RAN TAOQ
CHRIS BROOKS

PYTHON GUIDE 70 ACCOMPANY l 1

INTRODUCTORY
ECONOMETRICS

FORFINANCE

4TH EDITION

© Ran Tao and Chris Brooks 2019
The ICMA Centre, Henley Business School, University of Reading
All rights reserved.

This guide draws on material from ‘Introductory Econometrics for Finance’, published by Cam-
bridge University Press, © Chris Brooks (2019). The Guide is intended to be used alongside the
book, and page numbers from the book are given after each section and subsection heading.

The authors accept no responsibility for the persistence or accuracy of URLs for external or third-
party internet websites referred to in this work, and nor do we guarantee that any content on such
web sites is, or will remain, accurate or appropriate.

Contents

1 Getting started

1.2 Different ways to run Pythoncode,
1.3 What does a Jupyter NoteBook look like?
14 Gettinghelp e

2 Data management in Python
21 Variablesandnamerules. L Lo o
22 Whitespace
23 Comments e
2.4 Mathematical operations L o
2.5 Twolibraries: Pandasand NumPy
2.6 Datainputandsaving e
2.7 Data description and calculation 0o oo oL
2.8 Anexample: calculating summary statistics for house prices
29 Plots.o
210 Savingdataandresults Lo Lo

3 Simple linear regression - estimation of an optimal hedge ratio
4 Hypothesis testing - Example 1: hedging revisited

5 Estimation and hypothesis testing - Example 2: the CAPM

6 Sample output for multiple hypothesis tests

7 Multiple regression using an APT-style model
7.1 Stepwiseregression

8 Quantile regression
9 Calculating principal components

10 Diagnostic testing
10.1 Testing for heteroscedasticity o ..
10.2 Using White’s modified standard error estimates
10.3 The Newey-West procedure for estimating standard errors
10.4 Autocorrelation and dynamicmodels oo 0oL
10.5 Testing for non-normality o o e
10.6 Dummy variable constructionanduse Lo Lo
10.7 Multicollinearity e
10.8 The RESET test for functionalform
10.9 Stability tests L

11 Constructing ARMA models
12 Forecasting using ARMA models

13 Estimating exponential smoothing models

1

_ TN = =

12
15
15
16
17
17
18
20
23
25

27

31

33

39

41

49

57

60
60
62
64
66
67
69
73
74
75

80

85

89

14

15

16

17

18

19

20

21

22

23

24

25

Simultaneous equations modelling

The Generalised method of moments for instrumental variables
VAR estimation

Testing for unit roots

Cointegration tests and modelling cointegrated systems

Volatility modelling

19.1 Testing for "ARCH effects” in exchange ratereturns.
19.2 Estimating GARCHmodels,
19.3 GJRand EGARCHmodels
19.4 Forecasting from GARCHmodels

Modelling seasonality in financial data

20.1 Dummy variables for seasonality
20.2 Estimating Markov switchingmodels

Panel data models
Limited dependent variable models

Simulation methods

23.1 Deriving critical values for a Dickey-Fuller test using simulation
23.2 Pricing Asianoptions L o
23.3 VaR estimation using bootstrapping

The Fama-MacBeth procedure

Using extreme value theory for VaR calculation

11

91

94

97

106

109

121
121
123
125
129

132
132
134

137

142

150
150
154
157

160

164

List of Figures

1 Opening the PythonConsole, 2
2 Running Code fromtheConsole 2
3 Opening the Anaconda Navigator 3
4 Opening a Jupyter NoteBook 4
5 The Interface of a Jupyter NoteBook 5
6 Renaming Jupyter NoteBook 5
7 FileMenuOptions e 6
8 EditMenuOptions e 7
9 ViewMenuOptions. e 8
10 CellMenuOptions e 8
11 KernelMenuOptions e 9
12 HelpMenuOptions e 9
13 The Cell Editand CommandMode 11
14 Line plot of the Average House Price Series 24
15 Histogram of the Average House Price Series 25
16 Time-Series Plotof TwoSeries, 35
17 Scatter Plotoftwo Series L 36
18 Linear Regression for Different Quantiles 56
19 Percentage of Eigenvalues Attributable to Each Component 59
20 Time-series Plotof Residuals 61
21 Histogramof Residuals. o 68
22 Regression Residuals and Fitted Series 70
23 Plot of the Parameter Stability Test 79
24 Graph Comparing the Static Forecasts with the Actual Series 87
25 Graph Comparing the Dynamic Forecasts with the Actual Series 87
26 In-sample, Out-of-sample and Simple Exponential Smoothing 90
27 ImpulseResponses 102
28 Variance Decompositions o o o oo 0oL 103
29 Variance Decompositions for Different Orderings 105
30 Actual, Fitted and Residual Plot 110
31 Graph of the Six US Treasury Interest Rates Series 114
32 Dynamic and Static Forecasts oo oL 131
33 Smoothed State Probabilities L o oo 136
34 Graph of the Fitted Values from the Failure Probit Regression 147

35 Histogram and the Probability Density Function of the Standard Normal Distribution 165
36 HillPlot 167

v

List of Tables

1 Granger Causality Wald tests
2 Simulated Asian Option Price Values

AvS

1 Getting started

1.1 What is Python?

Python is an open-source, high-level and interpreted programming language for various purposes.
Several libraries it provides have proved particularly useful for both financial industry practitioners
and academic researchers, and therefore the programming language has become increasingly popu-
lar.

Python has several strengths: first, it is user-friendly for programming beginners. Learners do
not need to spend too much time on its syntax because the language is simple and very concise,
meaning that the code is highly efficient and much can be achieved in just a few lines compared with
other languages. Second, it provides extensive support libraries, web service tools, string operations,
panel data analysis, etc. Most frequently used programming tasks have already been scripted and
users can easily import them for their own purposes. Finally, it is free of charge and thus open to
everyone. Users can easily step into statistical analysis by implementing code in Python.

Most relevant for our purposes, Python can also implement many different statistical and econo-
metric tests. StatsModels is a powerful Python library to conduct many statistical tests, and in this
guide it will be used frequently.

Note that this guide is based on Python version 3.6. However, there are significant differences be-
tween version 2.7 and versions 3.5 and above. If you use the earlier version of Python (2.7), the syntax
as well as certain modules it provides are different. Moreover, as Python is an open-source program-
ming language and has many libraries or packages updated frequently, some functions might no
longer be supported or may have moved to other modules in future versions.

This section assumes that readers have successfully set up an environment and downloaded the
Python software onto an available computer. There are a number of ways to implement Python code.
Note that this book implements all example code in Jupyter NoteBook via Anaconda.! Alternatively,
you can choose PyCharm, Spyder and etc. dependent on your own preferences. Spyder, for example,
is also a popular Python environment that is available through Anaconda, but it is not interactive,
meaning that you write the code and then run it with the output appearing in a different window.
There are no differences between these environments in terms of the syntax itself, however.

A good way of familiarising yourself with Python is to learn about its syntax and go through the
examples given in this guide. There now follows a presentation of the fundamentals of the Python
package, together with instructions on how to achieve standard tasks and sample output. All ex-
ample code is given, with different colours highlighting different parts of the code. A number of
comments and explanations along with this code will hopefully make it easier to understand. Ad-
ditionally, it is noteworthy that Python has a strict rule for naming variables. For example, variable
names must start with a letter or underscore, any phrase variable must be integrated by an under-
score instead of adding blank in between, and it is also CASE-SENSITIVE. Thus, it is important to
enter commands exactly as the example shows in order to avoid unnecessary errors.

Finally, it is worth mentioning that the aim of this book is to help finance students and researchers
who are new to Python to quickly master the basic syntax and knowledge to enable them to imple-
ment various applications of econometric tests. Since the core of Python is not a specialist econo-
metric programming language like R or STATA, some statistical output looks very preliminary and a
number of econometric tests are not yet developed or tested in Python. To cover as many examples
from Introductory Econometrics for Finance as possible, we attempt to design some functions to com-
plete these tests. Undoubtedly, there is still considerable room to improve the code and no doubt the
outcomes could have been achieved in different ways.

Jupyter is an open-source, web-based, interactive tool for implementing the Python language. You can either down-
load Jupyter directly or access it by installing the Anaconda platform.

)

1.2 Different ways to run Python code

Unlike other statistic software, there are a number of ways to run Python code. The simplest way
to write and execute Python code is via the Python console. Assuming that the reader has installed
Python on a Windows-based computer, to open the console/terminal, we click on Start and type
‘emd’ in the search engine. Then hitting ENTER leads the Windows system to launch a new interface
(Figure 1). Next, we type 'Python” and press ENTER, in which case the Python console opens. We
can now directly write and execute code here.

[E¥ Command Prompt - Python — O X

Microsoft Windows [Version 10.0.16299.547]
(c) 2017 Microsoft Corporation. All rights reserved.

C:\Users\tao24>Python

Python 3.6.2 |Anaconda, Inc.| (default, Sep 19 2017, ©8:03:39) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>>

Figure 1: Opening the Python Console

Alternatively, you can write your code in an editor and execute it from the console. For example, we
can first open a Notepad++ file and write the command line print("Hello World"), saving the file as
name of program.py. Then we repeat the procedure as stated above. Click Start, search for ‘cmd’
and press ENTER. You need to navigate the Python console to where you have saved the file (in
this case, we have saved the file on the Desktop). Write the following line to execute the programme
(Figure 2).

&8 Command Prompt — O X

Microsoft Windows [Version 10.0.16299.547]
(c) 2017 Microsoft Corporation. All rights reserved.

C:\Users\tao24>cd c:\Users\tao24\Desktop\

c:\Users\tao24\Desktop>python hello_world.py
Hello World

c:\Users\tao24\Desktop>

Figure 2: Running Code from the Console

However, it is usually more convenient to implement Python code using an IDE (Integrated Devel-
opment Environment). In this book, we use Anaconda’, which will first need to be downloaded.’
Once the software is on the computer, click on Start, search for ’Anaconda’ and open the programme
"Anaconda Navigator’. As you can see in Figure 3, Anaconda is a collection of software packages.
There are several applications that can be launched such as the Jupyter NoteBook, Spyder, etc. For

2 Anaconda can be downloaded from https://www.anaconda.com/download/

https://www.anaconda.com/download/

the purpose of better presenting code in this book, we choose the Jupyter NoteBook because it is

. 3
designed as an open-source Web-based, interactive computing application.
) Anaconda Navigator - X
File Help
) ANACONDA NAVIGATOR
A Home .
Applications on root v| Channels Refresh
n Environments o a & =
°
. —
LR
&8 projects (beta) Jupyter IPTy!
N
* it jupyterlab notebook qtconsole
0.27.0 5.00 431
An extensible environment for interactive Web-based, interactive computing PyQt GUI that supports inline figures,
;" Community and reproducible computing, based on the notebook environment. Edit and run proper multiline editing with syntax
Jupyter Notebook and Architecture. human-readable docs while describing the highlighting, graphical calltips, and more.
data analysis.
(=)
Documentation
-4 - L
Developer Blog ":
Feedback . g
spyder glueviz orange3
e
’ =} 323 0.10.4 3.4.1 7

Figure 3: Opening the Anaconda Navigator

We now step into how to use Jupyter NoteBook. To launch this application, click the Launch button
below the icon (highlighted by a red circle). Anaconda then takes a few seconds to open a web page
(Figure 4). You can see a number of folders on the main screen. Choose a folder as the directory for
the Python code. For instance, we can click on the folder Desktop and then create a new script by
clicking the button New. In the drop-down menu, click Python 3. Jupyter then creates a new web
page where the code can be written and executed. The detail of how to use Jupyter will be presented
in the next section.

3Note that readers need to download Anaconda with caution since, as stated above, there are two different versions.
One is for Python 2.7, and the other is for Python 3.x. We will mainly focus on the Python 3.x version.

" Desktop/ 5 Rem —

< C' | ® localhost:8889/tree/Desktop Q %
Z Jupyter Logout
Files Running Clusters
Select items to perform actions on them. Upload (52
= Notebook
- I Deskto "
- s Python 3
o 10
otnfCreate a new notebook with Python 3]
O D propbox.Ink Text File o
O D gvkey.txt FIde) bl
N Terminals Unavailable
O D hello_world.py Jo
O D Microsoft Edge.Ink 2 months ago
O D permco.txt 7 months ago
O O permno.txt 2 months ago
O [start Tor Browser.Ink 13 days ago
localhost:8889/tree/Desktopi#
Z OneDrive - University of | X / Untitled X Rem —
C' | ® localhost:8888/notebooks/OneDrive%20-%20University%200f%20Reading/Documents/Untitled.ipynb?kernel_name=python3 Q ‘
~ JUpytel’ Untitled Last Checkpoint: 2 minutes ago (autosaved) f’ Logout
File Edit View Insert Cell Kernel Widgets Help Trusted | Python3 O
+ | x| @ B 2 ¥ | M B C Code v |=
In []:

Figure 4: Opening a Jupyter NoteBook

1.3 What does a Jupyter NoteBook look like?

Let us briefly introduce the Jupyter NoteBook interface. Once a NoteBook has been opened, you will
immediately see the NoteBook name, a menu bar, a tool bar and an empty code cell. As can be seen
in Figure 5, each area has been highlighted by different colours.

Firstly, you can rename the NoteBook by hitting the current file name Untitled. Jupyter then
opens a new window where you can revise the name (see Figure 6). For example, we rename the
NoteBook "hello_world” and click the ‘rename’ button. You can now see the new name in the top left
cornetr.

The tool bar lying between the menu bar and the code cell offers some functions frequently used

in the NoteBook. The first icon allows you to quickly save the NoteBook. The next button

* can add an additional code cell right below the existing one. Then, the three consecutive icons

x® @ B 1+ ¥

provides the function of cut, copy and paste code cells, respectively. moves the

selected code cell up and down. Moreover, ® ® € are the functions for running selected code

cell, interrupting selected code cell and restarting the kernel from left to right. There is also a drop-

Code v
Markdown
Raw NBConvert |
down menu Heading where you can define the cell type as code, Markdown, Raw NBConvert or

Heading."

: Jupyter | Untitled |Last checkpoint: 2 minutes ago (autosaved) ﬁ Logout

The name of NoteBook
File Edit View Insert Cell Kernel Widgets Help Trusted | Python3 O

| + < @A B 4+ ¥ M E C Code v Tool Bar Code Cell

I i T N

Figure 5: The Interface of a Jupyter NoteBook

Rename Notebook

Enter a new notebook hame:

Unfitled

Cancel Rename

Figure 6: Renaming Jupyter NoteBook

“The specific functions of these terms is explained as follows: code is used for writing Python code; Markdown allows
you to edit cells using plain language, formulae and etc.; Raw NBConvert prevents the cell from being executed; Heading
is used to set up titles.

Option Purpose

New NoteBook Create a new NoteBook

Open... Create a new NoteBook Dashboard

Make a Copy... Copy the current NoteBook and paste it into a new NoteBook
Rename... Change the name of the current NoteBook

Save and Checkpoint Save the NoteBook as a checkpoint

Revert to Checkpoint Revert the NoteBook back to a saved checkpoint

Print Preview Print Preview
Download as Download the NoteBook as certain type of file
Close and Halt Stop running and exit the NoteBook

New Notebook » Python 3

Open...

Make a Copy...

Rename...

Save and Checkpoint

Revert to Checkpoint »

Print Preview

Download as b

Trusted Notebook

Close and Halt

Wednesday, July 25, 2018 11:51 AM

Notebook (.ipynb)
Python (.py)

HTML (html)
Markdown (.md)
reST (.rst)

LaTeX (.tex)

PDF via LaTeX (.pdf)

Figure 7: File Menu Options

The menu bar contains File, Edit, View, Insert, Cell, Kernel, Help functions. We will now go

through each of them individually.

As can be seen in Figure 7, there are a number of options that can be selected. The purpose of

each option is explained as follows:

Option

Cut Cells

Copy Cells

Paste Cells Above
Paste Cells Below
Paste Cells & Replace
Delete Cells

Undo Delete Cells
Split Cell

Merge Cell Above
Merge Cell Below
Move Cell Up

Move Cell down

Edit NoteBook Metadata
Find and Replace

The Edit button gives a drop-down menu where a number of options are listed (see Figure 8). The

Purpose

Cut the selected cell

Copy the selected cell

Paste cell above the current cell

Paste cell below the current cell

Paste cell into the current cell

Delete the selected cell

Undo the delete action

Split cell given the position of mouse cursor
Merge cell with the one above

Merge cell with the one below

Bring up cell

Bring down cell

Edit NoteBook metadata

Find and replace the target code or text

+ CutCells
Copy Cells
Paste Cells Above
Paste Cells Below
Paste Cells & Replace
Delete Cells

Undo Delete Cells

Split Cell
Merge Cell Above
Merge Cell Below

Move Cell Up

Move Cell Down
Edit Notebook Metadata
Find and Replace

Cut Cell Attachments
Copy Cell Attachments

Paste Cell Attachments

Insert Image

Figure 8: Edit Menu Options

purpose of each option is explained in the following table.

Option Purpose

Toggle Header Hide or display the logo and name of the Jupyter NoteBook
Toggle Toolbar Hide or display the tool bar

Cell Toolbar Change the type of cell for different form of presentation

Toggle Header |
Toggle Toolbar
Toggle Line Numbers

Cell Toolbar > None

Edit Metadata
Raw Cell Format
Slideshow
Attachments

Tags

Figure 9: View Menu Options

The View menu (see Figure 9) provides some functions for changing the layout of a Jupyter Note-
Book. Note that this menu has no impact on the code itself.

The Insert menu looks straightforward, with only two options "Insert Cell Above” and "Insert Cell
Below’. If you want to add an additional cell among the existing cells, this is the method you can

employ. Alternatively, the button ¥ on the tool bar can be used for the same purpose.

Run Cells
Run Cells and Select Below

Run Cells and Insert Below

Run All Code
" Run All Above | Markdown
Run All Below / Raw NBConvert
Cell Type 4 Toggle
P Toggle Scrollin
Current Outputs > 9 g

Clear

All Output 4
\ Toggle
Toggle Scrolling

Clear

Figure 10: Cell Menu Options

The menu next to Insert is the Cell menu. Figure 10 reports all options that it contains and each
function is explained in the following table.

Option

Run Cells

Run Cells and Select Below
Run Cells and Insert Below
Run All

Run All Above

Run All Below

Cell Type

Current Output

All Output

The Kernel menu (Figure 11) contains all necessary kernel actions. For example, we sometimes want
to exit the running code and therefore we need to click on the "Interrupt’ option. This is equivalent
to the keyboard shortcut CONTROL and C. The option 'Restart’ refers to reboot the kernel. "Restart
& Clear Output’ adds an additional function where it can erase all output apart from rebooting the
kernel. Moreover, if you want to execute all code cells from the very beginning, ‘Restart & Run All’
can achieve this. Finally, the last two options, 'Reconnect’ and "Change Kernel’, work as their names

suggest.

Finally, if you are new to Jupyter NoteBook, the Help menu (Figure 12) provides a useful "User
Interface Tour’, which introduces each function and its options in detail. ‘'Keyboard Shortcuts’ shows
all of the shortcuts that you might need for convenience. In addition, several links bring you to

Purpose

Execute the code from selected cell

Execute selected cell and move to next cell

Execute selected cell and insert a new cell below

Execute all cells

Execute all cells above the selected one

Execute all cells below the selected one

Choose the type of cell as code, markdown or Raw NBConvert
Hide/Display/Clear the current output of selected cell
Hide/Display/Clear all output

Interrupt

Restart

Restart & Clear Output
Restart & Run All
Reconnect

Shutdown

Change kernel » Python 3

Figure 11: Kernel Menu Options

User Interface Tour
Keyboard Shortcuts
Edit Keyboard Shortcuts

Notebook Help [
Markdown @
Python @
IPython 2y
NumPy &z
SciPy =
Matplotlib =
SymPy &9

pandas &y

About

Figure 12: Help Menu Options

9

additional web pages such as 'NoteBook Help’, '"Markdown’, ‘Pandas’. If you are unfamiliar with
some of the libraries, these websites might offer help.

Let us focus on cells now. You can add, remove or edit code cells according to your requirements.
We will run a simple demonstration. Type the code print("hello world!"). You will notice that the
code cell has a green border on the left side. Meanwhile, a small pencil icon can be observed in the
top right corner (see the red circle from Figure 13). This means Jupyter is now in edit mode. Then
hitting SHIFT and ENTER leads Jupyter to execute the code (Alternatively, the code can be run by

clicking the button ™ on the tool bar, or by going to the Cell menu and clicking Run Cells).

You can see the text output, "hello world!" right below the code cell. Additionally, the left border
becomes blue and the icon pencil disappears. These changes tell you that Jupyter has turned to
command mode and the code cell cannot be edited unless the user double-clicks it, getting back to
edit mode. Furthermore, it can be observed that the icon on the left side of the code cell changes
from 'In []" to "In [1]:". The number inside the square bracket refers to a serial number of the code
execution. If you see the 'In [*]” symbol, it means that the code is running.

Recall that there are four cell types: Code, Markdown, Raw NBConvert and Heading, which can
be converted easily by either typing shortcuts or by clicking menu options. In other words, it is
evident that the cell cannot only edit Python code but it also supports the insertion of explanatory
text, titles, subtitles, formula or even images to clarify the code. This makes a Jupyter NoteBook a
real notebook in the end.

For example, let us type a sentence, "This is the first Jupyter tutorial" in a empty cell. Then
go to the drop-down menu on the tool bar and click Markdown. You will see the colour of the
sentence becomes blue and a '# symbol appears at the very beginning. Now hit SHIFT and ENTER
simultaneously. The sentence changes to a black and bold title. Note that a single "#" represents a
tirst level heading. Two "#'s leads the heading to level two. By adding more "#, the text will decrease
to correspondingly lower levels. Moreover, formulae can be presented in cells. Fortunately, Jupyter
supports the Markdown language and is consistent with Latex formatting.” For instance, type "$ y =
x "2 $"in a empty cell and press SHIFT and ENTER. Jupyter then produces a mathematical formula
"y = x2".

SLatex is a document presentation system where plain text is required. However, this book is not the place to learn
how to write and produce Latex documents. More advanced usage of the Markdown language such as how to insert
images will not be demonstrated in detail. If readers are interested in the presentation of Latex files, websites such as
https://wuw.sharelatex.com/learn/ might be helpful.

10

https://www.sharelatex.com/learn/

Ju p}’tef hello_world Last Checkpoint: a day ago (unsaved changes) P Logout

Edit View Inser Cel Kernel Widgets Help Trusted @ Python3 O
B |+ x| @ B | |H B|C | Code v|| e y
Pencil
In []: print("hello world!")
J u Dyter hello_worid Last Checkpoint: a day ago (unsaved changes) ﬁ Logout
nsert Kerne! Widgets Help Trusted | Python3 O
B+ x &a B 4+ & M B C Code v | &

In [1]: print{"hello world!")

hello world!

Figure 13: The Cell Edit and Command Mode

1.4 Getting help

There are several different ways to get help when using Python. Firstly, If you are using a Jupyter
NoteBook, it has a Help menu, which provides several web links to explore some of Python’s com-
mon libraries — namely, NumPy, Scipy, Pandas, etc. This documentation offers very detailed insights
into each method, function, attribution or argument. Taking Pandas as an example, the documenta-
tion contains numerous tutorials written by different people. Some of them provide concrete exam-
ples for getting started with Pandas, for example.

Sometimes you might need help regarding a particular Python function or method. For every
function or method, the Jupyter NoteBook has built-in magic commands can be called by typing ?
followed by the specific function. The information you will receive is an abbreviated version of the
function manual, which lists every parameter and return in detail.

For a more comprehensive search, or if you do not know what specific function/method to use,
we recommend you use a search engine by typing Python followed by the specific keywords. Since
Python is an open-source programming language, there are vast resources that may provide support,
such as question-answer posts asking for similar help on Stack Overflow, or user-written commands
regarding your particular enquiry from Github. Among these two on-line communities, Stack Over-
flow is highly recommended. This free on-line programming community is a great source if you
have questions regarding specific functionalities or you do not know how to implement particular
requirements in Python. Browsing questions and answers written by the community is available
without registration; if you wish to post questions and/or provide answers to a posted question,
you would need to register first.®

6h’ttps: / /stackoverflow.com/

11

https://stackoverflow.com/

2 Data management in Python

Before we step into the application of econometric tests, it is necessary to learn a bit about the Python
syntax, such as variable naming rules, when to use a whitespace, how to add comments, doing
maths, creating a user-defined functions and so on.

2.1 Variables and name rules

Data type

Any application cannot be processed by Python without storing and working with different types
of data. The fundamental way of doing this is first by creating a variable. A variable has to have a
name, which is later used to store data. For example, type the following code and hit SHIFT and
ENTER. Once executed, the variable a now stores the number 1.

It is useful to know the type of variable. In this case, the variable stores an integer, written in
short as int in Python. We can check the variable type by keying the command type() followed by
the variable’s name a inside the bracket.

In [1]: a =1
In [2]: type(a)
Out[2]: int

It is common that finance researchers will be dealing with more precise numbers, i.e., a number
followed by a decimal point and digits. This data type is called a float. For example, let us type the
command a = 1.2 and type (a). Jupyter will output float after executing the cell.

In [3]: a =1.2
type(a)

Out[3]: float

Another data type is ‘boolean’. A boolean can only take two values, either True or False. Let us type
the command b = True and c = False. Then turn the code cells into command mode. Again, typing
the command type (b) or type (b) in the next empty cell will return the data type bool, which is the
short name for boolean.”

In [4]: b
c

True

False
In [5]: type(b)
Out [5]: bool

In [6]: type(c)

Out [6]: bool

7 The value True and False changes to green colours after execution. This is because these two values are set as Python
keywords and have particular purposes. Note that it is not appropriate to use Python keywords as the names of variables
since Python will mix up these terms.

12

Additionally, we may sometimes work on string data instead of numeric data. This is more likely to
be the case when we are working with time-series data (a series of numeric data with corresponding
datetime stamps). These datetime points will be display as string values. Note that a string value
differs from a numeric value by quoting "" or ”. For instance, type the command date = "31/12/2016’
and type(date). Jupyter recognises this variable as a string, written in short form as str.

In [7]: date = '31/12/2016"
type(date)

OQut[7]: str

Reassigning variables

It should be noticed that each variable can only store one value at the same time. However, a variable
can be easily reassigned different values. Let us enter the following command. As you can see, the
output changes from 7 to 3 while the variable name remains same.

In [8]: a =7
a=3
print(a)

3

Name rules

It is useful to know that Python has strict rules for naming variables. Firstly, Python does not allow
leaving spaces within a variable name. In other words, Python only allows an one-word name. If
you want to create a variable like my value =1, Jupyter will return an error message. To avoid such
mistake, it is recommended to type either myvalue =1 or my_value = 1. Note that an underscore is
the only special character which can be used to name variables in Python.

Secondly, a variable cannot begin with a number. Try to type the command 3value = 1 and see
whether Jupyter can correctly execute this line.

Thirdly, it should be noticed that Python’s variable names are case-sensitive. value = 1 and Value
= 2 will be two different variables.

Finally, do not use any term which is a keyword set by Python such as return, in, etc. These will
lead Jupyter to mix up the actual purposes of the code. To check all Python keywords, you can type
the following command (see In [14])

In [9]: my value = 1

File "<iPython-input-9-286a8b996a2d>", line 1
my value =1

~

SyntaxError: invalid syntax

In [10]: myvalue = 1

13

In [11]: my_vlaue = 1

In [12]: 3value = 1

File "<iPython-input-12-0b1e89f£2a049>", line 1
3value = 1

~

SyntaxError: invalid syntax

In [13]: value = 1
Value = 2
print(value)
print(Value)

1

2

In [14]: import keyword
keyword.kwlist

Out[14]: ['False’,
'None',
'True',
'and',
'as',
'assert',
'break’,
'class',
'continue',
'def',
'del',
'elif',
'else',
'except',
'finally',
'for',
'"from',
'global',
'if!',
"import',
"in',

is',

'lambda’,

'nonlocal’,

'not',

'or',

14

'pass’',
'raise’,
'return',
"try',
'while',
'with',
'yield']

2.2 Whitespace

Apart from the rules of naming variables, Python also has strict grammatical rules, like any other
language. It is important to indent some particular lines of code, thus it can be structured in an
appropriate format and correctly recognised. An example of using whitespace is shown in the fol-
lowing, where there is an indentation before the command return. This can be done by hitting the
button TAB. Hitting TAB once will lead Jupyter create one whitespace. If you want to close the
whitespace, press SHIFT and TAB. Sometimes, Jupyter will automatically indent the cursor if you
hit ENTER to change a line when necessary. However, we recommend users to check whitespaces
with caution as Jupyter will not run the code if it is badly formatted.

In [15]: def funcQ:
return print('hello world')

func()
hello world

In [16]: def funcQ:
return print('hello world')

func()

File "<iPython-input-16-68ea9780d691>", line 2
return print('hello world')

~

IndentationError: expected an indented block

2.3 Comments

It is a good habit for programmers to add comments to necessary lines of code for better readability.
Sometimes, a few words of explanation will make the programme easier understand. In most cases,
comments are helpful when you look back at your code or you are working on it in a team where oth-
ers need to collaborate. In Python, a comment is incorporated by typing any explanations preceded
by a # sign, and thus Jupyter will ignore this line of text and will not run it as code. Alternatively,
you can use the keyboard shortcuts CONTROL and /. Moreover, in a Jupyter NoteBook, there are a
few ways to make comments. Apart from using # to comment out lines of code, you can write a few
sentences in a empty cell above or below and convert it to markdown.®

8 A further benefit of Jupyter NoteBooks is that they support plain text writing and can easily generate documentation.

15

24 Mathematical operations

Let us now become familiarised with simple mathematical operations in Python. The basic opera-
tions such as addition, subtraction, multiplication and division can be easily implemented by typing
+, -, *, /. For example, we can practice these commands by typing the following code.

In [17]: add_two_num = 1 + 2
subtract_two_num = 10 - 2
multiply_two_num = 17%2
divide_two_num = 24/6

print (add_two_num)
print (subtract_two_num)
print (multiply_two_num)
print(divide_two_num)

34
4.0

There is a slight difference when calculating exponents (i.e., the power of numbers). For exponent
operations, we use the sign ** instead of the * operator. To implement more advanced mathematical
operations such as square roots, inner products, etc., you will need the assistance of Python’s built-in
libraries such as NumPy or user-defined functions, which will be explored later in this guide.

Doing maths with user-defined functions

It is natural for finance researchers to deal with more complex data calculations in the real world.
Examples range from a simple case of transforming price data to continuous logarithmic returns, to
a complex project of calculating the Dickey—Fuller test critical values by simulation. Now, let us take
a look at how to implement maths operations by a user-defined function. Supposed that a variable
needs to be squared (i.e., taking a power of two for the value); this can be easily done by defining
a function.” Firstly, we create a data series by entering the command my_data = 12. Then a custom
function is typed as shown in the following cell. After that, the function needs to be called outside if
we implement it, and the results will be displayed in the out cell.

In [18]: my_data = 12
def func(x):

y = x¥¥2

return y

func(my_data)

Out[18]: 144

9 Alternatively, you can directly calculate the square of a value by using the ** operator. Here, the example is made
for the purpose of familiarising you with how to implement a user-defined function.

16

2.5 Two libraries: Pandas and NumPy

Let us now look at two built-in Python libraries. When it comes to financial data management, two
of the most frequently used Python packages/libraries are Pandas and NumPy. Pandas, which is
the abbreviation for Panel Data Analysis, is a popular choice to handle datasets. It provides an array
of functions to cover different requirements such as reading and aggregating data, etc. The other
library, NumPy, has a large collection of high-level mathematical functions, and therefore is particu-
larly suited for data calculation. The combination of applying Pandas and NumPy can easily handle
most data management tasks. Given the scope of this guide, we cannot fully cover the libraries’ con-
tents by introducing every function, but instead we are going to cover several of the most important
functions which will be employed to serve as examples. If readers are interested in the other appli-
cations of these two libraries, some tutorials are recommended: http://Pandas.pydata.org/Pandas-
docs/stable/.

A function can be easily called only after you import the library. This is why the command for
importing libraries is always put at the beginning of a script. To employ the Pandas library, we type
import Pandas as pd in the NoteBook. This line means that Jupyter is told to import the Pandas
library and assigns it a short name, pd, for ease of reference. Similarly, we can also import the library
NumPy and refer to it with the abbreviation np by the command import NumPy as np.

In [1]: import Pandas as pd
import NumPy as np

2.6 Data input and saving

One of the first steps of every statistical analysis is importing the dataset to be analysed into the
software. Depending on the format of the data there are different ways of accomplishing this task.
Since we mainly handle data using the Pandas library, its reading function will be elaborated upon.
Pandas provides a data import function read_excel if the dataset you want to read is stored in an
Excel workfile. Sometimes the dataset might be in a csv format, in which case the corresponding
function read_csv should be employed.

Now let us import a dataset to see how the steps would be performed. The dataset that we want
to import into Jupyter is the Excel file ‘fund_managers.xIsx’. Since we have imported the Pandas
library, the file can be read into the NoteBook by typing the following code and then hitting SHIFT
and ENTER leads Jupyter to execute the line.

In [2]: data = pd.read_excel('C:/Users/tao24/Desktop/fund_managers.xlsx')
type(data)

Out[2]: Pandas.core.frame.DataFrame

Note that the imported dataset is stored in a variable called data. However, this variable does not
belong to any of data types as stated in previous sections if you print its type. This is a new object
called a DataFrame, which is designed to store data such as an Excel sheet. In the Pandas documen-
tation, a DataFrame is described as a structure with at least two columns. On the other hand, it is
sometimes the case that you might come across a similar data structure called a Series. The differ-
ence between these two containers is minimal, in that a Series is a one-dimensional labelled array
whereas a DataFrame is a two-dimensional array. In most cases, the data set that finance researchers
use is a two-or-more-dimensional array. Therefore, it is important to become familiar with how to
implement some basic applications based on it.

17

2.7 Data description and calculation

Reading: Brooks (2019, section 2.3)

Summary statistics

Once you have imported the data, you may want to obtain an idea of their features and character-
istics, and you would probably want to check that all the values have been correctly imported and
that all variables are stored in the correct format.

There are several functions to examine and describe the data. It is often useful to visually inspect
the data. This can be done by the command print(data). Alternatively, DataFrame contains a built-in
function called head(). You can use it directly through the command data.head(). It allows you to
access the first five rows of data by default settings.

In [3]: print(data)

Year Risky Ricky Safe Steve Ricky Ranks Steve Ranks

0 2005 24 9 2 3
1 2006 18 7 3 4
2 2007 4 5 7 6
3 2008 -23 -8 13 13
4 2009 -12 -3 11 12
5 2010 1 3 8 8
6 2011 7 4 6 7
7 2012 12 2 5 10
8 2013 -6 3 9 8
9 2014 -14 6 12 5
10 2015 -7 2 10 10
11 2016 56 19 1 1
12 2017 14 12

In [4]: data.head()

Out [4]: Year Risky Ricky Safe Steve Ricky Ranks Steve Ranks
0 2005 24 9 2 3
1 2006 18 7 3 4
2 2007 4 5 7 6
3 2008 -23 -8 13 13
4 2009 -12 -3 11 12

Let us have a look at how to calculate summary statistics given the ‘fund_managers.xlsx” file. This
Excel workfile contains the annual data on the performance of two fund managers who are working
for the same company. By calculating the mean, standard deviation, skewness and kurtosis, we
can compare the performance of the two fund managers. Supposed we would like to compute the
summary statistics for Ricky, the first step we need to do is picking up the corresponding column
from the DataFrame data. This can be done by typing the command data[’Risky Ricky’]. Next,
continue to type the function mean followed by the selected column if you want to obtain the average
value of the series.!” Likewise, typing the command as follows, all the corresponding results will be
displayed.

10 Ag Pandas is a rich data analysis library, basic statistical operations such as mean, standard deviation, skewness and
kurtosis have been embedded.

18

In [5]: print(datal['Risky Ricky'].mean(), data['Safe Steve'].mean())
print(data['Risky Ricky'].std(), datal['Safe Steve'].std())
print(datal['Risky Ricky'].skew(), datal['Safe Steve'].skew())
print(datal['Risky Ricky'].kurtosis(), datal['Safe Steve'].kurtosis())

5.6923076923076925 4.6923076923076925
20.36084729484759 6.612924408366485
1.11545231491 0.294506522695
2.10421426375 1.45903450796

If you want to get a idea of the general information content of a DataFrame, such as the mean,
standard deviation, minimum and maximum values, Pandas provides a function describe. Type the
command data.describe() to see the results.

In [6]: data.describe()

Out [6]: Year Risky Ricky Safe Steve Ricky Ranks Steve Ranks
count 13.00000 13.000000 13.000000 13.00000 13.000000
mean 2011.00000 5.692308 4.692308 7.00000 6.846154
std 3.89444 20.360847 6.612924 3.89444 3.782551
min 2005.00000 -23.000000 -8.000000 1.00000 1.000000
25% 2008.00000 -7.000000 2.000000 4.00000 4.000000
50% 2011.00000 4.000000 4.000000 7.00000 7.000000
75% 2014.00000 14.000000 7.000000 10.00000 10.000000
max 2017.00000 56.000000 19.000000 13.00000 13.000000

Now let us interpret the results. If we look at the mean returns, we can see that Ricky’s is a full
percentage point higher (5.69 versus 4.69). But when comparing the variation of performance over
time, it is clear that his returns are more volatile. If we look at the higher moment values for Ricky
and Steve, the skewness figures are, respectively, 1.12 and 0.29, which favours Ricky. On the other
hand, the kurtosis values are 2.10 and 1.46, respectively, and therefore Steve’s is better because his
distribution is more concentrated around the centre.

Additionally, we might be interested to know the relationship between Ricky’s performance and
Steve’s. We can get an idea of this by computing the correlation between the two sets of returns. In
Python, this can be done by using the Pandas function corr, which will compute pairwise correlation
of columns. The default setting calculates a Pearson correlation between these two fund managers
of 0.87, indicating that the two series do move very closely together over time.

In [7]: data.corr()

Out [7]: Year Risky Ricky Safe Steve Ricky Ranks Steve Ranks
Year 1.000000 0.142928 0.385059 0.021978 -0.197996
Risky Ricky 0.142928 1.000000 0.870048 -0.934285 -0.766741
Safe Steve 0.385059 0.870048 1.000000 -0.796004 -0.944866
Ricky Ranks 0.021978 -0.934285 -0.796004 1.000000 0.763700
Steve Ranks -0.197996 -0.766741 -0.944866 0.763700 1.000000

19

Internal rate of return

So far, we have been focusing on the functions embedded in Pandas library, but it is also worth ex-
ploring the NumPy package where a large number of advanced mathematical operating functions
are provided. For example, we sometimes know both the present value of a particular set of cash-
flows and all of the future cashflows but we wish to calculate the discount rate. It is very straightfor-
ward to determine this, which is also known as the internal rate of return (IRR), in Python.

Suppose that we have a series of cashflows. This can be set up in Python by creating a Pandas
series. Let us enter the command in the following to store these entries. The parameter index is set
up for a series as an index column, which is years in this case. The second parameter we specify is the
series’ name. Since there is only one column for the series object, we leave a string value "Cashflow’
for this argument. Finally, the value of series needs to be completed by adding the data argument.

In [8]: cashflow = pd.Series(index=[0,1,2,3,4,5], name='Cashflow',\
data=[-107,5,5,5,5,105])
print (cashflow)

np.irr(cashflow)

0 -107
1 5
2 5
3 5
4 5
5 105
Name: Cashflow, dtype: int64

Out [8]: 0.034517484085994976

Then, in another new line, we simply write the command np.irr(cashflow). Then hitting SHIFT and
ENTER leads Jupyter to calculate the IRR, which is 0.0345 in this case.

2.8 An example: calculating summary statistics for house prices

Reading: Brooks (2019, sections 2.3 and 2.4)

By now, you will have observed a broad picture of how to implement some basic applications in
Python. In this section, we will apply these functions/commands again, refreshing this knowledge
by a new example.

