning make one learned knowledge understanding first
requires memory second philosophy

Alexandre Dumas

evils two remedies time silence Alexandre Dumas

imagination bodies forth forms things unknown poet pen turns
shape gives airy nothing local habitation name

William Shakespeare

Table 1.4: NLP text classification dataset with stop words removed

Perform stemming and lemmatization
As you can see, with NLP feature engineering, we are trying to make the text
shorter and more succinct but without losing the meaning. The next steps in this
process are stemming and lemmatization, which are techniques to prune words to
get to the essence of what the word means and discarding the rest. The idea is to
arrive at a "stem" or the "lemma" of a word without sacrificing its essence (to get
the most accurate vector embedding for the word in relation to other
words/similar words). The major difference between the two techniques is that a
"stem" doesn't have to be an actual word, but a "lemma" needs to be. Execute the
following code to perform stemming using the nltk library for our text dataset:
import the stemming function

from nltk.stem.porter import PorterStemmer

declare the porter stemmer, the most commonly used stemming

function

porter = PorterStemmer()

fe4_quotes = []

for quote in fe3_quotes:

words = word_tokenize(quote)

stem each of the words for each of our quotes

stem_words = [porter.stem(word) for word in words]

stem_quote = ''

for stem_word in stem_words:

stem_quote += ' ' + stem_word

fe4_quotes.append(stem_quote)

print(fe4_quotes)

The following table shows the quotes from our text dataset after stemming.

Note: See that some of the stemmed words are not actual words and hence,
seem to have lost their meaning. However, during training, the NLP model
will be able to derive contextual relationships from these words after vector
embedding.

Quote Author

learn make one learn knowledg understand first requir memori
second philosophi

Alexandre Dumas

evil two remedi time silenc Alexandre Dumas

imagin bodi forth form thing unknown poet pen turn shape
give airi noth local habit name

William Shakespeare

Table 1.5: NLP text classification dataset after stemming

Let us now perform lemmatization using the nltk library. The following code
block downloads the wordnet data library that provides the lemmatization
function, imports the function, tokenizes the words from our quotes, and
generates a lemma for each of the words:
download the wordnet library for lemmatizer

nltk.download('wordnet')

import the lemmatizer function

from nltk.stem import WordNetLemmatizer

declare the lemmatizer

lemmatizer = WordNetLemmatizer()

fe5_quotes = []

for quote in fe3_quotes:

words = word_tokenize(quote)

stem each of the words for each of our quotes

lemma_words = [lemmatizer.lemmatize(word) for word in words]

lemma_quote = ''

for lemma_word in lemma_words:

lemma_quote += ' ' + lemma_word

fe5_quotes.append(lemma_quote)

print(fe5_quotes)

The following table shows the quotes from our text dataset after lemmatization.

NOTE: When you compare the output of stop word removal with the
output of lemmatization, they look similar; however, notice that "remedies"
became "remedy" in the second quote, and "bodies" became "body" in the
third quote. Lemmatization gets to the essence of the word with the
"lemma" still retaining meaning.

Quote Author

learning make one learned knowledge understanding first
requires memory second philosophy

Alexandre Dumas

evil two remedy time silence Alexandre Dumas

imagination body forth form thing unknown poet pen turn
shape give airy nothing local habitation name

William Shakespeare

Table 1.6: NLP text classification dataset after lemmatization

The techniques you learned in this subsection will get you started with your NLP
project from a best-practices perspective. Based on your requirements and the
type of NLP modelling you need, you may have to perform additional text
transforms and pre-processing, such as parsing HTML web pages to extract text,
and reading text off of images and PDF documents using Amazon Textract
(https://aws.amazon.com/textract/), a fully managed service that provides easy
text extraction using APIs. In the next subsection, we will learn some feature
engineering techniques for image-based datasets.

Feature engineering for computer vision
Computer vision (CV) is the science of teaching computers how to see and
understand. It refers to a collection of algorithms, concepts and approaches to
classify images and videos, detect objects in images, and more. For example, with
computer vision, your ML model can classify images to be dogs, cats or birds; it
can identify a car in an image of a road, and it can distinguish between two cars in
an image. There are several techniques, algorithms, neural networks and pre-
trained models available as AWS AI services we can use to train CV models with
high accuracy; we will cover these in the subsequent chapters. For now, what do
you think are the features for an image dataset? Tabular datasets have columns,
and it is pretty easy to determine the features, but how can you do this with
images? As humans, we have a unique way of perceiving images; we look at
form, shape, colour, and size and rely on our memory to understand what an
image means, but computers understand only numbers. So, we use pixel positions
and their colour representations (RGB for colour and L for grayscale), which
results in an array of arrays for training computers to learn images. Let us now see
this in action.
To try the examples in this section, refer to the Technical Requirements section at
the beginning of this chapter to sign in to the AWS management console, execute
the steps in onboard to SageMaker studio, and execute cloning the repository to
SageMaker Studio to get started. Click on the folder that corresponds to this
chapter number. If you see multiple notebooks, the section title corresponds to the
notebook name for easy identification. You can also passively follow the code
samples using the GitHub repository provided at the beginning of the book.
Let us first open the image and check it out. Execute the following code in the
SageMaker Studio notebook to display the image using the Python Pillow
(https://pillow.readthedocs.io/en/stable/), a versatile and easy-to-use libraries
for all kinds of image processing tasks. We will use the Python3 Data Science
kernel in SageMaker that already has these libraries installed. If you are trying
locally, you must install Python and the Pillow package:

https://pillow.readthedocs.io/en/stable/

Lets use the Python image processing Pillow library

from PIL import Image

img = Image.open('puppy-image.jpg')

display(img)

The following image is displayed when you execute the previous code:

Figure 3.5: Sample image for feature engineering

For image processing the feature engineering techniques are very different from
what we do with text. Typically, we review the image size and resize the images
so that all of them are the same size across the training and test datasets, cropping
and tiling the images, rotating the images, and convert to grayscale if needed. The
whole idea is to pre-process the images to get them to be the right quality and size
for models to train well from them. In some cases, we may have to take a few
additional steps, such as converting the images to the RecordIo Protobuf format
(https://docs.aws.amazon.com/sagemaker/latest/dg/cdf-training.html#cdf-
recordio-format) using an MXNet utility called im2rec
(https://mxnet.apache.org/versions/1.6/api/r/docs/api/im2rec.html) in Python
for image classification problems, or use a technique like Principal Component
Analysis or PCA for dimensionality reduction
(https://docs.aws.amazon.com/sagemaker/latest/dg/pca.html) to optimize
training.

https://mxnet.apache.org/versions/1.6/api/r/docs/api/im2rec.html

Resizing Images
A good idea would be to ensure that all images are of good quality at the same
size. Images of different sizes in a dataset can confuse the model during training,
and some algorithms may not accept different image sizes and may give you
validation errors. So as a first step, we should print the image size and convert it
to a smaller size, as needed, without impacting the content. Smaller is better
because images that are big have a lot of pixels, which means the model will take
significantly longer to converge, which directly relates to higher costs. Execute
the following code in the SageMaker Studio notebook to check how resizing
works:
Print the size of the image as width, height

img.size

We get the output as (1920, 1280), which indicates the width and height of
the image. Now, execute the following code to resize the image and save it as
a new image:
Resize the image to a smaller size

img_smaller = img.resize((600, 400))

img_smaller.save('puppy_image_small.jpg')

print(img.size)

print(img_smaller.size)

We get the results as (1920, 1280) and (600,400), which is as expected. Now,
execute the next line to display this resized image. As you can see, we have scaled
down the image size without losing the content quality. To understand why
resizing is important, let us review the image as an array of pixels. Execute the
following lines of code to get the pixel representation in RGB (Red, Green and
Blue) notation of the original image and print the first five pixels:
Get the pixel values from the image width, height = img.size

pixels = {'R':[],'G':[],'B':[]}

Let us now get the RGB value for each pixel position for w in

range(1,width):

for h in range(1, height):

pixpos = img.getpixel(((w,h)))

pixels['R'].append(pixpos[0])

pixels['G'].append(pixpos[1])

pixels['B'].append(pixpos[2])

Print the first 5 pixels in the first width position and up to 10

pixels height for i in range(1,6):

print("R: "+str(pixels['R'][i])+' '+"G: "+str(pixels['G'][i])+'

'+"B: "+str(pixels['B'][i])+' ')

We get the following print statement from the code execution:
R: 241 G: 238 B: 221

R: 240 G: 237 B: 220

R: 239 G: 236 B: 219

R: 239 G: 236 B: 219

R: 238 G: 235 B: 218

Now, let us print the size of the pixels dictionary to understand how many RGB
pixel values we got from the original image. Execute the following code and
review the results:
How many pixels do we have?

len(pixels['R'])

We get the result as 2454401 for the count of pixels just for R. We will have
similar counts for G and B. Let us now perform the same exercise for the resized
image. Execute the following code in the SageMaker Studio notebook and review
the results:
Get the pixel values from the smaller image

width, height = img_smaller.size

pixels = {'R':[],'G':[],'B':[]}

Let us now get the RGB value for each pixel position

for w in range(1,width):

for h in range(1, height):

pixpos = img.getpixel(((w,h)))

pixels['R'].append(pixpos[0])

pixels['G'].append(pixpos[1])

pixels['B'].append(pixpos[2])

How many pixels do we have?

len(pixels['R'])

We get the result as 239001, which is 10 times smaller than the original pixel
count. In this case, the model will process 10 times less data, which saves time
and reduces costs significantly.

Cropping and tiling images
Another technique to reduce image data and improve training performance is to
crop images and remove unwanted content in them. These can be the background
or parts of the image that do not add value in recognizing what we want the model

to learn. When we crop parts of the image, we automatically reduce the number of
pixels, which reduces training time. Let us execute the following lines of code in
the SageMaker Studio notebook to crop our image and review the results:
Cropping and tiling our image

define cropping coordinates

crop_coord = (130,75,460,350)

crop the image

img_cropped = img_smaller.crop(crop_coord)

display(img_cropped)

We get the following image in the notebook as an output:

Figure 3.6: Image cropped to remove unneeded portions

The coordinates are the pixel positions (not the RGB representations for each
pixel position) denoting the top-left corner and the distance to the bottom-right
corner of the image we cropped (we used the resized image as the input). So, 130
is the pixel position that we started from in the left of the input image, and 430 is
the pixel distance up to which we go in the right; 75 is the starting pixel position
at the top of the image, and 350 is the pixel distance we go to the bottom of the
image. Let us now understand the size of this image in comparison to the input
image (the resized version). Execute the following code in the SageMaker Studio
notebook and review the results:
Get the pixel values from the smaller image

width, height = img_cropped.size

pixels = {'R':[],'G':[],'B':[]}

Let us now get the RGB value for each pixel position for w in

range(1,width):

for h in range(1, height):

pixpos = img.getpixel(((w,h)))

pixels['R'].append(pixpos[0])

pixels['G'].append(pixpos[1])

pixels['B'].append(pixpos[2])

How many pixels do we have?

len(pixels['R'])

We get the result as 90146, which is less than half the pixel count of our resized
input image (which was 239001). So, cropping can be really helpful as long we
determine the coordinates correctly. An automated way to determine the
coordinates for cropping will be to use an object detection model that can draw
bounding boxes around objects in images. A great example of this is Amazon
Rekognition (https://aws.amazon.com/rekognition/), a fully managed service
using powerful pre-trained models for object detection and image classification
for various use cases. We will learn more about Rekognition in Chapter 10,
Adding Intelligence With Sensory Cognition. When we use the Label detection
feature in Rekognition with the image of our puppy, we get the following results:

Figure 3.7: Amazon Rekognition analysis of the puppy image

As we can see, Rekognition not only drew the bounding box accurately but was
also able to predict that this was the image of a dog and its breed is Labrador

Retriever. Let us now learn about a related technique that is frequently used when
working with large image sizes: image tiling.
Sometimes images are extremely large (running to 100s of MBs or GBs in file
size) and contain complex details that prevent us from using the resizing or
cropping techniques we learned earlier. For example, a satellite image of a
residential neighbourhood will contain useful information in every area of the
image and will lose context/quality if we resize and lose content if we crop away
portions of the image. In this case, the best approach will be tiling. Tiling uses
cropping, but for a different reason. In tiling, we crop a big image into many small
sections, with each section becoming an independent image, and we store the
coordinate positions of the individual images to be able to stitch together the full
image again. It’s like a jigsaw puzzle but with almost all the pieces (small sections
of images) cropped into square or rectangular shapes and equal sizes. Execute the
following code in your SageMaker Studio notebook under the title Tiling our
image to tile our puppy image and review the results:
We will now use the crop function to create multiple tiles of our

image import math

get the dimensions of the input image - we are using the resize

image for this example

w, h = img_smaller.size

How many images do we want? Feel free to change this value but it

should be a perfect squared number

And the width and height of the input image must be divisible by

this square root

tiles = 16

divisor = int(math.sqrt(tiles))

left_pixel = 0

top_pixel = 0

right_pixel = w/divisor

bottom_pixel = h/divisor

traverse from the left to right of the image or traverse through

the columns for i in range(divisor):

if right_pixel <= w:

tiling position to attach to the image name referring to the

row and column number

such as puppy_tiled_r0_c1.jpg, puppy_tiled_r0_c2.jpg…

top_pixel = 0

initialize to first row here

j = 0

bottom_pixel = h/divisor

tiled_img = img_smaller.crop((left_pixel, top_pixel, right_pixel,

bottom_pixel))

tiled_img.save('tiles/puppy_tiled_' + 'r'+str(j) + '_c'+str(i)

+".jpg")

now traverse down the height of the image - traverse through

the rows for each column for j in range(1,divisor):

top_pixel += h/divisor

bottom_pixel += h/divisor

if bottom_pixel <= h:

tiled_img = img_smaller.crop((left_pixel, top_pixel,

right_pixel, bottom_pixel))

tiled_img.save('tiles/puppy_tiled_' + 'r'+str(j) + '_c'+str(i)

+".jpg")

increment pixel positions

left_pixel += w/divisor

right_pixel += w/divisor

This creates 16 tiled images of our input puppy image (that was resized earlier)
into a separate folder called tiles in the current directory. Now, execute the code in
the following cell in the notebook to display the tiled images in a grid. We will
use subplots in matplotlib
(https://matplotlib.org/3.5.1/api/_as_gen/matplotlib.pyplot.subplots.html) for
this task:
Lets use matplot lib to display the tiled images

import os

import matplotlib.pyplot as plt

images = []

for tile in sorted(os.listdir('./tiles')):

if tile.endswith(".jpg"):

images.append(plt.imread('./tiles/'+tile))

f, pltarr = plt.subplots(divisor, divisor, figsize=(12,8))

for j, row in enumerate(pltarr):

for i, axis in enumerate(row):

axis.imshow(images[j*divisor+i])

axis.set_title(f'tile {j*divisor+i+1}')

title = 'Puppy tiled images'

f.suptitle(title, fontsize=16)

plt.show()

You can see the following image displayed as the output:

https://matplotlib.org/3.5.1/api/_as_gen/matplotlib.pyplot.subplots.html

Figure 3.8: Tiled images

If you want to dive deeper into image processing utilities, check out ImageMagick
(https://legacy.imagemagick.org/), an easy-to-use tool for comprehensive image
manipulation.

Rotating images
Sometimes, the requirement might be to just rotate images across your dataset so
that they are all of the same disposition. This is important because the model
learns by understanding the RGB values for each pixel position. So, if you have
two images of the same object at different angles, it can confuse the model.
Execute the following code in the SageMaker Studio notebook to rotate your
image to different angles and display it:
rotate images to various angles

angles = [45,90,180,225]

for angle in angles:

display(img_smaller.rotate(angle))

https://legacy.imagemagick.org/

Converting to grayscale
In some cases, especially using deep learning for complex use cases, our image
training dataset may be very large, with hundreds of thousands or even millions of
images. We typically set up a distributed training environment with many
computers in a cluster for this. But if we are looking to save on compute costs and
time, there is a way for us to reduce the number of parameters a model needs to
learn without reducing the volume of the images. For computer vision, we do this
by converting our images to grayscale. Remember that the model learns the RGB
values for pixels, which is an array of three elements per pixel. Depending on the
size of the image, this can translate to millions of three-element arrays per image.
Multiply that by a million images and very soon, it can become compute-intensive
for training. So, we convert images to grayscale to reduce the number of data
points the model has to learn. In grayscale, there is only one data point indicating
the brightness level of the pixel for each pixel rather that the three values in RGB.
Execute the following cell in the SageMaker Studio notebook to convert your
image to a grayscale:
Convert image to gray scale aka black and white

gray_img = img_smaller.convert('L')

display(gray_img)

The following image is displayed as the output:

Figure 3.9: Grayscale image

What we discussed so far are some common image processing techniques to
improve the learnability of our CV-based ML model. This is by no means an
exhaustive list of techniques to try out; there are other things you can do based on
your use case, such as combining, change brightness, contrast, and colours. For a
full list of what is possible, refer to
https://pillow.readthedocs.io/en/stable/reference/Image.html. In the following
subsections, we will learn some additional things we can do that do not involve
direct image manipulation to make our CV training efficient.

Converting to RecordIO format
Image formats like JPEG and PNG are popular because they are portable and
compressible. However, when these images are used for computationally
intensive tasks like ML training, IO reads from disks can result in a bottleneck
because these formats are not tiled or layered. To improve training performance,
you can convert the images to MXNet RecordIO format
(https://mxnet.apache.org/versions/1.7/api/python/docs/api/mxnet/recordio/in
dex.html). RecordIO can be used to pack image files as a sequence of records
that are both compact and accessible. Conversion is easy with a couple of lines of
code using the im2rec (https://github.com/apache/incubator-
mxnet/blob/master/tools/im2rec.py) utility provided by MXNet. You can
convert your entire image dataset to RecordIO for training as required. Let us use
our tiled images as an example to try this out. We need to install MXNet for this
activity. You can either use the following code to install MXNet, or you can
change the kernel of your SageMaker Studio notebook to a MXNet kernel
(https://docs.aws.amazon.com/sagemaker/latest/dg/notebooks-run-and-
manage-change-image.html). Execute the following lines of code from the
SageMaker Studio notebook to create the RecordIO format:
first install mxnet. You can also use a kernel that has MXNet

already installed - select a kernel from the top right of SageMaker

Studio

!pip install mxnet

we have to install opencv package for recordIo conversion

!pip install opencv-python-headless

Download a copy of the im2rec python file we need

!curl -O https://raw.githubusercontent.com/apache/incubator-

mxnet/master/tools/im2rec.py

create a folder to label our tiled puppy images as labrador class

!mkdir tiles/Labrador

https://pillow.readthedocs.io/en/stable/reference/Image.html
https://mxnet.apache.org/versions/1.7/api/python/docs/api/mxnet/recordio/index.html
https://github.com/apache/incubator-mxnet/blob/master/tools/im2rec.py

create a RecordIO list file to indicate the label for the images

!python im2rec.py ./puppy ./tiles/ --recursive –list

The preceding step first creates a list file that links the label identifier to the
images. You can double-click on the file name on the left of your notebook pane
to view the contents of this file, as shown in the following image:

Figure 3.10: RecordIO list file contents

Now, execute the following code to create the index file and the RecordIO file:
now generate the recordIO file for our images which will be the

input for training

!python im2rec.py ./puppy ./tiles/ --recursive --pass-through --

pack-label

#you should see a puppy.rec file and a puppy.idx file created which

are inputs to your training

!ls -lt puppy*

It is really that simple to convert your images to the RecordIO format. Note that
when you have a large collection of images, conversion may take up to a few
hours, depending on the count and size of the images. We are now almost at the
end of the CV feature engineering section.

Dimensionality reduction with Principal Component
Analysis
Another pre-processing and feature engineering technique that you can apply to
optimize your training is Principal Component Analysis or PCA

(https://docs.aws.amazon.com/sagemaker/latest/dg/pca.html). It reduces the
number of features in your dataset without compromising on the quality of the
data. This is called dimensionality reduction because we are moving features from
a high-dimensional space (lots of columns or features to represent an observation)
to a low-dimensional space (reducing the number of features while retaining the
meaning of the observation). With PCA, we can drastically reduce the number of
columns in our dataset, thereby reducing the volume of data that needs to be
processed during training, cutting costs and improving training efficiency.
Typically, PCA is applied on tabular datasets, which we will explore in the
following subsection of this chapter, but since we can represent images as a three-
dimensional array of RGB pixel values, we can use PCA for images, provided the
number of dimensions is reasonable. PCA transforms features into the number of
components (which become the features for your actual ML training) that you
specify. For example, if your dataset has 500 features, you can specify the number
of components to be 40 as long as the number of observations is greater than 40
for your dataset. The number of components can be any number between 1 and
the minimum of number of samples or the number of features. Let us see if PCA
makes sense for our puppy image. Execute the following code blocks from the
SageMaker Studio notebook:
We need a numpy array of our image to get started. Import numpy

first

import numpy as np

Let us convert our grayscale image to a transposed numpy array

first

seq = img_smaller.getdata()

img_pix_array = np.array(seq)

img_pix_array.shape

We get the result as (240000, 3). There are 240000 rows or observations with
three features (R, G and B). Let us now run the PCA analysis on this data using
the Scikit Learn (https://scikit-learn.org/stable/index.html) decomposition
module, as shown in the following code block:
Let us use Scikit learn PCA to see the variability with all 3

features

from sklearn.decomposition import PCA

pca_3 = PCA(n_components=3)

pca_3.fit(img_pix_array)

print(pca_3.explained_variance_ratio_ *100)

We get the result as [94.97632805 4.43190176 0.59177018]. This indicates that
the first feature accounts for 95% variability of the data and is good enough for

https://scikit-learn.org/stable/index.html

our requirements. So, we will re-run the PCA with the n_components as 1:
Component 1 accounts for 95% variability and is sufficient for us.

We will use number of components as 1 and run the transform

from sklearn.decomposition import PCA

pca_1 = PCA(n_components=1)

pca_1.fit(img_pix_array)

img_reduced = pca_1.transform(img_pix_array)

img_reduced.shape

We get the result as (240000, 1), so we reduce the features from 3 to 1 with
PCA. While this was interesting to learn, we can achieve the same results by
converting our image to grayscale. For this specific example with just one image,
PCA is not a good option to apply. If you get a dataset of 1000 images with
similar characteristics as our image, it makes sense to use PCA. Here’s a great
example of how PCA can be used for ML problems using Amazon SageMaker:
https://sagemaker-
examples.readthedocs.io/en/latest/introduction_to_amazon_algorithms/pca_
mnist/pca_mnist.html.
That brings us to the end of the subsection for feature engineering techniques in
CV. In the next subsection, we will explore how to pre-process and feature
engineer tabular data, which accounts for a majority of how ML training data is
structured.

Feature engineering for tabular datasets
Data is ubiquitous and is in everything we do and experience. Data, in fact,
provides the means by which we understand and interact with the world. If you
stop for a moment and think about your day-to-day activities, you are using data
and insights to make decisions every step of the way. For example, checking the
weather to decide what you want to wear before you head out, finding the shortest
route to your office from home, checking what time a grocery store closes to plan
when you should leave from work, these are all part of our daily routine almost
involuntary and yet reliant on data to help us decide. But hasn't this been what we
have been doing all along? Why has it become so important suddenly? There are
two major reasons for this: the cost of storage has come down significantly, and
you can use data to uncover exciting possibilities with ML.

Hint: We discussed this in detail in the Evolution of AI and ML subsection
in Chapter 1, Introducing the ML Workflow.

For data usage to remain relevant, it needs to depict variance in how it is
distributed. Data that says the same thing repeatedly becomes immaterial. Further,
we need a broad selection of variables that are not as much correlated with each
other but together correlate toward generalizing a target feature you want the ML
model to predict. Feature correlation and selection is a very important exercise to
ensure that models are good at predicting values from data they have not seen
before. Correlation is the extent to which an output feature/column's values are
associated with or have relationship with a set of input feature values, such that
this association can be used to approximate a prediction function. Features with
good correlation are preferred, but if there is perfect correlation, the model may
overfit (become very sensitive to the training data and perform poorly with test
data); we must avoid this. On the other side of the spectrum, lesser correlation
means the model may underfit (take a long time to learn or never be able to learn),
so we want to be careful of that too. There is no magic number on what's the
correlation threshold to aim for, and it is often the result of iterative
experimentation, but a general rule is to select features with less than 85%
correlation with each other.
When it comes to tabular datasets, the feature engineering techniques vary from
what we have seen before. The end goal is the same, namely, prepare the features
such that we achieve our goal metric for model performance. You will find that
the techniques we use with tabular datasets are primarily statistical in nature, with
a few alternate approaches based on the requirement. Alright, enough talk! Let's
get started. Just like before, you need access to SageMaker Studio notebook to
follow along and execute the code as we try out the various techniques.
To try the examples in this section, refer to the Technical Requirements section at
the beginning of this chapter to sign in to the AWS management console, execute
the steps in onboard to SageMaker studio, and execute cloning the repository to
SageMaker Studio to get started. Click on the folder that corresponds to this
chapter number. If you see multiple notebooks, the section title corresponds to the
notebook name for easy identification. You can also passively follow the code
samples using the GitHub repository provided at the beginning of the book.
We will use the Python3 Data Science kernel in SageMaker that has the libraries
we need pre-installed. If you are trying locally, you must install Python and pip
install the packages that we will import as part of our code blocks. We will start
with simple techniques and progressively move on to advanced approaches. The
example dataset we will use is the wine magazine dataset from Kaggle
(https://www.kaggle.com/pabloa/wine-magazine), which contains 140K+
observations with nine input features and one target feature. The GitHub
repository contains the data files required for running through the next few

https://www.kaggle.com/pabloa/wine-magazine

subsections. Go ahead and execute the code blocks in the notebook section Load
data to create a Pandas DataFrame
(https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html)
object.

Exploring the data
First, we will load and walk through the data to understand what columns/features
are there and what they mean. Ensure that you have executed the very first code
cell to update the Scikit Learn package (https://scikit-learn.org/stable/) and
restart the SageMaker Studio Kernel (from the top of the notebook page; then,
click on Kernel and then on Restart Kernel and Clear All Outputs) before
navigating to the Load data section. Execute the code block to unzip the wine
magazine dataset (available at https://www.kaggle.com/pabloa/wine-magazine)
provided in the GitHub repository available to you when you cloned the
repository. Execute the following code to load the data to a Pandas DataFrame
(https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html) to
explore the date.

NOTE: The kernel we use in the SageMaker Studio notebook is a Python 3
Data Science version that includes most of what we need pre-installed.

import pandas as pd

Let's first load the data into a Pandas dataframe so it is easy

for us to work with it

wine_raw_df = pd.read_csv('./winemag-data_first150k.csv',

sep=';',header=0)

wine_raw_df.shape

We get the result as (144037, 10), which means there are 144037
rows/observations/samples and 10 columns or features. Execute the next few cells
to get more details on the data. When we run wine_raw_df.head(), we get the
first five rows from the dataset with the following results:

https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://scikit-learn.org/stable/
https://www.kaggle.com/pabloa/wine-magazine
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html

Figure 3.11: Wine magazine data first 5 rows

Execute the wine_raw_df.info() code in the next cell to check whether there are
any missing values in the dataset and review the results. Refer to Figure 3.12:

Figure 3.12: Wine data checking for columns with null values

Except the last_year_points feature, almost all columns have null values. The
total number of rows is 144037, as shown in RangeIndex. If the count of Non-
Null for each feature is less than 144037, the difference indicates the number of
nulls we have for that feature. We need to use the technique of imputation to
determine how to fill the missing values for these columns. Based on this
information, our feature engineering strategy will be as shown in the following
image:

Figure 3.13: Tabular feature engineering tasks

The sequence may vary based on your specific need, but this is what we will
follow in this chapter, and we will see hints as we go along if a different order is
warranted. First, we will impute the missing values in the price feature (this will
be our target feature) and drop the rows where the features points, winery, country
and variety are null because they are very few and dropping these rows won't
impact the quality of training. Next, we will determine the encoding strategy for
features country, designation, variety and winery because these have categorical
tendencies. We will drop the features region_1, region_2 and province because
the country feature already provides the aggregation for them, and we are not
interested in the level of detail these offer. Based on what the encoding yields, we
may apply scaling, normalization, or binning and will finish up with
dimensionality reduction with Principal Component Analysis
(https://docs.aws.amazon.com/sagemaker/latest/dg/how-pca-works.html). In
this chapter, we will use the Scikit Learn's PCA package (https://scikit-
learn.org/stable/modules/generated/sklearn.decomposition.PCA.html) rather
than SageMaker. Let us get going.

Imputing missing values
Often, when we get started, a dataset will be far from the shape we need it to be in
for our ML training. The most common issue you will face is null or missing
values in your dataset. The imputation technique helps you address this issue.
Imputation is the process of intelligently determining the means to fill in the
missing values. For numerical data, you can use the mean or median (if data is
normally distributed; more on this later) of all the values for the feature to replace
the missing values. If it’s text data, you can use the mode (most frequently
occurring value) to fill missing values. In our case, we are imputing the price
feature, which is numeric, so we will use mean as the measure. Execute the
following code to get the count of rows for each unique value of price:
wine_raw_df['price'].value_counts()

We get the following results:

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.htm

Figure 3.14: Price feature value counts

Run the following code to check the count of null values first:
Let's get the count of null values before imputation

wine_raw_df['price'].isnull().sum()

We get the result as 13396. Next, run the following code to impute the missing
value, which is the mean of all the prices across the dataset, and check the number
of nulls again:
we have prices ranging from $20 to $243 per bottle of wine - nice

We can use a simple pandas imputation technique to replace the

missing values in price to a mean value

wine_raw_df['price'] =

wine_raw_df['price'].fillna(wine_raw_df['price'].mean())

count the null values to see if anything remains - 0 is good

wine_raw_df['price'].isnull().sum()

We get the result as 0, which means there are no more nulls for price. We also see
that the designation feature has many null values. We will impute this with the
mode of the designation feature (most commonly occurring value). Execute the
next few code blocks:
wine_raw_df.query('designation != designation')

wine_raw_df['designation'].mode()

We get the result as Reserve, which is the most common designation:
designation also has a lot of null values let us impute using mode

wine_raw_df['designation'] =

wine_raw_df['designation'].fillna('Reserve')

count the null values to see if anything remains - 0 is good

wine_raw_df['designation'].isnull().sum()

We get the result as 0. Now, let us move on to feature selection and see if we can
remove some of the features that are not needed and also trim down some of the
observations.

Feature selection
Feature selection is implicitly tied into all the techniques we apply in feature
engineering because that’s what we are ultimately trying to do with all these
approaches: arrive at an optimal list of features for our ML training. Here, we will
intentionally remove the features and observations we don't need because they do
not contribute to our objective. Let us execute the following code cells to remove
the region_1, region_2 and province features from our dataset.
wine_raw_df =

wine_raw_df.drop(['province','region_1','region_2'],axis=1)

wine_raw_df.head()

We get the results as shown in the following image:

Figure 3.15: wine dataset after dropping features

Now, we will remove (rather than impute) some observations that have null
values but are minimal in count. Execute the following code blocks:
Let us drop the rows where country, points, variety and winery

have null values - there are just a few rows

first get index values where country is NULL

wine_raw_df.query('country != country')

drop the rows where country is null

wine_raw_df = wine_raw_df.dropna(axis=0, subset=['country'])

check and drop the null value rows for points column

looks like this will address null values in the other columns of

interest as well

wine_raw_df.query('points != points')

drop the rows with null values

wine_raw_df = wine_raw_df.dropna(axis=0, subset=['points'])

Let us check the null values once again

wine_raw_df.info()

We get the following results:

Figure 3.16: Null check after feature selection

That brings us to the end of feature selection. We will now address the text value
features in our dataset and perform encoding to convert them to numeric values
needed for ML training. Depending on the feature and the number of
observations, there are a few encoding approaches we can use, which we will
discuss in the following sections.

Feature frequency encoding
Frequency encoding converts categorical features to a numerical representation
that indicates the feature's frequency of occurrence across all observations. We
will use this approach for the features designation and winery because they have
many categorical values. Execute the following code block to check the unique
values for each of our features:
wine_raw_df.nunique()

We see the results displayed in the following image with the unique value counts
being high for designation, winery in that order:

Figure 3.17: Unique value counts for each feature

Run the following code block to frequency encode the designation feature with
ranking included to prevent confusion when we have the same number of
observations for multiple designation values:
from scipy.stats import rankdata

Frequency encoding for designation

first get a list of value counts for each designation type

desg_val_counts = wine_raw_df['designation'].value_counts()

how frequently does each value occur across the entire dataset

desg_freq = desg_val_counts/len(wine_raw_df)

Finally let us use a ranking of these frequency encoded values to

prevent issues with categories with similar frequencies

wine_raw_df['designation_freq'] =

rankdata(wine_raw_df.designation.map(desg_freq))

wine_raw_df.head()

We get the following results, with designation frequency encoded:

Figure 3.18: Frequency encoding designation feature

Let us now do the same thing for winery feature. Run the following code:
Frequency encoding for winery

first get a list of value counts for each winery type

win_val_counts = wine_raw_df['winery'].value_counts()

how frequently does each value occur across the entire dataset

win_freq = win_val_counts/len(wine_raw_df)

Finally let us use a ranking of these frequency encoded values to

prevent issues with categories with similar frequencies

wine_raw_df['winery_freq'] =

rankdata(wine_raw_df.winery.map(win_freq))

wine_raw_df.head()

Let us now apply target encoding for the variety feature, as shown in the
following section.

Target mean encoding

In target mean encoding, we encode an input feature based on the mean of the
target feature across all observations for that input feature value. From our
dataset, we can see that variety and price do not have a linear relationship (or
uncorrelated), so target encoding can be utilized. A word of advice though: target
encoding may lead to overfitting (if a correlation already exists) because we are
intentionally enforcing a correlation with the target feature. An alternative is to
use Bayesian target encoding: https://www.kaggle.com/mmotoki/hierarchical-
bayesian-target-encoding.
First, install categorical encoders package by running the following:
pip install category_encoders

Now, execute the following code blocks to apply target encoding for the variety
feature:
import category_encoders as ce

tar_enc = ce.TargetEncoder(wine_raw_df['variety'])

wine_raw_df['variety_transformed'] =

tar_enc.fit_transform(wine_raw_df['variety'], wine_raw_df['price'])

lets us move to a new dataframe and drop the categorical columns

we transformed

wine_ready_df = wine_raw_df.drop(['designation','variety','winery'],

axis=1)

wine_raw_df.head()

We get the following results:

Figure 3.19: Target encoding applied for variety feature

We are almost there, but the country feature is still a text value. And since this has
only 48 unique values, let us apply one hot encoding for this feature.

One hot encoding
With one hot encoding, we prevent the common issue with regular categorical
encoding. When we do categorical encoding, we convert text values to numbers.

https://www.kaggle.com/mmotoki/hierarchical-bayesian-target-encoding

Often, this is just a sequence of numbers. For example, if we have colours as a
feature with values being [red, blue, green, yellow], categorical encoding will
convert this to [1,2,3,4]. However, a machine will understand this as 4 > 3 > 2 > 1
or yellow > green > blue > red even though no such weightage is intended in the
dataset. This will lead to poor model performance. With one hot encoding, every
feature_value is converted to a new feature with 1 or 0 assigned as per original
observation values for the feature. For more details, you can refer to
https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-
categorical-features.
Execute the following code block to one hot encode the country feature in our
dataset:
one_enc = ce.OneHotEncoder(wine_ready_df['country'])

result = one_enc.fit_transform(wine_ready_df['country'])

wine_encod_df = pd.concat([wine_ready_df,result],axis=1)

wine_encod_df.drop(['country'], axis=1, inplace=True)

wine_encod_df.head()

We see the following results displayed:

Figure 3.20: One hot encoded result for country feature

Feature scaling
You can perform scaling for the numerical features first, then perform one hot
encoding for the country feature and finally, merge them together. In our case, we
performed the one hot encoding earlier, and we will now scale our numerically
converted dataset to see what results we get. The features we encoded and
transformed are of different scales/bounds (check the value range of
designation_freq and price, or winery_freq and variety_transformed). This
will confuse the ML model, so let us scale them to comparable ranges between 0
and 1. We will use SciKit Learn packages (https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.ht
ml) because they are easy to work with. We will use MinMaxScaler() and convert
all our numerical features to values between 0 and 1. Run the following code:

https://scikit-learn.org/stable/modules/preprocessing.html#preprocessing-categorical-features
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html

Define the min max scaler to scale features to values between 0

and 1

from sklearn.preprocessing import MinMaxScaler

wine_features_scaler = MinMaxScaler()

wine_scaled_arr = wine_features_scaler.fit_transform(wine_encod_df)

after scaling the results are in numpy array let's have a look at

the first row

assign scaled results back to a dataframe and voila your feature

engineering dataset is ready

wine_scaled_df = pd.DataFrame(data=wine_scaled_arr,

columns=wine_encod_df.columns)

wine_scaled_df.head()

We get the results shown in the following image:

Figure 3.21: Features scaled

Let us take a look at normalization in the following section.

Feature normalization
Feature scaling and normalization are typically applicable for different types of
ML problems. Scaling converts the range of values, while normalization changes
the dataset to a normal distribution with most values around the mean and not
extending beyond three standard deviations. We use scaling for regression and
classification problems, and we use normalization for clustering problems.
Execute the following code to normalize our dataset. We will select a version of
the data before we scale it:
with normalization

from sklearn.preprocessing import Normalizer

wine_features_normalizer = Normalizer()

wine_normalized_arr =

wine_features_normalizer.fit_transform(wine_encod_df)

assign normalized results back to a dataframe and voila your

feature engineering dataset is ready

technically you can also scale or normalize your numeric dataset

and then one hot encode the categorical data and merge them

wine_normalized_df = pd.DataFrame(data=wine_normalized_arr,

columns=wine_encod_df.columns)

wine_normalized_df.head()

We get the results shown in the following image. We should not normalize one
hot encoded values; we should only normalize the numeric fields and then merge
them with the one hot encoded values. In this example, we ran our normalization
code on our entire dataset for the sake of simplicity:

Figure 3.22: Normalized features

Binning
Binning, also called discretization, helps group continuous numerical variables
into categories or bins, helping us understand how our data is distributed and
whether there are any boundary conditions we need to watch out for. Binning
helps model non-linear relationships better, improving the accuracy for regression
use cases. Binning results in groups of feature values. After bins are created, we
can use one hot encoding to further flatten the data, but only if the number of
observations is minimal. In this example, we cannot do that, so we will settle for
ordinal bin identifiers as the encoded value for our features. Execute the following
code block to apply binning to our dataset:
Let us use scikit learn package KBinsDiscretizer to group the data

into a different count of bins for each feature of interest

and then encode them as an ordinal which will return the bin

identifier for each feature per row

we will exclude the already one hot encoded country features and

bin the rest of the features

from sklearn.preprocessing import KBinsDiscretizer

wine_binner = KBinsDiscretizer(n_bins=[5,3,3,10,10,6],

encode='ordinal')

wine_binned_arr =

wine_binner.fit_transform(wine_encod_df[['price','points','last_year

_points','designation_freq','winery_freq','variety_transformed']])

assign binned features back to a dataframe and voila your feature

engineering dataset is ready

wine_binned_df = pd.DataFrame(data=wine_binned_arr, columns=

['price','points','last_year_points','designation_freq','winery_freq

','variety_transformed'])

concat back the country features

wine_binned_df =

pd.concat([wine_binned_df.reset_index(drop=True),wine_encod_df.iloc[

:,6:].reset_index(drop=True)],axis=1)

display it

wine_binned_df.tail()

We will get the following results:

Figure 3.23: Binned features

Feature correlation
After encoding and scaling, we now have a fully numeric dataset; so, we can run
correlation algorithms to check how our features are correlated with each other.
The less correlated the features are to the target feature, the poorer the model will
perform and longer it will take to train. At the same time, if all features are highly
correlated to the target feature, the model may not learn an approximation
function and may tend to overfit on the training data. Balance is key; feature
selection should use the correlation data to finalize the list of features we will use
for ML training. But how do we understand the correlation between features.
Fortunately, we have easy-to-use packages that can build the correlation and help
us visualize it. We will use the Seaborn (https://seaborn.pydata.org/)

https://seaborn.pydata.org/

visualization library to create and view the correlation for our dataset. Execute the
following code block to build the correlation for our dataset before scaling or
normalization but after categorical encoding:
Assuming we want to predict the price for a bottle of wine using

the input features let's see how they are correlated with each other

we will use the seaborn visualization library

import seaborn as sns

correlation of frequency and target encoded dataset

we removed the country one hot encoded features for the sake of

displayability

sns.heatmap(wine_encod_df.iloc[:,0:6].corr(), annot=True)

We get the following heatmap as the result; 1.0 means fully correlated, and 0.0
indicates no correlation:

Figure 3.24: Correlation heatmap for wine dataset after encoding

Continue to execute the rest of the code blocks in this section to visualize the
correlation for scaled, normalized and binned dataset versions. Compare and
contrast them to understand the variations. In the last section for tabular data
feature engineering, we will apply dimensionality reduction using Principal
Component Analysis (PCA) to reduce the number of input features we need for
training.

Principal Component Analysis
We will check whether PCA can be used to reduce the number of features of our
scaled dataset in preparation for training. We will use the same Scikit Learn
package that we used in CV feature engineering. Execute the following code
block to move the price feature in the first column because this will be our target
feature. We will run PCA on our input features only:
Lets check if PCA can help with our scaled dataset

You can try this exercise for the rest of your datasets on your

own

we will first make the price feature as the first column as its

our label

move_price = wine_scaled_df.pop('price')

wine_scaled_df.insert(0,'price',move_price)

wine_scaled_df.head()

We get the following result with the price feature as the first column now:

Figure 3.25: Moving price to be the first column in preparation for PCA

We have a total of 54 features, with 53 input features and 1 target feature. We are
trying to reduce the number of input features with PCA. First, we will run the
following code block to set up a PCA model to create 20 components from our 53
input features to check how much variability in data these components handle:
Let us use Scikit learn PCA to see the variability with 20

features

only input features will be used, price will be ignore as its the

target feature

import numpy as np

from sklearn.decomposition import PCA

pca_20 = PCA(n_components=20)

#ignore the first column as its target feature

pca_20.fit(wine_scaled_df.iloc[:,1:])

print(pca_20.explained_variance_ratio_ *100)

We get the results shown as follows. We can see from the following array that the
first 12 components account for 88% of the variability in our dataset. So, we will
select the number of components to be 12:
[27.61619465 14.09297552 8.76254336 8.53355052 7.86265684 7.66539351

4.08749879 3.39716159 3.25183729 3.02518259 2.35018136 2.08445308

1.88961942 1.61447355 1.41769812 0.60665283 0.44511272 0.39916116

0.16620317 0.1273224]

Let us transform our dataset using PCA with 12 components. Execute the
following code block. We get the resulting shape of our dataset as (144030,12),
which we can use for training:
#88% of variance in the first 12 components, so thats what we will

choose

#wine_reduced will become our input train dataset after PCA

pca_12 = PCA(n_components=12)

wine_reduced = pca_12.fit_transform(wine_scaled_df.iloc[:,1:])

wine_reduced.shape

And that concludes our discussion on tabular data features and trying out the
various feature engineering approaches for the three types of ML use cases we
discussed in this chapter.

Conclusion
If you ask a data scientist to select one task that they think is of prime importance
in ensuring model accuracy and performance, they will probably select feature
engineering, which is what you learned about in this chapter. You may now start
appreciating the complexity of the ML landscape and the importance of having a
standardized and structure ML workflow to guide us through the myriad of tasks
to build an ML solution. In this chapter, we selected three common ML domains,
namely, NLP, Computer Vision and Tabular, and learned how to build and run
feature engineering tasks for these with step-by-step guides. Technically, the next
step in the ML workflow after feature engineering is algorithm selection, but we
have to do one more thing before we get there: setting up a continuous data
pipeline for feeding in training data for our ML training. We will learn how to
build our data pipelines in the next chapter.

Points to Remember
Find below the summary of what we learned in this chapter:

In this chapter, we learned the importance of features, what is feature
engineering, and how we can use it to prepare data for ML training.
We reviewed the feature engineering techniques applicable for different
types of ML use cases and learned how to apply these techniques using
sample datasets.
We started by learning NLP feature engineering tasks and also tried them in
action using sentence snippets from different books by performing
stemming and lemmatization, tokenization, stop word removals and more.
We then learned how to perform computer vision feature engineering by
taking an image and going through tasks like sizing, rotating, converting to
grayscale, and tiling.
We then pivoted to tabular data feature engineering tasks. We used a wine
dataset and applied techniques like scaling, normalization, categorical
encoding, frequency encoding, and binning.
While we walked through various feature selection steps sequentially for the
benefit of learning, note that you may only execute some of these steps
based on source data quality in a real-world situation.

Multiple Choice Questions
Use these questions to challenge your knowledge of what we learned in this
chapter:

1. Which of these tasks is NOT used for tabular feature engineering?

a. Binning
b. Normalization
c. Frequency encoding
d. Stemming

2. What is feature engineering?

a. The process of taking requirement features and engineering them to
build applications

b. The elevation view of a bridge as drawn by an engineer
c. The process of extracting, selecting, and preparing features for ML

training
d. A key concept in astrology to predict a person’s future

3. NLP models cannot directly work with text data.

a. True
b. False

4. What are features and observations in ML?

a. An important component of a model that is needed to observe how a
model works

b. The ability to pick selected samples from the training dataset
c. Randomization techniques for model training
d. The columns and rows of the training dataset

5. What is the technique of converting categorical text-based data to
numeric features called?

a. One-hot encoding
b. Nominal encoding
c. Neural topic modeling
d. Categorical embedding

Answers
1. d
2. c
3. a
4. d
5. a

Further Reading
Pace, R. Kelley and Ronald Barry, Sparse Spatial Autoregressions, Statistics and
Probability Letters, 33 (1997) 291-297.
API design for machine learning software: experiences from the scikit-learn
project, Buitinck et al., 2013
BibTex Citation
@inproceedings{sklearn_api,

author = {Lars Buitinck and Gilles Louppe and Mathieu Blondel and

Fabian Pedregosa and Andreas Mueller and Olivier Grisel and Vlad

Niculae and Peter Prettenhofer and Alexandre Gramfortand Jaques

Grobler and Robert Layton and Jake VanderPlas andArnaud Joly and

Brian Holt and Ga{\"{e}}l Varoquaux},

title = {{API} design for machine learning software: experiences

from the scikit-learnproject},

booktitle = {ECML PKDD Workshop: Languages for Data Mining and

Machine Learning},

year = {2013},

pages = {108--122},

}

CHAPTER 4
Orchestrating the Data Continuum

Introduction
Are you a space aficionado? If yes, you probably already know the basic premise
of a continuum. Simply put, it refers to sequential events that evolve continuously,
perhaps even infinitely. The space of this universe, in which all the planets and
stars appear, has been continuously expanding since time immemorial. Even
though we don't realize it, our entire solar system is moving at a speed of 200
KMs per second as the space all around us widens with the expansion of the
universe. The known (we are still only scratching the surface on how large the
observable universe is) part of our universe is greater than 13.5 billion light years
wide (or the distance it takes light to travel in 13.5 billion years, with the speed of
light being 30,000 KMs per second), and it only continues to grow. So, space is a
continuum.
Time is a continuum too for even though we perceived its existence only a few
thousand years ago, it had its beginnings billions of years ago (at least based on
what we know today), and it continuously evolves toward infinity (or until there
is none of us left to acknowledge the existence of time). Apart from evolution and
continuity, a characteristic of a continuum is that it is self-sustaining. That means
it does not need or depend on anything else for its existence. Space does not
depend on stars or planets for its existence or expansion, and time does not
depend on events. Space and time are the dimensions that contain, help qualify
and understand the events and objects that appear and exist within them. Without
space and time, we cannot experience life the way we perceive it. Similarly, data
is the continuum that provides the dimensions that describe and characterize the
occurrence of events that an ML model tries to understand and approximate.
In other words, ML models are the engines of continuum evolving in intelligence
(improving their prediction accuracy) as they encounter and learn from a steady
flow of ever-changing data during training and inference, assimilating
approximation patterns between what is and what is needed, and consequently,
becoming a data originator in itself cloaked as insights. In other words,
predictions of one ML model are a source of data to train a different ML model.
The main perspective we are trying to address here is that data is the link that
holds the continuum of insights powered by ML models together. Increasingly,

and in part due to technological advancements in the last few decades, data
continues to be the fabric of our perceived reality influencing us in unforeseen
ways.
Targeted advertising is one such example. You search for flights online to a
favourite holiday destination that you have been meaning to go for a while now,
and surprisingly, you see an ad showing attractions in that same destination when
you catch up on your mobile video playlist later in the day. You might think it is
providence, but it is not divinity that is watching over you; an ML model is
tracking your browsing activity (data) and showing you ads related to your areas
of interest. There are examples like this in literally everything we do these days.
And data is the fuel that drives the engines behind these ML models, helping the
continuum thrive.
In the previous chapters, you learned what the ML workflow is, how to source
and ingest data into an Amazon S3 Data Lake
(https://aws.amazon.com/products/storage/data-lake-storage/), what the
importance of features in a dataset is, and how to perform feature engineering
tasks for various ML use cases. In this chapter, we will learn how to build our
own continuum by orchestrating automated data flows to collect, process, feature
engineer and transform data for ML modelling. We will first go more deeper into
the role of data in the continuum and understand why data processing automation
is important for ML. We will then build our own data orchestration pipeline using
AWS Glue ETL jobs (https://aws.amazon.com/glue) for the tabular feature
engineering use case. Finally, we will learn how to perform data profiling,
processing and clean up using AWS Glue DataBrew
(https://aws.amazon.com/glue/features/databrew/). Let's get started.

Structure
In this chapter, we will dive deep into the following topics:

Demystifying the data continuum
Running feature engineering with AWS Glue ETL
Data Profiling with AWS Glue DataBrew

Objectives
By the end of this chapter, you will have experience building data orchestration
flows to process, feature engineer and transform your datasets in preparation for
ML training. While Chapter 2, Hydrating Your Data Lake, and Chapter 3,
Predicting the Future With Features, addressed the what of data preparation and

feature engineering steps in the ML workflow we were introduced to in Chapter
1, Introducing the ML Workflow, this chapter addresses how to automate these
steps, which is a requirement for operationalization of our ML solution.

NOTE: To run the examples in this chapter, you need access to an AWS
account. You also need to create an Amazon S3 bucket, onboard to Amazon
SageMaker Studio, and run Jupyter notebooks. Refer to the Technical
Requirements section of Chapter 3, Predicting the Future With Features, for
instructions on how to meet these pre-requisites.

