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Preface 

Some university courses envisage that mathematics coexists with diverse disciplines, 
such as history, arts, economics, natural sciences, architecture and design. Mathe-
matics should be related to these disciplines, and the student should not detect objec-
tives and contents in mathematics that are decentralized from his or her interests and 
from his or her world. Actually, for centuries and even a couple of millennia, and 
not only in the Western world, mathematics has also directed culture, philosophical 
and scientific speculation, has lived in company of arts, philosophy, architecture and 
music, in one rich and fertile environment full of perspectives. 

In fact, mathematics is the place of durable goods, rationality, wisdom, and 
emotions. The interested reader is the student who desires clarity. However, 
presenting concepts with simplicity is a demanding task: in every context there is a 
threshold beyond which simplification alters the meaning. 

The book is designed for students enrolled in first level courses, for which 
the knowledge of mathematics is functional to the entire educational programme 
(e.g., chemical or biological sciences, material science, information technology, and 
various engineering disciplines). In addition, the text can be a valid support for 
students enrolled in courses oriented to social sciences (e.g., economy and finance, 
marketing, management). 

This book is the result of my experience gained in the years of teaching Math-
ematics, Geometry, and Calculus at the University of Naples Federico II, Univer-
sity of Salerno, University of Trento and University of Campania, as well as in the 
context of editing, assembling and publishing texts for university courses. The struc-
ture of this book is compliant to what is usually utilized in undergraduate courses 
of a British/American system: the results, theorems, statements, and exercises are 
proposed by illustrating the unifying principles of Mathematics in various prac-
tical contexts and applications. Therefore, on the one hand attention is focused on 
the construction of solid and robust fundamentals through the presentation of the 
theoretical bases and the demonstrations of the theorems; on the other hand, wide 
selections of examples, problems and exercises, both posed and solved, corroborate 
and finalize the theoretical framework.

vii



viii Preface

Clarity and appropriate examples aid the formal setting in the general presenta-
tion. Some theorems, whose proof is trivial, are simply stated and commented on. 
Also, regarding some demonstrations where rigor contrasts with clarity, I propose a 
reasoning by analogy or an intuitive presentation. My main concern was to make the 
book understandable for young students. 

The order of the chapters can be altered during the delivery of the course. For 
example, it is possible to premise the differential calculus to the linear algebra by 
anticipating the chapters from 17 to 22 before chapter 11. 

The presentation is accompanied by a set of examples and exercises with 
increasing complexity. With the exclusion of the first three chapters in which 
the discussion rests on logical and intuitive bases, each chapter contains sections 
dedicated to exercises and problems both solved and proposed. 

Advances in mathematics, since ancient times, are presented in their historical 
framework as a consequence of the relations of thoughts and their development. 
Scientific achievements and struggles are no coincidence, but a need for constructing 
a coherent world. Each chapter mentions some names linked to a mathematical fact 
or to a society and its time. 

Along this line, the past struggles and the triumphs of those who have contributed 
most to the development of mathematics become cornerstones that highlight the 
evolution of mathematics and science in general. The idea is to place the student 
in a dynamic context that, together with the fundamental formative elements of the 
subject, makes him or her to assume the role of an active participant in the evolution 
of ideas rather than a passive observer of the results, thus enabling him or her to 
develop an analytical as well as critical mindset. 

Napoli, Italy Aldo G. S. Ventre 
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Chapter 1 
Language. Sets 

1.1 Language 

Let us observe the language of a child learning to speak. Any progress in his way of 
expressing himself reveals his thinking and behavior (Adler 1961; p. 57). 

Let us accept without question the legend that the first word a baby learns is Mama. 
He soon learns his own name, say Peter, and identifies Daddy and other members of 
the household. He also learns words like spoon, cup, table, and so on. Before long, he 
discovers that the words Mama and table are used in different ways. The word Mama 
is applied only to one object in his experience, the warm, gentle woman who feeds 
him, bathes him, dresses him, and hugs him. But the word table applies to several 
things. He may use it for the table in the kitchen, the table in the dining room, or 
the little table in his own bedroom. The word table is the name of a class of things, 
and is applied to any member of the class. Similarly, spoon and cup are class names, 
while Peter and Daddy refer to individuals only. In grammar, we distinguish between 
class names and the names of individuals by using different labels for them. We call 
a class name a common noun. We call an individual name a proper noun. 

Language soon develops rapidly beyond all foreseeable limits (Chomsky 1970; 
p. 7). 

Most of our linguistic experience, both as speakers and hearers, is with new 
sentences; once we have mastered a language, the class of sentences with which 
we can operate fluently and without difficulty or hesitation is so vast that for all 
practical purposes (and, obviously, for all theoretical purposes), we may regard it as 
infinite. Normal mastery of a language involves not only the ability to understand 
immediately an indefinite number of entirely new sentences, but also the ability to 
identify deviant sentences and, on occasion, to impose an interpretation on them. 

Thus, the matter grows on which language develops and also the level of depth 
and precision of language. To communicate ideas, concepts, opinions, emotions we 
choose a suitable language. For various purposes, one is to thin out ambiguities, there 
are different languages.
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2 1 Language. Sets

Sailors use seafaring language, sports reporters draw on the language of games 
and competitions, lawyers use legal language. And then there is the language of 
medicine or music, mathematics, and many others. Each group of professionals, 
artists, scientists has its own language and the need to communicate with those who 
are not proficient with these specificities. 

A suitable language is required to deal with specific concepts relevant to a topic. 
As for us, what is being asked of the reader? Simply an attitude open to under-
standing. There is no need to dress the concepts hand by hand introduced with 
fictional complications, nor to cling to fragments of memory. 

The words and concepts of mathematical language will be defined, at least 
described, before being used. In this sense the book is self-sufficient. The symbols 
can simplify communication: using them during repetitions, carrying out exercises 
or proving theorems, helps in understanding and memorization. 

1.2 Sets 

The concept of set is widespread in common language, but to explain it in math-
ematics, at a first approach, some synonyms can be used: a set is a collection of 
distinct objects or a set is an aggregate of things having a shared quality; a  class, a  
collection, a  list are sets. We recognize that this is not an exhaustive way to exhibit 
the concept of set. However, for our purposes, we remedy by considering as intuitive 
or primitive the concept of set. 

Usually the sets are denoted by capital letters, A, B, C, ….  
In the same way the concept of membership of an element to a set, is considered 

primitive. If a is an element of the set A, we write a ∈ A, or  A � a, and we read “a is 
an element of A”, or “a belongs to A”. If the element b does not belong to the set A, 
we write “b /∈ A” and we read “b is not an element of A”. 

A set can be identified by the list of the elements that belong to it: all the elements 
belonging to the set are those mentioned in the list and only the elements of the 
list belong to the set. The list of the elements of a set is usually enclosed in curly 
brackets. This way of identifying a set is called an extensive formulation, or  extensive 
definition, of the  set.  

For example, the writing A = {l, m, n} denotes the set A whose elements are, all 
and alone, the letters of the alphabet l, m, n. The elements can be named in any order. 
The set A formed by only the element a is denoted with A = {a}, i. e., there is a 
distinction between the element a and the set {a}. 

A set can sometimes also be identified by a property owned by the elements of 
the set and only by them, elements having a shared quality which is a characteristic 
property of the set. Such an identification of the set is called an intensive formulation, 
or intensive definition, of the  set.  

The set A = {l, m, n} is also identified as the set of consonants of the word “lemon” 
and indicated in symbols by means of the writing A = {x / x is a consonant of the 
word “lemon”}, meaning that x is the generic element of A and has the property
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indicated after the slash; a colon can be used instead of the slash, so we can also 
write A = {x : x is a consonant of the word "lemon"}. 

If A and B are sets such that each element of A is also an element of B, we say  
that A is a subset or a part of B, or  A is contained or included in B, denoted A ⊆ B, 
or B contains or includes A, denoted B ⊇ A. The symbol ⊆ is called the symbol of 
inclusion. If  A ⊆ B and also B ⊆ A, i. e., if each element of A is also an element of 
B and each element of B is also an element of A, then the sets A and B are said to be 
equal, and we write A = B; for example, the sets A = {l, m, n} and B = {m, n, l} are  
equal because every element of A is an element of B and every element of B is an 
element of A. 

If every element of A is in B and there exists at least one element of B not belonging 
to A, then A is said to be a proper part, or a proper subset of B, or  A is properly included 
or properly contained in B, in symbols A ⊂ B or B ⊃ A. 

Sometimes to indicate a set an oval curve is drawn to isolate a region in which all 
the elements of the set are imagined to be contained (Fig. 1.1). 

Graphs such as in Fig. 1.1 are called Euler-Venn diagrams. 
Given the sets A, B and C, if  A is included in B, and if B is included in C, then A 

is included in C. Naturally, if A = B and B = C, then A = C. 
Starting from two sets, other sets can be constructed. Let us give some examples. 
The intersection of the sets A and B is, by definition, the set whose elements 

belong both to A and B. The intersection of A and B is denoted A ∩ B (Fig. 1.2). 
The union of the sets A and B is, by definition, the set whose elements belong to 

A or B, i. e., any element of the union of A and B belongs to at least one of the two 
sets. The union of A and B is denoted A ∪ B (Fig. 1.3). 

Fig. 1.1 a, b, c are the 
elements of the set A 

Fig. 1.2 The shaded region 
common to A and B 
represents the intersection A 
∩ B of the  sets  A and  B  

Fig. 1.3 The shaded region 
inside the closed curve 
represents the union A ∪ B of 
sets A and B
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Fig. 1.4 A – B is the 
difference of the sets A and B 

Observe that if an element c belongs both to set A and set B, the element c must 
be counted only once in the union set. For example, if A = {a, c, d, e} and B = {c, 
l, m, n, d}, then A ∪ B = {a, c, d, e, l, m, n}. 

The existence of a set without elements, called empty set denoted ∅, is assumed. 
It is postulated that the empty set is unique and it is defined by a false property: 

the empty set is the set of common points to two distinct and parallel lines, it is the 
set of donkeys that fly, it is the set of camels that pass through the eye of a needle, 
it is the set of politicians who before the elections promise to raise taxes for poor 
people, is the set of triangles with two parallel sides. 

If A and B are sets with no elements in common, then A ∩ B = ∅: in this case the 
sets are said to be disjoint. For example, the set A of the ruminants and the set B of 
the bipeds are disjoint: it is known that the ruminants are all quadrupeds. 

Furthermore, the following property is assumed: 
(P) The empty set is contained in any set. 
Given the sets A and B, the set whose elements are the elements of A that do not 

belong to B is called the difference of A and B. The set difference of A and B is 
denoted by A – B  (Fig. 1.4). If, in particular, B is included in A, the difference A – B  
is named the complement of B in A. 

The symbols denoting the intersection ∩ of sets and the union ∪ of sets have also 
the meaning of operations that produce respectively the set A ∩ B and the set A ∪ B 
whenever the sets A and B are assigned. The intersection and the union of sets are 
operations that satisfy the associative property, i. e., whatever the sets A, B and C 
are, the following equalities are verified: 

(A ∩ B) ∩ C = A ∩ (B ∩ C) 

(A ∪ B) ∪ C = A ∪ (B ∪ C) 

Furthermore, the intersection and the union of sets satisfy the commutative 
property, i. e., whatever the sets A and B are, the following equalities are verified:
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A ∩ B = B ∩ A 

A ∪ B = B ∪ A 

Remark 1.1 As the operations of intersection and union between sets satisfy the 
previous equalities, the intersection of a finite number of sets and the union of a 
finite number of sets can be performed by taking the sets in any order and grouping 
them in an arbitrary way. For example, whatever the sets A, B, C and D are, it can be 
checked, possibly using the Euler-Venn diagrams, that the following equalities hold: 

A ∪ (B ∪ (C ∪ D)) = (B ∪ (D ∪ C)) ∪ A = ((D ∪ C) ∪ B) ∪ A 

Therefore, the calculation of the union of the sets A, B, C and D, can be performed 
by grouping the sets in an arbitrary way denoted A ∪ B ∪ C ∪ D. 
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Chapter 2 
Numbers and Propositions 

2.1 The Natural Numbers 

From early childhood we learned to count, 1, 2, 3, 4, 5, …, with and without fingers. 
Who left his country as a child and had to move to a country where another language 
was spoken, now thinks and speaks in this one, but continues to count in the language 
of childhood. 

These numbers, so persistent from the first learning, are called natural numbers 
and, taken together, they form the set of natural numbers, in fact. Therefore, we 
denote with 

N = {1, 2, 3, 4, 5, . . .} 

the set of natural numbers. 
When we count we not only call natural numbers by name, but we say them in a 

precise order and by this we mean: the number 1 precedes 2; 1 and 2 precede 3; 1, 
2, 3 precede the number 4, and so on. The number 1 is not preceded by any natural 
number. 

The fact that the natural number m precedes n means that m is smaller than n. If  
m is smaller than n, we write m < n and read “m is less than n”. This also means that 
n follows m, i. e.,  n is larger than m, and we write n > m, which reads “n is greater 
than m”. 

We assume that the natural number n > 1 follows the numbers 1, 2, 3, 4, 5, …, n 
− 1. 

If the natural number m does not follow n, then one of two cases occurs: 

1. m precedes n, m < n; 
2. m is equal to n, m = n. 

The notation m ≤ n includes both cases and reads “m is less than or equal to n”.
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8 2 Numbers and Propositions

The natural numbers can be added and multiplied with each other and the result 
of the addition or multiplication of two natural numbers, whatever they are, it is still 
a natural number. 

The number 0, zero, is not a natural number. The symbol N0 denotes the set {0, 
1, 2, 3, 4, 5, …}: 

N0 = {0, 1, 2, 3, 4, 5, . . .}. 

A natural number n is said to be a multiple of the natural number m if n is equal 
to the product of m by a natural number q; then we write n = m × q, or  n = mq. For  
example, 51 is a multiple of 3 because 51 = 3 × 17. So, if n = 51 and m = 3, then q 
= 17. Of course, 51 is also a multiple of 17. If n is a multiple of m, then we say that 
n is divisible by m, or  m is a submultiple, or  divisor of n, or  m divides n. The number 
17 is a divisor of 51. 

The numbers of N0 multiples of 2 are called even numbers; those that are not 
multiples of 2 are called odd numbers. Zero is even. 

Let us now consider the natural numbers n and m and let m ≤ n. Then it is always 
possible to find a natural number q and a number r of the set N0, such that the two 
conditions are met: 

(1) r < m; 
(2) the number n is equal to the sum of a multiple of m, mq, plus the number r: 

n = mq + r 

For example, if n = 38 and m = 5, conditions (1) and (2) are verified by the numbers 
q = 7 and r = 3. Indeed, 38 = 5 × 7 + 3. 

The procedure described is called the Euclidean division of n by m, and the 
numbers q and r are called the quotient and the remainder of the Euclidean division, 
respectively. Euclidean division is known also as division with remainder. 

If n is a multiple of m, then the remainder of the Euclidean division is 0, indeed 
n = m × q. For example, 51 = 3 × 17 + 0. 

If we perform the Euclidean division of 52 by 3, we obtain the quotient 17 and the 
remainder 1, i. e., 52 = 3 × 17 + 1. This equality tells us that 52 is not a multiple of 
3, but it is equal to a multiple of 3 plus 1. The number 28 is also equal to a multiple 
of  3 plus 1, i. e.,  28  = 3 × 9 + 1, while we obtain 53 adding 2 to a multiple of 3 and 
the same goes for 29, indeed 53 = 3 × 17 + 2 and 29 = 3 × 9 + 2. 

The remainder of the Euclidean division of the natural number n by 3 is a number 
r that cannot take other values than 0, or 1, or 2. Then in the set N of natural numbers 
there are: 

(a) the multiples of 3. The division by 3 of every number that is multiple of 3 has 
remainder 0; 

(b) the numbers which are the sum of a multiple of 3 plus 1; 
(c) the numbers which are the sum of a multiple of 3 plus 2;
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and there are no natural numbers greater than 2 that do not satisfy one of the conditions 
(a), (b), (c). 

Therefore, the following subsets are defined: 

{3, 6, 9, 12, . . .  ,  3q, . . .} 
{4, 7, 10, 13, . . .  ,  3q + 1, . . .} 
{5, 8, 11, 14, . . .  ,  3q + 2, . . .} 

q being a natural number. 
Let us join the number 0 to the first subset and get a subset we call remainder 

class [0]; let us join the number 1 to the second subset and we get a subset that we 
call remainder class [1]; let us join the number 2 to the third subset and we get a 
subset that we call remainder class [2]. The union of the three classes is equal to the 
set N0. 

Therefore, N0 = [0] ∪ [1] ∪ [2] and the intersection of any two different classes 
of the three is the empty set, i. e., the classes [0], [1] and [2] are two by two disjoint 
(Sect. 1.2). 

2.1.1 Counting Problems 

Nail stuff. A problem to be solved with natural numbers 

Ms. Julia has to solve a problem concerning ten sacks, placed in a row next to each 
other and full of nails: there is a first sack, a second, a third, and so on. Julia knows that 
each sack contains nails of the same weight: nine sacks contain only nails weighing 
ten grams each and one sack contains only nails of nine grams: Julia has to individuate 
this sack. 

To solve the problem Julia has at her disposal a scale with which she can carry out 
only one weighing, then she must be able to identify the sack containing nine-gram 
nails. 

Julia tries to clean up the problem of contingent data. Then she numbers the sacks: 
S1, S2, …, S10. Therefore, each sack is identified by its numbered position. Free to 
weigh nails in the quantity she deems appropriate, Julia has an intuition. She takes 
one nail from the sack S1, two nails from the sack S2, three from S3, …,  i nails from 
Si, and so on, and finally from the sack S10 she takes ten nails. 

Julia collects all these nails in a handful and weighs them. Well, if the sack with 
the nine-gram nails is S7, then, in the handful of selected nails, the nine-gram nails 
weigh 9 × 7 = 63 g, while the ten-gram nails, which are in number of 1 + 2 + 3 + 
4 + 5 + 6 + 8 + 9 + 10 = 48, weigh 480 g. So, the weight of the whole handful 
of nails is 480 + 63 = 543 g. Since the handful will always consist of 1 + 2 + 3 + 
4 + 5 + 6 + 7 + 8 + 9 + 10 = 55 nails, it is not difficult, at this point, to find the 
sack of nails of nine grams, which is the sack Si, such that
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(55 − i )10 + 9i = 550 − 10i + 9i = 550 − i 

Then, the number i of grams missing to 550 is the number of the sack with 
nine-gram nails. If the handful weighs 543, then i = 7. 

Baby Gauss counts 

Another intelligent count, most famous, was made by Gauss. Carl Friedrich Gauss 
(1777–1855) was the greatest mathematician of his time. As a child he attended 
the Braunschweig school. One day, Carl was ten years old, the teacher assigned an 
exercise to the class, planning to keep it busy for quite a while: adding all the natural 
numbers from one to one hundred. The teacher asked each to write the result on 
their own slate to place on the table as soon as he had finished the calculation. Soon 
after, Carl handed over the slate saying “That’s it”, while the other students diligently 
scrambled to do the calculation. 

When everyone had finished, the master examined the results and found that 
Gauss’s slate was the only one that presented the exact result, 5050. How did he do 
it? 

He performed the sum 1 + 2 + 3 + ··· + 98 + 99 + 100 by observing that the 
sum of the two extreme addends and the sum of two addends equidistant from the 
extremes is always 101: 

1 + 100 = 2 + 99 = 3 + 98 = . . .  = 50 + 51 = 101 

Then the sum of the natural numbers from one to one hundred is 50 times 101, 
that is 50 times 100 plus 50 times 1, just 5050. 

We will see that, whatever the natural number n is, the sum of the natural numbers 
not greater than n is equal to the half of n(n + 1). 

2.2 Prime Numbers 

Recall (Sect. 2.1) that if a, b and c are natural numbers and 

c = a × b (2.1) 

a, b are factors, or  divisors of c. The right-hand side of (2.1) is said to be a  factorization 
of c, and c is factorized into a × b. The following equalities provide examples of 
factorizations: 

6 = 2 × 3, 9 = 3 × 3, 30 = 2 × 15, 30 = 3 × 10, 51 = 1 × 51, 
51 = 3 × 17, 108 = 2 × 2 × 3 × 3 × 3, 210 = 2 × 3 × 5 × 7
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Every natural number c has the factorization c = 1 × c, called trivial factorization. 
Among the examples above there is only one trivial factorization, 51 = 1 × 51. Each 
of the other factorizations is a product of two or more smaller factors than the factored 
number. If the natural number c distinct from 1 has a non-trivial factorization, then 
c is called a composite natural number. If the natural number c different from 1 has 
only the trivial factorization, i. e., c is divisible only by itself and by 1, then c is called 
prime number. As a result, 1 is not a prime number. The prime numbers less than 
200 are: 

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 
53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 

101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 
151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 

The only even prime number is 2. Since 1 is not a prime number, the factorization 
of a natural number into prime factors is unique. 

It is the case to know better the prime numbers. Let us consider a prime number p 
greater than 2. Then the number p + 1 is not a prime number because p is odd and p 
+ 1 is even, i. e., divisible by 2. We now add 1 to the product of two, or more, prime 
numbers, for instance, 

2 × 3 × 5 + 1 = 31 
3 × 5 + 1 = 16 = 2 × 2 × 2 × 2 

We observe that 31 is a prime number while 16 is not a prime number and 3 and 
5 are not factors of 16. Again, 

2 × 23 + 1 = 47 
7 × 13 + 1 = 92 = 2 × 2 × 23 

The number 47 is a prime number while 92 is not a prime number and 7 and 13 
are not factors of 92. These observations give rise to an important property of the 
prime numbers, proved by Euclid: there exist infinitely many prime numbers. Euclid 
made this reasoning. Suppose we know a certain list of k prime numbers: 

p1, p2, p3, . . . ,  pk 

Let us consider the number q = p1 × p2 × … × pk + 1, which is obtained by 
adding 1 to the product p1 × p2 × … × pk . Each number p1, p2, p3, …,  pk is not 
a divisor of q, so either q is a prime number or q has a prime divisor different from 
each of the numbers p1, p2, p3, …,  pk . In any case, there exists a prime number other 
than p1, p2, p3, …,  pk and this prime number is either q or a divisor of it. In other 
words, it has been shown that at least one additional prime number not in the known 
list exists.
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2.2.1 Codes and Decoding 

Codes used to protect military or industrial secrets are based on systems that are 
inviolable in practice, even if not in principle. One of the systems consists in using 
operations that are simple to perform in one direction, but very difficult in the reverse. 

Consider, for instance, two very large prime numbers, each made up of hundreds 
of digits, if we want the product of them a computer will multiply them in less than 
a second. 

But if we give the computer the product of two unknown prime numbers and ask 
to find its prime factors, then the fastest computer could take years to give us the 
answer. Let us consider an example of coding (Barrow 2002). 

Suppose I want to send Larry a secret message. My way of coding it is to put it 
in a briefcase and close it with a padlock. 

The decoding corresponds to the opening of the padlock. Of course, when Larry 
receives the briefcase, he will need the key of the padlock to open it. But I cannot 
also send the key to Larry and thus risk that “the enemy” takes possession of the 
message. 

How to do? 

Let us activate a sequence of actions: 

First step. I put the message in the briefcase, I lock it with the padlock and keep the 
key with me. Then I send the closed case to Larry. 

Comment. Larry receives the briefcase, but he cannot open the lock and take the 
message. 

Second step. Larry closes the briefcase with another padlock and keeps the key with 
him. Larry sends the briefcase back to me. 

Comment. The briefcase is now closed by two padlocks and nobody can take the 
message. 

Third step. I use my key to open my lock, I remove it and keep it with me and I send 
the briefcase back to Larry. 

Comment. The only lock on the briefcase belongs to Larry, who has the key. 

Fourth step. Larry removes his lock from the briefcase and he can take the message. 

Comment. Neither of us, neither Larry nor I, needed the other’s key. 

Let’s move on to a “symbolic” encoding and decoding: we use numbers as keys. I 
transform my message into a many-digit number (or numeric string) S and multiply 
it by my many-digit secret prime number p, which is my key, thus obtaining the 
product Sp. I transmit Sp to Larry who multiply by its key, its secret prime number 
q, to get the new number Spq. Larry sends me Spq, a number which I divide by p 
(known to me), obtaining Sq which I send to Larry. He divides the number Sq by 
q (known to him) and gets S, which is my message. I never need to know q and
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Larry doesn’t need to know p. If some ill-intentioned guy gets in the way and wants 
to decipher the message, he will have to factorize into prime factors numbers with 
many digits, operations that are burdensome or impractical. 

Remark 2.1 Encoding information, in order to make it incomprehensible, uses prime 
numbers. Applications include pay-TV decoders, internet transactions, money move-
ments, etc. One might think that with the evolution of computers it will be more and 
more simple to break these protections. But that’s not the case: the magnitudes of 
the numbers involved will increase. It is recent the discovery of a "monster" prime 
number of 17,425,170 digits (www.isthe.com/chongo/tech/math/digit/m57885161/ 
huge-prime-c.html. To download this number 25 Mb are needed). Euclid’s property 
(Sect. 2.2) assures us that there are even more large primes. 

2.3 Integer Numbers 

Starting from the set N0, the  set  Z of integer numbers, called also integers, or  relative 
integers, is defined, whose elements are the negative integers, zero, the positive 
integers: 

Z = {. . . ,  −3, −2, −1, 0, 1, 2, 3, . . .} 

In the set Z we find the elements of N, but also other elements which are the 
negative integers and the zero: it is said that Z is an extension of both N and N0. N0 
is called the set of non-negative integers. The result of the subtraction of an integer 
n from an integer m, even when m is smaller than n, is still an integer. 

For example, 

7 − 5 = 2 
5 − 7 = −2 

6 − 6 = 0 

2.4 Rational Numbers 

We have seen (Sect. 2.1) that the Euclidean division of the natural number n by the 
natural number m is an operation that gives rise to a quotient q and a reminder less 
than m such that n = mq + r. If  r = 0, then m is a factor of n and the number q, 
the quotient, tells us by which natural number we need to multiply m to get n; as we  
say “the number of times m enters n”. And so the 3 enters 9 times the 27, while the 
3 enters 9 times the 28, but with the remainder of 1. The number n – r  is a multiple

http://www.isthe.com/chongo/tech/math/digit/m57885161/huge-prime-c.html
http://www.isthe.com/chongo/tech/math/digit/m57885161/huge-prime-c.html
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of m, in fact, n – r  = mq; therefore n – r  results divided into q equal parts, each of 
which is worth m. If we do not want to remain undivided r of the n units that form 
the number n, we must introduce the existence of other numbers that are not integers. 
For instance, the quotient of the division 27: 3 is worth 9, while the quotient of 28: 
3 is worth more than 9, but less than 10. Are there numbers between 9 and 10? Or 
can we define numbers between 9 and 10? And, if so, how to define the number q, 
the quotient of the division 28: 3, such that 28 = 3q? 

If we want to introduce the possibility of performing the division n:m of two 
integers n and m, with zero remainder, whatever they are, with m different from zero, 
we must extend the set of integers Z. 

A rational number is defined by a fraction: 

n 

m 

with n and m integers and m /= 0. The fraction is called a fractional representation 
of the rational number. 

Hence the rational number q such that 28 = 3q is identified with the fraction 28 3 . 
The number n is called numerator, the number m denominator. The set of rational 
numbers is denoted Q. The fractional representation n 

m of the rational number is 
not unique: let p be any non-null integer, the fractions n m and 

pn 
pm represent the same 

rational number. For example, fractions 2 5 and 
4 
10 represent the same rational number. 

A fraction whose numerator and denominator have no common integer factors, 
other than 1 or –1, is said to be simplified or irreducible or reduced to lowest terms. 
For example, the fractions − 2 

5 and 
2 
5 are irreducible. 

Positive rational numbers are represented by fractions having numerator and 
denominator of the same sign (i. e., both positive or both negative); negative rational 
numbers are represented by fractions having the numerator and denominator of 
opposite signs. Fractions with null numerator represent zero. 

Sometimes it will be appropriate to define the fractional representation n m with 
integer n and natural m, so that the sign of the fraction depends on the sign of the 
numerator. 

A fraction with denominator equal to 1 is identified with its numerator: therefore, 
the integers are particular rational numbers. 

Therefore: the set of rational numbers contains the set of integers and the set of 
integers contains the set of natural numbers. 

The decimal representation of a fractional number n m is the quotient of the division 
n:m with n, m integers, and m /= 0. 

The decimal representation of the number − n m is obtained by the decimal repre-
sentation of fractional number n m preceded by the minus sign. The quotient of the 
decimal representation of the fractional number 5 4 , that means 5:4, is 1.25 because 
5 = 4 × 1.25. 

Let us set:
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Fig. 2.1 The cake divided 
into 5 slices and one smaller 
slice 

5 

4 
= 1.25 

which is a division with zero remainder. 

A way for cutting a cake 

We have a cake that weighs one kilogram and 600 g, or 16 hectograms. There are 
also 5 greedy diners. If we cut the cake into 5 slices of 3 hectograms each, a smaller 
slice of 1 hectogram remains. 

If the diners want nothing left, the remainder of 1 hectogram must be divided into 
five parts, five small slices of 20 g to each cake lover. Therefore, 16 = 5 × 3.20 and 
the division without the remainder gives the result 16 : 5 = 3.20, that is a rational 
quotient (Fig. 2.1). 

Examples 1 
2 = 1 : 2 = 0.5 −5 

4 = −5 : 4 = −1.25 
18 
6 = 18 : 6 = 3 5 

8 = 0.625 
1 

1000000 = 1 : 1000000 = 0.000001 
1 
3 = 0.3333 . . .  723844 99900 = 723844 : 99900 = 

7.24568568568 . . .  

In the last two examples the division does not stop, in the sense that some digits 
after the dot, that are the decimals, are repeated indefinitely. On a closer inspection, 
this circumstance is also true in the other examples, if we agree to add zeros. For 
example, 

5 

8 
= 0.6250000 . . .  

2.4.1 Representations of Rational Numbers 

We have dealt with the fractional representation and decimal representation of 
rational numbers: by performing the division n m we get the decimal representation 
of the rational number n m



16 2 Numbers and Propositions

n 

m 
= p.c1c2c3 . . .  

that is a decimal alignment made of an integer number p, which is called the integer 
part, followed by a dot and some digits which form the decimal part. 

In the decimal representation of a rational number a set of digits, called period, 
repeats indefinitely in the decimal part. Such an alignment which is generated by a 
fraction is called a recurring decimal and provides the decimal representation of a 
rational number. Observe that the decimal representation of a rational number may 
include some digits in the decimal part, between the dot and the period, that form the 
anti-period (see the number 7.24568568568… among the examples above, where 
the anti-period is 24 and the period is 568); in the decimal representation the period 
is marked by a bar. For example, 7.24568568568… = 7.24568 and 0.333…. = 0.3. 

If the period consists of the only digit 0, it is left out; for example, instead of − 
5.480 we write −5.48. Of course, 6.0= 6. 

It is always possible to carry out the passage from any decimal alignment to its 
fractional expression: the procedure is performed as illustrated by the example: 

7.24568 = 
724568 − 724 

99900
= 

723844 

99900 

where the denominator is the integer number formed by as many nines as there are 
digits of the period followed by as many zeros as there are digits of the anti-period. 

Let us observe that in the passage from fractional to decimal representation of a 
rational number not all possible decimal alignments are obtained: indeed, alignments 
whose recurring part is the single digit 9 are excluded. 

For example, there is no fraction from which we get the decimal alignment 7.569. 
It is assumed to identify 7.569 with 7.570. In general, each decimal alignment with 
period 9 is identified with the alignment obtained by replacing the period 9 with zero 
and increasing by one unit the last digit preceding it. For example, 1 is identified 
with 0.9. 

2.4.2 The Numeration 

In the ancient world, small objects or balls were used to count animals returned to 
the stable or those to be sold at the market. The ancient Romans and the Greeks had 
systems of representing numbers different from ours. The Romans used base five 
numbering (they counted on the fingers of one hand); our usual numbering system 
is in base ten. 

Another system uses the base twenty; we see traces of it in the French idiom in 
which eighty is said quatre-vingt and seventy and ninety are rendered with compound 
words, soixante-dix and quatre-vingt-dix, respectively. The Mesopotamians were 
interested in astronomy and used sexagesimal notation, that is, they represented
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numbers in the base sixty, which is still useful today in dividing time and calculating 
with angles. What is the advantage of the sexagesimal system? The Mesopotamians, 
and not only them, were convinced by the fact that the number 60 is relatively small 
and has a large number of divisors, which comes in handy in measuring time and in 
astronomy. (The day is divided into 24 h and the hours into 60 min.) 

Let us mention also the dozen and the gross, i. e., twelve dozens. 
The bases two and sixteen numbering systems find applications in computer 

science. 
If we had eight fingers, we would have found it natural to use the number eight 

as the basis of the numbering system. In this system, only eight distinct symbols are 
needed, 0, 1, 2, 3, 4, 5, 6, 7, to be attributed to each non-negative integer not greater 
than seven. To designate the number eight we write 10, a symbol that indicates a 
group of eight elements plus zero units. Then 11 means a group of eight plus one, 
that is nine, 12 means ten, and so on. In this system where eight is the base, 100 
means eight times eight, or sixty-four, 1000 means eight times eight times eight, or 
five hundred and twelve (Adler 1961). 

In short, the number has its own “personality” independent of the way of 
representing it. 

2.5 The Real Numbers 

There are other numbers. We refer to the set R of real numbers, which contains all the 
previous numerical sets, natural, integer, rational numbers, but also other numbers, 
called irrational numbers, because they cannot be expressed as fractions but are 
decimal non periodical numbers. 

For example, the famous number pi, π = 3.14159…, the ratio of the circumference 
to its diameter is an irrational number. This number cannot be put in the form of a 
fraction. But what does it mean that π is an irrational number? Well, a stretch of 
road 57 m long can be measured by placing the meter consecutively 57 times. We 
can measure a stretch of road 23.5 m long in the same way, but after counting 23 m 
there remains a piece that is measured by half a meter. 

Again, a straight segment measures 8.564 m: it means that 8 full meters are needed 
to measure the segment, but it is not enough, the part of the segment that remains is 
measured placing one thousandth of a meter and reporting it 564 times. But you can 
proceed differently: taking the millimeter and placing it 8564 times consecutively: 
now the same number 8.564 has been thought in the form 8564 1000 . Beyond the physical 
fatigue which emerges at the mere thought of performing these measurements, a 
conceptual fact stands: after a finite number of times in which you have placed 
consecutively the millimeter you come to know the precise measurement of the 
segment. In the same way you measure a segment of 7.358243 m, but now you have 
to connect 7,358,243 times the millionth part of the meter. It is always a finite number 
of times.
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Fig. 2.2 Rectification of a circumference 

Let us now consider the circumference which has the length of one meter and 
imagine to rectify it, which means: 

(a) cut it; 
(b) let’s take it for the two ends; 
(c) spread it on the straight line, as if it were a string (Fig. 2.2). 

There is no segment, no matter how small, whose length is a submultiple of 1 
(meter), which can be juxtaposed consecutively a finite and integer number (even very 
high) of times on the whole circumference and a finite and integer number of times on 
its diameter. Irrational numbers are generated when we measure incommensurable 
magnitudes, which do not have a common submultiple. The circumference and its 
diameter are incommensurable magnitudes. 

Homogeneous magnitudes 

We can compare two segments by establishing whether they have the same length 
or one is greater than the other; moreover, addition and subtraction operations can 
be defined between segments. The same can be said with regard to the angles, using 
their amplitudes, and polygons, with regard to their extensions. We will then say that 
the set of segments, as well as the set of angles and the set of polygons, are sets of 
homogeneous magnitudes. 

Postulate of Eudoxus-Archimedes. Given two homogeneous magnitudes A and B, 
there exists a non-negative integer m such that the multiple mA of A is greater than 
B. 

The postulate of Eudoxus-Archimedes also involves numerical magnitudes, such 
as the real numbers. In this case the postulate means that no matter how large the 
positive real number a is and no matter how small the positive number b is, successive 
repetitions of b will eventually exceed a. 

2.5.1 Density 

Between two distinct rational numbers there exists a rational number distinct from 
the first two and also an irrational number is there. In other words, taking any two 
distinct rational numbers x, y, with x < y, there exists a rational number z and an
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irrational number w, such that x < z < y and x < w < y. We can deduce that between 
two distinct rational numbers there are infinite rational numbers and infinite irrational 
numbers. For this reason, the set of rational numbers and the set of irrational numbers 
are said to be  dense in the set of real numbers. 

2.5.2 Closure of a Set with Respect to an Operations 

We know that the sum of two natural numbers is a natural number. Then, we say that 
the set of natural numbers is closed with respect to the operation of addition. The 
set of relative integers is closed with respect to addition, but it is also closed with 
respect to subtraction since subtracting an integer from another results in an integer. 
And so the set of rational numbers is closed with respect to addition, subtraction, 
multiplication. The set {−1, 1} is closed with respect to multiplication, but not with 
respect to addition. 

2.6 Abbreviated Notations 

We have introduced (Chap. 1) some abbreviated notations, sometimes useful in 
formulating mathematical concepts. Some other notation, or symbol, which we define 
below, may help us: 

the symbol ∀ means for any, whatever they are 
the symbol ∃ means there is at least one, exists a 
the symbol : means such that 

For example, the proposition: “for every real number x, there exists a real number y 
which is greater than x” may be written, using these symbols, and the membership 
symbol ∈ , introduced in Chap. 1: 

∀x ∈ R, ∃y ∈ R : y > x 

We stress that the use of these symbols simply allows us to report some concepts 
in shorthand form. 

2.6.1 There is at Least One ... 

When we say “there is a student who is 18 in this classroom” we mean that there is 
at least one student who is 18 and so there can be several students who are 18 in the



20 2 Numbers and Propositions

classroom. If, on the other hand, we want to express the fact that there is an 18-year-
old student in the classroom and there are no other students of this age, we must say 
“there is an 18-year-old student in the classroom and this student is unique”, or “in 
the classroom there is exactly one student who is 18”, or “in the classroom there is 
one and only one student who is 18”. In short, in everyday language we sometimes 
say “one” instead of “exactly one”. 

2.7 The Implication 

We came across some examples of “mathematical reasoning”, for example, in (Sects. 
2.1.1, 2.2 and 2.2.1). We want to see how a mathematical reasoning develops. 

2.7.1 Implication and Logical Equivalence 

Among the concepts introduced so far, we mention the union of sets, the intersection, 
the complement, the numbers. We have given the definitions on which to reason, make 
observations, find further properties, which are expressed by propositions, such as 
the one seen above, “for every real number x, there exists a real number y greater 
than x”. Propositions are the elements of reasoning. 

A proposition (or assertion, affirmation, statement) is an expression of the 
language for which one can decide whether it is true or false. 

For example, the expressions: 

“Archimedes is a mathematician of the third century B.C.” 
“The whale is a reptile” 
“Man is mortal” 

are propositions. The first expression is a true proposition, the second expression is 
a false proposition. While the expressions: “What time is it?”, “Hi, Becky!” are not 
propositions. 

What is meant by “reasoning” in mathematics? In this regard, we illustrate the 
process that leads to the deduction of a proposition from another and we describe 
the fundamental construction that animates mathematics: the theorem. 

The deductive process consists in giving rise to a statement, a proposition, from 
another; in finding a property, starting from other known properties, to which it 
is coherently, rationally, connected. This activity is essential to the mathematical 
method. 

Let us start by introducing two symbols that are linked precisely to the deductive 
process. The symbol ⇒ called the implication symbol, means “implies”. If from 
proposition P it follows, we deduce, proposition Q, then we write P ⇒ Q. 

Example 2.1 Let us consider the two propositions



2.7 The Implication 21

P = the battery is flat 
Q = the phone does not work 

If we use the implication symbol, and write P ⇒ Q, we mean that the proposition 
“the battery is flat” implies the proposition “the phone does not work”. The impli-
cation P ⇒ Q also reads "if P, then Q", if the battery is flat, then the phone does not 
work. 

Let’s talk now about the ⇔ symbol. It, placed between two propositions, indicates 
that from the first we deduce the second, and, moreover, from this we deduce the 
first. The symbol ⇔ expresses the logical equivalence of two propositions and it is 
called the symbol of double implication. 

Example 2.2 It is true that (we will realize this shortly) if a nonnegative integer 
number n is even, then its square n2 is even, but (and we will soon realize this) the 
vice versa also holds: if n2 is even, then n is even. Hence the logical equivalence of 
the two propositions, and this means: 

n is even ⇒ n2 is even and n2 is even ⇒ n is even 

and, therefore, 

n is even ⇔ n2 is even, 

which reads: n is even if and only if n2 is even. 
Coming back to the example of the phone, we cannot say that Q ⇒ P, i. e., if the 

phone does not work then the battery is flat, because there are various causes of a 
phone malfunction. 

Therefore, we cannot affirm the logical equivalence of the two propositions, that 
is, it is not true that P ⇔ Q. 

Given two generic propositions P and Q, the implication P ⇒ Q is a proposition 
because it is an expression of the language for which one can decide whether it is true 
or false. In the case that P = “the battery is flat”, Q = “the phone does not work” the 
implication P ⇒ Q is a true proposition; the implication Q ⇒ P is still a proposition, 
but false. 

Another example about the implication. 

Example 2.3 It is night, it is pitch-dark. Two cars proceed along a street on opposite 
lanes, one towards the other, with their headlights on. The cars are not immediately 
close, they are, for now, about half a mile far. Each driver sees nothing but the lights 
of the car in front of him and a bit of the road. So, the cars proceed towards each 
other and each sees the headlights of the other approaching. Can we deduce that the 
stretch of road that separates the two cars is straight? No. It may be that the stretch 
of road contains a curve (Fig. 2.3).
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Fig. 2.3 Cars in the night 

2.7.2 The Theorem 

We have seen that implication, as well as double implication, establish a transition 
from a proposition to another: from a given proposition P one reaches proposition 
Q. 

Again, it seems obvious to admit that if a proposition implies a second and 
this implies a third, then the first proposition implies the third. Let’s say that the 
implication between propositions is transitive. 

For example, the proposition P1 = “it’s raining” implies the proposition P2 = “the 
streets are wet”. In turn, proposition P2 implies proposition P3 = “whoever walks on 
the street gets his/her own shoes wet”. From these two implications we deduce, for 
transitivity, the third “if it is raining, then whoever walks on the street gets his shoes 
wet” 

Summing up : if P1 ⇒ P2and P2 ⇒ P3, then P1 ⇒ P3. 

A theorem connects a proposition P with a proposition Q by means of a chain of 
implications: P ⇒ P1 ⇒ P2 ⇒ P3 ⇒ … ⇒ Pn ⇒ Q. 

The proposition P is called the hypothesis of the theorem, Q the thesis, the chain 
of intermediate implications constitutes the proof of the theorem; building this chain 
means to prove the theorem. Since the implication is transitive Q is deduced from P, 
and P and Q are therefore related by the implication P ⇒ Q. The implication P ⇒ Q 
is a proposition called the statement of the theorem. 

In Sect. 2.2 we showed the proof of the theorem of existence of infinite prime 
numbers. 

We need to look closely at a new theorem to recognize its parts and the formal 
setting. In the previous Example 2.2 we find the statement of a theorem (which we 
will prove): “n is even” ⇒ “n2 is even”, having supposed that n is an element of N0, 
i. e., the set of nonnegative integers. 

Let n and k be elements of N0. Recall (Sect. 2.1) that an even number n has the 
form n = 2 k, and an odd number n has the form n = 2 k + 1. 

We now exhibit the statement and the proof of the following. 

Theorem 2.1 If n is an even element of N0, then n
2 is even. 

Proof If n is even, then n = 2k, being k a nonnegative integer.
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The square of n is 

n2 = (2k)2 = 4k2 = 2
(
2k2

)

which is an even natural number. 
So, we have built the chain that links the hypothesis and the thesis and the proof 

ends. �
(The symbol � indicates the end of the proof.) 

Remark 2.2 Add 1 to an even number we get an odd number and adding 1 to an odd 
number we get an even number. The addition of a unit to an integer alters its parity, 
i. e., the property of the number of being even or odd. 

We now prove the following. 

Theorem 2.2 If n is an odd element of N0, then n
2 is odd. 

Proof If n is odd, then n = 2k + 1, being k a nonnegative integer. The square of n is 

n2 = (2k + 1)2 = 4k2 + 4k + 1 = 2
(
2k2 + 2k

) + 1 

which is an odd number. �

Remark 2.3 The word “hypothesis” exists in Greek and Latin languages. While 
in classical Greek “hypothesis” is the foundation, the base, in Latin it is the topic 
of a speech or a judicial discussion, in short, something to discuss or questionable. 
Today’s current language uses the word in a sense close to the Latin meaning. In 
short, the hypothesis is a possibility, it must be verified, it is subjective, it is not a 
certainty. In the mathematical language the hypothesis retains the meaning of the 
“foundation of the reasoning”, which it has in Greek. 

Before returning to Theorems 2.1 and 2.2, let’s add some considerations on 
theorem proving techniques. If P is a proposition, the symbol nonP denotes the 
proposition which is the negation of the proposition P, i. e., the proposition “it is not 
true that P”. For example, if P = “the battery is flat”, then nonP = “it is not true that 
the battery is flat”. 

Not always, in order to prove a theorem we will build a chain of implications: P 
⇒ P1 ⇒ P2 ⇒P3 ⇒ … ⇒Pn ⇒Q, that from the hypothesis P leads to the thesis Q. 

Sometimes we will use a different technique to prove a theorem: we build a chain 
that has as hypothesis the initial hypothesis P and, in addition, the negation of the 
thesis, nonQ. With the new hypothesis, i. e., the proposition P and nonQ, a new chain 
starts. 

If at some point in this new chain of reasoning we yield a proposition that contra-
dicts the initial hypothesis P, then we must deny the negation of the thesis: therefore, 
it is not true that Q is not true, non(nonQ) = Q, and the thesis Q is true, i. e., it is 
achieved as the last link in the chain.
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We have described an indirect way of proving a theorem, named proof by contra-
diction, or  reductio ad absurdum. The absurdity consists in the coexistence of a 
proposition and its negation. 

We have so far acquired two techniques of proving: the direct proof method and 
the proof by contradiction. 

2.7.3 Tertium Non Datur 

The proof by contradiction ends with “it is not true that Q is not true “, non(nonQ), 
which means, without a shadow of doubt, “Q is true”. The conclusion, two nega-
tions claim, is reasonable. It is a principle that we accept. The method of proof by 
contradiction was loved by the ancient Greeks. In fact, Aristotelian logic has among 
its cornerstones the principle that only one of the two propositions Q, nonQ is true; 
in other words, a proposition can only take one and only one of the two states: true, 
false. Tertium non datur, the third is excluded, the Aristotelian logicians say. 

In the course of the twentieth century, for a more realistic description of the 
phenomena of physical reality, and also for theoretical reasons, alongside the true 
and false states it was supposed that a proposition can also have an indeterminate 
state, undecidable, uncertain, may it be neither true nor false. Theories of probability, 
quantum mechanics and other theories related to imprecision and uncertainty have 
been developed. 

These studies, which are fueled by the needs of efficient communication and 
language adaptation, seem to be in contrast with what we have built up to now. In 
reality these studies, in their variety, are dealt with as mathematical procedures. 

We attribute the value 1 to the “true” state of a proposition and the value 0 to the 
“false” state. To the “indeterminate” or “uncertain” state of a proposition we attribute 
a degree of indeterminateness or uncertainty that can be a value between 0 and 1. 
These values are called truth values of the propositions. For example, the truth value 
of the proposition “man is mortal” is 1; the truth value of the proposition “the whale 
is a reptile” is 0. If I have to predict the outcome of the toss of a coin, I don’t want 
to commit myself, and then I say that the truth value of the proposition “At the next 
launch heads will come out” is probably 0.5. 

We can assign truth value to the description of a phenomenon because the descrip-
tion can be more or less clear. An object can satisfy a property to a certain extent: 
what is the borderline that makes us to distinguish the tree from the shrub? 

A motivation for the progress of studies about uncertainty is due to the 
development of complex systems; indeed, 

…as the complexity of a system increases, our ability to make precise and yet significant 
statements about its behavior diminishes until a threshold is reached beyond which precision 
and significance (or relevance) become almost mutually exclusive characteristics (Zadeh 
1973)
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Among the highly complex systems let’s mention human systems, real world 
societies, political and economic systems. 

The theories of probability, fuzzy logic (Zadeh 1965; Kosko  1993) are among 
the subjects which provide methods and techniques for describing and looking into 
complex systems. 

2.7.4 Proofs in Science 

Pythagoras and his school studied and demonstrated important links between nature 
and numbers and between forms and numbers, but the Pythagorean theorem is the 
most important result of the thought of that school because it offers us an equality 
valid for all triangles rectangles; indeed, it defines the right angle. 

From the right angle arises the definition of perpendicular line, the passage to 
dimension two and therefore to dimension three. The right angle is the basis of 
understanding the space in which we live. The statement of the Pythagorean theorem 
is relatively simple. Take a right triangle, that is a triangle with a right angle, measure 
the two shorter sides that form the right angle, the catheti; let  a and b be the lengths 
of the catheti, take the squares a2 and b2, add them, a2 + b2. Well, the length c of the 
third side, the hypothenuse, satisfies the equality a2 + b2 = c2 that is true for all right 
triangles. The Pythagorean theorem is a universal law that you can rely on whenever 
you come across a right triangle. Figure 2.4 represents a right triangle with catheti a 
= 3 and b = 4 and hypothenuse c = 5. 

The concept of mathematical proof is stronger than that of proof in everyday 
life. Proofs are fundamental for law, physics, chemistry, natural sciences. In these

Fig. 2.4 a2 + b2 = c2 
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sciences a hypothesis is put forward to explain a phenomenon. If the characteristics 
of the phenomenon agree with the hypothesis, this circumstance becomes a clue in 
favor of the hypothesis (Singh 1997). 

Experiments can be performed to verify the predictive power of the hypothesis 
and, if it proves effective again, then there are further clues to support it. In the end, 
the weight of the clues can be overwhelming and the hypothesis is accepted as a 
theory. 

Think a physics theory or a criminal trial. A mathematical proof, as we have said, 
starts from a true proposition or from an axiom, which is a proposition assumed to 
be true; then, after a certain number of steps, we reach the thesis, the conclusion. If 
the starting point, that is the hypothesis, be it a proposition or an axiom, is true, then 
the conclusion is true without any doubt. 

Therefore, two kinds of proofs exist: the mathematical proof and the empirical 
proof of the sciences. But, we observe, they are not comparable, they belong to 
different worlds. Mathematical proof is the discovery of consequences, the proof of 
science is the discovery of causes. The former belongs to the deductive method, the 
latter to the inductive method. 

Science of induction is statistics. The Pythagorean theorem, true from the sixth 
century B.C., will always be true, while the theoretical physicist, Nobel laureate, 
knows that his theory may turn out to be false tomorrow. No emotion. 

2.7.5 Visual Proofs 

Imagination, intuition, often ignite the spark that guides scientific investigation, the 
development of reasoning and the resolution of problems. Hence, the importance of 
the visual element. Let us exhibit some examples (Gowers 2002). 

1. A visual proof of the Pythagorean theorem 
In Fig. 2.5 the squares A, B, C have sides a, b and c, respectively, and, therefore, 
areas a2, b2 and c2. Since a (rigid) movement of the four triangles does not alter 
their areas, and produces no overlap, the area of the part of the large square that 
they do not cover is the same in both diagrams. On the left this area is a2 + b2, 
on the right it is c2. 

Fig. 2.5 a2 + b2 = c2
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Fig. 2.6 The mutilated 
chessboard 

2. The mutilated chessboard 
A chessboard is made up of 64 squares, the chess. With all 32 tiles of the set of 
dominoes, each as big as two adjacent squares, you can exactly cover the whole 
board. Let us remove the two white squares at opposite corners from the board, 
as in Fig. 2.6. 

Question: can the mutilated board be covered by 31 tiles? Just think: each tile occupies 
two chess squares, twice 31 is 62. You could do it. Then take the tiles and arrange 
them to cover the board. 

You are unable to put all the tiles in place to cover the board exactly, even after 
many attempts. You find there are many clues that covering cannot be done. However, 
you cannot be sure that the covering cannot be done: among the thousands of possible 
combinations you may have missed one. 

Why can’t the covering be done? Is it because you do not have enough time to 
solve the problem or does the impossibility arise as a consequence of a specific 
reasoning, i.e., a proof? 

If we proceed with a mathematical method, we entrust to the chain the proof of 
the proposition Q = “the covering cannot be done”. The thesis is established. 

The hypothesis is: P = “we have a mutilated chessboard”. 

Let’s describe the mutilated chessboard: it has 32 black and 30 white squares and 
two contiguous squares do not have the same color. 

Then we have: 

P1 = “30 tiles cover 60 chess, 30 white and 30 black” 
P2 = “two black squares remain uncovered” 
P3 = “two black squares are not adjacent” 
P4 = “the 31st tile cannot cover these two black squares” 

and now we deduce: 

Q = “the covering cannot be done” 

The chain is complete: P ⇒P1 ⇒P2 ⇒P3 ⇒P4 ⇒Q. �

Remark 2.4 The proof of the previous theorem, P (the chessboard is mutilated) ⇒ 
Q (the covering cannot be done), is generalized to mutilated grids n times n, whatever



28 2 Numbers and Propositions

the natural number n is. Therefore, a mutilated grid 1000 ×1000 cannot be covered 
with dominoes. 

Remark 2.5 The theorem proved above asserts that, under a certain hypothesis, 
a certain operation cannot be done. Theorems like this are called impossibility 
theorems. 

2.7.6 The Inverse Theorem 

We will now see that Theorems 2.1 and 2.2 can be inverted and new theorems are 
obtained by interchanging the hypothesis with the thesis. This circumstance does not 
occur for all theorems, because, as we know, if P ⇒ Q, it does not mean that Q ⇒ 
P too. 

Let us prove the inverse of Theorem 2.1. 

Theorem 2.3 If n2 is even, then n is even. 

Proof We prove the theorem by contradiction: we deny the thesis, i. e., we add to the 
hypothesis “n2 is even” the denied thesis “it is not true that n is even”, which implies 
that n is odd. If n is odd, then n2 is odd by Theorem 2.2, against the hypothesis “n2 

is even”: we got a result that contradicts the hypothesis. Therefore, n is even. �

Similarly, it can be proven the following. 

Theorem 2.4 If n2 is odd, then n is odd. 

Proof If n were even, by Theorem 2.1, n2 would be even, contrary to the hypothesis. 
Then n is odd. �

Now let us summarize the statements of Theorems 2.1–2.4 in the following form: 

Theorem 2.5 The element n of N0 is even if and only if its square is even. The 
element n of N0 is odd if and only if its square is odd. 

2.7.7 Irrationality of
√
2 

According to the Pythagorean theorem, given a square with side 1, the square 
constructed on the diagonal must have area 2, because 12 + 12 = 2. Therefore, 
the length d of the diagonal must be a number whose square is 2, d2 = 2. 

We ask ourselves: given the ease of constructing the diagonal, is it reasonable to 
think that, fixed any non-zero segment as the unit of measurement of the lengths, we 
can measure both the side and the diagonal of the square? The answer is: yes, it is
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reasonable to think all of this. However, as we will see, the side and the diagonal of 
a square are not commensurable. 

This means (Sect. 2.5) that there is no a submultiple segment u common to the 
side and the diagonal of the square; i. e., there is no segment that can be arranged 
consecutively an integer number of times n on the side and an integer number of 
times m on the diagonal, such that 1 = nu and

√
2 = mu. 

Passing to the ratios, we will see that it is not true that 

√
2 = 

√
2 

1 
= 

mu 
nu 

= 
m 

n 

Therefore, we prove the. 

Theorem 2.6 If the square of the real number a equals the number 2, then the number 
a is not a rational number. 

Proof Let us prove the theorem by contradiction. Suppose then that a is rational, i. 
e., a is equal to a fraction 

a = 
m 

n 
(2.2) 

(with m and n integers and n distinct from 0) and let the fraction be irreducible. From 
the hypothesis 

a2 = 2 

and from (2.2) we have

(m 
n

)2 = 2 

that implies 

m2 = 2n2 (2.3) 

Then m2 is the double of a positive integer and therefore it is even. By Theorem 2.3, 
m is also even and takes the form m = 2 h, with h integer. By (2.2), we have (2h)2 = 
2n2, i. e.,  4h2 = 2n2, and therefore 2h2 = n2, i. e.,  n2 is even and, by Theorem 2.3, n 
is also even. 

Since m is even, it cannot also be n even since we have supposed m n irreducible. 
Therefore, (2.3) is not true, and neither (2.2) is.  So  a is not a rational number, i. 

e.,
√
2 is an irrational number. �
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2.7.8 The Pythagorean School 

Pythagoras of Samos lived in the sixth century B.C.. In his youth he traveled a lot: he 
was in Egypt, Babylon, India. In his maturity he settled in Kroton, Magna Graecia, 
where he founded his scientific and religious school. Pythagoras conceived the geom-
etry in its etymological meaning of measuring the earth, a meaning that he intended 
to project to the whole universe to explain it numerically. The fundamental principle 
of the Pythagorean school held that every number is the quotient of two natural 
numbers, what is equivalent to say that any two quantities or magnitudes must be 
commensurable. For the Pythagorean school it was unfounded, indeed “heretical”, 
to think of the existence of non-rational numbers. The discovery of the incommensu-
rability of the diagonal with respect to the side of the square, which legend attributes 
to Ippasos of Metapontum, a pupil of Pythagoras, caused the crisis of Pythagorean 
thought and the separation of arithmetic from geometry. The legend ends tragically: 
Ippasos is expelled from the school for blasphemy, his colleagues abandon him in a 
boat, which Zeus wrecks. 

2.7.9 Socrates and the Diagonal of the Square 

In the dialogue Menon, Plato relates that Socrates knows that the square of double area 
of the square of area 1 has side

√
2. By asking appropriate questions, Socrates extracts 

this knowledge from the virgin mind of the servant of Menon, thus demonstrating 
that the knowledge is within us and we have nothing to do but extract it. This is the 
maieutic process, that is extractive, the cognitive process according to Socrates. 

2.7.9.1 More on the Pythagorean Theorem 

We have discussed about the Pythagorean theorem, meaning that its statement is: if 
a right triangle has catheti a and b and hypotenuse c, then a2 + b2 = c2. 

But Pythagoras asserted that the inverse theorem is also true: if the triangle with 
sides a, b, c satisfies the condition a2 + b2 = c2, then the angle opposite to the side 
c is right, and therefore the triangle is a right triangle. Furthermore, the theorem has 
a practical content that has contributed largely to its fame. In fact, the theorem was 
primarily used to determine perpendicularity. Let’s think of a Greek architect who 
was about to check if two walls were perpendicular. First, he took a tool to measure 
lengths, for example a rope with knots at equal intervals, then he marked three units 
on one wall and four on the other: the walls were perpendicular if there were five 
units between the two marked ends, 52 = 32 + 42. It was a brilliant way of reducing 
an angular problem to an easier relationship between lengths (Alsina 2011).
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2.8 The Inductive Method and the Induction Principle 

We dealt with the deductive method and the inductive method, which are the two 
fundamental scientific methods (Sect. 2.7.4). 

We know that the inductive method is typical of research in statistics, physics, 
economics, medicine, psychology, the natural and social sciences, in short, the 
experimental sciences. 

It is the method used to discover a law of nature, to be able to make predictions. 
If, by observing a phenomenon, we intuit the conditions that determine it, we 

repeat the observation several times by recreating the environment and the situations 
in which the phenomenon occurred: if the intuition is confirmed, as observed in 
the different attempts, we formulate a law. This law has a statistical value, in the 
sense that, under assigned conditions, it is (very) probable that the phenomenon will 
occur. The inductive method cannot be applied to the mathematical construction. 
The following example is discussed in (Lombardo Radice and Mancini Proia 1979, 
p. 160). Let us consider the polynomial: x2 − x + 41: 

when in this polynomial we replace x with zero, we get the number 41, if we 
replace x with 1 we get the number 1. If in the polynomial, we put x = 2 we get 
43, if we put x = 3 we get 47. Well, if we continue the sequence of operations, 
replacing x with the natural numbers 4, 5, …, up to 40, the values taken by the 
polynomial are always prime numbers. However, if x = 41 we get a square, the 
number 412, which is not prime, and for x greater than 41 we obtain prime or 
composite numbers (Sect. 2.2), depending on the values of x. Therefore, if using 
the induction, we had stated, as it is usual in the experimental research after thirty 
tests and even less, that the polynomial takes, for any natural x, a prime value, 
we would have made a gross mistake. Induction, based on the extrapolation of 
a law after a good number of checks, or tests, which is the main method of the 
experimental sciences, is therefore not good for mathematics. 

Another example of induction that seems possible, and then turns out not to work, is 
built by Richard Guy. Let us inscribe a polygon with n vertices and all its diagonals 
in a circumference (Fig. 2.7).

Let us see what happens with the first six polygons: 

if n = 1, then the polygon is reduced to a point 
if n = 2, then the polygon is reduced to a segment 
if n = 3, then the polygon is a triangle 
if n = 4, then the polygon is a quadrilateral 
if n = 5, then the polygon is a pentagon 
if n = 6, then the polygon is a hexagon 

The maximum number p of regions of the circle determined by the diagonals that 
meet is 1, 2, 4, 8, 16 when n is equal to 1, 2, 3, 4, 5, respectively. If n = 6 then p = 
31, while we would have expected 32.
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Fig. 2.7 Subdivisions of the 
circle

The examples above reveal that the inductive method does not work in mathe-
matics as it is. The mathematician Giuseppe Peano defined an induction method suit-
able for mathematics, the method of complete induction (or, mathematical induction), 
also called the induction principle, defined as follows. 

Let P(n) be a proposition concerning a non-negative integer n and suppose we 
know that: 

1. there exists a non-negative integer n such that the proposition P(n) is true; 
2. for every n ≥ n, supposed P(n) true, then P(n + 1) is proved to be true. In symbols: 

P(n) ⇒P(n + 1). 

Well, the induction principle states that if the hypotheses 1 and 2 are verified, then 
the proposition P(n) is true for every non-negative integer n ≥ n. The number n is 
called the basis of induction. 

A proof obtained by applying the induction principle is said to be obtained by 
induction or recurrence. 

The induction principle provides another technique of proving, in addition to those 
known to us, namely the construction of a chain of implications and the proof by 
contradiction. 

We prove the following result already mentioned (see Sect. 2.1.1). 

Theorem 2.7 If n is a non-negative integer, then the sum of the non-negative integers 
not greater than n is n(n+1) 

2 . 

Proof Let P(n) denote the following proposition, concerning the non-negative 
integer n:



2.8 The Inductive Method and the Induction Principle 33

P(n) = the sum of non-negative integers not greater than n is n(n+1) 
2 , i. e.,  

P(n) = 0 + 1 + 2 + . . .  + n = 
n(n + 1) 

2 
(2.4) 

which reads: “the sum of non-negative integers less than or equal to n is equal to the 
product of n by the next of n divided by two”. Let us formulate Properties 1 and 2, 
that define induction principle, in the case of the present theorem: 

1. the proposition P(0) is true. In fact, the two sides in the Eq. (2.4), when n = 0, 
reduce to P(0) = 0. The basis if induction principle holds = n0, 

2. suppose true P(n), n ≥ 0, and prove that P (n + 1) is also true. Indeed, if P(n) is  
true, it is: 

1 + 2 + . . .  + n = 
n(n + 1) 

2 

Then, adding n + 1 to both sides, we have: 

(1 + 2 + . . .  + n) + n + 1 = 
n(n + 1) 

2
+ n + 1 = 

(n + 1)(n + 2) 
2 

This means that proposition P(n + 1) is true. 
Therefore, proposition P(n) is true for any non-negative integer n. �
Let us quote a consideration on induction: 

– The purpose of the induction method is to verify whether something that we 
have guessed through a certain number of successful tests, is true. However, it 
does not construct the result: we must already ’suspect’ the result! (Lombardo 
Radice and Mancini Proia, ibid, p. 161). 

2.8.1 Necessary Condition. Sufficient Condition 

We have considered (Sect. 2.7.1) the propositions: 

P = “the battery is flat” 
Q = “the phone does not work” 

and we have observed that the following implication holds: if the battery is flat, then 
the phone does not work. In other words, the fact that the battery is flat is a sufficient 
condition for the phone to fail. We have observed that the proposition cannot be 
reversed, i. e., if the phone does not work, the battery is not necessarily flat. In other 
words, the fact that the battery is flat is not a necessary condition for the phone to 
malfunction. 

In the case of the cars in the night, we think in a similar way. If the street is straight, 
then the lighthouses are opposite: the straight way is a sufficient condition for the
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lighthouses to be in opposite positions, but if the lighthouses are opposite, the street 
is not necessarily straight. 

It is true (Sect. 2.7.2) that if n is even, then n2 is even: the fact that n is even is a 
sufficient condition for n2 to be even. It is also true that if n2 is even, then n is even: 
the fact that n2 is even is a sufficient condition for n to be even and if n2 is even, then 
it necessarily occurs that n is even. It is concluded that being n even is a sufficient 
and necessary condition for n2 to be even. 

An Olympic athlete must have good health: a necessary condition for a person to 
be an Olympic champion athlete is that she is in good health. The converse is not 
true: the condition of "enjoying good health” is not enough to make every person in 
good health an Olympic champion in athletics. 

The political elections ended and the results are official. No party has achieved the 
absolute majority what would have been a necessary condition to form the govern-
ment. Some political commentators observe that the sum of the elected represen-
tatives in the Yellow party and in the Red party forms an absolute majority: this 
circumstance is a necessary condition for giving rise to a new government, but it is 
not sufficient because the Red party does not share the Yellow political program: this 
prevents the coalition of the two parties. 

Let us go back to the phone. We have established that its failure does not 
necessarily depend on the discharged battery. While the implication 

(battery is flat) ⇒ (phone does not work) 

is a deduction, tracing the reasons of the failure activates an induction procedure, the 
search for the causes of the occurrence of an event. Which means making a diagnosis. 
As mentioned (Sect. 2.7.4), statistics is concerned with making diagnoses. 

2.9 Intuition 

The construction of mathematics is made up of definitions and theorems and develops 
on intuition and creativity. Theoretical results often apply to solving questions, prob-
lems, using reasoning and calculation. But what produces the progress of science, in 
general, is the creative drive of intuition. 

Let us quote some comments on intuition in mathematics: 

• if the logic is the hygiene of the mathematician, it does not provide him with any 
food (André Weil 1950); 

• […] a significant discovery or an illuminating insight is rarely obtained by an 
exclusively axiomatic procedure. Constructive thinking, guided by the intuition, 
is the true source of mathematical dynamics. Although the axiomatic form is an 
ideal, it is dangerous fallacy to believe that axiomatics constitutes the essence



2.10 Mathematics and Culture 35

of mathematics. The constructive intuition of the mathematician brings to math-
ematics a non-deductive and irrational element which makes it comparable to 
music and art (Courant and Robbins 1978, p. 216). 

The conjecture belongs to the world of intuition. Supported by reasonable clues, the 
scholar, or the amateur, launches a conjecture. 

Encouraged by all the verifications he can make, he conjectures that every natural 
even number greater than 4 is the sum of two prime numbers (remind that 1 is not 
prime): 12 is the sum of 5 and 7; 26 is the sum of 7 and 19 (but also 13 and 13); 
102 is the sum of 61 and 41 (but also 13 and 89). So we go on, having fun or not, 
we verify that, however we fix an even natural number greater than 4, there are two 
prime numbers whose sum is the fixed number. 

But many successful checks are not a proof. Though the verification is performed 
for a lot of cases, it cannot be done for all even natural numbers. 

Up to now no one has proved that the proposition “every even natural number 
greater than 4 is the sum of two prime numbers” is true or false. Therefore, we cannot 
state the theorem: 

“If n is an even natural number greater than 4, then there are two prime numbers 
whose sum is n”, 
nor the other: 
“It is not true that if n is an even natural number greater than 4, then there exist 
two prime numbers whose sum is n”. 

And this last proposition is formulated in the equivalent form: 

“There exists an even natural number greater than 4 which is not the sum of two 
prime numbers”. 

The statement 

“Every even natural number greater than 4 is the sum of two prime numbers” 

is known as the Goldbach conjecture, after the Prussian mathematician Christian 
Goldbach, who lived in the eighteenth century. 

2.10 Mathematics and Culture 

2.10.1 On Education 

Mathematics is an aspect of thinking, mathematics is culture. At one time, the unity 
of culture was a universally recognized, practiced and accepted fact. The arts and 
sciences originate from a single source, they are inspired by the same reality. 

Here we quote a thought of Albert Einstein on the unity of culture and education 
(from a speech in Albany NY on October 15, 1936, published in 1950).
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For this reason I am not at all anxious to take sides in the struggle between the followers 
of the classical philologic-historical education and the education more devoted to natural 
science. On the other hand, I want to oppose the idea that the school has to teach directly that 
special knowledge and those accomplishments which one has to use later directly in life. The 
demands of life are much too manifold to let such a specialized training in school appear 
possible. Apart from that, it seems to me, moreover, objectionable to treat the individual 
like a dead tool. The school should always have as its aim that the young man leave it as a 
harmonious personality, not as a specialist. This in my opinion is true in a certain sense even 
for technical schools, whose students will devote themselves to a quite definite profession. 
The development of general ability for independent thinking and judgement should always 
be placed foremost, not the acquisition of special knowledge. 

2.10.2 Individual Study and Work 

Lucio Lombardo Radice (1916–1982) was a mathematician engaged in culture, 
society and politics. The formation of young people has always been an important 
goal in his life. Let us quote a reflection from “The education of the mind” (1962). 

Intellectual development and the acquisition of a serious and effective cultural heritage 
require a systematic effort: they are a job. Every serious job, even the one we love the most, 
even the one we have freely chosen and that we would not abandon for anything in the world, 
has its different phases, has complex needs. Work is not a succession of joys, achievements, 
creations. Joy, conquest, creation are the tiring result of a daily, humble, dark, boring effort. 
In every job, even in that of the poet and the creative scientist, there are technical problems, 
there is the need to devote a lot of time to the acquisition of notions, of systematic knowledge, 
to the possession of tools, to the premises of true creative work. […] The beautiful poetry 
was born after long and patient linguistic, literary and historical studies; scientific discovery 
is the result of a patient installation of equipment, of an inflexible intellectual tenacity aimed 
at understanding theories and experiments that others have laboriously constructed. The 
genius-magician is a deceptive and educationally harmful romantic myth: the genius, poet 
or scientist, Leopardi or Fermi, is above all a tireless worker. 
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Chapter 3 
Relations 

3.1 Introduction 

Connections, links between people, images, words, memories, are a large part of 
everyday life. Relations between people, or within a community, are an important 
object of study in all sciences, from economics to sociology, from psychology and 
biology to medicine and the sciences of individual and collective behavior. The 
individual determines which choices to make in a set of alternative actions in order 
to make decisions: to do this he or she relates objects, people, pieces of information 
and knowledge. 

Let us quote from M. Buchanan (2002): 

In the 1960s, an American psychologist named Stanley Milgram tried to form a picture of 
the web of interpersonal connections that link people into a community. To do so, he sent 
letters to a random selection of people living in Nebraska and Kansas, asking each of them 
to forward the letter to a stockbroker friend of his living in Boston, but he did not give 
them the address. To forward the letter, he asked them to send it only to someone they knew 
personally and whom they thought might be socially “closer” to the stockbroker. Most of 
the letters eventually made it to his friend in Boston. Far more startling, however, was how 
quickly they did so, not in hundreds of mailings but typically in just six or so. The result 
seems incredible, as there are hundreds of millions of people in the United States, and both 
Nebraska and Kansas would seem a rather long way away – in the social universe – from 
Boston. Milgram’s findings became famous and passed into popular folklore in the phrase 
“six degrees of separation.” As the writer John Guare expressed the idea in a recent play 
of the same name: “Everybody on this planet is separated by only six other people…. The 
president of the United States. A gondolier in Venice…. It’s not just the big names. It’s 
anyone. A native in the rain forest. A Tierra del Fuegan. An Eskimo. I am bound to everyone 
on this planet by a trail of six people”(J. Guare 1990). 

Relations permeate the world: characteristics of the food chain of an ecosystem, 
electrical and communication networks, neural nets, the web, economic and social 
relations. 

These diffuse and chaotic relations can somehow be handled mathematically. 
We will study the properties of the relations between sets, by starting with some 

considerations about schematic examples.
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3.2 Cartesian Product of Sets. Relations 

Let A and B be non-empty sets. The cartesian product of the sets A and B, denoted A 
× B, is defined as the set of ordered pairs (a, b), with a element of A and b element 
of B; in symbols, 

A × B = {(a, b) : a ∈ A and b ∈ B} 

Two pairs (a, b) and (a', b') are equal if and only if a = a' and b = b'. The product 
A × B is not equal to the product B × A, unless A is equal to B. The Cartesian 
product A × A is also denoted A2 and is the set of ordered couples of elements of A. 
If A = {2, 4, 6, 8},, then A2 = {(2, 2), (2, 4), (2, 6), (2, 8), (4, 2), (4, 4), (4, 6), (4, 
8), (6, 2), (6, 4), (6, 6), (6, 8), (8, 2), (8, 4), (8, 6), (8, 8)}. 

The cartesian product extends to any number of sets. For example, given the sets 
A1, A2, …,  An, with n ≥ 2, the Cartesian product A1 × A2 × . . .  × An is the set of 
the n-tuples (a1, a2, . . . ,  an), with a1 ∈ A1, a2 ∈ A2, . . . ,  an ∈ An.. The  n-tuples are 
ordered, by definition. The element a1 is called the first component of the n-tuple 
(a1, a2, …,  an), a2 the second component, and so on. Two n-tuples (a1, a2, …,  an), 
(b1, b2, …,  bn) are defined equal, and we write (a1, a2, . . . ,  an) = (b1, b2, . . . ,  bn), 
if the equality of the components of the same place is verified, that is, a1 = b1, a2 = 
b2, . . . ,  an = bn . The cartesian product A × A × … × A of n sets, each equal to A, 
can be denoted An; it is the set of the ordered n-tuples of elements of A. For example, 
if A = {1, 2, 3}, the triples (1, 1, 3), (1, 3, 1), (3, 1, 1) are distinct elements of A3. 
Remark that 2-tuples and 3-tuples are usually called couples and triples, respectively. 

Again, for example, let us consider the set F = {0, 1},  the 4-tuples  (1, 0, 0, 0),  (0,  
1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1) are two by two distinct elements of F4. 

If n ≥ 1, a choice a1, a2, …,  an of elements not necessarily distinct of the set A 
is called a system of n elements of A, or a unordered n-tuple of elements of A, and it 
is denoted [a1, a2, …,  an]. Thus, the symbols [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 
0, 0, 1] identify the same system of four elements of F. Then, with the elements of 
the system [1, 0, 0, 0] we construct four 4-tuples of F4 and a single system of four 
elements of F. 

Let us define the concept of relation between two sets. If A and B are non-empty 
sets, a relation, or  correspondence, between A and B, taken in this order, is defined 
as a subset of the cartesian product A × B. Then, denoted R the relation between A 
and B, from the definition it follows R ⊆ A × B. 

Example 3.1 The weather report relates regions with atmospheric perturbations, 
the minimum or maximum temperature in a day, and so on. The couples (London, 
23), (Rome, 27), (Madrid, 33), (Paris, 25) are elements of the relation R1 between 
a certain set A of European capitals and a set B of numbers, say between –60 and 
+60, which associates to each city of A the number that expresses the maximum 
temperature in centigrade degrees, measured in a precise day.
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It makes sense to define a relation between A and A, which is a relation between a 
set and itself, i. e., a relation in A × A. A relation in A × A is called a relation defined 
in A, or a  binary relation in A. 

Example 3.2 The set of the couples (n, n + 1) whose first element is the natural 
number n and the second is the next defines a binary relation in the set of natural 
numbers; (5, 6) is a couple in the relation, while (6, 5) does not belong to the relation. 

If the couple (a, b) belongs to the relation R, we say that a is in the relation R with 
b, and then we use the notation aRb. If it is not true that a is in the relation R with b, 
we write non(aRb). 

Example 3.3 Suppose real numbers represent amounts of money: positive numbers 
stand for income, negative numbers stand for expenses. In the set of real numbers we 
define the binary relation R2 between income and consumption in this way: income i 
is related to consumption c, i R2 c if the two quantities i and c verify the equality c = 
60 + 0.8i: the equality expresses a link between i and c, establishing how one of the 
quantities expressed in euros varies as the other varies. Therefore, if in the equality 
we set wage = i = 1000, we find the consumption c = 60 + (0.8)1000 = 860; and 
if i = 300, then c = 300. Hence the couples (1000, 860) and (300, 300) are in the 
relation R2. Consumption c = 60+ 0.8×0 = 60 corresponds to zero income, which 
means that an individual needs a guaranteed minimum to live. The couple (300, 300) 
tells us that an income of 300 corresponds to a consumption of 300, i. e., what is 
earned all is spent. 

Example 3.4 Fixed a point P in the plane, a binary relation R3 in the set of the lines 
of the plane is formed by the couples (a, a’) of lines, where a’ is the line passing 
through P and parallel to a. 

Example 3.5 Let A be the set of cars sold in 2020 in Europe. Let group the elements 
of A by manufacturer, model and engine displacement. The following binary relations 
in A are defined: two hatchback cars a and b are in the relation RH , aRHb; the cars c 
and d having the same engine displacement 1.8 L are in the relation R1.8, cR1.8d; the  
sedan cars e and f are in the  relation RS , eRS f . Of course, it makes sense to consider 
the intersection relations RF∩1.8, RF∩S, R1.8∩S, RF∩1.8∩S. 

3.3 Binary Relations 

A binary relation R in a set A can satisfy particular properties (Fishburn 1970): 

P1. if aRa, for every a ∈ A, then the relation is called reflexive; 

P2. if non(aRa), for every a ∈ A, then the relation is called irreflexive; 

P3. if aRb implies bRa, for every a, b ∈ A, then R is called symmetric;
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P4. if, for every a, b, c ∈ A, aRb and bRc imply aRc, then R is called transitive; 

P5. if, for every a, b, c ∈ A, non(aRb) and non(bRc) imply  non(aRc), then R is 
called negatively transitive; 

P6. if, for every a, b ∈ A, aRb implies non(bRa), then R is called asymmetric; 

P7. if, for every a, b ∈ A, aRb and bRa imply a = b, then R is called antisymmetric; 

P8. if, for every a, b ∈ A, aRb or bRa, then R is called total, or  connected, or  
complete (this means that either aRb or bRa or both are true); 

P9. if aRb or bRa, for every a different from b, then the relation R is called weakly 
connected. 

Example 3.6 The binary relation R2, between income and consumption, is irreflec-
tive and antisymmetric (in fact, when iR2 c and cR2 i happens, and this occurs only 
when 300R2300, we have i = c = 300), is not transitive, not reflexive (only in the 
case 300R2300 it occurs i R2 c and i = c), not symmetric (e.g., 1000R2860, but it is 
not true that 860R21000). 

Example 3.7 The parallelism relation between lines of a plane is a reflexive relation 
(each line is parallel to itself), symmetric (if the line r is parallel to the line s, then s 
is parallel to r), transitive (if r is parallel to s and if s is parallel to the line t, then r 
is parallel to t) and is not antisymmetric. 

Example 3.8 The perpendicularity relation between lines of the plane is not 
reflexive, it is symmetric, it is not transitive, it is not antisymmetric, nor negatively 
transitive (because if r is not perpendicular to s and s is not perpendicular to t, it does 
not mean that r is not perpendicular to t) (Fig. 3.1). 

Example 3.9 The implication is a reflexive and transitive relation in a suitable set 
of propositions. 

Theorem 3.1 If a binary relation R is irreflexive and transitive, then it is asymmetric. 

Proof If by contradiction R were not asymmetric, then the proposition P6 should 
not occur, i. e. from being aRb it should not follow non(bRa); this means if aRb, then 
bRa, and therefore for P4, aRa, which contradicts the hypothesis P2. So, property 
P6 follows from P2 and P4. �

Fig. 3.1 Parallelism and 
perpendicularity relations 
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A binary relation cannot be simultaneously reflexive and irreflexive nor symmetric 
and asymmetric. 

Theorem 3.2 If the binary relation R in A has the properties P6 asymmetric and P5 
negatively transitive, then R fulfills the transitive property. 

Proof We show that if, for every a, b, c ∈ A, aRb and bRc, then aRc. In fact, let us 
suppose by contradiction, that the thesis is not verified: 

non(aRc) (3.1) 

The hypothesis bRc and the asymmetry of R imply 

non (cRb) (3.2) 

From (3.1) and (3.2) it follows, from negatively transitivity of R, non(aRb), against 
the hypothesis aR b. We then conclude that R is transitive. �

3.3.1 Orderings 

A binary relation R in the set A, antisymmetric and negatively transitive is called a 
(relation of) weak order; a binary relation R in A, antisymmetric, negatively transitive 
and weakly connected is called a (relation of) strict order; a binary relation R in A, 
reflexive, transitive and antisymmetric is called an order relation, or an  ordering of A. 
Let us remark that weak order, strict order and order relations are generically named 
orderings. 

Example 3.10 The relation R in the set of real numbers: R = {(a, b) : a < b, with 
a, b real numbers}, for which, instead of the notation aRb, we employ the usual a < 
b, is a weak order because it is asymmetric (if a < b, then it is not true that b < a), and 
negatively transitive (for example, if it is not true that 5 < 4 and 4 < 3, then it is not 
true that 5 < 3). The relation R, being also weakly connected, is also a strict order 
because if a /= b, then a < b or b < a. The notation a < b is equivalent to b > a. 

Example 3.11 If a and b are real numbers, the notation a ≤ b means a < b or a = b. 
The relation R = {(a, b) : a ≤ b}, in which, instead of aRb we write a ≤ b, is an  
order relation; in fact, it is reflexive (a ≤ a, for every a) transitive (e. g., if 5 ≤ 7 
and 7 ≤ 8, then 5 ≤ 8) and antisymmetric (if a ≤ b and b ≤ a, then a = b). The 
notation a ≤ b is equivalent to b ≥ a.
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3.3.2 The Power Set 

Consider a non-empty set A having n ∈ N elements. The power set, or  the set of the 
parts, of  A is, by definition, the set whose elements are all the subsets of A (Sect. 1.2). 
The power set of A is denoted by p(A). Let’s recall (Sect. 1.2 (P)) that the empty set 
∅ belongs to p(A), whatever A is. For example, the set of parts of the set A = {a, b, 
c} is  

p(A) = {∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}} 

Observe that the number of the elements of the set of the parts of A is 8. If a set 
contains n ∈ N elements, then the power set contains 2n elements. 

Let us consider two subsets A1, A2 of the set A, and define a relation between them 
in this way: we say that A1 is in the relation R with A2 if A1 is contained in A2. This  
relation is called the relation of inclusion ⊆ , and it is a binary relation in the set p(A) 
of the parts of A. The relation of inclusion is an order relation since it is reflexive 
(every set is contained in itself), transitive (if B ⊆ C and C ⊆ D, then B ⊆ D, for  
all B, C, D subsets of A) and antisymmetric (if B ⊆ C and C ⊆ B, then B = C,, for  
every B and C subsets of A). 

3.3.3 Total Order 

Let R be a binary relation in the set A, precisely let R be one of the orderings defined 
in (Sect. 3.3.1). Then, if aRb, we say that “a precedes b”, or “b follows a”, in the 
relation R. Furthermore, two elements a, b of A are said to be comparable if aRb or 
bRa. 

If R is reflexive, transitive and antisymmetric, i. e., R is an order relation and 
furthermore if R satisfies property P8, i. e., R is total and therefore, fixed any two 
elements a and b in A, they are comparable, then R is defined as a relation of total 
order in A. 

For example, whatever the real numbers a, b are, they are comparable in the usual 
ordering and therefore the ordering ≤ in the set of real numbers is a total order in 
the set of real numbers. 

We observe that it is not certain that, taken two subsets of the set A they are 
comparable in the relation of inclusion; in fact, two subsets are comparable in the 
relation of inclusion if and only if one of them is contained in the other.
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3.4 Preferences 

Each individual establishes preferences between objects, actions, individuals, situ-
ations, etc. …. The preference is usually established by comparing two elements. 
The individual places a couple in relation and the relation is the expression of his/her 
tastes, of his/her convenience, of how he/she sees the world: each individual has his 
own system of preferences. If element b is preferred to element a, we write a∠b. 

We can suppose that preference is a weak order relation; in fact, asymmetry seems 
an obvious requirement for preference: if I prefer b to a, I cannot simultaneously 
prefer a to b. As shown above, asymmetry and negative transitivity imply transitivity, 
which seems a reasonable criterion for the consistency of an individual’s preferences: 
if I prefer an interesting job in a place thirty-five minutes from home, to a job less 
interesting, but in a more easily accessible location and if I prefer this to a job, even 
interesting, that forces me to an exhausting commute, then I should prefer the first 
to the third, following common sense. 

However, the transitivity of preferences, is a non-trivial and much debated topic. 
A simple example is enough to introduce the seed of doubt: I prefer milk to tea, 
tea to coffee and coffee to milk. These preferences are not transitive. To restore the 
transitivity, I should prefer milk over coffee. Yet, I am not inconsistent as this is the 
taste I possess. These preferences are said to form a cycle. 

Personal preferences also transcend transitivity. If Becky loves Tom and Tom 
loves Diletta, then Becky doesn’t necessarily love Diletta, nor Diletta loves Tom. 

3.4.1 Indifference 

Next to the concept of preference there is that of indifference, as the absence of 
preference. Indifference has various origins. 

The individual does not perceive any difference between object a and object b: 
she may wish to get one rather than the other, or vice versa, indifferently. Or she 
is uncertain about which of the two elements a, b, to prefer, or does not feel like it 
because she has insufficient information and therefore judges a and b to be equally 
desirable, or undesirable. 

Again, the individual expresses indifference towards a and b if she considers these 
elements not comparable. In each of these situations, in which the individual affirms 
neither a∠b, nor b∠a, the notation a ∼ b is used. 

3.5 Equivalence Relations 

A binary relation R in A with reflexive, symmetric and transitive properties is called 
(a relation of) equivalence.
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Example 3.12 The parallelism relation P in the set of lines of the plane, where aPb 
means “line a is parallel to line b”, is an equivalence relation between the lines of 
the plane. The relation P is reflexive, a is parallel to a; the relation P is symmetric, 
if a is parallel to b, then b is parallel to a; the relation P is transitive, if a is parallel 
to b, and b is parallel to the line c, then a is parallel to c. 

Example 3.13 The binary relation S, in the population of Northampton, where aSb 
means “a has the same high school qualification as b”, is an equivalence relation. 

Example 3.14 The relations described in the Example 3.5 are equivalences. 

Sometimes the symbol a ≈ b instead of aRb is used when R is an equivalence 
relation. We will say that a and b are equivalent or also that a is equivalent to b, in  
(or, with respect to) the relation ≈. 

If ≈ is an equivalence relation in A and x is an element of A, we call equivalence 
class (with respect to the relation ≈) determined by x, or  equivalence class of x, the  
set of the elements of A that are equivalent to x. The equivalence class of x is denoted 
by [x]. In symbols: 

[x] = {a ∈ A : a ≈ x} 

Example 3.15 If P denotes the parallelism relation in the set of the lines of the plane 
and r is a line, the equivalence class [r] is the set of the lines that lie in the plane and 
are parallel to r, including the line r. 

Example 3.16 Let us consider the individuals of the same age in a population. We 
have thus defined a relation C that is an equivalence relation. Relation C divides the 
population into groups of people of the same age: the kids who are not yet one year 
old, those who are one year (and not yet two), those who are two, and so on, up to 
individuals of one hundred and fifty years, hopefully. How many equivalence classes 
are there with respect to C? There are at most one hundred and fifty-one. 

Theorem 3.3 If b belongs to the equivalence class [a] with respect to the relation 
≈, then [a] = [b] (i. e., the equivalence class of a is equal to the equivalence class 
of b). 

Proof If we prove that the set [a] is contained in [b] and also [b] is contained in 
[a], then we will have proved the theorem (see Sect. 1.2). We begin by proving that 
[a] ⊆ [b], i. e., if an element belongs to the class [a], then it belongs to [b]. Indeed, 
if c ∈ [a], then c ≈ a ≈ b and therefore by the transitivity of the relation ≈, we  
have c ≈ b, i. e.,c ∈ [b]. Similarly, we show that if an element belongs to [b], then 
it is also in [a]. �

Theorem 3.4 If two classes are not equal, then they are disjoint. 

Proof We prove that if two classes are not equal, then they do not have elements in 
common. Let c be an element of the class [a] that does not belong to the class [b]. If,
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by contradiction, there were an element d in common to the classes [a] and [b], then 
c ≈ a ≈ d ≈ b and by transitivity c would be equivalent to b, which contradicts the 
hypothesis that c is not in [b]. �

3.5.1 Partitions of a Set 

Definition 3.1 Given a non-empty set A whose subsets A1, A2,…, Am are such that: 

1. their union is equal to A A = A1 ∪ A2 ∪ . . .  ∪ Am; 
2. the intersection of any two distinct subsets is empty, Ai ∩ Aj = ∅, for every i, j 

= 1, 2, …, m and i /= j; 
then we say that the sets A1, A2, …,  Am form a partition of A, and each set Ai 

is called an element of the partition. 

From Theorems 3.3 and 3.4 we deduce: 

Theorem 3.5 Each partition A1, A2, …, Am of a non-empty set A, defines an equiv-
alence relation in A, in which any two elements of Ai are said to be equivalent. 
Conversely, each equivalence relation in A defines a partition of A and the elements 
of the partition are the equivalence classes. 

3.5.2 Remainder Classes 

We saw some properties (Sect. 2.1) of the Euclidean division. In particular, we found 
that the Euclidean division with divisor 3 operates a partition of the set N0into classes 
[0], [1], [2], of the numbers that divided by 3 have remainder 0, 1, 2, respectively. 

Then, by the previous theorem, Euclidean division defines an equivalence relation 
in N0. Precisely we say equivalent modulo 3 two natural numbers which, divided by 
3, have the same remainder; the classes are called modulo 3 remainder classes. 

The remainder classes modulo 4, 5,…, n are defined similarly. Then the numbers 
61 and 96 belong to the same remainder class modulo 7, because 61 = 8 × 7 + 5 and 
96 = 13 × 7 + 5. If two non-negative integers s and t belong to the same remainder 
class modulo n, we write s ≡ t (mod n). Therefore, 61 ≡ 96 (mod 7); i. e., 61 and 96 
belong to the remainder class [5] modulo 7.
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Chapter 4 
Euclidean Geometry 

4.1 Introduction 

That the geometry of the space in which we live were the only conceivable 
geometry was universally accepted until the early nineteenth century. Geometry, 
i. e., Euclidean geometry, developed from composite, sensory and psychological 
experiences subjected to processes of abstraction and schematization. 

Euclidean geometry is a tactile geometry: by touching the top of a table, or its 
edge, we develop sensations that lead us back to the plane, to a straight line, to a 
polygon, to the point. The geometry of the eye, introduced and experimented by 
Renaissance painters, Piero della Francesca, Mantegna, Albrecht Dürer, studied by 
philosophers and mathematicians, Blaise Pascal, Girard Desargues, Jakob Steiner, 
called projective geometry, has among its objects even infinity, into which the eye 
wants to penetrate. 

Euclidean geometry and projective geometry are each founded on its own system 
of axioms which underlies the properties and theorems that form the body of the 
resulting geometry. 

Projective geometry does not admit the axiom of the unique parallel and admits 
that two coplanar lines have a point, possibly at infinity, in common. 