Suppose, for example, the dataset that we want to import into the NoteBook is contained in the
Excel file UKHP.xls. First, we import the two libraries Pandas and NumPy, and we read the file using
the function read_excel. Here, we input one additional parameter when reading the data apart from
the file path. Specifically, we set up the first column of the imported dataset Month as an index
column instead of Pandas default index, which is 0, 1, 2 It is often the case that we are handling
data in Pandas when a file contains time-series data, or, in other words, a series of data points with
corresponding date time values. This makes things easier when we later want to slice and index the
time-series data, as the index points and column names are perfect coordinates to locate any values
inside a DataFrame.

11111

In [1]: import Pandas as pd
import NumPy as np

data = pd.read_excel('C:/Users/tao24/Desktop/UKHP.x1s', index_col=0)
data.head()

Out[1]: Average House Price
Month
1991-01-01 53051.721106
1991-02-01 53496 .798746
1991-03-01 52892.861606
1991-04-01 53677.435270
1991-05-01 54385.726747

We want to have a look at the structure of the imported data and check whether all variables
are stored in the correct format. This can be done by either using the command print(data) or
data.head(). As can be seen in Out [1], the data are correctly formatted. Moreover, additional infor-
mation can be accessed by applying some mathematical functions — for example, by typing the com-
mand data.mean(), data.std(),data.skew(), data.kurtosis() to calculate the mean, standard deviation,
skewness and kurtosis of the sample data, respectively. Alternatively, the command data.describe()
also gives several summary statistics such as the mean, standard deviation, minimum and maximum
values.

In [2]: print(datal['Average House Price'] .mean())
print(datal['Average House Price'].std())
print(datal'Average House Price'].skew())
print(data['Average House Price'] .kurtosis())

data.describe()

124660.48446512519
56387 .16566469951
-0.11014547215
-1.569192678501

Out [2]: Average House Price
count 327.000000
mean 124660.484465
std 56387 .165665
min 49601 .664241
257 61654.141609
50% 150946.108249
75% 169239.278727
max 211755.925562

Often, you need to change the data by creating new variables, changing the content of existing data
series, or by converting the data type. In the following, we will focus on some of the most important
Python features to manipulate and reassign the data, although this is not exhaustive.

20k

Suppose that we want to calculate the log changes in house prices. The first step achieving this is
to find a mathematical operation/function. Since there is no existing function in Python to achieve
this task, we need to break down the calculation and design a function in Jupyter. To do so, we
can type the following command and create a use-defined function called LogDiff. With respect to
the contents of this function, we first create a one-period lagged house prices series by taking the
function shift() from the Pandas library. Then the log function is called from the NumPy library by
the command np.log(). Next, we take the original series and divide it by the lagged series inside the
logarithmic function. Once finished, the results need to be outputted by the command return. Note
that it is important to check the format of the code, including that a colon has been added at the of
end of the function name and that the whitespace has been correctly set up.

In [3]: def LogDiff(x):
x_diff = 100*np.log(x/x.shift(1))
return x_diff

After the user-defined function has been set up, we then call this function to generate a new variable
dhp by typing the following command. You can see the data now have a new series, with the first
observation missing due to the calculation. The command data.describe() illustrates this even more
clearly as there are 326 observations for the ‘dph’ variable vs that of "Average House Price’” being 327.
Furthermore, a new DataFrame/Series can be created if we want to dump old variables and store
new variables for further analysis. To avoid potentially undesirable errors, any missing values can
be dropped by the Pandas function dropna.

In [4]: datal'dhp'] = LogDiff(datal['Average House Price'])
data.head ()

Out [4] : Average House Price dhp
Month
1991-01-01 53051.721106 NaN
1991-02-01 53496.798746 0.835451
1991-03-01 52892.861606 -1.135343
1991-04-01 53677.435270 1.472432
1991-05-01 54385.726747 1.310903

In [5]: data.describe()

Out [5]: Average House Price dhp
count 327.000000 326.000000
mean 124660 .484465 0.424402
std 56387.165665 1.114586
min 49601 .664241 -3.464027
25% 61654.141609 -0.256025
50% 150946.108249 0.447332
75% 169239.278727 1.145618
max 211755.925562 3.731686

In [6]: datal = pd.DataFrame({'dhp':LogDiff (data['Average House Price'])})
datal = datal.dropna()
datal.head()

......

Out [6] : dhp
Month
1991-02-01 0.835451
1991-03-01 -1.135343
1991-04-01 1.472432
1991-05-01 1.310903
1991-06-01 1.318181

2.9 Plots

Python supports a wide range of graph types that can be found under the matplotlib.pyplot library,
including line graphs, bar graphs, pie charts, mixed-line graphs, scatterplots and others. A variety of
parameters/arguments permits the user to select the line type, colour, border characteristics, head-
ings, shading and scalding, including dual scale graph, etc. Legends can be created if desired, and
output graphs can be incorporated into other applications using copy-and-paste, or by exporting in
another file format, including Windows metatfiles, portable network graphics, or pdf. For the latter,
you simply right click and select the Save image as option in the ‘Graph” window and select the
desired file format.

Assume that we would like to plot a line plot of the "Average House Price” series. To do so,
we firstly import the library matplotlib.pyplot. In the following, we create a graph object by the
command plt.figure(1, figsize=(20,10)). The parameters of the image size inside the parentheses can
be adjusted if desired, or left at the default settings by the command plt.figure(1). Next, we select
the plot function and specify the plotted line and its label. Additionally, there are a number of other
options available using further functions, e.g., plotting the grid line on the background or formatting
the Y and X axes, the titles and the legend. Finally, type plt.show() and output the graph in Figure
14.

In [7]: import matplotlib.pyplot as plt

plt.figure(1)
plt.plot(datal['Average House Price'], label='hp')

plt.xlabel('Date')
plt.ylabel('Average House Price')
plt.title('Graph')

plt.grid(True)

plt.legend()
plt.show()

111111

Graph

200000 -

180000 -
160000 -
140000 -
120000 -

100000 -

Average House Price

80000 -

60000 -

1991 1995 1999 2003 2007 2011 2015 2019
Date

Figure 14: Line plot of the Average House Price Series

Another commonly used plot is a histogram, which provides a graphical illustration of the distri-
bution of a series. It is basically a bar chart that demonstrates the proportion of the series that falls
within a specific range of values. To show how to create a histogram using Python we will employ
the 'dhp’ series. Again, we firstly create a graph object. The function hist from the library is em-
ployed, with plotted data, bins, edge colours and line’s width being set up. Type plt.show() and the
histogram of the "dhp’ series should resemble that in the Out [8] and Figure 15.

In [8]: plt.figure(2)
plt.hist(datal['dhp'], 20, edgecolor='black', linewidth=1.2)
plt.xlabel('dhp')
plt.ylabel('Density')
plt.title('Histogram')
plt.show()

24

Histogram

50 A

40 A

Density

20 A

10 -

dhp

Figure 15: Histogram of the Average House Price Series

210 Saving data and results

Data generated in Python can be exported to other applications, e.g., Microsoft Excel. To export
data, call the Pandas function to_excel to save the data in an Excel workfile or save it as a csv file by
another function, to_csv. In the function’s brackets, you can then specify a file name and location for
the new file.

You can export single outputs by just selecting and copying the results, then right-clicking and
choosing the ‘Copy’ option required. For example, you can copy (and paste the results into Excel).

In [9]: data.to_excel('C:/Users/tao24/Desktop/UKHP_workfile.xls')

Additionally, there are several other commands that can be used to save the data in a DataFrame or
Series format. One useful command can be applied by importing the library pickle. For example,
creating a pickle file 'UKHP’ and storing the finalised series "Average House Price” and 'dhp” in
the DataFrame. To do so, we first specify the location of the new file, and then type the following
command. By using the function dump, we save the data onto a local drive.

To retrieve the object we saved by pickle, simply use the function load and assigning the object to
a new variable. Note that there are several modes when saving and re-loading a workfile in Python,
it can be observed that we use the ‘'wb” and 'rb” mode to dump and read the file, respectively.

In [10]: import pickle

with open('C:/Users/tao24/Desktop/UKHP.pickle', 'wb') as handle:
pickle.dump(data, handle)

444444

In [11]: with open('C:/Users/tao24/Desktop/UKHP.pickle', 'rb') as handle:
data = pickle.load(handle)

Finally, it is important for users to record both the results and the list of commands in a Jupyter
NoteBook in order to be able to later reproduce the work and remember what has been done after
some time. It is good practice to keep the NoteBook so that you can easily replicate the work. We
remind readers to save the NoteBook frequently.

11111

3 Simple linear regression - estimation of an optimal hedge ratio

Reading: Brooks (2019, section 3.3)

This section shows how to run a bivariate regression using Python. In our example, an investor
wishes to hedge a long position in the S&P500 (or its constituent stocks) using a short position in
futures contracts. The investor is interested in the optimal hedge ratio, i.e. the number of units of the
futures asset to sell per unit of the spot assets held."!

This regression will be run using the file ‘SandPhedge.xlIs’, which contains monthly returns for
the S&P500 index (in column 2) and the S&P500 futures (in column 3). Before we run the regression,
we need to import this Excel workfile into a Python Jupyter NoteBook. For this, we type the code
as follows (see In [1]). The first four lines are to import the necessary Python built-in packages and
the next two lines are to read data from the Excel workfile into Jupyter. Note that we import one
new library statsmodels to perform the econometric tests. We will very often use this library in
later sections of this guide so we will leave a more detailed description until then. Since the data
tile contains monthly datetime observations, we specify that column as the time-series index of the
Pandas DataFrame. In order to have a look at the data and verify some data entries, just type variable
name data.head() and then hit SHIFT plus ENTER. By doing so, the first five rows of the imported
DataFrame can be displayed in the following cell. As Out [2] shows, the data stored in the NoteBook
has three different columns, Date, Spot and Futures, respectively.

In [1]: import Pandas as pd
import NumPy as np
import statsmodels.formula.api as smf

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
data = pd.read_excel(abspath + 'SandPhedge.xls', index_col=0)

data.head()

Out[1]: Spot Futures
Date
1997-09-01 947.280029 954.50
1997-10-01 914.619995 924.00
1997-11-01 955.400024 955.00
1997-12-01 970.429993 979.25
1998-01-01 980.280029 987.75

Now we estimate a regression for the levels of the series rather than the returns (i.e., we run a regres-
sion of ‘Spot” on a constant and 'Futures’) and examine the parameter estimates.

We first define the regression formula as Spot ~ Futures. Python then recognises that these two
variable names come from the DataFrame columns. Spot is specified as the dependent variable while
Futures is the independent variable. Thus, we are trying to explain the prices of the spot asset with
the prices of the corresponding futures asset.

The built-in package Statsmodels automatically includes a constant term in the linear regression,
and therefore you do not need to specifically include it among the independent variables. If you do
not wish to include a constant term in the regression, you can type Spot ~ Futures - 1. The added
fit() function followed by smf.ols(formula, data) estimates an OLS regression based on the whole

1Gee also chapter 9 of Brooks (2019).

2

sample. This function allows you to customise the regression specification, e.g., by employing a
different treatment of the standard errors. However, for now we stick with the default specification
and type print(results.summary()) in order to obtain regression results. The results will be the output
immediately below In [3].

In [2]: formula = 'Spot ~ Futures'
results = smf.ols(formula, data).fit()

print(results.summary())

OLS Regression Results

Dep. Variable: Spot R-squared: 1.000
Model: OLS Adj. R-squared: 1.000
Method: Least Squares F-statistic: 1.005e+06
Date: Mon, 30 Jul 2018 Prob (F-statistic): 0.00
Time: 14:53:33 Log-Likelihood: -826.86
No. Observations: 247 AIC: 1658.
Df Residuals: 245 BIC: 1665.
Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]
Intercept -2.8378 1.489 -1.906 0.058 -5.771 0.095
Futures 1.0016 0.001 1002.331 0.000 1.000 1.004
Omnibus: 245.415 Durbin-Watson: 1.326
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 10091.682
Skew: -3.814 Prob(JB): 0.00
Kurtosis: 33.371 Cond. No. 5.05e+03
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 5.05e+03. This might indicate that there are
strong multicollinearity or other numerical problems.

The parameter estimates for the intercept (&) and slope (B) are -2.8378 and 1.0016, respectively. A
large number of other statistics are also presented in the regression output -- the purpose and inter-
pretation of these will be discussed later.

We can now proceed to estimate the regression based on first differences. That is to say, we run the
analysis based on returns of the S&P500 index instead of price levels; so the next step is to transform
the ‘Spot” and "Futures’ price series into percentage returns. For our analysis, we use continuously
compounded returns, i.e., logarithmic returns, instead of simple returns as is common in academic
tinance research.

To generate a new data series of continuously compounded returns, we define a new function
in Python to achieve this calculation (see In [4]). Specifically, we create a user-defined function

11111

called LogDiff where the input parameter is a Pandas column.'? To calculate the log difference,
we first obtain a column which lags one period. This can be done by typing the command x.shift(1).
Then, we take the log transformation of the difference between the original and lagged series. The
function log comes from the NumPy library, so we can use this function by entering the command
np.log(x/x.shift(1)). Next, we want to output the result expressed as a percentage. Therefore, the
column is scaled by multiplying it by 100. It is worth noting that the first price observation will
be lost when return series is computed. However, the first data point will still be displayed in the
DataFrame as nan since Python keeps the length of the DataFrame intact. To avoid this pitfall, we
employ the Pandas dropna() function remove it. Finally, we return the newly-calculated column.

We have to call the function itself outside the function content. This can be done by typing the
command LogDiff(datal[’Spot’]). Meanwhile, we also rebuild the data DataFrame which previously
stored the prices data. A newly created DataFrame can be defined by using the Pandas DataFrame
function. In the bracket of the DataFrame function, we specify two column names: ret_spot and
ret_future respectively. To fill out their values, the LogDiff function is called to compute the new
series. Once finished, we can repeat the process as stated above to print the finalised DataFrame. As
can be seen in Out [4], the newly created DataFrame starts from October 1997 instead of September
1997 and the column names have changed from Spot and Futuresto ret_spot and ret_future.

In [3]: def LogDiff(x):
x_diff = 100*np.log(x/x.shift(1))
x_diff = x_diff.dropna()
return x_diff

data = pd.DataFrame({'ret_spot' : LogDiff(datal['Spot']),
'ret_future':LogDiff (data['Futures'])})
data.head()

Out [3]: ret_future ret_spot
Date
1997-10-01 -3.247557 -3.508608
1997-11-01 3.299927 4.362145
1997-12-01 2.507563 1.560914
1998-01-01 0.864266 1.009901
1998-02-01 6.159189 6.807837

Before proceeding to estimate the regression, we can examine a number of descriptive statistics
together and measures of association between the series. For the summary statistics, we type
data.describe() since Pandas contains a summary statistics function called describe() (see In [5]).

We observe that the two return series are quite similar as based on their mean values, and stan-
dard deviations, as well as their minimum and maximum values, as one would expect from economic
theory. Note that the number of observations has reduced from 247 for the levels of the series to 246
when we computed the returns (as one observation is ‘lost” in constructing the t — 1 value of the
prices in the returns formula).

In [4]: data.describe()

Out [4]: ret_future ret_spot
count 246.000000 246.000000

12In Python, the name of the input variable in an user-defined function does not need to be the same as the name
outside the function. For example, the input variable name is x whereas the actual input is datal’Spot’].

29

mean 0.414017 0.416776

std 4.419049 4.333323
min -18.944697 -18.563647
25% -1.931400 -1.831388
50% 0.997641 0.918522
75% 3.133588 3.276468
max 10.387184 10.230659

Now we can estimate a regression for the returns. We can follow the steps described above and spec-
ify ‘ret_spot” as the dependent variable and 'ret_future” as the independent variable. As shown in In
[5], the revised formula statement is ‘ret_spot ~ ret_future’, and we repeat the regression procedure
again. The result of testing the returns data is displayed in the following area.

In [5]: formula = 'ret_spot ~ ret_future'
results = smf.ols(formula, data).fit()
print (results.summary())

OLS Regression Results

Dep. Variable: ret_spot R-squared: 0.989
Model: OLS Adj. R-squared: 0.989
Method: Least Squares F-statistic: 2.147e+04
Date: Mon, 30 Jul 2018 Prob (F-statistic): 7.54e-240
Time: 14:53:33 Log-Likelihood: -157.16
No. Observations: 246 AIC: 318.3
Df Residuals: 244 BIC: 325.3
Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]
Intercept 0.0131 0.029 0.444 0.658 -0.045 0.071
ret_future 0.9751 0.007 146.543 0.000 0.962 0.988
Omnibus: 48.818 Durbin-Watson: 2.969
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 671.062
Skew: -0.016 Prob(JB): 1.91e-146
Kurtosis: 11.091 Cond. No. 4.45
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Let us now turn to the (economic) interpretation of the parameter estimates from both regressions.
The estimated return regression slope parameter measures the optimal hedge ratio as well as the
short run relationship between the two series. By contrast, the slope parameter in a regression using
the raw spot and futures indices (or the log of the spot series and the log of the futures series) can
be interpreted as measuring the long run relationship between them. The intercept of the price level
regression can be considered to approximate the cost of carry. Looking at the actual results, we find
that the long-term relationship between spot and futures prices is almost 1:1 (as expected).

30

4 Hypothesis testing - Example 1: hedging revisited

Reading: Brooks (2019, sections 3.8 and 3.9)

Let us now have a closer look at the results table from the returns regressions in the previous section
where we regressed S&P500 spot returns on futures returns in order to estimate the optimal hedge
ratio for a long position in the S&P500. If you do not have the results ready on the Python main
screen, reload the ‘SandPhedge.xlIs” file now and re-estimate the returns regression using the steps
described in the previous section. While we have so far mainly focused on the coefficient estimates,
i.e., the « and B estimates, the built-in package Statsmodels has also calculated several other statistics
which are presented next to the coefficient estimates: standard errors, the t-ratios and the p-values.

The t-ratios are presented in the third column indicated by the 't in the column heading. They
are the statistics for tests of the null hypothesis that the true values of the parameter estimates are
zero against a two-sided alternative, i.e., they are either larger or smaller than zero. In mathematical
terms, we can express this test with respect to our coefficient estimates as testing Hp : & = 0 versus
Hj : a # 0 for the constant ('Intercept’) in the first row of numbers and Hy : § = 0 versus H; : § # 0
for ‘ret_future’ in the second row.

Let us focus on the t-ratio for the a estimate first. We see that with a value of only 0.444, the t-ratio
is very small, which indicates that the corresponding null hypothesis Hy : « = 0 is likely not to be
rejected. Turning to the slope estimate for "ret_future’, the t-ratio is high with 146.543 suggesting that
Hj : B = 0 is to be rejected against the alternative hypothesis of H; : B # 0. The p-values presented
in the fourth column, 'P>|t|’, confirm our expectations: the p-value for the constant is considerably
larger than 0.1, meaning that the corresponding t-statistic is not even significant at a 10% level; in
comparison, the p-value for the slope coefficient is zero to, at least, three decimal places. Thus, the
null hypothesis for the slope coefficient is rejected at the 1% level.

While the summary function of Statsmodels automatically computes and reports the test statistics
for the null hypothesis that the coefficient estimates are zero, we can also test other hypotheses about
the values of these coefficient estimates. Suppose that we want to test the null hypothesis that H :
B = 1. We can, of course, calculate the test statistics for this hypothesis test by hand; however, it is
easier if we let Python do this work. For this we use the Statsmodels function 'f_test’.

We assume you have conducted the procedure as stated in the previous section, that is to import
the Excel workfile into Python. Similarly, we first specify the regression formula where Futures is set
as explanatory variable and Spot is the dependent variable. Note that Statsmodels automatically in-
cludes the constant term in the formula statement. Next, we type the regression hypotheses "Futures
=1’". This is because we want to test a linear hypothesis that the coefficient estimate for "Futures = 1".

In [1]: import Pandas as pd
import NumPy as np
import statsmodels.formula.api as smf

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD' \
'/QMF Book/book Ran/data files new/Book4e_data/'
data = pd.read_excel(abspath + 'SandPhedge.xls', index_col=0)

In [2]: formula = 'Spot ~ Futures'
hypotheses = 'Futures = 1'
results = smf.ols(formula, data).fit()
f_test = results.f_test(hypotheses)
print (f_test)

<F test: F=array([[2.58464834]]), p=0.10919227950361698, df_denom=245, df_num=1>

31

The output line 'F test’” reports all the statistics. First we find the test statistics: "F=array([[
2.58464834]])’, which states that the value of the F-test is around 2.58. The corresponding p-value
is 0.11, stated in the next position. As it is larger than 0.10, we clearly cannot reject the null hypoth-
esis that the coefficient estimate is equal to 1. The last two numbers present the total number of
observations and the degrees of freedom for this test respectively.

We can also perform hypothesis testing on the first difference regressions. For this we need to
calculate the log returns of the series by the function in In [3]. After that, we want to test the null
hypothesis that Hy : B = 1 on the coefficient estimate for 'ret_future’, so we can just type the formula
‘ret_spot ~ ret_future’ and hypothesis testing command "ret_future =1’ to generate the correspond-
ing F-statistics for this test.

In [3]: def LogDiff(x):
x_diff = 100*np.log(x/x.shift(1))
x_diff = x_diff.dropna()
return x_diff

data = pd.DataFrame({'ret_spot' : LogDiff(datal['Spot']),
'ret_future':LogDiff (data['Futures'])})

In [4]: formula = 'ret_spot ~ ret_future'
hypotheses = 'ret_future = 1'

results = smf.ols(formula, data).fit()
f_test = results.f_test(hypotheses)
print (f_test)
<F test: F=array([[14.02981315]]), p=0.00022456591761704512, df_denom=244, df_num=1>

With an F-statistic of 14.03 and a corresponding p-value of nearly zero, we find that the null hypoth-
esis can be rejected at the 1% significance level.

5 Estimation and hypothesis testing - Example 2: the CAPM

Reading: Brooks (2019, sections 3.10 and 3.11)

This exercise will estimate and test some hypotheses about the CAPM beta for several US stocks. The
data for this example are contained in the excel file ‘capm.xls’. We first need to import this data file
into Python. As in the previous example, we first need to import several necessary built-in Python
libraries such as Pandas, NumPy, Statsmodels and matplotlib. Sometimes, these libraries have very
long names so we often give them a shorter one in order to easily re-write later in the script. For
example, we often short the library Statsmodels.formula.api as smf and matplotlib.pyplot as plt.
Next, we specify the directory where the Excel file ‘capm.xls’ is found. To do so, type the following
line of code (see in [1]). Then the Pandas read_excel function is called, with the filepath and several
arguments input in the brackets. As for the previous section, we add the arguments index_col=0 in
order to create a time-series index column for the DataFrame.

The imported data file contains monthly stock prices for the S&P500 index ("SandP’), the four
companies: Ford ("FORD’), General Motors ('GE’), Microsoft (MICROSOFT’) and Oracle ('ORA-
CLE’), as well as the 3-month US Treasury bill rates ("USTB3M”) from January 2002 until February
2018. You can check that Python has imported the data correctly by printing the variables in the
command area.

In [1]: import Pandas as pd
import NumPy as np
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD' \

'/QMF Book/book Ran/data files new/Book4e_data/'

data = pd.read_excel(abspath + 'capm.xls', index_col=0)
data.head()

Out [1]: SandP FORD GE MICROSOFT ORACLE USTB3M
Date
2002-01-01 1130.199951 15.30 37.150002 31.855000 17.260000 1.68
2002-02-01 1106.729980 14.88 38.500000 29.170000 16.620001 1.76
2002-03-01 1147.390015 16.49 37.400002 30.155001 12.800000 1.83
2002-04-01 1076.920044 16.00 31.549999 26.129999 10.040000 1.75
2002-05-01 1067.140015 17.65 31.139999 25.455000 7.920000 1.76

It is standard in the academic literature to use five years of monthly data for estimating betas, but we
will use all of the observations (over 15 years) for now. In order to estimate a CAPM equation for the
Ford stock, for example, we need to first transform the price series into (continuously compounded)
returns and then to transform the returns into excess returns over the risk free rate. To generate
continuously compounded returns for the S&P500 index, we can simply copy the function that is
designed to compute log returns from the previous section. Recall that the function shift(1) is used
to instruct Python to create one-period lagged observations of the series.

By calling the user-defined function LogDiff, Python creates a new data series that will contain
continuously compounded returns on the S&P500. Next, we need to repeat these steps for the stock
prices of the four companies. To accomplish this, we can create a new DataFrame with newly-created
series computed by the same process as described for the S&P500 index. We rename the column

names in the Pandas DataFrame function. To fill out the DataFrame values, the customised function
is called every time when we specify a new column. For example, we input data[’"SandP’] into the
function LogDiff followed by a new column ‘ret_sandp’.

Regarding ‘ersandp’ and ‘erford’, we need to deduct the risk free rate, in our case the 3-month
US Treasury bill rate, from the continuously compounded returns in order to transform the returns
into excess returns. However, we need to be slightly careful because the stock returns are monthly,
whereas the Treasury bill yields are annualised. When estimating the model it is not important
whether we use annualised or monthly rates; however, it is crucial that all series in the model are
measured consistently, i.e., either all of them are monthly rates or all are annualised figures. We de-
cide to transform the T-bill yields into monthly figures. To do so we simply type data["'USTB3M']/12.
Now that the risk free rate is a monthly variable, we can compute excess returns. For example, to
generate the excess returns for the S&P500, we type LogDiff(data[’'SandP’]) - data[USTB3M]/12.
We similarly generate excess returns for the four stock returns. Finally, you can check the data series
by printing the DataFrame (see In [2]).

In [2]: def LogDiff(x):
x_diff = 100#*np.log(x/x.shift (1))
x_diff = x_diff.dropna()
return x_diff
data =

pd.DataFrame({'ret_sandp' : LogDiff(datal['SandP']),

'ret_ford' : LogDiff(data['FORD']),
'USTB3M' : datal['USTB3M']/12,
'ersandp' : LogDiff(datal['SandP']) - datal['USTB3M']/12,
'erford' : LogDiff(datal['FORD']) - datal['USTB3M']/12})
data.head()
Out [2]: USTB3M erford ersandp ret_ford ret_sandp
Date
2002-01-01 0.140000 NaN NaN NaN NaN
2002-02-01 0.146667 -2.930147 -2.245153 -2.783480 -2.098486
2002-03-01 0.152500 10.121111 3.455511 10.273611 3.608011
2002-04-01 0.145833 -3.162375 -6.484299 -3.016541 -6.338466
2002-05-01 0.146667 9.668039 -1.058964 9.814706 -0.912297

Before running the CAPM regression, we can plot the data series to examine whether they appear
to move together. We do this for the S&P500 and the Ford series. We choose matplotlib.pyplot in
the Python Library. We first define a new figure object and leave its size as the default setting in
Jupyter. This can be implemented by plt.figure(1). However, you can easily adjust the figure by
adding parameters inside the parentheses (e.g., plt.figure(1, figsize=(20,10))). The number 1 refers to
the serial number of the figure object that you are going to plot in Python.

Next, we can plot the two series. The function plot from the library can achieve this purpose. Note
that each plot function can only take one data series. Therefore, if you wish to plot multiple lines in
one image, you have to call the function once again. Meanwhile, the label argument is recommend
when we plot multiple series together because it will clearly show the name of each line on the figure.
Additionally, the matplotlib.pyplot needs to be manually set up for optional parameters including
the x-axis, y-axis, title, etc. For example, if we want the figure to be plotted with grid lines, we can
achieve this by typing the command plt.grid(True). Moreover, Python will not automatically display
the label of the plotted series unless you specify the command plt.legend(). Finally, we end up with
the command plt.show() and the figure can be seen below the In [3] Figure 16.

34

In [3]: plt.figure(l)
plt.plot(datal'ersandp'], label='ersandp')
plt.plot(datal'erford'], label='erford')

plt.xlabel('Date')
plt.ylabel('ersandp/erford"')
plt.title('Graph')
plt.grid(True)

plt.legend()

plt.show()
Graph
75 4 — ersandp
— erford
50 A

25 1

ersandp/erford
o

_25 -

_50 .

_75 -

2003 2005 2007 2009 2011 2013 2015 2017
Date

Figure 16: Time-Series Plot of Two Series

However, in order to get an idea about the association between two series, a scatter plot might be
more informative. To generate a scatter plot, we first call the function plt.scatter(). This time, we can
input two series data[’ersandp’] and data[’erford’] into the parentheses because a scatter plot needs
pairs of data points. Following the same command, we can now see the scatter plot of the excess
S&P500 return and the excess Ford return as depicted in the following output cell in Figure 17.

In [4]: plt.figure(2)
plt.scatter(datal'ersandp'], datal['erford'])
plt.xlabel('ersandp')

32

plt.ylabel('erford')
plt.title('Graph')
plt.grid(True)

plt.show()

Graph

75 A

50 A1
o

@
'!'

25 A

q
Q@
g (
.. o o e mmp

E 3
g 3 P"'o
o)

_25 -

]
_50 -
_75 -
[
-15 -10 =5 0 5 10

ersandp

Figure 17: Scatter Plot of two Series

To estimate the CAPM equation, we employ the statsmodels.formula.api. As usual, we first run
the regression formula which is “erford ~ ersandp’. Thus, the dependent variable (y) is the excess
return of Ford "erford” and it is regressed on a constant as well as the excess market return “ersandp’.
Next, we use the smf.ols() function followed by fit(). Note that we keep the default setting this in
case although the function fit() can allow for different treatments of the standard errors. Finally, the
result is outputted by summary(). The OLS regression results appear in the following code cell (see
In [5]).
For the case of the Ford stock, the CAPM regression equation takes the form

(Rrora = 7¢)t = &+ B(Rym — 7¢)¢ + s (1)

Take a couple of minutes to examine the results of the regression. What is the slope coefficient es-
timate and what does it signify? Is this coefficient statistically significant? The beta coefficient (the
slope) estimate is 1.8898 with a t-ratio of 9.862 and a corresponding p-value of 0.000. This suggests

13Remember that the Statsmodels command formula() automatically includes a constant in the regression; thus, we
do not need to manually include it among the independent variables.

that the excess return on the market proxy has highly significant explanatory power for the variabil-
ity of the excess return of Ford stock. Let us turn to the intercept now. What is the interpretation of
the intercept estimate? Is it statistically significant? The « estimate is —0.9560 with a t-ratio of —1.205
and a p-value of 0.230. Thus, we cannot reject the null hypothesis that the « estimate is different from
0, indicating that Ford stock does not seem to significantly out-perform or under-perform the overall
market.

In [5]: formula = 'erford ~ ersandp'
results = smf.ols(formula, data).fit()
print (results.summary())

OLS Regression Results

Dep. Variable: erford R-squared: 0.337
Model: OLS Adj. R-squared: 0.334
Method: Least Squares F-statistic: 97.26
Date: Mon, 30 Jul 2018 Prob (F-statistic): 8.36e-19
Time: 15:11:43 Log-Likelihood: -735.26
No. Observations: 193 AIC: 1475.
Df Residuals: 191 BIC: 1481.
Df Model: 1
Covariance Type: nonrobust

coef std err t P>|t]| [0.025 0.975]
Intercept -0.9560 0.793 -1.2056 0.230 -2.520 0.608
ersandp 1.8898 0.192 9.862 0.000 1.512 2.268
Omnibus: 71.412 Durbin-Watson: 2.518
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 677.387
Skew: 1.079 Prob(JB): 8.08e-148
Kurtosis: 11.921 Cond. No. 4.16
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Assume that we want to test the null hypothesis of whether the value of the population coefficient on
‘ersandp’ is equal to 1. How can we achieve this? The answer is to use the statsmodels.formula.api
library to launch a f_test and then to specify hypotheses =‘ersandp =1". By printing the result of the
f_test, the statistic for this hypothesis test appears in the output window. The F-statistic of 21.56 with
a corresponding p-value of 0 (at least up to the fourth decimal place) implies that the null hypothesis
of the CAPM beta of Ford stock being 1 is convincingly rejected and hence the estimated beta of 2.026
is significantly different from 1.'*

4This is hardly surprising given the distance between 1 and 2.026. However, it is sometimes the case, especially if
the sample size is quite small and this leads to large standard errors, that many different hypotheses will all result in
non-rejection — for example, both Hy : B = 0 and Hp : 8 = 1 not rejected.

37

In [6]: # F-test: hypothesis testing
formula = 'erford 7 ersandp'
hypotheses = 'ersandp = 1'

results = smf.ols(formula, data).fit()
f_test = results.f_test(hypotheses)
print (f_test)

<F test: F=array([[21.5604412]]), p=6.3653210360356986e-06, df_denom=191, df_num=1>

38

6 Sample output for multiple hypothesis tests

Reading: Brooks (2019, section 4.4)

This example uses the ‘capm.pickle” workfile constructed in the previous section. So in case you are
starting a new session, re-load the Python workfile and re-estimate the CAPM regression equation
for the Ford stock. Let us first review how to save and re-load a Python workfile. To do so, we
first import the pickle library. We then need to specify the path where the workfile is going to be
saved. Next, a new pickle file called camp.pickle is created. The function pickle.dump saves the
data into the newly created workfile. The ‘wb” mode inside the bracket is the one of file modes that
Python reads or writes.'> To check whether you have saved the workfile properly, we recommend
you look up the folder where the file is saved. Alternatively, you can import this workfile by the
functionpickle.load and print to check the data. As can be seen in In [1], the difference between the
saved and re-loaded file is minimal. We only need to change one command function and file mode.

In [1]: import Pandas as pd
import NumPy as np
import pickle

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD' \
'/QMF Book/book Ran/data files new/Book4e_data/'
data = pd.read_excel(abspath + 'capm.xls', index_col=0)

def LogDiff(x):
x_diff = 100*np.log(x/x.shift(1))
x_diff = x_diff.dropna()
return x_diff

data = pd.DataFrame({'ret_sandp' : LogDiff(datal'SandP']),
'ret_ford' : LogDiff(data['FORD']),
'USTB3M' : datal['USTB3M']/12,
'ersandp' : LogDiff(datal'SandP']) - datal['USTB3M']/12,
'erford' : LogDiff(data['FORD']) - data['USTB3M']/12})

with open(abspath + 'capm.pickle', 'wb') as handle:
pickle.dump(data, handle)

In [2]: with open(abspath + 'capm.pickle', 'rb') as handle:
data = pickle.load(handle)

Now suppose we wish to conduct a joint test that both the intercept and slope parameters are one.
We would perform this test in a similar way to the test involving only one coefficient. First, we
import the Statsmodel library by typing import Statsmodels.formula.api as smf. To construct the
regression specification, we write the formula statement ‘erford ~ ersandp’ and the hypotheses state-
ment ‘ersandp = Intercept = 1. Regression results are calculated by the two consecutive functions
smf.ols(formula, data).fit(). Note that the first function ols takes the formula and data while the
second function fit() takes the standard error robustness methods. Here, we leave it as the default
setting. To obtain the specific F-test statistic, we use the function f_test to take the hypothesis state-
ment. Finally, the output can be printed in the following cell.

15The ‘wb’ indicates that the file is opened for writing in binary mode. There are also modes such as 'rb’, ‘r+b’, etc.
Here we are not going to explain each of these modes in detail.

39

In [3]:

<F test: F=array([[12.9437402]]), p=5.3492561526069516e-06, df_denom=191, df_num=2>

In the Output window (see In [3]), Python produces the familiar output for the F-test. However, we
note that the joint hypothesis test is indicated by the two conditions that are stated, ’(1) ersandp =1
and ’(2) _Intercept = 1". Looking at the value of the F-statistic of 12.94 with a corresponding p-value
of roughly 0, we conclude that the null hypothesis, Hy : f1 = 1 and B, = 1, is strongly rejected at the

import statsmodels.formula.api as smf
F-test: multiple hypothesis tests
formula = 'erford © ersandp'
hypotheses = 'ersandp = Intercept = 1'

results = smf.ols(formula, data).fit()
f_test = results.f_test(hypotheses)
print (f_test)

1% significance level.

40

7 Multiple regression using an APT-style model

Reading: Brooks (2019, section 4.4)
The following example will show how we can extend the linear regression model introduced in
previous sections to estimate multiple regressions in Python. In the spirit of arbitrage pricing theory
(APT), we will examine regressions that seek to determine whether the monthly returns on Microsoft
stock can be explained by reference to unexpected changes in a set of macroeconomic and financial
variables. For this we rely on the dataset 'macro.xls” which contains 13 data series of financial and
economic variables as well as a date variable spanning the time period from March 1986 until March
2018 (i.e., 385 monthly observations for each of the series). In particular, the set of financial and
economic variables comprises the Microsoft stock price, the S&P500 index value, the consumer price
index, an industrial production index, Treasury bill yields for the following maturities: three months,
six months, one year, three years, five years and ten years, a measure of ‘narrow’” money supply, a
consumer credit series, and a 'credit spread’ series. The latter is defined as the difference in annu-
alised average yields between a portfolio of bonds rated AAA and a portfolio of bonds rated BAA.
Before we can start with our analysis, we need to import several libraries and the dataset
‘macro.xls” into Python. The index column of the imported DataFrame is set by the argument in-
dex_col=0.1°

In [1]: import Pandas as pd
import NumPy as np
import statsmodels.formula.api as smf

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \

'"QMF Book/book Ran/data files new/Book4e_data/'
data = pd.read_excel(abspath + 'macro.xls', index_col=0)
data.head()

Out[1]: MICROSOFT SANDP CPI INDPRO M1SUPPLY CCREDIT \
Date
1986-03-01 0.095486 238.899994 108.8 5b6.5414 624.3 606.7990
1986-04-01 0.111979 235.520004 108.6 5b6.5654 647.0 614.3669
1986-05-01 0.121528 247.350006 108.9 56.6850 645.7 621.9152
1986-06-01 0.106771 250.839996 109.5 56.4959 662.8 627.8910
1986-07-01 0.098958 236.119995 109.5 56.8096 673.4 633.6083

BMINUSA USTB3M USTB10Y

Date

1986-03-01 1.50 6.76 7.78
1986-04-01 1.40 6.24 7.30
1986-05-01 1.20 6.33 7.71
1986-06-01 1.21 6.40 7.80
1986-07-01 1.28 6.00 7.30

Now that we have prepared the dataset we can start with the actual analysis. The first stage is to
generate a set of changes or differences for each of the variables, since APT posits that the stock
returns can be explained by reference to the unexpected changes in the macroeconomic variables
rather than their levels. The unexpected value of a variable can be defined as the difference between

16Recall that we need to set the first column of ‘macro.xls’ as an index column, thus the command will be index_col=0.

41

the actual (realised) value of the variable and its expected value. The question then arises about how
we believe that investors might have formed their expectations, and while there are many ways to
construct measures of expectations, the easiest is to assume that investors have naive expectations
that the next period value of the variable is equal to the current value. This being the case, the entire
change in the variable from one period to the next is the unexpected change (because investors are

assumed to expect no change).”

To transform the variables, we re-construct the DataFrame where each variable is defined and
computed as follows: To compute changes or differences, we set up a user-defined function to facili-
tate the calculation as used in previous sections.

In [2]: def LogDiff(x):
100*np.log(x/x.shift (1))
x_diff.dropna()

return x_diff

x_diff
x_diff

data = pd.DataFrame({'dspread' : data['BMINUSA'] - \

data.head()

Out[2]:
Date
1986-03-01
1986-04-01
1986-05-01
1986-06-01
1986-07-01

dcredit

NaN
7.5679
7.5483
5.9758
5.7173

data['BMINUSA'].shift (1),
'dcredit' : datal['CCREDIT'] - \
data['CCREDIT'] .shift (1),
"dprod' : data['INDPRO'] - \
data['INDPRO'] .shift (1),
'rmsoft' : LogDiff(data['MICROSOFT']),
'rsandp' : LogDiff(data['SANDP']),
"dmoney' : data['M1SUPPLY'] - \
data['M1SUPPLY'] .shift (1),
'inflation' : LogDiff(datal['CPI']),
'term' : data['USTB10Y'] - datal['USTB3M'],
'dinflation' : LogDiff(datal['CPI']) - \
LogDiff (data['CPI']) .shift (1),
'mustb3m' : datal['USTB3M']/12,

'rterm' : (datal['USTB10Y'] - data['USTB3M']) - \
(data['USTB10Y'] - datal['USTB3M']).shift(1),

'ermsoft' : LogDiff (data['MICROSOFT']) - \
data['USTB3M']/12,
'ersandp' : LogDiff(datal['SANDP']) - \

data['USTB3M']/12})

dinflation dmoney dprod dspread ermsoft

NaN NaN NaN NaN NaN
NaN 22.7 0.0240 -0.10 15.413171
0.459855 -1.3 0.1196 -0.20 7.655834
0.273590 17.1 -0.1891 0.01 -13.479167
-0.549452 10.6 0.3137 0.07 -8.099084

ersandp \

NaN
-1.944918
4.373351
0.867757
-6.547514

7It is an interesting question as to whether the differences should be taken on the levels of the variables or their
logarithms. If the former, we have absolute changes in the variables, whereas the latter would lead to proportionate
changes. The choice between the two is essentially an empirical one, and this example assumes that the former is chosen,
apart from for the stock price series themselves and the consumer price series.