Demystifying the data continuum
We understand that the data continuum drives the intelligence in ML modelling,
but how do we build one for our needs? How do we create a self-sustaining,
continuously evolving, automated data ecosystem that we refer to as the
continuum? And even if we were to create it, of what use is it beyond ML? Even
the greatest idea is only useful if it can be practically applied and if it yields
results. So, how do we put the data continuum in practice? We can do this by
iteratively building serverless (refers to the ability to run code without needing to
manage infrastructure provisioning in cloud environments) data orchestration
pipelines from your Amazon S3 data lake, automating data flows to your ML
models and downstream applications using a modular hub and spoke design
approach. Nothing too complicated, it is what airlines use when they plan their
route network. The idea is to minimize the number of point-to-point connections.
For example, consider the following image and assume that each node is a city
and that the arrows indicate routes:

Figure 4.1: Travel routes between cities

As you can see, the point-to-point approach has more routes (more overhead,
higher costs, and lower efficiency) than the hub and spoke approach. A direct
connection may be quicker, but it is not a scalable approach as more cities and
routes are added. The same concept applies to data flows between systems. In our
case, node C is the Amazon S3 data lake, and nodes A, B and D are either ML
models or applications or a combination of both. When we design a data
continuum, we iteratively add data orchestrations or flows to/from the data lake,
applications, ML models, data warehouses and other operational data stores. We
always try and identify the most optimal nodes that can be considered hubs. The
data orchestrations (or flows) are fully automated, with options to be executed in
scheduled frequencies or in response to events, with an on-demand configuration
enabled as well.
For ML models, the data orchestration flows (or spokes of the hub and spoke data
continuum) are typically batch for delivered data for model training/re-training
and real-time for inference requests, though it can be either way based on the
requirements. The architecture defines the modalities of how data is served and
consumed, with the keyword being automation. The following table briefly
describes the different types of modalities, with some guidance on what to use
when:

Interaction type Interaction mode Interaction
paradigm

Usage

Real-time Synchronous Request/Response For data flows between two systems (A
and B), with A requesting B for
information by either passing or not
passing a parameter in its request, for
example, a news website calling a
weather webservice passing a city as a
parameter

Real-time Synchronous Put/Get A sending data or messages via a queue
to B and waiting for a response from B

Real-time Asynchronous Publish/Subscribe A sending messages or data to a topic
that multiple consumers have subscribed
to

Real-time Asynchronous Put/Get A sending messages or data via a queue
but not waiting for a response from B;
also called fire and forget

Real-time Broadcast Publish/Subscribe A sending message to a topic that has a
large number of subscribers with no
expectation of an acknowledgement or a
response

Real-time Fan-out Publish/Subscribe As part of a larger flow or orchestration,
A performs a task that results in data or

messages being sent to multiple
consumers in parallel

Batch Asynchronous Request/Ack/Respon
se

Large volume data is grouped into
batches, processed and transferred from
A to B, with B sending an
acknowledgement to indicate that it has
started data receipt and sends a response
once data has been received and
processed

Batch Asynchronous Push/Pull A pushes a large volume of data to B
based on a scheduled frequency or a
trigger, or B pulls data from A again
based on a frequency, trigger or on-
demand

Table 4.1: Design modalities for data flow orchestrations

When designing a data continuum for your enterprise, you will use one or more of
these modalities for your data orchestration flows. A word of caution though: do
not try and bite off more than you can chew. Just like in ML modelling, you
should follow an iterative approach here. First determine, the hub nodes for your
continuum. You can consider this as a clustering or nearest neighbours problem
(we will talk about ML algorithms in detail in Chapter 5, Casting a Wider Net).
Your hub nodes are akin to your cluster centres, and they typically represent data
stores or data lakes to/from which data orchestration flows consume or deliver
data. We can, in fact, also model this a graph data
(https://aws.amazon.com/neptune/) problem and use a graph neural network
(https://docs.aws.amazon.com/sagemaker/latest/dg/deep-graph-library.html)
to approach the data continuum. This goes to show that even the design elements
of our data continuum can be represented as data and modelled using ML and
validates the principle of using a continuum as a design paradigm.
AWS offers a lot of flexibility and choices in designing serverless data
orchestration pipelines. We have room in this chapter to only cover two such
options, but we will read about alternative approaches to building data
orchestration for ML, along with links to instructions, in the Conclusion section
of this chapter.
In this section, we explored the concept of a data continuum deeply and
understood that it comprises data orchestration flows between participating
systems that can be designed in various approaches based on requirements.
In the next section, we will use AWS Glue ETL
(https://docs.aws.amazon.com/glue/latest/dg/author-job.html), a serverless,
managed analytics service to create an automated job for atomically running the

tabular feature engineering tasks on input data and creating an output dataset with
features for ML training.

Running feature engineering with AWS Glue ETL
In this section, we will learn how to automate the feature engineering tasks we
learned and executed in Chapter 3, Predicting the Future With Features, using
AWS Analytics services. When we use Jupyter notebooks to run our code, we are
in the experimentation phase. Notebooks provide a convenient way for us to build
and test each line of code until we are sure that all the steps are working as
intended. But when we get into development and production, we need to automate
the execution of feature engineering tasks so that we have a fully functional data
pipeline for ingestion, feature engineering, transformation and storage for ML
training requirements. That is what we will build in this section. The architecture
for our solution build is shown in the following image:

Figure 4.2: Feature engineering using AWS Glue ETL

As you can see, there are three major components to our build. We will build
these pieces using the AWS management console, Amazon SageMaker Studio
notebooks, and AWS Lambda, along with code snippets from our GitHub
repository. Our build will consist of the following tasks that we will cover in
independent sections subsequently for ease of understanding:

Building an AWS Glue ETL job with the feature engineering code
Creating an AWS Lambda function with an Amazon S3 trigger

Triggering the AWS Glue ETL job from the AWS Lambda function when
the raw dataset is uploaded to the Amazon S3 bucket

In this section we reviewed the solution architecture for building a feature
engineering data orchestration flow using AWS Glue ETL. Our solution is similar
to a batch push/pull approach with the raw data upload triggering a processing of
the data and being pushed to a target S3 bucket location. Follow the instructions
in the next section for the build tasks.

Building the AWS Glue ETL job
AWS Glue (https://aws.amazon.com/glue) is a fully managed, serverless, secure,
and scalable data orchestration service that makes it possible to build a myriad of
automated and elastic integration pipelines across diverse data sources, both on-
premises and in the AWS cloud. AWS Glue is one of 14 (as of March 2022)
analytics services available for data integration and processing, in addition to 20+
services available for data storage and migration. The following image shows a
snapshot of these services available in the AWS Management Console:

Figure 4.3: AWS Storage, Database and Analytics services

So, there are multiple options of how we can build data orchestration flows
between various data stores, applications and ML solutions. Going into each of
them will take up the whole book. To get you prepared for ML training, we will
focus on using AWS Glue ETL jobs for data orchestration and AWS Glue
DataBrew for data profiling and orchestration in this chapter. For now, we will set

up the Glue job as a first step, as shown in the following image, from our solution
architecture:

Figure 4.4: AWS Glue ETL

Follow the instructions in the Technical Requirements section to ensure that you
have signed up for an AWS account and are logged in
(https://portal.aws.amazon.com/billing/signup). Execute the following steps to
complete this section:

1. You first need to create an Amazon S3 bucket
(https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-
bucket-overview.html) and note down its name.

2. Next, follow the instructions in the Technical Requirements section in
Chapter 3, Predicting the Future With Features, to onboard to an Amazon
SageMaker Studio domain, clone the book's GitHub repository given at the
beginning of the book, and click on Chapter-04 to open it up.

3. Open the SageMaker Studio notebook titled glue-script-loader.ipynb to
execute the cells in it step by step.

NOTE: Do not execute the cells under the heading starting with
IMPORTANT in the notebook right now. We will execute this cell
later.

4. Provide the name of your S3 bucket, as shown in the following code
snippet, in the notebook cell and execute the cell either by pressing Shift +
Enter or by clicking on the triangular play button at the top:
import the boto3 python SDK for AWS

import boto3

declare the S3 handle to create prefixes and load our files

s3 = boto3.client('s3')

declare variables

bucket = '<your-bucket-name>'

prefix = 'aiml-book/chapter4/'

5. Execute the next cell to upload the Python wheel files (external libraries that
we need to run our solution) to the S3 bucket. When the cell is executed, it
will print the S3 locations of the wheel files; copy the print statement and
save it. We will need this when we build the Glue ETL job:
upload the wheel files required by Glue to S3 bucket

ce_wheel = 'category_encoders-2.4.0-py2.py3-none-any.whl'

wr_wheel = 'awswrangler-2.14.0-py3-none-any.whl'

s3.upload_file(ce_wheel,bucket,prefix+ce_wheel)

s3.upload_file(wr_wheel,bucket,prefix+wr_wheel)

print("please copy these s3 file locations for AWS Glue job

creation")

print("Libraries - Python library path: " +

"s3://"+bucket+'/'+prefix+wr_wheel)

print("Libraries - Referenced files path: " +

"s3://"+bucket+'/'+prefix+ce_wheel)

We get the following output:
please copy these s3 file locations for AWS Glue job creation

Libraries - Python library path: s3://<bucket>/aiml-

book/chapter4/awswrangler-2.14.0-py3-none-any.whl

Libraries - Referenced files path: s3://<bucket>/aiml-

book/chapter4/category_encoders-2.4.0-py2.py3-none-any.whl

6. You can exit this notebook now, but leave it open as we will need it in a
little while. As a next step, navigate to the book's GitHub repository () in
your web browser and open the folder Chapter-04:
Open the file named tabular-features-glue-etl.py and copy its
contents. This is the code script for the AWS Glue ETL job that we will
build now. Go to your AWS Management Console, type Glue in the Services
search bar at the top and select AWS Glue to go be navigated to the Glue
console. Refer to Figure 4.5:

Figure 4.5: Navigate to the AWS Glue console

7. Select Jobs under ETL in the left pane of the Glue console, as shown in the
following image:

Figure 4.6: Select Jobs

8. This opens up the AWS Glue Studio console to author and run ETL jobs.
Under Create job, select Python Shell script editor, and under
Options, select Create a new script with boilerplate code. Click on
the Create button in the top-right corner, as shown in the following image:

Figure 4.7: Create Python Shell job

9. In the window that opens up, in the Script tab, paste the contents of the
tabular-features-glue-etl.py file you copied a few steps ago in this
section, as shown in the following image. This code snippet contains all the

steps you executed in the tabular data feature engineering SageMaker Studio
notebook you ran in Chapter 3, Predicting the Future With Features:

Figure 4.8: Paste the Python Shell script for tabular feature engineering onto the Script editor

Now, click on the Job details tab and provide the name for this ETL job
as tabular-features-glue-etl. We also need to provide an IAM role here
that we will use to run the ETL job. As we do not already have this IAM
role, we will be creating one. Refer to Figure 4.9:

Figure 4.9: Enter job details

In the Services search bar at the top, type IAM and select IAM; right-click
and open it in a new tab to be navigated to the AWS IAM console. Click on
Roles in the left pane under Access management and click on the Create
role button on the right. Refer to Figure 4.10:

Figure 4.10: Create an IAM role

On the Select trusted entity page, scroll down under Use case and then
to Use cases for other AWS services, and click on the list box with the tip
Choose a service to view use case. Select Glue from the list and click

on the radio button next to Glue, as shown in the following image, and then
click on Next:

Figure 4.11: Select trusted entity

10. In the Add permissions page, type glueservice in the search bar and
select AWSGlueServiceRole, as shown in the following image:

Figure 4.12: Attach Glue Service permissions

11. Now, click on Clear filters under the policy search bar, type S3, and
press Enter to bring up the S3 permissions. Scroll down, select
AmazonS3FullAccess and click on Next in the bottom-right corner. In the
Role details page, type a name for the role, such as glue-etl-role, and
make note of the name you provide. Scroll down the page and click on
Create role. Now, type the role name in the Roles search bar and review
the permissions, as shown in the following image:

Figure 4.13: Permissions policies added to Glue role

12. Now go back to the Glue Studio console and provide the name of the IAM
role you created just now in the IAM role list box on the Job details page
for your Glue ETL job, as shown in the following image. If you do not see
your newly created role appearing, just click on the Refresh button next to
the role list box. Refer to Figure 4.14:

Figure 4.14: Provide the IAM role in Job details

13. Scroll down the Job details page and change the Number of retries to 0.
Click on Advanced properties at the bottom of the page, as shown in the
following image:

Figure 4.15: Change job configuration and scroll to Advanced properties

14. Keep scrolling all the way down the Advanced properties without
changing any of the default settings. Go to the Libraries section. Paste the
S3 URI for the Python library path that you copied from the cell print in the
SageMaker Studio notebook, glue-script-loader.ipynb, in the input field
under Python library path. Paste the S3 URI for the Referenced files
path that you copied from the SageMaker Studio notebook in the input field
under Referenced files path, as shown in the following image:

Figure 4.16: Add library files to the Glue job

Now scroll back up all the way to the top of the page and click on the Save
button in the top-right corner. Refer to Figure 4.17:

Figure 4.17: Glue job saved

15. Do not click on the Run button as you will get errors. The script expects
parameters that will be sent by the AWS Lambda function that we will build
in the next section.

Creating AWS Lambda function with an Amazon S3
trigger
In this section, we will execute the tasks to create our AWS Lambda
(https://aws.amazon.com/lambda/) function. AWS Lambda allows you to easily
build and execute your code in response to events. You don't have to create or
provision any infrastructure. All you have to do is write your code in one of the
programming languages (https://aws.amazon.com/lambda/faqs) that AWS
Lambda supports and upload it by creating a function in the AWS Lambda
console. You can either attach a trigger

(https://docs.aws.amazon.com/lambda/latest/dg/lambda-invocation.html) for
the code to be executed as a response, you can directly invoke it using https, or
you can put it behind an API using the Amazon API Gateway
(https://aws.amazon.com/api-gateway/) service.
We will choose the Amazon S3 create trigger for our Lambda function. Whenever
we upload a new file or upload an updated version of the same file to the S3
bucket, the Lambda function will be triggered. This Lambda function will call the
AWS Glue ETL job we set up previously, as shown in the following image of our
solution architecture.

Figure 4.18: AWS Lambda function triggered from S3 to call AWS Glue ETL job

As a first step, we will use an existing blueprint to create an Amazon S3 trigger-
based AWS Lambda function. In the AWS Management Console, type Lambda in
the services search bar at the top of the page and click on AWS Lambda to be
navigated to the Lambda console. Click on Functions either by expanding the
menu on the left or by clicking on the Create function button in the top-right
corner of the page. On the Create function page, click on Use a blueprint,
select s3-get-object-python and click on the Configure button. Refer to Figure
4.19:

Figure 4.19: Create a Lambda function

Provide a Function name and select Create a new role with basic Lambda
permissions under Execution role. This will allow Lambda to automatically
create a new IAM role for this function. Refer to Figure 4.20:

Figure 4.20: Configure Lambda function

1. Scroll down all the way to the bottom of the page (you do not have to enter
the S3 trigger details here) and click on Create function. Ignore the error
message you get at the top of the page for now; we will add the S3 trigger
shortly. Scroll down to the Code section and copy/paste the Lambda code
contents from the get-s3-call-glue.py file in the GitHub repo
(https://github.com/cloud-native-aiml-on-aws/Chapter-04/get-s3-call-
glue.py), as shown in the following image:

Tip: Take a moment to review the code we pasted to the Lambda
function. The code receives the event from the S3 bucket, extracts the
bucket name, and the key to where the file resides, and starts the Glue
job by passing a job name and the location to where the raw dataset
we uploaded to S3 resides.

https://github.com/cloud-native-aiml-on-aws/Chapter-04/get-s3-call-glue.py

Figure 4.21: Copy and paste the Lambda code

2. In order for our code to work, we need to provide additional permissions for
Lambda to pass the role to Glue and also to execute the Glue APIs in the
code. Click on the Configuration tab, click on Permissions on the left and
right-click on the link provided under Role name; open in a new tab to be
navigated to the AWS IAM console for the role. Refer to Figure 4.22:

Figure 4.22: AWS Lambda function's IAM role

3. In the IAM console, in the Permissions tab (selected by default), click on
the Add permissions button and then on Attach policies, as shown in the
following image:

Figure 4.23: Attach policies

4. In the Other permissions policies search bar, type glue and press Enter.
Scroll down the list of permissions and select AWSGlueServiceRole. Scroll
down to the bottom-right corner of the page and click on Attach policies.
Your permissions should be updated, as shown in the following image:

Figure 4.24: Glue policy attached to Lambda role

5. Now, click on the Add permissions button again and click on Create
inline policy. We need to add a permission for Lambda to be able to pass
this role to Glue during code execution. Refer to Figure 4.25:

Figure 4.25: Add inline policy

6. Click on the JSON tab at the top (next to Visual editor) and paste the
following JSON policy statement in the input area, making sure to replace
<aws-account-number> with your AWS account number (found on the top-
right corner of the page in the your-user-name@aws-account-number
format):
{

"Version": "2012-10-17",

"Statement": [

{

"Sid": "VisualEditor0",

"Effect": "Allow",

"Action": "iam:PassRole",

"Resource": "arn:aws:iam::<aws-account-number>:role/*"

}

]

}

This should be as shown in the following image:

Figure 4.26: Add inline policy

7. Now, click on Review policy at the bottom-right corner of the page.
Provide a name for this policy, such as iam-passrole, and click on the Save
changes button in the bottom-right corner of the page. Your updated role
should look as shown in the following image:

Figure 4.27: Lambda role policies attached

Now go back to the AWS Lambda console (this should be open in a separate tab
in your browser, or simply type Lambda in the services search bar and go to the
Lambda console), and in the Function overview section at the top of the page,
click on the Add trigger button on the left. On the Add trigger page, click on
the list box underneath Trigger configuration and select S3. In the list box
under Bucket, type the name of the bucket you created and select it. Leave the
default value in the Event type and enter aiml-book/chapter4/glue-in in the
Prefix – optional input field. Enter .csv in the Suffix – optional field. Scroll down
and select the checkbox to acknowledge the Recursive invocation message.
Click on the Add button in the bottom-right corner of the page. Refer to Figure
4.28:

Figure 4.28: Attach S3 trigger to Lambda function

Once the trigger is added, it is reflected in the Function overview section, and if
you click on the S3 pane, you can see the details, as shown in the following
image. Now, whenever you upload a file to your S3 bucket in the aiml-
book/chapter4/glue-in location, this Lambda function will be automatically
invoked. Refer to Figure 4.29:

Figure 4.29: S3 trigger attached

That brings us to the end of all the configuration steps we needed for building the
solution. In the next subsection, we will test our solution and verify the results.

Running the solution
We will now test our solution by uploading the raw dataset to the trigger location
in the S3 bucket we created. This will trigger the AWS Lambda function, which,
in turn, will start the AWS Glue job. The job will extract the file and run it
through a series of feature engineering steps and finally, generate a processed and
scaled dataset ready for ML training. To understand how the Glue job works, take
a moment to review the Glue ETL code available in tabular-features-glue-etl.py in
our GitHub respository (https://github.com/cloud-native-aiml-on-aws/Chapter-
04/tabular-features-glue-etl.py). The following code blocks receive parameters
from the AWS Lambda function and read the raw dataset we uploaded to the S3
bucket:
args = getResolvedOptions(sys.argv, ['JOB_NAME',

's3_input_dataset'])

s3_input_dataset = args['s3_input_dataset']

print("The s3 input file is: " + s3_input_dataset)

Let's first load the data into a Pandas dataframe so it is easy

for us to work with it

wine_raw_df = wr.s3.read_csv(s3_input_dataset, sep=';',header=0)

The subsequent lines of code will process and transform the data as part of feature
engineering. Finally, a new location called glue-out is created, and the processed
dataset is uploaded to this location, as shown in the following code snippet:
s3_glue_out = ''

https://github.com/cloud-native-aiml-on-aws/Chapter-04/tabular-features-glue-etl.py

temp = s3_input_dataset.split('/')[6]

s3_mod = s3_input_dataset.replace(temp,'')

if 'glue-in' in s3_mod:

s3_glue_out = s3_mod.replace('glue-in','glue-out')

wr.s3.to_csv(wine_scaled_df, s3_glue_out+'wine_scaled.csv',

header=True, index=False)

To upload the raw dataset, open the SageMaker Studio notebook, navigate to
Chapter-04, and open the glue-script-loader.ipynb notebook. Execute the
code in the last cell underneath the heading IMPORTANT. This will take the raw
data file that was copied to the notebook when you originally cloned the GitHub
repository in the notebook and upload it to the S3 bucket and the location you
specified in the first cell of this notebook. If it is unable to recognize the bucket
and prefix variables, re-execute the first cell and try executing the last cell again:
upload csv file for testing the end to end solution

infile = 'winemag-data_first150k.csv'

s3.upload_file(infile,bucket,prefix+'glue-in/'+infile)

Now go to your AWS Management Console, type S3 in the services search bar, go
the S3 console, type your bucket name in the search bar, and open your S3 bucket.
Open the aiml-bucket prefix and then chapter4. You should see two new folders
appear here: glue-in and glue-out. The glue-in folder appears as soon as you
execute the cell to upload the raw dataset, and the glue-out folder appears when
the Glue has successfully runs the feature engineering task and uploads the
processed dataset. Click the glue-out folder and review the wine_scaled.csv
file by selecting and downloading it locally. Refer to Figure 4.30:

Figure 4.30: Processed dataset after feature engineering

If you face any issues while running the solution or if it does not create the
processed dataset, check the following two things:

1. Check whether the AWS Glue job name matches the glue_job_name
parameter you specified in your AWS Lambda function.

2. Check whether the S3 bucket name and prefix location for the dataset match
in the AWS Lambda S3 trigger, in the SageMaker Studio notebook and in
the actual S3 bucket.

You can also review the AWS Glue and AWS Lambda logs to get a closer look at
how the solution ran. In the AWS Lambda console, click on your function name,
click on the Monitor tab in the middle of the page, and then on button View logs
button in CloudWatch. This will navigate you directly to the Amazon CloudWatch
(https://aws.amazon.com/cloudwatch/) log group where all your Lambda
function logs are stored. Open the latest log to review the run status. Similarly, go
to the AWS Glue console, click on Jobs in the left menu, click on your Glue job
name, and then click on the Runs tab at the top of the page. Under the Recent job
runs, you will see a CloudWatch logs heading; click on All logs under that. This
will again take you to CloudWatch but for the Glue job.
That brings us to the end of using AWS Glue ETL jobs for creating a data
orchestration flow for feature engineering. In the next section, we will use a new
service called AWS Glue DataBrew
(https://aws.amazon.com/glue/features/databrew/) for taking a closer look at
our data, understanding its characteristics and composition, and using a visual
interface to perform some of the feature engineering tasks we learned in Chapter
3, Predicting the Future with features. Finally, we will learn how to create jobs to
automate the tasks we performed in the Glue DataBrew UI and run it on demand.

Data profiling with AWS Glue DataBrew
Glue DataBrew (https://us-east-1.console.aws.amazon.com/databrew/home?
region=us-east-1#landing) is an interactive UI tool for data processing,
transformation and performing comprehensive data manipulation tasks, including
feature engineering for ML. The advantage of DataBrew is the comprehensive
visualization options that help in exploring our datasets quite deeply, generating
columnar and row statistics, understanding data distributions, and quickly
identifying outliers, all of which are important inputs in finalizing our feature
engineering strategy for our raw dataset. In this section, we will run a series of
data processing tasks we are now familiar with, but we will use DataBrew instead
of Glue ETL or SageMaker notebooks. Let's get started.
Like earlier, you need access to AWS Management Console, so review and follow
the Technical Requirements section to sign up for/sign in to your AWS console. In
the services search bar at the top, type DataBrew and click on AWS Glue DataBrew

to navigate to the DataBrew console. In the console, click on the DATASETS option
in the left menu, as shown in the following image:

Figure 4.31: AWS Glue DataBrew console

1. Click on the Connect new dataset button on the right of the page. In the
New connection page that appears, enter a Dataset name under New
dataset details. In the Connect to new dataset section, leave the
default selection of Amazon S3 as is, and click on the input area under Enter
your source from S3 and provide the path as s3://<your-bucket>/aiml-
book/chapter4/ glue-in/winemag-data_first150k.csv. You can also
browse to your S3 bucket prefixes using the search bar at the bottom of the
input area, as shown in the following image:

Figure 4.32: Connect to a new dataset from Glue DataBrew

2. Scroll down this page and change the CSV delimiter under Additional
configurations to a Semi-colon, as shown in the following image:

Figure 4.33: Change dataset delimiter to Semi-colon

3. Leave the rest of the defaults as they are and click on Create dataset in
the bottom-right corner. You will be taken to the Datasets page, where your
newly created dataset will appear. Click on the name of your new dataset to
view the details of your dataset. Click on the Data profile overview tab
and then on Run data profile, as shown in the following image:

Figure 4.34: Run data profile

4. In the Create job page that opens up, scroll down to S3 location in the Job
output settings and type s3://a2i-experiments/aiml-
book/chapter4/glue-out/ (you should have executed the previous section
for the glue-out folder to appear). Now, scroll down to the Permissions
section at the bottom; click on the list box and select Create a new IAM
role. Type chapter4 in the New IAM role suffix and click on Create and
run job. The job will take a few minutes to complete.

5. In the meantime, click on PROJECTS in the left pane and then on the Create
project button. Enter a Project name and scroll down to Select a
dataset. Select your newly created dataset under My datasets. Scroll down
to Permissions and select the IAM role (ending with chapter4) you created
in the previous step (when you created the data profile job). Click on Create
project. Refer to Figure 4.35:

Figure 4.35: DataBrew project creation in progress

6. When the project is created, you will be able to see column statistics for a
sample from your raw dataset. Every action we perform here is tracked by
DataBrew as part of a Recipe that represents a collection of data processing
tasks for a project. Refer to Figure 4.36:

Figure 4.36: DataBrew project

7. The country column is categorical and has a limited set of unique values.
Let us perform one-hot-encoding for this. Click on ENCODE in the top menu
on the right and select One-hot encode column. Refer to Figure 4.37:

Figure 4.37: Categorical encoding of columns/features

8. You can configure the encoding on the right of the page. In the Source
column list box, select country. Scroll down and click on Apply. Refer to
Figure 4.38:

Figure 4.38: Perform one-hot encoding of country column/feature

9. The country is encoded into multiple features or columns, one column for
each unique country in our original dataset, as shown in the following
image:

Figure 4.39: One-hot encoding results

10. Now we will perform a missing values analysis for our columns. Select
MISSING in the top pane and click on Remove missing rows. On the right,
select the Source column as region_2 and leave the default action of
deleting rows with missing values from our dataset. Refer to Figure 4.40:

Figure 4.40: Perform missing values analysis

11. Leave the rest of the default values as they are, scroll down and click on
Apply. The rows where region_2 had missing values are deleted from the
dataset, and our Recipe is now updated to show the two tasks we performed
so far. Refer to Figure 4.41:

Figure 4.41: Delete missing value rows

12. Now select SCALE in the top menu and click on Binning. Refer to Figure
4.42:

Figure 4.42: Perform Binning

13. Select the Source column as price. DataBrew immediately calculates the
bins and the price ranges for each of the bins, which is displayed under
Source column. Refer to Figure 4.43:

Figure 4.43: Bins for price

14. Scroll down to review the Binning options and the Bin name; you can also
change the Bin name if required. If you retain the text names for the bins,
make sure you perform one-hot encoding of these text values. Refer to
Figure 4.44:

Figure 4.44: Binning options

15. Scroll down and click on Apply. Once the binning is completed for your
dataset, the Recipe is updated to show this new task. Click on Publish in
the top-right corner to publish the recipe. We need to publish it before we
create a job to automate the running of these tasks for future datasets. Refer
to Figure 4.45:

Figure 4.45: Publish recipe

16. In the Publish recipe window that appears, scroll down and click on the
Publish button. Now click on the RECIPES option in the left pane. Refer to
Figure 4.46:

Figure 4.46: Navigate to Recipes page

17. We can see that our newly created recipe is automatically available in this
page. Click on the check box next to our recipe name to select it, and click
on Create job with this recipe in the top-right corner of the page.
Refer to Figure 4.47:

Figure 4.47: Create job with recipe

18. Provide a name for the job under Job name, leave Create a recipe job
selected, and in Choose dataset, type or select the name of the dataset you

created at the beginning of this section, as shown in the following image:

Figure 4.48: Provide inputs to create a recipe job

19. Scroll down to Job output settings and type the S3 location as
s3://<your-bucket>/aiml-book/chapter4/glue-out/, as shown in the
following image:

Figure 4.49: Provide job output settings

20. Scroll down to Permissions and select the IAM role you created earlier in
this section. Refer to Figure 4.50:

Figure 4.50: Select the DataBrew IAM role

21. Click on Create and run job. This job will automatically run the tasks in
the recipe against the input dataset and upload the output to the S3 bucket
location we provided. To fully automate this step programmatically, you can
use the Glue DataBrew API
(https://boto3.amazonaws.com/v1/documentation/api/latest/reference/se
rvices/databrew.html#GlueDataBrew.Client.create_recipe_job) to start a
job using the recipe you created.

22. Once the job completes, you can see this appearing in the Jobs page under
Recipe jobs. Click on the link under the Job output to go to the S3
location and review the processed dataset that was created, as shown in the
following image:

Figure 4.51: Review the job run and navigate to job output

23. When you navigate to the S3 location available in the Job output link, you
can see that a new CSV file has appeared in the S3 bucket, as shown in the
following image:

Figure 4.52: Processed dataset appears in the S3 bucket

This is how you use Glue DataBrew to create Recipe Jobs to run your feature
engineering tasks. Let us now go back and review the results of the Data
Profiling run we were submitting earlier when we came to the Glue DataBrew
console. Click on DATASETS in the left pane, and in the Datasets page, click on
View data profile next to your dataset name. This brings up the dataset profile
page and shows the results of the profiling run. Refer to Figure 4.53:

Figure 4.53: Review results of the data profiling job

You can see row and column summaries, along with correlation matrices for the
numerical columns in the dataset to begin with. Scroll down this page to view
summary metrics for each column in the dataset under the Column Summary
section. Refer to Figure 4.54:

Figure 4.54: Review column summary

Click on the Column statistics tab at the top to look at additional statistics and
insights for each column. Refer to Figure 4.55:

Figure 4.55: Review column statistics

You can also run a Data quality job to generate detailed data quality analyses
for your entire dataset. You can do this to get a closer look at your data as per
your requirements. Finally, click on the Data lineage tab in the top pane to
display what processes caused changes to our dataset, as shown in the following
image:

Figure 4.56: Review data lineage

And with that we come to the end of this section and this chapter. Glue DataBrew
is a powerful tool in our experience and can provide you with a lot of information
that is essential for understanding your data better. Remember that your data will
determine how well your model can learn, so this type of detailed analysis is
expected and required.

Conclusion
Phew!! This was a long chapter, and we did cover quite a bit of ground in this
one. Take note that by the time you complete the solution build for this chapter,
you will be well on your way to becoming a Cloud-Native AI/ML expert. You
have now learned how to identify, source, collect, prepare, pre-process, feature
engineer, analyse and transform your datasets for ML.
In the next chapter, we will dive deep into algorithms and neural networks. We
will learn the different types of ML algorithms available, discuss common
algorithms, talk about how to architect a neural network, and learn hands-on
training models using algorithms and neural networks.

Points to Remember
Make a note of these key points with respect to data orchestration that we learned
in this chapter:

There are multiple ways in which you can build data orchestration pipelines
for ML training and inference.
We learned in this book a couple of options we have for building data
orchestrations.
Over the last couple of years, Amazon SageMaker
(https://aws.amazon.com/sagemaker/), a fully managed service for
building end-to-end ML workflows, added several new features that help
integrate ML pipelines with the data ecosystem.
One such feature is the Amazon SageMaker Data Wrangler, which has
numerous pre-built transformations for standard feature engineering and
data pre-processing tasks.
Data Wrangler provides hundreds of pre-built transforms, and you can also
write custom transformation maps using popular languages.
Another highly sought-after launch was the Amazon SageMaker Feature
Store, a managed service that provides a reusable repository for storing,
maintaining, and accessing ML features across different ML projects.

The purpose-built features within AWS AI/ML that help enable end-to-end
automation and scaling across data sources, ML models and consumers of
these models is one of the biggest advantages of the cloud computing model
provided by AWS.

Multiple Choice Questions
Use these questions to challenge your knowledge of what we learned in this
chapter.

1. What is the right combination of data interaction types and modes we
discussed in this chapter? (Select one or more right options).

a. Batch and synchronous
b. Real-time and asynchronous
c. Real-time and fan-out
d. Batch and asynchronous

2. Which of the following choices is NOT a true statement about the
synchronous data interaction mode?

a. It is used for data flows between two systems (A and B), with A
requesting B for information by either passing or not passing a
parameter in its request.

b. A sending data or messages via a queue to B and waiting for a
response from B.

c. It is primarily used for real-time calls between a service and its
consumer.

d. A sending messages or data to a topic that multiple consumers have
subscribed to.

3. AWS Glue supports big data processing and ETL tasks.

a. True
b. False

4. Which of these options about AWS Glue is NOT true?

a. AWS Glue is a serverless, managed analytics service to create an
automated job for feature engineering tasks.

b. An important task in setting up an AWS Glue ETL job is to select the
right compute we need to properly run our jobs.

c. AWS Glue Studio provides an easy way to author and manage ETL
jobs.

d. AWS Glue provides support for a number of languages, including
Python, to author ETL jobs.

5. You cannot run Min-Max normalization with AWS Glue DataBrew, but
you can run the rest of the feature engineering tasks.

a. True
b. False

Answers
1. b,c,d
2. d
3. a
4. b
5. b

Further Reading
https://www.space.com/33527-how-fast-is-earth-
moving.html#:~:text=The%20sun%20and%20the%20solar,way%20ar
ound%20the%20Milky%20Way
Using SageMaker Data Wrangler and SageMaker Feature store together
https://catalog.us-east-1.prod.workshops.aws/workshops/63069e26-
921c-4ce1-9cc7-dd882ff62575/en-US/lab1/option1

https://www.space.com/33527-how-fast-is-earth-moving.html#:~:text=The%20sun%20and%20the%20solar,way%20around%20the%20Milky%20Way
https://catalog.us-east-1.prod.workshops.aws/workshops/63069e26-921c-4ce1-9cc7-dd882ff62575/en-US/lab1/option1

CHAPTER 5
Casting a Deeper Net (Algorithms and

Neural Networks)

Introduction
The author is a self-proclaimed fan of superheroes, especially Iron Man
(what a performance by Robert Downey Jr.!). If you explore the offerings
from the Marvel Cinematic Universe (MCU), a majority of the heroes and
villains are either altered by a super serum or mutation, or they are gods or
aliens. Only a handful of them are humans with extraordinary potential, and
Iron Man is one of them. What makes Iron Man special is his genius and his
flying suit powered by an AI called Jarvis. With capabilities like automatic
speech recognition, natural language understanding, flight control, autopilot,
navigation, weapons command and control, threat assessment, and
strategic/tactical improvisation, Jarvis was versatile, and the interactions
between Tony Stark (Iron Man) and Jarvis during the fight sequences were a
treat to watch. The suit's power source was an alien technology, but the
intelligence that made these tasks or capabilities possible was a collection of
algorithms. Tony designs these modules with algorithms in the first Iron
Man movie, and new capabilities are added as requirements evolve (remote
suit control in Avengers, for example). Metaphorically speaking, algorithms
can be thought of as the brains of an AI system. An AI's intelligence is
measured by the efficacy with which it can learn and perform tasks to
achieve a desired outcome; so, algorithms are at the core of an AI system's
usefulness.
Consider, for example, an AI application that autosuggests words as you
type a sentence. An algorithm is selected and trained against a large
collection of documents to create a model that predicts the next words as the
previous set of words are passed as input. The algorithm contains the
computational logic and semantics to determine how to tokenize the words
in the corpus to numeric vectors, how to embed the vectors in a latent space
such that relationships between words and the sentence context are captured,

and how to approximate a function to predict the next word a result of the
learning process. In effect, an algorithm is a set of mathematical equations
that work together to minimize the differential between actual vs. predicted
values in the data iteratively (supervised learning), identify logical groupings
or patterns in the data (unsupervised learning), and determine an action
based on incentives (reinforcement learning). Thankfully, due to the
increasing demand for ML and AI, and advancements in cloud computing
making it more accessible, we can now work with algorithms without having
to worry about getting a PhD in Mathematics. We can leave the math and
science to the scientists/researchers and use abstracted APIs in popular
programming languages, made available via ML frameworks, to select the
algorithm of choice for our needs to set up ML training. With AWS AI
services, we have an even greater level of abstraction with using APIs to
directly embed AI into our applications without the need for ML skills or
model training. We will cover the AI services in detail in Chapter 10, Adding
Intelligence With Sensory Cognition, and Chapter 11, I for Industrial
Automation.
In the previous chapters, we set the stage by introducing AI and ML,
walking you through what the ML workflow looks like, why and how to set
up data lake storage in AWS, how to ingest data into your data lake, how to
run data processing tasks such as feature engineering, and how to automate
data orchestration pipelines for your ML workloads using AWS Glue ETL
and AWS Glue DataBrew. These chapters helped you learn how to work
with your data, and how to get it prepared and ready for ML training. The
next set of tasks correspond to the model training phase of the ML workflow,
as shown in the following image:

Figure 5.1: Model training phase of the ML workflow

In this chapter, we will learn what algorithms and neural networks are, learn
what to use when, and use Python code samples to understand how to set up
estimators and fit models for different types of ML use cases.

Structure
In this chapter, we will dive deep into the following topics:

Introducing Algorithms and Neural networks
Simplifying the Algorithms vs. Neural networks conundrum

Building ML solutions with Algorithms and Neural networks

Objectives
So, why do we have a chapter on algorithms? Why not directly jump to
model training and be done with it? If our objective was to just show you
how to build and run a ML project, we probably would have. But, in this
book we want to inspire you with the art of the possible. We want you to
experience the breadth and depth of solution options that AI/ML
encompasses today. We would like you to learn first-hand how some of the
biggest challenges in the world are solved using AWS AI/ML; that's why we
designed this chapter to strengthen your knowledge in algorithms and neural
networks, which is the core of ML. In this chapter, we will first learn how
algorithms came to be, how they evolved, how neural networks were born,
and how complex problems are solved today by large-scale ML using a
technology called deep learning. We will then review a matrix of choices to
navigate to a specific algorithm based on the use case, building on top of
what we learned in Chapter 1, Introducing the ML Workflow. Finally, we
will get hands-on experience and play with popular algorithms and neural
networks, setting up estimators and running basic training tasks.

Introducing Algorithms and Neural networks
The history of algorithms predates the history of computers. According to
the Online Etymology Dictionary
(https://www.etymonline.com/word/algorithm), the word algorithm is a
confluence of words from the Arabic, French, Greek and Latin languages
that all refer to numbers and computation. The word dates back to the 17th
century, and the meaning did not change much until the 20th century (the era
of computers) when it became widely used and accepted. In essence, it refers
to a set of mathematical functions that follow a logical sequence to perform
a particular task. That's great, but what does it mean really? And why did it
take on a new form in the context of computers? At its root, the idea is the
simplification of complex computations. Inventions and discoveries are
closely tied to the evolution of who we are as human beings. Some of our
biggest scientific and engineering breakthroughs in the past few centuries
have mathematics at their core, and solving the math is an important part of
building the invention. But these are extremely complex tasks, are

https://www.etymonline.com/word/algorithm

computation intensive and cannot be solved manually. So, while inventing
things that transform our lives, we have also been trying to invent tools that
help us calculate easier and faster.

Deterministic Algorithms
The Abacus is one such tool. It is not clearly known who invented it and
when. Ancient texts refer to the Abacus as early as 2500 BC, and it has been
mentioned in texts from many parts of the world, even as recent as the 17th
century. It was quite popular (and some still like to use it even today), until it
was replaced by the sliding rule, and then recently, the faster calculator and
computers. For a detailed read on the history of Abacus and the sliding rule,
refer to https://www.sliderulemuseum.com/Abaci.htm. The Abacus can
perform foundational arithmetic operations like add, subtract, divide
multiply, square root and cubic root. The design is simply a wooden frame,
with wires/thin rods running vertically or horizontally, with beads attached
to them. The beads can be moved along the wire/rod, the position and count
of beads indicate the calculation and the results of an operation. Surprisingly,
the Abacus can perform these calculations for large numbers running up to
the billions. Today, the Abacus is used in primary schools to teach young
children how to calculate in a fun way and is also used to teach the visually
impaired because of the touch-based learning.
If (hopefully, this never happens) our sun were to emit an electro-magnetic
pulse that is powerful enough to disable all the electronics in the world, the
following is how an algorithm would look like because we would have
nothing else but our trusted Abacus or a slide rule to help with a solution.
Problem: Write an algorithm to determine how long it will take to travel
from Earth to Mars in light speed.
Algorithm:

1. Light travels at the speed of 30,000 kilometers per second.
2. Light speed equals to 30,000 multiplied by 3600 per hour.
3. The distance between Earth and Mars is 225M kilometers; the time it

takes to travel from Earth to Mars in light speed is the result of Step 3
divided by result of Step 2.

https://www.sliderulemuseum.com/Abaci.htm

This may seem like oversimplification, but remember, the whole idea of an
algorithm is to break complex calculations into simple logical sequence of
steps to arrive at an outcome, given an input. The preceding example is a
classic deterministic algorithm. As the word indicates, deterministic means
the algorithm's course is pre-determined, or for humour's sake, the algorithm
follows its destiny. There is nothing outside the bounds of the algorithm that
can influence its direction or outcome, and it will consistently produce the
same outcome given the same inputs. The algorithm can be conditional, of
course, but conditions and actions have to be sequenced into its structure.
Consider, for example, that you walk up to your bank's Automated Teller
Machine (or ATM) to withdraw cash, and you insert your card. The
machine reads the magnetic stripe on your card, determines your account
details, and when you enter your PIN, verifies that the PIN you entered is the
same as what is set up for your card. If the PIN is correct, it presents you the
main menu, and you can perform a number of transactions, including
withdrawing money. If we visualize an algorithm that defines the cash
withdrawal flow, it will be similar to the following image:

Figure 5.2: Example of a deterministic algorithm

In this case, as long as the inputs to the algorithm remain the same, the
processing and outputs will remain consistent. This also means that the
algorithm has no attention span or memory and will not learn from the data it
processes. So, the algorithm will not be able to differentiate between a
genuine user and a fraudulent user if the right process steps are followed.

Probabilistic Algorithms
The other type of algorithm that's equally popular, especially in AI and ML,
is probabilistic. In contrast to deterministic, an algorithm that can derive a
generalization or approximation function can be termed probabilistic. In
essence, there is a randomness at play, which can influence an outcome in
either direction, but this same random nature gives way to assimilation by
iteration. Hence, probabilistic algorithms are well suited for ML. A classic

example is reinforcement learning
(https://docs.aws.amazon.com/sagemaker/latest/dg/reinforcement-
learning.html), in which an agent learns by taking actions while interacting
with an environment and being rewarded if the action leads to the goal in the
quickest possible way. At AWS, the DeepRacer
(https://docs.aws.amazon.com/deepracer/latest/developerguide/what-is-
deepracer.html) is a fun implementation of reinforcement learning to make
learning ML hands-on and exciting. The action space determines the
possible actions the agent can take in the environment, which is the outcome
of the learning process during training, with the feedback provided by the
reward function. The agent can take one action from a list of possible actions
(in the discrete action space) or select an action within specific attribute
bounds (in the continuous action space). Either way, the actions are
probabilistic, and the combination of rewards and the iteration drive the
learning aspect of the model. Refer to figure 5.3:

Figure 5.3: Discrete action space for AWS DeepRacer

An algorithm, in its natural state, is just words and numbers, purely
theoretical. It comes to life when its semantics are converted to instructions
and executed with tools like the Abacus, slide rule, the calculator and the
computer. In simple terms, and use case or a problem explains the "why?",
the algorithm is an answer to the "what?", and the tools help with the
"how?". So, the algorithm is the blueprint of the solution or the task
performed to arrive at a desired result. When we use computers to do
something, the first step is to create an algorithm for the task; then, we write
programs in a language of our choice containing instructions codifying the
algorithm. Today, we have ready-made programs and apps for most of our
tasks, but remember that behind every successful program, there is an

algorithm following its destiny (deterministic) or making a new one
(probabilistic). And hopefully, this helps you understand how and why
algorithms became so important in the computing era in the last century or
so.

Decision Trees
At the beginning of this chapter, we discussed that an algorithm is the brain
of a computer. This is more so in the case of ML, where we train computers
to learn approximations to predict an output given an input. ML algorithms
define the learning path of the prediction function, and during training, the
mathematical equations comprising the algorithm are applied against the
training dataset to enable the creation of a model that understands the rules,
leading to an output based on an input, thereby becoming intelligent.
Compare and contrast this with a deterministic algorithm that does not
involve learning or modelling but an atomic execution of pre-determined
instructions. We will cover the different types of ML algorithms in the next
section, but let us briefly talk about the most popular algorithm family in
supervised learning: decision trees. We covered decision trees briefly in
Chapter 1, Introducing the ML Workflow, and the premise is using
mathematics to build a tree from the training dataset, which lays out the
decision rules that the model learns and then uses it to make predictions
from inputs it has not seen before. The most common form of decision trees
are the classification and regression trees or CART, and as the name implies,
we use CART for classification (to predict a class or category) or regression
(to predict a value) problems. Refer to figure 5.4:

Figure 5.4: Decision tree

During training, the labeled input dataset (yes, decision trees use supervised
learning) is fed to the algorithm for a tree representing the training dataset to
be built. The most common mathematical functions used in building
decision trees for classification problems are Entropy, Information gain and
Gini Impurity, and that for regression is Reduction in Variance. These
functions are akin to the DNA for a decision tree and determine how a tree is
structured, how many nodes it can have, what are these nodes from the
feature set, how many branches it can have, what are the branches, and
finally, how many leaf nodes it terminates with. For additional reading, visit
this link: https://scikit-learn.org/stable/modules/tree.html.

Entropy and Information gain
At a high level, entropy is a measure of how chaotic or disorderly the data
distribution is across classes for a classification use case. Generally, it is a

https://scikit-learn.org/stable/modules/tree.html

value between 0 and 1, but it can be greater than 1 in some cases. The closer
the value is to 0, the less chaotic the data distribution, and vice versa. If
entropy is biased toward either direction, it indicates that the dataset does not
have adequate sampling of class distributions to enable approximation. If
entropy strongly leans toward 0, it means that the model may overfit, and if
it leans toward 1, it may underfit.

NOTE: Entropy, as discussed here, should not be confused with cross-
entropy loss, which includes predicted class distributions and is a
measure to determine how well or poorly a model has learned during
training.

Typically, datasets need to be hierarchical for decision trees to be effective.
There should be a main feature and dependent features that are related to the
values of the main feature and cannot be used independently. Information
gain is the difference between entropy of the main feature and the weighted
average of entropy of the dependent features. By calculating the entropy and
information gain of our tabular dataset, we can design a decision tree
representation for our data iteratively. To understand how to do this, let us
consider a tabular representation of our cuisine choices decision tree. The
dataset looks as shown in the following table:

Cuisine choice Dish Diet Spice level Decision

Italian Pizza Vegan Any Yes

Italian Pizza Meat Any No

Italian Pasta Any Any No

Indian Any Vegan Medium Yes

Indian Any Vegan Hot No

Indian Any Meat Any No

Thai Any Any Any No

Table 5.1: Cuisine choices dataset

In our current example, it is obvious that some features are dependent on
"Cuisine choice", such as "Dish" and "Diet", but when we have large
datasets with hundreds of features and millions of rows, it is manually
impossible to organize them into a decision tree; that's why we use these

measures to automatically calculate and structure them. The approach is to
first calculate the entropy of "Cuisine choice" based on the probability of
each "Decision" of "Yes" or "No" as ultimately that is what we want the
model to predict. The formula for entropy here is as follows:
Entropy = -(P("Yes")*log2P("Yes") + P("No")*log2P("No"))
Entropy = -((2/7)*log2(2/7) + (5/7)*log2(5/7))
Using a logarithm calculator
(https://www.rapidtables.com/calc/math/Log_Calculator.html), we get
the following results:
Entropy = -((0.285)*(-1.81) + (0.714)*(-0.486)) = -(-0.515 - 0.347) = 0.862
Next, we calculate the average of the weighted entropy for the three classes (
or values) in "Cuisine choice". We use the same entropy formula as earlier
but determine the P("Yes") and P("No") for each class in "Cuisine choice",
such as "Italian", "Indian" and "Thai". For example, for "Italian", P("Yes") is
1/3 and P("No") is 2/3. We weigh the entropy for each class by its own
probability. For example, the probability of a cuisine choice to be "Italian" in
the dataset is 3/7. So, the overall formula here for average weighted entropy
turns out to be as follows:
Probability of Italian * Entropy of Italian + Probability of Indian * Entropy
of Indian + Probability of Thai * Entropy of Thai
[(3/7)*-(1/3*log2(1/3) + 2/3*log2(2/3))] + [(3/7)*-(1/3*log2(1/3) +
2/3*log2(2/3))] + [(1/7)*-(1/1*log2(1/1) + 0*log2(0))] = 0.389 + 0.389 + 0 =
0.778
Finally, information gain is the calculated difference between the two, which
is as follows:
0.862 - 0.778 = .084.
To build our decision tree, we calculate the information gain for all the main
features (that have dependent features) and select the feature with the highest
information gain to be the root node for our tree. We then select each class
for the root node, and repeat the entropy and information gain calculation
(for each class, calculate its entropy and calculate the average weighted
entropy for the features related to this class) for all dependent features; then,
select the one with the highest information gain to be the next node in the
tree. We repeat this until we have determined the leaf node (the tree

https://www.rapidtables.com/calc/math/Log_Calculator.html

terminates in the leaf node and will not have any further child nodes). We
will now examine a different way to build the decision tree: a measure called
Gini impurity.

Gini Impurity for decision trees
The other method to split decision trees for classification problems is Gini
Impurity, which indicates the probability of wrong classification for a feature
value, provided the dataset has been sampled randomly. It can have any
value between 0 and 0.5, with 0 denoting no impurity or perfect
classification or a pure feature, and 0.5 being totally impure. We use Gini
impurity values to determine the nodes of a decision tree. The feature that
has Gini impurity of 0 is a leaf node of a decision tree, and the feature with a
lower Gini impurity among the rest of the main features will be the root
node. We then calculate the Gini impurity for the dependent features for each
main feature to understand which one will be the next node and so on. The
formula for Gini impurity is as follows:
1 - SUM[(Probability of occurrence of a class instance i)2]

Reduction in variance for regression
We use a different measure to decide how to split a decision tree for
regression problems, but we use this measure in the same way as
classification problems, that is, the next node in a decision tree is selected
based on the feature with the lowest variance. The variance we refer to here
is the statistical variance of a feature in a dataset. We first calculate the
variance of the main features and select the feature with the lowest variance
as the root node; then, we calculate the variance of the dependent features,
select the feature with the lowest variance to split the tree, and continue until
we reach features with variance = 0, which is the leaf node. The formula for
calculating the variance is as follows:
[SUM(feature value - mean of the feature value across the dataset)2/count of
feature values in the dataset]
ML algorithms like decision trees are really good for use cases like
predicting house prices, detecting fraudulent transactions, predicting whether
a customer will buy a product, and other common regression or classification
tasks. But what if we need a ML model to read and understand an image or a
video, for example, in operating a self-driving car that can navigate through

traffic or looking at tissue samples to detect whether a tumour is benign. Or
let's say we want to build a model that can create a summary paragraph for
each page in this chapter, automatically. These are examples of what is
called deep learning, the ability to learn large numbers of parameters very
comprehensively. If you recollect Chapter 3, Predicting the Future With
Features, for the computer vision task, each pixel of the image was a feature,
which, in turn, was a vector of colour coordinates and the position of the
pixel itself. Images can have millions of pixels or even more, depending on
the complexity of what is being conveyed. An image classification task may
require thousands of images (or even more), and models need images of high
quality for accurate predictions. Consequently, we need a much bigger,
broader, and deeper algorithmic canvas to work with for models to learn the
dataset adequately. This is where neural networks come in.

Neural Networks
We were introduced to neural networks in Chapter 1, Introducing the ML
Workflow. We learned that a neural network is a programmatical and
mathematical construct that mimics the function of human brain. We first
define a neural network architecture for our ML training, which, at a high
level, is a combination of the type of network (can be decided based on our
ML problem), the number of layers in our network, the number of neurons in
each layer, and the activation function to use for each layer. There is a lot of
flexibility in how we set up our neural network, allowing extensive
experimentation and iteration to meet our goal metric. The learning
corresponds to how the values of the weights (randomly assigned
coefficients) of each of the neurons evolve during the training process,
especially during back propagation. Let us take an example to better
understand these concepts, namely, our decision tree data to determine
cuisine choices, but in the context of using a neural network to solve the
same problem.
Let us denote each of the four input features as follows: F1=cuisine choice,
F2=dish, F3=diet and F4=spice level, and the class label decision as O. Let
us consider that each of our neurons is assigned an initial random weight
(W), with weights in the first hidden layer denoted as WI and the weights in
the second hidden layer denoted as WH, both of which will be updated
during training, and a bias (b), which is initially set to 0 and will also be

updated during the training process. We will use the ReLU (https://ml-
cheatsheet.readthedocs.io/en/latest/activation_functions.html#relu)
activation functions for our hidden layers and the Sigmoid (https://ml-
cheatsheet.readthedocs.io/en/latest/activation_functions.html#sigmoid)
activation function for our output layer to predict the probability of the
decision being a Yes or a No. The sigmoid function is useful as a logistic
regression function for classification problems. And for the sake of
simplicity, let us call the neurons in our first hidden layer that receive the
inputs IN1, IN2 and so on. Similarly, the neurons in the second hidden layer
are designated as HN1 and HN2, and the output layer neuron is ON1.

NOTE: There are different schools of thought on whether the bias
should be a constant value throughout the training or it should be
assigned an initial value and expected to be updated during training,
as you would a weight. In this example, let us assume that the bias is
updated during the training process, during back propagation.