Among the mathematicians who introduced non-Euclidean geometries we 
mention Carl Friedrich Gauss, Nikolai Ivanovich Lobačewskij and János Bolyai: 
from their studies the conviction that there are infinite geometries. We will study 
Euclidean geometry in the most interesting intrinsic synthetic aspects and for the 
analytical purposes. The study of other geometries has important theoretical and 
practical implications (Beutelspacher and Rosenbaum 1998).
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4.2 First Axioms 

A set of points in the line, or plane, or space, is called a geometric figure, or simply  
a figure. Obviously, the nomenclature and the operations defined between the sets 
are valid for the figures because figures are particular sets. Euclidean geometry, also 
called elementary geometry, states properties and relations between figures in the 
space. Euclidean geometry does not provide “direct” definitions for the concepts of 
point, line and plane. In other words, Euclidean geometry does not tell us “what is 
a point, a line, a plane”, but assumes some propositions, the axioms or postulates, 
which are reasonable properties that satisfy our intuition, are accepted as true, and 
do not need proofs. The postulates define relations between objects called “points”, 
“lines” and “planes”. 

It is customary to denote points with capital letters, A, B, C, …, lines with lower-
case letters a, b, c, …, planes with lowercase Greek letters, α, β, γ, …. When  we  
say “two points”, “three points”, we usually mean distinct points; the same goes for 
lines and planes. 

Some axioms of Euclidean geometry are the following: 

• given two distinct points A, B, there is one and only one line, called the line AB, 
passing through the two points; 

• given three distinct points A, B, C not belonging to the same line, there is one and 
only one plane that contains them, which is called the plane ABC; 

• the line passing through two distinct points of a plane is all contained in the plane. 

For example, from the axioms stated above we deduce the properties: 

1. if the point A does not belong to the line a, then there is one and only one plane 
that contains both the point and the line, the plane aA; 

2 if two distinct lines a, b have only one point in common, then there is one and 
only one plane that contains both lines, the plane ab. 

Historical background. Ptolemy I, who reigned over Egypt in the third century B.C., 
founded in Alexandria the Museum, a school of absolute excellence. He called 
eminent scholars as teachers and, among them, the author of the most successful 
mathematics book ever written: the author was Euclid of Alexandria and the book 
Elements. Euclid’s ideas and teachings have not known the wear and tear of time. The 
Elements have been, since the beginning, a constant reference for scholars of every 
civilization and a scholastic text that has remained intact in the original version, 
translated into all languages, and considered for many centuries not scratched as 
a prototype of rational science. The proofs of theorems in the Elements became a 
model for all rigorous demonstrations in mathematics, the excellence that a proof 
should aspire to.
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4.3 The Axiomatic Method 

For over two millennia Euclidean geometry has crossed, albeit between processes 
of growth and re-foundations, entire civilizations, attracts scholars, is a foundation 
for applied sciences and an important part of modern education systems. Euclid’s 
geometry is based on the axioms, or postulates, on which theorems are developed: 
this process is known as the axiomatic method. Rejecting or altering only one Euclid’s 
axiom involves an overall change of the theory. This is the case of the axiom of the 
unique parallel, which states that through any point not belonging to a given line 
one and only one line can be drawn parallel to the given line. Every alteration of this 
axiom gives rise to the foundation of as many geometries such that the objects as 
points, lines and planes have models far from the expected and familiar shapes. 

From the end of the seventeenth century, Euclid’s work even managed to spark 
a heated debate among scholars, not all mathematicians. The question was: can the 
axiom of the unique parallel be deduced from the other Euclidean axioms? In other 
words, is the axiom of the unique parallel independent of the other axioms? The first, 
in chronological order, to tackle the question was a brilliant Jesuit, Giovanni Girolamo 
Saccheri (1667–1733), professor of philosophy and mathematics. He tried to prove 
by contradiction the dependence of the axiom of the unique parallel on the other 
axioms. But the proof contained an error and Saccheri’s attempt was wrecked. After 
this effort, the problem ran out of rest and dozens of scholars tried to demonstrate 
the axiom of parallelism. Among them: Gauss, his Hungarian friend Farkas Bólyai, 
his son János Bólyai (1802–1860), Nikolai Lobačewskij (1793–1856), Bernhard 
Riemann (1826–1866), Eugenio Beltrami (1835–1900). These studies and those of 
other enthusiasts led to the definition of geometries and spaces called non-Euclidean. 

4.3.1 Further Axioms of Euclidean Geometry 

Let us consider a line r and a point P of it. If we remove the point P from the line we 
obtain on the line two disjoint sets of points which, joined to P, give back the line 
r. Each of the two disjoint sets is called an open half-line and the point P the origin 
of each half-line. The point P joined to one of the two open half-line is a geometric 
figure called the half-line of origin P. Each of the two half-lines of origin P, lying on 
the line r, is said the half-line opposite to the other. 

Two distinct lines r and s of space are called coplanar if there is a plane that 
contains them. The following axiom is postulated. 

If two lines r and s are coplanar one of the following alternatives occurs: 

(a) the lines have one and only one point in common, r ∩ s = P; 
(b) the lines are coincident, r = s; 
(c) the lines have no point in common, r ∩ s = ∅.
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Fig. 4.1 Half-planes 

In case (b) or (c) the lines r and s are said to be  parallel, indicated r//s. In particular, 
in case (c) the lines are said to be properly parallel. In case (a) the lines are said to 
be incident in the common point. 

Given a plane α and a line a in the plane, if the line is removed from the plane, 
two disjoint parts of the plane are identified, which joined to a, give back the plane 
α. Each of the two parts of the plane, in union with the line a, is named half-plane 
and the line a is called the origin of each half-plane (Fig. 4.1). 

The following axioms related to the half-planes of α, having common origin the 
line a, are admitted: 

• a point, not belonging to the line a, belongs to only one of the two half-planes; 
• two points of the same half-plane are the extremes of a segment entirely contained 

in the half-plane; 
• two points not in the line a and belonging to different half-planes are extremes of 

a segment that meets the line a in a single point. 

If a plane α is removed from the space, two disjoint parts in the space are identified; 
the union of each part with the plane α is called an half-space and the plane α is 
named the origin of each half-space. 

4.4 The Refoundation of Geometry 

We have seen that Euclid’s geometry lays on a system of axioms, propositions 
assumed to be true. This approach is valid and is still shared and used today in the 
construction of mathematics. In 1898, David Hilbert published a book, The Foun-
dations of Geometry (Hilbert 1968), which immediately achieved success and was 
translated into many languages. Geometry had made considerable progresses, espe-
cially in the nineteenth century, and Hilbert gave it a formal set-up. In fact, although 
Euclid’s work is a deductive structure, some approximation in the enunciation of 
some concepts could be found in it. Hilbert too considered the point, the line and the 
plane as undefined objects, and formulated a set of propositions, known as Hilbert’s 
axioms.



4.4 The Refoundation of Geometry 53

Fig. 4.2 B is between A and C 

Let us state two among the Hilbert’s axioms, give an intuitive description of them 
and deduce a theorem. 

Axiom 4.1 Fixed any two points A and C, there exists at least one point B on the 
line AC, such that B is between A and C. 

The notion of “betweenness” (Fig. 4.2) is related to the ordering of points on a 
line. Axiom 4.1 expresses in geometric terms the concept of density (Sect. 2.5.1): 
between two points of a line we find another point of the line, therefore, by repeating 
the operation, between two points of the line there are infinite points of the line. 

Axiom 4.2 Let A, B, C be three non-aligned points and let a be a line of the plane 
ABC that does not pass through any of the points A, B, C. If the line a passes through a 
point of the segment AB, then it passes through a point of the segment AC, or through 
a point of the segment BC. 

Intuitively, Axiom 4.2 states that if a line enters the interior of a triangle, then it 
also exits (Fig. 4.3). 

Theorem 4.1 If A, B, C are three points on a line, then one of them lies between the 
other two. 

Proof Suppose that A is not between B and C and that C is not between A and B. 
We want to prove that B is between A and C. We connect a point D, which is not on 
the line AC, with B; for Axiom 4.1 we take a point G on the line BD such that D is 
between G and B. We apply Axiom 4.2 to the triangle BCG and to the line AD: the 
lines AD and CG intersect at a point E between C and G. Similarly, the lines CD and 
AG intersect at a point F between A and G. We now apply Axiom 4.2 to the triangle 
AEG and to the line CF: we obtain that D is between A and E, and again applying 
Axiom 4.2 to triangle AEC and line BG, we consequently infer that B is between A 
and C, that is what we claimed (Fig. 4.4).�

Fig. 4.3 About Axiom 4.2 
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Fig. 4.4 About Theorem 4.1 

4.5 Geometric Figures 

A geometric figure F is, by definition, any non-empty set of points in a plane or in 
the space. 

4.5.1 Convex and Concave Figures 

A figure F is said to be a convex figure if the line segment joining two points however 
fixed in F is all contained in F (Fig. 4.5). A non convex figure is called a concave 
figure (Fig. 4.6). 

Examples of convex figures are a line segment, a line, a half-line, the plane, a 
half-plane, the whole space, the circle, any triangle, the cube understood as a solid 
body, part of the space (Fig. 4.7).

Concave figures are the circumference, an arc of circumference, the spherical 
surface, the surface of the cube, a banana (Fig. 4.8).

There are convex quadrilaterals and concave quadrilaterals (Fig. 4.9).

Fig. 4.5 Convex figure F, 
the segment joining any two 
points A, B is contained in F



4.5 Geometric Figures 55

Fig. 4.6 Concave figure F

Fig. 4.7 a square, b full cube, c segment are convex figures

Fig. 4.8 Concave figures

4.5.2 Angles 

Two half-lines, r and s, having common origin P, and hence being coplanar, determine 
two regions of the plane called angles both having vertex P and sides r and s. Both  
angles are denoted rs

Δ

, or  r Ps
Δ

, and are such that:
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Fig. 4.9 convex quadrilateral (a), concave quadrilateral (b)

• each region contains the half-lines r and s; 
• the two regions have in common only the half-lines r and s; 
• the union of the two regions is equal to the plane that contains the two half-lines. 

If the half-lines r and s are not opposite, they determine a convex angle and a concave 
angle (Fig. 4.10). 

If the half-lines r and s are opposite, the angles rs
Δ

are two half-planes and are 
called straight angles (Fig. 4.11). 

Two superimposed half-lines determine the null angle and an angle, called the 
round angle, equal to the entire plane (Fig. 4.12).

Fig. 4.10 Angles rs
Δ

Fig. 4.11 Straight angles 
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Fig. 4.12 Round angle rs
Δ

Congruence relation 

The congruence relation is defined between angles: two angles are congruent if there 
is a movement that leads one of them to coincide with the other. 

Remark 4.1 Although improperly, about two congruent angles it is sometimes said 
that they are “equal”. Similarly, we improperly speak about figures that are equal to 
each other, instead of being “congruent”. 

Two coplanar and non-parallel lines, r and s, form two pairs of congruent angles. 
These angles are opposite to each other at the common vertex and are called 
(vertically) opposite angles (Fig. 4.13). 

Skew lines 

Two non-coplanar lines are said to be skew lines (Figs. 4.14 and 4.15). 

Fig. 4.13 Coplanar 
non-parallel lines r and s 

Fig. 4.14 Skew lines
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Fig. 4.15 a//c, a and b 
coplanar and incident, d//b,  d  
and a skew, c and d skew 

Fig. 4.16 The angles of the 
coplanar lines r' and s'
define the angles of the skew 
lines r and s 

The angles of two skew lines are defined as the angles of any two coplanar lines, 
which are parallel to the given skew lines. The angles of two given skew lines may 
be drawn by sending from any point P in the space the parallel lines to the given 
skew lines (Fig. 4.16). 

The right angle 

Two lines of space are called perpendicular, or  orthogonal, if they determine four 
angles two by two congruent; each of these angles is called a right angle. Two parallel 
lines form a null angle. Two half-lines r and s lying on perpendicular lines and having 
a common origin P are said to be perpendicular; the half-lines r and s determine a 
convex angle, which is called a right angle, and a concave angle (Fig. 4.17).

Comparison of angles 

Two angles are compared to each other in magnitude. We accept that the null angle 
is less than any non-null angle. 

In order to compare two non-null angles, the angle γ = rs
Δ

and the angle δ = tu
Δ

, 
move γ (Fig. 4.18) so that the vertices of γ and δ coincide and a side of γ, say  r, 
coincides with t while s and u fall on the same half-plane of origin r. Then one of 
the following alternatives occurs:
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Fig. 4.17 Right angle α, region  β concave

Fig. 4.18 γ is greater than δ 

• the angle γ is congruent to δ; 
• the angle γ is a proper subset of δ, then γ is said to be less than δ; 
• the angle γ properly includes δ, then γ is said to be greater than δ. 

4.5.3 Relations Between Lines and Planes 

If r and α are a line and a plane of the space, respectively, then one of the following 
circumstances occurs: 

(a) the line r and the plane α have only one point in common (Fig. 4.19);
(b) the line r lies on the plane α (Fig. 4.20);
(c) the line r and the plane α have no point in common (Fig. 4.21).

In case (a) the line and the plane are said to be incident at the common point; in 
cases (b) and (c) the line and the plane are said to be parallel to each other (properly 
parallel, in the case (c)).
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Fig. 4.19 r and α have only 
one point in common

Fig. 4.20 r lies on α

Fig. 4.21 r and α are 
properly parallel

Theorem 4.2 The lines of the space perpendicular to a line at one of its points lie 
in the same plane and each line of the plane passing through that point is a line 
perpendicular to the given line. 

The plane α containing the lines passing through a point P of the line r, and 
perpendicular to r, is called the perpendicular (or orthogonal) plane to r at P 
(Fig. 4.22).

By the definition of angle of two skew lines, if a line r and a plane α are 
perpendicular, each line of the plane is perpendicular to the line r (Fig. 4.23).
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Fig. 4.22 The line r is 
perpendicular to the lines a 
and b passing through the 
point P of r. The line c in the 
plane ab and passing through 
P is orthogonal to the line r

Fig. 4.23 The line r is 
perpendicular to the lines a 
and b passing through the 
point P of r. The line d in the 
plane ab is perpendicular to 
the line r 

Theorem 4.3 Given in the space a point and a line, a single plane exists which 
passes through the point and is perpendicular to the line. 

Theorem 4.4 Given in the space a point and a plane, a single line exists which 
passes through the point and is perpendicular to the plane. 

The common point to a line and a plane that are perpendicular to each other is 
called the foot of the perpendicular line to the plane. 

The distance of a point A and a plane α is defined as the length of the segment 
AB, being B the foot of the perpendicular line to the plane passing through A. 

If a line and a plane are parallel, the distance of the line from the plane is defined 
as the distance of any point of the line from the plane.
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4.5.4 Relations Between Planes 

The following cases related to the mutual position of two planes α and β occur: 

(a) the two planes have a line in common (Fig. 4.24); 
(b) the two planes coincide (Fig. 4.25); 
(c) the two planes have no point in common (Fig. 4.26). 

Two planes are called parallel in the cases (b) or (c), in symbols, α//β; ; in case 
(b) the planes are named improperly parallel, in case (c) properly parallel.

Fig. 4.24 α ∩ β = r 

Fig. 4.25 α = β 

Fig. 4.26 α//β and α /= β 
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4.5.5 Projections 

Let us consider the non-parallel lines r and d in the plane α and let P be a point of the 
plane. The projection of P onto r, with respect to the direction of the line d, is defined 
as the point P' of r belonging to the parallel line to d passing through P (Fig. 4.27). 

In particular, the projection of P onto r with respect to the direction of a line d 
perpendicular to the line r is called the orthogonal projection of P onto the line r. 

The orthogonal projection of the semi-circumference onto its diameter is the same 
diameter (Fig. 4.28). 

The orthogonal projection of the circumference onto the line a is the segment AB 
of the line a; the orthogonal projection of the circumference onto the line b is the 
segment DE of the line b; the orthogonal projection of the arc PQ onto the segment 
PQ coincides with the segment PQ (Fig. 4.29).

Let a plane α and a line d be given with d and α non parallel. The projection of a 
point P of the space onto α, with respect to the direction of the line d, is defined as 
the point P' of α belonging to the line passing through P and parallel to d (Fig. 4.30). 
In particular, if the direction of d is perpendicular to the plane α, the point P' is called 
the orthogonal projection of the point P onto the plane.

The projection onto the plane α of a figure F of the space with respect to the 
direction of the line d non parallel to α is, by definition, the set F ' of the projections 
of the points of F onto α with respect to the direction of d (Fig. 4.31).

Fig. 4.27 P' projection of P 
onto r w.r. to direction d 

Fig. 4.28 The orthogonal 
projection of the 
semi-circumference onto its 
diameter 
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Fig. 4.29 AB is the 
orthogonal projection of the 
circumference onto the line 
a; DE is the orthogonal 
projection of the 
circumference onto the line b

Fig. 4.30 P' is the 
projection of P onto α w. r. to 
the direction d

Fig. 4.31 F ' is the 
projection onto the plane α 
of figure F w. r. to the 
direction of d
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Fig. 4.32 Angle of the line r 
and the plane α 

4.5.6 The Angle of a Line and a Plane 

Let us consider a line r and a plane α in the space. If the line and the plane are not 
perpendicular, the orthogonal projection of the line r onto the plane is a line s: the  
acute angle rs

Δ

is called the angle of the line r and the plane α (Fig. 4.32). If the line 
and the plane are perpendicular the angle of the line and any line in the plane is right: 
then the line and the plane are perpendicular and their angle is the right angle. 

4.5.7 Dihedrals 

Two half-planes α and β having the line r as common origin determine two regions in 
the space, which contain α and β and have the half-planes α and β as intersection; the 
union of these two regions is the whole space and each of the two regions is called a 
dihedral, or  dihedral angle, and the half-planes α and β are called the faces of each 
dihedral. Let us stress that both faces α and β are included in each dihedral. The 
symbol αβ

Δ

denotes each of the two dihedrals with faces α and β. The line r common 
to α and β is called the edge of each dihedral with faces α and β. If both half-planes 
α and β with common edge r are both contained in the same plane γ, then α and β 
are called the extensions of each other. 

The following cases occur: 

(a) the half-planes α and β are the extensions of each other. Therefore, they belong 
to a plane  γ and the dihedrals αβ

Δ

are the half-spaces of origin γ (Fig. 4.33). In 
this case αβ

Δ

is called a straight dihedral.
(b) the half-planes α and β are not extensions of each other. The space is then 

divided into two dihedrals which are not half-spaces. One of the two dihedrals 
is concave, the other convex (Fig. 4.34).

The segment joining any two points belonging to a convex dihedral is included in 
the dihedral. 

The concave dihedral contains the extensions of the half-planes α and β (Fig. 4.35).
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Fig. 4.33 Straight dihedral

Fig. 4.34 s edge of the 
dihedral αβ

Δ

Fig. 4.35 Convex and 
concave dihedrals 
determined by the 
intersecting planes α and β
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Fig. 4.36 Plane δ 
perpendicular to r = α ∩ β 

Let us consider a convex dihedral αβ
Δ

and a plane δ perpendicular to the edge r of 
the dihedral αβ

Δ

(Fig. 4.36). The angle of the half-lines determined by δ intersecting α 
and β is called the normal section of the dihedral. Two normal sections of a dihedral 
are congruent. The normal section of a straight dihedral is a straight angle. The 
dihedral whose normal section is a right angle is called right dihedral. 

4.5.8 Perpendicular Planes 

Definition 4.1 Two planes that intersect so that the four dihedrals obtained have 
normal two-by-two congruent sections are said to be perpendicular or orthogonal 
to each other. 

The following properties hold: 

(a) if a line is perpendicular to a given plane, any plane containing the line is 
perpendicular to the given plane (Fig. 4.37); 

Fig. 4.37 Plane α 
perpendicular to r and to β
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Fig. 4.38 Plane β 
perpendicular to α and 
passing through r 

(b) if a plane is perpendicular to a line in another plane, the two planes are 
perpendicular to each other (Fig. 4.37); 

(c) given a line and a plane that are not perpendicular to each other, there is one 
and only one plane containing the line and perpendicular to the given plane 
(Fig. 4.38). 

4.5.9 Symmetries 

Two points P and P' are said to be symmetric with respect to the point C if C is the 
midpoint of the segment joining P and P'; it is also said that P' is the symmetric of 
P with respect to the point C. 

A figure F is said to be symmetric with respect to the point C if for each point P 
of F the symmetric P' of P with respect to C belongs to F. The segment PP' is called 
a chord of F (Fig. 4.39). 

A figure F of the plane is said to be symmetric with respect to the line r in the 
direction (of the line) d, non-parallel to r, if for any point P in F, the symmetric, in 
the direction d, of P with respect to the line r belongs to F; the line r is called the axis 
of symmetry of F in the direction d (Fig. 4.39). In particular, if d is perpendicular to 
r (Fig. 4.40), the figure F is said to be symmetric with respect to the line r and the 
line r is called axis of orthogonal symmetry of F.

Two points P and P' are said to be  symmetric with respect to a plane α and the 
direction (of the line) d non parallel to α, if the segment PP' is parallel to d and the 
midpoint C of PP' belongs to α; it is also said that P' (or P) is the  symmetric  of  P  
(or P') with respect to the plane α and direction d (Fig. 4.41). In particular, if d is 
perpendicular to α, the points P and P' are said to be  symmetric with respect to α.

Fig. 4.39 Figure F is 
symmetric w.r. to the point C 
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Fig. 4.40 Figure F 
symmetric w.r. to the line r

Fig. 4.41 P and  P' are 
symmetric w. r. to the plane 
α and the direction d 

A figure F in the space is said to be symmetric with respect to the plane α and 
the direction d non parallel to α, if for each point P of F the symmetric of P with 
respect to the plane α and the direction d belongs to F; the plane α is called the plane 
of symmetry of F w. r. to direction d. In particular, if the line d is perpendicular to 
α, the figure F is said to be symmetric w. r. to the plane α and the plane α is called 
plane of orthogonal symmetry of F. 

4.5.10 Similar Polygons 

Two polygons of the same number of sides are said to be similar if, taken the sides of 
each polygon in a convenient order, e. g., both clockwise, or both counterclockwise,
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or clockwise for one polygon and counterclockwise for the other, then, in the chosen 
order, their angles are congruent and the sides are proportional. 

4.6 Thales’ Theorem 

Given a plane and a point in it, the set of the lines of the plane passing through the 
point is named a proper bundle, or simply a  bundle, of lines. 

Given a plane and a line r in it, the set of the lines in the plane that are parallel to 
the line r is named an improper bundle of lines. Any line non parallel to the lines of 
an improper bundle and laying in the plane is called a transversal line. 

Let r and s be two parallel lines and t a non-parallel line to the line a. The points 
A and B which t has in common with r and s, respectively, are extremes of a segment 
AB which is called the segment intercepted by t on the lines r and s. 

Historical Background. Thales of Miletus (about 624–548 B.C.). We are in the 
seventh century B.C. on the southwestern coast of Asia Minor, in the Miletus polis. 
Thales was born here. He was one of the seven sages of the ancient Greece. Pythagoras 
was his pupil for a few years. Thales dealt with general subjects of mathematics and 
was particularly interested in geometry. Three non-aligned points define a triangle, 
this was known, but Thales proved that they also define one and only one circum-
ference. During one of his trips to Egypt he ran into a problem: to find the measure 
of the height of the pyramid of Cheops, a problem that seemed unsolvable. Thales 
solved the problem just by means of his theorem (Guedj 1998). 

Theorem 4.5 [Thales’ theorem]. If an improper bundle of lines is intersected by two 
transversals lines t and t', the segments intercepted by t on the pairs of lines in the 
improper bundle are proportional to the segments intercepted by t' on the same pairs 
of lines and in the same order. If the intercepted segments are non-null, then there 
exists a positive number k such that 

AB = kA'B', BC = kB'C', CD = kC'D'

or 

AB 

A'B' = 
BC 

B'C' = 
CD 

C'D' = k 

See (Fig. 4.42).
The following propositions result from Thales’ Theorem. 

Proposition 4.1 Each parallel to one side of a triangle divides the other two sides 
into proportional parts (Fig. 4.43).

Proposition 4.2 If a line cuts two sides of a triangle so that the pairs of segments 
identified on the two sides are proportional, then the line is parallel to the third side. 

Proposition 4.2 inverts the previous one.
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Fig. 4.42 The lines AA', BB', CC', DD' belong to an improper bundle; t, t ' are transversals; AB 
and CD are segments intercepted by t on  the pair of lines  AA' and BB' and on the pair of lines CC', 
DD'; segments A'B' and C'D' are intercepted by t' on the same pairs of lines of the improper bundle

Fig. 4.43 CA' : A'A = CB' : B'B
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Chapter 5 
Functions 

5.1 Introduction 

The area A of a square depends on the side l of the square, according to the formula 
A = l2. At a precise site on the earth surface the atmospheric pressure varies 
depending on different inputs. When we intend to go to the theater, we buy the 
ticket that assigns us a seat. A relation is so stated between two sets: a set of spec-
tators and a set of armchairs, such that each spectator is assigned one and only one 
seat. If the show is sold out, all seats are filled; otherwise, there are free places, not 
assigned to anyone. 

The couples (side, square), (site, pressure), (seat, spectator) are couples of special 
relations called functions which associate one and only one element in the second 
component to the first. Let use arrows to indicate such relations: 

side → square 

site → pressure 

seat → spectator 

To state more precisely what is meant by function we remind the concept of 
relation (Sect. 3.2) between two sets A and B as a subset of the cartesian product A 
× B. 

Definition 5.1 Let A and B be non-empty sets. A relation f between A and B is 
called a function from A to B if for every element a ∈ A there exists one and only 
one element b ∈ B such that (a, b) is a couple in f , i. e.,  (a, b) ∈ f ⊆ A × B. Along 
with (a, b) ∈ f the notations f : A → B and b = f (a) (which reads “b equals f of 
a”) are used.
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Think of the function f as a law (or a rule, an instruction, or a procedure) which, 
given in the set A any element a, allows to identify or build one and only one element 
b of the set B. The  set  A is called the domain of f , denoted Dom(f ), and f is said to 
be defined in the set A. The element a ∈ A is called the independent variable, or the  
argument of the function f . 

Synonyms of the word “function” are application or transformation. It is also said  
that the function f transforms or carries A into B, or  associates the element b ∈ B 
with the element a ∈ A. If  a ∈ A, the statement “f associates the element b ∈ B 
with a ∈ A” is equivalent to the formula b = f (a). 

The element b = f (a) is called the value of f at the element a, or the  corresponding 
element with a by means of f , or the  image or the transformed of a under (or through) 
f . Also, the independent variable a represents an input from the domain of f and b, 
the dependent variable, the corresponding output f (a). 

The range of f is the subset of B consisting of all the elements b ∈ B such that b 
= f (a), for every a ∈ A. The range of f is denoted f (A). Of course, f ( A) ⊆ B. 

The above expressions are ways to describe how a function works. 
Some relations defined in Chap.3 are functions. 
The relation defined in (Sect. 3.2, Example 3.1), which associates the maximum 

temperature with each European capital in the set A, is a function from A to the set 
B of the temperatures because the relation associates exactly one number (which 
measures a unique temperature) to any capital in the set A. 

The binary relation defined in the Example 3.2 that with every natural number n 
associates the next n + 1 is a function f : N → N, such that f (n) = n + 1. 

The relation R2 defined in the example 3.3 is a function of the set of real numbers 
R to R. In fact, for each fixed income i the amount of consumption c is determined 
by the equality c = 60 + 0.8i. If we call f this function, we write f (r) = c, or  f (r) 
= 60 + 0.8r.The binary relation R3 defined in the Example 3.4 is a function from 
the set of the lines of the plane to the set of lines of the plane passing through P. 

Let f : A → B be a function. The cartesian product of the domain and the range 
of f is called the graph of the function f . Therefore, the graph of f is the set of the 
couples: 

A × f ( A) = {(a, f (a)), for every a ∈ A}. 

If f is a function from A to B, one of the following circumstances may occur: 

• there are elements of B corresponding in f with more than one element of A; 
• there are elements of B which do not correspond in f with any element of A. 

Both circumstances are verified in the following example. Given the sets A = {a, b, 
c, d, e} and B = {1, 2, 3, 4, 5, 6}, let us define the function f : A → B as follows: f 
(a) = 1, f (b) = 2, f (c) = 2, f (d) = 4, f (e) = 5 (Fig. 5.1).

The element 2 of B is the image through f of the elements b and c; the element 3 
is not the image of any element of A. 

A function g: A → B such that each element of B is the image of at least one 
element of A is called a surjective function or a function from A onto B. The range
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Fig. 5.1 Elements of B 
associated through f with the 
elements of A; each element 
of A has a unique 
corresponding element in the 
set B

Fig. 5.2 g : A → B 

of g coincides with B, B = g(A). For example, let us consider the sets A = {p, q, r, s, 
t, u} and B = {1, 2, 3, 4, 5}. The function g : A → B defined by: g(p) = 1, g(q) = 
2, g(r) = 3, g(s) = 3, g(t) = 4, g(u) = 5 (Fig. 5.2) is surjective. 

Example 5.1 Let A be the set of the points of the space and B the set of the points of 
a plane α. Consider the function k : A → B, which associates the point a’ of α, that 
is the orthogonal projection (Sect. 4.5.5) of the point a in the space on the plane α 
(Fig. 5.3). The function k is surjective because each point of the space has the image 
belonging to the plane α. 

A function h : A → B such that each element of B is the image of at most one 
element of A is called an injective function from A to B. 

For example, let us consider the sets A = {a, b, c, d, e} and B = {1, 2, 3, 4, 5, 6,  
7}. Let h : A → B be the function defined by: h(a) = 1, h(b) = 2, h(c) = 4, h (d) = 
6, h(e) = 7 (Fig. 5.4). The function h is an injective function. 

Example 5.2 The function d : N → N , which associates the double 2n with the 
natural number n, is an injective function.



76 5 Functions

Fig. 5.3 Orthogonal 
projections on a' ∈ α 

Fig. 5.4 h : A → B 

A function which is either injective and surjective, i. e., a function f : A → B 
such that each element b of B is the image of one and only one element a of A, b 
= f (a), is called a one-to-one (or 1–1) function, or a 1–1 correspondence, between 
A and B, or a  bijection, or a  bijective function from A onto B. Of course, B = f (A) 
(Fig. 5.5). 

The images of two distinct elements through a one-to-one function are distinct; 
i. e., if f is one-to-one, if a and b are elements of the domain of f and if a /= b, 
then f (a) /= f (b). But also, vice versa, if f is a one-to-one function from A onto 
B and if y and z are distinct elements of B, then there exist a and b in A such that 
y = f (a), z = f (b) and a /= b. 

Example 5.3 Let A be the segment with endpoints a and b and B a semi-
circumference of diameter A. We construct a function f : A → B this way: the 
point y of the semi-circumference which belongs to the perpendicular from x to A 
corresponds with the point x of the segment A. The function f is a one-to-one function 
from A onto B (Fig. 5.6).
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Fig. 5.5 f (a) = 1, f (b) = 
2, f (c) = 3, f (d) = 4 

Fig. 5.6 One-to-one 
function f : A → B 

If f : A → B is a one-to-one function, it makes sense to consider the function 
that associates the element x of A such that y = f (x) with the element y of B, in fact 
each element y of B is the corresponding element through f with one and only one 
element of A. This new function from B to A is called the inverse function of f and 
is denoted f −1; so  f −1(y) = x . We immediately recognize that f −1 : B → A is a 
one-to-one function. 

Given a one-to-one function, the inverse function is set out. For this reason a 
one-to-one function is also called an invertible function. 

Remark 5.1 If f : A → B is a function, be careful not to confuse the symbols f 
and f (x). However, sometimes we write f (x) to indicate a function when we want 
to emphasize that the function is defined in a certain set whose generic element, i. 
e., the independent variable, is x. 

5.2 Equipotent Sets. Infinite Sets, Finite Sets 

Two sets A and B such that a one-to-one function f : A → B can be defined are 
called equipotent. Thus, the set of days in the week and the set of numbers {1, 2, 3, 
4, 5, 6, 7} are equipotent. 

As mentioned in Example 5.3, the set of the points of the semi-circumference 
and the set of the points of its diameter are equipotent. Let us dwell on some other 
examples of equipotency between sets.
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Example 5.4 The function that associates the number 2n with the natural number 
n is an invertible function of the set of natural numbers onto the set of even natural 
numbers (see Example 5.2). Then the set of natural numbers and the set of even 
numbers are equipotent. 

It is not difficult to realize that the interval [0, 1] and the interval [0, 2] are 
equipotent. 

The last examples show us sets equipotent to a proper part of them. A set equipotent 
to a proper subset of it is called an infinite set. While a finite set is defined as a non-
infinite set. It may be surprising that a finite set is defined as a non-infinite set, i. 
e., infinity is defined first and consequently finiteness. Yet this is a rational way to 
introduce the two concepts, which is independent of the operation of counting. How 
could we count the points of a segment? 

The equipotency is an equivalence relation between sets that enable us to estimate, 
without counting, the size or the magnitude of a set. 

Example 5.5 The set 

S =
(
1, 

1 

2 
, 
1 

3 
, . . . ,  

1 

n 
, . . .

)

n ∈ N, is equipotent to the set of natural numbers. The interval [0, 1] and S are not 
equipotent. 

Any set equipotent to N is said to be a countable set. For example, the set S and 
the set of odd natural numbers are countable. It is not difficult to prove that also the 
set of rational numbers is countable. 

5.3 Hotel Hilbert 

The deep-rooted truth “the whole is greater than any its part” seems to be contradicted 
by the relation of equipotency that allows that an infinite set may be equivalent to a 
proper subset of itself. This to say that surprises and paradoxes are to be expected in 
the domain of infinity. 

In this regard Hilbert imagines that he is the receptionist of a prodigious hotel, a 
hotel with infinitely many rooms. One day a new customer shows up who, knowing 
about the prodigy, having asked for a room, is a bit perplexed when Hilbert replies 
that the rooms are all occupied. Hilbert, however, reassures the customer that he will 
find a room for him. He then asks all the guests, already settled, to move to the next 
room: who occupies the room number 1 moves to room 2, who occupies room 2 
moves to room 3 and so on,… there are infinitely many rooms. The new guest will 
occupy the room number 1 (Fig. 5.7a).

But the wonders do not end here. The following evening the rooms are still all 
occupied when a bus arrives with an infinite number of new customers. Once again
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Fig. 5.7 The paradox of 
infinity. Adding one unit to 
infinity (a); adding an infinite 
number of units to infinity 
(b)

Hilbert has the solution: he asks the guest occupying room 1 to move to room 2, the 
guest occupying room 2 to move to room 4, … and the guest occupying room n to 
move to room 2n (Fig. 5.7b). All the odd-numbered rooms have been vacated for the 
new arrivals (Singh 1997). 

5.4 Composite Functions 

Let us consider the nonempty sets A, B and C and the functions f : A → B and 
g : B → C . If  x is an element of A and f (x) its image under f , it makes sense 
to construct the element g(f (x)), the image under g of the element f (x) of  B. The  
composite function of f and g is the function h from A to C defined by the equality 
h(x) = g(f (x)), for every x ∈ A. 

The order is important: first we construct f (x) and then g(f (x)). The composite 
function of f and g is also denoted g ◦ f,, therefore (g◦ f )(x) = g( f (x)) (Fig. 5.8). 

Fig. 5.8 h composite 
function of f and g
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Fig. 5.9 Composite 
function h = g◦ f 

Example 5.6 In a given plane, let A be the segment with endpoints a and b and let 
B a semi-circumference of diameter A. Called o the midpoint of the segment ab, let  
us consider a parallel line to the segment A. Let  f : A → B be the function that 
associates the point y = f (x) ∈ B with the point x ∈ A that is common to A and 
the perpendicular through x to the segment ab. Let now g : B → C be the function 
that associates z ∈ C∩ (line Oy) with the point y ∈ B. The function h : A → C 
such that h(x) = g( f (x)), for every x ∈ A, is the composite function of f and g 
(Fig. 5.9). Observe that since the functions f and g are invertible, also the function h 
is invertible. 

5.5 Restriction and Extension of a Function 

Given the non-empty sets A and B and the function f : A → B, let  X be a subset of 
A. The function g : X → B such that g(x) = f (x), for every x ∈ X , is called the 
restriction of f to X and f is said to be an extension of g to A. 
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Chapter 6 
The Real Line 

6.1 Introduction 

The numerical representation of the Euclidean geometry, due to Descartes (1596– 
1650), is the basis of the analytic geometry. 

Historical Background. René Descartes, is the father of modern philosophy. He wrote 
La Géométrie to explain the relation between the arithmetic and the geometry, even 
though in the intentions of the author, La Géométrie, published as an appendix to the 
Discours de la méthode, should have illustrate his philosophical method. Descartes’ 
work gave rise to a rejoining of arithmetic to geometry after the fracture within 
the Pythagorean school, just creating the analytic geometry. This “new subject” has 
provided a method for describing algebraic formulas by means of geometric curves 
and shapes and, inversely, a description of geometric curves and shapes in terms of 
algebraic formulas. 

6.2 The Coordinate System of the Axis 

In Chap. 4 we dealt with Euclidean geometry in the line, the plane and the space. 
The key point in analytic geometry of the line is to establish a one-to-one function 
between real numbers and the points of the line, i. e., the equipotency (Sect. 5.2) 
between the set R of the real numbers and the set of points of the line. 

Let us imagine a line r described by a point always moving in the same sense. 
There are exactly two senses for this motion, each defining a total order (Sect. 3.3.3) 
in the set of the points of the line, such that, for every pair of distinct points in the 
line r it is possible to establish which of the two points precedes the other. Each 
ordering of the line is called orientation, or sense, of the line: we conventionally 
define positive an orientation and negative the other. Usually, in figures an arrow 
indicates the positive orientation of the line (Fig. 6.1).
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Fig. 6.1 Oriented line r 

Fig. 6.2 Length ofAB = 
|AB| =  AB u = 3.6 

A line endowed with the positive orientation is called an oriented line or axis. The  
support of the oriented line r is the line itself without any orientation. 

6.2.1 The Measure of a Segment 

Let two distinct points A and B be given on the line r with A preceding B in an 
orientation taken as positive on r. The set of points of r that follow A and precede B 
along with the points A and B, define a subset of r said segment and the points A and 
B are called extremes or endpoints of the segment. If the points A and B coincide, 
the segment reduces to a point A = B, called a null segment. The segment having 
endpoints A and B is denoted AB. 

Let u be a non-null segment and AB a segment in a line. The length or measure 
of the segment AB with respect to the segment u taken as the unit of measure, is 
defined as the non-negative real number, denoted |AB|u , or simply  |AB|, that is the 
ratio of the homogeneous magnitudes AB and u (Sect. 2.5) (Fig. 6.2). Therefore, 

length ofAB = 
AB 

u 
= |AB| 

The length AB of the segment AB is a positive number if and only if A and B are 
distinct; the null segment has length zero. 

6.2.2 The Coordinate System of an Axis 

Let us fix a point O of the oriented line r: the point O divides the line into two 
half-lines with common origin O. Now let fix a point U in the axis r, distinct from 
O and following O in the positive orientation fixed on r. We call unit point of r axis 
the point U and take the segment u = OU as the unit of measure of the lengths of 
the segments: of course, the length of the segment OU is 1 (Fig. 6.3).
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Fig. 6.3 Oriented line with 
origin O and unit point U 

The half-line of r which has origin O and contains U, is called the positive half-line 
denoted r+; the other half-line with origin O is called the negative half-line denoted 
r− (Fig. 6.4). 

A one-to-one function (Sect. 5.1) that associates a real number with any point 
of the axis r is defined this way: if the point P of r belongs to r+, then the number 
xp = |OP| is associated with P; if P belongs to r−, then let the number xP = −|OP| 
is associated with P (Fig. 6.5). 

In particular, xP = 0 if and only if P coincides with the origin O. The number xP 
is called the abscissa or the coordinate of the point P, with respect to the origin O 
and the unit of measure u = OU. The index P is omitted if there is no possibility of 
misunderstanding and the only symbol x denotes the abscissa of P. The point P is the 
geometric representation of the number x in the r axis. 

The points O and U define a coordinate system of the r axis. The coordinate system 
is sufficient to define a one-to-one correspondence between the set of the points of 
the axis and the set of the real numbers R. 

The oriented line r endowed with a coordinate system is called the real line. The  
expression real line or real axis, means that the set of real numbers and the set of the 
points of the line can be identified. 

The symbol P(x) denotes that the abscissa of P is x in the given coordinate system 
of r axis. For any two points A(a) and B(b) of the  r axis, the length, or  relative length, 
or relative measure of the oriented segment AB is denoted (AB) and defined by the 
equalities: 

length ofAB = (AB) = b − a 

whatever the positions of A and B are in r (Fig. 6.6). The oriented segment AB has 
the orientation opposite to that of BA. Therefore,

Fig. 6.4 Half-lines r− and 
r+ with origin O 

Fig. 6.5 Points and 
abscissas 
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Fig. 6.6 The length of the 
oriented segment AB lying 
on the axis r is the number 
b–a, whatever the positions 
of the points A(a) and  
B(b) are  

length ofAB = (AB) = b − a = −(a − b) = −(BA) = −length ofBA 

6.3 Equalities and Identities. Equivalent Equations 

The expressions made of letters and numbers, i.e., the algebraic expressions, that 
contain the equality sign = are called equalities. The equalities are made of a left-
hand side and a right-hand side, separated by the equality sign. The letters have the 
function of unspecified numbers, in fact they are named indeterminates or variables 
or unknowns. The equalities including literal expressions are also named equations. 

Equations are a tool for solving problems that require to search for one or more 
unknown quantities. 

Let us consider a very simple problem: find the number which, added to 4, gives 
the sum 7. In symbols, denoted x the unknown number, the problem translates into 
the equation: 4+ x = 7, where x is the number that transforms equality 4+ x = 7 in 
an equality of numbers. Any numerical value attributed to the unknown x that fulfills 
the equality, a value which in our example is 3, is called a solution of the equation. 

Consider now the equality x2−2x + 1 = (x−1)2 . This is an equality whatever is 
the value attributed to the unknown x; an equality of this type, that does not impose 
any condition on the unknown x, is called identity. 

The equations 2x = 10 and x−3 = 2 have the only solution 5. Equations that have 
the same solutions are said to be equivalent. What matters most in the equations are 
the solutions and if there are. Therefore, it will be indifferent to replace an equation 
with one equivalent to it, since in doing so the solutions remain unchanged. Our aim 
is to replace an equation with a simpler equivalent up to an expression of the type 
x = a, with a real number, that gives us the value sought for the unknown x. Solving 
an equation means to find the set of the solutions of the equation.
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The following theorems, provide the rules for simplifying the form of an equation. 

Theorem 6.1 Adding the same number to the two sides of a given equation changes 
this into an equation equivalent to the given one. 

Theorem 6.2 Multiplying the two sides of a given equation by a non-zero number 
changes it into an equation equivalent to the given one. 

An equation without solutions is said to be incompatible, otherwise it is called 
compatible or solvable. Let us now solve some equations where Theorems 6.1 and 
6.2 are useful. 

6.3.1 Examples 

The equation 2y − 1= x − 1. has two unknowns x and y. Any couple of numerical 
values attributed to the unknowns x and y that achieves the equality 2y − 1 = x − 1 
is called a solution of the equation. For example, the couple (x, y) = (0, 0) achieves 
the equality 2y − 1 = x − 1 since 2 × 0 − 1 = 0 − 1, then the couple (0, 0) is a 
solution of the equation 2y − 1= x − 1. But also (x, y) = (2, 1) is a solution of 
the equation since, setting x = 2 and y = 1 in the equation, the numerical equality 
2 × 1 − 1 = 2 − 1 is obtained. 
1. The equation x +1 = x has no solution. The equation 0x +1 = 0 has no solution. 

So equations x + 1 = x and 0x + 1 = 0 are both incompatible. 
2. The equation x2 + 1 = 0 is incompatible because x2 is nonnegative. 
3. To check that a solution of x2 − 2x = −1 is x = 1 it suffices to replace x with 1 

and observe that the left-hand side equals –1. 
4. The equation 2x − 3 = 0 can be solved applying Theorems 6.1 and 6.2: indeed 

adding to both sides 3 we have 2x − 3 + 3 = 3, i.e.,2x = 3, and dividing both 
sides by 2, we have 2 2 x = 3 2 , i.e.,x = 3 2 . The number x = 3 2 is the solution of 
the equation2x − 3 = 0. 

5. The equation 0x + 0y+1 = 0 has no solution, i.e., the equation is incompatible. 
6. The equation 0x = 0 is an identity because any value attributed to the unknown 

x is a solution of the equation. The equation 0x + 0y = 0 is an identity because 
any couple of values given to the unknowns x and y is a solution of the equation. 

7. Any solution of the equation 2x + y = 0 is a couple (x, y) of numbers that satisfy 
the equation; for example, (0, 1) is a solution of the equation because 2×0+1 = 
1; (−3, 7) is a solution of the equation because 2 × (−3) + 7 = 1; (2, −3) is a 
solution of the equation because 2 × 2 − 3 = 1. 

8. The equation 2x− y+ 3z = 1 three unknowns x, y and z and has infinitely many 
triples of solutions, each obtained by assigning values to two of the unknowns 
and then finding the value of the third; for example, replace in the equation the 
unknowns y and z with –1 and –2, respectively, to obtain 2x − (−1)+3(−2) = 1 
by Theorems 6.1 and 6.2 we get x = 3, so a solution of the given equation is the 
triple (3, −1, −2); indeed: 2 × 3 + 1 + 3(−2) = 1.
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9. The equation x2 − 2x +1 = (x − 1)2 reduces to the form 0 = 0, after performing 
the square (x − 1)2. The equation belongs to the class of identical equations, or  
identities, i. e., the equations satisfied by any real value attributed to the variables. 
Also, the equation (x + y)2 = x2 + 2xy  + y2 is an identical equation in two 
unknowns. 

6.3.2 Forming an Equation from Given Information 

A pizzeria charges on Tuesday one euro less for pizza margherita than on Saturdays. 
With the same amount you can buy 5 pizzas on Tuesday and 4 on Saturday. How 
much does pizza cost on Saturdays? 

Let’s try to translate the question into an equation. If we indicate with x the cost 
of pizza on Saturday, then on Tuesday pizza costs x − 1; then 5(x − 1) is the cost 
of 5 pizzas on Tuesdays and 4x the cost of 4 pizzas on Saturdays. We equal the two 
amounts of money: 

5(x − 1) = 4x (6.1) 

Equation (6.1) expresses our problem in symbolic form. What is the value of x? 
How much does pizza cost on Saturday? To find the value of the unknown x, i. e., to 
solve the equation, let us perform the left-hand side multiplication: 

5x − 5 = 4x 

To know the cost x we need to “isolate” x, going through the following steps that 
apply the Theorems 6.1 and 6.2, 

5x − 5 − 4x = 4x − 4x 

5x − 5 − 4x = 0 
x − 5 = 0 

x = 5 

The pizza on Saturday costs 5 euros. We have therefore solved Eq. (6.1) because 
we have found the solution x = 5, which is unique.
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6.4 Order in R 

The real line allows a view of the ordering of the set R of the real numbers. Let the 
real line be oriented from left to right, if x is to the left of y, then the number x is 
smaller than the number y, or equivalently, the number y is greater than the number 
x, and we write x < y or y > x , respectively. The expression x < y, and the other 
y > x , are defined inequalities, also called inequations. Expressions like x ≤ y, 
x ≥ y are also inequalities and include the case that the numbers x and y coincide. 

The following statements are properties allowing to deal with inequalities. 

1. If x < y and y < z, then x < z. 
2. If x < y and z is any real number, then x + z < y + z. 
3. If x < y and w <  z, then x + w <  y + z. 
4. If x < y and z > 0, then xz  < yz. 
5. If x < y and z < 0, then xz  > yz; in particular, if x < y and z = −1, then 

−x > −y. 
6. If x and y are both positive or both negative and x < y, then 1 x > 1 y 

7. If 0 < x < y, then 0 < x 
y < 1. 

The properties 1 to 6 remain satisfied if the symbols< and > are replaced by ≤ 
and ≥, respectively. 

Also inequalities and inequations are expressions that may include numbers and 
letters which numerical values can be attributed to. These letters are called variables 
or unknowns. 

Given an inequality, any numerical value assigned to the unknown x that fulfils the 
inequality is called a solution of the inequality. Solving an inequality means to find 
the set of the solutions of the inequality. If x ≤ 1, the variable x takes any numerical 
value smaller than 1, or the value 1. 

In Fig. 6.7 we have a representation on the real line r of the solution set of the 
inequality x < 1; in Fig.  6.8 a representation of the set of solutions of the inequality 
x ≥ 0. (The symbol ⃝ on the line indicates a point which does not belong to the set, 
the symbol • indicates a point belonging to the set.) Fig. 6.9 represents the set of the 
points less than 1 and greater then or equal to 0. 

Fig. 6.7 The set of the points of the line r smaller than 1 

Fig. 6.8 The set of the points of the line r greater than or equal to 0
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Fig. 6.9 The set of the points of the real line r smaller than 1 and greater than or equal to 0 

6.4.1 Evaluating an Inequality to Making a Decision 

Like the equations, the inequalities are also useful tools for translating problems into 
mathematical models. 

Winston and Julia decide to enroll in a dance school. A renowned school asks for 
an annual registration fee of 315 euros for each person, plus 3 euros for each entrance. 
Admission to a suburban dance school instead costs 6 euros and no registration fee is 
required. The two aspiring dancers wonder which school is more convenient. Off the 
cuff they struggle to give an answer. If the two intend to attend the renowned school 
once a week, each will pay the registration fee plus 52 admissions in one year, that 
is 315 + 3 × 52 = 471 euros. Instead, attending the suburban school, always once 
the week, each would pay 52 admissions, that is 6 × 52 = 312. But if you attended 
the dance school three times a week, i. e., 3 × 52 = 156 times a year, the renowned 
school would cost 315 + 3 × 156 = 683, while the suburban dance school would 
cost 6 × 156 = 936. Then the renowned school would be cheaper. The annual cost 
therefore depends on the number of times the two will go to school. By attending x 
times in a year they will spend 315 + 3 × at the renowned school while 6 × euros at 
the suburban school. Therefore, the suburban school will be cheaper if the amount 
of money 6 × is smaller than 315 + 3x, 

6x < 315 + 3x (6.2) 

So we have to solve this inequality to know in which cases the suburban school 
is more convenient than the other. To proceed with the resolution, we use the laws 
allowing to deal with inequalities (Sect. 6.4). From (6.2) it follows 6x−3x < 315, 
hence 3x < 315 and the solutions of the inequality are the numbers x such that 

x < 
315 

3 
= 105 

So, if Julia and Winston intend to take classes no more than 104 times a year, 
or on average twice a week, the suburban school is cheaper than the renowned one. 
Otherwise, it is worth enrolling in the renowned school.
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6.5 Intervals, Neighborhoods, Absolute Value 

The equipotency and the consequent identification of the set R and the oriented line 
(Sect. 6.1) entails to state a correspondence between the geometrical and analytical 
nomenclatures. This seems appropriate for developing the method for describing 
algebraic formulas by means of geometric objects and, inversely, describing 
geometric objects in terms of algebraic formulas. 

So it happens that the same structure can be seen either in a numerical context and 
in a geometrical one. For example, the terms “point” and “number” are interchange-
able, a subset A of R and a subset of points in the line are called a numerical set or a 
linear set. Another example we are going to deepen is the term “oriented segment” 
(of geometric origin) and interval (of numerical origin), that we use as synonyms. 

Given the real numbers a and b, with a < b, let us specify the notion of interval. 
The closed interval with endpoints a and b, denoted [a, b], is the set defined by 

[a, b] = {x ∈ R : a ≤ x ≤ b} 

The open interval with endpoints a and b, denoted (a, b), is defined by 

(a, b) = {x ∈ R : a < x < b} 

The left-open and right-closed interval with endpoints a and b is the set defined 
by 

(a, b] = {x ∈ R : a < x ≤ b} 

The left-closed and right-open interval with endpoints a and b is the numerical 
set defined by 

[a, b) = {x ∈ R : a ≤ x < b} 

The interval [a, a] which consists of the only point a is called a degenerate interval. 
Let us consider the interval with endpoints a and b, a < b. The  width or length 

of an interval with endpoints a and b is, by definition, the number b–a. Degenerate 
intervals have width equal to zero. The center of an interval with endpoints a and b, 
a < b, is, by definition, the real number c such that c–a = b–c, i. e.,  c is the midpoint 
of the interval with endpoints a and b; therefore 2c = a + b and c = a+b 

2 (Fig. 6.10). 

Definition 6.1 Any open interval (a, b) containing the point p ∈ R is called a 
neighborhood of p.

Fig. 6.10 The center 
c = a+b 

2 of the interval [a, b] 
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There exists a positive real number h such that the open interval (p − h, p + h) is 
contained in the neighborhood of c; the neighborhood ( p−h, p+h) of p is called the 
neighborhood of p of radius, or  half-width, h (Fig. 6.11), or neighborhood centered 
on p of radius h. 

The absolute value of the real number x, denoted |x |, is the real number defined 
as follows: 

|x | =  x, ifx ≥ 0 

|x | = −x, ifx < 0 

In other words, the absolute value of a number x is a function f that associates the 
number x with x, if  x ≥ 0, and associates the number −x with x if x < 0.  

The absolute value of a real number is non-negative. 
For example, |5| =  5, | −  5| = −(−5) = 5. 
Moreover, the following properties hold, for every x and y in R: 

|x | =  0 if and only ifx = 0, 

|x − y| = |y − x |, for every x and y in R, 

−|x | ≤  x ≤ |x | 

|xy| = |x ||y| 

|x + y| ≤ |x | + |y| 

Given any pair of points x, y in the real line, the nonnegative number |x − y| is 
called the distance of the points x and y. The distance |x − y| is nonnegative, for 
example: 

|3 − 7| = |7 − 3| =  4 
|3 + 7| = |3| + |7| =  10 
| −  7 + 3| < | −  7| + |3| =  10 
|8(−4)| = |  −  32| =  32 
|8|| − 4| =  8 × 4 = 32

Fig. 6.11 Neighborhood of 
p of radius h 
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Fig. 6.12 The open interval 
(−a, a) 

Fig. 6.13 The closed 
interval [−a, a] 

If a > 0 the inequality |x| < a is, by definition, equivalent to both the inequalities: 

x < a, ifx ≥ 0 
−x < a, ifx < 0 

which yield: −a < x < a. 
Evidently the real numbers that are greater than−a and less than a are the elements 

x of the open interval (−a, a). The equalities between sets hold: 

(−a, a) = {x ∈ R : |x | < a} = {x ∈ R : −a < x < a} 

The open interval (−a, a) is the neighborhood of 0 of radius a (Fig. 6.12). 
Similarly, the equalities of the following sets hold (Fig. 6.13): 

[−a, a] = {x ∈ R : |x | ≤  a} = {x ∈ R : −a ≤ x ≤ a}. 

Let us now consider the inequation in the unknown x: 

|x − c| < a (6.3) 

with c and a real numbers and a > 0. By definition of absolute value, the set of real 
numbers x verifying (6.3) coincides with the set of the real numbers x such that: 

−a < x − c < a (6.4) 

and, adding c to each side of (6.4), 

c − a < x < c + a (6.5) 

Therefore, the real numbers which satisfy (6.3), and hence (6.4), are the numbers 
x which fulfil (6.5). Whence the equalities of the sets: 

(c − a, c + a) = {x ∈ R : |x − c| < a} = {x ∈ R : −a < x − c < a} 

= {x ∈ R : c − a < x < c + a} (6.6)
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Fig. 6.14 The neighborhood 
of c with half-width a 

Fig. 6.15 Upper-unbounded 
left-closed interval 

The open interval (6.6) is the neighborhood of the point c having half-width a 
(Fig. 6.14). 

The half-line has to be considered an interval. The numerical set {x ∈ R : x ≥ c} 
is defined the left-closed right-unbounded interval of origin c. It is represented on 
the real line r by the right half-line of origin c, which contains the numbers greater 
than or equal to c (Fig. 6.15). This interval is also denoted by [c, +∞), where + ∞  
is the symbol of “positive infinity”. 

The numerical set {x ∈ R : x > c} is called a left-open right-unbounded interval. 
It consists of the real numbers x > c. Similarly, among the left-unbounded and right-
bounded intervals we distinguish the right-open intervals {x ∈ R : x < c}and the 
right-closed intervals {x ∈ R : x ≤ c}. 

To summarize, when using the symbols+∞, plus infinity, and−∞,minus infinity, 
the unbounded intervals are denoted and named as follows: 

[c, +∞) = {x ∈ R : x ≥ c} left-closed right-unbounded interval. 
(c, +∞) = {x ∈ R : x > c} left-open right-unbounded interval. 
(−∞, c] = {x ∈ R : x ≤ c} right-closed left-unbounded interval. 
(−∞, c) = {x ∈ R : x < c} right-open left-unbounded interval. 
For every real number c, the interval (c, +∞) is called a neighborhood of +∞, 

the interval (−∞, c) a neighborhood of −∞. 

6.5.1 Exercises 

It is worth remembering the calculation rules for solving equations (Sect. 6.3) and 
inequalities (Sect. 6.4). 

1. Find the solutions of the equation |3x − 4| =  5. Applying the definition of 
absolute value we distinguish the two cases: 

(a) 3x − 4 ≥ 0, 

then |3x −4| =  3x −4, and the equation |3x −4| =  5 reduces to 3x −4 = 5 
which is solved by x = 3.
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(b) 3x − 4 < 0, 

then |3x −4| = −(3x −4) = −3x +4, so the equation |3x −4| =  5 reduces 
to −3x + 4 = 5 that has the solution x = − 1 

3 . 
Therefore, the equation |3x − 4| =  5 has two solutions: x = 3 and 

x = − 1 
3 . 

2. Solve the inequation |2x − 3| < 5. We distinguish the two cases: 

(a) 2x − 3 ≥ 0, 

then |2x −3| =  2x −3, and the inequality |2x −3| < 5 reduces to 2x −3 < 5 
which is solved by x < 4;  

(b) 2x − 3 < 0, 

then |2x − 3| = −(2x − 3). The inequality |2x − 3| < 5 takes the form 
−2x + 3 < 5, whose solutions are the values x > −1. 

Therefore, the solutions of the inequality |2x −3| < 5 are the points x that belong 
to the union of the sets {x ∈ R : x < 4} and {x ∈ R : x > −1}. 

6.6 The Extended Set of Real Numbers 

In relation to unbounded intervals we have introduced the symbols +∞ and −∞. Let  
us warn that +∞ and −∞ are not real numbers. We assume −∞ −∞ < x < +∞, 
for all x ∈ R. 

The set R∗ = R ∪ {−∞, +∞} is called the extended set of real numbers, or  the 
extended real line. We also consider the intervals of R* containing +∞ and −∞; 
so we have: 

[−∞, a) = {−∞}  ∪  (−∞, a)and(a, +∞] = (a, +∞) ∪ {+∞}, foreverya ∈ R. 

In (Sect. 6.5) the neighborhood of a point c ∈ R has been defined as an open 
interval that contains the point c. Let  A be a non empty subset of R. A real number x 
is called an interior point of A if there exists a neighborhood of x contained in A. The  

set of interior points of A is called the interior of A and is denoted 
◦ 
A. For example, 

if A = [a, b), then 
◦ 
A = (a, b). 

If A = {1, 2, 3},  then  
◦ 
A is the empty set, 

◦ 
A = ∅, because every neighborhood of 

1 is not contained in A and the same can be said for the points 2 and 3; so the set A 
= {1, 2, 3} does not contain interior points. 

The numerical set A is said to be open if it is equal to its interior, A = 
◦ 
A, i. e.,  

each point of A is an interior point of A. For example, the open interval (a, b) and R 
are open sets. 

A point x of R is called an accumulation point of the set A if each neighborhood 
of x contains a point of A distinct from x.
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Fig. 6.16 There exists a neighborhood of x that does not contain any point of A = {1, 2, 3} 

Fig. 6.17 There exists a neighborhood of x that does not contain any point of A = {1, 2, 3} distinct 
from x 

6.6.1 Examples 

a. The accumulation points of A = (a, b) are the points a, b and all the points of 
A. Indeed: every neighborhood of the point a contains a point of A distinct from 
a; every neighborhood of the point b contains a point of A distinct from b; for  
every point x of the interval (a, b), every neighborhood of x contains a point of 
A distinct from x. Therefore, the set of accumulation points of the open interval 
(a, b) is the closed interval [a, b]. 

b. The set A = {1, 2, 3} has no accumulation points; indeed, for every real number 
x there exists a neighborhood of x that does not contain any point of A distinct 
from x (Figs. 6.16, 6.17). 

The elements +∞ and −∞, which belong to R* are accumulation points of R 
that do not belong to R. For example, the set of accumulation points of the open 
interval (1, +∞) is the interval [1, +∞] subset of R*. 

It is easy to deduce that if x is an accumulation point of A, every neighborhood of 
x contains infinite points of A. 

The set of accumulation points of A, denoted A', is called the derived set of A. 
For example, the derived set of (a, b) is  [a, b], (a, b)' = [a, b]; the derived set of the 
set {1, 2, 3} is the empty set. 

The set A is said to be closed if it contains its own derived set. For example, the 
sets [a, b], R and {1, 2, 3} are closed sets. The set {1, 2, 3} is closed because it 
contains its own derived set, that is the empty set (Sect. 1.2 (P)). A point of A which 
is not an accumulation point of A is said to be an isolated point. For example, the 
points of the set {1, 2, 3} are isolated points. In the set B = {1, 2}∪ [3, 4], the points 
1 and 2 are the isolated points of B, while the points of the interval [3, 4] are the 
accumulation points of B. 

A left neighborhood of the point c is defined as the left-open right-closed interval 
with endpoints b and c, i. e.,  (b, c] = {x ∈ R : b < x ≤ c}, and b < c. A  right 
neighborhood of the point c is defined as the left-closed right-open interval with 
endpoints c and d, i. e.,  [c, d) = {x ∈ R : c ≤ x < d}, and c < d.
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6.7 Upper Bounds and Lower Bounds 

Let us introduce the concept of boundedness for numerical sets. 

Definition 6.2 A numerical set A is said to be upper bounded if there exists a real 
number c such that x ≤ c, for every element x of A. Any such number c is called an 
upper bound or a majorant of A (Fig. 6.18). 

Example The set A = {−1, − 2, − 3, …, – n, …}, whose element are the negative 
integers, is upper bounded because there exists a real number, for example zero, 
which is greater than every element of A. Also the open interval (−∞, 2) is an upper 
bounded subset of R because the number 2, and every number greater than 2, is 
greater than any element of the interval (−∞, 2). The interval (−∞, 2] is still an 
upper bounded numerical set, since the number 2 is greater than or equal to each 
element of the interval (−∞, 2]. 
Definition 6.3 A numerical set A is said to be lower bounded if there is a real number 
d such that d ≤ x , for every element x of A. Any such number d is called a lower 
bound or a minorant of A (Fig. 6.19). 

Example The set E = {2, 4, 6, …, 2n, …} of all the even natural numbers, is lower 
bounded because there exists a real number, for example zero, which is smaller than 
each element of E. The interval [2, +∞), is a lower bounded subset of R, because 
the number 2, and any number smaller than 2, is smaller than or equal to any element 
of the interval [2, +∞). 

Definition 6.4 A numerical set that is upper bounded and lower bounded is called a 
bounded set. 

Example The set S = {
1, 1 2 , 

1 
3 , . . . ,  1 n , . . .

}
, whose elements are the fractions having 

numerator 1 and denominator a natural number, is lower bounded and upper bounded. 
In fact, zero is smaller than each element of S and 1 is greater than or equal to each 
element of S. 

The open interval (0, 1) is a bounded set. 
The set A = {1, 2} ∪ [3, 4] is a bounded set. 
Any lower bounded numerical set and any upper bounded numerical set are 

included in a half-line; any bounded numerical set is included in a segment.

Fig. 6.18 The point c is an 
upper bound of A 

Fig. 6.19 The point d is a 
lower bound of A 
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Let A be an upper bounded numerical set. Then one of the two properties occurs: 
Property M1. An upper bound for A exists in A. 
Property M2. An upper bound for A does not exist in A. 
If Property M1 holds, let m '' be an upper bound for A belonging to A. This means 

that, for every a ∈ A, a ≤ m ''. The number m '' is unique: indeed let n'' ∈ A be an 
upper bound for A, then for every a ∈ A, a ≤ m '' and being n'' ∈ A, n'' ≤ m ''; 
interchanging m '' with n'', one has m '' ≤ n''; hence m '' = n''. The upper bound m ''
is called the maximum element of A, or the  maximum of A, denoted m '' = max A. 
Therefore, the set A is said to have a maximum. 

Example In the set A = {−1, − 2, − 3, …, − n, …} of the negative integers the 
number –1 is an upper bound for A that belongs to A; then A has a maximum. In the 
interval [−∞, 2) there is no upper bound for A; the number 2 is an upper bound for 
the interval [−∞, 2), but it does not belong to [−∞, 2); any number greater than 2 
does not belong to [−∞, 2), any number smaller than 2 is not an upper bound for 
[−∞, 2).  

Let A be a lower bounded numerical set. One of the two properties occurs: 
Property m1. A lower bound for A exists in A. 
Property m2. A lower bound for A does not exist in A. 
If Property m1 holds, let m ' be a lower bound for A belonging to A. Similarly 

to the property M1, m' is unique and it is named the minimum element of A or the 
minimum of A, denoted m ' = min A. Therefore, the set A is said to have a minimum. 

The operations of addition and multiplication are defined in the set R of real 
numbers: this means that the set R is closed with respect to the addition and the 
multiplication (Sect. 2.5.2). Furthermore, the usual order relation ≤ is defined in 
R. The  set  R endowed, or structured, with the addition and multiplication and the 
ordering ≤ , is called the real field. In other words, if the symbol + denote addition, 
and · the multiplication, then the 4-tuple (Sect. 3.2) of symbols (R, + , · , ≤ ) defines 
the real field. 

Let us accept the following propositions which express the property of complete-
ness of the real field. 

C1. If A is an upper bounded numerical set, then the set of the upper bounds for 
A has a minimum. 

C2. If A is a lower bounded numerical set, then the set of the lower bounds for A 
has a maximum. 

Definition 6.5 IfA is an upper bounded subset of R, the  setM(A) of the upper bounds 
of A has a minimum element, denoted e''. The element e'' is called the least upper 
bound of A or the supremum of A for which the notations e'' = 1.u.b.A = sup A are 
used. Therefore, M( A) = [

e'', +∞)
. 

The supremum e'' of the upper bounded set A satisfies the properties: 

(S1) x ≤ e'', for every x ∈ A, 
(S2) for every ε >  0 there is at least one element xε ∈ A such that xε > e'' − ε.
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Property (S1) means that e'' is an upper bound of A; property (S2) means that 
every number less than e'' is not an upper bound. 

Definition 6.6 If A is a lower bounded subset of R, the  set m(A) of the lower bounds 
for A has a maximum element, denoted e'. The element e' is called the greatest 
lower bound of A or the infimum of A for which the notations e'[= g.l.b. A = 
inf A are used. Therefore, m( A) = (−∞, e']]. 

The infimum e' of the lower bounded set A satisfies the properties: 

(I1) x ≥ e', for every x ∈ A, 
(I2) for every ε >  0, there is at least one element xε ∈ A such that xε < e' + ε. 
Property (I1) means that e' is a lower bound of A; property (I2) means that every 
number greater than e' is not a lower bound. 

Properties (S1) and (S2) and properties (I1) and (I2) are characteristic properties 
of supremum and infimum in the sense that they are equivalent to Definitions 6.5 and 
6.6 and can be assumed as definitions of supremum and infimum, respectively. 

Let explicitly mention the further properties: 

– e' ≤ e'' and 
– e' = e'' if and only if A consists of a unique element, 
– among the intervals including A, the interval [e', e''] has minimum length. 

Example The set 

S =
{
1, 

1 

2 
, 
1 

3 
, . . . ,  

1 

n 
, . . .

}

is upper bounded and any real number greater than or equal to 1 is an upper bound 
of S. The number 1 belongs to S and is an upper bound of S: therefore, maxS = 1. 
The set S is lower bounded and any real number smaller than 0 or equal to 0 is a 
lower bound for S. The set of the lower bounds for S has a maximum that is zero. 
Therefore, supS = 1 and infS = 0. 

Example The set Q of rational numbers is also ordered and structured as a field 
with addition and multiplication operations between rational numbers. The field Q, 
however, is not complete. In fact, consider the numerical set X contained in Q and 
defined by X = [0,√2) ∩ Q. Since the set of rational numbers greater than

√
2 does 

not have a minimum, Q is not complete.
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6.8 Commensurability and Real Numbers 

In (Sect. 2.5) we dealt with commensurability of segments with respect to a unit of 
measure: the topic is intimately linked with the geometric origin of the real numbers 
and can be a start point to describe a procedure for constructing real numbers. Take 
the non-null segment u as unit of measure for segments (see Sect. 2.5 and 6.2.1). 
A non-null segment s and the unit u are said to be commensurable if there exists a 
couple (n, m), with m natural and n nonnegative integer such that 

S = 
n 

m 
u (6.7) 

The equality (6.7) is rewritten this way 

s = n
(
1 

m 
u
)

This means that the segment s is the sum of n segments each equal to 1 m u. The 
rational number n 

m is named the measure of s with respect to u. The measure of the 
null segment is zero. 

For some segment s it may occur that a couple (n, m) satisfying (6.7) does not 
exist; then the segments s and u are defined incommensurable. For example, this is 
the case of the side and the diagonal of the square (Sect. 2.7.7). 

Let us describe the steps of a procedure to associate a measure with s, given  u, 
being or not s and u commensurable. 

1st step. Let  n be the largest nonnegative integer such that nu ≤ s. Therefore, by 
Eudoxus-Archimedes’ postulate (Sect. 2.5), 

nu ≤ s < (n + 1)u 

The interval [n, n + 1] is a constraint to the measure of the segment s. If  nu = s, 
then the segments u and s are commensurable and n is the measure of s with respect 
to u. 

2nd step.If nu < s, let  d1 be the largest decimal digit such that 

n.d1u ≤ s 

Therefore, 

n.d1u ≤ s <
(

n.d1 + 
1 

10

)
u 

The interval
[
n · d1, n · d1 + 1 

10

]
is a more strict constraint to the measure of the 

segment s. If  n · d1u = s, then the segments u and s are commensurable and the 
rational number n.d1 is the measure of s with respect to u.
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3rd step. n · d1u < s. Let  d2 be the largest decimal digit such that 

n.d1d2u ≤ s 

Therefore, 

n.d1d2u ≤ s <
(

n.d1d2 + 
1 

102

)
u 

The interval
[
n.d1d2, n.d1d2 + 1 

102
]
is a more strict constraint to the measure of 

the segment s. If  n.d1d2u = s then the segments u and s are commensurable and the 
rational number n.d1d2 is the measure of s w. r. to u. 

4th step. n.c1c2u < s. The procedure continues. 

Definition 6.7 Any sequence I1, I2, I3,…, Ih, … of intervals with rational end-points, 
each of which is contained in the preceding one and such that for every number p > 
0 there exists a natural number n such that the length of In is less than p, is called a 
sequence of nested intervals. 

For example, the sequence of intervals 

[n, n + 1],
[

n.d1, n.d1 + 
1 

10

]
,

[
n.d1d2, n.d1d2 + 

1 

102

]
, . . .  

is a sequence of nested intervals. 
Let us accept the following proposition without proof. 
Postulate. Given a sequence of nested intervals, there exists one and only one point 

that belongs to each interval of the sequence. This point is called a real number: if it  
is not a rational number it is called an irrational number. 

Coming back to the procedure for constructing the measure of s w. r. to u, if the  
unique point determined by the sequence of nested intervals is rational, then s and u 
are commensurable, if the point is irrational, then s and u are incommensurable. 

6.9 Separate Sets and Contiguous Sets 

Let the sets A and B be subsets of real numbers. If each element a of A is smaller 
than any element b of B, then the sets A and B are said separate sets. 

Definition 6.8 Two separate sets are said to be contiguous if, for every (in particular, 
no matter how small) real number d > 0, an element a of A and an element b of B 
exist such that. 

|b − a| < d
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Example 6.10 The open interval H = (−1, 0) and the set S = {
1, 1 2 , 

1 
3 , . . . ,  1 n , . . .

}

are separate since each element of H is smaller than any element of S. They are also 
contiguous since, for every d > 0, there exists an element h of H and an element s of 
S, such that |s − h| < d. The intervals. 

[−1, 1],
[
− 
1 

2 
, 
1 

2

]
,

[
− 
1 

3 
, 
1 

3

]
, . . . ,

[
− 
1 

n 
, 
1 

n

]
, . . .  

form a sequence of nested intervals. Then there is one and only one real number that 
belongs to all intervals of the sequence. This number is zero. 

Example 6.11 Let us consider the irrational number
√
2 = 1.4142 . . .  and the 

numerical sets. 

A( 
√
2) = {1; 1.4; 1.41; 1.414; 1.4142; . . .} 

B( 
√
2) = {2; 1.5; 1.42; 1.415; 1.4143; . . .} 

The sequence of intervals 

[1, 2], [1.4, 1.5], [1.41, 1.42], [1.414, 1.415], [1.4142, 1.4143], . . .  

is a sequence of nested intervals. Then a unique real number belonging to all intervals 
of the sequence exists. This point is the real number

√
2. The  sets  A( 

√
2) and B( 

√
2) 

are separate and contiguous. 
If two separate numerical sets A and B are contiguous, then there exists exactly 

one real number r, such that a ≤ r ≤ b, for every a in A and b in B. In fact, a sequence 
of nested intervals [an, bn], an ∈ A, bn ∈ B, n ∈ N, can be built. Then there exists a 
unique real number that belongs to all intervals of the sequence. This point is called 
the element of separation of the contiguous sets A and B. 

Example 6.12 If A is an upper bounded numerical set, then the e'' = sup A is the 
element of separation of A and the set M(A) of the upper bounds of A. 
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Chapter 7 
Real-Valued Functions of a Real 
Variable. The Line 

7.1 The Cartesian Plane 

We showed (Sect. 6.2.2) that the introduction of a coordinate system in a line leads 
to the identification of the set of real numbers and the set of the points of the line. 

We now will show that the plane can be identified with the set R2 of the couples 
of real numbers. 

Let two orthogonal oriented lines, called x axis and y axis, be fixed in the plane α. 
The axes intersect each other at a point O and both axes are endowed with coordinate 
systems of common origin O and unit points Ux and Uy, such that OUx= OUy=1. 

The triple of points (O, Ux, Uy) are sufficient to define a coordinate system of the 
plane. A plane with a coordinate system is called a coordinate plane, or simply a  
plane xy. 

Let us show that there is a 1–1 correspondence between the points of a coordinate 
plane and the couples of real numbers. 

Indeed, if P is a point in the plane xy, let us draw two lines that pass through P 
and are perpendicular to x axis and to y axis. If the first line intersects the x axis 
at the point of coordinate a and the second line intersects the y axis at the point 
of coordinate b, then we associate the couple (a, b) to the point P: the number a is 
called the first coordinate or the abscissa of P and the number b is called the second 
coordinate or the ordinate of P. The point P is called the point of coordinates (a, b), 
denoted P(a, b). The described procedure shows that a unique couple of real numbers 
is associated to each point of a coordinate plane. 

Vice versa, from a couple (a, b) of numbers we draw the perpendicular lines to 
the x and y axes at the points of coordinates a and b, respectively; the intersection 
of the two lines is the unique point whose coordinates are (a, b). Therefore, a 1–1 
correspondence exists between the set of the points of a plane and the set of the 
couples of real numbers. This allows the plane to be identified with the set R2 and 
the same symbol R2 be used to indicate both the set of the couples of real numbers 
and the set of points of the plane; furthermore, we say that the couple (x, y) is a point
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of the plane. The symbol P(x, y), or P = (x, y), denotes the point P having coordinates 
(x, y). 

7.1.1 Quadrants 

The coordinate axes divide the plane into four regions, called quadrants: any point 
in the first quadrant has abscissa and ordinate positive, any point in the second has 
negative abscissa and positive ordinate, each point in the third has both abscissa and 
ordinate negative, each point in the fourth has positive abscissa and negative ordinate 
(Fig. 7.1). Of course, the ordinate of any point of the x axis is zero, the abscissa of 
any point of the y axis is zero. 

If the point (x, y) is in the first quadrant, then the point (−x, y) is in the second 
and the two points are symmetrical with respect to the y axis; the point (−x, − y) is  
located in the third quadrant and is the symmetric of (x, y) with respect to the origin, 
i. e., O is the midpoint of the segment of endpoints (x, y) and (−x, − y); the point (x, 
− y) is located in the fourth quadrant and is the symmetric of (x, y) with respect to 
the x axis. 

Congruent geometrical figures. We add some considerations to the concept of congru-
ence already mentioned (Sect. 4.5.2). Saying that the sets A and B are equal means 
that A and B are two different names of the same set (Sect. 1.2). Hence it is improper 
to call equal the segments OUx and OUy because they have the unique point O in 
common. We say congruent two plane figures, i. e., two sets of points in the plane, 
if a (rigid) movement, i. e., a movement that preserves the distances, leads one set 
to coincide with the other. Then the segments OUx and OUy are congruent because 
one of them rotated overlaps the other.

Fig. 7.1 The coordinate 
system in the plane: O origin 
of the axes, Ux and Uy unit 
points of the axes, (x, y) the  
couple of coordinates of P. 
Quadrants I, II, III and IV; 
symmetrical points of P with 
respect to the axes and the 
origin 
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7.1.2 Distance 

We extend the notion of distance introduced in (Sect. 6.5) to the pairs of the points 
in the plane xy. Let us define distance of the points P1(x1, y1), P2(x2, y2) the function 
d which associates the non-negative real number 

d(P1, P2) = |P1P2| =
/
(x2−x1)

2 + (y2−y1)
2 

to the couple of points (P1, P2), where |P1P2| denotes the length of the segment 
P1 P2. The procedure that determines the value of d is a simple application of the 
Pythagorean theorem (Fig. 7.2), 

and consists in 

a. setting the points P1(x1, y1), P2(x2, y2) in the plane; 
b. constructing the right triangle with hypotenuse P1 P2 and catheti HP1 and HP2, 

parallel to the coordinate axes, with H(x1, y2); 
c. calculating the lengths |x2 – x1| and |y2 – y1| of the catheti HP1 and HP2 

(Sect. 6.2.1), respectively; 
d. calculating the length of the hypotenuse: 

d(P1, P2) = 
/

|x2−x1|2 + |y2−y1|2 =
/
(x2−x1)

2 + (y2−y1)
2 

The number d(P1, P2) is called the value of the distance, or simply the distance 
of the points P1 and P2. 

For example, the distance of the points A(6, –1) and B(5, –2) is equal to 

d(A, B) =
√
(5 − 6)2 + (−2 + 1)2 = 

√
1 + 1 = √

2 

which is also the length of the segment AB. 
In particular, the distance of P(x, y) from the origin is |OP| = √

x2 + y2 (Fig. 7.3).

Fig. 7.2 Distance d(P1, P2) 
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Fig. 7.3 The distance |OP|  

7.2 Real-Valued Functions of a Real Variable 

A function whose range is a subset of R is called a real-valued function. 
A function whose domain is a subset A of R is called a function of a real variable. 
Therefore, a real-valued function of a real variable is a function f : A → B, such 

that A ⊆ R and its range is f (A) ⊆ B ⊆ R. 

7.2.1 Extrema of a Real-Valued Function 

Let f : A → B be a real-valued function defined in A ⊆ R. Since the range f (A) is  
a subset of R, the concepts and properties expressed in Chap. 6 and related with 
numerical sets, apply to f (A), in particular what is concerned with boundedness. So 
instead of saying the range of f is upper bounded, or  the range of f is endowed with 
maximum, instead of saying the supremum of the range of f , for sake of brevity, we 
prefer to talk about upper bounded function f , f endowed with maximum, f endowed 
with supremum, and so on. 

Nevertheless, we want to replicate the definitions in full and adapt some symbols. 
A real-valued function f : A→ B is called lower bounded, upper bounded, bounded 

in A if the range f (A) is lower bounded, upper bounded, bounded, respectively. 
The infimum and the supremum of f (A) are called the infimum and the supremum 

of f in A, denoted inf 
x∈A 

f (x) (or inf f ) and sup 
x∈A 

f (x) (or sup f ), respectively. 

The characteristic properties (see Sect. 6.7) of supremum e'' of f take the form: 

(S1) for every x ∈ A, f (x) ≤ e''; 
(S2) for every ε > 0, there is at least one element xε ∈ A such that f (xε) >  e''– ε. 

Similarly, the characteristic properties of infimum e' take the form: 

(I1) for every x ∈ A, x ≥ e'; 
(I2) for every ε > 0, there is at least one element xε ∈ A such that f (xε) <  e' + ε.
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If the range of f is endowed with minimum (maximum), then we say that f is 
endowed with minimum (maximum) in  A; in other words, f is said to have a minimum 
(maximum) in  A if there exists a point x' ∈ A (x'' ∈ A) such that f (x') ≤ f (x), (f (x) 
≤ f (x'')), for every x ∈ A. The minimum and the maximum of f in A are denoted 
min 
x∈A 

f (x) (or min f ) and max 
x∈A 

f (x) (or max f ), respectively. If f (x') = min f , then 
f is said to have a minimum point at x'; if  f (x'') = max f , then f is said to have a 
maximum point at x''. 

The infimum and the supremum, and the minimum and maximum of f , are  
generically named extrema of the function. 

7.2.2 The Graph of a Real-Valued Function 

We know (Sect. 5.1) that the function f : A ⊆ R → B ⊆ R associates a unique element 
b of the set B to each element a belonging to the set A. We defined the graph of f as 
the set of couples (x, f (x)), 

A × f (A) = {(x, f (x)), for every x ∈ A} 

where A and f (A) are the domain and the range of f , respectively. Any couple (x, 
f (x)) is a point P of the plane xy. We write y = f (x) to indicate that the couple (x, 
f (x)) is a point (x, y) of the graph of f : this is the act that produces the birth of the 
“new subject” (Sect. 6.1), i. e., the analytic geometry. 

The graph of the function is often identified with its geometric image: the orthog-
onal projection of the graph over the x axis coincides with the domain of the function 
and the orthogonal projection of the graph over the y axis coincides with the range. 

Two different couples of elements in the graph of f have distinct abscissas. The 
curve in Fig. 7.5 is a set of points (x, y) which cannot be the graph of any real-valued 
function of a real variable, while the curve in Fig. 7.4 is a set of points (x, f (x)) which 
is the graph of a real-valued function of a real variable f . 

Fig. 7.4 The curve is the 
graph of the function f
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Fig. 7.5 The curve is not the 
graph of any function 
because there are two points 
of the curve having the same 
abscissa 

Example 7.1 Let f be the function that associates the number 2x − 3 to the number 
x, f (x) = 2x – 3. The function f is a real-valued function of the real variable x. The  
domain and the range of f are equal to R. In order to find some couples of the graph 
of f , let us choose numbers for x and find f (x): 

f (x) = 2x − 3 (x, f (x)) 

f (−1) = 2(−1) − 3 = −5 (−1, −5) 

f (0) = 2(0) − 3 = −3 (0, −3) 

f
(
3 
2

) = 2
(
3 
2

) − 3 = 0
(
3 
2 , 0

)

f (1) = 2 × 1 − 3 = −1 (1, 1) 

Therefore, (–1, –5), (0, –3),
(
3 
2 , 0

)
, (1, 1) are four couples of the graph of f . In  

this way we can determine how many points we want in the graph of f . 
We will show that all points of the graph of the function f (x) = 2x – 3 lie on a 

line and all the points of this line are the points of the graph of f . 

7.2.3 Graph and Curve 

In the cases of our interest, the geometric representation of the graph of a real-
valued function of a real variable is often a curve. Such a representation highlights 
the properties of real-valued functions of a real variable and it is a common and 
recommended practice to draw the graphs of these functions, whenever possible. 

The equation y = f (x) is equivalent to say that the point (x, y) belongs to the 
graph of the function f . In particular, the expression y = 2x – 3 is equivalent to f (x) 
= 2x – 3.
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Let us observe that drawing a graph is not always physically possible. For example, 
we cannot give even an idea about the graph of the real-valued function j defined in 
the interval [0, 1]: 

j (x) = 1, if x is a rational number 

j (x) = 0, if x is an irrational number 

7.3 Lines in the Cartesian Plane 

We study the analytic representation of the line in the plane xy. Such a representation 
can take various forms that satisfy suitable geometric and analytic features. 

7.3.1 The Constant Function 

The real-valued function f of the real variable x defined by: 

f : x → c 

where c is a real number, is called the constant function, also denoted f (x) = c, or  y 
= c. The domain of f is R and the range of f is the set {c} consisting of the unique 
point c. Therefore, the graph of the function f is the set of points (x, c), for every 
point x ∈ R. If  c = 0, the graph of f is the x axis; if c = 1, the graph is the line parallel 
to the x axis passing through the points of ordinate 1 (Fig. 7.6). 

Fig. 7.6 Graph of the constant function y = f (x) = 1
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Fig. 7.7 Graph of the 
identical function f (x) = x 

7.3.2 The Identical Function 

The real-valued function f of the real variable x 

f : x → x 

for every x ∈ R, is called the identical function or identity (function) onto R. The  
domain and the range of f are equal to R. The function f associates x to x itself and 
also the notations f (x) = x and y = x are used. The solutions of the equation y = x 
are the couples of the coordinates of the points (x, f (x)) = (x, x). As f (−1) = −  1, 
f (0) = 0, f (2) = 2 the points (–1, –1), (0, 0), (2, 2) belong to the graph of identical 
function. The graph of f is the bisector of the first and third quadrant (Fig. 7.7). 

7.3.3 The Function f : x→ kx 

The function f (x) = kx, with k /= 0, has domain and range R. If  k = 0, the function 
has the form f (x) = 0, i. e., a particular constant function whose domain is R and the 
range reduces to the set {0}. If k /= 0 the graph of f (x) = kx contains the origin O(0, 
0) and is a line. In fact, f (0) = 0; moreover, if the point P, distinct from the origin, 
has coordinates (x, y) and is a point of the graph, then y = kx, i. e.,  y x = k. The ratio 
between the ordinate and abscissa of each point P of the graph is constant and it is 
equal to k. By Thales’ theorem (Sect. 4.6) the points of the graph are the points of a 
line. The graph of the function f is a line that crosses the first and third quadrant, if 
k > 0 (Fig.  7.8); the graph is a line that crosses the second and fourth quadrant, if k 
< 0 (Fig.  7.9). Briefly, we say: “the line y = kx” instead of “the graph of f : x → kx” 
or “the graph of f (x) = kx”.
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Fig. 7.8 The line y = kx, k > 0  

Fig. 7.9 The line y = kx, k < 0  

Example 7.2 The line passing through the origin (0, 0) and the point (−1, 1) is the 
graph of the function f (x) = −  x. Indeed, (0, 0) and (−1, 1) are solutions of the 
equation y = −  x. 

If k is positive, as k increases the graph of f is a steeper and steeper line because 
the ratio between the ordinate and the abscissa of the point in the line increases. The 
number k is called the slope of the line. For example, the line y = 3 × is steeper than 
the line y = 2x (Figs. 7.10 and 7.11).

If a segment of the line f (x) = kx has the orthogonal projection of length 1 on 
the x axis, then it has an orthogonal projection of length k on the y axis (Fig. 7.12). 
The greater the absolute value of the slope k is, the closer the line is to the vertical 
position.

Exercise 7.1 Find the equation of the line that passes through the origin and has 
slope 5 2 . 

The line passes through the origin and the point (1, 5 2 ) and it is the graph of the 
function 

f (x) = 
5 

2 
x,

(
or y = 

5 

2 
x

)
.
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Fig. 7.10 The line y = 2x 

Fig. 7.11 The line y = 3x

Fig. 7.12 k is the slope of 
the line PQ

Exercise 7.2 Find the equation of the line that passes through the origin and has 
slope − 3. 

Solution. The line is the graph of y = –3x; it passes through the origin O(0, 0) and 
the point (1, –3). 

The equality f (x) = kx is an equation because it is verified if, and only if, y is 
equal to kx, i. e., the solutions of the equation are all the couples (x, kx), for every x 
∈ R, and only these couples are solutions of the equation f (x) = kx. The equation y 
= kx is called the equation of the line having slope k and passing through the origin.
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7.3.4 The Function f : x → kx + n 

The graph of the function f (x) = kx + n is a line parallel to the line of equation y 
= kx. In fact, each point (x, kx + n) of the graph of f (x) = kx + n is obtained by 
adding n to the ordinate of the point (x, kx) of the line y = kx (Fig. 7.13). Of course, 
the notations f (x) = kx + n and y = kx + n are equivalent. 

If r is the line of equation y = kx + n, we write 

(r) y = kx  + n 

The line (r) y = kx + n passes through the point (0, n), intersection of r with the y 
axis. The number n is called the ordinate at the origin, or the  y intercept of the line. 
The line r is identified as the line with slope k and passing through the point (0, n). 
Two parallel lines have the same slope. The line 

(s) y = 3x − 2 

has slope 3 and ordinate at the origin − 2. 

Remark 7.1 Some few more words on the concept of representation. The equation. 

(r ) y = kx  + n 

is said to represent the line r or to give a representation of the line r. This means 
that every point of the line r has coordinates (x, y) solution of the equation y = kx 
+ n, and, moreover, the points of the line r are the only points of the plane whose 
coordinates are solutions of equation y = kx + n. 

The equation y = kx + n of the line r is called the explicit equation or the explicit 
representation of the line r.

Fig. 7.13 Parallel lines y = 
kx and y = kx + n 
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Remark 7.2 The vertical lines, i. e., the lines parallel to the y axis, are not graphs of 
any real function. For any vertical line, neither the slope nor the ordinate at the origin 
can be defined. In fact, the orthogonal projection of any vertical segment reduces to 
a point on the x axis; moreover, every vertical line, distinct from the y axis, does not 
meet the y axis. 

Remark 7.3 If the point (x0, y0) belongs to the line. 

(r) y = kx  + n 

then the equation is satisfied by the solution (x0, y0), i. e., 

y0 = kx0 + n 

and subtracting this equality from (r), the equation 

y − y0 = k(x − x0) 

with slope k and passing through the point (x0, y0) is obtained. 

For example, the equation of the line s passing through (−4, 8) and parallel to the 
line 

(r) y = 6x − 1 

is 

(s) y − 8 = 6(x + 4), 

I.e., y = 6x + 32. 

7.3.5 The Linear Equation 

The equation y = kx + n represents a non-parallel line to the y axis. The vertical 
line passing through a point with abscissa h has equation x = h, in fact any couple 
(h, y), y ∈ R is a solution of the equation x = h. (Think at the equation x = h in the 
form x + 0y = h.) For example, the vertical line passing through the point (2, 0) has 
equation x = 2, in fact, each point of abscissa 2 has coordinates (2, y) and this couple 
is a solution of the equation x = 2. 

Both y = kx + n and x = h are first degree equations in the variables x and y. 
Therefore, any line of the plane, is represented by a first degree equation in two 
variables. In conclusion, the first degree equation
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Fig. 7.14 The line x – 2y + 
1 = 0 

ax + by + c = 0 

with a and b not both zero, includes all the forms y = kx + n and x = h and it is 
called the ordinary, or  cartesian equation of the line or the linear equation in x and 
y. 

For every line r there is a linear equation with two variables x and y that represents 
the line and for every linear equation with two variables there is one and only one line 
represented by the given equation. Linear equations with proportional coefficients 
represent the same line. 

Example 7.3 Let us find some points of the line. 

(r ) x − 2y + 1 = 0 

We proceed by giving a value to x (or y) and we find the consequent value of y 
(of x); for example, 

if x = 1, then y = 1 

if y = 0, then x = −1. 

Let us draw the line passing through the points (1, 1) and (−1, 0) (Fig. 7.14). 