42

inflation mustb3m rmsoft rsandp rterm term
Date
1986-03-01 NaN 0.563333 NaN NaN NaN 1.02
1986-04-01 -0.183993 0.520000 15.933171 -1.424918 0.04 1.06
1986-05-01 0.275862 0.527500 8.183334 4.900851 0.32 1.38
1986-06-01 0.549452 0.533333 -12.945833 1.401091 0.02 1.40
1986-07-01 0.000000 0.500000 -7.599084 -6.047514 -0.10 1.30

We save the data for for future research since the calculation of these series is handy. Recall that al-
though there are several ways of keeping data file, we employ the pickle library and save all columns.

In [3]: import pickle

with open(abspath + 'macro.pickle', 'wb') as handle:
pickle.dump(data, handle)

We can now run the regression. To create a regression specification, we first write the formula state-
ment ‘ermsoft ~ ersandp + dprod + dcredit + dinflation + dmoney + dspread + rterm’. The formula
string will automatically add a constant term, unless the user types ’-1” at the end of the formula.
Next, the regression function ols is called from statsmodels.formula.api, written in shorthand as
smf, with both the formula and data input. The function fit following it allows for different treat-
ments of the regression standard errors. Here we leave it as the default setting. Finally, typing the
command print(results.summary()) obtains all the information from the regression.

In [4]: formula = 'ermsoft ~ ersandp + dprod + dcredit + \
dinflation + dmoney + dspread + rterm'
results = smf.ols(formula, data).fit()
print (results.summary())

OLS Regression Results

Dep. Variable: ermsoft R-squared: 0.345
Model: OLS Adj. R-squared: 0.333
Method: Least Squares F-statistic: 28.24
Date: Thu, 09 Aug 2018 Prob (F-statistic): 3.52e-31
Time: 11:22:44 Log-Likelihood: -1328.3
No. Observations: 383 AIC: 2673.
Df Residuals: 375 BIC: 2704 .
Df Model: 7
Covariance Type: nonrobust

coef std err t P>[t]| [0.025 0.975]
Intercept 1.3260 0.475 2.789 0.006 0.391 2.261
ersandp 1.2808 0.094 13.574 0.000 1.095 1.466
dprod -0.3030 0.737 -0.411 0.681 -1.752 1.146
dcredit -0.0254 0.027 -0.934 0.351 -0.079 0.028
dinflation 2.1947 1.264 1.736 0.083 -0.291 4.681
dmoney -0.0069 0.016 -0.441 0.659 -0.037 0.024

dspread 2.2601 4.140 0.546 0.585 -5.881 10.401

rterm 4.7331 1.716 2.758 0.006 1.359 8.107
Omnibus: 21.147 Durbin-Watson: 2.097
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 63.505
Skew: -0.006 Prob(JB): 1.62e-14
Kurtosis: 4,995 Cond. No. 293.
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Let us take a few minutes to examine the main regression results. Which of the variables has a
statistically significant impact on the Microsoft excess returns? Readers can use their knowledge of
the effects of the financial and macroeconomic environment on stock returns to examine whether the
coefficients have their expected signs and whether the sizes of the parameters are plausible.

The regression F-statistic takes a value of 28.24 (third row, top right corner). Remember that
this tests the null hypothesis of all the slope parameters being jointly zero. The p-value of zero
attached to the test statistic shows that this null hypothesis should be rejected. However, a number
of parameter estimates are not significantly different from zero -- specifically, those on the "dprod’,
"dcredit’, "dmoney” and "dspread” variables.

In [5]: hypotheses = 'dprod = dcredit = dmoney = dspread = 0

f_test = results.f_test(hypotheses)
print (f_test)

<F test: F=array([[0.41387856]]), p=0.7986453783444192, df_denom=375, df_num=4>

Let us test the null hypothesis that the parameters on these four variables are jointly zero using an
F-test. To achieve this, we write the hypotheses using the string literals “dprod = dcredit = dmoney
= dspread = 0’ following the In [4] cell. Applying the function f_test from the instance result and
typing the command f_test = results.f_test(hypotheses).'® As shown in In [5], the resulting F-test
statistic value is 0.414 with p-value 0.799; there are four restrictions and 375 usable observations. This
suggests that the null hypothesis cannot be rejected.

18 An instance is a type of variable in object-oriented programming such as Python.

44

7.1 Stepwise regression

There are a number of different stepwise regression procedures, but the simplest is the uni-directional
forwards method. This starts with no variables in the regression (or only those variables that are
always required by the researcher to be in the regression) and then it selects first the variable with the
lowest p-value (largest t-ratio) if it were included, then the variable with the second lowest p-value
conditional upon the first variable already being included, and so on. The procedure continues until
the next lowest p-value relative to those already included variables is larger than some specified
threshold value, then the selection stops, with no more variables being incorporated into the model.

We want to conduct a stepwise regression which will automatically select the most important
variables for explaining the variations in Microsoft stock returns. Since there is no module available
for this specific application, we design a user-defined function to fit this purpose, the details of which
are listed in the following cell.

In [1]: import statsmodels.formula.api as smf
import Pandas as pd
import NumPy as np

def forward_selected(data, endog, exg):

1

Linear model designed by forward selection based on p-values.

Parameters:

data : Pandas DataFrame with dependent and independent wvariables
endog: string literals, dependent variable from the data
erg: string literals, independent variable from the data

Returns:
res : an "optimal" fitted Statsmodels linear model instance
with an intercept selected by forward selection
remaining = set(data.columns)
remaining = [e for e in remaining if (e not in endog)&(e not in exg)]
exg = [exg]

scores_with_candidates = []
for candidate in remaining:
formula = '{} ~ {}'.format(endog,' + '.join(exg + [candidate]))

score = smf.ols(formula, data).fit().pvalues[2]
scores_with_candidates.append((score, candidate))
scores_with_candidates.sort()

for pval,candidate in scores_with_candidates:

if pval < 0.2:
exg.append(candidate)

45

formula = '{} 7 {}'.format(endog, ' + '.join(exg))
res = smf.ols(formula, data).fit()
return res

Let us break down this function line by line. As usual, we import the Pandas, NumPy and Statsmod-
els libraries for the convenience of calling functions. Next, name a function "forward_selected” with
several of the necessary inputs added in parentheses. The details of the inputs and outputs are writ-
ten between three single quote marks immediately below. ‘data’ contains all of the variables that
might be taken in the regression specification. ‘endog’ is the endogenous variable of the regression
whereas the main exogenous variable is specified as “exg’. To obtain all of the variables” names except
‘endog’ and ‘exg’ from ‘data’, we type the commands remaining = set(data.columns) and remaining
= [e for e in remaining if (e not in endog)&(e not in exg)]. Specifically, the former line takes all of
the columns’ names into a set and the latter creates a list of variables conditional upon the variable
not being included in ‘endog’ or “exg’.'” The next line converts the string literals ‘exg’ to a list.

To select variables with the potentially lowest p-value, we create a new list object named
‘scores_with_candidates’. By using a for loop, we take each variable from the list remaining and
fill out the formula statement. Specifically, there are three functions combined under the loop. The
tirst function formula =’ ” produces a formula statement where two curly brackets take the depen-
dent and independent variables accordingly. The second function format following is used to fill out
the two empty brackets, i.e., the "endog” and the “exg’s, respectively. Furthermore, it can be observed
that there are two inputs inside the brackets where the first is the ‘endog’ and the second is an ar-
gument. The ” + ".join(exg) converts a list of string values into single string literals separated by "+’
signs. The final aim of this command is to produce a formula, like ‘ermsoft ~ ersandp + dinflation’
for example.

The next combined functions command score = smf.ols(formula, data).fit().pvalues[2] examines
the candidate variable’s p-value under each regression specification, with ols, fit and pvalues being
called, respectively.”’ It is natural to record all candidates with their p-values after performing the
regression. This can be done by calling the list class built-in function append where the pairwise
combination of p-value and variable name is stored in each loop. Finally, we sort the list in ascending
order based on p-values.

We filter the candidates with p-values lower than 0.2 (this threshold can be adjusted if required).
Specifically, we create a new for loop to go through each p-value and variable, then set up an if
conditional statement where only the variables that meet the condition can then be added to the
‘exg’ list. Once finished, we perform the regression analysis again with all of the selected variables
and return the regression instance.

Let us implement stepwise regressions using the function Import library pickle and re-load the
dataset ‘macro” which was saved in the previous section. We assign the data to the variable 'data’
and print the first five rows by the command data.head().

In [2]: import pickle
abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \

'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'macro.pickle', 'rb') as handle:

9The second command is somewhat complex. This is basically an iterator which enables Jupyter to create a container
combined with a conditional if statement. The finalised variable ‘remaining’ will be a list object.

20The function pvalues returns the p-value. The command pvalues[2] specifies the candidate’s p-value since 0 and 1
refer to the ‘Intercept’ and ‘exg’, respectively.

46

data =

data =
data.head()

pickle.load(handle)

data.dropna() # drop the missing values for some columns

Out [2] : ermsoft ersandp dprod dcredit dinflation dmoney dspread \

Date

1986-06-01 -13.479167 1.330990 -0.1891 4.2358 0.273590 17.1 0.01

1986-07-01 -8.099084 -6.479720 0.3137 5.0952 -0.549452 10.6 0.07

1986-08-01 -0.474167 6.403095 -0.0748 3.7534 0.182482 5.0 0.18

1986-09-01 -1.326843 -9.376901 0.1135 7.1188 0.272271 6.1 -0.15

1986-10-01 31.160969 4.880987 0.2696 7.7641 -0.364050 7.7 0.07
rterm

Date

1986-06-01 0.02

1986-07-01 -0.10

1986-08-01 0.18

1986-09-01 0.62

1986-10-01 0.01

To perform the forward selection procedure, the defined function forward_selected is called with
three parameters input, where ‘ermsoft’ is specified as the dependent variable and ersandp’ is the
initial independent variable. The returned instance will be saved in the variable res, which contains
a number of details. For example, we can type the command print(res.model.formula) and see
the final regression specification. As can be seen below in In [3], the regression formula is ‘ermsoft
~ ersandp + rterm + dinflation’, suggesting that the excess market return, the term structure, and
unexpected inflation variables have been included while the money supply, default spread and credit
variables have been omitted.

If you want to access the full details of the regression table, simply type the command
print(res.summary()). You can then check whether the variable with corresponding p-value (t-ratio)
is indeed lower than the pre-specified threshold. There are also other values displayed in the table.
For example, the adjusted R-squared (second row, top right corner) is 0.334, indicating that selected
independent variables can explain roughly 33% of the variation in the dependent variable "'ermsoft’.
Alternatively, this figure can be accessed by the command print(res.rsquared_adj).

In [3]: res = forward_selected(data,'ermsoft','ersandp')
print (res.model.formula)

ermsoft ~ ersandp + rterm + dinflation

In [4]: print(res.summary())

OLS Regression Results

Dep. Variable: ermsoft R-squared: 0.339
Model: OLS Adj. R-squared: 0.334
Method: Least Squares F-statistic: 64.58

47

Date: Tue, 31 Jul 2018 Prob (F-statistic): 1.02e-33
Time: 11:34:44 Log-Likelihood: -1323.8
No. Observations: 381 AIC: 2656.
Df Residuals: 377 BIC: 2671.
Df Model: 3
Covariance Type: nonrobust

coef std err t P>|t]| [0.025 0.975]
Intercept 1.0225 0.404 2.533 0.012 0.229 1.816
ersandp 1.2595 0.092 13.642 0.000 1.078 1.441
rterm 4.8402 1.721 2.812 0.005 1.456 8.224
dinflation 2.2094 1.217 1.816 0.070 -0.183 4.602
Omnibus: 21.219 Durbin-Watson: 2.075
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 64.060
Skew: 0.009 Prob(JB): 1.23e-14
Kurtosis: 5.009 Cond. No. 18.7
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [6]: print(res.rsquared_adj)

0.33421129163

Note that a stepwise regression can be executed in different ways — e.g., either "forward’ or 'back-
ward’. Here, our example is analysed only by the “forward” method. In the interests of brevity, we

leave employing other approaches as an exercise for interested readers.

48

8 Quantile regression

Reading: Brooks (2019, section 4.10)

To illustrate how to run quantile regressions using Python, we will now employ the simple CAPM
beta estimation conducted in the previous section. We re-open the ‘capm.pickle” workfile using the
pickle module and assign it to the variable data. We select the function quantreg, then write "erford’
as the dependent variable and ‘ersandp’ as the independent variable and input the dataset. As usual,
in the module statsmodels.formula.api, we do not need to specify the constant as the function will
automatically include a constant term. Next, we type the function fit and input the argument q=0.5.
This tells Python the quantile regression we want to implement is 0.5, which is an Ordinary-Least-
Squares (OLS) regression.

In [1]: import Pandas as pd
import NumPy as np
import statsmodels.formula.api as smf
import pickle
import matplotlib.pyplot as plt

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'

with open(abspath + 'capm.pickle', 'rb') as handle:
data = pickle.load(handle)
data = data.dropna()

In [2]: # regresstion
quantile(50)
res = smf.quantreg('erford ~ ersandp', data).fit(q=0.5)
print (res.summary())

QuantReg Regression Results

Dep. Variable: erford Pseudo R-squared: 0.1724
Model: QuantReg Bandwidth: 5.340
Method: Least Squares Sparsity: 16.78
Date: Thu, 23 Aug 2018 No. Observations: 193
Time: 20:55:13 Df Residuals: 191
Df Model: 1

coef std err t P>|t]| [0.025 0.975]

Intercept -1.4896 0.606 -2.457 0.015 -2.685 -0.294
ersandp 1.4384 0.146 9.822 0.000 1.150 1.727

While this command (see In [2]) only provides estimates for one particular quantile, we might be
interested in differences in the estimates across quantiles. Next, we generate estimates for a set of
quantiles. To print several quantile estimations, we can apply the for loop. To do so, we firstly need
to create an array starting from 0.1 to 1.0 with an interval of 0.1. This can be done by selecting the

49

arrange function from NumPy (see In [3]). We then set up a loop and iterate each value from the
array object we created. Under each loop, the command shown in In [2] can be repeated. Meanwhile
we only need to revise the argument of the function fit(q=0.5) to fit(q=x). For example, when x
takes the value 0.3, q will then be assigned this value, which tells Python to produce the 0.3 quantile
regression.

For each quantile (0.1 to 0.9), Python reports two estimates together with their respective test
statistics: the B-coefficient on "ersandp” and the coefficient for the constant term.

In [3]: # Simultaneous-quantile regression
10 20 30 40 50 60 70 80 90, ten quantiles
quantiles = np.arange(0.10, 1.00, 0.10)

for x in quantiles:
Print (' ---— e ")
print('{0:0.01f} quantile'.format(x))
res = smf.quantreg('erford ~ ersandp', data).fit(gq=x)
print(res.summary())

0.1 quantile
QuantReg Regression Results

Dep. Variable: erford Pseudo R-squared: 0.2036
Model: QuantReg Bandwidth: 5.609
Method: Least Squares Sparsity: 47.54
Date: Thu, 23 Aug 2018 No. Observations: 193
Time: 20:55:13 Df Residuals: 191
Df Model: 1

coef std err t P>|t]| [0.025 0.975]

Intercept -11.9291 1.045 -11.420 0.000 -13.989 -9.869
ersandp 2.3404 0.348 6.720 0.000 1.653 3.027

0.2 quantile
QuantReg Regression Results

Dep. Variable: erford Pseudo R-squared: 0.2005
Model: QuantReg Bandwidth: 4.710
Method: Least Squares Sparsity: 25.26
Date: Thu, 23 Aug 2018 No. Observations: 193
Time: 20:55:13 Df Residuals: 191
Df Model: 1

coef std err t P>|t]| [0.025 0.975]

Intercept -7.3496 0.733 -10.021 0.000 -8.796 -5.903
ersandp 1.8044 0.186 9.694 0.000 1.437 2.172

80

0.3 quantile

QuantReg Regression Results

Dep. Variable: erford Pseudo R-squared: 0.1923

Model: QuantReg Bandwidth: 5.074

Method: Least Squares Sparsity: 19.85

Date: Thu, 23 Aug 2018 No. Observations: 193

Time: 20:55:13 Df Residuals: 191

Df Model: 1

coef std err t P>|t| [0.025 0.975]

Intercept -4.8783 0.661 -7.381 0.000 -6.182 -3.575

ersandp 1.6596 0.163 10.187 0.000 1.338 1.981
0.4 quantile

QuantReg Regression Results

Dep. Variable: erford Pseudo R-squared: 0.1753

Model: QuantReg Bandwidth: 5.192

Method: Least Squares Sparsity: 18.09

Date: Thu, 23 Aug 2018 No. Observations: 193

Time: 20:55:13 Df Residuals: 191

Df Model: 1

coef std err t P>|t| [0.025 0.975]

Intercept -3.3479 0.641 -5.223 0.000 -4.612 -2.084

ersandp 1.5005 0.155 9.669 0.000 1.194 1.807
0.5 quantile

QuantReg Regression Results

Dep. Variable: erford Pseudo R-squared: 0.1724

Model: QuantReg Bandwidth: 5.340

Method: Least Squares Sparsity: 16.78

Date: Thu, 23 Aug 2018 No. Observations: 193

Time: 20:55:13 Df Residuals: 191

Df Model: 1

coef std err t P>|t| [0.025 0.975]

Intercept -1.4896 0.606 -2.457 0.015 -2.685 -0.294

ersandp 1.4384 0.146 9.822 0.000 1.150 1.727

51

0.6 quantile
QuantReg Regression Results

Dep. Variable: erford Pseudo R-squared: 0.1679

Model: QuantReg Bandwidth: 5.1565

Method: Least Squares Sparsity: 17.05

Date: Thu, 23 Aug 2018 No. Observations: 193

Time: 20:55:13 Df Residuals: 191

Df Model: 1

coef std err t P>|t]| [0.025 0.975]

Intercept -0.0188 0.605 -0.031 0.975 -1.212 1.174

ersandp 1.2967 0.150 8.658 0.000 1.001 1.592
0.7 quantile

QuantReg Regression Results

Dep. Variable: erford Pseudo R-squared: 0.1611

Model: QuantReg Bandwidth: 4.881

Method: Least Squares Sparsity: 20.29

Date: Thu, 23 Aug 2018 No. Observations: 193

Time: 20:55:13 Df Residuals: 191

Df Model: 1

coef std err t P>|t]| [0.025 0.975]

Intercept 1.7568 0.676 2.597 0.010 0.423 3.091

ersandp 1.5283 0.182 8.396 0.000 1.169 1.887
0.8 quantile

QuantReg Regression Results

Dep. Variable: erford Pseudo R-squared: 0.1357

Model: QuantReg Bandwidth: 4.653

Method: Least Squares Sparsity: 29.42

Date: Thu, 23 Aug 2018 No. Observations: 193

Time: 20:55:13 Df Residuals: 191

Df Model: 1

coef std err t P>|t]| [0.025 0.975]

Intercept 4.0013 0.856 4.674 0.000 2.313 5.690

ersandp 1.6199 0.251 6.454 0.000 1.125 2.115

52

0.9 quantile
QuantReg Regression Results

Dep. Variable: erford Pseudo R-squared: 0.1063
Model: QuantReg Bandwidth: 4.810
Method: Least Squares Sparsity: 88.43
Date: Thu, 23 Aug 2018 No. Observations: 193
Time: 20:55:13 Df Residuals: 191
Df Model: 1

coef std err t P>|t]| [0.025 0.975]

Intercept 10.4563 1.951 5.359 0.000 6.608 14.305
ersandp 1.8473 0.699 2.644 0.009 0.469 3.225

It would be unwise to print all the summary tables from the regressions across quantiles due to the
volume of results. To present all of the key parameters of each model specification in an efficient
way, a user-defined function can be written. To do so, we create a function called model_paras with
two inputs: data and quantiles. We list the details of the input parameters and output results at the
beginning to help users quickly understand the aim of the function. There are two purposes of this
function. First, it will produce all of the necessary statistics including an a-coefficient for the constant
term, a B-coefficient on ‘ersandp’, and lower and upper bounds of 95 % confidence intervals. Second,
it will output all the fitted value of regression specifications.

Let us now examine this function. First, we need to create one empty list object and one
empty dictionary to save the results accordingly. Following the same procedure for getting all
the quantile summary tables, we repeat the command res = smf.quantreg(’erford ~ ersandp’,
data).fit(q=q) under the for loop. To further obtain the key parameters instead of printing
whole summary tables, we obtain the former by typing the following commands: alpha =
res.params|’Intercept’], beta = res.params[’ersandp’], Ib_pval = res.conf_int().loc[’ersandp’][0] and
ub_pval = res.conf_int().loc[’ersandp’][1].>!

Additionally, we want to obtain the fitted value of y across quantiles. This can be easily achieved
by the built-in method fittedvalues from the quantile regression instance res. Once finished, the
titted regression values are required to be stored into the corresponding dictionary cell. For example,
when the first quantile regression has been performed (i.e., q is 0.1), the dictionary y_pred records its
key as 0.1 while the corresponding value is assigned by the 0.1 quantile regression predicted series.
Next, q takes the value of 0.2, which is the second quantile regression. The dictionary y_pred[0.2]
stores the fitted value of 0.2 quantile regression with the key 0.2, and so on.

Likewise, it is also necessary to record all regression statistics («, B and bounds of confidence
intervals) under each specification. With a slightly different implementation, we call the built-in
function append followed by each list under the loop. This function can update the list, as the name
suggests. Thus, the row in the list increases with each iteration. Once the command is finished, we
exit the loop by closing the whitespace. Finally, to better present the results, we still need to convert
these temporary variables into a Pandas DataFrame before returning the final results. Specifically,
we simply create a new DataFrame quantreg_res with names corresponding to each column for the
list parameters. For the dictionary, y_pred, we convert it to the DataFrame in the same way but

2IThe detail of these functions can be seen on the following web site https://www.Statsmodels.org/stable/
generated/Statsmodels.regression.linear_model.RegressionResults.html

83

https://www.Statsmodels.org/stable/generated/Statsmodels.regression.linear_model.RegressionResults.html
https://www.Statsmodels.org/stable/generated/Statsmodels.regression.linear_model.RegressionResults.html

without additional arguments. The difference between the two commands arises from the fact that
parameters is a list without column names while those of y_pred are saved with keys (i.e., the latter
have column names).

In [4]: def model_paras(data, quantiles):

11

Parameters:
data: Pandas DataFrame with dependent and independent variables
quantiles: quantile number

Returns:
quantreg_res: Pandas DataFrame with model parameters for each
quantile regression specification
y_hat: Pandas DataFrame with all the fitted wvalue of vy
parameters = []
y_pred = {}
for q in quantiles:
res = smf.quantreg('erford ~ ersandp', data).fit(q=q)
obtain regression's parameters
alpha = res.params['Intercept']
beta = res.params['ersandp']
1b_pval = res.conf_int().loc['ersandp'] [0]
ub_pval = res.conf_int().loc['ersandp'][1]
obtain the fitted wvalue of y
y_pred[q] = res.fittedvalues
save results to lists
parameters.append((q,alpha,beta,lb_pval,ub_pval))

quantreg_res = pd.DataFrame(parameters, columns=['q', 'alpha', \
'beta','lb','ub'])

y_hat = pd.DataFrame(y_pred)

return quantreg_res, y_hat

We can implement this function to obtain a more concise table with all the key parameters (see In[5]).
If you wish to obtain other regression results, you can change the function accordingly, such as in-
cluding t-ratio or p-value, for example.

Take some time to examine and compare the coefficient estimates across quantiles. What do you
observe? We find a monotonic rise in the intercept coefficients as the quantiles increase. This is to be
expected since the data on y have been arranged that way. But the slope estimates are very revealing
— they show that the beta estimate is much higher in the lower tail than in the rest of the distribution
of ordered data. Thus the relationship between excess returns on Ford stock and those of the S&P500
is much stronger when Ford share prices are falling most sharply. This is worrying, for it shows that
the “tail systematic risk” of the stock is greater than for the distribution as a whole. This is related to
the observation that when stock prices fall, they tend to all fall at the same time, and thus the benefits
of diversification that would be expected from examining only a standard regression of ¥ on x could
be much overstated.

54

In [5]: quantreg_paras, y_hats

In [6]: print(quantreg_paras)

[I e T

1b
.653477
.437253
.338293
.194442
.149566
.001296
.169294
.124772
.469290

W NP, P, PP P, DNDW

0.2

-11.400785
-1.114428
-19.049959
-9.260408
-21.181518

0.8

0.364496
9.598789

-8.1563439 -6.502338
0.138325 2.285960

q alpha beta
0 0.1 -11.929063 2.340422
1 0.2 -7.349600 1.804414
2 0.3 -4.878332 1.659638
3 0.4 -3.347896 1.500533
4 0.5 -1.489629 1.438449
5 0.6 -0.018844 1.296706
6 0.7 1.756783 1.528341
7 0.8 4.001336 1.619863
8 0.9 10.456266 1.847333
In [9]: y_hats.head()
Out [9] : 0.1
Date
2002-02-01 -17.183667
2002-03-01 -3.841712
2002-04-01 -27.105056
2002-05-01 -14.407484
2002-06-01 -29.869803
0.7
Date
2002-02-01 -1.674577
2002-03-01 7.037983
2002-04-01
2002-05-01
2002-06-01

Unfortunately, there is no existing function in Python to implement a formal statistical difference test
between quantiles as is available other software. However, we can still superficially visualise each
regression line in a plot. To do so, we first create a figure object named 1, followed by a for loop to plot
each quantile. Specifically, we make use of the output y_hats of the function model_paras where the
fitted values for each quantile have been computed. Then, both actual observations datal’ersandp’]
and predicted values y_hats[i] are assigned to new variables x, y, respectively, each time. To highlight
the OLS regression specification (i.e., when quantile is 0.5), we plot it in red while the remaining
quantiles are displayed in grey. Finally, the figure will appear (Figure 18) in the window below after

-9.90568874 -8.415887

setting X, y axis and so on.

In [7]: plt.figure(1)

for i

X

y
if 1

in quantreg_paras.q:
datal'ersandp']

y_hats[i]
== 0.50:

ub
.027366
.171575
.980982
.806624
.727332
.592115
.887389
.114954
.225376

0.3

-8.604472
0.856563
-15.639919
-6.635828
-17.600453

0.9

6.308721
16.839746
-1.522394

8.500008
-3.704654

plt.plot(x,y,color="'red"')

8>

model_paras(data, quantiles)

0.4

-6.716822
1.837213
-13.077801
-4.936906
-14.850385

0.5

-4.719166
3.480946
-10.816960
-3.012894
-12.516204

0.6

-2.930147

4.461936
-8.427072
-1.392009
-9.958874

else:
plt.plot(x,y,color="'grey')

plt.ylabel('ersandp')
plt.xlabel('erford')
plt.show()

20 A

-15 -10 -5 0 5
erford

Figure 18: Linear Regression for Different Quantiles

86

10

9 Calculating principal components

Reading: Brooks (2019, appendix 4.2)

In this section, we will examine a set of interest rates of different maturities and calculate the prin-
cipal components for this set of variables in a NoteBook. First we import the "FRED’ Excel workfile
which contains US Treasury bill and bond series of various maturities. As usual, we use the Pandas
read_excel function to achieve this task and print the first five rows to check whether the dataset is
imported appropriately. As shown in Out [1], the data contain six US Treasury bill series a follows:
GS3M GS6M GS1 GS3 GS5 GS10

Note that there are multiple ways to perform principal component analysis in Python. Here, we
calculate them by designing a function instead of importing a third-party Python module.

In [1]: from NumPy import mean,cov,cumsum,dot,linalg,std,sort
import Pandas as pd
import matplotlib.pyplot as plt

abspath = 'C:/Users/tao24/0OneDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'

data = pd.read_excel(abspath + 'FRED.xls', index_col=0)

data.head()

Out [1]: GS3M GS6M GS1 GS3 GS5 GS10
date
1990-01-01 7.90 7.96 7.92 8.13 8.12 8.21
1990-02-01 8.00 8.12 8.11 8.39 8.42 8.47
1990-03-01 8.17 8.28 8.35 8.63 8.60 8.59
1990-04-01 8.04 8.27 8.40 8.78 8.77 8.79
1990-05-01 8.01 8.19 8.32 8.69 8.74 8.76

The principal components are calculated as follows: First, we specify the input of the function as
data, which contains six US Treasury bill series. It is good practice to clarify that the input m-by-n
matrix should comprise m rows of observations and n columns of variables. As we have checked
the structure of the data, it exactly matches the requirement. Next, we need to normalise the sample
by subtracting the average of each column and then dividing by the respective standard deviations
individually. Again, we use the combination of apply and lambda, which can easily map the matrix.
After that, we calculate the covariance matrix of M. Note that the function cov from NumPy requires
a column vector input, but M is a row vector. To fit the input, we transpose the DataFrame M. The
eigenvalues and eigenvectors then can be computed by the function linalg.eig, which also comes
from the NumPy module. Additionally, we add the command latent = sort(latent)[::-1] to ensure
that the eigenvalues are listed in an ascending order. Finally, latent and coeff are converted to the
DataFrame and Series, respectively, and are returned.

In [2]: def princomp(data):

[

Computing eigenvalues and eigenvectors of covariance matriz

Parameters:

&7

data: the m-by-n DataFrame which corresponds m rows of observations
and n columns of wartiables.

coeff: a n-by-n matriz (etgenvectors) where it contains all coefficients
of principal component for each variable.

latent: a vector of the eigenvalues

11

M = data.apply(lambda x: (x-mean(x))/std(x)) # normalize

Note: cov inputs require a column vector;

That ts each row of m represents a wvartable,

and each column 1s a single observation of all those wariables
To tackle thts, simply add argument rowvar=ITrue

or transpose M matriz

[latent,coeff] = linalg.eig(cov(M.transpose()))

attention: latent (eigenvalues) is not always sorted

latent = sort(latent)[::-1]

convert arrays to DataFrame or Sertes
coeff = pd.DataFrame(coeff.T, columns=data.columns)
latent = pd.Series(latent, name='Eigenvalue')

return coeff, latent

Call the function we defined and examine the eigenvectors and eigenvalues. It is evident that there
is a great deal of common variation in the series, since the first principal component captures over
96% of the variation in the series and the first two components capture 99.8% [see In [5], [6]] and
Figure 19. Consequently, if we wished, we could reduce the dimensionality of the system by using
two components rather than the entire six interest rate series. Interestingly, the first component
comprises almost exactly equal weights in all six series while the second component puts a larger
negative weight on the longest yield and gradually increasing weights thereafter. This ties in with
the common belief that the first component captures the level of interest rates, the second component
captures the slope of the term structure (and the third component captures curvature in the yield
curve).

In [3]: coeff, latent = princomp(data)

In [4]: coeff

Out [4]: GS3M GSEM GS1 GS3 GS5 GS10
0 0.407769 0.409146 0.411719 0.414379 0.409883 0.396356
1 0.417793 0.391519 0.293202 -0.091793 -0.361692 -0.668541
2 -0.468801 -0.152028 0.231295 0.588798 0.293663 -0.520283
3 -0.537538 0.192442 0.624653 -0.154963 -0.414705 0.296368
4 -0.307086 0.506547 -0.082492 -0.524346 0.580709 -0.173614
5 0.236960 -0.602142 0.542243 -0.417407 0.325168 -0.085348

58

1

In [5]: perc_lat = cumsum(latent)/sum(latent)
print(perc_lat)

.965461
.997919
.999615
.999924
.999976
.000000
Name: Eigenvalue, dtype: float64

a > W NN+~ O
_ O O O O O

In [6]: plt.figure(l)
plt.stem(range(len(perc_lat)),perc_lat,'--b"')
plt.ylabel('Percentage of Eeigenvalues')
plt.xlabel('The number of components')
plt.show()

1.0 A

o o o
~ (@)] (o]
1]]

Percentage of Eeigenvalues
o
N

=)

o o =)
e o =)
b o =)
e o =)
e o =)

0.0 -

0 1 2 3 4 5
The number of components

Figure 19: Percentage of Eigenvalues Attributable to Each Component

59

10 Diagnostic testing

10.1 Testing for heteroscedasticity

Reading: Brooks (2019, section 5.4)

In this example we will undertake a test for heteroscedasticity in Python, using the ‘'macro.pickle’
workfile. We will inspect the residuals of an APT-style regression of the excess return of Microsoft
shares, ‘ermsoft’, on unexpected changes in a set of financial and macroeconomic variables, which
we have estimated above. Thus, the first step is to reproduce the regression results. The simplest
way is to re-estimate the regression by typing the following command in In[1] and In[2]

In [1]: import pickle
import statsmodels.formula.api as smf
import statsmodels.stats.api as sms
import matplotlib.pyplot as plt
from statsmodels.compat import lzip

abspath = 'C:/Users/tao24/0OneDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'macro.pickle', 'rb') as handle:
data = pickle.load(handle)

data = data.dropna() # drop the missing values for some columns
formula = 'ermsoft ~ ersandp + dprod + dcredit + \

dinflation + dmoney + dspread + rterm'
results = smf.ols(formula, data).fit()

This time, we are less interested in the coefficient estimates reported in the regression summary table,
but we focus on the properties of the residuals from this regression. To get a first impression of the
characteristics of the residuals, we want to plot them. To obtain the residuals, we use the command
results.resid, which allows us to access the residuals of regression specification from the instance
results. To plot this series, we then create a figure and plot the series by the plot. The X and Y axes
are further options to be set up depending on what the user requires. A final printed image can be
seen In [3].

Let us examine the patterns in the residuals over time (see Figure 20). If the residuals of the
regression have a systematically changing variability over the sample, that is a sign of heteroscedas-
ticity. In this case, it is hard to see any clear pattern (although it is interesting to note the considerable
reduction in volatility post-2003), so we need to run a formal statistical test.

In [2]: plt.figure(l)
plt.plot(results.resid)
plt.xlabel('Date')
plt.ylabel('Residuals"')
plt.grid(True)
plt.show()

60

20 A

10 -

0_

_10 -

Residuals

_20 -

_30 -

1985 1989 1993 1997 2001 2005 2009 2013 2017
Date

Figure 20: Time-series Plot of Residuals

To do so, we select the function het_breuschpagan from the Statsmodel library. The aim of this func-
tion is to test the hypothesis that the residual variance does not depend on functions (higher order
powers or multiplicative combinations) of the explanatory variables, thus requiring two essential
inputs: 'residuals’ and ‘exogenous variables’.

There are four outputs in total produced by this function: a Lagrange multiplier statistic, p-value,
F-test statistic value and F-test p-value. Note that the het_breuschpagan tests the hypothesis in two
ways. The first method is to employ the generic formula for an LM test using n*R? (the number
of observations times the auxiliary regression), while the F-statistic is preferable when samples are
small or moderately large since otherwise the test exaggerates the statistical significance. To better
present the two test results, we finally create a list with four names and link them to each statistic.

As you can see from the test statistics and p-values, both tests lead to the conclusion that there
does not seem to be a serious problem of heteroscedastic errors for our APT-style model with the
p-values both being 0.87, respectively.

In [3]: # breusch-pagan heteroskedasticity test
name = ['Lagrange multiplier statistic', 'p-value',
'f-value', 'f p-value']
test = sms.het_breuschpagan(results.resid, results.model.exog)
lzip(name, test)

Out[3]: [('Lagrange multiplier statistic', 3.1606601504201448),
('p-value', 0.86975267437865456),
('f-value', 0.4457702552712059),
('f p-value', 0.87290034041883569)]

61

10.2 Using White’s modified standard error estimates

Reading: Brooks (2019, subsection 5.4.3)

We can specify to estimate the regression with heteroscedasticity-robust standard errors in Python.
When we create the regression specification by the command smf.ols(formula, data), we usually
follow the function fit to produce the result instance. So far, we have only focused on the regression
model itself that specifies the dependent and independent variables. If we move to usage of the fit
function, we are presented with different options for adjusting the standard errors.

In [1]: import statsmodels.formula.api as smf
import pickle

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'

with open(abspath + 'macro.pickle', 'rb') as handle:
data = pickle.load(handle)

data = data.dropna() # drop the missing values for some columns

In order to obtain standard errors that are robust to heteroscedasticity, we select the argument
cov_type="HC1’. Obviously, there are a number of options you can select. For more information
on the different standard error adjustments, refer to the Statsmodel documentation.”” Comparing
the regression output for our APT-style model using robust standard errors with that using ordinary
standard errors, we find that the changes in significance are only marginal, as shown in the output
below.

In [2]: formula = 'ermsoft ~ ersandp + dprod + dcredit + \
dinflation + dmoney + dspread + rterm'
results = smf.ols(formula, data).fit(cov_type='HC1')
print (results.summary())

OLS Regression Results

Dep. Variable: ermsoft R-squared: 0.345
Model: OLS Adj. R-squared: 0.333
Method: Least Squares F-statistic: 29.89
Date: Thu, 09 Aug 2018 Prob (F-statistic): 9.27e-33
Time: 11:27:38 Log-Likelihood: -1328.3
No. Observations: 383 AIC: 2673.
Df Residuals: 375 BIC: 2704.
Df Model: 7
Covariance Type: HC1

coef std err z P>|z]| [0.025 0.975]
Intercept 1.3260 0.459 2.888 0.004 0.426 2.226
ersandp 1.2808 0.093 13.778 0.000 1.099 1.463

22The detail of how to implement each standard error adjustment in Python is listed on https://www.Statsmodels.
org/dev/generated/Statsmodels.regression.linear_model.RegressionResults.html.

62

https://www.Statsmodels.org/dev/generated/Statsmodels.regression.linear_model.RegressionResults.html
https://www.Statsmodels.org/dev/generated/Statsmodels.regression.linear_model.RegressionResults.html

dprod -0.3030 0.635 -0.478 0.633 -1.547 0.941
dcredit -0.0254 0.021 -1.219 0.223 -0.066 0.015
dinflation 2.1947 1.307 1.679 0.093 -0.367 4.756
dmoney -0.0069 0.011 -0.630 0.528 -0.028 0.014
dspread 2.2601 3.428 0.659 0.510 -4.458 8.978
rterm 4.7331 1.727 2.741 0.006 1.349 8.117
Omnibus: 21.147 Durbin-Watson: 2.097
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 63.505
Skew: -0.006 Prob(JB): 1.62e-14
Kurtosis: 4.995 Cond. No. 293.
Warnings:

[1] Standard Errors are heteroscedasticity robust (HC1)

Of course, only the standard errors have changed and the parameter estimates remain identical to
those estimated before. The heteroscedasticity-consistent standard errors are smaller for most vari-
ables, resulting in t-ratios growing in absolute value and p-values being smaller. The main changes in
the conclusions reached are that the difference in the consumer credit variable ("dcredit’), which was
previously significant only at the 10% level, is now significant at 5%, and the unexpected inflation
and change in industrial production variables are now significant at the 10% level.

63

10.3 The Newey-West procedure for estimating standard errors

Reading: Brooks (2019, sub-section 5.5.7)

In this subsection, we will apply the Newey-West procedure for estimating heteroscedasticity and
autocorrelation robust standard errors in Python. Similar to implementing robust standard error
adjustments by an argument in the function fit, the Newey-West procedure only requires us to
change the argument. To access this command, we simply type the argument cov_type="HAC’,
cov_kwds="maxlags”:6,'use_correction":True . Of course, before implementing the robust standard
error adjustment, we are first required to define the dependent variable and the independent vari-
ables in the formula and to create the regression specification.