Our neural network architecture for predicting a decision class for this
problem will look as shown in Figure 5.5:

https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html#relu
https://ml-cheatsheet.readthedocs.io/en/latest/activation_functions.html#sigmoid

Figure 5.5: Neural network architecture with logistic regression for binary classification

NOTE: The 'e' represented in the Sigmoid function is a mathematical
constant ~ 2.718 and is called Euler's number.

During the training process, the input features from our dataset will be fed to
the neural network in samples. When the neural network has gone through
one pass of our training dataset in its entirety, it is called an epoch. In this
example, values for each observation (row) for each of the four input
features are fed to each neuron in the first hidden layer using the sum
product of the input feature values (Fi) and the weights assigned to the
neurons (WI1, WI2…). The bias (b) is then added to this sum product. This
calculated value is then passed as an input to the ReLU activation function,

which returns the maximum value between 0 and the calculated input. If the
calculated input is a negative value, ReLU returns 0, and if it is a positive
value, ReLU returns the positive value. We represent ReLU for the first
hidden layer as max(0, ∑Fi*WIi + b). We repeat this process in the second
hidden layer; however, this time, the inputs are not feature values but the
activated value from each neuron in the preceding layer. We apply the ReLU
once again, denoted by max(0, ∑INi*WHi + b). We send both the activated
values to the output layer, which calculates the sum product of the input
values and the bias, and then passes it to a Sigmoid function that converts
the calculated value to a probability. This is what happens during the
forward pass of the neural network during training.
The output predicted by the neural network is then compared to the class
label, and an error is estimated using a loss function like cross entropy
(https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html) for
classification problems or a mean square error
(https://keras.io/api/losses/regression_losses/) for regression problems. We
then use a different algorithm (with its own set of mathematical functions)
called the back propagation of errors to calculate how the weights should be
updated from the output layer all the way back through each of the hidden
layers to compensate for the estimated loss. Once the weights are updated,
we iterate through the training dataset once more, calculate the output value,
estimate the cross-entropy loss, and again back propagate errors to update
the weights. We repeat this process until the model has converged and
reached our target metric. For a detailed explanation of how back
propagation works, refer to the article at
https://towardsdatascience.com/understanding-backpropagation-
algorithm-7bb3aa2f95fd.
That was a quick explanation of what algorithms and neural networks are.
We probably need a chapter or maybe even an entire book to dive deep into
the various ways in which you can set up a neural network, and configure
and optimize it. Additionally, there are different types of neural networks
and algorithms, based on the use case, and you can easily lose yourself in
this maze. In order to make it easy for you to understand what is popular and
what algorithm or neural network you should use based on your need, to
help you choose between an algorithm or a neural network, and to aid other
considerations you may have, such as hyperparameter tuning or the
evaluation metric to use, the next section will provide guidelines on what to

https://ml-cheatsheet.readthedocs.io/en/latest/loss_functions.html
https://keras.io/api/losses/regression_losses/
https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

use when. We will also look at what some of these algorithms are, how and
why to use them, and other considerations in detail.

Simplifying the Algorithm versus Neural network
conundrum
You might be thinking this is all great, but how do I use this information?
How do I actually get started deciding on an algorithm or a neural network?
When should I use an algorithm, and when should I use a neural network?
These are perfectly valid and in fact, valuable questions. Technology
companies and the open-source community are innovating at such a rapid
pace that it is very hard to be keep up with what is happening. In fact, at
AWS, we added more than 250 new features in AI/ML in 2021 based on
customer feedback. Fortunately, help is at hand; in this section, we will first
discuss what parameters help us make ML algorithm (and neural net)
choices, how to pick an algorithm, and finally, how to determine whether we
made the right choice.
When you are about to finalize the candidate list of algorithms or neural nets
you want to go with, you should already have answers to some key
considerations in your ML workflow, as shown in Figure 5.6:

Figure 5.6: Considerations for Algorithm selection

What ML domain?
First, we look at the business challenge we are trying to solve and qualify if
it is really a ML problem. If our requirement can be addressed by a
deterministic approach (events trigger actions that follow a predetermined
path based on conditions and lead to a consistent outcome every time), we
do not need ML. If we need to predict a future outcome based on historical
data, derive a category for unseen inputs, or uncover patterns from

ambiguous data points, we probably need an ML solution. In this case, you
need to first understand the ML domain (what type of a ML problem) you
are looking at. If you need ML for classifying images or detecting objects in
images, or segmenting images, your ML domain is Computer Vision or CV.
If your requirement is to understand human speech, your domain is Natural
Language Understanding or NLU. If your requirement is to process text,
derive insights from text, or classify based on text, your domain is Natural
Language Processing or NLP. If you are working with business data in tables
and need to predict or derive insights from them, your domain is tabular data
processing.

What ML use case?
Once we know our ML domain, the next step is to dive a little bit deeper to
understand the use case. For example, if our domain is CV, what is it we
want our ML model to do in CV? Do we want our model to look at an image
and classify it as belonging to a predefined category (image classification)?
Do we want our model to look at objects within an image, draw a bounding
box and call out what that object within the bounding box is (object
detection)? Do we want our model to look at an image and segment objects
by classifying the pixels (semantic segmentation or instance segmentation)?
Or do we want to look at a video and identify objects or classify specific
frames (image classification or object detection)? Or we may want to
process an image to determine a next course of action for an agent
interacting with an environment (policy optimization with reinforcement
learning; for more details, visit
https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html). As
you can see, the use case has a direct relationship with the algorithm we will
choose for our experimentation. But we cannot stop with just this
information; we need to know what framework we should use and if the data
has useful features.

What ML framework?
As is the norm in technology, there are quite a few ML frameworks out
there; sometimes deciding on what we need may appear overwhelming. For
example, you can use both Tensorflow (https://www.tensorflow.org/) and
PyTorch (https://pytorch.org/) for tasks like regression, image classification

https://spinningup.openai.com/en/latest/spinningup/rl_intro3.html
https://www.tensorflow.org/
https://pytorch.org/

and reinforcement learning, but you can use only Deep Graph Library or
DGL for link prediction problems. And you can use sci-kit learn
(https://scikit-learn.org/) for almost any task, but only GluonTS
(https://ts.gluon.ai/), Recurrent Neural Network or RNN
(https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-
neural-networks), Sequence to Sequence or Seq2Seq
(https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-
sequence-learning-in-keras.html) in an ML framework for time series
forecasting. As you can see, there are no distinct indicators for what to use
when, and definitely no one technique that fits all. As a general guideline
(remember that ML tech is expanding at a faster rate than our universe, and
change is the only constant factor in this space), the author suggests using
popular frameworks like MXNet
(https://mxnet.apache.org/versions/1.9.1/), Tensorflow or PyTorch for all
ML domains due to extensive availability of helper functions, APIs, support
and examples to get started. For common ML tasks, the author recommends
trying out the Amazon SageMaker built-in algorithms
(https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html), which
removes the undifferentiated heavy lifting of having to select, configure,
test, and finalize algorithms and frameworks.

What ML data features?
Data is the fuel that powers your ML model. A model's "intelligence" is its
interpretation of the relationship between input features (column values of
your data across rows) and the target feature (what we want the model to
predict). The choice of an algorithm depends on the meta data of features we
select from our dataset, such as data structure, data format and data type. For
example, if we have relational data in a tabular format with numerical data,
we are either trying to perform a time series prediction or a regression; so,
we will choose algorithms that can perform those functions. If we have
tabular data structure with categorical data, we are most likely performing
classification, so we would choose an algorithm like naïve bayes
(https://scikit-learn.org/stable/modules/naive_bayes.html) or XGBoost
(https://xgboost.readthedocs.io/en/stable/). If we are working with
unstructured text data, we need NLP algorithms; if we are working with
images, we need CV algorithms. So, the choice of the features we use for
our ML modeling also plays a role in deciding what algorithm to use.

https://scikit-learn.org/
https://ts.gluon.ai/
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html
https://mxnet.apache.org/versions/1.9.1/
https://scikit-learn.org/stable/modules/naive_bayes.html
https://xgboost.readthedocs.io/en/stable/

In Chapter 1, Introducing the ML Workflow, we learned how to approach a
ML problem, saw examples of ML use cases, frameworks and algorithms
that can used to solution for a ML problem, and finally, looked at scenario-
based navigation pathways we can adopt to build the solution. These are
essential initial steps, but they are not enough to start committing time and
money to ML training. We need to dig deeper to create a list of candidates
for experimentation (iterative training and evaluation of models).
Airline pilots call this a final approach prior to landing. While we may be
blissfully unaware enjoying an in-flight movie or a pre-landing snack, the
pilots are busy executing a series of manoeuvres to bring the plane at the
right heading, altitude and speed to position it in the landing hold queue.
When they get the clearance for landing, they bring the plane to a final
approach, which involves deploying the under carriage or the landing gear
(the plane's wheels), adjusting the flaps to maximum, taking manual control
of the joystick, and reducing altitude and speed to land the plane. The final
approach leads to landing, and this is when the rubber hits the road (we start
incurring ML training costs). So, what we do in this final approach or
finalizing the algorithm and hyperparameters is very important for ensuring
a satisfactory ML outcome.
For example, consider the following rows from the table we reviewed in
Chapter 1, Introducing the ML Workflow, in the Evolution of AI and ML
section:

ML topic ML use case ML framework/library Algorithm/Neural
network

Tabular data Regression TensorFlow Keras, MXNet,
PyTorch, Sci-Kit Learn

Linear Regression, Decision
Trees, XGBoost, Multilayer
Perceptron (MLP), RNN

Classification TensorFlow Keras, MXNet,
PyTorch, Sci-kit Learn

Linear Regression, Decision
Trees, XGBoost, MLP,
CNN

Table 5.2: Mapping of ML use cases

In this case, the ML domain (or topic) and the ML use case are clear; we can
select a specific framework that we are comfortable with, but we still have a
lot of algorithm options, and if we have to try out every single one, we may
be spending a lot of time and cost in experimentation alone. So, before we
do that, we continue to dig a little deeper and understand what these

algorithms actually mean, how are they used, are they configurable, what use
case specific metrics do they support, and so on. This will help narrow our
algorithm selection a bit further so that we only focus on the most essential
ones.

NOTE: In Chapter 7, Let George Take Over, we will explore an
approach to automate the algorithm selection and model training
process using a technique called AutoML. It is, however, important to
understand how to do algorithm selection iteratively via
experimentation as circumstances of our ML project may dictate one
approach or the other.

For the tabular regression use case, in the previous table, we have algorithms
like linear regression; XGBoost; decision trees; and neural nets like
Multilayer Perceptron or MLP and RNN mentioned. Let us understand what
this actually means by looking at their hyperparameters and evaluation
metrics. Hyperparameters are configuration variables that can used to control
the behaviour of an algorithm during training. Evaluation metrics define the
goal that, once met, indicates that our model has trained sufficiently for our
task. Refer to the following table for a breakdown of specific metadata for
the algorithms we discussed earlier. This is just a drop in the ocean in terms
of the choices available in ML. We need multiple books to cover every
single algorithm or neural network out there, and by the time we write about
them, more algorithms would have been added because of the pace of
innovations in ML these days.

Name Type For Important
Hyperparameter

s

Common
Evaluation

Metrics

Linear Learner Statistical model
or function

Classification or
Regression tasks

Number of
classes, predictor
type, binary
classifier model
selection criteria,
early stopping
patience, epochs,
learning rate, loss

RMSE [Root of
the Mean Square
Error between
predicted and
expected values
in a dataset]
Confusion matrix
[for classification
that validates
classifier
performance as
predicted vs
actual for each

classification
label]

Extreme Gradient
Boosting or
XGBoost

Boosted decision
trees

Regression or
classification
tasks

eta or learning
rate, max depth,
min child weight,
alpha, lambda

RMSE, AUC [or
area under the
curve measures
classifier
performance at all
classification
threshold points]
or confusion
matrix

Random Forest Ensemble of
decision trees

Regression or
classification
tasks

Number of trees,
split criterion,
max depth, max
features, min
weight fraction

RMSE or
confusion matrix

Multilayer
Perceptron or
MLP

Neural network DeepLearning
image
classification,
object detection,
time series
forecasting and
more

Number of
hidden layers,
count of neurons
per hidden layer,
activation
function,
optimizer,
epochs, batch
size, loss function

Depends on ML
use case. For
image
classification -
AUC or
confusion matrix.
For object
detection - mean
Average Precision
or mAP, which
compares labeled
bounding box to
predicted
bounding box.
For time series -
MAPE or mean
absolute
percentage error.

Recurrent Neural
Networks or RNN

Neural network DeepLearning
Text
classification, text
translation, NLU,
NLP and more

Number of
hidden layers,
count of neurons
per hidden layer,
activation
function,
optimizer,
epochs, batch
size, loss function

Text classification
- confusion
matrix. Text
translation -
Bilingual
Evaluation
Understudy or
BLEU

Convolutional
Neural Networks
or CNN

Neural network DeepLearning
Text or image
classification,

Number of
hidden layers,
count of neurons
per hidden layer,

Confusion matrix
or mAP

object detection
and more

activation
function,
optimizer,
epochs, batch
size, loss function

Table 5.3: Example of considerations for finalizing algorithms

Statistical models or decision tree considerations
If our use case is to predict house prices using a tabular housing dataset, we
will most likely select a regression algorithm. On the other hand, we will
select a binary classification algorithm to predict the customer churn or a
multi-class classification algorithm if we need to predict whether a picture is
that of a cat from a possible list of animals. If we need to predict all possible
genres for a movie, we will use a multi-label classification algorithm. For
regression or classification problems, you can use either a statistical
algorithm or a neural network. For complex deep learning type of tasks with
several parameters and high data volumes (not necessarily high-dimensional
features), we use a neural network. For tabular classification problems,
including both continuous and categorical high dimensional features,
algorithms like linear learner, naïve bayes and decision trees perform well.
Decision trees struggle a bit with regression problems, but that is resolved
using a boosted tree algorithm like XGBoost
(https://xgboost.readthedocs.io/en/stable/). Let us now look at some of the
hyperparameters of these algorithms to understand how they help in
controlling the training behaviour.
For the linear learner algorithm, predictor type helps you specify the ML use
case: binary classification, multi-class classification or regression. The
number of classes is applicable for multi-class only and indicates how many
classes are to be learned. The binary classifier model selection criteria
specify the deciding metric to select a model from a list of models trained,
when the use case is binary classification, such as, accuracy, or F1 score, or a
loss function. The early stopping patience indicates the number of epochs to
monitor for an improvement to a specific goal metric (either what was
specified in binary classifier model selection criteria or loss) before ending
training. Epochs indicate the maximum number of passes through the
training data a model must traverse. The learning rate is a number between 0
and 1 that indicates the quantity by which the step size of a model is updated

https://xgboost.readthedocs.io/en/stable/

during training after the loss function determines the error between the
predicted value and the label. The loss indicates the mathematical function
using which the loss for the current training step of the model is calculated,
such as squared loss for regression and logistic or softmax loss for
classification.
Decision trees like XGBoost also support learning rate, aka eta, the size by
which weights are updated after learning to prevent overfitting. For random
forest, which is an ensemble of decision trees, the number of trees is an
important hyperparameter. We can also specify the split criterion for a
random forest that indicates the split method to use, such as Gini Impurity or
Entropy. The max depth indicates the size or depth of the tree in terms of
how many levels the tree can split into, the max features indicate the total
number of features the tree should use at each node to calculate the split for
that node. The min weight fraction for a random forest is the same as min
child weight for boosted decision trees, which indicates the criteria for node
partitioning. If the weight for the partitioned node is less than the minimum
weight specified here, there will be no further partitioning, and the node will
become the leaf node. Alpha and lambda are the regularization factors for
weights, the higher these values, the lower the weight updates and more
conservative the model.
The evaluation metric or the goal metrics for a model depend on the ML use
case, and the choice of such metrics are pretty much common and
standardized based on what the model is trained for. For classification
problems, the goal metric is almost always AUC or area under the receiver-
operator characteristics curve for binary classification or logistic regression
use cases. The AUC measures the classifier performance at all classification
thresholds for the dataset. For multi-class classification, the goal metric that
works best is a confusion matrix that plots the actual vs. predicted
classifications for each class label. For regression use cases, the most
popular metric is RMSE, or root mean square error, which is the square root
of the mean squared error between the predicted and actual values.
Your choice of an algorithm should be made after careful consideration of
the hyperparameters available and the goal metric you want to achieve.
Depending on your business scenario, you may be required to use a
confusion matrix over AUC, or you may need to use accuracy as an
evaluation metric for your classifier because you are more interested in True
Positives and True Negatives. You may be interested to control the learning

rate for your decision tree, but if you select the random forest algorithm, it is
not supported. So, it is important that you investigate the hyperparameters
and evaluation metrics that are available for an algorithm before finalizing
your algorithms for modeling.

Deep Learning and neural network considerations
for Algorithms
NOTE: One thing that should be immediately obvious is that we use
neural networks when we want to do deep learning.

Think of deep learning as a subset of ML but tailored for much more
complex and large problems. We use neural networks because they can
leverage high-performance computational capability when using CPU (with
a lot of cores) or GPU instances, and the ability to process billions of model
parameters during training, which translates to learning complex
relationships from data. For example, think about training an object
detection model to recognize cats in pictures. Let us assume we have a
dataset of 5000 images, with each image being 300 * 512 in size. This
translates to 153,600 pixels for each image. Each picture has a RGB
coordinate, which is a three-dimensional vector that encodes the colour of
that pixel. So, the shape of each image, when vectorized, is [153600, 3]. You
can imagine the amount of data the model will have to learn during training
for 5000 images. In typical object detection training, the images are of much
higher resolution and of a significantly higher volume, so a statistical
algorithm simply does not provide the learning depth for this scenario.
However, a neural network can learn this data volume quite easily with even
CPU instances. For certain NLP models that learn from entire corpuses, such
as Wikipedia (6.5M articles in English alone), we need complex neural
networks with multiple layers and neurons, GPU compute power, and
distributed learning (parallel computing) to complete the training in a
reasonable amount of time. For example, GPT-3
(https://openai.com/blog/gpt-3-apps/) is an NLP model that has the
capacity to learn 175 billion parameters, can produce human like text, can do
text summarization, can answer questions and complete other NLP tasks, but
it is not the largest ML model. By the time this book is published, we may
even see a model with 1 trillion or more parameters.

https://openai.com/blog/gpt-3-apps/

From the previous table, we can also see that the hyperparameters of the
different types of neural networks are fundamentally the same. We may need
additional hyperparameters, such as the number of filters for a CNN, but at a
high level, these are the standard hyperparameters. Hyperparameters are a
set of controls enabling you to define how you would like your model to
train. Since you best know your data and your objective, you use these
controls or levers to:

Tell your model to learn faster or slower (learning rate)
Define larger neural networks to sufficiently capture complex data
relationships (number of hidden layers)
Allow the collection of features in your dataset to be processed
iteratively through the layers (number of neurons per layer)
Use specific math functions to determine how inputs are processed and
outputs are generated (activation functions)
Encourage the learning progress by optimizing the approximation
parameters learned to reduce loss (optimizers)
Specify the number of samples processed through each iteration (batch
size) and specify the number of passes through the neural network for
the entire dataset (epochs).

The evaluation parameters are more dependent on what we are doing with
the neural network, such as confusion matrix or AUC, for tabular/text
classification, mean average precision or mAP for object detection, and
mean absolute percentage error or MAPE for time series forecasting. Again,
we use neural networks only for deep learning, but once we know that, we
can select the type of neural network (or combine multiple neural networks
in a single model; for example, Sequence to Sequence model uses two
RNNs). Then we decide the hyperparameters related to the network
architecture; select a ML framework; build the neural network; and select
other hyperparameters like optimizers, epochs, and batch size; and provide
access to the input dataset and start training.
OK, that was a lot of theory on algorithms and neural networks!! Thank you
for being patient with us so far. We know you are eager to get hands-on
experience of what you learned so far. In the next section, we will explore
code samples of some popular SageMaker algorithms for different ML
domains and also look at examples of how to build and run neural networks.

Building ML solutions with Algorithms and
Neural Networks
In the next chapter, Iteration Makes Intelligence, we will learn the step-by-
step flow of how to iteratively train ML models by setting up training and
test datasets, choosing algorithms, setting up hyperparameters, running
training, and tuning models for the desired goal and evaluating model
performance once trained. In this section, we will focus more on how to set
up estimators
(https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html
) in SageMaker and how to build some simple neural networks. Estimators
are abstracted interface classes that provide an easy-to-use approach for
setting up a wide variety of model training tasks in SageMaker. Depending
on the ML framework you select, you can create a MXNet estimator, a
Tensorflow estimator, a PyTorch estimator, or Scikit-learn estimator and
more. Once you define the estimator, you pass parameters like the algorithm
to use (provided as a docker container image), or an entry point script that
contains the algorithm code in case you are bringing your own algorithm to
SageMaker, compute instance types, permissions, encryption keys, output
location to store model artefacts, hyperparameters, and evaluation metrics.
Once the estimator is ready, you can simply call the fit method, pass the
training dataset, and start the training job. We will do a step-by-step code
walkthrough using SageMaker Jupyter notebooks, like we did in the
previous chapters.
Follow the instructions in the Setting up your AWS account section in
Chapter 2, Hydrating Your Data Lake, to sign up for an AWS account. Once
you have signed up, log in to your AWS account using the instructions at
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html. You
first need to create an Amazon S3 bucket
(https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-
bucket-overview.html) and note down the name of the bucket. Next, follow
the instructions in the Technical Requirements section in Chapter 3,
Predicting the Future With Features, to onboard to an Amazon SageMaker
Studio domain, clone the book's GitHub repository given at the beginning of
the book, and click on Chapter 5, Casting a Deeper Net, to open it up. Open
the sagemaker_algorithms.ipynb Jupyter notebook by clicking on it.
Execute the following instructions to continue with your build activity.

https://sagemaker.readthedocs.io/en/stable/api/training/estimators.html

The first cell contains imports for SageMaker: boto3, a Python SDK for
AWS
(https://boto3.amazonaws.com/v1/documentation/api/latest/index.html);
pandas, a python library for data processing (https://pandas.pydata.org/);
numpy, a Python library for working with numeric data
(https://numpy.org/); and other libraries we need. We also need to provide
the name of the bucket we used in Chapter 4 of the book and get the handle
to the Amazon S3 bucket so that we can download the output CSV file we
created in the chapter. Either press Shift + Enter or click on the triangular
play button after keeping your cursor in the first cell to execute it.
import boto3

import io

import os

import time

import pandas as pd

import numpy as np

import sagemaker

import sagemaker.amazon.common as smac

from sagemaker.amazon.amazon_estimator import RecordSet

from sagemaker import get_execution_role

Enter the name of the bucket you used in Chapter 4 here

bucket = 'bucket-name-from-Chapter4'

prefix = 'aiml-book/chapter4/glue-out/'

s3 = boto3.client('s3')

Execute the next cell to download the scaled CSV file from Chapter 4 –
Orchestrating the data continuum:
download the scaled CSV file we created in Chapter 4

s3.download_file(bucket,

prefix+'wine_scaled.csv','wine_scaled.csv')

Let us execute the next cell to load the contents of this CSV file to a Pandas
data frame, and let us review the shape of this data frame:
Let's first load the data into a Pandas dataframe so it is

easy for us to work with it

wine_scaled_df = pd.read_csv('./wine_scaled.csv',

sep=',',header=0)

wine_scaled_df.shape

https://pandas.pydata.org/
https://numpy.org/

We should get the following output for the shape: (144030, 54)
To keep our example understandable, let us get rid of the one hot encoded
country columns; this will reduce the number of features in our dataset from
54 to 6. We will select only the first 1,000 rows of our dataset. Execute the
next cell.
now we have our data, let us get rid of the country columns

and select a thousand rows to make it more understandable

wine_alg_df = wine_scaled_df.iloc[0:1000,0:6]

wine_alg_df.head()

You should see the following output:

Figure 5.7: Scaled wine dataset with country features removed

Now, execute the next few cells to reorder the columns so that our label
feature (price) is the first column:
col_ord =

['price','points','last_year_points','designation_freq','winery

_freq','variety_transformed']

reorder to move label (we want to predict the price of the

wine) to first position

wine_alg_ord_df = wine_alg_df.reindex(columns=col_ord)

wine_alg_ord_df.head()

So far, we have completed the steps to get our dataset ready. In the following
section, we will look at the steps to follow to use SageMaker Linear Learner
algorithm (https://docs.aws.amazon.com/sagemaker/latest/dg/linear-
learner.html) to train a regression model to predict the wine price.

Using Amazon SageMaker Linear Learner
Algorithm
As discussed earlier, we will first set up the Linear Learner estimator, and
then pass hyperparameters and training data to start model training.

NOTE: We have also provided an alternative method to train your
model using Amazon SageMaker but without using the estimator. This
method uses SageMaker's Create Training Job API
(https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Cr
eateTrainingJob.html). This is available at the end of the notebook as
an optional section for reference.

First let us get the ARN of the IAM execute role we need to pass for running
our training job. Execute the first cell under the Algorithm 1 - Linear
Learner section in the notebook.
we need the IAM role from our notebook to run our training

job

role = get_execution_role()

print(role)

You should see the ARN of your IAM role printed. Now, execute the next
cell to split our dataset into training and validation datasets. We will use 90%
of our original dataset (approximately 900 rows) for training and 10% for
validation. We will use the Numpy library to generate a random list to use as
a reference to split our dataset.
split_list = np.random.rand(wine_alg_ord_df.shape[0])

t_list = split_list < 0.9

v_list = split_list >= 0.9

train_ds = wine_alg_ord_df[t_list]

val_ds = wine_alg_ord_df[v_list]

Execute the next cell to separate the train and validation datasets into a list of
labels and features for each dataset. The label is the first column from our
dataset, which is the price of wine, and the features are the remaining
columns. The model will use the features to learn and the label to calculate
the loss function, which is the difference between the model's predicted
value and the label:

train_label = train_ds.iloc[:, 0].to_numpy()

train_features = train_ds.iloc[:, 1:].to_numpy()

val_label = val_ds.iloc[:, 0].to_numpy()

val_features = val_ds.iloc[:, 1:].to_numpy()

Now in the next cell, we will create the Linear Learner estimator, specify the
training compute instance count, the instance size, what type of predictor we
want to train (linear learner supports both classification and regression
problems), the number of epochs or passes through our training dataset for
our model to learn, and the loss function we want the model to use. We are
using squared_loss, which indicates the sum of the squared difference
between the predicted and the actual values. Execute the next cell to set up
the estimator:
Get the linear learner estimator and specify hyperparameters

estimator = sagemaker.LinearLearner(

role=role,

instance_count=1,

instance_type="ml.m5.xlarge",

predictor_type="regressor",

epochs=10,

loss="squared_loss",

)

The Linear Learner estimator required data to be arranged in float32
representation of RecordSets. Execute the next cell to convert our datasets.
train_records =

estimator.record_set(train_features.astype("float32"),

train_label.astype("float32"), channel="train")

val_records =

estimator.record_set(val_features.astype("float32"),

val_label.astype("float32"), channel="validation")

We will now start the model training by running the fit method on our
estimator. We pass a mini_batch_size parameter to indicate the sample size
the model needs to use at a time for the learning process. Execute the next
cell:
estimator.fit([train_records, val_records],mini_batch_size=50,

wait=False)

This will submit a training job in SageMaker. Navigate to Amazon
SageMaker console by typing SageMaker in the services search bar in the
AWS Management Console (console.aws.amazon.com). Now, click on
Training and then on Training jobs in the left pane of the console to bring
up the list of training jobs. The job that was submitted when we executed the
fit command should appear as "linear-learner"-current timestamp. Click
on the job name, as shown in the following image:

Figure 5.8: Linear learner training job in SageMaker console

After you click on the job name, scroll down a few sections to the Monitor
section and click on View logs to review the progress and the training steps
of the model training job. That is how you use the Linear Learner algorithm
in Amazon SageMaker using the estimator method. You can review the
optional section at the bottom of the notebook to learn a different method for
training that uses the SageMaker Create Training Job API
(https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_Cre
ateTrainingJob.html). In the next section, we will see how to use a neural
network to train a model for regression.

Using a Multi-layer Perceptron or MLP neural
network
The MLP is an artificial neural network named so because it supports
building multiple layers of artificial neurons to model a deep learning
problem. In essence, almost all neural networks are MLPs. In the current

example, we will be building the simplest form of MLP; advanced forms of
MLPs are CNNs and RNNs. When you combine multiple CNNs or RNNs,
you create much more advanced models for large and complex problems like
natural language understanding or deep image recognition and more. For our
regression problem to predict the wine price based on other characteristics,
we will set up a three-layer neural network with two hidden layers and one
output layer. The first hidden layer will receive the input features with ReLU
activation (read the Introducing Algorithms and Neural Networks section in
this chapter for more details), with random normal weights initialization, and
optimized using a Stochastic Gradient Descent
(https://keras.io/api/optimizers/sgd/) objective. We will use five neurons
for the first hidden layer, three for the second hidden layer, and one for the
output layer to receive the regressed prediction for wine price. We will use
the mean squared error as the loss function, just like when we trained with
the linear learner algorithm.
We will be reusing the train and validation datasets from the linear learner
example. Let us first review the shapes of our train, validation labels and
features. Execute the first cell in this section:
print("training label shape is: " + str(train_label.shape))

print("training features shape is: " +

str(train_features.shape))

print("validation label shape is: " + str(val_label.shape))

print("validation features shape is: " +

str(val_features.shape))

We should get the following output:
training label shape is: (906,)

training features shape is: (906, 5)

validation label shape is: (94,)

validation features shape is: (94, 5)

We will now use TensorFlow (https://www.tensorflow.org/) and Keras
(https://keras.io/examples/). To ensure that we are able to execute the next
cell successfully, we should be using a TensorFlow and Python kernel
notebook in SageMaker Studio. You can verify this by checking the kernel
type in the top-right corner of your notebook. Refer to Figure 5.9:

https://keras.io/api/optimizers/sgd/
https://www.tensorflow.org/
https://keras.io/examples/

Figure 5.9: TensorFlow Kernel in SageMaker Studio notebook

If your notebook does not show a TensorFlow kernel, you can easily change
this by clicking on the kernel name and choosing TensorFlow, as shown in
the following image. For this example, it does not matter whether you select
CPU optimized or GPU optimized, since our training data volume is limited.
Refer to Figure 5.10:

Figure 5.10: Select a TensorFlow Kernel in SageMaker Studio notebook

Execute the next cell to build our network with three layers. We pass the
number of input features in the input_shape variable when we add the layer:
from tensorflow.keras import Sequential

from tensorflow.keras.layers import Dense

set up the neural network layer by layer with 5 neurons in

1st hidden layer

3 neurons in second hidden layer

output is 1 neuron

model = Sequential()

model.add(Dense(5, activation='relu',

kernel_initializer='random_normal', input_shape=

(train_features.shape[1],)))

model.add(Dense(3, activation='relu',

kernel_initializer='random_normal'))

model.add(Dense(1))

Execute the next cell to compile the neural network to create a model and
then run the fit command to start the model training. We selected 25 epochs
(number of passes through the full training dataset), and set our batch_size
to 50:
We will use the mean squared error as the calculated loss

between the label and predictions

the model will try to minimize this loss during training

we will use the stochastic gradient descent as the optimizer

method for learning

model.compile(optimizer='sgd', loss='mse')

fit the model

model.fit(train_features.astype("float32"),

train_label.astype("float32"), epochs=25, batch_size=50)

When you execute this cell, the model will start training; you should see the
loss printed for each epoch of training. You should also see the loss reducing
gradually:
Epoch 1/25

19/19 [==============================] - 0s 2ms/step - loss:

3.2979e-04

Epoch 2/25

19/19 [==============================] - 0s 2ms/step - loss:

2.1591e-04

Epoch 3/25

19/19 [==============================] - 0s 2ms/step - loss:

1.6819e-04

Epoch 4/25

19/19 [==============================] - 0s 3ms/step - loss:

1.4893e-04

Now, let us calculate the overall loss of the trained model with the validation
dataset. Execute the next cell to get the RMSE loss for our model:
import math

val_results = model.evaluate(val_features.astype("float32"),

val_label.astype("float32"))

print('Root Mean Squared Error or RMSE is: ' +

str(math.sqrt(val_results)))

We get the following result:
Root Mean Squared Error or RMSE is: 0.029675475229435623

That brings us to the end of this section. We saw how to use SageMaker to
train a regression model using the Linear Learner algorithm, along with
examples, and we looked at how to use Python to set up your own MLP
neural network to build a regression model using a SageMaker Studio
notebook. Linear learner is just one algorithm in SageMaker's collection of
built-in algorithms. SageMaker also supports bring your own algorithms and
models. For more details, refer to the documentation at
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html.

Conclusion
We covered more complex ground in this chapter and learned how the brain
of an ML model actually works (algorithm or neural networks). We also
understood how to use an algorithm to build and train a ML model. The core
building blocks of a ML solution are algorithms and the dataset, and with
this chapter, you hopefully had a solid understanding of how to get both of
them in place for your project.
In the next chapter, we will look at the big picture of how model training and
tuning work end to end. We will take a few ML examples and use sample

notebooks to walk the steps of building, training and evaluating models step
by step, with detailed instructions and fun scenarios.

Points to Remember
Here’s a summary of the key learning points for this chapter:

In this chapter, we were first introduced to the concepts of an algorithm
in the general context, the mathematical context, the computing context
and finally, its role in ML and AI.
We then learned how algorithms evolved through the years and
understood the differences between algorithms like deterministic and
probabilistic.
We then dove deeper into the architecture of popular algorithms today,
such as decision trees and neural networks.
We learned how a decision tree works and what type of use cases can it
be used for, and we discussed the fundamental concepts behind a
decision tree.
We then looked under the hood of a neural network architecture and
discussed the learning process in detail.
We then changed gears and discussed how to approach an ML problem
from the perspective of choosing between an algorithm and a neural
network.
We looked at different types of ML use cases and learned which cases
statistical algorithms are applicable, under what circumstances we can
use decision trees and when to use neural networks.
We then discussed the overall considerations in terms of the ML use
case, the topic, the domain and the data, and looked at how all this ties
back to the algorithm.
We reviewed the hyperparameters and the evaluation metric for each
type and looked at examples of algorithms and neural networks. We
also discussed why to select one over the other.
We then switched over to hands-on building by using the SageMaker
linear learner algorithm, using an estimator to train a model for a
regression use case with our wine prices dataset from Chapter 4,
Orchestrating the Data Continuum.

Finally, we built a Multi-Layer Perceptron (MLP) neural network from
the ground up using TensorFlow and Keras in the SageMaker Studio
notebook to train a regression model using the same dataset. We
evaluated this model using the RMSE evaluation metric and reviewed
the results.

Multiple Choice Questions
Use these questions to challenge your knowledge of what we covered in this
chapter.

1. What is the correct definition of information gain used to
determine portioning or branching nodes in a decision tree?

a. Weighted average of entropy of the dependent features minus the
entropy of the main feature

b. Entropy of the main feature minus the weighted average of
entropy for the dependent features

c. Difference between entropies of related features
d. Difference between entropies of randomly sampled features

2. In a neural network, back propagation of errors is used to
calculate how the weights should be updated from the output layer
all the way back through each of the hidden layers to compensate
for the estimated loss?

a. True
b. False

3. Which of the following options is the right choice for output layer
activation in a binary classification problem?

a. Sigmoid
b. ReLU
c. Linear
d. Softmax

4. AUC is a good evaluation metric for regression problems.

a. True

b. False

5. Which of these is NOT an Amazon SageMaker built-in algorithm?

a. Linear Learner
b. XGBoost
c. Object Detection
d. RoBERTa

Answers
1. b
2. a
3. a
4. b
5. d

Further Reading
Amazon SageMaker built-in algorithms:
https://docs.aws.amazon.com/sagemaker/latest/dg/algos.html
Scikit Learn ML algorithms: https://scikit-learn.org/stable/
The advent of the algorithm: https://www.amazon.com/Advent-
Algorithm-300-Year-Journey-
Computer/dp/0156013916/ref=sr_1_13?
gclid=CjwKCAiAy_CcBhBeEiwAcoMRHPkBYBDzv4zUl0emaYp8
-JXcdUlnRZpbdrl8iuGsvxn8b-K3-tj-
jRoCkB0QAvD_BwE&hvadid=256536957733&hvdev=c&hvlocphy
=9010798&hvnetw=g&hvqmt=e&hvrand=7242570720563610897&
hvtargid=kwd-
432315633310&keywords=history+of+algorithms&qid=167121637
9&s=books&sr=1-13

https://scikit-learn.org/stable/

CHAPTER 6
Iteration Makes Intelligence (Model

Training and Tuning)

Introduction
By this time in the book, you must have properly framed your machine
learning problem, know the structure and makeup of your data, have decided
what type of training you need to do and have the appropriate algorithm
ready. It is now time to see what happens when the machine learning rubber
hits the computational road. For the specific machine learning problem, we
must first define the metric used to evaluate your model, and then iterate
through a combination of model training and parameter tuning to reach or
exceed that metric. In this chapter, we will see how to build, train, tune, and
evaluate your ML model using Amazon SageMaker, Jupyter notebooks, and
Python, along with actual code examples.
We will be taking on the role of a data scientist who is extremely interested
in expanding their technological portfolio into machine learning, starting
with training and tuning models. The data scientist has more than a decade
of experience in collecting, combining, transforming, and analyzing data but
has historically handed that data off to other teams to use in various
applications. Curious about becoming the machine learning version of a full
stack developer, the data scientist begins exploring the different methods of
training and fine-tuning the various models. As a classic Sagittarius, they are
uniquely suited to this pursuit.

Structure
In this chapter we will discuss the following topics:

Introduction
Chapter Scenario
Structure

Objective
What Training Means
What Training Means for Deep Learning
GPU vs CPU
AWS Trainium
Transfer Learning
The Mise en Place of Model Training
Defining Model Training and Evaluation Metrics
Setting Up Model Hyperparameters
Script vs Container
Training Data Storage and Compute
Training Scenarios
Linear Regression
Natural Language Processing
Image Classification
Image Classification Round 2
Conclusion
Further Reading

Objectives
After reading this chapter and practicing with the associated notebooks, you
should be able to understand the fundamentals of training a machine learning
model. This includes the individual cycles of machine learning that can be
broken into three components: training and tuning the model, registering and
managing the resulting model, and deploying the model to an endpoint and
performing inference. By the end of this chapter, you should be familiar with
various methods of the first of those three: training and tuning your model.
We will explore the process using several models and use a selection of
metrics to determine overall model suitability.
To try the examples in this section, refer to the Technical Requirements
section in Chapter 1, Introducing the ML workflow to sign in to the AWS
management console, execute the steps in onboard to SageMaker studio, and

execute cloning the repository to SageMaker Studio to get started. Click on
the folder that corresponds to this chapter number. If you see multiple
notebooks, the section title corresponds to the notebook name for easy
identification. You can also passively follow the code samples using the
GitHub repository provided at the beginning of the book.

The Meaning of Training
Before we go any further, let’s pause and examine what training really
means.
Training a machine learning model means we help an algorithm determine
the good values for all the weights and the potential bias from our provided
examples. In the case of supervised learning, we allow the model to learn
from our provided examples, iterating until we have a resultant model that
minimizes our loss. Loss can be thought of as the weight penalty for a bad
decision. With a perfectly trained model, our loss would be zero (though that
is rarely, if ever, the case). Our goal, then, should be to iterate over our
model training process to achieve a loss that is close to zero.
Unsupervised learning uses the same process and methods but learns without
a predefined example set. This allows the algorithm freedom to determine
patterns, clusters, anomalies, or other information.

What Training Means for Deep Learning
As we saw in previous chapters, Deep Learning is a sub-discipline of
Machine Learning (which is, itself, a sub-discipline of Artificial Intelligence,
which is a sub-discipline of Information Technology). Deep Learning uses a
series of Artificial Neural Networks patterned after the human brain to
iteratively determine patterns in data. It does this by layering collections of
nodes, or neurons, each of which have a weight and a threshold. If the output
of any of the nodes is above the threshold value, then that node is activated,
sending data to the next layer of nodes. There are specific types of layers of
nodes: input layers, hidden layers, and output layers. Think of each of the
individual nodes as a miniature linear regression model. It has input data, a
selection of weights, a threshold (or bias) and an output.
By passing data through each of the layers in succession and adjusting the
weights based on the node output, the network learns and gets progressively

more understanding of the associations of the data being trained.
As you can probably guess, this takes a lot of iterations, which translates to a
lot of computational power. This is also why Graphical Processing Units
(GPUs) are uniquely suited for deep learning. Thanks to their large-scale
parallel processing power and on-board memory, GPUs can train Deep
Learning models faster and more efficiently.

GPU vs CPU
In the realms of processors, which one should be used? It’s not quite as
simple as raw processing power or total FLOPS (Floating Operations per
Second) that a processing can bring to bear. Like any set of tools, it depends
on the task at hand. CPUs are often a good choice precisely because they are
good at a very large range of tasks. Since so many workloads (ML and non-
ML) use them, their costs are typically lower, and they do not suffer the
same supply chain issues as other types of processors. On the other hand,
GPUs are purpose-built to manage complicated mathematical processing for
things like fluid dynamics, graphical rendering, and deep learning. The
optimal processor type also depends on your chosen algorithm. Some
algorithms (and some versions of them, always recheck!) are better suited
for GPUs or CPUs during training and another for inference.
When using AWS SageMaker, as you will see in the following examples,
you specify the compute type for training and a completely different
compute type for inference. Additionally, you can use Amazon Elastic
Inference to attach on-demand GPUs to your EC2 Instances, Deep Learning
Containers, or SageMaker Instances.

AWS Trainium
AWS has gone beyond creating services, solutions, and mechanisms to
accelerate Machine Learning practitioners in creating custom processing
chips. Trainium is the second custom Machine Learning chip created by
AWS (we will cover the first, that is, AWS Inferentia, in Chapter 8, Blue or
Green) designed to provide purpose-build hardware. While it is in preview at
the time of this book’s publishing, Trainium is designed for Deep Learning
workloads like Natural Language processing, voice recognition, image
classification and more.

In order to use AWS Trainium, sign up for the preview and use Trn1
instances for your training jobs.

Transfer Learning
Training a model from scratch takes time. In computational terms, this
means it takes more processor time or more processors. We can save some of
that time and those computational resources by using a model that has
already been trained on a generalized data set. This is especially helpful in
the realm of Natural Language Processing. We can take a model trained on a
very general data source, such as Wikipedia, allowing it to understand the
general structure of our chosen language, and then train it further on our
more-specific training set.

The Mise en Place of Model Training
Mise en Place is a French culinary term that means to put everything in its
place. It is used for a chef preparing everything they need and putting it in its
place before starting service. In terms of Machine Learning, we have set
most of our Mise in the previous chapters: carefully selecting our problem,
combining our data, slicing and dicing with feature engineering, setting the
transformations, and sharpening the data through analysis. To these, we can
add our spices: training data emitted while our model is being trained and
our chosen model parameter ranges. And just like that, service begins.

Defining Model Training and Evaluation Metrics
Since we have chosen Amazon Web Services as our Machine Learning
platform, our service family is Amazon SageMaker. It is a collection of
services intended to empower, simplify and enable Machine Learning
practitioners. As we move through the steps necessary to train our chosen
models, we will default to using the SageMaker services and methods where
appropriate. Everything we will show you can be done locally or using a
virtual workspace, but SageMaker can easily save you both time and money.
Machine Learning is an iterative process. Even when using tools that
automate part of that process, it is likely that you will complete the same
tasks multiple times in order to achieve the best outcomes. Most real-world
Machine Learning projects tend to use more than one model, which

exponentially increases the number of combinations, parameters,
hyperparameters and other aspects of training alone. To keep track of,
organize, and retain visibility into those iterations, we use SageMaker
Experiments. There are two aspects of SageMaker Experiments: trials and
experiments. Trials are collections of training steps involved in a singular
training job. An experiment is a logical grouping of trails.
As we create our training jobs, we can pass in an additional parameter
assigning the job to an experiment. Once you have then completed your
training jobs, you can load the experiment and trials data into a pandas
dataframe. This allows you to easily use plotting tools to visualize the results
of your experiments.
In order to create our first trail or training job using Amazon SageMaker, we
will need a few more things. The first is the URL of the S3 bucket where we
have stored our training data and where we want to store our trained model
(though these should not be the same prefix, they can be the same bucket if
you need them to be), the second is the container or script where our training
code is stored. We will cover more on containers and scripts for training later
in the chapter, but for now, we will use one of the algorithms provided by
SageMaker.
The last thing we will need is to decide the metric by which we will evaluate
the quality of our model. Different models and uses will need different
metrics to define the quality of the trained model. We will cover some here
and give examples in the following code blocks, but make sure you carefully
read the documentation of your chosen algorithm before starting training.

Absolute Values:

Accuracy: It is the comparison between the number of accurately
classified items and the total number of items.
RMSE: Root Means Squared Error is the distance between the
vector of predicted values and the vector of observed values
squared.

Relative Values:

AUC: Area Under the Curve aggregates performance
measurements across all possible classification thresholds.
F1 Score: It is the mean of precision and recall.

Ranking Measures:

NDCG: Normalized Discounted Cumulative Gain is the
normalized ratio of Discounted Cumulative Gain of the
recommended order to the Discounted Cumulative Gain of the
ideal order.
MAP: Mean Average position is the comparison of the ground
truth bounding box to the detected box.

Algorithmic Properties:

Log-loss: It refers to how close the predicted probability is to the
corresponding actual true classification.

Additionally, you can use multiple metrics at once by identifying a
composite metric that is the weighted sum of multiple individual metrics.
Amazon SageMaker provides many built-in algorithms that come with
various loss functions and metrics.
These are just a small sample of the methods of evaluating your chosen
algorithm. If these seem confusing, don’t panic! One of the fundamentals of
Machine Learning is the iterative nature. Be prepared to sample different
evaluation metrics to find out which one is suitable for your desired
outcome. Like a good gourmand, we will sample a few in this chapter.

Setting Up Model Hyperparameters
Hyperparameters are the knobs and levers of machine learning models. They
provide a way to finely control how your model behaves. The usual
hyperparameter suspects are as follows:

Number of Iterations or Epochs
Learning Rate
Momentum
Regularization Rate or Lambda
Mini-batch Size
Storage and Compute Resources

To get optimal performance from your machine learning model, you need to
carefully tune these hyperparameters. The goal is to find a combination that

provides the best performance for your problem. The challenge is that this
process can be quite time-consuming as it requires training your machine
learning model multiple times with different hyperparameter combinations.
Amazon SageMaker Experiments assists in not only grouping our trial
iterations but also keeping track of those experiments, allowing us to analyze
them and select the best one.
Additionally, it is important to carefully consider how you search the
hyperparameter space. A brute force approach of trying every single
combination is not recommended as it can be quite time-consuming and may
never find the true global optimum. Instead, it is better to use a technique
like Bayesian optimization, which can intelligently search the
hyperparameter space.
There are many ways to tune machine learning models, but we will focus on
using Amazon SageMaker's automatic model tuning functionality. This
functionality uses Bayesian optimization under the hood and can be used to
tune a wide variety of machine learning models.

Script vs Container
When training machine learning models, you have two main choices for how
to run your training code:

Running your training code in a script allows you to use any
programming language you want. However, this can be slow as all
code needs to be executed on the compute instances.
Alternatively, you can choose to run your code in a container. A
container is a self-contained environment that has everything needed to
run your code, including the programming language and all its
dependencies.

This can be faster as the compute instances only need to download and run
the container.
Which option you choose will likely depend on what programming language
you are most comfortable with and what is fastest for your problem. Amazon
SageMaker supports both options and provides easy-to-use wrappers for
both Python and R.

Training Data Storage and Compute
Training data is the bread and butter of machine learning models. It is the
data that you use to train your machine learning model. Once you have
trained your machine learning model, you will want to save it so that you
can use it to make predictions. Saving your machine learning model is easy
using Amazon SageMaker's built-in saveModel() functionality, identifying a
model name. You can then reload your machine learning model at any time
by calling the loadModel() function. In addition to saving your machine
learning model, you will want to save your training data so that you can
easily retrain your machine learning model if needed.
Amazon SageMaker makes saving your training data easy with the built-in
functionality of Amazon S3. You can simply upload your training data to an
Amazon S3 bucket and download it when needed. But why store it in S3
when we are just going to use it to train our model a few lines later? The
answer lies in the power and flexibility that AWS gives us: abstraction.
When we run the code for our Machine Learning projects, we will usually be
in an Integrated Development Environment of some kind. For instance,
Eclipse, IntelliJ, Visual Studio Code. For our examples, we will continue to
use Amazon SageMaker Studio, a cloud-based IDE that collects the various
ML tools that SageMaker provides in one ML engineer-focused experience.
In our IDE of choice, we have some compute, represented by the CPU of the
computer we are working on, or the compute attached to our SageMaker
Studio instance. We also have some storage, represented by the hard drive of
the computer we are working on or the storage attached to the SageMaker
Studio instance. We use both for running our ML code and storing the
libraries we need, but if we wanted to use them for training, we would have
to either allocate the necessary resources to our IDE or buy a strong enough
computer. These will work, but why pay for all that compute power if you
are only going to use it while you are actively training your model?
Instead, we can leverage the flexibility and economies of scale that Amazon
Web Services gives us and only allocate the resources we need for our IDE,
abstracting our compute resources until we need them. Our compute
resources are separate from our IDE, so we need a common storage location
that is easily integrated with each: S3. Storing our training data in S3, we
allow other teams, projects, and experiments to use the same data. We also
get to be specific about the number of resources we leverage for our training,

both vertically with larger instances (more processing and memory) and
horizontally with additional instances.

Training Scenarios
In this chapter, we will train three different models, detailing the steps along
the way. The code presented as follows is also in the GitHub repository
linked from Chapter 2, Hydrating the Data Lake. Running these notebooks
will incur charges in an AWS account, so make sure to clean up any
resources that you end up allocating.
These examples also assume that you have already gone through the steps to
understand your data and the feature engineering needed to refine the data
and get it ready for the following models. If you need a refresher, read
through Chapter 3, Predicting the Future With Features.

Linear Regression
Using our Wine Quality data set, we want to predict the quality of a white
wine from the other attributes. Since this is predicting a numeric value, we
can use the Amazon SageMaker built-in algorithm: XGBoost. XGBoost is a
very popular ensemble algorithm, which means it uses a group of estimators
from simpler models to create a faster and more accurate prediction.
That being said, let’s dive into the start of our linear regression model. In the
following examples, we are leaving out some of the starting parts where we
import libraries, declare roles, list buckets, and other items that need to make
the code work, but you can refer to the associated Jupyter Notebooks in the
book’s GitHub repository for the fully working notebook.
The first thing we do is set up our S3 client, download our dataset, read it
into a pandas data frame, set the columns and look at the general details of
our data:
s3 = boto3.client(“s3”)

!wget https://archive.ics.uci.edu/ml/machine-learning-

databases/wine-quality/winequality-white.csv

data = pd.read_csv(“./winequality-white.csv”, delimiter=”;”)

pd.set_option(‘display.max_columns’, 20)

pd.set_option(‘display.max_rows’, 50)

data.columns = [

“fixed acidity”,

“volatile acidity”,

“citric acid”,

“residual sugar”,

“Chlorides”,

“free sulfur dioxide”,

“total sulfur dioxide”,

“Density”,

“pH”,

“Sulphates”,

“Alcohol”,

“quality”

]

print(data.shape)

display(data.head())

display(data.describe())

display(data.diagnosis.value_counts())

Now that we have the data loaded into a data frame, we can split it into test,
train, and validation data sets:
train_data, validation_data, test_data =

np.split(data.sample(frac=1, random_state=5621), [int(0.7 *

len(data)), int(0.9 * len(data))])

XGBoost expects our data in CSV format without headers. For the validation
data, it will throw errors if the feature we are predicting is included, so we
drop that as well:
pd.concat([train_data[‘y_yes’], train_data.drop([‘y_no’,

‘y_yes’], axis=1)], axis=1).to_csv(‘train.csv’, index=False,

header=False)

pd.concat([validation_data[‘y_yes’],

validation_data.drop([‘y_no’, ‘y_yes’], axis=1)],

axis=1).to_csv(‘validation.csv’, index=False, header=False)

This does most of the work to set up our training and our environment, but
now we get into the model hyperparameters. Recall that hyperparameters are
configurations that are external to the model itself and the value of which
cannot be estimated from data. This is counter to parameters, which are
configurations that are internal to the model and can be estimated from data.