7.3.6 The Parametric Equations of the Line 

Consider the line r passing through the points P1(x1, y1) and P2(x2, y2). Whatever 
the point P(x, y) in the line r is, the couple of oriented segments (P1P2, P1P) (see. 
Section 6.2.2) is proportional to the couples of the lengths of the orthogonal projec-
tions (x2 – x1, x – x1) and (y2 – y1, y – y1) on the axes. In fact, by Thales’ theorem 
the line r is a transversal that cuts the parallels to the y axis and the parallels to the x 
axis (Fig. 7.15). Proportionality is expressed by the equality between the segments
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Fig. 7.15 Alignment of 
three points and 
proportionality of the 
projections 

P1P = tP1P2 

where t is a real number and by the equalities between the lengths of the projections 
on the coordinate axes: 

x − x1 = t(x2 − x1) (7.1) 

y − y1 = t(y2 − y1) (7.2) 

where the real number t is called parameter or coefficient and x2 – x1 and y2 – y1 
are the lengths of the projections of the segment P1P2 on x and y axes, respectively 
(Fig. 7.15). 

Equations (7.1) and (7.2) represent the line r passing through P1 and P2: indeed, if 
the point P belongs to the line r, then the coordinates of P are solutions of Eqs. (7.1) 
and (7.2) and vice versa, each couple of real numbers (x, y) which is the solution of 
(7.1) and (7.2) is the couple of the coordinates of exactly one point of the line r. 

Definition 7.1 The numbers m = x2 – x1 and n = y2 – y1 are called direction numbers 
of the line. 

Equations (7.1) and (7.2) are called parametric equations of the line r passing 
through P1 and P2 and take the equivalent form 

x = x1 + t(x2 − x1) (7.3) 

y = y1 + t(y2 − y1) (7.4) 

Example 7.4 Let x – 2y + 1 = 0 be the ordinary equation of the line r. Two points 
of r are (1, 1) and (−1, 0). The parametric equations of r are, by (7.3) and (7.4):
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x = 1 − 2t 

y = 1 − t 

with t ∈ R. 
If x2 – x1 /= 0 and y2 – y1 /= 0, (7.1) and (7.2) yield 

t = 
x−x1 
x2−x1 

t = 
y−y1 
y2−y1 

which lead to the single equation x−x1 
x2−x1 

= y−y1 
y2−y1 

called the equation of the line r in 
the form of the equal ratios. 

For example, from the parametric equations 

x = 1 − 2t 

y = 1 − t 

that yield t = x−1 
−2 . and t = 1− y, we get the equation in the form of the equal ratios: 

x−1 
−2 = 1 − y. 

7.4 Parallel Lines 

If two lines are coplanar, then one of the alternatives occurs (see Sect. 4.3.1): 

a. the lines have exactly one point in common; 
b. the lines are coincident; 
c. the lines have no point in common. 

In the cases (b) or (c), then the lines are said parallel and, in particular, in case 
(c), the lines are said properly parallel. In case (a) the two lines are called incident 
at the common point. 

7.4.1 Parallel Lines Represented by Parametric Equations 

We state the necessary and sufficient conditions for parallelism between lines in 
terms of direction numbers. The parametric equations of the line r passing through
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the points P1(x1, y1) and P2(x2, y2) are  (7.3) and (7.4); setting m = x2 − x1 and n = 
y2 − y1, the parametric equations take the form 

x = x1 + mt 

y = y1 + nt 

with t ∈ R. The numbers m and n are the direction numbers of the line r. The  
parametric equations of the line emphasize the direction numbers. Let now s be a 
line with direction numbers m', n'. By Thales’ theorem we state: 

Proposition 7.1 Let (m, n) and (m', n') be the couples of the direction numbers of 
the lines r and s, respectively. The lines r and s are parallel if and only if the couples 
(m, n) and (m', n') are proportional, i.e.: 

m ' = hm, n' = hn 

with h /= 0. In particular if n /= 0 and n /= 0, r and s are parallel if and only if 

m : n = m ' : n'

Example 7.5 The line r represented by the parametric equations. 

x = 4 + 2t 

y = −1 + 3t 

t ∈ R, and the line s represented by the parametric equations 

x = 1 + 6t 

y = 6 + 9t 

t ∈ R, are parallel because their direction numbers are proportional, in fact 6 : 2 = 
9 : 3. 
Example 7.6 The lines u and w, 

(u) x = 4 + 6t, y = −1 − 2t 

(w) x = 1 + 3t, y = 1 − t
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are parallel because they have proportional direction numbers, the couple (6, − 2) is 
proportional to (3, –1). The lines u and w do not coincide because the point (4, − 1), 
which belongs to the line u does not belong to w; in fact, the point (4, − 1) of u, does 
not satisfy the equations (w): indeed, there is no number t satisfying both equations: 
4 = 1 + 3t and − 1 = 1 − t. 

7.4.2 Parallel Lines Represented by Ordinary Equations 

Proposition 7.2 A couple of direction numbers of the line. 

(r ) ax + by + c = 0 

is (− b, a). 

Proof Let P(x, y) and P0(x0, y0) be distinct points of the line r. Then the following 
equalities hold: 

ax + by + c = 0 

ax0 + by0 + c = 0 

By subtracting we obtain 

a(x − x0) + b(y − y0) = 0 (7.5) 

Equality (7.5) is fulfilled if and only if a real number k /= 0 exists such that 

x − x0 = −kb 

y − y0 = ka 

As x – x0 and y – y0 are direction numbers of the line r, by Proposition 7.1, (− b, 
a) and (− kb, ka), k /= 0, are also direction numbers of the line r. 

7.4.3 Parallel Lines. Exercises 

If b /= 0, the ordinary equation of the line 

(r ) ax + by + c = 0
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takes the form y = − a 
b x − c b , for  k = − a 

b and p = − c 
b , we obtain the explicit 

equation of r: 

(r ) y = kx  + p 

The number k, coefficient of x, is the slope of the line r. (see Sect. 7.3.4). 
Let us state immediately: 

Proposition 7.3 The slope k of the line r which has direction numbers (m, n), m /= 
0, is equal to the ratio n m . 

Proposition 7.4. If the ordinary equation of the line r is 

(r ) ax + by + c = 0 

b /= 0, then the slope of r is k = −  a b ; if the line r has parametric equations 

x = x1 + mt 

y = y1 + nt 

m /= 0, then the slope of r is k = n m . 

Proposition 7.5 The slope of any line parallel to the line 

(r ) y = kx  + p 

is k. 

For example, the lines r and s 

(r ) y = 2x + 3 

(s) y = 2x − 1 

are parallel. 

Example 7.7 

a. The line with parametric equations 

x = 4 + 2t
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y = −1 + 3t 

has slope k = 3 2 . 
b. The slope of the line with ordinary Eq. 2x – y + 3 = 0 is 2  

Exercise 7.3 Find the intersection of the lines: 

(r ) 2x − y + 3 = 0 

(s) y = −3x + 8 

Solution The lines r and s are not parallel as their respective direction numbers, (1, 
2), (–1, 3), are not proportional. Therefore, the lines are incident at a point P(x, y); 
let us find the coordinates of the unknown point P. The ordinate of P is y = 2x + 3 = 
− 3x + 8, and the abscissa comes from the Eq. 2x + 3 = −  3x + 8, whence 5x = 5 
and x = 1; set x = 1 in the equation (r) (or  (s)), to find y = 5. Thus P has coordinates 
(1, 5). 

Exercise 7.4 Given the points A (−1, 2) and B (−2, 1), find the direction numbers 
of the line AB. 

Solution The differences (x2 – x1) and (y2 – y1) between the abscissas and ordinates 
of A and B are: 

x2 − x1 = −2 − (−1) = −1 

y2 − y1 = 1 − 2 = −1 

So direction numbers of the line AB are m = –1, n = –1 and all the non-null 
couples proportional to (–1, –1). 

Example 7.5 Given the points A (−1, 2) and B (−2, 1), find the parametric equations 
of the line AB and its explicit equation. 

Solution The direction numbers of the line AB are (–1, –1). Therefore, parametric 
equations of the line AB are 

x = −1 − t 

y = 2 − t 

The substitution t = −  x – 1 in the second equation yields: y = 2 – (− x – 1),  
whence the required explicit equation: y = x + 3.
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Fig. 7.16 Graph of y = |x| 

7.5 The Absolute Value Function 

The absolute value function f : x → |x| associates the absolute value |x| to the real 
number x (Sect. 5.3). The function is also denoted y = |x|, its domain is R and the 
range is the set of nonnegative real numbers R+. The graph is drawn in Fig. 7.16. 

The restriction (Sect. 5.5) of the absolute value function to the set R+ of nonneg-
ative real numbers is the function g : R+ → R+ such that g(x) = x, for every x ∈ 
R+. 

7.6 A Linear Model 

Let us consider the function c = 60 + 0.8i, that represents a relation between income 
i and consumption c (Sect. 3.2, Example 3.3). This is a real-valued function of a real 
variable. In fact, for each fixed income expressed by the real number i the amount of 
consumption c is determined. Let us call f this function: f (i) = c, or  f (i) = 60 + 
0.8i. If in the plane we fix the axes i, for abscissas and c, for ordinates, the graph of 
the function f (i) = 60 + 0.8i is a line, which has slope 0.8 and ordinate at the origin 
60. The relation f between income and consumption is an opinion that simplifies 
reality. Of course, models that describe real-life situations usually fail to describe or 
predict all aspects of a complex situation. 

7.7 Invertible Functions and Inverse Functions 

We know (Sect. 5.1) that, given a one-to-one function f , if  y is the image under f of 
x, i. e.,  y = f (x), then x is the image under f − 1 of y, i. e.,  f − 1(y) = x. Then if f is 
an invertible function, each of the two equalities, y = f (x) and f − 1(y) = x, implies 
the other. In symbols (Sect. 2.7): 

f −1 (y) = x ⇔ y = f (x) (7.6)
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The domain of f −1 is equal to the range of f and the domain of f is equal to the 
range of f − 1. Furthermore, the inverse of the inverse of the function f is the function 
f itself: in fact, 

f −1 (y) = x ⇔ y = (
f −1

)−1 
(x) 

since the inverse exchanges x with y, and therefore ( f −1)−1 acts just like f :

(
f −1

)−1 
(x) = f (x) = y 

From the equivalence of Eqs. (7.6), replacing one in the other, we obtain the 
following, called cancellation identities: 

f
(
f −1 (y)

) = y 

f −1 ( f (x)) = x 

The cancellation identities state that the composite functions f ◯f −1 and f −1
◯f 

are the identical functions defined in the range of f and the domain of f , respectively. 
Let us now consider the graph of the inverse function of the real-valued function 

f of the real variable x. If the point (x, y) belongs to the graph of f , then the point (y, 
x) belongs to the graph of f −1 (Fig. 7.17). 

Since the two points are symmetrical with respect to the bisector of the first and 
third quadrant having equation y = x, the graphs of f and f −1, referred to the same 
coordinate system, and hence denoting the independent variable with x again, are 
symmetrical with respect to the bisector. 

The graphs of f and the inverse f −1 are plotted in Fig. 7.18.

Exercise 7.5 Show that the function y = f (x) = 6 –3  × is one-to-one and find the 
inverse.

Fig. 7.17 The points (y, 
x) and  (x, y) are symmetrical 
with respect to the bisector 
of the first and third quadrant 
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Fig. 7.18 The graphs of f 
and the inverse f −1

Fig. 7.19 A f (x) = 6 
–3x and the inverse 
f −1(y) = x = 6 – 3y 

Solution Suppose f (x1) = f (x2),  then 6 – 3x1 = 6 – 3x2, – 3x1 = –3x2, x1 = x2. 
Hence, f is one-to-one. To find the inverse, solve f (x) = 6 –3  × for x, obtaining x 
= – 1 3 (y – 6). Therefore, referring the graphs of f and f 

−1 to the same coordinate 
system, and hence denoting the independent variable with x again, the inverse of f is 
f −1(y) = x = 6 – 3y. Observe that the graphs of f and f −1are the lines y = f (x) = 6 
–3 × and x = 6 – 3y, respectively, and are symmetrical with respect to the bisector 
of the first and third quadrant (Fig. 7.19). 

Exercise 7.6 Given the function 

f (x) = ln
(
1 + 1 

1 + e 1 x

)
(7.7) 

a. find the domain, 
b. check that f is invertible, 
c. determine the inverse function. 

a. The domain of f coincides with that of 1 x . Indeed, e 
1 
x > 0, for every x /= 0, then 

1 + e 1 x > 0 and 1 + 1 

1+e 
1 
x 
> 0, for every x /= 0. Hence Dom(f (x)) = R–{0}. 

b. The function f is invertible as it is a composite function of invertible functions. 
For example, a decomposition into invertible functions is the following:
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g = 
1 

x 
, h = eg , k = 1 + h, p = 

1 

k 
, q = 1 + p, s = ln  q  

c. We have to solve the Eq. (7.7) for  x as follows: 

ln

(
1 + 

1 

1 + e 1 x

)
= y ⇒ 1 + 1 

1 + e 1 x 
= ey ⇒ 1 

1 + e 1 x 
= ey − 1 ⇒ 

1 + e 
1 
x = 

1 

ey−1 
⇒ e 

1 
x = 

1 

ey−1 
− 1 ⇒ 

1 

x 
= ln

(
1 

ex−1 
−1

)

Therefore, the inverse of the given function is 

x = 1 

ln
(

1 
ex−1−1

)
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Chapter 8 
Circular Functions 

8.1 Introduction 

Let us now introduce the circular functions, defined by properties related with the 
circumference. When we dealt with the coordinate system on a line we imagined 
the line described by a point moving on the line. Likewise, a point in the circumfer-
ence is the independent variable that defines the real-valued functions called circular 
functions. 

8.1.1 The Equation of the Circumference 

In (Sect. 7.2 et seq.) we dealt with the equation of the line. Precisely, we stated that 
the set of the points (x, y) of the  line  r are the only solutions of a linear equation in 
x, y. 

We now want to establish the relation between the coordinates of the points of a 
circumference. 

Let us fix the point C(a, b) and the positive real number h. The  circumference with 
center C and radius h is, by definition, the set of points P(x, y) whose distance from 
C equals h. According to the formula (Sect. 7.1.1) of the distance, the circumference 
is the set of points P(x, y) that satisfy the equality: 

|PC| =
/

(x−a)2 + (y−b)2 = h (8.1) 

The point P varies and maintains the distance h from C describing the circumfer-
ence. The Eq. (8.1) expresses the relation between the coordinates and the points: if 
the point P with coordinates (x, y) belongs to the circumference, then the couple of 
numbers (x, y) is a solution of Eq. (8.1) and, vice versa, if the couple of numbers (x, 
y) is a solution of Eq. (8.1), then the point P(x, y) belongs to the circumference with 
center C and radius h. The relation (8.1) is called the equation of the circumference
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Fig. 8.1 Circumference 
with center C and radius h 

with center C and radius h; (8.1) is said  to represent the circumference with center 
C and radius h (Fig. 8.1). 

Let us square both sides of equality (8.1) to obtain: 

(x − a)2 + (y − b)2 = h2 (8.2) 

It can be shown that (8.2) is an equation that has the same solutions as (8.1). This 
means that if the coordinates of a point of the plane are a solution of (8.1), then 
they are also a solution of (8.2) and, vice versa, if the coordinates of a point are a 
solution of (8.2), then they are also a solution of (8.1). Therefore, Eqs. (8.1) and (8.2) 
represent the same set of points, which is the circumference with center C and radius 
h. 

Remark 8.1 We moved from Eqs. (8.1)–(8.2) because we wanted to get rid of the 
square root. By squaring the two sides of (8.1) we obtain Eq. (8.2) and we have 
observed that (8.1) and (8.2) have the same solutions. This cannot always be said 
when performing the square of the sides of an equation. For example, passing to 
the squares of the two sides of the equation x = 1, we have x2 = 1. While the first 
equation has the only solution 1, the second has the solutions 1 and − 1. 

Example 8.1 The circumference with center C(1, 0) and radius 2 has equation (x 
– 1)2 + y2 = 22, i.e., 

x2 + y2 − 2x − 3 = 0 

The points of the circumference are found by assigning “suitable” numerical 
values to x (or y) and calculating the consequent values of y (or x). Set x = 0 in the  
equation: then y2 – 3  = 0 and y = ±  

√
3. Put now y = 0 in the equation: then x2 

− 2x − 3 = 0, whence x = –1 and x = 3. The points (0,
√
3) and (0, – 

√
3) if  x = 

0, and the points (–1, 0), (3, 0) if y = 0 have been got. The geometric meaning of 
the operations above is evident: we intersected the circumference with the y axis, 
obtaining the points (0,

√
3), (0, – 

√
3), and then with the x axis, obtaining the points 

(−1, 0), (3, 0) (Fig. 8.2).
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Fig. 8.2 Circumference 
(x–1)2 + y2 = 4 

If x = –3 in the circumference (x–1)2 + y2 = 4, then we obtain y2 = 4 – 16  = 
–12: there is no real number y whose square is negative. So the line x = –3 does not 
intersect the circumference at any point of the plane. This implies that the vertical 
line x = –3 is external to the circumference. The observation suggests that “suitable” 
values to be assigned to x and y are the points of the segments of abscissae and 
ordinates that are the orthogonal projections of the points of the circumference on 
the coordinate axes, i.e., the projections of the dashed sides of the square on the 
coordinate axes (Fig. 8.3, see also Fig. 4.29). 

Fig. 8.3 The perpendicular 
lines to the coordinate axes 
intersecting the 
circumference, also intersect 
the traced square
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8.1.2 The Goniometric Circumference 

The circumference with center O(0,0) and radius 1, called unit circumference, has 
the equation 

x2 + y2 = 1 

The irrational real number π = 3.14159… (Sect. 2.5) is the ratio of the (rectified) 
circumference to its diameter, i.e., the circumference has length π times the number 
2 h, the length of the diameter. Therefore, the length of the circumference is 2πh. 
Then the unit circumference, whose diameter is 2, has length 2π. It follows that the 
length of half a unit circumference is π, one quarter of a circumference has length 
π 
2 , one sixth has length 

π 
3 , one third of circumference has length 2π 

3 , one twelfth has 
length π 

6 . It is then said that the circumference is measured in radians, because the 
unit of measurement of the arcs of circumference is the radius. For instance, the fact 
that the length of the unit circumference is 2π means that the unit circumference 
measures 2π radians. 

The locution goniometric circumference indicates the unit circumference with a 
measuring system of its arcs or angles. Some points are put in evidence on the unit 
circumference (Fig. 8.4). 

Another system for measuring the lengths of the circumference and its arcs is 
based on the subdivision of the circumference into 360 arcs congruent to each other, 
any having the measure of a degree; each degree is divided into 60 seconds. Then the 
whole circumference measures 360 degrees (the symbol 360◯ is used), the semi-
circumference measures 180◯, one quarter of semi-circumference 90◯, one sixth of 
circumference 60◯, one eighth of circumference 45◯, one twelfth of circumference 
30◯. 

We refer to both the measurements of the arcs and angles: the measure of a round 
angle is 360◯, a straight angle measures 180◯, a right angle 90◯, each internal angle 
of an equilateral triangle measures 60◯, the diagonal of a square forms an angle of

Fig. 8.4 The goniometric 
circumference and the 
coordinates of some points 
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45◯ with one side, each of the interior angles of a regular hexagon measures 120◯, 
the sum of the interior angles of a triangle is 180◯. This way of measuring arcs and 
angles, called sexagesimal system, was already known to the Babylonians and used 
by them in the study of astronomy and surveying. (see Chap. 2.) 

We adopt the system of measurement of the circumference arcs in radians. In 
this way, the arc will be measured by a positive, negative or null real number which 
expresses its length with respect to the radius as the unit of measure. The null arc has 
its extremes coincident in one point and has measure zero. It makes sense to consider 
arcs of the circumference that are longer than the circumference. These are obtained 
by joining a number of complete circumferences to a given arc. 

We continue to focus on the unit circumference. Let us define the point A(1, 0) as 
the origin of the arcs of the circumference and we adopt the counterclockwise direc-
tion as the positive direction on the circumference. Consider the arc of circumference 
having as the first extreme A and the second extreme P; let t be the length of the arc 
AP: the number t individuates the position of the point P in the circumference: let 
denote AP(t) the arc of extreme points A and P. If the number t is positive, then the 
arc AP is covered in the counterclockwise direction, if the number t is negative, then 
the arc AP is covered in the clockwise direction, if t = 0 then the point P coincides 
with point A, i. e., AP is the null arc. 

Therefore, an invertible function is defined between the set of second extremes P 
of the oriented arcs of origin A and the real numbers. 

Periodic functions 

A real-valued function f of the real variable x is said to be periodic if there exists a 
positive number p such that 

f (x + p) = f (x) 

whenever x and x + p belong to the domain of f . We say that p is a period of the 
function. The minimum period is called the fundamental period of f or simply the 
period of f . 

8.1.3 Sine, Cosine and Tangent 

We have observed that the position of P on the unit circumference is a function of 
the real number t. For example, if t varies from 0 to 2π, then P describes the whole 
circumference, starting from A(1, 0) and returning to A; if t continues to vary, from 
2π to 4π, then P makes another round and returns to the starting position.
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Fig. 8.5 The unit 
circumference; the point P = 
P(t) belongs to the 
circumference, HP = y(t) = 
sint, KP  = x(t) = cost; the  
point T is common to the 
line OP and the line through 
A parallel to y axis; AT is the 
tangent line to the 
circumference at the point A 

If P is the second endpoint of the arc AP having relative length t, then P occupies 
the same position again after one complete round, i.e., the position P(t) coincides 
with P(t + 2π), and the same happens if P performs an integer number k of complete 
rounds: 

P(t) = P(t + 2kπ) (8.3) 

The abscissa and the ordinate of the point P are functions of t, which we denote 
x(t), y(t). By (8.3), y(t) = y(t + 2kπ), x(t) = x(t + 2kπ). The functions y(t) and 
x(t) are called sine of t and cosine of t, respectively, and are denoted by: y(t) = sint, 
x(t) = cost. 

The functions sint and cost are real-valued functions of the real variable t, their 
domain is R and their range is the interval [−1, 1]. It makes sense to speak of sine 
and cosine of the arc AP: the value of the sine of the arc AP is the ordinate of the 
point P, the value of the cosine of the arc AP is the abscissa of P. In particular, sin0 
= 0, cos0 = 1, sin π 

2 = 1, cos π 
2 = 0 (Fig. 8.5). 

Properties of the sine, cosine and tangent functions 

The functions sine and cosine are functions of the arc AP(t), but also it makes sense 
to define the sine of the angle AOP

∆

(t), the cosine of the angle AOP
∆

(t), and put 
sin AOP(t)
∆

= sin t and cos AOP(t)
∆

= cos t . 

a. By (8.3), the functions sine and cosine are periodic with period 2π, i. e.,  for any  
real number t 

sin t = sin(t + 2kπ), cos t = cos(t + 2kπ), 

k relative integer. 
b. The point P(x, y) = P(x(t), y(t)) lies on the unit circumference if and only if x2 

+ y2 = 1. Hence, the remarkable property that links sine and cosine: (sint)2 + 
(cost)2 = 1, also written
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Fig. 8.6 |AB|sinα = |CB| 
and |AB|cosα = |AC| 

sin2 t + cos2 t = 1 

equality that holds for any real number t. The equations 

x(t) = cos t 

y(t) = sin t, 

with the condition t∈[0, 2π], are the parametric equations that provide a 
representation of the unit circumference. 

c. Given the triangle ACB right-angled at C, put α = bc
∆

, we have |AB|sinα = |CB| 
and |AB|cosα = |AC| (Fig. 8.6). 

d. The tangent function of the variable t, denoted tant, is defined starting from sine 
and cosine functions, by 

tan t = 
sin t 

cos t 

The tangent function has domain in the set of real numbers such that the 
denominator cost is non-null, which occurs if and only if t /= π 

2 + kπ, k relative 
integer. 

Referring to Fig. 8.7, let us consider some geometric properties of the tangent 
function. Let the line s pass through the point A and be parallel to the y axis with the 
same orientation; let a system of abscissas of origin A and unit of measure equal to 
the radius of the circumference be defined on s. The line s is the tangent line to the 
circumference at A. Let T be the common point to the lines s and OP. The value tant 
is the relative length of the segment AT, in fact OA : AT = OH : HP. The line OP 
intersects the circumference also at the point P'(t + π) and then tant = tan(t + π). 
Therefore, the tangent function is a periodic function with period π, i. e.,  for any  k 
relative integer: 

tan t = tan(t + kπ)
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Fig. 8.7 Ttant = length of AT. The proportion OA : AT = OH : HP is equivalent to 1 : tant = cost 
: sint, i. e.,  tan t = sint cost 

The couple of the components of the oriented segment OP, i. e., its direction 
numbers, is (cost, sint). In other words, the slope (Sect. 7.3.3) of the  line OP is the  
ratio sin t cos t = tan t . 

Now name x the variable t (variables are “dummy”). The functions sinx, cosx, 
tanx are called circular functions. 

The graph of cosine function is symmetrical with respect to the y axis because 
cosx = cos(−x); the sine and tangent functions are symmetrical with respect to the 
origin of the coordinate system because –sinx = sin(−x), –tanx = tan(−x). 

Some values of the circular functions are listed below. 

x sinx cosx tanx 

0 0 1 0 

π 
6 

1 
2 

√
3 
2 

1 √
3 

π 
4 

√
2 
2 

√
2 
2 1 

π 
3 

√
3 
2 

1 
2

√
3 

π 
2 1 0 Undefined 

π 0 −1 0 
3π 
2 −1 0 Undefined
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8.1.4 Further Goniometric Identities 

cos
(π 
2 

− x
)

= sin x 

sin
(π 
2 

− x
)

= cos x 

cos(x + y) = cos x cos y − sin x sin y 

sin(x + y) = sin x cos y + cos x sin y 

cos(x − y) = cos x cos y + sin x sin y 

sin(x − y) = sin x cos y − cos x sin y 

sin 2x = 2 sin  x cos x 

cos2 x = 2 cos2 x − 1 = 1 − 2 sin2 x 

1 − cos x = 2 sin2 
x 

2 

1 + cos x = 2 cos2 
x 

2 

2 sin2 x = 1 − cos 2x 

2 cos2 x = 1 + cos 2x 

8.1.5 The Graphs of Sinx, Cosx and Tanx 

See Figs. 8.8, 8.9 and 8.10.
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Fig. 8.8 Graph of the 
function y = sinx 

Fig. 8.9 Graph of the 
function y = cosx 

Fig. 8.10 Graph of the 
function y = tanx 
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Chapter 9 
Geometric and Numeric Vectors 

9.1 n-Tuples of Real Numbers 

We introduced (Sect. 3.1) the Cartesian product of sets, in particular the set R2 of 
the couples of real numbers. 

Given two couples (a, b),
(
a', b') ∈ R2 and a real number h an operation of 

addition of two couples (a, b),
(
a', b') ∈ R2 

(a, b) + (
a', b') = (

a + a', b + b')

and an operation of multiplication of the real number h by a couple (a, b) ∈ R2 

h(a, b) = (ha, hb) 

are defined. For example, 

(−4, 8) + (3, −8) = (−1, 0) 

−7

(
6, 

4 

9

)
=

(
−42, − 

28 

9

)

6(1, −7) − 12(5, 4) = 6(1, −7) + (−12)(5, 4) = (−54, −90) 

Similarly, the addition of two elements of R3 =R × R ×R and the multiplication 
of a real number by an element of R3 are defined: 

(a, b, c) + (
a', b', c') = (

a + a', b + b', c + c')

h(a, b, c) = (ha, hb, hc)
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whatever the triples (a, b, c),
(
a', b', c') in R3 and h ∈ R are. For example, 

(−11, 0, 1) + (2, −2, 0) = (−9, −2, 1) 

−5(4, 2, 1) = (−20, −10, −5) 

An element (a1, a2, …,  an) of  Rn, n ≥ 1, is called an n-tuple of real numbers, 
or a numeric vector; the number a1 is called the first component of the n-tuple, the 
number a2 the second component, …, the number ai the ith component, for  i = 1, 2, 
…, n. The  n-tuple O = (0, 0, …, 0) which has all the components equal to zero is 
called the null n-tuple. Usually an n-tuple (a1, a2, …,  an) of  Rn is denoted in bold 
type by letters, a = (a1, a2, . . . ,  an), b = (b1, b2, . . . ,  bn), . . .. 

With a natural extension, for n ≥ 2, the operations of addition of two elements of 
Rn and multiplication of a real number by an element of Rn are defined: the sum of 
two n-tuples a = (a1, a2,…, an) and b = (b1, b2,…, bn) is an  n-tuple of real numbers 
and the product of a real number h by an n-tuple of real numbers is an n-tuple of real 
numbers: 

a + b = (a1, a2, . . . ,  an) + (b1, b2, . . . ,  bn) = (a1 + b1, a2 + b2, . . . ,  an + bn) 

ha = h(a1, a2, . . . ,  an) = (ha1, ha2, . . . ,  han) 

The operations of addition of two n-tuples of real numbers and multiplication of a 
real number by an n-tuple of real numbers, satisfy the following properties, whatever 
the elements a, b and c of Rn and the real numbers h and k are: 

1. the addition is commutative, a + b = b + a; 
2. the addition is associative, (a + b) + c = a + (b + c); 
3. the null n-tuple O = (0, 0, …, 0) is the only element of Rn such that a + O = a 

(existence of the neutral element O with respect to addition); 
4. for each n-tuple a, there exists the opposite − a, which is the only n-tuple such 

that a + (−a) = O; 
5. the multiplication of an n-tuple by a real number is associative, (hk)a = h(ka); 
6. for every n-tuple a, 1a = a; 
7. the distributive properties hold: 

h(a + b) = ha + hb 
(h + k)a = ha + ka 

9.1.1 Linear Combinations of n-Tuples 

Two n-tuples (a1, a2,…, an) and (b1, b2,…, bn) of  Rn are said to be equal if ai = 
bi, for any i = 1, …, n. If  n ≥ 1, a choice of m ≥ 1 elements a1, a2, …,  am of Rn, 
not necessarily distinct, is called a system of n-tuples of Rn, denoted [a1, a2, …,  am]
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(Sect. 3.2). The positive integer m is called the order of the system. The existence 
of the system without elements, called the empty system, is postulated. 

Let us define linear combination of the n-tuples a1, a2, …,  am, or  linear 
combination of the n-tuples of the system [a1, a2, . . . ,  am] any n-tuple of the form 

b = h1a1 + h2a2 +  · · ·  +  hm am 

where h1, h2, …,  hm, are real numbers called coefficients of the linear combination. 
The vector b which is the linear combination of the n-tuples of the system [a1, a2, 

…, am] is said to be  linearly dependent on the n-tuples [a1, a2, . . . ,  am], or on the  
system [a1, a2, . . . ,  am]. 

Example 9.1 The following 4-tuples of R4 : a1 = (−2, 0, 1, 2), a2 = (0, 3, 1, 2), 
a3 = (2, 3, 0, 0) 

form a system S: 

S = [a1, a2, a3] = [(−2, 0, 1, 2), (0, 3, 1, 2), (2, 3, 0, 0)] 

Let us check that the null 4-tuple O = (0, 0, 0, 0) is a linear combination of the 
4-tuples of the system S. Indeed, numbers h1, h2, h3 that satisfy the equality 

(0, 0, 0, 0) = h1(−2, 0, 1, 2) + h2(0, 3, 1, 2) + h3(2, 3, 0, 0) (9.1) 

are 

h1 = 0, h2 = 0, h3 = 0; 

indeed, it is immediate to check: 

0(−2, 0, 1, 2) + 0(0, 3, 1, 2) + 0(2, 3, 0, 0) = 
(0, 0, 0, 0) + (0, 0, 0, 0) + (0, 0, 0, 0) = (0, 0, 0, 0) 

However, there are non-zero values of h1, h2, h3 that satisfy the equality (9.1). For 
example, setting the values h1 = 1, h2 = −  1, h3 = 1 in the right-hand side of (9.1) 
we get: 

1(−2, 0, 1, 2) − 1(0, 3, 1, 2) + 1(2, 3, 0, 0) = 
(−2, 0, 1, 2) + (0, −3, −1, −2) + (2, 3, 0, 0) = 
(−2 + 0 + 2, 0 − 3 + 3, 1 − 1 + 0, 2 − 2 + 0) = (0, 0, 0, 0) 

Example 9.2 Let us consider the couples a1 = (0, 1), a2 = (1, 0) of R2 and the 
system. 

T = [a1, a2] = [(0, 1), (1, 0)]



138 9 Geometric and Numeric Vectors

We ask ourselves if the couple b = (1, 1) of R2 is a linear combination of the 
system T. To answer the question we must verify if there are real numbers h1, h2 that 
satisfy the equality: 

h1(0, 1) + h2(1, 0) = (1, 1) (9.2) 

that can be written, performing the multiplications 

h1(0, 1) + h2(1, 0) = (0, h1) + (h2, 0) = (h2, h1). 

Therefore, (9.2) is verified if (h2, h1) = (1, 1), i. e., h1 = 1, h2 = 1. Observe that 
(h2, h1) = (1, 1) is the unique couple of numbers that satisfies (9.2). 

Let us state some properties of the linear combinations of n-tuples. 

Proposition 9.1 The null n-tuple O is linearly dependent on any non-empty system 
of n-tuples. 

In fact, for every non-empty system of n-tuples S = [a1, a2, . . . ,  am], the equality 
holds: 

O = 0a1 + 0a2 + . . .  + 0am (9.3) 

Remark 9.1 The Example 9.1 shows that if a linear combination of the n-tuples of 
a system has all the coefficient equals to zero, then the linear combination is equal to 
O; furthermore, there exist linear combinations with non-null coefficients that equal 
zero; i.e., the condition that the coefficients of a linear combination of n-tuples are 
all zeros is a sufficient condition for the linear combination to be equal to zero, but 
the condition is not necessary in that there exist linear combinations with coefficients 
not all null whose value is O. For example, the null couple O = (0, 0) is a linear 
combination of the system [a, − a], indeed: 

O = 0a + 0(−a) 

However, we obtain a null linear combination of a and −a with non-null 
coefficients: 

O = 1a + 1(−a) = a − a. 

It is also true that O = ha + h(−a), for every real number h. 

Remark 9.2 If a is a nonnull n-tuple of Rn and h a real number, the n-tuples a and 
ha are said to be proportional, or  parallel. For example, the following triples are two 
by two proportional. 

(1, 0, −4), (−1, 0, 4), (4, 0, −16),

(
1 

2 
, 0, −2

)
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Proposition 9.2 If a is a non-zero n-tuple of Rn, then the null n-tuple and the 
n-tuples proportional to a depend linearly on a. The null n-tuple and the n-tuples 
proportional to a are the only n-tuples of Rn linearly dependent on a. 

The system of n-tuples S = [a1, a2, . . . ,  am] is said to be linearly dependent (or 
the n-tuples a1, a2, …,  am are said to be linearly dependent), if there exist coefficients 
h1, h2, …, hm not all zero such that h1a1 + h2a2 + … + hmam = O. 

The system S = [(−2, 0, 1, 2), (0, 3, 1, 2), (2, 3, 0, 0)] of 4-tuples of R4 is 
linearly dependent (see Example 9.1). 

9.2 Scalars and Vectors 

In the description or identification of geometric and physical characteristics it is 
sometimes sufficient to use a number. For example, the length of a river, the extension 
of the surface of a field, the volume of a box, the body temperature, are features 
described by a number, or scalar. Therefore, such characteristics are called scalar 
quantities. 

More detailed descriptions are required when describing other phenomena. A 
feather on the desert sand, blown by the wind, moves from point A to point B 400 m 
away. 

We intend to define the position of B. The only distance from A does not allow 
us to identify the position of B; in fact, the feather can be found in any point of the 
circumference with radius 400 and center A (Fig. 9.1). 

Afterwards, we know that the shift occurred along a certain line, then the possible 
positions of B reduce to two, the common points to the circumference and the line 
(Fig. 9.2).

Any ambiguity is eliminated when we know the direction of the movement of the 
feather, i. e., which of the two half-lines of origin A the feather covers in its trajectory 
(Fig. 9.3).

Therefore, the shift of the feather is determined by three elements: a number, 400; 
a direction, that of the line; the sense of the movement on the line. 

Definition 9.1 A vector is defined as a triple made of a nonnegative real number 
called magnitude or modulus, a  direction of a line and an orientation or sense of the 
direction.

Fig. 9.1 Circumference 
with center A 
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Fig. 9.2 The point B is one 
of the two diametrically 
opposite points

Fig. 9.3 The point B is 
determined

Velocity, acceleration on a curved trajectory, gravity are vectors. 

9.3 Applied Vectors and Free Vectors 

A geometric applied vector, or simply,  a  vector applied at the point A is, by definition, 
an oriented segment AB with first endpoint A and second endpoint B. In Fig. 9.4, 
an arrow at B is put to highlight the orientation of AB. The point A is also called the 
origin, or the  point of application, of the applied vector AB. 

The segment AB is called the support of the applied vector AB. The length |AB| 
of the segment AB is called the magnitude, or modulus, of the applied vector AB. 
Therefore, the magnitude of the applied vector AB is a nonnegative real number. 

Definition 9.2 Two oriented segments of the line (plane, space) are said to be equipol-
lent if they have the same direction, the same orientation and their supports are 
congruent. Any two null segments are equipollent by definition. 

The equipollence relation in the set of oriented segments of the line (plane, space) 
is an equivalence relation (Sect. 3.5). In fact, equipollence is a reflexive, symmetrical 
and transitive relation, as it can be easily verified. By Theorem 3.5 the equipollence 
defines a partition of the set of oriented segments of the line (plane, space) into 
equivalence classes, called equipollence classes.

Fig. 9.4 Vector applied at A 
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Definition 9.3 Any equipollence class of oriented segments is named a free vector 
of the line (plane, space); in particular, the null vector is the equipollence class whose 
elements are the null segments, i. e., the segments that reduce to a point. The null 
vector is denoted with O. 

Let us denote with V3 the set of free vectors of the space. Similarly, we define the 
set Vα of the free vectors in the plane α and the set Vr of the free vectors of the line 
r. 

Therefore, any non-null oriented segment AB identifies a free vector, which is the 
set of the oriented segments equipollent to AB, and the direction and orientation of 
the free vector are defined by the direction and the orientation of the oriented segment 
AB; the magnitude, or modulus, of the free vector is, by definition, the magnitude of 
any oriented segment in the class of equipollence identified by AB. 

Free vectors are denoted in bold type by letters, a, b, c, …, the free vector containing 
the oriented segment AB is denoted AB. 

Let a be a non-null free vector. The vector − a, which has the same direction and 
the same magnitude of a and the orientation opposite to that of a, is defined as the 
opposite of the vector a. 

9.4 Addition of Free Vectors 

A free vector has no fixed position in the plane or in the space and then may be 
moved under parallel displacement wherever. Some operations are defined on free 
vectors. We deal with the addition of free vectors and the multiplication of a real 
number by a free vector. In order to define the addition of two free vectors, we first 
refer to the addition of two vectors applied at the same point A, i. e., two oriented 
segments of origin A. So let AB and AC be two non-null oriented segments of the 
plane. We distinguish the following cases: 

Case 1. The points A, B, C are aligned and the segments AB and AC have the same 
orientation (Fig. 9.5). 

The sum of the oriented segments AB and AC is defined as the oriented segment 
AD which has the same direction and orientation as AB and AC, and magnitude |AD| 
= |AB| + |AC|, i.e., the magnitude of AD is equal to the sum of the magnitudes of 
the oriented segments AB and AC. Then we write AD = AB + AC. 

Case 2. The points A, B, C are aligned and the segments AB and AC have opposite 
orientations (Fig. 9.6).

If AB and AC have the same magnitude, then the sum of AB and AC is the null 
vector. If AB and AC do not have the same magnitude, the sum of the oriented

Fig. 9.5 AD = AB + AC 
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Fig. 9.6 AD = AB + AC

segments AB and AC is defined as the oriented segment AD which has the same 
direction of AB, the orientation of the segment of greater magnitude (referring to 
Fig. 9.6, the orientation of AB is that of the sum) and has the magnitude |AD| =  
||AB| –|AC||, which is the absolute value of the difference of the magnitudes of AB 
and AC. Then we write AD = AB + AC. 

Definition 9.4 Two non-null applied vectors such that the second endpoint of a 
segment coincides with the origin of the other are called consecutive. 

Referring to Fig. 9.7, the oriented segments AB and BC are consecutive. 

Case 3. If A, B and C are not aligned, the segments AB and BC form two sides of a 
triangle whose third side AC is called the sum of AB and BC: AC = AB + BC. This 
procedure for carrying out the sum is called the triangle rule (Fig. 9.8). 

The triangle rule is easily extended to the polygon rule for carrying out the sum 
of several vectors. If AB, BC and CD are oriented segments that belong to the free 
vectors a, b and c, respectively, then the oriented segment AD, the closing side AD 
of the polygon ABCD (Fig. 9.9), is an oriented segment of the free vector sum d = 
(a + b) + c.

Case 4. If the points A, B, C are not aligned, the sum of the oriented segments AB 
and AC is defined as the oriented segment AD, the diagonal of the parallelogram with 
adjacent sides AB and AC, oriented from A to D. Then AD = AB + AC (Fig. 9.10). 
The procedure, known as the parallelogram rule, is equivalent to the triangle rule.

The addition of two free vectors is defined by referring to the addition of two 
vectors applied in the same point, each identifying a free vector. Precisely, given the

Fig. 9.7 AB and BC 
consecutive 

Fig. 9.8 AB + BC = AC 
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Fig. 9.9 AB + BC + CD = 
AD

Fig. 9.10 AD = AB + AC

free vectors a and b, and the segments AB and AC belonging to vectors a and b, 
respectively, the vector sum of a and b is defined as the free vector c identified by 
the applied vector AD = AB + AC, i. e.,c = a + b. 

9.5 Multiplication of a Scalar by a Free Vector 

Given a real number, or scalar, h and a free vector a, an operation, called multipli-
cation of a scalar by a free vector which associates the vector ha with the pair (h, a) 
is thus defined: 

ha is the null vector, if h = 0 or  a is the null vector; 
if h /= 0 and ha is different from the null vector, two alternatives occur: 
if h > 0, then ha is the vector that has the same direction and the same orientation 

of a, and has magnitude h|a|; 
if h < 0, then ha is the vector that has the same direction of a, the opposite 

orientation of a and magnitude |h||a|, i. e., the absolute value of h by the magnitude 
of a.
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9.6 Properties of Operations with Free Vectors 

The operations of addition of free vectors and multiplication of a scalar by a free 
vector satisfy the following properties, whatever the free vectors a, b, c and the scalars 
h, k are: 

1. the addition is commutative: a + b = b + a, 
2. the addition is associative: (a + b) + c = a + (b + c), 
3. the null vector O is the only vector such that a + O = a, 
4. for every free vector a, the opposite − a is the only free vector such that a + 

(−a) = O,, 
5. multiplication between scalars is associative: (hk) a = h(ka) 
6. 1a = a, for every free vector a 
7. the distributive properties hold: 

h(a + b) = ha + hb 
(h + k)a = ha + ka 

Remark 9.3 When we want to prove an equality between two vectors, for example, 
a + b = b + a, or (a + b) + c = a + (b + c), we must show that each side of the 
equality is a free vector that has the same direction, orientation and magnitude as the 
vector on the other side. 

A visual proof (Sect. 2.7.5) of the equality that expresses the associative property 
is obtained from the inspection of Fig. 9.11, where the vectors a, b, c are identified 
by consecutive oriented segments. 

Remark 9.4 As the addition of vectors is associative and commutative the sum of 
several vectors does not depend on the order in which they are added, nor on the 
number of addends in the partial sums.

Fig. 9.11 Check of the 
associative property of the 
addition of vectors 
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Fig. 9.12 The projection 
vectors of AB. The applied 
vector AB is the sum of AM 
and AN 

9.7 Component Vectors of a Plane Vector 

Let a coordinate system on the plane α be given with origin O and unit points Ux and 
Uy. Let AB be an oriented segment of the plane, i. e., an applied vector with origin 
A. The orthogonal projections of AB on the coordinate axes are oriented segments 
AxBx and AyBy, called the projection vectors, or the  vector components of AB in the 
coordinate axes (Fig. 9.12). 

Let a and b be the free vectors containing the oriented segments AxBx and AyBy, 
respectively, and c the free vector containing AB. By the parallelogram rule we 
obtain: 

c = a + b 

The free vectors a and b are the vector components of the free vector c. 
There is a 1–1 correspondence between the set of vectors, applied or free, and the 

set of the couples of their projections on the coordinate axes. The vectors a and b are 
called the vector components of c. 

The relative lengths (AxBx) and (AyBy) of the oriented segments AxBx and AyBy 

are called the scalar components of the free vector c. 
Thales’ theorem implies: 

Proposition 9.3 
Parallel oriented segments have proportional scalar components and free vectors 
with the same direction have proportional vector components. 

9.8 Space Coordinate System and Vectors 

The results related to the plane vectors are extended to the vectors of the space. 
Indeed, from the coordinate system of the plane (see Sect. 7.1), having axes x, y, 
origin O and unit points Ux and Uy, let us introduce a new axis z of the space,
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Fig. 9.13 Coordinate 
system of the space with 
axes x, y, z, origin  O and unit 
points Ux , Uy, Uz 

perpendicular to the plane xy, where the x, y axes lie, and passing through the point 
O (Fig. 9.13). 

Let a system of abscissae be fixed on the axis z (see Sect. 5.1), with origin O 
and unit point Uz, such that the same unit of measure is adopted on the three axes 
(Fig. 9.13). 

The points O, Ux, Uy, Uz define a coordinate system of the space, where the axes 
are the oriented lines x, y, z and O is the origin. 

The position of each point P in the space is identified by a triple of real numbers 
(x, y, z), called the coordinates of the point, determined as illustrated in (Fig. 9.14), 
i.e.: 

– x is the abscissa of the point common to the x axis and the plane through P and 
perpendicular to the x axis (plane that is parallel to the yz plane); 

– y is the abscissa of the point common to the y axis and the plane through P and 
perpendicular to the y axis (plane that is parallel to the xz plane); 

– z is the abscissa of the point common to the z axis and the plane through P and 
perpendicular to the z axis (plane that is parallel to the xy plane).

Fig. 9.14 Coordinates (x, y, 
z) of P.  
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Fig. 9.15 The projections of 
AB 

The point P having coordinates (x, y, z) is denoted P = (x, y, z) or P(x, y, z). So, 
the set of the points in the space is identified with the set R3 of the triples of real 
numbers. 

The distance of two points A(x1, y1, z1), B(x2, y2, z2) in space is defined by the 
Pythagorean formula 

d(A, B) =
/
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 

Let AB be an oriented segment of the space, i. e., an applied vector of the space with 
origin A. The orthogonal projections of AB on the coordinate axes are the oriented 
segments AxBx , AyBy, AzBz , the  projection vectors, or the  component vectors of AB 
on the coordinate axes. As in the case of plane, the oriented segments AxBx, AyBy, 
AzBz (Fig. 9.15) identify respectively the free vectors a, b, c of the space which are 
the component vectors of the free vector d identified by the segment AB. Therefore, 
d = a + b + c. 

9.9 Unit Vectors 

Let the coordinate system having origin O and unit points Ux, Uy be assigned in the 
plane α. The free vectors x and y containing the oriented segments OUx and OUy are 
called the unit vectors of the x axis and y axis, respectively. Therefore, the x and y 
vectors have magnitude 1 and the same direction and orientation as the x and y axes, 
respectively. 

Recalling the operation of multiplication of a number by a vector (Sect. 9.5), 
given the oriented segment AB and the orthogonal projections AxBx, AyBy, the free
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vector a that contains AB, and the free vectors ax and ay, containing AxBx, AyBy, 
respectively, are expressed, in terms of the unit vectors x and y of the axes, by: 

ax = ax x (9.4) 

ay = ay y (9.5) 

where the scalars ax and ay coincide with the scalar components (AxBx) and (AyBy) 
of the free vector a, i. e., the relative lengths of the oriented segments AxBx, AyBy, 
respectively. 

Since a = ax+ ay from (9.4) and (9.5) the following equality holds: 

a = ax x + ay y (9.6) 

Theorem 9.1 The linear combination (9.6) of the vector a with coefficients (ax, ay) 
is unique. 

Proof Let us suppose that (9.6) and 

a = a'
x x + a'

y y (9.7) 

with
(
ax , ay

) /= (
a'
x , a

'
y

)
both hold. Then, subtracting (9.7) from (9.6), we obtain: 

a − a = (
ax − a'

x

)
x + (

ay − a'
y

)
y 

By the properties of the operations with vectors (see Sect. 9.6), 

null vector = O = (
ax − a'

x

)
x + (

ay − a'
y

)
y (9.8) 

Since
(
ax , ay

) /= (
a'
x , a

'
y

)
one of the differences ax − a'

x , ay − a'
y is non-null. Let 

ay − a'
y /= 0. Divide the two sides of (9.8) by  ay − a'

y to obtain 

y = −  
ax − a '

x 

ay − a '
y 

x 

The equality implies that the vector y is the product of a scalar − ax−a
'
x 

ay−a'
y 
by the 

vector x. Then the vectors x and y are parallel in contradiction with the hypothesis 
that they are perpendicular. Therefore, the linear combination of the vector a in the 
form (9.6) is unique. 

If we assume ax − a'
x /= 0 instead of ay − a'

y /= 0 we come to the same 
conclusion. ⃞

Similarly, let the coordinate system having origin O and unit points Ux, Uy, Uz 

be assigned in the space. The oriented segments OUx, OUy, OUz determine the free
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vectors x, y, z, called the unit vectors of the axes x, y and z, respectively. Therefore, the 
unit vectors x, y and z have magnitude 1, the same direction and the same orientation 
of the axes x, y and z, respectively. 

Furthermore, any free vector a of the space, is a linear combination of the unit 
vectors x, y, z 

a = ax x + ay y + azz (9.9) 

and the triple (ax, ay, az) of the scalar components of a is univocally determined. 

9.10 The Sphere 

Given a coordinate system of the space and the point C(a, b, c), let h be a positive 
real number. Let us define sphere or spherical surface with center C and radius h, 
the set of points P(x, y, z) having distance h from C. The point P varies and maintains 
the distance h from C describing the sphere. 

The point P(x, y, z) belongs to the sphere if and only if 

|PC| =  h 

From the formula of the distance in space (Sect. 9.8), the point P belongs to the 
sphere if and only if 

d(P, C) =
√
(x − a)2 + (y − b)2 + (z − c)2 = h (9.10) 

Let us square both sides of (9.10): 

(x − a)2 + (y − b)2 + (z − c)2 = h2 (9.11) 

The point P(x, y, z) satisfies (9.10) if and only if satisfies (9.11). Therefore, the 
Eq. (9.11) is the equation of the sphere with center C and radius h. 

For example, the equation of the sphere with center O(0, 0, 0) and radius 3 is 

x2 + y2 + z2 = 9. 

If we put 

m = −2a, n = −2b, p = −2c, q = a2 + b2 + c2 − h2 (9.12) 

Equation (9.11) takes the form 

x2 + y2 + z2 + mx + ny + pz + q = 0 (9.13)
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From (9.12) we get 

m2 + n2 + p2 − 4q = 4h2 > 0 (9.14) 

It is easy to check that every equation of the type (9.13), with m, n, p, q satisfying 
(9.14) represents a sphere, precisely the one with center C(a, b, c), where 

a = −  
m 

2 
, b = −  

n 

2 
, c = −  

p 

2 
, 

and radius 

h = 
1 

2 

√
m2 + n2 + p2 − 4q. 

Exercise 9.1 Find the equation of the sphere that contains the points (0, 0, 0), (1, 0, 
0), (0, 2, 0), (0, 0, 3). 

The four points must satisfy the Eq. (9.13). Therefore, the following equalities 
hold: 

q = 0 
1 + m + q = 0 
4 + 2n + q = 0 
9 + 3p + q = 0 

Hence, m = −1, n = −2, p = −3, q = 0 0. Replacing these values in (9.13), 
we obtain the equation of the sphere, as requested: 

x2 + y2 + z2 − x − 2y − 3z = 0 
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Chapter 10 
Scalar Product. Lines and Planes 

10.1 Introduction 

We define the operation of scalar product to deepen the concepts of parallelism and 
orthogonality and provide for the effective formalization of the analytic properties 
of lines and planes, their representations and mutual positions. 

10.2 Scalar Product 

The angle ab
∧

between the free vectors a and b is the smaller angle between the 
vectors (A, a) and (A, b) applied at a common initial point A and belonging to the 
free vectors a and b, respectively. 

Definition 10.1 The scalar product of vectors a and b, denoted a·b or a × b, is  
defined by: 

a · b = 0, if one of the vectors is null. 
a · b = |a||b| cos ab

∧

, otherwise. 
The function that associates the scalar product a·b to the couple of vectors (a, b) 

is called scalar multiplication of vectors. 
The following properties hold: 

1. a · b = b · a 
2. If a and b are non-null vectors, then a·b = 0 if and only if cos ab

∧

= 0, i. e., a 
and b are perpendicular. 

3. However the vectors a, b and c are fixed, it is: a · (b + c) = a · b + a · c. 
4. For every real number k, it is  k(a · b) = ka · b = a · kb.
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Fig. 10.1 Orthogonal 
projection of b on a 

10.2.1 Orthogonal Projections of a Vector 

For every non-null vector a and every vector b, let  r be a parallel axis with the same 
orientation of a. Let the orthogonal component of b on r be denoted by b', i.e., b' be 
the relative length of the orthogonal projection of an applied vector of b on r. Then b'

= 0 if  b = O and b' = |b| cos ab
∧

(see Sect. 8.1.3. c))  if  b /= O. Therefore (Fig. 10.1), 

a · b = |a|b'

Similarly, if b is non-null and a' is the orthogonal component of a on the line s 
having the same direction and orientation as b, we have:  

a · b = |b|a'

10.2.2 Scalar Product in Terms of the Components 

Let a coordinate system be given in the plane α. Let  a and b be vectors of the plane 
α and x, y the unit vectors of the coordinate axes. 

It is known (Sect. 9.9) that 

a = ax x + ay y 
b = bx x + by y 

where (ax, ay) and (bx, by) are the components of a and b. From properties 3 and 4, 
we obtain: 

a · b = (
ax x + ay y

) · (
bx x + by y

)

= axbx x · x + axby x · y + aybx y · x + ayby y · y 

As 

x · x = y · y = 1 · 1 · cos 0 = 1
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and x and y are orthogonal to each other, 

x · y = y · x = 0 

the representation of scalar product in terms of the components, 

a · b = axbx + ayby (10.1) 

follows. 

10.3 Scalar Product and Orthogonality 

Let a be a non-null vector of the plane. From the definition of scalar product we have 

a · a = |a|2 

and by (10.1), 

a · a = a2 x + a2 y 

Equating the right-hand sides of the equations above: 

|a| =
/
a2 x + a2 y (10.2) 

If a and b are non-null vectors then, by definition of scalar multiplication, 

cos ab
∧

= 
a · b 
|a||b| (10.3) 

which expresses, in virtue of (10.1) and (10.2), the cosine of the angle ab
∧

in terms 
of the components of the vectors a and b. 

In particular, the vectors a and b are orthogonal if and only if 

a · b = axbx + ayby = 0 

Analogous formulae hold if a and b are non-null vectors of the space, having 
components ax , ay, az and bx , by, bz , respectively. In particular, the vectors a and 
b in the space are orthogonal if and only if 

a · b = axbx + ayby + azbz = 0
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10.3.1 Angles of Lines and Vectors 

Let a coordinate system with origin O and unit points Ux and Uy, be given in the 
plane α. Let  r and s be oriented lines of the plane. In order to determine the cosine 
of the angle rs

∧

we consider the couples (m, n) and (m', n') of direction numbers of 
r and s, respectively The vectors a and b having components (m, n) and (m', n') are  
parallel to r and s, respectively. Let r and s be supposed to have the same orientations 
of r and s, respectively. Then it turns out rs

∧ = ab
∧

, and by (10.3), 

cos rs
∧ = mm ' + nn'

√
m2 + n2 

√
m '2 + n'2 (10.4) 

Let us now consider the angles that an oriented line r forms with the coordinate 
axes. Let (1, 0) and (0, 1) be two couples of direction numbers of the x axis and the 
y axis, respectively. If (m, n) is the couple of components of a vector a parallel to r 
and having the same orientation of r, by (10.4), we have 

cos xr
∧ = m √

m2 + n2 
and cos yr

∧ = n √
m2 + n2 

The numbers rx = cos xr
∧

and ry = cos yr
∧ = sin xr

∧

(Sect. 8.1.4) are called 
direction cosines of the r axis: they are the components of the unit vector r parallel 
to r with the same orientation of r. A couple of direction numbers of r is (m, n) and 
it is proportional to any couple of direction numbers of r (Sect. 7.2). 

From the equality 

cos yr
∧ = sin xr

∧

we obtain 

r x2 + r y2 = cos2 xr
∧ + cos2 yr

∧ = 1 

Furthermore, if a is parallel to r with the same orientation of r and r is the unit 
vector of r, the equality holds 

r = 
a 
|a| 

10.3.2 Orthogonal Lines in the Plane 

Two lines, oriented or not, are perpendicular to each other if and only if the cosine 
of their angle is zero. By (10.4) we have:



10.4 The Equation of the Plane 155

Proposition 10.1 Let r and s be lines of the plane with direction numbers (m, n) 
and (m', n'), respectively. Then r and s are orthogonal if and only if . 

mm ' + nn' = 0 (10.5) 

Let the lines r and s of the plane have the equations 

r ) ax + by + c = 0 
s) a'x + b'y + c' = 0 

(10.6) 

It is known (Sect. 7.4.2) that (−b, a) and (−b', a') are couples of direction numbers 
of r and s, respectively. 

Proposition 10.2 The lines r and s represented by Eqs. (10.6) are orthogonal if and 
only if . 

aa' + bb' = 0 (10.7) 

Observe that the coefficients a and b of the equation of the line r are the components 
of a vector v perpendicular to the line. In fact, if P0 = (x0, y0) is a point of the line r, 
from the equation of r, we get (Sect. 7.4.2): 

a(x − x0) + b(y − y0) = 0 

i.e., the scalar product (a, b) × P0P is null and the vector P0P, with components 
(x − x0, y − y0) which is parallel to r, is orthogonal to the vector of components 
(a, b); in other words, the couple (x − x0, y − y0) is proportional to (b, –a), so 
(x − x0, y − y0) is the couple of components of a vector orthogonal to (a, b). 

10.4 The Equation of the Plane 

Theorem 10.1 Let a plane α and a line r not parallel be given and Q(x0, y0, z0) 
be the point common to α and r. Moreover, let v = (a, b, c) be a non-null vector 
parallel to the line r. The plane α and the line r are perpendicular to each other if 
and only if the equation. 

a(x − x0) + b(y − y0) + c(z − z0) = 0 (10.8) 

is fulfilled, for every point P(x, y, z) in the plane α.
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Fig. 10.2 Vectors v = (a, b, 
c) and  w = QP perpendicular 
to each other 

Proof By Theorem 4.2, the line r, and thus the vector v, are perpendicular to the 
plane α if and only if r is perpendicular to the line passing through Q(x0, y0, z0) 
and P(x, y, z), whatever the point P distinct from Q and belonging to the plane α 
is. Hence, if w is the vector containing the oriented segment QP, then r and α are 
perpendicular if and only if the scalar product v · w is zero (Fig. 10.2): v · w = 
a(x − x0) + b(y − y0) + c(z − z0) = 0. 

By Theorem 4.3 given the point P and the line r in the space, there is one and only 
one plane α containing P and perpendicular to the line r. Therefore, all the points 
P(x, y, z) of the plane α satisfy Eq. (10.8), which is the equation of the plane passing 
through P and perpendicular to the vector v = (a, b, c). ⃞

Example 10.1 The plane passing through the point P(2, −5, 1) and perpendicular to 
the vector of components (4, 3, −6) has the Eq. 4(x − 2)+3(y + 5)−6(z − 1) = 0, 
that takes the form 4x + 3y − 6z + 13 = 0. 

If the vector v = (a, b, c) is perpendicular to the plane α, then the vector hv = (ha, 
hb, hc), for any non-null scalar h, is perpendicular to the plane α. 

As a consequence of (10.8), each plane passing through the origin of the 
coordinates (0, 0, 0) has the equation 

ax + by + cz = 0 

Any plane has an equation of first degree in x, y, z, and any equation 

ax + by + cz + d = 0 (10.9) 

with (a, b, c) non-null, is the equation of a plane. Indeed, from Eq. (10.8) we obtain 
a(x − x0) + b(y − y0) + c(z − z0) = ax + by + cz − ax0 − by0 − cz0 = 0 and, 
putting d = −ax0 − by0 − cz0, the  Eq. (10.9) follows. Vice versa, every Eq. (10.9) 
is the equation of a plane. 

Corollary 10.1 The planes α and β of equations ax + by + cz + d = 0 and 
a'x + b'y + c'z + d ' = 0, respectively, are parallel if and only if the triples (a, b, c) 
and (a', b', c') are proportional. 

Corollary 10.2 The plane containing the point (x1, y1, z1) and parallel to the plane of 
equation ax +by+cz+d = 0 has equation a(x − x1)+b(y − y1)+c(z − z1) = 0.
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Fig. 10.3 Vector  (1, 1, 1)  
perpendicular to the plane x 
+ y + z = 1 

In particular, the planes identified by the z and y axes, z and x axes, x and y axes, 
have equations x = 0, y = 0, z = 0, respectively. The generic plane parallel to the 
xy plane has the equation z = h; the generic plane parallel to the xz plane has equation 
y = k; the generic plane parallel to the yz plane has equation x = l. 

Given three distinct non-aligned points, there is one and only one plane α that 
contains them (Sect. 4.2). 

For example, if we want to determine the plane α of equation ax +by+cz+d = 0 
which contains the unit points (1, 0, 0), (0, 1, 0), (0, 0, 1) we must determine the 
coefficients a, b, c, d, imposing that the required plane passes through each of the 
three points. Let first observe that the given points are non-aligned. Therefore, we 
obtain: 

– if (1, 0, 0) belongs to the α plane, then a1 + b0 + c0 + d = 0, i. e.,a + d = 0; 
– if (0, 1, 0) belongs to α, then a0 + b1 + c0 + d = 0, i. e.,b + d = 0; 
– if (0, 0, 1) belongs to α, then a0 + b0 + c1 + d = 0, i. e.,c + d = 0; 

Hence, we obtain the equalities a = −d, b = −d, c = −d and Eq. (10.9) 
becomes −dx  − dy  − dz  + d = 0. Let us divide by d as the plane does not contain 
the origin of the coordinates. Therefore, the equation of the plane passing through 
the unit points is x + y + z − 1 = 0 (Fig. 10.3). 

10.5 Perpendicular Lines and Planes 

The parametric representation of the line in a coordinate system of the space still 
stems from Thales’ theorem. 

The parametric equations of the line r through distinct points P1(x1, y1, z1) and 
P2(x2, y2, z2) take the form, similar to the representation of the line in the plane 
(Sect. 7.3.6):
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x − x1 = t(x2 − x1) 
y − y1 = t(y2 − y1) 
z − z1 = t(z2 − z1) 

with t real parameter, or the equivalent form: 

x = x1 + t(x2 − x1) 
y = y1 + t(y2 − y1) 
z = z1 + t(z2 − z1) 

with t real parameter. The direction numbers of the line r are 

m = x2 − x1 
n = y2 − y1 
p = z2 − z1 

Since the points P1 and P2 are distinct the triple of direction numbers (m, n, p) is  
non-null. Any non-null triple proportional to (m, n, p) is a triple of direction numbers 
of r, and also the triple of the components of a space vector parallel to r. 

Therefore, by Theorem 10.1 we obtain: 

Proposition 10.3 (Perpendicular line and plane) The plane α) ax + by +cz + d = 0 
and the line r are perpendicular if and only if the vector (a, b, c) is parallel to r. In 
other words, the plane α and the line r are perpendicular if and only if (a, b, c) is a 
triple of direction numbers of r. 

Exercise 10.1 Let the point P(3,– 2, 1) and the plane α) 5x − 6y + 7z + 1 = 0 be 
given. Find the plane α’) parallel to α and passing through the point (1, –1, 8). 

By Corollary 10.2 the equation of α’ is  5(x − 1) − 6(y + 1) + 7(z − 8) = 0, 
which can be written in the form 5x − 6y + 7z − 67 = 0. 

Example 10.2 Let the point P(−1, 2, 3) and the plane α) 2x − 7y + 6z − 1 = 0 be 
given. Find the parametric equations of the line r, passing through P and perpendicular 
to α. 

The required line r is parallel to the vector (2, −7, 6), has direction numbers 
m = 2, n = −7, p = 6 and parametric equations 

x − x1 = 2t 
y − y1 = −7t 

z − z1 = 6t
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Moreover, the line r contains the point P(−1, 2, 3) and therefore its parametric 
equations are: 

x = −1 + 2t 
y = 2 − 7t 
z = 3 + 6t 

Example 10.3 Let the point P(0, 7, −3) and the line r of equations 

x = 1 + 2t 
y = 5 − t 
z = 6t 

be assigned. Find the plane α passing through P and perpendicular to r. 
The coefficients a, b, c of the equation of α are direction numbers 2, −1, 6 of r, 

respectively. Therefore, the equation of α is, by (10.8), 

2x − (y − 7) + 6(z + 3) = 0 

which can be put in the form 

2x − y + 6z + 25 = 0. 
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Chapter 11 
Systems of Linear Equations. Reduction 

11.1 Linear Equations 

We studied (Chap. 7) the equation ax + by + c = 0 also called the linear equation 
in the variables x and y and real coefficients a, b and c. We have also considered the 
geometric meaning of this equation. 

A linear equation with n unknowns is an expression of the form 

a1x1 + a2x2 + ... + anxn = b (11.1) 

where, for i = 1, 2, …, n, the  xi’s are the unknowns, or  variables, the  ai’s are real 
numbers, called coefficients of the unknowns and b is the constant term, or simply  
the constant of the equation. 

Example 11.1 We considered (Sect. 7.2.2) the linear equation 3x − 2y = −1 in the  
unknowns x, y, with coefficients of the unknowns 3 and −2, and constant −1. We 
found couples of values to give to x and y that satisfy the equation; these couples, 
called solutions of the equation (see Example 7.1) are obtained by assigning a value 
to x (or y) and finding the consequent value for y (or x). 

A solution of the linear Eq. (11.1) is an  n-tuple (k1, k2, …,  kn) of real numbers 
such that the equality 

a1k1 + a2k2 + ... + ankn = b 

obtained by substituting in (11.1) ki for xi, i = 1, 2, …, n, is verified: then the n-tuple 
(k1, k2,…,  kn) is said to  satisfy the Eq. (11.1), and the equation is said to be consistent 
or compatible. If an  n-tuple satisfying (11.1), does not exist, then the equation is said 
to be inconsistent or incompatible. Let us consider some cases of compatibility and 
incompatibility. 

case (i): one of the coefficients of the Eq. (11.1), say a1, is non-null. Then we divide 
both sides of Eq. (11.1) by  a1:
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x1 = 
1 

a1 
b − 

a2 
a1 

x2 − . . .  − 
an 
a1 

xn 

Whatever the values assigned to the unknowns x2, …,  xn are, a value for x1 is got; 
then the n-tuple (x1, x2, …,  xn) is a solution of (11.1) and in this way, changing the 
choice for x2, …,  xn, we obtain other possible solutions of the equation. 

Example 11.2 Find some more solutions of 3x − 2y = –1. 

Rewrite the equation as 

x = 
2 

3 
y − 

1 

3 

For every value assigned to y a unique value is obtained for x. For example, if y = 0, 
then x = − 1 

3 ; for  y = 1 we obtain 

x = 
1 

3 

Therefore, the couples
(− 1 

3 , 0
)
,
(
1 
3 , 1

)
are two among the solutions of equation 3x 

− 2y = –1. 

case (ii): all the coefficients in the Eq. (11.1) are zero and the constant is not zero: 

0x1 + 0x2 + ... + 0xn = b, b /= 0 

Then the equation has no solution, i. e., it is incompatible. 

case (iii): all the coefficients in the Eq. (11.1) are zero and the constant is zero too: 

0x1 + 0x2 + ... + 0xn = 0 

Then every n-tuple of real numbers is a solution; the equation is called an identity 
or an identical equation (Sect. 6.3). 

11.1.1 Systems of Linear Equations 

Let us consider a set of m linear equations and n unknowns x1, x2, …,  xn: 

a11x1 + a12x2 + . . .  + a1nxn = b1 
a21x1 + a22x2 + . . .  + a2nxn = b2 

· · ·  
am1x1 + am2x2 + . . .  + amnxn = bm 

(11.2)
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The elements aij ∈ R are called coefficients (or coefficients of the unknowns) and 
the elements bi ∈ R are the right-hand sides (or known coefficients) of the equations, 
for i = 1, 2, …, m; j = 1, 2, …, n. 

The set of Eq. (11.2) is defined as a system of linear equations with real 
coefficients, real constants, and the unknowns x1, x2, …,  xn. 

The system is said to be homogeneous if all constants b1, b2, …,  bm are null. 
Hence, a homogeneous system takes the form 

a11x1 + a12x2 + . . .  + a1nxn = 0 
a21x1 + a22x2 + . . .  + a2nxn = 0 

· · ·  
am1x1 + am2x2 + . . .  + amnxn = 0 

(11.3) 

The system (11.3), obtained by the system (11.2) substituting zeros to all bi’s is 
said to be the homogeneous linear system associated with the system (11.2). 

Definition 11.1 An n-tuple (k1, k2, …,  kn) of real numbers is said to be a solution of 
the system of linear Eq. (11.2), if it is a solution of all the equations of the system; a 
solution of the system is said to satisfy (all the equations of) the system; the system 
is said to have, or  admit, the solution (k1, k2, …,  kn). The set of all solutions is said 
to be the solutions set, or the  general solution, of the system. 

If the system (11.2) has a solution, then the system is said to be consistent or 
compatible. If the system has no solution, then it is defined an inconsistent or incom-
patible system. A consistent system may admit a unique solution, or more than one 
solution. 

A homogeneous system is always consistent since it admits the null, or  trivial, 
solution (0, 0, …, 0), which is the null vector of Rn. 

Example 11.3 Let 

3x + 2y = 6 
3x + 2y = 5 

be a system of two equations and unknowns x and y. The left-hand sides of the two 
equations are equal while the right-hand sides are different from each other. We 
realize that there are no numbers k1, k2 that replace x, y in the two equations and 
make the left-hand side 3x + 2y of the equations equal to 6 and also equal to 5. 
Therefore, the system is inconsistent because it does not admit solutions. 

Example 11.4 In the system of two equations and two unknowns. 

4x − 2y = 5 
8x − 4y = 10 

the second equation can be put in the form 2(4x − 2y) = 2(5) and, after dividing the 
two sides by 2, it reduces to a copy of the first equation (see Sect. 6.3). Therefore, the
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second equation has the same solutions as the first. We can obtain as many solutions 
of the equation as we want. In fact, we fix, at will, a value for x (for y) and then we 
find a value of y (of x). For example, if x = 0 we have:  4  × 0 − 2y = 5, i. e., y = – 5 2 ; 
if y = 0, then x = 5 4 . Therefore, the two couples

(
0, − 5 

2

)
and

(
5 
4 , 0

)
are solutions of 

the given system. Hence, the system is consistent. 

Example 11.5 The linear system of two equations and two unknowns 

x − y = 2 
y = 3 

admits the solution (x, y) = (5, 3). This is easily checked by replacing 5 for x and 3 
for y in each equation: 5 − 3 = 2; 3 = 3. The solution (5, 3) is unique because if 3 is 
the unique value that y can take, then 5 is the unique value that x can take. Therefore, 
the system is consistent and has only one solution. 

11.2 Equivalent Systems 

Definition 11.2 Two systems of linear equations with the same number of unknowns 
are said to be  equivalent if they have the same solutions. 

Remark 11.1 In particular, we realize that two linear equations are equivalent if one 
is obtained from the other by multiplying this by a non-null real number. In Example 
11.4, the equations 4x − 2y = 5 and 8x − 4y = 10 are equivalent by Theorem 6.2 
because the former is obtained from the latter by dividing this by 2. 

We study the systems of linear equations in order to determine their compatibility 
and find the possible solutions. 

A basic operation over the equations of a linear equation system is the linear 
combination. 

Definition 11.3 A linear combination of the equations of system (11.2) is,  by  
definition, an equation of the form: 

c1(a11x1 + a12x2 + . . .  + a1nxn) + c2(a21x1 + a22x2 + . . .  + a2nxn) + . . .  
+ cm(am1x1 + am2x2 + . . .  + amnxn) = c1b1 + c2b2 + . . .  + cmbm 

where the ci’s are real numbers called the coefficients of the linear combination. A 
linear combination of linear equations is a linear equation. 

Example 11.6 A linear combination of the equations 

x − y = 2 
−x + 2y = 3
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is the equation 

c1(x − y) + c2(−x + 2y) = 2c1 + 3c2 

which can be expressed in the equivalent form 

(c1 − c2)x + (−c1 + 2c2)y = 2c1 + 3c2 

The coefficients of the linear combination are c1, c2. In particular, if c1 = −2 and 
c2 = 5, the linear combination becomes 

(−2 − 5)x + (2 + 10)y = 2(−2) + 3(5) 

i. e., −7x + 12y = 11. 
We state the following theorem and apply it. 

Theorem 11.1 Every solution of a system of equations is also a solution of every 
linear combination of the equations of the system. 

Example 11.7 The system 

x − y = 2 
x − 2y = −3 

has the solution (x, y) = (7, 5). Indeed, replacing 7 for x and 5 for y in each of the 
two equations, we have 7 − 5 = 2; 7 − 2 × 5 = −3. Let us consider the generic 
linear combination of the equations of the system 

c1(x − y) + c2(x − 2y) = 2c1 − 3c2 

and verify that this equation has the solution (7, 5); in fact, if (x, y) = (7, 5), we 
obtain 

c1(7 − 5) + c2(7 − 10) = 2c1 − 3c2 

11.2.1 Elementary Operations 

Let us name the m equations of a system with the symbols E1, E2, …, Em. The  
notations simplify the indication of the linear combinations; the expression hEi + 
kEj means: multiply the equation Ei by h, the equation Ej by k, and add. For example, 
let us consider the system of two equations
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E1 : x − y = 2 
E2 : −x + 2y = 3 

The sum 2E1 − 5E2 is an abbreviation of the Equation 2(x − y) −5(−x + 2y) = 
2 × 2 + 3 (−5), i.e., 7x − 12y = −11. 

Theorem 11.2 If in the system (11.2) the equation Ei is replaced with the sum Ei + 
kEj, with i, j = 1, …, m, for  k any real number, a system equivalent to the system 
(11.2) is obtained. 

Example 11.8 Let us verify that the system 

E1 : x − y = 2 
E2 : −x + 2y = 3 

is equivalent to the system 

E1 : x − y = 2 
E1 + E2 : y = 5 

obtained from the previous one by replacing the equation E2 with the sum of the 
two equations. It is easy to check that the second system also has the solution (7, 
5). Since the second system has the unique solution (7, 5) (Example 11.4), the first 
system has the unique solution (7, 5) too. 

The following is a generalization of Theorem 11.2. 

Theorem 11.3 If in the system (11.2) the equation Ei is replaced with the equation 
hEi + kEj, with h /= 0, for any k ∈ R, a system equivalent to the system (11.2) is 
obtained. 

From Remark 11.1 and Theorems 11.2 and 11.3 the following operations, which 
transform an equation system into an equivalent system, are defined in the set of the 
equations of a system: 

operation 1. replacing the equation Ei with the equation hEi, with h /= 0; 
operation 2. replacing the equation Ei with the equation Ei + kEj, for any real k; 
operation 3. replacing the equation Ei with the equation hEi + kEj, h /= 0, and for 
any real k. 

In other words, the equation Ei can be replaced by an equation which is the sum 
of Ei (possibly multiplied by a real number h /= 0) added to an equation of the system 
multiplied by the number k. (In short, in the equation that replaces Ei must appear 
Ei, or  hEi, with h /= 0.) Let us express the actions of the operations by means of the 
following symbols: 

operation 1. Ei ← hEi, h /= 0 (replace Ei with hEi)
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operation 2. Ei ← Ei + kEj (replace Ei with Ei + kEj) 

operation 3. Ei ← hEi + kEj , h /= 0 (replace Ei with hEi + kEj) 

Operation 3 includes operations 1 and 2 as special cases. 
The interchange operation of two equations Ei and Ej, denoted Ei ↔Ej, transforms 

a system into an equivalent system: this means that the ordering of the equations in 
a system does not affect the general solution of the system. The operations 1, 2, 3 
and the interchange operation are called elementary operations on a system of linear 
equations. 

The application of a finite number of elementary operations to a system transforms 
it into an equivalent system. 

From Theorem 11.1 it follows: 

Theorem 11.4 If the equation Ei in the system (11.2) is a linear combination of the 
remaining equations, the system is equivalent to that obtained by eliminating the 
equation Ei. 

For example, the system 

E1 : 2x − y = 1 
E2 : −x + y = 0 
E3 : x = 1 

is equivalent to the system of the last two equations because E1 =E3 −E2. Therefore, 
the system admits the unique solution (1, 1). 

11.3 Reduced Systems 

Definition 11.4 A system of  m linear equations is said to be a reduced system, or  
a system in a  reduced form, if in each of the first m − 1 equations, which is not the 
identical equation, an unknown appears (i.e., has non-null coefficient) which does 
not appear (i.e., has coefficient 0) in the equations below. 

Example 11.9 The system of three equations and three unknowns 

x − 2y − z = 2 
4x + 2y = 6 
7x = 1 

is reduced because in the first equation the unknown z appears which does not appear 
in the other two equations, and in the second equation the unknown y appears which 
does not appear in the third equation.
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Example 11.10 The following system of four equations with three unknowns is not 
reduced 

x − y + 4z = 0 
3y − 3z = 1 
y = 2 
2x + 8z = 3 

Remark 11.2 The incompatible equation 0 = b, with b /= 0, divided by b, takes the 
form 0 = 1. Hence, the incompatible equation is unique (see Sect. 6.3). 

Theorem 11.5 [Gauss elimination] It is always possible to apply a finite number of 
elementary operations to a linear system and transform it into a reduced system. 

The theorem shows a procedure called reduction of the system of linear equations. 
We will deal with the procedure in Chap. 16. 

Let us now examine some examples of reduction of systems of linear equa-
tions by means of the elementary operations in order to find the solutions or check 
inconsistencies. 

Example 11.11 Let us consider the system 

E1 : 3x + 4y + z = 2 
E2 : x − 2z = 3 
E3 : 3z = 15 

The operation 

E3 ← 
1 

3 
E3 

transforms the system in an equivalent system; then the last equation is written as z 
= 5. Now we replace E3 with the equation z = 5, which becomes our new E3; we  
obtain the equivalent system 

E1 : 3x + 4y + z = 2 
E2 : x − 2z = 3 
E3 : z = 5 

Then we apply the operation E2 ← E2 − (–2)E3 (observe that the number −2 
between the brackets is the coefficient of z in E2). The second equation then becomes: 
x − 2z – (– 2)  z = 1 – (– 2) 5, that we rewrite as x = 11; in practice, the second 
equation is obtained by replacing 5 for z in the second equation:
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E1 : 3x + 4y + z = 2 
E2 : x = 11 
E3 : z = 5 

Let us replace the acquired values of z and x and set x = 11 and z = 5 in the  first  
equation; then 33 + 4y + 5 = 2 and y = 9. The given system is therefore equivalent 
to the system: 

x = 11 
y = −9 
z = 5 

that reveals that the triple (x, y, z) = (11, − 9, 5) is a solution; indeed, it is the unique 
solution of the given system of equations. 

Remark 11.3 A system of equations with an identical equation and the system with 
identical equation cancelled are equivalent. For example, the system 

x − y = 2 
0 = 0 
−x + 2y = 3 

is equivalent to the system 

x − y = 2 
−x + 2y = 3 

It is immediate to state the equivalence of the two systems since any couple of 
real numbers is a solution of the identical equation. 

Remark 11.4 A system of equations that contains the inconsistent equation is incon-
sistent; in fact, the inconsistent equation has no solution and every system that 
contains it does not admit any solution. 

Remark 11.5 If a reduced system has more equations than unknowns, then the 
system contains the identical equations 0 = 0, or the incompatible equation 0 = 1. 

Example 11.12 Consider the reduced system 

x + 2y − z = 1 
y − 3z = 0 

of two equations and three unknowns. Let us begin to carry out from below for in the 
last equation the minimum number of unknowns occurs. We consider as a parameter, 
called also a free variable, one of the unknowns such that, if moved to the right-hand
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side, the system in the remaining unknowns is still reduced. For example, set z = c, 
c parameter: the system of two equations and the unknowns x and y 

x + 2y = 1 + c 
y = 3c 

is obtained. Then we proceed by substitution (see Example 11.11) and replace 3c for 
y in the first equation so as to obtain 

x + 2(3c) − c = 1 
y = 3c 

and then 

x + 5c = 1 
y = 3c 

A solution (x, y, z) of the given system is 

x = −5c + 1 
y = 3c 
z = c 

(11.4) 

which depends on the parameter c. For each numerical value assigned to c, a solution 
of the system is obtained. For example, if c = 0 the solution (x, y, z) = (1, 0, 0) is 
obtained; if c = 1, then (x, y, z) = (−4, 3, 1), etc. The system has infinite solutions 
that depend on the real values that we can attribute to the parameter z = c. 

Remark 11.6 The substitution is an elementary operation. For instance, in the case 
of the system 

x + 2y − z = 1 
y − 3z = 0 

the substitution that replaces 3c for y in the first equation means to apply the 
elementary operation: E1 ← E1 − 2E2 which transforms the given system into the 
following: 

E1 : x + 2y − z − 2y + 6z = 1 
E2 : y − 3z = 0 

i.e., 

E1 : x + 5z = 1 
E2 : y − 3z = 0
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which is equivalent to the form (11.4). 

Example 11.13 Let the following system of four linear equations and three 
unknowns 

E1 : x − y + 4z = 0 
E2 : 3y − 3z = 1 
E3 : y = 2 
E4 : 2x + 8z = 6 

be given. The system is not reduced. Let us apply the elementary operations as 
follows: 

E3 ←E1 + E3 : x − y + 4z + y = 2; x + 4z = 2 
E4 ←(1/2)E4 : (1/2)(2x + 8z) = (1/2)6; x + 4z = 3 

Then the given system is equivalent to: 

E1 : x − y + 4z = 0 
E2 : 3y − 3z = 1 
E3 : x + 4y = 2 
E4 : x + 4z = 3 

Let now apply: E4 ← E4 − E3. The system is equivalent to 

E1 : x − y + 4z = 0 
E2 : 3y − 3z = 1 
E3 : x + 4y = 2 
E4 : 0 = 1 

As E4 is inconsistent, also the system is inconsistent (see Remark 11.4). 

11.4 Exercises 

Exercise 11.1 Let us consider the following linear system of three equations and 
three unknowns x, y, z, 

2x − y + 2z = 1 
x − y − 2z = 0 
2x + y − 2z = 2 

(11.5)
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The system of equations is not reduced. Then, first we reduce the system. To this 
aim, let us eliminate z from the second equation by means the operation E2 ← E1 + 
E2. We get the following system equivalent to the previous one 

2x − y + 2z = 1 
3x − 2y = 1 
2x + y − 2z = 2 

Apply the operation E3 ← E1 + E3 to eliminate y and z from the third equation: 

2x − y + 2z = 1 
3x − 2y = 1 
4x = 3 

This system is reduced. From the third equation we obtain x = 3 4 ; replacing x with 
3 
4 in the second equation we obtain 9 − 8y = 4, from which y = 5 8 . Plugging x = 3 4 
and y = 5 8 into the first equation we get z = 1 

16 . The system has a unique solution, 
the triple

(
3 

4 
, 
5 

8 
, 
1 

16

)

Remark 11.7 Each equation of the system (11.5) represents a plane (see Sect. 10.4). 
Thus, the solution ( 3 4 , 

5 
8 , 

1 
16 ) of the system of Eqs. (11.5) is the triple of the coordinates 

of the common point to the three planes (11.5). 

Exercise 11.2 Solve the system of three equations and four unknowns 

x − y − z + t = 13 
x − 2y − z = 13 
y + t = 0 

The system is not reduced. Let us apply E2 ← E1 − E2 to obtain: 

x − y − z + t = 13 
y + t = 0 
y + t = 0 

The third equation is eliminated as it is equal to the second: 

x − y − z + t = 13 
y + t = 0 

Replace t with −y in the first equation:



Bibliography 173

x = 13 − 2t + z 
y = −t 

The set of solutions is made of the 4-tuples (13 − 2t + z, −t, z, t), for every z, t ∈ 
R. The solutions depend on two parameters z, t. Therefore, the system is consistent 
and has infinite solutions. 

Exercise 11.3 Reduce and discuss the system of linear equations: 

2x − 3y = 3 
x − y − z + t = 0 
2x − 4y + 2z − 2t = 1 

Interchange first and third equation: 

2x − 4y + 2z − 2t = 1 
x − y − z + t = 0 
2x − 3y = 3 

The unknowns z and t do not appear in the third equation. Perform the operation 
E2 ← E2 + 1 2 E1. The following system is obtained: 

2x − 4y + 2z − 2t = 1 
2x − 3y = 1 2 
2x − 3y = 3 

The system is not yet reduced because the unknowns that appear in the second 
equation are present in the third. Apply the operation E3 ← E3 − E2 to obtain the 
reduced system 

2x − 4y + 2z − 2t = 1 
2x − 3y = 1 2 
0x + 0y = 5 2 

which is incompatible due to the incompatible equation E3. 
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Chapter 12 
Vector Spaces 

12.1 Introduction 

We deal with structured sets, i.e., sets on which, or between which, functions or 
operations are defined. We will generalize some results shown in Chap. 9. The subject 
is of interest for the linear algebra, and it will be studied in the next chapters. 

Let us start by introducing the set of complex numbers. 

12.1.1 Complex Numbers 

In the set of real numbers there is no number which satisfies the equation x2 = –1. To 
find a remedy for this lack a new kind of number, called the imaginary unit, denoted 
i and such that i = 

√−1, is defined. As a result we obtain i2 = –1 and the two 
roots of the equation x2 = −1 are i and –i, indeed (−i)2 = (−i )(−i ) = i2 = −1. 
The number i satisfies the usual rules of calculus. For example, 0i = 0, 1i = i, √−5 = √

(−1)5 = 
√−1 

√
5 = i

√
5. Furthermore, 

i3 = i2i = −1i = −i 
i4 = i2i2 = (−1)(−1) = 1 

i5 = i4i = 1i = i 

Therefore, we can calculate the square root of any negative number. For example, 
we are able to solve all the quadratic equations in the unknown x 

ax2 + bx + c = 0 (12.1) 

where a, b, c are real numbers and a /= 0. The solutions, also named roots, of Eq.  (12.1) 
are x1, x2 and result from the formula
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x = 
−b ± √

b2 − 4ac 
2a 

Let us find the roots of the equation x2 − 2x + 5 = 0, whose coefficients replace 
a, b, c. As  b2 − 4ac = 22 − 4 × 5 = −16, the roots are: x1 = 1 + 2i and x2 = 1–2i. 

The numbers of the form a + bi, being a and b real numbers and i the imaginary 
unit, are known as complex numbers. The number a is called the real part of the 
complex number a + bi, the product bi is called the imaginary part and the real 
number b is the coefficient of the imaginary part. 

The set of complex numbers is denoted by C. Real numbers are considered 
particular complex numbers: those whose coefficient of the imaginary part is 0. 

The roots of the equation x2 − 2x + 5 = 0 are the complex numbers 1 − 2i and 1 
+ 2i. Two complex numbers of the form a + bi and a − bi, are said to be conjugate 
numbers. So the complex numbers 1 − 2i and 1 + 2i are conjugate to each other. 
The sum of two conjugate complex numbers is a real number: a + bi + a − bi = 
2a. A quadratic equation ax2 + bx + c = 0 with real coefficients and b2 − 4ac < 0  
has two distinct complex roots that are conjugate to each other. 

12.2 Operations 

Let S be a non-empty set. An application of S × S in S is called an  internal binary 
operation, or simply an  operation in S. It is denoted by a symbol as + or · and 
emphasizing the domain and the range, as + :  S × S → S, · :  S × S → S. 

If the + symbol is used, the operation is called addition and the element of S 
corresponding of the couple (x, y) of S  × S, i.e., the value in (x, y) of the application 
+, is called the sum of x and y and is denoted by x + y. If the symbol · is used, the 
operation is called multiplication, its value in the couple (x, y) of S  × S is called the  
product of x and y and is denoted by x · y or simply xy. 

Examples of operations in a set are: 

1. the usual operations of addition and multiplication in the set R of the real numbers 
or in the set C of complex numbers; 

2. the addition of two free vectors of the set Vα of the free vectors of the plane α or 
the set V3 of the free vectors of space; 

3. the addition of two n-tuples of Rn; 
4. the following applications 

(X, Y) ∈ p(A) × p(A) → X ∪ Y 
(X, Y) ∈ p(A) × p(A) → X ∩ Y
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where p(A) denotes the power set of the set S, i.e., the set of all subsets of S (see 
Sect. 3.3.2), that associate the union X∪Y and the intersection X∩Y to any couple 
(X, Y) of subsets of the set A, respectively. 

If S and T are non-empty sets, an application of T × S in S is called an  external 
binary operation of S with the elements of T as operators, is denoted with the symbol 
· and its value on the pair (t, x) of T  × S with t · x or tx. The operation · is also called 
multiplication of an element of T by an element of S and the corresponding element 
tx of S is called the product of t by x. The multiplication of a real number by a free 
vector of Vα (resp. V3) and the multiplication of a real number by an n-tuple of Rn 

are examples of external binary operations of Vα (resp. V3) and Rn with operators 
the elements of R. One or more sets in which, or between which, some operations, 
internal or external are defined, form an algebraic structure. 

12.3 Fields-

Let S be a non-empty set and let + and · be two operations in S; the triple (S, + , ·) is  
called a field if the following axioms are satisfied, for any a, b, c ∈ S (the notations 
a · b and ab are equivalent): 

1. a + b = b + a (commutative property of addition); 
2. (a + b) + c = a + (b + c) (associative property of addition); 
3. there exists in S one and only one element 0 (called zero) such that a + 0 = a; 
4. there exists, for every element a of S, one and only one element, which is denoted 

by −a, called the opposite of a, such that a + (−a) = 0; 
5. ab = ba (commutative property of multiplication); 
6. (ab)c = a(bc) (associative property of multiplication); 
7. there exists in S one and only one element different from 0, which is denoted by 

1, such that a · 1 = a; 
8. there exists in S, for each element a distinct from 0, one and only one element, 

which is denoted with a−1 or 1 a , called the inverse of a, such that aa
−1 = 1; 

9. a(b + c) = ab + ac (distributive property of multiplication with respect to 
addition). 

The set S is called the support of the field (S, +, ·) and the elements of S are 
called scalars. If it does not give rise to misunderstandings, the field (S, +, ·) can be 
denoted by the symbol S of its support. 

Examples 

a. (Q, +, ·), where Q is the set of rational numbers and + and · are the usual 
operations of addition and multiplication, respectively, is a field; 

b. ({0,1}, +, ·) is a field if + and · are the internal binary operations of the set of 
two elements {0,1} defined by the positions 

0 + 1 =1 + 0 = 1; 0 + 0 = 0; 1 + 1 = 0;
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1 · 0 =0 · 1 = 0; 0 · 0 = 0; 1 · 1 = 1; 

c. The set of relative integers with the usual operations of addition and multiplication 
is not a field because axiom 8 is not satisfied; 

d. (R, +, ·) is a field (Sect. 5.5); 
e. (C, +, ·) is a field. 