As can be seen, after the command we typed, we are asked to specify the maximum number
of lag to consider in the autocorrelation structure, i.e., we need to manually input the maximum
number of lagged residuals to be considered for inclusion in the model. There might be different
economic motivations for choosing the maximum lag length, depending on the specific analysis one
is undertaking. In our example, we decide to include a maximum lag length of six, implying that we
assume that the potential autocorrelation in our data does not go beyond a window of six months.”?
By hitting SHIFT and ENTER, the following regression results appear in the output.

In [1]: import statsmodels.formula.api as smf
import pickle

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'macro.pickle', 'rb') as handle:
data = pickle.load(handle)

data = data.dropna() # drop the missing values for some columns

In [2]: formula = 'ermsoft ~ ersandp + dprod + dcredit + \
dinflation + dmoney + dspread + rterm'
smf . ols(formula, data).fit(cov_type='HAC',

cov_kwds={'maxlags':6,'use_correction':True})

results

print(results.summary())

OLS Regression Results

Dep. Variable: ermsoft R-squared: 0.345
Model: OLS Adj. R-squared: 0.333
Method: Least Squares F-statistic: 24.93
Date: Thu, 09 Aug 2018 Prob (F-statistic): 6.73e-28
Time: 11:28:44 Log-Likelihood: -1328.3
No. Observations: 383 AIC: 2673.
Df Residuals: 375 BIC: 2704.
Df Model: 7
Covariance Type: HAC

coef std err z P>|z]| [0.025 0.975]

Z3Note that if we were to specify zero in the ‘maxlags’ argument, the Newey-West adjusted standard errors would be
the same as the robust standard errors introduced in the previous section.

64

Intercept 1.3260 0.503 2.638 0.008 0.341 2.311
ersandp 1.2808 0.100 12.822 0.000 1.085 1.477
dprod -0.3030 0.522 -0.581 0.561 -1.325 0.719
dcredit -0.0254 0.022 -1.135 0.256 -0.069 0.018
dinflation 2.1947 1.314 1.671 0.095 -0.380 4.769
dmoney -0.0069 0.011 -0.628 0.530 -0.028 0.015
dspread 2.2601 2.842 0.795 0.426 -3.310 7.830
rterm 4.7331 1.759 2.692 0.007 1.286 8.180
Omnibus: 21.147 Durbin-Watson: 2.097
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 63.505
Skew: -0.006 Prob(JB): 1.62e-14
Kurtosis: 4.995 Cond. No. 293.
Warnings:

[1] Standard Errors are heteroscedasticity and autocorrelation robust (HAC) using 6 lags
and with small sample correction

65

10.4 Autocorrelation and dynamic models

Reading: Brooks (2019, subsections 5.5.7 — 5.5.11)
In this section, we want to apply different tests for autocorrelation in Python using the APT-style
model of the previous section (the "'macro.pickle” workfile).

The simplest test for autocorrelation is due to Durbin and Watson (1951). It is a test for first-order
autocorrelation - i.e., it tests only for a relationship between an error and its immediately previous
value. To access the Durbin-Watson test, we access the function durbin_watson via the module
statsmodels.stats.api and generate a new variable residuals by the command results.resid.

In [1]: import statsmodels.formula.api as smf
import statsmodels.stats.api as sms
from statsmodels.compat import lzip
import pickle

abspath = 'C:/Users/tao24/0OneDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'macro.pickle', 'rb') as handle:
data = pickle.load(handle)

data = data.dropna() # drop the missing values for some columns

In [2]: # durbin_watson
formula = 'ermsoft ~ ersandp + dprod + dcredit + \
dinflation + dmoney + dspread + rterm'
results = smf.ols(formula, data).fit()

residuals = results.resid
sms.durbin_watson(residuals)

Out[2]: 2.0973940504299913

The value of the DW statistic is 2.097. What is the appropriate conclusion regarding the presence or
otherwise of first order autocorrelation in this case?

An alternative test for autocorrelation is the Breusch-Godfrey test. It is more general than DW
and allows us to test for higher order autocorrelation. In Python, the Breusch-Godfrey test can be
conducted by the same module statsmodels.stats.api. There are two inputs for this test: we need to
feed the function with the results instance created by the OLS specification beforehand and employ
10 lags in the test. However, unlike the Durbin-Watson test, which only produces one statistic, there
are four outputs for the Breusch-Godfrey test. This is because the hypothesis is tested in two different
ways. Consistent with the example above, we create a list with the name of the output in order to
better present the results. The final results shall appear as below.

In [3]: name = ['Lagrange multiplier statistic', 'p-value',
'f-value', 'f p-value']
resultsl = sms.acorr_breusch_godfrey(results, 10)
lzip(name, resultsl)

Out[3]: [('Lagrange multiplier statistic', 4.766591436782349),
('p-value', 0.9062145800242255),
('f-value', 0.45998207324796836),
('f p-value', 0.91501799815728901)]

66

10.5 Testing for non-normality

Reading: Brooks (2019, section 5.7)

One of the most commonly applied tests for normality is the Bera-Jarque (B]) test. Assume that we
would like to test whether the normality assumption is satisfied for the residuals of the APT-style
regression of Microsoft stock on the unexpected changes in the financial and economic factors, i.e.
the 'residuals’ variable that we created in subsection 10.4.

In [1]: import statsmodels.formula.api as smf
import statsmodels.stats.api as sms
from statsmodels.compat import lzip
import matplotlib.pyplot as plt
import pickle

abspath = 'C:/Users/tao24/0OneDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'macro.pickle', 'rb') as handle:
data = pickle.load(handle)

data = data.dropna() # drop the missing values for some columns

Before calculating the actual test statistic, it might be useful to have a look at the data as this might
give us a first idea of whether the residuals might be normally distributed. If the residuals follow a
normal distribution we expect a histogram of the residuals to be bell-shaped (with no outliers). To
create a histogram of the residuals, we first generate an OLS regression outcome instance with the
variable named results and access the residual series by the command results.resid. We next are go-
ing to plot the 'residuals’. Specifically, we first create a figure object by the module matplotlib.pyplot.
Plotting the series by the function hist and setting up additional parameters such as the number of
bins, edgecolour, linewidth, x and y axis and so on. The histogram can be seen in In [2].

In [2]: formula = 'ermsoft ~ ersandp + dprod + dcredit + \
dinflation + dmoney + dspread + rterm'
results = smf.ols(formula, data).fit()

residuals = results.resid

plt.figure(1)
plt.hist(residuals,20,edgecolor="'black',linewidth=1.2)
plt.xlabel('Residuals"')

plt.ylabel('Density')

plt.show()

67

-30 -20 -10 0 10 20
Residuals

Figure 21: Histogram of Residuals

Looking at the histogram plot (Figure 21), we see that the distribution of the residuals roughly re-
sembles a bell-shape although we also find that there are some large negative outliers which might
lead to a considerable negative skewness. We could increase the number of bins or lower the width
of the bins in order to obtain a more differentiated histogram.

However, if we want to test the normality assumption of the residuals more formally, it is best to
turn to a normality test. The standard test for the normality of a data series in Python is the BJ test.
To do so, we feed the variable 'residuals’ into the function jarque_bera and zip the output’s names
with outcomes. The result appear in the output window below (see Out [3]).

In [3]: name ['Jarque-Bera', 'Chi~2 two-tail prob.', 'Skew', 'Kurtosis']
test = sms.jarque_bera(residuals)
lzip(name, test)

Out[3]: [('Jarque-Bera', 63.50547267158968),
('Chi~2 two-tail prob.', 1.6216675409916346e-14),
('Skew', -0.00561267747998391),
('Kurtosis', 4.99482560590665)]

Python reports the BJ statistic and x? two-tailed p-value for the test that the residuals are overall
normally distributed, i.e., that both the kurtosis and the skewness are those of a normal distribution.

What could cause this strong deviation from normality? Having another look at the histogram,
it appears to have been caused by a small number of very large negative residuals representing
monthly stock price falls of more than —25%. What does the non-normality of residuals imply for the
inferences we make about coefficient estimates? Generally speaking, it could mean that these infer-
ences could be wrong, although the sample is probably large enough that we need be less concerned
than we would with a smaller sample.

68

10.6 Dummy variable construction and use

Reading: Brooks (2019, subsection 5.7.2)

As we saw from the plot of the distribution above, the non-normality in the residuals from the Mi-
crosoft regression appears to have been caused by a small number of outliers in the sample. Such
events can be identified if they are present by plotting the actual values and the residuals of the
regression. We have already generated a data series containing the residuals of the Microsoft regres-
sion. Let us now create a series of the fitted values. For this, we use the function fittedvalues from the
results instance. We name the variable y_fitted and define that it will contain the linear prediction
for the Microsoft regression. The variable residuals is generated by the command {results.resid}.

In [1]: import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
import NumPy as np
import pickle

abspath = 'C:/Users/tao24/0OneDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'macro.pickle', 'rb') as handle:
data = pickle.load(handle)

data = data.dropna() # drop the missing values for some columns

In [2]: # regresstion
formula = 'ermsoft ~ ersandp + dprod + dcredit + \
dinflation + dmoney + dspread + rterm'
results = smf.ols(formula, data).fit()
y_fitted = results.fittedvalues
residuals = results.resid

In order to plot both the residuals and fitted values in one times-series graph, we import the mat-
plotlib.pyplot module. As usual, we create a figure object and plot two separate series in two com-
mands. To be able to clearly illustrate each series in the chart, we add the label argument to represent
each data series. Then we set up the x and y axis, grid, legend and so on. Finally, type the command
plt.show() and the two series appear in figure 22.

In [3]: plt.figure(1)
plt.plot(residuals, label='resid')
plt.plot(y_fitted, label='linear prediction')
plt.xlabel('Date')
plt.ylabel('Residuals"')
plt.grid(True)
plt.legend()
plt.show()

69

20 A
10 -
! ! |
! J ' J Bl
§ 0 | \'Ih“ll IW}‘IJHJ'
S
ﬁ -10 -
20
—30 - — resid
—— linear prediction

1985 1989 1993 1997 2001 2005 2009 2013 2017
Date

Figure 22: Regression Residuals and Fitted Series

From the graph, it can be seen that there are several large (negative) outliers, but the largest all occur
in 2000. These large outliers correspond to months where the actual return was much smaller (i.e.,
more negative) than the model would have predicted, resulting in a large residual. Interestingly, the
residual in October 1987 is not quite so prominent because even though the stock price fell consider-
ably, the market index value fell as well, so that the stock price fall was at least in part predicted.

In order to identify the exact dates when the biggest outliers were realised, it is probably easiest
to just examine a table of values for the residuals. This can be done by applying the Pandas built-in
function nsmallest and specifying the number of smallest values to pick up. Hitting SHIFT and
ENTER leads Python to output the two smallest values from the given series, as shown in Out [4]
below.

In [4]: residuals.nsmallest(2)

Out [4]: Date
2000-04-01 -36.075347
2000-12-01 -28.143156
dtype: float64

It is evident that the two most extreme residuals were in April (-36.075) and December 2000 (—28.143).
One way of removing the (distorting) effect of big outliers in the data is by using dummy variables.
It would be tempting, but incorrect, to construct one dummy variable that takes the value 1 for both
April and December 2000. This would not have the desired effect of setting both residuals to zero.
Instead, to remove two outliers requires us to construct two separate dummy variables. In order to
create the April 2000 dummy first, we generate a series called "APROODUM’ into data DataFrame. To
precisely assign the value 1 on the date of April 2000 while keeping the rest of the series as zeros, we

70

employ the built-in function where from the NumPy module; there are three parameters are required
as inputs: condition, X, and y, respectively. The first argument would be the condition, since the aim
of this function is to return elements, either from the series x or y, depending on the condition. In
other words, the function will yield the value of x when the condition is true, otherwise it will yield
y. In this setting, we set up the argument data.index == "2000-4-1" since the returned elements would
take the value 1 only when the index value of the data DataFrame is April 2000.

We repeat the process above to create another dummy variable called "'DECOODUM’ that takes
the value 1 in December 2000 and zero elsewhere.

Let us now rerun the regression to see whether the results change once we have removed the
effect of the two largest outliers. For this, we just add the two dummy variables APROODUM and
DECO00DUM to the list of independent variables written in the formula statement. Repeating the
regression specification commands, the output of this regression should look as follows.

In [5]: datal['APROODUM']
datal['DECOODUM']

np.where(data.index == '2000-4-1', 1, 0)
np.where(data.index == '2000-12-1', 1, 0)

regression

formula = 'ermsoft ~ ersandp + dprod + dcredit + \
dinflation + dmoney + dspread + rterm + \
APROODUM + DECOODUM'

results = smf.ols(formula, data).fit()

print (results.summary())

OLS Regression Results

Dep. Variable: ermsoft R-squared: 0.406
Model: OLS Adj. R-squared: 0.392
Method: Least Squares F-statistic: 28.33
Date: Thu, 09 Aug 2018 Prob (F-statistic): 2.22e-37
Time: 11:31:57 Log-Likelihood: -1309.7
No. Observations: 383 AIC: 2639.
Df Residuals: 373 BIC: 2679.
Df Model: 9
Covariance Type: nonrobust

coef std err t P>|t]| [0.025 0.975]
Intercept 1.4198 0.454 3.125 0.002 0.526 2.313
ersandp 1.2539 0.090 13.897 0.000 1.076 1.431
dprod -0.3211 0.705 -0.456 0.649 -1.707 1.065
dcredit -0.0157 0.026 -0.603 0.547 -0.067 0.035
dinflation 1.4421 1.215 1.187 0.236 -0.946 3.830
dmoney -0.0057 0.015 -0.383 0.702 -0.035 0.024
dspread 1.8693 3.955 0.473 0.637 -5.908 9.647
rterm 4.2642 1.641 2.599 0.010 1.038 7.490
APROODUM -37.0288 7.576 -4.888 0.000 -51.926 -22.132
DECOODUM -28.7300 7.546 -3.807 0.000 -43.569 -13.891
Omnibus: 20.084 Durbin-Watson: 2.088

1ok

Prob(Omnibus) : 0.000 Jarque-Bera (JB): 28.877

Skew: 0.404 Prob(JB): 5.36e-07
Kurtosis: 4.076 Cond. No. 560.
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Note that the dummy variable parameters are both highly significant and take approximately the
values that the corresponding residuals would have taken if the dummy variables had not been
included in the model.?* By comparing the results with those of the regression above that excluded
the dummy variables, it can be seen that the coefficient estimates on the remaining variables change
quite a bit in this instance and the significances improve considerably. The inflation parameter is
now insignificant and the R? value has risen from 0.34 to 0.41 because of the perfect fit of the dummy
variables to those two extreme outlying observations.

24Note the inexact correspondence between the values of the residuals and the values of the dummy variable parame-
ters because two dummies are being used together; had we included only one dummy, the value of the dummy variable
coefficient and that which the residual would have taken would be identical.

12

10.7 Multicollinearity
Reading: Brooks (2019, section 5.8)

Let us assume that we would like to test for multicollinearity in the Microsoft regression
(‘'macro.pickle” workfile). To generate a correlation matrix in Python, we apply the Pandas built-
in function corr followed by the DataFrame data. In the command for indexing Pandas columns, we

enter the list of regressors (not including the regressand or the S&P500 returns), as in In [2].

In [1]: import pickle

abspath = 'C:/Users/tao24/0OneDrive - University of Reading/PhD/' \

'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'macro.pickle', 'rb') as handle:
data = pickle.load(handle)

data = data.dropna() # drop the missing values for some columns

In [2]: data = datal[['dprod','dcredit','dinflation', 'dmoney', 'dspread', 'rterm']]

data.corr()

Out [2]: dprod dcredit
dprod 1.000000 0.094273
dcredit 0.094273 1.000000
dinflation -0.143551 -0.024604
dmoney -0.052514 0.150165
dspread -0.052756 0.062818
rterm -0.043751 -0.004029

Do the results indicate any significant correlations between the independent variables? In this par-
ticular case, the largest observed correlations (in absolute value) are 0.17 between the money supply
and spread variables, and —0.23 between the spread and unexpected inflation. Both are probably

dinf
-0.
-0.
1
-0.
-0.
0.

lation
143551
024604

.000000

093571
227100
041606

-0.
0.
-0.

1.
0.
0.

dmoney
052514
150165
093571
000000
170699
003801

dspread
.052756
.062818
.227100

0.170699

sufficiently small in absolute value that they can reasonably be ignored.

{5

.000000
.017622

rterm

.043751
.004029
.041606
.003801
.017622
.000000

10.8 The RESET test for functional form

Reading: Brooks (2019, section 5.9)

To conduct the RESET test for our Microsoft regression, we need to import the reset_ramsay function
from the statsmodels.stats.outliers_influence module. This function requires the regression results
instance, and thus we need to create an OLS regression specification first by typing the following
commands as usual.

In [1]: from statsmodels.stats.outliers_influence import reset_ramsey
import statsmodels.formula.api as smf
import pickle

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'macro.pickle', 'rb') as handle:
data = pickle.load(handle)

data = data.dropna() # drop the missing values for some columns

In [2]: formula = 'ermsoft ~ ersandp + dprod + dcredit + \
dinflation + dmoney + dspread + rterm'
smf .ols(formula, data).fit()

results

reset_ramsey(results,degree=4)

Out[2]: <class 'Statsmodels.stats.contrast.ContrastResults'>
<F test: F=array([[0.9937673]]), p=0.39574412394082514, df_denom=372, df_num=3>

The result of the test appears in Out [2]. Take some time to examine the result statistics. Based on the
F-statistic having four degrees of freedom, we can assume that Python included three higher order
terms of the fitted values in the auxiliary regression. With an F-value of 0.9937 and a corresponding
p-value of 0.3957, the RESET test results imply that we cannot reject the null hypothesis that the
model has no omitted variables. In other words, we do not find strong evidence that the chosen
linear functional form of the model is incorrect.

74

10.9 Stability tests

Reading: Brooks (2019, section 5.12)

There are two types of stability tests that we can apply: known structural break tests and unknown
structural break tests. The former requires a pre-specific datetime to split the sample data, while the
latter examines the parameter stability without any priors as to which variables might be subject to a
structural break and which might not. In Python, the Statsmodels library has incomplete functions in
terms of regression diagnostics, particularly for parameter stability tests. The lack of these is unfor-
tunate, but leaves us an opportunity to explore these tests in detail by designing our own functions
in Python. Let us first have a go at the Chow test.

As usual, we firstly import several necessary libraries and re-load the ‘macro.pickle” work file
beforehand (In [1]). We next define a custom function get_rss where the residual sum of squares
(RSS), degrees of freedom and the number of observations are generated from the given regression
formula. Note that it is not possible to conduct a Chow test or a parameter stability test when there
are outlier dummy variables in the regression. Thus, we have to ensure that the estimation that we
run is the Microsoft regression omitting the APROODUM and DECO0DUM dummies from the list of
independent variables.”> This occurs because when the sample is split into two parts, the dummy
variable for one of the parts will have values of zero for all of the observations, which would thus
cause perfect multicollinearity with the column of ones that is used for the constant term. To obtain
the results, a regression instance results is constructed as usual with three additional commands:
rss = (results.resid*2).sum(), N = results.nobs and K = results.df_model. Finally, we complete the
function by returning the results.

In [1]: import statsmodels.stats.api as sms
import statsmodels.formula.api as smf
from statsmodels.compat import lzip
import pickle
import Pandas as pd
import matplotlib.pyplot as plt

abspath = 'C:/Users/tao24/0OneDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'macro.pickle', 'rb') as handle:
data = pickle.load(handle)

data = data.dropna() # drop the missing values for some columns

In [2]: def get_rss(data):
inputs:
data: a Pandas DataFrame of independent and dependent wvariable
outputs:
rss: the sum of restiduals
N: the observations of inputs
K: total number of parameters

[

formula = 'ermsoft ~ ersandp + dprod + dcredit + \

ZThe corresponding formula for this regression is: ‘ermsoft ~ ersandp + dprod + dcredit + dinflation + dmoney +
dspread + rterm’.

12

dinflation + dmoney + dspread + rterm'
results = smf.ols(formula, data).fit()
rss = (results.resid**2) .sum() # obtain the residuals sum of square
N = results.nobs
K = results.df_model
return rss, N, K

Let us assume that we want to test whether a breakpoint occurred in January 1996. Thus, we specify
the hypothesised break date "1996-01-01" and split our sample into datal and data2. To calculate the
Chow statistic given its formula as below, the following pre-defined function get_rss is implemented
for three different samples individually. With all parameters in hand, readers can easily compute the
tinal result given the code presented in cell [3] below.

(RSStotal - (RSSl + RSS2))/Ktotal

Result =
(RSS1+ RSSy)/ (N1 + Ny — 2 % Kyppa1)

()

In [3]: # split samples
datal = datal:'1996-01-01"]
data2 = datal['1996-01-01":]

get rss of whole sample

RSS_total, N_total, K_total = get_rss(data)
get rss of the first part of sample
RSS_1, N_1, K_1 = get_rss(datal)

get rss of the second part of sample
RSS_2, N_2, K_2 = get_rss(data2)

nominator = (RSS_total - (RSS_1 + RSS_2)) / K_total
denominator = (RSS_1 + RSS_2) / (N_1 + N_2 - 2%K_total)

result = nominator/denominator

Note that the test statistic follows the F distribution with {K}.,;} k and {N; + Ny — 2K},4,;} degrees
of freedom, which is 7 and 370 in this case. If readers compare the statistic with the corresponding
value from the F distribution tables at the 10 % significance level (i.e., 1.71672), it is easy to reach
the conclusion that we can reject the null hypothesis that the parameters are constant across the two
subsamples, i.e., before and after "1996-01-01".

In [4]: result
Out[4]: 1.9894610789615745

It is often the case that the date when the structural break occurs is not known in advance. Python
thus offers a test that does not require us to specify the break date but tests for each possible break
date in the sample. This test can be accessed via the Statsmodels library statsmodels.stats.api, which
is known as breaks_cusumolsresid. The implementation of this function is easy, as only two inputs
are required, i.e., the OLS regression residuals and the degrees of freedom. The results will appear
in the following output window if readers execute the code in In [5].

16

In [5]: formula = 'ermsoft ~ ersandp + dprod + dcredit + \
dinflation + dmoney + dspread + rterm'
smf .ols(formula, data).fit()

results

name
test

['test statistic', 'pval', 'crit']
sms.breaks_cusumolsresid(olsresidual = results.resid,\
ddof = results.df_model)

lzip(name, test)

Out[5]: [('test statistic', 1.5352572458140492),
('pval', 0.017937116553892265),
("crit', [(1, 1.63), (5, 1.36), (10, 1.22)1)]

The results give three rows of statistics. The first two rows present the test statistics and correspond-
ing p-value, while the last row provides 1%, 5% and 10% significance levels with their critical values,
respectively. Again, the null hypothesis is one of no structural breaks. The test statistic and the
corresponding p-value suggest that we can reject the null hypothesis that the coefficients are stable
over time, confirming that our model does have a structural break for any possible break date in the
sample.

Another way of testing whether the parameters are stable with respect to any break dates is to
a test based on recursive estimation. Unfortunately, there is no built-in function in Python that au-
tomatically produces plots of the recursive coefficient estimates together with standard error bands.
In order to visually investigate the extent of parameter stability, we have to create a function where
recursive estimations can be performed under iteration. Then we can plot these data series.

To do so, we first create a function called recursive_reg. In the inputs, we set three parameters
that need to be pre-specified: variable name, the iteration number and initial sample size. To obtain
the recursively estimated coefficients and standard errors, we need to construct the regression in-
stance by slicing the sample data. This can be easily achieved by the command data.iloc[:i+interval].
Specifically, the regression sample would be the first 11 data points if the input i takes the value 1. If
i then becomes 2, the sample size increases to 12 observations, and so on. After that, two outputs can
be accessed by the command coeff = results.params[variable] and se = results.bse[variable]. The
function finally ends up returning the output.

In [6]: def recursive_reg(variable, i, interval):

11

Parameters:
vartable: the string literals of a variable mame in regression
formula.
2: the serial number of regression.
tnterval: the number of consective data points in initial sample

Returns:

coeff: the coefficient estimation of the wvariable

se: the standard errors of the wvariable
1

formula = 'ermsoft ~ ersandp + dprod + dcredit + \
dinflation + dmoney + dspread + rterm'

1

results = smf.ols(formula, data.iloc[:i+intervall]) .fit()
coeff = results.params[variable]
se = results.bse[variable]

return coeff, se

We implement this function under a loop where there are 373 iterations to perform given 11 initial
sample observations. Obviously, you can always change the initial number of data points if desired
and revise the number of iterations accordingly. To save the results, we create an empty list param-
eters as usual and update it by the function append. In order to better present it, the list is then
converted to a DataFrame with column names and a time-series index. Note that our parameters list
only contains 373 estimations, and therefore the corresponding index column should drop the last 11
points.

In order to visually investigate the extent of parameter stability over the recursive estimations, it is
best to generate a time-series plot of the recursive estimates. Assume that we would like to generate
such a plot for the recursive estimates of the ersandp. We would like to plot the actual recursive
coefficients together with their standard error bands. So first, we need to obtain data series for the
standard error bands. We generate two series: one for a deviation of two standard errors above
the coefficient estimate (B,sanap + 2 * SE) and one for a deviation of two standard errors below the
coefficient estimate (Bersandp — 2 * SE). To do so, we use the following two commands to generate the
two series:
parameters[’ersandp + 2se’] = parameters['coeff’] + 2parameters[’se’]
parameters[’ersandp - 2se’] = parameters[’coeff’] - 2parameters|’se’]

In [7]: parameters = []
for i in range(373):
coeff, se = recursive_reg('ersandp', i, 11)

parameters.append((coeff,se))

parameters = pd.DataFrame(parameters, columns=['coeff','se'],\
index = datal[:-10].index)

parameters['ersandp + 2*se'] = parameters['coeff'] + 2%parameters['se']
parameters['ersandp - 2*se'] = parameters['coeff'] - 2xparameters['se']

Once we have generated the new variables, we can plot them together with the actual recursive
coefficients of ‘ersandp’. We create a figure object named 1 and plot three different series, which are
the recursive coefficient estimates for ‘ersandp’ (Bersandp), the upper band (Bersanap + 2 * SE) and the
lower band (Bersanap — 2 * SE). We label each series and set two bands as dashed linespt}. Before
generating the final figure, we set up the optional arguments including the x axis, display grid line
and legend. Pressing ENTER and SHIFT leads Python to generate the graph (Figure 23) in the
following.

In [8]: plt.figure(l)
plt.plot(parameters['coeff'], label=r'$\beta_{ersandp}$')
plt.plot(parameters['ersandp + 2*se'], label=r'$\beta_{ersandp} + 2*SE$',\
linestyle="'dashed')
plt.plot(parameters['ersandp - 2*se'], label=r'$\beta_{ersandp} - 2*SE$',\
linestyle="'dashed')

18

plt.xlabel('Date')
plt.grid(True)
plt.legend()

plt.show()
- Bersandp
Bersandp +2*SE
6 - Bersandp_z*SE
4_
2
1 PRt TRl TRl Pl Sy gy ayunges ey
| R bt r
| ,/
0
P
I
[
1]

1986 1990 1994 1998 2002 2006 2010 2014 2018
Date

Figure 23: Plot of the Parameter Stability Test

What do we observe from the graph? The coefficients of the first couple of subsamples seem to be
relatively unstable with large standard error bands while they seem to stabilise after a short period of
time as the sample size used for estimation grows. This pattern is to be expected as it takes some time
for the coefficients to stabilise since the first few sets are estimated using very small samples. Given
this, the parameter estimates are remarkably stable. We can repeat this process for the recursive
estimates of the other variables to see whether they show similar stability over time.

12

11 Constructing ARMA models

Reading: Brooks (2019, sections 6.4 — 6.7)

Getting started

This example uses the monthly UK house price series which was already incorporated in Python as
an example in section 2. In this section, we re-load the data into the NoteBook. Recall the procedure
of importing data from an Excel workfile and generating a new variable ‘dhp’, we type the command
as follows (In [1]). To facilitate calculations, we save the data by pickle module for future usage (In
[2])-

There are a total of 326 monthly observations running from February 1991 (recall that the January
observation was ‘lost” in constructing the lagged value) to March 2018 for the percentage change in
house price series. The objective of this exercise is to build an ARMA model for the house price
changes. Recall that there are three stages involved: identification, estimation and diagnostic check-
ing. The first stage is carried out by looking at the autocorrelation and partial autocorrelation coeffi-
cients to identify any structure in the data.

In [1]: import Pandas as pd
import statsmodels.tsa.api as smt
import pickle

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
data = pd.read_excel(abspath + 'UKHP.xls', index_col=0)
data['dhp'] = datal'Average House Price'] .\
transform(lambda x : (x - x.shift(1))/x.shift(1)*100)
data = data.dropna()
data.head ()

Out[1]: Average House Price dhp
Month
1991-02-01 53496.798746 0.838950
1991-03-01 52892.861606 -1.128922
1991-04-01 53677.435270 1.483326
1991-05-01 54385.726747 1.319533
1991-06-01 55107.375085 1.326908

In [2]: with open(abspath + 'UKHP.pickle', 'wb') as handle:
pickle.dump(data, handle)

Estimating autocorrelation coefficients

To generate a table of autocorrelations, partial correlations and related test statistics, we import
the sub-module statsmodels.tsa.api from Statsmodels and give it a short name, smt. This sub-
module provides various time-series analysis functions including acf and pacf, which would be con-
ducted in the following paragraph. To apply the acf function, we type the commands acf,q,pval =
smt.acf(data[’dhp’],nlags=12,qstat=True). As can be seen, the function requires several input param-
eters: time-series data, thenumber of lags for autocorrelation and the boolean argument of returning

&0

a Ljung-Box Q statistic for each autocorrelation coefficient.”® In this case, we input the ‘dhp’ variable
and use 12 lags as the specified number of autocorrelations. The function returns three series, which
are all stored in the corresponding variables: acf, q, pval. Likewise, we type a similar command to
calculate the pacf. We then create a new DataFrame correlogram and store all four results.””

In [3]: acf,q,pval = smt.acf(datal['dhp'],nlags=12,qgstat=True)
pacf = smt.pacf(datal['dhp'],nlags=12)

correlogram = pd.DataFrame({'acf':acf[1:],
'pacf':pacf[1:],
1 Q | :q,
'p-val':pvall})

correlogram

Out [3]: Q act p-val pact
0 42.056495 0.357530 8.867420e-11 0.358630
1 99.749962 0.418110 2.185601e-22 0.335185
2 117.435756 0.231136 2.751958e-25 0.016514
3 128.484575 0.182406 8.212175e-27 -0.019309
4 133.803012 0.126357 3.709054e-27 0.005922
5 139.502089 0.130596 1.276524e-27 0.055526
6 140.740725 0.060789 3.555650e-27 -0.030376
7 143.867517 0.096431 3.719180e-27 0.036471
8 152.555817 0.160491 2.604935e-28 0.148973
9 158.870433 0.136606 5.542515e-29 0.040527
10 180.862084 0.254530 6.804227e-33 0.153693
11 211.377841 0.299351 1.451072e-38 0.187351

It is clearly evident that the series is quite persistent — surprisingly so given that it is already in
percentage change form. The autocorrelation function dies away rather slowly. The numerical values
of the autocorrelation and partial autocorrelation coefficients at lags 1--12 are given in the second and
forth columns of the output, with the lag length given in the first column.

Remember that as a rule of thumb, a given autocorrelation coefficient is classed as significant if
it is outside a +-1.96 x 1/(T)1/2 band, where T is the number of observations. In this case, it would
imply that a correlation coefficient is classed as significant if it is bigger than approximately 0.11 or
smaller than $-$0.11. The band is of course wider when the sampling frequency is monthly, as it is
here, rather than daily where there would be more observations. It can be deduced that the first six
autocorrelation coefficients (then 9 through 12) and the first two partial autocorrelation coefficients
(then nine, 11 and 12) are significant under this rule. Since the first acf coefficient is highly significant,
the joint test statistic presented in column 3 rejects the null hypothesis of no autocorrelation at the
1{%} level for all numbers of lags considered. It could be concluded that a mixed ARMA process
might be appropriate, although it is hard to precisely determine the appropriate order given these
results. In order to investigate this issue further, information criteria are now employed.

26More information on the function acf can be viewed on-line from https://www.Statsmodels.org/dev/generated/
Statsmodels.tsa.stattools.acf.html.

2’We drop the first value of both the acf and pacf series by acf[1:] and pacf[1:] because the function starts to return
coefficients at lag 0.

&1

https://www.Statsmodels.org/dev/generated/Statsmodels.tsa.stattools.acf.html
https://www.Statsmodels.org/dev/generated/Statsmodels.tsa.stattools.acf.html

Using information criteria to decide on model orders

The formulae given in Brooks (2019) for Akaike’s and Schwarz’s Information Criteria are

AIC = In(6?) +2—1’f 3)

SBIC = In(6?) + ;(ln T) (4)

where, ¢2 is the estimator of the variance of the regressions disturbances uy, k is the number of pa-
rameters and T is the sample size. When using the criterion based on the estimated standard errors,
the model with the lowest value of AIC and SBIC should be chosen.

Suppose that it is thought that ARMA models from order (0,0) to (5,5) are plausible for
the house price changes. This would entail considering 36 models (ARMA(0,0), ARMA(1,0),
ARMA(2)0),,...ARMA(5,5)), i.e., up to 5 lags in both the autoregressive and moving average terms.

Unlike other software, which may require users to separately estimate each of the models and to
note down the value of the information criteria in each case, in Python, this can be easily done in one
stage by employing the function arma_order_select_ic and it then generates a 5-by-5 DataFrame (if
we specify the maximum order as five).

Initially, we will focus on one particular application to become familiar with this test — for exam-
ple, an ARMA(1,1). To perform the ARMA regression, we call the built-in function ARIMA from the
statsmodels.tsa.api. In the input bracket, we type the series data[’dhp’] and the order of the model,
which would be order=(1,0,1) in this case. Note that there are three parameters in which we can
type in the number of either the autoregressive order (p), the integrated (difference) order (d) or the
moving-average order (q). As we want to start with estimating an ARMA(1,1) model, i.e., a model of
autoregressive order 1 and moving-average order 1, we specify this as the argument order=(1,0,1).

We press SHIFT and ENTER, and Python generates the following estimation output.”®

In [4]: res = smt.ARIMA(datal['dhp'], order=(1,0,1)).fit()
print(res.summary())

ARMA Model Results

Dep. Variable: dhp No. Observations: 326
Model: ARMA(1, 1) Log Likelihood -462.710
Method: css-mle S.D. of innovations 1.000
Date: Mon, 20 Aug 2018 AIC 933.420
Time: 13:42:46 BIC 948.567
Sample: 02-01-1991 HQIC 939.465
- 03-01-2018

coef std err z P>|z]| [0.025 0.975]
const 0.4286 0.141 3.031 0.003 0.151 0.706
ar.L1.dhp 0.8224 0.060 13.781 0.000 0.705 0.939
ma.L1.dhp -0.5417 0.088 -6.179 0.000 -0.714 -0.370

ZNote that the Outer Product Gradient Standard Error(OPG SE) might be presented by other software such as STATA
or E-views. This different treatment of the standard errors will cause different t-statistics compared to those from Python.

82

Roots

Real Imaginary Modulus Frequency
AR.1 1.2160 +0.0000j 1.2160 0.0000
MA.1 1.8460 +0.0000j 1.8460 0.0000

In theory, the output table would be discussed in a similar fashion to the simple linear regression
model discussed in section 3. However, in reality it is very difficult to interpret the parameter esti-
mates in the sense of, for example, saying ‘a 1 unit increase in x leads to a B unit increase in y’. In
part because the construction of ARMA models is not based on any economic or financial theory, it
is often best not to even try to interpret the individual parameter estimates, but rather to examine
the plausibility of the model as a whole, and to determine whether it describes the data well and
produces accurate forecasts (if this is the objective of the exercise, which it often is).

In order to generate the information criteria corresponding to the ARMA(1,1) model we can sim-
ply use the built-in method aic from the res instance. It can be seen that the AIC has a value of 933.42
and the BIC a value of 948.57. However, by themselves these two statistics are relatively meaningless
for our decision as to which ARMA model to choose. Instead, we need to generate these statistics for
competing ARMA models and then to select the model with the lowest information criterion.

In [5]: print(res.aic)
print(res.bic)

933.4199014912799
948.567491017

To check that the process implied by the model is stationary and invertible, it is useful to look
at the inverses of the AR and MA roots of the characteristic equation. If the inverse roots of
the AR polynomial all lie inside the unit circle, the process is stationary, invertible, and has an
infinite-order moving-average (MA) representation. We can test this by selecting the sub-module
smt.ArmaProcess.from_estimation and apply its built-in method isinvertible and isstationary indi-
vidually. In the input bracket of the function, we enter the instance res. From the test output we see
that the boolean results of both the AR and MA parts are true. Thus the conditions of stationarity
and invertibility, respectively, are met.

In [6]: smt.ArmaProcess.from_estimation(res).isinvertible
Out[6]: True
In [7]: smt.ArmaProcess.from_estimation(res).isstationary
OQut[7]: True

We can now turn to access the information criteria of all ARMA models, i.e., from ARMA(0,0) to
ARMA(5,5). To obtain the table of all values of information criteria simultaneously, we select the
function arma_order_select_ic from the statsmodels.tsa.stattools sub-module.

So which model actually minimises the two information criteria? In this case, the criteria choose
different models: AIC selects an ARMA(5,4), while SBIC selects the smaller ARMA(2,0) model. These

&3

chosen models can either be output by the built-in method aic_min_order and bic_min_order of the
regression instance resl or visually examined the 5-by-5 information criteria DataFrame. Concern-
ing the different model orders chosen, it is worth mentioning that it will always be the case that
SBIC selects a model that is at least as small (i.e., with fewer or the same number of parameters) as
AIC, because the former criterion has a stricter penalty term. This means that SBIC penalises the
incorporation of additional terms more heavily. Many different models provide almost identical val-
ues of the information criteria, suggesting that the chosen models do not provide particularly sharp
characterisations of the data and that a number of other specifications would fit the data almost as
well.

In [8]: resl = smt.arma_order_select_ic(datal['dhp'],\
max_ar=5, max_ma=5, ic=['aic', 'bic'],\
fit_kw={'method':'css-mle',
'solver':'bfgs'})

In [9]: print('AIC")
print(resl.aic)
print ('SBIC')
print(resl.bic)

0 1 2 3 4 5
0 1001.263704 977.402015 935.508251 931.454458 930.294945 929.950512
1 958.791442 933.419902 925.648740 923.788834 924.499886 926.106244
2 922.460039 924.408036 926.242696 926.408807 925.977423 928.000364
3 924.401584 926.434415 928.183411 925.957411 925.429584 923.845552
4 926.261040 928.258696 928.377708 930.371143 931.083906 930.382511
5 928.245355 927.641964 927.246082 929.121258 917.127772 926.135325

0 1 2 3 4 5
0 1008.837498 988.762707 950.655841 950.388945 953.016330 956.458793
1 970.1562134 948.567491 944.583227 946.510218 951.008168 956.401423
2 937.607629 943.342523 948.964081 952.917089 956.272602 962.082440
3 943.336070 949.155800 954.691693 956.252590 959.511661 961.714526
4 948.982425 954.766978 958.672887 964.453219 968.952880 972.038382
5 954.753636 957.937143 961.328159 966.990232 958.783644 971.578094

In [10]: print(resl.aic_min_order)
print(resl.bic_min_order)

(5, 4)
(2, 0)

R4

12 Forecasting using ARMA models

Reading: Brooks (2019, section 6.8)

Suppose that a AR(2) model selected for the house price percentage changes series were estimated
using observations February 1991-December 2015, leaving 27 remaining observations for which to
construct forecasts for and to test forecast accuracy (for the period January 2016-May 2018).