It is a best practice to always review the documentation carefully for the
algorithm’s hyperparameters, even for models you use frequently. Model
versions change regularly, and the ranges, defaults, and number of
hyperparameters can change.
For our chosen XGBoost algorithm, the initial hyperparameter values are as
follows, with explanations:

max_depth: It defaults to 6 and determines the depth of a given tree.
XGBoost is a Decision Tree type of model, so we want to limit the
depth (number of decisions from the tree root) that the model will
iterate through. Too shallow and our model will not have sufficient
complexity to learn; too deep and our model will iterate over minimal
improvements. The higher you set this value, the more likely it is that
your model will learn too much from your training data or become
overfit.
eta: This refers to how much shrink is applied at each step in order to
prevent overfitting. It defaults to 0.3 and should be adjusted when you
need to react to potential or actual overfitting.
gamma: The lowest loss reduction that is acceptable to make another
leaf node of the tree. It is used to determine when sufficient leaf nodes
(branches in a sense) of your decision trees have been made. It defaults
to 0, but we want our model to be a little conservative.
min_child_weight: It is the lowest possible sum of an instance weight
needed in a child node. In our case, this sets the lowest number of
instances needed in each node. The default is 1, but we are setting it
higher to again add some conservation in our model.
subsample: This is the percentage of the training data that is sampled
on the training instance. Setting it to 0.6 means that we are sampling
60% of our data. This is primarily used in preventing overfitting.
verbosity: It controls the logging behavior of the model. We can set it
to 0 for silent, 1 for warning messages, 2 for info messages, and 3 for
debug messages, in that order for volume of messages. We will
typically set this higher when we start our experiments to get the most
logging and then lower it as our model performs as expected.
objective: This is one of the more important hyperparameters. It
specifies the earning task and the associated learning objective,

defining how we determine the training quality of our model. There are
nearly 20 different objectives for XGBoost alone, and we are using
re:squarederror for a linear regression using RMSE.
num_round: This is the total number of rounds to run the training, a
required parameter. We can limit this to check everything, but we will
want to adjust it to get to the optimum evaluation metric value.

We can now set our hyperparameters for our model as follows.
Hyperparameters = {

“max_depth”:”4”,

“eta”:”0.3”,

“gamma”:”3”,

“min_child_weight”:”7”,

“subsample”:”0.6”,

“verbosity”:”1”,

“objective”:”reg:squarederror”,

“Num_round”:”50”}

The next thing we can do is set the container we are going to use for our
training environment. We could use our own script, but since XGBoost is a
built-in SageMaker model, not only can we use the environment provided
but can also use the managed container provided for this use. We don’t need
to know what container registry holds the model, just the region we are
working in (region_name), the framework for the container we want to use
(framework) and the version of the container we want (version). Versions are
updated regularly, so we are going to use “latest” here, but always check
which versions are available and, if your training suddenly stops working or
changes behaviors and you are using “latest”, check what version that is and
if anything has changed.
Container =

sagemaker.image_uris.retrieve(region=boto3.Session().region_nam

e, framework=’xgboost’, version=’latest’)

Next, recall that we are not going to train our model on our local compute;
we are going to use an instance we spin up just for this purpose. We need to
tell that instance where to get our training, testing, and validation data:
s3_input_train =

sagemaker.inputs.TrainingInput(s3_data=’s3://{}/{}/train’.forma

t(bucket, prefix), content_type=’csv’)

s3_input_validation =

sagemaker.inputs.TrainingInput(s3_data=’s3://{}/{}/validation/’

.format(bucket, prefix), content_type=’csv’)

Next, we will create our Estimator, set our hyperparameters, and call the fit
function to start our training, providing our validation data set:
session = sagemaker.Session()

xbg_estimator = sagemaker.estimator.Estimator(container, role,

instance_count=1, instance_type=’ml.m5.xlarge’,

output_path=’s3://{}/{}/output’.format(bucket, prefix),

sagemaker_session=session)

xbg_estimator.set_hyperparameters(hyperparameters)

xgb_estimator.fit({‘train’: s3_input_train, ‘validation’:

s3_input_validation})

This command will train our model and store it in the output_path of our
estimator. Remember, the result of our training job will also be stored in
SageMaker, under the Training Jobs. This is vital to referring to the results
of your experiments, especially the ones you do just before the weekend.
Once our model is trained, the instance we created for that purpose will be
shut down, minimizing the charges we incur for it. We can observe the
evaluation metric we chose and see if we want to keep it or adjust our
hyperparameters and run the training again. This process of observing results
and adjusting either our hyperparameters or input data until we get close to
the results we want is very typical and expected. But what if we could
shorten that iteration using the power of AWS? Of course, we can!
The previous command will list the output of our training model and report
the total training time and the billing time that the training took. In order to
see the overall inference performance of our model, we will need to deploy it
and send data that the model has never seen before against it, which we will
do in Chapter 8, Model Deployment Strategies. At the moment, we continue
to focus on the training phase. We have a model, but how do we know if the
hyperparameters are what they should be? As mentioned earlier, we can
train, adjust, train, adjust, train, and continue this process until we get the
best possible results.
Alternatively, we can tell AWS to do all that for us. Let’s continue in the
notebook to find out how we can automate the model hyperparameter tuning.

The first thing we do is declare the hyperparameters we want to tune, their
parameter types, and their ranges:
from sagemaker.tuner import IntegerParameter,

CategoricalParameter, ContinuousParameter, HyperparameterTuner

hyperparameter_ranges = {‘alpha’: ContinuousParameter(0, 2),

‘min_child_weight’: ContinuousParameter(1, 10), ‘subsample’:

ContinuousParameter(0.5, 1), ‘eta’: ContinuousParameter(0, 1),

‘num_round’: IntegerParameter(1, 4000)

}

The hyperparameters that you can tune, their types, and their ranges are
typically found in the respective algorithm documentation, but we chose
these because they have the highest impact on our model. The following
code identifies the evaluation metric and the metric type:
objective_metric_name = ‘validation:rmse’

objective_type = ‘Minimize’

We’re choosing the Root Mean Squared Error because we want to minimize
the distance between the predicted values and the actual values. We want the
hyperparameters to result in an aggregated (means) prediction as close to our
actual values as possible. We also identify that this metric is meant to
minimize the difference:
xgb_hp_tuner = HyperparameterTuner(xgb_estimator,

objective_metric_name = objective_metric_name, objective_type =

objective_type, hyperparameter_ranges = hyperparameter_ranges,

max_jobs=5, max_parallel_jobs=5)

xgb_hp_tuner.fit({‘train’: s3_input_train, ‘validation':

s3_input_validation})

Here, we create the tuning job object, feeding in our variables, but we also
set the number of tuning jobs we want to run at once and the maximum total
number of jobs. This very clearly shows the awesome power that AWS can
leverage for Machine Learning projects. We can run five different variations
of our hyperparameters all at once. We could, of course, run them in sets of
2, 3, or 6, and set our total jobs to 10, 20, or even 30 jobs, but recall that in
this chapter, we are an experienced data scientist and, more importantly, a
Sagittarian. We have a history of getting things done right now.
The last part of the code shows how to automatically select the best set of
parameters among those tuned:

xgb_hp_tuner.best_training_job()

We simply call the SageMaker SDK asking for the best_training_job()
and put the results in a variable for use later. We could use that result to
deploy our model to run inference if we wanted with a single line of code as
shown below, but we will cover deployment in detail in Chapter 8, Blue or
Green:
xgb_endpoint= xgb_hp_tuner.deploy(initial_instance_count=1,

instance_type="ml.m5.xlarge")

First task well in hand, the data scientist takes a break to check in on their
assigned ticket backlog.

Natural Language Processing
Natural Language Processing is during something of a renaissance. Not too
long ago, Natural Language Processing (or NLP) tasks were very
challenging, time-consuming, and error prone. This mostly was due to the
nature of language. Even if we break down a sentence into numerical values
and graph the relationships of all the letters or words, those values can
change wildly. Consider the word set. According to the Second Edition of
the Oxford English Dictionary, set has 430 different meanings. Even more
challenging is that the order of the words in a sentence can change their
meaning and ability to be understood.
Rather than trying to understand language in a way a machine could
understand it, researchers tried to do the opposite: define language the way
humans understand it. This was the inception of self-attention, which is the
process of differentially weighing each part of your training data. Self-
attention has been formalized in Transformers as a type of learning model
that uses it to process Natural Language Processing and other tasks.
Some of the unusual characteristics of Transformers is that they do not read
a sentence from beginning to end but can provide context of any word in the
sentence, allowing each word to have its weight and context reviewed at the
same time.
This new type of model was a massive leap forward for Natural Language
Processing tasks, but it was Hugging Face that provided a community hub to
organize not only models but also data sets, documentation and

implementations. Hugging Face democratized Natural Language Processing,
making the use of Transformers as streamlined as single lines of code.
Upon checking their ticket backlog, our data scientist is surprised to see that
at least a dozen have been assigned in the last day. They could sort by
assignment date, priority, or the requester, but what if there was a way to
analyze the contents of the tickets and get the sentiment, using it to
determine actual severity? There is!
As with the linear regression model, we are skipping the steps of setting up
libraries, modules, buckets, and so on, in the sake of saving page space, but
you can find the full notebook in the GitHub repo associated with this book.
We start by setting a few variables that we will reference later, the most
important one being the name of the Hugging Face tokenizer we will be
using:
dataset_name = 'emotion'

num_labels=6

tokenizer_name='bert-base-uncased'

Bert is a model that has been pre-trained on a large amount (or corpus) of
English data. We can use that pre-training to save ourselves a lot of training
on the basics, and then use transfer learning to further train it on our chosen
data set. The model is also uncased because it does not differentiate between
cases. This also works for our usage since we can’t be sure if someone
writes urgent or URGENT, but we should generally treat them the same.
Lastly, we are using the Hugging Face emotion data set. This data set is
composed of Twitter messages (the text) and the associated basic emotions
of those messages (the label). Since we want to identify the emotion of our
ticket backlog, this data set should suit our needs.
dataset = load_dataset(dataset_name)

tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)

def tokenize(batch):

return tokenizer(batch['text'], padding=True, truncation=True)

dataset_encoded = dataset.map(tokenize, batched=True,

batch_size=None)

Next, we use the load_dataset from the datasets library to load the dataset.
Then we need to break our text into smaller components and prepare it for
our model training. This is called tokenizing, and we are using a pre-trained
method that is included in the Hugging Face library:

model =

(AutoModelForSequenceClassification.from_pretrained(tokenizer_n

ame, num_labels=num_labels))

dataset_encoded.set_format("torch", columns=["input_ids",

"attention_mask", "label"])

Dataset_encoded["train"].features

Here, we create the model object including the tokenizer object, setting the
format for PyTorch, and set the training data set from its features:
hyperparameters = {

'model_name_or_path':tokenizer_name,

'task_name': 'mnli',

'output_dir':'/opt/ml/model',

}

These are the hyperparameters for this model, specifically, the name of the
Hugging Face tokenizer we defined earlier, the task name, and the output
directory of the model. We are using a Multi-Genre Natural Language
Inference as a training task since it is associated with our chosen emotion
data set. We also use the specific output directory since that is where the
model will be exported from once our training instance has finished and
before it is terminated:
git_config = {'repo':

'https://github.com/huggingface/transformers.git','branch':

'v4.17.0'}

huggingface_estimator = HuggingFace(

entry_point='run_glue.py',

source_dir='./examples/pytorch/text-classification',

instance_type='ml.p3.2xlarge',

instance_count=1,

role=role,

git_config=git_config,

transformers_version='4.17.0',

pytorch_version='1.10.2',

py_version='py38',

hyperparameters = hyperparameters,

train_dataset=dataset_encoded["train"],

eval_dataset=dataset_encoded["validation"]

)

Here we do something interesting. Instead of identifying a local training
script or a pre-generated container, we specify a managed script in a remote
Git repo. Hugging Face will download the script that we specify in the repo’s
branch and location before beginning training. This is especially useful when
using frameworks like Hugging Face. We also want to use a single P3 2x
instance to train our model; P3 instances are perfectly suited for Deep
Learning and Natural Language Processing that require GPU. Additionally,
we set the versions of our libraries, add in our hyperparameters, and specify
the train and the validation data sets:
huggingface_estimator.fit()

With this final line, we start our training job. Once it finishes, we can deploy
the model and test it before iterating over our tickets to find their primary
emotions.

Image Classification
Having managed at least the priority and disposition of their task list, our
friendly data scientist can take a moment to review the assigned ticket that
was identified as not only emotionally charged but with an alarming subject:
“Image Classification Demo Tomorrow!”
Opening the ticket and reviewing further, one of the company's Vice
Presidents had lunch with their executive friends and heard things about “all
of this Machine Learning stuff”; they wanted a demonstration of how it
could be used to identify objects in images.
Thinking quickly, the data scientist remembers something their AWS
solutions architect mentioned in their last office hours. Logging in to their
Amazon SageMaker Studio instance, they click on the JumpStart icon on the
left panel launcher, and then on the Browse JumpStart button. The
following image shows the SageMaker Studio Jumpstart initial options and
icon:

Figure 6.1: SageMaker Jumpstart

There are several solutions listed on the page, but our data scientist sees one
that, being a movie fan, catches their eye: Inception V3. A quick internet
search confirms that this is a model used for image classification on the
ImageNet data set, which will work perfectly in this case. This model is
hosted on the TensorFlow Hub, and clicking on InceptionV3 and reviewing
the model’s landing page gives two options: deploy the model and fine-tune
the model. The following image gives an example of using SageMaker
Jumpstart in SageMaker Studio to train and deploy an image classification
model:

Figure 6.2: SageMaker Jumpstart options

We will cover more details on this model later in this chapter, but the dataset
the model was trained on, and instructions on how to use the model for
inference. The option to fine-tune the model is tempting, but the demo looms
close, so our data scientist chooses the option to Deploy the Model. Amazon
SageMaker Jumpstart will show an update page while the model is
deploying, with information about the deployment, which should take a few
minutes.
Once the model is deployed, there will be options to delete the endpoint or
open a Jupyter Notebook to repeat the steps. The following image shows the
options for the image classification model deployment:

Figure 6.3: SageMaker Jumpstart Model Deploy Options

Our data scientist finishes the training of the image classification model,
deploys it to an endpoint and tests it out against a few images. Satisfied that
they are ready for their demo, they begin to ponder what something similar
looks like without SageMaker Jumpstart. They absolutely could just change
some of the values in the provided Notebook, but there is significant appeal
in seeing a similar problem solved another way.

Image Classification Round 2

Our data scientist, having enjoyed working on the ticket summarization
solution, wonders if it would be possible to use a Machine Learning model
to classify images. You see, they have a local club they belong to, and other
members are posting images to a central shared repository. These images are
supposed to be of various kinds of aircraft. The problem is that a good
number of the uploaded images are of random other things. If you can train a
model to predict numbers and text, can you train one to look at an image and
determine what it is?
Yep, you sure can. To accomplish this, we will be using an image
classification model. Relevant parts of the code are reviewed as follows, but
like in the other examples, you can check the notebook in the book’s GitHub
repo for the full code:
training_image = sagemaker.image_uris.retrieve(

region=sess.boto_region_name, framework="image-classification"

)

print(f'Container: {training_image}')

Like before, we create a training_image object containing the Amazon
SageMaker managed image-classification container location.
We will also use the CalTech 101 data set to train our model. This data set
included 101 classes of images and some background noise. In the interests
of time, we will only train on a few of these classifications, but there is no
stopping you from taking the time to train with them all:
s3 = boto3.client("s3")

s3.download_file(

"sagemaker-sample-files",

"datasets/image/caltech-101/101_ObjectCategories.tar.gz",

"ObjectCategories.tar.gz",

)

We also use the openly available im2rec.py script to convert the images
from their default format to the RecordIO format. RecordIO is used in this
case to encode the image data and the associated metadata into stream
format, which is more optimized for disk operations. If we left the images in
their native format, getting those images to the training instances might be
slower than the GPUs can process the training batches. Using GPUs can be
expensive, so taking effort to optimize how long they are needed is worth
your time, especially when you are using distributed training methods:

!python im2rec.py --list --recursive caltech-101-train

caltech_101_train/ | sort

We do this with the images and the image categories. We could divine this
from the folder names themselves, but we can also keep a separate list just in
case the folder names have characters that we do not want in predictions like
underscores or numbers.
Here, we create the estimator object for image classification:
s3_output_location = "s3://{}/{}/output".format(bucket, prefix)

ic_estimator = sagemaker.estimator.Estimator(

training_image,

role,

instance_count=1,

instance_type="ml.p3.2xlarge",

volume_size=50,

max_run=360000,

input_mode="File",

output_path=s3_output_location,

sagemaker_session=sess

)

We feed in the training image and the SageMaker IAM role we created
previously. We also identify the number of training images and the instance
type. In this case, P3 instances are appropriate because we need to leverage
GPUs to train our image classification model. AWS’ P3 instances have
NVIDIA V100 Tensor Core GPUs, which means our training will be faster
and more efficient. We also set an appropriate EBS volume size (50 Gb), so
our entire image library can be loaded into the image. We also set a max
timeout for training in seconds, an input mode, where we want the model to
be saved after training, and the SageMaker session.
Now we can set the model’s hyperparameters:
ic_estimator.set_hyperparameters(

num_layers=18,

use_pretrained_model=1,

image_shape="3,224,224",

mini_batch_size=128,

epochs=2,

learning_rate=0.01,

top_k=2,

resize=256,

precision_dtype="float32",

)

We first set the number of layers for the neural network. We set a low
number for the layers to speed up training, but this hyperparameter can have
a significant impact on your training time, so take a bit to adjust and see
what the results on your accuracy metric will be. We also set the value of
use_pretrained_model to 1 to set the first layer of our neural network
model to be pre-trained. The other layers will have randomized initial
weights, but the first one will be pre-set. The next hyperparameter is
image_shape; it is a combination of the number of layers, and the height and
width of the images. The number of channels is standardized at three, but the
image dimensions details are static across all of your input images, so it is
important to pre-process your images.
If your input image is smaller than the listed dimensions, the training will
fail. If it is larger, your image will be cropped down to the listed dimensions.
For the mini_batch_size, this is the number of training samples each GPU
will handle. Next, we set number of epochs or the number of passes through
the neural network with all training data. This is another hyperparameter
where adjusting can have a significant impact, so be prepared to tune here.
Next, we set learning_rate, which is the degree with which individual
node weights are updated during training. This can typically be set between
0.0 and 1.0, and the value controls how quickly the model adapts to the
presented problem. A lower value may require more epochs before learning
to understand the training data. You may be tempted to set a very high
learning rate, but the higher the rate, the larger the risk of your model
converging too quickly. Similarly, too low a rate can mean your model never
actually learns to understand your data. We have identified a few other
hyperparameters that are useful for adjusting in your training experiments,
but learning_rate may be the one that can have the greatest impact on your
model’s training time and eventual accuracy.
The next hyperparameter reports the top_k accuracy during training. During
training, the model will make a number of guesses with regard to the
classification of the current image. The value set for top_k reports that the
classification is true if it is in the top k guesses.

We also set the resize hyperparameter to the pixels on the shortest side of our
input images. This should also be set to a value larger than the height and
width of the image_shape values.
The last is the precision_dtype, which is the precision of the weights used
for training. For this algorithm, you can use either float16 for half precision
or float32 for full. Float16 can be useful when lower memory footprint is
needed.
Lastly, we upload our training and validation data, and then call fit to start
the training job:
ic_estimator.fit(inputs=data_types, logs=True)

Once the training job finishes, we can deploy it and download some images
from a search service to use as test data.

Conclusion
Machine Learning workflows can typically be broken into three parts: Model
Training, Model Registration, and Model Delivery. Each one can be operated
independently. This chapter focused on the first phase: Model Training.
There is a key purpose in breaking these parts of the workflow apart, mostly
because they should be iterated separately. It is common for the training
phase to continue even after your model is moved into a live production
environment. You could fill a whole bookcase to cover all the various
training methods of all the algorithms of all the various tasks currently in
existence. Instead, we took a small sample of different methods for training
models to whet your appetite. From here, the experimentations continue with
different training methods.
In this chapter, we took on the persona of a data scientist who wanted to
expand their knowledge of Machine Learning. In pursuit of this goal, they
used their existing knowledge to prepare data for machine learning models,
and then used some of the tools offered by AWS and SageMaker to train,
tune, and evaluate their models. They looked at what hyperparameters can
do and some methods of tuning them to achieve the desired goals for
machine learning. Finally, they took their trained models and deployed them
to run test inference against them.
In the next chapter, we will leave our data scientist behind, safe in the
knowledge that they have taken significant steps towards their goal.

In Chapter 7, Let George Take Over, we will take a look at different methods
of automating the feature engineering, model training, and model testing
phases of a Machine Learning project. Most importantly, we will examine
when it is tactically advantageous to use automated methods and when it is
better to proceed through the iterations yourself.

Points to Remember
As you progress in your Machine Learning journey, remember that building
a complete solution is an iterative one.
In the first section, Model Training, examine the problem you are trying to
solve and review the available models, evaluation metrics, and
hyperparameter ranges associated with the model. Be prepared to experiment
with different combinations to achieve the results you need.
Once you have a candidate model that meets your evaluation criteria, store
the model in a location that allows you to record the associated
experimentation details, such as evaluation metric, link to training data, and
metadata.
Finally, once you are ready to deploy your model, consider the compute and
storage requirements to determine the convergence between resources,
speed, and cost optimization.

Multiple choice questions
1. Which of these is not a type of model you can train on AWS

SageMaker?

a. Reinforcement
b. Semi-supervised
c. Unsupervised
d. Supervised

2. Which of these is not a model deployment option on AWS
SageMaker?

a. Real-time
b. Batch

c. Asynchronous
d. Remote

3. Which of the following is the AWS SageMaker’s built-in method
for saving your model?

a. retainModel()
b. keepModel()
c. storeModel()
d. saveModel()

4. The AWS Linear Learner algorithm is best used for which kind of
problems?

a. Regression
b. Repression
c. Random
d. Representation

5. What kind of Natural Language Processing architectures use self-
attention?

a. Autobots
b. Unicorns
c. Transformers
d. Deep Learning

Answers
1. b
2. d
3. a
4. a
5. c

Further Reading

Kaggle is a gamified Machine Learning Platform:
https://www.kaggle.com/alexisbcook/getting-started-with-kaggle
Hugging Face: Quick Tour:
https://huggingface.co/docs/transformers/quicktour
Amazon SageMaker Training Documentation:
https://docs.aws.amazon.com/sagemaker/latest/dg/train-
model.html
Ready to jump into a project? https://github.com/topics/machine-
learning-projects

https://www.kaggle.com/alexisbcook/getting-started-with-kaggle
https://huggingface.co/docs/transformers/quicktour
https://github.com/topics/machine-learning-projects

CHAPTER 7
Let George Take Over (AutoML in

Action)

Introduction
In Chapter 5, Casting a Deeper Net, we briefly discussed how an airline pilot
lines up the plane for landing in a "final approach", a straight-line route to the
runway with the pilot reducing speed and altitude until the plane's wheels are
down. We used this metaphor to talk about ML projects making a final
commitment to spend time and money to run model training experiments.
Depending on your business requirements, the skillset of your teams, and the
amount of time and money you have to complete your project, you may choose to
either perform feature engineering, algorithm selection, model training and tuning
on your own, or as we will see in this chapter, you may select a technique called
AutoML. As the name indicates, AutoML stands for automated machine learning,
which is a bit of an oxymoron according to the author because it represents the
deterministic execution of a set of tasks to achieve probabilistic outcomes. In
short, imagine a program that has the ML workflow steps as its functions, and
these are executed without manual intervention from data processing to model
training to deployment. What does this mean for our ML development project?
To understand how AutoML revolutionized traditional ML projects, let us go back
to our airplane example. Though no one really knows why, in the aviation
industry, the autopilot is affectionately referred to as "George". When you get on a
plane, the pilots are flying the plane manually only during take-off and sometimes
during landing. As soon as the plane reaches an altitude of 10K feet, they will
most likely switch on the autopilot or "let George take over" the plane. So,
whenever you fly, know that a highly trained intelligent ML model is the one
that's actually flying the plane, not the pilots. What does autopilot control? Do
pilots actually do anything while "George" is in control? When the plane is in the
cruising stage of the journey, the controls that matter are heading (the
angle/degree/direction the plane is moving in/toward), speed, and the altitude. The
autopilot knows the destination and the plane's position, measures the value for
these controls (heading, altitude, speed) continuously, and frequently updates
them based on the prevailing conditions. The pilots meanwhile listen to the air

traffic control inputs from stations in the path of their journey and provide
updated instructions to the autopilot if needed. Autopilots today are highly
advanced AI systems and can fully land a plane. Current AutoML technologies
are equally advanced with regard to what they can do with your ML workflows.
In the previous chapters, we dove deep into the data collection and model training
stages of the ML workflow, learned about data lake storage in AWS, learned the
importance of feature engineering tasks, built our own feature extraction solutions
for common ML domains, and automated data orchestration pipelines for our ML
workloads. We also learned about algorithms and neural networks and saw how to
set up model training in Amazon SageMaker with a working example. In Chapter
5, Casting a Deeper Net, we also discussed that the steps in the ML workflow will
differ if we run model training ourselves as compared to using AutoML. In this
chapter, we will learn what those differences are and discuss the common
AutoML solution frameworks like Amazon SageMaker AutoPilot
(https://aws.amazon.com/sagemaker/autopilot/) and AutoGluon
(https://auto.gluon.ai/stable/index.html). Further on, we will build our own end-
to-end AutoML solution for a tabular regression use case.

Structure
In this chapter, we will dive deep into the following topics:

Running AutoML with Amazon SageMaker Canvas
Using AutoGluon for AutoML

Objectives
In this chapter, we will learn how to use two popular AutoML services with
working examples. First, we will read how to use Amazon SageMaker Canvas
(https://aws.amazon.com/sagemaker/canvas/) and SageMaker Autopilot to
leverage the power of AutoML for a point and click low code/no code approach
for running end-to-end ML workflows.
Then, we will explore another popular AutoML framework called AutoGluon,
and we will use a SageMaker notebook to try, with hands-on instructions, how to
automate your ML projects using AutoGluon. As we learn these concepts, we will
also briefly talk about how AutoML is prevalent in other areas of the AWS
AI/ML stack.

Running AutoML with SageMaker Canvas

https://auto.gluon.ai/stable/index.html

Automation is a key motivator for all our inventions. We are constantly looking
for ways to reduce manual effort, complete our tasks quicker, cut costs, and
improve efficiencies. For example, think of the washing machine. What used to
take hours of effort (washing clothes by hand) and significant manual exertion is
now done with no effort in less than half the time, improving our quality of life.
It’s the same thing with technology. You may have built the greatest product, but
if it is complex and requires a lot of manual effort to maintain, it may not see
much success. We live in a fast-paced world that requires us to finish our projects
not only with successful outcomes but also quickly. Traditional ML was the
playground of scientists and researchers who had the luxury of time and funding
to be deliberate in training, tuning, and validating models, but this changed after
cloud computing. AI/ML is now mainstream, and automation is the need of the
hour. The philosophy for automating ML workflows is quite simple. Just identify
the tasks that require undifferentiated heavy lifting (data processing,
transformation, feature engineering, allocation of compute), that are repetitive
(iterative model training and tuning), that can be inferred (if a continuous nominal
feature is to be predicted, it is a regression problem). Then, bundle them up
together and provide means for execution without the need for manual
intervention. SageMaker Autopilot
(https://aws.amazon.com/sagemaker/autopilot/) does exactly that. It is a fully
managed feature in SageMaker with automated low-code ML workflow
executions for tabular and time series forecasting problems. Refer to the
following image to understand the key capabilities of the ML workflow that is
automated in SageMaker Autopilot and is completely transparent to the user:

Figure 7.1: ML workflow steps automated by SageMaker Autopilot

Amazon SageMaker Canvas (https://aws.amazon.com/sagemaker/canvas/) uses
Autopilot under the hood. SageMaker Canvas is a fully managed no-code ML
solution with an interactive UI for building and running powerful ML models that
you can use for various tasks. You can complete your entire ML workflow with
just point-and-click interactions in Canvas. The instructions in this section will
walk you through how to use Canvas with our wine features dataset to predict the
price for a bottle of wine by directly working with the raw dataset.

Before we get started with using Canvas, we need to get our raw dataset and load
it into an Amazon S3 bucket. In case you haven't signed up for an AWS account
yet, now is the time to do so. Follow the instructions in the Setting up your AWS
account section in Chapter 2, Hydrating Your Data Lake, to sign up for an AWS
account. Once you have signed up, log in to your AWS account using the
instructions here:
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html. If you have
not already done so, create an Amazon S3 bucket
(https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-
overview.html). Now, go to the book’s GitHub link, provided at the beginning of
the book, and download the file - Chapter-07/wine_canvas_ds.csv. You can do
this by going to the link, and in the top middle part of the page, clicking on View
raw; then, right-click and save as, and when the file name appears, add the
extension .csv to store the file in your local computer. Now, go to the Amazon S3
console in AWS (simply type S3 in the services search bar and select S3), create a
folder called chapter7, and upload this file. Now we are ready to import our
dataset and build our ML model. Execute the following instructions to proceed:

1. In the AWS Management Console, type SageMaker in the services search
bar and select SageMaker to navigate to its console. In the SageMaker
console, select Canvas under Getting started from the left menu pane, as
shown in Figure 7.2:

Figure 7.2: Amazon SageMaker Console

2. Click on the Create a SageMaker domain button, as shown in Figure 7.3,
if this is your first time in the SageMaker console and you don’t have a
domain created yet:

Figure 7.3: Create a SageMaker domain

3. If this is not your first time in SageMaker, you would be prompted with a
list box to select a user profile. You can pick a user profile and click on Open
Canvas to get started. You can skip the next few steps in this case and start
from Step 9 in these instructions. Refer to Figure 7.3a:

Figure 7.3a: Open Canvas directly

4. If this is your first time in SageMaker console, go ahead with the page Setup
SageMaker Domain. Leave the default Quick setup option selected. Refer to
Figure 7.4:

Figure 7.4: Setup SageMaker Domain

5. Provide a Name for the User profile, select Create a new role in the
Default execution role, and click on Submit for SageMaker to create an
IAM role for your user, as shown in Figure 7.5:

Figure 7.5: Create SageMaker user

6. You will be prompted to choose a VPC and a Subnet. Choose the default
VPC from the list, choose a subnet from the list, and proceed to create the
domain and the user.

7. Click on the Domains link in the left pane and refresh your browser to bring
up the domain you just created. This will appear in the Domains page. Refer
to Figure 7.5a:

Figure 7.5a: Domains list in SageMaker

8. Click on your domain to bring up the new user you created. Click on the
Launch app list box on the right of your user and select Canvas, as shown in

Figure 7.6:

Figure 7.6: Select Canvas

9. The SageMaker Canvas UI is launched. Click on Datasets in the left pane
and then click on the Import button on the right, as shown in Figure 7.7:

Figure 7.7: Importing datasets in Canvas

10. Type the name of the S3 bucket you created before launching SageMaker
Canvas and navigate to the folder where you uploaded the raw dataset from
this chapter's GitHub repository; then, click on Import data. Refer to Figure
7.8:

Figure 7.8: Select dataset from Amazon S3 bucket

11. Once the dataset is successfully imported into Canvas, you will see the
import metrics. Refer to Figure 7.9:

Figure 7.9: Dataset import metrics in Canvas

12. Now, select your dataset by clicking on the checkbox next to your dataset
name and then on the Create a model button that appears in the top-right
corner of the screen. Refer to Figure 7.10:

Figure 7.10: Create a ML model in Canvas

You will be prompted to enter a Model name; type a name for your model.
13. This will directly take you to the Build pane in the Model creation process

in Canvas because you have already selected your dataset. Select the Target

column from your dataset that you want the model to predict. For our
example, this is the price column that indicates the price of a bottle of wine.
Refer to Figure 7.11:

Figure 7.11: Select target column or feature

14. Then, select the Model type but choosing the Numeric model type which
indicates this is a regression problem and click on Select model type.
Refer to Figure 7.12:

Figure 7.12: Select model type in Canvas

15. Then, click on the down arrow in the blue build button on the right of the
Model type section, and ensure that you select Quick build. For your use
case, you can also select Standard build, which will run for a couple of
hours, but you will get the lowest error or the highest accuracy for our
model. For this example, we will select Quick build to demonstrate the
solution. Now, click on the Quick build button to start the model building
process. Refer to Figure 7.13:

Figure 7.13: Quick build a model in Canvas

16. You will be prompted to validate your data. Click on Start quick build.
17. The build process looks simple but does most of the AutoML heavy lifting

behind the scenes. This will run a SageMaker Autopilot job, which performs
data pre-processing, feature engineering, algorithm selection,
hyperparameters selection, training several candidate models, evaluating
results, and selecting a winning model that will be used for predictions. In
the Canvas console, we will now see the results coming up in the Analyze
pane. When the build completes, we will see a root mean squared error or
RMSE (a popular evaluation metric for regression problems) displayed. For
our quick build example, the RMSE is 23.75, which is pretty good
considering that the whole build process took only a couple of minutes. You
must select the standard build type to run for production scenarios. Refer to
Figure 7.14:

Figure 7.14: Evaluate model performance in Canvas

18. Click on the Predict button, and you can type values for the input features
for the model to predict a wine price for us. This is a Single prediction. We
can also do a Batch prediction, which requires us to select an imported test
dataset in Canvas containing the input features for which the model predicts
prices. Refer to Figure 7.15:

Figure 7.15: Run real-time prediction in Canvas

With that, we conclude our section on how SageMaker Canvas makes it super
easy to build ML models and run predictions for your use case. As we discussed
earlier, Canvas is no code ML and is fully powered by AutoML. You saw that
with Canvas, we directly worked with an UI to get going, and it was a fully

abstracted experience usable by many, like business analysts, executives, business
intelligence teams, and so on. A thing to note is that you do not have API access
to Canvas outputs or models, so you cannot run predictions on Canvas models
from your application, for example. If you would like to use SageMaker AutoML
with the ability to programmatically access your models, you can use SageMaker
Autopilot, which not only automates the end-to-end ML workflow but also
provides you access to Jupyter notebooks it used for data processing and model
training so that you can understand the steps that Autopilot performed. The
winning model selected by Autopilot can be deployed to a SageMaker inference
instance, and you can access it from your application. Here’s an example
notebook that walks you through Autopilot: https://sagemaker-
examples.readthedocs.io/en/latest/autopilot/sagemaker_autopilot_direct_mar
keting.html.

Automated Hyperparameter Tuning
While we are on the topic of AutoML, let us not leave out an automated technique
that is used to identify optimal hyperparameters for our model training:
hyperparameter optimization (HPO) or automated model tuning. Though not
strictly AutoML (which includes all aspects of the ML workflow, including data
processing and feature engineering), HPO plays a crucial role and greatly
simplifies manual model training efforts. HPO trains several candidate models for
a specific problem type (classification or regression, for example) and an
algorithm family (XGBoost for example) by applying a range of values for each
hyperparameter to determine the most optimal values based on the best evaluation
metric that can be reached by that candidate model. HPO uses a regression
technique like Bayesian Search or seeds discrete values from a random range of
values called Random Search. For an example of how to run an automated model
tuning or hyperparameter optimization job in SageMaker, refer to
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning-
ex.html.
In the next section, we will learn how to train and evaluate a model using
AutoGluon AutoML with the help of hands-on experiments. With AutoGluon, we
will be executing code in a notebook, so while we don't have the same flexibility
as with Canvas, we will have room to work with certain aspects of data
preparation and training code. We will also be able to deploy these models to
SageMaker inference endpoints, similar to Autopilot, and use the models in our
applications.

https://sagemaker-examples.readthedocs.io/en/latest/autopilot/sagemaker_autopilot_direct_marketing.html

Using AutoGluon for AutoML
We will now walk you through AutoGluon, which is a free abstracted AutoML
technique published by AWS. When compared to Autopilot (tabular and
timeseries), AutoGluon provides multiple modalities (image, text, tabular and
time series) and access to the HuggingFace
(https://github.com/huggingface/transformers) and openai
(https://github.com/openai/CLIP) model zoos. Hence, it can be used for various
ML problems. Further, you can easily create AutoGluon training and inference
containers for SageMaker and build powerful ML solutions with SageMaker as
your enterprise platform. Recently, AutoGluon Tabular was added as a built-in
algorithm in SageMaker
(https://docs.aws.amazon.com/sagemaker/latest/dg/autogluon-tabular.html),
making model training even easier. Now, let us get started with trying out
AutoGluon for text and tabular data types with our wine dataset. To keep it
simple, we will use the same dataset we used with SageMaker Canvas.
To execute this example, we will use SageMaker Studio notebooks, and so, if not
already done, you will have to onboard to SageMaker Studio and git clone our
book repository. Follow the instructions in the Setting up your AWS account
Section in Chapter 2, Hydrating Your Data Lake, to sign up for an AWS account.
Once you have signed up, log in to your AWS account using the instructions here:
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html. You need
to create an Amazon S3 bucket
(https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-
overview.html) if you have not already done so in the previous chapters; then,
note down the name of the bucket. Next, follow the instructions in the Technical
Requirements section in Chapter 3, Predicting the Future With Features, to
onboard to an Amazon SageMaker Studio domain, clone (if you did not already
do it in the earlier chaptesr) the book's GitHub repository, provided at the
beginning of this book, and click on Chapter-07 to open it. Open the Jupyter
notebook autogluon-text-tabular.ipynb by clicking on it. Execute the following
instructions to continue with your build activity:

1. Before we execute the notebook cells, double-check your notebook kernel
shows Python 3 (MXNet 1.8 Python 3.7 CPU Optimized) in the top-right
corner of the notebook tab. If it does not show this, from the menu at the top
of the page, select Kernel � Change Kernel, change the Image to Python 3
(MXNet 1.8 Python 3.7 CPU Optimized), and click on Select in the pop-up,
as shown in Figure 7.16:

https://github.com/huggingface/transformers
https://github.com/openai/CLIP

Figure 7.16: Change Studio Kernel

2. First, we will have to install the autogluon package. Keep your cursor in the
first cell of the notebook and click on the triangular play button at the top of
the tab to execute the cell. This will install the dependent libraries and then
the AutoGluon package. The commands will take 5 to 10 minutes to
complete:
!pip install -U setuptools wheel
!pip install "torch>=1.0,<1.12+cpu" -f
https://download.pytorch.org/whl/cpu/torch_stable.html
!pip3 install autogluon

3. Restart the notebook kernel before proceeding. From the top menu, select
Kernel � Restart Kernel and Clear All Outputs. Refer to Figure 7.17:

Figure 7.17: Restart Kernel

4. Then, execute the second cell in the notebook to import all the Python
libraries we need to run our AutoGluon AutoML training.

5. For this training, we will use the same sample raw dataset we used with
SageMaker Canvas. This file is available in our GitHub repository for this
chapter
(https://github.com/garchangel/AIMLwithAWS/tree/main/Chapter-
07/wine_canvas_ds.csv) and was copied when you cloned the repository.
Execute the next cell to load this dataset into a Pandas DataFrame.
Let's first load the data into a Pandas dataframe so it is
easy for us to work with it
wine_canvas_raw_df = pd.read_csv('./wine_canvas_ds.csv',
sep=',',header=0)
wine_canvas_raw_df.head()

You should see the following output displayed, as shown in Figure 7.18:

Figure 7.18: Wine raw dataset

https://github.com/garchangel/AIMLwithAWS/tree/main/Chapter-07/wine_canvas_ds.csv

6. Execute the next cell to split this dataset into training dataset (1989 rows)
and test dataset (10 rows).
Let us reserve 10 rows to test our model and the rest will be
our training dataset
wine_train_df = wine_canvas_raw_df.iloc[:1989]
wine_test_df = wine_canvas_raw_df.iloc[1990:]

7. You can review the contents of the test dataset by executing the next cell in
the notebook. The index should begin with row 1990.

8. In the next cell, we will submit the AutoML training job. From our raw
dataset, we want to train a ML model that can predict the price of a wine
bottle based on correlated input features. However, nore that our tabular
dataset contains a mix of text and numbers. So, we have categorical and
quantitative features. AutoGluon tabular
(https://auto.gluon.ai/stable/tutorials/tabular_prediction/index.html) is
designed to work with such a dataset, and we will use the TabularPredictor
for our training needs.
Data processing, feature engineering, setting up and running
training is just 3 lines of code
from autogluon.tabular import TabularPredictor
predictor = TabularPredictor(label='price',
path='winning_wine_predictor')
predictor.fit(wine_train_df)

9. Running ML training with AutoGluon is as simple as just the three lines of
the preceding code. All you need to do is provide a training dataset, indicate
which column in the dataset is the label and optionally, provide a folder
name to store your winning model artefacts. AutoGluon performs data
processing, feature engineering, algorithm selection, hyperparameter
optimization, and model training and tuning by running an ensemble of
regression algorithms and neural networks. It then selects a winning
candidate based on the lowest error metric, or root mean squared error for
our example. Let us now inspect the results of our training job. In the first
part of the output, we see the data metrics and problem type selection, as
highlighted here:
Beginning AutoGluon training …
AutoGluon will save models to "winning_wine_predictor/"

AutoGluon Version: 0.5.0
Python Version: 3.7.10
Operating System: Linux
Train Data Rows: 1989

https://auto.gluon.ai/stable/tutorials/tabular_prediction/index.html

Train Data Columns: 8
Label Column: price
Preprocessing data …
Warning: Ignoring 100 (out of 1989) training examples for which

the label value in column 'price' is missing

AutoGluon infers your prediction problem is: 'regression' (because dtype
of label-column == float and many unique label-values observed).

10. In the next part of the output (only a snapshot displayed here; refer to the
notebook output under the executed cell for full results), we see the results
of the feature engineering that AutoGluon performed:
Inferring data type of each feature based on column values. Set
feature_metadata_in to manually specify special dtypes of the
features.
Stage 1 Generators:
Fitting AsTypeFeatureGenerator…

Stage 2 Generators:
Fitting FillNaFeatureGenerator…

Stage 3 Generators:
Fitting IdentityFeatureGenerator…

Fitting CategoryFeatureGenerator…

Fitting CategoryMemoryMinimizeFeatureGenerator…
Stage 4 Generators:
Fitting DropUniqueFeatureGenerator…

Data preprocessing and feature engineering runtime = 0.36s …

11. AutoGluon then prints the performance metric it has selected for this job
(the most popular metric for regression is RMSE, or root mean squared
error):
AutoGluon will gauge predictive performance using evaluation
metric: 'root_mean_squared_error'
This metric's sign has been flipped to adhere to being
higher_is_better. The metric score can be multiplied by -1 to
get the metric value.
To change this, specify the eval_metric parameter of
Predictor()

12. Next, AutoGluon selects a list of algorithms and runs ensemble training
with optimal pre-selected hyperparameters. We have only displayed a
snapshot here; refer to notebook outputs for the full list of models.
Fitting model: LightGBM …

-22.5568 = Validation score (-root_mean_squared_error)
0.37s = Training runtime
0.01s = Validation runtime

Fitting model: CatBoost …
-20.7315 = Validation score (-root_mean_squared_error)
2.73s = Training runtime
0.01s = Validation runtime

Fitting model: WeightedEnsemble_L2 …
-19.8987 = Validation score (-root_mean_squared_error)
0.45s = Training runtime
0.0s = Validation runtime

13. Finally, AutoGluon prints the winning model as WeightedEnsemble_L2
because it has the lowest RMSE of 19.89:
AutoGluon training complete, total runtime = 23.96s … Best
model: "WeightedEnsemble_L2"

TabularPredictor saved. To load, use: predictor =
TabularPredictor.load("winning_wine_predictor/")

14. In comparison to AutoGluon's RMSE of 19.89, the Canvas model with
quick build had a RMSE of 23.75. If we had run Canvas in standard build,
we would have a much lower RMSE and a better model. Now, we will run
predictions with our newly trained model using the test dataset we had kept
aside. Execute the next cell to create test data by dropping the price column
from our original test dataset:
Let us drop the price column from our test dataset so we can
get the model to predict that
wine_test_priceless = wine_test_df.drop(['price'], axis=1)
wine_test_priceless.head()

15. Run predictions using our model and display the results by executing the
next cell.
winning_predictions = predictor.predict(wine_test_priceless)
print("Winning Model Predictions for test
data: "+str(winning_predictions))

We get the following output, which shows the wine price for each row index
from our test dataset:
Winning Model Predictions for test data: 1990 45.047230
1991 28.318157
1992 29.502701
1993 76.576393

1994 35.715672
1995 36.933662
1996 28.318157
1997 23.321636
1998 34.547947
1999 47.772491
Name: price, dtype: float32

16. Finally, execute the next cell to print a Leaderboard of models that
AutoGluon ran against our test data ranked based on model testing RMSE
scores (not model validation RMSE, which determines our winning model).
Refer to Figure 7.19:

Figure 7.19: AutoGluon Model Leaderboard

That concludes our example on how to use AutoGluon to run AutoML training of
your ML workflows. AutoGluon is really versatile and supports various ML
domains. Ensure that you check out their tutorials page for more details
(https://auto.gluon.ai/stable/tutorials/index.html). As you can imagine,
AutoML is indeed a popular topic because of its ease of use, flexibility, and time
and cost efficiencies you can achieve, and because it requires little to no ML
expertise to run. We have only scratched the surface when it comes to AutoML in
this chapter, with SageMaker Canvas and AutoGluon. There are other services
within the AWS AI/ML stack that provide AutoML capabilities, such as Amazon
Forecast AutoML and AWS AI Services.
Amazon Forecast (https://aws.amazon.com/forecast/) is a fully managed service
for time series forecasting problems, with the option to use AutoML for data
processing, feature engineering, and model training by selecting an algorithm
from a collection of algorithms or recipes that are experimented upon. Amazon
Forecast is an AWS AI service, which is a collection of powerful pre-trained

https://auto.gluon.ai/stable/tutorials/index.html

models providing ML capabilities through APIs. AWS AI services cover a wide
range of use cases, domains, and industries, including services for speech, text,
vision, industrial AI, and business processes. We will cover AI services in detail
in Chapter 10, Adding Intelligence With Sensory Cognition, and Chapter 11, AI
for Industrial Automation.

Conclusion
In this chapter, we took a fork in the sequence of ML workflow stages we learned
in the previous chapters to learn about AutoML. We saw that with AutoML and
more recently, with the no-code ML options, most of the ML workflow stages are
automated; all we need to take care of is data collection and some basic pre-
processing to arrange the data based on the ML problem type. All the other tasks
are fully automated with just some basic human intervention required. So
AutoML is available as a route for you right after data collection, which we
performed in Chapter 2, Hydrating the Data Lake. If you choose AutoML, you
can automate the all the tasks until Chapter 9, Wisdom at Scale With Elastic
Inference. In the next chapter, we will learn various deployment strategies for
implementing our trained models for testing and production. We will learn how to
approach and design model deployment techniques, how to build and update
endpoints without dropping inference requests, and more.

Points to Remember
Here are the key takeaways from this chapter:

In this chapter, we learned how to run fully automated ML workflows as an
alternative to what we discussed in Chapter 3, Predicting the Future With
Features; Chapter 5, Casting a Wider Net; and Chapter 6, Iteration makes
intelligence.
We learned that depending on the skill levels of the team, the requirements
of the project, and the time and funding available, AutoML is a popular
choice today for its ease of use and efficiency.
We saw how to use two of the most popular AutoML choices today with
SageMaker Canvas using SageMaker Autopilot implicitly and using
AutoGluon with a SageMaker Studio notebook.
We took our wine characteristics dataset that we first introduced in Chapter
3, Predicting the Future With Features, but used it in its unprocessed form,
that is, the raw dataset, as input for our AutoML solutions.

We saw that with SageMaker Canvas, we did not write a single line of code
and were able to process datasets, execute feature engineering, and tune and
train a ML model in under 2 minutes with the Quick build option, to predict
wine prices with a RMSE of 23.75.
We then used the same dataset with AutoGluon and trained a Tabular
predictor, which transformed our dataset; executed feature engineering;
trained, tuned, and selected a winning model (with the lowest RMSE) from
an ensemble of 11 different models (of different family of algorithms).

Multiple Choice Questions
Use the following questions to challenge your knowledge of AutoML with AWS
AI/ML services.

1. What is Amazon SageMaker Canvas?

a. It is a new training algorithm in SageMaker.
b. It is a no-code ML service that helps non-technical users build, train

and use ML models.
c. It is a new GUI from SageMaker that helps with drawing ML

architecture diagrams.
d. It is the new NLP service from SageMaker.

2. What ML modalities does AutoGluon support?

a. Text and tabular only
b. Image and tabular only
c. Time series and text only
d. Image, text, tabular and time series

3. What are some of the ML modelling tasks (normally performed
manually) that SageMaker Autopilot automates?

a. Feature engineering
b. Algorithm selection
c. Model training and tuning
d. All of the above

4. SageMaker Canvas uses SageMaker Autopilot under the hood.

a. True

b. False

5. AutoGluon requires feature engineering of text features in a tabular
dataset before it can be used.

a. True
b. False

Answers
1. b
2. d
3. d
4. a
5. b

CHAPTER 8
Blue or Green (Model Deployment

Strategies)

Introduction
Blue or Green. Seems like a simple question, right? What about accuracy
versus error rate? Horizontal versus vertical scaling? More memory or more
compute? GPU or CPU? The possibilities before us do not end with training
a machine learning model. The details of how you deploy your trained
model can impact its usefulness and ability to accomplish the goal for
which it was created. Making sure your model has the correct resources in
the correct amounts and a plan to handle the expected traffic is necessary to
complete your projects. In this chapter, we will discuss the considerations
needed to deploy, scale, and monitor your models. This includes the rapidly
converging DevOps (and DevSecOps!) concepts and the necessary steps to
optimize your costs.
To try the examples in this section, refer to the Technical Requirements
section in Chapter 1 – Introducing the ML Workflow to sign in to the AWS
management console, execute the steps in onboard to SageMaker studio,
and execute cloning the repository to SageMaker Studio to get started.
Click on the folder that corresponds to this chapter number. If you see
multiple notebooks, the section title corresponds to the notebook name for
easy identification. You can also passively follow the code samples using
the GitHub repository provided at the beginning of the book.

Chapter Scenario
In this chapter, we will be taking on the role of a site reliability engineer
working alongside a group of highly motivated data scientists. These
scientists have been working relentlessly for the past quarter to refine their
methods of training various machine learning models, testing their
accuracy, and getting them ready to use for various inference tasks. Now,
planning for the next quarter’s tasks, they are ready to take their models to
production. Our SRE is well-versed in deploying other types of
development-related artifacts but has never worked with machine learning
models before. As an Aires, our SRE is not afraid of new tasks and
assignments, and the pressure that comes with them.

Structure
In this chapter, we will discuss the following topics:

Structure, considerations, and methods for deploying Machine
Learning models
Options for model deployment available with Amazon SageMaker
Endpoints
Ways to evaluate the different compute options available for Inference
Implementations for automatically scaling resources available for your
inference endpoint
Steps needed to deploy a machine learning model for inference
Considerations that need to be made in monitoring a deployed model
Effective strategies for updating your deployed machine learning
model

Objectives
We identified the three fundamental portions of a machine learning project
in Chapter 1, Introducing the ML Workflow. We covered training and
registering your model in previous chapters. The last section, deploying
your model, is what we will review in this chapter. From choosing the
correct compute options for your model to deciding on the type of inference

you need to accomplish, this chapter will guide you through the choices,
what they mean, and how to implement them.

Inference Options
Inference is defined as a conclusion reached based on evidence and
reasoning. In the Machine Learning context, inference is the process of
providing data to a machine learning model to calculate an output. This
output can be a numerical score, a Boolean value, a classification, a
prediction, or even a set of data points that are intended to be used as input
for another application, possibly even another Machine Learning model. To
perform this inference, we need to deploy a model and make it available to
accept that data and, in turn, respond with its predictions. This act of
deployment is what you would expect from application development
projects, but it has some unique considerations that we will cover in this
chapter. Our site reliability engineer will draw on their experience of
deploying these kinds of projects to accomplish the deployment of a
Machine Learning model.
At its most fundamental, a deployed Machine Learning model will first
need a method to accept incoming structured data. The method chosen will
largely be determined by the type of interaction your model will have with
the system sending data to it. For evaluating your model, deploying a
simple, single-threaded, locally accessible REST endpoint, especially to on-
demand compute resources, is optimal. This allows you to send your
validation data to your endpoint and evaluate it against your chosen metric,
and then destroy the REST endpoint. Beyond this, the main consideration
should be the necessary response time of your application. For applications
that need to be able to respond to requests no matter when they are sent,
real-time endpoints are preferable. Alternatively, asynchronous inference,
where a data set is only periodically sent to your model, typically in a
scheduled fashion, can take advantage of batch inference. Before moving
on, let’s look at each of these in detail.