12.4 Vector Spaces 

Let S be a field, V a non-empty set whose elements are called vectors, + an internal 
binary operation in V, called addition, · an external binary operation of V whose 
operators are the scalars of S, which is called multiplication of a scalar of S by a 
vector of V. The notations a · x and ax are equivalent for every scalar a and vector x. 
The triple (V, +, ·) defines an algebraic structure called vector space over the field S 
and the elements of V are called vectors of the vector space if the following axioms, 
called vector space axioms, are satisfied, for every x, y, z ∈V and whatever the scalars 
a and b are: 

1. x + y = y + x (commutative property of the addition in V); 
2. (x + y) + z = x + (y + z) (associative property of the addition in V); 
3. there exists in V a unique vector O, the null vector, such that x + O = x; 
4. for any vector x, there exists one and only one vector, which is denoted by −x, 

called the opposite of x, such that x + (−x) = O; 
5. a(bx) = (ab)x (associative property of the multiplication of a scalar by a vector); 
6. 1x = x; 
7. the distributive properties of multiplication hold with respect to the addition of 

elements of V and with respect to the addition of scalars: 

71. a(x + y) = ax + ay; 
72. (a + b)x = ax + bx. 

To ease the notation, we can denote the vector space (V, +, ·) with the symbol V, 
unless this causes misunderstanding. 

The sum x + (−1)y is usually written x − y; furthermore we will write −y instead 
of (−1)y. 

Let us use 0 to identify the scalar zero and reserve the symbol O to the null vector 
defined in the axiom 3, called also zero vector. 

It is possible to add up several elements of a vector space. If we want to add four 
elements w, x, y and z, we add the first two, then the third and finally the fourth. 
The axioms 1 (commutativity) and 2 (associativity) allow to perform the successive 
additions in any order. For example, 

((w + x) + y) + z = w + (x + y) + z 
= (w + y) + (x + z) = ((y + x) + w) + z = . . .
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Usually, parentheses are omitted and it suffices to write w + x + y + z. 
For every scalar h and vector a, it is easy to check the following identities: 

h(−a) = −ha, (−h)a = −  ha, (−h)(−a) = ha. 

Theorem 12.1 The equality 0x = O holds, for every vector x of V, where 0 denotes 
the zero of  S and O the null vector of V. 

Proof For every scalar a, by field axiom 3, we have (a + 0)x = ax and by axiom 
7 of vector space, (a + 0)x = ax + 0x. Then, equating the right-hand sides of both 
equalities: 

ax = ax + 0x 

Hence, 

0x = O

⃞

Definition 12.1 A vector space on the field R is called real vector space. A vector 
space on the field C is called a complex vector space. 

Examples 

a. The set V3 (resp. Vα , Vr) (Sect. 9.3) of the geometric vectors of the space (resp. the 
plane α, the line) with the operations of addition of two vectors and multiplication 
of a real number by a vector is a real vector space. Let us call V3, Vα and Vr 

geometric vector spaces. 
b. The set Rn of the n-tuples of real numbers with the operation of addition of two 

n-tuples and the operation of multiplication of a real number by a n-tuples is 
a real vector space named n-coordinate real space, or  numerical vector space. 
In particular, the set R of real numbers, with the addition and multiplication 
operations, can be considered either a field, or a vector space: in the latter case 
the multiplication is seen as an external operation with operators the scalars of 
the real field. 

c. For every positive integer n, the  set  Pn of polynomials of degree less than n in 
the variable t with complex coefficients is a complex vector space with respect 
to the operations of addition of two polynomials and multiplication of a complex 
number by a polynomial. The null vector of vector space Pn is the polynomial 
identically zero.
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12.5 Linear Dependence and Linear Independence 

We already studied the systems of n-tuples in Rn (see Chap. 9). The concept of 
system of n-tuples is extended to that of system of vectors in a vector space. Hence, 
a system of vectors [x1, x2, …,  xn] in a vector space V is made of elements of V not 
necessarily distinct. The existence of the system without elements, called the empty 
system, is postulated. 

Let us consider the non-empty system [x1, x2, …,  xn] of vectors of a vector space 
V on the field S. 

Definition 12.2 The system of vectors [x1, x2, …,  xn] is said to be a  linearly depen-
dent system if there exists a system of scalars [a1, a2, …,  an] not all null such 
that

⎲
ai xi = a1x1 + a2x2 + . . .  + anxn = O = null vector 

The following propositions hold. 

Proposition 12.1 A vector system containing the null vector is linearly dependent. 

In fact, the proposition is trivially true if the system contains the null vector as 
the only element. If the system contains more elements and one of these is the null 
vector, this depends linearly on the remaining vectors and therefore the system is 
linearly dependent. 

Proposition 12.2 A vector system containing two equal elements is linearly 
dependent. 

Proposition 12.3 A system of vectors, that includes a linearly dependent part, is 
linearly dependent. 

Proposition 12.4 Each vector of a non-empty system of vectors linearly depends 
on the system itself. Indeed, the linear combination of the vectors of the system⎡
x1, x2, . . . ,  xi−1, xi , xi+1, . . . ,  xn

⎤
with the coefficients h1 = 0, h2 = 0, …, hi−1 = 

0, hi = 1, h i + 1 = 0, …, hn = 0 equals vector xi. 
A system of vectors that is not linearly dependent is said to be a linearly 

independent system. The empty system is assumed to be linearly independent. 
The expressions “linearly dependent (independent) system of vectors [x1, x2, …,  

xn]” and “linearly dependent (independent) vectors x1, x2, …,  xn” are equivalent. 
From Propositions 12.1, 12.2 and 12.3 we obtain: 

Proposition 12.5 A linearly independent vector system, which is not the empty 
system, includes distinct and non-null vectors and all its parts are linearly 
independent systems.
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Examples 

a. The unit vectors of the axes in a coordinate system of the plane (space) form a 
linearly independent system of free vectors of the plane (space) (Sect. 9.8). Any 
three free vectors in the plane form a linearly dependent system. 

b. Let us consider the vector space P3 of polynomials of degree less than 3 with 
complex coefficients in the variable t and let x1, x2, x3 be elements of P3 defined 
by 

x1 = 2 − t2 
x2 = 1 + t + t2 
x3 = t − 1 

The system of vectors [x1, x2, x3] is linearly dependent; in fact x1 − x2 + x3 
= 2 − t2 – (1  + t − t2) + t − 1 is equal to the null polynomial, which is the null 
vector 0t2 + 0t + 0 of the vector space P3. In other words, there exist not all null 
scalars a1 = 1, a2 = −1, a3 = 1, such that a1 x1 + a2 x2 + a3 x3 = 0t2 + 0t + 0 
= O. 

c. The polynomials 

x1 = 1 
x2 = t 
x3 = t2 

form a linearly independent system of P3. 

Definition 12.3 If x = a1x1 + a2x2 + . . .  + anxn , where the xi’s are vectors and 
the ai’s scalars, i = 1, 2,…, n, then the vector x is called the linear combination of 
the system of vectors [x1, x2, …,  xn] with coefficients a1, a2, …,  an. It is also said  
that x is linearly dependent on the system [x1, x2, …,  xn], or the vector x is  a linear 
combination of the vectors x1, x2, …,  xn, if  x = a1x1 + a2x2 + . . .  + anxn . 

It is straightforward to realize the following: 

Proposition 12.6 If the vector x linearly depends on the vectors of the system [x1, 
x2, …,  xn] and if each vector xi linearly depends on the vectors of the system [y1, y2, 
…, ym], then the vector x linearly depends on the vectors of the system [y1, y2, …,  
ym]. 

Theorem 12.2 The system T = [x1, x2,…,  xn], n ≥ 2, of the vector space V is linearly 
dependent if and only if one of the vectors of T linearly depends on the others vectors 
of T. 

Proof Given the linearly dependent system T, there exist n scalars not all null, h1, 
h2, …,  hn, such that O = h1x1 + h2x2 + . . .  + hnxn . Suppose, for instance, h1 /= 0; 
it turns out
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O = x1 + 
h2 
h1 

x2 + . . .  + 
hn 
h1 

xn 

and then 

x1 = −  
h2 
h1 

x2 − . . .  − 
hn 
h1 

xn 

Therefore, x1 depends linearly on the vectors x2, …,  xn. Let us now suppose that 
one of the vectors of the system T, for example the vector x1, depends linearly on 
the others. Then there exist n − 1 scalars p2, p3, …,  pn such that x1 = p2 x2 + p3 x3 
+ … + pn xn. Therefore, 

O = −x1 + p2x2 + p3x3 + ... + pnxn 

proving that the system T is linearly dependent. ⃞

Theorem 12.3 The non-empty system of non-zero vectors [x1, x2, …,  xn] is linearly 
dependent if and only if there exists a vector xk , with 2 ≤ k ≤ n, which is a linear 
combination of the system [x1, …,  xk−1]. 

Proof Suppose that [x1, x2,…,  xn] is a linearly dependent system of non-zero vectors. 
Evidently it is n ≥ 2. Let k be the first integer between 2 and n such that [x1, …,  xk] 
is a linearly dependent system. (Observe that x1 is linearly independent because it is 
different from the null vector and, by Theorem 12.2, there is an integer k between 2 
and n such that [x1, …,  xk] is linearly dependent.) Then 

a1x1 + . . .  + ak xk = O 

with any of ai’s non-zero. It cannot be ak = 0 because this would imply linear 
dependence of the system [x1, …,  xk−1], while, by definition of k, this system is 
linearly independent. Hence, from the previous equality it follows 

xk = −  
a1 
ak 

x1 − . . .  − 
ak−1 

ak 
xk−1 

Vice versa, if in the system of non-null vectors [x1, x2, …,  xn] there is a vector xk , 
2 ≤ k ≤ n, such that 

xk = b1x1 + . . .  + bk−1xk−1 

by Theorem 12.2, the system [x1, …,  xk] is linearly dependent and also the system 
[x1, …,  xn] that contains it (see Proposition 12.3). ⃞

Theorem 12.4 A non-empty system T of the vector space V is linearly independent 
if and only if each vector of V linearly dependent on T is expressed in a unique way 
as a linear combination of the vectors of T.
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Proof Let T = [x1, x2, …,  xn], with n ≥ 1, be a linearly independent system of 
vectors of V and let x be a vector linearly dependent on T. Suppose 

x = h1x1 + h2x2 + . . .  + hnxn 

and also 

x = k1x1 + k2x2 + . . .  + knxn 

By subtraction we obtain, 

x − x = O = (h1 − k1)x1 + (h2 − k2)x2 + . . .  + (hn − kn)xn 

Since T is linearly independent, necessarily the equalities hold: 

h1 = k1, h2 = k2, . . . ,  hn = kn 

Therefore, the linear combination of the vectors of T equal to the vector x is 
unique. 

Vice versa, suppose that each vector linearly dependent on T is expressed in a 
unique way as a linear combination of the vectors of T: this is also true for the null 
vector and therefore T is linearly independent. ⃞

12.6 Finitely Generated Vector Spaces. Bases 

Definition 12.4 A vector space V is said to be a finitely generated (or a finite-
dimensional) vector space if there exists in V a finite system X = [x1, x2, . . . ,  xm] 
of linearly independent vectors such that any vector of V is a linear combination of 
the elements of X. Such a system X is called a basis (or a coordinate system) of the  
vector space. 

If y is a vector of the finitely generated vector space V and X = [x1, x2, . . . ,  xm] 
is a basis of V, then there exist scalars a1, a2, …,  am such that y = a1 x1 + a2 x2 + 
… + am xm. By Theorem 12.4 the scalars a1, a2, …,  am are uniquely determined and 
the m-tuple (a1, a2, …,  am) is called the m-tuple of the components, or  coordinates, 
of the vector y in the basis X. The ordering of the vectors of the basis X induces the 
ordering of the components. 

Examples 

a. The linearly independent system [1, t, t2, t3] is a basis for the space P4 of polyno-
mials in the variable t with complex coefficients of degree less than 4. In fact, each 
polynomial of P4 has the form a1t3 + a2t2 + a3t + a4, with complex coefficients.
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b. The vector space P of polynomials in a variable t of however high degree with 
complex coefficients is not a finitely generated vector space. Indeed, there is no 
basis, that is a finite system of vectors, of the vector space P since the linearly 
independent systems of P contains polynomials of however high degree. 

c. The system of the unit vectors of a coordinate system of the plane (space) is a 
basis of the vector space of the free vectors of the plane (space). 

Proposition 12.7 For each i = 1, …, n, let ei denote the vector of Rn which has 
the i-th component equal to 1 and all the other components equal to zero. Then the 
system [e1, e2, …,  en] is a basis of Rn. 

Proof The linear combination of the vectors of the system [e1, e2, …,  en] with 
coefficients a1, a2, …,  an is equal to the vector a with components a1, a2, …,  an. 
Indeed, 

a =a1e1 + a2e2 + . . .  + anen = a1(1, 0, . . . ,  0) + a2(0, 1, . . . ,  0) + . . .  
+an(0, 0, . . . ,  1) 

Hence, the two facts of interest: each vector a of Rn is a linear combination of the 
vectors of [e1, e2, …,  en] and this system is linearly independent because each vector 
a of Rn is a unique linear combination of the vectors of the system, (the coefficients 
of the linear combination are the components of the vector). ⃞

The basis [e1, e2, …,  en] is called the canonical basis of Rn. 

12.7 Vector Subspaces 

Let (V, +, ·) be a vector space over the field S and let W ⊆ V a non-empty subset of 
V. Let us consider the following properties: 

i. the sum of any two vectors of W is a vector of W; 
ii. the product of any scalar of S by any vector of W is a vector of W. 

Proposition 12.8 Under the hypotheses (i) and (ii), the triple (W, +, ·)  is a vector 
space over the field S. 

Proof We must verify that the vector space axioms (Sect. 12.4) are satisfied by the 
triple (W, +, ·). Indeed, Axioms 1, 2, 5, 6 and 7 are obviously verified. Axiom 3 
follows from Proposition 12.1; in fact, for every vector y of W we have: 0y = O 
(where 0 indicates the zero of S and O the null vector of V). By hypothesis (ii), O 
belongs to W and acts like the null vector of W. 

In order to verify Axiom 4 we must prove that if y is any vector of W, then the 
vector −y opposite of y in V, is identified with the vector opposite of y in W. Indeed, 
whatever y is in W, from Axiom 6 we have 1y = y and then, (−1) y = −y where −y 
denotes the opposite of the vector y in V. From hypothesis (ii) the vector −y belongs 
to W. ⃞
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Definition 12.5 The vector space (W, +, ·) is said to be a  subspace of (V, +, ·) over 
the field S. 

12.7.1 Spanned Subspaces 

Let V be a vector space over the field S. Let us consider a non-empty system of 
vectors T = [x1, …,  xm] in V. We denote 〈T〉 = 〈

x12........., xm
〉
the set of all linear 

combinations of the vectors of T with scalars of S. Therefore the set 〈T〉 is equal to 
the set of the vectors

∑
ai xi , for every a j ∈ S and xi ∈ T. By Proposition 12.8 the 

set 〈T〉, with the operations of addition + and multiplication ·, i.e., the triple (〈T〉, + 
,·), is a vector space over the field S, called the subspace generated or spanned by T, 
or the linear span of T, simply denoted 〈T〉. 

In other words, 〈T〉 is the smallest subspace of V containing T. 
If T is a basis of V, then 〈T〉 = V, i.e., the vector space V is generated by T. It is 

postulated <Ø> = 0. 
Let us observe that if T is a finite system of linearly dependent vectors of the vector 

space 〈T〉 = V, then any element of V is not necessarily a linear combination of the 
elements of T. For instance, the set of the linear combinations of the free vectors in the 
plane xy is generated by the unit vectors of the axes x and y; the linear combination of 
three free vectors in the space parallel to the plane xy does not generate free vectors 
perpendicular to the plane xy. 

A system T of vectors of V such that the subspace generated by T coincides with 
V is called a system of generators of V. 

12.8 Dimension 

Theorem 12.5 Any two bases of a finite-dimensional vector space V have the same 
number of vectors. 

Proof Let us consider the following propositions related with a finite system X of 
elements in the vector space V: 

P(X) ={every vector of V is a linear combination of the vectors of X} 
Q(X) ={X is linearly independent} 

Let X = [x1, x2, ..., xn] and Y = [y1, y2, ... ym] be two finite vector systems of the 
vector space V and assume that properties P(X) and Q(X) hold. Let us consider the 
system 

T = [ym, x1, x2, . . . . . .  xn]
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of vectors of V. Since every vector of V is a linear combination of the system [x1, 
x2, …,  xn] it is also a combination of the vectors of the system T according to 
Proposition 12.6, because ym is linearly dependent on X. Then we can consider the 
first of the integers i between 1 and n such that the system [ym, x1, x2, …,  xi] is  
linearly dependent. By Theorem 12.3, the vector xi linearly depends on the system 
[ym, x1, x2, …,  xi–1] and, therefore, again every vector of V linearly depends on the 
system T' obtained from T by eliminating xi: 

T' = ⎡
ym, x1, x2,.......xi−1, xi+1, . . . ,  xn

⎤

Let us set ym–1 in front of T' apply the same reasoning to the system [ym-1, ym, x1, 
x2, ..., xi-1, xi+1, ..., xn] eliminating an x of the system X and adding on a new y of the 
system Y. After the reasoning has been made over again m times, we get a system 
of vectors with the same property P that the x’s had and this system is different from 
X since m of the x’s are replaced by y’s. This implies n ≥ m. Hence, if X and Y are 
bases, i. e., X and Y satisfy both properties P and Q, then we have n ≥ m and m ≥ 
n. Therefore, m = n. ⃞

In the course of the proof we have shown the following: 

Corollary 12.1 Given the systems X and Y, supposing that the properties P(X) and 
Q(Y) hold, it turns out n ≥ m, i.e., the number of elements of X is greater than or 
equal to the number of elements of Y. In other words, if X is a system of generators 
of V, then the number n of the vectors of X is greater than or equal to the number m 
of vectors of any basis of V. 

Definition 12.6 The number of the elements in any basis of a finite-dimensional 
vector space V is called the dimension of V 

For example, the real vector space Rn and the complex vector space Cn have 
dimension n. 

Definition 12.7 Any linearly independent system Y of vectors of the vector space 
V, not properly included in a linearly independent system of vectors of V, is called a 
maximal system of linearly independent vectors of V. 

The following statements hold: 

Proposition 12.9 Any maximal system of linearly independent vectors of a finite-
dimensional vector space V is a basis of V and every basis of V is a maximal system 
of linearly independent vectors of V. 

Proposition 12.10 Two maximal systems of linearly independent vectors of the finite-
dimensional vector space V have the same number of vectors. 

Proof If S and S' are maximal systems of linearly independent vectors of V and n 
and n' are the numbers of elements of S and S', respectively, by definition of maximal 
system of linearly independent vector, we have: n ≥ n' and n' ≥ n. Hence n = n'. ⃞
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Proposition 12.11 The set of the bases of V and the set of the systems with n elements 
of linearly independent vectors in V with n elements coincide. 

Proposition 12.12 Any system of n + 1 vectors of a finite-dimensional vector space 
V of dimension n is linearly dependent. 

12.9 Isomorphism 

Definition 12.8 Two vector spaces V and W over the same field are said to be 
isomorphic if there is a one-to-one function f : V → W such that 

f (ax + by) = a f  (x) + b f  (y) (12.2) 

whatever the scalars a, b and the vectors x, y of V are. A function f , satisfying 
equality (12.2), is called an isomorphism between the vector spaces V and W. In other 
words, V and W are isomorphic if there is a one-to-one function f (the isomorphism) 
that preserves the vector space operations. Two isomorphic vector spaces differ, in 
essence, by the names of their elements, and therefore can be identified. 

Proposition 12.13 If two finite-dimsional vector spaces over the field S are 
isomorphic, then they have the same dimension. 

In fact, to each basis in one space corresponds, through the isomorphism, a basis 
in the other space. 

Theorem 12.6 Each vector space V of dimension n over the field S is isomorphic 
to Sn. 

Proof Let [x1, …,  xn] be a basis of V. For every vector x of V we have x = a1x1 
+ … + anxn, being the n-tuple of scalars (a1, …,  an) univocally determined by x 
(Sect. 12.6). Then the function f : x → (a1, ..., an) from V to Sn is one-to-one. If y 
is a vector of V, then y = b1x1 + ... + bnxn and, for every pair of scalars a and b, 

ax + by = (aa1 + bb1)x1 + . . .  + (aan + bbn)xn 

Then 

f (ax + by) = (aa1 + bb1, ... , aan + bbn) = a f  (x) + b f  (y). 

Therefore, V and Sn are isomorphic. ⃞
The following theorem holds. 

Theorem 12.7 Two finite-dimensional vector spaces U and V, isomorphic to the 
same vector space W, are isomorphic to each other.
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Consider now two vector spaces U and V of dimension n over the field S. By 
Theorem 12.6, U and V are isomorphic to Sn and, by Theorem 12.7, to each other. 
Thus, the following result which inverts Proposition 12.8, holds. 

Proposition 12.14 If two vector spaces over the field S have the same dimension, 
then they are isomorphic. 

12.10 Identification of Geometric and Numerical Vector 
Spaces 

The sets Vr , Vα and V3 of the vectors of the line r, the plane α and the space are 
vector spaces over the field R, called the vector space of the geometric vectors of the 
line, the plane and the Euclidean space, respectively. We have shown (Sect. 9.8) that, 
fixed a coordinate system of the plane (space), the couple (triple) of the components 
(ax, ay) ((ax, ay, az)) is associated with the vector a. The correspondence that leads 
to identify the free vector a with (ax, ay) (resp. (ax, ay, az)) is a one-to-one function f 
of the set of the free geometric vectors onto the set R2 (resp. R3) of couples (triples) 
of real numbers: 

f : a → (ax , ay) (  f : a → (ax , ay, az)) 

The function f is an isomorphism between the vector spaces Vα and R2 (V3 and 
R3). It seems natural to identify the vector space Vα of the free vectors of the plane 
with R2, and set a = (ax, ay); and so too identify V3 with R3 and set a = (ax, ay, 
az). From the isomorphism of Vα with R2 and V3 with R3 arises the possibility, and 
the utility, of being able to refer only to the components of the geometric vectors, 
simplifying notations and avoiding figure drawings. 

Furthermore, the concepts of parallelism and proportionality (Remark 9.2) are  
extended to Vα , V3 and Rn. More precisely, two non-zero vectors of Vα or V3 or Rn 

are parallel if and only if their respective components are proportional. 

12.11 Scalar Product in Rn 

The operation of scalar multiplication of vectors of the plane or space (Sect. 10.2) 
extends to the vectors of Rn. 

Given the vectors a = (a1, a2, …,  an) and b = (b1, b2, …,  bn) of  Rn, the scalar 
multiplication of vectors a and b, denoted a × b, or  a · b, is the operation defined as 
follows 

a × b = a · b = a1b1 + a2b2 + ... + anbn
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The number a1b1 + a2b2 + . . .  + anbn is called the scalar product of the vectors 
a and b. If  a × b = 0, then the vectors a and b are named orthogonal. For example, 
the vectors (1, −1, 1) and (1, 1, 0) are orthogonal because (1, − 1, 1) × (1, 1, 0)  = 
1 − 1 + 0 = 0. 

12.12 Exercises 

Exercise 12.1 Consider the following vectors of R3: a = (2, −1, 8), b1 = (−1, 0, 2), 
b2 = (−7, 1, 0), b3 = (0, 0,1). Check that vector a is a linear combination of vectors 
b1, b2, b3. 

Vector a is a linear combination of b1, b2, b3 if and only if there exist real numbers 
h1, h2, h3 such that 

a = h1b1 + h2b2 + h3b3 (12.3) 

i.e., (2, − 1, 8) = h1(– 1, 0, 2) + h2 (−7, 1, 0) + h3(0, 0, 1).  Then  Eq. (12.3) is  
satisfied if and only if 

h1 − 7h2 = 2 
h2 = −1 

2h1 + h3 = 8 

Accordingly, the system of three equations and three unknowns has the unique 
solution (h1, h2, h3) = (5, –1, 2). 

Exercise 12.2 Verify that the vector a = (1, −2, 3) is a linear combination of the 
vectors b1 = (−1, 0, 2), b2 = (1, 1, 0), b3 = (0, 1, 0).  

The problem is similar to the previous one. There is a single triple (h1, h2, h3) =(
3 
2 , 

5 
2 , − 9 

2

)
for the coefficients of the linear combination. 

Exercise 12.3 Show that T = [(0, 0, –1), (0, 1, 1), (1, 1, 1)]. 

i. is a system of generators of R3, 
ii. is a base of R3. 

i. We have to prove that any vector (a, b, c) ∈ R3 is a linear combination of the 
vectors (0, 0, −1), (0, 1, 1) and (1, 1, 1), i.e., there are scalars x, y, z such that: 

(a, b, c) = x(0, 0, −1) + y(0, 1, 1) + z(1, 1, 1) = (z, y + z, −x + y + z) 

Let us equate the components and obtain the system of linear equations 

z = a 
y + z = b 
−x + y + z = c
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equivalent to the system 

−x + y + z = c 
y + z = b 
z = a 

that is reduced and consistent. Operating by substitution (Sect. 11.3) we obtain 
the unique solution: z = a, y = b – a, x = c – b. Then the system T = [(0, 0, − 
1), (0, 1, 1), (1, 1, 1)] generates R3. 

ii. The system T is a basis since it is a maximal systems of linearly independent 
vectors of R3 (see Definition 12.4). 

Exercise 12.4 Let S be a field and Sn the vector space of the n-tuples of elements of 
S. Verify that the vector system [e1, e2, …,  en], with e1 = (1, 0, 0, …, 0),  e2 = (0, 1, 
0, …, 0), …, en = (0, 0, 0, …, 1), formed by the n distinct n-tuples of elements of S 
having exactly one component equal to the unit and all others zero, is a basis of Sn. 

Exercise 12.5 In the vector space P4 of the polynomials with real coefficients of 
degree less than 4 in the variable t let the system of polynomials T = [x1, x2, x3, x4] 
be given, where 

x1 = 1 + t 
x2 = t2 
x3 = t2 − t3 
x4 = −1 + t 

Now we verify that the vectors of T form a basis of P4. Let us first prove that 
every vector in P4 is a linear combination of the system T = [x1, x2, x3, x4]. To this 
aim we will show that, for every polynomial x of P4, 

x = a0 + a1t + a2t2 + a3t3 (12.4) 

there are real coefficients a, b, c, d (for now unknown) such that 

x = a(1 + t) + bt2 + c
(
t2 − t3

) + d(−1 + t). (12.5) 

By equating the expressions (12.4) and (12.5) of  x we have 

a0 + a1t + a2t2 + a3t3 = a + at + bt2 + ct2 − ct3 − d + dt  

then 

a0 + a1t + a2t2 + a3t3 = a − d + (a + d)t + (b + c)t2 − ct3
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The equality is satisfied if and only if the coefficients of the addends with the 
same degrees are equal: 

a0 = a − d 
a1 = a + d 
a2 = b + c 
a3 = −c 

Then we find the values of the coefficients a, b, c, d in terms of the system of 
polynomials T: 

a = a0−a1 
2 

b = a2 + a2 
c = −a3 
d = 3a0−a1 

2 

This proves that every vector in P4 is a linear combination of the system T. 
To check that T is a basis of P4, there is still to prove that T is linearly independent. 

If the linear combination, with coefficients m, n, p, q, is the null polynomial O = 0 
+ 0t + 0t2 + 0t3, i.e., 

m(1 + t) + nt2 + p
(
t2 − t3

) + q(−1 + t) = 0 + 0t + 0t2 + 0t3 

then 

m − q = 0, m + q = 0, n + p = 0, −p = 0 

that implies m = n = p = q = 0. Thus, T is a basis. 

Exercise 12.6 Let T = [x1, x2, x3] be a system of vectors in R3, with x1 = (1, 0, 1),  
x2 = (−1, 1, 0), x3 = (0, 0, 1). Then: 

i. verify that the system T is a basis and 
ii. find the components of the vector e1 = (1, 0, 0) in the basis T. 

i. By Proposition 12.10, each basis of R3 is a linearly independent system 
consisting of three elements. Thus, in order to verify that the system T is a 
basis of R3 it is sufficient to show that T is a linearly independent system. To 
this aim, if 

ax1 + bx2 + cx3 = (a, 0, a) + (−b, b, 0) + (0, 0, c) = (0, 0, 0) 

with a, b, c, real coefficients, then the equalities hold: a − b = 0, b = 0, a + c = 
0, which imply (a, b, c) = (0, 0, 0). So T is linearly independent. 

ii. The vector e1 is linearly dependent on T.
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Then we set 

e1 = (1, 0, 0) = mx1 + nx2 + px3 = m(1, 0, 1) + n(−1, 1,0) + p(0, 0, 1). 

The scalars m, n, p are determined by equating the components: 

(1, 0, 0) = (m − n, n, m + p) 

Accordingly, m = 1, n = 0, p = −1 are the components of e1 in the basis T. 

Exercise 12.7 Prove that the vectors (1, −2, 1), (2, 1, −1), (7, −4, 1) of R3 are 
linearly dependent. 

Let us consider a linear combination of triples, by means of unknown scalar x, y, 
z, equal to the null vector: 

x(1, −2, 1) + y(2, 1, −1) + z(7, −4, 1) = (0, 0, 0) 

Then 

(x, −2x, x) + (2y, y, −y) + (7z, −4z, z) = (0, 0, 0), 

and adding the components, we get 

(x + 2 y + 7 z, −2 x + y − 4 z, x − y + z) = (0, 0, 0) 

Let us equate the components: 

x + 2y + 7z = 0 
−2x + y − 4z = 0 
x − y + z = 0 

and moving on to reduction (Sect. 11.3) through the operations E2 ← 2E1 + E2; E3 

← E1 − E3 we obtain the equivalent system 

x + 2y + 7z = 0 
5y + 10z = 0 
3y + 6z = 0 

Let us cancel the third equation multiple of the second 

x + 2y + 7z = 0 
5y + 10z = 0 

The system is consistent and has non-null solutions. Indeed, the system takes the 
form
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x + 2y = −7c 
y = −2c 

with z = c real parameter. For every non-null value given to c a non-null solution is 
determined. For example, if c = 1, then x = −9, y = −2 and the solution (−9, −2, 
1) is obtained. The general solution is (x, y, z) = (−3c, −2c, c), c ∈ R3. Therefore, 
the three given vectors are linearly dependent. 
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Chapter 13 
Matrices 

13.1 First Concepts 

A rectangular array of the form 

⎡ 

⎢⎢⎣ 

a11 a12 . . .  a1n 
a21 a22 . . .  a2n 
. . .  . . .  . . .  . . .  

am1 am2 . . .  amn 

⎤ 

⎥⎥⎦ (13.1) 

where the aij, i = 1, …, m; j = 1, …, n, are real numbers, is called a matrix over R, 
or simply, a matrix. The matrix (13.1) is also denoted (aij). Any number aij is called 
an entry, or  component or element or scalar in the place or position ij. 

The number of elements of the matrix (13.1) is equal to the product m × n and 
the matrix is called an m × n (m by n) matrix. The couple (m, n) is called the size of 
the matrix. 

The m vectors of Rn 

a1 = (a11, a12 . . . ,  a1n) 
a2 = (a21, a22 . . . ,  a2n) 

. . .  

am = (am1, am2 . . . ,  amn) 

(13.2) 

are n-tuples called row vectors or rows of the matrix (13.1). The vertical m-tuples 

a1 = 

⎡ 

⎢⎢⎣ 

a11 
a21 
. . .  

am1 

⎤ 

⎥⎥⎦ a2 = 

⎡ 

⎢⎢⎣ 

a12 
a22 
. . .  

am2 

⎤ 

⎥⎥⎦ · · ·  an = 

⎡ 

⎢⎢⎣ 

a1n 
a2n 
. . .  

amn 

⎤ 

⎥⎥⎦ (13.3)
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are called column vectors or columns of the matrix (13.1). Each vector (13.2) is a 1  
× n matrix, each vector (13.3) is a  m × 1 matrix. A matrix with one row (column) is 
named also a row (column) vector. The generic term line is used to denote a row or 
a column. An m × n matrix has m rows and n columns. A null line, i. e.,  a null row  
or a null column has all entries null. 

The vectors (13.2) are  in  Rn, the vectors (13.3) are  in  Rm. A matrix with one 
raw and one column reduces to a number. A null matrix has, by definition, all zero 
entries. 

Matrices are usually denoted by capital letters A, B, C, … and the entries in the 
place ij by lowercase letters: aij, bij, cij, ….  

Two matrices A and B are said to be equal, written A = B, if they have the same 
size and the same entry in the same place ij. 

Example 13.1 The matrix 

A = 

⎡ 

⎣ 
1 0  1  −2 
3 1  0 4  

−1 1
√
2 5  

⎤ 

⎦ 

has size (3, 4), its rows are the following three 4-tuples: 

a1 = (1, 0, 1, − 2), a2 = (3, 1, 0, 4), a3 = (−1, 1,
√
2, 5) 

and the columns are the four triples: 

a1 = 

⎡ 

⎣ 
1 
3 

−1 

⎤ 

⎦ a2 = 

⎡ 

⎣ 
0 
1 
1 

⎤ 

⎦ a3 = 

⎡ 

⎣ 
1 
0 √
2 

⎤ 

⎦ a4 = 

⎡ 

⎣ 
−2 
4 
5 

⎤ 

⎦ 

The entry in the place 33 (read: three three) is
√
2. 

The operation of addition is defined in the set of matrices with the same size. 
Given two matrices A and B with the same size (m, n) the  sum of A and B, denoted 
A + B, is the matrix of size (m, n) whose element in the place ij is equal to aij + bij; 
i = 1, 2, …, m and j = 1, 2, …, n. 

For example, 

⎡ 

⎣ 
1 0  1  −2 
0 1  0  −4 

−1 0  9  5  

⎤ 

⎦ + 

⎡ 

⎣ 
1 0  1  −2 
3 1 0 4  

−1 1  −7 −3 

⎤ 

⎦ = 

⎡ 

⎣ 
2 0  2  −4 
3 2  0 0  

−2 1  2  2  

⎤ 

⎦ 

Given a real number h and a matrix A of size (m, n), the multiplication of h by 
the matrix A is the operation that associates the matrix denoted by hA, whose entry 
in the place ij is equal to haij, to the pair (h, A). For example,
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−2

[
3 −1 

−2 0

]
=

[−6 2  
4 0

]

If A, B and C are matrices of size (m, n) and O the null matrix of size (m, n), the 
following properties are satisfied for any real numbers h, k: 

1. A + B = B + A 
2. (A + B) + C = A + (B + C) 
3. A + O = A 
4. A + (−1A) = A − A = O 
5. (hk)A = h(kA) 
6. 1A = A 

71. h(A + B) = hA + hB 
72. (h + k)A = hA + kA. 

Accordingly, the set of m × n matrices over R is a vector space (see Sect. 12.4) 
over the field R with respect to the addition of m × n matrices and the multiplication 
of a real number by an m × n matrix. 

13.2 Reduced Matrices 

Definition 13.1 A matrix with m rows is said to be row reduced if in each non-null 
row of the first m − 1 there is a non-null element below which there are only zeros. 

The concept of row reduced matrix similarly develops to that of reduced system 
(see Sect. 11.3); the operations that are applied to a system to transform it into a 
reduced system are in essence the same reduction operations applied to a matrix. 

Similarly, a matrix with n columns is said to be column reduced if in each non-null 
column of the first n − 1 there is a non-null element followed by only zeros in the 
row which it belongs to. 

Example 13.2 The matrix 

⎡ 

⎢⎢⎣ 

0 3  −1 2 0  
0 0  0  0  0  
1 0  3  0  1  
0 0  2  0  1  

⎤ 

⎥⎥⎦ 

is row reduced. 
The matrix 

⎡ 

⎣ 
2 0 3  
1 0 0  
0 0 1  

⎤ 

⎦
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is not row reduced for in the first row there is no non-null element below which there 
are only zeros. 

Example 13.3 The matrix 

⎡ 

⎢⎢⎣ 

1  0 0 0  
1 3  0  0  
1  0 0 0  
0 3  −4 0  

⎤ 

⎥⎥⎦ 

is column reduced. The matrix 

⎡ 

⎢⎢⎣ 

1 0 0 0  
1 3 1 0  
1 0  1 0  
0 3  0 4  

⎤ 

⎥⎥⎦ 

is not column reduced since in the second column there is no any non-null element 
followed by only zeros in the row which it belongs to. 

Theorem 13.1 The non-zero rows (columns) of a row (column) reduced matrix are 
linearly independent. 

Proof Consider a row reduced matrix and let a1, a2, …,  ak be the non-zero rows. 
Let 

a1 j1 , a2 j2 , ..., akjk 

be non-null elements of the rows a1, a2, …,  ak below which there are only zeros (j1, 
j2, …,  jk are k distinct integers in the set In = {1, 2, ..., n} of the column indices). 
Therefore, 

ai1 j1 = ai2 j2 = . . .  = aik jk = 0 

if i1 > 1, i2 > 2, ..., ik > k (it is understood that if k = m the last inequality is 
omitted). Accordingly, the linear combination 

h1a1+h2a2 + . . .  + hk ak = h1(a11, a12, . . . ,  a1n) 
+h2(a21, a22, . . . ,  a2n) + . . .  + hk(ak1, ak2, . . . ,  akn) 

has components 

h1a1 j1 , h2a2 j2 ,  . . . ,  hkak jk
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in the places 1j1, 2j2, …,  kjk , respectively. Thus, if the linear combination h1a1 + 
h2a2 + ··· + hkak is the null vector, then necessarily h1 = h2 = ··· = hk = 0. This 
proves that the rows a1, a2, …,  ak are linearly independent. 

13.3 Rank 

The rows a1, a2, …,  am (13.2) and the columns a1, a2, …,  an (13.3) of the  matrix  

A = 

⎡ 

⎢⎢⎣ 

a11 a12 . . .  a1n 
a21 a22 . . .  a2n 
. . .  .  . .  . . .  . . .  

am1 am2 . . .  amn 

⎤ 

⎥⎥⎦ 

are subsets of Rn and Rm, respectively. Let R(A) and C(A) denote the vector 
subspaces spanned (Sect. 12.7.1) by the system of the rows [a1, a2, …,  am] and 
columns [a1, a2, …,  an], respectively. 

Theorem 13.2 The vector spaces R(A) and C(A) have the same dimension. 

Proof Let r and r' be the maximum number of linearly independent rows and the 
maximum number of linearly independent columns of A, respectively: then r is the 
dimension of the vector subspace R(A) of Rn spanned by the system of the rows [a1, 
a2, …,  am] of A and  r' is the dimension of the vector subspace C(A) of Rm spanned 
by the system of the columns [a1, a2, …,  an] of A. Let  S  = [ai1 , ai2 , …,  air ] be a  
basis of R(A) (i1, i2, …,  ir are r distinct integers in the set {1, 2, …, n}). Each row 
of A is a linear combination of the vectors of S; it turns out 

a1 = k11ai1 + k12ai2 + . . .  + k1r air 
a2 = k21ai1 + k22ai2 + . . .  + k2r air 

. . .  

am = km1ai1 + km2ai2 + . . .  + kmr air 

(13.4) 

with the kij scalars. The vector equalities (13.4) imply, for every j = 1, …, n, the  
scalar equalities: 

a1 j = k11ai1 j + k12ai2 j + . . .  + k1r air j 
a2 j = k21ai1 j + k22ai2 j + . . .  + k2r air j 
. . . . . . . . .  

amj  = km1ai1 j + km2ai2 j + . . .  + kmr air j 

(13.5) 

Setting k1 = (k11, k21, …,  km1), k2 = (k12, k22, …,  km2), …, kr = (k1r , k2r , …,  
kmr), by the Eq. (13.5), for every j = 1, …, n, the following expression of the columns 
is obtained:
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a j = (
a1 j , a2 j , . . . ,  amj

) = ai1 j k1 + ai2 j k2 + . . .  + air j kr 

Therefore, each column of A is a linear combination of the vectors of the system 
T = [k1, k2, …,  kr], which turns out to be a basis of C(A). From Corollary 12.1, the  
dimension of C(A) is r' ≤ r. 

Likewise, it can be shown that r is less than or equal to r'. 

Definition 13.2 The common value of the dimensions of the spaces R(A) and C(A) 
is named the rank of the matrix A, denoted pA, or  p, if A is implicit. 

Of course, the rank of an m × n matrix cannot be greater than the smaller of the 
numbers m and n and it is zero if and only if the matrix is null. 

Example 13.4 The matrix 

A = 

⎡ 

⎣ 
2 0 1 0  
6 0  3 0  
4 0 2 0  

⎤ 

⎦ 

has rank 1. In fact, in A there are no two linearly independent columns since the only 
two non-zero columns are proportional to each other. 

Example 13.5 The matrix 

B = 

⎡ 

⎣ 
2 0  0  

−1 0  1  
1 0  0  

⎤ 

⎦ 

has rank 2. In fact, the system of the three rows is linearly dependent since the third line 
is the sum of the first two, while any two rows are non-proportional. (Alternatively, 
the two non-null columns are non-proportional.) 

13.4 Matrix Reduction Method and Rank 

The name of elementary row operation is given to each of the following operations 
that can be performed on the rows of the matrix (13.1): 

(R1) replacing the i-th row ai with the product kai , k /= 0 : ai ← kai ; 
(R2) replacing the i-th row with the sum of the same row with the j-th row 
multiplied by a real number h : ai ← ai + ha j ; 

The operations (R1) and (R2) are special cases of the following elementary row 
operation:
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(R12) replacing the i-th row with the sum of the i-th row multiplied by a real 
number k /= 0 with the j-th row multiplied by a real number h : ai ← kai + ha j ; 

The same operations applied to the columns, are called elementary column 
operations. 

The following proposition applies. 

Proposition 13.1 Each elementary row (column) operation, and therefore a finite 
number of them applied repeatedly, does not alter the number of linearly independent 
rows (columns) and consequently the rank of the matrix. 

The reduction method consists in transforming, by means of elementary row 
(column) operations, a given matrix into a row (column) reduced matrix. The method 
is effective to calculate the rank of a matrix (see Theorem 13.1). 

Example 13.6 Let us row reduce the matrix 

A = 

⎡ 

⎣ 
2 1  0  
1 2  1  
5 1 2  

⎤ 

⎦ 

Introduce zeros below the entry a11 = 2. First apply the operation R1: a2 ← −2a2 
which results in the matrix 

A1 = 

⎡ 

⎣ 
2 1 0  

−2 −4 −2 
5 1 2  

⎤ 

⎦ 

then the operation R2: a2 ← a2 + a1 

A2 = 

⎡ 

⎣ 
2 1 0  
0 −3 −2 
5 1 2  

⎤ 

⎦ 

(Remaind that A2 can be obtained from A by applying the operation R12: a2 ← 
−2a2 + a1) 

Now perform the operation R12: a3 ← 2a3 − 5a1 to obtain 

A3 = 

⎡ 

⎣ 
2 1 0  
0 −3 −2 
0 −3 4  

⎤ 

⎦ 

In the matrix A3 the elements below the first component of the first row are null. 
Transform A3 into a reduced matrix: use the substitution a3 ← a3− a2a3 ← a3−a2
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A4 = 

⎡ 

⎣ 
2 1 0  
0 −3 −2 
0 0 6  

⎤ 

⎦ 

Matrix A4 is row reduced and its rank is 3. Since in each transformation from a 
matrix to the next the rank did not change, the rank of the matrices A to A4 is also 3. 

Observe that the calculation of the rank of a row (column) reduced matrix is 
immediate: in fact, by Theorem 13.1, the rank of a matrix row (column) reduced is 
the number of non-zero rows (columns). The calculation of the rank of any matrix 
can be traced back to that of a reduced matrix. 

13.5 Rouché-Capelli’s Theorem 

Let us consider the linear system of equations (Sect. 11.1) 

a11x1 + a12x2 + . . .  + a1nxn = b1 
a21x1 + a22x2 + . . .  + a2nxn = b2 
. . . . . . . . .  

am1xm + am2x2 + . . .  + amnxn = bm 

(13.6) 

The m × n matrix of the coefficients of the system (13.6) 

A = 

⎡ 

⎢⎢⎣ 

a11 a12 . . .  a1n 
a21 a22 . . .  a2n 
. . .  .  . .  . . .  . . .  

am1 am2 . . .  amn 

⎤ 

⎥⎥⎦ 

is called the matrix of the coefficients or the associate matrix or the incomplete matrix 
of the system (13.6). 

The matrix of size (m, n + 1) 

A' = 

⎡ 

⎢⎢⎣ 

a11 a12 . . .  a1n b1 
a21 a22 . . .  a2n b2 
. . .  . . .  . . .  . . .  . . .  

am1 am2 . . .  amn bm 

⎤ 

⎥⎥⎦ 

is called the complete matrix or the augmented matrix of the system (13.6). 
Since the first n columns of the complete matrix are the columns of the associate 

matrix, it turns out that the rank p' of the complete matrix is not less than the rank p 
of the associate matrix, 

p' ≥ p
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If (h1, h2, …,  hn) is a solution of the system (13.6), then the scalar equalities 

a11h1 + a12h2 + . . .  + a1nhn = b1 
a21h1 + a22h2 + . . .  + a2nhn = b2 
. . . . . . . . .  

am1h1 + am2h2 + . . .  + amnhn = bm 

(13.7) 

that are equivalent to the equality of n-tuples 

h1(a11, a21, . . . ,  am1) + h2(a12, a22, . . . ,  am2) + . . .  
+hn(a1n, a2n, . . . ,  amn) =

(
b1, b2, . . . ,  bm

) (13.8) 

are verified. 
Vice versa, if equality (13.8) holds, then the equalities (13.7) are satisfied and (h1, 

h2, …,  hn) is a solution of system (13.6). In conclusion, we state: 

Theorem 13.3 A system of linear equations is compatible if and only if the column 
of known coefficients is a linear combination of the columns of the associate matrix. 

The theorem asserts that a system of linear equations is compatible if and only 
if a maximal system (Sect. 12.8) of linearly independent columns of the associate 
matrix A is also a maximal system of linearly independent columns of the complete 
matrix A'. Therefore, from Proposition 12.6 and Definition 13.2, we can state: 

Theorem 13.4 [Rouché-Capelli’s theorem] A system of linear equations is compat-
ible if and only if the rank of the associate matrix of the system is equal to the rank 
of the complete matrix. 

Thus, the following definition makes sense: 

Definition 13.3 The rank of a compatible system is, by definition, the common value 
of the ranks of the associate matrix and the complete matrix. 

13.6 Compatibility of a Reduced System 

Let us consider the associate matrix and the complete matrix of a row reduced system. 
By Theorem 13.3 each of these matrices has the rank equal to the number of the non-
null rows. Therefore, a reduced system is compatible if and only if the number of 
the non-null rows of the associate matrix is equal to the number of the non-null rows 
of the complete matrix; while a reduced system is incompatible if and only if the 
number of the non-null rows of the associate matrix is less than the number of the 
non-null rows of the complete matrix. In other words, in the associate matrix there is 
a null row and the row in the same place of the complete matrix has the last element
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non-null, which is equivalent to the existence of the incompatible equation in the 
system: 

0x1 + 0x2 + . . .  + 0xn = b, and b /= 0, 

Therefore, the following theorem is proved. 

Theorem 13.5 A reduced system of linear equation is inconsistent if and only if it 
includes among its equations the incompatible equation 0 = b, with b /= 0. 

13.7 Square Matrices 

A matrix with the same number n of rows and columns is named a square matrix of 
order n, or an  n-square matrix. 

Let 

A = 

⎡ 

⎢⎢⎣ 

a11 a12 . . .  a1n 
a21 a22 . . .  a2n 
. . .  . . .  . . .  . . .  

an1 an2 . . .  ann 

⎤ 

⎥⎥⎦ 

be a square matrix of order n. 
The vector d = (a11, a22,…,  ann) is called the main diagonal or the diagonal of A. 

The vector d' = (a1n, a2n–1, …,  an1) is named secondary diagonal of A. The square 
matrix of order n with all 1s on the diagonal and 0s elsewhere is called the identical 
matrix or identity matrix of order n, denoted Idn 

I dn = 

⎡ 

⎢⎢⎣ 

1 0 0  . . .  0 
0 1  0  . . .  0 
. . .  .  . .  . . .  . . .  . . .  

0 0 0  . . .  1 

⎤ 

⎥⎥⎦ 

An upper triangular matrix, or simply a  triangular matrix, is a square matrix 
whose entries below the main diagonal are all zero: 

⎡ 

⎢⎢⎣ 

a11 a12 a13 . . .  a1n 
0 a22 a23 . . .  a2n 
. . .  . . .  . . .  . . .  . . .  

0 0 0  . . .  ann 

⎤ 

⎥⎥⎦ 

A lower triangular matrix is a square matrix whose entries above the main 
diagonal are all zero.
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A diagonal matrix is a square matrix whose non-diagonal entries are all zero. 

13.8 Exercises 

1. Given the system of linear equations 

2x − y − z = 0 
x − z = 1 
x + y = 1 

(13.9) 

i. reduce the associate matrix of the system, 
ii. prove that the system is compatible, 
iii. find the unique solution of the system. 

Solution 

i. let us perform the elementary operation a3 ← −a2 + a1 to the rows a1, a2, a3 
of the associate matrix 

A = 

⎡ 

⎣ 
2 −1 −1 
1 0  −1 
1 1 0  

⎤ 

⎦ 

to obtain: 

A1 = 

⎡ 

⎣ 
2 −1 −1 
1 −1 0  
1 1 0  

⎤ 

⎦ 

Now apply a3 ← a3 + a2: 

A2 = 

⎡ 

⎣ 
2 −1 −1 
1 −1 0  
2 0 0  

⎤ 

⎦ 

ii. The matrix A2 is the row reduced associate matrix of the system 

E1 : 2x − y − z = 0 
E2 : x − y = 1 
E3 : 2x = 0 

equivalent to (13.9). By Theorem 13.1, the rows of the matrix A2 are linearly 
independent. Therefore, the rank of A2 is 3 and, consequently, the rank of the
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complete matrix is also 3 and, by Theorem 13.3, the system E1, E2, E3 and the 
equivalent system (13.9), are compatible. 

iii. Let us solve by substitution the reduced system: from E3 we get 

x = 0 

that we substitute for x in E2 to have 

y = 1 

Finally, replacing 0 for x and 1 for y in E1 we get z = −1. In conclusion, (0, 1, − 
1) is the unique solution of the system (13.9). 

2. Given the system of linear equations 

E1 : x − y − z = 13 
E2 : x − 2y − z = 0 
E3 : y = 13 

i. prove that the system is compatible, 
ii. find the solutions of the system. 

Solution 

i. As E2 ← E1–E3, the given system is equivalent to 

E1 : x − y − z = 13 
E2 : y = 13 

The system is compatible because the associate matrix and the complete matrix 
have the same rank p = 2. 

ii. Apply the operation E1 ← E1 + E2 

x = 26 + z 
y = 13 

The system is satisfied by any value of z, hence any triple (26-z, 13, z) is a solution 
of the given system. For example, (26, 13, 0), (27, 13, 1), (25, 13,−1),… are solutions.
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Chapter 14 
Determinants and Systems of Linear 
Equations 

14.1 Determinants 

We will develop a procedure for the study of systems of linear equations, also useful 
in combination with reduction methods and known as the method of the determinants. 

Let us consider a square matrix A and a function, called the determinant function 
of A which associates a real number to A, called the value of the determinant of A, 
denoted by one of the symbols 

det(A), |A| 

The entries, the rows a1, …,  an and the columns a1, …,  an of the matrix A 
(Sect. 13.1), are, by definition, the entries, the rows and the columns of the determi-
nant of A. To ease the background we will give an “inductive definition” of determi-
nant. Sometimes, for the sake of brevity, we speak of calculation of the determinant 
meaning the calculation of its value. 

If we need to mention the rows a1, …,  an or the columns a1, …,  an of the 
determinant we use the notations 

det(A) = det(a1, . . . ,  an) = det
(
a1 , . . . ,  an

)

The value of the determinant of the square matrix A is computed as described 
below. 

1. If A is a square matrix of order 1, that is a matrix with one row and one column, 
which reduces to the number a11, then we set: 

det(A) = |A| =  a11 

For example, if A = [7], then det(A) = |A|= 7; if A = [−7], then det(A) = 
|A|= −  7.
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2. If A is a square matrix of order 2 

A =
]

a11 a12 

a21 a22

[

Then 

det(A) = |A| =  a11a22 − a12a21 (14.1) 

namely, the value of the determinant of A is equal to the difference between the 
product of the entries of the main diagonal and the product of the entries of the 
secondary diagonal. For example, given the matrix 

A =
]−6 1  

2 0

[

the determinant of A is 

det(A) = |A| =
|
|||
−6 1  
2 0

|
||| = (−6)0 − (1)2 = 0 − 2 = −2 

3. If A is a matrix of order 3, 

A = 

⎡ 

⎣ 
a11 a12 a13 

a21 a22 a23 

a31 a32 a33 

⎤ 

⎦ 

Then 

|A| = a11

||||
a22 a23 

a32 a33

|||| − a12

||||
a21 a23 

a31 a33

|||| + a13

||||
a21 a22 

a31 a32

||||

and, by (14.1) 

det(A) = |A| = a11(a22a33 − a23a32) − a12(a21a33 − a23a31) 
+ a13(a21a32 − a22a31) = a11a22a33 − a11a23a32 

− a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31 (14.2) 

In other words, det(A) is equal to a linear combination, whose coefficients are the 
entries of the first row with the alternating signs, a11, −a12, a13, multiplied by the 
determinants of the second order, the first of which is obtained by deleting the first 
row and the first column of A, the second is obtained from A by deleting the first 
row and second column, and the third by deleting the first row and third column.
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So, for example, it turns out 

|A| =
|
|||||

1 0  3  
−1 2 1  
0 1  1

|
|||||
= 1

||||
2 1  
1 1

|||| − 0
||||
−1 1  
0 1

|||| + 3
||||
−1 2  
0 1

||||

= 1(2(1) − 1(1)) − 0 + 3(−1(1) − 2(0)) = 1 − 3 = −2 

It is easy to verify that the same result (14.2) is obtained when choosing the 
elements of any row as coefficients of the linear combination; for example, if the 
coefficients are the ones of the second with alternating signs −a21, a22, −a23, now  
first and third coefficient change sign, i. e., 

|A| = −a21

||||
a12 a13 

a32 a33

|||| + a22

||||
a11 a13 

a31 a33

|||| − a23

||||
a11 a12 

a31 a32

||||

But, also, the equalities hold when forming linear combinations with the elements 
of columns. For example, 

det(A) = |A| = a11

|
|||
a22 a23 

a32 a33

|
||| − a21

|
|||
a12 a13 

a32 a33

|
||| + a31

|
|||
a12 a13 

a22 a23

|
|||

The coefficients in each linear combination is taken with alternating signs: 
precisely, the coefficient is aij if the sum i + j is even; the coefficient is—aij if i 
+ j is odd. 

It is an easy task to prove the following propositions. 
Let A be a square matrix of order 2 or 3. Then 

a. if all the entries of a row, or column, of A are zeros, then det(A) = 0; 
b. if A' is obtained from A interchanging two rows or two columns, then det(A) = 

−det(A'). 

The order of the determinant |A| is defined as the order of the square matrix A. 
The computation of a third-order determinant is therefore a linear combination of 

three second-order determinants. 
As the order m of a square matrix A increases, the calculation of the determinant 

becomes even more elaborated, but the principle is the same: the value of a determi-
nant of order 4 is a linear combination of four determinants of the third order; the 
value of a determinant of order m is a linear combination of m determinants of order 
m − 1. 

The way to perform the computation of a determinant is called the expansion of 
the determinant along a row, or column. 

Example 14.1 Let us compute the determinant of the matrix
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A = 

⎡ 

⎢⎢ 
⎣ 

−2 0  1 5  
0 3  −1 −4 
1 0 0  −3 
2 3 1 0  

⎤ 

⎥⎥ 
⎦ 

The coefficients of the linear combination are 1 (with even place 3 + 1), 0, 0, 
−(−3) = 3 (in fact −3 has an odd place 3 + 4). To lighten the computation let us 
expand the determinant along the third row. Indeed, 

det(A) =

||||||
||

−2 0  1 5  
0 3  −1 −4 
1 0 0  −3 
2 3  1 0

||||||
||

= 

1

|
|||||

0 1 5  
3 −1 −4 
3 1 0

|
|||||
+ 0 + 0 + 3

|
|||||

−2 0  1  
0 3  −1 
2 3 1

|
|||||
= 

and expanding along the first row both determinants, 

= −1

|
|||
3 −4 
3 0

|
||| + 5

|
|||
3 −1 
3 1

|
||| + 3

(
−2

|
|||
3 −1 
3 1

|
||| + 1

|
|||
0 3  
2 3

|
|||

)

= −12 + 30 + 3(−2(3 + 3) − 6) = −36. 

Then the value of the determinant is |A| = −36. 

14.2 Properties of the Determinants 

Let us state some properties of the determinants. Let A be a square matrix. 

1. If A has a null row or column, then |A| =  0. Indeed, the development according 
to the row, or column, with all null elements is zero. 

2. If B is the matrix obtained from A by interchanging two rows, or two columns, 
then 

det(B) = − det(A) 

3. If two rows, or two columns, of A are equal, then det(A) = 0. 
In fact, the matrix B that is obtained from A by interchanging the two equal rows, 
or columns, coincides with A and therefore |B| = |A|; from property 2 we obtain 
|B| = −|A|. Thus |A| =  0. 

4. If the matrix B is obtained from matrix A by multiplying all the elements of a 
row, or column, by a scalar k, then |B| =  k|A|.
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In fact, if all the elements of a row (or column) of A are multiplied by k, all the 
addends of the expansion along the row (or column) are also multiplied by k. 

5. If two rows (or columns) are proportional, then |A| = 0. 
The statement 5 follows from the properties 3 and 4. In fact, given the square 
matrix A having rows (a1, …,  an), A = (a1, …,  an), let the equality aj = kai hold. 
Hence, 

det(A) = det
(
a1, . . . ,  ai , . . . ,  a j , . . . ,  an

) = det(a1, . . . ,  ai , . . . ,  kai , . . . ,  an) 
= k det(a1, . . . ,  ai , . . . ,  ai , . . . ,  an) = k • 0 = 0 

A similar result holds when two columns are proportional. 
6. If a row (or column) of the square matrix A is the sum of two n-tuples of Rn, then 

the determinant of A is the sum of the determinants of the two matrices obtained 
from A by replacing the row (or column) with each of the two n-tuples: 

det(A) = det(a1, . . . ,  ci + d i , . . . ,  an) = det(a1, . . . ,  ci , . . . ,  an) 
+ det(a1, . . .  d i , . . . ,  an) 

7. If B is a matrix obtained by the square matrix A adding a row (or column) to a 
row (or column) multiplied by a scalar h, then |B| = |A|. 

Indeed, let us suppose A = (a1, …,  ai, …,  aj, …,  an) and B = (a1, …,  ai + 
haj , … ,  aj, … ,  an). Then, by properties 6 and 5, we have: 

|B| =  det
(
a1, . . . ,  ai + ha j , . . . ,  ha j , . . . ,  an

)

= det
(
a1, . . . ,  ai , . . . ,  a j , . . . ,  an

)

+ det
(
a1, . . . ,  ha j , . . . ,  a j , . . . ,  an

) = |A| +  0 

In other words, the elementary row operation R2, ai ← ai + haj does not alter 
the value of the determinant |A|. 

A similar result concerning columns holds. 
8. If B is the matrix obtained from the square matrix A by adding a linear 

combination of the other rows (columns) to a given row (column), then |B| 
= |A|.. 

9. If a row (column) of the square matrix A is a linear combination of the remaining 
rows (columns), then |A| = 0.
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14.3 Submatrices and Minors 

Let A be an m × n matrix 

A = 

⎡ 

⎢⎢ 
⎣ 

a11 a12 · · ·  a1n 

a21 a22 · · ·  a2n 

. . .  .  . .  . . .  . . .  
am1 am2 · · ·  amn 

⎤ 

⎥⎥ 
⎦ 

Consider p natural numbers i1 < i2 < · · ·  < ip in the set Im = {1, 2, …,  m} and 
q natural numbers j1 < j2 < · · ·  < jq in the set In = {1, 2, …,  n}. Consider also the 
rows ai1 ,ai2 , …,  ai p and the columns a j1 ,a j2 , …,  a jq of A. The p × q matrix: 

A
(
i1, i2, . . . ,  i p; j1, j2, . . . ,  jq

) = 

⎡ 

⎢ 
⎢ 
⎣ 

ai1 j1 ai1 j2 · · ·  ai1 jq 

ai2 j1 ai2 j2 · · ·  ai2 jq 

. . . .  . .  . . .  . . .  
ai p j1 ai p j2 · · ·  ai p jq 

⎤ 

⎥ 
⎥ 
⎦ 

is called a submatrix of A, or a submatrix extracted from A, relatively to, or identified 
by, the rows 

ai1 , ai2 , . . . ,  ai p 

and the columns 

a j1 , a j2 , . . . ,  a jq ; 

the elements of the submatrix are the elements common to the considered p rows 
and q columns of A. 

If p < m and q < n, the  (m − p) × (n − q) submatrix identified by the remaining 
m − p rows and the remaining n − q columns is called the complementary matrix of 
the matrix A(i1, i2, …,  ip; j1, j2, …,  jq). 

Any determinant of a square submatrix of order p extracted from A is defined as 
a minor of order p of the matrix A. Each entry of a matrix is a minor of order 1 of 
the matrix. 

For example, consider the 3 × 4 matrix  

A = 

⎡ 

⎣ 
1 1  −1 0  
2  1 3 0  
4 5  1  2  

⎤ 

⎦ 

The submatrix of A identified by the rows a1, a2 and the columns a2, a3, a4 is
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A(1, 2; 2, 3, 4) =
]
1 −1 0  
1 3 0

[

The complementary matrix of A(1, 2; 2, 3, 4) is A(3; 1) = a31 = [4]. 
The submatrix of A identified by the rows a1, a3 and the columns a1, a4 is 

A(1, 3; 1, 4) =
]
1 0  
4 2

[

The determinant of matrix A(1, 3; 1, 4) is a minor of A and its value is |A(1, 3; 1, 
4) |= 2. 

14.4 Cofactors 

If A is a square matrix of order n, the complementary matrix of a square submatrix 
of order p, p < n, is a square submatrix of order n − p. 

Therefore, it makes sense to define as a complementary minor of the minor |A(i1, 
i2, …,  ip; j1, j2, …,  jp)| the determinant of the complementary matrix of A(i1, i2, …,  
ip; j1, j2, …,  jp). 

The cofactor of the minor |A(i1, i2, …,  ip; j1, j2, …,  jp)| of A is defined as its 
complementary minor if the sum i1 + i2 + · · ·  + ip + j1 + j2 + · · ·  + jp is even, 
the opposite of the complementary minor if i1 + i2 + · · ·  + ip + j1 + j2 + · · ·  + jp 

is odd. 
In particular, the cofactor of the element aij of A is denoted by Aij. Therefore, by 

definition, 

Ai j  = (−1)i+ j |A(1, 2, . . . ,  i − 1, i + 1, . . . ,  n; 1, 2, . . .  ,  j − 1, j + 1, . . . ,  n) | 

is the cofactor of aij. 

Example 14.2 Let A be the square matrix 

⎡ 

⎢⎢ 
⎣ 

3 −4 5 6  
7 8 9  −3 
1 2  −1 −2 

−3 4  −5 0  

⎤ 

⎥⎥ 
⎦ 

The complementary minor of 

|A(1, 2; 1, 2)| =
|
|||
3 −4 
7 8

|
|||

is the minor
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|A(3, 4; 3, 4)| =
||||
−1 −2 
−5 0

||||

The cofactor of a11 = 3 is the product of (−1)1+1 by the determinant of the matrix 
obtained by eliminating the first row and the first column (row and column to which 
a11 belongs). 

A11 = (−1)1+1|A(2, 3, 4; 2, 3, 4)| =
||
||||

8 9  −3 
2 −1 −2 
4 −5 0

||
||||
= −194 

Let us formulate the expansion procedure of a determinant in terms of cofactors. 
The determinant of a square matrix A = (aij) of order n is equal to the sum of the 

products of the elements of any row i (column j) by their respective cofactors: 

|A| =  ai1Ai1 + ai2Ai2 +  · · ·  +  ainAin  

|A| =  a1 j A1 j + a2 j A2 j +  · · ·  +  anj  Anj  

Each of the linear combinations is called the Laplace’s expansion of the 
determinant |A| with respect to the row ai and the column aj. 

14.5 Matrix Multiplication 

Consider an m × n matrix A, an n × q matrix B, the i-th row ai of A (i = 1, …, 
m) and the j-th column bj of B (j = 1, …, q). Since ai, bj are vectors of Rn we can 
calculate their scalar product (Sect. 12.10) ai × bj, for every i and j. 

Definition 14.1 Let A and B be two matrices of sizes (m, n) and (n, q), respectively. 
The product AB is, by definition, the matrix of size (m, q) whose ij-entry cij is the 
scalar product ai × bj: 

AB = 

⎡ 

⎢⎢ 
⎣ 

c11 c12 · · ·  c1q 

c21 c22 · · ·  c1q 

. . .  . . .  . . .  . . .  
cm1 cm2 · · ·  cmq 

⎤ 

⎥⎥ 
⎦ = 

⎡ 

⎢⎢ 
⎣ 

a1 × b1 a1 × b2 · · ·  a1 × bq 

a2 × b1 a2 × b2 · · ·  a2 × bq 

. . . .  . . . . . .  . .  
am × b1 am × b2 · · ·  am × bq 

⎤ 

⎥⎥ 
⎦ 

Example 14.3 Let A and B be the matrices 

A =
]
1 0  
2 1

[
B =

]
1 3  0  

−1 5 2

[
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Matrix A is a 2 × 2 matrix and B is a 2 × 3 matrix. We obtain the product AB 
from the scalar products: 

c11 = a1 × b1 = (1, 0) × (1, −1) = 1(1) + 0(−1) = 1 
c12 = a1 × b2 = (1, 0) × (3, 5) = 3 
c13 = a1 × b3 = (1, 0) × (0, 2) = 0 
c21 = a2 × b1 = (2, 1) × (1, −1) = 1 
c22 = a2 × b2 = (2, 1) × (3, 5) = 11 
c23 = a2 × b3 = (2, 1) × (0, 2) = 2 

Then 

AB =
]
1 3 0  
1 11 2

[

Remark that the product BA cannot be defined since the rows of B are triples and 
the columns of A are couples. 

Example 14.4 Perform the product AB of matrices 

A = 

⎡ 

⎣ 
0 3  0  4  
1 2  1  −1 
1 1 3  0  

⎤ 

⎦ B = 

⎡ 

⎢⎢ 
⎣ 

0 
3 
1 
0 

⎤ 

⎥⎥ 
⎦ 

The matrix A has size (3, 4), the matrix B (4, 1). The size of matrix AB is (3, 1). 
The entries of AB are 

c11 = a1 × b1 = (0, 3, 0, 4) × (0, 3, 1, 0) = 9 
c21 = a2 × b1 = (0, 2, 1, − 1) × (0, 3, 1, 0) = 7 
c31 = a3 × b1 = (1, 1, 3, 0) × (0, 3, 1, 0) = 6 

Therefore, the product is 

AB = 

⎡ 

⎣ 
9 
7 
6 

⎤ 

⎦ 

If A and B are square matrices of order n, it makes sense to consider both the 
product AB and the product BA. In general, AB /= BA, i. e., the multiplication of 
the matrix A on  the  right by B does not give the same result as the multiplication A 
on the left by B.



218 14 Determinants and Systems of Linear Equations

Example 14.5 Let A and B be the square matrices of order 2 

A =
]

1 1  
−1 0

[
B =

]
2 1  
3 0

[

The product AB is different from BA; indeed 

AB =
]

1 · 2 + 1 · 3 1  · 1 + 1 · 0 
−1 · 2 + 0 · 3 −1 · 1 + 0 · 0

[
=

]
5 1  

−2 −1

[

BA =
]

2 · 1 + 1(−1) 2 · 1 + 1 · 0 
3 · 1 + 0 · (−1) 3 · 1 + 0 · 0

[
=

]
1 2  
3 3

[

This proves that square matrix multiplication is not commutative. Nevertheless, if 
A is a square matrix of order n and Idn is the identity matrix of order n (see Sect. 13.8), 
then 

AI dn = I dnA = A 

Matrix multiplication satisfies the following properties: 

a. The matrix multiplication is associative: if A, B, C are matrices such that the 
expression (AB)C makes sense, then also A(BC) makes sense and (AB)C = 
A(BC). 

The following properties apply, provided that the operations are defined: 

b. A(B + C) = AB + AC (left distributive property); 
c. (B + C)A = BA + CA (right distributive property); 
d. k(AB) = (kA)B = A(kB), for every real number k; 
e. [Binet’s theorem] If A and B are square matrices of order n, then det(AB) = 

det(A)det(B). 

14.6 Inverse and Transpose Matrices 

Let us state the following property: 

Proposition 14.1 Let A be a square matrix of order n. If |A| =  0, there is no matrix 
B that fulfils any of the following equalities 

BA = I dn, AB = I dn 

Proposition 14.2 If |A| /= 0, the matrix A−1 defined by
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A −1 = 

⎡ 

⎢⎢ 
⎢ 
⎣ 

A11 
|A| 

A21 
|A| · · ·  An1 

|A|
A12 
|A| 

A22 
|A| · · ·  An2 

|A| 
. . .  .  . .  . . .  . . .  
A1n 
|A| 

A2n 
|A| · · ·  Ann 

|A| 

⎤ 

⎥⎥ 
⎥ 
⎦ 

(14.3) 

where Aij is the cofactor of the entry aij, satisfies the equalities 

A−1 A = I dn and AA
−1 = I dn (14.4) 

Definition 14.2 A square matrix A of order n is said to be an invertible matrix if 
there exists a matrix B such that 

AB = BA = I dn (14.5) 

Proposition 14.3 If the matrix B satisfying (14.5) exists, it is unique. In fact, AB1 = 
B1A = Idn. and AB2 = B2A = Idn imply, by the associative property (a), 

B1 = B1 I dn = B1(AB2) = (B1A)B2 = I dnB2 = B2 

To summarize, the inverse of the square matrix A, with |A| /= 0, by Propositions 
14.2 and 14.3, is unique and is the matrix (14.3), whose entry at the place ij is the 
ratio of the cofactor of aji to the determinant of A. 

Example 14.6 The matrix 

A =
]
1 0  
2 2

[

has determinant |A| = 2. The inverse of A is 

A−1 =
[

A11 
|A| 

A21 
|A| 

A12 
|A| 

A22 
|A|

]

=
] 2 

2 0 
− 2 

2 
1 
2

[
=

]
1 0  

−1 1 2

[

Definition 14.3 Let A be an m × n matrix. The matrix B obtained from A by 
interchanging its rows and columns, i. e., the matrix B whose entries are defined by 

bi j  = a ji 

is called the transpose matrix of A, or simply the transpose of A, denoted AT. 

Example 14.7 Consider the matrix 

A = 

⎡ 

⎣ 
−1 2  3 4  
0 1  0  1  

−5 6 7 8  

⎤ 

⎦
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The transpose matrix of A is the matrix 

AT = 

⎡ 

⎢ 
⎢ 
⎣ 

−1 0  −5 
2 1 6  
3 0  7  
4 1 8  

⎤ 

⎥ 
⎥ 
⎦ 

Properties of the transpose 

Let A be an m × n matrix. Let B be a matrix such that the following operations make 
sense. Then 

a. (A + B)T = AT + BT 

b. (AT)T = A 
c. (AB)T = BTAT 

d. (hA)T = hAT where h any real number; 
e. If A is a square matrix det(A) = det(AT). 

14.7 Systems of Linear Equations and Matrices 

The matricial notation allows to rewrite a system of linear equations in a more 
compact way. Given a system 

a11x1 + a12x2 +  · · ·  +  a1nxn = b1 
a21x1 + a22x2 +  · · ·  +  a2nxn = b2 
· · · · · · · · ·  
am1x1 + am2x2 +  · · ·  +  amn xn = bm 

(14.6) 

it can be rewritten in the matricial form 

⎡ 

⎢⎢ 
⎣ 

a11 a12 · · ·  a1n 

a21 a22 · · ·  a2n 

. . .  . . .  . . .  . . .  
am1 am2 · · ·  amn 

⎤ 

⎥⎥ 
⎦ 

⎡ 

⎢⎢ 
⎣ 

x1 
x2 
. . .  
xn 

⎤ 

⎥⎥ 
⎦ = 

⎡ 

⎢⎢ 
⎣ 

b1 
b2 
. . .  
bm 

⎤ 

⎥⎥ 
⎦ (14.7) 

equivalent to (14.6). Then, called A the matrix of the coefficients aij, b the vector 
of known coefficients bi and x the vector of the unknowns xj, the system (14.6) is  
rewritten in the form: 

Ax = b (14.8) 

Obviously, the Eqs. (14.6)–(14.8) are equivalent to each other.
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Theorem 14.1 A compatible system Ax = b that has more than one solution has 
an infinite number of solutions. 

Proof Let us show first that if c and d are distinct vectors of Rn, then, for each pair 
of distinct real numbers h1 and h2, the vectors c + h1 (c − d) and c + h2 (c − d) are  
distinct. In fact, if by contradiction were c + h1(c − d) = c + h2(c − d), then 

h1(c − d) = h2(c − d), or (h1 − h2)(c − d) = O, 

where O is the null vector. Therefore, it should be c − d /= O, what contradicts the 
hypothesis. In conclusion, c + h1(c − d) /= c + h2(c − d). 

Now, to complete the proof it suffices to show that if the system Ax = b has more 
than one solution, then it has infinitely many of them. In fact, if c and d are distinct 
solutions of Ax = b, then Ac = b and Ad = b. Therefore, for every real number h, 

A(c + h(c − d)) = Ac + h(Ac − Ad) = b + h(b − b) = b 

Thus, for each h, c + h(c − d) is a solution of Ax = h. Since all such solutions 
are distinct, Ax = b has infinitely many solutions. 

14.8 Rank of a Matrix and Minors 

Let 

A = 

⎡ 

⎢⎢ 
⎣ 

a11 a12 · · ·  a1n 

a21 a22 · · ·  a2n 

. . .  .  . .  . . .  . . .  
am1 am2 · · ·  amn 

⎤ 

⎥⎥ 
⎦ (14.9) 

be an m × n matrix, with m > 1 and n > 1. Moreover, let 

A
(
i1, i2, . . . ,  i p; j1, j2, . . . ,  jp

) = 

⎡ 

⎢⎢ 
⎣ 

ai1 j1 ai1 j2 · · ·  ai1 jp 

ai2 j1 ai2 j2 · · ·  ai2 jp 

. . . .  . .  . . .  .  . .  
ai p j1 ai p j2 · · ·  ai p jp 

⎤ 

⎥⎥ 
⎦ 

be a square submatrix of A of order p non maximal, i.e., p < m and p < n. Let  ai and 
aj denote the i-th row and the j-th column of A. 

Definition 14.4 We will call a bordered minor of the submatrix A(i1, i2, …,  ip; j1, 
j2, …,  jp) of order p non maximal with the row ai and the column aj and denote it 
|A(i1, i2, …,  ip; j1, j2, …,  jp)(i, j)|, the following determinant of order p + 1
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||||
|||||
|

ai1 j1 ai1 j2 · · ·  ai1 jp ai1 j 

ai2 j1 ai2 j2 · · ·  ai2 jp ai2 j 

. . . . . .  . . .  . . .  . . .  
ai p j1 ai p j2 · · ·  ai p j2 ai p j 

ai j1 ai j2 · · ·  ai jp ai j

||||
|||||
|

Obviously, if the order of the square submatrix A(i1, i2, …,  ip; j1, j2, …,  jp) is  p 
= min{m, n}, the submatrix has no bordered minors. 

Remark 14.1 While A(i1, i2, …,  ip; j1, j2, …,  jp), square matrix of order p, is a  
submatrix of A, the square matrix A(i1, i2, …,  ip; j1, j2, …,  jp)(i, j), which has order 
p + 1, may not be a submatrix of A. In fact, if i < ip or j < jp, then the matrix A(i1, i2, 
…, ip; j1, j2, …,  jp)(i, j), is not a submatrix of A, while, if i and j are “intermediate”, 
for example A(i1, i2, …,  i, …,  ip; j1, j2, …,  j, …,  jp), with i1 < i2 < · · ·  < i < · · ·  < ip 

and j1 < j2 < · · ·  < j < · · ·  < jp , is a square submatrix of A of order p + 1. Therefore, 
the determinants of the two matrices of order p + 1 are either both null or opposite 
to each other (Sect. 14.2, Property 2). 

Theorem 14.2 Let an m × n matrix A with m > 1 and n > 1 be given. Let |A(i1, i2, 
…, ip; j1, j2, …, jp)| be a minor of A having order p non maximal. If

|
|A

(
i1, i2, . . . ,  i p; j1, j2, . . . ,  jp

)|| /= 0 (14.10) 

and

||A
(
i1, i2, . . . ,  i p; j1, j2, . . . ,  jp

)
(i, j )

|| = 0 (14.11) 

for every choice of i and j, with i distinct from i1,…, ip, and j distinct from j1,…, jp, 
then 

S = [
ai1 , . . . ,  ai p

]

is a maximal system of linearly independent rows and 

T = [
a j1 , . . . ,  a jp

]

is a maximal system of linearly independent columns of A. 

Proof Let us show first that S is a maximal system of linearly independent rows of 
A (Sect. 12.8). We must prove that: 

1. S is a linearly independent vector system, and 
2. every row ai of A is linearly dependent on the system S 

In order to prove the statement (1) it suffices to verify that the matrix
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An = 

⎡ 

⎣ 
ai11 · · ·  ai1n 

. . .  . . .  .  . .  
ai p1 · · ·  ai pn 

⎤ 

⎦ 

whose rows form S, has rank p (Sect. 13.3). Suppose, by contradiction, that An 

had rank less than p. Then also the matrix A(i1, i2, …,  ip; j1, j2, …,  jp), which is 
a submatrix of An, should have rank less than p. Therefore, the rows of A(i1, i2, 
…, ip; j1, j2, …,  jp) should be linearly dependent, but this implies (Sect. 14.2) that 
the determinant |A(i1, i2, …,  ip; j1, j2, …,  jp)| is equal to zero, what contradicts the 
hypothesis (14.10). 

In order to prove the statement (2) we show that any row ai of A, with i distinct 
from i1, i2, …,  ip, is linearly dependent on the system S. To this aim, let us observe 
that, fixed such a value for i and for every j = 1, …, n, we obtain:

|||
||||||
|

ai1 j1 ai1 j2 · · ·  ai1 jp ai1 j 

ai2 j1 ai2 j2 · · ·  ai2 jp ai2 j 

. . . . . .  . . .  . . .  . . .  
ai p j1 ai p j2 · · ·  ai p j2 ai p j 

ai j1 ai j2 · · ·  ai jp ai j

|||
||||||
|

= 0 (14.12) 

In fact, equality (14.12) is verified by hypothesis (14.11) if  j is distinct from j1,…, 
jp; and (14.12) is also verified because two columns of the determinant are equal if 
j takes one of the values j1, j2, …,  jp. By (14.12), performing the expansion of the 
determinant with respect to the last column, we get: 

k1ai1 j +  · · ·  +  kpai p j + kai j  = 0 (14.13) 

where k1,…,  kp, k are the cofactors of ai1 j ,…, ai p j , aij, respectively. As the cofactors 
k1, …,  kp, k do not depend on j, (14.13) implies 

k1ai1 +  · · ·  +  kpai p + kai = O 

where O is the null n-tuple of Rn. Hence, as k = |A(i1, i2, …,  ip; j1, j2, …,  jp)| /= 0, 
it follows 

ai = −k1 
k 
ai1 − . . .  − 

kp 

k 
ai1 

Therefore, ai depends linearly on S, as we wanted to show. 
Similarly, or applying the result to the transpose of A, it can be proved that the 

system T is a maximal system of linearly independent columns of A. 

From Theorem 13.3, the statement of the Theorem 14.2 can be expressed in the 
following form.
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Theorem 14.3 If the matrix A has a non-zero minor of order p non-maximal and, 
for any choice of i and j, with i distinct from i1, i2, …, ip and j distinct from j1, j2, …,  
jp, the bordered minors of this minor with the i-th row and the j-th column, are null, 
then the matrix A has rank p. 

14.8.1 Matrix A Has a Non-zero Minor of Maximal Order 

Let us suppose that the matrix A (14.9) has a non-zero minor of order p = m 

|A(i1, i2, . . . ,  im; j1, j2, . . . ,  jm)| /= 0 

By Theorem 13.2 the rows
[
ai1 , . . . ,  aim

]
form a maximal system of linearly 

independent rows of A which includes all the rows of A; for this reason p = m is the 
rank of A. On the other hand, again by virtue of the mentioned theorem, we reach 
the same conclusion if p = n. 

Therefore, the statement of theorem 14.3 is completed as follows. 

Theorem 14.4 [Theorem of the bordered minors or Kronecker’s theorem]. If matrix 
A has a non-maximal non-zero minor of order p, |A(i1, i2, …, ip; j1, j2, …, jm)|, and, 
for any choice of i and j, with i distinct from i1, i2, …, ip and j distinct from j1, j2, 
…, jp, the bordered minors of the minor |A(i1, i2, …, ip; j1, j2, …, jm)|, with the i-th 
row and the j-th column, are all null, then the matrix A has rank p. If the matrix A 
has a non-null minor of maximal order p, then A has rank p. 

14.8.2 Calculating the Rank of a Matrix Via Kronecker’s 
Theorem 

Kronecker’s theorem comes in handy for computing the rank of a matrix A saving 
a lot of calculations: as a matter of fact, without Kronecker’s theorem, in order to 
decide that the rank of A is p, once we have found a non-zero minor of A of order 
p non maximal, we should verify that all the possible minors of order p + 1 are  
zero. Instead, if we apply Kronecker’s theorem, having ascertained that there exists a 
non-zero minor B of order p non maximal, we have to verify that only all the possible 
bordered minors of B are zero. 

Let summarize the steps to compute the rank of a m × n matrix A: 

• find in A a non-null minor B of order p ≥ 1; 
• if p = min{m, n}, then the rank of A is equal to p; 
• if p < min{m, n}, compute all possible bordered minors of B; 
• if all bordered minors of B are zero, then the rank of A is equal to p;
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• if there exists a non-null bordered minor C of B of order p + 1, then the rank of 
A is greater than or equal to p + 1; 

• repeat the procedure replacing B with C, i. e., B ← C, and giving the name p to 
p + 1, i. e., p ← p + 1. (Regarding the symbol ← see Sect. 11.2.1.) 

Example 14.8 Compute the rank of the matrix 

A = 

⎡ 

⎣ 
1 1  −1 1  
3 3  −3 5  
0 0  0  −1 

⎤ 

⎦ 

The minor of the second order |A(1, 2; 3, 4)| =
|||
|
−1 1  
−3 5

|||
| is non-null, and its 

bordered minors are 

|A(1, 2; 3, 4)(3; 1)| =
|||
|||

−1 1 1  
−3 5 3  
0 −1 0

|||
|||
= 0 

|A(1, 2; 3, 4)(3; 2)| =
|||||
|

−1 1 1  
−3 5 3  
0 −1 0

|||||
|
= 0 

Since all the bordered minors of |A(1, 2; 3, 4)| are zero the rank of A is p(A) = 2. 

Example 14.9 Compute the rank of the matrix 

A = 

⎡ 

⎣ 
1 2  3  −1 0  
1 2 0  6  1  
0 −1 2  0  0  

⎤ 

⎦ 

Since |A(1, 2; 1, 4)| = 7 the rank of A is p(A) ≥ 2. Let us compute the bordered 
minor: 

|A(1, 2; 1, 4)(3; 3)| = 14 

(while  |A(1, 2, 3; 1, 3, 4)|  = −14. Observe that in order to find the rank of A the two 
minors are both zero or both non-zero (see Remark 14.1). The rank of A is 3 because 
|A(1, 2, 3; 1, 3, 4)| is a minor of A of maximal order 3.
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14.9 Cramer’s Rule 

Let us consider a system of n linear equations and n unknowns 

a11x1 + a12x2 +  · · ·  +  a1nxn = b1 
a21x1 + a22h2 +  · · ·  +  a2nhn = b2 
· · · · · · · · ·  
an1x1 + an2x2 +  · · ·  +  ann xn = bn 

(14.14) 

that can be rewritten in the matricial form 

Ax = b (14.15) 

where A is a square matrix of order n, whose elements are aij i = 1, …, m; j = 1, …, 
n. 

If |A| /= 0 by Theorem 14.4 the rank of A is n. Then the rank of the complete 
matrix of the system, which has n rows and n + 1 columns, is also n. By Theorem 13.3, 
the system is consistent. 

Let us proceed to solve the system. 
Rewrite the system in the form (14.15). Since |A| /= 0, the matrix A has the inverse 

A−1 (Sect. 14.6) and multiplying both sides of (14.15) to the left by A−1, 

A−1 (Ax) = A−1 b 

Therefore, the system (14.15) has the unique solution 

x = A−1 b (14.16) 

Expanding the right-hand side product (14.16) we have  

x1 = A11b1+A21b2+···+An1bn 
|A| 

x2 = A12b1+A22b2+···+An2bn 
|A| 

· · · · · · · · ·  
xn = A1nb1+A2nb2+···+Annbn 

|A| 

(14.17) 

We denote by Cj the matrix obtained from A by replacing the j-th column with 
the column of known coefficients. The expansion of |Cj| along the j-th column is 

|Cj| =  b1A1 j + b2A2 j + . . .  + bnAnj  

By (14.17) the solution of the system of equations is the n-tuple
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(||C1

||
||A

|| ,

||C2

||
||A

|| , . . . ,

||Cn

||
||A

||

)

(14.18) 

Every linear system with the number of equations equal to the number of 
unknowns, whose associate matrix has a non-zero determinant is named a Cramer’s 
system. The procedure for determining (14.18) the only solution of the system, is 
called Cramer’s rule. 

Remark 14.3 Cramer’s rule also applies to the solution of a compatible system 
whose associate matrix A has rank p less than the number m of the equations. The rule 
is applied to a system whose coefficients of the unknowns form a square submatrix 
of order p of A, whose determinant is non-zero. The assigned system is equivalent 
to the system of p equations whose coefficients are the elements of the submatrix 
and only those whose coefficients are in the columns of the submatrix are considered 
unknowns of the system. The system then takes the form of Cramer, carrying n − p 
unknowns (which will be considered parameters, or free variables) with the constants. 
The p unknowns will be expressed in function of the n − p parameters. 

14.9.1 Homogeneous Linear Systems 

Consider a homogeneous linear system of m equations and n unknowns: 

a11x1 + a12x2 +  · · ·  +  a1nxn = 0 
a21x1 + a22x2 +  · · ·  +  a2nxn = 0 
· · · · · · · · ·  
am1x1 + am2x2 +  · · ·  +  amn xn = 0 

(14.19) 

The system (14.19) is consistent. Indeed, the null vector of Rn is a solution of 
the system. The coefficients aij are sufficient to define the matrix of the homoge-
neous system since the complete matrix, obtained by adding the null column of the 
constants, does not matter. 

Let p be the rank of the matrix of the homogeneous system. If p = n, the system 
has only the null solution; if p < n, by Theorem 14.1, the system has infinitely many 
solutions, since the values of n − p unknowns can be fixed arbitrarily (Remark 14.3), 
and in this case the system also admits solutions other than the null one. 

We conclude that a homogeneous linear system admits non-zero solutions if and 
only if the rank of its matrix is less than the number of unknowns. 

The following property holds: 

Proposition 14.4 If p is the rank of the matrix of the homogeneous linear system, 
the set of solutions of the system is a subspace of dimension n − p of the real vector 
space Rn.
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Proof If p = n, the proposition is trivial because the set of solutions of the system 
consists of the only null vector of Rn. If  p < n, it is easy to see that the sum of two 
solution vectors, however fixed, is a solution of the system and that the product of any 
scalar by any solution vector is still a solution of the system. By Proposition 12.5 the 
set of solutions of the homogeneous system is a subspace of the real vector space Rn. 
To find the dimension of such a subspace, recalling Remark 14.3, the system can be 
put in the form of p equations, p unknowns and n − p parameters to which attribute 
real values. Each (n − p)-tuple of parameters identifies one and only one solution 
and the application that associates to each solution of the homogeneous system the 
vector of n − p components that determines this solution is an isomorphism of the 
solution set of the system onto the set Rn−p of the (n − p)-tuples of real parameters. 
By Proposition 12.13, the vector space of the solutions of the homogeneous system 
has dimension n − p. 

14.9.2 Associated Homogeneous Linear System 

Let the linear system of linear equations 

a11x1 + a12x2 +  · · ·  +  a1nxn = b1 
a21x1 + a22x2 +  · · ·  +  a2nxn = b2 
· · · · · · · · ·  
am1x1 + am2x2 +  · · ·  +  amn xn = bm 

(14.20) 

be given. The linear system (14.19) is called the homogeneous linear system 
associated to the system (14.20). 

Theorem 14.5 If the system (14.20) is compatible, then the vector h is a solution of 
the system (14.20) if and only if 

h = h' + h0 

where h' is a fixed solution of (14.20) and h0 a solution of the homogeneous system 
associated with (14.20). 

Proof Let 

h = (h1, . . . ,  hn) 

be a solution of the system (14.20), 

h' = (
h'
1, . . .  h'

n

)

a fixed solution of the system (14.20). Then the following equalities hold:
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a1h1 +  · · ·  +  anhn = b 
a1h'

1 +  · · ·  +  anh'
n = b 

where b is the vector of the known coefficients of (14.20). Subtracting, we get 

a1 (h1 − h'
1) +  · · ·  +  an (hn − h'

n) = O 

Then the vector 

h = h' + h0 

is a solution of the homogeneous linear system associated to (14.20), and hence the 
vector 

h = h' + h0 

is the sum of h' and a solution of the homogeneous linear system associated to 
(14.20). 

Vice versa, if h0 = (h01,…, h0n) is a solution of the homogeneous linear system 
associated to (14.20), then 

a1 h01 +  · · ·  +  an h0n = O 

and if h' = (
h'
1, . . . ,  h'

n

)
is a solution of (14.20), then a1h'

1 +  · · ·  +  anh'n = b. 
By adding, we obtain h = h' + h0 which is a solution of (14.20). 

14.10 Exercises 

1. The system of three equations and three unknowns 

x − y − z = 1 
2x + z = 0 
x − y = 2 

is a Cramer’s system; in fact the determinant

|
|||||

1 −1 −1 
2 0 1  
1 −1 0

|
|||||
= −2

||||
−1 −1 
−1 0

|||| − 1
||||
1 −1 

−1 −1

|||| = 2 

is non-zero. Then the system has only one solution which can be found by 
Cramer’s rule:
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x =

||
||||

1 −1 −1 
0 0 1  
2 −1 0

||
||||

||A
|| = 

−
||||
1 −1 
2 −1

||||

2
= −  

1 

2 

y =

|
|||||

1 1  −1 
2 0  1  
1 2  0

|
|||||

|
|A

|
| = 

−2

|||
|
1 −1 
2 0

|||
| −

|||
|
1 1  
1 2

|||
|

2
= −  

5 

2 

z =

|||||
|

1 −1 1  
2 0 0  
1 −1 2

|||||
|

||A
|| = 

−2

|
|||
−1 1  
−1 2

|
|||

2
= 1 

The triple
(− 1 

2 , − 5 
2 , 1

)
is the solution of the given system. 