Let us first estimate the ARMA(2,0) model for the time period 1991-02-01 - 2015-12-01. As we
only want to estimate the model over a subperiod of the data, we need to slice the data. To do
so, we type the beginning and the end of the index values separated by a colon and assign the
subsample to a new variable data_insample (see the command in In [2]). Next, we type the command
data_insample.tail() and the last five rows of the DataFrame should appear in the window below.
As you can see, the new variable ends in December 2015.

In [1]: import pickle
import statsmodels.tsa.api as smt
import NumPy as np
from sklearn.metrics import mean_squared_error
from math import sqrt

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'UKHP.pickle', 'rb') as handle:
data = pickle.load(handle)

In [2]: data_insample = data['1991-02-01':'2015-12-01"]
data_insample.tail()

Out [2] : Average House Price dhp
Month
2015-08-01 195279.056782 -0.174970
2015-09-01 1955685.011303 0.156676
2015-10-01 196807.127979 0.624852
2015-11-01 196305.114697 -0.255079
2015-12-01 196999.272687 0.353612

To perform the ARMA(2,0) model for the subsample, we repeat the steps described in the previous
section. Specifically, we import the function ARIMA and feed the parameters: "dhp’ series and lag 2
for the autoregressive order (p). Next, the model instance is followed by the function fit to generate
the regression results instance res. A summary table will appear in the window below by printing
res.summary().

In [3]: model = smt.ARIMA(data_insample['dhp'], order=(2,0,0))
res = model.fit()
print(res.summary())

ARMA Model Results

Dep. Variable: dhp No. Observations: 299
Model: ARMA(2, 0) Log Likelihood -427.952
Method: css-mle S.D. of innovations 1.012

&5

Date: Wed, 08 Aug 2018 AIC 863.904

Time: 19:44:34 BIC 878.706
Sample: 02-01-1991 HQIC 869.828
- 12-01-2015

coef std err z P>|z]| [0.025 0.975]
const 0.4417 0.137 3.225 0.001 0.173 0.710
ar.L1.dhp 0.2353 0.054 4.337 0.000 0.129 0.342
ar.L2.dhp 0.3406 0.054 6.259 0.000 0.234 0.447

Roots

Real Imaginary Modulus Frequency
AR.1 1.4026 +0.0000j 1.4026 0.0000
AR.2 -2.0935 +0.0000] 2.0935 0.5000

Now that we have fitted the model, we can produce the forecasts for the period 2016-01-01 - 2018-
03-01. There are two methods available in Python for constructing forecasts: dynamic and static.
The option Dynamic calculates multi-step forecasts starting from the first period in the forecast sam-
ple. Static forecasts imply a sequence of one-step-ahead forecasts, rolling the sample forwards one
observation after each forecast.

We start with generating static forecasts. These forecasts can be generated by calling the built-in
function plot_predict from the res instance. In the input bracket, we specify the prediction sample
range: '2016-01-01" to 2018-03-01" and define the dynamic argument as False, which means im-
plementing static forecasts. Once set up, you can press SHIFT and ENTER and the graph will be
produced (Figure 24).

Likewise, we can create the dynamic forecasts in a similar way. This can be done very easily since
we only need to change the argument dynamic=False to dynamic=True.

Let us have a closer look at the graph (Figure 25). For the dynamic forecasts, it is clearly evident
that the forecasts quickly converge upon the long-term unconditional mean value as the horizon
increases. Of course, this does not occur with the series of 1-step-ahead forecasts which seem to
more closely resemble the actual ‘dhp’ series.

In [4]: model = smt.ARIMA(datal['dhp'], order=(2,0,0))
res = model.fit()
res.plot_predict('2016-01-01"','2018-03-01"',dynamic=False)

86

—— forecast
1.5 A —— dhp
1.0 -
0.5 A
0.0 A
—0.5

Jan l ' A’pr l ' JL"I l ' Olct l ' Jan l ' Alpr l ' JUl l ' Olct ' ' Jan '
2016 2017 2018

Figure 24: Graph Comparing the Static Forecasts with the Actual Series

In [5]: res.plot_predict('2016-01-01','2018-03-01"',dynamic=True)

—— forecast
1.5 A —— dhp

1.0 -

0.5 - , /A\ AN

0.0 A

—0.5 A

Jan Apr Jul Oct jan Apr Jul Oct Jan
2016 2017 2018

Figure 25: Graph Comparing the Dynamic Forecasts with the Actual Series

&7

A robust forecasting exercise would of course employ a longer out-of-sample period than the two
years or so used here, would perhaps employ several competing models in parallel, and would also
compare the accuracy of the predictions by examining the forecast error measures, such as the square
root of the mean squared error (RMSE), the MAE, the MAPE, and Theil’s U-statistic.

In Python, RMSE can be easily calculated by some third-party Python packages. However, it
is recommended for users to start from scratch given the formula.”’ To do so, we first define a
custom function rmse. Specifically, we take the difference between each pair of the forecast and actual
observations, then compute the average value of the squared differences and return the squared root
of it. Next, we generate two new variables which are used to store the predicted and actual out-of-
the-sample series, (pred and data_outsample). After that, we implement the function and print the
statistic. The result will appear in the following window (In [6]). Alternatively, there is a built-in
function available from some third-party packages. For example, the package sklearn contains the
function mean_squared_error, which can compute these statistics but the module would need to be
manually installed. With regard to the result, the sklearn module gives the same statistic as the one
calculated by the custom function.

In [6]: def rmse(pred, target):
return np.sqrt(((pred - target) #** 2) .mean())

data_outsample = datal['2016-01-01':'2018-03-01"]
pred = res.predict('2016-01-01",'2018-03-01",dynamic=False)

statsl = rmse(pred, data_outsample['dhp'])
print('root mean squared errorl: {}'.format(statsl))

stats2 = sqrt(mean_squared_error(data_outsample['dhp'], pred))
print('root mean squared error2: {}'.format(stats2))

root mean squared errorl: 0.5776465575277504
root mean squared error2: 0.5776465575277503

2You can find the formulae to generate the forecast error statistics in chapter 6.11.8 of Brooks (2019).

88

13 Estimating exponential smoothing models

Reading: Brooks (2019, section 6.9)

Python allows us to estimate exponential smoothing models as well. To do so, we first re-load the
"UKHP.pickle’ workfile and generate two subsample variables: data_insample and data_outsample.
Next, we call the function SimpleExpSmoothing from the statsmodels.tsa.api and create a regres-
sion instance model based on the in-sample series ‘dhp’. After generating the regression instance
res by fit, we finally obtain the predicted values of the exponential smoothing model by the com-
mand res.forecast(len(data_outsample)). Note that there are only 27 observations for out-of-sample
forecasting, and thus we tell Python this parameter by using the command len(data_outsample).

In [1]: import pickle
import statsmodels.tsa.api as smt
import matplotlib.pyplot as plt
import NumPy as np
from math import sqrt

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'UKHP.pickle', 'rb') as handle:
data = pickle.load(handle)

data_insample = data['1991-02-01':'2015-12-01"]
data_outsample = data['2016-01-01':'2018-03-01"]

model = smt.ExponentialSmoothing(data_insample['dhp'])
res = model.fit()
pred = res.predict(start='1991-02-01")

The result can be visualised in the NoteBook. As usual, we create a figure object and plot three sepa-
rate variables: in-the-sample "dhp’, out-of-sample "dhp” and forecasts (the detail of the commands is
listed in the code cell [2]).

Let us examine the output graph in Figure 26. It is clearly illustrated that the in-sample "dhp’ is
presented in blue while the out-of-sample values are shown in orange. On the rightmost side of the
graph, there is a green line which represents the simple exponential smoothing forecasts.

In [2]: plt.figure(l)
plt.plot(data_insample['dhp'], label='In-the-sample Data')
plt.plot(data_outsample['dhp'], label='Out-of-the-sample Data')
plt.plot(pred, label='Simple Exponential Smoothing')
plt.legend()
plt.show()

&9

)] | | M

Y LT Y
0- MH "'V} ‘ ""' ") W

\

—— In-the-sample Data
—— Qut-of-the-sample Data
—— Simple Exponential Smoothing

1991 1995 1999 2003 2007 2011 2015 2019

Figure 26: In-sample, Out-of-sample and Simple Exponential Smoothing

Additionally, it is preferable to compute the sum-of-squared residuals (RSS) for the in-sample estima-
tion period and the root mean squared error (RMSE) for the 27 forecasts. Since the step of calculating
the RMSE has been discussed in the previous section, it is easy to get this statistic by re-using those
commands. Moreover, the RSS can be accessed by the command res.sse.

In [3]: def rmse(pred, target):
return np.sqrt(((pred - target) ** 2).mean())

stats = rmse(pred,data_insample['dhp'])

print ('Optimal smoothing coefficient: {}'.format(res.params['smoothing level']))
print('root mean squared error: {}'.format(stats))

print ('sum-of-squared residuals: {}'.format(res.sse))

Optimal smoothing coefficient: 0.23279238720990583
root mean squared error: 1.0586557811514028
sum-of-squared residuals: 335.1048668266209

90

14 Simultaneous equations modelling

Reading: Brooks (2019, sections 7.5-7.9)
What is the relationship between inflation and stock returns? Clearly, they ought to be simultane-
ously related given that the rate of inflation will affect the discount rate applied to cashflows and
therefore the value of equities, but the performance of the stock market may also affect consumer
demand and therefore inflation through its impact on householder wealth (perceived or actual).
This simple example employs the same macroeconomic data as used previously to estimate this
relationship simultaneously. Suppose (without justification) that we wish to estimate the following
model, which does not allow for dynamic effects or partial adjustments and does not distinguish
between expected and unexpected inflation:

inflation, = &g + ayreturns; + apdcredit; + xzdprod, + agdmoney + uy; (5)
returnsy = Bo + Bidprod, + Bodspread, + Bainflation, + Barterm; + uy; (6)

where ‘returns’ are stock returns.

It is evident that there is feedback between the two equations since the inflation variable appears
in the stock returns equation and vice versa. Are the equations identified? Since there are two equa-
tions, each will be identified if one variable is missing from that equation. Equation (5), the inflation
equation, omits two variables. It does not contain the default spread or the term spread, and so is
over-identified. Equation (6), the stock returns equation, omits two variables as well -- the consumer
credit and money supply variables, and so it over-identified too. Two-stage least squares (2SLS) is
therefore the appropriate technique to use.

To do this we need to specify a list of instruments, which would be all of the variables from the
reduced form equation. In this case, the reduced form equations would be:

inflation = f(constant, dprod, dspread, rterm, dcredit, grev, dmoney) (7)

returns = g(constant, dprod, dspread, rterm, dcredit, grev, dmoney) (8)

For this example we will be using the ‘'macro.pickle’ file. To perform a 2SLS regression, we need to
import a third-party package linearmodels.*

There are a variety of built-in functions from this module for advanced econometric applications.
To fit our purpose, we can directly import the function IV2SLS.

In [1]: import pickle
from linearmodels import IV2SLS
import statsmodels.api as sm
import Pandas as pd

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'

with open(abspath + 'macro.pickle', 'rb') as handle:
data = pickle.load(handle)

30To install the linearmodels package, you need to press START and search for the ‘Anaconda Prompt’. Once the
window opens, type the command pip install linearmodels and hit ENTER.

91

The steps for constructing regression specifications remain similar, albeit via a different library. The
tirst step of these would be adding a constant term to the data by the function add_constant from
Statsmodels. Subsequently, the 2SLS regression model instance is created by performing the function
IV2SLS. In its brackets, we specify four parameters: the dependent variable, the exogenous variable,
the endogenous variable and the instruments. Specifically, the first parameter dependent is defined
as the series ‘inflation’. exog are const dprod dcredit dmoney, while the variable rsandp is set as
endog. Last but not least, the list of Instruments comprises the variables 'rterm” and "dspread’.

The res_2sls regression result instance is then generated by the function fit. However, in this case,
we type the argument cov_type="unadjusted’ for the function.

In [2]: # 2SLS, specification 1

data = sm.add_constant(data)

ivmod = IV2SLS(dependent = data.inflation,\
exog = datal[['const', 'dprod', 'dcredit', 'dmoney']],\
endog = data.rsandp,\
instruments = datal['rterm', 'dspread']])

res_2slsl = ivmod.fit(cov_type='unadjusted')

print(res_2sls1)

IV-25LS Estimation Summary

Dep. Variable: inflation R-squared: -1.8273
Estimator: IV-2SLS Adj. R-squared: -1.8571
No. Observations: 384 F-statistic: 21.784
Date: Fri, Nov 09 2018 P-value (F-stat) 0.0002
Time: 11:39:19 Distribution: chi2(4)
Cov. Estimator: unadjusted

Parameter Estimates

Parameter Std. Err. T-stat P-value Lower CI Upper CI
const 0.2129 0.0369 5.7777 0.0000 0.1407 0.2852
dprod 0.0309 0.0500 0.6172 0.5371 -0.0671 0.1289
dcredit -0.0052 0.0019 -2.7214 0.0065 -0.0089 -0.0015
dmoney -0.0028 0.0011 -2.6408 0.0083 -0.0049 -0.0007
rsandp 0.1037 0.0333 3.1092 0.0019 0.0383 0.1690

Endogenous: rsandp

Instruments: rterm, dspread
Unadjusted Covariance (Homoskedastic)
Debiased: False

Similarly, the inputs for the ‘rsandp’ equation would be specified as in the follow code cell and the
output for the returns equation is shown below.

In [3]: # 2SLS, spectification 2
ivmod = IV2SLS(dependent = data.rsandp,\

92

exog = datal[['const', 'dprod', 'dcredit', 'dmoney']],\
endog = data.inflation,\
instruments = datal['rterm', 'dspread']])

res_2sls2 = ivmod.fit(cov_type='unadjusted')

print(res_2sls2)

IV-25LS Estimation Summary

Dep. Variable: rsandp R-squared: -0.1795
Estimator: IV-2SLS Adj. R-squared: -0.1920
No. Observations: 384 F-statistic: 8.4611
Date: Fri, Nov 09 2018 P-value (F-stat) 0.0761
Time: 11:39:19 Distribution: chi2(4)
Cov. Estimator: unadjusted

Parameter Estimates

Parameter Std. Err. T-stat P-value Lower CI Upper CI
const -1.1624 0.6697 -1.7357 0.0826 -2.4750 0.1502
dprod -0.2366 0.4376 -0.5406 0.5888 -1.0942 0.6211
dcredit 0.0368 0.0186 1.9851 0.0471 0.0005 0.0732
dmoney 0.0185 0.0108 1.7087 0.0875 -0.0027 0.0397
inflation 6.3039 2.2728 2.7736 0.0055 1.8493 10.759

Endogenous: inflation

Instruments: rterm, dspread
Unadjusted Covariance (Homoskedastic)
Debiased: False

The results show that the stock index returns are a positive and significant determinant of inflation
(changes in the money supply negatively affect inflation), while inflation also has a positive effect on
the stock returns, albeit less significantly so.

93

15 The Generalised method of moments for instrumental vari-
ables

Reading: Brooks (2019, sections 7.8 and 14.4)

Apart from 2SLS, there are other ways to address the endogeneity issue in a system of equations.
Following the previous section using inflation and stock returns, we apply the same "macro.pickle"
Python workfile to explore a different technique: the Generalised Method of Moments (GMM). First,
recall the estimated models as follows:

inflation, = o + ayreturns; + apdcredit; 4 xzdprod, + agdmoney + uq;)
returnsy = Bo + Bidprod, + Bodspread, + Bazinflation, + Barterm; + uy; (10)

where "returns’ are stock returns — see Brooks (2019) for details.

Clearly, there is feedback between the two equations since the inflation variable appears in the
stock returns equation and vice versa. Therefore, the GMM is employed with a list of instruments to
be tested. To perform the GMM, we again use the third-party package linearmodels. We can directly
import the function IVGMM this time.

In [1]: import pickle
from linearmodels.system import IVSystemGMM
from linearmodels.iv import IVGMM
import statsmodels.api as sm
import Pandas as pd

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'

with open(abspath + 'macro.pickle', 'rb') as handle:
data = pickle.load(handle)

The steps for constructing regression specifications are the same as the previous ones, albeit via a
different regression function. The first step is writing the regression formula. Within the GMM
setting, the regression model is the dependent variable followed by the exogenous variables with en-
dogenous variables and instruments added afterwards in squared brackets. Specifically, the formula
statement is as follows:

‘inflation ~ 1 + dprod + dcredit + dmoney + [rsandp ~ rterm + dspread]’

where inflation is the dependent variable; 1 is the constant term; dprod, dcredit, and dmoney
are exogenous variables; rsandp is the endogenous variable; rterm and dspread are instru-
ments. Subsequently, the GMM regression model instance is created by performing the function
IVGMM . from_formula. In its brackets, we input the formula specified, data and weighting scheme.
Next, the covariance type is set as robust in the fit. Executing the cell will lead the regression results
to be displayed in the output window.

In [2]: # GMM, specification I
formula = 'inflation ~ 1 + dprod + dcredit + dmoney + [rsandp ~ rterm + dspread]'
mod = IVGMM.from_formula(formula, data, weight_type='unadjusted')
resl = mod.fit(cov_type='robust')
print(resl.summary)

94

IV-GMM Estimation Summary

Dep. Variable: inflation R-squared: -1.8273
Estimator: IV-GMM Adj. R-squared: -1.8571
No. Observations: 384 F-statistic: 20.058
Date: Sun, Nov 11 2018 P-value (F-stat) 0.0005
Time: 22:16:12 Distribution: chi2(4)
Cov. Estimator: robust

Parameter Estimates

Parameter Std. Err. T-stat P-value Lower CI Upper CI
Intercept 0.2129 0.0422 5.0416 0.0000 0.1302 0.2957
dprod 0.0309 0.0699 0.4413 0.6590 -0.1062 0.1679
dcredit -0.0052 0.0017 -2.9732 0.0029 -0.0086 -0.0018
dmoney -0.0028 0.0011 -2.5944 0.0095 -0.0049 -0.0007
rsandp 0.1037 0.0419 2.4768 0.0133 0.0216 0.1857

Endogenous: rsandp
Instruments: rterm, dspread
GMM Covariance

Debiased: False

Robust (Heteroskedastic)

Similarly, the second specification for the 'rsandp” equation would be written as in the following
code cell and the output for the returns equation is shown below.

In [3]: # GMM, specification 2
formula = 'rsandp T 1 + dprod + dcredit + dmoney + [inflation ~ rterm + dspread]'
mod = IVGMM.from_formula(formula, data, weight_type='unadjusted')
res2 = mod.fit(cov_type='robust')
print (res2.summary)

IV-GMM Estimation Summary

Dep. Variable: rsandp R-squared: -0.1795
Estimator: IV-GMM Adj. R-squared: -0.1920
No. Observations: 384 F-statistic: 5.6843
Date: Sun, Nov 11 2018 P-value (F-stat) 0.2240
Time: 22:16:12 Distribution: chi2(4)
Cov. Estimator: robust

Parameter Estimates

Parameter Std. Err. T-stat P-value Lower CI Upper CI

Intercept -1.1624 0.8919 -1.3033 0.1925 -2.9105 0.5857
dprod -0.2366 0.6369 -0.3714 0.7103 -1.4849 1.0117
dcredit 0.0368 0.0185 1.9929 0.0463 0.0006 0.0731
dmoney 0.0185 0.0104 1.7849 0.0743 -0.0018 0.0388
inflation 6.3039 3.1875 1.9777 0.0480 0.0565 12.551

Endogenous: inflation
Instruments: rterm, dspread
GMM Covariance

Debiased: False

Robust (Heteroskedastic)

The results show that the stock index returns are a positive and significant determinant of inflation
(changes in the money supply negatively affect inflation), while inflation also has a positive effect on
the stock returns, albeit less significantly so.

96

16 VAR estimation

Reading: Brooks (2019, section 7.10)
In this section, a VAR is estimated in order to examine whether there are lead-lag relationships
between the returns to three exchange rates against the US dollar: the euro, the British pound and
the Japanese yen. The data are daily and run from 14 December 1998 to 3 July 2018, giving a total of
7,142 observations. The data are contained in the Excel file ‘currencies.xls’.

First, we import the dataset into the NoteBook. Next, we construct a set of continuously com-
pounded percentage returns called "reur’, ‘rgbp’ and ‘rjpy’ using a custom function LogDiff. More-
over, these new variables are saved in a workfile currencies.pickle for the future usage.

In [1]: import Pandas as pd
import NumPy as np
import statsmodels.tsa.api as smt
import pickle

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'

data = pd.read_excel(abspath + 'currencies.xls',index_col=[0])

def LogDiff(x):
x_diff = 100#np.log(x/x.shift(1))
x_diff = x_diff.dropna()
return x_diff

data = pd.DataFrame({'reur':LogDiff(datal['EUR']),
'rgbp' :LogDiff(datal['GBP']),
'rjpy':LogDiff(datal'JPY'])})

with open(abspath + 'currencies.pickle', 'wb') as handle:
pickle.dump(data, handle)

VAR estimation in Python can be accomplished by importing the function VAR from the library
statsmodels.tsa.api. The VAR specification appears as in the code cell [2]. We define the dependent
variables to be ‘reur’, ‘rgbp” and ‘rjpy’. Next we need to specify the number of lags to be included
for each of these variables. In this case, the maximum number of lags is two, i.e., the first lag and
the second lag. Let us write the argument maxlags=2 for the regression instance and estimate this
VAR(2) model. The regression output appears as below.

In [2]: # VAR
model = smt.VAR(data)
res = model.fit(maxlags=2)
print(res.summary())

Summary of Regression Results

Model: VAR
Method: 0LS
Date: Mon, 20, Aug, 2018

97.

Time: 15:35:25

No. of Equations: 3.00000 BIC: -5.41698
Nobs: 7139.00 HQIC: -5.43024
Log likelihood: -10960.3 FPE: .00435167
AIC: -5.43720 Det (Omega_mle) : .00433889
Results for equation reur

coefficient std. error t-stat prob
const 0.000137 0.005444 0.025 0.980
Ll.reur 0.147497 0.015678 9.408 0.000
L1.rgbp -0.018356 0.017037 -1.077 0.281
Ll.rjpy -0.007098 0.012120 -0.586 0.558
L2.reur -0.011808 0.015663 -0.754 0.451
L2.rgbp 0.006623 0.017032 0.389 0.697
L2.rjpy -0.0056427 0.012120 -0.448 0.654
Results for equation rgbp

coefficient std. error t-stat prob
const 0.002826 0.004882 0.579 0.563
Ll.reur -0.025271 0.014058 -1.798 0.072
L1.rgbp 0.221362 0.015277 14.490 0.000
Ll.rjpy -0.039016 0.010868 -3.590 0.000
L2.reur 0.046927 0.014045 3.341 0.001
L2.rgbp -0.067794 0.015272 -4.439 0.000
L2.rjpy 0.003287 0.010868 0.302 0.762
Results for equation rjpy

coefficient std. error t-stat prob
const -0.000413 0.005524 -0.075 0.940
Ll.reur 0.041061 0.015908 2.581 0.010
L1.rgbp -0.070846 0.017287 -4.098 0.000
Li.rjpy 0.132457 0.012298 10.771 0.000
L2.reur -0.018892 0.015893 -1.189 0.235
L2.rgbp 0.024908 0.017282 1.441 0.150
L2.rjpy 0.014957 0.012298 1.216 0.224
Correlation matrix of residuals

reur rgbp rjpy

reur 1.000000 0.634447 0.270764

98

rgbp 0.634447 1.000000 0.164311
rjpy 0.270764 0.164311 1.000000

At the top of the table, we find information for the model as a whole, including values of the infor-
mation criteria, while further down we find coefficient estimates and goodness-of-fit measures for
each of the equations separately. Each regression equation is separated by a horizontal line.

We will shortly discuss the interpretation of the output, but the example so far has assumed that
we know the appropriate lag length for the VAR. However, in practice, the first step in the construction
of any VAR model, once the variables that will enter the VAR have been decided, will be to determine
the appropriate lag length. This can be achieved in a variety of ways, but one of the easiest is to em-
ploy a multivariate information criterion. In Python, this can be done by calling the built-in function
select_order based on the regression model instance. In the specification brackets of the function, we
specify the maximum number of lags to entertain including in the model, and for this example, we
arbitrarily enter 10. By executing the code cell, we should be able to observe the following output.

In [3]: res = model.select_order (maxlags=10)
print(res.summary())

VAR Order Selection (* highlights the minimums)

AIC BIC FPE HQIC
0 -5.346 -5.343 0.004769 -5.345
1 -5.433 -5.422% 0.004368 -5.429
2 -5.437 -5.417 0.004351 -5.430%
3 -5.438 -5.409 0.004350 -5.428
4 -5.439% -5.401 0.004344x -5.426
5 -5.438 -5.392 0.004346 -5.423
6 -5.437 -5.382 0.004351 -5.418
7 -5.437 -5.373 0.004353 -5.415
8 -5.436 -5.364 0.004358 -5.411
9 -5.435 -5.354 0.004360 -5.407
10 -5.434 -5.344 0.004367 -5.403

Python presents the values of various information criteria and other methods for determining the lag
order. In this case, the Akaike (AIC) and Akaike’s Final Prediction Error Criterion (FPE) both select
a lag length of four as optimal, while Schwarz’s (SBIC) criterion chooses a VAR(1) and the Hannan-
Quinn (HQIC) criteria selects a VAR(2). Let us estimate a VAR(1) and examine the results. Does the
model look as if it fits the data well? Why or why not?

Next, we run a Granger causality test. We call the statsmodels.tsa.api function VAR again and
construct a VAR regression instance. Next, we run the built-in function test_causality and specify
the parameters as follows: causing variable 'rgbp’, caused variable ‘reur’, performing test options
‘wald” and significance level for computing critical values, 0.05. It is unfortunate that the Granger
causality can only be tested between two variables in Python since we want to run the test among

99

all variables. However, this can be done by separately estimating each of the pairwise combinations
and noting down the statistics in each case (Table 1).°!

In [4]: model = smt.VAR(data)
res = model.fit(maxlags=2)

Equation reur, Ezcluded rgbp

resCausality = res.test_causality(causing=['rgbp'l],
caused=['reur'],
kind='wald',signif=0.05)

3In the code cell, we only demonstrate the command for the equation reur due to limited space. Users can modify it
for other equations.

100

Table 1: Granger Causality Wald tests
Equation Excluded chi2 Critical value p-value df

reur rgbp 1.186 5.991 0.553 2
reur 1jpy 0.6260 5.991 0.731 2
reur All 1.764 9.488 0.779 4
rgbp reur 12.88 5991 0.002 2
rgbp 1jpy 1292 5991 0.002 2
rgbp All 2899 9.488 0.000 4
1jpy reur 7320 5991 0.026 2
1jpy rgbp 1712 5991 0.000 2
1jpy All 17.38 9.488 0.002 4

The results show only modest evidence of lead-lag interactions between the series. Since we have
estimated a tri-variate VAR, three panels are displayed, with one for each dependent variable in the
system. There is causality from EUR to GBP and from JPY to GBP that is significant at the 1% level.
We also find significant causality at the 5% level from EUR to JPY and GBP to JPY, but no causality
from any of the currencies to EUR. These results might be interpreted as suggesting that information
is incorporated slightly more quickly in the pound-dollar rate and yen-dollar rates than into the
euro-dollar rate.

It is preferable to visualise the impact of changes in one variable on the others at different hori-
zons. One way to achieve this is to obtain the impulse responses for the estimated model. To do so,
we first re-define the dependent variables (reur rgbp rjpy) and select a VAR model with one lag of
each variable. This can be done by inputting the argument maxlags=1. We then specify that we want
to generate a graph for the irf, that is, the built-in function from the VAR result instance. Finally, we
need to select the number of periods over which we want to generate the IRFs. We arbitrarily select
20 and feed it to irf. Type the command irf.plot() and Python produces the impulse response graphs
(Figure 27) as below.

In [5]: model = smt.VAR(data)
res = model.fit(maxlags=1)

Impulse Response Analysts
irf = res.irf(20)
irf.plot ()

Out [5] :

Impulse responses

reur - reur rgbp - reur rjpy - reur
1.0 A A
0.014 /1y 0.01 1 ,"\\
4 1 Y 1
0.8 0.00 H——> N
\ /7 0.00 H—=
0.6 1 —0.014 1\ // \ﬁ
1 1 1
W Wi
-0.024 1 | -0.014 1!
0.4 i]
0031 11 Vi
' i -0.024 1
1 . V1
0.2 A |1]
—0.044 ! 1]
v |'|
0.0 —0.05 —0.0371 &
reur - rgbp rgbp - rgbp ripy = rgbp
0.01 - 1.0 0.00
0.00 0.8 1 —0.011
—0.02 -
—0.01 4 0.6 A
—0.03 -
—0.02 A 0.4 1
—0.04 -
~0.031 0.2 1
—0.05 -
—0.04 -
: . A o0 : : : -0.06 1, . . . :
reur - rjpy rgbp - rjpy ripy - ripy
0.07 1 0.00 1.0
0.06 -
—0.02 - 0.8 -
0.05 A
0.04 - —0.04 - 0.6 1
0.03 A _0.06 - 0.4
0.02 A
—0.08 A 0.2 1
0.01 A
0.00 —-0.10 - 0.0
10 15 20 0 5 10 15 20 0 5 10 15 20

As one would expect given the parameter estimates and the Granger causality test results, only a few
linkages between the series are established here. The responses to the shocks are very small, except
for the response of a variable to its own shock, and they die down to almost nothing after the first

lag.

Note that plots of the variance decompositions (also known as forecast error variance decompo-
sitions, or fevd in Python) can also be generated using the fevd function. Instead of plotting the IRFs
by the irf function, we choose fevd — that is, the forecast-error variance decompositions. Bar charts

Figure 27: Impulse Responses

for the variance decompositions would appear as follows (see Figure 28).

In [6]: # Forecast Error Variance Decomposition (FEVD)

ol
o
)

fevd = res.fevd(20)
fevd.plot()

Out [6] :

E reur
EEE rgbp

reur ripy

Forecast error variance decomposition (FEVD)

1.0

0.8

0.6

0.4 1

0.2 1

0.0 -
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

rgb
1.0 - 9°p

0.8

0.6 1

0.4

0.2 A

0.0 -

20.0

rjpy

1.0 A
0.8
0.6
0.4 1

0.2 A

w NN EENEEEEEEEEEEEEEENENEN

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Figure 28: Variance Decompositions

To illustrate how to interpret the FEVDs, let us have a look at the effect that a shock to the euro rates
has on the other two rates and on later values of the euro series itself, which are shown in the first
row of the FEVD plot. Interestingly, while the percentage of the errors that is attributable to own
shocks is 100% in the case of the euro rate (dark black bar), for the pound, the euro series explains
around 40% of the variation in returns (top middle graph), and for the yen, the euro series explains
around 7% of the variation.

We should remember that the ordering of the variables has an effect on the impulse responses and
variance decompositions, and when, as in this case, theory does not suggest an obvious ordering of
the series, some sensitivity analysis should be undertaken. Let us assume we would like to test how
sensitive the FEVDs are to a different way of ordering. We first generate a new DataFrame datal
with the reverse order of the columns to be used previously, which is rjpy rgbp reur. To inspect and
compare the FEVDs for this ordering and the previous one, we can create graphs of the FEVDs by
implementing the VAR regression and fevd function again. We can then compare the FEVDs of the
reverse order (Figure 29) with those of the previous order.

In [7]: datal = datal['rjpy','rgbp', 'reur']l] # reverse the columns

model = smt.VAR(datal)
res = model.fit(maxlags=1)

Forecast Error Variance Decomposition (FEVD)
fevd = res.fevd(20)
fevd.plot(

OQut [7]:

1.0 1

0.8 1

0.6 1

0.4 1

0.2 1

0.0 -

1.0

0.8 A

0.6

0.4 A

0.2 A

0.0 -

Forecast error variance decomposition (FEVD)

ripy

0.0 25 5.0 7.5 10.0 12,5 15.0 17.5 20.0
rgbp

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
reur

1.0 A

0.8 1

0.6

0.4 A

0.2

0.0 -

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Figure 29: Variance Decompositions for Different Orderings

N rjpy
BN rgbp
reur

17 Testing for unit roots

Reading: Brooks (2019, section 8.1)

In this section, we focus on how we can test whether a data series is stationary or not using Python.
This example uses the same data on UK house prices as employed previously (‘ukhp.pickle’). As-
suming that the data have been loaded, the variables are defined and that we have dropped missing
values as before, we want to conduct a unit root test on the Average House Price series. To start with,
we choose a new third-party package, arch, rather than sticking to statsmodels because the former
contains a greater number of unit root test tools.>

In [1]: import pickle
from arch.unitroot import DFGLS, ADF, KPSS, PhillipsPerron

abspath = 'C:/Users/tao24/0OneDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'UKHP.pickle', 'rb') as handle:
data = pickle.load(handle)

data['First Difference of HP'] = datal'Average House Price'].diff()
data = data.dropna()
data.head ()

Out [1]: Average House Price dhp First Difference of HP
Month
1991-03-01 52892.861606 -1.128922 -603.937141
1991-04-01 53677.435270 1.483326 784 .573665
1991-05-01 54385.726747 1.319533 708.291476
1991-06-01 55107.375085 1.326908 721.648338
1991-07-01 54541.121263 -1.027546 -566.253821

The first test we employ will be the Augmented Dickey-Fuller (ADF) unit-root test. Since these
functions have been imported from the arch.unitroot sub-module, we can directly call the function
ADF and input the parameters, which are the series "Average House Price” and 10 Lagged differ-
ences, respectively. Next, we type the command print(res.summary()) as usual and the following
test statistics are reported in the output window below.

In the upper part of the output, we find the actual test statistics for the null hypothesis that the
series "Average House Price” has a unit root. Clearly, the test statistic (-0.467) is not more negative
than the critical value, so the null hypothesis of a unit root in the house price series cannot be rejected.

In [2]: # test level
res = ADF(datal'Average House Price'], lags=10)
print (res.summary())

Augmented Dickey-Fuller Results

Test Statistic -0.467
P-value 0.898

32To install this package, press START and search for the “Anaconda Prompt’. Once the window opens, you need to
type the command pip install arch and execute it by hitting ENTER.

106

Trend: Constant

Critical Values: -3.45 (1%), -2.87 (5%), -2.57 (10%)

Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.

Now we repeat all of the above steps for the First Difference of HP. To do so, we call the ADF
function again but instead of typing data[’Average House Price’], we type data[’First Difference of
HP’]. The output would appear as in the code cell below.

In [3]: res = ADF(datal['First Difference of HP'], lags=10)
print(res.summary())

Augmented Dickey-Fuller Results

Test Statistic -3.307
P-value 0.015
Lags 10

Trend: Constant

Critical Values: -3.45 (1%), -2.87 (5%), -2.57 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.

We find that the null hypothesis of a unit root can be rejected for the differenced house price series
at the 5% level >

For completeness, we run a unit root test on the dhp series (levels, not differenced), which are the
percentage changes rather than the absolute differences in prices. We should find that these are also
stationary (at the 5% level for a lag length of 10).

In [4]: res = ADF(data['dhp'], lags=10)
print(res.summary())

Augmented Dickey-Fuller Results

Test Statistic -3.220
P-value 0.019
Lags 10

Trend: Constant

Critical Values: -3.45 (1%), -2.87 (5%), -2.57 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.

331f we decrease the number of lags added, we find that the null hypothesis is rejected even at the 1% significance level.

102

As mentioned above, the arch module presents a large number of options for unit root tests. We
could, for example, include a trend or a drift term in the ADF regression. Alternatively, we could use
a completely different test setting — for example, instead of the Dickey-Fuller test, we could run the
Phillips-Perron test for stationarity. Among the options available in the arch library, we focus on one
further unit root test that is strongly related to the Augmented Dickey-Fuller test presented above,
namely the Dickey—Fuller GLS test (DFGLS). It can be accessed in Python via arch.unitroot. 'DFGLS’
performs a modified Dickey—-Fuller f-test for a unit root in which the series has been transformed
by a generalized least-squares regression. Several empirical studies have shown that this test has
significantly greater power than previous versions of the augmented Dickey—Fuller test. Another
advantage of the 'DFGLS’ test is that it does not require knowledge of the optimal lag length before
running it but it performs the test for a series of models that include 1 to k lags.

In the DFGLS’s input, shown in the code cell below, we type data[’Average House Price’] and
specify the highest lag order for the Dickey-Fuller GLS regressions to be 10. We then write the com-
mand print(res.summary()) and Jupyter generates the following output.

In [6]: res = DFGLS(datal['Average House Price'], max_lags=10)
print(res.summary())

Dickey-Fuller GLS Results

Test Statistic 1.726
P-value 0.979
Lags 2

Trend: Constant

Critical Values: -2.63 (1%), -2.01 (5%), -1.69 (10%)

Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.

We see the optimal number of lags selected by the test output is two, albeit choosing only from one
lag to ten. For two lags, we have a test statistic of 1.726, which is not more negative than the critical
value, even at the 10% level.

Apart from these two tests — the ADF and DFGLS — one can also apply other unit root tests such
as the KPSS, Phillips-Perron and so on, but conducting these is left as an exercise.

18 Cointegration tests and modelling cointegrated systems

Reading: Brooks (2019, sections 8.3 — 8.11)
In this section, we will test the S&P500 spot and futures series in the ‘SandPhedge.xIs” Excel workfile
(that were discussed in section 3) for cointegration using Python.

We start with a test for cointegration based on the Engle-Granger approach, where the residuals of
a regression of the spot price on the futures price are examined. First, we generate two new variables,
for the log of the spot series and the log of the futures series, and rename them Ispot and Ifutures,
respectively.** Then we run the following OLS regression:

Ispot ~ Ifuture

Note that is is not valid to examine anything other than the coefficient values in this regression as
the two series are non-stationary. Let us have a look at both the fitted and residual series over time.
As explained in previous sections, we can use the built-in method resid and fittedvalues from the
results instance to generate series of the residuals and fitted values.

In [1]: import Pandas as pd
import NumPy as np
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
from arch.unitroot import DFGLS

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD' \
'/QMF Book/book Ran/data files new/Book4e_data/'
data = pd.read_excel(abspath + 'SandPhedge.xls', index_col=0)

datal['lspot']

= data['Spot'] .apply(lambda x : np.log(x))
datal['lfuture'] =

datal['Futures'] .apply(lambda x : np.log(x))

formula = 'lspot = lfuture'

results = smf.ols(formula, data).fit()
residuals = results.resid

lspot_fit = results.fittedvalues

Next we generate a graph of the actual, fitted and residual series by calling the matplotlib.pyplot
module. Note that we have created a second y-axis for the residuals as they are very small and we
would not be able to observe their variation if they were plotted on the same scale as the actual and
fitted values.>> The plot should appear as follows (see Figure 30):

In [2]: fig = plt.figure(l)
axl = fig.add_subplot(111)
axl.plot(lspot_fit, label='Linear Prediction')

34We use the command datal’lspot’] = datal[’Spot’l.apply(lambda x : np.log(x)) to generate the series. Note that it is
common to run a regression of the log of the spot price on the log of the futures rather than a regression in levels; the
main reason for using logarithms is that the differences of the logs are returns, whereas this is not true for the levels.

%When using the matplotlib.pyplot to create the graph, you can generate an axis object by typing the command
ig.add_subplot(111). Next, you can create another axis object by applying the command ax2 = plt.twinx() when defining
the plot for the residuals.

109

axl.plot(datal['lspot'], label='lspot')
axl.set_xlabel('Date')
ax1l.legend(loc=0)

ax2 = plt.twinx()

ax2.set_ylabel ('Residuals')
ax2.plot(residuals, label='Residuals')
ax2.legend(loc=0)

plt.grid(True)

plt.show()
8.0
—— |Linear Prediction —— Residuals
7.84 — Ibpot ’/,,,;/’ - 0.010
/
/‘R‘J“J B 0005
7.6 - AL
- 0.000
7.4 - r)
()
i - —0.005 3
724 WY 7
- —0.010 <
7.0 1 [\ /5
/ - —0.015
681 L _0.020
6.6 - ' - —0.025
1998 2002 2006 2010 2014 2018

Date

Figure 30: Actual, Fitted and Residual Plot

You will see a plot of the levels of the residuals (red line), which looks much more like a stationary
series than the original spot series (the blue line corresponding to the actual values of y). Note how
close together the actual and fitted lines are -- the two are virtually indistinguishable and hence the
very small right-hand scale for the residuals.