NOTE: What is a REST API? A REpresentational State Transfer
(REST) describes an interface between two decoupled systems. In a
monolithic application, the application transfers logic within itself,
and the structure of the monolith itself manages the structure and

expectations of that logic. In decoupled applications, like Machine
Learning services, applications externalize the method of interaction
and structure into a service. REST interfaces work much like websites
and use similar methods for interaction. REST interfaces work well
for Machine Learning models because we can send predefined traffic
to our REST endpoint, and the endpoint, in turn, can handle the
interaction and the response from our model.

Testing and Validation
Typically, the first time a model is deployed is immediately after training
has been completed. To validate that your trained model works and that it
meets your desired needs, you need to be able to send traffic to it and
measure the results. You can (and should) use your test data set for this
validation. Testing your trained model is typically quick, with your model
deployed, test traffic sent to the endpoint, and then the endpoint destroyed.

Real Time
Real time inference is defined by a model endpoint that is deployed and
available whenever requests are sent to it. It is often measured not only by
the evaluation metric of the model itself but also by the response time of the
endpoint. Additionally, as with all model deployment methods, the scale of
your inference size should be taken into consideration. A singular endpoint
will begin to suffer latency as the number of concurrent requests increase,
eventually becoming unable to respond to requests at all.

Batch
Also known as asynchronous, batch inference is used when you need to
perform inference on a data set periodically. Since you pay for the compute
associated with your model hosting while it is active, there is no need to
leave a model deployed unless you are actively using it. By only deploying
your model when you need it, you make the deployment object part of your
process. Additionally, since we are deploying our model when we have data
ready to use for inference, we can make decisions about the type of
instance. If our workload allows for longer processing times, using smaller
or fewer instances can allow for cost optimization. Similarly, if your chosen

workload needs to be processed as quickly as possible, consider larger or
more instances to optimize for speed.

Streaming
Streaming inference, though it appears like real-time, presents some unique
challenges. The data involved is typically stored in a messaging or
streaming bus, and this service holds the individual messages until a
consumer application picks them up and acts on them. The streaming bus
does not typically change the source messages, so like other inference
options, a method of getting the message in the right format to send to the
model endpoint is needed, along with a method to deliver them. In AWS,
the first can be accomplished in-stream with Kinesis Data Analytics,
transforming the message to be ready for inference. Similarly, you can use
AWS Lambda as your stream consumer, sending the transformed messages
to your Inference Endpoint and then handling the responses. For streaming
inference, handling the volume of transactions is the key consideration for
your hosting options.

Choosing your Compute
Now that we understand the different use cases for hosted models, we need
to consider what compute we require. The resources associated with the
compute option are also used to power your model, so the more power you
provide, the more aggressive processing your model will be able to
perform. This doesn’t necessarily scale linearly, though, with compute
sources often topping out at a certain level no matter the raw processing or
memory provided. To address this as well as cost optimization needs,
multiple compute instances can be leveraged behind a load balancing
method. In this style, a request will be routed to a single resource in a pool,
and subsequent requests will be routed to different pool members.
At its most basic, the act of deploying a machine learning model is the
creation of a web service to accept traffic, sending it to the model itself, and
then returning the responses. To host this service, we need a compute
resource, which is distinct from the similar resource we used to train our
model. Many models operate at different efficiencies during inference than
they do during training, so a one-size-fits-all approach does not apply. In

addition, depending on the model, training and inference may need different
resources. For example, XGBoost trains much faster on GPU resources and
performs inference best on CPU instances from a memory utilization
standpoint considering the decision tree ensembles are held in-memory at
inference time.
Amazon SageMaker hosting allows us to choose the instance type when we
deploy our model, and we can do the same thing if we host the model
ourselves on an EC2 instance. After an initial estimation of necessary
system resources based on the provided documentation associated with your
chosen model, the instance type can be considered another type of
hyperparameter. Like other hyperparameters during training and tuning of
your model, finding the right combination of resources and instance type is
an iterative experiment. There are tools that can help with this process,
including AutoML, AutoGluon, and the AWS Inference Recommender.
Let’s look at these ahead.

Self-Hosted
In the case of practitioners who wish to manage the whole of their chosen
compute environments, self-hosting is a strong option. In situations where
multiple applications are sharing the same compute resource or where there
are regulatory requirements preventing more managed options, managing
your own compute is preferable. For these situations, allocating one or more
EC2 instances to host your models is the best choice.
Using this method, you can create an independent auto scaling group for
each of your model needs and the EC2 native user data capability to
bootstrap each instance at start-up to install web server resources, download
your models, and update local application packages. Following is an
example of this kind of user data script for an Ubuntu style Amazon
Machine Image:
#!/bin/bash

yum update -y

yum install -y amazon-linux-extras

amazon-linux-extras enable python3.8

yum install python3.8

python -m ensurepip --upgrade

pip install flask

aws s3 cp s3://replacewithyourbucket/model/model.tar.gz .

aws s3 cp s3://replacewithyourbucket/flask/flaskapp.py .

Amazon SageMaker Endpoint
Using an Amazon SageMaker endpoint gives additional flexibility over
hosting the model yourself; this means more of the undifferentiated heavy
lifting is handled by AWS. It also makes the process faster, allowing more
rapid experimentation and handling individual endpoints as deployable
objects.
Creating an endpoint in Amazon SageMaker differs slightly if you are using
the SageMaker SDK or the AWS SDK for Python (boto3). The main
difference is that using the SageMaker SDK requires the creation of an
Endpoint configuration, while using the AWS SDK for Python does not. We
will review the same implementation for both methods here.
The first step to creating an endpoint in SageMaker is to identify the
location where your model is stored in S3 and the location for either the
custom-made Docker image that contains your inference code or the
framework and version of a SageMaker built-in container.

NOTE: While S3 buckets are global resources, they are created and
hosted within specific regions. The bucket containing your model
artifact and SageMaker endpoint must be in the same region.

Next, you will create the model object itself, referencing the container
image location, the S3 model location, and the IAM role used for
SageMaker to create the model:
from sagemaker.model import Model

model = Model(image_uri=container_url,

model_data=s3_model_location,

role=iam_role)

Now we create an endpoint configuration. This is only necessary when we
are using the SageMaker SDK. You will need to specify a name for your
endpoint configuration, the instance type of the compute used for your
model, and a list of model variants, one for each model hosted by the
endpoint. We will discuss multi-modal endpoints, where a single endpoint
serves traffic for multiple models, in depth, but the following example is for

a single model configuration. You will also specify the number of instances
to use to service inference traffic:
endpoint_configuration = sagemaker.create_endpoint_config(

EndpointConfigName=”Your Endpoint Config Name”

ProductionVariants=[

{

"VariantName": “Variant Name”

"ModelName": “Model Name”,

"InstanceType": “ml.g4dn.xlarge”

"InitialInstanceCount": 1 # Number of instances to launch

initially.

}

]

)

Finally, with the model object and the endpoint configuration, we can
deploy the endpoint itself. You will need a name for the endpoint and the
name of the endpoint configuration. The command will respond with
Amazon Resource Name (ARN) of the created endpoint:
endpoint = sagemaker.create_endpoint(

EndpointName=”Endpoint Name”,

EndpointConfigName=”Endpoint Config Name)

If you need to programmatically send traffic to your endpoint, you can use
the Amazon SageMaker SDK for the invoke_endpoint Python method:
Endpoint_response = sagemaker.invoke_endpoint(

EndpointName=”Endpoint Name”,

Body=bytes('{"features": ["Inference Payload"]}', 'utf-

8')

)

Inference Recommender
You could, of course, treat an instance type as a hyperparameter and iterate
over different options, analyzing the output to determine the optimal
combination of speed, cost and latency. If you have worked in software
delivery teams before, this process might even seem familiar to you, though
it was likely called another name: load testing. In essence, we are doing the

same thing: putting our hosted model under pressure in the form of requests
to observe the results in terms of used processor, memory and response
times.
Thankfully, AWS includes an API accessible from the Command-Line
Interface (CLI), SageMaker Studio, or the SDK for Python that can perform
the load testing for us.
Using the AWS SDK for Python (boto3), you can create an inference
recommendations job, identifying whether you would like simple inference
recommendations (default) or a full-detail load test (advanced). You will
also need the Amazon Resource Name (ARN) of the model you registered
with SageMaker using the same method as the register model above.
sagemaker.create_inference_recommendations_job(

JobName = “InferenceRecommendationJob”,

JobType = “default”, ## Or Advanced for full

RoleArn = RoleVariable,

InputConfig = {

'ModelPackageVersionArn': ModelArnVariable

}

)

Once the job has been submitted, it will run and profile different options for
the model you provided, and you can check the results in the AWS console
or via the describe_inference_recommendations_job API, as follows:
InferenceRecommendations =

sagemaker.describe_inference_recommendations_job(

JobName=”InferenceRecommendationJob”)

The response will detail useful items like cost per hour or per inference
request for your endpoint. It will also contain the InstanceType field,
which is the recommended compute option for your endpoint.

Serverless
On the far end of the managed scale from self-managed is serverless
inference. It is well suited for inference workloads that are unpredictable or
only happen periodically and those that can tolerate small delays in initial
responses (referred to as cold starts), and it manages the entirety of the
compute resource, scaling, and management of the chosen compute. On the

cost side, you pay only for the time the endpoint is in use and not for any
time it is idle or unused, making it an appealing option both for
experimentation and for workloads that need to be intermittently available.
The only required parameters for a serverless inference endpoint are a
registered model definition, like the one we created earlier, and an endpoint
configuration that includes a production configuration serverless config.
That config should include available memory in MB for the endpoint and a
maximum concurrency that defines how many concurrent invocations your
endpoint can handle at once:
ServerlessEndpointConfig = sagemaker.create_endpoint_config(

EndpointConfigName="ServerlessEndpointConfigName",

ProductionVariants=[

{

"ModelName": "YourModelName",

"VariantName": "ServerlessTraffic",

"ServerlessConfig": {

"MemorySizeInMB": 3072,

"MaxConcurrency": 6

}

}])

NOTE: Cold Starts, are a situation where your endpoint has not
received traffic recently and the compute resources behind it need to
be restarted, your inference container needs to be re-downloaded, and
your model needs to be re-deployed. When you are using a serverless
inference endpoint, ensure that your calling applications can handle
variable amounts of initial latency in their requests.

Autoscaling
With AWS offering on-demand compute resources for hosting our models,
we can also use automated management of the necessary resources that are
added when a metric of our choice exceeds a predetermined threshold.
Similarly, we can configure resource scale down when the same metric falls
below a lower threshold. With this in place, our endpoint will be able to
scale to match demand when it is needed, and then back down to save on
cost when it is not.

To create an autoscaling policy, you first need to consider your scaling
metric and scaling method. In terms of methods, there are two options:
target-tracking and step scaling. Target-tracking is the recommended
approach; it means that AWS will scale out (adding compute resources) to
your model to maintain your chosen metric. For example, if your metric is
InvocationsPerInstance equal to 100, then as the metric exceeds 100,
more compute instances will be added. Once it falls below that same
amount for a predefined period, those resources will be removed. Similarly,
for step scaling, you set an upper and a lower static that control when
compute is added to the pool, taking inference requests with your model.
Once you are ready to add an auto scaling policy to your deployed
endpoint, you choose your target metric, set the minimum and maximum
levels for scaling, a cool down policy that controls how much, in seconds,
the policy will wait before adding or removing instances, and the role the
policy will use to perform its actions.
For your target metric, choose one that represents the middle ground of
where your model needs to stay to perform within the established Service-
Level Agreement (SLA). The default metric is InvocationsPerInstance,
which will manage how many invocations each compute instance in the
pool handles at once. If you are just starting with auto scaling, start with
this metric.
Your minimum and maximum capacity sets the lower and upper limits of
the scaling policy. You don’t want to scale all the way to zero, and you also
don’t want to have no upper limit in case of a burst of traffic. Consider
using the mentioned Inference Recommender job to determine the expected
traffic patterns of your model to set a scaling metric and your maximum and
minimum levels.
Your cooldown period controls the interval in which a scaling policy will
pause before adding or removing instances. The main purpose of this period
is to make sure instances are not added or removed from the pool before the
previous scaling activity has completed. The default value is 300 seconds,
and you can set the values independently for scale in and scale out. The
following is an example of a scaling policy that you can use in the next
step, applying the policy to your registered model:
{

"TargetValue": 120.0,

"PredefinedMetricSpecification":

{

"PredefinedMetricType":

"SageMakerVariantInvocationsPerInstance"

},

"ScaleInCooldown": 700,

"ScaleOutCooldown": 200

}

One you have your model defined, as shown here, and a scaling policy
defined, you can apply the scaling policy to the registered model using the
AWS CLI or the Application Auto Scaling API:
aws application-autoscaling put-scaling-policy \

--policy-name AutoScalingPolicy \

--policy-type TargetTrackingScaling \

--resource-id endpoint/ProductionVariantName \

--service-namespace sagemaker \

--scalable-dimension sagemaker:variant:DesiredInstanceCount

\

--target-tracking-scaling-policy-configuration

file://scalingPolicy.json

Inference at the Edge
So far, the examples we have provided have involved hosting models within
a cloud environment and sending traffic to them in that same environment,
much like we would for a standard application. There are several workloads
that need the model and the associated inference to be closer to where the
workload is deployed or even on dedicated hardware in the field. A camera
watching an assembly line that uses computer vision to spot defects, a
gateway device monitoring financial transitions at a remote site, and a real-
time translation service in a conference room could all be examples of
inference at the edge.
This approach and implementation bring unique challenges, like limited
local resources and delays in messages being returned to your centralized
systems. Additionally, managing the various devices, locations and
environments your field-based models might encounter requires
customization.

Thankfully, Amazon SageMaker has a method to manage these kinds of
remote (called edge) deployments called the SageMaker Edge Manager.
Models deployed in this style will need to have a special preparation called
compilation, which we will cover in this section. Other than this,
SageMaker’s Edge Manager allows you to effectively package, deploy,
execute and monitor your models in various remote locations.
In short, this setup is creating an Internet of Things (IoT) workflow. The
whole of IoT application management is a complete book in itself, so make
sure to review it in detail. That said, Edge Manager handles much of the
heavy lifting for you. You will need to create distinct IoT roles separate
from your SageMaker IAM role, but other aspects are managed.

Model Compilation
SageMaker Edge Manager required compiled models to be able to deploy to
your edge locations. Using the Amazon SageMaker service, SageMaker
Neo allows us to do this after we have trained and evaluated our model. The
following is using Tensorflow (the job expects the framework in all caps)
and is to be deployed to a Raspberry Pi3.
sagemaker.create_compilation_job(CompilationJobName=”Compilati

onJobName”, RoleArn=sagemaker_role_arn, InputConfig={

'S3Uri': s3_model_location,

'DataInputConfig': {"data":[1,3,224,224]},

'Framework' : “TENSORFLOW”}, OutputConfig={

'S3OutputLocation': s3_output_location,

'TargetDevice': “rasp3b”}, StoppingCondition=

{'MaxRuntimeInSeconds': 1200})

Next, you will need to package your compiled model. The packaging
process adds all the necessary components to make sure your model is
ready to be deployed to the remote edge location:
sagemaker.create_edge_packaging_job(

EdgePackagingJobName=”PackagingName”,

CompilationJobName=”CompilationJobName”,

RoleArn=sagemaker_role,

ModelName=model_name,

ModelVersion=”1.0.0”,

OutputConfig={

"S3OutputLocation": packaging_s3_output

})

Once you have the model package and have registered a device with AWS
IoT, you can use AWS IoT Fleet Manager to deploy the model package and
the associated model to the device. You can also use Fleet Manager to
update your models, deploy additional models, and get monitoring metrics
from your models.

Deployment Mechanics
Since we are using Amazon SageMaker, when we went through the training
process, we created an estimator object and called .fit() on that object to
start our training. Using the same object, and assuming we are using the
Amazon SageMaker Python SDK, we can call .deploy() to create an
inference endpoint to use for validating our trained model. The following
examples are not complete; for the whole working code, check the
associated GitHub repository provided at the beginning of the book.
Now that we have a solid understanding of the concepts associated with
model hosting, let’s look at a few of the options that our new-to-inference
SRE will take to help the data scientists on their team. Checking their ticket
queue, our energetic SRE sees that there are three requests already waiting
for them.
The first is to deploy a model to help with narrative generation. Apparently,
the data science team is tired of writing filler text to go along with their
abstracts and would like to use some of the new models they keep hearing
about to help.
The second is to deploy a linear regression model where they have already
completed the training. This model will be supporting an ongoing
experiment and needs to be able to respond quickly. They are expecting
responses from the model to be received in less than 100 milliseconds per
request.
The last model is a classifier that the team is going to use to sort through a
massive backlog of user-submitted images. The good news is that the data
science team already has the ground truth labeled data set and a trained

model, but the incoming images for inference will be intermittent, and the
results only need to be received once a week.
In all three cases, the team needs the inference completed within the
requested time window, but it also wants to avoid any excess spending as
they work mostly on grant money.
Time to get to work.

Narrative Generation
Deciding to take the tickets in order, our SRE decides to start with the
narrative generation request. Interestingly, the team did not provide a model
for the deployment. Luckily, our SRE has kept up on machine learning
trends and has heard a lot of buzz about recent mesh transformers that have
been producing spectacular results. Additionally, our SRE is already
familiar with the Hugging Face community and model hub, so they decide
to deploy one of the models from there. After a quick check, it looks like
there is a model card that will work perfectly.
Our SRE decides to use the EleutherAI gpt-neo-1.3B model for this task
and creates a Hugging Face model hub definition and model object for that
model:
HubEnvironment = {

'HF_MODEL_ID':'EleutherAI/gpt-neo-1.3B',

'HF_TASK':'text-generation'

}

ModelObject = HuggingFaceModel(

env=hub,

role=SageMakerRole,

transformers_version="4.6"

pytorch_version="1.7",

py_version="py36",

)

Once we have those defined, we provide the model object to a predictor
definition, along with an instance count and SageMaker instance type.
Since this model will only be used when the data science team needs to add
some text to their draft papers for publishing, it doesn’t need a huge pool. It
only needs an instance large enough to hold the model in memory with

available GPUs. Choosing a P3 instance is the best option, and our SRE
knows that they can schedule time for the model to be deployed to avoid
leaving it running continually.
PredictorObject = huggingface_model.deploy(

initial_instance_count=1,

instance_type="ml.p3.2xlarge",

)

Once the model endpoint is deployed, we can test it using the .predict()
function and some text that simulates an abstract:
PredictorObject.predict({

'inputs': "The aim of this study was to review the prevalence

and epidemiology of diabetes in patients with systemic

mastocytosis (SM), as well as the impact of SM on diabetic

control, with an emphasis on the pathophysiology of insulin.",

'parameters': {

'max_length': 600,

'temperature':1.0,

"return_full_text": False,

}

})

To use this endpoint, our SRE will need to add an actual web application
that the users will interact with; the notebook in the book’s GitHub repo has
an example application using Streamlit.

Linear Regression
Checking the next ticket, our SRE can see that the model has already been
trained and, according to the Jupyter notebook provided by the Data
Science team that they used to train it, registered with SageMaker Model
Registry:
s3_model_url = "s3://YourBucketName/prefix/model.tar.gz"

modelpackage_inference_specification = {

"InferenceSpecification": {

"Containers": [

{

"Image": '683313688378.dkr.ecr.us-east-

1.amazonaws.com/sagemaker-xgboost:1.5-2',

"ModelDataUrl": s3_model_url

}

],

"SupportedContentTypes": ["text/json"],

"SupportedResponseMIMETypes": ["text/json"],

}

}

ModelPackageInput = {

"ModelPackageGroupName" : “ModelPackageGroupName”,

"ModelApprovalStatus" : "Approved"

}

ModelPackageInput.update(modelpackage_inference_specification)

CreateModelResponse =

sagemaker.create_model_package(**ModelPackageInput)

ModelPackageARN =

create_model_package_response["ModelPackageArn"]

From these details, our SRE can see that there is a ModelPackageARN object
that we can use to refer to the registered model version and similarly, to
deploy the model:
ModelResponse = sagemaker.create_model(

ModelName =”ModelName”,

ExecutionRoleArn = role,

Containers = ModelPackageARN

)

Once we have the create model response, we can use that object to create an
endpoint configuration, just like we did earlier. One thing our SRE noticed
about the model needs was that despite needing the responses to be very
fast, they didn’t mind some initial latency. The calling application had a
built-in backoff that would just retry, and as long as more than 90% of the
responses were faster than 1 second, it would meet their needs. Armed with
this information, our SRE decides to deploy a serverless endpoint to meet
the cost optimization needs as well.
create_endpoint_config_response =

sagemaker.create_endpoint_config(

EndpointConfigName = “EndpointConfigName",

ProductionVariants=[{

"ModelName": "ModelName",

"VariantName": "AllTraffic",

"ServerlessConfig": {

"MemorySizeInMB": 2048,

"MaxConcurrency": 10

}}]

)

Now that we have the endpoint configuration, we can call the
create_endpoint() method, use EndpointResponse to get the deployed
URL, and send that to the data science team:
EndpointResponse = SageMaker.create_endpoint(

EndpointName="LinearRegressionEndpoint",

EndpointConfigName="EndpointConfigName"

)

Computer Vision
Finished with the second ticket, our SRE reviews the last one. Since this
only needs to run inference once a week, it seems the best suited for
asynchronous or batch style inference. Since asynchronous is mostly used
for very large inference payloads that won’t finish by the time a real-time
application can wait, our SRE decides to go for a batch style of deployment.
Since the source images would be stored in an S3 bucket, the SRE decided
to consider that bucket the source location and would set up a separate
bucket to store the processed images and a separate folder in the source
bucket for any images that had an error during processing. Given this setup,
each time the batch inference process started, it would list the items in the
source bucket and use those as the agenda for inference.
Tempted to use the classic shell script triggered by a cron expression on an
EC2 instance, our SRE considers for a moment before deciding to explore
further. The EC2 cron approach would work, but it would violate the
concept of cost optimization and did not suit the on-demand nature of cloud
computing. Quickly checking to see if AWS has a capability to provide for
state-machine style workflows, they find AWS Step Functions.

AWS Step Functions is a serverless orchestration service. It allows you to
create workflows that need different paths, branches, and logic. It also
natively supports interacting with many AWS APIs, CreateEndpoint in this
case, which is exactly what we need. We will still need to have some helper
jobs before inference to list the images ready for inference and to manage
the interaction with the created SageMaker endpoint, as well as moving the
images to the completed bucket, but those can easily be accomplished as
AWS Lambdas (a fully managed serverless compute service from AWS -
https://aws.amazon.com/lambda/).
Figure 8.1 shows a visual example of the AWS Step Function Flow that can
be created for our use:

Figure 8.1: Amazon SageMaker Step Function flow

AWS Step Functions provides an easy-to-use graphical interface for
creating workflows, but we can also represent those workflows as code.
Following is an example of the state machine, triggered by an AWS
CloudWatch Event Bridge cron expression, used to scan the incoming S3
bucket, deploy the endpoint, send each of the images for inference, and then
destroy the endpoint. The associated Lambdas are also available in the
book’s associate GitHub repo:
{

“Comment”: “State Machine that Performs Inference”,

“StartAt”: “PollS3InputLocation”,

“States”: {

“PollS3InputLocation”: {

“Type”: “Task”,

“Resource”: “arn:aws:states:::lambda:invoke”,

“OutputPath”: “$.Payload”,

“Parameters”: {

“Payload.$“: “$”,

“FunctionName”: “arn:aws:lambda:us-east-

1:123456789012:function:polls3function:latest”

},

“Retry”: [

{

“ErrorEquals”: [

“Lambda.ServiceException”,

“Lambda.AWSLambdaException”,

“Lambda.SdkClientException”

],

“IntervalSeconds”: 2,

“MaxAttempts”: 6,

“BackoffRate”: 2

}

],

“Next”: “CreateEndpoint”

},

“CreateEndpoint”: {

“Type”: “Task”,

“Resource”: “arn:aws:states:::sagemaker:createEndpoint”,

“Parameters”: {

“EndpointConfigName”: “string”,

“EndpointName”: “string”,

“Tags”: [

{

“Key”: “string”,

“Value”: “string”

}

]

},

“Next”: “PerformInference”

},

“PerformInference”: {

“Type”: “Task”,

“Resource”: “arn:aws:states:::lambda:invoke”,

“OutputPath”: “$.Payload”,

“Parameters”: {

“Payload.$“: “$”,

“FunctionName”: “arn:aws:lambda:us-east-

1:123456789012:function:performinference:latest”

},

“Retry”: [

{

“ErrorEquals”: [

“Lambda.ServiceException”,

“Lambda.AWSLambdaException”,

“Lambda.SdkClientException”

],

“IntervalSeconds”: 2,

“MaxAttempts”: 6,

“BackoffRate”: 2

}

],

“Next”: “DeleteEndpoint”

},

“DeleteEndpoint”: {

“Type”: “Task”,

“End”: true,

“Parameters”: {

“EndpointName”: “MyData”

},

“Resource”: “arn:aws:states:::aws-

sdk:sagemaker:deleteEndpoint”

}

}

}

Satisfied that they have the batch inference request in hand and are
thoroughly testing their new Step Function, our SRE (and new Machine
Learning Operations Engineer) relaxes and digs into their next task.

After the Deployment
Once your model is deployed and your team can get successful inference,
there is more to be considered. Unlike typical application management,
machine learning models will not normally return errors when invalid
requests are sent; rather, their predictions will be less accurate. Additionally,
since your model was likely trained from historical data, if your situation
changes, that data may no longer relate to the live real-time data you are
sending to your model for inference. Historically, machine learning models
were considered closed-box applications with little to no understanding of
why they made the predictions they did. Now, with modern model
monitoring and baselining, we can observe the state of our model’s
predictions and the state of the data being sent to the model, and we can
provide explainability as to why the model is making the predictions it is
making.

Model Monitoring
AWS CloudWatch allows you to review, alert, and act on a number of
metrics emitted by your SageMaker endpoint. You can monitor for the
response code, resource utilization, logs generated, and similar metrics
within CloudWatch. These are like standard application monitoring; while
they should not be ignored, they only describe part of the picture of what is
happening with your deployed model.

Beyond these structured metrics, we need to monitor for model quality,
which can be accomplished with the aptly named Amazon SageMaker
Model Monitor. For each of our monitoring scenarios, we will need to
enable data capture. Enabling this feature stores the inputs and outputs of
your inference in an s3 bucket. You can use this stored data to create
baselines for each scenario. You can add the data capture configuration
block after the production variant block in your endpoint configuration:
DataCaptureConfig= {

'EnableCapture': True,

'InitialSamplingPercentage' : 25, #Integer of percentage of

requests sampled

'DestinationS3Uri': “s3://EndpointDataCaptureBucket/”,

'CaptureOptions': [{"CaptureMode" : “Input”] # Can be Input,

Output or both

}

Once you deploy your model with the data capture configuration included
in your endpoint configuration, the sampling percentage of transactions,
along with metadata, will be captured in the listed S3 bucket. This is the
data we will use to create baselines that, when compared against, determine
the health of our model.

Data Drift
Once we have data capture enabled as we just mentioned, we can create a
baseline job. As there are expected variations in the data sent to a machine
learning model, it isn’t enough to check for types in the incoming data. The
baselining job will create a profile of the incoming data that includes the
expected types, and also includes things like standard deviation, median,
mean, constraints, missing columns, and ongoing statistics. The following is
an example of creating a baselining job based on the data you used to train
your model. Since it is already indicative of the data your model will be
performing inference on, it is a good way to get an idea of the details of that
data:
ModelMonitor = DefaultModelMonitor(

role=SageMakerModelRole,

instance_count=1,

instance_type='ml.c5.xlarge',

volume_size_in_gb=20

)

ModelMonitor.suggest_baseline(

baseline_dataset=’s3://your_data_buclet/training-dataset-

with-header.csv',

dataset_format=DatasetFormat.csv,

output_s3_uri=’s3://your_data_bucket/modelmonitorresults/’

)

Metrics emitted by the model monitoring job can be reviewed, graphed, and
alerted upon within Amazon CloudWatch.

Model Drift
Model drift or bias drift can occur when the data sent to a model for
inference differs informationally from the data used to train the model. This
can happen gradually, as trends change, or suddenly, as a response to
changes in your domain. Consider a model that calculates optimal supply
chain schedules prior to 2020. The historical data it was trained on did not
contain any of the sudden challenges associated with the COVID-19
pandemic, so it won’t be able to make quality predictions with data after
that point.
Even in the best models, model conceptual drift is expected over time.
Historically, this was managed by regularly retraining a model with freshly
collected data, but it is also possible, using our enabled data capture, to
monitor for drift in our predictions. To create a model drift monitoring job,
a baseline of how and why predictions were made must first be created, and
then a regular monitoring job can be run. The metrics emitted by this job
can be graphed and alerted to inform your data science teams for the
presence of drift:
BiasMonitor = ModelBiasMonitor(

role=SageMakerRole,

sagemaker_session=sagemaker,

max_runtime_in_seconds=900,

)

BiasMonitorDataConfig = DataConfig(

s3_data_input_path=”s3://validation_dataset_location/input/”,

s3_output_path=””s3://validation_dataset_location/output/,

label=label_header,

headers=all_headers,

dataset_type=dataset_type,

)

Model Quality
Since we have already enabled data capture, we can also monitor for
quality, comparing the predictions that the model makes against the ground
truth labeled data that was used to train it. Like with Data Drift, we need to
create a baseline job that does the ground truth labels against the predictions
of the model and creates a statistical model of those comparisons. Then,
you create a schedule of monitoring jobs that will compare the baseline
against a capture of inference requests. These results can be viewed,
graphed, and alerted within Amazon CloudWatch.
To create a model quality baseline job, set the compute used and the
duration for the baseline job to run:
ModelMonitor = ModelQualityMonitor(

role=SageMakerole,

instance_count=1,

instance_type='ml.c5.xlarge',

volume_size_in_gb=30,

max_runtime_in_seconds=2700,

sagemaker_session=sagemaker

)

job = ModelMonitor.suggest_baseline(

job_name=”ModelMonitorJob”,

baseline_dataset=”s3://baseline_s3_location/input/”,

dataset_format=example_dataset.csv(header=True),

output_s3_uri = s3://baseline_s3_location/output/,

problem_type=”Regression”,

inference_attribute= "PredictionColumn",

probability_attribute= "ProbabilityColumn",

ground_truth_attribute= "LabelColumn" #

)

Updating a Deployed Model
Once your model has been deployed and is taking inference requests, you
will, at some point, need to deploy another version of the same model. You
have a new model trained on new data, a model with higher accuracy, or a
model that accepts new formats of input data. Regardless of the reason, you
will eventually need to replace your existing model, and, when you do,
there are options for how you replace that model. The first and basic option
is simply to deploy another model over your existing one. It certainly wins
for simplicity but loses quite a bit in availability, since any requests to the
model during deployment will fail. It also suffers from a lack of preview
capability. If your model does not act like you expect once it is deployed,
you won’t know until it is deployed and you observe the issues either in
your tests (you are testing your deployed models, right?) or in your data
capture metrics. The last issue with this option is that it only gives you
metrics associated with your testing to decide whether you want to replace
your existing model at all.
What if there was a way to address these issues, gather data about your
model, preview its performance, validate its functionality, and assess its
accuracy, all without disrupting the traffic to your existing model beyond a
preset threshold of your choosing? Not only is there a solution, but you’ve
already used and interacted with the method we will use: the production
variant.
In the previous examples, we used a single production variant when
creating the endpoint configuration. By using multiple production variants,
we can manage multiple machine learning models per endpoint, including
what percentage of traffic we send to each variant.

Blue/Green Deployments
Our SRE is already familiar with Blue/Green deployments from supporting
other workloads, and the same concepts apply here. Typically, a Blue/Green
deployment strategy is when you create two identical environments and
then switch from one environment that is running the existing application
(blue) over to the environment running the new application (green). The
color designations are used to identify where the traffic is flowing. We
could add an abstraction layer on top of our model endpoint in the form of a

network load balancer or API gateway, but in the interest of optimizing for
cost and efficiency, we will leverage the built-in capability of production
variants to accomplish it within a single endpoint.
We will use the same linear regression endpoint used earlier with the caveat
that the data science team has provided a new model that they would like to
switch traffic to without losing any from the initial model. Thus, our
endpoint configuration becomes as follows:
CreateEndpointConfig = sagemaker.create_endpoint_config(

EndpointConfigName = “EndpointConfigName",

ProductionVariants=[{

model_name=”ModelNameBlue”,

instance_type="ml.m=c5.xlarge",

initial_instance_count=1,

variant_name='BlueModel',

initial_weight=1

},

{

model_name=”ModelNameGreen”,

instance_type="ml.m=c5.xlarge",

initial_instance_count=1,

variant_name='GreenModel',

initial_weight=0

},

}])

Based on the weights mentioned, the blue model will take 100% of the
traffic, and the green model will take 0%. Once we are ready to shift traffic
to the green model, we can update the endpoint configuration as shown
here:
sagemaker.update_endpoint_weights_and_capacities(

EndpointName=”EndpointName”,

DesiredWeightsAndCapacities=[

{

"DesiredWeight": 0,

"VariantName": variant1["BlueModel"]

},

{

"DesiredWeight": 1,

"VariantName": variant2["GreenModel"]

}])

The weights applied can also be any fraction of 100, allowing you to send
percentages of traffic to your endpoint. This allows you to validate that your
model functions as expected with a small percentage of traffic and also
allows you to reverse course and shift the weight back down to zero if there
is a problem.

A/B Testing
Using this method, you can perform A/B testing on your models to
determine how they perform before implementing one and sending all your
traffic to it. A/B testing refers to the practice of testing different variants of
your model and comparing the respective performance, metrics, and
responses to determine which model you wish to ultimately keep. You can
set the weights of all production variants to 1, which means each model will
get the same amount of traffic, allowing you to determine the ultimate
performance of each option.
Additionally, if you have control on the calling application, you can set
which of your production variants are called on each translation during the
endpoint invocation by adding the TargetVariant parameter:
ModelInvocation = sagemaker.invoke_endpoint(

EndpointName=”ModelName”,

ContentType="text/json",

Body=ModelPayload,

TargetVariant=variant1["BlueModel"],

)

This is especially useful where certain users opt in as beta participants,
allowing you to insert the TargetVariant parameter into their model
requests.

Multi-Model Endpoints
As your machine learning use increases, it is likely that you will reach a
point where a workload will need multiple machine learning models. There

can be cases where one model calls another to further refine the data needed
for a prediction, or where the trained models need to be trained on specific
subsets of data that cannot be generalized across all data. For example, you
have a dataset containing historical metrics across India for 28 states and 8
Union territories. Your model needs to be able to make predictions for users
in specific states or union territories. In order to increase accuracy to a level
that meets your business need, you split your training data by state and
union territory. The result will be a unique model for each of the state and
union territory leading to a total of 36 models.
In order to perform inference on all your 36 models, you would need an
inference endpoint for each, meaning you would pay the compute costs for
each. Instead, you can host all 36 models behind a singular endpoint and
specify the model the request is intended at inference time. To do this, when
we define the container used to host the model in the model definition, we
add in the MultiModel mode parameter:
MultiModalModel = sagemaker.create_model(

ModelName = 'ModelName',

ExecutionRoleArn = SageMakerRole,

Containers = {

'Image': image_repo_location,

'ModelDataUrl': 's3://model_bucket/model_path',

'Mode': 'MultiModel'

})

The models you will add to this endpoint should all be contained within the
s3 location. Each model artifact will be added to the endpoint and hosted
out of the container you specify in the Image parameter. If you need to host
a multi-modal endpoint with models in separate containers, the
specification will be as follows:
MultiModalModel = sagemaker.create_model(

ModelName = 'ModelName',

InferenceExecutionConfig = {'Mode': 'Direct'},

ExecutionRoleArn = SageMakerRole,

Containers = [{ 'Image': '123456789012.dkr.ecr.us-west-

2.amazonaws.com/ecr_repo_1:latest', 'ContainerHostName':

'ModelContainer_1'}, 'Image':

'123456789012.dkr.ecr.us-west-

2.amazonaws.com/ecr_repo_2:latest',

'ContainerHostName': 'ModelContainer_2'

}])

Once your model has been defined, you can create a Multi-model endpoint
configuration and deploy the model:
MultiModalEndpointConfig = sagemaker.create_endpoint_config(

EndpointConfigName = 'MultiModalEndpointConfig',

ProductionVariants=[

{

'InstanceType': 'ml.c5.xlarge',

'InitialInstanceCount': 2,

'InitialVariantWeight': 1,

'ModelName': 'MultiModalModel',

'VariantName': 'AllTraffic'

}

]

)

MultiModalEndpoint = sagemaker.create_endpoint(

EndpointName = 'MultiModelEndpoint',

EndpointConfigName = 'MultiModalEndpointConfig')

The requests you send to the Multi-model endpoint should contain the
target model parameter identifying the model artifact to route the request to.
You can use the SDK to invoke the model as shown earlier or the AWS
CLI.
Amazon SageMaker-runtime invoke-endpoint --endpoint-name

"MultiModelEndpoint" --body "{104.4, 102.2, 103.3}” --content-

type "text/json" --target-model "SpecificModelArtifact.tar.gz

InferenceResults.txt

Conclusion
In this chapter, we started our inference journey. Just like classic application
deployments, the methods, means, and options for machine learning
deployments are varied. This is a field of expertise that is expanding at a
remarkable rate alongside the size and complexity of models. The

deployment aspect of a machine learning model’s life cycle should be
treated as an interactive experiment apart from the training aspect.
Singleton deployment is preferable for the training and validation steps of
machine learning model creation, but more consideration is needed once
your model is ready to be deployed and used for customers.
That consideration should include your deployment option between real-
time, asynchronous, and batch. It should include specifying the exact
compute instance type that will power your model or opting for a serverless
implementation. It should include the type of data being sent to your model
and how you want your model to respond to determine whether and how it
should scale.
Finally, the deployment is just part of the journey. Monitoring the health,
quality, and validity of your model is an ongoing process that requires some
unique methods that can leverage the power of Amazon SageMaker to
provide clarity.
Both we and our SRE have finished this part of our journey on deploying
our models; out journey will continue in Chapter 9, Wisdom at Scale With
Elastic Inference.

Points to Remember
During the initial experimental phase of a machine learning project,
deploying a model locally is acceptable, but when you think of production
deployments, you need to be better prepared. At its core, your model needs
the support of a transactional system to supply it requests and return the
responses. Not too long ago, simply putting your model behind a REST
endpoint from your notebook was acceptable. Now, with Machine Learning
applications gaining first-class citizen status alongside long-standing
application development projects, a more mature, repeatable, and flexible
approach is needed. Here are a few points to remember when considering
your deployment approach:

Your model will need to be able to accept the data profile sent to it.
Sending a single feature is one thing, but large images, long blocks of
text, or massive tensors are another; make sure your serving
application can accept and manage the data payload being sent.

Your model will likely be part of a larger, complete, end-to-end
machine learning application. It is not uncommon that a request is first
enriched with other data sources, transformed, passed through other
models, or even (de) compressed before it gets to your model. Make
sure you have complete visibility and that your model is ready for
integration rather than simply being experimental.
DevOps is more than a catchphrase. DevOps is a function of
information. Make sure you monitor your model’s platform metrics
like memory, CPU, disk operations, and also the unique elements of
machine learning models. Use this information to inform your
deployment methods.
You will rarely work in isolation on any project, much less on one
focused on machine learning tasks. Make sure you design deployment
methods that include change management approvals; operations
considerations like documentation, runbooks, and automation; and
your fellow data scientists’ visibility.

Multiple Choice Questions
Use these questions to challenge your knowledge of deploying machine
learning models on AWS.

1. Which of these is not a deployment option available for Machine
Learning models in Amazon SageMaker?

a. Real-time
b. Part-time
c. Batch
d. Asynchronous

2. What is the Amazon SageMaker capability that can be leveraged
to get recommendations on endpoint configurations?

a. SageMaker Compute Recommender
b. SageMaker Cost Optimizer
c. SageMaker Inference Recommender
d. SageMaker Endpoint Confabulator

3. How can you scale the compute associated with your Machine
Learning model deployment once it is in production?

a. SageMaker just sort of does it for you
b. Application Auto Scaling
c. Application Right Sizing
d. SageMaker Load Balancer

4. Which of the following is most accurate for the kind of models
that can be hosted with Amazon SageMaker?

a. Compiled models
b. Regression models
c. Any model that can run on Graviton
d. Any model that adheres to the documented container

specification

5. What is the service that allows you to deploy models to edge
devices?

a. Amazon SageMaker Model Registry
b. Amazon SageMaker Edge Pusher
c. Amazon SageMaker Cog Master
d. Amazon SageMaker Edge Manager

Answers
1. b
2. c
3. b
4. d
5. d

Further Reading
The following are select readings that expand on the topics presented in this
chapter and are resources to continue your learning journey:

Machine Learing Ops using Edge Devices:
https://aws.amazon.com/blogs/machine-learning/mlops-at-the-
edge-with-amazon-sagemaker-edge-manager-and-aws-iot-
greengrass/
Scaling Inference with Yolo5:
https://aws.amazon.com/blogs/machine-learning/scale-yolov5-
inference-with-amazon-sagemaker-endpoints-and-aws-lambda/
Accelerating Hugging Face Transformers:
https://huggingface.co/blog/bert-inferentia-sagemaker
Fine Tuning and Deploying Self-Managed Scripts:
https://aws.amazon.com/blogs/machine-learning/fine-tune-and-
deploy-a-summarizer-model-using-the-hugging-face-amazon-
sagemaker-containers-bringing-your-own-script/
Curated SageMaker Examples: https://github.com/aws/amazon-
sagemaker-examples
Understanding how to leverage Experiments and Pipelines:
https://aws.amazon.com/blogs/machine-learning/organize-your-
machine-learning-journey-with-amazon-sagemaker-experiments-
and-amazon-sagemaker-pipelines/

https://huggingface.co/blog/bert-inferentia-sagemaker

CHAPTER 9
Wisdom at Scale with Elastic Inference

Introduction
SageMaker is such a cool name for the AWS AI/ML service, don't you think?
According to the author, there could not be a more apt name for the service. It
literally means "the service that makes a sage", which we could paraphrase as
"that which enables the creation and delivery of wisdom". In practical terms, we
could presume that SageMaker will help us create models, aka "sages", with the
ability to detect and predict new information, namely, "wisdom". The term
"maker" indicates that the models ("sages") have to be trained ("made"), and this
service enables us to do that in a standardized, easy-to-use manner. As we
discussed in the previous chapters, Amazon SageMaker
(https://aws.amazon.com/sagemaker/) is a managed AWS service providing
end-to-end capabilities to build and run ML models at scale. SageMaker provides
several broad and deep features to cater to every aspect of an ML workflow across
domains, use cases and industries. If you recollect what we learned in Chapter 1,
Introducing the ML Workflow, and some of the other chapters where we covered
specific aspects of the workflow, you will see that SageMaker has removed all the
guesswork and hard work associated with what traditionally used to be really
complex tasks, including data pre-processing, feature engineering, algorithm
selection, model training, inference and deployment.
In Chapter 3, Predicting the Future with Features; Chapter 4, Orchestrating the
Data Continuum; Chapter 5, Casting a Wider Net; Chapter 6, Iteration Makes
Intelligence; and Chapter 7, Let George Take Over of this book, we learned how
to use Amazon SageMaker notebooks to perform feature engineering and feature
selections and how to use AWS Glue ETL to build data orchestration pipelines.
We also reviewed common approaches and best practices to select algorithms and
neural network architectures, trained and tuned our ML model with SageMaker
training, walked through using low-code, no-code ML options with SageMaker
Canvas and AutoGluon, and learned about various options to get your trained
model ready for inference with SageMaker Model Deployment. In this chapter,
we will focus specifically on setting up enterprise scale inference endpoints for
real-time predictions and batch transform options for non-real-time asynchronous
predictions. We will learn how to create a model package from our trained model,

use SageMaker for building real-time inference endpoints, run batch inference,
and use the purpose-built feature AWS Elastic Inference and leverage the custom
chipset AWS Inferentia.

Structure
In this chapter, we will dive deep into the following topics:

Understanding SageMaker ML Inference options
Running Inference with real-time endpoints
Running Inference with serverless endpoints
Running Inference with Batch Transform
Running Inference with SageMaker Elastic Inference

Objectives
In this chapter, we will discuss ML inference and understand why is it important.
We will learn about the different types of inference options we can set up with
SageMaker hosting both real-time and batch. Further on, we will learn about
Elastic Inference, an accelerator instance for ML inference. Finally, we will
execute code samples to prepare, train models and try out some of the inferencing
options that SageMaker supports.

Understanding SageMaker ML Inference options
Just like wisdom that can be imparted in one fell swoop instantly or can be gained
as an outcome of a process that matures over time, SageMaker provides you
several options to stand up your model to support inference requests. Consider the
following image showing the various ways in which you can host and run
inference of your ML models on SageMaker. As you can see, based on your
business problem, your requirements, how you want to make your model
accessible to consuming applications or users, and depending on the cost or
capacity constraints you may have, you can configure SageMaker to support your
model inference accordingly. We will dive deep into each of these options in this
section. Refer to Figure 9.1:

Figure 9.1: SageMaker Hosting inference options

In addition to these hosting options, SageMaker provides purpose-built
accelerators to help you improve model performance efficiencies, such as
SageMaker Elastic Inference
(https://docs.aws.amazon.com/sagemaker/latest/dg/ei.html) and the AWS
Inferentia chipset (https://aws.amazon.com/machine-learning/inferentia/). We
will learn about these accelerators in this chapter, along with code samples of how
to use them for your ML needs. But first, let us review what the various inference
options actually mean, why we need them, and how to use them. The biggest use
of a model is its ability to detect useful information and predict future events. The
detection and prediction capabilities of a model are realized during inference,
after training is complete and the model is deployed or hosted. In SageMaker, the
model hosting begins with executing the CreateModel API
(https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateM
odel.html), which requires a Docker container image of model and algorithm
dependencies, and the trained model artifacts to create a callable version of the
model. After the model is created, it can be hosted on a compute resource called
an endpoint and invoked with a request message to received prediction outputs.
This function is called running an inference or making predictions. In this section,
we will discuss the options available during model creation and hosting because
the inputs vary based on a chosen configuration option for the hosting.

SageMaker real-time endpoints for one-model one-
container
As the name indicates, real-time endpoints provide a request/response paradigm
of interaction for running inference with the model, with the requestor waiting
until a response is received. Remember the ATM cash withdrawal flow we
reviewed in Figure 5.2: Example of a deterministic algorithm in Chapter 5,
Casting a Deeper Net? Assume that you have a mobile banking application
similar to that flow, using which you made a request to check your account
balance. Until the response to that action is received, the mobile application holds
that page and does not allow you to perform a new action. This is a basic example
of a request/response. Another example is when you log in to your banking
application. When your app makes the login request based on credentials you
entered, its process thread cannot execute any other action until a response is
received. There are several such examples, like when you check out at
Amazon.com and click on Submit, the requesting page waits until the order is
submitted and an acknowledgement is received. Similarly, when you set up a
SageMaker real-time endpoint, you submit an inference request and wait until you
receive a response from the endpoint before proceeding to execute the next line of
code. Real-time endpoints are well suited for low latency, high throughput
inferencing needs like fraud detection for banking transactions, stock price
predictions, airplane autopilot course corrections, and real-time threat detection
for security systems. Refer to Table 9.1:

API to use Parameters for option Value types for option

CreateModel PrimaryContainer Image
ModelDataUrl

CreateEndpointConfig ProductionVariants InstanceType
InitialInstanceCount

CreateEndpoint EndpointName
EndpointConfigName

Table 9.1: SageMaker Hosting option for one-model, one-container endpoints

In a one-model, one-container option, we host a single model using a single
serving container that contains all the dependencies for the model to create the
callable model. We specify the serving container using PrimaryContainer in the
CreateModel API. The model is then hosted by creating an endpoint
configuration specifying a SageMaker ML instance type, the count of initial
instances, along with the model name used to run the CreateModel API. Finally,
we execute the CreateEndpoint API to instruct SageMaker to provision a new

compute instance, start it up, deploy the container image on to this instance, load
up the model artifacts, and create a callable version capable of accepting inference
requests and responding with a prediction. All this heavy lifting is done by
SageMaker behind the scenes, saving you both time and money.

SageMaker real-time endpoints for multi-model one-
container
Commonly called Multi-Model endpoints, this hosting option provides the ability
to use a single endpoint to host multiple models in real time, providing
applications with the flexibility to serve requests in multiple dimensions (a model
per dimension, for example, if you have a use case to predict housing prices for
the whole of the US, you may train separate models for each city and host all of
them in a multi-model endpoint) simultaneously and save on hosting costs. The
trick is to provide an Amazon S3 URI location to a folder containing artifacts for
multiple models (with each model in its own folder) to the CreateModel API, but
you need to ensure that your container image for serving includes all the
dependencies and code to host all the models you want to use for inference with
this endpoint. With multi-model endpoints, you can host 1000+ models in a single
endpoint. Refer to the following table for the parameters you need to fill for the
multi-model, one-container hosting option.

API to use Parameters for option Value types for option

CreateModel Containers - specify a single
container object

Image
ModelDataUrl - specify S3
folder containing artifacts for
multiple models
Mode - 'MultiModel'

CreateEndpointConfig ProductionVariants InstanceType
InitialInstanceCount - specify at
least two instances

CreateEndpoint EndpointName
EndpointConfigName

Table 9.2: SageMaker Hosting option for multi-model one-container endpoints

Multi-model endpoints are very good at saving costs when compared to creating
separate endpoints to host each model. However, the decision to use a particular
model artifact occurs at runtime, when an inference request is received by the
endpoint; hence, you should see a higher response latency compared to dedicated
endpoints for each model. The good news is that SageMaker takes care of

memory management of endpoint resources across models based on incoming
traffic and observed scaling patterns during peak and off-peak usage.

SageMaker real-time endpoints for multi-model multi-
container
An advanced configuration of multi-model endpoints is the option to specify
multiple containers, aka multi-container endpoints. This removes the constraint
with the single container multi-model endpoints where all models had to use
either the same ML framework, such as MXNet, TensorFlow or PyTorch, or an
algorithm family like XGBoost or Linear Learner. For a list of all the supported
algorithms and frameworks for multi-model (single-container) endpoints, refer to
https://docs.aws.amazon.com/sagemaker/latest/dg/multi-model-
endpoints.html#multi-model-support.
Multi-container endpoints support providing multiple container images (up to a
maximum of 15 containers) at the time of creation, along with providing multiple
model artifacts for the various models that will service the inference requests. By
providing the flexibility to use separate container images, you can now create a
single endpoint that can automatically serve models from different frameworks
and algorithm families, enabling the provisioning of an enterprise scale inference
framework. Refer to Table 9.3:

API to use Parameters for option Value types for option

CreateModel Containers - specify multiple
container objects, one for each
container image. The image should
be pre-built with model framework
dependencies and model artifacts.

Image
ContainerHostName

CreateModel InferenceExecutionConfig Mode

CreateEndpointConfig ProductionVariants InstanceType
InitialInstanceCount - specify at
least two instances

CreateEndpoint EndpointName
EndpointConfigName

Table 9.3: SageMaker Hosting option for multi-container endpoints

As you can see from the previous table, the main difference between multi-model
and multi-container options is how you configure the parameters for the
CreateModel API. In this option, you specify a Containers list of dictionaries
with multiple unique container images, one for each model served by this

endpoint. You also specify a host name for the container that is used to reference a
specific container at the time of inference. You do not specify an S3 URI for
model artifacts because the expectation is that you pre-build your container with
your trained model. You also need to specify an additional parameter called
InferenceExecutionConfig with a Mode that can be either Direct or Serial.
Direct indicates that at the time of inference, a specific container will be
referenced when the endpoint is invoked, and Serial refers to executing each
container in sequence, as you would in an inference pipeline.