2. The systems 

x − y − z = 0 
x − y + 2z = 0 

of two equations and three unknowns is homogeneous, and then compatible. The 
matrix of coefficients is 

A =
]
1 −1 −1 
1 −1 2

[

The rank of A is p(A) = 2 for there exists a minor of A,

||||
1 −1 
1 2

|||| = 3. Let us 

call to mind Remark 14.3 and consider as parameter the unknown y; the system 
is rewritten in the form 

x − z = y 
x + 2z = y 

that is a Cramer’s system of two equations and unknowns x and z. The parameter 
y is considered as a constant: 

x =

||||
y −1 
y 2

||||
|
|||
1 −1 
1 2

|
|||

= 
3y 

3 
= y
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z =

|
|||
1 y 
1 y

|
|||

||||
1 −1 
1 2

||||

= 0 

Therefore, by Theorem 14.1 the given system has infinitely many solutions that 
are the triples (x, y, z) such that x = y and z = 0, i. e., the triples (y, y, 0),  for  
every real number y. For example, some solutions of the system are the triples 
(0, 0, 0), (1, 1, 0), (−5, −5, 0). 

3. Decide whether the system 

2x + y − z + t = 1 
3x + y − 2z + t = 2 
x + z = 1 

is compatible and, if so, find the solutions. 
The matrix of the coefficients, and the complete matrix are 

A = 

⎡ 

⎣ 
2 1  −1 1  
3 1  −2 1  
1 0  1  0  

⎤ 

⎦ A' = 

⎡ 

⎣ 
2 1  −1 1 1  
3 1  −2 1 2  
1 0  1  0  1  

⎤ 

⎦ 

To compute the rank of A, observe that the minor 

|A(1, 2; 1, 2)| =
||||
2 1  
3 1

|||| = −1 

is non-zero. Then the rank p(A) of A satisfies the inequality p(A) ≥ 2. Thus we 
call upon the Kronecker’s theorem: the value of the bordered minor of A(1, 2; 1, 
2) with third row and third column is 

|A(1, 2; 1, 2)(3; 3)| = 

⎡ 

⎣ 
2 1  −1 
3 1  −2 
1 0  1  

⎤ 

⎦ =
||||
1 −1 
1 −3

|||| +
||||
2 1  
3 1

|||| = −2 

Since the bordered minor |A(1, 2; 1, 2)(3;3)| has maximal order 3, then p(A) 
= 3. 

Evidently, also p(A') = 3. By Rouché-Capelli’s theorem the system is compat-
ible. Furthermore, the value p(A) = p(A') = 3 is less than the number of 
unknowns. Therefore, the system has infinite solutions. 

Find the solutions of the system by means of Cramer’s rule. Since |A (1, 2; 1, 
2) (3; 3)| is different from zero, put the system in the form
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2x + y − z = 1 − t 
3x + y − 2z = 2 − t 
x + z = 1 

where t is considered a parameter and move it to the right-hand side. Hence the 
system has three unknowns x, y, z and its matrix of the coefficients is A (1, 2; 1, 
2) (3; 3) whose determinant has value −2. 

Apply Cramer’s rule to find the solutions. (Choose the expansions along the 
third rows.) 

x =

|||||
|

1 − t 1 −1 
2 − t 1 −2 
1 0  1

|||||
|

|
|||||

2 1  −1 
3 1  −2 
1 0  1

|
|||||

=

|
|||
1 −1 
1 −2

|
||| +

|
|||
1 − t 1 
2 − t 1

|
|||

−2
= 

−1 + 1 − t − (2 − t) 
−2

= 1 

y =

|||
|||

2 1  − t −1 
3 2  − t −2 
1 1 1

|||
|||

−2
=

||||
1 − t −1 
2 − t −2

|||| −
||||
2 −1 
3 −2

|||| +
||||
2 1  − t 
3 2  − t

||||

−2
= −1 − t 

z =

|
|||||

2 1 1  − t 
3 1 2  − t 
1 0 1

|
|||||

−2
=

|||
|
1 i − t 
1 2  − t

|||
| +

|||
|
2 1  
3 1

|||
|

−2
= 0 

The unknowns x, y, z are expressed as functions of the parameter t. All the 
solutions of the given system are the 4-tuples (1, −1 − t, 0,  t), for every real 
number t. 

4. The system of linear equations 

x − y + z − t = 0 
x − y + 2z + t = 0 
3x − 3y + 4z − t = 0 

(14.21) 

is homogeneous and then compatible. Let us state first if it has only one solution 
or infinite solutions. The matrix of the coefficients 

A =
||||
||

1 −1 1  −1 
1 −1 2  1  
3 −3 4  −1

||||
||

has rank p(A) ≥ 2 because
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|A(1, 2; 1, 3)| =
||||
1 1  
1 2

|||| = 1 /= 0 

and the bordered minors of A(1, 2; 1, 3) are

||
||||

1 1  −1 
1 2  −1 
3 4  −3

||
||||
= 0

||
||||

1 1  −1 
1 2  1  
3 4  −1

||
||||
= 0 

There are no more non-null bordered minors of A(1, 2; 1, 3) of the third order. 

1. the first two equations are independent and the third is linearly dependent on 
them; 

2. x and z are the formally unknowns and y and t are, as a consequence, to be 
considered as parameters. 

So the system (14.21) has an infinite number of solutions and is equivalent to the 
system: 

x − y + z − t = 0 
x − y + 2z + t = 0 

By statements 1 and 2 let us put the system in the form: 

x + z = y + t 
x + 2z = y − t 

that is a Cramer’s system that yields: 

x =
|||
|

y + t 1 
y − t 2

|||
| = y + 3t, z =

|||
|
1 y + t 
1 y − t

|||
| = −2t, 

The set of solutions of the system is the set of 4-tuples (x, y, z, t) = (y + 3t, 
y, −2t, t), for every y and t in R. For example, if y = 1 and t = 0 we obtain the 
solution (1, 1, 0, 0). 

5. Find the values of the variable k, such that the system 

x − ky = 1 
4x + ky = 0 
2x + 3y = −2k 

is compatible and find the solutions. By Rouché-Capelli’s theorem the system is 
compatible if and only if the matrices
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A = 

⎡ 

⎣ 
1 −k 
4 k 
2 3  

⎤ 

⎦ A' = 

⎡ 

⎣ 
1 −k 1 
4 k 0 
2 3  −2k 

⎤ 

⎦ 

have the same rank. The rank of A is not greater than 2. If the rank of A' is 3, then 
the system is incompatible. Hence a necessary condition for the compatibility of 
the system is that |A’| = 0, namely

|||
|||

1 −k 1 
4 k 0 
2 3  −2k

|||
|||
= −10k2 − 2k + 12 = 0 

The roots of this equation (Sect. 12.1) are  k = 1 and k = − 6 
5 . 

Now let’s see what happens if k = 1 or  k = − 6 
5 : 

i. k = 1. The matrix A has rank 2 because if k = 1 the minor

|
|||
1 −k 
4 k

|
||| =

|
|||
1 −1 
4 1

|
||| = 5 

is non-zero. The matrix A', whose determinant is zero when k = 1, also has rank 
2. The system is compatible and is equivalent to the system of two equations 

x − y = 1 
4x + y = 0 

This is a Cramer’s system. Its solution is the couple (x, y), where: 

x =

||||
1 −1 
0 1

||||
|
|||
1 −1 
4 1

|
|||

= 
1 

5 
and y =

||||
1 1  
4 0

||||
|
|||
1 −1 
4 1

|
|||

= 
4 

5 

ii. k = − 6 
5 . The matrix A has rank 2 since

||
||
1 −k 
4 k

||
|| =

||
||
1 6 

5 
4 − 6 

5

||
|| = −6 

and the matrix A' has rank 2. The system is compatible and equivalent to the 
Cramer’s system 

x + 6 5 y = 1 
4x − 6 5 y = 0
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that has the unique solution
(
1 
5 , 

2 
3

)
. 

6. Consider the homogeneous system with two non-identical equations and 
unknowns x, y, z: 

ax + by + cz = 0 
a'x + b'y + c'z = 0 

Since the equations are not identical the two triples of coefficients (a, b, c) and(
a', b', c') are nonnull. The system is compatible because it is homogeneous. Let 
the rank of the matrix be 1. Then the system is equivalent to one of its equations, 
for example ax + by + cz = 0. Therefore, the system has infinite solutions. For 
example, all the solutions of the system 

x − y + z = 0 
−2x + 2y + 2z = 0 

are the triples of real numbers (y − z, y, z), with y and z real numbers. 
Suppose that the system 

ax + by + cz = 0 
a'x + b'y + c'z = 0 

has rank 2, i. e., the matrix 

A =
]

a b c  
a' b' c'

[

has a non-zero minor of order 2, for example,

||
||

a b  
a' b'

||
|| /= 0 

Let z be as a free variable 

ax + by = −cz 
a'x + b'y = c'z 

It is possible to apply Cramer’s rule: 

x =

|||
|
−cz b 
−c'z b'

|||
|

||||
a b  
a' b'

||||

=

|||
|
−c b  
−c' b'

|||
|

||||
a b  
a' b'

||||

z
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y =

|
|||

a −cz 
a' −c'z

|
|||

||||
a b  
a' b'

||||

=

|
|||

c a  
c' a'

|
|||

||||
a b  
a' b'

||||

z 

Hence, setting 

h =
|||
|

b c  
b' c'

|||
|, k =

|||
|

c a  
c' a'

|||
|, l =

|||
|

a b  
a' b'

|||
|

the solutions of the system are the triples

(
h 

l 
z, 

k 

l 
z, z

)
=

(
h 

l 
, 

k 

l 
, 1

)
z 

for every z ∈ R. Any two of these non-zero triples are proportional to each other. 
If we set z = l, a solution of the system is (h, k, l). It follows that the set of 
non-zero solutions of the system are, the triples proportional to (h, k, l), i. e., the 
minors of the second order, extracted from the matrix A with alternate signs:

||||
b c  
b' c'

||||,
||||

c a  
c' a'

||||,
||||

a b  
a' b'

||||

The result is generalized to the homogeneous systems of n linear equations and 
n + 1 unknowns, having rank n: all the non-zero solutions of such a system are 
proportional to the n-tuple of order n minors of the matrix of the system, obtained 
by deleting the first, second, …, the n-th column and taken with alternate signs. 

7. Let the planes α and β be given: 

α) x − y + z − 1 = 0, β)  2y − z + 4 = 0 (14.22) 

The planes are non-parallel (Sect. 10.4) and then they have a line r in common, 
represented by the system of Eqs. (14.22). The line s parallel to r and passing 
through the origin of the coordinates O(0, 0, 0) has equations 

x − y + z = 0 
2y − z = 0 

In fact, each of the planes representing s passes through the origin of the 
coordinates and is parallel to a plane of the representation (14.22) of  r. 

Let us find a triple of direction numbers of r. If P (x, y, z) is a point of s distinct 
from O (0, 0, 0), the vector OP = (x, y, z) is parallel to the line r. Since the point 
of coordinates (−1, 1, 2) belongs to s, then (−1, 1, 2) is a triple of direction 
numbers of r.
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It is easy to generalize. The direction numbers of the line r of equations 

ax + by + cz + d = 0 
a'x + b'y + c'z + d ' = 0 

are the direction numbers of the line s of equations 

ax + by + cz = 0 
a'x + b'y + c'z = 0 

and vice versa. Then a triple of direction numbers of s coincides with a non-
zero solution of the system representing s whose non-zero solutions, i. e., the 
coordinates of the points of s distinct from the origin O (0, 0, 0), are proportional 
to second order minors (see Exercise 14.6)

|
|||

b c  
b' c'

|
|||,

|
|||

c a  
c' a'

|
|||,

|
|||

a b  
a' b'

|
|||

of the matrix

]
a b c  
a' b' c'

[
. 

8. Solve the following problems 

a. State if the following vectors of R4 are linearly dependent or independent: 

(−1, −2, 1, 1), (0, 2, 1, 0), (1, 0, −2, −2); 

b. find at least one non-null vector belonging to the subspace generated by the 
system 

T = [(−1, −2, 1, 1), (0, 2, 1, 0), (1, 0, −2, −2)]; 

c. find the set of non-null vectors of R4 orthogonal to the vectors of T. 

Solution 

a. The vectors are linearly independent if the unique linear combination equal 
to the null vector has the coefficients all null. Examine the equation: 

h1[(−1, −2, 1, 1) + h2(0, 2, 1, 0) + h3(1, 0, −2, −2) = (0, 0, 0, 0) .  

Perform the products and equate the components in the same places. The 
following linear system of four equations and three unknowns is obtained:
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−h1 + h3 = 0 
−2h1 + 2h2 = 0 
h1 + h2 − 2h3 = 0 
h1 − 2h3 = 0 

The matrix of the coefficients 

⎡ 

⎢⎢ 
⎣ 

−1 0  1  
−2 2  0  
1 1  −2 
1 0  −2 

⎤ 

⎥⎥ 
⎦ 

has rank 3, since there is a minor non-null of the third (maximum) order:

|
|||||

−1 0  1  
1 1  −2 
1 0  −2

|
|||||
= 1 

The system is compatible, has the unique solution (0, 0, 0) and the vectors 
of T are linearly independent. 

b. It suffices to consider any linear combination of the three vectors of T with 
coefficients h1, h2, h3 not all null. For example, choose h1 = 0, h2 = −1, h3 

= 1 and perform the linear combination: 

0(−1, −2, 1, 1) − 1(0, 2, 1, 0) + (1, 0, −2, −2) 
= (0, −2, −1, 0) + (1, 0, −2, −2) = (1, −2, −3, −2), 

which is a non-null vector belonging to the subspace generated by the system 
T. 

c. A vector (x1, x2, x3, x4) ∈ R4 is orthogonal to each of three given vectors if 
the following condition are fulfilled (remind that two vectors are orthogonal 
if the scalar product is null. (See Sect. 12.10): 

(x1, x2, x3, x4) × (−1, −2, 1, 1) = 0 
(x1, x2, x3, x4) × (0, 2, 1, 0) = 0 
(x1, x2, x3, x4) × (1, 0, −2, −2) = 0 

Let us perform the products: 

−x1 − 2x2 + x3 + x4 = 0 
2x2 + x3 = 0 
x1 − 2x3 − 2x4 = 0 

The matrix of the coefficients has a minor non-null of maximum order 3:
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||
||||

−2 1 1  
2 1 0  
0 −2 −2

||
||||
= 4 

Then system of equations is compatible (see Sect. 13.5). In order to find the 
solutions consider x1 = m = parameter: 

−2x2 + x3 + x4 = m 
2x2 + x3 = 0 
−2x3 − 2x4 = −m 

and apply Cramer’s rule (see Sect. 14.9): 

x2 =

|
|||||

m 1 1  
0 1 0  

−m −2 −2

|
|||||

4
= −m 

4 

x3 =

|||||
|

−2 m 1 
2 0 0  
0 −m −2

|||||
|

4
= 

m 

2 

x4 =

|||
|||

−2 1  m 
2 1 0  
0 −2 −m

|||
|||

4
= 0 

The general solution consists of the set of 4-tuples
(
m, −m 

4 , 
m 
2 , 0

)
, for every 

m ∈ R. As a result, for every non zero m, any vector
(
m, −m 

4 , 
m 
2 , 0

)
is orthogonal 

to each of the three vectors of T. 
9. Solve the following problems 

a. Find the rank of the matrix 

A = 

⎡ 

⎣ 
1 2 −1 1  
t 0 1 1  
1 t + 1 0  t + 1 

⎤ 

⎦ 

in function of the parameter t ∈ R. 
b. Consider the rows of A for t = 0 and find a linear combination of them that 

equals the vector (2, 5, −1, 4).
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Solution 

a. In order to calculate the rank of a matrix follow the procedure (see 
Sect. 14.8.2.): 

• There is in A a non-null minor of order 2: 

|B| =
||
||
2 −0 
0 1

||
|| = 20 

Then the rank of A is p ≥ 2, for every value of t. 

– As p < min{3, 4}, compute all possible bordered minors of B. There are 
two bordered minors of B: 

|C| =
||||||

1 2  −1 
t 0 1  
1 t + 1 0

||||||
= −  t

||||
2 −1 

t + 1 0

|||| − 1
||||
1 2  
1 t + 1

||||

= −  t2 − 2t + 1, 

where |C| = 0 if and only if t = −1 ± √
2, and 

|D| =
||
||||

2 −1 1  
0 1 1  

t + 1 0  t + 1

||
||||
= 0 

for every t ∈ R. 
Therefore, if t = −1 + √

2 and t = −1 − 
√
2 all the bordered minors 

of |B| vanish and by the Kronecker’s theorem, the rank of A is equal to 2; if 
t /= −1 ± √

2, then |C|/=0 and the rank of A is equal to 3. 
b. If t = 0, matrix A becomes: 

A = 

⎡ 

⎣ 
1 2  −1 1  
0 0  1  1  
1 1  0  1  

⎤ 

⎦ 

In order to express the vector (2, 5, −1, 4) as a linear combination of the 
rows of A, it is necessary to determine coefficients a, b and c such that 

(2, 5, −1, 4) = a(1, 2, −1, 1) + b(0, 0, 1, 1) + c(1, 1, 0, 1) 

(2, 5, −1, 4) = (a, 2 a, −a, a) + (0, 0, b, b) + (c, c, 0, c) 

(2, 5, −1, 4) = (a + c, 2a + c, −a + b, a + b + c)
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Equating the components, 

a + c = 2 
2a + c = 5 
−a + b = −1 
a + b + c = 4 

and substituting, 

c = 2 − a 
2a + c = 5 
−a + b = −1 
a + b + c = 4 

Observe that the last equation can be cancelled as it is the sum of the 
second and third. So we obtain: 

c = −1 
a = 3 
b = 2 

Therefore, (a, b, c) = (3, 2, −1) is the unique solution. As a consequence, 
the required linear combination is 

(2, 5, −1, 4) = 3(1, 2, −1, 1) + 2(0, 0, 1, 1) − (1, 1, 0, 1). 
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Chapter 15 
Lines and Planes 

15.1 Introduction 

We will study some applications of the linear algebra to analytic geometry; in partic-
ular, we will apply the results on systems of linear equations to the study of the 
reciprocal positions concerning lines, planes and vectors in the space. We will extend 
to the space some concepts developed in a coordinate system of the plane xy. The 
geometric problems are solved from both the synthetic point of view, based on the 
Euclidean axioms (Chap. 4), and the analytic point of view, by means of equations. 

Problems of parallelism and perpendicularity concerning lines and planes, 
coplanarity, intersections of planes and lines, bundles of planes are solved. 

15.2 Parallel Lines 

Let us consider the lines r and s of equations in the coordinate system of the space 
xyz (Sect. 10.5) 

r ) 
x = x1 + mt 
y = y1 + nt 
z = z1 + pt 

s) 
x = x2 + m 't 
y = y2 + n't 
z = z2 + p't 

Direction numbers of r and s are the triples proportional to (m, n, p) and (m', n', 
p'), respectively. Like in the plane geometry the following statement holds. 

Property 1 [Parallelism of lines]. The lines r and s are parallel if and only if the 
triples of respective direction numbers are proportional.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
A. G. S. Ventre, Calculus and Linear Algebra, 
https://doi.org/10.1007/978-3-031-20549-1_15 

243

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20549-1_15&domain=pdf
https://doi.org/10.1007/978-3-031-20549-1_15


244 15 Lines and Planes

Example 15.1 The line s passing through the point P (3, 2, −5) and parallel to the 
line r of parametric equations 

r ) 
x = −1 − 4t 
y = 7 + 9t 
z = t 

has direction numbers proportional, in particular equal, to (−4, 9, 1). Then s has 
parametric equations 

s) 
x − 3 = −4t 
y − 2 = 9t 
z + 5 = t 

15.3 Coplanar Lines and Skew Lines 

Let us consider the lines r and s: 

r ) 
x = x1 + mt 
y = y1 + nt 
z = z1 + pt 

s) 
x = x2 + m 't 
y = y2 + n't 
z = z2 + p't 

One of the two following cases occurs (see Chap. 4): 

1. the lines are coplanar, 
2. the lines are skew. 

If the lines r and s are coplanar, then 

– either the lines are parallel, in particular coincident, and the respective triples of 
direction numbers are proportional, 

– or they are incident at a single point; then the system of the six equations of r and 
s and the unknowns t, x, y, z is compatible. 

If the lines are skew, however two distinct points in r and two distinct points in s 
are taken, there is no plane that contains the four points; the system of six equations 
of r and s and the unknowns t, x, y, z is incompatible and the two triples of direction 
numbers of r and s are not proportional. 

Observe that also the system of equations of two distinct and parallel lines is 
incompatible, but the triples of direction numbers are proportional.
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15.4 Line Parallel to Plane. Perpendicular Lines. 
Perpendicular Planes 

Let the plane α 

α) ax + by + cz + d = 0 

and the line 

r ) 
x = x1 + mt 
y = y1 + nt 
z = z1 + pt 

be given. 
One of the two cases occurs: 

1. The plane and the line are incident in a unique point. Then the system of the four 
equations of α and r and the unknowns x, y, z and t has a unique solution. 

2. The plane and the line are parallel. Then 

2.1 either the line lies on the plane (the line and the plane are improperly 
parallel); the system of equations of α and r has infinitely many solutions, 

2.2 or the line and the plane have no point in common (the line and the plane 
are properly parallel); the system of equations of α and r is incompatible. 

Let us plug the right-hand sides of the equations of r in the equation of α. We  
obtain an equation in the unknown t: 

(am + bn + cp)t + ax1 + by1 + cz1 + d = 0 (15.1) 

We can draw some conclusions from the inspection of Eq. (15.1). If the coefficient 
of t is zero 

am + bn + cp = 0 (15.2) 

then the line and the plane are improperly parallel or properly parallel, according to 
whether ax1 + by1 + cz1 + d = 0 (when (15.1) is the identical equation), or ax1 + 
by1 + cz1 + d /= 0 (when (15.1) is the incompatible equation). Therefore, we obtain: 

Property 2 [Parallelism of a line and a plane]. The line r and the plane α are parallel 
if and only if 

am + bn + cp = 0
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Since every line s with direction numbers (a, b, c) is perpendicular to the plane 
α) ax + by + cz + d = 0 (Sect. 10.4, any line r parallel to α, will be perpendicular 
to s. Therefore, 

Property 3 [Perpendicularity of lines]. A line with direction numbers (m, n, p) and 
a line with direction numbers (m', n', p') are perpendicular if and only if mm' + nn'
+ pp' = 0. 

As the coefficients of the equation of the plane are proportional to the direction 
numbers of any perpendicular line, we obtain: 

Property 4 [Perpendicular planes]. The planes of equations ax + by + cz + d = 0 
and a'x + b'y + c'z + d' = 0 are perpendicular if and only if aa' + bb' + cc' = 0. 

Given in the space xyz a point and a plane there are infinitely many lines that pass 
through the point and are parallel to the plane. 

Exercise 15.1 Find the equations of the lines parallel to the plane 

α) x − y + 2z = 0 

and passing through the point A(−1, 0, 4). 

Solution We observe that there exists a set of the required lines that form a bundle 
of lines (Chap. 4). By (15.2) the direction numbers of any line parallel to the plane 
α are the triples (m, n, p) such that m − n + 2p = 0, namely, m = n − 2p. Then the 
lines having equations 

x = −1 + (n − 2 p)t 
y = nt 
z = 4 + pt 

(15.3) 

t ∈ R, form the bundle of lines (Sect. 4.6) passing through A and parallel to α. The  
system (15.3) depends on two parameters n and p. 

15.5 Intersection of Planes 

We dealt with parallel planes in (Sects. 4.2.4 and 10.4). 
Two non-parallel planes α and α' identify one and only one line, which is the 

intersection of α and α'. Let  

α) ax + by + cz + d = 0 
α') a'x + b'y + c'z + d ' = 0
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be the equations of the planes α and α'. The triples (a, b, c) and (a', b', c') are non-
proportional. The system of equations of α and α', along with the condition (a, b, c) 
and (a', b', c') non proportional, represents a line. 

Such a way to define a line as the intersection of two planes we name representation 
αα'. 

Let us describe by means of an example how from the parametric equations of 
the line we pass to the system αα'. 

The equations 

x = 1 + 6t 
y = −7 + 2t 
z = −5t 

(15.4) 

define the line r with direction numbers (6, 2, −5) and passing through the point (1, 
−7, 0). If we eliminate the parameter t, we obtain a system αα'. In fact, from the 
third equation we have t = − 1 

5 z that substitute in the remaining equations: 

x = 1 − 6 5 z 
y = −7 − 2 5 z 

that doing the calculations take the form: 

5x + 6z − 5 = 0 
5y + 2z + 35 = 0 

These equations form a representation αα' of the line r. 
Set z = 0 in the system above; we obtain x = 1, y = −7, whence the point (1, − 

7, 0); another point is obtained by assigning z a new value, for example z = 5; then 
x = −5, y = −9 and the point (−5, −9, 5) is got. From these two points we obtain 
the direction numbers of r, as differences of the coordinates: (−5, −9, 5) − (1, −7, 
0) = (−6, −2, 5). Operating over the system αα' we obtain the parametric equations 

x = 1 − 6t 
y = −7 − 2t 
z = 5t 

(15.5) 

With (15.5) we have not gone back exactly to the parametric Eqs. (15.4), but to 
an equivalent system. In fact, the Eqs. (15.5) define a line passing through (1, − 
7, 0) with direction numbers (−6, −2, 5) proportional to (6, 2, −5). So, also the 
Eqs. (15.5) represent r. 

Exercise 15.2 Find a triple of direction numbers of the line r represented by the 
equations
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x − y − z + 1 = 0 
x − y + z − 1 = 0 

and give parametric equations of r. 

Solution It is easy to check that A(0, 0, 1) and B(1, 1, 1) are distinct points of r. 
Therefore, the numbers 

m = 0 − 1 = −1 
n = 0 − 1 = −1 
p = 1 − 1 = 0 

form a triple of direction numbers of r. Parametric equations of r are: 

x = t 
y = t 
z = 1 

t ∈ R. 

15.6 Bundle of Planes 

The set of planes parallel to a given plane α is called an improper bundle of planes 
or a bundle of parallel planes. By Theorem 10.1, for each point P of the space, there 
exists a unique plane parallel to α and containing P. 

Let a line r of the space be given. A bundle of planes of axis r is, by definition, 
the set of the planes containing r. 

Since two non-parallel planes identify the common line r, the bundle of planes 
of axis r is determined by two planes passing through r. In fact, let α and α' be 
non-parallel planes 

α) ax + by + cz + d = 0 
α') a'x + b'y + c'z + d ' = 0 

and r the common line. Let us call system αα' the above system. 
We prove that any linear combination of the equations α) and α') 

m(ax + by + cz + d) + m '(a'x + b'y + c'z + d ') = 0 (15.6) 

with coefficients m and m' not both null, represents a plane that contains r. The  
statement is obvious if one of the two coefficients, m or m', is zero. Then suppose 
that m and m' are both non-zero and rewrite (15.6) in the form
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(
ma + m 'a

)
x + (

mb + m 'b')y + (
mc + m 'c')z + md + m 'd ' = 0 (15.7) 

Suppose, by contradiction, 

ma + m 'a' = mb + m 'b' = mc + m 'c' = 0 (15.8) 

Then 

a = −  m '
m a

'

b = −  m '
m b

'

c = −  m '
m c

'

Therefore, the triples (a, b, c) and (a', b', c') should be proportional and the 
planes α and α' parallel, contrary to the hypothesis. Thus, the equalities (15.8) are  
not acceptable and (15.7) is the equation of a plane β. We now verify that (15.6), 
or the equivalent (15.7), is the equation of a plane containing the line r represented 
by the system αα'. In fact, if the point P0(x0, y0, z0) belongs to r, then the following 
equalities hold: 

ax0 + by0 + cz0 + d = 0 
a'x0 + b'y0 + c'z0 + d ' = 0 

and P0 belongs to the plane (15.6). Hence, each plane (15.6) passes through r. 
Vice versa, every plane β passing through r falls within the form (15.6), i.e., it is 

represented by (15.6), for suitable values of m and m'. Among the planes containing 
r the plane β is determined by a point Q(x1, y1, z1) not belonging to r. The point Q 
lies in the plane (15.6) if and only if there exist values of m and m' such that 

m(ax1 + by1 + cz1 + d) + m '(a'x1 + b'y1 + c'z1 + d ') = 0 

As Q does not belong to r, both equalities 

ax1 + by1 + cz1 + d = 0 
a'x1 + b'y1 + c'z1 + d ' = 0 

are not satisfied. Then suppose, for example, a'x1 + b'y1 + c'z1 + d' /= 0. The values 
of m and m' satisfying (15.6) are tied by: 

m ' = −  
ax1 + by1 + cz1 + d 

a'x1 + b'y1 + c'z1 + d 'm 

Summarizing, a plane belongs to the bundle determined by the non-parallel planes 
α and α' if and only if it has an Eq. (15.6) with both non-zero values of m and m'.
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Remark 15.1 Obviously, if the planes α and α' are parallel, any linear combination 
of the equations 

α) ax + by + cz + d = 0 
α') a'x + b'y + c'z + d ' = 0 

is the equation of a plane parallel to α and α' and then any linear combination of the 
equations represents an improper bundle of planes. 

Exercise 15.3 Determine the plane through the origin O(0, 0, 0) and perpendicular 
to the line r defined by the system 

2x − y + z − 1 = 0 
3x + z + 2 = 0 

Solution The direction numbers of the line r are obtained (see Exercise 14.6) from  
the matrix

]
2 −1 1  
3 0 1

[

and are proportional to 

m =
||||
−1 1  
0 1

|||| = −1; n =
||||
1 2  
1 3

|||| = 1; p =
||||
2 −1 
3 0

|||| = 3 

A plane containing the origin has the equation ax + by + cz = 0 whose coefficients 
a, b, c, by Theorem 10.1, are direction numbers of r. Therefore, the required plane 
has equation x − y − 3z = 0. 

Exercise 15.4 Find the plane passing through the origin and parallel to the line r of 
equations 

x − 5z − 1 = 0 
y − z + 2 = 0 

and to the line s of equations 

x = −1 + 4t 
y = 1 + 2t 

z = t 

Solution From the matrix

]
1 0  −5 
0 1  −1

[
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are computed the direction numbers of r (see Exercise 14.6) 

m =
|||
|
0 −5 
1 −1

|||
| = 5; n =

|||
|
−5 1  
−1 0

|||
| = 1; p =

|||
|
1 0  
0 1

|||
| = 1; 

from Property 2, a plane parallel to r satisfies the condition: 5a + b + c = 0. The 
direction numbers of s are 4, 2, 1 and a plane parallel to s satisfies the condition: 4a 
+ 2b + c = 0. The system of the conditions 

5a + b + c = 0 
4a + 2b + c = 0 

has a solution (a, b, c) 

a =
||||
1 1  
2 1

|||| = −1; b =
||||
1 5  
1 4

|||| = −1; c =
||||
5 1  
4 2

|||| = 6 

So the required plane, that contains the origin, has equation: −x − y + 6z = 0. 

Exercise 15.5 Find the plane α parallel to the line r of equations 

x = t 
y = −2 + 3t 
z = t 

perpendicular to the plane x − 5y + z − 4 = 0 and passing through the point (1, 2, 
−1). 

Solution Notice that (1, 3, 1) is a triple of direction numbers of r and the equation 
of the plane α we want to determine is ax + by + cz = 0. By Properties 2 and 4 the 
following conditions must be fulfilled by the plane α: 

a + 3b + c = 0 
a − 5b + c = 0 

So the solution (a, b, c) is proportional to the triple

||||
3 1  

−5 1

|||| = 8;
||||
1 1  
1 1

|||| = 0;
||||
1 3  
1 −5

|||| = −8 

We choose the triple (a, b, c) = (1, 0, –1) and get the equation x − z + d = 0. 
The coefficient d is determined by imposing that the required plane passes through 
the point (1, 2, −1): 

1 − (−1) + d = 0.
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Thus, the plane α has equation: x – z − 2 = 0. 

Exercise 15.6 Represent the line r passing though the point P(1, 0, 1) and parallel 
to the line s 

2x − y + z + 1 = 0 
4x − 7y + 2z + 3 = 0 

Solution The direction numbers m, n, p of s are proportional to

||||
−1 1  
−7 2

|||| = 5;
||||
1 2  
2 4

|||| = 0;
||||
2 −1 
4 −7

|||| = −10 

We choose (m, n, p) = (1, 0, −2) and get the equations of r 

x = 1 + t 
y = 0 
z = 1 − 2t 

Exercise 15.7 Find the equation of the plane containing the line r 

x = 1 − t 
y = 3t − 2 
z = t 

and the point P(2, −1, 0). 

Solution We first observe that the problem is determined, i.e., it admits a unique 
solution. In fact, the point P does not belong to r, because the coordinates (x, y, z) = 
(2, −1, 0) does not satisfy all the equations of r. We must now find, in the set of the 
planes containing r, the one that passes through P. Let us eliminate the parameter t, 
setting z = t in the first two equations of r: 

x + z − 1 = 0 
y − 3z + 2 = 0 

The line r is now defined as the intersection of two planes. The equation of the 
bundle of planes of axis r is 

m(x + z − 1) + m '(y − 3z + 2) = 0 (15.9) 

where the coefficients m and m' are not both zero. 
The plane in the bundle that contains P(2, −1, 0) satisfies (15.9), i.e., m(2 + 0 − 

1) + m'(−1 − 0 + 2) = m + m' = 0. Non-null values m and m' such that m + m' = 
0 are  m = 1 and m' = −1; from the values replaced in (15.9) we obtain the equation
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x + z − 1 − (y − 3z + 2) = 0, which yields 

x − y + 4z − 3 = 0 

that represents the plane rP. 

Exercise 15.8 Verify that the line 

r ) 
x = 1 
y = t − 2 
z = −2t 

and the line 

s) 
x = 9 + t 
y = 4 
z = 1 − t 

are not parallel. Then determine the equation of the plane α that contains r and is 
parallel to s. 

Solution A triple of direction numbers of r is (0, 1, −2) and a triple of direction 
numbers of s is (1, 0, −1). The triples are not proportional, which means that the 
lines are not parallel. 

Let us eliminate the parameter t from the equations of r: two planes passing 
through r are obtained: 

x − 1 = 0 
2y + z + 4 = 0 

The bundle of planes of axis r has equation 

m(x − 1) + m '(2y + z + 4) = 0 (15.10) 

rewritten as follows 

mx + 2m 'y + m 'z − m + 4m ' = 0 (15.11) 

By Property 2 the plane parallel to s in the bundle satisfies the equation 1m + 
0(2 m') − 1 m' = m − m' = 0. Then the values m = m' = 1 are replaced in (15.10) 
or (15.11) to get the equation of the plane 

x + 2y + z + 3 = 0 

that contains r and is parallel to s.
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Exercise 15.9 Given the point O(0, 0, 0) and the line r 

x = 1 − t 
y = t 
z = 2t 

a. verify that the point O does not belong to the line; 
b. determine the equation of the plane that passes through the point and the line. 

Solution a. The point O belongs to the line r if and only if there exists a real number 
t such that the following equalities are satisfied: 

0 = 1 − t 
0 = t 
0 = 2t 

It is easily seen that the system of equations is incompatible: t = 0 satisfies the 
second equation, but not the first. Thus, O does not belong to r. 

Solution b. The problem can be solved following the procedure of Exercise 15.5. 
Here we prefer to choose another way. Consider two distinct points of r: for example, 
A(1, 0, 0) and B(0, 1, 2), obtained in correspondence of the values t = 0 and t = 1 
in the equations of r, respectively. The points O, A, B are non-collinear, then there 
exists a unique plane α passing through O, A, B. Let 

ax + by + cz + d = 0 

be the generic equation of the plane α. If O belongs to α, then d = 0 and α) ax + 
by + cz = 0. If A belongs to the plane α, then a1 + b0 + c0 = 0, i.e., a = 0, and, 
therefore, the equation of α has the form by + cz = 0. The plane α passes through 
B(0, 1, 2), then b1 + c2 = 0, i.e., b = −2c and the equation of α becomes −2cy + 
cz = 0. Since c /= 0 (otherwise the equation ax + by + cz + d = 0 would reduce to 
identity 0 = 0) we can divide the equation of α by c. Therefore, the equation of the 
plane passing through O, A, B is 2y − z = 0. 

Let us remark that a point P1(x1, y1, z1) belongs to the plane α) ax + by + cz + 
d = 0 if and only if ax1 + by1 + cz1 + d = 0. This obvious consideration suggests 
a way to solve the exercise. Indeed, the points P(x, y, z), O(0, 0, 0), A(1, 0, 0) and 
B(0, 1, 2) belong to the plane α, if and only if the following equalities hold: 

ax + by + cz + d = 0 
a0 + b0 + c0 + d = 0 
a1 + b0 + c0 + d = 0 
a0 + b1 + c2 + d = 0
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The equations form a homogeneous system in the unknowns a, b, c, d which 
shows the coplanarity of P(x, y, z) with the points O, A and B. The system admits 
solutions distinct from the null solution, (a, b, c, d) /= (0, 0, 0, 0), then (Sect. 114.10 
the determinant of the coefficients is equal to zero:

||||
||||

x y  z  1 
0 0  0  1  
1 0  0  0  
0 1  2  0

||||
||||

= 0 

Expand the above determinant with respect to the first row:

||||
||

0 0 1  
0 0 0  
1 2 0

||||
||
x −

||||
||

0 0 1  
1 0 0  
0 2 0

||||
||
y +

||||
||

0 0 1  
1 0 0  
0 1 0

||||
||
z −

||||
||

0 0 0  
1 0 0  
0 1 2

||||
||
= 0 

to obtain α) −2y + z = 0. 
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Chapter 16 
Algorithms 

16.1 Introduction 

While we have not explicitly named them, even we encountered and applied 
numerous algorithms. We called them procedures or methods and they concerned 
various topics, such as: key codes, adding natural numbers in a range (Chap. 2), 
performing a reduction of a system of linear equations (Chap. 11), searching for 
solutions of systems of equations (Chap. 14). 

The four arithmetic operations are among the simplest algorithms we know. 
It is possible to build algorithms for processes considered complicated. The prac-

tical difficulties associated with the execution of these processes derive from the 
fact that algorithms often require an enormous number of operations, even if every 
single operation is simple. The more complex operations are performed by repetition 
of the simpler ones. This is one of the reasons why algorithms are associated with 
automatic calculating machines. 

Consider now an elementary procedure which, however, contains some charac-
teristics that contribute to formulate the a concept of algorithm. 

We want to find the maximum value in a n-tuple of numerical data. We have an 
executor at our disposal to communicate our instructions to solve the problem. 

Here is the list of instructions: 

1. take the first component of the n-tuple with your left hand; go to instruction 2, 
2. take the next component with the right hand; go to instruction 3, 
3. if the component in the right hand is greater than the component in the left hand, 

throw away the number in the left hand and transfer the component in your right 
hand to the left hand and go to instruction 2 above. If not, go to step 4 below, 

4. throw away the number in your right hand and go to instruction 2. 

The executor has to compare two numbers at a time, transfer a number from 
one hand to the other, choose at a crossroads: from instruction 3 the executor can 
go to instruction 2 or 4. Each instruction or statement translates into an elementary 
operation or choice.
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16.2 Greatest Common Divisor: The Euclidean Algorithm 

We will not give a formal definition of algorithm. We will rather explain some 
examples in order to dwell upon properties and features that an algorithm should 
meet. 

Let us find the greatest common divisor (GCD) of the numbers 210 and 45; the 
computation of the GCD(210, 45) is obtained in two steps: 

First step. We factorize the given numbers into prime factors: 210 = 2 × 3 × 5 
× 7 and 45 = 32 × 5; 
Second step. GCD(210, 45) is equal to the product of the common factors to 210 
and 45 each with the least exponent, GCD(210, 45) = 3 × 5 = 15. 

We describe now a different method to find the GCD(210, 45): 

– First step. Calculate the Euclidean division (Sect. 2.1) 210:45 where the dividend 
is 210 and the divisor is 45. Obtain 210 = 4 × 45 + 30; the quotient is 4 and the 
remainder is 30. 

– Second step. Perform the division of the divisor by the remainder, 45:30. Obtain 
45 = 1 × 30 + 15. The quotient is 1 and the remainder is 15. 

– Third step. Perform the division of the divisor by the remainder, 30:15. Obtain 30 
= 2 × 15 + 0. 

– Fourth step. At the first remainder null, the procedure ends. Obtain the result 
GCD(210, 45) = 15. 

The procedure extends to the search for the GCD(a, b) of any two natural numbers 
a and b and it is known as Euclid’s algorithm for calculating the greatest common 
divisor. 

There are as many different problems as there are the pairs of natural numbers. 
The algorithm for finding GCD(a, b) solves each of these problems by building a 
decreasing sequence of natural numbers, the first of which is the greater between a 
and b, the second is the smaller; the third is the remainder of the division of the first 
by the second; the fourth is the remainder of the division of the second by the third 
and so on. The procedure ends when a division with zero remainder is reached: the 
divisor of this last division is the greatest common divisor of a and b. 

Obviously, if a = b this number is the greatest common divisor of a and b. 
The Euclidean algorithm does not explicitly involve decompositions into prime 

factors, which generally deals with onerous operations, but consists of a list of 
comparison and division statements. This consideration leads us to observe that 
the statements of an algorithm, expressed in natural language or through formulas, 
are made simple and split into elements so that they can be executed regardless of 
the executor. Let us clarify the concept by introducing such kind of simplifications 
or refinements in the Euclidean algorithm, based on the fact that a division can be 
reduced to the execution of successive subtractions. The algorithm is expressed by 
the following list of statements, addressed to a hypothetical performer. 

1. Read the initial data, i. e., the numbers a and b.
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Go to the next statement. 
2. Compare the two numbers just read, i. e., determine if the first is greater than, 

equal to or less than the second. 
Go to the next statement. 

3. If the two numbers are equal each of them gives the required result, that is GCD(a, 
b). 

The procedure ends. Otherwise, go to the next statement. 
4. If the first number is less than the second, swap the two numbers together. 

Go to the next statement. 
5. Subtract the second number from the first and replace the two numbers read with 

the subtrahend and the difference, respectively. 
Go to statement 2. 

After having carried out the 5 statements you go back to the second and then to 
the third, fourth, fifth; and again to the second, the third, etc., until the condition of 
the third statement is fulfilled, that is, until the two numbers are equal. When this 
occurs, the problem is solved and the calculation ends, as required by statement 3. 

The algorithm contains an automatic ending procedure. 
We calculate the GCD(210, 45) by applying the algorithm just described: 

Start 
statement 1: a = 210, b = 45 
statement 2: a ≥ b 
statement 3: a /= b 
statement 4: a ≥ b 
statement 5: 210−45 = 165; a = 45 subtrahend, b = 165 difference 
statement 2: a ≤ b 
statement 4: a = 165, b = 45 
statement 5: a = 45, b = 120 
statement 2: a ≤ b 
statement 4: a = 120, b = 45 
statement 5: a = 45, b = 75 
statement 2: a ≤ b 
statement 4: a = 75, b = 45 
statement 5: a = 45, b = 30 
statement 2: a ≥ b 
statement 4: a = 30, b = 15 
statement 5: a = 15, b = 15 
statement 2: a = b = 15 
statement 3: GCD(210, 45) = 15 
End 

The statements include commands: start, read, compare, swap, go to, subtract, 
replace, end. The meaning of the statement is immediate and simulates a conversa-
tion with the executor. Statement 4 contains an interchange command; statement 5 
contains a replacement command. In the passage from statement 4, a = 120, b = 45
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to statement 5, a = 45, b = 30, the number 45 changes its name from b to a. The  
equalities, for example b = 45, are assignments and must be read from right to left: 
“set 45 in b” or “give the name b to 45”. 

The Euclidean algorithm is detailed. The fundamental operations consist in 
subtracting two numbers, comparing and interchanging them: the problem is frag-
mented into elementary operations. The situation would have been different if we 
had had to communicate to a performer to factorize each given natural number 
into prime numbers; the statements would have been much more complex and the 
communication difficult. 

The above considerations provide the first elements of the concept of algorithm. 
To summarize, an algorithm is a single finite sequence of statements which 

i. acts on a set of initial data. In the case of the example described above, the initial 
data are the natural numbers a and b; 

ii. is made of unambiguous statements; for example, arithmetic operations, compar-
isons, substitutions, jumps to some statement other than the next one in the 
sequence; 

iii. is deterministic: once accomplished a non-final statement, the next statement is 
determined; and if the problem has been solved, then the algorithm provides an 
automatic ending procedure; 

iv. is a procedure for solving a class of similar problems and not a particular 
problem. 

Let us accept the properties listed above as a plausible approach to the concept 
of algorithm. There remains some margin of ambiguity: for example, it should be 
specified what is meant by “class of similar problems”. However, we understand that 
the GCD example generalizes to a class of similar problems. 

If a performer, a human or a machine, is able to accomplish each of the listed 
statements and communicate us the results of the statements, then we will know how 
to solve the problem, while the performer may not know which problem has been 
solved by the sequence of statements. 

16.3 Regular Subdivision of a Segment 

The parametric equations of the line passing through the points A(x1, y1), B(x2, y2) 
are (see Eqs.  7.3 and 7.4) 

x = x1 + t(x2 − x1), y = y1 + t(y2 − y1) 

t ∈ R. The points A(x1, y1) and B(x2, y2) are determined by the values 0 and 1 of the 
parameter t, respectively. For every t such that 0 < t < 1 there is one and only one point 
P of the segment AB, between A and B and distinct from A and B, whose coordinates 
are (x1 + t (x2−x1), y1 + t (y2−y1)). Vice versa, for each point P belonging to the 
segment AB and distinct from the endpoints, there is one and only one value of t,
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0 <  t < 1, such that P has coordinates (x1 + t (x2−x1), y1 + t (y2 – y1)). Then the 
parametric representation of the segment AB is as follows: 

x = x1 + t(x2 − x1), y = y1 + t(y2 − y1) 

t ∈ [0, 1]. Let us now construct a procedure for subdividing the segment AB into 
10 segments by means of the points P0 = A, P1, P2, …, P9, P10 = B, such that Pi 

follows Pi−1 in the orientation from A to B, for i = 0, 1, …, 10, so that the segments 
P0P1, P1P2, ..., P9P10 are congruent. Let us define the procedure, or algorithm, as 
a regular subdivision of the segment AB. The values of t to find the points P1, P2, 
…, P9, obtained by Thales’ theorem, are 1 10 , 

2 
10 , …,  9 10 , respectively. Therefore, the 

coordinates of the point Pi, i = 0, 1, …, 10, are: 

x1 + 
i 

10 
(x2−x1), y1 + 

i 

10 
(y2−y1) 

For example, let us implement the regular subdivision of the segment with endpoints 
A(4, 2), B(7, 4), having the parametric representation 

x = 4 + 3t, y = 2 + 2t 

t ∈ [0, 1]. Specifically, we have to organize the steps of the procedure, performing a 
list of the operations, or statements in order to determine step by step the points P0 
= A, P1, P2, …, P9, P10 = B. The coordinates of the point Pi are

(
4 + 3 i 10 , 2 + 2 i 10

)
, 

i = 0, 1, …, 10. 
A list of statements follows. 

Start 

1. Write the parametric equations of segment AB. 
Go to statement 2 below. 

2. Activate the index or counter i. Set i = 0. The point P0 = A(4, 2) is obtained. 
Go to statement 3 below. 

3. Set i = 1. The point P1
(
4 + 3 

10 , 2 + 2 
10

)
is obtained. 

Go to statement 4. 
4. Increase the value of counter i by 1, i. e., put i + 1 in place of i. Continue to 

denote the new index value with i. In symbols, apply the statement i ← i + 1, 
which reads “put i + 1 in  i”, or “call i the value i + 1”. (To the left of ← there 
is the name of the quantity on the right). 

The point
(
4 + 3 i 10 , 2 + 2 i 10

)
is obtained. 

Go to statement 5. 
5. If i > 10, execute statement 6. Otherwise, go to statement 4. 
6. The problem is solved having found the points P0 = A, P1, P2, …, P9, P10 = B. 

Execute statement 7. 
7. End
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In the statement 3 the point P1 is found; then go to execute statement 4, where i 
= 2: then P2

(
46 
10 , 

24 
10

)
is obtained. Then go to the statement 5 wondering if this value 

of i is greater than 10. Not yet. Then go back to the statement 4: now i becomes 3 
and carry out P3

(
49 
10 , 

26 
10

)
. Afterwards go to the statement 5 and then to statement 4, 

and so on, until i = 11. Now, the point P1, P2, …, P9 are got and the procedure ends, 
as commented by statement 6 and required by statement 7. 

The algorithms can be often represented and controlled by means of a block 
diagram that highlights the sequence of the statements. A block diagram is often 
useful whenever an algorithm needs to be translated into a programming language. 
Let now exhibit the block diagram of the algorithm for the regular subdivision of a 
segment into n segments (Fig. 16.1). 

Arrows connecting boxes indicate the statement path. The frames and the 
contained statements are called blocks: the operations and statements are written

Fig. 16.1 Block diagram for the regular subdivision of a segment 
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inside rectangular frames, a diamond indicates any sort of decision, the round 
frames contain reading instructions or the definitions of the initial data or calcu-
lation elements (input) or exit instructions (for example, “print result”). The use of 
the imperative for statement of the type a ← b is effective: “call a the element b”, 
or “set b in a” (see block (4'')). For example, the block (4') contains the instruction 
“call Pi the couple of coordinates (x1 + i (x2 − x1), y1 + i (y2 − y1))”. The statement 
of the block (4'') allows the iteration, i. e., the reoccurrence of the calculation. 

Remark 16.1 The symbol ← was introduced to describe the actions of the elemen-
tary operations in the procedure of reduction of the system of linear equations 
(Chap. 11). Besides, the symbol = in the statements of Euclidean algorithm plays 
the role of  ←. 

16.4 Gauss Elimination 

Gauss elimination is an algorithm for examining and solving systems of linear equa-
tions. The algorithm transforms a system of linear equations into a particular reduced 
system (Sect. 11.3). 

An example may clarify how the algorithm works. 
Consider the system of linear equations: 

E1 : x + y + z = 1 
E2 : 2x + 3y − z = 2 
E3 : x − y − z = 3 

(16.1) 

Multiply equation E1 by 2, the coefficient of x in equation E2, and subtract equation 
E2 from equation 2E1, then replace equation 2E1−E2 with E2 (i. e., E2 ← 2E1−E2, 
that means “call E2 the equation 2E1−E2); finally replace E1−E3 with E3 (E3 ← E1 

− E3). Obtain the system, equivalent to (16.1): 

E1 : x + y + z = 1 
E2 : −y + 3z = 0 
E3 : 2y + 2z = −2 

(16.2) 

Then in (16.2) do  E3 ← 2E2 + E3 and obtain the following system equivalent to 
(16.1): 

E1 : x + y + z = 1 
E2 : −y + 3z = 0 
E3 : 8z = −2 

(16.3)
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To solve the system (16.3) we first find the value of z in E3: z = −1/4; then we 
proceed by “back substitution”, i. e., we substitute z = −1/4 in E2, and determine the 
value y = −3/4 and finally substitute the values y = −3/4 and z = −1/4 in E1 to find 
x = 1 + 3/4 + 1/4 = 2. So the solution of system (16.1) is the triple (2, −3/4, −1/4). 
(The system (16.3) is called a  triangular system from its matrix of coefficients). 

Let us retrace the above procedure to focus the main objective at any step. To 
make the unknown x disappear in the second and third equations of the system it is 
necessary that the coefficient of x in the first equation is different from 0. The non-
zero coefficient of x in E1 is called the pivot of the first elimination step. Similarly, 
in order to eliminate y from equation E3 in (16.2) it is necessary that the coefficient 
of y in E2 be non-zero (therefore, the coefficient of y in E2 is the pivot of the second 
elimination step; so the pivot of the first step is 1, the pivot of the second step is −1 
= a22 in the system (16.3). 

Let us describe the algorithm in general. Let a system of m linear equations and 
n unknowns x1, x2, …,  xn be given. 

The first step consists in constructing a system, equivalent to the given system, 
such that x1 appears with non-zero coefficient in the first equation. To this aim perform 
the following two operations: 

Operation 1. If necessary, rearrange the equations of the system so that in the first 
equation the first unknown x1 has a non-zero coefficient a11. So  a11 is the pivot of 
the first step in the elimination procedure: 

E1 : a11x1 + a12x2 +  · · ·  +  a1n xn = b1 
E2 : a21x1 + a22x2 +  · · ·  +  a2n xn = b2 

· · ·  
Em : am1x1 + am2x2 +  · · ·  +  amn xn = bm 

(16.4) 

Operation 2. Proceed to eliminate the unknown x1 in all the equations following the 
first. For i = 2, 3, …, m, carry out the substitution: 

Ei ← a11Ei − ai1E1 (16.5) 

or the equivalent substitution: 

Ei ← Ei − di E1 (16.6) 

with di = ai1/a11. Then the system (16.4) is transformed into the equivalent system
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E1 : a11x1 + a12x2 +  · · ·  +  a1 j x j +  · · ·  +  a1n xn = b1 
E2 : 0 + a(1) 

22 x2 +  · · ·  +  a(1) 
2 j x j +  · · ·  +  a(1) 

2n xn = b(1) 
2 

. . .  

Ei : 0 + a(1) 
i2 x2 +  · · ·  +  a(1) 

i j  x j +  · · ·  +  a(1) 
in  xn = b(1) 

i 

. . .  

Em : 0 + a(1) 
m2x2 +  · · ·  +  a(1) 

mj  x j +  · · ·  +  a(1) 
mn xn = b(1) 

m 

(16.7) 

where, by (16.5) and (16.6), 

a(1) 
i j  = ai j  − di a1 j 

b(1) 
i = bi − di b1 

for i = 2, …, m and j = 1, …, n. 
The second step has the objective of building a system, equivalent to the given 

system, such that the coefficients of the unknown x2 in the equations that follow the 
second equation are all zeros. To this aim we consider the subsystem of system (16.7) 
made of the equations E2,…,  Ei,…,  Em, which has fewer unknowns. This subsystem 
is treated similarly to the original system (16.4) by performing the operations 1. and 
2., in which x2 plays the role of x1 and the first equation of the subsystem takes the 
place of E1. 

Remark 16.2 It may happen that all the coefficients a22 
(1),…,  ai2 

(1),…,  am2 
(1) of the 

unknown x2 in E2,…,  Ei, …,  Em, are null. Then, the second step must not be referred 
to the unknown x2, but to the first of the unknowns following x2 which appear with 
a non-zero coefficient in one of the equations E2, …,  Ei, …,  Em in the system (16.7) 
(the pivot must be chosen among the non-zero coefficients of an unknown xj, j = 3, 
…, n). For example, the circumstance occurs in the system. 

x + 3y − z = 1 
2x + 6y + z = 0 
3x + 9y − 2z = 2 

(16.8) 

where eliminating x in the second and third equation, by means of (16.5): E2 ← 
E2−2 E1, E3 ← E3−3 E1, the system, equivalent to (16.8), is obtained: 

x + 3y − z = 1 
3z = −2 
z = −1 

Then the second step consists in eliminating z from the third equation, applying 
the substitution E3 ← 3E3−E2; thus the system
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x + 3y − z = 1 
3z = −2 
0 = −1 

is incompatible along with the equivalent system (16.8). The algorithm ends. 
At the k-th step the unknown xk should be eliminated from the equations following 

the k-th equation. Proceed similarly: 
The equations are rearranged from the k-th to the last, so as to call Ek the equation 

with the non-zero coefficient akk 
(k−1) of the unknown xk . The coefficient akk 

(k−1) 

becomes the pivot of the k-th step. If a non-zero pivot among the coefficients of xk 

does not exists, search among the coefficients of xk+1, and so on (see Remark 16.2). 
If a non-zero coefficient can become the pivot akk 

(k−1), then proceed to the oper-
ation Ei ← Ei – di 

(k−1)Ek , for  i = k + 1, …, m, where di 
(k−1) = aik 

(k−1)/akk 
(k−1). 

Then the coefficients of the subsystem Ek+1, ..., Em, when the unknown xk has been 
eliminated, are 

a(k) 
i j  = a(k−1) 

i j  − d(k−1) 
k j , b(k) 

i = b(k−1) 
i − d(k−1) 

i b(k−1) 
k 

i = k + 1, . . . ,  m; j = k, . . . ,  n. 

Remark 16.3 If during the procedure the incompatible equation 0x1 + 0x2 + … 
+ 0xn = b, b /= 0, is obtained, then the given system is incompatible (see Remark 
16.2). 

Remark 16.4 If the identical equation 0x1 + 0x2 + … + 0xn = 0 is obtained, then 
it is canceled. 

16.5 Conclusion 

The reader has certainly studied various algorithms since primary school. Euclid built 
the oldest algorithm in Western culture to calculate the greatest common divisor 
of two natural numbers. Algorithms are used in programming and constitute the 
dynamics of the software and the net itself. The theory of algorithms goes to the 
deepest foundations of mathematics and technology. 
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Chapter 17 
Elementary Functions 

17.1 Introduction 

We introduced some concepts concerning real-valued functions of a single real vari-
able. We also dealt with the linear function (Chap. 7) and some circular functions 
(Chap. 8). Let us now consider some properties of the real-valued functions, such as 
monotonicity and invertibility, and define other classes of real-valued functions of 
a single real variable: the power, the exponential function and the logarithm which, 
along with the linear and circular functions, are known as elementary functions. Of  
course, we will define the domain, the range of the functions in each class, and the 
basic analytic and geometric properties. 

17.2 Monotonic Functions 

Let f be a real-valued function of a real variable whose domain is a subset A, not 
reduced to a single point. The function f is said to be: 

– increasing in A if f (x1) ≤ f (x2) whenever x1 and x2 belong to A and x1 < x2; 
– decreasing in A if f (x1) ≥ f (x2) whenever x1 and x2 belong to A and x1 < x2. 

A real-valued function of a real variable is called a monotonic function in A if it 
is increasing in A or decreasing in A. 

In particular, the function f is called strictly increasing in A if f (x1) <  f (x2) 
whenever x1 < x2; the function f is called strictly decreasing in A if f (x1) >  f (x2) 
whenever x1 < x2. 

For example, the absolute value function f (x) = |x| is strictly decreasing in (−∞, 
0] and strictly increasing in [0, +∞). 

The function f is called strictly monotonic in A if it is strictly increasing or strictly 
decreasing in A (Fig. 17.1).

Example 17.1 Let us verify that the linear function f (x) = 2x−3 is strictly increasing.
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Fig. 17.1 Graphs of monotonic functions: f increasing, g decreasing, h strictly increasing, i strictly 
decreasing

Indeed, if x1 < x2, then f (x1) = 2x1−3 < 2x2−3 = f (x2). In general, the linear 
function f (x) = kx + n is strictly increasing if k > 0, strictly decreasing if k < 0; the  
constant function f (x) = n is increasing and decreasing in R. Therefore, the linear 
function is monotonic in R. 

17.3 Invertible Functions and Inverse Functions 

We will state some connections between invertible and strict monotonic functions 
(Sects. 5 and 7.7). The following theorem applies: 

Theorem 17.1 Let f : A → B be a real-valued function whose domain is the subset 
A ⊆ R and whose range is B. If f is strictly monotonic in A, then f is invertible in A. 

Proof We show that for every y ∈ B there exists one and only one x ∈ A such that 
f (x) = y. Indeed, there exists an x ∈ A such that f (x) = y since B is the range of 
f ; moreover, as f is strictly monotonic there are no two distinct x1 and x2 such that 
f (x1) = y and f (x2) = y. ⃞

The following statements can be easily proved. 

Theorem 17.2 A strictly increasing (decreasing) function is invertible and its inverse 
is strictly increasing (decreasing). 

Theorem 17.3 A composite function of invertible functions is invertible. 

17.4 The Power 

Let us get in touch with some known notions. When it comes to natural numbers, 
repeated multiplication by the same number is the operation of raising to a power: 
the symbol 26 means “2 raised to the 6th power”, and denotes the operation 2 × 2 × 
2 × 2 × 2 × 2 = 64. The word “raised” is usually omitted. Therefore, we write: 26 

= 2 × 2 × 2 × 2 × 2 × 2 = 64, 143 = 1, 33 = 3 × 3 × 3 = 27.
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Operations 26, 143, 33 are called powers. The expression 32 also reads: the square 
of 3, the expression 63: the cube of 6. The power 26 has base 2 and exponent 6, the 
power (−3)4 has base −3 and exponent 4. The power with negative integer base and 
natural exponent is defined. For example, (−3)3 = (−3) × (−3) × (−3) = −27. 

We will give a meaning to the powers whose exponent is a natural, relative integer, 
rational and a real number. 

17.4.1 Power with Natural Exponent 

Whatever the natural number n is, the function of the variable x 

f (x) = xn 

called the power function with natural (or positive integer) exponent n, or the  n-th 
power of x, has domain R and its value xn, for each x ∈ R, is calculated by means of 
the multiplications: 

xn = x × x × . . .  × x 

where the factor x occurs n > 1 times at the right-hand side; if n = 1, by definition 
x1 = x and the power reduces to the identical function (Sect. 7.3.2). 

Let us compute, for example, the following powers with natural exponent: 

0n = 0; 71 = 7; (−3)2 = (−3) × (−3) = 9; (0.5)2 = 0.5 × 0.5 = 0.25; 
32 = 3 × 3 = 9; −32 = −(3 × 3) = −9; (−0.5)2 = (−0.5) × (−0.5) = 0.25; 
− 33 = −(

33
) = −27; (−3)3 = (−3) × (−3) × (−3) = −27 

The following properties of the range of xn, n ∈ N, hold: 

– if n is even, then the number xn is non-negative, for every x ∈ R, 
– if n is odd and x is positive, then xn is positive; 
– if n is odd and x is negative, then xn is negative. 

Therefore, the range of xn depends on being n even or odd. Since 0n = 0, for every 
natural n, the range of xn is [0, +∞), if n is even; the range of xn is R, if  n is odd. 

The symbol R+ denotes the set of non-negative real numbers, namely R+ = 
[0, +∞) = {x ∈ R : x ≥ 0}. 

Let us state the following propositions. 

Proposition 17.1 The function xn is strictly increasing in R+. 

Let’s verify that the function x2 is strictly increasing in R+; indeed, if 0 ≤ x1 < x2, 
multiplying the inequality x1 < x2 first by x1 and afterwards by x2 we get:
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x2 1 ≤ x1x2, x1x2 < x2 2 

Therefore, 

x2 1 ≤ x2 2 

On this basis the proposition may be proved by induction on the exponent n. 

Proposition 17.2 If n is even, xn is strictly decreasing in (−∞, 0] (Fig. 17.2). 

Let us calculate the coordinates of some points of the graph of f (x) = x2: 

f (0) = 0 
f
(
1 
2

) = (
1 
2

)2 = 1 4 
f (1) = 12 = 1 
f (2) = 22 = 4 
f
(− 1 

2

) = (− 1 
2

)2 = 1 4 
f (−1) = (−1)2 = 1 
f (−2) = (−2)2 = 4 

The graph of f (x) = x2 is a curve named parabola. 

Proposition 17.3 If n is odd, xn is strictly increasing in R (Fig. 17.3).

Let us calculate the coordinates of some points of the graph of f (x) = x3 (Fig. 17.3):

Fig. 17.2 Graph of f (x) = 
x2 
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Fig. 17.3 Graphs of the 
powers x, x2 and x3

f (0) = 0 
f
(
1 
2

) = (
1 
2

)3 = 1 8 
f (1) = 13 = 1 
f (2) = 23 = 8 
f
(− 1 

2

) = (− 1 
2

)3 = − 1 
8 

f (−1) = (−1)3 = −1 
f (−2) = (−2)3 = −8 

For every x ∈ R, x2 = (−x)2, −x3 = (−x)3. 

17.4.2 Power with Non-Zero Integer Exponent 

1. Power with natural exponent 

Further properties of the power with natural exponent are shown by the following 
identities. 

Proposition 17.4 For every real numbers x1 and x2, the following equality holds: 

(x1x2)
n = xn 1 x

n 
2 

Proposition 17.5 For every natural numbers m and n and the real number x we have: 

xm xn = xm+n

(
xm

)n = xmn
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Proposition 17.6 If m < n, and x > 1, then xm < xn, while, if  m < n and 0 < x < 1,  
then xm > xn. 

Some intuitive considerations are worth noticing. If 0 < x < 1, as  n increases the 
graph curve of xn tends to flatten on the interval [0, 1], whereas, if x > 1, the curve 
becomes increasingly step (Fig. 17.3). 

2. Power with negative integer exponent 

If n is a positive integer, for every non-zero real number x, the power x−n is defined 
by: 

x−n = 
1 

xn 

The function f defined in R − {0}, which associates the real number x−n to x ∈ 
R − {0} is called the power with negative integer exponent. The function f (x) = x−n 

with natural odd n (Fig. 17.4), has domain R–{0} and range R–{0}. The function 
f (x) = x−n, with even natural n, has domain R–{0} and range (0, +∞) (Fig. 17.5). 

The coordinates of some points of the graph of f (x) = x–1 follow: 

f
(
1 
2

) = 2 
f (1) = 1 
f (2) = 1 2 

f
(− 1 

2

) = −2 
f (−1) = −1 
f (−2) = − 1 

2 

The graph of the function f (x) = x–1 is a curve called equilateral hyperbola 
(Fig. 17.4). 

The coordinates of some points of the graph of f (x) = 1 
x2 follow:

Fig. 17.4 The graph of 
f (x) = 1 x
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Fig. 17.5 The graph of 
f (x) = 1 

x2

f
(
1 
2

) = 4 
f (1) = 1 
f (2) = 1 4 
f
(− 1 

2

) = 4 
f (−1) = 1 
f (−2) = − 1 

4 

The graph of the function f (x) = x–2 is drawn in Fig. 17.5. 

3. Further properties of the power 

For every non-null real numbers x, x1, x2 and integers p, q the following identities 
hold: 

(x1x2)
p = x p 1 x 

p 
2 

x pxq = x p+q 

(x p)q = x pq 
x−p = 1 

x p , x /= 0 

The power with exponent −n, for every n ∈ N, is strictly decreasing in (0, +∞). 
If n is even (odd) the power is strictly increasing (strictly decreasing) in (−∞, 0)  
(Figs. 17.4 and 17.5). 

17.4.3 Null Exponent 

Whatever the non-zero real number x is, by definition it is assumed x0 = 1. For 
reasons that will be clarified, it is not convenient to attribute meaning to the symbol 
00.
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Therefore, the power function with exponent 0 is the constant function with 
domain R–{0} and range {1}. 

17.5 Even Functions, Odd Functions 

The graph of a real-valued function of a real variable sometimes has symmetry 
properties to take into account. 

Definition 17.1 The function f : A → R is said to be an even function if, for every x 
∈ A there exists −x ∈ A such that f (x) = f (−x); the function f is said to be an odd 
function if, for every x ∈ A there exists −x ∈ A such that − f (x) = f (−x). 

As a consequence of the definition, if the point (x, y) = (x, f (x)) belongs to the 
graph of an even function f , then also the point (−x, y) = (−x, f (x)) belongs to the 
graph of f ; therefore, the graph of an even function is symmetrical with respect to 
the y axis (Sect. 7.1) (Fig. 17.6). 

Similarly, if the point (x, y) = (x, f (x)) belongs to the graph of an odd function f , 
then also the point (−x, −y) = (−x, −f (x)) = (−x, f (−x)) belongs to the graph of f ; 
therefore, the graph of an odd function is symmetrical with respect to the origin of 
the coordinates (Sect. 7.1.1). 

Examples The function cosine (Sect. 8.1.3) is even, the functions sine and tangent 
are odd. 

If n is an even positive integer, then the function f (x) = xn is even (Fig. 17.6); if 
n is odd, the function f (x) = xn is odd (Fig. 17.7).

If n is an even positive integer, the function f (x) = x−n is even (Fig. 17.5); if n is 
odd, the function f (x) = x−n is odd (Fig. 17.4).

Fig. 17.6 Even functions. 
The graphs of f(x) = xn, n  = 
2, 4 
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Fig. 17.7 Odd functions. 
The graphs of f(x) = xn, n  = 
1, 3, 5

Remark 17.1 For m and n even positive integers and m < n, if  x ∈ (−1, 1) then xm 

> xn; for  x not belonging to the interval [−1, 1], xm < xn (Fig. 17.6). 

Remark 17.2 For m and n odd positive integers and m < n, if  x ∈ (0, 1) then xm > 
xn; if  x > 1, then xm < xn (Fig. 17.7). 

17.6 The Root 

Definition 17.2 For every natural number n, the  root function of index n, or the  n-th 
root of x, denoted n

√
x , is defined as the function which has domain R and range R 

if n is odd, has domain [0, +∞) and range [0, +∞) if n is even and whose value is 
calculated in this way: 

– if n is even, for each x belonging to [0, +∞), the symbol n
√
x denotes the unique 

nonnegative real number whose n-th power is equal to x; 
– if n is odd, for each real number x the symbol n

√
x denotes the unique real number 

whose n-th power is equal to x. 

Given the function n
√
x , the symbol n

√ is called the radical symbol and the number 
x underneath the radical symbol is called radicand. 

Remark 17.3 If n is even, the equation xn = a, with positive real a, admits in addition 
to the positive solution n

√
x , called the n-th arithmetic root of the positive real number 

a, also the negative solution − n
√
x . 

The root of index 2 is also called the square root and is indicated by omitting to 
write the index, i.e.,

√
x = 2

√
x ; the root of index 3, 3

√
x, is called the cube root. 

Whatever the natural numbers m and n are, the following equalities hold:
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Fig. 17.8 Graphs of 
x,

√
x, 3

√
x . If  0 < x < 1, 

then x <
√
x < 3

√
x ; if  

x > 1, then 3
√
x <

√
x < x

(
n
√
x
)m = n

√
xm 

m
√

n
√
x = mn

√
x 

The two equalities above are valid for any real x such that both sides have meaning. 
The equality 

n
√
x = nm

√
xm 

applies only if x ≥ 0. Moreover, for every natural n, the following equality holds: 

n
√
xy  = n

√
x n
√
y 

whatever x, y ∈ R, such that both sides have meaning. Furthermore, if m and n are 
natural numbers and m < n, if  0 < x < 1, then m

√
x < n

√
x; if x > 1, then n

√
x < m

√
x 

(Fig. 17.8). 
If x > 0 and r = m n is a rational number with integer m and natural n, it is assumed 

by definition, 

xr = x 
m 
n = n

√
xm (17.1) 

In particular 

x 
1 
n = n

√
x 

Equation (17.1) defines the power function with rational exponent. 

Remark 17.4 The rational number r may be represented in infinite ways by means of 
a fraction. It is proved that definition (17.1) is independent of the particular fractional 
representation of r. 

If f and g(x) = xn, then f (g(x)) = n
√
g(x) = n

√
xn = x n n = x . Also:
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Fig. 17.9 Graphs of x, x2 

and
√
x 

g( f (x)) = g
(

n
√
x
) =

(
x 

1 
n

)n = x . 

Thus, for every x and for every natural n, such that the function n
√
x is defined, 

the functions n
√
x and xn are inverse of each other (Sect. 7.6). The graphs of x, x2, √

x are drawn in (Fig. 17.9). 

17.6.1 Further Properties of the Power with Rational 
Exponent 

For every real positive a, whatever the rational numbers r and s are, the following 
equalities hold: 

ar+s = ar as
(
ar

)s = ars  

a−r = 
1 

ar 

If a is a real number greater than 1 and r and s are two rational numbers, if r > 
s, then ar > as . If the positive real number a is less than 1 and r and s are rational 
numbers with r > s, then ar < as . 

17.7 Power with Real Exponent 

In (Sect. 17.6) the power function with rational exponent r = m n has been defined:
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ar = a 
m 
n = n

√
am 

Let a be a positive real number. For the completeness of the real field (Sect. 6.7) 
the symbol ar with irrational r has meaning. To get an idea of the construction of the 
number ar , let us show an example. 

The approximation procedure (Sect. 6.7) of the  value of
√
2, as the element of 

separation of the sets 

A
(√

2
)

= 1; 1.4; 1.41; 1.414; 1.4142; . . .  

B
(√

2
)

= 2; 1.5; 1.42; 1.415; 1.4143; . . .  

is adopted to construct the number a 
√
2. Indeed, the two sets: 

A =
{
a1, a 14 10 , a 141 100 , a 1414 1000 , a 14142 10000 , .  .  .

}

B =
{
a2, a 15 10 , a 142 100 , a 1415 1000 , a 14143 10000 , .  .  .

}

are separate and contiguous (Sect. 6.9) and a 
√
2 is the element of separation of the 

sets A and B. 

Definition 17.3. Let γ be a non-integer real number. Then the function of x. 

xγ 

which has domain [0, +∞) if  γ is positive and has domain (0, +∞) if  γ is negative, 
is called power function with non-integer real exponent. The  value  xγ is calculated 
as the element of separation of two contiguous classes like described above. 

For every positive real x and for γ /= 0, it is assumed: 

x−γ = 
1 

xγ 

17.8 The Exponential Function 

The expression ar gives rise to two different classes of functions, depending on 
whether the independent variable is the base or the exponent. In the first case, already 
(Sects. 17.4.1 to 17.5) studied, the power function is defined. 

Let us now consider the real-valued function f of the real variable x 

f (x) = ax
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with real positive a different from 1, called the exponential function with base a. As  
indicated in the (Sect. 17.7), the domain of the exponential function is R and the 
range is the set of the positive real numbers. 

17.8.1 Properties of the Exponential Function 

If a and b are positive real numbers different from 1, the following identities hold: 

a0 = 1 
ax+y = axay 

a−x = 1 
ax 

ax−y = ax ay 

(ax )y = axy  

(ab)x = axbx 

whatever the real numbers x and y are. 
We illustrate with examples the graphs of ax in the cases: a > 1 and 0 < a < 1.  

i. a > 1. For example, let a = 2. The graph of f (x) = 2x is the set of the points (x, 
2x), x ∈ R. 

Let us get some points of the graph: 

f (0) = 20 = 1 
f
(
1 
2

) = 2 1 2 = √
2 

f (1) = 2 
f (2) = 22 
f (−1) = 1 2 
f (−2) = 2−2 = 1 4 
f (−3) = 1 8 

The graph of 2x is drawn in Fig. 17.10.
If a > 1, the exponential function ax is strictly increasing in R. Namely, 

if a > 1and p < q, then a p < aq . 

In particular, 

a−1 < a0 = 1 < a < a2 

For example, as ax is strictly increasing in R, the solutions of the inequality 

2x < 23
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Fig. 17.10 Graph of the 
exponential function f (x) = 
2x

are the real numbers x < 3. 

ii. 0 < a < 1. For example, let a = 1 
2 . The graph of f (x) =

(
1 
2

)x 
is the set of 

points
(
x,

(
1 
2

)x)
, x ∈ R. Let us get some points of the graph: 

f (0) = (
1 
2

)0 = 1 
f
(
1 
2

) = (
1 
2

) 1 
2 = 1 √

2 

f (1) = 1 2 
f (2) = (

1 
2

)2 = 1 4 
f (−1) = (

1 
2

)−1 = 2 
f (−2) = (

1 
2

)−2 = 4 
f (−3) = 8 

The graph of
(
1 
2

)x 
is drawn in Fig. 17.11.

If 0 < a < 1, the exponential function ax is strictly decreasing in R. This  
means: 

if 0 < a < 1 and p < q, then a p > aq 

In particular, 

a−1 > a0 = 1 > a > a2 

If we want to find the solutions of the inequality

(
1 

2

)x 

<

(
1 

2

)3
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Fig. 17.11 Graph of the 
exponential function

( 1 
2

)x

let us just consider that the function
(
1 
2

)x 
is strictly decreasing in R to conclude 

that the solutions of the inequality are the real numbers x > 3.  
For every a > 0 and a /= 1, the graph of the exponential function f (x) = ax 

contains the point (0, a0) = (0, 1). 

17.8.2 The Number of Napier 

John Napier (1550–1617) was a Scottish mathematician. Napier’s number is an 
irrational number denoted by the letter e, whose first digits are 

e = 2.7182818284 . . .  

The exponential function with base e, namely the function ex, is simply called the 
exponential function and is also denoted by the symbol exp(x). 

Remark 17.5 Famous numbers. In the interval (1, 2) the irrational number
√
2 had 

long been found. Since ancient times, π had found its place in the interval (3, 4). A 
famous number was therefore expected in the interval (2, 3). This eventually came: 
the number e, of which we will learn about later. 

17.9 The Logarithm 

We have seen that the exponential function ax is strictly increasing in R if a > 1, and 
is strictly decreasing in R if 0 < a < 1. In each of the two cases then the exponential 
function is invertible.
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The inverse function of the exponential function with base a is called the loga-
rithmic function or, simply, logarithm to the base a. The domain of the logarithm 
function is the set of positive real numbers (0, +∞), and the range is R. For each x 
∈ (0, +∞), the logarithm to the base a of x, is denoted 

loga x 

The variable x is called the argument of the logarithm. The number logax, which 
is the value on x of the function logarithm to the base a, is still called the logarithm 
to the base a of x. 

The inverse of the exponential function ex, being e the number of Napier, is called 
logarithm function to the base e, or,  simply,  logarithm and is denoted logx, or lnx, 
called, along with its value, the natural logarithm of x. 

The graph of logax is symmetrical of the graph of y = ax with respect to the 
bisector of the first and third quadrant (Sect. 7.7). 

If a > 1, the logarithm function to the base a is strictly increasing in (0, +∞). 
This means that, if a > 1 and p < q, then loga p < loga q (Fig. 17.12). In particular, 

0 = loga 1 < loga 2 

Let us solve the inequality: loga x < loga 3 with a > 1, in the unknown x. Since 
logax is strictly increasing, the solutions x are such that: 0 < x < 3. 

If 0 < a < 1, the logarithm to the base a is strictly decreasing in R. This means 
that if p < q, then loga p > loga q (Fig. 17.12). In particular, 0 = loga1 > loga2. 

Let us solve the inequality: loga x < loga 3 with 0 < a < 1, in the unknown x. 
Since logax is strictly decreasing, the set of the solutions of loga x < loga 3 is {x ∈ 
R: x > 3}.  

We have stated that the exponential function and the logarithm are inverse of each 
other:

Fig. 17.12 The function 
g(x) = loga x, a > 1, is  
strictly increasing; the 
function f (x) = loga x, 0 <  
a < 1, is strictly decreasing 
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y = f (x) = ax if and only if x = f −1 (y) = loga y (17.2) 

In particular 

y = f (x) = ex if and only if x = f −1 (y) = ln y (17.3) 

For example, if a = 2 the following equivalence holds: 

3 = log2 8 if and only if 8 = 23 

(3 is the logarithm to the base 2 of 8 means that 3 is the exponent to give to 2 to 
obtain 8). Furthermore 

−3 = log2 
1 

8 
if and only if 

1 

8 
= 2−3 

Propositions (17.2) and (17.3) imply:  

aloga x = x, eln x = x 

for every x > 0. 
The following property holds: 

1. loga 1 = 0, for every a > 0 and a /= 1, 
For every positive x, x1 and x2, operations within logarithm arguments apply: 

2. loga(x1 x2) = logax1 + logax2. 

3. 
loga 

x1 
x2 

= loga x1− loga x2 

loga 
1 

x 
= −  loga x 

4. for every positive x, for every h in R and a, b positive and different from 1, the 
equalities hold: 

loga x
h = h loga x (17.4) 

loga a
x = x ln ex = x 

logb x = 
loga x 

loga b 
(17.5) 

5. 
ak loga x = xk ek ln x = xk 

ln ex = x 
Equation (17.5) is called logarithm change of base formula.
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Applying properties 1 to 4 and (17.4) evaluate: 

log2 8
−1 = −  log2 8 = −  log2 23 = −3 log2 2 = −3 

log2(8 × 32 × 64) = log2 8 + log2 32 + log2 64 = 3 + 5 + 6 = 14 
log4

5
√
64 = 1 5 log4 64 = 3 5 

ln e7 = 7 

17.10 Conclusion 

In this chapter we have introduced some noteworthy properties of the real-valued 
functions of a real variable. In particular, we have studied the power, exponential and 
logarithm functions. In Chap. 8 the sine, cosine and tangent functions were studied. 
The mentioned functions belong to the class of elementary functions. There are other 
functions named elementary. They are the inverse functions of the circular functions, 
that we will see below. 

17.11 Exercises 

1. Find the domain of the following functions and determine the values y = f (x) 
such that y = 0. 

(a) f (x) = 8 − x3 Ans. (a) R; f (2) = 0 
(b) f (x) = x−1 

x+2 Ans. (b)R; f (1) = 0 
(c) f (x) = 1 

x2+1 Ans. (c)R; f (x) >  0, ∀x ∈ R 
(d) f (x) = √

x2−4 Ans. (d) (−∞, −2] ∪ [2, +∞); f (−2) = 
0, f (2) = 0 

(e) f (x) = 
√−7+x Ans. (e)[7, +∞); f (7) = 0 

2. Find the domain of the function f (x) = ln x+2 
x−3 

Solution The argument of logarithm is positive: x+2 
x−3 > 0 This implies: 

x > −2 and x > 3 or  x < −2 and x < 3 

Then either x > 3 or  x < −2. Thus, Dom( f ) = (−∞, −2) ∪ (3, +∞) 
3. Find the domain of the function: 

f (x) = 
1 

1 − 2x 

Solution The denominator must be non-null: 2x /= 1. Then: Dom(f ) = R–{0}. 
4. Find the inverse of the functions: 

a. The function f (x) = 2x+1 
3x−1 is defined in the set R −

{
1 
3

}
.
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Let us consider the equation with the unknown x: 

y = 
2x + 1 
3x − 1 

Solving for x we obtain: 

x = 
y + 1 
3y − 2 

. (17.6) 

Then, for every y /= 2 
3 Eq. (17.6) admits a unique solution, while if y =

2 
3 it is incompatible. This means that the range of f is R − {

2 
3

}
and f is 

invertible and its inverse is 

f −1 : y ∈ R −
(
2 

3

)
→ 

y + 1 
3y − 2 

b. y = f (x) = x − 3 Ans. x = y − 7 
c. y = 5x − 7 Ans. x = 1 5 y + 7 5 
d. y = 2x+1 Ans. x + 1 = log2 y ⇔ x = −1 + log2 y 
e. y = ln(x − 1) Ans. x − 1 = ey ⇔ x = 1 + ey 

5. Find the domain of the function 

f (x) = 
6 
√
x + 1 + 7 

√
4 − x 

x2 − 7x + 6 

By Definition 17.2, since the indices of the roots of
√
x + 1 and

√
4 − x are 

even and the denominator is null if and only if x = 1 or  x = 6 (Sect. 12.1), 
the domain of f (x) is the set of the real numbers x that are the solutions of the 
system of inequalities: 

x ≥ −1 
x ≤ 4 
x /= 1 and /= 6 

Therefore, the domain of f (x) the  set  {x ∈ R : −1 ≤ x < 1, 1 < x ≤ 4}. 
6. Find the domain of the function 

f (x) =
3
√
x + 3 

1 − √
x + 2 

By definition 17.2 we have x > −2 and as 1− 
√
x + 2 /= 0 if and only if x

/=−1, the domain of f (x) is the  set  {x ∈ R : −2 < x < −1, −1 < x < +∞}.
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7. Solve the exponential equation: 

62−x × 3x+1 = 864 

By the properties of the exponential function (Sect. 17.8), the equation may 
be written as: 

62 

6x 
× 3x × 3 = 864 

Then 

3x 

6x 
× 62 × 3 = 864 

or
(
3 

6

)x 

× 62 × 3 = 864 

i.e.
(
1 

2

)x 

× 108 = 864 

and
(
1 

2

)x 

= 8 

Hence, x = −3. 
8. Solve the exponential equation: 

32x + 3x − 6 = 0 (17.7) 

Let us put 

y = 3x (17.8) 

to obtain the equation y2 + y−6 = 0 whose solution are: y1 = −3 and y2 = 2. 
By (17.8) we get: −3 = 3x that does not yield any solution of (17.7), and 2 = 
3x that admits the solution x = log32. 

9. Solve the logarithmic equation: 

ln
(
x2 + 1

) = ln(6x − 6) (17.9)
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Observe that the necessary condition for the Eq. (17.9) to be compatible is 
that the equation 

x2 + 1 = 6x − 6, i.e., the equation x2 − 6x + 5 = 0 (17.10) 

be compatible. The solutions of Eq. (17.10) are  x1 = 1 and x2 = 5, but only x2 
is acceptable since the logarithm is not defined at 0 (indeed, (6x–6)x = 1 = 0). 
Therefore, the Eq. (17.9) is compatible and has the unique solution x1 = 1. 

10. Solve the logarithmic equation: 

ln
(
x2 + 1

) = ln(6x − 7) 

The equation x2 + 1 = 6x − 7, i.e., x2 − 6x + 8 = 0, has solutions x1 = 
2 and x2 = 4, that are both acceptable. 
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Chapter 18 
Limits 

18.1 Introduction 

The concepts of accumulation point and limit are basic. The idea of movement is 
introduced. In fact, we observed (Sect. 6.6) that if a is an accumulation point of 
the numerical set A, every neighborhood of a contains infinite points of A. This 
infinite set of points is being formed by successive choices, each of which is made 
by ascertaining that: 

– in a neighborhood I ' of a there exists a point a' of A and a' is different from a, 
– in a neighborhood I '' of a properly contained in I ' there exists a point a'' of A and 

a'' is different from a and a', and so on. 

The way of narrowing, approaching, accumulating the points a', a'', …, near a 
given point a, suggests the idea of movement. 

18.2 Definition 

In Sect. 6.6 the extended set of real numbers R∗ = R ∪ {−∞, +∞} was introduced. 
The elements +∞ and −∞ are called points at infinity of R*. In Sect. 6.5 the 
notions of neighborhood of a point a of R and neighborhood of +∞ and −∞ have 
been introduced. Moreover, the elements +∞ and −∞, which belong to R*, are 
accumulation points of R that do not belong to R. 

Let f be a real-valued function of a real variable whose domain is the set 
Dom( f ) = A ⊆ R. Let  c be an accumulation point of A belonging to the set 
R*. The behavior of f in a neighborhood of c allows to introduce the concept of limit 
of the function f as x approaches c. 

Definition 18.1 [Definition of limit]. Let f be a real-valued function of a real variable 
having domain Dom(f ) = A ⊆ R and let c ∈ R∗ be an accumulation point of A. The 
element ℓ∈R* is called limit of the function f as x approaches (or tends to) c, if for
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https://doi.org/10.1007/978-3-031-20549-1_18 

291

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20549-1_18&domain=pdf
https://doi.org/10.1007/978-3-031-20549-1_18


292 18 Limits

every neighborhood J of ℓ there exists a neighborhood I(c) of  c, such that f (x)∈ J, 
whenever x /= c and x ∈ Dom(f ) ∩ I(c). Then we write 

lim 
x→c 

f (x) = ℓ (18.1) 

An expression equivalent to (18.1) is “f (x) → ℓ as x → c” (f (x) approaches ℓ as x 
approaches c) that stresses the relation between the two movements x → c and f (x) 
→ ℓ. 

Remark 18.1 The definition of limit does not require that c belongs to Dom( f ) and 
even though c∈ Dom( f ) it is not required f (c) ∈ J. 

If ℓ∈R and c ∈ R*, then the function f is said to have finite limit ℓ as x approaches 
c, or  f converges to ℓ as x approaches c. 

If c ∈ R* and lim 
x→c 

f (x) = +∞  (lim 
x→c 

f (x) = −∞), then f is said to positively 

(negatively) diverge; also, f is said to be positively (negatively) divergent as x → c. 
If f satisfies the definition of limit as x tends to c ∈ R*, then the function is said 

to be regular at c. Other possible ways to convey the concept of the regularity of f 
at c are: f is regular if it is convergent or divergent, positively or negatively, as x → 
c; or  f is regular if and only if it is endowed with limit at c. A regular function f at c 
is said to admit limit at c. 

If ℓ and c belong to R, the neighborhood J may be replaced with a suitable 
neighborhood of radius ε > 0, i.e., (ℓ−ε, ℓ + ε), and centered on ℓ; hence, Definition 
18.1 may be restated as follows: 

Definition 18.2 The number ℓ ∈ R is called limit of f (x) as  x approaches c ∈ R, 
written 

lim 
x→c 

f (x) = ℓ

if for every positive real number ε there exists a neighborhood I(c) of  c, such that

ℓ − ε <  f (x) < ℓ + ε (18.2) 

for every x ∈ I(c) ∩ Dom( f ), x /= c. 

Let us remark that by (6.15) the inequalities (18.2) assume the equivalent form: 

| f (x) − ℓ| < ε  

So the definition of limit when ℓ∈R and c ∈ R may be reformulated in this way: 
the number ℓ ∈ R is called limit of f (x) as  x → c ∈ R, written lim 

x→c 
f (x) =, if for any 

ε > 0 a positive number δ exists such that | f (x)−ℓ| < ε  , whenever 0 < |x −c| < d. 

Remark 18.2 We observe that if the function f admits finite limit ℓ as x approaches 
the point c ∈ R, only the values taken by f at the points in a neighborhood of c, but
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different from c, contribute to the determination of the limit ℓ of f as x approaches c. 
Therefore, if c belongs to the domain of f , the  value  f (c) and the limit ℓ are numbers 
completely independent of each other. 

18.2.1 Specific Applications of Definition 18.1 

Recall (Sect. 6.6.1) that a left neighborhood of c ∈R is a half-open interval (a, c], a < 
c, and a right neighborhood of c is a half-open interval [c, b), c < b. We denote by I−(c) 
and I+(c) a left neighborhood and a right neighborhood of the point c, respectively. 
Evidently, the union I−(c) ∪ I+(c) is a neighborhood of c. 

Let us comment on specific applications of Definition 18.1. 

(a) ℓ and c are finite (Fig. 18.1). 

The function f converges to ℓ as x approaches c ∈ R. Consider the graph of a function 
f (Fig. 18.1). For every neighborhood J(ℓ) of ℓ there exists a neighborhood I(c) of  c, 
such that if x /= c and x ∈ Dom( f ) ∩ I(c), then f (x) ∈ J(ℓ). 

Example 18.1 Let us consider the function 

f (x) = 
x + 6 
x − 2 

whose domain is Dom(f ) = R−{2}. The point c = 4 is an accumulation point of 
Dom(f ). Replacing x with 4, we suspect that f (x) will approach 4+6 

4−2 =5. To verify  
our conjecture we need to prove that 

lim 
x→4 

x + 6 
x − 2 

= 5 

By Definition 18.2, the inequalities (18.2) become: 

x + 6 
x − 2 

> 5 − ε (A)

Fig. 18.1 lim 
x→c 

f (x) = ℓ, c  

and ℓ real 
numbers,I(c) = I−(c)∪I+(c) 
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x + 6 
x − 2 

< 5 + ε (B) 

Let us find the solutions of inequality (A). Let us assume that x is in a fairly narrow 
neighborhood of 4 so that the number x−2 is positive. Then, multiplying by x−2 the  
two sides of (A), we get (Sect. 6.4, property 4), (5−ε) (x−2) < x + 6, and 

(5 − ε)x − 10 + 2ε < x + 6 

Then 

(4 − ε)x < 16 − 2ε 

Consider ε small enough, e.g., 4 > ε > 0, to obtain: 

x < 
16 − 2ε 
4 − ε 

Observe that 

16 − 2ε 
4 − ε 

> 
16 − 4ε 
4 − ε 

= 4 

Therefore, the solutions of inequality (A) are the numbers x smaller than a number 
greater than 4, and define a right neighborhood I+(4) of 4 (Fig. 18.2). 

Let us find the solutions of inequality (B). Similarly, we obtain 

x + 6 < (5 + ε)x − 10 − 2ε 

and 

16 + 2ε 
4 + ε 

< x 

Observe that 

16 − 2ε 
4 − ε 

> 
16 − 4ε 
4 − ε 

= 4 

Therefore, the solutions of (B) are the numbers x greater than a number smaller 
than 4, and define a left neighborhood I−(4) of 4 (Fig. 18.2). To summarize, it has

Fig. 18.2 Neighborhood of 
4 containing the points that 
satisfy (A) and  (B) 
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been shown that, for every ε > 0, there exists a neighborhood I(4) = I−(4)∪ I+(4) 
such that, if x /= 4 and x belongs to the intersection Dom(f ) ∩ I(4), then f (x) belongs 
to the interval (5−ε, 5  + ε). Hence, (18.2) is verified. 