Let us now perform an ADF test on the residual series 'residuals’. As we do not know the optimal
lag length for the test, we use the DFGLS test and specify 12 max_lags as the highest lag order for
DFGLS regressions. The output should appear as below.

The number of lags displayed at the bottom of the test output suggests an optimal lag length of
9, since we focus on the Akaike information criterion (AIC) by default. For two lags, we have a test
statistic of (-0.925), which is not more negative than the critical values, even at the 10% level. Thus,
the null hypothesis of a unit root in the test regression residuals cannot be rejected and we would
conclude that the two series are not cointegrated. This means that the most appropriate form of the

110

model to estimate would be one containing only first differences of the variables as they have no
long-run relationship.

In [3]: res = DFGLS(residuals, max_lags=12)
print (res.summary())

Dickey-Fuller GLS Results

Test Statistic -0.925
P-value 0.324
Lags 9

Trend: Constant

Critical Values: -2.65 (1%), -2.03 (5%), -1.71 (10%)

Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.

If instead we had found the two series to be cointegrated, an error correction model (ECM) could
have been estimated, as there would be a linear combination of the spot and futures prices that
would be stationary. The ECM would be the appropriate model in that case rather than a model in
pure first difference form because it would enable us to capture the long-run relationship between
the series as well as their short-run association. We could estimate an error correction model by
running the following regression:

‘rspot ~ rfuture + lresid’ (11)

While the coefficient on the error correction term shows the expected negative sign, indicating that if
the difference between the logs of the spot and futures prices is positive in one period, the spot price
will fall during the next period to restore equilibrium, and vice versa, the size of the coefficient is not
really plausible as it would imply a large adjustment. Given that the two series are not cointegrated,
the results of the ECM need to be interpreted with caution in any case.

In [4]: # Error Correction Model
specification 1: rspot rfutures L.resid
def LogDiff(x):
x_diff = 100*np.log(x/x.shift(1))
x_diff = x_diff.dropna()
return x_diff

data['rspot'] = LogDiff (datal'Spot'])
data['rfuture'] = LogDiff(datal['Futures'])
data['lresid'] = residuals.shift(1)
formula = 'rspot T rfuture + lresid'
results = smf.ols(formula, data).fit()
print (results.summary())

OLS Regression Results

Dep. Variable: rspot R-squared: 0.992
Model: OLS Adj. R-squared: 0.992
Method: Least Squares F-statistic: 1.473e+04
Date: Sun, 12 Aug 2018 Prob (F-statistic): 2.6be-254
Time: 10:58:43 Log-Likelihood: -118.19
No. Observations: 246 AIC: 242 .4
Df Residuals: 243 BIC: 252.9
Df Model: 2
Covariance Type: nonrobust

coef std err t P>|t]| [0.025 0.975]
Intercept 0.0093 0.025 0.370 0.712 -0.040 0.059
rfuture 0.9848 0.006 170.344 0.000 0.973 0.996
lresid -55.0602 5.785 -9.518 0.000 -66.455 -43.665
Omnibus: 119.738 Durbin-Watson: 2.268
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 920.333
Skew: -1.759 Prob(JB): 1.42e-200
Kurtosis: 11.798 Cond. No. 1.02e+03
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.02e+03. This might indicate that there are
strong multicollinearity or other numerical problems.

Note that we can either include or exclude the lagged terms and either form would be valid from the
perspective that all of the elements in the equation are stationary.

Before moving on, we should note that this result is not an entirely stable one — for instance, if
we run the regression containing no lags (i.e., the pure Dickey-Fuller test) or on a subsample of the
data, we would find that the unit root null hypothesis should be rejected, indicating that the series
are cointegrated. We thus need to be careful about drawing a firm conclusion in this case.

In [6]: # spectification 2: rspot rfutures L.rspot L.rfutures
formula = 'rspot T rfuture + lspot + lfuture'
results = smf.ols(formula, data).fit()
print (results.summary())

OLS Regression Results

Dep. Variable: rspot R-squared: 0.992
Model: OLS Adj. R-squared: 0.992
Method: Least Squares F-statistic: 9926.
Date: Sun, 12 Aug 2018 Prob (F-statistic): 5.83e-253
Time: 10:58:43 Log-Likelihood: -116.33
No. Observations: 246 AIC: 240.7
Df Residuals: 242 BIC: 254.7

Df Model: 3

Covariance Type: nonrobust

coef std err t P>t [0.025 0.975]
Intercept 0.6699 0.642 1.044 0.298 -0.59%4 1.934
rfuture 0.9800 0.006 171.085 0.000 0.969 0.991
1spot 55.7343 5.710 9.761 0.000 44 .486 66.982
1future -55.8216 5.719 -9.760 0.000 -67.087 -44 556
Omnibus: 116.793 Durbin-Watson: 2.245
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 803.607
Skew: 1.749 Prob(JB): 3.15e-175
Kurtosis: 11.135 Cond. No. 3.33e+03
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 3.33e+03. This might indicate that there are
strong multicollinearity or other numerical problems.

Although the Engle-Granger approach is evidently very easy to use, as outlined above, one of its ma-
jor drawbacks is that it can estimate only up to one cointegrating relationship between the variables.
In the spot-futures example, there can be at most one cointegrating relationship since there are only
two variables in the system. But in other situations, if there are more variables, there can potentially
be more than one linearly independent cointegrating relationship. Thus, it is appropriate instead to
examine the issue of cointegration within the Johansen VAR framework.

The application we will now examine centres on whether the yields on Treasury bills of different
maturities are cointegrated. For this example we will use the ‘macro.pickle” workfile. It contains six
interest rate series corresponding to 3 and 6 months, and 1, 3, 5, and 10 years. Each series has a name
in the file starting with the letters ‘GS’. The first step in any cointegration analysis is to ensure that
the variables are all non-stationary in their levels form, so confirm that this is the case for each of
the six series by running a unit root test on each one using the DFGLS function with a maximum lag
length of 12.%¢

In [6]: from statsmodels.tsa.vector_ar import vecm

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
data = pd.read_excel(abspath + 'FRED.xls', index_col=0)

Before specifying the VECM using the Johansen method, it is often very useful to graph the variables
to see how they behave over time and with respect to each other (see Figure 31). This will also help
us to select the correct option for the VECM specification, e.g., if the series appear to follow a linear
trend. To generate a graph of all variables we use the well-known Python library matplotlib.pyplot
and type the commands as in the follow code cell.

% Note that for the 3-year, 5-year, and 10-year rates the unit root test is rejected for the optimal lag length based on the
Schwarz criterion. However, for the sake of this example we will continue to use all six of the rates.

113

In [7]: plt.figure(l)
plt.plot(datal['GS3M'], label='GS3M')
plt.plot(datal['GS6M'], label='GS6M')
plt.plot(datal['GS1'], label='GS1')
plt.plot(datal['GS3'], label='GS3')
plt.plot(datal['GS5'], label='GS5')
plt.plot(datal['GS10'], label='GS10"')
plt.legend()
plt.xlabel('Date')
plt.ylabel('Residuals"')
plt.grid(True)
plt.show()

Residuals

0_

1989 1993 1997 2001 2005 2009 2013 2017
Date

Figure 31: Graph of the Six US Treasury Interest Rates Series

We see that the series generally follow a linear downward trend, though some series show stronger
inter-temporal variation with larger drops than others. Additionally, while all of the series seem to
be related in some way, we find that the plots of some rates resemble each other more strictly than
others, e.g., the GS3M, GS6M and GS1 rates.

To test for cointegration or to fit cointegrating VECMs, we must also specify how many lags to in-
clude in the model. To select the optimal number of lags, we can use the methods implemented
in Statsmodels” vecm function. To access this test, we first import the function from statsmod-
els.tsa.vector_ar. We can run the lag-order selection test. In the inputs for the test, we first define all
the six interest rates as Dependent variables and then set up a Maximum lag order of 12. We then
print the summary table from the model instance and the test output should appear as below.

In [8]: # VECM select appropriate lag orders
model = vecm.select_order(data,maxlags=12)
print (model.summary())

VECM Order Selection (* highlights the minimums)

AIC BIC FPE HQIC
0 -31.49 -31.00% 2.106e-14 -31.30
1 -31.80% -30.89 1.546e-14x% -31.44x%
2 -31.76 -30.44 1.604e-14 -31.23
3 -31.76 -30.01 1.612e-14 -31.06
4 -31.69 -29.52 1.73%e-14 -30.82
5 -31.68 -29.10 1.751e-14 -30.65
6 -31.63 -28.63 1.843e-14 -30.44
7 -31.70 -28.27 1.738e-14 -30.33
8 -31.62 -27.77 1.895e-14 -30.08
9 -31.61 -27.35 1.917e-14 -29.91
10 -31.52 -26.84 2.114e-14 -29.66
11 -31.45 -26.35 2.295e-14 -29.42
12 -31.45 -25.94 2.321e-14 -29.25

The four information criteria provide inconclusive results regarding the optimal lag length. While
the FPE, the HQIC and the AIC suggest an optimal lag length of one lag, the BIC favours a lag
length of zero. Note that the difference in optimal model order could be attributed to the relatively
small sample size available with this monthly sample compared with the number of observations
that would have been available were daily data used, implying that the penalty term in BIC is more
severe on extra parameters in this case. In the framework of this example, we follow the AIC and
select a lag length of one.

The next step in fitting a VECM is determining the number of cointegrating relationships using
a VEC rank test. The corresponding Python function is select_coint_rank. The tests for cointegra-
tion implemented in this function are based on Johansen’s method by comparing the log likelihood
functions for a model that contains the cointegrating equation(s) and a model that does not. If the
log likelihood of the unconstrained model that includes the cointegrating equations is significantly
different from the log likelihood of the constrained model that does not include the cointegrating
equations, we reject the null hypothesis of no cointegration.

To access the VEC rank test, we call the built-in function select_coint_rank from vecm and define
the list of dependent variables (in this case, all six series). Next, we set the trend specification argu-
ment det_order being one as based upon a visual inspection of the data series, since they roughly
seemed to follow a linear downward trend. Then, we also set the maximum lag to be included in the
underlying VAR model to one as determined in the previous step. Finally, the Ay statistics method
is selected with significant level at 1%. By executing the command print(vec_rankl.summary()), the
following output should appear in the output window.

In [9]: vec_rankl = vecm.select_coint_rank(data, det_order = 1, k_ar_diff = 1,
method = 'trace', signif=0.01)
print (vec_rankl.summary())

Johansen cointegration test using trace test statistic with 1} significance level

r_0 r_1 test statistic critical value

0 6 208.2 117.0
1 6 139.3 87.77
2 6 88.18 62.52
3 6 46.96 41.08
4 6 21.71 23.15

The first column in the table shows the rank of the VECM that has been tested or, in other words,
the number of cointegrating relationships for the set of interest rates, while the second reports the
number of equations in total. We find the Ay statistics in the third column, together with the
corresponding critical values. The first row of the table tests the null hypothesis of at most one
cointegrating vector, against the alternative hypothesis that the number of cointegrating equations
is strictly larger than the number assumed under the null hypothesis, i.e., larger than one. The
test statistic of 208.2 considerably exceeds the critical value (117.0) and so the null of at most one
cointegrating vector is rejected. If we then move to the next row, the test statistic (139.3) again exceeds
the critical value so that the null of at most two cointegrating vectors is also rejected. This continues,
and we also reject the null of at most three cointegrating vectors, but we stop at the next row, where
we do not reject the null hypothesis of at most four cointegrating vectors at the 1% level, and this is
the conclusion.

Besides the Ay statistic, we can also employ an alternative statistic, the maximum-eigenvalue
statistic (Ayax). In contrast to the trace statistic, the maximum-eigenvalue statistic assumes a given
number of 7 cointegrating relations under the null hypothesis and tests this against the alternative
that there are r + 1 cointegrating equations. We can generate the results for this alternative test
by going back to the ’select_coint_rank” inputs and changing the argument method="trace’ to the
method="maxeig’. We leave everything else unchanged and execute the command.

The test output should now report the results for the A4, statistics in the summary table below.
We find that the results differ slightly compared with our previous conclusion of five cointegrating
relations between the interest rates. There are only at most four cointegrating vectors in this case.

In [10]: vec_rank2 = vecm.select_coint_rank(data, det_order = 1, k_ar_diff = 1,
method = 'maxeig', signif=0.01)
print (vec_rank2.summary())

Johansen cointegration test using maximum eigenvalue test statistic with
1% significance level

r_ 0 r_1 test statistic critical value

0 1 68.92 49.41
1 2 51.11 42.86
2 3 41.21 36.19
3 4 25.25 29.26

Now that we have determined the lag length, trend specification and the number of cointegrating
relationships, we can fit the VECM model. To do so, we call the function VECM. In the VECM inputs,
we first specify all six interest rates as the dependent variables and then select five as the number of
cointegrating equations (rank) and one again as the maximum lag to be included in the underlying
VAR model. As in the previous input, we set the deterministic argument to 'co’, meaning that there
is a constant inside the cointegrating relationship and simply run the code. The following output
should appear in the output window.

In [11]: # VECM
model = vecm.VECM(data, k_ar_diff=1,coint_rank=5,deterministic='co")
res = model.fit()
print(res.summary())

Det. terms outside the coint. relation & lagged endog. parameters for equation GS3M

coef std err z P>|z| [0.025 0.975]
const 0.0146 0.038 0.388 0.698 -0.059 0.089
L1.GS3M 0.1942 0.148 1.311 0.190 -0.096 0.485
L1.GS6M -0.0403 0.273 -0.148 0.883 -0.576 0.495
L1.GS1 0.0375 0.249 0.150 0.880 -0.451 0.526
L1.GS3 0.3382 0.269 1.259 0.208 -0.188 0.865
L1.GS5 -0.2019 0.326 -0.619 0.536 -0.841 0.437
L1.GS10 -0.0257 0.171 -0.150 0.880 -0.361 0.310

Det. terms outside the coint. relation & lagged endog. parameters for equation GSEM

coef std err z P>|z]| [0.025 0.975]
const 0.0407 0.038 1.069 0.285 -0.034 0.115
L1.GS3M 0.2067 0.150 1.382 0.167 -0.086 0.500
L1.GS6M -0.0156 0.276 -0.057 0.955 -0.556 0.525
L1.GS1 0.0283 0.251 0.113 0.910 -0.465 0.521
L1.GS3 0.3511 0.271 1.295 0.195 -0.180 0.883
L1.GS5 -0.1876 0.329 -0.570 0.569 -0.833 0.458
L1.GS10 -0.0029 0.173 -0.017 0.987 -0.341 0.336

Det. terms outside the coint. relation & lagged endog. parameters for equation GS1

coef std err z P>|z]| [0.025 0.975]
const 0.0339 0.042 0.811 0.417 -0.048 0.116
L1.GS3M 0.0103 0.164 0.062 0.950 -0.312 0.332
L1.GS6M 0.2414 0.303 0.797 0.425 -0.352 0.835
L1.GS1 -0.0967 0.276 -0.350 0.726 -0.638 0.445
L1.GS3 0.4569 0.298 1.534 0.125 -0.127 1.041
L1.GS5 -0.2292 0.362 -0.634 0.526 -0.938 0.479
L1.GS10 0.0418 0.190 0.221 0.825 -0.330 0.414

Det. terms outside the coint. relation & lagged endog. parameters for equation GS3

coef std err z P>lz] [0.025 0.975]

L1.GS3M -0.1257
L1.GS6M 0.0022
L1.GS1 -0.0154
L1.GS3 0.7017
L1.GS5 -0.3031
L1.GS10 0.0312

1.857
-0.661
0.130

-1.

parameters for equation

(0.

025

0.975]

coef
const 0.0436
L1.GS3M -0.1869
L1.GS6M -0.0448
L1.GS1 0.0753
L1.GS3 0.3905
L1.GS5 -0.0344
L1.GS10 0.0185

coef std err z P>|z| [0.025 0.975]
const 0.0807 0.051 1.577 0.115 -0.020 0.181
L1.GS3M -0.3120 0.201 -1.5563 0.120 -0.706 0.082
L1.GS6M 0.2012 0.371 0.543 0.587 -0.525 0.928
L1.GS1 0.0042 0.338 0.012 0.990 -0.658 0.666
L1.GS3 -0.0104 0.364 -0.028 0.977 -0.724 0.704
L1.GS5 0.2449 0.442 0.554 0.580 -0.622 1.112
L1.GS10 0.0205 0.232 0.089 0.929 -0.434 0.475

Loading coefficients (alpha) for equation GS3M

coef std err z P>|z| [0.025 0.975]
ecl -0.3421 0.116 -2.956 0.003 -0.569 -0.115
ec2 0.3224 0.223 1.447 0.148 -0.114 0.759
ec3 -0.1587 0.180 -0.880 0.379 -0.512 0.195
ec4d 0.5228 0.183 2.856 0.004 0.164 0.882
ecbh -0.4510 0.182 -2.479 0.013 -0.807 -0.094

Loading coefficients (alpha) for equation GS6M

coef std err z P>|z]| [0.025 0.975]
ecl -0.0181 0.117 -0.155 0.877 -0.247 0.211
ec2 -0.1849 0.225 -0.822 0.411 -0.626 0.256
ec3 0.0706 0.182 0.388 0.698 -0.286 0.427
ecd 0.4326 0.185 2.341 0.019 0.070 0.795
ecbh -0.3774 0.184 -2.056 0.040 -0.737 -0.018

Loading coefficients

(alpha) for equation GS1

118

GS5

GS10

coef std err z P>|z]| [0.025 0.975]

ecl 0.0457 0.128 0.356 0.721 -0.206 0.297

ec2 -0.1466 0.247 -0.594 0.553 -0.631 0.337

ec3 -0.0267 0.200 -0.133 0.89%4 -0.419 0.365

ecd 0.3870 0.203 1.908 0.056 -0.011 0.785

ech -0.3263 0.202 -1.618 0.106 -0.721 0.069
Loading coefficients (alpha) for equation GS3

coef std err z P>|z| [0.025 0.975]

ecl 0.2201 0.163 1.352 0.176 -0.099 0.539

ec2 -0.4621 0.313 -1.475 0.140 -1.076 0.152

ec3 0.2639 0.254 1.040 0.298 -0.233 0.761

ecéd 0.1111 0.257 0.431 0.666 -0.39%4 0.616

ech -0.1864 0.256 -0.728 0.466 -0.688 0.315
Loading coefficients (alpha) for equation GS5

coef std err z P>|z]| [0.025 0.975]

ecl 0.3214 0.166 1.936 0.053 -0.004 0.647

ec2 -0.5487 0.320 -1.717 0.086 -1.175 0.078

ec3 0.1846 0.259 0.713 0.476 -0.323 0.692

ecd 0.3627 0.263 1.381 0.167 -0.152 0.877

ecbh -0.4491 0.261 -1.721 0.085 -0.961 0.062
Loading coefficients (alpha) for equation GS10

coef std err z P>|z]| [0.025 0.975]

ecl 0.3909 0.157 2.491 0.013 0.083 0.698

ec2 -0.6212 0.302 -2.057 0.040 -1.213 -0.029

ec3 0.1687 0.245 0.690 0.490 -0.311 0.648

ecd 0.3948 0.248 1.590 0.112 -0.092 0.881

ech -0.4355 0.247 -1.765 0.077 -0.919 0.048

Cointegration relations for loading-coefficients-column 1

coef std err z P>|z]| [0.025 0.975]

beta.1l 1.0000 0 0 0.000 1.000 1.000

beta.2 8.918e-16 0 0 0.000 8.92e-16 8.92e-16

beta.3 -2.547e-16 0 0 0.000 -2.5be-16 -2.5be-16

beta.4 -2.707e-17 0 0 0.000 -2.71e-17 -2.71e-17

beta.5 4.067e-16 0 0 0.000 4.07e-16 4.07e-16

beta.6 -1.2273 0.211 -5.828 0.000 -1.640 -0.815

Cointegration relations for loading-coefficients-column 2
coef std err z P>|z]| [0.025 0.975]

beta.1l 4.501e-16 0 0 0.000 4.5e-16 4.5e-16
beta.2 1.0000 0 0 0.000 1.000 1.000
beta.3 -6.735e-16 0 0 0.000 -6.74e-16 -6.74e-16
beta.4 -1.835e-16 0 0 0.000 -1.83e-16 -1.83e-16
beta.b -5.765e-16 0 0 0.000 -5.77e-16 -5.77e-16
beta.6 -1.2516 0.211 -5.922 0.000 -1.666 -0.837
Cointegration relations for loading-coefficients-column 3
coef std err z P>|z]| [0.025 0.975]
beta.l 5.866e-16 0 0 0.000 5.87e-16 5.87e-16
beta.2 -1.321e-16 0 0 0.000 -1.32e-16 -1.32e-16
beta.3 1.0000 0 0 0.000 1.000 1.000
beta.4 2.364e-16 0 0 0.000 2.36e-16 2.36e-16
beta.b 8.786e-16 0 0 0.000 8.79e-16 8.79e-16
beta.6 -1.2643 0.196 -6.452 0.000 -1.648 -0.880
Cointegration relations for loading-coefficients-column 4
coef std err z P>|z]| [0.025 0.975]
beta.1l -4.297e-17 0 0 0.000 -4.3e-17 -4.3e-17
beta.2 4.312e-16 0 0 0.000 4.31e-16 4.31e-16
beta.3 -2.667e-16 0 0 0.000 -2.67e-16 -2.67e-16
beta.4 1.0000 0 0 0.000 1.000 1.000
beta.b -1.761e-16 0 0 0.000 -1.76e-16 -1.76e-16
beta.6 -1.2579 0.129 -9.769 0.000 -1.510 -1.005
Cointegration relations for loading-coefficients-column 5
coef std err z P>|z]| [0.025 0.975]
beta.l 1.204e-18 0 0 0.000 1.2e-18 1.2e-18
beta.2 2.388e-16 0 0 0.000 2.39e-16 2.39%e-16
beta.3 -1.487e-16 0 0 0.000 -1.49e-16 -1.49e-16
beta.4 -2.183e-17 0 0 0.000 -2.18e-17 -2.18e-17
beta.b 1.0000 0 0 0.000 1.000 1.000
beta.6 -1.1693 0.073 -15.966 0.000 -1.313 -1.026

Jupyter produces a large set of tables, with each panel presenting its header above. The header
contains information about the test: the parameters of each equation, and the deterministic terms
regarding the overall model. The first six panels contain estimates of the short-run parameters along
with their standard errors, z-statistics, and confidence intervals.

Additionally, there are loading coefficient panels for each of the five cointegrating vectors for this
model, including both « and B. The five coefficients on "ecl’, "ec2’, "ec3’, ‘ec4’, ‘ec5’ are the parameters
in the adjustment matrix a(f), and the next several columns contain the estimated parameters of the
cointegrating vector for this model, along with their standard errors, z-statistics, and confidence
intervals.

19 Volatility modelling

19.1 Testing for "ARCH effects’ in exchange rate returns

Reading: Brooks (2019, section 9.7)

In this section we will test for "ARCH effects” in exchange rates using the 'currrencies.pickle’ dataset.
First, we want to compute the (Engle, 1982) test for ARCH effects to make sure that this class of
models is appropriate for the data. This exercise (and the remaining exercises of this section), will
employ returns on daily exchange rates where there are 7,141 observations. Models of this kind are
inevitably more data intensive than those based on simple linear regressions, and hence, everything
else being equal, they work better when the data are sampled daily rather than at a lower frequency.

In [1]: import pickle
from statsmodels.stats.diagnostic import het_arch
from statsmodels.compat import lzip
import statsmodels.api as sm

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'currencies.pickle', 'rb') as handle:
data = pickle.load(handle)

A test for the presence of ARCH in the residuals is calculated by regressing the squared residuals
on a constant and p lags, where p is set by the user. As an example, assume that p is set to five.
The first step is to estimate a linear model so that the residuals can be tested for ARCH. In Jupyter,
we perform these tests by fitting a constant-only model based on an OLS regression and testing for
ARCH effects using Engle’s Lagrange multiplier test. To do so, we exercise the command in the
following code cell. Specifically, we generate a set of new variables (the lagged values of 'rgbp” from
one period to five periods). An OLS regression instance is then constructed by regressing 'rgbp” on its
own lagged value plus a constant term. Finally, we obtain the residual series by typing the command
results.resid.

In [2]: datal = sm.add_constant(datal['rgbp'])
results = sm.0LS(datal['rgbp'],datal['const']) . .fit()
print (results.summary())

OLS Regression Results

Dep. Variable: rgbp R-squared: 0.000
Model: OLS Adj. R-squared: 0.000
Method: Least Squares F-statistic: nan
Date: Wed, 22 Aug 2018 Prob (F-statistic): nan
Time: 10:56:04 Log-Likelihood: -39562.8
No. Observations: 7141 AIC: 7908.
Df Residuals: 7140 BIC: 7914.
Df Model: 0
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]

const 0.0035 0.005 0.695 0.487 -0.006 0.013

Omnibus: 2045.985 Durbin-Watson: 1.620
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 50171.502
Skew: 0.813 Prob(JB): 0.00
Kurtosis: 15.883 Cond. No. 1.00
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

To test for ARCH effects in the residuals, we import the function het_arch from statsmod-
els.stats.diagnostic. In the input brackets, we only need to feed the residual series and specify the list
of lag orders as five. As can be seen from the test output, the Engle test is based on the null hypothe-
sis that there are no ARCH effects against the alternative hypothesis that the data is characterised by
(in our case) ARCH(5) disturbances.

In [3]: res = het_arch(results.resid,maxlag=5)
name = ['Im','lmpval','fval','fpval']
1zip(name,res)

Out[3]: [('1m', 252.99550035192351),
('lmpval', 1.2512748060596812e-52),
('fval', 52.414840571481349),
('fpval', 1.4008125355474366e-53)]

The test shows a p-value of 0.0000, which is well below 0.05, suggesting the presence of ARCH effects
in the pound-dollar returns.

19.2 Estimating GARCH models

Reading: Brooks (2019, section 9.9)

To estimate a GARCH-type model in Python, we select the arch_model function from arch. In the
function inputs, we define Dependent variable: rjpy. We do not include any further independent
variables but instead continue by specifying the main model specification. Let us first determine the
type of volatility model. In this case, we set the argument as vol="GARCH’. This means that the
model would include one « and one term (i.e., one lag of the squared errors and one lag of the con-
ditional variance, respectively). Meanwhile, it is good to clarify that the maximum lags with respect
to the ARCH and GARCH terms is one by default, which corresponds to the p and q parameters.>”

In [1]: import pickle
from arch import arch_model

abspath = 'C:/Users/tao24/0OneDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'currencies.pickle', 'rb') as handle:
data = pickle.load(handle)

In [2]: # The default set of options produces a model with a constant mean,
GARCH(1,1) conditional wvariance and normal errors.
am = arch_model(datal'rjpy'], vol='GARCH')
res = am.fit()
print(res.summary())

Iteration: 1, Func. Count: 6, Neg. LLF: 4358.469077544289

Iteration: 2, Func. Count: 17, Neg. LLF: 4357.512862516335

Iteration: 3, Func. Count: 24, Neg. LLF: 4354.350593693825

Iteration: 4, Func. Count: 31, Neg. LLF: 4349.030055343708

Iteration: 5, Func. Count: 38, Neg. LLF: 4344.583822901452

Iteration: 6, Func. Count: 45, Neg. LLF: 4343.147305239814

Iteration: 7, Func. Count: 53, Neg. LLF: 4342.831776832556

Iteration: 8, Func. Count: 61, Neg. LLF: 4342.692628665991

Iteration: 9, Func. Count: 68, Neg. LLF: 4341.537067194463

Iteration: 10, Func. Count: 76, Neg. LLF: 4341.453260751554

Iteration: 11, Func. Count: 83, Neg. LLF: 4340.953920529477

Iteration: 12, Func. Count: 90, Neg. LLF: 4340.9227508137765
Iteration: 13, Func. Count: 97, Neg. LLF: 4340.773793894918

Iteration: 14, Func. Count: 103, Neg. LLF: 4340.771663888115

Iteration: 15, Func. Count: 109, Neg. LLF: 4340.7715569509155
Iteration: 16, Func. Count: 115, Neg. LLF: 4340.771554320768

Optimization terminated successfully. (Exit mode 0)

Current function value: 4340.771554314696
Iterations: 16
Function evaluations: 115
Gradient evaluations: 16
Constant Mean - GARCH Model Results

37 Apart from the p and q parameters for GARCH modelling, the parameter o sets the lag order of the asymmetric
innovation. This term is zero by default; however, will be altered for modelling EGARCH in the later section.

123

Dep. Variable: rjpy R-squared: -0.000

Mean Model: Constant Mean Adj. R-squared: -0.000
Vol Model: GARCH Log-Likelihood: -4340.77
Distribution: Normal AIC: 8689.54
Method: Maximum Likelihood BIC: 8717.04
No. Observations: 7141
Date: Wed, Aug 22 2018 Df Residuals: 7137
Time: 14:06:15 Df Model: 4
Mean Model
coef std err t P>|t| 95.0% Conf. Int.
mu 6.2772e-03 5.274e-03 1.190 0.234 [-4.059e-03,1.661e-02]

Volatility Model

coef std err t P>lt] 95.0% Conf. Int.
omega 1.5695e-03 7.055e-04 2.225 2.611e-02 [1.867e-04,2.952e-03]
alphal[1] 0.0353 8.973e-03 3.930 8.487e-05 [1.768e-02,5.285e-02]
betal1] 0.9581 9.875e-03 97.025 0.000 [0.939, 0.977]

Covariance estimator: robust

The arch_model provides various options regarding how to vary the model. You can examine the
parameters by looking through the documentation. The vol argument can be used to choose the type
of volatility modelling (see later in this section), while the argument dist provides different options
for the assumed distribution of the errors, e.g., instead of applying a Normal distribution (default
setting) we can specify a Student’s t-distribution.

Estimating the GARCH(1,1) model for the yen-dollar ('rjpy’) series using the instructions as listed
above and the default settings elsewhere would yield the table of results above.

The coefficients on both the lagged squared residuals and lagged conditional variance terms in
the conditional variance equation (i.e., the third panel in the output subtitled "ARCH’) are highly
statistically significant. Also, as is typical of GARCH model estimates for financial asset returns
data, the sum of the coefficients on the lagged squared error and lagged conditional variance is
very close to unity (approximately 0.99). This implies that shocks to the conditional variance will
be highly persistent. This can be seen by considering the equations for forecasting future values of
the conditional variance using a GARCH model given in a subsequent section. A large sum of these
coefficients will imply that a large positive or a large negative return will lead future forecasts of the
variance to be high for a protracted period. The individual conditional variance coefficients are also
as one would expect. The variance intercept term omega in the ”ARCH’ panel is very small, and the
"ARCH’-parameter “alpha[1]’ is around 0.04 while the coefficient on the lagged conditional variance
‘beta[1]’ is larger, at 0.96.

19.3 GJR and EGARCH models

Reading: Brooks (2019, sections 9.10 — 9.13)

Since the GARCH model was developed, numerous extensions and variants have been proposed.
In this section we will estimate two of them in Python, the GJR and EGARCH models. The GJR
model is a simple extension of the GARCH model with an additional term added to account for
possible asymmetries. The exponential GARCH (EGARCH) model extends the classical GARCH by
correcting the non-negativity constraint and by allowing for asymmetries.

We start by estimating the EGARCH model. To do so, we need to change the argument
vol="GARCH’ to vol="EGARCH’ for the arch_model inputs, while keeping other parameters un-
changed. Moreover, we are now asked to provide the maximum number of lags for the asymmetric
innovation because the function initialises with only one arch and one grach term. To start with, we
choose 0=1 to resemble the previous classic GARCH model.

In [3]: # E-GARCH
am = arch_model(datal'rjpy'], vol='EGARCH',o0=1)
res = am.fit()
print(res.summary())

Iteration: 1, Func. Count: 7, Neg. LLF: 4397.486452434722
Iteration: 2, Func. Count: 23, Neg. LLF: 4362.398722296345
Iteration: 3, Func. Count: 35, Neg. LLF: 4355.522829279152
Iteration: 4, Func. Count: 46, Neg. LLF: 4348.432196558825
Iteration: 5, Func. Count: 57, Neg. LLF: 4331.514196657024
Iteration: 6, Func. Count: 65, Neg. LLF: 4326.906644217339
Iteration: 7, Func. Count: 73, Neg. LLF: 4324.506317267667
Iteration: 8, Func. Count: 84, Neg. LLF: 4321.488049820839
Iteration: 9, Func. Count: 91, Neg. LLF: 4320.941701170441
Iteration: 10, Func. Count: 98, Neg. LLF: 4320.6562194010285
Iteration: 11, Func. Count: 105, Neg. LLF: 4320.641194704814
Iteration: 12, Func. Count: 112, Neg. LLF: 4320.639816946357
Iteration: 13, Func. Count: 119, Neg. LLF: 4320.6397432610665
Iteration: 14, Func. Count: 126, Neg. LLF: 4320.639640946247
Iteration: 15, Func. Count: 134, Neg. LLF: 4320.639625868453
Optimization terminated successfully. (Exit mode 0)

Current function value: 4320.639625250302

Iterations: 15

Function evaluations: 135

Gradient evaluations: 15

Constant Mean - EGARCH Model Results
Dep. Variable: rjpy R-squared: -0.000
Mean Model: Constant Mean Adj. R-squared: -0.000
Vol Model: EGARCH Log-Likelihood: -4320.64
Distribution: Normal AIC: 8651.28
Method: Maximum Likelihood BIC: 8685.65
No. Observations: 7141
Date: Wed, Aug 22 2018 Df Residuals: 7136
Time: 14:06:15 Df Model: 5
Mean Model

125

PG

coef std err t P>t 95.0% Conf. Int.

mu 4.2062e-03 1.159e-03 3.629 2.844e-04 [1.935e-03,6.478e-03]
Volatility Model

coef std err t P>lt] 95.0% Conf. Int.
omega -0.0107 7.226e-03 -1.486 0.137 [-2.490e-02,3.424e-03]
alpha[l] 0.1006 1.470e-02 6.841 7.849e-12 [7.177e-02, 0.129]
gamma[l] -0.0272 1.053e-02 -2.583 9.794e-03 [-4.784e-02,-6.560e-03]
betal1] 0.9868 4.794e-03 205.840 0.000 [0.977, 0.996]

Covariance estimator: robust

Looking at the results, we find that all EARCH and EGARCH terms are statistically significant except
the constant. The EARCH terms represent the influence of news —lagged innovations — in the Nelson
(1991) EGARCH model. The term ‘gamma[1]" captures the following;:

Ut

[2
i1

(12)

and ’alpha[1]’ captures:

|Ut_1’ \/?
———\/= (13)
\/ 074 &

The former is a typical ARCH effect(i.e., the sign effect) while the latter determines an asymmetric
effect (in other words, the size effect). It is evident that the positive estimate on the asymmetric effect
implies that negative shocks result in a higher next-period conditional variance than positive shocks
of the same sign. The result for the EGARCH asymmetry term is consistent with what would have
been expected in the case of the application of a GARCH model to a set of stock returns. Indeed,
both the leverage effect and volatility effect explanations for asymmetries in the context of stocks apply
here. For a positive return shock, the results suggest more yen per dollar and therefore a strength-
ening dollar and a weakening yen. Thus, the EGARCH results suggest that a strengthening dollar
(weakening yen) leads to lower next-period volatility than when the yen strengthens by the same
amount.

In [4]: # GJR-GARCH
am = arch_model(datal'rjpy'], p=1, o=1, gq=1, vol='GARCH')
res = am.fit()
print(res.summary())

Iteration: 1, Func. Count: 7, Neg. LLF: 4351.036676266833
Iteration: 2, Func. Count: 19, Neg. LLF: 4350.145546474399
Iteration: 3, Func. Count: 28, Neg. LLF: 4347.873921690083
Iteration: 4, Func. Count: 38, Neg. LLF: 4347.520571366731
Iteration: 5, Func. Count: 46, Neg. LLF: 4341.0326487152015

Iteration: 6, Func. Count: 54, Neg. LLF: 4337.01501415516
Iteration: 7, Func. Count: 62, Neg. LLF: 4333.740068844954
Iteration: 8, Func. Count: 70, Neg. LLF: 4331.051027886871
Iteration: 9, Func. Count: 78, Neg. LLF: 4328.811764930388
Iteration: 10, Func. Count: 86, Neg. LLF: 4328.348020964243
Iteration: 11, Func. Count: 94, Neg. LLF: 4327.258888584185
Iteration: 12, Func. Count: 103, Neg. LLF: 4327.169530282161
Iteration: 13, Func. Count: 111, Neg. LLF: 4326.593301728237
Iteration: 14, Func. Count: 118, Neg. LLF: 4326.5409951654965
Iteration: 15, Func. Count: 125, Neg. LLF: 4326.536292415701
Iteration: 16, Func. Count: 132, Neg. LLF: 4326.535882616242
Iteration: 17, Func. Count: 139, Neg. LLF: 4326.535853904752
Optimization terminated successfully. (Exit mode 0)
Current function value: 4326.535853905975
Iterations: 17
Function evaluations: 139
Gradient evaluations: 17
Constant Mean - GJR-GARCH Model Results
Dep. Variable: rjpy R-squared: -0.000
Mean Model: Constant Mean Adj. R-squared: -0.000
Vol Model: GJR-GARCH Log-Likelihood: -4326.54
Distribution: Normal AIC: 8663.07
Method: Maximum Likelihood BIC: 8697.44
No. Observations: 7141
Date: Wed, Aug 22 2018 Df Residuals: 7136
Time: 14:06:15 Df Model: 5
Mean Model
coef std err t P>t 95.0% Conf. Int.
mu 3.5586e-03 5.105e-03 0.697 0.486 [-6.448e-03,1.357e-02]
Volatility Model
coef std err t P>t 95.0% Conf. Int.
omega 1.9666e-03 8.585e-04 2.291 2.197e-02 [2.840e-04,3.649e-03]
alphal[1] 0.0268 6.298e-03 4.259 2.050e-05 [1.448e-02,3.917e-02]
gamma [1] 0.0254 1.104e-02 2.302 2.133e-02 [3.777e-03,4.705e-02]
betal[1] 0.9520 9.685e-03 98.306 0.000 [0.933, 0.971]

Covariance estimator: robust

Let us now test a GJR model. For this, we come back to the original set-up: the volatility model
vol="GARCH'. In the GJR inputs, we specify 1 ARCH maximum lag, 1 TARCH maximum lag and
1 GARCH maximum lag, and press SHIFT and ENTER to fit the model.*®

3Note that the p and q parameters can be ignored because the function by default sets them both to be one.

127

Similar to the EGARCH model, we find that all of the ARCH, TARCH and GARCH terms are
statistically significant. The ‘gamma[1] term captures the vfﬁllt,l term where I;_; = 1ifv;_1 <0
and I;_; = 0 otherwise. We find a positive coefficient estimate on the ‘gammal[1]” term, which is
again consistent with what we would expect to find according to the leverage effect explanation if we
were modelling stock return volatilities.

Apart from these two extensions, the GARCH-in-mean model has been widely implemented in
the situation where investors should be rewarded for taking additional risk. One way to incorporate
this idea is to add the conditional variance term back into the conditional mean equation. Unfor-
tunately, there is no built-in function in Python to estimate such a model; this implementation is
therefore left for the time being.

19.4 Forecasting from GARCH models

Reading: Brooks (2019, section 9.18)

GARCH-type models can be used to forecast volatility. In this sub-section, we will focus on gener-
ating conditional variance forecasts using Python. Let us assume that we want to generate forecasts
based on the GARCH model estimated earlier for the forecast period 03 Aug 2016 to 03 Jul 2018.
The first step is to re-estimate the GARCH model for the subsample running until 02 Aug 2016.
To estimate the model, we input the same specifications as previously, i.e., the ‘rjpy” series from
the "currencies.pickle” workfile. However, now we only want to estimate the model for a subpe-
riod of the data so we slice the DataFrame and generate two new series data_in_the_sample and
data_out_of_the_sample, respectively, using the built-in function loc with break date "2016-08-02".