SageMaker endpoints for asynchronous inference
So far, we have learned how to run a real-time request/response inference
paradigm for our models on SageMaker. Now, we will learn how to run
asynchronous (https://aws.amazon.com/about-aws/whats-
new/2021/08/amazon-sagemaker-asynchronous-new-inference-option/) or
near-real-time inference. Note that asynchronous does not mean batch inference,
which we will cover in a subsequent section, but it is more suited for scenarios
where an immediate low latency response is not needed and the requestor is not
waiting to receive a response. SageMaker will queue inference requests, process
them together and notify the requestor using Amazon Simple Notification Service
or SNS (https://aws.amazon.com/sns/) about whether the requests were
successful or ended up in error. The results are sent to an Amazon S3 bucket
specified at request time. Refer to Table 9.4:

API to use Parameters for option Value types for option

CreateModel PrimaryContainer Image
ModelDataUrl

CreateEndpointConfig ProductionVariants InstanceType
InitialInstanceCount

CreateEndpointConfig AsyncInferenceConfig S3OutputPath
NotificationConfig

CreateEndpoint EndpointName
EndpointConfigName

Table 9.4: SageMaker Hosting option for asynchronous endpoints

The configuration for CreateModel in the case of asynchronous hosting is the
same as when you create a single-model, single-container real-time endpoint. The
difference is in how you specify the CreateEndpointConfig. You add a new
configuration option called AsyncInferenceConfig when creating the endpoint

config and provide an Amazon S3 bucket and prefix for where your inference
response outputs are to be stored. You also should specify a NotificationConfig
object that contains SNS topics for success and error messages. Asynchronous
inference hosting supports larger request message sizes (as big as 1GB) and can
handle sustained processing times of up to 15 minutes. Ideally, you should use an
AWS Lambda function to be triggered on receipt of the SNS notification of
inference request completion. The SNS notification will contain both the input
and the output parameters from the inference job so that you can successfully map
which responses are for which requests. So, if you don’t want to go full batch
mode but are OK to wait for a little bit to receive your inference requests, and you
need the ability to handle bigger message sizes, then asynchronous hosting option
is the best for your needs.

SageMaker endpoints for serverless inference
Having the ability to configure hosted endpoints for real-time and near-real-time
inference requests is great, and you can specify how much you want to scale up to
by providing an initial instance count. But what if you had no idea what instance
type you needed or if you are cost constrained to pay for even a single initial
instance. Granted that you can specify an instance count of zero for asynchronous
endpoints, but let us say you don't need the ability to process large message sizes
or for longer durations, and you still want to save on inference costs. With real-
time and near-real-time endpoints, you keep accruing costs for the duration the
instances are up and running, not just when they are serving requests. So the
minute you spin up these endpoints, you are billed, whether or not they are in use.
To save on endpoint infrastructure costs, you can use serverless inference. With
SageMaker serverless inference
(https://docs.aws.amazon.com/sagemaker/latest/dg/serverless-
endpoints.html), you can stop worrying about provisioning and managing
inference instance counts, autoscaling policies and up time, because you are
charged for when the instances are serving requests and not for whenever they are
running. This helps implement a truly pay-as-you-go model for ML inference.
Refer to Table 9.5:

API to use Parameters for option Value types for option

CreateModel Containers - specify a single
container object

Image
ModelDataUrl
Mode - 'SingleModel'

CreateEndpointConfig ProductionVariants -
ServerlessConfig

MemorySizeInMB
MaxConcurrency

CreateEndpoint EndpointName

EndpointConfigName

Table 9.5: SageMaker Hosting option for serverless endpoints

For serverless inference, we specify a single container object with a container
image, the Amazon S3 location of where the model artifacts are stored (we can
also use a SageMaker Model Registry and provide a ModelPackageName), with the
Mode as a SingleModel when creating our model using the CreateModel API. We
also need to provide a ServerlessConfig input to our CreateEndpointConfig
API call, specifying the MemorySize for our serverless compute and the maximum
count of concurrency requests it should handle. The CreateEndpoint remains the
same. And this is how we set up serverless inference with SageMaker hosting.

SageMaker transformer for batch inference
If our need is to process inference for large input datasets, our preferred option is
SageMaker Batch Transform
(https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html).
For example, suppose your company's leadership want to evaluate the overall
performance of your contact centre agents based on historical call transcripts. You
train a text classification model that could predict whether an agent successfully
helped a customer based on certain keyword references in the transcript. You
iteratively train the model and evaluate whether it performs well. You now need
to run this model against your historical call transcripts but notice that you have
more than a million calls that you need to analyse. You cannot use real-time or
asynchronous endpoints because that will be too time-consuming and cost
prohibitive. This is where a batch inference option can help you. SageMaker
Batch Transform abstracts the heavy lifting associated with infrastructure
provisioning and management of batch jobs, and it makes it easy to set up and run
batch inference. Refer to Table 9.6:

API to use Parameters for option Value types for option

CreateModel PrimaryContainer Image
ModelDataUrl

CreateTransformJob BatchStrategy ‘MultiRecord’

MaxPayloadInMB <= 100MB

TransformInput S3DataSource
SplitType – ‘Line’

TransformOutput S3OutputPath

TransformResources InstanceCount
InstanceType

Table 9.6: SageMaker Hosting option for batch transform

Similar to what we did in the case of real-time, we first must use the CreateModel
API to build a model. However, instead of creating endpoints, we use SageMaker
Transformer libraries to create a transform job. You will need to decide on a batch
strategy you want to use, such as SingleRecord, if you want to send one row at a
time for inference, or MultiRecord if you want to send mini-batch of rows for
inference. For your BatchStrategy to be considered, you need to specify the
SplitType in TransformInput. For example, you can choose a MultiRecord
strategy with the SplitType as Line to indicate that every line is a new record.
You should specify the S3DataSource in TransformInput containing the S3
location of your input dataset for inference and specify the S3OutputPath in
TransformOutput to indicate where you want the results to be saved. You should
also specify TransformResources to let SageMaker know what instance type and
counts to use when setting up the batch transform job.
And that brings us to the end of this section. As you can see, Amazon SageMaker
provides several flexible and easy-to-use options to host inference for various
request modalities. Do not worry if this was too much to learn or understand; we
are not going to be just covering theory in this book. We will also try out some of
these inference options and see them in action. So if you are in the mood for some
coding and want to learn SageMaker just as the experts would, fasten your seat
belts and move on to the next section.

Running Inference with SageMaker Hosting
In the previous section, we discussed how SageMaker provides a number of
inference options for different types of request architectures. In this section, we
will roll up our sleeves and dive right into a SageMaker Studio notebook to
execute code samples to set up a single-model, single-container real-time
endpoint for a trained model and send some inference requests to test it out. We
will then ask SageMaker to configure us a serverless endpoint for our model and
see how it works. Finally, we will set up a batch transform job using SageMaker
and learn how to run batch inference for a trained model. Get ready, it’s coding
time!
To execute the examples in this section, we will use SageMaker Studio
notebooks; so, if not already done, you will have to onboard to SageMaker Studio
and git clone our book repository. Follow the instructions in the Setting up your
AWS account section of Chapter 2, Hydrating Your Data Lake, to sign up for an
AWS account. Once you have signed up, log in to your AWS account using the
instructions at

https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html. You need
to create an Amazon S3 bucket
(https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-
overview.html) if you have not already done so in the previous chapters and note
down the name of the bucket. Next, follow the instructions in the Technical
Requirements section of Chapter 3, Predicting the Future With Features, to
onboard to an Amazon SageMaker Studio domain and clone the book’s GitHub
repository (https://github.com/garchangel/AIMLwithAWS). Before we open
our notebook, we need to set up IAM permissions for our SageMaker Studio role
to allow working with our AWS AI services in this chapter.

Setting up IAM permissions
Our SageMaker Studio notebook comes up with default IAM permissions for
working with SageMaker features and access S3 buckets, but it does not include
access to the AI services we will use in this chapter. We will have to attach
additional policies to our role to provide it with the necessary permissions.
Execute the following instructions to augment your SageMaker role:

1. If not already, done, log in to AWS Management Console, type SageMaker
in the services search bar at the top, and navigate to the SageMaker console.
Under Getting started in the left menu, click on Studio. If you have
already on-boarded to SageMaker Studio, you will see the username you
created appearing under the Select user profile list box. Select your user
profile and click on Open Studio. If you did not onboard to SageMaker
Studio, do so by following the instructions in the Technical Requirements
section of Chapter 3, Predicting the Future With Features, to onboard to an
Amazon SageMaker Studio domain and clone the book’s GitHub repository
(https://github.com/garchangel/AIMLwithAWS).

2. In either case, navigate to the Amazon SageMaker console, click on
Domains in the left pane, click on your domain name, and then on the
Domain settings tab. Copy the Execution role ARN that is displayed in the
General settings pane in the bottom-right corner of the page (by clicking
on the two squares on the left of the role), as shown in the following image:

https://github.com/garchangel/AIMLwithAWS
https://github.com/garchangel/AIMLwithAWS

Figure 9.2: Copy Studio execution role ARN

3. Now, type IAM in the services search bar and navigate to the IAM console,
as shown in the following image:

Figure 9.3: Search for IAM service

4. In the IAM console, select Roles from the left menu, and type only the role
name from the ARN you copied, which is the portion of the ARN that
begins with AmazonSageMaker-ExecutionRole. Press Enter to bring up the
role. Refer to Figure 9.4:

Figure 9.4: Lookup IAM role

5. Click on the role name to select the role, and under Permissions policies,
click on the Add permissions button and select Attach policies. Refer to

Figure 9.5:

Figure 9.5: Attach policies to role

6. We need to add an IAM read only policy to our SageMaker role to allow us
to use the execution role for some of our inference tasks. Type IAM in the
policy search bar and select the IAMReadOnlyAccess policy. Click on Attach
policies at the bottom of the screen, as shown in the following image:

Figure 9.6: Attach IAM Read Only policy

Now, go back to your studio notebook and navigate to the left pane; click on the
folder with the book name and then on the Chapter-09 folder. Open the running-
inference-sagemaker-hosting.ipynb Jupyter notebook by clicking on it.
Before we can get to running inference, we need to pre-process our datasets and

train a model. The initial steps are for model training, and then we will branch
into separate sections to try each inference option. Execute the following
instructions to continue with your build activity:

1. Execute the first two cells to upgrade the SageMaker packages and import
boto3, numpy and the sagemaker libraries we need for running our code
samples. Before you execute the second cell, provide an Amazon S3 bucket
name (you must have created this based on instructions in the preceding
paragraphs). You can leave the prefix as is. We are also defining the handle
to the S3 service in this cell:
Import boto3

import io

import os

import time

import pandas as pd

import numpy as np

import sagemaker

import uuid

from sagemaker import image_uris

from sagemaker.inputs import TrainingInput

from sagemaker.estimator import Estimator

from sagemaker import get_execution_role

Enter a bucket name – you can use the same bucket you used in

other chapters

bucket = ‘<specify-your-s3-bucket-name>’

prefix = ‘aiml-book/chapter9’

s3 = boto3.client(‘s3’)

2. Now we will use the house prices dataset from Kaggle
(https://www.kaggle.com/c/house-prices-advanced-regression-
techniques), which is already provided as a CSV file in the GitHub
repository and became available to you when you cloned the repository.
Execute the next cell to load this CSV data into a Pandas DataFrame
(https://pandas.pydata.org/pandas-
docs/stable/reference/api/pandas.DataFrame.html):
load to dataframe

raw_df = pd.read_csv(‘kaggle-house-prices-dataset.csv’,

header=0)

drop columns containing null values

raw_df.dropna(axis=1, inplace=True)

raw_df.head()

https://www.kaggle.com/c/house-prices-advanced-regression-techniques
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html

3. In the following cell, we will create a low-dimensional dataset with and
bring the SalePrice feature to the first column to act as the label/prediction
feature:
Create a low dimensional dataset with a few numeric and

categorical features for our example

small_df =

raw_df[[‘SalePrice’,’LotArea’,’Street’,’LotShape’,’LandContour’

,’LotConfig’,’YrSold’,’SaleType’,’SaleCondition’]]

small_df.head()

4. We see the results as shown in Figure 9.7:

Figure 9.7: Raw dataset

5. Execute the next cell to perform encoding of our categorical features for all
features to be of type numeric. We will use the Pandas get_dummies method
to automatically one hot encode categorical features:
perform numerical encoding of categorical features

encoded_df = pd.get_dummies(small_df)

encoded_df.head()

6. We will see the results shown in Figure 9.8:

Figure 9.8: Encoded dataset

7. Execute the following cell to split the dataset for training and testing and to
remove the label feature from the test dataset:
Select 90% as train data and 10% as test data

train_index=int(0.9 * len(encoded_df))

train_df = encoded_df.iloc[:train_index,:]

test_df = encoded_df.iloc[train_index:,:]

remove the label feature from the test dataset

test_df_no_label = test_df.drop([‘SalePrice’], axis=1)

print(“Train dataset dimensions: “ + str(train_df.shape))

print(“Test dataset dimensions: “ +

str(test_df_no_label.shape))

8. Now, create CSV files of the datasets and upload them to your Amazon S3
bucket:
Create CSV files and upload to S3 bucket

train_df.to_csv(‘train.csv’,index=False, header=False)

test_df_no_label.to_csv(‘test.csv’,index=False, header=False)

s3.upload_file(‘train.csv’,bucket,prefix+’/train/train.csv’)

s3.upload_file(‘test.csv’,bucket,prefix+’/test/test.csv’)

9. Create a SageMaker Training Input object to abstract the train dataset
location for use during model training:
create a training input for SageMaker model training

train_input = TrainingInput(‘s3://{}/{}/{}/’.format(bucket,

prefix, ‘train’), content_type=’csv’)

10. Now we are ready for model training. Execute the next cell to configure the
hyperparameters for SageMaker XGBoost algorithm
(https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html).
SageMaker’s XGBoost is a best-in-class adaptation of the popular boosted
decision trees framework and is well suited for most regression and
classification tasks:
First let us define the hyperparameters

xgboost_hps = {

“max_depth”:”6”,

“eta”:”0.3”,

“gamma”:”2”,

“min_child_weight”:”4”,

“subsample”:”0.5”,

“objective”:”reg:squarederror”,

“num_round”:”30”

}

11. We are using SageMaker’s built-in version of XGBoost, so all we need to do
is refer to the container image uri at the time of training. Execute the next
cell to load reference to this image in a variable:

Next let us get the XGBoost built-in image

xgb_image = sagemaker.image_uris.retrieve(“xgboost”, ‘us-east-

1’, “1.5-1”)

12. Execute the next cell to define the output paths for the model artifacts:
Define the output path to store model artifacts

model_prefix = prefix+’/xgboost-model’

model_output = ‘s3://{}/{}/output’.format(bucket, model_prefix)

13. Set up the XGBoost Estimator object that abstracts the heavy lifting in
setting up training configuration, loading model artifacts, setting up
containers, provisioning training infrastructure and more:
Build XGBoost estimator

xgb_estimator = Estimator(image_uri=xgb_image,

hyperparameters=xgboost_hps,

role=sagemaker.get_execution_role(),

instance_count=1, instance_type=’ml.m5.2xlarge’,

volume_size=10, # 10 GB

output_path=model_output)

14. Execute the next cell to fit the estimator that will trigger the training job:
Fit the estimator to run training

xgb_estimator.fit({‘train’:train_input})

15. We specified num_rounds as 30, indicating the number of epochs the model
will train through our input training dataset. We will see the Root Mean
Squared Error (RMSE), which a standard regression metric printed by the
model for each round. The RMSE is an error metric, and it needs to reduce
during each round, indicating that the model is learning well:
[24]#011train-rmse:49154.59375

[25]#011train-rmse:48825.31641

[26]#011train-rmse:48730.51953

[27]#011train-rmse:48351.53516

[28]#011train-rmse:47955.95703

[29]#011train-rmse:47543.60938

That brings us to the end of the training section of the notebook. Now we come to
the main topic of this chapter: ML inference. We will now explore the different
types of inference we can set up for our trained model, how to configure and build
them, and how to run predictions using them.

Inference with real-time endpoints

In this section, we will build a single-model, single-container real-time endpoint,
upload our trained model and run predictions using this endpoint. Execute the
following instructions to proceed.

NOTE: You cannot directly execute this section; first, execute the model
training section (Step 1 to Step 15) and then move on to the code here. If
you try the following code directly, it will fail.

1. Execute the first cell in this section to print the location of where the trained
model artifacts are stored in our Amazon S3 bucket:
Model artifacts are stored here

print(xgb_estimator.model_data)

2. We see the following path printed:
S3://<your-S3-bucket>/aiml-book/chapter9/xgboost-

model/output/sagemaker-xgboost-2022-08-11-16-22-27-

785/output/model.tar.gz

3. Execute the next cell to run the CreateModel API and build a SageMaker
model from our trained model artifacts. Note that since we used SageMaker
to train our model in the previous section, we can directly use the estimator
object to deploy an endpoint. But in order to show you how you can use the
CreateModel, CreateEndpointConfiguration and CreateEndpoint APIs,
we take a low-level approach here. As you can see, we provide the
XGBoost container image and the S3 URL for the model artifacts as input
for this step:
get SageMaker boto3 handle

sm = boto3.client(‘sagemaker’)

our model name

model_name = ‘chapter9-xgboost-model-one-container’

now let us create a model based on the trained model

artifacts

model_res = sm.create_model(

ModelName = model_name,

ExecutionRoleArn = sagemaker.get_execution_role(),

PrimaryContainer = {

‘Image’: xgb_image,

‘ModelDataUrl’: xgb_estimator.model_data,

})

4. Execute the following cell to create a SageMaker Endpoint Configuration
for our model deployment. This is a key step, and we provide the model

name, the endpoint infrastructure instance type and the instance count as
inputs here. The InitialInstanceCount will ensure that there is at least as
many instances always running as the count provided here:
Ep_config_name = model_name +’-epconfig’

epcfg_response = sm.create_endpoint_config(

EndpointConfigName=ep_config_name,

ProductionVariants=[{

“VariantName”: “chapter9-test-variant”, # The name of the

production variant.

“ModelName”: model_name,

“InstanceType”: ‘ml.m5.xlarge’, # Specify the compute

instance type.

“InitialInstanceCount”: 1 # Number of instances to launch

initially.

}])

print(“Endpoint Configuration successfully created: “ +

epcfg_response[‘EndpointConfigArn’])

5. Execute the next cell to create our SageMaker real-time endpoint for our
trained model:
Ep_name = model_name+’-ep’

ep_response = sm.create_endpoint(EndpointName=ep_name,

EndpointConfigName=ep_config_name

6. Endpoints typically take 15 to 20 minutes to be provisioned. Execute the
following cell to check the Endpoint status. You can either refer to the
Endpoint status in the SageMaker Consoler at https://us-east-
1.console.aws.amazon.com/sagemaker/home?region=us-east-
1#/endpoints (make sure you use the right region for your AWS console),
or you can keep executing this following cell until the status changes to
InService. Go to the next cell only after the status printed in this cell
changes to InService:
Wait until the print statement here shows InService

print(sm.describe_endpoint(EndpointName=ep_name)

[‘EndpointStatus’])

7. Now we will test both the endpoint and the model by invoking the endpoint
with entries from our test dataset (without labels). Execute the following
cell to create a StringIO buffer of our test entries from the CSV file:
create a buffer for the csv request data from our test

dataset

from io import StringIO

inf_req = StringIO()

test_df_no_label.to_csv(inf_req,header=False, index=False)

8. Execute the following cell to invoke the endpoint to send input features
from the test dataset to your model and print the results from our model:
we need a runtime handler for SageMaker

sm_run = boto3.client(“sagemaker-runtime”)

now call the endpoint

predictions = sm_run.invoke_endpoint(

EndpointName=ep_name,

Body=inf_req.getvalue(), # the values from the StringIO

buffer we created in the previous cell

ContentType=’text/csv’

)

#check if we getproper response – the predicted sale prices

print(predictions[‘Body’].read().decode(‘utf-8’))

9. We see the following results (only a snapshot of the results is reproduced
here for brevity). These are predicted Sale Prices for houses from the test
dataset we kept aside initially:
159152.59375

211584.296875

205173.65625

173063.265625

198776.09375

That brings us to the end of this subsection on how to build and use real-time
provisioned endpoints in SageMaker for our trained models. We provided the
instance type and count, but if we need to scale up our instance count because we
suddenly receive a lot of traffic, we need to explicitly define an application
autoscaling policy and add our endpoint as a dimension to this policy. Further,
charges accrue for the duration the endpoint is up and running, irrespective of
whether or not it receives inference requests. SageMaker’s Serverless inference
option enable configuring and using endpoints without worrying about
infrastructure scaling.

Inference with serverless endpoints
In this section, we will learn how to build, deploy and use serverless endpoints.
We will use the same XGBoost model we trained earlier but deploy a serverless

inference option instead of a provisioned endpoint. Execute the cells in this
section based on the following instructions:

1. Execute the first cell in this section to create a SageMaker model from our
model artifacts, but specify the Containers objects instead of the
PrimaryContainer dictionary we used in the previous section:
get SageMaker boto3 handle

sm = boto3.client(‘sagemaker’)

our model name

model_name_serverless = ‘chapter9-xgboost-model-serverless’

now let us create a model based on the trained model

artifacts. For serverless we will use the Containers list

rather than the PrimaryContainer

model_res_serverless = sm.create_model(

ModelName = model_name_serverless,

ExecutionRoleArn = sagemaker.get_execution_role(),

Containers = [{

‘Image’: xgb_image,

‘Mode’: ‘SingleModel’,

‘ModelDataUrl’: xgb_estimator.model_data,

}])

print(model_res_serverless[‘ModelArn’])

2. Next, create a serverless endpoint configuration for our model by executing
the following cell:
Ep_config_name_serverless = model_name_serverless +’-epconfig’

epcfg_response_serverless = sm.create_endpoint_config(

EndpointConfigName=ep_config_name_serverless,

ProductionVariants=[{

‘VariantName’: ‘chapter9-serverless’,

‘ModelName’: model_name_serverless,

‘ServerlessConfig’: {

“MemorySizeInMB”: 3072,

“MaxConcurrency”: 25

}}])

3. Execute the following cell to create the serverless endpoint:
The name of the endpoint

ep_name_serverless = model_name_serverless+’-ep’

ep_response_serverless =

sm.create_endpoint(EndpointName=ep_name_serverless,

EndpointConfigName=ep_config_name_se

4. Execute the next cell a few times to check whether the endpoint is
InService before proceeding to use the endpoint for predictions. You can
also check the status in the SageMaker console at https://us-east-
1.console.aws.amazon.com/sagemaker/home?region=us-east-
1#/endpoints.
Wait until the print statement here shows InService – should

take 3 to 5 mins

print(sm.describe_endpoint(EndpointName=ep_name_serverless)

[‘EndpointStatus’])

5. Create a StringIO buffer from the CSV file:
create a buffer for the csv request data from our test

dataset

from io import StringIO

inf_req_svl = StringIO()

test_df_no_label.to_csv(inf_req_svl,header=False, index=False)

6. Finally, invoke the endpoint to run the predictions from our test entries:
we need a runtime handler for SageMaker

sm_run = boto3.client(“sagemaker-runtime”)

now call the endpoint

serverless_predictions = sm_run.invoke_endpoint(

EndpointName=ep_name,

Body=inf_req_svl.getvalue(), # the values from the

StringIO buffer we created in the previous cell

ContentType=’text/csv’

)

#check if we getproper response – the predicted sale prices

print(serverless_predictions[‘Body’].read().decode(‘utf-8’))

7. We get the following results printed. These are the Sale Prices predicted for
housing inputs from the test dataset (only a few entries have been
reproduced here for brevity).
159152.59375

211584.296875

205173.65625

173063.265625

198776.09375

176141.71875

That brings us to the end of this section. In the next section, we will learn how to
perform batch inference with SageMaker hosting.

Inference with Batch Transform
When the need is to run inference for large datasets without the need for a low-
latency response, for example, analyse call records and classify calls for analytics,
you can use the SageMaker CreateTransformJob API to run a Batch Transform
(https://docs.aws.amazon.com/sagemaker/latest/dg/batch-transform.html).
Follow the instructions given here to execute the cells in this section to build and
run a batch transform job for our XGBoost model:

1. First, let us define the S3 locations for our test dataset and output for our
batch job; execute the first cell in this section:
S3 location for our test dataset

s3_test = ‘s3://{}/{}/{}’.format(bucket, prefix,

‘test/test.csv’)

s3_batch_out = ‘s3://{}/{}/{}’.format(bucket, prefix,

‘batch/output’)

2. In the next few cells, we will build three dictionary objects: one for inputs to
the batch transform job, one for storing the transform output configuration,
and one for provisioning compute resources for the transform job. Execute
the next cell to define the inputs to the job:
input details for the Batch Transform

transform_input = {

‘DataSource’: {

‘S3DataSource’: {

‘S3DataType’:’S3Prefix’,

‘S3Uri’:s3_test

}},

‘ContentType’:’text/csv’,

‘SplitType’:’Line’

}

3. Execute the next cell to define the output configuration for the batch
transform:
location for storing batch outputs

transform_output = {

‘S3OutputPath’:s3_batch_out,

‘AssembleWith’:’Line’

}

4. Execute the next cell to define compute resources:
configure compute for the batch transform

transform_resources = {

‘InstanceType’:’ml.m5.2xlarge’,

‘InstanceCount’: 1

}

5. Now, execute the following cell to start our batch transform job after
providing additional inputs like a job name, the name of our XGBoost
model, a batch strategy, which is MultiRecord in our case, using mini
batches, with the SplitType as Line (we specified this in the transform
input configuration cell earlier):
run the batch transform job

batch_job_name = ‘chapter9-batch-inference’

batch_res = sm.create_transform_job(

TransformJobName=batch_job_name,

ModelName=model_name,

MaxPayloadInMB=1,

BatchStrategy=’MultiRecord’,

TransformInput=transform_input,

TransformOutput=transform_output,

TransformResources=transform_resources)

6. Once the batch job is complete, we will extract the outputs to review the
inference results from the job. Execute the next cell to review the results:
Read and print the outputs from the batch transform job

out_file = ‘test.csv.out’

s3.download_file(bucket, prefix+’/batch/output/’+out_file,

out_file)

out_df = pd.read_csv(out_file,header=None)

out_df.head()

7. We get the following results printed. These are the predicted Sales Price for
the houses:
0

0 159152.593750

1 211584.296875

2 205173.656250

3 173063.265625

4 198776.093750

And that is how you set up batch inference for your trained models in SageMaker.
In the next section, we will learn how to accelerate our inference performance by
adding GPU burst capacity to a CPU instance using SageMaker Elastic Inference
(https://docs.aws.amazon.com/elastic-inference/latest/developerguide/what-
is-ei.html).

Adding a SageMaker Elastic Inference (EI)
accelerator
When you use provisioned endpoints with compute that you specify, you get
charged for the duration those instances are up and running. Suppose you have a
high throughput real-time inference need but the traffic is unpredictable,
provisioning a GPU instance to meet the throughput needs may work, but it is not
cost-effective. With Elastic Inference (EI), you configure a CPU instance
endpoint, and whenever you need the burst GPU capacity for traffic spikes, EI
will automatically supply that additional capacity. In this section of the notebook,
we will learn how to add EI to your real-time endpoint to ensure GPU capacity
when you need it for your inference traffic. Note that EI works only for computer
vision ML domain, and the models have to be built using one of the standard ML
frameworks, like Tensorflow, PyTorch, or MXNet. For our example, we will use
the pre-trained ResNet50
(https://www.tensorflow.org/versions/r2.6/api_docs/python/tf/keras/applicatio
ns/resnet50/ResNet50) image classification model from Tensorflow, and we will
use Keras to load and deploy the model. Execute the following instructions to try
out EI:

1. For this section, we need to use a different Kernel to import our pre-trained
TensorFlow model. From your SageMaker Studio notebook, click on
Kernel in the top menu, and then click on Change Kernel:

https://www.tensorflow.org/versions/r2.6/api_docs/python/tf/keras/applications/resnet50/ResNet50

Figure 9.8a: Change Kernel

2. In the popup that appears for Image, select TensorFlow 2.6 Python 3.8 GPU
optimized, as shown in the following figure, and click on the Select button:

Figure 9.8b: Update the Kernel Image

3. Now, import the pre-trained model from the Tensorflow hub and save the
model to a local directory. The directory name must be numeric to ensure
that the save model action can associate a version to the model. Finally,
create a tar file of the saved model artifacts so that we can use it for
deployment. Execute the first cell to perform these tasks:
Import tarfile

import tensorflow as tf

from sagemaker.tensorflow import TensorFlowModel

from tensorflow import keras

import resnet50

resnet_model =

keras.applications.resnet50.ResNet50(weights=’imagenet’,

include_top=True)

save model and create a tar.gz that SageMaker needs to create

the Tensorflow estimator

m_dir = ‘1’

tf.saved_model.save(resnet_model,m_dir)

open a tar file and save model contents

with tarfile.open(‘model.tar.gz’,’w:gz’) as entry:

entry.add(m_dir)

4. Execute the next cell to load the model artifacts to your S3 bucket and
create a TensorFlowModel object from the artifacts:
Tf_path = ‘tensorflow/model/model.tar.gz’

tf_s3_path = ‘s3://{}/{}/{}’.format(bucket,prefix,tf_path)

s3.upload_file(‘model.tar.gz’,bucket,prefix+’/’+tf_path)

Create a Tensorflow estimator reference from the model

tf_model = TensorFlowModel(model_data=tf_s3_path,

framework_version=’2.3’, role=sagemaker.get_execution_role())

5. Execute the following cell to use the TensorFlowModel object to make a
deploy call providing the compute instance type and count to create a real-
time endpoint. What helps in attaching an EI instance to the deploy call is
the accelerator_type parameter. Specify an EI instance type here, such as
ml.eia2.medium. For a list of all available EI instances, you can visit
https://aws.amazon.com/machine-learning/elastic-inference/pricing/.
To deploy it to a SageMaker endpoint with an Elastic

Inference accelerator attached we simply pass this to the

deploy method

tf_endpoint = tf_model.deploy(instance_type=’ml.m5.xlarge’,

initial_instance_count=1, accelerator_type=”ml.eia2.medium”)

6. In the following cell, we will take an image of a cat and run predictions
against our model to check whether it classified the image correctly.
Execute the cell to pre-process the input image:
Import PIL

from keras.preprocessing.image import load_img

from keras.preprocessing.image import img_to_array

import matplotlib.pyplot as plt

cat_pic = load_img(‘phoebe.PNG’, target_size=(224,224))

plt.imshow(cat_pic)

plt.show()

7. We get the following output image. It looks skewed because we adjusted the
dimensions of the image to align with the model’s input feature dimension.

Figure 9.9: Pre-processed image of my son's cat Phoebe

8. Execute the next cell to get a numpy array of our image and expand the
dimensions to get a batch version with a shape that matches the model's
requirements:
np_arr = img_to_array(cat_pic)

arr_bat = np.expand_dims(np_arr, axis=0)

arr_bat.shape

9. We get the shape of the array for the image, as follows:
(1, 224, 224, 3)

10. In the following cell, we will use the preprocess_input and
decode_predictions utility classes from Tensorflow for our network to
improve prediction performance and convert model prediction outputs to a
list of classes with maximum confidence rather than an array. Execute the
cell and review the results:

preprocess the image for prediction

b4_pred_img =

keras.applications.resnet50.preprocess_input(arr_bat.copy())

make predictions and decode the output to a class

results = tf_endpoint.predict({"inputs": b4_pred_img.tolist()})

convert to numpy array

new_res = np.array(results['outputs'])

Get class predictions for the picture

print(keras.applications.imagenet_utils.decode_predictions(new_

res))

11. Review the printed results containing predictions from the ResNet50 model
for our input cat image. As you can see, the model predicted the most
probable breed for the cat quite correctly:
[[(‘n02124075’, ‘Egyptian_cat’, 0.506083429), (‘n02123045’,

‘tabby’, 0.191357881), (‘n02123159’, ‘tiger_cat’, 0.1097463),

(‘n02091467’, ‘Norwegian_elkhound’, 0.0174919851),

(‘n03594734’, ‘jean’, 0.0171929821)]]

12. Navigate to the Amazon SageMaker console (https://us-east-
1.console.aws.amazon.com/sagemaker/home?region=us-east-
1#/endpoints) and delete the endpoints you created in this chapter if they
are no longer used so that you do not incur costs. Make sure you select the
correct region based on the AWS region you are in.

And that brings us to the end of this section and chapter. We hope you enjoyed
trying out the different ways to host your models for inference with Amazon
SageMaker. The options are built to cater to massive scale based on your
enterprise needs and diverse ML use cases.

Conclusion
Congratulations! Pat yourself on the back, because you have now learned
comprehensive skills required to build and run ML models on AWS using
Amazon SageMaker. Up until now, we covered the major stages of the ML
workflow, such as data preparation, model training and hosting. Model
monitoring and active learning are not in scope of this book; they may need a
separate book. We will include a few articles on these topics for further reading.
Remember to check out Chapter 12, Operationalized Model Assembly, to learn
about MLOps, an essential part of an ML project for enterprise CI/CD.

In the next chapter, we will pivot from using SageMaker to AWS AI services,
which are pre-trained models abstracted as APIs that can be directly used for
common ML use cases, without the need for ML expertise. In Chapter 10 –
Adding Intelligence with Sensory Cognition we will learn about AI services for
sensory cognition, and in Chapter 11 – AI for Industrial Automation, we will learn
about AWS services for industrial AI automation.

Points to Remember
In this chapter, we learned one of the key phases in the ML workflow, the primary
reason why a model is trained: predictions or inference. We covered the following
topics:

We started by understanding the different configuration options for setting
up inference with SageMaker hosting.
We learned about hosting options like real-time inference, multi-model and
multi-container inference, asynchronous inference, serverless inference, and
batch transform.
We then executed code samples on how to pre-process datasets, train a
model, and create a model package for deployment.
We then went hands-on and used the SageMaker boto3 Python SDK to
prepare model artifacts for deployment, which included creating a model
package, creating an endpoint configuration, and creating an endpoint that
serves as an API for inference.
For real-time inferencing, we saw how to create real-time and near-real-time
or asynchronous endpoints using SageMaker Python SDK. We also tested
the hosting options using the model we trained earlier in this chapter.
We configured the SageMaker Serverless inference, a newly launched
feature, and ran an inference test using the serverless endpoint.
We learned how to execute a transform job for batch inference in
SageMaker for our trained model and tested it with a dataset stored in
Amazon S3.
Finally, we learned how to set up and use Amazon Elastic Inference, an
advanced accelerator that provides GPU burst capacity for provisioned CPU
instances to accelerate prediction performance.

Multiple Choice Questions

Use these questions to challenge your knowledge of Amazon SageMaker hosting
options for ML models.

1. What are some of the hosting options that SageMaker supports? (Select
all correct options.)

a. Real-time inference
b. Batch transform
c. Serverless inference
d. Messaging and queuing inference

2. What is the order in which you configure steps for model hosting using
SageMaker Python SDK?

a. Create endpoint config, create model package, and then create
endpoint

b. Create endpoint, create model package, and then create endpoint
config

c. Create endpoint config, create endpoint, and then create model
package

d. Create model package, create endpoint config, and then create
endpoint

3. What is SageMaker Elastic Inference used for?

a. To autoscale SageMaker training job capacity
b. To run batch inference
c. For supervised learning
d. To automatically add GPU burst capacity to a CPU inference instance

to support high volume of requests

4. You cannot host a ML model in SageMaker if it is not trained in
SageMaker.

a. True
b. False

5. What is the maximum payload size for SageMaker Batch Transform?

a. 500 MB
b. 100 MB
c. 250 MB

d. 6 MB

Answers
1. a, b, c
2. d
3. d
4. b
5. b

Further Reading
Model monitoring with Amazon SageMaker:
https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
Active Learning of document processing workflows:
https://aws.amazon.com/blogs/machine-learning/active-learning-
workflow-for-amazon-comprehend-custom-classification-part-2/
Active Learning of Computer Vision workflows:
https://aws.amazon.com/blogs/machine-learning/using-amazon-
rekognition-custom-labels-and-amazon-a2i-for-detecting-pizza-slices-
and-augmenting-predictions/
Detecting bias in ML models: https://aws.amazon.com/blogs/machine-
learning/learn-how-amazon-sagemaker-clarify-helps-detect-bias/

CHAPTER 10
Adding Intelligence with Sensory

Cognition

Introduction
If you are a fan of science fiction books, you must have read at least one Isaac
Asimov book during your delightful sojourn. The author is a self-proclaimed fan
of Mr. Asimov's authentic dystopian portrayal of a not-too-distant future in which
mathematical statistics and historical information can be used to predict the
evolutionary trajectory of humanity, a branch of fictional science that Asimov
called Psychohistory. Now, where have we heard using mathematics, statistics and
historical data to make predictions before? If you are still guessing, right here, in
what we call AI/ML today. With Psychohistory, Asimov probably took the most
logical artistic liberty on how to apply math and history to predict the future, but
it indeed has an uncanny similarity to how we approach and use AI/ML. If you
have not tried an Asimov before, the author recommends starting with Foundation
(https://www.amazon.com/Foundation-Isaac-Asimov/dp/0553293354).
Another concept that that Asimov dealt with in his books and that is thrillingly
similar to what the world is moving toward is a future where humans are totally
reliant on robots (https://www.amazon.com/Isaac-Asimov-Collection-Robots-
Empire/dp/9124369896). To establish order, Asimov uses his three laws of
robotics (https://www.britannica.com/topic/Three-Laws-of-Robotics) as a guiding
design principle that all robots are deigned to follow, and he discusses ethical,
moral, and humanitarian conflicts that arise in detail in his stories.
In our current world, there are a lot of parallels to Asimov's fiction (it was written
in the 1950s), such as robots for vacuuming, dishwashing, mopping, industrial
robots that can make cars, agricultural robots than can perform farming, and
software robots that can fly planes. It is just that Asimov imagined his robots to
be of humanoid appearance, but the robots we use today are not. Asimov's robot
series is a fascinating read for sure, but what does that have to do with this
chapter? Not a lot, but there is relevance. Let us take Asimov's humanoid robot
with a positronic brain (https://www.litcharts.com/lit/i-robot/terms/positronic-
brain). It is, of course, a fictional concept created to imbue the story with logic,
but what would it really take to build a robot that could see, listen, speak and

https://www.britannica.com/topic/Three-Laws-of-Robotics
https://www.litcharts.com/lit/i-robot/terms/positronic-brain

understand. In other words, how can we add intelligence to a robot with sensory
cognition capabilities?
In the previous chapters, we learned every step of the ML workflow with real-
world scenarios and comprehensive coding samples, and we built our own ML
models using Amazon SageMaker and other AWS services. Specifically, we
learned how to perform data collection and feature engineering, how to automate
data orchestration pipelines, how to select and optimize an algorithm or neural net
for model train, how to train and tune models, how to use AutoML to save on ML
project time/costs, how to deploy our ML models, and how to run
inference/predictions off of our models. That pretty much covers most of the steps
of a ML workflow; in this chapter, we will pivot to a different branch of AWS
AI/ML stack: the AI services layer. Here, we will learn about key AWS AI
services for speech, text and vision domains, the use cases they can be applied to,
and how to build applications to leverage these AI services. We will, of course,
come back to our robot example and understand what AI services can be used to
build a cognitive robot.

Structure
In this chapter, we will dive deep into the following topics:

Introducing AWS AI services
Using Amazon Rekognition for computer vision
Using Amazon Transcribe for speech recognition
Using Amazon Translate for language translation
Using Amazon Polly for speech generation
Using Amazon Comprehend for deriving insights
Adding sensory cognition to your applications

Objectives
In this chapter, we will first get an overview of AWS AI services that are pre-
trained ML models available behind an API for a wide variety of common ML
use cases and domains. We will then focus on AWS AI services that provide
sensory cognition functions, such as speech understanding, text to speech, vision,
translation and deriving insights from textual data. We will understand the
benefits of these services and what use cases these can be applied for, and then we
will learn how to use these services in our applications with code samples.

Introducing AWS AI services
As we discussed in Chapter 1, Introducing the ML Workflow, in the Introducing
AI and ML on AWS section, AI services are powerful pre-trained models that
have been laser tuned to solve for specific use cases or domains well. Think of
these as some of the most common problems you can use AI/ML to solve;
organizations of all sizes are using them today. While this means that the services
are highly abstracted (you do not have access to the underlying models), it also
means that you can take your use case to production that much faster. This is
because the AI services provide access to running predictions with pre-trained
models by means of an API call. This means you do not have to process data,
train, tune or deploy models, so no ML skills are required. You just write a few
lines of code to make an API call, send your inputs and receive your predictions.
It is as simple as that. And we will cover how to build intelligent applications
using AI services in the later sections of this chapter. In terms of how these AI
services are categorized, the author likes to think that the services are organized to
address requirements in three major areas of interest: sensory cognition,
enterprise/industrial, and technology operations. This chapter will focus on the AI
services providing sensory cognition capabilities. In Chapter 11, AI for Industrial
Automation, we will discuss the other categories. To refresh our memory (because
we did learn about this in Chapter 1, Introducing the ML Workflow), we will now
review the groups of AI services that are part of the sensory cognition category,
from our list of AWS AI services. Refer to the following table:

ML problem
type

ML sub type ML use case AWS AI
Service

Service overview

Sensory
Cognition

Computer
Vision

Image
classification,
Object
detection

Rekognition Pre-trained ML models available as an
API for automating various video and
image processing tasks to infer
intelligent insights

Speech Speech to
text

Transcribe Converts pre-recorded and streaming
conversations to text transcripts using
pre-trained ML models available as an
API

Text to
speech

Polly Creates lifelike speech from text in
various voices and inflections using pre-
trained ML by means of an API

Text Sentiment
detection,
entity
recognition,
text
classification

Comprehend Natural language processing (NLP)
service pre-trained for entity recognition,
classification, sentiment, grammar and
language detection with transfer learning
capabilities available

Machine
translation

Translate Pre-trained ML service that provides
language translations capabilities using
an API

Text
extraction

Textract Intelligent text extraction from a variety
of document types and images using pre-
trained ML models

Intelligent
search

Kendra Enterprise search service powered by
NLP indexes using pre-trained ML
models with natural language query
capabilities

Chatbots Conversation
al interfaces

Lex Chatbot implementation using ML with
easy and intuitive interface to build
highly intelligent conversational
interfaces

Table 10.1: AWS AI services for sensory cognition

As you can see, AWS provides pre-trained AI services for common use cases in
the areas of computer vision, speech, text and chatbots. In this chapter, we will
dive deep into the core sensory cognition services like Amazon Rekognition,
Amazon Transcribe, Amazon Polly, Amazon Comprehend, and Amazon
Translate. And you will be surprised to see how it relates to all the discussion we
had about robots in the introduction to this chapter. Refer to the following picture
and try to visualize it representing a robot's head:

Figure 10.1: AWS AI services for cognitive functions

Amazon Transcribe for automatic speech recognition
The robotic ears should have the capability to detect voice in sound, and interpret
and understand the meaning of the spoken words, also called as automatic speech
recognition or ASR. Amazon Transcribe (https://aws.amazon.com/transcribe/)
is a fully managed AI service with powerful pre-trained ASR models that can not
only transcribe speech to text but can also help derive critical insights, supporting
both real-time and batch transcriptions with the ability to customize transcription
outputs using your own vocabulary or incrementally train ASR models unique to
your business semantics using custom language models. Amazon Transcribe
provides APIs
(https://docs.aws.amazon.com/transcribe/latest/APIReference/Welcome.html)
in different programming languages (for example, the Python SDK for
Transcribe:
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/
transcribe.html), using which you can easily transform your applications with
powerful ASR capabilities. The following image shows the Amazon Transcribe
console. We will use Amazon Transcribe APIs in the next section to learn how to
build speech recognition.

Figure 10.2: Amazon Transcribe Console

Amazon Rekognition for computer vision
William Shakespeare said, "Eyes are the window to your soul", but he was, of
course, not referring to the eyes of a robot, which are nothing but a set of curved
glass plates that capture light from objects into an image or video, namely, the
camera. More than just recording an image, our robot needs to be equipped with
some form of intelligence that can detect and recognize images to be functionally
useful. That way, our robot can take actions based on what it "sees" and react

intelligently to its environment. And this is why, for our robot's eyes, we can use
Amazon Rekognition (https://us-east-
1.console.aws.amazon.com/rekognition/home?region=us-east-1#/), a fully
managed computer vision AI service, with pre-trained models providing
capabilities for analysing images and videos, detecting objects in images, facial
feature comparison, content moderation and more. Due to the fact that these
powerful computer vision models are available as API calls, you can make your
applications vision AI capable with just a few lines of code, for a wide variety of
common vision-based use cases, including detecting whether your employees are
wearing personal protective equipment (PPE) as they walk into your facility.
The following image shows the Amazon Rekognition console. We will use
Amazon Rekognition APIs in the next section to learn how to build computer
vision as shown in the following image:

Figure 10.3: Amazon Rekognition console

Amazon Translate for machine translation
Father Thomas Keating said "God's first language is silence. Everything else is a
translation". To find peace, silence might be sufficient, but to live and interact
with the world, one needs language. Due to the evolution of multiple civilizations
across the world, we now have numerous languages, each with its own cultural
significance, societal embellishment, grammatical structure and inflection. With
as many as 7000 spoken languages in the world today, it is indeed a herculean
task, time intensive and highly cost prohibitive to manually translate languages
with a high degree of accuracy. So, if you build a robot that knows English well

but sell or deploy the robot in France or Germany, it will not be of much use. This
is where you can use a machine translation service like Amazon Translate
(https://aws.amazon.com/translate/), a fully managed AWS AI service for
neural machine translation supporting 75 languages (with more being added)
without the need for any ML training or expertise, by making a simple API call.
You can also customize translations using parallel data files
(https://docs.aws.amazon.com/translate/latest/dg/customizing-translations-
parallel-data.html) or custom terminology
(https://docs.aws.amazon.com/translate/latest/dg/how-custom-
terminology.html) to introduce your own unique style. Amazon Translate can
automatically detect the source language using another AWS AI service called
Amazon Comprehend (the brains of our robot), which we will cover in a
subsequent section. So, imagine we powered up your robot with Amazon
Translate, enabling it to listen and respond to you in the language of your choice,
wouldn't it be cool? You can also configure your robot to allow listening in one
language and responding in a different language. In fact, using Amazon
Transcribe and Amazon Translate, you can create a universal translator referred to
in Star Trek (https://memory-alpha.fandom.com/wiki/Universal_translator)
but for earth-based languages. That said, the sky's the limit on what you can do
with Translate. The following image, Figure 10.4, shows the Amazon Translate
console you can use to try real-time translations. In the next section, we will use
Translate APIs to learn how to add machine translation to applications:

Figure 10.4: Amazon Translate in action

Amazon Polly for text to speech
By now, we have a robot that can hear you (using Amazon Transcribe), see you
(with Amazon Rekognition), and translate what you spoke to other languages, but
it cannot yet speak back to you. We can install an audio player and speaker in the

https://memory-alpha.fandom.com/wiki/Universal_translator

robot, but we need to still find a way to synthesize text into an audio stream for
the robot to respond to you in speech. Amazon Polly
(https://aws.amazon.com/polly/) is a text to speech AI service providing
capabilities to add speech to your applications with just an API call, without the
need to train or manage ML models. Polly supports 33 languages, and 70+ voices
as of July 2022 and continues to add more languages and voices. With Polly, you
can work with the AWS team to create a custom voice for your brand, select from
a choice of three different speaking styles (standard, neural or newscaster) and
deliver real-life speaking experiences with your applications. So, Amazon Polly is
a good choice for us to speech enable our robot, and the good news is that we
have a wide variety of languages and both male and female voices to choose
from. In the next section, we will use the Polly API to demonstrate how to build
applications that use speech for response. The following image shows the
Amazon Polly console with the option to test voices in real time:

Figure 10.5: Amazon Polly console

Amazon Comprehend for deriving insights
While the sense organs provide inputs and respond to stimuli, the cognition aspect
comes from the brain in the human body. However, in the case of our AI services,
each service has a sensory component and a cognitive component combined to
provide the capabilities they are designed for. For example, in Amazon
Rekognition, you can think of the sensory component to be the layer that
processes the input images, and the cognitive component to be the layer that
derives meaning in the form of labels from the image. In the case of Amazon

Comprehend though, the service is tailored to uncover insights and patterns in
text, so it is purely for comprehension or cognition without the sensory aspect.
And that is why we chose Amazon Comprehend for the brains of our robot. With
features to detect named entities from text, ascertain key phrases, detect
sentiment, understand the grammatical syntax of text, detect dominant language,
determine and obfuscate personally identifiable information from text, and much
more, Comprehend is a core NLP service with rich features available behind a
simple API call, without the need to train or tune ML models. In the next section,
we will look at how to use Amazon Comprehend APIs to build NLP applications,
but for now, take a look at the following image for a view of the insights
generated by Comprehend in real time:

Figure 10.6: Amazon Comprehend real-time insights

Alright, it is time to fasten our seatbelts and start executing our code samples to
learn by doing. In this section, we reviewed the AWS AI services and walked
through the key AI services that simulate sensory cognitive functions by
visualizing an example of what we need to design a robot. In the next section, we
will run through code samples of using AWS AI service APIs for a variety of ML
tasks, all without requiring any ML training or development.

Adding sensory cognition to your applications

In the previous section, we discussed how to add cognitive capabilities using
AWS AI services for our robot example and what service we need to use for
which specific function. We also briefly discussed some of the features that these
services provide. We had a glimpse of what the AWS console looks like for these
services. In this section, we will change gears and follow a programmatic
approach to working with the APIs of these AI services; we will also learn how to
use them to transform enterprise applications and inspire endless innovation.
Before we get started though, we need to ensure that our pre-requisites are in
place.

NOTE: If you have already signed in to your AWS console, created an
Amazon S3 bucket, on-boarded to Amazon SageMaker Studio and cloned
the book's GitHub repository, you can skip the following paragraph and go
to the sub-section titled Setting up IAM permissions. If not, follow the
instructions from the following paragraph onward.

In case you still haven't signed up for an AWS account, now is the time to do so.
Follow the instructions in the Setting up your AWS account section of Chapter 2,
Hydrating Your Data Lake, to sign up for an AWS account. Once you have signed
up, log in to your AWS account using the instructions at
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html. If you have
not already done so, create an Amazon S3 bucket
(https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-
overview.html). Next, follow the instructions in the Technical Requirements
section of Chapter 3, Predicting the Future With Features, to onboard to an
Amazon SageMaker Studio domain, and clone the book's GitHub repository using
the link provided at the beginning of this book. We are interested in the Chapter
10, Adding Intelligence With Sensory Cognition, folder, but before we open our
notebook, we need to set up IAM permissions for our SageMaker Studio role to
allow working with our AWS AI services in this chapter.

Setting up IAM permissions
Our SageMaker Studio notebook comes with default IAM permissions for
working with SageMaker features and access to S3 buckets. But it does not
include access to the AI services we will use in this chapter. We will have to
attach additional policies to our role to provide it with the necessary permissions.
Execute the following instructions to augment your SageMaker role:

1. If not already done, log in to AWS Management Console, type SageMaker in
the services search bar at the top, and navigate to the SageMaker console.

Under Control Panel in the left menu, click on Studio. Then, click on the
Launch SageMaker Studio button on the right. If you have already
onboarded to SageMaker Studio, you will see the username you created
appearing under the Users section. If you have not onboarded to SageMaker
Studio, you can do so by following the instructions in the Technical
Requirements section in Chapter 3, Predicting the Future With Features to
onboard to an Amazon SageMaker Studio domain and clone the book's
GitHub repository (https://github.com/garchangel/AIMLwithAWS).