Let us continue to illustrate specific applications of Definition 18.1, those in which 
at least one of the two elements, ℓ or c, is  +∞ or −∞. Remind that a neighborhood of 
+∞ is the set of the real numbers greater than a fixed real number h, a neighborhood 
of −∞ is the set of the real numbers smaller than a fixed real number k. 

Let the function f be defined in a neighborhood of +∞. Consider the case: 

(b) ℓ finite, c = + ∞: 

lim 
x→+∞ 

f (x) = ℓ (18.3) 

In case (18.3) the function f converges to ℓ as x approaches +∞. The Definition 
18.1 is specified as follows: 

– for every neighborhood J(ℓ), there exists a neighborhood I(+∞) such that f (x) ∈ 
J(ℓ), whenever x ∈ I(c) ∩ Dom( f ), x /= c or, rewritten in terms of ε and h, 

– for every ε > 0, there exists h ∈ R, such that, for every x > h, the inequalities
ℓ − ε < f (x) < ℓ + ε hold (Fig. 18.3). 

Let the function f be defined in a neighborhood of –∞. Consider the case: 

(c) ℓ finite, c = −∞: 

lim 
x→−∞ 

f (x) = ℓ

The function f is convergent to ℓ as x approaches −∞. Definition 18.1 takes the 
form: 

– for every ε > 0, there exists k ∈ R, such that for every x < k, the inequalities
ℓ − ε <  f (x) < ℓ + ε hold (Fig. 18.4).

Let us now consider the case 

(d) ℓ = +∞, c finite: 

lim 
x→c 

f (x) = +∞

Fig. 18.3 ℓ is limit of f as x 
approaches 
+∞, J(ℓ) = (ℓ − ε, ℓ + 
ε), I(+∞) = (h, +∞) 
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Fig. 18.4 ℓ is limit of f as x 
approaches −∞, J(ℓ) = (ℓ− 
ε, ℓ + ε),I(−∞) = (−∞, k)

Fig. 18.5 +∞ is limit of f 
as x approaches c, J(+∞) = 
(k, +∞), I(c) = I−UI+ 

Definition 18.1 takes the form: 

– for every neighborhood of +∞, J(+∞), there exists a neighborhood I(c) such that 
f (x) ∈ J(+∞), whenever x ∈ I(c) ∩ Dom( f ), x /= c. 

The function f is positively divergent as x → c (Fig. 18.5). 

Example 18.2 Let us verify the limit 

lim 
x→1 

1 

(1 − x)2 
= +∞. (18.4) 

To this aim we first consider that the number 1 is an accumulation point for 
the domain R−{1} of the function f (x) = 1 

(1−x)2 
. We must verify that for every 

neighborhood of +∞, J(+∞), there exists a neighborhood I of 1, such that if x ∈ I 
and x /= 1, then 1 

(1−x)2 
∈ J(+∞). In other words, we have to check that for every 

positive real number k, there exists a neighborhood I of 1, such that if x ∈ I and 
x /= 1, then 

1 

(1 − x)2 
> k. (18.5) 

In fact, from (18.5) we get 

(1 − x)2 < 
1 

k 

and
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|1 − x | < 
1 √
k 

Thus, by a property of absolute value (Sect. 6.5) 

1 − 
1 √
k 

< k < 1 + 
1 √
k 

These inequalities define a neighborhood of x = 1 such that every x /= 1 belonging 
to the neighborhood satisfies (18.5). Therefore, the limit (18.4) is verified. 

Remark 18.3 The verification of (18.4) rests on a property of the fractions: fixed 
the value of the numerator, if the absolute value of the denominator decreases, then 
the absolute value of the fraction increases. For example, 

1 

0.1 
= 

1 
1 
10 

= 10 
1 

0.01 
= 

1 
−1 
100 

= −100 
1 

0.001 
= 

1 
1 

1000 

= 1000 

The case 

(e) ℓ = −∞, c finite, i.e., lim 
x→c 

f (x) = −∞. 

is similar to the case (d). The function f is negatively divergent as x → c (Fig. 18.6). 

Consider the case 

(f) ℓ = +∞, c = +∞ :  

lim 
x→+∞ 

f (x) = +∞, 

Definition 18.1 takes the form: 

– for every neighborhood of +∞, J(+∞), there exists a neighborhood I(+∞), such 
that f (x) ∈ J(+∞), whenever x ∈ I(+∞) ∩ Dom( f ), or  

∀k > 0, ∃h : x > h ⇒ f (x) >  k

Fig. 18.6 −∞ is limit of f 
as x → c, J (−∞) = 
(−∞, k), I(c) = I−UI+ 
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Fig. 18.7 +∞ is limit of f as 
x approaches 
+∞, J(+∞) = 
(k, +∞), I(+∞) = 
(h, +∞) 

The function f is positively divergent as x approaches +∞ (Fig. 18.7). 

Consider the case 

(g) ℓ = +∞, c = −∞ :  

lim 
x→−∞ 

f (x) = +∞  

The Definition 18.1 takes the form: 

– for every neighborhood J(+∞) there exists a neighborhood I(−∞) such that if x 
belongs to I(−∞), then f (x) ∈ J(+∞), or in other terms: 

∀k > 0, ∃h : x < h ⇒ f (x) >  k 

The function f is positively divergent as x approaches −∞ (Fig. 18.8). 

Consider the case 

(h) ℓ = −∞, c = +∞ :  

lim 
x→+∞ 

f (x) = −∞  

Let us apply Definition 18.1: 

– for every neighborhood J(–∞) there exists a neighborhood I(+∞) such that if x 
belongs to I(+∞), then f (x) ∈ J(– ∞), or:

Fig. 18.8 +∞ is limit of f as 
x approaches 
−∞, J(+∞) = 
(k, +∞), I(−∞) = 
(−∞, h) 
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Fig. 18.9 −∞ is limit of f 
as x approaches + 
∞,J(−∞) = 
(−∞, k), I(+∞) = 
(h, +∞) 

Fig. 18.10 −∞ is limit of f 
as x approaches −∞, J(−∞) 
= (−∞, k), I(−∞) = (−∞, 
h) 

∀k < 0, ∃h : x > h ⇒ f (x) <  k 

The function f is negatively divergent as x approaches +∞ (Fig. 18.9). 

Consider the case 

(i) ℓ = −∞, c = −∞ :  

lim 
x→−∞ 

f (x) = −∞  

The Definition 18.1 takes the form: 

– for every neighborhood J(–∞) there exists a neighborhood I(–∞) such that if x 
belongs to I(–∞), then f (x) ∈ J(–∞), 

∀k < 0, ∃h : x < h ⇒ f (x) <  k 

The function f is negatively divergent as x approaches -∞ (Fig. 18.10). 

18.2.2 Uniqueness of the Limit 

Theorem 18.1 [Uniqueness of the limit]. If lim 
x→c 

f (x) = ℓ exists, then it is unique.
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Proof We restrain the proof to the case that c and ℓ are real numbers, i.e., c and ℓ

are finite. We therefore know, by hypothesis, that: 

(*) for every ε > 0, there exists a neighborhood I of c such that if x ∈ I ∩ Dom(f ), 
x /= c, then 

| f (x) − ℓ| < ε. 

Let us suppose, by contradiction, that the function f converges also to ℓ
' /= ℓ, as  

x → c. Then we must also admit that: 
(**) for every ε > 0, there exists a neighborhood I'

of c such that if x ∈ I' ∩ 
Dom( f ), x /= c, then

|
| f (x) − ℓ'|| < ε. 

As ℓ
' /= ℓ, it is  |ℓ − ℓ

' | > 0. Hence, for every ε > 0, such that 2ε < |ℓ − ℓ
' |, and for 

every x ∈ I ∩ I' belonging to Dom(f ) and x /= c, we obtain, by adding and subtracting 
f (x) to ℓ − ℓ

'
, in virtue of Property 6.3 of the absolute value, and by the hypotheses 

(*) and (**), 

2ε <
|
|ℓ − ℓ'|| = |

|ℓ − f (x) + f (x) − ℓ'|| ≤ |ℓ − f (x)| + |
| f (x) − ℓ'|| < 2ε 

But these inequalities lead to the contradiction 2ε <2ε. Then we cannot admit the 
hypothesis (**), that is the existence of limit ℓ

'
. What claims the uniqueness of the 

limit ℓ. ⃞
The theorem holds even if c or ℓ or both are infinite. Therefore, a regular function 

at c cannot tend to two distinct limits therein. 

18.3 Limits of Elementary Functions 

In the present section we tell in advance some notions that will be developed in the 
next chapter. We have already remarked (Sect. 18.2) that if the function f converges to
ℓ as x approaches the point c belonging to the domain of f , then the value f (c) and the 
limit ℓ are numbers completely independent of each other. But if f is an elementary 
function or the composite function of elementary functions, the computation of the 
limit lim 

x→c 
f (x) = ℓ when c is a point in the domain of f , is a conceptually simple 

operation: indeed, we will show that lim 
x→c 

f (x) = f (c). 

Examples 

i. The function x2 approaches 32 = 9 as  x approaches 3 ⇔ lim 
x→3 

x2 = 9. 

ii. lim 
x→5 

√
x−1 = √

5−1 = 2.
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iii. lim 
x→0 

ex = eo = 1 

iv. lim 
x→−7 

1 
x = − 1 

7 

v. lim 
x→1 

ln x = ln 1 = 0, where ln is the natural logarithm function. 

vi. lim 
x→c 

k = k, whatever the real constants c and k are. 
vii. The following equalities hold: 

lim 
x→+∞ 

1 = 1 

lim 
x→+∞ 

x = +∞  

lim 
x→−∞ 

x = −∞  

lim 
x→+∞ 

1 
x = 0 

lim 
x→−∞ 

1 
x = 0 

lim 
x→+∞ 

1 
x2 = 0 

lim 
x→−∞ 

1 
x2 = 0 

Furthermore, the limits of the power function with natural exponent n, as  x 
approaches + ∞  or –∞, can be checked: 

if n is even, then 

lim 
x→+∞ 

xn = +  ∞ lim 
x→−∞ 

xn = +  ∞  

if n is odd, then 

lim 
x→+∞ 

xn = +  ∞ lim 
x→−∞ 

xn = −∞  

if n is natural: 

lim 
x→+∞ 

1 

xn 
= 0 lim 

x→−∞ 

1 

xn 
= 0 

ix. The limits of exponential function ax as x approaches +∞ or –∞, are given by: 

if a > 1, then 

lim 
x→+∞ 

ax = +  ∞ lim 
x→−∞ 

ax = 0 

if 0 < a < 1, then 

lim 
x→+∞ 

ax = 0 lim 
x→−∞ 

ax = +  ∞
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The functions sinx, cosx and tanx do not admit limits as x approaches +∞ 
or −∞. 

18.4 Properties of Limits 

We have given the definition of limit, finite or infinite, of a function f as x approaches 
c, finite or infinite (see Sect. 18.2). We have verified the existence of the limit in some 
cases. The limit does not always exist, as noted at the end of (Sect. 18.3) regarding 
circular functions. In the following we will illustrate some notable properties of the 
limits. 

18.4.1 Operations 

If f and g are real-valued functions defined in a subset D of R, we consider the 
functions: 

sum f (x) + g(x) 
difference f (x) − g(x) 
product f (x)g(x) 
ratio f (x) 

g(x) , g(x) /= 0 

. 

The following theorem, we state without the proof, allows to computing with 
limits. 

Theorem 18.2 If f and g converge as x → c ∈ R, then the sum f (x) + g(x), the  
difference f (x)−g(x) and the product f (x) g(x) converge as x → c and the following 
equalities hold: 

lim 
x→c 

( f (x) + g(x)) = lim 
x→c 

f (x) + lim 
x→c 

g(x) (18.6) 

lim 
x→c 

( f (x) − g(x)) = lim 
x→c 

f (x) − lim 
x→c 

g(x) (18.7) 

lim 
x→c 

( f (x)g(x)) = lim 
x→c 

f (x) lim 
x→c 

g(x) (18.8) 

In particular, if f (x) = h, h ∈ R, then 

lim 
x→c 

hg(x) = h lim 
x→c 

g(x) 

Furthermore,
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i. if h and k are real numbers and h ≤ f (x) ≤ k, for every x ∈ Dom(f ), and lim 
x→c 

g(x) 
= 0, then lim 

x→c 
( f (x)g(x)) = 0. 

Example 18.3 lim 
x→0 

xsin  1 x = 0, since −1 ≤ sin 1 x ≤ 1 and lim 
x→0 

x = 0. 

ii. If f and g converge as x → c ∈ R, and if lim 
x→c 

g(x) /= 0, then also the ratio f (x) g(x) 
converges at c and 

lim 
x→c 

f (x) 
g(x) 

= 
lim 
x→c 

f (x) 

lim 
x→C 

g(x) 

Equalities (18.6), (18.7) and (18.8) can be expressed in the abbreviated form so: 
the limit of the sum, difference and product are equal to the sum, difference and 
product of the limits, respectively. As well as the proposition (ii) can be expressed 
so: the limit of the ratio is equal to the ratio of the limits, provided that lim 

x→c 
g(x) /= 

0. 
As far as the sum is concerned, it is easy to realize that if f is convergent and 

g positively (negatively) divergent, then f + g is positively (negatively) divergent; 
similarly, if f and g are positively (negatively) divergent, then also f + g is positively 
(negatively) divergent. (Let us remember Hotel Hilbert (Sect. 5.3), where +∞ +1 
= +∞, and +∞ +∞ = +∞.) 

But, if lim 
x→c 

f (x) = +∞  and lim 
x→c 

g(x) = −∞, we are not able to say, without 

further investigation, what is the meaning of the result of the addition lim 
x→c 

f (x) + 
lim 
x→c 

g(x) = +∞−∞: it could be 0, or 1, or any number or infinity, positive or 

negative, or it might not exist. In order to express this circumstance, we say that + 
∞ −∞  is an indeterminate form. 

Let now examine when the theorem 18.2 and proposition (ii) can be extended to 
the case that the functions f and g despite being regular at c, are not both convergent 
at c. If ↕ is a real number and c ∈ R*, then: 

– if lim 
x→c 

f (x) = ℓ and lim 
x→c 

g(x) = ±∞, then lim 
x→c 

( f (x) + g(x)) = ±∞  [ℓ ± ∞ =  
± ∞] 

– if lim 
x→c 

f (x) = +∞  and lim 
x→c 

g(x) = +∞, then lim 
x→c 

( f (x) + g(x)) = +∞ 
[+∞ + ∞ = +∞] 

– if lim 
x→c 

f (x) = −∞  and lim 
x→c 

g(x) = −∞, then lim 
x→c 

( f (x) + g(x)) = 
−∞ [−∞−∞ = −∞] 

– if lim 
x→c 

f (x) = ℓ /= 0 and lim 
x→c 

g(x) = ±∞, then lim |
x→c 

( f (x)g(x))| =  
+∞[|ℓ(±∞)| = +∞, ℓ /= 0] 

– if lim 
x→c 

f (x) = ±∞  and lim 
x→c 

g(x) = ±∞  , then lim 
x→c

|( f (x)g(x))| = +∞  
[|(±∞)(±∞)| = +∞] 

– if lim 
x→c 

f (x) = ℓ and lim 
x→c 

g(x) = ±∞, then lim 
x→c 

f (x) 
g(x) = 0 [ ℓ

±∞ = 0]
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– if lim 
x→c 

f (x) = ℓ and lim 
x→c 

g(x) = ±∞, then lim 
x→c

|
|
|
g(x) 
f (x)

|
|
| = +∞  [||±∞

ℓ

|
| = +∞]  

– if lim 
x→c 

f (x) = ℓ /= 0 and lim 
x→c 

g(x) = 0, then lim 
x→c

|
|
|
f (x) 
g(x)

|
|
| = +∞  [|| ℓ

0

|
| = +∞, ℓ /= 

0] 

Some cases, called indeterminate forms and denoted 

+∞ − ∞, 0 · ∞, 
∞ 
∞ 

, 
0 

0 
(18.9) 

are excluded from the previous list. Let us stress: the fact that a limit results in an 
indeterminate form does not necessarily mean that the limit does not exist, but merely 
a supplement of information is needed to ascertain the existence of the limit and, 
in case, its value. Sometimes, through suitable transformation or simplification, the 
uncertainty is eliminated. 

Example 18.4 Consider the functions f (x) = (x + 2)2 and g(x) = x2. The limit 

lim 
x→+∞( f (x) − g(x)) 

is an indeterminate form +∞ −∞. But, performing a simple calculation we get 
f (x) − g(x) = 4x + 4. Hence, lim 

x→+∞( f (x) − g(x)) = lim 
x→+∞(4x + 4) = +∞. 

Example 18.5 Consider the functions f (x) = –2x + 3 and g(x) = x2 + 4x. The limit 

lim 
x→+∞ 

f (x) 
g(x) 

= lim 
x→+∞ 

−2x + 3 
x2 + 4x 

is an indeterminate form of the type ∞ 
∞ . To eliminate the indeterminateness let us 

divide the numerator and denominator by x2 (the power of the variable x having 
maximum degree in the fraction). By Theorem 18.2, 

lim 
x→+∞ 

−2x+3 
x2 

x2+4 
x2 

= lim 
x→+∞ 

−2 
x + 3 

x2 

1 + 4 x 
= 

0 + 0 
1 + 0 

= 0 

Example 18.6 Consider the functions f (x) = 5x + 3 and g(x) = 7x−2. The limit 

lim 
x→+∞ 

5x + 3 
7x − 2 

is an indeterminate form ∞ 
∞ . Let us divide the numerator and denominator by x (the 

power of the variable x having maximum degree in the fraction) to eliminate the 
indeterminateness. By Theorem 18.2, 

lim 
x→+∞ 

5x+3 
x 

7x−2 
x 

= lim 
x→+∞ 

5x 
x + 3 x 
7x 
x − 2 

x 

= 
5 + 0 
7 + 0 

= 
5 

7
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Example 18.7 Consider the functions f (x) = 2x2 + 1 and g(x) = x + 4. The limit 

lim 
x→+∞ 

2x2 + 1 
x + 4 

is an indeterminate form ∞ 
∞ . Let us divide the numerator and denominator 

by x2 (the power of the variable x having maximum degree in the fraction). By 
Theorem 18.2, and (Sect. 18.3 vii) 

lim 
x→+∞ 

2x2+1 
x+4 = 

2+ lim 
x→+∞ 

1 
x2 

lim 
x→+∞ 

1 
x +4 lim 

x→+∞ 
1 
x2 

= +∞. 

Example 18.8 lim 
x→1 

√
x−1 
x−1 is an indeterminate form of the type 0 0 . 

Observe that x−1 = (√
x−1

)(√
x + 1

)

. Hence, 

lim 
x→1 

√
x−1 

x−1 
= lim 

x→1 

√
x−1

(√
x−1

)(√
x + 1

) = lim 
x→1 

1 √
x + 1 

= 
1 

2 

18.4.2 Permanence of the Sign 

Theorem 18.3 [Permanence of the sign]. Let f (x) be a real-valued function defined 
in the set A ⊆ R that converges at the finite non-zero limit ℓ as x approaches c. Then 
there exists a neighborhood I of c such that f (x) takes values of the same sign as 
the limit, in every x ∈ A ∩ I, x /= c. 

Proof Suppose 

lim 
x→c 

f (x) = ℓ >  0 

By Definition 18.2 for every ε > 0 there exists a neighborhood I(c) such that ℓ −ε 
< f (x). < ℓ +ε for every x ∈ A ∩ (I(c) − {c}) = H. Therefore, it is sufficient to 
choose ε < ℓ. in order that f (x) > 0 in H (Fig. 18.11). The proof is similar if ℓ <  0. 

⃞
Theorem 18.3 still holds in case of infinite limit.

Fig. 18.11 Permance of the 
sign
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Remark 18.4 The inverse of the Theorem 18.3 does not hold: indeed, 
f (x) > 0 for every x ∈ A ∩ (I(c) − {c}), and 
f (x) → ℓ as x → c. 

do not imply ℓ >  0. For instance, the function x2 approaches 0 as x → 0, even if  
x > 0 for every x /= 0. 

By Theorem 18.3 reasoning by contradiction, we deduce: 

Theorem 18.4 If ℓ is the limit of f (x) as x approaches c and the values of f in a 
neighborhood of c are not negative (positive), then 

lim 
x→c 

f (x) = ℓ ≥ 0
(

lim 
x→c 

f (x) = ℓ ≤ 0
)

18.4.3 Comparison 

We prove some theorems that from the comparison between functions in a 
neighborhood yield a comparison between the respective limits. 

Theorem 18.5 [First theorem of comparison]. If the functions f and g are convergent 
as x approaches c and if f (x) ≤ g(x) in a neighborhood of c, excluding at most 
the point c, then 

lim 
x→c 

f (x) ≤ lim 
x→c 

g(x) (18.10) 

Proof By Theorem 18.2 the function g(x)−f (x) admits limit as x approaches c 
and its values are not negative in the points x distinct from c and belonging to a 
neighborhood of c. From Theorem 18.4 we obtain 

lim 
x→c 

(g(x)− f (x)) ≥ 0 

and 

lim 
x→c 

g(x)− lim 
x→c 

f (x) ≥ 0 

and finally the inequality (18.10) (Fig. 18.12).
⃞

Theorem 18.6 [Second theorem of comparison]. Let f , g and h be real-valued 
functions defined in the subset A ⊆ R. If  f  (x) and h(x) converge to ℓ as x approaches 
c and for any x ∈ A, x /= c, the following inequalities hold



18.4 Properties of Limits 307

Fig. 18.12 First theorem of 
comparison

f (x) ≤ g(x) ≤ h(x) 

then the function g(x) also converges to ℓ as x → c. 

Proof From Definition 18.2, for every ε > 0 there exists a neighborhood of c, I(c), 
such that for every x ∈ I(c), x /= c, x ∈ A, we obtain

ℓ − ε <  f (x) < ℓ + ε
ℓ − ε <  h(x) < ℓ + ε 

Then, by hypothesis, for every x ∈ I(c), x /= c, x ∈ A, the following inequalities 
hold:

ℓ − ε <  f (x) ≤ g(x) ≤ h(x) < ℓ + ε 

Therefore, 

lim 
x→c 

g(x) = ℓ

as we wanted to show. ⃞
Exercise 18.1 Let us check the limit 

lim 
x→+∞ 

sin x  

x 
= 0. (18.11) 

In fact, observe that, for every x > 0, 

− 
1 

x 
≤ 

sin x  

x 
≤ 

1 

x 

and 

lim 
x→+∞

(

− 
1 

x

)

= lim 
x→+∞ 

1 

x 

Therefore, by the second theorem of the comparison, the limit (18.11) is verified.
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18.4.4 Limit of the Composite Function 

Theorem 18.7 Let f and g be real-valued functions of a real variable. Let A ⊆ R 
be the domain of f and B ⊆ R the domain of g, such that f (A) ⊆ B. Let c ∈ R be 
an accumulation point for A. If 

lim 
x→c 

f (x) = ℓ (18.12)

ℓ ∈ R, and there exists a neighborhood H of c, such that for every x ∈ H∩A, x /= 
c, it results 

f (x) /= ℓ (18.13) 

If 

lim 
y→ℓ

g(y) = h (18.14) 

h ∈ R, then 

lim 
x→c 

g( f (x)) = h (18.15) 

Proof Let us first observe that the composite function g(f (x)) has meaning 
(Sect. 5.4). Let M be a neighborhood of h. Then, by (18.14), there exists a neigh-
borhood J of ℓ such that for every y belonging to (J ∩ B)−{ℓ}, it is g(y) ∈ M; then 
assigned the neighborhood J, from (18.12) there exists a neighborhood I' of c, such 
that for every x ∈ (

A ∩ I'
)−{c} it is f (x) ∈ J. Since (18.13) holds for every x ∈ (H ∩ 

A)–{c}, set I = I' ∩ H, for every x ∈ (A∩D)−{c} we have f (x) ∈ (J∩ f (A))−{ℓ}, 
so g(f (x)) ∈ M and (18.15) holds. (Observe that the intersection of two neighbor-
hoods of c, I  = I' ∩ H, is a neighborhood of c; and that if x ∈ (H ∩ A)−{c}, then 
0 < | f (x)−ℓ|). ⃞
Remark 18.5 Theorem 18.7 still holds if c, ℓ, h are elements of R*. Furthermore, the 
theorem stays on in absence of hypothesis (18.13), provided that (18.14) be replaced 
with the equality. 

lim 
y→ℓ

g(y) = g(ℓ) 

Remark 18.6 The hypothesis (18.13) is essential to the validity of Theorem 18.7. 
The following example shows that in the mere absence of hypothesis (18.13) the  
theorem no longer holds. In fact, consider the functions 

f (x) = 
sinx 

x
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And 

g(y) =
{

1 i f  y  = 0 
0 i f  y /= 0 

We have: 

lim 
x+∞ 

sinx 

x 
= 0 and lim 

y→0 
g(y) = 0 

For every non-null integer k, f (kπ = 0 and g(f (kπ)) = 1. Then the function g(f (x)) 
does not admit limit as x → +∞. 

18.4.5 Right and Left Limits 

Given a non-empty subset A of R and a point c ∈ R we denote A(c−) the subset 
of A whose elements are the real numbers smaller than c, and A(c+) the subset of A 
whose elements are the real numbers greater than c. The  sets  A(c−) and A(c+) are 
called the part of A to the  left of c and the part of A to the right of c, respectively. 
One of the  two sets A(c−) and A(c+) can be empty. If c is an accumulation point for 
A, then c is an accumulation point for at least one of the two sets. The notion of left 
(right) neighborhood is introduced in (Sect. 6.6.1). 

Definition 18.3 A point c ∈ R is called a right (left) accumulation point for a set 
A ⊆ R if each right (left) neighborhood of c contains a point of A distinct from c. 

Definition 18.4 Let f be a real-valued function with domain A ⊆ R. Let  c ∈ R be 
a right (left) accumulation point for A. The element ℓ of R* is said to be the  right 
(left) limit of f (x) as  x approaches c, in symbols. 

lim 
x→c+ 

f (x) = ℓ

(

lim 
x→c− 

f (x) = ℓ

)

(18.16) 

if, for every neighborhood J of ℓ there exists a right neighborhood I+ (left neighbor-
hood I−) of  c, such that for every x ∈ A ∩ I+ (x ∈ A ∩ I−) and x /= c, f (x) belongs 
to J. Alternative symbols to (18.16) are  f (c + ) and f (c–), respectively. 

The uniqueness theorems of right and left limits hold in analogy with 
Theorem 18.1. 

The symbols (18.16) mean: “limit of f (x) as  x approaches c from the right (from 
the left) is equal to ℓ” (Figs. 18.13and 18.14).

Example 18.9 The function f (x) defined in R:
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Fig. 18.13 Right limit of f 
(x) at c,  lim 

x→c+ 
f (x) 

Fig. 18.14 Left limit of f 
(x) at  c, lim 

x→c− 
f (x)

f (x) = 1 i f x  ≥ 0 
f (x) = −1 i f x  < 0 

is called sign (or signum) of  x, denoted f (x) = sgn(x). It is convergent at the right 
and at the left of the point 0 and we have: f

(

0+) = 1, f
(

0−) = −1. 

Example 18.10 The function f (x) = 1 
x has no limit in x = 0; in fact, it diverges 

negatively to the left of 0 and positively to the right of 0: f
(

0−) = −∞, f
(

0+) = 
+∞. 

If there is an accumulation point only on the right (left) for the set A, the concept 
of right (left) limit is identified with that of limit. 

Theorem 18.8 Let the real-valued function f be defined in A ⊆ R. If c is both a 
right and left accumulation point of A, the limit of f at c exists if and only if the left 
and right limits exist and are equal. Then the following equalities hold: 

lim 
x→c 

f (x) = lim 
x→c− 

f (x) = lim 
x→c+ 

f (x) 

In (Fig. 18.15) the graph of a function f , with f (c+) = +∞, is drawn.

Example 18.11 The function f (x) = sin 1 x defined in R−{0} does not admit limit 
as x approaches zero. In fact, sin 1 x = 0 if and only if 1 x = kπ , for every integer k. 
Then sin 1 x = 0 if and only if x = 1 

kπ , for every integer k. Furthermore, sin 1 x = 1 
if and only if 1 x = π 

2 + 2kπ, i.e., x = 2 
(4k+1)π , for every integer k. Therefore in each 

neighborhood of 0 there are points on which sin 1 x takes value 0 and other points 
where sin 1 x takes value 1. In conclusion, sin 

1 
x does not admit limit as x → 0.
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Fig. 18.15 lim 
x→c− 

f (x) =
ℓ; lim 

x→c+ 
f (x) = +∞

18.4.6 More on the Limits of Elementary Functions 

The values of the limits of the logarithm function to the base a, as  x → 0 and as 
x → +∞, are:  

a. if a > 1, then 

lim 
x→0+ 

loga x = lim 
x→0 

loga x = +∞, lim 
x→+∞ 

loga x = +  ∞  

b. if 0 < a < 1, then 

lim 
x→0+ 

loga x = lim 
x→0 

loga x = +∞, lim 
x→+∞ 

loga x = −∞  

The values of the limits of the function tanx, as  x approaches π− 
2 and 

π+ 
2 are: 

lim 
x→ π− 

2 

tanx  = +∞, lim 
x→ π+ 

2 

tanx  = −∞, 

Since tanx is π periodic (Chap. 8), 

lim 
x→( π 

2 +kπ)− 
tanx  = +∞, lim 

x→( π 
2 +kπ)+ 

tanx  = −∞, 

for any integer k. 
The limits of the power function with real exponent r, as  x approaches 0 or +∞, 

follow (Fig. 18.16):
if r < 0, then lim 

x→0+ 
xr = +∞  and lim 

x→+∞ 
xr = 0, 

if 0 < r < 1, then lim 
x→0+ 

xr = 0 and lim 
x→+∞ 

xr = +∞, 
if r > 1, then lim 

x→0+ 
xr = 0 and lim 

x→+∞ 
xr = +∞, 

Example 18.12 The function f (x) = √
x−1, is defined in the interval [1, +∞) and 

has limits as x → 1 and x → +∞:
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Fig. 18.16 Power with real 
exponent r: a r negative, b 
r > 1,  c 0 <  r < 1

lim 
x→1+

√
x−1 = lim 

x→1 

√
x−1 = 0, lim 

x→+∞
√
x−1 = +  ∞  

Example 18.13 The function f (x) = 1 √
1−x 

, whose domain is the open interval 
(−∞, 1), has the following limits as x → 1 and x → −∞: 

lim 
x→1− 

1 √
1−x 

= lim 
x→1 

1 √
1−x 

= +∞ lim 
x→−∞ 

1 √
1−x 

= 0 

Example 18.14 The function f (x) = 
√
1−x 
x , whose domain is the set (−∞, 1]−{0} 

has the following limit as x → 1: 

lim 
x→1− 

√
1−x 

x 
= lim 

x→1 

√
1−x 

x
= 0 

The function 
√
1−x 
x has right (left) limit as x → 0– (x → 0+) 

lim 
x→0− 

√
1−x 

x 
= −∞ lim 

x→0+ 

√
1−x 

x 
= +∞  

and the limit 

lim 
x→−∞ 

√
1−x 

x
= 0 

Furthermore f (1) = 0. The graph of f is drawn in Fig. 18.17.

18.4.7 Solved Problems 

Calculate the following limits using the results in (Sect. 18.4.1):

a. lim 
x→+∞ 

x+2 
√
x 

3x−1
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Fig. 18.17 Graph of the 

function
√
1−x 
x

The limit is an indeterminate form ∞ 
∞ .

lim 
x→+∞ 

x + 2 
√
x 

3x−1 
= lim 

x→+∞ 

x + 2x 1 2 
3x−1 

= lim 
x→+∞ 

x
(

1 + 2 √
x

)

x
(

3− 1 
x

) = lim 
x→+∞ 

x 

3x 
= 

1 

3 

b. lim 
x→0 

4x3−2x2+5x 
2x4+x3−3x 

The limit is an indeterminate form 0 0 . Factorize numerator and denominator: 

lim 
x→0 

x
(

4x2−2x + 5
)

x
(

2x3 + x2−3
) = lim 

x→0 

4x2−2x + 5 
2x3 + x2−3 

= −5 

3 

c. lim 
x→7 

7−x √
7− 

√
x 

The limit is an indeterminate form 0 0 . Multiply numerator and denominator by 
( 
√
7 + 

√
x) to obtain: 

lim 
x→7 

(7−x)
(√

7 + √
x
)

7−x
= lim 

x→7

(√
7 + √

x
)

= 2 
√
7 

18.4.8 Supplementary Problems 

Calculate the limits: 

a. lim 
x→1 

√
x−1 
x−1 [Ans. 1 2 ] 

b. lim 
x→2 

√
2− 

√
x 

2−x [Ans. 
√
2 
4 ] 

c. lim 
x→+∞( 

√
x2 + 8−x) [Ans. 0] 

d. lim 
x→+∞

(√
x2 + 1− 

√
x2−1

)

[Ans. 0]
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e. lim 
x→2 

16−x4 

2−x [Ans. 32] 
f. lim 

x→0 

√
x+4−2 
x [Ans. 1 4 ] 

g. lim 
x→1+ 

ex 

x2−3x+2 = lim 
x→1+ 

ex 

(x−2)(x−1) [Ans. −∞] 

h. lim 
x→1− 

ex 

x2−3x+2 = lim 
x→1− 

ex 

(x−2)(x−1) [Ans. +∞] 

18.5 Asymptotes 

Given a real-valued function of a real variable f , it is useful for sketching the graph 
of f to know if there exists any line in the plane, whose distance from the curve y = 
f(x), approaches zero when the point P(x, f (x)) of the graph indefinitely moves away 
from the origin of the coordinates. 

Such lines are called asymptotes, which we study in the following sections. 

18.5.1 Vertical Asymptotes 

Given the function f , a vertical line x = c such that f (x) approaches +∞ or −∞ as 
x approaches c either from the right or from the left is said to be a vertical asymptote 
for the graph of f . Therefore, if the line x = c is a vertical asymptote for the graph 
of f , at least one of the following cases occurs (Sect. 18.2.1): 

lim 
x→c+ 

f (x) = +∞, lim 
x→c+ 

f (x) = −∞, lim 
x→c− 

f (x) = +∞, lim 
x→c− 

f (x) = −∞  

For example, the line x = 2 is a vertical asymptote (Fig. 18.18) of the graph of the 
function 

f (x) = 1 

x−2 

because 

lim 
x→2− 

1 

x−2 
= −∞  and lim 

x→2+ 

1 

x−2 
= +∞

18.5.2 Horizontal Asymptotes 

Let f be a function defined in an unbounded interval, let’s say (−∞, a), (b, +∞), 
or R. If either



18.5 Asymptotes 315

Fig. 18.18 x = 2 is a  
vertical asymptote of the 
graph of f (x) = 1 

x−2

lim 
x→−∞ 

f (x) = ℓ

or 

lim 
x→+∞ 

f (x) = ℓ,

ℓ ∈ R, then the horizontal line y = ℓ is called a horizontal asymptote for the 
graph of f . 

Example 18.15 The line y = 1 is a horizontal asymptote for the graph of 

f (x) = 
x + 1 
x−2 

In fact, 

lim 
x→−∞ 

x + 1 
x−2 

= 1 and lim 
x→+∞ 

x + 1 
x−2 

= 1 

Besides, the line x = 2 is a vertical asymptote for the graph of f (Fig. 18.19).

Example 18.16 The x axis is a horizontal asymptote for the graph of f (x) = 1 
x−2 . 

In fact, 

lim 
x→±∞ 

1 

x−2 
= 0 

Example 18.17 The x axis is a horizontal asymptote for the graph of f (x) = ax, 
for every a positive and different from 1. In fact, if a > 1, then lim 

x→−∞ 
ax = 0; if  

0 < a < 1, then lim 
x→+∞ 

ax = 0.
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Fig. 18.19 x = 2 and  y = 1 
asymptotes for the graph of 
f (x) = x+1 

x−2

Example 18.18 The y axis is a vertical asymptote for the graph of f (x) = loga x , 
for every a positive and different from 1. In fact, if a > 1, then lim 

x→0+ 
loga x = +∞; 

if 0 < a < 1, then lim 
x→0+ 

loga x = +∞. 

Example 18.19 The lines x = −π 
2 and x = π 

2 are vertical asymptotes for the graph 
of f (x) = tan x . 

18.5.3 Oblique Asymptotes 

Let f be a function defined in an unbounded interval, for example (b, +∞), and P(x, 
f (x)) a point of the graph of f . The line t of equation y = mx + n is called an oblique 
asymptote for the graph of f if, called Q the point of t having the same abscissa x of 
P, 

lim 
x→+∞|PQ| = 0, (18.17) 

i.e., the distance of the line t and the graph of f approaches zero, as x approaches 
+∞ (Fig. 18.20).

The limit (18.17) allows to identify, when it exists, an oblique asymptote for the 
graph of f . Indeed, since the length of the segment PQ is 

|PQ| = |  f (x) − (mx + n)| = |  f (x) − mx − n| 

the value of the limit 

lim 
x→+∞ | f (x) − mx − n| =  0 (18.18) 

is obtained. Equation (18.18) implies
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Fig. 18.20 The line t is an 
oblique asymptote for the 
graph of f

lim 
x→+∞( f (x) − mx − n) = 0 (18.19) 

which yields 

lim 
x→+∞ 

f (x)−mx−n 

x
= 0 

and, by the properties of the limits (Sect. 18.4.1): 

lim 
x→+∞ 

f (x) 
x 

− m − lim 
x→+∞ 

n 

x 
= 0 

As lim 
x→+∞ 

n 
x = 0, we obtain 

m = lim 
x→+∞ 

f (x) 
x 

(18.20) 

and, by (18.19), 

n = lim 
x→+∞ 

( f (x)−mx) (18.21) 

The Eqs. (18.20) and (18.21) allow to determine also possible horizontal asymp-
totes. The graph of f has an oblique or horizontal asymptote if and only if the limits 
in (18.20) and (18.21) exist and are finite. 

Example 18.20 Consider the graph of the function 

f (x) = 
x2 − 4 

x + 1 

The function has domain R−{−1}. Let us compute the left and right limits at −1: 

lim 
x→−1− 

x2 − 4 
x + 1 

= +∞  and lim 
x→−1+ 

x2 − 4 
x + 1 

= −∞
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Thus the line x = −1 is a vertical asymptote for the graph of f . Furthermore, 

lim 
x→−∞ 

x2 − 4 
x + 1 

= −∞  and lim 
x→+∞ 

x2 − 4 
x + 1 

= +∞  

Since f is defined in the unbounded intervals (−∞, −1) and (−1, +∞), it makes 
sense to wonder whether oblique asymptotes exist. To this aim, apply the formulas 
(18.20) and (18.21): 

m = lim 
x→−∞ 

x2 − 4 

x(x + 1) 
= lim 

x→+∞ 

x2 − 4 
x(x + 1) 

= 1 

n = lim 
x→−±∞

(
x2−4 

x + 1
−x

)

= lim 
x→−±∞

(−x − 4 

x + 1

)

= −1 

The line y = x−1 is an asymptote for the graph of f . Let us give a sketch of the 
graph of f in Fig. 18.21. 

Example 18.21 Consider the function 

f (x) = 
x3 − 4x 
x2−1 

The domain of f is R−{−1, 1}, vertical asymptotes are x = 1 and x = –1, the 
oblique asymptote is y = x . Observe that the function f is odd, i.e.,− f (x) = f (−x) 
(see Sect. 17.5) (Fig. 18.22).

Fig. 18.21 The graph of 
f (x) = x2−4 

x+1 with 
asymptotes x = −1 and  y = 
x−1 
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Fig. 18.22 The graph of 
f (x) = x3−4x 

x2−1 
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Chapter 19 
Continuity 

19.1 Continuous Functions 

Let f be a real-valued function of a real variable x. Let A be the domain of f and c ∈ 
A an accumulation point of A. If f admits a limit as x approaches c, we have observed 
(Sect. 18.2) that the value f (c) and the limit of f as x → c are completely independent 
values. The coincidence of these values gives rise to the concept of continuous 
function. We will deal with the classical theorems and topics of the mathematical 
analysis such as Bolzano’s theorem, Darboux theorem or the first existence theorem 
of the intermediate values, uniform continuity, Cantor’s and Weierstrass’ theorems. 
A classification of discontinuities and the inverse functions of the circular functions 
are defined. 

Definition 19.1 Let f be a real-valued function having domain A ⊆ R and let c ∈ A 
an accumulation point of A. If 

lim 
x→c 

f (x) = f (c) (19.1) 

then the function f is said to be continuous at c. 

Remark 19.1 The Definition 19.1 implies that the following conditions must be met 
in order that f (x) be continuous at c (Fig. 19.1):

c belongs to the domain of f 
lim 
x→c 

f (x) exists and is equal to ℓ

ℓ = f (c) 

Definition 19.1 is expressed in terms of Definition 18.1 as follows: 

Definition 19.2 Let f be a real-valued function whose domain is A ⊆ R and let c ∈ 
A be an accumulation point of A. The function f is said to be continuous at c if for 
every neighborhood J of f (c) there exists a neighborhood I of c such that f (x) ∈ J, 
whenever x belongs to I ∩ A. (Observe that it is no longer necessary to impose the 
condition x /= c).
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
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Fig. 19.1 f continuous at c

The Definition 19.2 may be reformulated in terms of Definition 18.2 as follows: 

Definition 19.3 The function f (x) is called continuous at c if for every ε > 0 there 
exists a real number δ > 0 such that | f (x)−f (c) | <  ε, whenever 0 < |x−c| < δ. 

Obviously, the identical function f (x) = x is continuous at every point c ∈ R, i.e., 

lim 
x→c 

x = c 

Then equality (19.1) can be written: 

lim 
x→c 

f (x) = f
(
lim 
x→c 

x
)

(19.2) 

Therefore, the fact that f is continuous at c, means that the interchange of the 
symbol f and the symbol lim 

x→c 
of the passage to the limit, is allowed. 

The function f continuous at any point of its domain A is said to be continuous 
in A. 

19.2 Properties of Continuous Functions 

From the properties of limits (Sect. 18.4) we obtain some important consequences: 

Theorem 19.1 If f and g are continuous in c ∈ R, then the sum f + g, the difference 
f −g, the product f · g and the ratio f g (if g(c) /= 0) are continuous functions at c. If  f 
is continuous at c, the absolute value |f | is continuous at c. 

The composite of two continuous functions is continuous. In fact, according to 
Theorem 18.7, the following theorem holds. 

Theorem 19.2 [Continuity of the composite function]. If function f has domain A 
and g has domain B, if c ∈ A and f (c) ∈ B, and if f is continuous at c and g is 
continuous at f (c), then the function g(f (x)) is continuous at c.
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Formula (19.2) is generalized as follows: if the function g(f (x)) is composite of 
two continuous functions, then 

lim 
x→c 

g( f (x)) = g
(
lim 
x→c 

f (x)
)

(19.3) 

It is shown that the elementary functions are continuous in their respective 
domains. Hence, from Theorem 19.2, the following is obtained. 

Theorem 19.3 The functions power, exponential, logarithm, sine, cosine, tangent 
and their composite functions are continuous in the respective domains. 

Examples 

lim 
x→π 

sin x = sin π = 0, 

lim 
x→0 

ln
(
1−x2

) = ln1 = 0, 

lim 
x→1 

1 √
1 + ex 

= 1 √
1 + e 

lim 
x→+∞ 

ln 
2x−1 

x + 1 
= ln lim 

x→+∞ 

2x−1 

x + 1 
= ln2, 

lim 
x→+∞ 

e 
√
x 

x−1 = e lim 
x→+∞ 

√
x 

x−1 = e0 = 1 

lim 
x→1 

2 

1 + e −1 
x 

= 2 

1 + lim 
x→1 

e 
−1 
x 

= 2 

1 + 1 e 
= 

2e 

1 + e 

The interchange (19.3) of the symbol of function f and the symbol of limit is 
explicitly applied in the examples. 

Let us state the following theorem already (18.4.2) proved in a wider context. 

Theorem 19.4 [Theorem of the permanence of the sign]. If the function f defined 
in an open interval I0 is continuous and positive (negative) at the point c of I0, then 
there exists a neighborhood I of c such that f (x) > 0 (f (x) < 0), for every x ∈ I. 
(Fig. 19.2). 

Fig. 19.2 The theorem of 
the permanence of the sign
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Fig. 19.3 Bolzano’s 
theorem 

It is immediate to realize the following: 

Theorem 19.5 Let the function f be defined in the interval I; if it is continuous at a 
point c such that in any neighborhood of c the function f assumes both non-positive 
and non-negative values, then f (c) = 0. 

Proof . By Theorem 19.4 it cannot turn out neither f (c) > 0, nor f (c) < 0; whence it 
necessarily follows f (c) = 0. ⃞

Let us mention the following statements concerning continuous functions. 

Theorem 19.6 [Bolzano’s theorem, or theorem of the existence of the zeros]. If the 
function f is continuous in a closed and bounded interval [a, b] and if f (a) < 0 and 
f (b) > 0, then there exists a point c in the open interval (a, b), such that f (c) = 0. 
(Fig. 19.3) 

Theorem 19.7 [Darboux’s theorem, or the first existence theorem of the intermediate 
values]. If the function f is continuous in a closed and bounded interval [a, b], then 
it takes all the values between f (a) and f (b). 

Theorem 19.8 If the function f is defined in a closed and bounded interval [a, b], 
if f is monotone in [a, b] and takes all the values between f (a) and f (b), then f is 
continuous in [a, b]. 

Remark 19.2 Theorem 19.8 offers the opportunity for expressing an intuitive 
consideration. The attribute “continuous”, given to a function, suggests the idea, 
when drawing the graph, that the pen need never leave the paper, i. e., it can be 
drawn without “interruptions”. However, the definition 19.1 of continuity has a wider 
content beyond the intuitive meaning of traceability; in fact, there are continuous 
functions whose graphs cannot be drawn on a sheet of paper. 

19.2.1 Uniform Continuity 

Let f (x) be a real-valued function of a real variable defined in an interval I. However 
two points x' and x'' are given in the interval, consider the number
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|| f (x ') − f
(
x '')||

If f (x) is continuous in I, then (see Definition 19.3) for every ε > 0 and fixed the 
point x'', there exists a number δ > 0 such that | f (x')−f (x'')| < ε whenever 0 < | x'−x''
| <  δ. The  value  δ in general depends on both ε and the particular point x''. If the  
number δ depends only on ε, and not on x'', then the function f is called uniformly 
continuous in the interval I. 

In other words: 

Definition 19.4 A function f (x) whose domain is the interval I is said to be uniformly 
continuous in I if for every ε > 0 there exists a number δ > 0 such that | f (x')−f (x'')| < 
ε for any pair x', x'' of elements in I such that | x'−x'' | <  δ. 

It is obvious that if f (x) is uniformly continuous in the interval I, then f (x) is  
continuous at any point x of I. Therefore: 

Theorem 19.9 A function uniformly continuous in the interval I is also continuous 
in I. 

We limit ourselves to stating the following theorem: 

Theorem 19.10 [Cantor’s theorem]. A function f (x) continuous in a bounded and 
closed interval I is uniformly continuous in I. 

Let us prove the following: 

Theorem 19.11 If f (x) is continuous in a bounded and closed interval [a, b], then 
f (x) is bounded in the interval. 

Proof . By Cantor’s theorem the function f is uniformly continuous in [a, b]; hence, 
for every ε > 0 we can find a natural number n such that

|| f (x ') − f
(
x '')|| < ε 

whenever

||x '−x ''|| ≤ 
b−a 

n 

where x' and x'' are in [a, b]. 
Let us subdivide the interval into n congruent (Sect. 7.1) intervals by means of 

the points 

x0 = a, x1, x2, . . . ,  xn = b 

If x is a point belonging to [a, b] such that xi ≤ x ≤ xi+1, then 

|x−xi | ≤ 
b−a 

n 
implies| f (x) − f (xi )| ≤ ε
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and 

f (xi ) − ε ≤ f (x) ≤ f (xi ) + ε 

If h denotes the minimum of the numbers f (xi)−ε and k the maximum of the 
numbers f (xi) + ε, then 

h ≤ f (x) ≤ k 

what suffices to prove that the range of f is bounded. ⃞

Theorem 19.12 [Weierstrass’ theorem]. Let f (x) be a continuous function in a 
bounded and closed interval [a, b]. Then f (x) assumes the maximum value M and 
the minimum value m in [a, b]. 

Proof . By Theorem 19.11 f is bounded in [a, b]. Then there exists the supremum 
M of f (Sect. 7.1.2). We have to prove that there is a point x∈[a, b] such that f (x) 
= M. For every ε > 0, by the properties of the supremum M there exists x such that 
M−f (x) <  ε. Then 

1 

M− f (x) 
> 

1 

ε 
(19.4) 

and given the arbitrariness of ε, the function 1 
M− f (x) is not bounded. Let us suppose 

by contradiction 

f (x) /= M, 

for every x ∈ [a, b]. As M−f (x) is continuous and non-null in [a, b], we conclude that 
the ratio 1 

M− f (x) is continuous and bounded in [a, b]: but this conclusion contradicts 
(19.4). The contradiction arose for having supposed f (x) /= M, for every x ∈ [a, b]. 
Hence, there exists x in [a, b] such that f (x) = M. Therefore, M is the maximum of 
f (x) in [a, b]. 

Likewise, we can prove that there exists an x' ∈ [a, b] such that f (x') = m = inf 
f (x) = min f (x). (Fig. 19.4). 

⃞

Fig. 19.4 Weierstrass’ 
theorem: m minimum of f , M 
maximum of f
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Fig. 19.5 Second existence 
theorem of the intermediate 
values 

Theorem 19.13 [Second existence theorem of the intermediate values]. If the func-
tion f is continuous in a bounded and closed interval [a, b], then f assumes all the 
values between the minimum m and the maximum M. 

In other words, if f is continuous in the bounded and closed interval [a, b], then, 
for every point y of the interval [m, M], there exists x in [a, b] such that f (x) = y 
(Fig. 19.5). 

19.3 Discontinuity 

Let f (x) be a real-valued function defined in A ⊆ R. If  c ∈ A and f is not continuous 
at c, then the point c is called a point of discontinuity, or a  discontinuity of f , and f 
is said to be discontinuous at c. 

Let us classify the discontinuities as follows. 

A. The point c is a discontinuity of f and lim 
x→c 

f (x) exists, is finite and lim 
x→c 

f (x) /= 
f (c) (Fig. 19.6). 
Then the function f is said to admit a removable discontinuity at the point c ∈ 
R. The nomenclature is due to the fact that a new function g continuous at c can 
be defined, such that: 

g(x) = f (x) for every x /= c 
g(c) = lim 

x→c 
f (x)

Fig. 19.6 The limit of f at c 
is ℓ /= f (c), ℓ ∈ R 



328 19 Continuity

Fig. 19.7 The right and left 
limits of f at c are finite and 
distinct 

B. The limits lim 
x→c+ 

f (x) and lim 
x→c− 

f (x) exist, are finite and lim 
x→c+ 

f (x) /= lim 
x→c− 

f (x). 

The difference f (c+)−f (c−) is called the jump of f at c. The function f is said to 
have a discontinuity of the first kind, or a  jump discontinuity at c (Fig. 19.7). 

Example B1 The function signx (see Example 18.9): 

f (x) = 1, if x ≥ 0 
f (x) = −1, if x < 0 

is continuous at any non-null x. The point 0 is a discontinuity of the first kind 
for f . (Fig. 19.8) 

Example B2 The plane (Fig. 19.9) maintains an altitude q(x) from the ground 
and its trajectory is projected on the line xc. As long as x approaches c from the 
left, the value of the altitude is q(x). The left limit of q at c is q(x), the right limit of 
q at c is q(x) − h. The point c is a discontinuity of the first kind of the function q. 

C. Neither case (A) nor case (B) occurs. 
Then the point c is called a discontinuity of the second kind at c.

Fig. 19.8 lim 
x→0+ 

signx = 1, 
lim 

x→0− 
signx = −1 

Fig. 19.9 Plane in altitude 
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Fig. 19.10 f (x) = 2 
1 
x 

Example C1 The function j(x) defined in (Sect. 7.1.3) has a discontinuity of 
the second kind at any x ∈ [0, 1]. 

Example C2 The function 

f (x) =
{
2 

1 
x i f  x /= 0 
0 i f  x  = 0 

has a discontinuity of second kind at x = 0. Observe that 2 1 x → +∞  as x → 0+ 
and 2 

1 
x → 0 as x → 0– (Fig. 19.10). The limits lim 

x→+∞ 
f (x) = lim 

x→−∞ 
f (x) = 1 

indicate the existence of the horizontal asymptote x = 1. 

19.4 Domain Convention 

The domain of a real-valued function of a real variable f is the largest subset of R 
such that the expression f (x) has meaning. 

This statement is known as the domain convention. 
Thus, the domain of f (x) = x2 is the set of real numbers; the domain of g(x) = 1 x 

is the set of real numbers except 0; the set R+ = [0, +∞) is the domain of the square 
root function y = √

x . Of course, given a function f having domain D, it is allowable 
to define any restriction (Sect. 5.5) of  f to a proper non-empty part of D. 

19.5 Curves 

The concept of curve has been introduced in Sects. 7.2.2 and 7.2.3 where it was 
noticed that some curves are not graphs of functions and the graphs of some functions 
are not curves. 

It seems reasonable to call curve the graph of a continuous function. 
The equation y = f (x) defines the function f and is, at the same time, the equation 

of the curve which is the graph of f . We say that the set A of points in the plane has 
an equation
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y = f (x) (19.5) 

if (x, y) is a point of the set A, i.e., the couple (x, y) is a solution of (19.5) and, vice 
versa, if (x, y) is a solution of Eq. (19.5), then there exists a unique point of A which 
has coordinates (x, y). (Sect. 7.2 and Chap. 8). For example, the graph of the power 
function f (x) = x2, is made of the set of couple (x, y) that are the coordinate of the 
points of the parabola y = x2 (Sect. 17.4.1). 

19.6 Continuous Functions and Inverse Functions 

If f is a continuous function strictly increasing in the interval [a, b], then f (a) = m 
and f (b) = M, being m and M the minimum and maximum of f , respectively, whose 
existence is assured by Weierstrass’ theorem. Besides, from the second theorem of 
existence of intermediate values the function f assumes any value between m and M. 
Then, however we fix a number y in the interval [m, M], there is one and only one 
number x of the interval [a, b] such that f (x) = y (Fig. 19.11). 

Furthermore, by Theorem 17.1 the function f is invertible in [a, b], then the 
function f −1, inverse of f , by Theorem 19.8, is continuous and strictly increasing in 
[m, M]. 

For example, the function ex and the function lnx are continuous and strictly 
increasing in the respective domains. 

Likewise, if f is a continuous and strictly decreasing function in [a, b], there exists 
the inverse f −1 that is continuous and strictly decreasing in [m, M]. 

19.7 The Inverse Functions of the Circular Functions 

Notice that the circular functions are periodical and consequently they do not admit 
inverse functions. Specific restrictions of the circular functions are invertible, the 
name inverse is reserved for these functions.

1. The inverse sine function

Fig. 19.11 The graphs of a 
continuous and strictly 
increasing function f and the 
inverse f −1 
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The sine function is continuous in R. The restriction of the sine function to the 
interval

[−π 
2 , 

π 
2

]
is strictly increasing and takes all the values of the interval [−1, 

1]. Therefore, restricted to the interval
[−π 

2 , 
π 
2

]
the sine function is invertible and 

the inverse is called the inverse sine function or the arcsin function denoted arcsinx 
or sin–1x. The domain of arcsinx is [−1, 1], where it is strictly increasing and 
continuous, and the range is

[−π 
2 , 

π 
2

]
(Fig. 19.12). Of course, sin(arcsin x) = x.

2. The inverse cosine function 
The cosine function is continuous in R. The restriction of the function cosine 
is strictly decreasing and continuous in the interval [0, π] where it takes all 
the values of the interval [−1, 1]. Restricted to the interval [0, π], the function 
cosine is invertible and its inverse is called the inverse cosine function or the 
arccos function denoted arccosx, or cos–1x, the domain is [−1, 1] where it is 
strictly decreasing and continuous, and the range is [0, π] (Fig. 19.13). Of course, 
cos(arccos x) = x. 

3. The inverse tangent function 
The restriction of the function tangent to the open interval

(−π 
2 , 

π 
2

)
is continuous, 

strictly increasing and has range R. Therefore, restricted to the interval
(−π 

2 , 
π 
2

)
, 

the function tangent is invertible and its inverse is called inverse tangent function, 
denoted arctanx or atanx or tg–1(x) or arctgx whose domain is R, where it is 
strictly increasing and continuous, and range

(−π 
2 , 

π 
2

)
(Fig. 19.14). Of course, 

tg(arctanx) = x.

Fig. 19.12 y = arcsinx 

Fig. 19.13 y = arccosx 
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Fig. 19.14 y = atanx 

19.8 Continuity of Elementary Functions 

In addition to the functions considered in Theorem 19.3, also the inverses of the 
circular functions belong to the class of elementary functions. In conclusion, the 
following extension of Theorem 19.3 to the elementary functions holds: 

Theorem 19.14 The elementary functions and the composite functions of the 
elementary functions are continuous in their respective domains. 

19.9 Solved Problems 

Calculate the limits through formula (19.2). 

1. lim 
x→1 

2 
x 

x+1 = 2 lim 
x→1 

x 
x+1 = √

2 

2. lim 
x→0

(
ln

(
2x2 + x + 1

)) = ln
(
lim 
x→0

(
2x2 + x + 1

)) = ln1 = 0 

3. 
lim 
x→+ 

e 
1 
x = e lim 

x→+ 
1 
x = e0 = 1; lim 

x→− 
e 

1 
x = e lim 

x→− 
1 
x = e0 = 1 

lim 
x→o− 

e 
1 
x = e lim 

x→o− 
1 
x = 0; lim 

x→o+ 
e 

1 
x = e lim 

x→o+ 
1 
x = +  

Solve the inequalities (see Sect. 8.1.3): 

6 arcsin  x − π < 0 ⇒ arcsin x < π 
6

[−1 ≤ x < 1 2
]

2 arcsin  x + π > 0 ⇒ arcsin x > −π 
2 [−1 < x ≤ 1] 

arccos x > 0 [−1 < x ≤ 1] 
2 arccos x + π > 0 ⇒ arccos x > −π 

2 [−1 < x ≤ 1] 
4atanx + π < 0 ⇒ atanx < −π 

4 [x < −1] 
atanx < 1 [x < tan 1] 
atanx < 2 [x ∈ R]
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Chapter 20 
Derivative and Differential 

20.1 Introduction 

The concepts of derivative and differential are based on that of limit and deepen 
the knowledge of the real-valued functions in the analytical and geometric aspects. 
Differential geometry is indeed an important subject of mathematics. 

Galileo (1564–1642) and his school had faced crucial questions on the subject in 
the unitary perspective of the scientific knowledge. 

Isaac Newton (1642–1727) and Gottfried Wilhelm Leibniz (1646–1716) initiated 
a new vision of mathematics. Newton lays the foundations that will change the face 
of mathematics and physics, discovers the law of attraction of the bodies, which, 
along with the “calculation of fluids and pressures”, marks the beginning of the 
“infinitesimal analysis”, a priority shared with Leibniz. 

Differential calculus has developed such as to induce important advancements 
not only in mathematics but also in natural, environmental, forecasting sciences, in 
psychology, medicine, architecture, engineering, linguistics. In the economic and 
social sciences, various situations that connect men and reality are systematically 
studied: the increase in satisfaction in an individual who sees an increase in his 
income and well-being, the attitude towards risky behaviors, the paradoxes in collec-
tive decisions. Mathematical models are defined for the study of these behaviors, 
and suitable functions have been introduced, such as utility functions, to interpret 
phenomena. 

The dynamics in individual behaviors and the actions of masses of individuals, 
interpretable as a continuum of agents, are studied in mathematical terms (Aumann 
1964).
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20.2 Definition of Derivative 

Let f (x) be a real function defined in an open interval I ⊆ R. Let  x0 be a point of I 
and h a non-null real number such that the point x0 + h belongs to I. The number 
h is named an increment of the variable x from x0 and the function f (x) is thereby 
given an increment f (x0 + h) − f (x0) from f (x0). 

The ratio 

f (x0 + h)− f (x0) 
h 

is called the difference quotient of the function f on the interval [x0, x0 + h]. 
If the limit 

lim 
h→0 

f (x0 + h)− f (x0) 
h 

(20.1) 

exists and is finite, then it is called the derivative of the function f at the point x0 and 
is denoted by the symbol f '(x0). A function is said to be differentiable at a point x0 
if it is endowed with the derivative at this point; in other words, f (x) is  differentiable 
at x0 if f '(x0) exists. If f is differentiable at any point x of the interval I, it is said to  
be differentiable in the interval I. The function that associates the real number f '(x) 
to every x ∈ I is denoted Df or f '. The  value  f '(a) of the derivative of f at a point a 
is denoted f '(a) or (f '(x))x=a. The operation to calculate the derivative of a function 
f is called the differentiation of f. 

Remark 20.1 The symbols f ' and f '(x) have different meanings: the former denotes 
the function, i. e., the derivative of the function f , the latter denotes the value of the 
function f ' at x. However, when there is no possibility of misunderstanding, we will 
denote by f '(x) both the application and the value it assumes at x. (See Remark 5.1). 

20.3 Geometric Meaning of the Derivative 

Let f be a function defined in a neighborhood I of x0. If  h is a non-zero real number 
and x0 + h belongs to I, let us consider the points P0(x0, f (x0)) and Ph(x0 + h, f (x0 
+ h)) of the graph of f . The line s passing through the points P0 and Ph oriented as 
P0Ph is called the secant line to the graph of f at the points P0 and Ph. The slope of 
the secant line equals 

f (x0 + h)− f (x0) 
h 

This ratio, in turn, is equal to the value of the tangent function of the angle γ = 
xs
/\

that the x axis forms with the line s (Sect. 8.1.3d):
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Fig. 20.1 Geometric 
meaning of the derivative: 
f '(x0) = tg α 

tgγ = tgxs
/\ = 

f (x0 + h)− f (x0) 
h 

If f is differentiable at x0, i.e., the finite limit 

lim 
h→0 

f (x0 + h)− f (x0) 
h

= f '(x0) 

exists, the line t passing through the point P0(x0, f (x0)) is the limit position of the 
secant line s as h → 0 and it is named the tangent line to the graph of f at x0 (or at 
the point P0) (Fig.20.1). The tangent line forms the angle α = xt

/\

with the x axis and 
has slope f '(x0) = tg xt

/\

. 
Since f '(x0) is a finite number, then α /= ±  π 

2 , i.e., the line t is not parallel to the 
y axis. In other words, if f is differentiable at x0, then the tangent line t to the graph 
of f at P0 exists and its slope is f '(x0). 

The equation of the secant line s passing through P0 and Ph is 

y = f (x0) + tgγ (x − x0) 

and the equation of the tangent line t to the graph of f at x0 is 

y = f (x0) + f '(x0)(x − x0) (20.2) 

For example, the derivative of the function f (x) = x2 at the point x = 1 is  

lim 
h→0 

f (x + h)− f (x) 
h

= lim 
h→0 

(1 + h)2−12 

h
= lim 

h→0 

2h + h2 

h
= lim 

h→0 
(2 + h) = 2 

Thus f '(1) = 2. By (20.2) the tangent line t at x = 0 to the graph of f passes 
through the point (1, f (1)) = (1, 1) and has slope 2: 

(t) y = 1 + 2(x − 1)
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20.4 First Properties 

If we set x = x0 + h, then h = x − x0 and h → 0 if only if x → x0. Then the limit 
(20.1) takes the form 

lim 
x→x0 

f (x)− f (x0) 
x−x0 

Theorem 20.1 If the function f is differentiable at x0, then it is continuous there. 

Proof If f is differentiable at x0, then the limit 

lim 
x→x0 

f (x)− f (x0) 
x−x0 

exists and its value is f '(x0) ∈ R. We must prove that 

lim 
x→x0 

f (x) = f (x0) 

or what is the same, 

lim 
x→x0 

( f (x)− f (x0)) = 0 

From the properties of the operations with the limits (Sect. 18.4.1) we obtain 

lim 
x→x0 

( f (x)− f (x0)) = lim 
x→x0 

f (x)− f (x0) 
x−x0 

lim 
x→x0 

(x−x0) = f '(x0)0 = 0 ⃞

The inverse of the Theorem 20.1 does not hold. 

Example 20.2 The absolute value function f (x) = |x| is continuous in R. However, 
we will see that the derivative of f (x) = |x| does not exist at x = 0. 

20.4.1 Derivatives of Some Elementary Functions 

1. The derivative of the constant function f (x)= c equals zero. Indeed, the difference 
quotient of the function f on the interval [x0, x0 + h] is  

f (x + h)− f (x) 
h

= 
c − c 
h 

and its value is zero for every h /= 0. Furthermore, the limit of the quotient is 0, 
as h → 0. In symbols, for any constant c, Dc = 0.
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2. The derivative of f (x) = x is f '(x) = 1, for every x∈R. Indeed, 

lim 
h→0 

f (x + h)− f (x) 
h

= lim 
h→0 

x + h−x 

h
= lim 

h→0 

h 

h 
= 1 

Then Dx = 1. 
3. The derivative of f (x) = x2 is f '(x) = 2x, for every x ∈ R. Indeed, 

lim 
h→0 

f (x + h)− f (x) 
h

= lim 
h→0 

(x + h)2−x2 

h
= lim 

h→0 
(2x + h) = 2x 

Then Dx2 = 2x. 
Similarly, we obtain: Dx3 = 3x2. 

20.5 Operations Involving Derivatives 

Let us state some basic rules that allow to perform operations with derivatives. We 
will consider real-valued functions defined in an open interval I ⊆ R. 

Theorem 20.2 [Sum rule] If the functions f (x) and g(x) are differentiable at x0, then 
the sum 

F(x) = f (x) + g(x) is differentiable at x0 and 

F '(x0) = f '(x0) + g'(x0) 

Proof Let us consider the increment of F 

F(x0 + h) − F(x0) = f (x0 + h) + g(x0 + h) − f (x0) − g(x0) 

and the difference quotient 

F(x0 + h)−F(x0) 
h

= 
f (x0 + h)− f (x0) 

h
+ 

g(x0 + h)−g(x0) 
h 

As f (x) and g(x) are differentiable at x0, by Theorem 18.2 

lim 
h→0 

F(x0 + h)−F(x0) 
h

= f '(x0) + g'(x0) 

as we wanted to show. ⃞
Evidently under the hypotheses of the theorem 20.2 the difference rule holds: 

D( f (x0) − g(x0)) = f '(x0) − g'(x0)



340 20 Derivative and Differential

The theorem 20.2 clearly extends to the sum of any number n of functions: 

D( f1(x0) + f2(x0) +  · · ·  +  fn(x0)) = f '
1(x0) + f '

2(x0) +  · · ·  +  f '
n(x0) 

For example, 

D
(
x3 − x2 + x + 6

) = Dx3 − Dx2 + Dx + D6 = 3x2 − 2x + 1 

Theorem 20.3 [Product rule]. If the functions f (x) and g(x) are differentiable at x0, 
then the product F(x) = f (x) g(x) is differentiable and the following equality holds: 

F '(x0) = f (x0)g'(x0) + f '(x0)g(x0) (20.3) 

Proof Let us calculate the increment of F: 

F(x0 + h) − F(x0) = f (x0 + h)g(x0 + h) − f (x0)g(x0) 
= f (x0 + h)g(x0 + h) − g(x0) f (x0 + h) + g(x0) f (x0 + h) − f (x0)g(x0) 

and the difference quotient 

F(x0 + h)−F(x0) 
h

= 

f (x0 + h)g(x0 + h)−g(x0) f (x0 + h) + g(x0) f (x0 + h)− f (x0)g(x0) 
h

= 

f (x0 + h) 
g(x0 + h)−g(x0) 

h
+ g(x0) 

f (x0 + h)− f (x0) 
h 

By virtue of Theorem 18.2 the limit of the difference quotient as h → 0 yields 
Eq. (20.3). ⃞

A particular case of (20.3) is F(x) = k f  (x), with k constant. Since Dk = 0, from 
(20.3) we obtain 

F '(x) = k f '(x) (20.4) 

For example, 

D

(

−8x3 + 3x2 + 
1 

2 
x − 9

)

= −8Dx3 + 3Dx2 + 
1 

2 
Dx − D9 = −24x2 + 6x + 

1 

2 

Equation (20.3) extends to a product of any n differentiable functions: 

F(x) = f1(x) f2(x) . . .  fn(x) 

Indeed,
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F '(x) = f '
1(x) f2(x) . . .  fn(x) + f1(x) f '

2(x) . . .  fn(x) +  · · ·  +  f1(x) f2(x) . . .  f '
n(x) 

A further consequence of the Theorem 20.3 is the calculation of the derivative of 
the function 

( f (x))n 

with positive integer n, provided that the derivative of f (x) exists. Since 

( f (x))n = f (x) f (x) . . .  f (x) (n times) 

one has 

D( f (x))n = f '(x)[ f (x)]n−1 + f '(x)[ f (x)]n−1 +  · · ·  +  f '(x)[ f (x)]n−1 

(n times) 

Hence, 

D( f (x))n = n f '(x)[ f (x)]n−1 (20.5) 

In particular, as Dx = 1, if f (x) = x, then we obtain 

Dxn = nxn−1 (20.6) 

Theorem 20.4 [Quotient rule]. If the derivatives of the functions f (x) and g(x) at the 
point x0 exist, and if g(x0) /= 0, then there exists the derivative at x0 of the quotient 
F(x) = f (x) 

g(x) and 

F'(x) = 
f '(x)g(x)− f (x)g'(x) 

g2(x) 

The proof is similar to that of the product rule. 

20.6 Composite Functions. The Chain Rule 

Theorem 20.5 [Chain rule]. Let y = f (x) be a real valued function defined in the 
interval I , with derivative f '(x) at x ∈ I. Let g(y) be a real valued function defined in 
an interval L, such that f (I) ⊆ L, with derivative g'(y) at y = f (x). Then the composite 
function h(x) = g(f (x)) is differentiable and the derivative at x is 

h'(x) = g'( f (x)) f '(x) (20.7)
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Proof Consider y0 ∈ L and set 

g(y)−g(y0) 
y−y0 

− g'(y0) = ω(y) (20.8) 

Then 

g(y) − g(y0) = g'(y0)(y − y0) + ω(y)(y − y0) (20.9) 

The left-hand side of (20.8) is not defined if y = y0 and then the formula (20.8) 
defines ω(y) only for y /= y0. However, it is evident that 

lim 
y→y0 

ω(y) = 0 

Therefore, we can extend the function ω at y0 by setting 

ω(y0) = 0 

So the function ω(y) is defined and continuous everywhere in L and the right-hand 
side of (20.9) is defined also at y = y0 where equals zero. Since y = y0 implies also 
the left-hand side of (20.9) equals zero, in conclusion the whole formula is valid 
when y = y0. 

All this stated, let x and x0 be distinct points of I and put y = f (x) and y0 = f (x0) 
in the formula (20.9). Let us divide both sides of the formula so obtained by x−x0, 

g( f (x))−g( f (x0)) 
x−x0 

= g'( f (x0)) 
f (x)− f (x0) 

x−x0 
+ ω( f (x)) 

f (x)− f (x0) 
x−x0 

(20.10) 

In virtue of the continuity of ω(y) and f (x) and theorem 19.2 on the continuity of 
the composite function, we obtain 

lim 
x→x0 

ω( f (x)) = lim 
y→y0 

ω(y) = 0 

Observe that the right-hand side of (20.10), as x approaches x0, has limit g'(f (x0)) 
while the left-hand side is the difference quotient of g(f (x)). This proves formula 
(20.7), known as the chain rule. ⃞

Remark 20.2 The composite function g(f (x)) acts as follows: the function f is 
applied first and then g; f is the inner function and g is the outer function. By means 
of chain rule the derivative of the function g(f (x)) is the product of the derivative 
of the outer function g (evaluated at f (x)) and the derivative of the inner function 
(evaluated at x): D(g(f (x))) = g'(f (x)) f '(x)). See examples below.
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20.6.1 Derivatives of Some Elementary Functions 

Let us state without proofs the derivatives of the following elementary functions. 

Dlogax = 1 x logae = 1 
x ln a D ln|x | = 1 x 

Dax = ax ln a Dex = ex 
D sin x = cos x D  cos x = − sin x 
D tan x = 1 

cos2 x = 1 + tan2 x 

Examples (See the derivatives of the elementary functions above, (Sect. 20.5 and 
20.6) and sum, product, quotient rules and Eqs. (20.4), (20.5) and (20.6). 

D
(
5x2 + 7sinx − cosx

) = 10x + cosx + sinx; 
Dsin5x = 5sin4 xDsinx = 5sin4 xcosx; 
D

(
3x5 + 5sinx − 1

)3 = 3
(
3x5 + 5sinx − 1

)2 
D

(
3x5 + 5sinx − 1

)

= 3
(
3x5 + 5sinx − 1

)2(
15x4 + 5cosx

); 
D

(
6x3cos6x

) = 18x2cos6x − 6x3cos5xsinx; 
D(tanx − x)3 = 3(tanx − x)2 tan2x; 
D

(
x3 + cosx

)
lnx = (

3x2−sinx
)
lnx + 1 x

(
x3 + cosx

)
. 

20.7 Derivatives of the Inverse Functions 

Let y = f (x) be a real valued function, continuous and strictly monotonic in an interval 
I. Let  f –1(y) be the inverse function of f . The  inverse of  f is necessarily strictly 
monotonic and continuous in the interval f (I), i.e., the range of f (see Sect. 19.6). 

Theorem 20.6 If f '(x0) is the derivative of f (x) at x0 and f '(x0) /= 0, then there 
exists Df –1(y0), i,e., the derivative at y0 of f –1(y) and 

D f −1 (y0) = 1 

f '(x0) 
(20.11) 

Proof If y0 = f (x0), then it is also f –1(y0) = x0. Therefore, 

f −1(y) − f −1(y0) 
y−y0 

= x−x0 
f (x)− f (x0) 

Since the differences x–x0 and y–y0 are continuous, x approaches x0 if and only 
if y approaches y0. So the previous equality implies
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lim 
y→y0 

f −1(y) − f −1(y0) 
y−y0 

= lim 
x−x0 

1 
f (x)− f (x0) 

x−x0 

i. e., the equality (20.11). ⃞

20.7.1 Derivatives of the Inverses of the Circular Functions 

Let us find the derivatives of the inverses of the circular functions (Sect. 18.7). 
The function y = arcsinx is the inverse function of x = siny. If  −π 

2 < y < π 
2 , 

then –1 < x < 1 and Dsiny /= 0. By theorem 20.5 there exists the derivative of arcsinx 
in the open interval (–1, 1). We have 

Darcsinx = 
1 

Dsiny 
= 

1 

cosy 
= 1 

√
1−sin2 y 

= 1 √
1−x2 

Similarly, one can prove the following equations 

Darccosx = 1 √
1−x2 

Datanx = 1 

1 + x2 

20.8 The Derivative of the Function (f (x))g(x) and the Power 
Rule 

Let f (x) and g(x) be differentiable functions in the interval I. Furthermore, let f (x) 
be positive in I. Under these hypotheses, also the function 

( f (x))g(x) 

has the derivative in I and 

D( f (x))g(x) = ( f (x))g(x)
[
g(x) f '(x) 

f (x)
+ g'(x)ln f (x)

]

(20.12)
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Indeed, from the identity (see Eq. 17.5) 

( f (x))g(x) = (
eg(x) ln f (x)

)

and the theorem 20.3, the equality (20.12) follows. 
Let us apply (20.12) for finding the derivative of the function xa, x > 0 and any 

real number a: 

Dxa = ealnx
(

a 
1 

x 
+ 0 ln  x

)

Dxa = axa−1 . (20.13) 

Formula (20.13) is known as the power rule for the derivatives. 
Observe that the derivative of the power with real exponent is formally identical to 

the formulas (20.5) and (20.6) with natural exponent. Furthermore, if a is a rational 
number the equality (20.13) apply at any point x such that xa and xa–1 are defined. 

Exercises 20.1 Find the derivatives: 

D32 = 0
(
because 32 is a constant

)

D 
√
x = Dx 1 2 = 1 2 x 

1 
2 −1 = 1 2 

1 

x 
1 
2 

= 1 
2 
√
x 

D 1 x = Dx−1 = −1x−1−1 = −  1 x2 
D 3

√
x4 = Dx 4 3 = 4 3 x 

4 
3 −1 = 4 3 

3
√
x 

D 4
√
x3 = Dx 3 4 = 3 4 x 

3 
4 −1 = 3 4 x

− 1 
4 = 3 4 

1 

x 
1 
4 

= 3 4 
1 
4√x 

D
(√

x + 1 x −5
) = D 

√
x + D 1 x − D5 1 

2 
√
x 
− 1 x2 

D
(

4
√
x3 + 3

√
x4−x10

)
= D 4

√
x3 + D 3

√
x4−Dx10 = 3 4 

1 
4√x 

+ 4 3 
3
√
x−10x9 

Exercises 20.2 Find the derivatives of the functions: 

f (x) = 
1 

x2 
; g(x) = 

1 √
x

[

Ans : f '(x) = −  
2 

x3 
; g'(x) = − 1 

2x 
√
x

]
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Exercise 20.3 

Dsin3 x = 3sin2 xcosx; 
De 

√
x = e 

√
x 1 
2 
√
x 
, 

Dtan32x = 3tan22x 1 
cos22x 2; 

D
(
sin2x tgx+x2 

cosx

)
= 2cos2x tgx+x2 

cosx 

+sin2x (
1+tan2x+2x)cosx+sinx(tanx+x2 ) 

cos2x ; 
De(arcsinx)3 = e(arcsinx)3 3arcsin2 x 1 √

1−x2 
; 

D(sinx)2x = e2x ln(sinx)
[
2ln(sinx) + 2x cosx sinx

]
, 

D
(
1 + x2

)cosx = (
1 + x2

)cosx
[
2x(cosx) 
1+x2 −sinx ln

(
1 + x2

)]
. 

Exercise 20.4 The equation of the tangent line at the point x = 1 to the graph of the 
function f (x) = x3 is (Sect. 20.3), 

y = f (1) + f '(1)(x − 1) 

Since f (1) = 1 and f '(1) = (3x2)x =1 = 3, we have: 

y = 1 + 3(x − 1) 

Hence, the tangent line has equation 

y = 3x − 2 

20.8.1 Summary of Formulas and Differentiation Rules 

For convenience of the reader let us gather up the most important formulas and rules 
of differentiation. 

Dxa = axa−1 

D loga x = 1 x loga e = 1 
x ln a D ln|x | = 1 x 

Dax = ax ln a Dex = ex 
Dsinx = cosx Dcosx = −sinx 
Dtanx = 1 

cos2 x = 1 + tan2 x 
Darcsinx = 1 √

1−x2
Darccosx = −  1 √

1−x2 

Datanx = 1 
1+x2 

D( f (x) ± g(x)) = Df  (x) ± Dg(x) 
D( f (x)g(x)) = f (x0)g'(x0) + f '(x0)g(x0) 

D 
f (x) 
g(x) 

= 
f '(x)g(x) − f (x)g'(x) 

g2(x)
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D(g( f (x))) = g'( f (x)) f '(x) 

D( f (x))g(x) = eg(x)ln  f  (x) D(g(x) ln f (x)) = ( f (x))g(x)
[
g(x) f '(x) 

f (x) 
+ g'(x) ln f (x)

]

20.9 Right and Left-Hand Derivatives 

Definition 20.1 If the difference quotient (Sect. 20.1). 

f (x)− f (x0) 
x−x0 

is convergent as x → x0– (x → x0 + ), then the function f is said to be left-hand 
(right-hand) differentiable at x0, and the limit of the difference quotient as x → x0– (x 
→ x0 + ) is called the left-hand (right-hand) derivative of function f at x0, and is 
denoted f '−(x0) (D–f (x0)) or f '+(x0) (D+ f (x0)). 

The function f is differentiable at x0 if and only if the limits f '+(x0) and f '−(x0) 
exist and f '+(x0) = f '−(x0) (see Sect. 18.4.5). 

If f '+(x0) /= f '−(x0), then f is not differentiable at x0 and the right and left tangent 
line to the graph at x0 are distinct (Fig. 20.2). 

Remark 20.3 Suppose that f is differentiable at any interior point of the closed 
interval [a, b]. If f has a right-hand derivative at the point a and a left-hand derivative 
at the point b, then f is defined differentiable in the closed interval [a, b]. The symbol 
f '(x) denotes the function that is equal to the derivative of f in the open interval (a, 
b), with right-hand derivative of f at a and left-hand derivative at b. However, the 
statement “f is differentiable at x0” will mean that the ordinary derivative exists at 
x0. 

Example The function f (x) = |x| is not differentiable at the point 0. In fact, by 
definition of absolute value, we have

Fig. 20.2 The right tangent 
line and the left tangent line 
are distinct, tgγ+ = f '+(x0), 
tgγ– = f '−(x0) 
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lim 
x→0+ 

|x |−0 
x−0 = lim 

x→0+ 

x−0 
x−0 = 1 

lim 
x→0− 

|x |−0 
x−0 = lim 

x→0− 

−x−0 
x−0 = −1 

20.10 Higher Order Derivatives 

Let f (x) be a differentiable function in the open interval (a, b). If the derivative 
of f is also differentiable, its derivative is denoted by f ''(x) or D2f (x) and called 
the derivative of the second order of f (x). Therefore, we have: D2f (x) = f ''(x) = 
D(D(f (x))). 

The procedure of successive derivatives can be repeated n times, when the condi-
tions exist. The nth derivative of f (x) is denoted f (n)(x) or Dnf (x), where n is called 
the order of the derivative of f , and f is said to be n times differentiable at x. 

Examples 
Dn ex = ex 

for every natural n. 

D2 sin x = D(D sin x) = D cos x = − sin x 
D3 sin x = D

(
D2 sin x

) = − cos x 
D4 sin x = D

(
D3 sin x

) = D(− cos x) = sin x 
D2 tan x = D(1 + tan2 x) = 2 tan  x

(
1 + tan2 x

)

Observe that the derivatives of sinx and cosx reproduce four by four. 

Exercises 20.5 Calculate the derivatives: 

1. 
f (x) = sin(arccosx), f '(x) = cos(arccosx) −1 √

1−x2 
= −x √

1−x2 

[in fact, cos(arccos x) = x] 
2. f (x) = atan 

√
lnsinx, f '(x) = 1 

1+lnsinx 
1 

2 
√
lnsinx 

1 
sinx cosx 

3. f (x) = 
/

x+1 
1−x , f

'(x) = 1 

2
(√

x+1 
1−x

) 1−x+x+1 
(1−x)2 

= 
√

1−x 
1+x 

(1−x)2 
= 1 √

1−x2 
1 

1−x 

4. 
f (x) = (x ln x)x f '(x) = Dex ln(x ln x) 

= ex ln(x ln x)
(
ln(x ln x) + x 

x ln x

(
ln x + x x

))

= (x ln x)x
(
ln(x ln x) + 1 

ln x (ln x + 1)
)

20.11 Infinitesimals 

Let f be a real-valued function defined in a set A of real numbers. If
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lim 
x→c 

f (x) = 0 

with c finite or infinite, then f is said to be an infinitesimal function or an infinitesimal 
as x → c. 

Let us now specify what is meant by comparison between two infinitesimals. If 
f and g are real-valued functions defined in A and infinitesimals as x → c, c finite 
or infinite, and there exists a neighborhood I of c such that g(x) /= 0, for all x ∈ A ∩ 
I−{c}. So the function f (x) g(x) is defined for every x ∈ A ∩ I−{c}. 

Furthermore, let us suppose that the limit 

lim 
x→c 

f (x) 
g(x) 

exists. The following cases occur: 

lim 
x→c 

f (x) 
g(x) = 0 

lim 
x→c 

f (x) 
g(x) = ℓ /= 0, ℓ finite 

lim 
x→c 

f (x) 
g(x) = +∞  or −∞ 

In the first case the function f is said to be an infinitesimal of higher order than g 
at c. In the second case the functions f and g are said to be infinitesimals of the same 
order at c. In the third case the function f is said to be an infinitesimal of lower order 
than g at c. 

If lim 
x→c 

f (x) 
g(x) does not exist, then the two infinitesimals f and g as x → c are said to 

be non-comparable at c. For example, f (x) = x sin 1 x and g(x) = x are infinitesimals 
(Example 18.3) non-comparable at zero because sin 1 x has no limit as x → 0 (Example 
18.11). 

Examples 20.7 

1. The function f (x) = x−5 is an infinitesimal as x → 5 because lim 
x→5 

(x − 5) = 0; 
the function f (x) = 1 x is an infinitesimal as x → +∞  because lim 

x→+∞ 
1 
x = 0. 

2. The function x2 is an infinitesimal of higher order than x as x → 0 and x3 is an 
infinitesimal of higher order than x2 as x → 0; indeed, 

lim 
x→0 

x2 

x = lim 
x→0 

x = 0 

lim 
x→0 

x3 

x2 = lim 
x→0 

x = 0 

Figure 20.3 suggests an intuitive consideration. The infinitesimals x3, x2 and 
x as x → 0 are different from each other: the function x3 approaches 0 “faster” 
than x2, and x2 approaches 0 “faster” than x.

3. The functions sinx and tanx are infinitesimals of the same order as x → 0. In fact,
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Fig. 20.3 x2 is an 
infinitesimal of higher order 
than x as x → 0; x3 is an 
infinitesimal of higher order 
than x2 as x → 0

lim 
x→0 

sinx 

tanx 
= lim 

x→0 

sinxcosx 

sinx
= lim 

x→0 
cosx = 1 

4. The functions x–1 and x2–1 are infinitesimals of the same order as x → 1. In fact, 

lim 
x→1 

x−1 

x2−1 
= lim 

x→1 

x−1 

(x−1)(x + 1) 
= lim 

x→1 

1 

x + 1 
= 

1 

2 

5. The function x–1 is an infinitesimal of lower order than (x–1)3 as x → 1. In fact, 

lim 
x→1 

x−1 

(x−1)3 
= lim 

x→1 

1 

(x−1)2 
= +∞  

Definition 20.2 Let f and g be real-valued functions defined in A ⊆ R and infinites-
imals as x → c. Let a neighborhood I of c exist such that g(x) > 0,  for all  x ∈ A 
∩ I−{c}. If p is a positive real number, any power (g(x))p is an infinitesimal as x 
→ c. The function f (x) is said to be an  infinitesimal of order p with respect to the 
infinitesimal g(x), called principal infinitesimal, if  f (x) and (g(x))p are infinitesimals 
of the same order at c, i.e., 

lim 
x→c 

f (x) 
(g(x))p 

= ℓ /= 0, ℓ finite 

If c is finite, then (x−c) is usually assumed as principal infinitesimal; if c = 
+∞, or c = −∞, 1 

|x | is usually assumed as principal infinitesimal. 
If q is a positive real number such that q > p, then (g(x))q is an infinitesimal of 

higher order than (g(x))p. In fact, q > p implies: 

lim 
x→c 

(g(x))q 

(g(x))p 
= lim 

x→c 
(g(x))q−p = 0
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20.12 Infinities 

A real-valued function f (x) defined in a subset A ⊆ R such that f (x) → +  ∞  (– ∞) 
as x → c, c∈R*, is said to be an  infinity at c. 

The comparison of infinities is defined similarly to the comparison of infinitesi-
mals. 

Let f (x) and g(x) be two infinities as x approaches c and let us suppose that the 
limit 

lim 
x→c 

f (x) 
g(x) 

exists. The following cases occur: 

lim 
x→c 

f (x) 
g(x) = 0 

lim 
x→c 

f (x) 
g(x) = ℓ /= 0 

lim 
x→c 

f (x) 
g(x) = +∞  or − ∞  

In the first case the function f is said to be an infinity of lower order than g as x → 
c. In the second case the functions f and g are said to be infinities of the same order 
as x → c. In the third case the function f is said to be an infinity of higher order than 
g as x → c. 

If lim 
x→c 

f (x) 
g(x) does not exist, then the two infinities f and g are called non-comparable 

at c. 

Definition 20.3 The function f (x) is said to be an  infinity of order p > 0 with respect 
to the infinity g(x) assumed positive and called principal infinity, if  f (x) and (g(x))p 

are infinities of the same order. For the limits as x → c, c∈R, |x−c|–1 is assumed as 
principal infinity; for the limits as x → +∞ (or x → −∞), |x| is assumed as principal 
infinity. 

20.13 Differential 

Let f be a function defined in an open interval (a, b) and differentiable at the point 
x of (a, b). We denote with ∆x an increment of x such that x + ∆x belongs to the 
interval (a, b) and ∆f the corresponding increment of f , i.e.,

∆ f = ∆ f (x) = f (x + ∆x) − f (x) 

The difference quotient of f on the interval [x, x + ∆x] is
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∆ f

∆x 
= ∆ f (x)

∆x
= 

f (x + ∆x)− f (x)
∆x 

Since f is differentiable at x (Sect. 20.2) the limit 

lim
∆x→0

∆ f

∆x 
= lim

∆x→0 

f (x + ∆x)− f (x)
∆x

= f '(x) 

exists and is finite; its value is the derivative of f at x; the line t passing through the 
point P0(x0, f (x0)) forms the angle α = xt

/\

with the x axis and has slope f '(x0) = tg 
xt
/\ = tg α. (see Sect. 20.3). 

Let us consider the points H(x + ∆x, f (x)), L(x + ∆x, f (x + ∆x)) and M common 
to the lines t and HL (Fig. 20.4). We get (Sect. 8.1.3): 

HM = f '(x)∆x 

Therefore,

∆ f = f '(x)∆x + ML (20.14) 

Let us now put 

ω(x) = ML 

i.e., by (20.14), 

ω(x) = ∆ f − f '(x)∆x (20.15) 

Theorem 20.7 Let f be a real-valued function defined in the open interval (a, b) and 
differentiable at the point x. Then the function ω is an infinitesimal of higher order 
than ∆x, as ∆x → 0. 

Proof Since f is differentiable at x, from (20.15) we obtain:

Fig. 20.4 ∆f increment of 
f ; df differential of f 
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lim
∆x→0 

ω(x)

∆x 
= lim

∆x→0

∆ f

∆x 
− lim

∆x→0 

f '(x)∆x

∆x 
= f '(x)− f '(x) = 0 

and this means that ω is an infinitesimal of higher order than ∆x, as ∆x → 0. ⃞
The product f '(x)∆x is named the differential of f at x and is denoted by the 

symbol df : 

d f  = f '(x)∆x (20.16) 

Plugging f (x) = x into (20.16), we get dx = 1∆x = ∆x, i.e., the differential of 
the identical function x equals the increment of x. 

Therefore, (20.16) may be rewritten as 

d f  = f '(x)dx (20.17) 

that is the usual expression of the differential of f . 
From (20.15) and (20.16) we obtain

∆ f = f '(x)dx  + ω(x) = d f  + ω(x) (20.18) 

This means that the increment of f differs from the differential of f by an 
infinitesimal of higher order then ∆x. This justifies the approximate equality

∆ f ≈ d f (20.19) 

(where the symbol≈ means “almost equal”) used in the physical and natural sciences, 
in economics, where approximate equality is often replaced by equality tout court:

∆ f = d f (20.20) 

From (20.17) we get 

d f  

dx  
= f '(x) (20.21) 

The symbol d f  dx  in (20.21) which indicates the derivative of f as the ratio of two 
differentials, was introduced by Leibniz and is currently used. 

Once the derivative is known, the calculation of the differential is immediate. For 
example: 

d(sin x) = cos xdx  
d(4x − 1) = 4dx  
d(ln x2) = 1 

x2 2xdx  = 2 x dx
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Another field of application of the “equalities” (20.18) and (20.19). In the case 
that the variable x is time, if ∆x > 0, then ∆f expresses the forecast of the increment 
in the value of f at the time x + ∆x. 