In [1]: import pickle
from arch import arch_model
import matplotlib.pyplot as plt
import NumPy as np
import Pandas as pd

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'currencies.pickle', 'rb') as handle:
data = pickle.load(handle)

Sampling
data_in_the_sample = data.loc[:'2016-08-02', 'rjpy']
data_out_of_the_sample = data.loc['2016-08-03"':, 'rjpy']

There is a variety of predicted values that we can produce, including fixed windows, rolling
windows, recursive windows, static and dynamic forecasting. As was the case for the previous
forecast exercise, we can either create static (a series of rolling single-step-ahead) forecasts or dynamic
(multiple-step-ahead) forecasts. Unfortunately, there is no built-in function to implement those two
types of forecasts. However, we can try to generate these series with our own code after the intuition
behind them has been understood.

Let us start with the static forecasts. To begin with, a GARCH model instance am is constructed.
Given that static forecasting is the type where the prediction always uses previous actual observa-
tions, a for loop is created to construct a rolling one-step horizon for out-of-the-sample forecasts.
Specifically, we take each index datetime individually from data_out_of_the_sample and generate a
GARCH result instance res based on the subsample until that date. For example, if the index date-
time is '2016-08-03’, the sample data for GARCH result starts from "1998-12-15" to '2016-08-03". The
one-step ahead forecasts subsequently set out after the ending date (i.e., '2016-08-03"). Likewise, the
forecasts will start from "2016-08-04" if the index datetime is '2016-08-04", and so on. Note that we
input '2016-08-03" as the first date in the argument last_obs = date because the arch_model does not
include the last observation in the volatility modelling process.

To access the one-step forecasting value of each GARCH specification, we type the command
forecasts = res.forecast(horizon=1). Finally, we keep the value by the command cvar_rjpy_stat[date]
= forecasts_res.iloc[1]. Once the loop completes, the static forecasts can be seen in the dictionary
cvar_rjpy_stat, which later converts to a DataFrame for better presentation.

In [2]: am = arch_model(datal'rjpy'], vol='Garch')

cvar_rjpy_stat = {}

for date in data_out_of_the_sample.index:
res = am.fit(last_obs = date, disp='off')
forecasts = res.forecast(horizon=1)
forecasts_res = forecasts.variance.dropna()
cvar_rjpy_stat[date] = forecasts_res.iloc[1]

cvar_rjpy_stat = pd.DataFrame(cvar_rjpy_stat).T

On the other hand, it is relatively easy to obtain dynamic forecasts. By definition, we generate
a GARCH result that ends on "2016-08-02" and perform a multiple-step prediction. This can be
achieved by the command forecasts = res.forecast(horizon=len(data_out_of_the_sample)). We then
create a new variable cvar_rjpy_dyn to save the series.

In [3]: res = am.fit(last_obs = '2016-08-03', disp='off')
forecasts = res.forecast(horizon=len(data_out_of_the_sample))
forecasts_res = forecasts.variance.dropna()

cvar_rjpy_dyn = pd.DataFrame(data = forecasts_res.iloc[1].values,\
columns=['dynamic forecasting'],\
index=data_out_of_the_sample.index)

Finally we want to graphically examine the conditional variance forecasts. To generate a time-series
graph of the static and dynamic forecasts, we create a figure object 1 and plot two series with their
own labels. We can also set up x, y label and legend options. After typing the plt.show(), the follow-
ing graph (Figure 32) should appear after executing the code cell [4].

In [4]: plt.figure(l)
plt.plot(cvar_rjpy_stat, label='static forecast')
plt.plot(cvar_rjpy_dyn, label='dynamic forecast')

plt.xlabel('Date')
plt.ylabel('Forecasts')
plt.legend()

plt.show()

0.45 - —— static forecast

dynamic forecast
0.40 -

0.35 - "l
0.30

0.25 A

Forecasts

0.20 A

0.15 A

0.10 A

2016-082016-112017-02017-052017-082017-112018-02018-052018-08
Date

Figure 32: Dynamic and Static Forecasts

What do we observe? For the dynamic forecasts (red line), the value of the conditional variance starts
from a historically low level at the end of the estimation period, relative to its unconditional average.
Therefore the forecasts converge upon their long-term mean value from below as the forecast horizon
increases. Turning to the static forecasts (blue line), it is evident that the variance forecasts have one
large spike in early 2017. After a period of relatively high conditional variances in the first half of
2017, the values stabilise and enter a phase of historically quite low variance in the second half of
2017. 2018 sees a large rise in the conditional variances and they remain at a relatively high level for
the rest of the sample period. Since in the case of the static forecasts we are looking at a series of
rolling one-step ahead forecasts for the conditional variance, the values show much more volatility
than those for the dynamic forecasts.

Predictions can be similarly produced for any member of the GARCH family that is estimable
with the module. For specifics of how to generate predictions after specific GARCH or ARCH mod-
els, please refer to the corresponding documentation in the ARCH package.

20 Modelling seasonality in financial data

20.1 Dummy variables for seasonality

Reading: Brooks (2019, section 10.3)

In this subsection, we will test for the existence of a January effect in the stock returns of Microsoft
using the ‘macro.pickle” workfile. In order to examine whether there is indeed a January effect
in a monthly time series regression, a dummy variable is created that takes the value one only in
the months of January. To create the dummy JANDUM,, it is easiest in Python to first convert the
index of data DataFrame from string literals to the datetime type. The benefits of the datetime data
type are various: it contains a number of built-in functions which can easily fit the purpose, such as
selecting dates, calculating dates, etc. To do so, we type the following command into the code cell [2].
data.index = pd.to_datetime(data.index, format="%Y%m%d") where pd.to_datetime is the Pandas
built-in function for converting the data type, while the inputs tell Python to work on the DataFrame
index 'data.index” and convert dates based on the ordering of year, month and date.

Next, we generate a new variable data JANDUM'] by applying the function np.where. This new
series will return the value of one conditional upon its date being in January and zero otherwise. To
set up this condition, the datetime data type built-in method month can extract the month component
from the index and return the corresponding numeric. For example, the returned numeric would be
1 if its index datetime is in January. Likewise, we work on the other two variables by the same
function. It is worth noting that the input datetime parameters "2000-04-01" and "2000-12-01" need to
be set as datetime types in order to match the datetime type index.

In [1]: import Pandas as pd
import NumPy as np
import statsmodels.formula.api as smf
import pickle
from datetime import datetime

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
with open(abspath + 'macro.pickle', 'rb') as handle:
data = pickle.load(handle)

data = data.dropna() # drop the missing values for some columns

In [2]: # create January dummy variable
data.index = pd.to_datetime(data.index, format='%Y%m}d')

data['JANDUM'] = np.where(data.index.month == 1, 1, 0)

datal['APROODUM']
datal['DECOODUM']

np.where(data.index == datetime(2000,4,1), 1, 0)
np.where(data.index == datetime(2000,12,1), 1, 0)

We can now run the APT-style regression first used in section 7 but this time including the new
TANDUM’ dummy variable. The formula statement for this regressions is as follows:

In [3]: # regresstion
formula = 'ermsoft ~ ersandp + dprod + dcredit + dinflation + dmoney \

+ dspread + rterm + APROODUM + DECOODUM + JANDUM'

132

results = smf.ols(formula, data).fit()
print(results.summary())

OLS Regression Results

Dep. Variable: ermsoft R-squared: 0.412
Model: OLS Adj. R-squared: 0.396
Method: Least Squares F-statistic: 26.04
Date: Mon, 13 Aug 2018 Prob (F-statistic): 2.15e-37
Time: 21:55:24 Log-Likelihood: -1307.8
No. Observations: 383 AIC: 2638.
Df Residuals: 372 BIC: 2681.
Df Model: 10
Covariance Type: nonrobust

coef std err t P>|t| [0.025 0.975]
Intercept 1.0442 0.494 2.113 0.035 0.073 2.016
ersandp 1.2461 0.090 13.845 0.000 1.069 1.423
dprod -0.2849 0.703 -0.405 0.685 -1.667 1.097
dcredit -0.0103 0.026 -0.395 0.693 -0.062 0.041
dinflation 0.2301 1.369 0.168 0.867 -2.461 2.921
dmoney 0.0030 0.016 0.190 0.849 -0.028 0.033
dspread 1.1880 3.958 0.300 0.764 -6.595 8.971
rterm 4.2093 1.635 2.574 0.010 0.994 7.425
APROODUM -37.7976 7.561 -4.999 0.000 -52.664 -22.931
DECOODUM -28.8623 7.521 -3.838 0.000 -43.650 -14.074
JANDUM 3.1391 1.654 1.898 0.059 -0.114 6.392
Omnibus: 17.848 Durbin-Watson: 2.067
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 24.510
Skew: 0.381 Prob(JB): 4.76e-06
Kurtosis: 3.978 Cond. No. 561.
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

As can be seen, the dummy is just outside being statistically significant at the 5% level, and it has
the expected positive sign. The coefficient value of 3.1391 suggests that, on average and holding
everything else equal, Microsoft stock returns are around 3% higher in January than the average for
other months of the year.

20.2 Estimating Markov switching models

Reading: Brooks (2019, sections 10.5-10.7)

In this subsection, we will be estimating a Markov switching model in Python. The example that
we will consider in this subsection relates to the changes in house prices series used previously.
So we re-open ukhp.xls. The Statsmodel package enables us to fit two types of Markov switching
models: Markov switching dynamic regression (MSDR) models, which allow a quick adjustment
after the process changes state, and Markov switching autoregression (MSAR) models, that allow a
more gradual adjustment. In this example, we will focus on the former case.

To call the function for Markov switching regressions, we first import the module statsmod-
els.api. In the inputs of the MarkovRegression, we select the dependent variable dhp. We want
to estimate a simple switching model with just a varying intercept in each state. As the function
automatically includes the (state-dependent) intercept, we do not need to specify any further vari-
ables. However, if we wanted to include additional variables that allow for either changing or
non-changing coefficient parameters across states, we could do this using the respective parame-
ters. Let us move on to specifying the number of states. The argument would be k_regimes=2.
Finally, we also want the variance parameters to vary across states, so we type the argument switch-
ing variance=True. Once all of these parameter are set, the model will resemble in the first line of
the code cell [2].

We perform the regression as usual and the results appear as in the following window. Examining
the findings, it is clear that the model has successfully captured the features of the data. Two distinct
regimes have been identified: regime 1 has a high average price increase of 0.78% per month and a
much lower standard deviation, whereas regime 2 has a negative mean return (corresponding to a
price fall of 0.24% per month) and a relatively high volatility.

In [1]: import Pandas as pd
import statsmodels.api as sm
import matplotlib.pyplot as plt
import NumPy as np

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
data = pd.read_excel(abspath + 'UKHP.xls',index_col=[0])

data['dhp'] = datal'Average House Price'] .\
transform(lambda x : (x - x.shift(1))/x.shift(1)*100)

data = data.dropna()

In [2]: model = sm.tsa.MarkovRegression(datal'dhp'], k_regimes=2,
switching_variance=True)
res = model.fit()
print(res.summary())

Markov Switching Model Results

Dep. Variable: dhp No. Observations: 326
Model: MarkovRegression Log Likelihood -473.592
Date: Tue, 14 Aug 2018 AIC 959.185
Time: 10:45:12 BIC 981.906

Sample: 02-01-1991 HQIC 968.252
- 03-01-2018
Covariance Type: approx
Regime O parameters

coef std err z P>|z]| [0.025 0.975]
const 0.7810 0.073 10.690 0.000 0.638 0.924
sigma2 0.8031 0.080 10.051 0.000 0.647 0.960

Regime 1 parameters

coef std err z P>z [0.025 0.975]
const -0.2388 0.137 -1.739 0.082 -0.508 0.030
sigma2 1.4167 0.220 6.436 0.000 0.985 1.848

Regime transition parameters

coef std err z P>lz] [0.025 0.975]
p[0->0] 0.9831 0.011 87.895 0.000 0.961 1.005
p[1—>0] 0.0306 0.021 1.447 0.148 -0.011 0.072

Warnings:
[1] Covariance matrix calculated using numerical (complex-step) differentiation.

We can also estimate the duration of staying in each regime. To do so, we simply call the built-
in method expected_durations from the regression instance. We should find the following output
displayed in the window below.

In [3]: print(res.expected_durations)

[59.29472979 32.66244744]

We find that the average duration of staying in regime 1 is 59 months and of staying in regime 2 is
33 months.

Finally, we would like to predict the probabilities of being in each particular regime. We have
only two regimes, and thus the probability of being in regime 1 tells us the probability of being in
regime 2 at a given point in time, since the two probabilities must sum to one. To generate the state
probabilities, we directly call the built-in method smoothed_marginal_probabilities. To visually
inspect the probabilities, we can make a graph of them by creating a figure object. In the input
of the function plot, we set the smoothed probabilities of being in the high regime as the parameter.
Then we execute this chunk of code and the graph as shown in the window below should appear (see
Figure 33). Examining how the graph moves over time, the probability of being in regime 1 was close
to one until the mid-1990s, corresponding to a period of low or negative house price growth. The
behaviour then changed and the probability of being in the low and negative growth state (regime 1)
fell to zero and the housing market enjoyed a period of good performance until around 2005 when
the regimes became less stable but tending increasingly towards regime 1 until early 2013 when the
market again appeared to have turned a corner.

135

In [4]: plt.figure(1)
plt.plot(res.smoothed_marginal_probabilities[1])
plt.title('Smoothed State probabilities')
plt.show()

Smoothed State probabilities

1.0 - rﬂ

0.8 A

0.6 A

0.4 -

0.2 A1

oo M

1991 1995 1999 2003 2007 2011 2015 2019

Figure 33: Smoothed State Probabilities

21 Panel data models

Reading: Brooks (2019, chapter 11)

Estimation of panel models with either fixed or random effects is very easy to implement in Python.
To support these applications, there are two major libraries that can recognise that you have a panel
of data and can apply the techniques accordingly: i.e., Pandas and linearmodels.

The application to be considered here is that of a variant on an early test of the capital asset pricing
model (CAPM) due to Fama and MacBeth (1973). Their test involves a 2-step estimation procedure:
tirst, the betas are estimated in separate time-series regressions for each firm, and second, for each
separate point in time, a cross-sectional regression of the excess returns on the betas is conducted.

Rit — Ryt = Ao + AmPBpi + 1 (14)

where the dependent variable, R;; — Ry, is the excess return of the stock i at time f and the indepen-
dent variable is the estimated beta for the portfolio (P) that the stock has been allocated to. The betas
of the firms themselves are not used on the right-hand side, but rather, the betas of portfolios formed
on the basis of firm size. If the CAPM holds, then Ay should not be significantly different from zero
and Ay, should approximate the (time average) equity market risk premium, R,, — Ry. Fama and
MacBeth proposed estimating this second-stage (cross-sectional) regression separately for each time
period, and then taking the average of the parameter estimates to conduct hypothesis tests. How-
ever, one could also achieve a similar objective using a panel approach. We will use an example in
the spirit of Fama-MacBeth comprising the annual returns and "second pass betas’ for 11 years on
2,500 UK firms.*

To test this model, we will use the “panelx.xls” workfile. Let us first have a look at the data
stored in a DataFrame. Call the Pandas built-in function describe() to create summary statistics of
the data. If we apply this function for the two variables ‘beta” and 'ret’, the summary statistics would
be generated as in the following output.

We see that missing values for the 'beta” and return’ series are indicated by a 'man’ in the
DataFrame. Since the regression cannot be performed on the data with missing observations, we
will need to "drop nan" for the dataset first in order for Python to correctly perform the regression.
To do so, we apply the Pandas function dropna as usual.

It is necessary to set up an index column of the DataFrame data especially for panel regression
analysis. One might examine the code demonstrated below and find that the argument index_col=[0]
is missing in the Pandas read_excel function. We implement the command in this way in order to
set up a multi-index for the panel regression subsequently. Note that it is important to set up both
the entity and time as indices because the application of fixed-effects and/or random-effects needs
these coordinates. To do so, we type the command data = data.set_index(['firm_ident’,"year’]) with
two column names specified.

Now our dataset is ready to be used for panel data analysis. You will need to install the third-
party package linearmodels that has many tools specifically for panel data. For example, you can
import the regression function PooledOLS, PanelOLS, RandomEffects and so on.

In [1]: import Pandas as pd
from linearmodels import PooledOLS, PanelOLS, RandomEffects

abspath = 'C:/Users/tao24/0OneDrive - University of Reading/PhD/' \

$Source: computation by Keith Anderson and the author. There would be some significant limitations of this analysis
if it purported to be a piece of original research, but the range of freely available panel datasets is severely limited and so
hopefully it will suffice as an example of how to estimate panel models with Python. No doubt readers, with access to a
wider range of data, will be able to think of much better applications.

1:34

K

'"QMF Book/book Ran/data files new/Book4e_data/'
data = pd.read_excel(abspath + 'panelx.xls')

Note: can not use 'return' as a wvariable name as it 1s one of
Python keywords
data=data.rename(columns={'return':'ret'})

In [2]: # data summary
datal['ret'] .describe()

Out[2]: count 24091.000000

mean -0.001546
std 0.038328
min -1.005126
25% -0.004813
50% -0.003933
75% -0.002967
max 0.706354

Name: ret, dtype: float64
In [3]: datal'beta'].describe()

Out [3]: count 9073.000000

mean 1.104948
std 0.203569
min 0.660871
25% 0.940652
50% 1.081632
75% 1.248908
max 1.611615

Name: beta, dtype: float64

Our primary aim is to estimate the CAPM-style model in a panel setting. Let us first estimate a
simple pooled regression with neither fixed nor random effects. Note that in this specification we are
basically ignoring the panel structure of our data and assuming that there is no dependence across
observations (which is very unlikely for a panel dataset). We can use the PooledOLS function for
simple OLS models. In particular, we type the following regression formula 'ret ~ 1 + beta” into the
built-in from_formula inputs.*’

In [4]: # dropna, Note: regression can not be performed if nan exists in the dataset
data = data.dropna()

set up a multi-index
data = data.set_index(['firm_ident', 'year'])

Simple Pooled Regression

model = PooledOLS.from_formula('ret ~ 1 + beta',data)
res = model.fit()

print(res)

40 The design of linearmodels differs from statsmodels as the latter will automatically include a constant term into
the formula. Therefore, we need to manually enter 1 if we want to add an intercept into the regression specification in
linearmodels.

138

PooledOLS Estimation Summary

Dep. Variable: ret R-squared: 3.118e-06
Estimator: PooledOLS R-squared (Between): -0.0087
No. Observations: 8856 R-squared (Within): -9.129e-05
Date: Tue, Aug 14 2018 R-squared (Overall): 3.118e-06
Time: 14:12:14 Log-likelihood 1.357e+04
Cov. Estimator: Unadjusted
F-statistic: 0.0276
Entities: 1734 P-value 0.8680
Avg 0Obs: 5.1073 Distribution: F(1,8854)
Min Obs: 1.0000
Max Obs: 11.000 F-statistic (robust): 0.0276
P-value 0.8680
Time periods: 11 Distribution: F(1,8854)
Avg Obs: 805.09
Min Obs: 515.00
Max Obs: 1096.0

Parameter Estimates

Parameter Std. Err. T-stat P-value Lower CI Upper CI
Intercept 0.0018 0.0031 0.5993 0.5490 -0.0042 0.0079
beta 0.0005 0.0027 0.1662 0.8680 -0.0049 0.0058

We can see that neither the intercept nor the slope is statistically significant. The returns in this re-
gression are in proportion terms rather than percentages, so the slope estimate of 0.0005 corresponds
to a risk premium of 0.05% per month, whereas the (unweighted average) excess return for all firms
in the sample is around 2% per year.

But this pooled regression assumes that the intercepts are the same for each firm and for each
year. This may be an inappropriate assumption. Thus, next we (separately) introduce fixed and
random effects into the model. Let us start with a fixed effects model. To do so, we simply change
the function PooledOLS to PanelOLS and add the string literals "EntityEffects” into the formula. The
dependent and independent variables remain the same as in the simple pooled regression.

Note that the linearmodels library offers many options to customise the model, including differ-
ent standard error adjustments and weighting options. For now we will keep the default options.
However, for future projects, the correct adjustment of standard errors is often a major consideration
at the model selection stage. The final regression output should appear.

In [B]: # Panel Regression with Fized Effects
model = PanelOLS.from_formula('ret ~ 1 + beta + EntityEffects',data)
res = model.fit()
print(res)

PanelOLS Estimation Summary

Dep. Variable: ret R-squared: 0.0012

Estimator: PanelOLS R-squared (Between): -0.0119
No. Observations: 8856 R-squared (Within): 0.0012
Date: Tue, Aug 14 2018 R-squared (Overall): -0.0023
Time: 14:12:14 Log-likelihood 1.48e+04
Cov. Estimator: Unadjusted
F-statistic: 8.3576
Entities: 1734 P-value 0.0039
Avg QObs: 5.1073 Distribution: F(1,7121)
Min Obs: 1.0000
Max Obs: 11.000 F-statistic (robust): 8.3576
P-value 0.0039
Time periods: 11 Distribution: F(1,7121)
Avg Obs: 805.09
Min Obs: 515.00
Max Obs: 1096.0

Parameter Estimates

Parameter Std. Err. T-stat P-value Lower CI Upper CI
Intercept 0.0155 0.0046 3.3827 0.0007 0.0065 0.0245
beta -0.0119 0.0041 -2.8909 0.0039 -0.0200 -0.0038

F-test for Poolability: 1.3111
P-value: 0.0000
Distribution: F(1733,7121)

Included effects: Entity

We can see that the estimate on the beta parameter is now negative and statistically significant, while
the intercept is positive and statistically significant. We now estimate a random effects model. For
this, we simply change the function again to RandomEffects. We leave all other specifications un-
changed and execute these commands to generate the regression output.

In [6]: # Panel Regression with Random Effects
model = RandomEffects.from_formula('ret ~ 1 + beta',data)
res = model.fit()
print(res)

RandomEffects Estimation Summary

Dep. Variable: ret R-squared: 7.135e-05
Estimator: RandomEffects R-squared (Between): -0.0030
No. Observations: 8856 R-squared (Within): 0.0008
Date: Tue, Aug 14 2018 R-squared (Overall): -0.0019
Time: 14:12:15 Log-likelihood 1.412e+04

140

Cov. Estimator: Unadjusted

F-statistic: 0.6318
Entities: 1734 P-value 0.4267
Avg QObs: 5.1073 Distribution: F(1,8854)
Min Obs: 1.0000
Max Obs: 11.000 F-statistic (robust): 2.8030
P-value 0.0941
Time periods: 11 Distribution: F(1,8854)
Avg Obs: 805.09
Min Obs: 515.00
Max Obs: 1096.0

Parameter Estimates

Parameter Std. Err. T-stat P-value Lower CI Upper CI
Intercept 0.0063 0.0037 1.7208 0.0853 -0.0009 0.0136
beta -0.0054 0.0032 -1.6742 0.0941 -0.0117 0.0009

The slope estimate is again of a different order of magnitude compared to both the pooled and the
tixed effects regressions.

22 Limited dependent variable models

Reading: Brooks (2019, chapter 12)

Estimating limited dependent variable models in Python is very simple. The example that will be
considered here concerns whether it is possible to determine the factors that affect the likelihood that
a student will fail his/her MSc. The data comprise a sample from the actual records of failure rates for
five years of MSc students at the ICMA Centre, University of Reading, contained in the spreadsheet
"MSc_fail.xls’. While the values in the spreadsheet are all genuine, only a sample of 100 students is
included for each of the five years who completed (or not as the case may be!) their degrees in the
years 2003 to 2007 inclusive. Therefore, the data should not be used to infer actual failure rates on
these programmes. The idea for this is taken from a study by Heslop and Varotto (2007) which seeks
to propose an approach to preventing systematic biases in admissions decisions.*!

The objective here is to analyse the factors that affect the probability of failure of the MSc. The
dependent variable ('fail’) is binary and takes the value 1 if that particular candidate failed at the
tirst attempt in terms of his/her overall grade and 0 elsewhere. Therefore, a model that is suitable
for limited dependent variables is required, such as a logit or probit.

The other information in the spreadsheet that will be used includes the age of the student, a
dummy variable taking the value 1 if the student is female, a dummy variable taking the value 1 if
the student has work experience, a dummy variable taking the value 1 if the student’s first language
is English, a country code variable that takes values from 1 to 10.*> A dummy that takes the value 1 if
the student already has a postgraduate degree, a dummy variable that takes the value 1 if the student
achieved an A-grade at the undergraduate level (i.e., a first-class honours degree or equivalent), and
a dummy variable that takes the value 1 if the undergraduate grade was less than a B-grade (i.e.,
the student received the equivalent of a lower second-class degree). The B-grade (or upper second-
class degree) is the omitted dummy variable and this will then become the reference point against
which the other grades are compared. The reason why these variables ought to be useful predictors
of the probability of failure should be fairly obvious and is therefore not discussed. To allow for
differences in examination rules and in average student quality across the five-year period, year
dummies for 2004, 2005, 2006 and 2007 are created and thus the year 2003 dummy will be omitted
from the regression model.

First, we import the dataset into a NoteBook. To check that all series are correctly imported, we
can use the Pandas function head to visually examine the first five rows of imported data and the
function info to get information on the characteristics of the dataset. Overall there should be 500
observations in the dataset for each series with no missing observations. Note that there are two
variable names that have been renamed since the formula statement does not allow a variable name
with spaces in between.

In [1]: import Pandas as pd
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
data = pd.read_excel(abspath + 'MSc_fail.xls')

“INote that since this example only uses a subset of their sample and variables in the analysis, the results presented
below may differ from theirs. Since the number of fails is relatively small, we have deliberately retained as many fail
observations in the sample as possible, which will bias the estimated failure rate upwards relative to the true rate.

“2The exact identities of the countries involved are not given except that Country 8 is the UK!

data = data.rename(columns={'Work Experience':'WorkExperience',
'PG Degree': 'PGDegree'})
data.head()

Out[1]: Age Female Fail WorkExperience English Country Code PGDegree Agrade \
0 22 1 0 0 0 10 0 0
1 24 0 1 0 1 8 0 0
2 28 0 0 0 1 10 0 0
3 23 0 0 0 1 8 0 0
4 23 0 0 1 1 8 0 0

BelowBGrade Year2004 Year2005 Year2006 Year2007

0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0

In [2]: data.info()

<class 'Pandas.core.frame.DataFrame'>
RangeIndex: 500 entries, O to 499
Data columns (total 13 columns):

Age 500 non-null int64
Female 500 non-null int64
Fail 500 non-null int64
WorkExperience 500 non-null int64
English 500 non-null int64
Country Code 500 non-null int64
PGDegree 500 non-null int64
Agrade 500 non-null int64
BelowBGrade 500 non-null int64
Year2004 500 non-null int64
Year2005 500 non-null int64
Year2006 500 non-null int64
Year2007 500 non-null int64

dtypes: int64(13)
memory usage: 50.9 KB

To begin with, suppose that we estimate a linear probability model of Fail on a constant, Age, English,
Female, WorkExperience, A-Grade, Below-B-Grade, PG-Grade and the year dummies. This would
be achieved simply by running a linear regression, using the function ols.

In [3]: # linear regresston

formula = 'Fail ~ Age + English + Female + WorkExperience + Agrade\
+ BelowBGrade + PGDegree + Year2004 + Year2005 + Year2006\
+ Year2007'

mod = smf.ols(formula, data)

res = mod.fit()

print(res.summary())

OLS Regression Results

Dep. Variable: Fail R-squared: 0.066
Model: OLS Adj. R-squared: 0.045
Method: Least Squares F-statistic: 3.148
Date: Wed, 15 Aug 2018 Prob (F-statistic): 0.000396
Time: 10:17:18 Log-Likelihood: -153.89
No. Observations: 500 AIC: 331.8
Df Residuals: 488 BIC: 382.3
Df Model: 11
Covariance Type: nonrobust

coef std err t P>[t| [0.025 0.975]
Intercept 0.1039 0.121 0.862 0.389 -0.133 0.341
Age 0.0013 0.004 0.305 0.761 -0.007 0.010
English -0.0201 0.032 -0.637 0.525 -0.082 0.042
Female -0.0294 0.035 -0.838 0.402 -0.098 0.039
WorkExperience -0.0620 0.031 -1.973 0.049 -0.124 -0.000
Agrade -0.0807 0.038 -2.139 0.033 -0.155 -0.007
BelowBGrade 0.0926 0.050 1.844 0.066 -0.006 0.191
PGDegree 0.0287 0.047 0.605 0.546 -0.064 0.122
Year2004 0.0569 0.048 1.192 0.234 -0.037 0.151
Year2005 -0.0111 0.048 -0.230 0.819 -0.106 0.084
Year2006 0.1416 0.048 2.948 0.003 0.047 0.236
Year2007 0.0852 0.050 1.712 0.087 -0.013 0.183
Omnibus: 177.684 Durbin-Watson: 2.032
Prob(Omnibus) : 0.000 Jarque-Bera (JB): 412.578
Skew: 1.922 Prob(JB): 2.57e-90
Kurtosis: 5.241 Cond. No. 219.
Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

While this model has a number of very undesirable features, it would nonetheless provide a useful
benchmark with which to compare the more appropriate models estimated below.

Next, we estimate a probit model and a logit model using the same dependent and independent
variables as above. We begin with the logit model by calling it from statsmodels.formula.api. We
keep the regression formula unchanged and apply While’s robust standard errors as the correction
for this specification. Using other parameters you can also change the optimisation method. How-
ever, we do not need to make any changes from the default, but simply execute the code cell. The
output for the logit regression should appear as in the table below.

In [4]: # logit regression
mod = smf.logit(formula, data)
res = mod.fit(cov_type='HC1') # white robustness
print(res.summary())

Optimization terminated successfully.
Current function value: 0.359433
Iterations 7
Logit Regression Results

Dep. Variable: Fail No. Observations: 500
Model: Logit Df Residuals: 488
Method: MLE Df Model: 11
Date: Wed, 15 Aug 2018 Pseudo R-squ.: 0.08755
Time: 10:17:18 Log-Likelihood: -179.72
converged: True LL-Null: -196.96
LLR p-value: 0.0003010
coef std err z P>|z]| [0.025 0.975]
Intercept -2.2564 1.220 -1.849 0.064 -4.648 0.135
Age 0.0110 0.046 0.240 0.810 -0.079 0.101
English -0.1651 0.295 -0.560 0.576 -0.743 0.413
Female -0.3339 0.360 -0.928 0.353 -1.039 0.371
WorkExperience -0.5688 0.289 -1.968 0.049 -1.135 -0.002
Agrade -1.0850 0.493 -2.203 0.028 -2.050 -0.120
BelowBGrade 0.5624 0.386 1.455 0.146 -0.195 1.320
PGDegree 0.2121 0.425 0.499 0.618 -0.621 1.046
Year2004 0.6532 0.484 1.351 0.177 -0.295 1.601
Year2005 -0.1838 0.559 -0.329 0.742 -1.280 0.912
Year2006 1.2466 0.469 2.657 0.008 0.327 2.166
Year2007 0.8504 0.482 1.765 0.078 -0.094 1.795

Next we estimate the above model as a probit. We call the module statsmodels.formula.api but now
select the built-in function probit. We input the same regression formula as in the logit case and
again select robust standard errors. The output of the probit model is presented in the table on the
following window. As can be seen, for both models the pseudo-R? values are quite small at just
below 9%, although this is often the case for limited dependent variable models.

Turning to the parameter estimates on the explanatory variables, we find that only the work ex-
perience and A-grade variables and two of the year dummies have parameters that are statistically
significant, and the Below B-grade dummy is almost significant at the 10% level in the probit speci-
tication (although less so in the logit model). However, the proportion of fails in this sample is quite
small (13.4%),*> which makes it harder to fit a good model than if the proportion of passes and fails
had been more evenly balanced.

In [B]: # probit regression
mod = smf.probit(formula, data)
res = mod.fit(cov_type='HC1')
print(res.summary())

“3Note that you can retrieve the number of observations for which ‘Fail” takes the value 1 by using the command
np.where(data['Fail’]==1,1,0).

Optimization terminated successfully.
Current function value: 0.358913
Iterations 6
Probit Regression Results

Dep. Variable: Fail No. Observations: 500
Model: Probit Df Residuals: 488
Method: MLE Df Model: 11
Date: Wed, 15 Aug 2018 Pseudo R-squ.: 0.08887
Time: 10:17:18 Log-Likelihood: -179.46
converged: True LL-Null: -196.96
LLR p-value: 0.0002471
coef std err z P>|z| [0.025 0.975]
Intercept -1.2872 0.610 -2.112 0.035 -2.482 -0.093
Age 0.0057 0.023 0.252 0.801 -0.039 0.050
English -0.0938 0.156 -0.600 0.548 -0.400 0.212
Female -0.1941 0.186 -1.042 0.297 -0.559 0.171
WorkExperience -0.3182 0.151 -2.103 0.035 -0.615 -0.022
Agrade -0.5388 0.231 -2.331 0.020 -0.992 -0.086
BelowBGrade 0.3418 0.219 1.559 0.119 -0.088 0.772
PGDegree 0.1330 0.226 0.589 0.556 -0.310 0.576
Year2004 0.3497 0.241 1.448 0.148 -0.124 0.823
Year2005 -0.1083 0.269 -0.403 0.687 -0.635 0.418
Year2006 0.6736 0.239 2.824 0.005 0.206 1.141
Year2007 0.4338 0.248 1.750 0.080 -0.052 0.920

A further test on model adequacy is to produce a set of in-sample forecasts — in other words, to con-
struct the fitted values. To do so, we access the predicted values from the regression result instance
and plot this series by the function plot. We end up with the command plt.show() and the predicted
series should appear in the output window (Figure 34).

In [6]: plt.figure(l)
plt.plot(res.predict())
plt.ylabel('Pr(Fail) ")
plt.xlabel('Seqnum')
plt.show()

0.5 A

0.4 -

0.3 A

Pr(Fail)

0.2 -

0.1 -

0.0 -

0 100 200 300 400 500
Seghum

Figure 34: Graph of the Fitted Values from the Failure Probit Regression

The unconditional probability of failure for the sample of students we have is only 13.4% (i.e., only
67 out of 500 failed), so an observation should be classified as correctly fitted if either y; = 1 and
i > 0.134ory; = 0and ; < 0.134.

It is important to note that we cannot interpret the parameter estimates in the usual way (see the
discussion in chapter 12 of Brooks (2019). In order to be able to do this, we need to calculate the
marginal effects.

The regression instance has an in-built command that allows us to calculate marginal effects
which can be accessed via get_margeff().summary(). Leaving all options to their default settings
and executing the code cell, Jupyter should generate the table of marginal effects and corresponding
statistics as shown on the following window.

In [7]: print(res.get_margeff () .summary())

Probit Marginal Effects

Dep. Variable: Fail
Method: dydx
At: overall

dy/dx std err z P>|z| [0.025 0.975]
Age 0.0011 0.004 0.252 0.801 -0.008 0.010
English -0.0185 0.031 -0.601 0.548 -0.079 0.042
Female -0.0382 0.037 -1.040 0.298 -0.110 0.034
WorkExperience -0.0627 0.030 -2.101 0.036 -0.121 -0.004

Agrade -0.1061 0.045 -2.342 0.019 -0.195 -0.017
BelowBGrade 0.0673 0.043 1.561 0.119 -0.017 0.152
PGDegree 0.0262 0.044 0.588 0.556 -0.061 0.113
Year2004 0.0689 0.048 1.445 0.149 -0.025 0.162
Year2005 -0.0213 0.053 -0.403 0.687 -0.1256 0.082
Year2006 0.1326 0.047 2.840 0.005 0.041 0.224
Year2007 0.0854 0.049 1.757 0.079 -0.010 0.181

We can repeat this exercise for the logit model using the same procedure as above. Note that we need
to re-run the logit model first and then calculate marginal effects in the same way as described for
the probit model. If done correctly, the table of marginal effects should resemble the following.

In [8]: mod = smf.logit(formula, data)
res = mod.fit(cov_type='HC1')
print(res.get_margeff () .summary())

Optimization terminated successfully.
Current function value: 0.359433
Iterations 7

Logit Marginal Effects

Dep. Variable: Fail
Method: dydx
At: overall

dy/dx std err z P>|z]| [0.025 0.975]
Age 0.0012 0.005 0.240 0.810 -0.008 0.011
English -0.0178 0.032 -0.560 0.576 -0.080 0.044
Female -0.0360 0.039 -0.925 0.355 -0.112 0.040
WorkExperience -0.0613 0.031 -1.968 0.049 -0.122 -0.000
Agrade -0.1169 0.053 -2.207 0.027 -0.221 -0.013
BelowBGrade 0.0606 0.042 1.455 0.146 -0.021 0.142
PGDegree 0.0228 0.046 0.498 0.618 -0.067 0.113
Year2004 0.0704 0.052 1.346 0.178 -0.032 0.173
Year2005 -0.0198 0.060 -0.329 0.742 -0.138 0.098
Year2006 0.1343 0.050 2.661 0.008 0.035 0.233
Year2007 0.0916 0.052 1.773 0.076 -0.010 0.193

Looking at the results, we find that not only are the marginal effects for the probit and logit models
quite similar in value, they also closely resemble the coefficient estimates obtained from the linear
probability model estimated earlier in the section.

Now that we have calculated the marginal effects, these values can be intuitively interpreted in
terms of how the variables affect the probability of failure. For example, an age parameter value
of around 0.0012 implies that an increase in the age of the student by one year would increase the
probability of failure by 0.12%, holding everything else equal, while a female student is around

148

3.5% less likely than a male student with otherwise identical characteristics to fail. Having an A-
grade (first class) in the bachelor’s degree makes a candidate around 11% less likely to fail than an
otherwise identical student with a B-grade (upper second-class degree). Finally, since the year 2003
dummy has been omitted from the equations, this becomes the reference point. So students were
more likely in 2004, 2006 and 2007, but less likely in 2005, to fail the MSc than in 2003.

23 Simulation methods

23.1 Deriving critical values for a Dickey-Fuller test using simulation

Reading: Brooks (2019, sections 13.1 — 13.7)

In this and the following subsections we will use simulation techniques in order to model the be-
haviour of financial series. In this first example, our aim is to develop a set of critical values for
Dickey-Fuller test regressions. Under the null hypothesis of a unit root, the test statistic does not
follow a standard distribution, and therefore a simulation would be required to obtain the relevant
critical values. Obviously, these critical values are well documented, but it is of interest to see how
one could generate them. A very similar approach could then potentially be adopted for situations
where there has been less research and where the results are relatively less well known.

The simulation would be conducted in the following four steps:

1. Construct the data generating process under the null hypothesis - that is, obtain a series for y
that follows a unit root process. This would be done by:

¢ Drawing a series of length T, the required number of observations, from a normal distri-
bution. This will be the error series, so that uy ~ N(0,1).
* Assuming a first value for y, i.e., a value for y at time t = 1.

* Constructing the series for y recursively, starting with y,, 5, and so on

Yo =Y+ uUp
Y3 = Y2+ u3
Yyr =Yyr—1+ur

2. Calculating the test statistic, 7.

3. Repeating steps 1 and 2 N times to obtain N replications of the experiment. A distribution of
values for T will be obtained across the replications.

4. Ordering the set of N values of T from the lowest to the highest. The relevant 5% critical value
will be the 5th percentile of this distribution.

Some Python code for conducting such a simulation is given below. The simulation framework
considers a sample of 1,000 observations and DF regressions with no constant or trend, a constant
but no trend, and a constant and a trend. 50,000 replications are used in each case, and the critical
values for a one-sided test at the 1%, 5% and 10% levels are determined.

In [1]: import NumPy as np
import statsmodels.api as sm
from statsmodels.tsa.tsatools import add_trend

Before turning to the custom function we designed to achieve this task, let us have a look at the set
of commands that we want to perform first. As five parameters are used for input, we first need to
convert the data type of these variables just in case that they are not fit to employ in the calculation.
As can be seen in the code cell, we put int function for both obs and alpha. Besides converting the
variables, an array, y, is created with all zero values, which will later be used to stored the fitted
AR(1) values.