2. In the Control Panel page, copy the Execution role ARN that is displayed
in the Domain pane on the right of the page (by clicking on the two squares
on the right of the role), as shown in the following image:

Figure 10.7: Copy Studio execution role ARN

3. Now, type IAM in the services search bar and navigate to the IAM console,
as shown in the following image:

Figure 10.8: Search for IAM service

4. In the IAM console, select Roles from the left menu and type only the role
name from the ARN you copied, which is the portion of the ARN that

https://github.com/garchangel/AIMLwithAWS

begins with AmazonSageMaker-ExecutionRole-; then, press enter to bring
up the role. Refer to Figure 10.9:

Figure 10.9: Lookup IAM role

5. Click on the role name to select the role, and under Permissions policies,
click on the Add permissions button and select Attach policies. Refer to
Figure 10.10:

Figure 10.10: Attach policies to role

6. Now we will add a read only access policy for each service at a time. First,
type polly in the policy search bar and click on the checkbox to the left of
AmazonPollyReadOnlyAccess to select the policy. Do not click on the
Attach policies button yet; we have a few more policies to attach, and we
can do all of them at once here. Refer to Figure 10.11:

Figure 10.11: Add read only policy for Amazon Polly

7. Clear the polly filter by clicking on the X next to it; then, type transcribe in
the permissions search and add full access permissions for Transcribe
because we will be using Transcribe API to submit a job. Refer to Figure
10.12:

Figure 10.12: Select policy for Transcribe

8. Now, repeat step 6 for each service name, one service at a time, for
comprehend, translate, and rekognition, to add read-only policies for these
services. Remember to clear the filter for the previous service before
searching for the next service. Finally, click on the Attach policies button
in the bottom-right corner of the page. When you are done, you should see
the policies, as shown in the following image:

Figure 10.13: AI services policies attached

9. Now, click on the Trust relationships tab and then on Edit trust
policy. Copy and paste the following JSON structure to add trusted
relationships who can assume this execution role. After you have pasted the
JSON, click on the Update policy button in the bottom-right corner of the
page:
{

"Version": "2012-10-17",

"Statement": [

{

"Effect": "Allow",

"Principal": {

"Service": [

"sagemaker.amazonaws.com",

"transcribe.amazonaws.com",

"comprehend.amazonaws.com",

"rekognition.amazonaws.com",

"translate.amazonaws.com",

"s3.amazonaws.com"

]

},

"Action": "sts:AssumeRole"

}

]

}

10. Once you have added the JSON, your Trusted entities should look as shown
in the following image:

Figure 10.14: Trusted entities for the SageMaker execution role

Alright, now we are ready to start playing with the AI services themselves. To
execute the next set of steps, go back to your Amazon SageMaker console (type
SageMaker in the services search bar and navigate to the console). Click on the
Studio option under the Getting started menu on the left pane. Now, pick the
user profile for your SageMaker Studio domain that you created in the previous
chapters, from the list box and click on the Open Studio button. You should have
already cloned the book's repository from GitHub at this juncture. If not, refer to
the instructions at the beginning of this section. In your Studio page, on the left
pane, click on the folder named after this book, and then click on Chapter-10.
Now, click on the Jupyter notebook named sensory-cognition-aws-ai.ipynb to
open it. First, we need to import the libraries we need to run the APIs for our
services; execute the first cell to do this. As you can see, we are also declaring the
boto3 (AWS Python SDK -
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html)
handles for the various AI services in this step.
declare the boto3 handles for each AI service

transcribe = boto3.client("transcribe")

rekognition = boto3.client("rekognition")

translate = boto3.client("translate")

polly = boto3.client("polly")

comprehend = boto3.client("comprehend")

Amazon S3 (S3) client

s3 = boto3.client('s3')

Using Amazon Transcribe for speech recognition
We will first learn how to use Amazon Transcribe APIs to automate speech
recognition and create text transcripts from audio files containing human speech.
Execute the cells by reviewing the following instructions:

1. Execute the first cell in this section to declare the Amazon S3 bucket and
the prefix we will use. Provide the name of the Amazon S3 bucket you
created earlier:
bucket = <your-S3-bucket-name>

prefix = 'aiml-book/chapter10'

2. To run this code sample, we have provided you with an audio file of
conversation between an agent and a customer at a contact center. Execute
the next cell to upload this sample audio file to your S3 bucket:
First let us list our audio files and then upload them to the

S3 bucket

we will use the example audio file we provided with the repo

audio_dir = 'input/audio-recordings'

for sdir, drs, fls in os.walk(audio_dir):

for file in fls:

s3.upload_file(os.path.join(sdir, file), bucket,

prefix+'/transcribe/'+ os.path.join(sdir, file))

uri = "s3://" + bucket + '/'+prefix+'/transcribe/' +

os.path.join(sdir, file)

print("Uploaded to: " + uri)

3. Now, we will use the Transcribe API to start the transcription job. In this
example, we are using the asynchronous API, but Transcribe provides a
number of APIs to run streaming transcriptions, call analytics and much
more. For a full list of Transcribe APIs for Python, you can refer to
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/ser
vices/transcribe.html:
get the current time

now = datetime.now()

time_now = now.strftime("%H.%M.%S")

job = 'transcribe-test-'+time_now

start the transcription job

try:

transcribe.start_transcription_job(

TranscriptionJobName=job,

LanguageCode='en-US',

Media={"MediaFileUri": uri},

Settings={'MaxSpeakerLabels': 2, 'ShowSpeakerLabels': True}

)

time.sleep(2)

print(transcribe.get_transcription_job(TranscriptionJobName=job

)['TranscriptionJob']['TranscriptionJobStatus'])

except Exception as e:

print(e)

4. The job status is printed as IN_PROGRESS. Visit https://us-east-
1.console.aws.amazon.com/transcribe/home?region=us-east-1#jobs to
navigate to the Amazon Transcribe console to review the job's progress.
Kindly change the region from the previous link to the AWS region you are
using.

5. The job will complete in 10 to 15 minutes. Once it is complete, execute the
next cell to create an output directory we will use to store the transcription
results:
Create an output transcripts directory

dr = os.getcwd()+'/output-transcripts'

if not os.path.exists(dr):

os.makedirs(dr)

6. We will now execute the code to get the Transcript URI (the S3 bucket
location where the job output is stored) and download the transcript to the
notebook. We will then parse the JSON output to extract the transcript text
segments we need, break it down to line-by-line structure, and write it into
an output file. Execute the following cell:
Our transcript is in a presigned URL in Transcribe's S3

bucket, let us download it and get the text we need

import urllib.request

response = transcribe.get_transcription_job(

TranscriptionJobName=job

)

out_url = response['TranscriptionJob']['Transcript']

['TranscriptFileUri']

infile = job+'-output.json'

urllib.request.urlretrieve(out_url, infile)

declare an output file to store the transcripts

outfile = 'output-transcripts/'+job+'.txt'

with open(infile, 'rb') as t_in:

full = json.load(t_in)

entire_transcript = full["results"]["transcripts"]

lines = str(entire_transcript).split('. ')

i = 0

for line in lines:

i += 1

print("Line "+str(i)+": " + line)

write the transcript to an output file

with open(outfile, 'w') as out:

out.write(str(lines))

7. You will see the transcript results printed in the cell output. Only the first
few lines are reproduced here for brevity:
Line 1: [{'transcript': "Thank you for calling Platinum Motors,

the Northwest Home for high end Autos

Line 2: I'm Michelle, how can I help you today? Uh Hi Michelle,

my name's Jack

Line 3: Uh I'm calling in today because about two weeks ago I

got a car from your dealership

Line 4: Um And uh the the service light came on already and I

know you guys handle a lot of your um your uh your fixing, your

mechanics are all in house and in shop and I'm just a little

baffled about how and why the light came on so soon

Line 5: So I wanted to give you guys a call

Line 6: Of course I am so sorry for the inconvenience

Line 7: Uh Jack what was your last name? So I can look you up

in the system

This is how you use Amazon Transcribe APIs to convert speech to text and create
powerful transcripts from audio files. Transcribe supports multi-channel audio,
can recognize different speakers in an audio file, supports changing transcription
style using custom vocabulary and more. For details, please you can to the
Amazon Transcribe documentation at
https://docs.aws.amazon.com/transcribe/index.html.

Using Amazon Rekognition for computer vision

In this section, we will learn how to build computer vision applications using
Amazon Rekognition with just API calls, without the need for ML training.
Amazon Rekognition supports a broad range of computer vision use cases with
specialized APIs for each task. For a full list of Amazon Rekognition features,
read the documentation at
https://docs.aws.amazon.com/rekognition/latest/dg/what-is.html. In our
example here, we will show how to use the API to detect labels from images.

1. Execute the first cell in this section in the notebook to display our input
image. This is the same image we used in Chapter 3, Predicting the Future
With Features:
Lets use the Python image processing Pillow library

from PIL import Image

img = Image.open('./input/images/puppy-image.jpg')

display(img)

2. The preceding code will display the image of the puppy:

Figure 10.15: Input image for Rekognition

3. We will use the DetectLabels API
(https://docs.aws.amazon.com/rekognition/latest/APIReference/API_De
tectLabels.html) to understand what Amazon Rekognition sees in this

image. But first, we must upload the image of the puppy to an Amazon S3
bucket. Execute the following code cell to do so:
First upload image to S3 bucket

input_dir = 'input/images'

prefix_uris = []

for sdir, drs, fls in os.walk(input_dir):

for file in fls:

s3.upload_file(os.path.join(sdir, file), bucket,

prefix+'/rekognition/'+ os.path.join(sdir, file))

uri = "s3://" + bucket + '/'+prefix+'/rekognition/' +

os.path.join(sdir, file)

prefix_uri = prefix+'/rekognition/' + os.path.join(sdir,

file)

prefix_uris.append(prefix_uri)

print("Uploaded to: " + uri)

4. Execute the next cell to invoke the DetectLabels API, passing the image as
the input; we then print the results from Rekognition:
Detect Labels

for prefix_uri in prefix_uris:

response = rekognition.detect_labels(

Image={

'S3Object': {

'Bucket': bucket,

'Name': prefix_uri

}

},

MaxLabels=5,

)

for label in response['Labels']:

print("Amazon Rekognition is

"+str(round(label['Confidence'],0))+" confident that this

picture is of a "+label['Name'])

5. When we look at the image, all we see is a cute puppy. But Rekognition sees
much more than that. Review the results we print from Rekognition. We see
only five print statements here because we specified MaxLabels=5, as shown
in the highlighted section of the preceding code. If we increase the number
of labels, we will get more information from Rekognition:
Amazon Rekognition is 98.0 confident that this picture is of a

Labrador Retriever

Amazon Rekognition is 98.0 confident that this picture is of a

Dog

Amazon Rekognition is 98.0 confident that this picture is of a

Pet

Amazon Rekognition is 98.0 confident that this picture is of a

Canine

Amazon Rekognition is 98.0 confident that this picture is of a

Mammal

DetectLabels is one of the many capabilities of Amazon Rekognition. The other
APIs can analyze videos, compare faces, perform people pathing, detect personal
protective equipment, recognize celebrities and more. For a full list of features,
you can refer to the documentation at
https://docs.aws.amazon.com/rekognition/latest/dg/what-is.html. And that's
why we discussed using Amazon Rekognition to be our robot's eyes.

Using Amazon Translate for language translation
Previously, we learned how to use Amazon Transcribe for automatic speech
recognition and Amazon Rekognition for computer vision applications. In this
section, we will use Amazon Translate APIs to convert our English text from the
transcripts Amazon Transcribe generated (refer to Step 7 in the Using Amazon
Transcribe for speech recognition section) to Hindi and French without any need
for ML training. Navigate to the Amazon Translate section in the notebook to
follow instructions we will execute here:

1. Execute the first cell to create an output directory to store our translated
text:
Create an output translations directory

dr = os.getcwd()+'/output-translations'

if not os.path.exists(dr):

os.makedirs(dr)

2. Since we will reuse some of the list variables we created when executing the
Amazon Transcribe API calls, ensure that you have completed that section
before you proceed. In this cell, we parse our transcript file and translate all
text from even line numbers to Hindi and all text from odd line numbers to
French. Run this cell:
x = 0

translate_out = 'output-translations/translations.txt'

t_list = []

the lines list here was created when we executed the

Transcribe code sample earlier in this notebook.

It contains lines of transcribed text

for line in lines:

x += 1

if (x % 2) == 0:

result = translate.translate_text(Text=line,

SourceLanguageCode='auto', TargetLanguageCode='hi')

else:

result = translate.translate_text(Text=line,

SourceLanguageCode='auto', TargetLanguageCode='fr')

t_list.append("Line "+str(x)+": "+result['TranslatedText'])

with open(translate_out, 'w') as t_out:

t_out.write(str(t_list))

print the translation results

for l in t_list:

print(l)

3. The following output is printed. We will reproduce only a few lines of
output in the book for brevity, but you can see the full output in the
notebook:
Line 1: [{'transcript' : « Merci d'avoir appelé Platinum

Motors, le Northwest Home pour les automobiles haut de gamme

Line 2: म� ि◌मशेल �ं, आज म� आपकी मदद कैसे कर सकता �ं? उह हाय ि◌मशेल,
मेरा नाम जैक
Line 3: Euh, j'appelle aujourd'hui parce qu'il y a environ deux

semaines, j'ai reçu une voiture chez votre concessionnaire.

Line 4: उम और उह सेवा परकाश पहले से ही आ गया था और मुझे पता है ि◌क
आप लोग आपके उम को अपने ि◌िफ�ंग के ब�त सारे संभालते ह�, आपके यांत्ि◌रकी
सभी घर म� और दुकान म� ह� और म� बस इस बारे म� थोड़ा िचकत �ं ि◌क परकाश कैसे
और कयो ंआया इतनी जलदी
Line 5: Alors je voulais vous appeler.

Line 6: बेशक मुझे अिसुवधा के ि◌लए ब�त खेद है
Line 7: Jack, quel était ton nom de famille ? Pour que je

puisse vous trouver dans le système

Line 8: यकीन है ि◌क मेरा अंि◌तम नाम है, �ा आप कृपया मेरे ि◌लए यह ि◌लख
सकते ह�? एस आई

We also sent the translated output to a text file that is stored on the notebook that
you can review and post-process as required.

We tried the real-time TranslateText API in this example. Amazon Translate
provides features to customize your translation style using custom terminologies
or parallel data, and you can run translations in real time or batch. Review the
Amazon Translate documentation for more details:
https://docs.aws.amazon.com/translate/latest/dg/what-is.html.

Using Amazon Polly for speech generation
Polly is an easy-to-use AI service to speech enable applications at any scale. It
takes text as input and can speak this text in many voice styles, both male and
female. Polly also supports multiple languages and has a unique voice collection
tailored to language-based colloquialism. Navigate to the Amazon Polly section
of the notebook and execute the following instructions in the notebook to see it in
action.

1. Execute the first cell to define a text variable with a sample text we will use
for testing:
input_text = "I think AI and ML are the most popular skills

right now, and I am glad I brought this book. It helps me learn

how to build real-world and large scale AI and ML applications

on Amazon Web Services. I loved the breadth and depth of

coverage on the ML workflow, on using the various features of

Amazon SageMaker, and the AI services that made powerful ML

models available behind simple API calls. Overall this books is

a very good learning resource"

2. In the next cell, we will create an output directory to store our audio file that
Polly will generate:
Create an output directory

dr = os.getcwd()+'/output-audio'

if not os.path.exists(dr):

os.makedirs(dr)

3. Execute the next cell to call the Polly API passing our input text to
synthesize audio from the text. We will provide a voice, engine type and
output format type as inputs along with the text:
response = polly.synthesize_speech(VoiceId='Kajal',

OutputFormat='mp3',

Text = input_text,

Engine = 'neural')

mp3_file = open('./output-audio/chapter10-polly-test.mp3',

'wb')

mp3_file.write(response['AudioStream'].read())

mp3_file.close()

4. This generates an MP3 file and stores it in our output folder. In the next cell,
we will play the audio using the IPython Audio utility. When you execute
this cell, the audio player automatically plays the MP3 file, which will speak
your input text in the voice you selected:
from IPython.display import Audio

Audio('./output-audio/chapter10-polly-test.mp3', autoplay=True)

That concludes the build of how to use Polly to speech enable your applications.
Again, we used only one of the APIs. For a full list of Python APIs for Polly, you
can refer to
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/
polly.html. For more details on how Polly works and to learn about features like
how to use SSML, Lexicons, and integrating with WordPress, you can refer to the
developer guide at https://docs.aws.amazon.com/polly/latest/dg/what-is.html.

Using Amazon Comprehend for deriving insights
Amazon Comprehend is an NLP service with pre-trained models that provides a
wide variety of text-based insights. We will use a few of Comprehend's real-time
APIs to show how you can easily build applications that can generate these
insights. To get started, navigate to the Amazon Comprehend section in the
notebook and execute the following instructions to try the API calls.

1. Execute the first cell to get the name of the transcript file we generated
when we worked with Amazon Transcribe. We will see what insights
Comprehend can help derive from this transcript:
For Comprehend we will take the Transcript output and see

what insights we can get from this text

transcript = 'output-transcripts/'+job+'.txt'

print(transcript)

2. We will read this transcript file and store the contents in a variable for easy
reference:
get the contents of the transcript into a text

with open(transcript, 'r') as comp_in:

in_text = comp_in.read().split(',')

lets re-construct a full text from the list of sentences

full_text = ''

for text in in_text:

full_text += text+'. '

3. The first API we will try is the boto3 Python SDK version of Comprehend
DetectEntities
(https://docs.aws.amazon.com/comprehend/latest/dg/API_DetectEntitie
s.html), which can surface unique references to people, places and things in
text, without any type of ML training. Execute the next cell to call this API.
comp_res = comprehend.detect_entities(Text=full_text,

LanguageCode='en')

for entity in comp_res['Entities']:

print("Comprehend is "+str(round(entity['Score']*100,0))+"%

confident that "+entity['Text']+" is an entity of type

"+entity['Type']+" ")

4. We will see the following results printed. Once again, only the first few
entities are shown here, but the notebook has the full list that Comprehend
detects:
Comprehend is 100.0% confident that Platinum Motors is an

entity of type ORGANIZATION

Comprehend is 77.0% confident that Northwest Home is an entity

of type ORGANIZATION

Comprehend is 100.0% confident that Michelle is an entity of

type PERSON

Comprehend is 99.0% confident that today is an entity of type

DATE

Comprehend is 100.0% confident that Michelle is an entity of

type PERSON

Comprehend is 100.0% confident that Jack is an entity of type

PERSON

5. The next API we will try is DetectKeyPhrases (), a collection of words in
the text that is key to bringing out the meaning of a sentence. Execute the
next cell and review the output:
Read and print the key phrases

comp_res = comprehend.detect_key_phrases(Text=full_text,

LanguageCode='en')

for phrase in comp_res['KeyPhrases']:

print("Comprehend is "+str(round(phrase['Score']*100,0))+"%

confident that "+phrase['Text']+" is a key phrase")

6. We will see the following output:
Comprehend is 99.0% confident that about two weeks is a key

phrase

Comprehend is 100.0% confident that a car is a key phrase

Comprehend is 100.0% confident that your dealership is a key

phrase

7. Next, we will look at how we can use Comprehend APIs to detect sentiment
in text. Execute the next cell and review its output:
sent_text = 'Also if you wanted to wait for the two days we

could also have a rental car available for you at no charge in

case you wanted that in case it takes a little bit longer to

fix that will be an option that we can plan out for you as well

but again you are also welcome to come in any time before then

and we will get you in as soon as we can'

comp_res = comprehend.detect_sentiment(Text=sent_text,

LanguageCode='en')

print(comp_res['Sentiment'])

print(comp_res['SentimentScore'])

8. We will see the following output:
POSITIVE

{'Positive': 0.4174244999885559, 'Negative':

0.018003448843955994, 'Neutral': 0.34651508927345276, 'Mixed':

0.21805694699287415}

9. The last API we will try in this notebook is the DetectSyntax API. Execute
the next cell and review its output:
synt_text = 'Also if you wanted to wait for the two days we

could get a rental car'

comp_res = comprehend.detect_syntax(Text=synt_text,

LanguageCode='en')

for token in comp_res['SyntaxTokens']:

print("The Part of Speech for word: "+token['Text']+" :is:

"+token['PartOfSpeech']['Tag'])

10. We will get the following output:
The Part of Speech for word: Also :is: ADV

The Part of Speech for word: if :is: SCONJ

The Part of Speech for word: you :is: PRON

The Part of Speech for word: wanted :is: VERB

The Part of Speech for word: to :is: PART

The Part of Speech for word: wait :is: VERB

The Part of Speech for word: for :is: ADP

The Part of Speech for word: the :is: DET

That was the just the tip of the iceberg on what Comprehend can do. For a full list
of the Comprehend APIs, refer to
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/
comprehend.html.
With that, we conclude this chapter on how you can use AWS AI services with
sensory cognition capabilities to innovate your applications. We covered the
major AI services in this chapter, but there are several other complementary AI
services like Amazon Lex (https://aws.amazon.com/lex/) for conversational AI,
Amazon Kendra (https://aws.amazon.com/kendra/) for NLP powered enterprise
search, and others that, when combined, can lead to powerful digital
transformation of your enterprise footprint.

Conclusion
As you might have realized. AWS has automated and pre-trained ML models for
various use cases already and abstracted them behind APIs. This greatly
simplifies your approach and saves you time and costs. There is a demand for
more automation and simplification in ML because traditionally, ML projects take
a long time and require heavy compute resources, which is challenging, especially
if you are on a budget. With the economic advantage provided by the cloud and
pre-trained ML models like APIs, all it takes for you to ML enable your
applications is a few lines of code. And this is only the beginning; it is an
indicator of what we can expect in the next few years. In this chapter, we learned
a set of AWS AI services for sensory cognition. In the next chapter, we will learn
about a different set of AWS AI services, specifically for industrial automation
like detecting anomalies in machine parts, predicting equipment issues, and
shaping our predictive analytics strategy using APIs provided by these services
without the need for long hours of ML development.

Points to Remember
Here’s a summary of what we learned in this chapter:

We were introduced to the AI services layer of the AWS AI/ML stack, and
we reviewed key services that simulates sensory cognition capabilities.
We used a fun example of a robot and looked at adding abilities for the
robot to see, listen, speak, translate and infer using faculties of ears, eyes,

mouth and brain.
We then learned key capabilities of the sensory cognition AI services as
they map to satisfying the functions we needed for the robot.
We then pivoted to using the AI services APIs to learn how to
programmatically add AI capabilities to application builds.
We executed Python code samples using Amazon Transcribe APIs for
creating text transcriptions from audio files.
We learned how to use Amazon Rekognition to detect labels from images.
We learned how to use Amazon Translate for translating our transcript text
to multiple languages.
We learned how to use Amazon Polly to generate speech from text that we
stored in a MP3 file.
Finally, we learned how to use Amazon Comprehend to derive unique
insights from text.

Multiple Choice Questions
Use these questions to challenge your knowledge in the AWS AI services you
learned in this chapter.

1. What is NOT the right option to detect insights from text data?

a. Using Amazon Comprehend to extract entities and key phrases from
text

b. Using Amazon SageMaker BlazingText algorithm for classification
c. Using HuggingFace distilBERT containers with SageMaker for named

entity recognition
d. Using Amazon Translate to translate text into a different language

2. With what AI service can you generate text labels of image data?

a. Amazon Comprehend
b. Amazon Textract
c. Amazon Rekognition
d. Amazon Polly

3. AWS AI services provide pre-trained inference ready models abstracted
as an API.

a. True

b. False

4. Amazon Polly adds voice to applications, but it cannot be integrated
with other AWS AI services and must be used on its own.

a. True
b. False

5. What AWS AI services allow you to use incremental training or
transfer learning to train your own unique custom models without any
ML expertise?

a. Amazon Textract
b. Amazon Comprehend
c. Amazon Translate
d. Amazon Rekognition
e. Amazon Transcribe

Answers
1. d
2. c
3. a
4. b
5. b,d and e

CHAPTER 11
AI for Industrial Automation

Introduction
Continuing our discussion about robots from Chapter 10, Adding Intelligence
With Sensory Cognition, do you remember that factory scene from the movie "I,
Robot," where a batch of newly built robots is waiting to be activated? Science
fiction and movies may tempt us to imagine a fully automated factory to be
teeming with humanoid robots doing all kinds of activities very similar to
humans. In reality, most, if not all, of the factory floors are either semi or fully
automated today; they are powered by AI and robotics. However, practical
common sense dictates that AI doesn't have to be deployed in humanoid shapes
(like an android robot) to be of use. In fact, today, with the power of ubiquitous
internet and democratized AI/ML with AWS, advanced AI capabilities offered by
the cloud can be easily leveraged from the factory floor for various predictive
maintenance and analytics tasks. The keyword here is predictive. Why is this
important? Earlier, when a critical piece of machinery had to be serviced, entire
assembly lines had to be brought down, resulting in halted production and
significant revenue loss. Further, the cost of servicing or repairing a defect was
exacerbated because of having to troubleshoot and determine what was wrong in
the first place.
Imagine if you could continuously monitor your machinery and exactly predict
when a particular part or component would malfunction. You could then set up an
automated notification to schedule an inspection/replacement for the part just
before it breaks down. Knowing in advance also means you are in control of when
to replace the part. This means you can take care of it during operational
downtime rather than having to bring down production just to replace the part.
Now, couple this scenario with the ability to automate quality control for your
manufactured products. Automotive companies lose millions of dollars when they
Recall car models because of manufacturing issues. Ideally, these are due to faults
that should have been caught in quality inspections but were missed due to error
or inadvertence. With AI, you can enable highly accurate fault checks for
manufactured products, and you can also build a continuous improvement
workflow for inspection and remediation. These are just two of the numerous

possibilities of the ways in which AI can empower industrial automation, improve
your operational efficiencies, help you cut costs, and increase your profitability.
Till now in this book, we walked through how to design, build, train and deploy
ML workflows for various use cases. In the previous chapter, we were introduced
to AWS AI services that are pre-trained models available behind APIs for several
common ML tasks. We also learned how to build applications to leverage sensory
cognition AI services without the need for any ML skills or expertise, just by
using AWS Python SDK APIs. In this chapter, we will continue to learn about
AWS AI services, especially the ones that enable industrial automation
capabilities. We will first be introduced to two such AI services, and then we will
build a predictive analytics solution with these services.

Structure
In this chapter, we will dive deep into the following topics:

Overview of AI for Industrial Automation
Predictive Analytics with Amazon Lookout for Equipment
Quality control with Amazon Lookout for Vision

Objectives
In this chapter, we will first discuss industrial automation use cases and why these
are important, and then we will look at how AI can help. We will learn about an
AWS AI service for detecting abnormalities in industrial equipment called
Amazon Lookout for Equipment. We will then pivot to learn about a different
AWS AI service, called Amazon Lookout for Vision, for detecting faults in a
product line using computer vision. Finally, we will walk through a solution built
using both of these services for predictive analytics.

Overview of AI for Industrial Automation
In the previous chapter, we reviewed core AI services for use cases such as text-
to-speech, speech-to-text, deriving insights from text, and detecting and
recognizing image content. We saw that these AI services are pre-trained ML
models abstracted as scalable and reliable APIs with high-performance
capabilities for automatic speech recognition (ASR), natural language
understanding (NLU), natural language processing (NLP), computer vision
(CV), and more. We saw that we needed just a few lines of code to make an API
call; we sent inputs and received predictions. This chapter will focus on AI

services that help with automating industrial use cases, specifically, anomaly
detection from sensor readings and detecting faults from product images for
quality control checks.

"If everyone is moving forward together, then success takes care of itself."
- Henry Ford

In 1913, Henry Ford famously deployed his first moving assembly line for
automotive manufacturing at Ford's Highland Park assembly plant
(https://corporate.ford.com/articles/history/moving-assembly-line.html).
Designed to bring products and activities to workers rather than the other way
around, the assembly line changed mass production and significantly improved
manufacturing efficiencies at the same time. It also cut operational costs, making
the end product more affordable for consumers, thereby boosting revenue and
profits. Today, after 100 years, the assembly line is still the most efficient way to
make cars. While we haven't invented something simpler than assembly lines, we
have made huge technological advancements in how we use them. If we have to
distill all that we have learned in the last century or so on how to cut costs and
make manufacturing more efficient, we can fit it into two keywords: "automation"
and "continuous improvement".
Automation reduces the need for human intervention and dependence, cuts costs,
and saves time. Automation also provides capabilities to measure, monitor,
calibrate and improve manufacturing tasks. Traditionally, automated production
required tasks to be iterative and repeatable, and generally needed them to follow
the norms of a process. So, tasks that were deterministic and repetitive, such as
assembling the body of a car or attaching tires to the axles in the chassis, were
automated using industrial machines, but tasks that were probabilistic, such as
inspecting the quality of the assembled car, running diagnostic tests of the
controller area network, or checking the capacity of the compressor, were
performed manually. Continuous improvement, or CI, refers to the ability to fine-
tune process efficiencies so that production moves toward peak performance
irrespective of changing scope and scale. CI requires active monitoring of tasks,
measuring dips in performance, and the ability to influence factors that can
improve production capacity, reduce time, and use resources efficiently. The Lean
Six Sigma process framework provides a methodical approach to CI
(https://www.investopedia.com/terms/l/lean-six-sigma.asp) and aims to reduce
defects or wastage from a business process to improve its efficiencies. Lean was a
process developed by Toyota to identify and remove tasks/steps that do not add
value to a process. Six Sigma was developed by Motorola to define standards for

https://corporate.ford.com/articles/history/moving-assembly-line.html
https://www.investopedia.com/terms/l/lean-six-sigma.asp

business process improvement. However, traditional applications of the Lean Six
Sigma relied heavily on human involvement, especially in the Define, Analyze
and Improve phases (https://goleansixsigma.com/wp-
content/uploads/2012/02/DMAIC-The-5-Phases-of-Lean-Six-Sigma-
www.GoLeanSixSigma.com_.pdf).
Manufacturing processes have undergone a lot of changes over the years, but
there is still room to improve efficiency, cut costs and achieve a higher degree of
automation. This was made possible with the advent of AI technologies. So how
can AI help with automation and continuous improvement in manufacturing and
other industries? To answer this question, let us go back to our list of AWS AI
services from Chapter 1, Introducing the ML Workflow, and review the AI
services that are part of the industrial automation category. Refer to the following
table.

ML problem
type

ML subtype ML use case AWS AI
Service

Service Overview

Enterprise/Industr
ial

Business
tools

Fraud detection Fraud
Detector

Fully managed service for detecting
and monitoring eCommerce fraud
with a simplified interface for
model building with no ML
expertise required

Recommendatio
ns

Personalize Fully managed service for detecting
and monitoring eCommerce fraud
with a simplified interface for
model building with no ML
expertise required

Forecasting Forecast Fully managed service for detecting
and monitoring eCommerce fraud
with a simplified interface for
model building with no ML
expertise required

Anomaly
detection

Lookout for
Metrics

Fully managed service for detecting
and monitoring eCommerce fraud
with a simplified interface for
model building with no ML
expertise required

Industrial
Intelligence

Predictive
monitoring

AWS
Panorama

Hardware and SDK for adding ML-
based intelligence to the factory
floor and on-premises camera
systems

Amazon
Monitron

Sensors and pre-trained ML for
industrial equipment monitoring
and proactive maintenance

Amazon Custom ML pre-trained for

https://goleansixsigma.com/wp-content/uploads/2012/02/DMAIC-The-5-Phases-of-Lean-Six-Sigma-www.GoLeanSixSigma.com_.pdf

Lookout for
Vision

industrial anomaly detection using
computer vision

Predictive
analytics

Amazon
Lookout for
Equipment

ML service that provides intuitive
capabilities for developing custom
models for detecting equipment
anomalies with no ML expertise
required

Table 11.1: AWS AI services for industrial automation

Cost of Poor Quality or COPQ
Cost of Poor Quality (COPQ) (https://sixsigmastudyguide.com/cost-of-poor-
quality/) is a key metric that measures the performance efficiency of a
manufacturing process by quantifying the costs associated with regressive effort
and rework and impact on operational costs. Organizations constantly aim to
reduce COPQ by trying to prevent rework. There are a couple of ways by which
this can be done:

Improve product quality
Prevent manufacturing failures

Improve product quality
When a product is manufactured with high quality or there are processes in place
that identify quality issues early and accurately, rework effort is automatically
reduced. The cost of fixing defects increases exponentially with an increase in the
time it takes to identify a defect or if it is identified late in the manufacturing
cycle. A defect in the initial build phase is easier to fix than after the product has
been manufactured. Further, proper identification and categorization of errors is
equally critical. If an error is incorrectly labeled, it may not only impact the
current process, but the fixing of the original error may introduce new and more
troublesome issues. The accuracy of the system detecting the error determines the
overall quality because it is OK to flag false positives (that there is an error) but
not false negatives (the model assumes no issue even though there is an issue).
Amazon Lookout for Vision (https://aws.amazon.com/lookout-for-vision/) is a
service that helps with this problem. It is a fully managed computer vision service
that is purpose-built for automated quality control inspections, and it can work
both on the cloud and at the edge directly in your factory floors or manufacturing
facilities. It uses proprietary computer vision modeling techniques to build
powerful anomaly detection models with less than 50 images in your dataset. The
training dataset should contain images of the product when it is NOT anomalous,

https://sixsigmastudyguide.com/cost-of-poor-quality/

or when it is normal. At the time of testing, we send anomalous images to the
model and review the prediction results. Take a look at the following image
showing the process of working with Lookout for Vision.

Figure 11.1: Lookout for Vision modelling process

In a subsequent section in this chapter, we will walk through an example of how
to automate quality control inspections with Amazon Lookout for Vision, where
we will simulate quality control for electronics printed circuit board
manufacturing facility.

Prevent manufacturing failures
System failures in the assembly lines are those impacting the production lines.
They are a huge deal in manufacturing facilities. According to an article:
https://www.automation.com/en-us/articles/june-2021/world-largest-
manufacturers-lose-almost-1-trillion (accessed on October 2022),
manufacturing and industrial Fortune 500 companies, which include some of the
biggest brands, lose a staggering $864 billion every year due to unplanned
downtimes caused by faulty machines. So, predictive analytics, which is the art
and science of monitoring and mitigating equipment failure in advance, or
providing recourse to scheduled downtimes, is critical to reducing manufacturing
costs and improving business profitability. Until the advent of ML and AI, we did
not have predictive analytics, so to speak. Instead, we had a reactive approach that
would continuously monitor machine performance and alert us when something
was wrong. While an advanced alert was helpful, it did not provide a means to
achieve a controlled environment to proactively address issues. With ML, you can
train models to predict a threshold of when your machinery is tending towards
failure and prioritize maintenance for these machines accordingly.
Amazon Lookout for Equipment (https://aws.amazon.com/lookout-for-
equipment/) is a managed service that enables you to ingest time series data from

https://www.automation.com/en-us/articles/june-2021/world-largest-manufacturers-lose-almost-1-trillion

equipment and machinery sensors, analyze the data, train a model either per
sensor or for the machinery as a whole, and predict anomalies in sensor data
either in real time or at scheduled intervals. The benefit of using Lookout for
Equipment is that you do not need any ML skills at all. You can directly use the
Amazon Lookout for Equipment console to go through the entire ML life cycle,
with all the infrastructure provisioning, feature engineering, data transformation,
algorithm selection, model tuning, and deployment completely abstracted from
the user, making it easy to implement predictive analytics. Refer to Figure 11.2:

Figure 11.2: Lookout for Equipment modeling process

In a subsequent section in this chapter, we will walk through Amazon Lookout for
Equipment directly using the AWS console and also through the end-to-end
modeling process. We will use time series sensor data collected for a duration of 4
months from compressor pumps at 1-minute intervals. We will create a project,
add a dataset, train a model, and schedule inference, all without any ML expertise
or provisioning any infrastructure.

Quality Control with Amazon Lookout for Vision
In this section, we will get hands-on experience; we will build a quality control
inspection model using Amazon Lookout for Vision. We will use the Visual
Anomaly (VisA) dataset introduced by this paper -
https://arxiv.org/abs/2207.14315, specifically, the PCB1 category of printed
circuit board (PCB) images, for fault detection of manufactured PCBs. After the
training is complete, the model will have the ability to look at images of
anomalous PCBs and correctly identify issues, and it will also have the ability to
classify non-faulty images as normal. For this activity, we will use the AWS
Management Console and see how we can build and deploy powerful computer
vision models at scale with no ML expertise.
Before we get started, we need to ensure that our prerequisites are in place. In
case you haven't signed up for an AWS account yet, now is the time to do so.
Follow the instructions in the Setting up your AWS account section in Chapter 2,
Hydrating Your Data Lake, to sign up for an AWS account. Once you have signed

https://arxiv.org/abs/2207.14315

up, log in to your AWS account using the instructions at
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html. If you have
not already done so, create an Amazon S3 bucket
(https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-
overview.html). Execute the following instructions to build, train and deploy
your quality control model for PCB anomaly detection:

1. Once you have logged in to the AWS Management Console, type vision in
the services search bar and select Amazon Lookout for Vision to be
navigated to its console.

2. Click on the Get started button; you will be prompted to create an
Amazon S3 bucket. Then, click on the Create S3 bucket button. In the
Dashboard, in the Projects pane, click on the Create project button to
start our model build process. Refer to Figure 11.3:

Figure 11.3: Create a Lookout for Vision project

3. In the Project details section, for the Project name, type c11-pcb-
quality-control and click on Create project.

4. In the How it works section of your project, click on the Create dataset
button. Refer to Figure 11.4:

Figure 11.4: Create dataset

5. On the Create dataset page, leave the default selection of Create a
single dataset. Scroll down to the Image source configuration section
and select Import images from S3 bucket. Refer to Figure 11.5:

Figure 11.5: Select images from S3 bucket

6. Now, open a new tab in your browser and download the dataset from the
book's GitHub repository provided at the beginning of the book. The folder
and file name you are looking for are Chapter-11/chapter11-pcb-
images.zip.

7. Extract the files from the ZIP file to your local computer. You should see the
following folders, with each folder containing 45 to 50 images:

Images/Normal
Images/Anomaly

8. Create an Amazon S3 bucket (if not already done) using the instructions at
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-
bucket-overview.html and upload the Images folder to the S3 bucket using
the Add folder option.

9. Provide the S3 URI of where your images are stored all the way up to the
Images folder. Select the Automatic labeling checkbox and click on the
Create dataset button. Refer to Figure 11.6:

Figure 11.6: Provide S3 URI and select automatic labeling

10. This takes you to the data labeling page, where you can review the dataset,
label it if needed and initiate model training. Refer to Figure 11.7:

Figure 11.7: Review dataset

11. Now click on the Train model button in the top-right corner of the screen to
start model training. Refer to Figure 11.8:

Figure 11.8: Click the Train model button

12. In the Train model page, leave the defaults as they are and click on the
Train model button at the bottom of the page. Accept the confirmation
popup to start model training.

13. The model now starts training, and you are navigated to the Models page.
Refer to Figure 11.9:

Figure 11.9: Model training progress

14. The training will take about 30 minutes. It’s time for a coffee or tea break!
15. When the training completes, the Models page is updated to display the

model metrics, such as Precision, which is calculated as True
Positive/(True Positive + False Positive), and Recall, which is calculated as
True Positive/(True Positive + False Negative). Click on Model 1 to go to
the details page for our model. You can see the model evaluation process
here. Refer to Figure 11.10:

Figure 11.10: Model evaluation process

16. Scroll down a bit to come to the Performance metrics panel, where you can
see the details of your model for Precision, Recall, and the FI score, which
is calculated as (2*Precision*Recall)/(Precision+Recall). Refer to Figure
11.11:

Figure 11.11: Model performance

17. It is expected that we will get a 100% for Precision, Recall, and F1 because
we used the same dataset for training and testing. This is for
experimentation purposes, but if you want to evaluate the model with a
blind test dataset, you should create a separate test dataset and choose the
train and test option when we created the dataset.

18. When you scroll down, the model shows the prediction results on the test
images. Refer to Figure 11.12:

Figure 11.12: Model test results

19. Now scroll up the page and click on the Run trial detection button. We
will use this to test with a few blind test images, both normal and
anomalous, that the model has not seen before. Download these images
from our GitHub repository at
https://github.com/garchangel/AIMLwithAWS/tree/main/Chapter-
11/l4v-blind-test.

20. In the Run trial detection page, give the Task name as pcb-test, leave
the Choose model field selection as is, and select the Upload images from
your computer option. Refer to Figure 11.13:

https://github.com/garchangel/AIMLwithAWS/tree/main/Chapter-11/l4v-blind-test

Figure 11.13: Run trial detection - select images

21. Click on the Detect anomalies button and accept the prompt by clicking
on the Run trial detection button.

22. In the Add images for trial detection popup, click on Choose files
and select the six images you downloaded from the GitHub repository in
Step 19.

23. When the image previews are loaded, scroll down to review them and then
click on the Upload images button. Refer to Figure 11.14:

Figure 11.14: Select images for trial detection

24. Lookout for Vision will navigate you to the Verify machine predictions
page in Trial detections for your model. Once it is completed, the
prediction results for each class type (normal or anomalous) are displayed.

As you can see, our model predicted the results accurately. Refer to Figure
11.15:

Figure 11.15: Results of a trial prediction run

25. When you are done and happy with your model’s performance, you can
deploy it as an API in the cloud, or you can create a model package and
deploy it over the air to an edge device using AWS Greengrass IoT
(https://aws.amazon.com/greengrass/). AWS Greengrass IoT is a cloud
and on-edge AWS service for building, deploying and managing your IoT
device fleets, enable MQTT integration between on-edge, and cloud, and
perform over-the-air deployments of software to your edge devices, with
low latency, high reliability, and at scale. With Greengrass IoT, you can train
your models in the cloud and deploy them to your edge devices for
inference, which helps with low latency inference, the ability for models to
be closer to data sources, and for data privacy requirements. Refer to Figure
11.16:

Figure 11.16: Model usage

And that brings us to the end of this section on Amazon Lookout for Vision. As
you saw, with just a few clicks and page navigations, and a limited dataset, we
were able to train a powerful computer vision model for anomaly detection.
Considering this model can be used in the cloud or also on edge in factory floors
and manufacturing facilities, it can improve the operational efficiency of
production/manufacturing for your organization pretty easily (helping save
months of time and a significant amount of funds if you have to train and tune
your own model from the ground up). In the next section, we will go through a
similar service for detecting problematic equipment behaviour.

Predictive Analytics with Amazon Lookout for
Equipment
In this section, we will train a model to detect faulty equipment behavior using
Amazon Lookout for Equipment. Before we get started, we need to ensure that
our pre-requisites are in place. In case you haven't signed up for an AWS account
yet, now is the time to do so. Follow the instructions in the Setting up your AWS
account section in Chapter 2, Hydrating Your Data Lake, to sign up for an AWS
account. Once you have signed up, log in to your AWS account using the
instructions at
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html. If you have
not already done so, create an Amazon S3 bucket
(https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-
overview.html). Execute the following instructions to build the model:

1. First, download the training dataset from our GitHub repository
https://github.com/garchangel/AIMLwithAWS/blob/main/Chapter-
11/l4e-train-data.csv. The original source for this data is
https://www.kaggle.com/datasets/nphantawee/pump-sensor-data.

https://github.com/garchangel/AIMLwithAWS/blob/main/Chapter-11/l4e-train-data.csv
https://www.kaggle.com/datasets/nphantawee/pump-sensor-data

2. The CSV file that is provided to you for this solution contains time series
data for 3.5 months, with a data point for every minute for 10 sensors.

3. Log in to your AWS Management Console if not already done, and type S3
to bring up the Amazon S3 console. Navigate to the bucket you created,
click on Create folder, and provide the folder name as l4e-training. Click
on the l4e-training folder name to go into the folder, click on the Create
folder button in the top-right corner once again, and create a new folder
called compressor-room-1. Now, click on the Upload button and load the
CSV file you downloaded from our GitHub repository in Step 1 into the
compressor-room-1 folder. Make a note of the S3 URI for your CSV file.

4. Now type equipment in the services search bar and select Amazon Lookout
for Equipment to be navigated to the console.

5. In the Lookout for Equipment console, click on the Create project
button.

6. In the Create project screen, in the Project details pane, type pump-
sensors for the Project name field. Refer to Figure 11.17:

Figure 11.17: Create Lookout for Equipment project

7. Leave the rest of the default values as they are, scroll down, and click on the
Create project button. After the project is created, you will be navigated
back to the Project details page for your project with a status message,
and the page will also display a process flow for building your model. Our
next step would be to add the dataset for model training. Click on the Add
dataset button. Refer to Figure 11.18:

Figure 11.18: Start adding a dataset after project creation

8. In the Add dataset page, under Data source details, click on the Browse
button. Refer to Figure 11.19:

Figure 11.19: Click the Browse button for S3

9. In the Choose Bucket/Prefix popup that appears, select your S3 bucket
name, and select the l4e-training folder (which is the top folder in the
hierarchy for our solution) that contains the compressor-room-1 folder,
which, in turn, contains the CSV file you uploaded in Step 2. Leave the
IAM role selection as it is. In the Schema detection method, select By
folder name. Scroll down and click on the Start ingestion button. Refer
to Figure 11.20:

Figure 11.20: Add dataset for ingestion

10. Once the IAM role has been propagated, you are navigated back to the
Project details page with a status on the ingestion process. This will take
up to 20 minutes. You get a success message once the ingestion completes.
Refer to Figure 11.21:

Figure 11.21: Lookout for Equipment data ingestion successful

11. Click on the View dataset button either in the success message or in the
How it works section to check the metrics for dataset import. Lookout for
Equipment provides a detailed analysis of your dataset and surfaces data
quality in the data distributions into High, Medium, and Low categories.
Low indicates significant issues with the data and cannot be used for model
training, high indicates good quality data for training, and medium indicates
outliers in the data. Refer to Figure 11.22:

Figure 11.22: Data ingestion successful in Lookout for Equipment

12. Scroll down a little to the Details by sensor pane, select the check box to
the left of sensor_00 (the first row), and click Create model button on the
right of the pane. Lookout for Equipment allows you to create one model for
all your sensors; you can create a separate model for each sensor, or you can
mix and match sensors across models. Depending on your industrial
process, you can choose an approach that works best. For our example, we
will train a model for sensor_00 and validate the results. Refer to Figure
11.23:

Figure 11.23: Create a model for Sensor 00

13. On the Model details page, specify sensor_00_model for the Model name,
scroll down, and click on the Next button.

14. In the Configure input data page, for Training and evaluation
settings, for the Training set date range, provide 2018/04/01 to
2018/07/12. For the Evaluation set date range, provide 2018/07/13
to 2018/07/14. Leave the rest of the default settings as they are, scroll
down, and click on the Next button. Refer to Figure 11.24:

Figure 11.24: Configure input data for model training

15. Leave the Provide data labels page as it is, scroll down and click on the
Next button. Review your inputs on the Review and train page, scroll
down and click on the Start training button.

16. You are navigated back to the Project details page, and the Training in
progress message is displayed in the How it works pane, Step 4.
Schedule inference is highlighted. Once the model training is completed,
your model will be ready to receive sensor data in real time to detect
anomalies. You can also schedule periodic inference requests. Refer to
Figure 11.25:

Figure 11.25: Training in progress

17. Once the training completes, click on the View models button in the How it
works pane.

18. Click on the name of your model (sensor_00_model) to go to the Model
overview page. Scroll down to the Evaluation results section; you
should see that the model trained successfully and did not find any
anomalies in the evaluation dataset for the time range we specified in Step
12.

19. In a new browser tab, go to the GitHub link
https://github.com/garchangel/AIMLwithAWS/blob/main/Chapter-
11/sensor00-anomalous.csv and download the file to your local computer.
We synthetically created this file to test the Lookout for Equipment
inference. The file contains 50 normal data points and 50 anomalous data
points. Find a snapshot of the anomalous data file. Refer to Figure 11.26:

https://github.com/garchangel/AIMLwithAWS/blob/main/Chapter-11/sensor00-anomalous.csv

Figure 11.26: Example of an anomalous sensor readings

20. Lookout for Equipment works with time series data, so the inference runs in
real time on durations that we define in the inference scheduler.

NOTE: To test the inference, you need to update the timestamp of the
inference file to reflect the date and time of 5 minutes in the future
when you are running the test. You will have to run the Python code
provided in Step 25 to do this. Use the SageMaker Studio notebook to
paste and execute this code.

21. Once the file is downloaded, go back to your S3 bucket that you used for
data ingestion (what you used in Step 3) and create a new folder (outside the
l4e-training folder you created earlier) called l4e-inference.

22. Now go back to your Model overview page and click on the Schedule
inference button in the top-right corner.

23. In the Schedule inference page, provide a value for the Inference
schedule name called sensor_00_inference.

24. For Input data, click on the Browse button and select the l4e-inference
folder from your S3 bucket.

25. For Data upload frequency, select 5 minutes.
26. Leave the rest of the default selections as they are, and scroll down to

Output data. For the S3 location, provide s3://<bucket-name>/l4e-
inference-output. Scroll down to the bottom of the page and click on the
Schedule inference button.

27. Immediately after you schedule inference, run the code snippet to create a
new anomalous dataset to reflect a date and time 5 minutes in your future at
1 minute intervals for Sensor00. The code will also upload your inference
CSV file to your S3 bucket into the folder you created for inference. Refer
to the following code snippet.
import datetime

from datetime import timezone

import pandas as pd

import boto3

bucket = 'aiml-book'

s3 = boto3.client('s3')

starttime = datetime.timedelta(minutes=5)

dated = datetime.datetime.now(timezone.utc)+starttime

cols = ['timestamp','sensor_00']

time_df = pd.DataFrame()

for i in range(50):

dated += datetime.timedelta(minutes=1)

new = dated.strftime('%Y%m%d%H%M%S')

time_df.at[i,'timestamp'] = new

time_df.at[i,'sensor_00'] = 50+i

time_df.to_csv('inference.csv', index=False)

s3.upload_file('inference.csv', bucket, 'l4e-

inference/inference.csv')

time_df.head()

Note: You may encounter errors in your inference scheduler if time
elapses between when you execute this code and when the inference
scheduler is activated. From the time the scheduler is active, it expects
time series datapoints for 5 minutes, in 1-minute intervals. To
mitigate, implement this preceding code using an AWS Lambda
function that is triggered every minute by an AWS EventBridge
trigger, and which updates the inference.csv file continuously. Please
refer to https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-
run-lambda-schedule.html.

28. After 5 minutes, Lookout for Equipment will automatically pick up the file,
run inference using the model and store the results in the output folder. You
can open the output folder and go through the file to see how many
anomalous data points were detected.

And with that, we conclude this chapter on how you can use AWS AI services for
industrial automation, cost reduction, efficiency improvement, and overall
profitability enhancement. We covered two major AI services for industrial
automation in this chapter, but that is just the tip of the iceberg. For massive-scale
computer vision at the edge with large fleets of cameras for industrial monitoring,
you can use AWS Panorama (https://aws.amazon.com/panorama/), or if you
like a turnkey solution for equipment monitoring that includes sensors, gateways,
models, and monitoring capabilities, you can use Amazon Monitron
(https://aws.amazon.com/monitron/). When you look at business automation in
addition to industrial automation, you can use services like Lookout for Metrics
(https://aws.amazon.com/lookout-for-metrics/), Amazon Forecast
(https://aws.amazon.com/forecast/), and Amazon Fraud Detector
(https://aws.amazon.com/fraud-detector/).

Conclusion
In this chapter, we reviewed more AWS AI services but for use with industrial
automation, predictive analytics and quality control inspections. There are more
AWS AI services than we were able to cover in this chapter and the previous one.
For a full list of services, you can refer to https://aws.amazon.com/machine-
learning/ai-services/. In the next chapter (also the final chapter of this book), we
will learn how to build operationalized ML workflows built for scale, reliability,
and efficiency using AWS MLOps concepts and services such as Amazon
SageMaker Pipelines, AWS StepFunctions and more.

Points to Remember
In this chapter, we were introduced to and learned how to build solutions for
industrial automation using the AWS AI services layer. Specifically, we covered
the following topics:

We learned about the importance of monitoring machinery, predictive
analytics, continuous improvement, and automation in the context of
manufacturing industries that typically have factories with equipment and
machinery involved in production.

We learned the significance of quality control and equipment failure
prediction in the context of operational costs and understood how it impacts
a company’s profitability.
We discussed the cost of poor quality and how AWS AI services for
industrial automation, such as Amazon Lookout for Vision and Amazon
Lookout for Equipment, can help build powerful ML models for improving
product quality and proactively mitigate equipment issues, with no ML
expertise or skills required.
We then selected an example of printed circuit board datasets and built a
computer vision-based quality inspection model using Amazon Lookout for
Vision to automatically detect anomalous printed circuit boards.
We completed the end-to-end ML process directly from the AWS console,
without writing a single line of code or performing any of the
undifferentiated data science tasks.
Finally, we picked a dataset containing time series data from multiple
sensors in a compressor pump, trained a predictive analytics model using
Amazon Lookout for Equipment to predict sensor faults, and scheduled
real-time inference to validate the model, also using just the AWS console
and without writing code or running feature engineering tasks.

Multiple Choice Questions
Use these questions to challenge your knowledge of AWS AI services for
industrial automation.

1. How can you use AI/ML for industrial automation? (Select two correct
answers.)

a. It can help alert maintenance when a machine breaks down.
b. It can predict when a machine will break down.
c. It is an engine that keeps the assembly line moving.
d. It can automatically inspect faulty products and help mitigate quality

issues.