20.13.1 Differentials of Higher Order 

With the same procedure followed for the derivatives, the differentials of higher order 
of a function are defined. The second order differential is the differential of the first 
differential, calculated considering constant the factor dx. Therefore, if we denote 
with d2y or d2f the differential of the second order, we have: 

d2 y = d2 f = d(d f  ) = D
(
f '(x)dx

)
dx  = f ''(x)dxdx  = f ''(x)dx2 

Just as the differentials of a function are expressed by means of the derivatives 
of the function, so the derivatives can be expressed by means of the differentials. 
Indeed, given the function y = f (x), the following identities hold: 

f '(x) = 
dy  

dx  
= 

d f  

dx  
; f ''(x) = 

d2 y 

dx2 
= 

d2 f 

dx2 
; . . .  ; f (n) (x) = 

dn y 

dxn 
= 

dn f 

dxn 

In other words, the derivative of order n of a function is equal to the ratio of the 
differential of order n of the function and the n-th power of the differential of the 
independent variable. 

20.14 Solved Problems 

1. Differentiate f (x) = x(lnx–1). 
Use the product rule: f '(x) = lnx−1 + x 1 x = lnx−1 + 1 = lnx . 

2. Differentiate f (x) = x2 2
(
lnx− 1 

2

)

Use product rule: f '(x) = 2x 2
(
lnx− 1 

2

) + x2 2 
1 
x = x lnx− x 

2 + x 2 = x lnx. 
3. Differentiate f (x) = ln(tanx). 

Use chain rule: f '(x) = 1 
tanx 

1 
cos2x = 1 

sinxcosx . 

4. Differentiate f (x) = x 
√
x . 

Use rule (20.12): f '(x) = x 
√
x
[

1 
2 
√
x 
lnx + √

x 1 x

]
= x 

√
x √
x

(
1 
2 lnx + 1

)
. 

5. Find the equations of the two tangent lines to the curve f (x) = x3−3x + 1 and 
parallel to the line 3x−y + 1 = 0. Calculate the distance between the two contact 
points. 

Solution The slope of the line is 3, the tangent line to the curve at a point x has 
slope f '(x) = 3x2–3. As the given line is not vertical the necessary and sufficient
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condition for parallelism is the equality of the slopes: 3x2−3 = 3, i. e., x = √
2 

or x = −  
√
2. If  x = √

2, then f (x) = 1− 
√
2; if  x = −  

√
2, then f (x) = 1 + √

2. Thus, the contact points are A( 
√
2, 1− 

√
2) and B(− 

√
2, 1 + √

2), to which 
correspond (see Sect. 7.2.3) the lines y = 3(x–

√
2) + 1− 

√
2 and y = 3(x + √

2) + 1 + 
√
2, respectively: applying the formula of the distance of two points 

(Sect. 7.1.1), we obtain |AB| = 4. 
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Chapter 21 
Theorems of Differential Calculus 

21.1 Introduction 

We deepen the study of differential calculus and present some important results. We 
have mentioned (Sect. 20.1) the origins of differential calculus and its spreading in 
the sciences. 

Mechanics and astronomy, along with the advancements resulting from the studies 
of Galileo and Newton and Leibniz, provide a theoretical framework for all the 
sciences, for which the knowledge of the phenomena is translated into the construc-
tion of a mathematical and mechanical model. Started by Descartes and raised in the 
century of the Enlightenment, the impulse of mathematics enlivens the entire cultural 
process. 

21.2 Extrema of a Real-Valued Function of a Single 
Variable 

The problems which deal with finding the best way to perform a given task are 
called optimization problems. Many optimization problems consist in searching for 
the minimum or the maximum value of a function and determine where these values 
occur. 

In Sect. 7.2.1 we encountered the concept of extremum of a real-valued function 
f . Infimum, supremum, minimum and maximum of f , are  extrema of the function. 

The minimum and the maximum of f in the domain A are also named absolute 
minimum and absolute maximum, respectively. If f (x') = min f , then f is said to have 
a minimum point at x', also named absolute minimum point; if  f (x'') = max f , then f 
is said to have a maximum point at x'', also named absolute maximum point. 

Examples of minimum, maximum, infimum and supremum of elementary functions 
(see Sects. 8.1.3, 17.4, and 19.7) are:
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Fig. 21.1 Relative 
maximum and relative 
minimum points for f 

sup sin x = max sin x = 1, x ∈ R 
in  f  sin x = min sin x = −1, x ∈ R 
in  f  x2 = minx2 = 0, x ∈ R 
in  f  (x2 − 1) = min

)
x2 − 1

( = −1, x ∈ R 
sup arcsinx = max arcsinx = π 

2 , x ∈ [−1, 1] 
sup arccosx = maxarccosx = π, x ∈ [−1, 1] 
sup atanx = π 

2 , x ∈ R 
in  f  atanx = −π 

2 , x ∈ R 

The functions x3, −x2, atanx have no minimum; the functions x3, x2, atanx have 
no maximum. 

Definition 21.1 Let f be a real-valued function defined in the set A ∈ R. The point 
c of A is said to be a relative maximum (minimum) point of the function f if there 
exists a neighborhood I of c such that 

f (x) ≤ f (c) ( f (x) ≥ f (c)) (21.1) 

for every x ∈ A ∩ I. 

If c is a maximum (minimum) point of f , then (21.1) is verified at any point of A. 
Therefore, the maximum (minimum) point of f is also a relative minimum (relative 
maximum) point. 

The relative maximum points or relative minimum are also called relative 
extremum points of the function. The relative maximum or relative minimum values 
attained by the function are also called relative extrema of the function; the maximum 
and minimum values assumed by the function are also called absolute maximum and 
absolute minimum, or generically absolute extrema of the function (Fig. 21.1). 

Observe that the expressions “absolute maximum” and “absolute minimum” are 
often used instead of the terms “maximum” and “minimum”, to avoid possible misun-
derstandings in a context including “relative maximum” or “relative minimum”. 

More specifically, if c is a point of A and an accumulation point of A, i.e., c ∈ A ∩ 
A', where A' is the derived set of A, the point c is said to be a proper relative maximum 
(minimum) point and f (c) a  proper relative maximum (minimum) if a neighborhood 
I of c exists such that
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f (x) <  f (c) (  f (x) >  f (c)) 

for every x ∈ A ∩ A' – {c}. As reported in Fig. 21.1, we identify the following notable 
points: 

c0 relative minimum point of f : f (x) ≥ f (c0) for every x ∈ A ∩ I, A = [c0, c4] and 
I a suitable neighborhood of c0; 

c1 relative maximum point of f : f (x) ≤ f (c1) in a neighborhood of c1; 
c2 relative minimum point of f : f (x) ≥ f (c2) in a neighborhood of c2; 
c3 relative maximum point of f : (c3 is also the maximum point of f ); 
c4 relative minimum point of f : (c4 is also the minimum point of f ) 
Let us observe that the maximum (minimum), if it exists, of a function f defined in 

the set A is unique. The same does not happen to the maximum points and minimum 
points: indeed, in the same set may exist several distinct points x1, x2, …,  xn, all  
maximum points or all minimum points of f ; of course, in this case it will be f (x1) = 
f (x2) = … = f (xn) = , …. For example, the function cosx, restricted to the interval 
[0, 4π], has the maximum points 0, 2π, 4π. 

21.3 Fermat’s and Rolle’s Theorems 

We state and prove some basic theorems of differential calculus. 

Theorem 21.1 (Fermat’s theorem) If f is a real-valued function differentiable in the 
open interval (a, b), and if c ∈ (a, b) is a relative extreme point of f , then 

f '(c) = 0 

Proof We prove the theorem in the case that c is a relative maximum point for the 
function f . The proof, in case that c is a relative minimum point, is similar. If c is a 
relative maximum point, there exists a neighborhood I of the point c, I ⊆ (a, b), such 
that 

f (c) ≥ f (x) (21.2) 

whatever the point x ∈ I is. By (21.2), if x < c, then f (x)− f (c) 
x−c ≥ 0; if  x > c, then 

f (x)− f (c) 
x−c ≤ 0. Therefore, in virtue of Theorem 18.4 applied to the function f (x)− f (c) 

x−c , 
we obtain, 

lim 
x→c− 

f (x)− f (c) 
x−c ≥ 0 

lim 
x→c+ 

f (x)− f (c) 
x−c ≤ 0 

Since f is differentiable at c, the right limit equals the left limit. 
Thus, by Theorem 18.8, f'(c) = 0. ⃞
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Fig. 21.2 Rolle’s theorem: 
the angle between the 
tangent line t at c and the x 
axis is null 

From a geometric point of view Fermat’s theorem states that the tangent line to 
the curve y = f (x) on a relative maximum or minimum point must be parallel to the 
x axis. 

Theorem 21.2 (Rolle’s theorem) If f is a continuous function in the closed and 
bounded interval [a, b], differentiable in the open interval (a, b) and if f (a) = f (b), 
then there exists a point c of (a, b), such that f '(c) = 0. 

Proof The function f satisfies the hypothesis of Weierstrass’ theorem. Then f 
achieves the minimum value m' and the maximum value m''. This means that there 
exist in [a, b] two points x' and x'' such that f (x') = m' and f (x'') = m''. One of the 
two cases occurs: 

case 1 one of the points x' and x'' is different from the extremes of the interval [a, 
b]. Let us suppose a < x' < b. Then x' is a relative minimum point of f in (a, b). As 
f is differentiable in (a, b), by Fermat’s theorem, f '(x') = 0. (If a < x'' < b, we infer 
f '(x'') = 0.) 

case 2 the points x' and x'' coincide with the extremes of the interval [a, b]. Suppose 
a = x' and b = x''. By the hypothesis f (a) = f (b) we have  m' = f (x') = f (x'') = m'', 
and then f is constant in [a, b]. Therefore, by (Sect. 20.4.1.1), f '(x) = 0, for every x 
in (a, b) (Fig. 21.2). ⃞

21.4 Lagrange’s Theorem and Consequences 

The following theorem is a generalization of Rolle’s theorem, since the hypothesis 
f(a) = f (b) is abandoned. Geometrically (Fig. 21.3), the theorem states that, if f is a 
continuous function in the closed and bounded interval [a, b] and if it is differentiable 
in the open interval (a, b), there exists a point c of (a, b) such that the tangent line t 
to the graph of f is parallel to the line s passing through the points (a, f (a)), (b, f (b)): 

y = f (b) + 
f (b)− f (a) 

b−a 
(x−a) (21.3)
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Fig. 21.3 Geometrical 
meaning of Lagrange’s 
theorem: 
tan α = f '(c) = f (b)− f (a) 

b−a 

Theorem 21.3 (Lagrange’s theorem) If f is a continuous function in the closed and 
bounded interval [a, b] and differentiable in the open interval (a, b), then there exists 
a point c in the interval (a, b), such that 

f '(c) = 
f (b)− f (a) 

b−a 

Proof We construct an auxiliary function g(x) by subtracting the right-hand side of 
(21.3) from f (x): 

g(x) = f (x) − f (b) − 
f (b) − f (a) 

b − a 
(x − a) 

It is easy to check that g(a) = g(b). So, the function g(x) satisfies the hypotheses 
of Rolle’s theorem in the interval [a, b]. Hence, there is a point c in the interval (a, 
b) such that 

g'(c) = f '(c) − 
f (b) − f (a) 

b − a
= 0 

Thus, the equality 

f '(c) = 
f (b) − f (a) 

b − a 

follows, as claimed. ⃞

Theorem 21.4 (Cauchy’s theorem) Let the real-valued functions f and g be contin-
uous in the closed interval [a, b] and differentiable in the open interval (a, b). If g(a)
/= g(b) and f '(x) and g'(x) do not vanish simultaneously, then there exists a point c 
in (a, b) such that 

f (b)− f (a) 
g(b)−g(a) 

= 
f '(c) 
g'(c)



362 21 Theorems of Differential Calculus

If g(x) = x, Cauchy’s theorem reduces to Lagrange’s. 

Definition 21.2 A real-valued function f , whose domain is D ⊆ R, is said to be  
identically null in a subset A of D if f has value 0 at any point of A. 

Some consequences of Lagrange’s theorem are of particular interest. We know 
(Sect. 20.4.1.1) that if a function is constant in (a, b) then its derivative is identically 
zero in (a, b). Well, the following theorem inverts the implication. 

Theorem 21.5 If f is a continuous function in the closed and bounded interval [a, 
b], differentiable in the open interval (a, b) and if f has identically null derivative at 
(a, b), then f is constant in [a, b]. 

Proof Let x be a point in (a, b). We apply Lagrange’s theorem to the restriction of f 
to the interval [a, x]. Therefore, a point c in (a, x) exists such that 

f '(c) = 
f (x)− f (a) 

x−a 

If the derivative of f at every point of (a, b) is zero, then f '(c) = 0 and f (x) = f (a), 
i.e., f takes the same value f (a) at every  x in (a, b). ⃞

Theorem 21.6 Let f be a continuous function in the closed and bounded interval [a, 
b]. If f is differentiable in (a, b), then for every x ∈ (a, b), f '(x) ≥ 0 if and only if f is 
increasing in (a, b). 

Proof We prove that if f '(x) ≥ 0 for every x, then f is increasing in (a, b); i.e., 
however two elements x' and x'' are chosen in [a, b], if x' < x'', then f (x') ≤ f (x''). We 
apply Lagrange’s theorem to the restriction of f to the interval [x', x'']. Then, a point 
c exists in (x', x''), such that 

f '(c) = 
f
)
x ''(− f

)
x '(

x ''−x '

and since f '(c) ≥ 0 and x'' − x' > 0, it follows  f (x') ≤ f (x''). We now prove that if f 
is increasing in (a, b), then f '(x) ≥ 0, for every x ∈ (a, b). In fact, if f is increasing in 
(a, b), then, for every x in (a, b) and h > 0, such that x + h is in (a, b), we have f (x 
+ h) ≥ f (x). Therefore, we get 

f (x + h)− f (x) 
h

≥ 0 (21.4) 

As the same inequality holds when h < 0 we get 

lim 
h→0 

f (x + h)− f (x) 
h

= f '(x) ≥ 0 

as claimed. ⃞
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Similarly, we can prove the following: 

Theorem 21.7 Let f be a continuous function in the closed and bounded interval [a, 
b] and differentiable in (a, b). Then f '(x) ≤ 0 in (a, b) if and only if f is decreasing 
in (a, b). 

Observe that the statements of Theorems 21.6 and 21.7 are double implications. 
The following are implications related to strictly monotonic functions. 

Theorem 21.8 Let f be a continuous function in the closed and bounded interval [a, 
b] and differentiable in (a, b). If  f '(x) > 0  in (a, b), then f is strictly increasing in (a, 
b). 

Theorem 21.9 Let f be a continuous function in the closed and bounded interval [a, 
b] and differentiable in (a, b). If f '(x) < 0  in (a, b), then f is strictly decreasing in (a, 
b). 

Remark 21.1 Theorems 21.8 and 21.9 cannot be inverted. For example, f (x) = x3 
is strictly increasing and differentiable in R, but  f '(0) = [3x2]x = 0 = 0. 

Example 21.1 The function f (x) = x2 is strictly decreasing in (−∞, 0) and strictly 
increasing in (0, +∞) because f '(x) = 2x. 

Example 21.2 The function f (x) = log2 x is strictly increasing in (0, +∞), in fact, 
for every x > 0,  f '(x) = 1 x log2 e > 0. 

Example 21.3 The function f (x) = log 1 
2 
x is strictly decreasing in (0, +∞), in 

fact, 

f '(x) = 
1 

x 
log 1 

2 
e < 0 

for every x > 0.  

21.5 Comments on Fermat’s Theorem 

If the function f continuous in [a, b] and differentiable in (a, b) is endowed with a 
relative maximum or minimum point c ∈ (a, b), then f '(c) = 0. 

The inverse implication does not hold. Indeed, if f is defined in [a, b], differentiable 
in (a, b) and if f '(c) = 0, for some c in (a, b), then one of the following circumstances 
occurs:

1. there exists a neighborhood of c in which f '(x) is non-negative for x ≤ c and 
non-positive for x ≥ c; then c is a relative maximum point; 

2. there exists a neighborhood of c in which f '(x) is non-positive for x ≤ c and 
non-negative for x ≥ c; then c is a relative minimum point;
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Fig. 21.4 Graph of f (x) = 1 
− x2 

3. there exists a neighborhood of c in which f '(x) ≥ 0; then f is increasing in the 
neighborhood; 

4. there exists a neighborhood of c in which f '(x) ≤ 0; then f is decreasing in the 
neighborhood; 

5. f '(x) changes sign an infinite number of times in every neighborhood of c. 

Therefore, the fact that the derivative of f at c vanishes is not a sufficient condition 
for c to be a relative maximum or minimum point, i.e.: 

{f '(c) = 0} does not imply {c is a point of relative maximum or minimum of f } 

Example 21.4 Let us consider the function f (x) = x2 and the derivative f '(x) = 2x 
= 0 if and only if x = 0. The function f has a relative minimum point in 0 (which is 
also an absolute minimum point). The tangent line to the graph in (0, f (0)) = (0, 0) 
is the x axis. 

Example 21.5 Let us consider the function f (x) = 1 − x2 and the derivative f '(x) = 
−2x = 0 if and only if x = 0.  The function has  in 0 a relative maximum point  (which  
is also an absolute maximum point). The tangent line to the graph at (0, f (0)) = (0, 
1) is the line y = 1 (Fig. 21.4). 

Example 21.6 Let us consider the function f (x) = x3; the derivative f '(x) = 3x2 = 
0 if and only if x = 0. The function f has no relative extremes in R; f is strictly 
increasing in R (see Sects. 18.3 and 18.4.6). The tangent line to the graph of f at the 
point (0, f (0)) = (0, 0) is the x axis (Fig. 17.7). 

21.5.1 Searching for Relative Maximum and Minimum 
Points 

If f is differentiable in the interval (a, b), a point c ∈ (a, b) such that f '(c) = 0 is called 
a critical point of f . From the classification above (Sect. 21.5) which lists five cases 
which proceed from the hypothesis f '(c) = 0, we deduce the following sufficient 
condition that c be a relative maximum (minimum) point.
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Second derivative test. Let  f '(c) = 0 and the second derivative of f at c exist. If 
f ''(c) < 0 (f ''(c) > 0), then f has a proper relative maximum (relative minimum) at c. 

Exercise 21.1 Find the relative maxima and minima of the function f (x) = x4 − 
2x2. The function is endowed with first and second derivative: 

f '(x) = 4x3 − 4x = 4x(x − 1)(x + 1) 
f ''(x) = 12x2 − 4 

We have f '(x) = 0 if and only if x = 0, x = 1, x = −1. As 

f ''(0) = −4 < 0 
f ''(1) = 8 > 0 
f ''(−1) = 8 > 0 

x = 0 is a proper relative maximum point of f , x = 1 and x = −1 are proper relative 
minimum points of f . The function f attains a relative maximum f (0)= 0, and relative 
minima f (1) = −1 and f (−1) = −1. 

21.5.2 Searching for the Absolute Maximum and Minimum 
of a Function 

Let f be a continuous function in the closed and bounded interval [a, b]. By Weier-
strass’ theorem the function f has an absolute minimum m and an absolute maximum 
M; this means that two points, x' and x'', exist in the interval such that f (x') = m 
and f (x'') = M. The points x' and x'' are absolute minimum and maximum points, 
respectively. 

If x' and x'' are in the open interval (a, b), they are a relative minimum point and 
a relative maximum point, respectively. Hence, if f is differentiable in (a, b), then 
f '(x') = 0 and f '(x'') = 0. 

However, it may happen that f is not differentiable in x' or x'', or at least one of 
these points is an endpoint of the interval [a, b]. 

Therefore, let us describe a procedure for finding the absolute minimum and 
maximum points of a continuous function f in the closed and bounded interval [a, 
b]. The absolute minimum and maximum points of f must be searched in 

a. the set of the points at which the first derivative of f is null; 
b. the set of the points at which f is not differentiable; 
c. the endpoints of the interval of definition of f . 

If x' is the point belonging to the union of the sets (a), (b), (c) at which f attains the 
smallest value, then f (x') = minimum of f . If  x'' is the point belonging to the union
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of the sets (a), (b), (c) at which f attains the largest value, then f (x'') = maximum of 
f . 

If the domain of f is not a closed and bounded interval, or the function has points 
of discontinuity, then it may happen that the function has no maximum or minimum 
or neither maximum nor minimum. In cases like these, the study of the graph of f 
will come in handy. 

Exercise 21.2 Find the relative and the absolute extrema of the function 

f (x) =
√
8x−x2 

The domain of the function is the set of the points x such that 8x − x2 ≥ 0, i.e., 
the closed interval [0, 8]. where f is continuous. By Theorem 19.12 the function f is 
endowed with absolute minimum and absolute maximum. The derivative of f is 

f '(x) = 4−x √
8x−x2 

and f '(x) = 0 if and only if x = 4. Calculate the second derivative 

f ''(x) = 
−)

8x−x2
(−(4−x)2

(√
8x−x2

))
8x−x2

(

and apply the test 

f ''(4) = −  
1 

4 
< 0 

Therefore, x = 4 is a relative maximum point of f. As f (4) = 4 and f (0) = f (8) 
= 0, the point x = 4 is the absolute maximum of f and the points x = 0 and x = 8 
endpoints of the domain, are absolute minimum points at which the value of f is 0. 

Exercise 21.3 Inquire f (x) = 1 
x−3 concerning relative extrema and find the intervals 

on which the function is increasing or decreasing. 
The domain of f is R − {3}. The derivative of f is 

f '(x) = − 1 

(x−3)2 

that is non-null for every x /= 3. Then f has no relative extrema; as f '(x) < 0 on both  
sides of 3, f is decreasing for x < 3 and x > 3.
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21.6 de l’Hospital’s Rule 

Let us state a theorem useful when the evaluation of lim 
x→c 

f (x) 
g(x) , that has one of indeter-

minate forms (see (18.9)) 0 0 or 
∞ 
∞ , is examined. The theorem, attributed to the marquis 

Guillaume de l’Hospital (1661–1704), is not a panacea: there are indeterminate forms 
resistant to de l’Hospital’s rule. 

Theorem 21.10 (de l’Hospital’s rule) Let f (x) and g(x) be differentiable functions 
in a neighborhood of the point c, possibly except the point c. If the lim 

x→c 

f (x) 
g(x) is an 

indeterminate form 0 0 or 
∞ 
∞ , if g(x) /= 0 in a neighborhood of c and g'(x) /= 0, for 

every x /= c, if the limit 

lim 
x→c 

f '(x) 
g'(x) 

exists, then also the limit lim 
x→c 

f (x) 
g(x) exists and the two limits are equal: 

lim 
x→c 

f (x) 
g(x) 

= lim 
x→c 

f '(x) 
g'(x) 

L’Hospital’s rule is extended to the cases x → +∞, x → –∞, and to one sided 
limits such as x → c+, x → c–. 
Example 21.7 The limit 

lim 
x→0 

sinx 

x 
(21.5) 

is an indeterminate form 0 0 . We may apply de l’Hospital’s rule and construct the limit 
of the ratio of the derivatives: 

lim 
x→0 

cosx 

1 
= 1 

Hence, the limit (21.5) exists and equals 1 

lim 
x→0 

sinx 

x 
= 1 

Example 21.8 The limit 

lim 
x →0 

ex−1 + sinx 
ln(x + 1) 

is an indeterminate form 0 0 . We may apply de l’Hospital’s rule and construct the limit 
of the ratio of the derivatives:
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lim 
x →0 

ex + cosx 
1 

x+1 

= 2 

Hence, the given limit exists and equals 2: 

lim 
x →0 

ex−1 + sinx 
ln(x + 1) 

= 2 

Example 21.9 The lim 
x→+∞ 

ln x 
x2 is an indeterminate form ∞ 

∞ . 

We may apply de l’Hospital’s rule. Let us calculate the limit of the ratio of the 
derivatives, 

lim 
x→+∞ 

1 
x 

2x 
= lim 

x→+∞ 

1 

2x2 
= 0 

Hence, the given limit also exists and equals 0. 

Remark 21.2 If, after applying de l’Hospital’s rule, the lim 
x→c 

f '(x) 
g'(x) is of type 

0 
0 or 

∞ 
∞ , in case f

'(x) and g'(x) satisfy the due conditions, the procedure can be repeated 
and the limit lim 

x→c 

f ''(x) 
g''(x) calculated. If the last limit exists, finite or infinite, then also 

lim 
x→c 

f (x) 
g(x) and lim 

x→c 

f '(x) 
g'(x) exist and the three limits are equal. 

Example 21.10 Let us now consider an indeterminate form not resolved by de 
l’Hospital’s rule. 

Evaluate 

lim 
x→+∞ 

√
x2 + 1 
x 

The limit is of type ∞ 
∞ . Let us apply de l’Hospital’s rule and calculate the limit of 

the ratio of the derivatives, 

lim 
x→+∞ 

x √
x2 + 1 

The lim 
x→+∞ 

x √
x2+1 

is the limit of the inverse of the given function and it is also an 

indeterminate form of type ∞ 
∞ . So it is useless to reapply de l’Hospital’s rule. Then 

we proceed directly: 

lim 
x→+∞ 

√
x2 + 1 
x

= lim 
x→+∞ 

/
x2

)
1 + 1 

x2
(

x 

= lim 
x→+∞|x | 

/
1 + 1 

x2 

x
= lim 

x→+∞ 
x 

/
1 + 1 

x2 

x
= 1
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21.7 More on the Indeterminate Forms 

We introduced (Sect. 18.4.1) some indeterminate forms 

0 · ∞, +∞ − ∞, 
∞ 
∞ 

, 
0 

0 
(21.6) 

and we also verified that it is possible, in some cases, to eliminate with simple 
transformations, the indeterminacy that does not allow to calculating the limit, or 
ascertain its existence. The rule of de l’Hospital offers the tools to cope with the 
indeterminate forms 0 · ∞, +∞ −∞, that can be traced back to ratios. 

The case 0 · ∞  occurs when we want to study the limit at the point c, finite or 
infinite, of a product f (x) g(x) whose factors are an infinitesimal and an infinity. As 

f (x) g(x) = 
f (x) 
1 

g(x) 

the limit of f (x) g(x) can be transformed into the ratio of two infinitesimals or two 
infinities to which de l’Hospital’s rule is applicable. 

In order to deal with the indeterminate form +∞ −∞, let us observe that the 
identity holds 

f (x)−g(x) = 
1 

g(x)− 1 
f (x) 

1 
g(x) f (x) 

Therefore, the limit of the difference f (x) − g(x) is brought back to limits of 
infinitesimals. 

Other indeterminate forms besides (21.6) can occur when examining the limit: 

lim 
x→c 

f (x)g(x) (21.7) 

with f (x) > 0. By the equality (see Sect. 17.9) 

f (x)g(x) = eg(x)ln f (x) 

and from the continuity of the exponential function, we get 

lim 
x→c 

f (x)g(x) = e lim 
x→c 

g(x) ln f (x) 

The limit of the exponent, lim 
x→c 

g(x)ln f (x), is of type 0 · ∞, in one of the four 
cases:
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1. lim 
x→c 

g(x) = 0 and lim 
x→c 

f (x) = 0 
2. lim 

x→c 
g(x) = 0 and lim 

x→c 
f (x) = +∞  

3. lim 
x→c 

g(x) = +∞  and lim 
x→c 

f (x) = 1 
4. lim 

x→c 
g(x) = −∞  and lim 

x→c 
f (x) = 1 

Thus, in these cases the limit (21.7) appears in one of the forms: 

00 , +∞0 , 1+∞, 1−∞ 

that consequently are indeterminate forms. 

Example 21.11 The limit 

lim 
x→0 

x ln x 

is an indeterminate form of type 0 · ∞. Let us transform the given limit into 

lim 
x→0 

x ln x = lim 
x→0 

ln x 
1 
x 

then apply de l’Hospital’s rule to the indeterminate form ∞ 
∞ : 

lim 
x→0 

1 
x 

− 1 x2 
= −  lim 

x→0 
x = 0 

Therefore, lim 
x→0 

x ln x = 0. 

Example 21.12 lim 
x→0 

xx is an indeterminate form 00. From the previous example we 

obtain: lim 
x→0 

xx = lim 
x→0 

ex lnx = e0 = 1. 

Example 21.13 Evaluate lim 
x→0

)
1 

ex−1− 1 
x

(
. This is an indeterminate form of type +∞ 

−∞. Reduce to a unique fraction and apply de l’Hospital’s rule 

lim 
x→0 

x−ex + 1 
(ex−1)x 

= lim 
x→0 

−ex + 1 
xex + ex−1 

The right side is an indeterminate form of type 0 0 . Apply de l’Hospital’s rule: 

lim 
x→0 

−ex 

xex + 2ex 
= −  

1 

2 

Remark 21.3 It is worth stressing that the following symbols are not indeterminate 
forms. The right side of each equality is the value of the symbol on the left



21.8 Parabola with Vertical Axis 371

(+∞)−∞ = 0; 0+∞ = 0; 0−∞ = +∞;  (+∞)+∞ = +∞  

21.8 Parabola with Vertical Axis 

The real-valued function 

y = px2 + q + u (21.8) 

with p, q, u real numbers, has domain R. In the plane xy, Eq.  (21.8) defines a curve, 
which is a parabola with vertical symmetry axis. The roots x1, x2 of the equation px2 

+ qx + u = 0 (Sect. 12.1) are  

x1 = 
−q− 

√
q2−4 pu 

2 p 
x2 = 

−q + √
q2−4 pu 

2 p 

If q2 − 4pu ≥ 0, then x1 and x2 are real numbers, if q2 − 4pu < 0, then x1 and x2 
are imaginary numbers and the parabola does not intersect the x axis. 

The axis of symmetry of the parabola y = x2 is the y axis. The axis of symmetry 
of the parabola (21.8) is the vertical line passing through the points of abscissa 
x1+x2 

2 = 1 2 
−q 
p , whatever the sign of q

2 − 4pu is. 
Observe that the midpoint of the segment x1x2 has a real abscissa 1 2 

−q 
p , even if the  

points x1, x2 are conjugate complexes numbers (see Sect. 12.1). Then, the equation 
of the symmetry axis of parabola is x = −q 

2 p . 

Example 21.14 The axis of symmetry of parabola y = x2 − 2x is the line x = 1. 
The parabola has the points x1 = 0 and x2 = 2 in common with  x axis. The point of 
the parabola (21.8) which has abscissa −q 

2 p is called the vertex of the parabola. The 

vertex of the parabola y = x2 − 2x has coordinates (1, −1) (Fig. 21.5). 

Fig. 21.5 Parabola y = x2 − 
2x
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21.9 Approximation 

A real-valued function P is called a polynomial in the real variable x if it has the 
form 

P(x) = a0 + a1x + a2x2 +  · · ·  +  anxn 

where n is a non-negative integer, a0, a1, a2,…,  an are real numbers called coefficients 
of the polynomial and, if n > 0 then an /= 0. The number n, the highest degree of 
the powers of x, is called the degree of the polynomial. (The degree of the null 
polynomial, 0 = 0, is not defined.) The domain of a polynomial is R. 

The polynomial has derivatives of order however high. 
We dealt with polynomials in Chap. 12. Examples of polynomials are the linear 

function and the power function with natural exponent. 
Among the topics studied in the analysis since the origins, we find the calculations 

of the numerical values of functions such as sinx, lnx, ex. The goal is to approximate 
the given function by means of polynomials so that the error belongs to a certain 
tolerance range. 

The concept of differential introduces those of approximation and error. 
We have found that the tangent line at c to the graph of f differentiable at c 

represents the behavior of the graph in a neighborhood of point c, and the y ordinate 
of a point of the tangent line provides an approximate value of f (x), when x is near 
the point c. 

The equation of the tangent line at c to the graph of f is y = f (c) + f '(c) (x − c). 
The expression f (x) ≈ f (c) + f '(c)(x − c) = y (see Sect. 20.13) denotes that f (c) + 
f '(c)(x − c) provides a linear approximation of the value f (x) in a neighborhood of 
c (Fig. 21.6). 

The linear function g1(x) = f (c) + f '(c)(x − c), i.e., the polynomial of first 
degree g1(x) describes the behavior of f (x) near x = c more precisely than any other 
polynomial of first degree since both g1(x) and f (x) have the same value and the same 
derivative at x = c. 

By Theorem 20.6 we know that the distance ∆f = f (x) − f (c), i.e., the measure 
of the error made when replacing y for f (x),

Fig. 21.6 ω(x) is the error 
of the approximation f (x) ≈ 
f (c) + f '(c)(x − c) = y 
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∆ f − d( f ) = ω(x) = f (x) − )
f (c) + f '(c)(x − c)

(

is an infinitesimal of higher order than x − c, as  x → c. 

21.9.1 Quadratic Approximation 

Definition 21.3 If n is a non-negative integer number, the factorial of n, denoted n!, 
is defined by: 

n! =  n(n − 1)(n − 2)(n − 3) · · ·  3 · 2 · 1, if n is positive and 0! =  1. 

The symbol n! reads “factorial of n”. For example, 1! =  1, 2! =  2 · 1 = 2, 3! =  
3 · 2 · 1 = 6, 4!  = 4·3! = 24, 5! = 120, 6! = 720. 

We know that the linear function 

y = f (c) + f '(c)(x − c) 

provides the simplest approximation of f (x) near the point c. 
A more precise approximation is the quadratic approximation, obtained by means 

of the polynomial 

g(x) = px2 + qx  + u 

whose graph is a parabola with the vertical axis. 
Given the function f , endowed with first and second derivative in a neighborhood 

of c, we will determine the coefficients p, q and u, in order to identify the parabola 
with vertical axis that approximates the graph of f . It is convenient to express g(x) 
as a quadratic polynomial in the variable x − c: 

g(x) = p(x − c)2 + q(x − c) + u (21.9) 

Let us state the conditions that g must fulfil in order to be the best approximation 
of f . 

First condition: if  g approximates f in a neighborhood of c, then it must verify the 
equality g(c) = f (c). Therefore, by (21.9), 

f (c) = g(c) = u (21.10) 

Second condition: the derivatives of f and g at c are equal. Since g'(x) = 2p(x − 
c) + q, then 

f '(c) = g'(c) = q (21.11)
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Third condition: the second derivatives of f and g at c are equal: 

f ''(c) = g''(c) = 2 p (21.12) 

Hence, the conditions (21.10)–(21.12) determine the coefficients p, q and u. In  
fact, u = f (c), q = f '(c), p = f ''(c) 

2 and the polynomial g(x) has the form 

g(x) = f (c) + f '(c)(x − c) + 
f ''(c) 
2 

(x−c)2 (21.13) 

The Eq. (21.13) is the required quadratic approximation of f at c. To denote that 
g(x) approximates f (x) let us write: 

f (x) ≈ f (c) + f '(c)(x − c) + 
f ''(c) 
2 

(x−c)2 

The polynomial (21.13) is called the Taylor’s polynomial of the second degree for 
f near the point c; it describes the behavior of f (x) near x = c more precisely than 
any other polynomial of second degree because both g(x) and f (x) have the  same  
value, the same first derivative and the same second derivative at x = c. 

21.10 Taylor’s Formula 

The following proposition generalizes formula (21.13). 

Proposition 21.1 If f (x) is a polynomial of degree n, then the equality holds 

f (x) ≈ gn(x) = f (c) + f '(c)(x − c) + 
f ''(c) 
2! (x − c)2 +  · · ·  +  

f (n) (c) 
n! (x − c)n 

(21.14) 

The formula (21.14), called the Taylor’s formula for the polynomial gn(x) states 
that a polynomial of degree n is determined if the value of the polynomial is known 
along with the values of the derivatives up to the order n at any point c. 

Let us recall (Sect. 20.10) that a function is said to be n times differentiable 
if the derivatives up to and including order n exist. In particular, a function twice 
differentiable is endowed with first and second derivative. 

Formula (21.14) is a particular case of a formula valid for any real-valued function 
defined in an open interval (a, b) and n times differentiable in (a, b). Let f (x) be such 
a function and x and c two points in (a, b). Let us put 

rn( f, c, x) = f (x)−
[
f (c) + f '(c)(x − c) + f

''(c) 
2! (x − c)2 +  · · · +  

f (n−1) (c) 
(n−1)! (x−c)n−1

] (21.15)
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If f (x) is a polynomial of degree n, then by (21.14) 

rn( f, c, x) = 
f (n) (c) 
n! (x−c)n 

The following theorem gives an expression of rn(f , c, x) for any function defined 
and n times differentiable in an open interval. 

Theorem 21.11 Let f (x) be a function defined in the open interval (a, b) and c any 
point in (a, b). If f is n times differentiable in the interval (a, b), then the following 
equality holds: 

f (x) = f (c) + f '(c)(x − c) + f
''(c) 
2! (x − c)2 +  · · ·  +  f 

(n−1) (c) 
(n−1)! (x−c)n−1 

+ f 
(n) (d) 
n! (x−c)n 

(21.16) 

where d is a point between c and x and distinct from both. 

We observe that the number d which appears in (21.16) is unknown in general: it 
depends on the points c and x and on the order n of the derivative of f . 

The formula (21.16) is called Taylor’s formula or Taylor’s expansion of order n 
and initial point c relative to the function f . The quantity 

rn( f, c, x) = 
(x−c)n 

n! f (n) (d) 

called the remainder in the Lagrange’s form, is the  error term, rn(f , c, x) = f (x) − 
gn(x) of the approximation f (x) ≈ gn(x). 

As n increases, less and less inaccurate approximations of f (x) are obtained. 

Remark 21.4 The statement of Theorem 21.11 asserts that d is between c and x. 
This means that d belongs to the interval (c, x) if  c < x, or  d belongs to the interval 
(x, c) if  x < c, or  d = c = x if c = x. 

Taylor expansion of order n and initial point 0 is also called MacLaurin expansion 
of order n. 

Example 21.15 Let us find MacLaurin expansion of order 3 relative to the function 
f (x) = ex. 

Let us carry out the derivatives: 

f '(x) = f ''(x) = f '''(x) = ex 

and the values at x = 0 

f '(0) = f ''(0) = f '''(0) = e0 = 1
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Therefore, 

ex = 1 + x + 
x2 

2! + 
ed 

3! x
3 

with d lying between 0 and x. The formula is valid for any real x because 
the hypotheses of the theorem are satisfied in R. The value of the error of the 
approximation is 

r3( f, 0, x) = 
ed 

3! x
3 

Exercise 21.4 Find the Taylor’s second degree polynomial g2(x) of initial point c = 
0 for the function 

f (x) = esin x 

The Taylor’s second degree polynomial of initial point 0 is 

g2(x) = f (0) + f '(0)x + 
f ''(0) 
2 

x2 

where 

f (x) = esin x , ⇒ f (0) = 1 
f '(x) = esin x cos x, ⇒ f '(0) = 1 
f ''(x) = esin x cos2 x − esin x sin x, ⇒ f ''(0) = 1 

Hence, 

g2(x) = 1 + x + 
x2 

2 

21.11 Convexity, Concavity, Points of Inflection 

The ways of bending of a curve or a surface of the space are important characters 
for the understanding the shape of the figure. A rock-cut site is a hollow, a cavern. 
Even the summit of a mountain can give the idea of concavity or convexity. So, also 
a rope in the throat of a pulley resembles a concave or convex curve. 

We have studied (Sect. 4.2.1) the concepts of concavity and convexity from a 
geometric point of view. We now consider the analytical aspects, related with the 
real-valued functions.
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21.11.1 Convexity and Concavity 

Let f be a differentiable function in the interval I, bounded or not, of R and let c be 
a point in I. The line t tangent to the graph of f in c has equation (Sect. 20.3) 

y = f '(c)(x − c) + f (c) 

The function 

F(x) = f '(c)(x − c) + f (c) 

is defined in R and its graph is the line t. 

Definition 21.4 We say that the line t is below the graph of f if F(x) ≤ f (x), for 
every x in I; we say that the line t is above the graph of f if F(x) ≥ f (x), for every x 
∈ I. 

Definition 21.5 The function f is said to be a convex function in the interval I if, for 
each x in I, the tangent line to the graph of f in x is below the graph of f (Fig. 21.7). 
The function f is said to be a concave function in the interval I if, for each x in I, the 
tangent line to the graph of f in x is above the graph of f (Fig. 21.8). 

The graph of a convex (concave) function is also called a convex (concave) curve. 
The graph of x2 is a convex curve in R.

Fig. 21.7 Convex function f 

Fig. 21.8 Concave function 
f 
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Theorem 21.12 Let f be twice differentiable in the interval I. If f is convex in I, then 
f ''(x) ≥ 0, for every x in I. 

Proof Let x1, x2 be two distinct points in I and x1 < x2. Let  

F1(x) = f '(x1)(x − x1) + f (x1) 

be the equation of the tangent line to the graph of f at the point x1. If  f is convex in 
I, then 

F1(x) ≤ f (x), 

whatever x ∈ I. In particular, if x = x2, we obtain 

f '(x1)(x2 − x1) + f (x1) ≤ f (x2) 

Symmetrically, if x = x1, 

f '(x2)(x1 − x2) + f (x2) ≤ f (x1) 

Let us sum the two inequalities to obtain 

f '(x1)(x2 − x1) + f (x1) + f '(x2)(x1 − x2) + f (x2) ≤ f (x1) + f (x2) 

Let us cancel f (x2) + f (x1) from each of the two sides, 

f '(x1)(x2 − x1) + f '(x2)(x1 − x2) ≤ 0 

and since x2 – x1 > 0, we get f '(x1) ≤ f '(x2). As a consequence, the derivative f '
is increasing over I and, in virtue of Theorem 21.6, the second derivative of f is 
non-negative, f ''(x) ≥ 0, in I. ⃞

Similarly, one can prove the following 

Theorem 21.13 Let f be twice differentiable in the interval I. If f is concave in I, 
then f ''(x) ≤ 0, for every x ∈ I. 

The inverse of the Theorems 21.13 and 21.14, which we collect in a single 
statement, hold. 

Theorem 21.14 If f is twice differentiable in the interval I, then: 
if f ''(x) ≥ 0, for every x in I, then f is convex in I; 
if f ''(x) ≤ 0, for every x in I, then f is concave in I. 

Proof Consider Taylor’s formula for n = 2 at initial point c ∈ I: 

f (x) = f (c) + f '(c)(x − c) + 
f ''(d) 
2 

(x−c)2 (21.17)
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with x in I and d between x and c. The equation of the tangent line to the graph of f 
at c is 

F(x) = f '(c)(x − c) + f (c) (21.18) 

For every x ∈ I, plugging (21.18) into (21.17) we get 

F(x) − f (x) = −  
f ''(d) 
2 

(x−c)2 

Then, if f ''(x) ≥ 0, for every x in I, we have F(x) − f (x) ≤ 0, for every x in I. 
Therefore, f is convex in I. If f ''(x) ≤ 0, for every x in I, we have F(x) − f (x) ≥ 0. 
Therefore, f is concave in I. ⃞

21.11.2 Points of Inflection 

Definition 21.6 Let f be twice differentiable in the open interval I. We say that x0 ∈ 
I is a  point of inflection of f if f ''(x0) = 0 and the function f is convex on one side 
and concave on the other side of the point x0. 

The inflection points of a twice differentiable function f are the roots of the 
equation f ''(x) = 0 at which the second derivative f '' changes the sign. 

Let us show the convexity and concavity properties of some elementary functions. 

Example 21.16 The function f (x) = x2 is convex in R, in fact f ''(x) = 2 ≥ 0, for 
every x belonging to R. 

Example 21.17 The function f (x) = x3 is convex in (0, +∞) and is concave in (−∞, 
0), in fact f ''(x) = 6x; and the second derivative of f has the sign of x. 

Example 21.18 The exponential function f (x) = ax is convex in R, for every positive 
a /= 1. 

Example 21.19 The function loga x is concave in (0, +∞) for every a > 1, convex 
in (0, +∞) for  a ∈ (0, 1). 

Example 21.20 The point x = 0 is an inflection point for f (x) = x3, in fact f ''(0) = 
(6x)x=0 = 0 and (see Example 21.14) near x = 0, f '' changes the sign. 

Example 21.21 Let consider the restriction f (x) of tanx to the open interval
)−π 

2 , 
π 
2

(
. 

The function f (x) is concave in
)−π 

2 , 0
(
and convex in

)
0, π 

2

(
and has a unique 

inflection point at x = 0. In fact, (see Sect. 19.10), D2tanx = 2tanx(1 + tg2x), and 
for x ∈ )−π 

2 , 
π 
2

(
it is D2tanx = 0 if and only if x = 0. Furthermore, the sign of f ''

coincides with the sign of x.
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Fig. 21.9 Little man on the 
logarithm 

Example 21.22 The function f (x) = atanx is defined in R, convex in (−∞, 0),  
concave in (0, + ∞) and has a single inflection point in x = 0. Indeed, 

f ''(x) = D2 atanx = 
−2x

)
1 + x2

(2 

Thus the second derivative of atanx equals zero at the unique point x = 0; besides, 
f is convex in (−∞, 0) and concave in (0, +∞). 

21.11.3 Defiladed Objects 

We illustrate some intuitive and applicative aspects of the concepts of concavity and 
convexity. 

A concave curve lies under each tangent line in one of its points: then a two-
dimensional little man walking on the curve sees the curve up to a certain point and 
on the remaining part, out of sight, ignores existence and form. 

Even though he reaches points of the curve having ordinate no matter how high, 
as well as the tangent line at any point of the curve, a possibly not bounded section of 
the curve remains unknown to the observer: this is the case of the logarithmic curve 
to base greater than 1 (Fig. 21.9). 

More practically, it happens that a walker on a mountain path looks into high from 
time to time and has the illusion of being close to the top, but he will know what is 
missing from the summit when he has reached it, when he dominates, he will know 
the shape of the mountain, when the eye will be able to send straight lines to the 
points of the whole surface: the optical cone, formed by the lines that pass through 
the points of the apparent contour of mountain. 

Due to G. Monge is a geometric construction to hide, defilade architectural 
artefacts, especially fortifications. The fences must be raised so that the fortifica-
tion is protected by observation from the outside and grazing fire. If the ground is 
flat, the problem is not difficult; if the terrain is a cavea, then complications arise.
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The geometric project consists in determining a suitable plane on which a wall for 
concealment is built. 

Historical background. Gaspard Monge (1746–1818) was an enthusiastic patriot 
of the French Revolution. He held important positions: he was assigned a role by 
the Constituent Assembly in the reform of weights and measures, he was minister 
of the navy, founded, administered and taught at the École Polytechnique, where he 
had Napoleon as an instructor. It was he, according to some historians, who signed 
the death sentence of Louis XVI. In twenty days he managed to recruit 900,000 
men who formed the army (September 20, 1792) that saved France from the central 
empires. Right arm of Napoleon in Egypt. A great scholar, adored by his students, 
creator of descriptive geometry for military purposes, he had just as much weight in 
the development of differential geometry. 

Gaspard Monge 

21.12 Drawing the Graph of a Function 

In order to study a real-valued function f and drawing its graph, one can proceed by 
taking into account some indications.

1. Determine the domain of the function. 
2. Calculate the limits at the points of accumulation that do not belong to the domain, 

at the extremes of the domain, to infinity. 
3. Determine any asymptotes. 
4. Calculate the derivative f ': this allows to know the parts of the domain where f is 

increasing or decreasing, relative maximum points and relative minimum points 
(Sect. 20.4).
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Fig. 21.10 Graph of f (x) = 
e 

1 
x−1 

5. Calculate the second derivative of f : this allows to know the parts of the domain 
where f is convex or concave, possible inflection points (Sect. 21.11). 

6. Sometimes the function is even or odd (Sect. 17.5). It is worth noting it. 

It is inadvisable to tackle the study of a function by searching for the parts of the 
domain where the function assumes positive or negative values (the so called study 
of the positive part of f ). 

It is a sometimes tiring and not very illuminating calculation, which students 
sometimes face at the beginning of the study, consuming in brute calculations the 
first period, the freshest, of their commitment. In general, the trend of the graph is 
well understood by applying the first four steps, and one has a fairly clear idea after 
the first three. 

Example 21.23 Draw the graph of the function 

f (x) = e 
1 

x−1 

1. The domain of the function is the set R − {1}. 
2. Calculate the limits of the function f as x approaches −∞, +∞ and the point 1. 

lim 
x→−∞ 

f (x) = 1 lim 
x→+∞ 

f (x) = 1 

lim 
x→1− 

f (x) = 0 lim 
x→1+ 

f (x) = +∞  

3. The point x = 1 is a discontinuity of the second kind. The line x = 1 is a vertical 
asymptote. The line y = 1 is a horizontal asymptote (Fig. 21.10). 

4. The derivative of f (x) is  f '(x) = e 
1 

x−1 −1 
(x−1)2 

. The derivative f '(x) is negative in the  
domain of f , so  f is decreasing in the open interval (−∞, 1) and in in the open 
interval (1, +∞). 

Note that f (0) = e–1 = 1 e and 2 < e < 3 implies 1 3 < 1 e < 1 2 . 

Example 21.24 Consider the function
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Fig. 21.11 Graph of f (x) = 1 √
1+x2 

f (x) = 1 √
1 + x2 

1. The domain of the function is the set R. 
2. The limits at the extremes of the domain are 

lim 
x→−∞ 

1 √
1+x2 

= 0 lim 
x→+∞ 

1 √
1+x2 

= 0 

3. Then the line y = 0 is a horizontal asymptote. 
4. The derivative of f is 

f '(x) = D 
1 √

1 + x2 
= 

−2x 
2 
√
1+x2 

1 + x2 
= −x

)
1 + x2

(√
1 + x2 

This means that f '(x) has the opposite sign to x; i.e., the derivative is positive if 
and only if x is negative, the derivative is negative if and only if x is positive. Hence 
f is increasing in the interval (–∞, 0] and decreasing in [0, +∞). Furthermore, x = 
0 is a point of relative and absolute maximum where f (0) = 1. 

The graph of f is sketched in Fig. 21.11. 

21.13 Solved Problems 

1. Calculate the order of infinitesimal of the function ln
)
1 + 1 

x2
(
as x → +∞ with 

respect to the infinitesimal 1 
|x | assumed as principal infinitesimal (see Definition 

20.2). 

Solution. Apply de L’Hospital’s rule to the limit:
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lim 
x→+∞ 

ln
)
1 + 1 

x2
(

)
1 
x

(p = lim 
x→+∞

)
1 + 1 

x2
(−2 
x3 

−p
)
1 
x

(p+1 

= lim 
x→+∞ 

2 

p 

x2 

x2 + 1 
1 

x3 
x p+1 = lim 

x→+∞ 

2 

p 

x p 

x2 + 1 
(21.19) 

If p = 2, ln
)
1 + 1 

x2
(
and

)
1 
x

(p 
are infinitesimal of the same order since the limit 

(21.19) is equal to 1. Therefore, ln
)
1 + 1 

x2
(
is an infinitesimal of order 2 w. r. to 1 

|x | . 

2. Examine the behavior of f (x) = x(atanx) as  x → −∞  and x → +∞. In particular, 
find the asymptotes of f . 

Solution. 

lim 
x→−∞ 

x(atanx) = (−∞)
)−π 

2

( = +∞  

lim 
x→+∞ 

x(atanx) = (+∞) π 
2 = +∞  

Let us search if f has oblique asymptotes. 

lim 
x→−∞ 

f (x) 
x = lim 

x→−∞ 
atanx = −π 

2 

lim 
x→−∞

)
x(atanx) + π 

2 x
( = lim 

x→−∞ 
x
)
atanx + π 

2

(

The second limit takes the indeterminate form ∞•0. Let the form be altered so as 
to give the indeterminate form 0 0 : 

lim 
x→−∞ 

atanx + π 
2 

1 
x 

to which to apply de L’Hospital’s rule 

lim 
x→−∞ 

1 
1+x2 

− 1 x2 
= lim 

x→−∞ 

−x2 

x2 + 1 
= −1 

Hence le line y = – π 
2 x − 1 is an oblique asymptote as x → –∞. 

Likewise, we find that the line y = – π 
2 x − 1 is an oblique asymptote as x → +  

∞. 
The function f can not have vertical asymptotes because it is continuous in R. 

3. Given the function 

f (x) = xe− 1 |x | 

determine domain, symmetries, limits as x → 0, x → +∞  and x → −∞, asymptotes, 
first and second derivatives, monotonicity and convexity and the tangent at the origin.



21.13 Solved Problems 385

Solution. 

The domain of f is D = R – {0}. As  e− 1 |x | is positive in D, the sign of xe− 1 |x | coincide 
with the sign of x. The function f is odd (see Sect. 17.5); indeed, 

f (−x) = (−x)e− 1 |x | = −xe− 1 |x | = −  f (x) 

Then the graph of the function is symmetric with respect to the origin. Therefore, 
we study the function for x >0. If  x < 0, the graph will be constructed by the symmetry. 
As x > 0 implies |x|=x, the function may be rewritten 

f (x) = xe− 1 x 

for x > 0.  
Let us calculate the limits of f (x) = xe− 1 

x as x → 0+ and x → +∞: 

lim 
x→0+ 

xe− 1 
x = 0 · 0 = 0 

lim 
x→+∞ 

xe− 1 
x = +∞e0 = +∞  

The derivative of f (x) = xe− 1 x is 

f '(x) = e− 1 
x + xe− 1 x 

1 

x2 
=

(
1 + 

1 

x

)
e− 1 

x > 0 

for every x > 0. Hence, f is strictly increasing in (0, +∞) (see Sect. 21.4). The second 
derivative 

f ''(x) = −  
1 

x2 
e− 1 

x +
(
1 + 

1 

x

)
1 

x2 
e− 1 

x = 
1 

x3 
e− 1 

x 

is positive. Then f (x) is convex  in  (0,  +∞) (see Sect. 21.11). 
Let us seek for oblique asymptotes as x → +∞  and x → –∞: 

lim 
x→+∞ 

f (x) 
x

= lim 
x→+∞ 

e− 1 
x = e0 = 1 

lim 
x→+∞( f (x)−x) = lim 

x→+∞ 
x
(
−1 + e− 1 

x

)
[inderminate form ∞ •  0] 

Let us set the limit in the form ∞ 
∞ and apply de l’Hospital rule: 

lim 
x→+∞ 

−1 + e− 1 
x 

1 
x 

= lim 
x→+∞ 

1 
x2 e

− 1 
x 

− 1 x2 
= −1
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Fig. 21.12 Graph of 

f (x) = xe− 1 |x | 

Hence, the line y = x − 1 is an asymptote as x → +∞. Due to the symmetry 
with respect to the origin, the line −y = −x − 1, symmetrical of y = x − 1 is an  
asymptote as x → –∞. 

Let calculate the limit of the derivative as x → 0+. As  lim 
x→0+ 

e− 1 
x = 0, we get 

lim 
x→0+

(
1 + 

1 

x

)
e− 1 

x = 0 

Hence the right tangent to the graph of f at the origin is the x axis. Even because 
of the symmetry w. r. to the origin also the left tangent is the x axis. The point x = 0 
is an inflection point. 

Figure 21.12 gives an idea of the graph of f . 

4. Determine the Taylor’s polynomials of the second and the third degree, P2(x) and 
P3(x), for the function 

f (x) = 
1 

2 
xe3x 

near the point c = 0. 

Solution. The expression of P2(x) and P3(x) for a generic function f (x) (see  
Sect. 21.10) is  

P2(x) = f (0) + x f '(0) + x2 2 f
''(0) 

P3(x) = f (0) + x f '(0) + x2 2 f
''(0) + x3 3! f

'''(0) 

Let us calculate the following derivatives of f :
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f (x) = 1 2 xe
3x f (0) = 0 

f '(x) = 1 2 e
3x + 3 2 xe

3x f '(0) = 1 2 
f ''(x) = 3 2 e

3x + 3 2 e
3x + 9 2 xe

3x = 3e3x + 9 2 xe
3x f ''(0) = 3 

f '''(x) = 9e3x + 9 2 e
3x + 27 2 xe

3x f '''(0) = 9 + 9 2 = 27 2 

Therefore, we obtain: 

P2(x) = 1 2 x + 3 2 x
2 

P3(x) = 1 2 x + 3 2 x
2 + 9 4 x

3 

5. Determine the Taylor’s formula of order 5 and initial point c = π 
2 for the function 

f (x) = cos(2x) 

and compute the remainder in the Lagrange’s form. 

Solution. 

The required formula for a generic f (x) is  

f (x) = f (c) + (x−c) f '(c) + (x−c) 
2! 

2 
f ''(c) + (x−c) 

3! 
3 
f '''(c) + (x−c) 

4! 
4 
f (4) (c) 

+ (x−c) 
5! 

5 
f (5) (d) 

where d is a point between c and x, distinct from both. 
The necessary values of f (x) and the derivatives are: 

f (x) = cos(2x) f
)

π 
2

( = cosπ = −1 
f '(x) = −2sin(2x) f ')π 

2

( = −2sinπ = 0 
f ''(x) = −4cos(2x) f '')π 

2

( = −4cosπ = 4 
f '''(x) = 8sin(2x) f ''')π 

2

( = 8sinπ = 0 
f (4) (x) = 16cos(2x) f (4)

)
π 
2

( = 16cosπ = −16 
f (5) (x) = −32sin(2x) f (5) (d) = −32sin(2d) 

Then the required Taylor’s formula: 

cos(2x) = −1 +
)
x−π 

2

(

2! 
2 

4 +
)
x−π 

2

(

4! 
4 

(−16) +
)
x−π 

2

(

5! 
5 

(−32sin(2d))



388 21 Theorems of Differential Calculus

Bibliography 

Anton, H.: Calculus. Wiley, New York (1980) 
Lax, P., Burnstein, S., Lax, A.: Calculus with Applications and Computing. Springer-Verlag, New 
York (1976) 

Miranda, C.: Lezioni di Analisi matematica I, II. Liguori, Napoli (1978) 
Royden, H.L., Fitzpatrick, P.M.: Real Analysis. Pearson, Toronto (2010) 
Spivak, M.: Calculus. Cambridge University Press (2006) 
Stoka, M.: Corso di matematica. Cedam, Padova (1988) 
Ventre, A.: Matematica. Fondamenti e calcolo. Wolters Kluwer Italia, Milano (2021)



Chapter 22 
Integration 

22.1 Introduction 

Integration is a topic of central importance in mathematics, rich in applications. It is 
a powerful means of investigation in every field of science. Historically, the germs 
of the theory are attributed to Archimedes and numerous scholars have developed 
the subject until today. Our approach is the one due to Riemann. 

22.2 The Definite Integral 

Let us consider a natural number n, the closed and bounded interval [a, b] and n + 
1 points in it, ordered as follows: 

a = x0 < x1 < x2 < .  .  .  <  xi−1 < xi < xi+1 <  . . .  <  xn−1 < xn = b (22.1) 

The points (22.1) define a decomposition D of the interval [a, b] into consecutive 
intervals, the generic of which we denote

[
xi , xi+1

]
. i = 0, 1, . . .  ,  n − 1. 

The size of a decomposition D is defined as the maximum dD of the lengths 
xi+1−xi . Let us fix a point ci in each interval

[
xi , xi+1

]
. 

Let us now consider a real-valued function f defined and bounded in [a, b]. The 
sum 

SD( f ) = 
n−1∑

i=0 

f (ci )(xi+1−xi ) 

is named the Riemann sum relative to the decomposition D, the function f and the 
choice of the points ci in

[
xi , xi+1

]
. 

An example of Riemann sum is described in Fig. 22.1, where f is  a positive 
function and the decomposition of [a, b] is made of congruent intervals

[
xi , xi+1

]
.
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Fig. 22.1 The sum of the 
areas of the rectangles is a 
Riemann sum relative to a 
positive function f 

Definition 22.1 The bounded real-valued function f is said to be integrable on [a, 
b] if there exists a real number I fulfilling the property: 

(P) for every real number ε >  0 there exists a real number δ >  0, such that for 
every subdivision D of size dD < δ, it follows |SD( f )−I | < ε.  

The number I is called the definite integral of f on the interval [a, b] and is denoted 
by the symbol 

I = 
b∫

a 

f (x)dx  

The extremes of the interval [a, b] are called the extremes or the limits of integration 
and f is said to be the integrand function or the integrand. 

The following properties, some of which we will state without proof, hold. 
Let f be integrable on [a, b]. 

1. We put, by definition 

b∫

a 

f (x)dx  = −  
a∫

b 

f (x)dx  

i.e., interchanging the extremes of integration alter the sign of the integral. 
2. The equality applies 

a∫

a 

f (x)dx  = 0 

3. If f is the constant function f (x) = c, then 

b∫

a 

cdx = c(b−a)
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4. If f is monotone and bounded on [a, b], then f is integrable on [a, b]. 
5. If f is continuous in [a, b], then f is integrable on [a, b]. 
6. If the functions f (x) and g(x) are bounded and integrable on [a, b], whatever the 

constants h and k are, the equality holds 

b∫

a 

(h f  (x) + kg(x))dx  = h 
b∫

a 

f (x)dx  + k 
b∫

a 

g(x)dx  

7. If f is non-negative, bounded and integrable on [a, b], then 

b∫

a 

f (x)dx  ≥ 0 

8. Let the functions f (x) and g(x) be bounded and integrable on [a, b]. If f (x) ≤ 
g(x), for every x in [a, b], then 

b∫

a 

f (x)dx  ≤ 
b∫

a 

g(x)dx  

9. Let the functions f (x) be bounded and integrable on [a, b]. If e' and e'' are the 
infimum and the supremum of f , respectively, then 

e'(b−a) ≤ 
b∫

a 

f (x)dx  ≤ e''(b−a) (22.2) 

10. (Mean value theorem) If f is continuous in a bounded interval [a, b], then there 
exists a point c in [a, b] such that 

f (c)(b−a) = 
b∫

a 

f (x)dx (22.3) 

Proof From property 5, the function f is integrable. Then divide the inequalities 
(22.2) by (b − a): 

e' ≤ 1 

b−a 

b∫

a 

f (x) dx  ≤ e''
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where e' and e'' are, in virtue of Weierstrass’ theorem, the minimum and the 
maximum of f in [a, b], respectively. By the Theorem 19.13, the function f 
assumes all the values in the closed interval [e', e''] and hence also the value 
1 

b−a ∫b 
a f (x)dx . 

Thus, a point c in [a, b] exists such that 

f (c) = 1 

b−a 

b∫

a 

f (x)dx  

Hence, the equality (22.3) follows. ⃞

11. If the function f is integrable on a closed interval, then whatever the points a, 
b, c are in the interval, the function f is integrable on each of the intervals [a, 
b], [b, c] and [c, a] and the equality holds: 

c∫

a 

f (x)dx  = 
b∫

a 

f (x)dx  + 
c∫

b 

f (x)dx  

12. If f (x) is bounded and integrable on [a, b], then the function | f (x)| is integrable 
on [a, b] and the inequality holds:

|||||
|

b∫

a 

f (x)dx

|||||
|
≤ 

b∫

a 

| f (x)|dx  

22.3 Area of a Plane Set 

We define the concept of area for sets of points in the plane. We know (Chap. 8) the  
equation of the circumference with center C and radius a(> 0). The  open circle with 
center C and radius a is defined as the set of points P(x, y) of the plane that have a 
distance from C less than a, 

{P : |CP| < a} 

The circle with center C and radius a is defined as the set of points of the plane 
that have a distance from C less than or equal to a, 

{P : |CP| ≤ a} 

Let A be a set of points on the plane. The set A is said to be a bounded set if there 
exists a circle that contains it. A point P of A is said to be an interior point of A if P is
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Fig. 22.2 Area A = 1 2 bh 

the center of an open circle entirely made up of points of A; a point Q not belonging 
to the set A is said to be an exterior point of A if Q is the center of a circle entirely 
made up of points not belonging to A. 

A point in the plane is called a boundary point of A if it is neither interior nor 
exterior of A, i. e., in each circle having the center in that point there are both points 
belonging to A and points not belonging to A. 

The set of points of the plane which are boundary points of A is called the boundary 
of A. 

Let us express the concept of polygon in terms of the introduced nomenclature. 

Definition 22.2 Any bounded set of points in the plane whose boundary consists of 
a finite number of line segments is called a polygon. 

Definition 22.3 The area of the triangle A with base b and height h is defined by the 
number area A = 1 2 bh (Fig. 22.2). 

From the area of the triangle we are able to calculate the area of any polygon. In 
fact, each polygon can be decomposed into a finite number of triangles two-by-two 
without interior points in common, so that the union of all these triangles is congruent 
with the polygon. In general, given a polygon there are several decompositions of 
the polygon into triangles without interior points in common and such that the union 
of all these triangles is congruent with the polygon, however the sum of the areas of 
the triangles of any of such decompositions of the polygon is a number that does not 
vary with the decomposition: this number is called the area of the polygon. 

The area of the polygon in Fig. 22.3 equals the sum of the areas of the triangles, 
with no interior points in common, in which the polygon is decomposed by means 
of the diagonals (dashed segments). 

Remark 22.1 In any polygon, which is not a triangle, each of the segments 
connecting two non-consecutive vertices is called diagonal. If  n is the number of 
vertices of a polygon, then n − 3 diagonals pass through any vertex. The points of

Fig. 22.3 Pentagon divided 
into triangles by two 
diagonals 



394 22 Integration

Fig. 22.4 Plane set of points 
A with interior points 

each diagonal of a convex polygon (Sect. 4.5.1) are interior points of the polygon, 
except the extremes. A convex polygon is decomposed by the diagonals sent by any 
vertex into n − 2 triangles, two by two with no interior points in common. In each 
concave polygon there is at least one diagonal, whose points are not interior points 
of the polygon (see the segment with endpoints A and B, Fig. 22.3). 

We assume the following property: 
M. If the polygon P is contained in the polygon Q, then areaP ≤ areaQ. 
Let A be a bounded plane set endowed with interior points (Fig. 22.4). 
Let us consider the (infinite) numerical set A of the areas of the polygons contained 

in A and not coincident with A and the (infinite) numerical set A' of the areas of the 
polygons containing A and not coincident with A. For the property M the numer-
ical sets A and A' are separate (Sect. 6.9). Moreover, if the two sets A and A' are 
contiguous (Sect. 6.9), then the set of points A is said to be Jordan measurable, or  
simply, measurable, and the separating element a of the sets A and A' is called the 
area of the plane set A, a = area A, or the  (Jordan) measure of A. 

Furthermore, a set A which has no interior points is said to be measurable and has 
measure zero if the set of the areas of polygons containing A has infimum zero. 

Thus, for example, the area of a segment is zero since the segment has no internal 
points and can be contained in a rectangle with area no matter how small. 

The following properties apply: 

13. If the sets A and B of points of the plane are measurable and A is contained in 
B, then 

areaA ≤ areaB 

14. If A1 and A2 are two measurable sets and A2 is contained in A1, then 

area(A1 − A2) = area A1 − area A2
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Fig. 22.5 The region below 
the curve represents the set 
A(f ) 

22.4 The Definite Integral and the Areas 

Consider a function f continuous in the bounded and closed interval [a, b], which 
assumes non-negative values. By property 5, f is integrable in [a, b]. Let A( f (x)), 
or A(f ), denote the set of the points in the plane (Fig. 22.5) whose coordinates (x, y) 
satisfy the inequalities 

a ≤ x ≤ b, 0 ≤ y ≤ f (x) 

The following property holds: 

15. The set A(f ) is a measurable set and its area is given by 

area A( f ) = 
b∫

a 

f (x)dx  

22.5 The Integral Function 

Let x be a point in the interval [a, b] and f a bounded and integrable function on [a, 
b]. From property 11, the function f is integrable in the interval [a, x], for every x in 
[a, b]. As x varies in [a, b], the function 

F(x) = 
x∫

a 

f (t)dt  

called the integral function of f , is a function of the extreme x, defined in the domain 
[a, b]. 

Remark 22.2 The function f (t) is the  restriction of  f (x) to the interval [a, x]. We 
will still be referring this restriction to as f (Fig. 22.6)

Remark 22.3 Referring to Fig. 22.6, if  x varies in [a, b], the set A(f (t)), t ∈ [a, x], 
scrolls like a curtain.
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Fig. 22.6 If f is nonnegative 
and integrable on [a, b], then 
F(x) is the area of the set 
A(f (t)), t ∈ [a, x]

Let us show some important properties of the integral function F. 

Theorem 22.1 If the function f is bounded and integrable in the interval [a, b], then 
the integral function F is continuous in [a, b]. 

Proof Let e'' be the least upper bound of f . Furthermore, let c be any point in [a, b]. 
We have: 

|F(x)−F(c)| =
|||||
|

x∫

a 

f (t)dt− 
c∫

a 

f (t)dt

|||||
|

property 1 implies: = ||∫a 
c f (t)dt  + ∫x 

a f (t)dt
||

property 11 implies: = |
|∫x 

c f (t)dt
|
|

property 12 implies: ≤ ∫x 
c | f (t)|dt . 

property 8 implies: ≤ ∫x 
c

||e''||dt . 

property 3 implies: ≤ ||e''|||x−c| 
Since the limit as x → c of the product

|
|e''|||x − c| equals zero, we obtain 

lim 
x→c 

F(x) = F(c) 

as we wanted to show. ⃞

Theorem 22.2 (Torricelli-Barrow’s theorem) If f is a continuous function in [a, b], 
then the integral function F(x) is differentiable in the open interval (a, b) and 

F '(x) = f (x) (22.4) 

Proof Let us consider the difference quotient of the function F at the point x in (a, 
b): 

F(x + h)−F(x) 
h

=
∫ x+h 
a f (t)dt− ∫ x 

a f (t)dt  

h
=

∫ a 
x f (t)dt  +

∫ x+h 
a f (t)dt  

h



22.6 Primitive Functions 397

=
∫ x+h 
x f (t)dt  

h 

As f is continuous in [a, b], in virtue of mean value theorem, a point c exists 
between x and x + h such that 

F(x + h)−F(x) = 
x+h∫

x 

f (t)dt  = h f  (c) 

Since c is between x and x + h, if  h approaches 0, c approaches x. 
Thus, by continuity of f in [a, b], we obtain: 

lim 
h→0 

F(x + h)−F(x) 
h

= lim 
x→c 

f (c) = f (x) 

i.e., the equality (22.4). ⃞
Historical background, Isaac Newton (Woolsthorpe-by-Colsterworth, 1642– 

London, 1727) and Gottfried Wilhelm Leibniz (Leipzig, 1646–Hannover, 1716). 
Since the time of Archimedes a major topic of interest was the problem of the calcu-
lation of the areas. Since then, volumes and volumes have been written to solve 
particular cases of the measurement of plane areas. Leibniz and Newton formulated 
a general method that enabled to calculate a vast set of areas through integration. 
Often Leibniz and Newton are named together, as if they were discovering and solving 
problems in collaboration. In reality, the Leibniz and Newton pair are the subject of 
one of the most complex priority disputes in the history of science. 

22.6 Primitive Functions 

Definition 22.4 Let f be a bounded and integrable function on [a, b]. The function 
f is said to admit a primitive function, or a  primitive, in (a, b) if there exists a 
differentiable function G(x) in (a, b) such that 

G '(x) = f (x) 

The function G(x) is named a primitive (function) of  f in (a, b). It is clear that if 
G is a primitive of f , then also the function H(x) = G(x) + k, being k a constant, 
is a primitive of f . This means that if f admits a primitive, then f admits infinitely 
many primitives. 

Let us consider some examples. 

Example 22.1 The function x2 is a primitive of the function 2x because Dx2 = 2x ; 
x2 + 1 is also a primitive of 2x.
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Example 22.2 The function x
3 

3 is a primitive of x2 because D x
3 

3 = x2. 

Example 22.3 The function sin2 x is a primitive of 2sinxcosx, since D
(
sin2 x

) = 
2 sin  x cos x ; the function sin2 x + k, for every constant k, is also a primitive of 
2 sin  x cos x . 

In terms of primitive, Torricelli-Barrow’s theorem is stated as follows: 

Theorem 22.3 If f is a continuous function in [a, b], then the integral function of f 
is a primitive of f in (a, b). 

Let us prove the following 

Theorem 22.4 If the function f (x) admits primitives in the open interval (a, b), then 
any two primitives differ by a constant. 

Proof Let G(x) and H(x) be primitives of f in (a, b); i.e., 

G '(x) = f (x) and H '(x) = f (x) 

Therefore, G '(x) = H '(x). This equality implies that the derivative of the function 
H (x) − G(x) is identically null in (a, b) and, by Theorem 21.5, the function H(x) 
− G(x) is constant in (a, b), i.e., H(x) − G(x) = c, being c any constant. As a 
conclusion, if the function f admits a primitive G in (a, b), all the primitives of f in 
(a, b) are obtained from the formula H (x) = G(x) + c, for every c ∈ R, and only 
the primitives of G have the form G(x) + c, as  c varies in R. ⃞

We are now able to prove the Fundamental Theorem of calculus. 

Theorem 22.5 (Leibniz-Newton’s theorem) If the function f is continuous in the 
interval [c, d], and a and b are distinct points in the open interval (c, d), then 

b∫

a 

f (x)dx  = G(b)−G(a) (22.5) 

where G(x) is any primitive of f . 

Proof Since f is continuous in the interval [c, d], by properties 11 and 5, the function 
f is integrable in [a, b] and we may consider the integral function of f in [a, b] 

F(x) = 
x∫

a 

f (t)dt  

As F and G are primitives of f by Theorem 22.4 we have
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G(x) = 
x∫

a 

f (t)dt  + c (22.6) 

where c is a constant. If we set x = a in (22.6), we obtain by property 2 

G(a) = 
a∫

a 

f (t)dt  + c = c (22.7) 

Equation (22.7) tells us that the constant c equals G(a), c = G(a). 
Let us put x = b in (22.6) 

G(b) = 
b∫

a 

f (t)dt  + c 

and replace c with G(a) to get 

G(b) = 
b∫

a 

f (t)dt  + G(a) 

Therefore, (22.5) follows. ⃞

The difference G(b) − G(a) is often indicated by one of the symbols [G(x)]b a or 
[G(x)]x=b 

x=a . 

Exercise 22.1 Find the area of the plane region under the parabola y = x2 with 
x ∈ [0, 1]. In other words, the area of the region A(f (x)) (Sect. 22.4) has to be 
evaluated, where f (x) = x2 and A(f (x)) is the set of the points (Fig. 22.7) having  
coordinates (x, y) such that 

0 ≤ x ≤ 1 and 0 ≤ y ≤ x2 

Fig. 22.7 Area of the region 
under the parabola
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Fig. 22.8 Area under the 
curve y = sinx 

As G(x) = x3 3 is a primitive of x2 (see Example 22.2) areaA equals 

1∫

0 

x2 dx  = G(1)−G(0) =
(
x3 

3

)

x=1 

−
(
x3 

3

)

x=0 

= 
1 

3 

Exercise 22.2 Find the area of the plane region A under the curve y = f (x) = sin x , 
with x ∈ [0, π ] (Fig. 22.8). 

The region A is the set of the points (x, y) such that 

0 ≤ x ≤ π and 0 ≤ y ≤ sin x 

Since a primitive of sinx is G(x) = −  cos x , we obtain 

area A = 
π∫

0 

sin xdx  = G(π )−G(0) = −  cos π−(− cos 0) = −(−1)−(−1) = 2. 

Exercise 22.3 Examine the intervals of monotonicity of the function 

f (x) = 
d 

dx  

x∫

0

(
e−x2 − 

1 

2

)
dt  

Solution From Leibniz-Newton’s theorem we know that 

d 

dx  

x∫

0 

f (t)dt  = f (x) 

In our case we get 

d 

dx  

x∫

0

(
e−x2 − 

1 

2

)
dt  = e−x2 − 

1 

2
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and the problem is brought back to the study of the monotonicity of f (x) = e−x2 − 1 
2 . 

The derivative is f '(x) = −2xe−x2 , whose sign coincides with that of −x. 
Therefore, f is increasing for x < 0 and decreasing for x > 0. 

22.7 The Indefinite Integral 

The theorem of Leibniz-Newton states that, in order to calculate the definite integral 
of a continuous function f , defined in the interval [a, b], it is sufficient to know a 
primitive G of f in (a, b) and then apply (22.5). 

Definition 22.5 The set of the primitives of f in (a, b) is called the indefinite integral 
of f and is denoted by the symbol

∫
f (x)dx  

By Theorem 22.4, if  G is a primitive of the continuous function f in [a, b], then 
the indefinite integral of f is the set of functions G(x) + c, with c any real constant. 
Therefore, the indefinite integral of f is characterized by equality:

∫
f (x)dx  = G(x) + c 

where f is the integrand function and c the arbitrary constant. 

22.7.1 Indefinite Integral Calculation 

From the formulas of the derivatives of the elementary functions we deduce as many 
formulas of indefinite integration. 

To realize the equalities, it is sufficient to verify that the derivatives of the right-
hand side are equal to the integrand functions. For example, from the formula: 

Dxa = axa−1 

it follows that the function 1 a x
a is a primitive of xa−1 and hence,

∫
xa−1 dx  = 

1 

a 
xa + c 

Replacing a with a + 1 we obtain
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∫
xa dx  = 

xa+1 

a + 1 
+ c 

which holds for any a /= −1. If  a = −1, we use  the formula  

Dln|x | = 
1 

x 

which yields:

∫
1 

x 
dx  = ln|x | + c 

From the other formulas of differentiation we similarly obtain the indefinite inte-
grals of elementary functions. These indefinite integrals, usually named immediate 
indefinite integrals, are the elements for finding integrals of composite elementary 
functions. 

22.7.2 Some Immediate Indefinite Integrals 

1. ∫ xadx  = xa+1 

a+1 + c, a /= −1 
2. ∫ 1 x dx  = ln|x | + c 
3. ∫ axdx  = ax loga e + c ⇒ ∫ exdx  = ex + c 
4. ∫ sinxdx  = −cosx + c 
5. ∫ cosxdx  = sinx + c 
6. ∫ 1 

cos2x dx  = tanx + c 
7. ∫ 1 √

1−x2 
dx  = arcsinx + c 

8. ∫ −1 √
1−x2 

dx  = arccosx + c 
9. ∫ 1 

1+x2 dx  = atanx + c 

Let G(x) be a primitive of f (x), i.e.,

∫
f (x)dx  = G(x) + c (22.8) 

which means, by definition, 

G '(x) = f (x) (22.9) 

Consider the differential dx of the independent variable. From (20.17) we get 

f (x)dx  = G '(x)dx  = dG (22.10)
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Thus, equalities (22.8)–(22.10) yield

∫
dG  = G(x) + c (22.11) 

The formula (22.11) is a target that enable us to compute immediately the indefinite 
integral. 

22.7.3 A Generalization of Indefinite Integration Formulas 

The property of linearity also applies to indefinite integrals:

∫
(h f  (x) + kg(x))dx  = h

∫
f (x)dx  + k

∫
g(x)dx (22.12) 

whatever the constants h and k are. In particular, 

h
∫

f (x)dx  =
∫

h f  (x)dx (22.13) 

The equalities (22.12) and (22.13) are widely used when computing the integrals. 
Furthermore, when calculating integrals the application of the composite functions 
differentiation rule 

D(g( f (x))) = g'( f (x)) f '(x) 

is essential. 
Let us proceed to a generalization of the formulas 1–9 (see Sect. 22.7.2). 

1. If a /= −1, from the differentiation rule of composite functions we have: 

Df  (x)a+1 = (a + 1) f (x)a f '(x) 

that implies 

D 
f (x)a+1 

a + 1 
= f (x)a f '(x) 

and, therefore, by definition

∫
f (x)a f '(x)dx  = 

f (x)a+1 

a + 1 
+ c (22.14)
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or

∫
f (x)a d f  (x) = 

f (x)a+1 

a + 1 
+ c 

Exercise 22.4 Find the indefinite integral

∫ √
x4−2

(
4x3

)
dx  =

∫
(x4−2) 

1 
2 D

(
x4−2

)
dx  = [by formula (22.14)] 

=
∫

(x4−2) 
1 
2 d

(
x4−2

) = 
1 
3 
2

(
x4−2

) 3 
2 + c 

Exercise 22.5 Find the indefinite integral

∫
x3 

√
x4−2dx  = 

1 

4

∫
x3 

√
x4−2

(
4x3

)
dx  = 

1 

4 
· 2 
3

(
x4−2

) 3 
2 + c 

2. From differentiation rule 

Dln f (x) = 
1 

f (x) 
f '(x) 

and the definition of indefinite integral we obtain

∫ (
1 

f (x)

)
d f  (x) =

∫ (
1 

f (x)

)
f '(x)dx  = ln| f (x)| + c 

Exercise 22.6 Find the indefinite integral

∫
1 

2x + 1 
dx  = 

1 

2

∫
2 

2x + 1 
dx  = 

1 

2

∫
d(2x + 1) 
2x + 1

= 
1 

2 
ln|2x + 1| + c 

Exercise 22.7 Find the indefinite integral

∫
tanxdx  =

∫
sinx 

cosx 
dx  = −

∫
− sinx 

dx  

cosx 
= −ln|cosx | + c 

3. The differentiation formula 

De f (x) = e f (x) f '(x) 

implies

∫
e f (x) d f  (x) =

∫
e f (x) f '(x)dx  = e f (x) + c
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Exercise 22.8 Find the indefinite integral

∫
e−x dx  = −

∫
−e−x dx  = −

∫
e−x d(−x) = −e−x + c 

Exercise 22.9 Find the indefinite integral

∫
e 

1 
x 
1 

x2 
dx  = −

∫
− 

1 

x2 
e 

1 
x dx  = −

∫
e 

1 
x d 

1 

x 
= −e 

1 
x + c 

Exercise 22.10 Find the indefinite integral

∫
dx  

ex + 1 
= [

divide numerator and denominator by ex
]

=
∫

e−x dx  

1 + e−x 
= −

∫
−e−x dx  

1 + e−x 
= −ln

(
1 + e−x

) + c 

4. The differentiation formula 

D sin f (x) = (cos f (x)) f '(x) 

implies the indefinite integration rule

∫
cos f (x)d f  (x) = sin f (x) + c 

Exercise 22.11 Find the indefinite integral:

∫
cos 

√
x √

x 
dx  = 2

∫
cos 

√
x 

2 
√
x 

dx  = 2
∫

cos 
√
xd  

√
x = 2sin 

√
x + c 

5. The formula 

D cos f (x) = (− sin f (x)) f '(x) 

implies

∫
sin f (x)d f  (x) = − cos f (x) + c 

Exercise 22.12 Find the indefinite integral

∫
xsin(x2 + 5)dx  = 

1 

2

∫
sin

(
x2 + 5

)
d
(
x2 + 5

) = −  
1 

2 
cos

(
x2 + 5

) + c
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6. The formula 

Dtan( f (x)) = 1 

cos2 f (x) 
f '(x) 

implies

∫
1 

cos2 f (x) 
f '(x)dx  =

∫
1 

cos2 f (x) 
d f  (x) = tan f (x) + c 

Exercise 22.13 Find the indefinite integrals

∫
1 

cos2x2 
2xdx  =

∫
1 

cos2x2 
dx2 = tanx2 + c

∫
sinx 

cos3x 
dx  =

∫
sinx 

cosx 

1 

cos2x 
dx  =

∫
tanxd(tanx) = 

1 

2

(
tan2 x

) + c 

7. The formula 

Darcsin f (x) = 1 
√
1− f 2(x) 

f '(x) 

yields

∫
1 

√
1− f 2(x) 

d f  (x) = arcsin f (x) + c 

Exercise 22.14 Evaluate the indefinite integral

∫
1 √
4−x2 

dx  =
∫

1 

2 
/
1−(

x 
2

)2 
dx  =

∫
1 

/
1−(

x 
2

)2 
d 
x 

2 
= arcsin 

x 

2 
+ c 

8. From the formula
∫ −1 

√
1− f 2(x) 

d f  (x) = arccos f (x) + c 

we obtain
∫ −1 √

4−x2 
dx  = arccos 

x 

2 
+ c 

9. From the formula
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∫
1 

1 + f 2(x) 
d f  (x) = atan f (x) + c 

we obtain
∫

1 

a2 + x2 
dx  =

∫
1 

a2
[
1 + (

x 
a

)2]dx  = 
1 

a

∫
1 

1 + (
x 
a

)2 d 
x 

a 
= 

1 

a 
atan 

x 

a 
+ c 

22.8 Integration by Parts 

Sometimes to calculate the integral, definite or indefinite, some manipulation is used, 
to bring the integral back to a known form. Not that there is a strict rule, but it can 
take some experience, trial and error. 

22.8.1 Indefinite Integration Rule by Parts 

A procedure which can come in handy is the integration by parts, based on the product 
differentiation rule (Sect. 20.5). Let the functions u(x) and v(x) be differentiable in 
an interval. Consider the derivative 

D(u(x)v(x)) = u(x)v'(x) + u'(x)v(x) 

which, passing to the indefinite integrals of both sides, leads to:

∫
D(u(x)v(x))dx  =

∫
u(x)v'(x)dx  +

∫
u'(x)v(x)dx  

The product u(x)v(x) is a primitive of the derivative D(u(x)v(x)). Therefore,

∫
D(u(x)v(x))dx  = u(x)v(x) + c 

Then we have 

u(x)v(x) =
∫

u(x)v'(x)dx  +
∫

u'(x)v(x)dx (22.15) 

(the constant c is absorbed by the indefinite integrals of the right-hand side). From 
(22.15) we obtain:
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∫
u(x)v'(x)dx  = u(x)v(x)−

∫
u'(x)v(x)dx (22.16) 

known as the indefinite integration rule by parts. 
If we want to calculate ∫ u(x)v'(x)dx and it is easier for us to calculate 

∫ u'(x)v(x)dx , we can use the formula (22.16). The indefinite integration formula 
by parts can be rewritten as

∫
u(x)dv(x) = u(x)v(x)−

∫
v(x)du(x) (22.17) 

and summarized in the form
∫

udv = uv −
∫

vdu (22.18) 

Definition 22.6 The function u is called the finite factor and the function dv is called 
the differential factor. 

Exercise 22.15 Find
∫
xexdx . 

Apply formula (22.17), where u(x) = x is the finite factor and d(ex) = exdx the 
differential factor. Therefore, v(x) = ex and

∫
xex dx  =

∫
xd(ex ) = xex −

∫
ex dx  = xex − ex + c 

Exercise 22.16 Find
∫

xsinxdx  

Let us apply (22.18). Put u = x and dv = sin xdx  = d(− cos x). Therefore, 
v = − cos x :

∫
xsinxdx  = −xcosx−

∫
−cosxdx  = −xcosx + sinx + c 

Exercise 22.17 Find
∫

x2 lnxdx  

Let u = lnx and dv = x2dx  = d
(
x3 

3

)
. Therefore, v = x3 3 :

∫
x2 lnxdx  = 

x3 

3 
lnx−

∫
x3 

3 

1 

x 
dx  = 

1 

3

(
x3 lnx−

∫
x2 dx

)
= 

1 

3

(
x3 lnx− 

x3 

3

)
+ c
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Exercise 22.18 Find
∫

cos2 xdx  

Let us integrate by parts:

∫
cos2 xdx  =

∫
cosxcosxdx  =

∫
cosxd(sinx) = 

= cosxsinx−
∫

−sinxsinxdx  

= cosx sinx +
∫

sin2 xdx  

= cosxsinx +
∫

(1−cos2 x)dx  

= cosxsinx + x−
∫

cos2 xdx  

So, the first side equals the last:

∫
cos2 xdx  = cosx sinx + x−

∫
cos2 xdx  

and moving the integral to the left-hand side:

∫
cos2 xdx  = 

1 

2 
(cosx sinx + x) + c 

Exercise 22.19 Find ∫ lnx  x dx . 
Integrating by parts:

∫
lnx  

x 
dx  = (lnx)2−

∫
lnx  

x 
dx  

and moving the integral to the left-hand side:
∫

lnx  
x dx  = 1 2 (lnx)

2 + c. 

22.8.2 Definite Integration Rule by Parts 

By Theorem 22.5 and product rule (Sect. 20.6) we obtain: 

b∫

a 

(u(x)v'(x) + u'(x)v(x))dx  = [u(x)v(x)]b a
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Therefore, 

b∫

a 

u(x)v'(x)dx  = [u(x)v(x)]b a − 
b∫

a 

u'(x)v(x)) 

Exercise 22.20 Evaluate ∫ π 
2 
0 xsinxdx 

π 
2∫

0 

xsinxdx  = −[xcosx] 
π 
2 
0 + 

π 
2∫

0 

cosxdx = sin 
π 
2 

= 1 

Exercise 22.21 Evaluate ∫e 
1 
lnx  
x dx  

e∫

1 

lnx  

x 
dx  = [

(lnx)2
]e 
1− 

e∫

1 

lnx  

x 
dx  

Therefore, 

e∫

1 

lnx  

x 
dx  = 

1 

2 

22.9 Area of a Normal Domain 

Let f (x) be a continuous function in the closed interval [a, b], such that f (x) ≥ 0 
for every x in [a, b]. We already know how to find the area of the plane region 
A(f ) (Sect. 22.4), determined by the graph of f and the interval [a, b]. Let us now 
generalize the result. 

Assume that f and g are continuous functions on [a, b], such that, for every 
x ∈ [a, b], f (x) ≤ g(x) and f (x) <  g(x), for every x in (a, b). The set B of the 
points P(x, y), such that 

a ≤ x ≤ b and f (x) ≤ y ≤ g(x) 

is called a normal domain with respect to the x axis. 

Theorem 22.6 The area of the region B is given by the formula 

area B = 
b∫

a 

(g(x) − f (x))dx (22.19)
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Fig. 22.9 B normal domain 
with respect to the x axis 
(case 0 ≤ f (x) ≤ g(x)) 

Proof If 0 ≤ f (x) ≤ g(x) (Fig. 22.9) the regions A(f ) and A(g) are above the x axis 
and under the curves y = g(x) and y = f (x), respectively. Then the region B is the 
difference between the region A(g) and the region A(f ). Clearly A(f ) is included in 
A(g) and B = A(g) − A( f ). By Property 14, 

area B = area A(g) − area A( f ) 

and by Property 15, 

area B = 
b∫

a 

g(x)dx− 
b∫

a 

f (x)dx . 

Thus, by Property 6, the equality (22.19) follows. 
In the case that one or both functions y = f (x) and y = g(x) assume negative values 

(Fig. 22.10), the equality (22.19) still holds.
Indeed, let m < 0 be the minimum of f in [a, b], which exists in virtue of 

Weierstrass’ theorem. Shift the region B along with both the curves vertically upwards 
by a number not greater than |m|. Now the upper curve is the graph of y = g(x)+|m| 
and the lower curve is the graph of y = f (x) + |m| (Fig. 22.11). So we go back to 
the case 0 ≤ f (x) + |m| ≤ g(x) + |m| Thus,

area B = 
b∫

a 

((g(x) + |m|) − ( f (x) + |m|))dx = 
b∫

a 

(g(x) − f (x))dx

⃞
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Fig. 22.10 Function f 
assumes negative values

Fig. 22.11 General case of 
a normal domain

Exercise 22.22 Let us find the area of the normal domain B w. r. to the x axis defined 
by the functions f (x) = x2, g(x) = x, on the interval [0,1] (Fig. 22.12). The functions 
are continuous in R and x2 < x in (0, 1). So, being x3 3 a primitive of x2, and x

2 

2 a 
primitive of x, we have  

area B = 
1∫

0 

(g(x) − f (x))dx = 
1∫

0

(
x−x2

)
dx  =

(
x2 

2 
− 
x3 

3

)

x=1 

−
(
x2 

2 
− 
x3 

3

)

x=0 

= 
1 

2
−1 

3 
= 

1 

6

Exercise 22.23 Evaluate the area of the normal domain B defined by the functions 
g(x) = x + 5 and f (x) = x2 − 3x in the interval [a, b], where a, b are the abscissas 
of the common points to the two graphs. 