Next, the combined command with both loops and the if conditional statement is used to create
a new variable y[1] that takes the value 0 for the first observation. Note that y[1] refers to the first
observation, y[2] to the second observation, etc. The remaining values for y[t], from observations 2
to 1,000, will establish a random walk series that follows a unit root process. Recall that a random
walk process is defined as the past value of the variable plus a standard normal error term. It is very
easy to construct such a series, the current value of the y[t] variable is referred to as the previous
value of y[t-1] and the standard normal variate is added, where the coefficient of y is set to be one in
this case.

Moving out of the loop, the next two commands dy = np.diff(y) and y = y[:-1] are used to generate
first differences and lagged values of "y’, respectively.

Subsequently, the regression instance is constructed to generate the t-values. We set three if for
three different circumstances where regression specifications include or exclude a constant or/and
a trend. In particular, the first if command contains a DF regression of the first difference of y on
the lagged value of y without constant and trend. For the second one, the constant is added so that
the overall model contains an intercept but no linear trend. Finally, the last case is to generate the
data from a model with both constant and trend. For each if command, the t-values will be returned
depending upon the actual inputs are set for the ‘const” and "trend” term.

In [2]: # Simulate an AR(1) process with alpha = 1
def simulate_AR(obs,alpha,w,const=False,trend=False):

11

Simulate an AR(1) process.

Parameters:

obs : the required number of observations.
alpha: the coefficient of y.
w: a set of error terms that follow a mormal distribution.

const: the boolean, whether to add a constant term in the formula.
default is false.

trend: the boolean, whether to add a linear trend in the formula.
default is false.

res.tvalues: the t-statistic of the regression instance under each
simulation.

obs = int(obs)
a = int(alpha)
y = np.zeros(shape=(obs))

for t in range(obs):
if t ==

Il
o

y[t]
else:

y[t]

axy[t-1] + w([t]

dy = np.diff(y)
y = yl:-1]

if (const is False) & (trend is False):
res = sm.0LS(dy,y) .fit(Q
return res.tvalues

if (const is True) & (trend is False):
y = add_trend(y, trend='c')
res = sm.0LS(dy,y) .fit(O
return res.tvalues[0]

if (const is True) & (trend is True):
y = add_trend(y, trend='ct')
res = sm.0LS(dy,y) .fit()
return res.tvalues[0]

To set out the simulation, the first few steps we need to conduct are merely preparation for the main
simulation but are necessary to access the simulated critical values later on. Specifically, we first
tell Python to create three separate NumPy arrays called "t1’, 't2” and "t3’, respectively, which will
be used within the program to store the t-statistic for each simulation. Since 50,000 replications are
used for simulation, these three arrays are generated with the same length (50,000). To conduct the
simulation, a "for” loop is required starting from zero to 50,000. Under each loop, the command
np.random.normal(size=1000) sets the so-called random number seed. This is necessary to define
the starting value for draws from a standard normal distribution which are necessary in later stages
to create variables that follow a standard normal distribution. Next, calling the custom function sim-
ulate_AR that we defined will return the t-statistic depending on the constant and trend argument
users set up. Apart from these two specifications, we also set the « coefficient for the 1,000 observa-
tions to be one, and we use error terms taking the random value from the normal distribution for the
inputs.

Once finishing, the whitespace is killed to close the loop. We then print the critical values under
each specification where 1%, 5% and 10% t-statistics are set up with or without the constant and
trend accordingly. The function percentile provides us with the critical values for the three different
models as it generates the 1st, 5th and 10th percentiles for each of the three variables "t1’, 't2’, 't3".

In [3]: ## Model/Experiment ---------------——————————————-

tl = np.zeros(shape=(50000))
t2 = np.zeros(shape=(50000))
t3 = np.zeros(shape=(50000))
for i in range(50000):
errors = np.random.normal (size=1000)

t1[i] = simulate_AR(obs=1000, alpha=1, w=errors, const=False, trend=False)
t2[i] = simulate_AR(obs=1000, alpha=1, w=errors, const=True, trend=False)
t3[i] = simulate_AR(obs=1000, alpha=1, w=errors, const=True, trend=True)

print('No const or trend: 1% {}'.format(np.percentile(tl,1)))
print('No const or trend: 5} {}'.format(np.percentile(t1,5)))
print('No const or trend: 107 {}'.format(np.percentile(t1,10)))

print('Const but
print ('Const but
print ('Const but

print('Const and
print('Const and
print('Const and

No const or trend: 1% -2.
No const or trend: 5% -1.

no trend: 17 {}'.format(np.percentile(t2,1)))
no trend: 5% {}'.format(np.percentile(t2,5)))
no trend: 10% {}'.format(np.percentile(t2,10)))

trend: 1% {}'.format(np.percentile(t3,1)))
trend: 5% {}'.format(np.percentile(t3,5)))
trend: 10% {}'.format(np.percentile(t3,10)))

6014093678158994
960879813921448

No const or trend: 10% -1.625195012566009
Const but no trend: 1% -3.428109813365462
Const but no trend: 5% -2.8555719428447106

Const but no trend: 10% -

2.562367147624574

Const and trend: 1% -3.954177929485786
Const and trend: 5% -3.411438023794303
Const and trend: 10% -3.124328787933637

The critical values obtained by running the above program, which are virtually identical to those
at the end of Brooks (2019), are presented in the table above. This is to
000 replications should ensure that an approximation to the asymptotic
behaviour is obtained. For example, the 5% critical value for a test regression with no constant or

found in the statistical tables

be expected, for the use of 50,

trend and 1000 observations is —1.96 in this simulation, and —1.95 in Fuller (2009).

23.2 Pricing Asian options

Reading: Brooks (2019, section 13.8)
In this subsection, we will apply Monte Carlo simulations to price Asian options. The steps involved
are:

1. Specify a data generating process for the underlying asset. A random walk with drift model is
usually assumed. Specify also the assumed size of the drift component and the assumed size
of the volatility parameter. Specify also a strike price K, and a time to maturity, T.

2. Draw a series of length T, the required number of observations for the life of the option, from a
normal distribution. This will be the error series, so that €; ~ N(0,1).

3. Form a series of observations of length T on the underlying asset.

4. Observe the price of the underlying asset at maturity observation T. For a call option, if the value of
the underlying asset on maturity date P; < K, the option expires worthless for this replication.
If the value of the underlying asset on maturity date P; > K, the option expires in-the-money,
and has a value on that date equal to Pr — K, which should be discounted back to the present
using the risk-free rate.

5. Repeat steps 1 to 4 a total of N times, and take the average value of the option over N replica-
tions. This average will be the price of the option.

Sample Python code for determining the value of an Asian option is given below. The example
is in the context of an arithmetic Asian option on the FTSE100, and two simulations will be under-
taken with different strike prices (one that is out-of-the-money forward and one that is in-the-money
forward). In each case, the life of the option is six months, with daily averaging commencing immedi-
ately, and the option value is given for both calls and puts in terms of index options. The parameters
are given as follows, with dividend yield and risk-free rates expressed as percentages:

Simulation 1: strike=6500, risk-free=6.24, dividend yield=2.42, "today’s” FTSE=6289.70, forward
price=6405.35, implied volatility=26.52
Simulation 2: strike=5500, risk-free=6.24, dividend yield=2.42, "today’s” FTSE=6289.70, forward
price=6405.35, implied volatility=34.33

All experiments are based on 25,000 replications and their antithetic variates (total: 50,000 sets
of draws) to reduce Monte Carlo sampling error. Some sample code for pricing an Asian option for
normally distributed errors using Python is given as follows.

In [1]: import scipy as sp
from NumPy import average, exp

parameters input
S0 = 6289.70

K = 6500 # exzcercise price
T = 0.5 # maturity in years
r = 0.0624 # risk-free rate
d = 0.0242 # dividend yield

sigma = 0.2652 # <mplied wvolatzlity
n_simulation = 50000 # number of simulations
n_steps = 125

dt = T/n_steps

call = sp.zeros([n_simulation] ,dtype=float)
put = sp.zeros([n_simulation] ,dtype=float)

for j in range(0, n_simulation):
ST=30
total=0

for i in range(0,int(n_steps)):
e=sp.random.normal ()
ST=ST*sp.exp((r-d-0.5*%sigma**2)*dt+sigma*sp.sqrt(dt) *xe)
total+=ST

price_average=total/n_steps
call[jl=max(price_average-K,0)*exp(-r*T)
put [jl=max(K-price_average,0)*exp(-r*T)

call_price=average(call)
put_price=average (put)

print('call price = ', round(call_price,2))
print('put price = ', round(put_price,2))

call price = 203.772
put price = 351.562

As shown in the code cell, a list of variables is created by applying the parameters for simulation
1. Note that there are two variables n_simulation and n_steps that we set up; these indicate that
we will be performing 50,000 repetitions of the set of commands (i.e., replications). Meanwhile, each
replication will be performed for a set of 125 observations. A variable dt is generated by the T /nsteps
equation, which splits the time to maturity (0.5 years) into "N’ discrete time periods. This variable
will later be used in the geometric Brownian motion. To store the values of the call and put prices in
each replication, we finally create two zero arrays before turning to the simulation. The command
for creating this is sp.zeros([n_simulation],dtype=float), where n_simulation is 50,000 and zeros is
the built-in function from the scipy module.

The simulation will be carried out by a nested loop, or in other words, a loop within a loop. The
tirst for loop is to iterate each of the 50,000 repetitions. To begin with, the underlying asset price ‘ST’
is set to be equal today’s value, and the total value of asset prices for all steps is defined as zero. Next,
the second for loop generates the path of the underlying asset. Since daily averaging is required, it
is easiest to set i starting from 0 until 125 (the approximate number of trading days in half a year),
so that each time period 'dt’ represents one day. After that, the random normal draws are made
by the function sp.random.normal(), which are then constructed into a series of futures prices of
the underlying asset for the next 125. Intuitively, the essence of constructing the path of underlying
asset prices is assuming that the underlying asset price follows a geometric Brownian motion under
a risk-neutral measure, which is given by

dS = rf-dySdt 4+ 0Sdz (15)

where dz is the increment of a Brownian motion. The discrete time approximation to this for a time
step of one can be written as

Table 2: Simulated Asian Option Price Values

Strike = 6500, IV = 26.52

Strike = 5500, IV = 34.33

CALL Price

CALL Price

Analytical Approximation 203.45

Analytical Approximation 888.55

Monte Carlo Normal 203.77 Monte Carlo Normal 885.30
PUT Price PUT Price
Analytical Approximation 348.7 Analytical Approximation 64.52
Monte Carlo Normal 351.56 Monte Carlo Normal 61.02

St = Si_1exp [(rf— dy — %(72>dt + a\/Eut} (16)

where 1; is a white noise error process.

Once all 125 observations have been created based on the formula above, we summarise the mean
value of this series (i.e., the average price of the underlying asset over the lifetime of the option)
which we capture by the command price_average=total/n_steps.

The following two sequences of commands construct the terminal payoffs for the call and put
options, respectively. For the call, call[j] is set to the average underlying price less the strike price if
the average is greater than the strike (i.e., if the option expires in the money), and zero otherwise, for
each simulation. Vice versa for the put. The payoff at expiry is discounted back to the present based
on the risk-free rate (using the expression ‘exp(-'r’*"T’)’). These two values, i.e., the present value of
the call and put options, are then printed to appear in the output window above

Note that both call values and put values can be calculated easily from a given simulation, since
the most computationally expensive step is in deriving the path of simulated prices for the underly-
ing asset. In the table, we compare the simulated call and put prices for different implied volatilities
and strike prices along with the values derived from an analytical approximation to the option price,
derived by Levy, and estimated using VBA code in Haug (2007).

In both cases, the simulated option prices are quite close to the analytical approximations. Some of
the minor errors in the simulated prices relative to the analytical approximation may result from the
use of a discrete-time averaging process using only 125 data points.

23.3 VaR estimation using bootstrapping

Reading: Brooks (2019, section 13.9)

The following Python code can be used to calculate the minimum capital risk requirement (MCRR)
for a ten-day holding period (the length that regulators require banks to employ) using daily S&P500
data, which is found in the Excel workfile 'sp500_daily’. The code is presented as follows with

explanations for each building block.

Again, we first import several modules and load in the data from the 'sp500_daily” Excel file. The

custom function LogDiff is applied to obtain the log returns of the S&P500 index.

In [1]:

The continuous log returns then become the dependent variable in the GARCH(1,1) model, i.e., one
ARCH and one GARCH term, by using the arch_model function. The residuals can be accessed
by calling the attribute of the GARCH result instance. Similarly, the square root of the conditional
variance can be obtained by the attribute conditional_volatility. The equation 'res=resi/hsq” will

import Pandas as pd

import NumPy as np

from arch import arch_model

from NumPy import sqrt, exp, std, mean
import statsmodels.api as sms

abspath = 'C:/Users/tao24/0OneDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
data = pd.read_excel(abspath + 'sp500_daily.xlsx',index_col=[0])

def LogDiff(x):
x_diff = np.log(x/x.shift(1))
x_diff x_diff.dropna()
return x_diff

datal['rf'] = LogDiff(datal['Close'])
data = data.rename(columns={'Close':'sp500'})
data = data.dropna()

construct a set of standardised residuals.**

In [2]: res = arch_model(datal['rf'], vol='GARCH').fit()
mu = res.params['mu']
resi = res.resid
hsq = res.conditional_volatility # square root of conditional wvariance
sres = resi/hsq
Iteration: 1, Func. Count: 6, Neg. LLF: -58785.53002497787
Inequality constraints incompatible (Exit mode 4)

Current function value: -58785.530039173595
Iterations: 1
Function evaluations: 6

#4The starting values for the GARCH model estimation may vary across different software/packages, which might

later lead to a slight difference in the simulation results.

Gradient evaluations: 1

Next, we set up a custom function bootstrap_resample where the the portion of the input sample
will be randomly drawn. The input X would be the sres calculated in the previous block.

In [3]: def bootstrap_resample(X, n=None):

nimnn

Bootstrap resample an array_like

Parameters
X : array_like
data to resample
n : int, optional
length of resampled array, equal to len(X) if n==None
Results

returns X_resamples
if n == None:
n = len(X)

resample_i = np.floor(np.random.rand(n)*len(X)) .astype(int)
X_resample = X[resample_i]
return X_resample

Next follows the core of the program, which involves the bootstrap loop. The number of replica-
tions has been defined as 10,000. What we want to achieve is to re-sample the series of standardised
residuals ('sres’) by drawing randomly with replacement from the existing dataset, achieved by the
function bootstrap_resample. Next, we construct the future path of the S&P500 return and price se-
ries over the ten-day holding period. Specifically, the first step to achieve this is to extend the sample
period to include ten further observations, i.e., the command forecasts=res.forecast(horizon=10).
We then extend the conditional variance series by adding forecasts of this series. Once the condi-
tional variance forecasts are created, we take the ten observations of the re-sampled standardised
residuals and place them with the square root of the conditional variance to get forecast returns. This
is achieved by the command rtf = sqrt(forecasts_res).values*sres_b[:10].to_frame().values.

Then, using these forecast return series, we can now construct the path of the S&P500 price series
based on the formula

f
sp500/ = sp500;_qe" (17)

This formula is translated into Jupyter code as follows with a "for” loop from 0 to 10. By doing so,
we can create a series of lagged S&P500 prices and then generate the forecasts of the series over ten
days. Finally, we obtain the minimum and maximum values of the S&P500 series over the ten days
and store them in the variables ‘'minimum’ and "‘maximum’.

This set of commands is then repeated 10,000 times so that after the final repetition there will be
10,000 minimum and maximum values for the S&P500 prices.

np.zeros(10000)
np.zeros(10000)

In [4]: minimum
maximum

for n in range(10000):
sres_b = bootstrap_resample(sres)

calculate multiple-step-ahead forecast by built-in function
forecasts = res.forecast(horizon=10)
forecasts_res = forecasts.variance.dropna().T

rtf = mu + sqrt(forecasts_res).values*sres_b[:10].to_frame() .values

sp500_f = np.zeros(10)
for i in range(10):
if 1 ==
sp500_f [i]
else:
sp500_f [i]

data['sp500'] [-1]*exp(rtf[i])

sp500_f [i-1]*exp(rtf[i])

minimum[n] = min(sp500_f)
maximum[n] = max(sp500_f)

The final block of commands generates the MCRR for a long and a short position in the S&P500.
The first step is to construct the log returns for the maximum loss over the ten-day holding pe-
riod, which for the long position is achieved by the command long = np.log(minimum/2815.62)
and for the short position by short = np.log(maximum/2815.62). We now want to find the
fifth percentile of the empirical distribution of maximum losses for the long and short po-
sitions. Under the assumption that the both the long and short statistics are normally
distributed across the replications, the MCRR can be calculated by the commands 1-exp(-
1.645*std(long)+mean(long)) and exp(1.645*std(short)+mean(short))-1, respectively. The results
generated by running the above program should be displayed in the Jupyter output window and
should be: MCRR=0.03172729061586166 for the long position, and MCRR=0.03678997177441845 for
the short position.

In [5]: long = np.log(minimum/2815.62)
short = np.log(maximum/2815.62)

print('mcrrl:{}'.format(l-exp(-1.645*std(long)+mean(long))))
print('mcrrs:{}'.format(exp(l.645*std(short)+mean(short))-1))

mcrrl:0.03172729061586166
mcrrs:0.03678997177441845

These figures represent the minimum capital risk requirement for a long and short position, respec-
tively, as a percentage of the initial value of the position for 95% coverage over a 10-day horizon. This
means that, for example, approximately 3.2% of the value of a long position held as liquid capital will
be sufficient to cover losses on 95% of days if the position is held for 10 days. The required capital to
cover 95% of losses over a 10-day holding period for a short position in the S&P500 index would be
around 3.7%. This is as one would expect since the index had a positive drift over the sample period.
Therefore, the index returns are not symmetric about zero as positive returns are slightly more likely
than negative returns. Higher capital requirements are thus necessary for a short position since a
loss is more likely than for a long position of the same magnitude.

150

D

24 The Fama-MacBeth procedure

Reading: Brooks (2019, section 14.2)

In this section we will perform the two-stage Fama and MacBeth (1973) procedure, which, together
with related asset pricing tests, is described in Brooks (2019). There is nothing particularly complex
about the two-stage procedure -- it only involves two sets of standard linear regressions. The hard
part is really in collecting and organising the data. If we wished to do a more sophisticated study —
for example, using a bootstrapping procedure or using the Shanken (1992) correction — this would
require more analysis then is conducted in the illustration below. However, hopefully the Python
code and the explanations will be sufficient to demonstrate how to apply the procedures to any set
of data.

The example employed here is taken from the study by Gregory et al. (2013) that examines the per-
formance of several different variants of the Fama-French and Carhart (1997) models using the Fama-
MacBeth methodology in the UK following several earlier studies showing that these approaches
appear to work far less well for the UK than the US. The data required are provided by Gregory et al.
(2013) on their web site.*®

Note that their data have been refined and further cleaned since their paper was written (i.e., the
web site data are not identical to those used in the paper) and as a result the parameter estimates
presented here deviate slightly from theirs. However, given that the motivation for this exercise is to
demonstrate how the Fama-MacBeth approach can be used in Python, this difference should not be
consequential. The two data files used are ‘'monthlyfactors.csv’ and ‘vw_sizebm_25groups.csv’. The
former file includes the time series of returns on all of the factors (smb, hml, umd, rmrf, the return on
the market portfolio (rm) and the return on the risk-free asset (rf)), while the latter includes the time
series of returns on twenty-five value-weighted portfolios formed from a large universe of stocks,
two-way sorted according to their sizes and book-to-market ratios.

Before conducting the a Fama-French or Carhart procedures using the methodology developed
by Fama and MacBeth (1973), we need to import the two csv data files into Python. The data in both
cases run from October 1980 to December 2012, making a total of 387 data points. However, in order
to obtain results as close as possible to those of the original paper, when running the regressions, the
period is from October 1980 to December 2010 (363 data points).

We split the Python code into several parts. The first step is to import and slice the subsample
data, and transform all of the raw portfolio returns into excess returns which are required to compute
the betas in the first stage of Fama-MacBeth. This is fairly simple to do and we just write a loop to
transform the original series to their excess return counterparts.

In [1]: import Pandas as pd
import statsmodels.api as sm
import NumPy as np

abspath = 'C:/Users/tao24/0OneDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'

datal = pd.read_csv(abspath + 'monthlyfactors.csv',index_col=[0])

data2 = pd.read_csv(abspath + 'vw_sizebm_25groups.csv',index_col=[0])

subsample
datal = datal['1980m10':'2010m12"']*100
data2 = data2['1980m10':'2010m12"']*100

45h’ttp: / /businessschool.exeter.ac.uk/research /areas/centres/xfi/research /famafrench/files.

160

http://businessschool.exeter.ac.uk/research/areas/centres/xfi/research/famafrench/files

excess return
for each in data2.columns:
data2[each] = data2[each]-datal['rf']

Next, we run the first stage of the Fama-MacBeth procedure, i.e., we run a set of time-series regres-
sions to estimate the betas. We want to run the Carhart 4-factor model separately for each of the
twenty-five portfolios. A Carhart 4-factor model regresses a portfolio return on the excess market
return (‘rmrf’), the size factor ('smb’), the value factor ("hml’) and the momentum factor ("umd’).
Since the independent variables remain the same across the set of regressions and we only change
the dependent variable, i.e., the excess return of one of the twenty-five portfolios, we can set this first
stage up as a loop.

In particular, the line of command y = data2[[each]] specifies that for each of the 25 variables
listed in the DataFrame data2, Python will then perform an OLS regression of the portfolio’s excess
return (indicated by the 'y’ which is to be replaced by the particular portfolio return listed in the
loop) on the four factors. Note that we restrict the sample for this model to the period October 1980
to December 2010 (datal = data1[’1980m10:"2010m12’]100) instead of using the whole sample.

We need to store the estimates from these regressions into separate series for each parameter. This
is achieved by the command betas.append(res). In particular, betas is a newly-created list in which
the beta coefficients on the four factors plus the constant are saved. Thus, for each of the twenty-five
portfolios, we will generate four beta estimates that will then be posted to the list betas. After the
loop has ended, the betas will contain 25 observations for the five variables ‘const’, 'smb’, "hml’,
‘'umd” and ‘rmrf’.

To illustrate this further, the loop starts off with the excess return on portfolio ‘SL’ (the first item in
the data2.columns) and the coefficient estimates from the 4-factor model ("const’, 'smb’, "hml’, ‘'umd’
and ‘rmrf”) will be transferred to the betas.

Then Python moves on to the second variable in the data2.columns, i.e., the excess return on
portfolio ’S2’, and will perform the 4-factor model and save the coefficient estimates in betas. Python
will continue with this procedure until it has performed the set of commands for the last variable in
the list, i.e., 'BH’. The beta coefficients for the regressions using 'BH’ as the dependent variable will
be the 25th entry in the betas.

Finally, the line of command betas = pd.concat(betas, axis=1) brings all of the separate estimates
into an integrated DataFrame.

In [2]: # first stage

x = datal[['smb', 'hml', 'umd', 'rmrf']]

x = sm.add_constant (x)

betas = []

for each in data2.columns:
y = data2[[each]]
res = sm.0LS(y,x).fit() .params
res = res.rename (each)
betas.append(res)

betas = pd.concat(betas, axis=1)

So now we have run the first step of the Fama-MacBeth methodology — we have estimated the betas,
also known as the factor exposures. The slope parameter estimates for the regression of a given port-
folio (i.e. ‘const’, 'smb’, "hml’, ‘'umd’ and 'rmrf’) will show how sensitive the returns on that portfolio
are to the corresponding factors, and the intercepts (‘const’) will be the Jensen’s alpha estimates.

These intercept estimates stored in ‘const” should be comparable to those in the second panel of
Table 6 in Gregory et al. (2013) — their column headed "Simple 4F’. Since the parameter estimates in
all of their tables are expressed as percentages, we need to multiply all of the figures given from the
Python output by 100 to make them on the same scale. If the 4-factor model is a good one, we should
find that all of these alphas are statistically insignificant. We could test this individually if we wished
by adding an additional line of code in the loop to save the t-ratio in the regressions.

The second stage of the Fama-MacBeth procedure is to run a separate cross-sectional regression
for each point in time. An easy way to do this is to, effectively, rearrange/transpose the data so that
each column represents one month and the rows are the excess returns of one of the 25 portfolios.
In Python this can be easily achieved by the function transpose(), which transposes the data, chang-
ing variables into observations and observations into variables. The new variable x then stores the
transposed data containing the original variable names.

Now Python has new variable names for the observations. For example, all data points in the
tirst row (of the previous dataset) corresponding to October 1980 are now stored in the first column;
all data points in the second row corresponding to November 1980 are now stored in the second
column; and so on. Thus, the first column contains the excess returns of all 25 portfolios for October
1980 and the last column contains the excess returns of the 25 portfolios for December 2010.

Additionally, the constant term for the x needs to be included manually since we are applying
the OLS function instead of the formula function. Note that the latter is able to automatically add
constant terms.

We are now in a position to run the second-stage cross-sectional regressions corresponding to the
following equation.*®

Ri=a+AmBim + AsBis +AvBiv + AuBiu + e (18)

Again, it is more efficient to run this set of regressions in a loop. In particular, we regress each of the
columns (i.e., "1980m10’, "1980m11’, "1980m12’,..,2010m12’) representing the excess returns of the 25
portfolios for a particular month on the beta estimates from the first stage (i.e., "const’, 'smb’, "hml’,
‘'umd’” and 'rmrf’). Then we store the coefficients on these factor exposures in an another list object
lambdas. “const” will contain all intercepts from the second-stage regressions, ‘rmrf” will contain all
parameter estimates on the market risk premium betas, and so on.

Likewise, we store all of these estimates under each specification in the list lambdas and convert
these separated series into an integrated DataFrame.

In [3]: # second stage
x = betas.transpose() [['smb', 'hml', 'umd', 'rmrf']]
x = sm.add_constant (x)
lambdas = []
for each in data2.transpose().columns:
y = data2.transpose() [[each]]
res sm.0LS(y,x) .fit () .params
res = res.rename(each)
lambdas . append(res)

lambdas = pd.concat(lambdas, axis=1)

The final stage of the Fama-MacBeth procedure is to estimate the averages and standard deviations
of these estimates using something equivalent to the following equations, respectively for each pa-
rameter. The average value over t of A;; can be calculated as follows.

46Gee Brooks (2019) for an explanation of this equation.

TrmB

Aini=1,2,34,..
jtr]

A 1
A=
Trmp (=

j

(19)

To do this we first create a new variable lambdas1 containing the mean of the estimates (lambdas1
= lambdas.mean(axis=1)) and a variable lambdas2 containing the ¢-ratio of the estimates (lambdas2
= lambdas.std(axis=1)). Thus lambdas1 will contain the mean of the cross-sectional intercept esti-
mates, and the corresponding t-ratio will be stored in lambdas3 given the command lambdas3 =
np.sqrt(lambdas.shape[1])lambdas1/lambdas2.

In [4]: # final stage
lambdasl = lambdas.mean(axis=1)
lambdas2 = lambdas.std(axis=1)
lambdas3 = np.sqrt(lambdas.shape[1])*lambdasl/lambdas?2

Finally we tell Python to display these values in order to inspect the results of the Fama-MacBeth
procedure. The lambda parameter estimates should be comparable with the results in the columns
headed "Simple 4F Single’ from Panel A of Table 9 in Gregory et al. (2013). Note that they use v to
denote the parameters which have been called A in this guide. The parameter estimates obtained
from this simulation and their corresponding t-ratios are given in the table below. The latter do not
incorporate the Shanken (1992) correction as Gregory et al. (2013) do. These parameter estimates
are the prices of risk for each of the factors, and interestingly only the price of risk for value is
significantly different from zero.

In [5]: output = pd.concat([lambdasl,lambdas3], join='inner', axis=1)
output = output.rename(columns={0:'Estimates’,
1:'t-ratio'})

output

Out[5]: Estimates t-ratio
const 0.496870 1.327892
smb 0.085269 0.511656
hml 0.394470 2.083069
umd 0.411830 0.777792
rmrf 0.069129 0.151575

25 Using extreme value theory for VaR calculation

Reading: Brooks (2019, section 14.3)

In this section, we are going to implement extreme value theory (EVT) in order to calculate VaR.
The following Python code can be used to calculate VaR for both the delta normal and the historical
distribution on a daily basis using & P500 data. The data can be retrieved from the Excel workfile
’sp500_daily” and stored in the Python DataFrame data, details of which can be found in the first com-
mand block. After computing the daily log returns of the S&P500 index, we obtain the parameters
(i.e., the mean and standard deviation) later used to describe the distribution. The parameters can
easily be calculated by the commands mean = np.mean(data['ret’]) and std_dev = np.std(data['ret’]).

In [1]: import Pandas as pd
import NumPy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab
from scipy.stats import norm

abspath = 'C:/Users/tao24/0neDrive - University of Reading/PhD/' \
'"QMF Book/book Ran/data files new/Book4e_data/'
data = pd.read_excel(abspath + 'sp500_daily.xlsx',index_col=[0])

def LogDiff(x):
x_diff = np.log(x/x.shift(1))
x_diff = x_diff.dropna()
return x_diff

datal['ret'] = LogDiff(datal['Close'])
data = data.rename(columns={'Close': 'sp500'})
data = data.dropna()

mean = np.mean(datal'ret'])
std_dev = np.std(datal['ret'])

Next, we plot both a histogram and the probability density function (pdf) of the standard normal
distribution given the calculated parameters (mean, std_dev). As can be seen in the output window
(Figure 35), both distributions are very close to each other given that the input sample size is quite
large.

In [10]: fig = plt.figure(l, dpi=600)
axl = fig.add_subplot(111)
axl.hist(datal['ret'],100,edgecolor="'black',linewidth=1.2)
axl.set_ylabel('density"')

x = np.linspace(mean - 5*std_dev, mean + 5*std_dev, 100)
ax2 = axl.twinx()

ax2.plot(x,mlab.normpdf (x,mean,std_dev),"r")
ax2.set_ylabel('pdf of the normal distribution')
plt.legend ()

plt.show()

3500 — Pdf k40
C
3000 - S
- 30 é
2500 A +
> S
= i ©
G 2000 0 £
Q
° 2
1500 °
<
1000 - - 10 ©
S
o
500 -
-0
0

-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10

Figure 35: Histogram and the Probability Density Function of the Standard Normal Distribution

There are several ways to compute value at risk. The first calculation assumes that the return distri-
bution is normal, and then we can simply take the critical value from the normal distribution at the
« significance level multiplied by the standard deviation ¢ of the sample and subtracting the mean
value.

VaRormal = 0 % Zy — (20)

In Python, the calculation can easily be done by applying the ppf function (i.e., the Percent Point
function, which is the inverse of cdf — percentiles) from the scipy.stats.norm module. The specific
commands are provided as follows. For VaR at the 90% confidence level, the input quantile is simply
1-0.9. A 95% VaR would be 1-0.95, and so on.

In [11]: # normal distribution
VaR_90 = norm.ppf(1-0.9, mean, std_dev)
VaR_95 = norm.ppf(1-0.95, mean, std_dev)
VaR_99 = norm.ppf(1-0.99, mean, std_dev)

print ('90%:{}"'.format(VaR_90))
print ('95%:{}'.format(VaR_95))
print ('99%:{}"'.format(VaR_99))

90%:-0.012067156368399046
95%:-0.01557235218232069
99%:-0.022147516586450203

Alternatively, VaR can be calculated by sorting the portfolio returns and then simply selecting the
quantile from the empirical distribution of ordered historical returns. In this setting, the non-
parametric VaR estimation would be under no assumptions, which is therefore fairly simple. Specif-
ically, the Pandas module provides the quantile function where the corresponding VaR can be ob-
tained by finding the appropriate quantiles, as shown in the following commands.

In [12]: # histortical distribution
VaR_90 = data['ret'].quantile(0.1)
VaR_95 = datal['ret'].quantile(0.05)
VaR_99 = data['ret'].quantile(0.01)

print ('90%:{}"'.format(VaR_90))
print ('95%:{}"'.format(VaR_95))
print('99%:{}"'.format(VaR_99))

90%:-0.009886539705571379
95%:-0.014438124291662094
99%:-0.025965714775369006

Finally, let us spend a few minutes comparing the VaR calculated by the different methods. Clearly,
the historical 99% VaR is larger in absolute value than the corresponding normal VaR (—0.026 vs
—0.022). The rationale behind this finding is that real financial data tend to have a distribution with
fatter tails than the assumed standard normal distribution.

The Hill estimator for extreme value theory

In this subsection we will examine the tail of the distribution to estimate the VaR by implementing
the Hill estimator of the shape parameter ¢ of an extreme value distribution. The code to achieve this
is presented as follows.

In [5]: threshold = -0.025
alpha = 0.01

datal datal[datal['ret']<=threshold]
datal = datal.sort_values(['ret'])
datal['k'] = datal.iloc[0]['ret']

xi = (np.log(-datal['k']) - np.log(-datall['ret'])).sum()*(1/(datal.shapel[0]-1))
VaR_hill = datal['ret']*(data.shape[0]/datal.shape[0]*alpha)**(-xi)
VaR_hill = VaR_hill[1:]

The threshold is set to be —0.025, which determines the number of observations identified as being
in the tail. Note that this value is subjective and readers can choose an appropriate threshold at their
own discretion. « is equal to 0.01 and corresponds to a 99% confidence level. To calculate the tail-
index ¢ using the Hill estimator, we order the data over the threshold from the largest value (lowest
log returns) to the smallest value (largest log returns). By following the Hill estimator formula below,
we then obtain the ¢ and calculate the VaR — see Brooks (2019) for further details.

&= () — In(g0) @)

166

In [6]: plt.figure(2, dpi=600)
x = [1 for i in range(1,VaR_hill.shape[0]+1)]
plt.scatter(x,VaR_hill)
plt.xlabel('n")
plt.ylabel('VaR')
plt.show()

—0.04 A

—0.06 A

—0.10 A

—0.12 A

o
’
’

0 25 50 75 100 125 150 175 200
n

Figure 36: Hill Plot

Looking at the Hill plot (see Figure 36), we can see that the estimated VaR starts from a very negative
value (-0.12) and gradually converges on —0.032, which suggests that the expected maximum is 3.2%

Parameter estimation for extreme value theory

The three parameters ¢, y, 0 used to define an extreme value distribution can be estimated by max-
imum likelihood. To do so, we need to set up a log-likelihood function with a certain distribution
and find the parameter values to maximise it. The Python code below demonstrates this in detail. To
be consistent with the previous section, the same values are set up for both alpha and the threshold.
All observations exceeding the threshold jj_t are obtained and stored in the variable rets. Next, we
set up initial values for the distribution’s parameter ¢ and ¢ and we allow them to be optimised in
the later maximum likelihood estimation.

In [7]: import NumPy as np
from scipy.optimize import minimize

alpha = 0.01

threshold = -0.025

y = threshold - datal[datal['ret']<=threshold]
y = y.sort_values(['ret'])

rets = y['ret'] .values

shape = 0.2
scale 1
x0 = (shape, scale)

We then define a custom function where the natural log of the probability density function is added
up over the tail observations. By minimising the log-likelihood function by the function minimize
from the module scipy.optimize, we are able to obtain optimised parameters, which are 0.38803644
and 0.0075239 for the distribution’s shape and scale in this case.*”

In [8]: def fun(params,rets):
F = lambda x: 1/params[1]*(1 + params[0] * x/params[1])**(-1 - 1/params[0])
result = -sum([np.log(d) for d in [F(x) for x in rets]])
return result

result = minimize(fun, x0, args=rets, method='Nelder-Mead')
print (result)

final_simplex: (array([[0.38803644, 0.0075239],
[0.38811469, 0.00752272],
[0.38812762, 0.00752404]]), array([-689.8224412 , -689.82244075, -689.82244058]))
fun: -689.82244119932989
message: 'Optimization terminated successfully.'

nfev: 99
nit: 51
status: O

success: True
x: array([0.38803644, 0.0075239 1)

Finally, we calculate the VaR under maximum likelihood, which suggests the expected maximum
loss is 2.5%.

In [9]: shape = result.x[0]
scale = result.x[1]

VaR_mle = threshold + scale/shapex*((data.shape[0]/y.shape[0]*alpha)**(shape)-1)
print('VaR_mle:{}'.format(VaR_mle))

VaR_mle:-0.025975570332890704

4 Note that, effectively, we are minimising the negative of the log-likelihood function, which is exactly equivalent to
maximising the log-likelihood function but is simpler to implement since it means that we are able to use the minimise
function in Python.

168

References

Brooks, C. (2019). Introductory Econometrics for Finance, volume 4th edition. Cambridge University
Press, Cambridge, UK.

Carhart, M. (1997). On persistence in mutual fund performance. Journal of Finance, 52(1):57-82.

Durbin, J. and Watson, G. S. (1951). Testing for serial correlation in least squares regression. ii.
Biometrika, 38(1/2):159-177.

Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of
united kingdom inflation. Econometrica, 50(4):987-1007.

Fama, E. F. and MacBeth, J. D. (1973). Risk, return, and equilibrium: Empirical tests. Journal of Political
Economy, 81(3):607-636.

Fuller, W. (2009). Introduction to Statistical Time Series, volume 428. John Wiley & Sons.

Gregory, A., Tharyan, R., and Christidis, A. (2013). Constructing and testing alternative versions of
the fama—french and carhart models in the uk. Journal of Business Finance & Accounting, 40(1-2):172—
214.

Haug, E. G. (2007). The Complete Guide to Option Pricing Formulas, volume 2. McGraw-Hill, New York.

Nelson, D. (1991). Conditional heteroskedasticity in asset returns: A new approach. Econometrica,
59(2):347-370.

Shanken, J. (1992). On the estimation of beta-pricing models. Review of Financial Studies, 5(1):1-33.

	Cover
	Copyright information
	Contents
	List of Figures
	List of Tables
	1 Getting started
	1.1 What is Python?
	1.2 Different ways to run Python code
	1.3 What does a Jupyter NoteBook look like?
	1.4 Getting help

	2 Data management in Python
	2.1 Variables and name rules
	2.2 Whitespace
	2.3 Comments
	2.4 Mathematical operations
	2.5 Two libraries: Pandas and NumPy
	2.6 Data input and saving
	2.7 Data description and calculation
	2.8 An example: calculating summary statistics for house prices
	2.9 Plots
	2.10 Saving data and results

	3 Simple linear regression - estimation of an optimal hedge ratio
	4 Hypothesis testing - Example 1: hedging revisited
	5 Estimation and hypothesis testing - Example 2: the CAPM
	6 Sample output for multiple hypothesis tests
	7 Multiple regression using an APT-style model
	7.1 Stepwise regression

	8 Quantile regression
	9 Calculating principal components
	10 Diagnostic testing
	10.1 Testing for heteroscedasticity
	10.2 Using White's modified standard error estimates
	10.3 The Newey-West procedure for estimating standard errors
	10.4 Autocorrelation and dynamic models
	10.5 Testing for non-normality
	10.6 Dummy variable construction and use
	10.7 Multicollinearity
	10.8 The RESET test for functional form
	10.9 Stability tests

	11 Constructing ARMA models
	12 Forecasting using ARMA models
	13 Estimating exponential smoothing models
	14 Simultaneous equations modelling
	15 The Generalised method of moments for instrumental variables
	16 VAR estimation
	17 Testing for unit roots
	18 Cointegration tests and modelling cointegrated systems
	19 Volatility modelling
	19.1 Testing for 'ARCH effects' in exchange rate returns
	19.2 Estimating GARCH models
	19.3 GJR and EGARCH models
	19.4 Forecasting from GARCH models

	20 Modelling seasonality in financial data
	20.1 Dummy variables for seasonality
	20.2 Estimating Markov switching models

	21 Panel data models
	22 Limited dependent variable models
	23 Simulation methods
	23.1 Deriving critical values for a Dickey-Fuller test using simulation
	23.2 Pricing Asian options
	23.3 VaR estimation using bootstrapping

	24 The Fama-MacBeth procedure
	25 Using extreme value theory for VaR calculation
	References