2. What type of data does Lookout for Equipment need for model
training?

a. Images
b. Structured text data
c. Unstructured text or tabular data

d. Time series data

3. What type of machine learning does Lookout for Vision use?

a. Reinforcement learning
b. Supervised learning
c. Unsupervised learning
d. Generative learning

4. Lookout for Equipment can train only a single model across all sensors.

a. True
b. False

5. What is the formula to calculate Precision in classification models?

a. True Positive/(True Positive + True Negative)
b. True Positive/(True Positive + False Positive)
c. True Positive/(True Positive + False Negative)
d. True Positive/False Positive

Answers
1. b, d
2. d
3. b
4. b
5. b

CHAPTER 12
Operationalized Model Assembly

(MLOps and Best Practices)

Introduction
Congratulations, you are now an expert in knowing and applying Artificial
Intelligence, Machine Learning using AWS for your enterprise use cases.
This means you know how to approach, design, train, build, deploy, and
monitor your AI/ML solutions. This means that you are ready for the final
step in your end-to-end Machine Learning journey: operationalization. Apart
from being a lengthy Scrabble-winning word, it is the difference between a
manual solution and an automated well-architected workload. Implementing
Machine Learning Operations, also known as MLOps colloquially, prepares
your project for production deployment while implementing an automated
Continuous Integration (CI) and Continuous Delivery (CD) pipeline. This
accelerates your ongoing experiments and time-to-market cycles and
empowers the contributions of your data science teams. To try the examples
in this section, refer to the Technical Requirements section in Chapter 1,
Introducing the ML Workflow, to sign into the AWS management console,
execute the steps to onboard to SageMaker studio, and execute cloning the
repository to SageMaker Studio to get started. Click on the folder that
corresponds to this chapter number. If you see multiple notebooks, the
section title corresponds to the notebook name for easy identification. You
can also passively follow the code samples using the GitHub repository
provided at the beginning of the book.

Chapter Scenario
The team assigned to implement the various machine learning models has
decided to adopt Site Reliability Engineering (SRE). This means that
members of the team rotate out as an operations engineer, assisting the larger
production operations team in deploying their models through the software
delivery lifecycle environments. This works particularly well because no one
knows the minute details about the operations need of a produced model
more than the team that created it. Our data scientist turned SRE doesn’t
have much experience in operations, but they are supported by a very strong,
very experienced production operations team, so they feel confident that
they have the support they need to implement automated, repeatable,
observable workflows for their models.

Structure
In this chapter, we will discuss the following topics:

What is Machine Learning Operations, commonly called MLOps?
What is the purpose of an orchestrator in terms of MLOps?
What are the common options for orchestrators in AWS?
The individual phases of an MLOps process.
How to implement an Amazon SageMaker Pipeline
How to make a Machine Learning workflow Well-Architected.

Objectives
In this chapter, we will use Amazon SageMaker pipelines and the AWS Step
Functions Data Science SDK to build end-to-end MLOps pipelines. In the
process, we will also learn best practices for machine learning workflows.
We will cover the critical phases of a machine learning solution pipeline,
starting with iterative model training and moving on to model evaluation,
artifact management, and SDLC deployment. We will focus on the methods
for implementation, management, observation, and mutability for each of the
phases and look at how to ensure that the resultant telemetry is ingestible by
both your data science and operations teams. By the end of this chapter, you

should have understood how the experimentation phase of your ML tasks
should translate to automated implementations and how to decouple the
train-to-deploy mechanics to allow repeatability as well as extendibility.

MLOps Defined
Needless to say, the field of machine learning is evolving rapidly. A part of
this process is the maturation of processes, tools, and services associated
with the technology. In the previous chapters, we reviewed much of this
modernization with tools that enable efficient experimentation, training,
deployment, and solutioning associated with machine learning projects. The
same is true for the operationalization of these projects. When we use the
term operationalization, we mean taking a manual process and adding
automation, controls, and visibility. This method enables repetition of a
process in the absence of human interaction coordinating your chosen
deployable package through the respective environments and to a production
deployment.
Machine Learning Operations or MLOps is this practice. There are
numerous tools to manage, automate, and orchestrate this process for you,
but before you choose to use one of these, you should understand the
individual phases, their unique needs, the ways in which machine learning
diverges from traditional delivery processes, and the distinct monitoring
needs.
In order to achieve the automation desired in the process, we can break down
the steps to take your raw data and create a a trained model deployment in a
production environment into five distinct phases.
The first step is the data transformation needed to take the raw data sources
and transform them into the format necessary to effectively train a machine
learning model. This phase is separate from the others because the ability to
adapt, execute, and monitor it allows agility in cases where changes are
needed apart from all others in the pipeline. We also treat the transformed
data as a versioned unit and as input to the next phase.
The second phase is the actual training of your machine learning model.
Like all the other phases, it takes the output of the previous phase. In this
case, we retrieve our transformed data and start training a model; the training
is complete when we have a model artifact to store. Like our data, we
version the resulting model for the next phase.

The third phase is the evaluation of the model. This requires that we deploy
the model and use data that the model has never seen to determine its
suitability to address our stated business outcome. This may include
accuracy, loss, response time, artifact size, RMSE, or similar metrics. These
can be static, requiring you model pass a specified numerical before being
saved or they can be dynamic, requiring that your potential model perform
better than the model already deployed to production.
The fourth phase is the storage management of the trained models. When
just starting the experimentation phase, storing models in s3 is sufficient, but
as more models are trained, more teams train models, and different models
move along their respective deployment paths, we need more robust
solutions. Additionally, we want both ephemeral and long-term storage of
models, along with the ability to act on their metadata, including version.
The fifth and final phase is the deployment of the created models. Like the
other phases, this phase should be able to run without a human performing
the deployment. We can, and often should, add approval steps requiring
environment owners to allow deployment to proceed into their respective
environments, with the actual implementation occurring automatically once
approved.
Each of these phases should have a trigger that begins the automated steps of
the phase itself and emits sufficient metrics to allow both the data science
and operations teams to understand the status, results, and errors, if any.
Triggers differ for each phase, but they can include new training data
becoming available, a new training script being checked into source control,
updated model evaluation metrics, new deployment resources, a new
environment, or simply a time period passing.
Each of these phases, their automation and steps, the scripts needed to
complete them, their metrics, and their outputs could be managed separately,
but this would involve quite a bit of management between phases. It would
also introduce brittleness to your process since any change in one of the
component pieces would cause the entire structure to fail. Thankfully, the
same method used in traditional DevOps projects can also be used here:
orchestrators.
Think of an orchestrator as a specialized application whose purpose is to
manage phased workflows and pass the results of one workflow as inputs to

the next. It also manages the triggering events of each of the phases,
coordinates the resulting metrics, and can be easily mutated and extended.
Since we have chosen AWS as the cloud computing option for our machine
learning workloads, we have a choice of orchestrators. We will be focusing
on three: AWS Step Functions, AWS SageMaker Pipelines, and Amazon
Managed Workflows for Apache Airflow.

Orchestration Options
A workflow orchestrator is an application whose purpose is the
management, coordination, parameterization, and invocation of a defined set
of other applications. As applications evolve, they tend to move away from
monolithic all-in-one types of deployment to distributed microservice-style
applications. This brings several advantages but adds the need to coordinate
the different smaller applications. One of the ways to do this is via an
orchestrator. You are already familiar with orchestration workflows, like the
one where a package is ordered, packaged, and delivered depending on
shipping options. Refer to Figure 12.1:

Figure 12.1: An Example Diagram

Applications are similar in that we can use an orchestrator to tie a series of
applications together, pass the output from one as the input to the next, and
add logical conditions to guide the flow depending on parameters, results, or
other factors. We can also express this diagram as code, which allows us to
check it into our source code repository, test, validate, package, and deploy it
in conjunction with our application. In fact, the very deployment pipeline we
invoke to accomplish these steps is performed by an orchestrator. Here, you
can see an example of such a process triggered by code pushed to a Source
Control Repository and orchestrated by AWS CodePipeline. Refer to Figure
12.2:

Figure 12.2: AWS CodePipeline Deployment

Our machine learning operations (MLOps) workflow has a similar pattern
and can be managed by a workflow that makes decisions similar to those we
made when we were experimenting with the training, testing, tuning, and
deployment options for our models. The result is our machine learning
pipeline configured as code and deployed to our choice of orchestrator. Refer
to Figure 12.3:

Figure 12.3: An example machine learning workflow

The code for each of these phases can be stored alongside the training code
or in its own repository. The following is a minor code snippet, which we
will expand on later in the chapter, showing how to define our Model
Training phase using Amazon SageMaker Pipelines. It is written in Python
using the AWS CDK:

BuildPipelineConstruct(

self,

"ModelTrain",

project_name,

project_id,

s3_model_location,

s3_pipeline_location,

model_package_group,

s3_seed_location,

kms_key,

)

Amazon SageMaker Pipelines
If you have worked with AWS for any amount of time, you might have heard
the statement that more than 90% of the services created are based on
feedback from the customer. Amazon SageMaker Pipelines are a direct
example of this customer obsession. While there are a number of other
orchestration options available from AWS, it was clear from machine
learning practitioners that they wanted an option that could be created,
managed, and observed directly from within their Integrated Development
Environment (IDE). SageMaker Projects and SageMaker Pipelines were
created to meet this need.
SageMaker Projects are a logical container for Machine Learning-focused
DevOps processes, and SageMaker Pipelines are the connected steps of that
DevOps implementation. First, you create the project, and then you define
and connect the steps within that project to form your pipeline. Since each of
your machine learning workflows have distinct stages, inputs, and results,
the project gives you a grouping mechanism for those workflows.
SageMaker Pipelines are under the hood abstractions of other AWS DevOps
services, specifically, CodeCommit for the source control repository,
CodeBuild for the actual code preparation phase, CodeDeploy for the
creation of SageMaker Endpoints, and CodePipeline for the orchestration of
all the individual steps. This abstraction serves a specific purpose, allowing
the machine learning practitioner to interact with their pipeline from within
their chosen IDE and also allowing the operations team to observe and
interact with the exact same pipeline from outside SageMaker Studio. This is

especially useful because for larger, enterprise-level projects, it is unlikely
that the machine learning practitioner will be the one deploying the model to
a production environment. This means that the practitioner can create,
manage, and observe the pipeline from SageMaker studio, and the operations
team can approve deployments to productionand make any changes
necessary without getting access to the same Studio environment.
There are several example pipelines pre-loaded in your SageMaker Studio
environment; to get started, you can choose Projects from the left-hand
menu. From there, you can create a project and choose the appropriate
template to start with. The templates themselves are referred to as
Infrastructure as Code documents written in the CloudFormation format.
These documents are added to the AWS Service Catalog product listing and
must contain the SageMakerProjectName and SageMakerProjectId
keys/values. Finally, the product should have the sagemaker:studio-
visibility key with true value added.
SageMaker Pipelines uses a discrete SDK to describe the steps,
requirements, and relationships between steps in a directed acyclic graph
(DAG); it is expressed in the JSON format. The following is an example of a
simple model build and training DAG. Refer to Figure 12.4:

Figure 12.4: Example DAG flow

Each pipeline has a discrete number of parameters and steps associated with
the machine learning workflow. An example pipeline definition in the AWS
SageMaker Pipeline SDK might be as follows:
SageMakerPipeline = Pipeline(

name="RegionallyUniquePipelineName",

parameters=[

data_instance_type,

data_instance_count,

training_instance_type,

approval_step,

training_data

],

steps=[data_transformation, model_train, model_deploy,

model_evaluation, model_retain],

)

Each of the steps in the steps list will have their own definition block that
details the information necessary to complete that step and informs which
sections are prerequisites. The following is the model_evaluation step that
determines whether a created model meets the required parameters. There is
a branch that gets evaluated if the resulting model does not meet the required
parameters and another if it does:
model_evaluation = ConditionStep(

if_steps = [step_register],

else_steps = [step_fail],

)

For the condition step, on the left is the property to use in the comparison
and on the right is the value to compare against. In this step, if our model’s
resultant evaluation score is not greater than 80%, the step evaluates to
false. If it is, the step evaluates to true, and we can move on to registering
our model.
As mentioned, one of the key benefits of Amazon SageMaker Pipelines is
the ability to view, execute, and monitor your pipeline status from within
SageMaker Studio. At any time, you can select SageMaker Projects, then
Pipelines, and the pipeline you wish to review. This includes the DAG, a list
of executions of the pipeline, and associated data. You can also select one of
the pipeline executions to see the details of that specific invocation of your
pipeline. If you want to start a pipeline, you can select the Executions tab
and click on Start an Execution.

AWS CodePipeline

Amazon SageMaker Pipelines is an abstraction of AWS CodePipeline, a
continuous delivery service. This means that your DevOps or operations
teams can monitor and interact with your pipeline directly from that service,
the AWS SDK, or AWS CLI, without having to access SageMaker Studio.

AWS Step Functions
AWS Step Functions is a serverless orchestrator that allows you to
coordinate invocations of various AWS services in order to accomplish a
goal. Step Functions can be invoked on a time schedule via Amazon
EventBridge, or they can be started as a result of an event emitted by another
AWS service. This is particularly useful as a machine learning orchestrator
since you can trigger a model training process every time new data arrives in
S3 (PutObject), every time a new training script is merged into the
development branch of a CodeCommit repository
(pullRequestMergeStatusUpdated), or even when a CloudWatch alarm is
triggered on ModelQuality metrics falling below an acceptable level.
Just like Amazon SageMaker Pipelines, Step Functions are defined in
discrete stages that can include logical paths and the output of the preceding
steps as inputs. Additionally, Step Functions can interact at the API level
with many AWS services, eliminating the need to call a separate compute
resource (such as AWS Lambda) to trigger the actual service invocation.
With Step Functions, each workflow is a State Machine containing one or
more Task states that perform work and Choice states with logic for
determining flow, among others.
Step Functions and their respective components, referred to as tasks, can be
expressed as JSON using Amazon States Language. An example State
Machine that performs several variations on the classic “Hello, World!”
program:
{"Comment": "This is an example of a State Machine that

completes a Hello, World! scenario",

"StartAt": "StartState",

"States": {

"StartState": {

"Type": "Task",

"Resource": "arn:aws :lambda:us-west-

2:123456789012:function:example_hello_world",

"Next": "ChoiceState"

},

"ChoiceState": {

"Type" : "Choice",

"Choices": [

{

"Variable": "$.hello_success",

"NumericEquals": 0,

"Next": "HelloSuccess"

},

{

"Variable": "$.hello_failure",

"NumericEquals": 1,

"Next": "HelloFailure"

}

],

"Default": "DefaultState"

},

"HelloSuccess": {

"Type" : "Task",

"Resource": "arn:aws:lambda:us-west-

2:123456789012:function:double_hello",

"Next": "EndState"

},

"HelloFailure": {

"Type" : "Task",

"Resource": "arn:aws:lambda:us-west-

2:123456789012:function:hello_dlq",

"Next": "EndState"

},

"DefaultState": {

"Type": "Fail",

"Error": "StateMachineError**",

"Cause": "No State Matched"

},

"EndState": {

"Type": "Task",

"Resource": "arn:aws:lambda:us-

west=2:123456789012:function:hello_end",

"End": true

}

}

}

The AWS Step Functions console also includes the Step Function Studio, a
graphical interface for building State Machines and their connections. This
makes it easier to start with the individual components of your flow, then
connect them and update the process logic to complete the task.

AWS Step Functions Data Science SDK
The AWS Step Functions Data Science SDK is an open-source library that
enables machine learning practitioners to easily create, train, and deploy
machine learning models in Amazon Web Services. The SDK is intended to
be written using Python and allows pipelines to be designed
programmatically. You can use PyPi and Python 3.6 to get started quickly, as
follows:
pip install stepfunctions

git clone https://github.com/aws/aws-step-functions-data-

science-sdk-python.git

cd aws-step-functions-data-science-sdk-python

pip install.

Once you have the SDK installed, you can create the individual steps of your
workflow. For example, you can define a step that invokes a Lambda
function:
LambdaStep = LambdaStep(

state_id="Print out Hello, World!",

parameters={

"FunctionName": "hello_world",

"Payload": {

"input": "Function Input"

}})

Once you have the individual steps of your workflow defined, you put them
together in a Chain:
aiml_chain=Chain([first_task, second_task, third_state])

Last, given the workflow tasks are chained together, you can declare your
workflow definition:
aiml_workflow = Workflow(

name="AI/ML Workflow v0.0.1",

definition=aiml_chain,

role=aiml_iam_role

)

Similar to using the AWS CDK for infrastructure, the AWS Step Functions
Data Science SDK allows you to manage your workflow programmatically
instead of having to learn a semi-structured language like CloudFormation.
This is particularly appealing to data scientists since they likely already
know and work in Python and would like their tools available in that
language as well. You can also use the same SDK to graphically render your
workflow:
aiml_workflow.render_graph(portrait=False)

Similarly, you can create your defined workflow in the AWS Step Functions
service by executing the Create function on your workflow object and then
executing function to invoke the workflow:
aiml_workflow.create()

aiml_execution = aiml_workflow.execute(inputs={

“times_to_print”: “3”

})

Apache Airflow Workflows
Apache Airflow is a platform that allows you to create, manage, trigger, and
review your created workflows. Similar to SageMaker Pipelines and AWS
Step Functions, Apache Airflow allows you to create individual components
in your flow and then link them together, including inputs and outputs from
the respective tasks. You can create workflows either with Amazon
SageMaker operators (v1.10.1 or later) or with Airflow PythonOperator.
Apache Airflow may be an appealing option if you manage workflows in
multiple cloud or hybrid environments. It may also be advantageous in
situations where your team has a strong understanding of Apache Airflow.
Using the SageMaker operators, you take your created estimator object and
pass it to an imported sagemaker.workflow.airflow training_config

object:
training_config = training_config(estimator=estimator_object,

inputs=s3_train_data)

Once you have that, you can create a similarly imported
sagemaker.workflow.airflow transform_config_from_estimator object:
transform_config =

transform_config_from_estimator(estimator=estimator_object,

task_id='training',

task_type='training',

instance_count=1,

instance_type='ml.c5.large',

data=s3_transform_data,

content_type='text/csv')

Then you declare the airflow default arguments inside your new DAG
(similar to the Step Functions Data Science SDK):
workflow = DAG(

"MLOps Example", default_args={

"depends_on_past": False,

"retries": 3,

"retry_delay": datetime.timedelta(hours=1),

},

start_date=pendulum.datetime(2022, 09, 1, tz="UTC"),

description="Airflow ",

schedule="@daily",

catchup=False,

)

Phase Discrimination
After careful consideration of the options, our data scientist turned SRE
decided to implement SageMaker Pipelines. This is mainly because the team
has no existing Step Function or Apache Airflow workloads, so extending
their existing knowledge to machine learning isn’t applicable. Being able to
create, trigger, monitor, and manage the pipelines from SageMaker Studio is
a significant advantage. The deciding factor is that other groups in the
company use AWS CodePipeline, which means that since SageMaker

Pipelines is an abstraction of AWS CodePipeline, the existing operations
teams can continue to manage the production deployments the same way
they are today.
The decision has been made; the next step is to get started. Opening
SageMaker Studio, select the SageMaker Resources icon on the left sidebar.
From there, they can select Projects from the drop-down list, as shown in
Figure 12.5:

Figure 12.5: SageMaker Studio Projects

SageMaker Projects is a logical grouping of source control repositories
associated with the individual components of a machine learning workflow.
Since the phases are invoked separately, it is common to have one or more of
them in separate repositories. SageMaker Projects allow you to group those
repositories together in a single object.
SageMaker Projects has several predefined templates that cover many
workflows need. Our nascent SRE knows that customized versions can be
created but wants to start with one of the provided ones to test how it all
works. Their teams already use AWS CodeCommit as a source control
repository, committing their data transformation and model training scripts,

so they select MLOps template for model building, training, and
deployment. Refer to Figure 12.6:

Figure 12.6: SageMaker Pipeline Template Selection

Once the template has been selected and the project has been given a name,
the associated AWS resources are provisioned via the CloudFormation
template linked to the SageMaker Pipeline template. The template provisions
a CodeCommit repository to store the training scripts, a CodeDeploy job to
train the model, an S3 bucket to store model artifacts, and a CodePipeline
job to coordinate it all. These services are separate from the SageMaker
Studio, but our SRE will be able to observe their behaviors and control their
actions from within.
Once the pipeline has finished creating the associated infrastructure, it will
respond with two repositories: one for the build portion of our pipeline and
the other for the deployment. SageMaker Studio Pipelines separates the steps
into two repositories, but in order to understand the process, we will treat it
as five separate sections as detailed below.

Data Transformation
When first building the solution to a Machine Learning problem, we went
through the steps of identifying our data sources, integrating the respective
data selected from those sources, and the feature engineering of the data set.
From that initial work, we can extract an automate-able data transformation
script that will run based on a trigger we can define. That trigger can be new
data written to one of our data repositories, such as new data in Amazon

Aurora for MySQL, a specific S3 bucket, or a Snowflake Data Warehouse. It
can also be a new training script checked into our source code repository.
Once that triggering action takes place, the build pipeline will be triggered,
and the script checked in will be downloaded from the repository and run.
The behavior of that build function is controlled by one of the files in the
repository: codebuild-buildspec.yml.
This file contains the command that runs the pipeline, as shown below, and
can be edited to match the name of your project:
run-pipeline --module-name pipelines.abalone.pipeline

Replace abalone with a chosen pipeline name.
The default location created as part of the pipeline template is in
/pipelines/abalone/preprocess.py. You can replace this code (and path,
since it is unlikely that you are attempting to predict the size of snails, to
match the edits you made to codebuild-buildspec.yml above) with your
feature engineering code or edit the existing file to create your processing
code.
Our SRE is implementing a pricing prediction linear regression model, so
they choose priceIsRight as their pipeline name. In the same
/pipelines/priceIsRight/ directory, there is also a pipelines.py file
with references to abalone that will need to be updated as well as an
input_data object that should refer to the s3 location where our data
transformation step will write the data to be used in the next step.
input_data = ParameterString(

name="InputDataUrl", default_value=f"s3://your-s3-data-

location/data/priceIsRightData.csv",

)

There is also an evaluate.py in the same directory, but we will come back
to that file in phase 3: model evaluation. Once the changes are made, you
can stage, commit, and push them back to the CodeCommit repository.
There is a trigger set up for you that invokes your pipeline when any changes
are pushed to the repository, and you can track the changes in SageMaker
Studio by selecting your project.
If the process works as expected, you should see the results if the data
appears in your selected S3 bucket. If there are errors, check the log outputs
of the SageMaker processing job.

Model Training
Now that we have input data prepared, we can move to the second phase of
the process, though we will still use the first of our two repositories: the
build. From that process, we will continue with the pipeline.py file, which
contains the script used to train our model. The provided script is intended
for the SageMaker built-in XGBoost framework, and the file can be replaced
with your model training commands created during your experiments.
The steps to train your model are the same as when we were experimenting
in earlier chapters. We continue to create an estimator, set hyperparameters,
then call .fit() on your estimator. Your chosen model may have different
steps that can be added to the pipeline.py file.

Model Evaluation
Once we observe a successful training job and a model artifact written to the
identified s3 bucket, we can consider the method we will use for model
evaluation. During the experiments we ran, we immediately deployed a
trained model to a SageMaker endpoint to evaluate it against the chosen
metric. We will do the same here, but with the data from those experiments,
we can also set the minimum threshold for model performance that must be
met before we can consider the model viable to address our problem.
The chosen metric will depend on the model but should take the business
outcome into consideration. The value can and should be updated as the
business needs change. In the early portions of a Machine Learning project,
an accuracy of 60% may be acceptable, but as the product and process
mature, that may be adjusted to something more accurate. It should be noted
that this is not intended to compare the score against the currently deployed
model but determine a minimum threshold that any model should pass
before being saved.

Note on s3 Lifecycle Policies: The amount of data written to s3 for
even a single data scientist can be significant. Training data, feature
engineered data, model artifacts, model monitoring data captures,
training logs, and other data can clutter your s3 buckets and lead to
unnecessary costs. Consider implementing an s3 lifecycle policy that
moves any objects not accessed in the last 30 days to a lower cost tier.

You can then set a longer policy to either expire objects or move them
to an even lower cost tier.

For your pipeline, you set the evaluation script invocation, including the
model deployment, to a short-lived SageMaker endpoint in the model build
repository pipeline.py. The actual evaluation script is in the same location
and entitled evaluate.py.
The specific line in pipeline.py that determines the threshold for a model
retention is the ConditionStep portion of the pipeline. The left portion is the
metric to evaluate, and the right portion is the value reported by the model
evaluation. In the following example, we require that the accuracy of the
model be greater than 75%.
modelMetric= JsonGet(

step_name=stepProcess.name,

property_file=evaluationReport,

json_path="evaluation.accuracy",

)

stepCondition = ConditionStep(

name="priceIsRightConditionStep",

conditions=[ConditionGreaterThanOrEqualTo(left=modelMetric,

right=0.75)],

if_steps=[stepRegister],

else_steps=[stepFailure],

)

Once a model passes the minimum conditions, the model URL is passed to
the next phase: model retention. If your training process is triggered by new
training scripts or new data written to their respective repositories, you may
have quite a number of viable models to deploy within a given window. In
this situation, you can retrieve all the recorded metrics for saved models and
select the one with the best possible capability. Choosing this model and
deploying it alongside the current production model is often referred to as a
champion/challenger approach. The existing model is the champion, and the
new model is the challenger. The common approach is to use SageMaker
Endpoint production variants between the two models and adjust their model
weight to send some fraction of live traffic to the new model to validate its
accuracy and overall capability of replacing the champion. The replacement

action can be completed by selecting the new challenger model to receive all
the production traffic.

Model Artifact Management
Once a model has passed our condition expression, we want to store it
somewhere we can retrieve it from later. When we were in the initial
experimentation phases with our model building, we often stored our models
in s3. Object storage is especially suited to this, since the trained model
location in s3 is stored as part of the estimator’s .fit() function. As we
move into the operationalization portion of our workflow, we can continue to
use s3, but keeping track of those individual models becomes more and more
challenging. Additionally, storing metadata alongside the models enables
functionality like semantic versioning (outside of the model filename, but
this quickly encounters file length issues), model evaluation metrics,
references to training data, or even group model versions together.
There are third-party options that can store several different artifacts, such as
Artifactory, Nexus, or even AWS CodeArtifact. These will work, but they
are not specifically suited for machine learning models.
Taking those options into consideration, our SRE chooses to use the built-in
option: SageMaker Model Registry. The decision also has the advantage of
being supported by the chosen SageMaker Pipeline template. The specific
steps are in the pipeline.py file and should be updated with specific
information about your model:
priceIsRightModel = Model(

image_uri=imageURI,

model_data=stepTrain.properties.ModelArtifacts.S3ModelArtifac

ts,

sagemaker_session=sagemaker_session,

role=sagemaker_role,

)

stepArgs = priceIsRightModel.register(

content_types=["text/json"],

response_types=["text/json"],

inference_instances=["ml.m5.large", "ml.m5.xlarge"],

transform_instances=["ml.c5.large"],

model_package_group_name=ModelPackageGroup,

approval_status=modelApprovalState,

model_metrics=modelMetric,

)

stepRegister = ModelStep(

name="RegisterPriceIsRightModel",

step_args=stepArgs,

)

Model Deploy
Here, in the last phase, we finally switch to the other repository created for
us: the deploy repo. Similar to the build repo, we can clone (git
nomenclature for creating a local copy of a remote repository) the repo and
take a look at the contents.
For our build repository, the trigger was a new object being checked into the
repository. The deploy repository has a trigger, the act of registering a model
in the Model Registry. That registration triggers the pipeline to deploy the
model to a staging endpoint. Once that deployment is finished, it will wait
for approval to deploy the same model to a production endpoint. Automating
this process and separating it from the previous steps means that they can
operate independently. Once the machine learning practitioners revise their
training process, the automatic training will retrigger. Once a model has been
programmatically identified as suitable for deployment by exceeding the
identified model metrics, it starts the deployment process.
This results in freedom for your machine learning practitioners to continue
with their experiments, identifying improvements to the training process or
model behaviors, and then, when they are ready for use, checking them into
the repository.
All resultant models that pass the identified metrics will be queued for
deployment. Of course, not all of them will be deployed to production, but
the ones that are not selected can have their approval status set to Rejected.
The deploy pipeline has two endpoints created: staging and production. You
can add as many as are relevant to your software development life cycle
needs, including Quality Assurance, Integration, or Beta endpoints. You can
also set these endpoints to be deployed in other AWS accounts that your
AWS CodeDeploy job is given permission to access.

Within the deploy repository, buildspec.yml gives instructions for AWS
CodeDeploy to take when it is invoked. This file uses the included build.py
to take arguments and write staging and production configuration files that
are then used by the Amazon CloudFormation Template to create the actual
endpoint infrastructure.
Each environment also has an environmental configuration file where you
can set parameters like instance type and number of instances for the
endpoint. If you added a QA environment configuration file, it might look as
follows:
{

"Parameters": {

"StageName": "qa",

"EndpointInstanceCount": "1",

"EndpointInstanceType": "ml.m5.large",

}

}

You would also need to add an argument in build.py to import the new qa-
config.json:
parser.add_argument("--import-qa-config", type=str,

default="qa-config.json")

Finally, a new code block to write out the qa configuration file:
with open(args.import_qa_config, "r") as f: qa_config =

extend_config(args, model_package_arn, json.load(f))

logger.debug("QA config: {}".format(json.dumps(qa_config,

indent=4)))

with open(args.export_qa_config, "w") as f:

json.dump(qa_config, f, indent=4)

if (args.export_cfn_params_tags):

create_cfn_params_tags_file(qa_config, args.export_qa_params,

args.export_qa_tags)

The approval for a model to be deployed is managed within the SageMaker
Model Registry and can be set either in AWS SageMaker Projects or directly
in AWS CodePipeline. This means that you can have approvers that do not
need access to SageMaker Studio, including programmatic ones with
integrations to change management systems.

Best Practices using the AWS Well-Architected
Lens for Machine Learning
Once you have operationalized your machine learning workflow, you can
also implement monitoring, automatic retraining, dashboards, and additional
processes, but often, the issue is knowing the best practices that should be
prioritized. Thankfully, Amazon Web Services has provided a service that
distils the codified learnings for all their customers into the Well-Architected
Tool.
For a workload to be considered well-architected, it should align with the
learnings presented in the six categorical pillars of the Well-Architected
Framework. The pillars, that is, operational excellence, security, reliability,
performance efficiency, cost optimization, and sustainability, form groups of
questions that the machine learning practitioner team can use to guide their
technical backlog and development path. Thankfully, these phases and steps
align well with the ML workflow that we reviewed in Chapter 1,
Introducing the ML Workflow.
The outcome of answering the questions and identifying the areas that have
not yet been addressed is a set of high and medium vulnerabilities that can
be used as structured data, identifying the approach to a goal of being well-
architected. Applying a specific set of questions to the well-architected tool
is referred to as applying a lens.
For the AWS Well-Architected Machine Learning Lens, the workflow is
grouped into eight sections, as shown in Figure 12.7:

Figure 12.7: The Well-Architected Machine Learning Lens

Making the Well-Architected Framework part of your team’s planning
effectively provides a method for providing structured and actionable
metrics from an unstructured discussion.
Some of the best practices to consider including in the process are listed
here:

Security: Start with pre-built containers for your workflow. Focus on
the training process before taking on the additional development
overhead of managing your own DockerFile for training, inference, or
both.
Reliability: Agree on a level of explainability. We covered the
concepts of model explainability in Chapter 8, Blue or Green, but some
decisions must be madein coordination with business stakeholders,
especiallyabout the level of explainability for the project. No two
projects or even industries will be the same, so it would be
reconsidered per workload.
Performance efficiency: Quantify the value of machine learning on
AWS. Engineering effort on any scale must take into consideration the
benefit of the effort. What level of cost reduction, automation,
additional experiments, or other key performance indicators will be
reported by the project?
Cost optimization: Use managed services; it has been discussed
multiple times in this book that these tasks can be accomplished by
provisioning one or more EC2 instances and managing the compute
resources yourself. The drawbacks of this approach have been
discussed, but alongside using managed services like AWS SageMaker,
AWS Step Functions, or AWS CodePipeline have advantages that
should be quantified and recorded. These cost optimizations can be
allocated elsewhere to further accelerate your machine learning goals.
Operational Excellence: Developing the skills of your machine
learning practitioners is key, especially in such a fast-paced, rapidly
accelerating field. It would be an anti-pattern to assume that the current
skill set of your team members will be suitable for everything all the
time. Investing in your team’s knowledge growth means investing in
the quality of your workload.

Sustainability: Despite being the newest pillar, sustainability is
quickly gaining importance. The use of AWS services already helps
you take steps in the right direction because of the lower carbon
footprint AWS can manage as compared to an on-premise data center.
Further, using tools like the Customer Carbon Footprint tool can
provide quantifiable metrics for environmental impact per workload.
Consume these metrics alongside domain specific ones to make
directional decisions.

Conclusion
Here, we conclude our learning journey together, and what a fascinating one
it has been! You may think that this is too brief, too terse, too fleeting to
cover all that can be learned for machine learning on AWS, and you would
be absolutely correct. At the same time, the journey continues. This may be
your first time working with machine learning concepts, or you may be quite
experienced in this field and may be using this book as a method to improve
your skills. In either case, the amount of knowledge left to acquire in this
field alone is near infinite. Yet, this is a cause of celebration, not regression
(pun intended). This is a time of fascinating discovery and amazing
enablement for machine learning. Leveraging on-demand near-infinite scales
offered by cloud computing means that models with billions of parameters
can not only exist but are in use right now. Machine learning is being used to
find cures for cancer, put an end to human trafficking, and enable
communication between people from all over the world, and your work is
part of that.
Even if the project you are working on feels mundane, you work in a field
that is expanding moment by moment. Where one journey ends, another
begins, and this is the beginning of the things you will accomplisheven if
those are a few competitions on Kaggle, an Amazon SageMaker Jumpstart
experiment, or the next best style of proto-transformer models, your work
matters because you choose to do it. Now, at the end of this book, we are
colleagues. So, feel free to reach out and let us know what you are working
on and what you think of this book.
Lastly, take a moment and think about your journey and how far you’ve
come. What is next is up to you but consider sharing your journey with
others. Social media, video blogging, even a book of your own. We are

enriched when we elevate others, and we are in this together; machine
learning is no different.

Multiple Choice Questions
Use these questions to challenge your knowledge of MLOps and well-
architected Machine Learning workflows.

1. What is the purpose of SageMaker Projects for MLOps?

a. Automatically tracking experiments for a given model
b. Standardizing developer environments, dependency, and code

management
c. Managing the networking overhead of Machine Learning projects
d. Managing the planning of machine learning workflows

2. What details do SageMaker Experiments allow you to track across
experiments?

a. Parameters, metrics, datasets, and other artifacts related to training
jobs

b. Parameters, metrics, datasets, and associated details of live
inference

c. Request and response payloads
d. Level of effort put into each training iteration

3. Which is not an approval status for a model managed by the
SageMaker Model Registry?

a. PendingManualApproval
b. Approved
c. Deferred
d. Rejected

4. Which service stores and manages the templates used to create the
infrastructure associated with a SageMaker pipeline?

a. AWS CloudFormation
b. Amazon CloudInstigator

c. AWS Serverless Application Model
d. AWS Service Catalog

5. Using the AWS Well-Architected Framework Reliability pillar, who
should be involved with determining the level of explainability?

a. Business stakeholders
b. Customers
c. Data scientists only
d. Legal team

Answers
1. b
2. a
3. c
4. d
5. a

Further Reading
Additional reading and information sources that will enrich your knowledge
of the concepts covered in this chapter:

Integrating Amazon SageMaker Data Wrangler with MLOps
workflows: https://aws.amazon.com/blogs/machine-
learning/integrate-amazon-sagemaker-data-wrangler-with-mlops-
workflows/
MLOps at the edge: https://aws.amazon.com/blogs/machine-
learning/mlops-at-the-edge-with-amazon-sagemaker-edge-
manager-and-aws-iot-greengrass/
MLOps for enterprises: https://aws.amazon.com/blogs/machine-
learning/mlops-foundation-roadmap-for-enterprises-with-amazon-
sagemaker/
Orchestrating XGBoost with Apache Airflow:
https://aws.amazon.com/blogs/machine-learning/orchestrate-

xgboost-ml-pipelines-with-amazon-managed-workflows-for-
apache-airflow/
Manage AutoML workflows with AWS step functions:
https://aws.amazon.com/blogs/machine-learning/manage-automl-
workflows-with-aws-step-functions-and-autogluon-on-amazon-
sagemaker/

Index
A
Abacus 152
Absolute Values 186
active learning 22
after deployment

data drift 249
model drift 249, 250
model monitoring 248
model quality 250

AI for Industrial Automation
overview 323, 324

Algorithmic Properties 186
algorithms

deep learning considerations 168, 169
neural network considerations 168, 169
versus, neural network conundrum 161

Algorithms and Neural networks 151, 152
decision trees 154, 155
deterministic algorithms 152, 153
entropy 155, 156
Gini Impurity, for decision trees 157
information gain 157
neural networks 158-160
probabilistic algorithms 153, 154
reduction in variance, for regression 157, 158

Amazon A2I 22
Amazon Athena 57-59
Amazon Comprehend 30, 316

for deriving insights 299-318
Amazon Forecast 226
Amazon Key Management Service (KMS) 36
Amazon Kinesis

Data Lake, streaming 48, 49
Amazon Lookout for Equipment 322, 326

predictive analysis with 336-344
Amazon Lookout for Vision 325

quality control with 327-336
Amazon Polly

for speech generation 314, 315
for text to speech 298, 299

Amazon QuickSight
URL 18

Amazon Rekognition 81

for computer vision 296-312
Amazon S3 Select 53, 54
Amazon SageMaker 20, 21
Amazon SageMaker endpoint

autoscaling 237, 238
inference recommender 235, 236
serverless 236
using 234, 235

Amazon SageMaker Linear Learner Algorithm
using 172-174

Amazon SageMaker model monitor 22
Amazon SageMaker Pipelines 352-354
Amazon Simple Storage Service (S3) 35
Amazon Transcribe

for automatic speech recognition 295, 296
for speech recognition 307-310

Amazon Translate
for language translation 312-314
for machine translation 297, 298

Apache Airflow 358
workflows 358, 359

Apache MXNet 7
Artificial Intelligence (AI)

evolution 2-9
on AWS 23

Artificial Neural Networks (ANN) 6
AutoGluon AutoML training 221
automated hyperparameter tuning 218
automatic speech recognition (ASR) 323
AutoML 207

AutoGluon, using 218-226
running, with SageMaker Canvas 209-218

Auto Regressive Convolutional Neural Network (AR-CNNs) 8
AWS account

setting up 42-44
AWS AI services 293-295
AWS CodePipeline 355
AWS Database Migration Service 50
AWS DataSync

leveraging, for Data Lake streaming 49
AWS DeepComposer 8
AWS Global Infrastructure layers 38
AWS Glue 54, 113

Glue Crawlers 55, 56
Glue Databases 56, 57
Glue Tables 57

AWS Glue DataBrew
data profiling with 131-145

AWS Glue ETL 111
AWS Glue ETL job

building 113-122
running 129-131

AWS Greengrass IoT 335
AWS Inferentia chipset 261
AWS KMS 40
AWS Lambda function 122

creating, with Amazon S3 trigger 122-129
AWS Schema Conversion Tool 50
AWS Snow Family

AWS Snowball 51
AWS Snowcone 51
AWS Snowmobile 51, 52

AWS Step Functions 355, 357
AWS Step Functions Data Science SDK 357, 358
AWS Trainium 184
AWS Well-Architected Lens, for ML

best practices 366-368

B
back propagation 160
best practices, Well-Architected Machine Learning Lens

cost optimization 368
Operational Excellence 368
performance efficiency 368
reliability 367
sustainability 368

Blue/Green deployment 252, 253

C
Clarify 22
compute

selecting 232, 233
self-hosted 233

compute resources
training 188

computer vision (CV) 76, 323
feature engineering 76, 77

Convolutional Neural Networks (CNNs) 6
Cost of Poor Quality (COPQ) 325

manufacturing failures, preventing 326, 327
product quality, improving 325, 326

CreateModel API 261

D
data continuum

demystifying 109-111
data drift 21

Data Lake 35, 37
example 37, 38
for Machine Learning 41
hydrating 42
securing 40, 41
streaming 48
streaming, with AWS DataSync 49

data profiling
with AWS Glue DataBrew 131-145

datasets 45-47
data storage

training 188
decision trees 154, 155
Deep Graph Library (DGL) 162
deep learning 158

training 183
Deep Learning AMIs 24
DeepRacer 153
deployed model

A/B testing 253
multi-model endpoints 254, 255
updating 251

deployment mechanics 240, 241
computer vision 244-248
linear regression 242-244
narrative generation 241, 242

deterministic algorithms 152
example 153

E
entropy 155

F
feature engineering 67, 68

for NLP 68-70
running, with AWS Glue ETL 112, 113

feature engineering, for CV 76, 77
dimensionality reduction, with PCA 87-89
images, converting to grayscale 85, 86
images, converting to RecordIO format 86, 87
images, cropping 79-84
images, resizing 77-79
images, rotating 84
images, tiling 79-84

feature engineering, for tabular datasets 89, 90
binning 100, 101
data, exploring 90-92
feature correlation 101, 102

feature frequency encoding 95-97
feature normalization 99, 100
feature scaling 99
feature selection 94, 95
missing values, inputting 93, 94
one hot encoding 98
Principal Component Analysis 103, 104
target mean encoding 97, 98

Feature Store 19
Foundation 291

G
Generative Adversarial Networks (GANs) 8
Gini Impurity 157
GluonTS 162
GPT-3 168
Graphical Processing Units (GPUs) 183

versus CPU 184

H
hyperparameter optimization (HPO) 218
hyperparameters 186

I
Identity and Access Management (IAM) 36, 39
image classification 197-203
ImageMagick 84
inference 230, 231
inference options

batch 232
real time 232
streaming 232
testing 231
validation 231

inference, running with SageMaker Hosting 269
Batch Transform, inferencing with 281-283
IAM permissions, setting up 269-276
real-time endpoints, inferencing with 276-278
serverless endpoints, inferencing with 279-281

information gain 157

J
Java Database Connectivity (JDBC) 58

K

Kaggle 90
Keras 175
Kinesis Data Analytics 49
Kinesis Data Firehose 49
Kinesis Data Streams 48
Kinesis Video Streams 49

L
Lake Formation 46-48

Data Catalog 47
permissions 47
register and ingest 47

linear regression 189-194

M
Machine Learning (ML) 1

evolution 2-9
on AWS 23-26

metadata 53
Mise en Place 185
ML model training 183
MLOps 347-350
MLP neural network

using 174-177
ML problem

approaching 9, 10
ML solutions

building, with algorithms and neural networks 169-172
ML workflow

common, versus custom ML 14-16
data preparation 17, 18
decision tree considerations 166, 167
ML data features 163, 164
ML domain 161, 162
ML framework 162, 163
ML use case 162
model monitoring 21, 22
model training 19-21
navigating 28
overview 13, 14
sentiment detection scenario 29, 30
statistical models 166
timeseries forecasting scenario 28, 29
training preparation 18, 19

MNist Dataset 45
model hyperparameters

setting up 186, 187
model training

defining 185
evaluation metrics 185, 186
Mise en Place 185

MXNet 163

N
Natural Language Processing (NLP) 194-197, 323
natural language understanding (NLU) 323
neural networks 158-160
NLP feature engineering 68-70

lemmatization 73-75
punctuations, removing 70
quotes, tokenizing 70, 71
stemming 73, 74
stop words, removing 72, 73
words, converting to lower case 72

O
Open Database Connectivity (ODBC) 58
orchestration options 350-352
Organizational Units (OUs) 44

P
Pandas DataFrame 90
Personally Identifiable Information (PII) 40
personal protective equipment (PPE) 296
phase discrimination 359-361

data transformation 361, 362
model artifact management 364
model deploy 365, 366
model evaluation 362, 363
model training 362

PLAsTiCC Astronomical Classification Dataset 45
predictive analytics

with Amazon Lookout for Equipment 336-344
probabilistic algorithms 153, 154
Python3 Data Science kernel 90
PyTorch 162

Q
quality control

with Amazon Lookout for Vision 327-336

R

Ranking Measures 186
RecordIO format 86
Rectified Linear Unit (ReLU) 6
Recurrent Neural Network (RNN) 6, 162
reinforcement learning 11-13
Relative Values 186
ResNet50 283
REST API 231
root account 44
Root Mean Squared Error (RMSE) 275

S
S3 bucket

creating 67
object, uploading 67
securing 39, 40

S3 Folders 52
S3 Key Optimization 52
SageMaker capabilities 25-28
SageMaker Autopilot 209
SageMaker Canvas

AutoML, running with 209-218
SageMaker Edge Manager 239

model compilation 239, 240
SageMaker Elastic Inference 261

accelerator, adding 283-287
SageMaker ML Inference options 260, 261
SageMaker Projects 360
SageMaker real-time endpoints

for asynchronous inference 265, 266
for multi-model multi-container 264, 265
for multi-model one-container 263
for one-model one-container 262, 263
for serverless inference 266, 267

SageMaker Studio 65
repository, cloning 65, 66

SageMaker transformer
for batch inference 267, 268

script
versus container 187

Seaborn 102
sensory cognition

adding, to applications 300, 301
IAM permissions, setting up 301-306

Seq2Seq 162
Sigmoid and Hyperbolic Tangent 6
Stochastic Gradient Descent 175
supervised learning 11

T
tabular datasets

feature engineering 89
TensorFlow 162, 175
TERAFLOPS 4
Titanic Dataset 45
training scenarios 189
transfer learning 184

U
unsupervised learning 11

V
Visual Anomaly (VisA) dataset 327

W
Wine Quality Dataset 45

X
XGBoost 163

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Authors
	About the Reviewers
	Acknowledgement
	Preface
	Errata
	Table of Contents
	1. Introducing the ML Workflow
	Introduction
	Structure
	Objectives
	Evolution of AI and ML
	Approaching an ML problem
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Overview of the ML workflow
	Common versus custom ML
	Data preparation
	Training preparation
	Model Training
	Model monitoring

	Introducing AI and ML on AWS
	Navigating the ML workflow
	Scenario 1 – Timeseries forecasting
	Scenario 2 – Sentiment detection

	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	Further Reading

	2. Hydrating the Data Lake
	Introduction
	Structure
	Objectives
	Chapter Scenario
	The Data Lake
	Securing your Buckets
	Securing your Data Lake
	Data Lakes for Machine Learning
	The Importance of Hydration
	Setting Up Your AWS Account
	Starting Datasets
	Streaming Data and the Data Lake
	Amazon Kinesis
	AWS DataSync
	AWS Database Migration Service
	AWS Schema Conversion Tool

	AWS Snow Family
	AWS Snowcone
	AWS Snowball
	AWS Snowmobile

	Uncovering Patterns
	Amazon S3 Select
	AWS Glue
	Glue Crawlers
	Glue Databases
	Glue Tables

	Amazon Athena
	Conclusion
	Points to Remember
	Multiple choice questions
	Answers

	Further Reading

	3. Predicting the Future With Features
	Introduction
	Structure
	Objectives
	Technical Requirements
	Onboard to SageMaker Studio
	Cloning the repository to SageMaker Studio
	Creating a S3 bucket and uploading objects

	Introducing feature engineering
	Feature engineering for NLP
	Tokenize and remove punctuations
	Convert to lower case
	Remove stop words
	Perform stemming and lemmatization

	Feature engineering for computer vision
	Resizing Images
	Cropping and tiling images
	Rotating images
	Converting to grayscale
	Converting to RecordIO format
	Dimensionality reduction with Principal Component Analysis

	Feature engineering for tabular datasets
	Exploring the data
	Imputing missing values
	Feature selection
	Feature frequency encoding
	Target mean encoding
	One hot encoding
	Feature scaling
	Feature normalization
	Binning
	Feature correlation
	Principal Component Analysis

	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	Further Reading

	4. Orchestrating the Data Continuum
	Introduction
	Structure
	Objectives
	Demystifying the data continuum
	Running feature engineering with AWS Glue ETL
	Building the AWS Glue ETL job
	Creating AWS Lambda function with an Amazon S3 trigger
	Running the solution

	Data profiling with AWS Glue DataBrew
	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	Further Reading

	5. Casting a Deeper Net (Algorithms and Neural Networks)
	Introduction
	Structure
	Objectives
	Introducing Algorithms and Neural networks
	Deterministic Algorithms
	Probabilistic Algorithms
	Decision Trees
	Entropy and Information gain
	Gini Impurity for decision trees
	Reduction in variance for regression
	Neural Networks

	Simplifying the Algorithm versus Neural network conundrum
	What ML domain?
	What ML use case?
	What ML framework?
	What ML data features?
	Statistical models or decision tree considerations
	Deep Learning and neural network considerations for Algorithms

	Building ML solutions with Algorithms and Neural Networks
	Using Amazon SageMaker Linear Learner Algorithm
	Using a Multi-layer Perceptron or MLP neural network

	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	Further Reading

	6. Iteration Makes Intelligence (Model Training and Tuning)
	Introduction
	Structure
	Objectives
	The Meaning of Training
	What Training Means for Deep Learning
	GPU vs CPU
	AWS Trainium
	Transfer Learning
	The Mise en Place of Model Training
	Defining Model Training and Evaluation Metrics
	Setting Up Model Hyperparameters
	Script vs Container
	Training Data Storage and Compute
	Training Scenarios
	Linear Regression
	Natural Language Processing
	Image Classification
	Image Classification Round 2

	Conclusion
	Points to Remember
	Multiple choice questions
	Answers

	Further Reading

	7. Let George Take Over (AutoML in Action)
	Introduction
	Structure
	Objectives
	Running AutoML with SageMaker Canvas
	Automated Hyperparameter Tuning
	Using AutoGluon for AutoML
	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	8. Blue or Green (Model Deployment Strategies)
	Introduction
	Chapter Scenario
	Structure
	Objectives
	Inference Options
	Testing and Validation
	Real Time
	Batch
	Streaming

	Choosing your Compute
	Self-Hosted

	Amazon SageMaker Endpoint
	Inference Recommender
	Serverless
	Autoscaling

	Inference at the Edge
	Model Compilation

	Deployment Mechanics
	Narrative Generation
	Linear Regression
	Computer Vision

	After the Deployment
	Model Monitoring
	Data Drift
	Model Drift
	Model Quality

	Updating a Deployed Model
	Blue/Green Deployments
	A/B Testing
	Multi-Model Endpoints

	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	Further Reading

	9. Wisdom at Scale with Elastic Inference
	Introduction
	Structure
	Objectives
	Understanding SageMaker ML Inference options
	SageMaker real-time endpoints for one-model one-container
	SageMaker real-time endpoints for multi-model one-container
	SageMaker real-time endpoints for multi-model multi-container
	SageMaker endpoints for asynchronous inference
	SageMaker endpoints for serverless inference
	SageMaker transformer for batch inference

	Running Inference with SageMaker Hosting
	Setting up IAM permissions
	Inference with real-time endpoints
	Inference with serverless endpoints
	Inference with Batch Transform
	Adding a SageMaker Elastic Inference (EI) accelerator

	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	Further Reading

	10. Adding Intelligence with Sensory Cognition
	Introduction
	Structure
	Objectives
	Introducing AWS AI services
	Amazon Transcribe for automatic speech recognition
	Amazon Rekognition for computer vision
	Amazon Translate for machine translation
	Amazon Polly for text to speech
	Amazon Comprehend for deriving insights

	Adding sensory cognition to your applications
	Setting up IAM permissions
	Using Amazon Transcribe for speech recognition
	Using Amazon Rekognition for computer vision
	Using Amazon Translate for language translation
	Using Amazon Polly for speech generation
	Using Amazon Comprehend for deriving insights

	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	11. AI for Industrial Automation
	Introduction
	Structure
	Objectives
	Overview of AI for Industrial Automation
	Cost of Poor Quality or COPQ
	Improve product quality
	Prevent manufacturing failures

	Quality Control with Amazon Lookout for Vision
	Predictive Analytics with Amazon Lookout for Equipment
	Conclusion
	Points to Remember
	Multiple Choice Questions
	Answers

	12. Operationalized Model Assembly (MLOps and Best Practices)
	Introduction
	Chapter Scenario
	Structure
	Objectives
	MLOps Defined
	Orchestration Options
	Amazon SageMaker Pipelines
	AWS CodePipeline
	AWS Step Functions
	AWS Step Functions Data Science SDK

	Apache Airflow Workflows

	Phase Discrimination
	Data Transformation
	Model Training
	Model Evaluation
	Model Artifact Management
	Model Deploy

	Best Practices using the AWS Well-Architected Lens for Machine Learning
	Conclusion
	Multiple Choice Questions
	Answers

	Further Reading

	Index