Solving the equations simultaneously we find a and b:
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Fig. 22.12 Normal domain 
w.r. to x axis defined by 
g(x) = x and f (x) = x2 and x 
in [0, 1]

x2 − 3x = x + 5 implies x2 − 4x − 5 = 0 

that has roots −1 and 5. So [a, b] = [−1, 5] and f (x) <  g(x) in the open interval 
(−1, 5): 

area B = 
5∫

−1 

(x + 5−(
x2−3x)

)
dx  = 

5∫

−1 

(−x2−4x + 5)dx  = 

=
[
− 
x3 

3 
+ 2x2 + 5x

]x=5 

x=−1 

= 36 

Remark 22.4 The notion of normal domain with respect to y axis is defined similarly. 
If h(y) and k(y) are two continuous functions in the interval [c, d], such that h(y) <  
k(y) in the open interval (c, d), the set of points P(x, y) such that: c ≤ y ≤ d, h(y) ≤ 
x ≤ k(y) is called a normal domain w. r. to the y axis. 

22.10 Trigonometric Integrals 

Some trigonometric identities (Sect. 8.1.4) are useful for the evaluation of some inte-
grals. 

Example 22.4 Find
∫
sin2 xdx .

∫
sin2 xdx  = 

1 

2

∫
(1−cos2x)dx  = 

1 

2 
x−1 

4 
sin2x + c 

Example 22.5 Find ∫ π 
2 
− π 

2 
cos2xdx . 

π 
2∫

− π 
2 

cos2 xdx  = 

π 
2∫

− π 
2 

(1−sin2 x) dx =
[
x− 

1 

2 
x + 

1 

4 
sin2x

] π 
2 

− π 
2 

= 
π 
2
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22.10.1 Trigonometric Substitutions 

If the integrand function contains one of the irrational forms
√
a2−b2x2 or √

a2 + b2x2, and not other irrational forms, then the integrand can be transformed 
into a function, containing trigonometric functions of a new variable, as follows: 

1. if
√
a2−b2x2 occurs in the integrand use the substitution x = a b sint 

2. if
√
a2 + b2x2 occurs in the integrand use the substitution x = a b tant 

Example 22.6 Calculate the definite integral 

2∫

−2 

(2−x)
√
4−x2dx  

Let us apply the substitution (1): x = 2sint. Hence, dx  = 2 cos t dt  and 
√
4−x2 =

√
4−4sin2 t = 2 cost 

Let us replace also the extremes of integration: if x = −2, then 2sint = −2, sint 
= −1 and t = −π 

2 ; similarly, if x = 2, then t = π 
2 . By Example 22.5, we get: 

2∫

−2 

(2−x)
√
4−x2dx  = 

π 
2∫

− π 
2 

(2−2sint)(2cost)(2cost)dt  

= 8 

π 
2∫

− π 
2 

cos2 tdt−8 

π 
2∫

− π 
2 

cos2 t(sint)dt  

= 8
[
1 

2 
t + 

1 

4 
sint

] π 
2 

− π 
2 

− 
8 

3

[
cos3 t

] π 
2 

− π 
2 

= 4π 

22.11 Improper Integrals 

The concept of definite integral ∫b 
a f (x)dx  requires that the following two conditions 

be met: 

1. the function f (x) is bounded and 
2. the interval [a, b] is closed and bounded. 

We will generalize the concept of definite integral to the case that one of the two 
conditions is not satisfied.



22.11 Improper Integrals 415

22.11.1 Improper Integrals Over Bounded Intervals 

A. Let us consider a function f (x) continuous in the right-open interval [a, b). Since 
the function is continuous in any closed interval [a, x], a ≤ x < b, the integral 

h∫

a 

f (x)dx  

exists and is finite for any h such that a ≤ h < b. If the limit 

lim 
h→b 

h∫

a 

f (x)dx (22.20) 

exists and is finite the function f (x) is said to have  convergent improper integral 
over the interval [a, b) and, by definition, we set: 

b∫

a 

f (x)dx  = lim 
h→b 

h∫

a 

f (x)dx  

If the limit (22.20) does not exist or its value is +∞ or −∞, we say that the 
improper integral of f (x) does not exist or it is divergent, respectively. 

B. Similarly, consider the case that f (x) be continuous in the left-open interval (a, 
b]. Since the function is continuous in any interval [x, b], a < x ≤ b, the integral 

b∫

h 

f (x)dx  

exists and is finite for any h such that a < h ≤ b. If the limit 

lim 
h→b 

h∫

a 

f (x)dx  

exists and is finite the function f (x) is said to have  convergent improper integral 
and, by definition, we set:
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b∫

a 

f (x)dx  = lim 
h→a 

b∫

h 

f (x)dx (22.21) 

If the limit does not exist or its value is +∞ or −∞, the improper integral. 
does not exist or is divergent. 

C. If f (x) has a discontinuity in an interior point c of the interval [a, b], then f (x) is  
said to have convergent improper integral if both the following limits exist and 
are finite: 

lim 
b →c− 

b∫

a 

f (x)dx lim 
d→ c+ 

b∫

d 

f (x)dx  

By definition we set: 

b∫

a 

f (x)dx  = lim 
b →c− 

b∫

a 

f (x)dx  + lim 
d→ c+ 

b∫

d 

f (x)dx (22.22) 

Example 22.7 (related to the case (C)). The function 

f (x) = 1 
3
√

(x−1)2 
(22.23) 

is an infinity (Sect. 20.12) at the point c = 1. Let us examine the improper integral: 

2∫

0 

1 
3
√

(x−1)2 
dx  

Let us start calculating the definite integral of f (x) over [0, b], 0 ≤ b < 1, and the 
definite integral of f (x) over [d, 2],  1 < d ≤ 2, i.e., 

b∫

0 

1 
3
√

(x−1)2 
dx  

2∫

d 

1 
3
√

(x−1)2 
dx (22.24) 

Observe that the integrals (22.24) exist because f is continuous in [0, 2] − {1}. 
We obtain: 

b∫

0 

1 
3
√

(x−1)2 
dx  = 

b∫

0 

(x−1)−
2 
3 dx  = 

1 

1− 2 
3 

(b−1)1−
2 
3 − 

1 

1− 2 
3 

(0−1)1−
2 
3 = 3 3

√
b−1 + 3 

(22.25)
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2∫

d 

1 
3
√

(x−1)2 
dx  = 

2∫

d 

(x−1)−
2 
3 dx  = 3−3 3

√
d−1 (22.26) 

By (22.25) and (22.26) let us evaluate the limits: 

lim 
b →1− 

b∫

0 

1 
3
√

(x−1)2 
dx  = lim 

b→1−

(
3 3
√
b−1 + 3

)
= 3 

lim 
d→1+ 

2∫

d 

1 
3
√

(x−1)2 
dx  = lim 

d→1+

(
3−3 3

√
d−1

)
= 3 

that are both finite. 
Therefore, from (22.22) the value of the improper integral (22.23) is  

2∫

0 

1 
3
√

(x−1)2 
dx  = 6 

Example 22.8 Examine the improper integral 

1∫

0 

1 

x 
dx  

The unbounded function f (x) = 1 x is an infinity as x tends to 0. Let a be a point 
such that 0 < a < 1. Let us calculate the integral 

1∫

a 

1 

x 
dx  = ln1−lna  = −lna  

and its limit as a → 0+: 

lim 
a→0+ 

1∫

a 

1 

x 
dx  = lim 

a→0+(−lna) = −  lim 
a→0+ 

lna  = +  ∞  

(Observe that lna < 0 since 0 < a < 1.) 
Thus, f (x) = 1 x is not integrable over [0,1] (Fig. 22.13).
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Fig. 22.13 The restriction 
of 1 x to (0, 1] 

Let us state the following existence theorem, which refers to Sect. 20.11, for  the  
improper integrals of unbounded functions. 

Theorem 22.7 Let a closed interval [a, b] and a point c in it be given. Let the function 
f (x) be continuous in the set [a, b] − {c} and integrable over any closed interval not 
including c. Assuming

|| 1 
x−c

|| as principal infinity as x → c, if f (x) is an infinity of 
order p, 0 < p < 1, as x → c, then the function f (x) has a convergent improper 
integral over [a, b]. 

Let us observe that the Examples 22.7 and 22.8 may be solved or discussed as  
applications of Theorem 22.7. 

22.11.2 Improper Integrals Over Unbounded Intervals 

Definition 22.7 Let f (x) be a real-valued function defined on the interval [a, +∞). 
If f (x) is continuous in [a, b], for every real number b > a, and if the limit 

lim 
b→+∞ 

b∫

a 

f (x)dx (22.27) 

exists and is finite, the function f (x) is said to have a  convergent improper integral, 
or a convergent integral in the improper sense, over the interval [a, +∞) and, by 
definition, we set 

+∞∫

a 

f (x)dx  = lim 
b→+∞ 

b∫

a 

f (x)dx  

If the limit (22.27) exists, but it is infinite, then the improper integral is said to be 
divergent. 

If the limit (22.27) does not exist, or it is infinite, then we say that f is not integrable 
in the improper sense over [a, +∞).
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An analogous definition holds concerning the function f (x) defined on the interval 
(−∞, b]. We set, by definition, 

b∫

−∞ 

f (x)dx  = lim 
a→−∞ 

b∫

a 

f (x)dx  

provided that the limit exists and is finite. 
If the function f (x) is defined on R we set, by definition, 

+∞∫

−∞ 

f (x)dx  = lim 
a→−∞,b→+∞ 

b∫

a 

f (x)dx  

provided that the limit exists and is finite. 

Example 22.9 Let us evaluate 

+∞∫

0 

e−x dx (22.28) 

Let first calculate 

b∫

0 

e−x dx  = −  
b∫

0 

e−x d(−x) = −(
e−b−e0

) = 1−e−b 

and then 

lim 
b→+∞ 

b∫

0 

e−x dx  = lim 
b→+∞

(
1−e−b

) = 1 

and 

+∞∫

0 

e−x dx  = 1 

Hence, the improper integral (22.28) is convergent and its value is 1 (Fig. 22.14).

Example 22.10 Examine the integrability of f (x) = 2x 
1+x2 over the interval [0, +∞). 

If b > 0, let us calculate
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Fig. 22.14 Graph of e−x

b∫

0 

2x 

1 + x2 
dx  = 

b∫

0 

d
(
1 + x2

)

1 + x2 
dx  = ln

(
1 + b2

)−ln1 = ln
(
1 + b2

)

Since lim 
b→+∞ 

ln
(
1 + b2

) = +∞, the function 2x 
1+x2 is not integrable in the improper 

sense and the integral ∫+∞ 
0 

2x 
1+x2 dx  is divergent. 

Example 22.11 Let us study the integral over the interval [1, +∞): 

+∞∫

1 

dx  

x p 

The integrability of the function depends on the exponent p. In fact, let us describe 
the cases p = 1 and p = 2 (Fig. 22.15). The x axis is an asymptote for the graphs of 
f (x) = 1 x and g(x) = 1 

x2 , 

lim 
x→∞ 

1 

x 
= lim 

x→∞ 

1 

x2 
= 0 

If p = 1 and b > 1, we obtain:

Fig. 22.15 The graphs of 
1 
x and 

1 
x2 
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b∫

1 

1 

x 
dx  = lnb  

Then 

lim 
b→+∞ 

b∫

1 

1 

x 
dx  = lim 

b→+∞ 
lnb  = +∞  

If p = 2 and b > 1, we obtain: 

b∫

1 

dx  

x2 
= −  

1 

b
−(−1) = 1− 

1 

b 

Then 

lim 
b→+∞ 

b∫

1 

dx  

x2 
= 1 

Let us state the following existence theorem, which refers to Sect. 20.12, for  the  
improper integral over unbounded intervals. 

Theorem 22.8 Let f (x) be defined in the interval [a, +∞), integrable in [a, b], 
for every real number b > a. Let us assume g(x) = 1 

x as principal infinitesimal 
(Sect. 20.11) as x → +∞, if f (x) is an infinitesimal of higher order than or equal 
order to p, p > 1,  then the function f (x) is integrable, in the improper sense, over 
[a, +∞). If f (x) is an infinitesimal, as x → +∞, of order less than or equal to 1, 
and there exists a real number h0 ≥ h such that, for every x ≥ h0, f (x) maintains 
the sign, then the function f is not integrable in the improper sense, over [a, +∞). 

Let us observe that the Examples 22.10 and 22.11 may be solved or discussed as  
applications of Theorem 22.8. 

22.12 Problems Solved. Indefinite and Improper Integrals 

1. Find the following indefinite integrals: 

a.
∫
5dx  = 5x + c 

b.
∫
x2dx  = x3 3 + c 

c.
∫

3
√
xdx  = x 

1 
3 +1 

1 
3 +1 

+ c = 3 4 
3
√
x4 + c
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d.
∫ 5

√
x6dx  = 5 x 

11 
5 

11 + c 
e.

∫
dx  
x3 = ∫

x−3dx  = x−2 

−2 + c = −  1 2x2 + c 
f.

∫
dx  
2 
√
x 

= 
√
x + c 

g.
∫

dx  √
x3 

= ∫
x− 1 

3 dx  = − 3 
2 

3
√
x2 + c 

2. Find the following indefinite integrals: 

h.

∫
x 

x + 1 
dx  =

∫
(x + 1) − 1 

x + 1 
dx  =

∫ (
1 − 1 

x + 1

)
dx  

=
∫

dx  −
∫

1 

x + 1 
dx  = x − ln|1 + x | + c 

i.
∫

x−1 
x+1 dx  =

∫
(x+1)−2 

x+1 dx  = ∫
dx−2

∫
dx  
x+1 = x−2ln|x + 1| + c 

k.

∫
x 

(x − 1)2 
dx  =

∫
x − 1 + 1 
(x − 1)2 

dx  =
∫

x − 1 
(x − 1)2 

dx  +
∫

dx  

(x − 1)2 

=
∫

dx  

x − 1 
+

∫
(x − 1)−2 dx  = ln|x − 1| − 1 

x − 1 
+ c 

3. Examine the improper integral ∫+∞ 
1 ln

(
1 + 1 

x2
)
dx . 

We found (Sect. 21.14, problem 1) that the integrand function ln
(
1 + 1 

x2
)
is 

an infinitesimal of order 2 as x → +∞  with respect to 1 
|x | . As a consequence, 

by Theorem 22.8, ln
(
1 + 1 

x2
)
is integrable in the improper sense on [1, +∞). 

In order to calculate the integral ∫+∞ 
1 ln

(
1 + 1 

x2
)
dx, we start by considering the 

indefinite integral 

I =
∫

ln

(
1 + 

1 

x2

)
dx  

we will integrate by parts using the formula:

∫
udv = vu −

∫
vdu (22.29) 

where u = ln
(
1 + 1 

x2
)
, dv = dx, v  = x, du = x2+1 

x2 
−2 
x3 dx . 

Therefore, by (22.29) we obtain: 

I = xln
(
1 + 

1 

x2

)
−

∫
x 

−2 

x
(
x2 + 1

)dx  = xln
(
1 + 

1 

x2

)
+ 2atanx + c. 

If b > 1, 

b∫

1 

ln

(
1 + 

1 

x2

)
dx =

[
xln

(
1 + 

1 

x2

)
+ 2atanx

]b 

1
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= bln
(
1 + 

1 

b2

)
+ 2atanb−ln2−2 

π 
4 

Since 

lim 
b→+∞ 

ln

(
1 + 

1 

b2

)
= lim 

b→+∞ 

ln
(
1 + 1 b2

)

1 
b 

= lim 
b→+∞ 

b2 

b2+1 
−2 
b3 

−1 
b2 

= lim 
b→+∞ 

2b 

b2 + 1 
= 0 

we conclude: 

+∞∫

1 

ln

(
1 + 

1 

x2

)
dx = lim 

b→+∞ 
2atanb−ln2− 

π 
2 

= 2 
π 
2 

−ln2− 
π 
2 

= 
π 
2 

−ln2. 
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Chapter 23 
Functions of Several Variables 

23.1 Introduction 

Let us recall the formula of the distance of two points P(x1, y1), Q(x2, y2) in the 
plane (Sect. 7.1.1): 

d(P, Q) = |P Q| = 
/

(x2−x1)
2 + (y2−y1)

2 

and in the space (Sect. 9.8): 

d(P, Q) = |P Q| = 
/

(x2−x1)
2 + (y2−y1)

2 + (z2−z1)
2 

where P(x1, y1, z1) and Q(x2, y2, z2) are points in the space. 
The cartesian product (Sect. 3.2) of the intervals [a, b] and [c, d] is the  set of  

couples (x, y) in  R2 defined by 

[a, b] × [c, d] = {
(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d

}

The cartesian product [a, b] × [c, d], also called a closed interval of R2, defines 
the set of the points (x, y) in the rectangle l = [a, b] × [c, d] (Fig. 23.1).

Unless otherwise indicated, the intervals [a, b] and [c, d] are non degenerate 
(Sect. 6.5), i.e., they do not reduce to a single point. 

The cartesian product of the open intervals (a, b) and (c, d) is the set of the couples 
(x, y) in  R2 defined by 

(a, b) × (c, d) = {
(x, y) ∈ R2 : a < x < b, c < y < d

}

The cartesian product (a, b) × (c, d) is an open set, called open interval of R2 or 
open rectangle. 

Given the point (x0, y0) ∈ R2 and the positive real numbers h and k, the product
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Fig. 23.1 I is an interval of 
R2, the point P(x, y) ∈ 
I; a ≤ x ≤ b, c ≤ y ≤ d

(x0 − h, x0 + h) × (y0 − k, y0 + k) 

is an open interval, called open rectangle or the rectangular neighborhood with center 
(x0, y0) and half-widths h, k. 

Similarly, an interval J of R3 is, by definition, a rectangular parallelepiped, i.e., 
the set of triples (x, y, z) ∈ R3 defined by 

J = [a, b] × [c, d] × [e, f ] = {
(x, y, z) ∈ R3 : a ≤ x ≤ b, c ≤ y ≤ d, e ≤ y ≤ f

}

Let h be a positive real number and C a point in the plane R2. The  set  S2(C, h) of  
the points P in the plane having distance from C less than h is named the open circle 
(or the open disk) with center C and radius h, or the  circular neighborhood of the 
point C with radius h. In symbols: 

S2(C, h) = {PR2 : d(P, C) < h} 

A closed circle or closed disk with center C and radius h > 0 is defined as the set 
S 2(C, h) of the points P having distance from C less than or equal to h: 

S2(C, h) = {PR2 : d(P, C) ≤ h} 

Let h be is a positive real number and C a point in the space R3. The  set  S3(C, h) 
of the points P in the space R3 having distance from C less than h is called the open 
ball or spherical neighborhood with center C and radius h: 

S3(C, h) = {PR3 : d(P, C) < h} 

A closed ball with center C and radius h is defined as the set S3(C, h) of the points 
P in the space which have a distance from C less than or equal to h: 

S3(C, h) = {
P ∈ R3 : d(P, C) ≤ h

}
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Remark 23.1 It is shown that each circle in R2 contains an interval of R2 and is 
contained in an interval of R2; and each sphere contains an interval of R3 and is 
contained in an interval of R3. 

23.2 The Real n-Dimensional Space 

We have stated (Chap. 12) that the set Rn, n ≥ 1,, of the  n-tuples of real numbers, 
along with the operations of addition of two n-tuples and multiplication of a real 
number by an n-tuple defines a real vector space named n-coordinate real space, 
or numerical vector space of dimension n. We are familiar with the plane and the 
3-coordinate real space. The intuition can falter when we have to think of parts of 
Rn, with n > 3.  

Whatever the natural numbern is, we call points of Rn then-tuples of real numbers. 
Then a point of Rn is an n-tuple (x1, x2, …,  xn) of real coordinates xi , i = 1,2, . . . ,  n 

The concept of distance introduced in R2 and R3 extends to Rn, for every natural 
number n. 

Indeed, the distance, or  Euclidean distance d(P, Q) of two points P(x1, x2, . . . ,  xn) 
and Q(y1, y2, . . . ,  yn) of the space Rn is defined by the equality 

d(P, Q) = 
√

(y1−x1)2 + (y2−x2)2 + ... + (yn−xn)2 

Therefore, the distance d is a real-valued function, which assigns the number d(P, 
Q) to each couple (P, Q) of points of Rn. The number d(P, Q) is the  value of the  
distance of the two points P and Q. The symbols d(P, Q) and |PQ| are equivalent. 

The following properties of the distance apply, whatever the points P, P1, P2, P3 
of Rn are: 

1. d(P, P) = 0 
2. d(P1, P2) ≥ 0 
3. if d(P1, P2) = 0, then P1 = P2 
4. d(P1, P2) = d(P2, P1) 
5. d(P1, P2) + d(P2, P3) ≥ d(P1, P3) 

Property 1 says that the distance of a point from itself is 0. Property 2 states that 
distance assumes only non-negative values. Property 3 means that if two points have 
zero distance, then they coincide. Equation 4 expresses the symmetry of the distance. 
Inequality 5 is called the triangular property of distance: the sum of the lengths of 
two sides of a triangle is not less than the length of the third side. 

The Cartesian product of n intervals I1, I2, . . . ,  In of R, 

I = I1 × I2 × . . .  × In 

is called interval I of  Rn or n-dimensional interval I.
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The product I = I1 × I2 × . . .  × In is the rectangular neighborhood of the point 
P whose coordinates are the midpoints of the intervals Ii , i = 1, 2, . . . ,  n 

If C is a point of Rn and h > 0, an  open n-dimensional sphere, or an  open sphere 
of Rn, with center C and radius h, is, by definition, the set Sn(C, h) of the points P 
of Rn whose distance from C is lower than h: 

Sn(C, h) = {P ∈ Rn : d(P, C) < h} 

An open sphere Sn(P, h) with center P ∈ Rn and radius h > 0 is called a spherical 
neighborhood of the point P. 

A closed n-dimensional sphere, or a  closed sphere of Rn with center C and radius 
h > 0 is, by definition, the set S n(C, h) of the points P of Rn, whose distance from 
C is less than or equal to h: 

Sn(C, h) = {
P ∈ Rn : d(P, C) ≤ h

}

For every natural number n, the properties hold: 

– each sphere in Rn contains an interval of Rn and is contained in an interval of Rn; 
– given any two distinct points P, Q of Rn, a neighborhood of P and a neighborhood 

of Q exist and are disjoint. 

Unless otherwise indicated, by “neighborhood” we mean “spherical neighbor-
hood”, or in particular, “circular neighborhood” in the plane R2. 

Let us stress that a spherical neighborhood of a point is an open set. 
A point P in the subset A of Rn is said to be an interior point of A if there exists a 

neighborhood of P contained in A. The set, possibly empty, of the interior points to 
A is called the interior of A and is denoted by Å. 

A subset A of Rn is said to be an open set, or simply  an open, in  Rn if each point 
of A is an interior point of A, i.e., each point of A has a neighborhood consisting 
entirely of points of A; in particular, A is an open in R2 if each of its points is the 
center of an open circle entirely contained in A. The  set  A is open if and only if A 
coincides with its interior, A = Å. 

For example, the set of points P in the plane R2 such that 

S2(O, 1) = {P ∈ R2 : d(P, O) < 1} 

is an open set: the open circle having center at the origin O(0, 0) of coordinates and 
radius 1. Any point P belongs to S2(O, 1) if and only if the coordinates (x, y) of P  
satisfy the inequality 

x2 + y2 < 1 

A point P of Rn is called an accumulation point, or  limit point, of the subset A of 
Rn if each neighborhood of P contains a point of A distinct from P. Notice that P is 
not required to belong to A.
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The set of accumulation points of A is called the derived set of A and denoted A'. 
A point P in A is, by definition, an isolated point of A if it is not an accumulation 
point of A; this means that there exists a neighborhood I of P such that P is the only 
point of A belonging to I. 

A point P of Rn is called a closure point, or  adherent point, of a set  A in Rn if P 
∈ A or P is an accumulation point for A. The set of the adherent points of A is called 
the closure of A and it is denoted by A. Obviously, A = A ∪ A', i.e., the closure of 
A is the union of A and the derived set A'. 

A set of points A of Rn is called a closed set, or simply  a closed, in  Rn if A = A, 
i.e., A contains the accumulation points of A in Rn. The empty set is assumed to be 
closed. From the definition it follows that the entire space Rn is closed in itself. 

For example, the set of points (x, y) in the plane, such that x2 + y2 ≤ 1, i.e., the 
closed circle with the origin at the center and radius 1, is a closed set. 

Definition 23.1 A separation of the subset A of Rn is a pair A1, A2 of non-empty 
subsets of A such that A1 ∪ A2 = A, A1 ∩ A2 = ∅, and both A1 and A2 are closed 
in Rn. A subset which has no separation is said to be connected. 

If the intervals I1, I2, …, In of R are open, then the product 

I1 × I2 × . . .  × In 

is an open set of Rn. If the intervals I1, I2, …,  In of R are closed, then the product 
I1 × I2 × . . .  × In is a closed subset of Rn. 

Recall (Chap. 1) that the complement of the subset A in Rn is the set Ac = Rn − A. 
A point is said to be exterior to the subset A of Rn if it is interior to the complement 

Ac. 
Let us go back to the concept of boundary (see Sect. 22.3). A point P of Rn is 

called a boundary point of A if P is neither interior nor exterior to A. It is shown that 
in every neighborhood of a boundary point of A there are both points of A and points 
of the complement Ac: the property is characteristic of the boundary points. The set 
∂A of the boundary points of A is called the boundary of A. 

Let us mention the following properties: 

a. whatever the subset A of Rn is, we have: ∂ A = ∂ Ac and A ∪ ∂ A = A ∪ A'; 
b. the set A ∪ ∂ A = A ∪ A' is closed; 
c. a set is closed if and only if it contains its boundary; 
d. the boundary of Rn is the empty set.
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23.3 Examples of Functions of Several Variables 

There are relations (Chap. 3) that involve a certain quantity, or number, z variable 
along with other quantities, x, y, …. For example, if we deposit a capital C in the 
bank at the annual interest rate i, after one year we are able to withdraw an amount 
or capitalized value M. We can think of a function f of the capital C and the interest 
rate i, which produces in one year a new capital M: 

M = f (C, i) (23.1) 

Let us give some details about the function f , in order to have it in a specific form. 
In the absence of risks, we assume that the capital C available at time 0 produces 
an amount M > C at the time t > 0. The positive difference I = M − C is called the 
interest (the yield) that is obtained by using the capital C in the time interval [0, t]. 
The quotient 

i = 
M−C 

C 
= 

I 

C 

is defined as the interest rate, or  rate of return, of the investment of capital C in the 
time interval [0, t]. From the previous equalities we get: iC = M − C. Therefore, 

M = C(1 + i) (23.2) 

is a specific expression of (23.1). The factor (1 + i) is called the capitalization factor. 
One more example of a variable magnitude depending on two others is the volume 

V of the solid cylinder, which is calculated by multiplying the area A of the base 
circle, which has radius r, by the height h, 

V = Ah = πr2 h (23.3) 

Therefore, the volume V of the cylinder is the value of a function f of the radius 
r and the height h. In symbols, 

V = f (r, h) (23.4) 

This function assumes the specific form (23.3). The formulas (23.2) and (23.3) 
define functions of two variables. 

23.4 Real-Valued Functions of Two Real Variables 

A function of two real variables is a function whose domain is a subset A of R2; 
a real-valued function is, as it is known, a function that assumes real values, i.e., a
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function whose range is a subset of R. Therefore, a real-valued function of two real 
variables is a function that associates one and only one real number with a couple 
(x, y) of numbers belonging to the domain A; x and y are called the (independent) 
variables. The functions (23.1)–(23.4) are real-valued functions of two real variables. 

Similarly, real-valued functions of n ≥ 3 real variables are defined. 
It is well-known that a couple of numbers (x, y) is identified with a point P of R2, 

then the function f of the couple (x, y) is a function of the point P. Therefore, we 
write f (P) = f (x, y) and use equivalently the symbols f (P) and f (x, y). In other words 
a real-valued function of two real variables is a function f : R2 → R which associates 
the real number f (P) = f (x, y) with the point P(x, y). 

In order to express the identification of the points P of the space and the triples 
of the coordinates (x, y, z), we write f (P) = f (x, y, z) and use equivalently the 
symbols f (P) and f (x, y, z). 

Example 23.1 The function f that associates the product xy with the couple (x, y) 
of real numbers and the function g that associates the difference x − y with (x, y) are  
real-valued functions of two real variables. In symbols, 

f (x, y) = xy  
g(x, y) = x − y 

We just spend a few more words on the concept of graph (Sect. 7.1.2) of a  
real-valued function of two real variables. 

If f (x, y) is defined in A ⊆ R2, the graph of f is the subset G of R3 consisting of 
the points Q(x, y, z) of the space R3 such that the point (x, y) belongs to A and z = 
f (x, y). In symbols: 

G = {
Q(x, y, z) ∈ R3 : (x, y) ∈ A and z = f (x, y)

}

Example 23.2 Let us go back to the functions f (x, y) = xy  and g(x, y) = x − y.. 
The function f associates the number z = xy  to the point P(x, y) in the domain A; 
then the point Q(x, y, xy) is a point of the graph of f . The function g associates the 
number z = x − y to the point P(x, y) of the plane; then the point Q(x, y, x − y) 
belongs to the graph of g. 

Clearly, the domain of a real-valued function of two real variables is a subset of 
R2. Of course, the domain convention (Sect. 19.4) is valid: indeed, the domain of a 
real-valued function of two real variables f is the largest subset of R2 such that the 
expression f (x, y) has meaning. 

The identification of the domain of f is a basic step in the study of the function. 

Example 23.3 Consider the function, and observe that any couple (x, y) in  R2 may 
be involved f (x, y) = x2 − xy  + 6, by the arithmetic operations used to build x2 

− xy + 6. Thus, the domain of f (x, y) is  R2; in fact, f associates the number x2 

− xy + 6 to each point (x, y). The graph of f is the subset of R3 consisting of the 
triples

(
x, y, x2 − xy  + 6

)
which are determined as (x, y) varies in the plane R2. For  

example, the graph includes the following points of R3:
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(0, 0, 6), obtained by setting x = 0, y = 0 in the expression x2 − xy  + 6, 
(1, 0, 7), obtained by setting x = 1, y = 0. 
and, again, the points 
(3, −1, 18), (3, 3, 6), (4, 4, 6), and so on. 

In the cases we will consider, it happens, as in the previous example, that the 
points of the graph form a surface of the space, giving for now the word “surface” 
the meaning that our intuition suggests, such as the covering of a station, or the 
surface of a mountain, or a veil. The points of the surface are projected orthogonally 
on the points of the domain of f , in the case of Example 23.3, on the whole plane. 
Furthermore, every line perpendicular to the xy plane, conducted through a point of 
the domain of f , meets the graph of f , that is the surface, in one and only one point. 

Example 23.4 In order to find the domain of the function 

f (x, y) =
√
9−x2−y2 

we must identify the set of points (x, y) such that 9 − x2 − y2 ≥ 0, i.e., 

x2 + y2 ≤ 9 

The equation x2 + y2 = 9 defines the circumference with center (0, 0) and radius 
3. A point (x, y) belongs to the domain of f if and only if it verifies the inequality 
x2 + y2 ≤ 9. The points of the domain of f are the points of the xy plane whose 
distance from (0, 0) is less than or equal to 3. 

The semi-circumference y = √
9−x2 lies on the half-plane y ≥ 0, the semi-

circumference y = −  
√
9−x2 lies on the half-plane y ≤ 0. 

The interior points of the circle x2 + y2 ≤ 9 satisfy the condition 9− x2 − y2 > 0. 
The exterior points of the circle satisfy the condition 9 − x2 − y2 < 0 (Fig.  23.2).

23.5 More About the Domain of f (x, y) 

Finding the domain of the real-valued function of two real variables f (x, y) means 
to identify the set of points of R2, whose coordinates satisfy the appropriate condi-
tions for the definition, i.e., the existence of f . These conditions lead to a system of 
inequalities and equations whose solutions form the set of the points that constitute 
the domain of f . 

For example, the line r of equation y = x + 1 in the plane R2 identifies two 
regions in the plane, which are half-planes (Fig. 23.3) that have in common the line. 
The point (0, 0) is in the half-plane below the line, the point (0, 2) is above it. If we 
want to know the domain of the function z = ln(x − y + 1), we need to find the 
region that contains the points (x, y) such that
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Fig. 23.2 Circumference 
x2 + y2 = 9, 
semi-circumferences 
y = √

9−x2 and 
y = −  

√
9−x2

Fig. 23.3 Half-planes 
identified on the plane xy by 
the line y = x + 1 

x − y + 1 > 0 (23.5) 

i.e., y < x + 1. The point (0, 0), that lies on the half-plane below the line represented 
by y = x + 1, satisfies (23.5); and, therefore, the region that contains (0, 0) and lies 
below the line is the domain of the function ln(x − y + 1). 

Exercise 23.1 Find the domain of the function 

f (x, y) = 
√

y−x2 

The square root is defined if the radicand is nonnegative: 

y − x2 ≥ 0 

The solutions of the equation g(x, y) = y − x2 = 0 provide the set C of points, 
represented by the equation of parabola y = x2 with vertical axis and vertex at the



434 23 Functions of Several Variables

origin (Sect. 17.4.1). The set R2 − C is made of the two disjoint regions: 

A = {(x, y) ∈ R2 : y − x2 > 0} 
B = {(x, y) ∈ R2 : y − x2 < 0} 

Since the point (0, 1) satisfies the condition y − x2 > 0, then it is in A, so the 
points of A are in the domain of f . But also the points of C verify the condition 
y − x2 ≥ 0: therefore, the domain of f is equal to the union of the two sets A and C. 

23.6 Planes and Surfaces 

The sets of points in space are called figures (Sect. 4.2). A figure is identified by the 
coordinates of its points. Particular figures of the space are the coordinate planes, 
i.e., is the three planes that contain two of the coordinate axes x, y, z; i.e., the planes 
xy, xz and yz. 

We know (Sect. 10.4) that each plane of space is represented by a first degree 
equation in the variables x, y, z: 

ax + by + cz + d = 0 (23.6) 

with a, b, c, not all null. If c is non-null, then (23.6) assumes the form z = f (x, y). 
For example, the plane of equation 

x + y + z − 1 = 0 

is represented also by the equivalent equation z = 1 − x − y, which has the form 
z = f (x, y) 

23.7 Level Curves 

We have observed (Sect. 23.4) that the geometrical representation of the function 
z = f (x, y) can take the form of a surface. In the study of surfaces that arise in 
practice, such as those of a mountainous relief or a seabed, or, in general, cartographic 
surfaces, the level curves, also called contour lines, drawn on the map highlight and 
interrelate elements of information. 

The contour lines, which connect the points of the surface of the earth that have 
the same altitude, are called contour maps; the contour lines that represent the points 
on the surface of the earth that have equal depths below the sea level are called depth 
contours.
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Fig. 23.4 a Section γ of the surface z = f (x, y) with the plane z = k; b level curve k = f (x, y), 
projection of γ on the xy plane 

The isobars are the curves joining places with the same atmospheric pressure at 
a particular time. 

In geographic or topographic maps the contour lines are drawn at intervals, for 
example on a map of a mountainous region we find the level curves: 100 m, 200 m, 
300 m, … above sea level; the appropriate numerical indication is shown at each 
level line (Fig. 23.4). 

Let us go back to our surface, the graph of z = f (x, y). 

Definition 23.2 Let D be the domain of the function z = f (x, y). The  curve of level 
k of the function f is, by definition, the orthogonal projection on the xy plane of the 
intersection of the graph of f with the plane z = k, with k real number. Each level 
curve k of f lies on D: indeed, it is the set Ck of the points (x, y, 0) in D, such that 
f (x, y) = k. 

Example 23.5 Let us consider the function f (x, y) = √
9−x2−y2 (Example 23.4). 

The curve of level k of function f is the curve of the plane xy having equation 

√
9−x2−y2 = k (23.7) 

The square root has value k ≥ 0. If k = 0, the level curve 0 has equation x2 + y2 
= 9, i.e., the circumference C0 which lies in the xy plane, has center O and radius 3. 
For k > 0 the Eq.  (23.7) is equivalent to 

x2 + y2 = 9 − k2 

For every k in the interval [0, 3) the level curve Ck is a circumference, whose radius √
9−k2 is a decreasing function of k. If  k = 3, then

√
9−k2 = 0. The plane z = 

3 touches the surface z = f (x, y) only at the point (0, 0, 3), in fact, for k = 3, the 
equation x2 + y2 = 9 − k2 becomes x2 + y2 = 0, whose unique real solution is the 
point (x, y) = (0, 0). These considerations make us perceive the shape of the surface
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Fig. 23.5 The surface 
f (x, y) = √

9−x2−y2. 

z = √
9−x2−y2,which is the surface of the hemisphere centered at the origin and 

having radius 3, let say a dome resting on the xy plane (Fig. 23.5). 

Example 23.6 Let us find the contour lines of the surface 

z = e−(x2+y2 ) 

The curves k = e−(x2+y2 ), i.e., lnk = −(
x2 + y2

)
or x2 + y2 = r2, where r2 = 

–lnk, are the concentric circumferences in the xy plane, centered at the origin having 
radius r. Admissible values for k are 0 < k ≤ 1. 

Let us get an idea of the shape of z = e−(x2+y2 ). The graph of z = e−(x2+y2 ) is 
a surface of rotation around the z axis. If the point (x, y, 0) moves away indefinitely 
from the origin (0, 0, 0), the distance z of the point P(x, y, z) of the surface from the 
xy plane becomes smaller and smaller, remaining positive. 

The surface is all in the layer between the z = 0 and z = 1 planes, the z = 1 plane 
touches the surface at the point (0, 0, 1); in fact, for k = 1, we have 0 = ln 1 = 
−(x2 + y2). Therefore, x = y = 0 (Fig. 23.6).

23.8 Upper Bounded and Lower Bounded Functions 

The concepts of boundedness of a real-valued function of one or two variables are 
similar (Sect. 7.1.2). Let f be a real-valued function of the real variables x and y and 
A the domain of f . 

Definition 23.3 The function f is said to be upper bounded in A if there exists a real 
number k such that f (x, y) ≤ k, for every point (x, y) in  A.
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Fig. 23.6 The surface 
z = e−(

x2+y2
)

Definition 23.4 The function f is said to be lower bounded in A if there exists a real 
number h such that f (x, y) ≥ h for every point (x, y) in  A. 

Definition 23.5 The function f is said to be bounded in A if it is upper bounded and 
lower bounded in A. 

Let f (A) denote the range of f . If the function f is upper bounded in A, the  
supremum of the range f (A) is defined as the supremum of f in A and is denoted by 
the symbol supA f . 

If the function f is lower bounded in A, the infimum of the set f (A) is defined as 
the infimum in A of the function f , denoted infA f . 

The function f (x, y) = √
9−x2−y2 is bounded in its domain and supA f = 3, 

infA f = 0. 
The function f (x, y) = e−(x2+y2 ) is bounded in its domain. The range of the 

function f (x, y) = e−(x2+y2 ) is the interval (0, 1], f (x, y) attains its maximum 1 at 
(0, 0), f (0, 0) = 1, while the range has infimum zero. 

Remark 23.2 The concepts of boundedness and infimum and supremum clearly 
extend to the real-valued functions of n real variables. 

23.9 Limits 

Definition 23.6 Let f be a real-valued function of the two real variables x and 
y, defined in the subset D of R2. Let P(x, y) be a point of D and P0(x0, y0) an 
accumulation point for the set D. The real number ℓ is called limit of f (P) as P 
approaches P0, if for every neighborhood J (ℓ) of ℓ there exists a neighborhood of 
the point P0, I (P0), such that for every point P, distinct from P0, belonging to D and 
I(P0), it follows that f (P) belongs to J (ℓ). 

To denote that ℓ is limit of f (P) as P approaches P0, the symbols are used 

lim 
P→P0 

f (P) = ℓ or lim 
(x,y)→(x0,y0) 

f (P) = ℓ
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or the expression “ f (P) → ℓ as P → P0”. 
Therefore, Definition 23.6 is stated equivalently as follows: 

Definition 23.7 Let f be a real-valued function of the two real variables x and y. Let  
D be the domain of f , P(x, y) a point of D and P0(x0, y0) an accumulation point of D. 
The real number ℓ is called limit of f (P) as P approaches P0 if, for every real number 
ε > 0 there exists a real number δ > 0 such that for every point P(x, y) ∈ D, distinct 
from P0 and belonging to the circular neighborhood I(P0) of radius δ, the inequality 
| f (x, y) − ℓ| < ε  is fulfilled. 

If the real number ℓ matches Definition 23.6 and Definition 23.7, the function f 
is said to be convergent to ℓ at the point P0. 

Remark 23.3 The limit of the function f as P approaches P0, exists if and only if 
both limits 

lim 
x→x0 

f (x, y) and lim 
y→y0 

f (x, y) 

exist separately and independent of each other. 

We considered the case of finite limit ℓ ∈ R, i.e., the finite case. Now we deal 
with the case of infinite limit. 

Definition 23.8 Let f be a real-valued function of two real variables x and y, having  
domain D. Let P(x, y) a point of D and P0(x0, y0) an accumulation point of D. We 
say that the function f (P) has limit plus infinity, +∞, or f (P) diverges positively, 
as P approaches P0, or  as P → P0, and we write 

lim 
P→P0 

f (P) = +∞ or lim 
(x,y)→(x0,y0) 

f (x, y) = +∞  

if, however fixed the real number k > 0, there exists a neighborhood I of P0, such 
that, for every point P ∈ I ∩ D, P /= P0, the inequality holds: 

f (P) >  k or f (x, y) >  k 

We say that the function f (P) has limit minus infinity, −∞, or f (P) diverges 
negatively, as P approaches P0, or  as P → P0, and we write 

lim 
P→P0 

f (P) = −∞ or lim 
(x,y)→(x0,y0) 

f (x, y) = −∞  

if, however fixed the real number h < 0, there exists a neighborhood I of P0, such 
that, for every point P ∈ I ∩ D, P /= P0, the inequality holds: 

f (P) <  h or f (x, y) <  h
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We have defined the limit of a real-valued function of a real variable as x → +∞  
and x → −∞  (Sect. 18.2). The definition is due to the total ordering defined by the 
relation ≤ on the real line. 

A total ordering cannot be defined in the plane R2 and the concepts of +∞ and 
−∞ are not defined there. We admit the existence in the plane of a single point at 
infinity, denoted ∞. A  neighborhood of infinity in R2 (or a neighborhood of the point 
at infinity) is, by definition, the region of the points which are exterior to a circle 
centered at the origin. 

Definition 23.9 A subset of Rn is said to be a bounded set if there exists a circular 
neighborhood which contains it. A subset of Rn is said to be an unbounded set if it 
is not a bounded set. 

Let D be a bounded subset of R2 and I a circular neighborhood that contains D. 
If h is the radius of I, let P and Q be any two points in D having distance d(P, Q). 
Therefore, d(P, Q) ≤ 2h. Hence, the numerical set described by d(P, Q) as the points 
P and Q vary in D, is upper bounded and its supremum is called the diameter of the 
set D. 

If D ⊆ R2 is unbounded also the above-mentioned numerical set is unbounded 
and the diameter of D is assumed to be +∞. 

Definition 23.10 Let f be a real-valued function of two real variables, defined in the 
unbounded subset D ⊆ R2 and let P(x, y) be a point of D. The function f (P) is said 
to have limit ℓ as P → ∞  (or (x, y) → ∞), and we write. 

lim 
P→∞ 

f (P) = ℓ or lim 
(x,y)→∞ 

f (x, y) = ℓ

if, for every real number ε >  0, there is a neighborhood I of the infinity, such that, 
for all points P ∈ I ∩ D the following inequality is verified 

| f (P) − ℓ| < ε or | f (x, y) − ℓ| < ε  

We have, lim 
(x,y)→∞ 

e−(x2+y2 ) = 0 (see Example 23.6). 

Definition 23.11 Let f (P) = f (x, y) be defined in an unbounded subset D ⊆ R2. 
The function f (P) is said to have limit plus infinity, or to diverge positively, as P → 
∞ and we write 

lim 
P→∞ 

f (P) = +∞ or lim 
(x,y)|→∞ 

f (x, y) = +∞  

if, for every real k > 0, there is a neighborhood I of the infinity such that, for all 
points P ∈ I ∩ D the following inequality is verified 

f (P) >  k or f (x, y) >  k
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The function f (P) is said to have limit minus infinity, or to diverge negatively, as 
P → ∞  and we write 

lim 
p→∞ 

f (P) = −∞ or lim 
(x,y)→∞ 

f (x, y) = −∞  

if, for every real h < 0, there is a neighborhood I of the infinity such that, for all 
points in I ∩ D the following inequality is verified 

f (P) <  h or f (x, y) <  h 

The theorem of uniqueness of the limit, the theorems on the operations with limits, 
the permanence of the sign theorem (see Chap. 18) hold. Furthermore, let us mention 
the following: 

Theorem 23.1 (Theorem of the comparison) Let be given the real-valued functions 
f and g of two real variables. If lim 

P→P0 

f (P) = ℓ and lim 
P→P0 

f (P) = m and if f (P) ≤ 
g(P), in a neighborhood of P0, then ℓ ≤ m. 

The concept of limit extends to the real-valued functions of several variables. 

23.10 Continuity 

As it was already noted in the case of functions of one variable, the limit of a function 
f (P) as P tends to P0 and the value f (P0) are completely independent values. Indeed, 
while for the existence of the limit it is necessary that P0 is an accumulation point 
of the domain D of f , in order to calculate f (P0) it is necessary instead that P0 
belongs to D, and each of the two circumstances can occur by itself without the other 
occurring. However, if P0 is an accumulation point which belongs to D, then the 
limit of the function as P → P0, and the value of the function at P0 can be considered 
simultaneously and if they are equal, i.e., 

lim 
P→P0 

f (P) = f (P0) 

then the function f (P) is said to be  continuous at P0 and the point P0 is called a point 
of continuity for the function f . 

The function f continuous at any point of its domain D is said to be continuous 
in D. 

Example 23.7 The function f (P) = f (x, y) = x2 + y2 is continuous at the point 
P0(0, 0). Indeed, 

(0,0) belongs to the domain of f , Dom( f ) = R2; 
(0,0) is an accumulation point of Dom( f );
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there exists the limit of the function as P approaches P0(0,0) and this limit equals 
0; 

0 is the value of the function at (0, 0). 
Also the real-valued functions of two real variables, composite of elementary 

functions, i.e., powers, exponentials, logarithms, circular functions and their inverse, 
are continuous in the respective domains. 

Example 23.8 Let us evaluate the limits: 

lim 
(x,y)→(π,0) 

x cos

(
x − y 

2

)
= π cos 

π 
2 

= 0 

lim 
(x,y)→(−3,2)

(
xy3 − y2

) = −24 − 4 = −28 

Definition 23.12 Let f be a real-valued function of two real variables, which has 
domain D and let P0 be an accumulation point of D. If the function f is continuous 
at D − {P0} and there exists the finite limit 

lim 
P→P0 

f (P) 

then the new function which has domain D ∪ {P0}, is equal to f at every point of 
D and is continuous in P0, i.e., it assumes the value lim 

P→P0 

f (P) at P0, is called the 
extension by continuity of the function f to the set D ∪ {P0}. 
Example 23.9 The function f (P) = f (x, y) = sin(x+y) 

x+y is continuous at any point 

of R2 with the exception of the point (0, 0), where f is not defined. The function f 
can be extended by continuity at the point (0, 0); in fact, as (x, y) approaches (0, 0) 
on the line y = mx, for every m ∈ R, then by (21.5) 

lim 
(x,y)→(0,0) 

sin(x + y) 
x + y 

= lim 
x→0 

sin((1 + m)x) 
(1 + m)x 

= 1 

Therefore, the function defined on the whole plane, that assumes the value 1 at 
the origin and coincides with sin(x+y) 

x+y elsewhere, is the extension by continuity of f 

to R2. 

Example 23.10 The function f (P) = f (x, y) = xy  
x2+y2 is continuous at any point 

of R2 with the exception of the point (0, 0), where it is not defined. The function f 
does not allow extension by continuity at the point (0, 0); in fact, along each line y 
= mx the value of the function is constant 

xy  

x2 + y2 
= 

m 

1 + m2
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and depends only on m. At the coordinate axes the function is null. The function, 
having no limit as (x, y) approaches (0, 0), cannot be extended by continuity at the 
point (0, 0). 

In analogy to the case of functions of one variable, the following theorems hold. 

Theorem 23.2 (Theorem of the permanence of the sign) If the real function f is 
defined on the subset A of R2 and continuous at the accumulation point P0 of A and 
if f (P0) /= 0, then there exists a neighborhood of P0 such that, for every point P in the 
neighborhood, the values f (P) and f (P0) have the same sign, i.e. f (P) f (P0) > 0. 

Theorem 23.3 (Weierstrass’ theorem) If the real-valued function f (P) is continuous 
in a closed and bounded set A⊆ R2 , then f assumes the maximum value M and the 
minimum value m in A. 

Theorem 23.4 Let f be a continuous function in a closed and connected set A ⊆ R2. 
If f assumes two distinct values α and β, then it assumes all the values of the interval 
[α, β]. 

The definition of continuity for functions of two variables extends to functions of 
n (≥ 3) variables; let us stress that the neighborhoods of a point P of Rn are open 
balls centered at P. 

Definition 23.13 Let f be a real-valued function of n real variables defined on D. 
If we fix the values of the variables x1, x2, . . . ,  xk−1, xk+1, . . . ,  xn of the function 
f (x1, x2, . . . ,  xn), we obtain a function of the single variable xk , 

g(xk) = f (a1, a2, . . . ,  ak−1, xk, ak+1, . . . ,  an) 

where the ai’s, with i /= k, are constants that replace the xi’s. The one-variable function 
g(xk) is called a  partial function of f (Fig. 23.7).

Theorem 23.5 Let f be a real-valued function of n real variables, defined on D 
⊆ Rn, continuous at (a1, a2, . . . ,  ak−1, ak , ak+1, . . . ,  an). Then the partial function 
g(xk) = f (a1, a2, . . . ,  ak−1, xk, ak+1, . . . ,  an) is continuous at ak . 

Remark 23.4 With reference to the real-valued functions of two variables, the level 
curves point out the behavior of horizontal sections and the partial functions show 
the features of vertical sections of the graphs. 

Remark 23.5 The Theorem 23.5, for  n = 2, states that if f (x, y) is continuous at 
P0(x0, y0), then f (x, y) is continuous at P0 with respect to each of the variables. 
However, vice versa is not true: it is possible for f (x, y) to be continuous with respect 
to x and to be continuous with respect to y, but  f (x, y) is not continuous at P0. It is  
the case of the function 

f (P) = f (x, y) = 
x2 

x2 + y2
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Fig. 23.7 g(x) partial 
function of f (x, y)

defined on the xy plane, except the point O(0,0), which is an accumulation point for 
the domain of f . We wonder if there exists the limit of f as (x, y) → (0, 0). Let us 
observe first that the function does not assume negative values. Moreover, x2 is not 
greater than x2 + y2, so the function does not assume values greater than 1. Therefore, 
the limit, if it exists, cannot be greater than 1, nor less than 0. But the limit cannot be 
even between 0 and 1. Indeed, if a limit ℓ, would exist and it were between 0 and 1, 
for every ε > 0 there should exist a number δ > 0 such that, for every point P distinct 
from the origin O(0, 0), such that the distance d(P, O) < δ, | f (P) − ℓ| < ε  should 
occur. Now, if the point P of the neighborhood I(O, δ), centered in O with radius δ, 
is on the x axis, then y = 0 and f (x, 0)  = 1; if P is on the y axis, then x = 0 and 
f (0, y) = 0; therefore, in any neighborhood of O there is a segment of the x axis, 
where f (P) = 1, and a segment of the y axis, where f (P) = 0. Hence, the inequality 
| f (P) − ℓ| < ε  would not be verified for every ε > 0. In conclusion, f has no limit 
as P approaches (0, 0), and, therefore, f cannot be continuous at (0, 0). 

23.11 Partial Derivatives 

Definition 23.14 Let f be a real-valued function of two real variables x and y defined 
on an open interval I ⊆ R2. If P0(x0, y0) is a point in I, the function f is said to be 
differentiable with respect to the variable x at the point P0 if the limit 

lim 
x→x0 

f (x, y0)− f (x0, y0) 
x−x0
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exists and is finite. Then the limit is called the partial derivative of f with respect to 
the variable x, at the point P0, and is indicated by one of the symbols 

fx (x0, y0), fx (P0), 
∂ f 
∂x 

(x0, y0) 

Similarly, f is said to be differentiable with respect to the variable y at the point 
P0(x0, y0) if the limit 

lim 
y→y0 

f (x0, y)− f (x0, y0) 
y−y0 

exists and is finite. Then the limit is called the partial derivative of f with respect to 
the variable y, at the point P0, and is indicated by one of the symbols 

fy(x0, y0), fy(P0), 
∂ f 
∂y 

(x0, y0) 

Definition 23.15 If f is differentiable with respect to x (or y) at any point of the open 
interval I, then f is said to be differentiable with respect to x (or y) in the interval. 

Remark 23.6 The partial derivative of f (x, y) with respect to x is calculated by 
considering y as a constant and the partial derivative of f w. r. to y considering x as 
a constant. 

Exercise 23.2 Compute the partial derivatives: 

f (x, y) = x2 − 2xy  + 5y2 − 1; fx (x, y) = 2x − 2y; fy(x, y) = −2x + 10y 
g(x, y) = ln

(
x2 + y2

); gx (x, y) = 2x 
x2+y2 ; gy(x, y) = 2y 

x2+y2 

h(x, y) = x sin y − y sin x; hx (x, y) = sin y − y cos x; hy(x, y) = x cos y − sin x 

Given a function f of two variables, the geometric interpretation of the partial 
derivatives of f w. r. to x is illustrated in (Fig. 23.8), where the curve G is the section 
of the surface, representing the graph of f , with the plane passing through P(x1, y1) 
and parallel to the plane xz. If a tangent line to G exists at each point, the partial 
derivative f x(x1, y1) is the value tanγ, the tangent of the angle γ, whose sides are the 
line t, tangent to the curve G at Q(x1, y1, f (x1, y1)), and its orthogonal projection t'
on the plane xy. Similar considerations apply to the curve H and the partial derivative 
of f w. r. to y.
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Fig. 23.8 Geometric 
meaning of the partial 
derivative of f with respect 
to x; tanγ = f x(x1, y1) 

23.12 Domains and Level Curves 

Exercise 23.3 Find the domain of the function 

z = f (x, y) = 
√−x + y − 1 

and determine the level curves. 

Solution The function f is defined in the set of points of the plane xy whose coordi-
nates (x, y) satisfy the condition: −x + y − 1 ≥ 0. Let us determine the domain of f 
in the plane xy. 

The equation −x + y − 1 = 0 represents a line of the plane xy (Fig. 23.3), which 
divides the plane into two half-planes, upper and lower, which have the line as a 
common boundary. The points of the line lie on the domain of f . Only one of the 
two half-planes, −x + y − 1 > 0, −x + y − 1 < 0, is in the domain of f . To locate 
it, we choose any point on the plane that is not on the line, for example the point 
(0, 0). The coordinates (0, 0) do not satisfy the inequality −x + y − 1 > 0 because 
−0 + 0 − 1 = −1 < 0. Then the lower half plane, in which the point (0, 0) lies, is 
not included in the domain of f ; therefore, the domain of f is formed by the union 
of the line −x + y − 1 = 0 with the half plane above it. The generic curve of level 
k of the surface z = f (x, y) = c is
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Fig. 23.9 Representation of 
z = f (x, y) = 

√−x + y−1 

k = 
√−x + y − 1 

k non negative real number. The level curves are the lines in the plane xy, parallel to 
each other, which have equation 

−x + y − (
1 + k2

) = 0 

The surface z = 
√−x + y−1, although made of (parallel) lines, is not a plane, 

but a surface of R3 that belongs to the class of ruled surfaces. 
The equation z = 

√−x + y−1 assumes the form z2 = −x + y − 1 with the 
condition −x + y − 1 ≥ 0. Precisely, the surface is a portion of a cylinder (Fig. 23.9). 

Exercise 23.4 Find the domain of the function 

z = f (x, y) = 
√

y−x2 

and determine the level curves. 

Solution The function f is defined in the set of points of the plane whose coordinates 
(x, y) satisfy the condition: y − x2 ≥ 0. This inequality is sufficient to identify 
the domain of f (x, y) = 

√
y − x2. The curve y = x2 is a well known parabola 

(Fig. 23.10). This curve is the common boundary of two regions of the plane xy: 
the region A where y > x2 and region B, where y < x2. In the region A we find, for 
example, the point (0, 1), in fact: if (x, y) = (0, 1), we get y − x2 = 1− 0 = 1 > 0. 
Every point of the set B, for example, (x, y) = (0, −1),, satisfies the inequality 
y − x2 < 0. 

Hence, the domain of the function is the union of the region A and the parabola 
y = x2. The curve of level k of the surface z = f (x, y) = 

√
y − x2 has equation 

k = 
√

y−x2, k non negative real. 
The surface z = 

√
y−x2 is a part of the surface z2 = y − x2, called elliptic 

paraboloid (Fig. 23.10).
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Fig. 23.10 The surface 
z = 

√
y−x2 

23.13 Solved Problems 

Calculate the partial derivatives of the functions: 

a. f (x, y) = x2 − 3x2y − 4y2 

b. f (x, y) = x2 

y − y2 

x 
c. f (x, y) = sin(3x + 5y) 
d. f (x, y) = ex2+xy  

e. f (x, y) = atanxy2 − atanyx2 

Answers: 

a. fx (x, y) = 2x − 6xy; fy(x, y) = −3x2 − 8y 

b. fx (x, y) = 2x 
y + y2 

x2 ; fy(x, y) = − x2 

y2 − 2y 
x 

c. fx (x, y) = 3 cos(3x + 5y); fy(x, y) = 5 cos(3x + 5y) 
d. fx (x, y) = ex2+xy(2x + y); fy(x, y) = xex2+xy  

e. fx (x, y) = 1 
1+x2 y4 y

2 − 1 
1+x4 y2 2xy; fy(x, y) = 1 

1+x2 y4 2xy  − 1 
1+x4 y2 x

2 

23.14 Partial Derivatives of the Functions of Several 
Variables 

The concept of partial derivative of a function of two variables extends to functions 
of n variables, n ≥ 3. Let f be a real-valued function defined in an open set A of Rn 

and P(x1, x2, …,  xn) a point of A. 
The function f is said to be partially differentiable with respect to a fixed variable 

xk at the point P if the function f (x1, x2, . . . ,  xk−1, xk , xk+1, . . . ,  xn) of the single 
variable xk is differentiable at the point xk .
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23.15 Partial Derivatives of Higher Order 

If the function f :R2 → R is partially differentiable in an open set I of R2, and the 
partial derivatives f x and f y, are in turn partially differentiable with respect to x and 
y, then these ones are called partial derivatives of the second order, or  second partial 
derivatives, of the function f and are denoted by the symbols: 

∂ 
∂ x

(
∂ f 
∂ x

)
= ∂2 f 

∂ x2 = fxx  

∂ 
∂ x

(
∂ f 
∂ y

)
= ∂2 f 

∂x∂ y = fxy  

∂ 
∂ y

(
∂ f 
∂ x

)
= ∂2 f 

∂y∂ x = fyx 

∂ 
∂ y

(
∂ f 
∂ y

)
= ∂2 f 

∂ y2 = fyy 

The partial derivatives of higher order than the second are similarly defined. 

Exercise 23.5 

1. Calculate the first and second partial derivatives of the functions: 

a. f (x, y) = x2 − 3xy  − 4y2; 
b. g(x, y) = x2 − 2y2; 
c. h(x, y) = x3 − y; 
Answers 

a. 
fx (x, y) = 2x − 3y; fy(x, y) = −3x − 8y; 
fxx  (x, y) = 2; fxy(x, y) = −3; fyx (x, y) = −3; fyy(x, y) = −8 

b. 
gx(x, y) = 2x; gy(x, y) = −4y; 
gxx  (x, y) = 2; gxy(x, y) = 0; gyx (x, y) = 0; gyy(x, y) = −4 

c. 
hx (x, y) = 3x2; hy(x, y) = −1; 
hxx  (x, y) = 6x; hxy(x, y) = 0; hyx (x, y) = 0; hyy(x, y) = 0 

2. Calculate the first and second partial derivatives of the function f (x, y) = exy. 

fx (x, y) = yexy; fy(x, y) = xexy  

fxx  (x, y) = yyexy  = y2 exy  

fxy(x, y) = exy  + yxexy  = exy  (1 + xy) 

fyx (x, y) = exy  + xyey = exy  (1 + yx) 

fyy(x, y) = x2 exy
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3. Calculate the first and second partial derivatives of the function f (x, y) = sinxy 

fx (x, y) = y cos xy; fy(x, y) = x cos xy  

fxx  (x, y) = yy(− sin xy) = −y2 sin xy  

fxy(x, y) = 1 cos xy  + y(− sin xy)x = cos xy  − xy sin xy  

fyx (x, y) = 1 cos xy  + x(− sin xy)y = cos xy  − xy  sin xy  

fyy(x, y) = −x2 sin xy  

4. Calculate the first and second partial derivatives of the function f (x, y) = x2 + 
xy − 5xy7 

fx (x, y) = 2x + y − 5y7 

fy(x, y) = x − 35xy6 

fxx  (x, y) = 2 

fxy(x, y) = 1 − 35y6 

fyx (x, y) = 1 − 35y6 

fyy(x, y) = −210xy5 

In the Exercises the equality fxy(x, y) = fyx (x, y) occurs. This is not a coin-
cidence. In fact, the following theorem provides a sufficient condition for the 
invertibility of the order of differentiation. 

Theorem 23.6 (Schwarz’s theorem). If the function f is endowed with the derivatives 
f x, f y, f xy in any point of the open set A where f xy is continuous, then also the second 
derivative f yx exists and f xy = f yx in A. 

The functions of Exercises satisfy the hypotheses of Schwarz’s Theorem.
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Chapter 24 
Curves and Implicit Functions 

24.1 Curves and Graphs 

The term curve has been used to indicate the graph of real-valued continuous function 
of a single variable (see Chaps. 18 and 19). However, the concepts of curve and graph 
do not coincide. For instance, the circumference is not a graph of a function: the unit 
circumference x2 + y2 = 1 is the union of the graphs of the functions y = √

1 − x2 
and y = −  

√
1 − x2. 

We introduced (Sect. 7.2.4) the parametric equations of the line 

x = x0 + mt, y = y0 + ny (24.1) 

The slope of the line (24.1) is  n m and (m, n) is a couple of direction numbers; 
the line passes through the point (x0, y0) and t ∈ R is a parameter. A parametric 
representation of a segment of the line (24.1) is obtained joining the constraint a ≤ 
t ≤ b to the Eq. (24.1). 

The elimination of the parameter t allows to obtain the ordinary or cartesian 
equation of the line ax + by + c = 0. 

Furthermore, we considered in (Sect. 8.1.3) a parametric representation of the 
circumference with center at the origin and radius 1: 

x = cos t, y = sin t (24.2) 

t ∈ [0, 2π]. By squaring and adding Eq. (24.2), since sin2t + cos2t = 1, the ordinary 
or cartesian equation of the circumference x2 + y2 = 1 is obtained. 

The following equations 

x = t, y = t2 (24.3) 

t ∈ R, are an example of a parametric representation of a set of points. We can 
eliminate the parameter t from (24.3) by replacing x with t in the second equation:
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y = x2 

which is the ordinary equation of a parabola (Sects. 17.4.1 and 21.8). 
In general, the graph of any real-valued function of a real variable y = f (x) 

coincides with the set of points represented by the parametric equations 

x = t 
y = f (t) 

where t belongs to the domain of f . 
Let us consider some curves represented by ordinary equations f (x, y) = 0. 

Examples 

– The equation f (x, y) = x2+ y2−1 = 0 represents the circumference with center 
(0, 0) and radius 1; 

– the equations y − √
1−x2 = 0 and y + √

1−x2 = 0 represent two semi 
circumferences included in the circumference x2 + y2 = 1; 

– the equation f (x, y) = x2 − y = 0 represents a parabola with vertical axis; 
– the equations y − 

√
x = 0 = 0 and y + √

x = 0 represent two arcs of parabola 
(Fig. 24.1); 

– the equation f (x, y)= 1 x − y = 0 represents the equilateral hyperbola (Sect. 17.4.2). 

Remark 24.1 Changes among different forms of representation of a given curve are 
possible. A parametric representation x = f (t), y = g(t) defines an orientation in 
the curve, whereas the equation f (x, y) = 0 does not. This circumstance implies 
that, when passing from the parametric representation to the form f (x, y) = 0, some  
elements of information can be lost. If the representation of the curve cannot reveal 
the ordering, the curve does not describe a trajectory of a point; in fact, the motion of 
the point is described if the position of the point is known at any time. For example, 
the variable t in the parametric representation

Fig. 24.1 The graph of the 
function y = 

√
x lies in the 

first quadrant, the graph of y 
= −  

√
x lies in the fourth 

quadrant 
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x = t2 , y = t 

indicates the instant in which the current point of the curve is at the position (x, y), 
while the equation y2 = x of the curve does not show where the point is at time t. 

24.2 Regular Curves 

Definition 24.1 Given the closed interval [a, b] in  R and a couple of real-valued 
functions (f , g) both continuous in [a, b], the set γ of the points (x, y) such that 

γ )  x = f (t), y = g(t) (24.4) 

t ∈ [a, b], is called a continuous plane curve, the  Eq. (24.4) are called parametric 
equations of γ, the functions f and g the components of the curve γ. 

Usually, x(t) and y(t) denote the components of γ and the curve γ is represented 
by the parametric equations: 

γ )  x = x(t), y = y(t) (24.5) 

t ∈ [a, b]. The equalities (24.5) are  the  parametric equations of the curve γ and t is 
the parameter 

The points A = (x(a), y(a)) and B = (x(b), y(b)) are named the first endpoint and 
the second endpoint of γ, respectively. The set of points on the curve is ordered, or  
oriented, by the relation: 

P1(x(t1), y(t1)) precedes P2(x(t2), y(t2)) if and only if t1 < t2. 

The set of points of the curve γ having the reverse orientation is denoted by −γ. 

Definition 24.2 The curve γ is said to be a regular curve if 

1. the component functions x = x(t) and y = y(t) are continuous, differentiable 
with continuous derivatives x'(t) and y'(t), 

2. there is not any t in [a, b] such that x'(t) = y'(t) = 0. The proposition is equivalent 
to inequality

(
x '(t)

)2 + (
y'(t)

)2 
> 0, for every t ∈ [a, b]. 

A curve γ of the space R3 is defined as the set of points (x, y, z) such that the 
components x = x(t), y = y(t), z = z(t) are continuous functions of the variable t 
∈ [a, b]. The definition of regular curve in R3 extends the requirements (1) and (2) 
to the third components. 

A curve which does not lie in a plane is called a skew curve.
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Remark 24.2 The curves can be generated by the intersection of two surfaces. 
Contour lines are orthogonal projections onto R2 of plane curves, namely, the 
intersections of the graph of f (x, y) and a plane z = k. 

24.2.1 Tangent Line to a Regular Curve 

Definition 24.3 The tangent line to a regular curve at the point (x(t), y(t)) is defined 
as 

i. the line that passes through the point (x(t), y(t)) and 
ii. has direction numbers proportional to

(
x '(t), y'(t)

)

An alternative definition of tangent line to a regular curve is obtained assuming 
the condition 

ii'. has slope y
'(t) 

x '(t) 

instead of (ii). 

If x '(t) = 0 the tangent line is vertical. 
The tangent line is an oriented line with the same orientation of the curve. 
Each regular curve has a tangent line at each point. 
Consider, for example, the point (x(t), y(t)) of the circumference 

x = cos t, y = sin t 

calculated at t = π 
4 ; the tangent line to the circumference at the point

(
cos π 

4 , sin 
π 
4

) =(√
2 
2 ,

√
2 
2

)
has direction numbers proportional to (x'(t), y'(t))= (−sint, cost). If t = π 

4 , 

then a couple of direction numbers is
(
x '(t), y'(t)

) =
(
− 

√
2 
2 ,

√
2 
2

)
, proportional to 

(–1, 1). Therefore, the parametric equations of the tangent line to the circumference 
are 

x = 
√
2 

2 
−t, y =

√
2 

2 
+ t 

Remark 24.3 The Definition 24.2 requires that x'(t) and y'(t) are not both null, 
which is a necessary condition for x'(t) and y'(t) to be direction numbers (Sect. 7.3). 

Remark 24.4 The Definition 24.3 includes the notion of tangent line to the graph 
of the differentiable function y = f (x). Indeed, the slope of the tangent line to the 
graph of f at x is f '(x), and direction numbers are proportional to (x'(t), y'(t)) and (1, 
f '(x)).
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Fig. 24.2 Angle of two 
regular oriented plane curves 

Fig. 24.3 Tangent and 
normal at P to the curve 

Definition 24.4 The angle of two regular oriented plane curves, which meet at a point 
P, is defined as the angle formed between their two tangents at point P (Fig. 24.2). 

Definition 24.5 The normal line to the regular plane curve γ at P is, by definition, the 
line through P orthogonal to the tangent line at P. The normal line is oriented so that 
the angle between the oriented normal and the oriented tangent is π 

2 . It follows that 
any couple of direction numbers of the normal line is proportional to

(
y'(t), −x '(t)

)

(Fig. 24.3). 

24.3 Closed Curves 

An oriented plane curve represented by the parametric equations 

x = x(t), y = y(t) 

t ∈ [a, b], whose endpoints coincide, x(a) = x(b) and y(a) = y(b), is called a 
closed curve. If, for every t ' /= t '', except possibly the endpoints a, b, it is verified 
the inequality

(
x
(
t '
)
, y

(
t '
)) /= (

x
(
t ''

)
, y

(
t ''

))
the curve is called a simple curve. A  

closed plane simple curve is called a Jordan curve. 

Theorem 24.1 (Jordan’s theorem) If J is a Jordan curve, then the set R2 − J, 
obtained by removing the curve J from the plane, consists of two disjoint and open
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Fig. 24.4 Jordan curve J 

sets in R2: a bounded set, called the region inside the curve J and an unbounded set, 
called the region outside the curve J. The two regions have the common boundary J. 
Two points, however chosen in the same region, can be joined by a plane curve that 
does not intersect J, any plane curve joining two points, however chosen in different 
regions, intersects J in at least one point. 

The statement of the theorem is intuitive (Fig. 24.4), but the proof is not easy. 

24.4 Length of a Curve 

If we want to measure a curved wire as a first step we can stretch and straighten the 
wire. Furthermore, a useful information is that a curve is longer than its chord, which 
is the segment joining the endpoints of the curve. 

Definition 24.6 Let γ be an oriented regular plane curve of equations 

x = x(t), y = y(t) 

t ∈ [a, b]. Consider a decomposition D of the interval [a, b] by means of n points: 

t0 = a < t1 < t2 <  . . .  <  tn = b 

Let p(D) be the length of the polygonal that consecutively joins the points (x(ti), 
y(ti)), i = 0, 1, 2, …, n. As the decomposition D of the interval [a, b] varies, the 
number p(D) describes a numerical set A. If A is bounded, then supA is called the 
length of curve γ and the curve is said rectifiable. 

Theorem 24.2 A regular curve is rectifiable and its length L is equal to the definite 
integral: 

L = 
b∫

a 

√
H(t)dt (24.6) 

where 

H (t) = (
x '(t)

)2 + (
y'(t)

)2 
(24.7)
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If the curve is the graph of the function y = f (x) defined on [a, b], the couple (1, 
f '(x)) replaces

(
x '(t), y'(t)

)
(see Remark 24.4). Then (24.7) assumes the form: 

H (t) = 1 + (
f '(x)

)2 
(24.8) 

Given a curve γ of parametric equations 

x = x(t), y = y(t) 

t ∈ [a, b], the concept of restriction of γ to the interval [c, d] properly included in [a, 
b], is similar to that of restriction of a function. The new curve x = x(t), y = y(t), 
t ∈ [a, b], is called an arc of the curve γ . 

24.4.1 Problems 

a. Using formula (24.6) find the length of the circumference γ with center (0, 0) 
and radius r. 

A parametric representation of the circumference γ is 

x = r cos t, y = r sin t, 

t∈[0, 2π]. Therefore, the length of the circumference is 

L = 
2π∫

0 

/
(rsint)2 + (−rcost)2 dt  = 2πr 

b. Find the arc length of the catenary (Fig. 24.5)

whose equation is f (x) = 1 2
(
ex + e−x

)
in the interval [–2, 2]. 

Since f '(x) = 1 2
(
ex−e−x

)
by (24.8) 

H (t) = 1 + (
f '(x)

)2 = 1 + 
1 

4

(
e2x−2 + e−2x

) = 
1 

4

(
ex + e−x

)2 

which implies 

√
H (t) = 

1 

2

(
ex + e−x

)

Therefore, from (24.6) the arc length is obtained:
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Fig. 24.5 Arc length of the 
catenary, x ∈ [–2, 2]

L = 
1 

2 

2∫

−2 

(ex + e−x )dx  = 
1 

2

[
ex−e−x

]x=2 
x=−2 = 

1 

2

(
e2− 

1 

e2

)

c. Calculate the arc length L of the parabola y = f (x) = x2, x ∈ [0, 1]. 

Hint: Use the formula (24.7): H (t) = 1 + (
f '(x)

)2 = 1 + 4x2. Then calculate L 
= ∫1 

0

√
1 + 4x2dx . To this aim use the substitution: x = 1 2 tant (Sect. 22.10.1). 

Ans.
/

5 
2 + 1 4 ln

(
2 + √

5
)
. 

24.5 Curvilinear Abscissa 

Let the oriented regular curve γ have parametric equations 

x = x(t), y = y(t), 

t ∈ [a, b], and let P(x(t), y(t)) be a point in the curve γ. Let us consider the function 
s(t), the length of the arc with first endpoint (x(a), y(a)) and second endpoint (x(t), 
y(t)). The domain of s(t) is the  interval  [a, b]. By (24.6) the value of the arc length is 

s(t) = 
t∫

a 

√
H (v)dv 

where H (v) = (
x '(v)

)2 + (
y'(v)

)2 
and v denotes the variable between a and t. 

The function s(t) is called  curvilinear abscissa of P ∈ γ. For  v > 0, the integrand is
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positive, strictly increasing in [a, b], s(a) = 0 and s(b) = L = length of the curve 
γ. Since the function s(t) is strictly increasing in its domain s(t) is invertible in [a, 
b]. Let us denote the inverse of s with t = q(s) whose domain is [0, L], the range of 
s(t). Then the regular curve γ has a new parametric representation in terms of the 
variable s: 

x = x(q(s)), y = y(q(s)), 

s ∈ [0, L], that is called the parametric representation in function of the curvilinear 
abscissa. As a consequence, each point P of the curve γ is identified by the length 
of the arc that reaches P. This representation allows to express in a simple way the 
magnitudes intrinsically related with the curve γ. Evidently, the length of curve γ is 

L = 
L∫

0 

ds  

24.6 Derivative of the Composite Functions 

We dealt with the differentiation of composite functions in the case of functions of a 
single variable (Sect. 20.6). Even for the real-valued functions of two real variables 
f (x, y), it may happen that each of the two variables is a function of other variables. 
Let x and y be functions of a real variable. 

Definition 24.7 Let f (x, y) be a real-valued function of two real variables having 
domain D ⊆ R2. Let  x = x(t) and y = y(t) be functions of the variable t defined in 
the interval [a, b], such that, if t ∈ [a, b], then the point (x(t), y(t)) belongs to D. 
The function f (x(t), y(t)) defined in [a, b] is called a composite function through 
the functions x(t), y(t). 

The composite function f (x(t), y(t)) is a function of a variable which shares the 
same properties of functions of a single variable. For instance, we can calculate its 
derivative. 

Remark 24.5 The composite function f (x(t), y(t)) is the restriction of f (x, y) to  
the curve x = x(t), y = y(t), t ∈ [a, b], contained in the region D. 

The functions x = x(t), y = y(t) are called the components of the composite 
function. The geometric meaning is illustrated in Fig. 24.6.

The curve γ 

x = x(t), y = y(t),
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Fig. 24.6 The surface 
represents the graph of f (x, 
y) and the curve γ', with  
endpoints A' and B', 
represents the graph of the 
composite function f (x(t), 
y(t))

t ∈ [a, b], lies on the domain D of f , D  ⊆ R2 and has endpoints A and B. The graph 
of f , i.e., the set of the points in the space R3 having coordinates (x, y, f (x, y)), (x, 
y) belonging to D, is represented by the graph of the function z = f (x, y) which 
represents a surface. 

The surface z = f (x, y) contains the curve γ', possibly skew, with endpoints A', 
B', consisting of all the points P' with coordinates (x(t), y(t), f (x(t), y(t))). The  
orthogonal projection of γ' onto the plane xy is the curve γ with endpoints A, B. 

The following theorem states a sufficient condition for the differentiability of the 
composite function f (x(t), y(t)). 

Theorem 24.3 (Chain rule) Let f (x, y) be endowed with continuous first partial 
derivatives at every point of an open set A of R2. If the functions x(t), y(t) are 
defined in [a, b] and differentiable in the open interval (a, b) and, for every t ∈ [a, 
b], the point (x(t), y(t)) belongs to A, then the composite function f (x(t), y(t)) is 
differentiable in (a, b) and the following equality holds: 

f '(x(t), y(t)) = fx (x(t), y(t))x '(t) + fy(x(t), y(t))y'(t) (24.9) 

where f ' denotes the derivative of the composite function of the only variable t. 
Equality (24.9) takes the alternative form: 

d f  

dt  
= 

∂ f 
∂x 

dx  

dt  
+ 

∂ f 
∂y 

dy  

dt
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Example 24.1 Calculate the derivative of the function f (x, y) = x2+3xy  composite 
of 

x = x(t) = 1 − t 
y = y(t) = t2 

d f  
dt  = [2x + 3y]x=1−t,y=t2 (−1) + [3x]x=1−t,y=t2 (2t) = 
−(

2(1−t) + 3t2
) + (3−3t)2t = −2 + 8t−9t2 

We obtain the same result by constructing the function 

f (x(t), y(t)) = x(t)2 + 3x(t)y(t) = (1 − t)2 + 3(1 − t)t2 = 
1 − 2t + 4t2 − 3t3 

whose derivative is f '(x(t), y(t)) = −2 + 8t − 9t2. 

24.7 Implicit Functions 

We know that a real valued function f of a real variable x 

y = f (x) 

includes the procedure to calculate explicitly the value y, given  x. Along with y = 
f (x) also the notation 

y = y(x) 

is used. 
However, in some cases an equation 

f (x, y) = 0 

that relates the variables x and y is given. 

Definition 24.8 Let f (x, y) be a real-valued function defined in an interval A = 
[a, b] × [c, d] ⊆  R2. If for every x ∈ [a, b] there exists exactly one y ∈ [c, d] such 
that 

f (x, y) = 0 (24.10) 

then y is the value of a function of the variable x; such a function assigns to any 
x ∈ [a, b] the element y ∈ [c, d] such that f (x, y) = 0. The Eq. (24.10) is said to
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implicitly define y as a function of x. The domain of the implicitly defined function 
is the set of those x such that there is a unique y for which (24.10) is satisfied. The 
function y is said to be an implicit function of the variable x. 

Example 24.2 The equation 

f (x, y) = x2 + y2 − 1 = 0 

defines implicitly, for every x ∈ [−1, 1] the two functions y = +  
√
1 − x2 and 

y = −  
√
1−x2. 

Example 24.3 The equation 

f (x, y) = x2 + y2 + 1 = 0 

does not define implicitly any real-valued function since the equation is not satisfied 
by any couple (x, y) of real numbers. 

Referring to Fig. 24.7 the curve C is represented by the implicit Eq. (24.10) which 
implicitly defines the function y = y(x) in the rectangular neighborhood I × J. 

Example 24.4 The equation 

xy  − 2x − y − 3 = 0 (24.11) 

may be solved for y: 

y = 
3 + 2x 
x − 1 

The domain of y = 3+2x 
x−1 is R − {1}. Equation (24.11) implicitly defines y as 

a function of x in each rectangular neighborhood of a point (x0, y0) solution of 
(24.11). Observe that the points of abscissa 1 in the plane xy are not solutions of the 
Eq. (24.11).

Fig. 24.7 The part of the 
curve C inside I × J is 
intersected in at most one 
point by any vertical line 
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Example 24.5 The equation of the unit circumference x2 + y2 = 1 does not implic-
itly define y as a function of x in a neighborhood of the point P(1,0) because the part 
of the circumference contained in each rectangular neighborhood of P is intersected 
at two points by some vertical line (Fig. 24.8). 

The equation x2+ y2 = 1 implicitly defines y as a function of x in a neighborhood 
of the point (1/ 

√
2, 1/ 

√
2) (Fig. 24.9). 

Remark 24.6 The expression “f is continuous along with its first partial derivatives” 
means “f is continuous and its first partial derivatives are continuous too”. 

A sufficient condition to ensure the existence of a function y(x) defined in a 
neighborhood of x0 and implicitly defined by Eq. (24.10) is yielded by the following: 

Theorem 24.4 (Dini’s theorem) Let f (x, y) be a real-valued function of two real 
variables, continuous along with its first partial derivatives in an open set A ⊆ R2. 
If (x0, y0) is a point in A such that 

f (x0, y0) = 0, fy(x0, y0) /= 0

Fig. 24.8 The part of the 
circumference contained in 
each rectangular 
neighborhood of (1, 0) is 
intersected in two points by 
some vertical line 

Fig. 24.9 y(x) implicitly 
defined in a neighborhood of 
(1/ 

√
2, 1/  

√
2) 
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then there exist a neighborhood I of x0 and a neighborhood J of y0, such that 
I × J ⊆ A and a unique continuous function y(x) with domain I and range J such 
that y = y(x0) and f (x, y(x)) = 0, for every x ∈ I; furthermore, the function y(x) 
is differentiable with continuous derivative and the equality holds 

fx (x, y(x)) + fy(x, y(x))y' = 0 (24.12) 

which can be written: 

y'(x) = 
dy  

dx  
= −  

fx (x, y(x)) 
fy(x, y(x)) 

(24.13) 

The equalities (24.12) and (24.13) yield the implicit differentiation rule, i.e., the 
way to determine the derivative y'(x) (in a neighborhood). 

Property 24.1 Under the hypotheses of Theorem 24.4, if y(x) is the function implic-
itly defined by (24.10) in a neighborhood of x0, let γ be the set of points P such that 
f (x, y(x)) = 0. The set γ is a regular curve and the tangent line to γ at P0(x0, y0) has 
the equation 

y − y0 = y'(x0)(x − x0) (24.14) 

By (24.12) the  Eq. (24.14) takes the form 

fx (x0, y(x0))(x − x0) + fy(x0, y(x0))(y − y0) = 0 (24.15) 

The Eq. (24.15) is the equation of the tangent line at P0(x0, y0) to the curve γ. 

Example 24.6 Given the equation xy  − 3x − y − 2 = 0, find y'(x). 

By implicit differentiation rule (24.12) we obtain: 

xy'(x) + 1y − 3 − y'(x) = y'(x)(x − 1) + y − 3 = 0 

and solving for y'(x), 

y'(x) = 
3 − y 
x − 1 

Example 24.7 Let us consider again the equation f (x, y) = x2 + y2 − 1 = 0. 

Since f (0, 1) = 0 and f y(0, 1) = [2y]x=0,y=1 = 2 /= 0 the hypothesis of Dini’s 
theorem is satisfied and, as we know, the domain of function y(x) = 

√
1 − x2 is [–1, 

1]. Hence, 

f (x, y(x)) = x2 +
(√

1 − x2
)2 − 1 = 0
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for every x. The right-hand side of (24.13) yields 

− 
fx (x, y(x)) 
fy(x, y(x)) 

= −  
2x √
1 − x2 

which is, as it is easily seen, the derivative of
√
1−x2. 

Example 24.8 Let us find the equation of the tangent line to the f (x, y) = ex − 
ey − xy  = 0 at the point (0, 0). 

The given equation implicitly defines y in function of x. The hypotheses of 
Theorem 24.4 are fulfilled; indeed fx (x, y) = ex − y, fy(x, y) = −ey − x and 
fy(0, 0) = −e0 = −1 /= 0. As  ey + x /= 0, by implicit differentiation (24.12), 

y'(x) = −  
fx (x, y(x)) 
fy(x, y(x)) 

= −  
ex − y 

−ey − x 
= 

ex − y 
ey + x 

The slope of the tangent at (0, 0) is y'(0) = 1. Hence the equation of the tangent 
to the curve is y = x. 

24.7.1 Higher Order Derivatives 

Consider (24.12) in the  form  

fx + fy y' = 0 

and differentiate it 

fxx  + fxy  y' + fxy  y' + fyy
(
y')2 + fy y'' = 0 (24.16) 

that from (24.12), yields 

y''(x) = −  
fxx  + 2 fxy  y' + fyy

(
y')2 

fy 
= 

fxx
(
fy

)2 − 2 fxy  fx + fyy( fx )2 

( fx )3
(24.17) 

Equations (24.16) and (24.17) show that the first and second derivatives (and, 
reiterating, all the higher ones) of the implicitly defined function y(x) can be calcu-
lated directly starting from the partial derivatives of the function f , without the need 
to obtain the expression of y(x): the function y(x) can be studied with regard to the 
properties of monotonicity, extremes, concavity, convexity, etc., even if y(x) is not 
known. 

Example 24.9 From Examples 24.4 and 24.6 the equation xy  − 3x − y − 2 = 0 
defines implicitly y as a function of x
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y = 
3 + 2x 
x − 1 

whose first derivative is 

y'(x) = 
3 − y 
x − 1 

(24.18) 

The second order derivative is obtained from (24.18), taking into account that y 
is not an independent variable but a function of x, i.e., y = y(x): 

y'' = Dx

(
3 − y 
x − 1

)
= 

(x − 1)
(−y') − 1(3 − y) 
(x − 1)2

= 
(x − 1) y−3 

x−1 − 3 + y 
(x − 1)2 

= 
y − 3 − 3 + y 

(x − 1)2 
= 

2y − 6 
(x − 1)2 

where the symbol Dx denotes differentiation w. r. to x. 

Example 24.10 Find the equations of the tangent lines with slope k = −1 to the  
circumference x2 + y2 − 1 = 0. 

Apply implicit differentiation: 2x + 2yy' = 0. Hence 

y' = −  
x 

y 

So, at the point of tangency (x0, y0), we obtain −1 = k = y'(x0) = − x0 
y0 

. Then 

x0 = y0 (24.19) 

The point (x0, y0) is on the circumference, from where x2 0 + y2 0 − 1 = 0. Then, 
by (24.19), 2x0 2 = 1. Therefore, the abscissas of the two points of tangency are 
1 √
2 
and − 1 √

2 
and, by (24.19), the points of tangency are

(
1 √
2 
, 1 √

2

)
and

(
− 1 √

2 
, − 1 √

2

)
. 
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Chapter 25 
Surfaces 

25.1 Introduction 

Let us define some classes of surfaces represented by particular implicit equations: 

F(x, y, z) = 0 (25.1) 

If F(x, y, z) is a polynomial of degree n and three variables, then the Eq. (25.1) is  
said to represent an algebraic surface of order n. An algebraic surface of order n and 
a generic line that does not lie on it intersect in at most n points of the space R3. The  
plane is an algebraic surface of order 1, the sphere is an algebraic surface of order 2. 

The equation F(x, y, z) = x2 + y2 + z2 − 9 = 0 is the  implicit, or  ordi-
nary, representation of the spherical surface with center at the origin and radius 
3 (Sect. 9.10). 

A surface can be represented by equations with two real parameters, u, v: 

x = g1(u, v) 
y = g2(u, v) 
z = g3(u, v) 

If the parameters u and v may be eliminated an ordinary representation is obtained. 
The given definition is quite broad. Sometimes regularity features are required on a 

surface: for example, the functions F, g1, g2, g3 could be continuous or differentiable. 

Example 25.1 Let a surface S be represented by the parametric equations: 

x = 2u − v 
y = −u + 2v 
z = −u
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Replacing −z for u in the first two equations, we get: x = −2z − v, y = z + 2v; 
hence, setting v = −x − 2z in the previous equation we obtain: y = z + 2 (−x − 
2z), i.e., 2x + y + 3z = 0. Therefore, the three parametric equations are equivalent 
to the ordinary equation of the plane 2x + y + 3z = 0. 

25.2 Cylinder 

From a descriptive point of view, the simplest surfaces, after the planes, are the 
cylinders. 

Definition 25.1 Given a plane curve γ, let  r be a line non parallel to the plane of 
γ. The lines s of the space, parallel to r and passing through the point P, as P varies 
on γ, form a surface called a cylinder (or cylindrical surface). The curve γ is called 
the directrix of the cylinder and each line s is called a generatrix of the cylinder 
(Fig. 25.1). 

We can think of the cylinder as a surface generated by a line (generatrix) that 
moves leaning on the points of the directrix always remaining parallel to itself. 

The right circular cylinder has a circumference as directrix and generatrices 
perpendicular to the plane of the circumference. 

Consider the implicit equation 

x2 + y2 = a2 (25.2) 

a > 0, that represents the circumference in the plane xy with center (0, 0) and radius a. 
Equation (25.2) makes sense also in a coordinate system of the space xyz. Indeed, it 
is easy to recognize that the Eq. (25.2) represents a right circular cylinder having the 
circumference x2 + y2 = a2 of the plane xy as directrix and the generatrices parallel

Fig. 25.1 Cylinder with the 
curve γ as directrix and some 
generatrices, i.e., the lines s 
passing through the points P 
and parallel to r 
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Fig. 25.2 Cylinder x2 + y2 
= a2 

to the z axis. In fact, any couple (x0, y0) is a solution of the Eq. (25.2), if and only 
if, whatever z is, the triple (x0, y0, z) is a solution of the equation x2 + y2 + 0z = a2 
(Fig. 25.2). 

Remark 25.1 It is known that any curve f (x, y) = 0 in a coordinate system of the 
xy plane defines a cylinder of space which also has the equation f (x, y) = 0 in a  
coordinate system of the space xyz and consists of the lines which lean on the curve 
and are parallel to the z axis. 

Remark 25.2 If a cylinder has the generatrices parallel to the coordinate z (or y, 
or x) axis (Figs. 25.2 and 25.3), then it is represented by an equation in which the 
variable z (or y, or  x) does not appear, i.e., has coefficient zero, and vice versa. 

The surface y − sinx = 0 (Fig. 25.3) is non-algebraic. 
The system of equations 

x2 + y2 = a2 

z = k

Fig. 25.3 Cylinder having 
directrix on the xy plane the 
graph of y = sinx, restricted 
to the interval [−π, π] and  
vertical generatrices. The 
cylinder has equation 
y − sin x = 
0, i.e., y − sin x + 0z = 0 
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represents the set of points common to the cylinder (25.2) and the plane z = k, which 
is perpendicular to the generatrices of the cylinder. The system therefore represents 
the circumference, section of the cylinder and the plane z = k. 

25.3 Cone 

Definition 25.2 Given a plane curve γ and a point V not belonging to the plane of 
γ, let P be a point of γ. The set of lines s passing through V and the point P, as P 
varies on γ, forms a surface which is called a cone (or conical surface). The curve γ 
is called directrix, the lines s are called the generatrices and the point V the vertex 
of the cone. 

We can think of the cone as a surface generated by a line (generatrix) that moves 
leaning on the points of the directrix and passing through a given point V (Fig. 25.4). 

The circular cone has a circumference as directrix. A circular cone is right if the 
orthogonal projection of the vertex on the plane of the directrix coincides with the 
center of the circumference (Fig. 25.5).

We wonder how to recognize in what conditions the equation 

F(x, y, z) = 0 (25.3) 

represents a cone. To this aim we must find a point V(a, b, c) such that, for every point 
P0(x0, y0, z0) solution of (25.3) distinct from V, every point P of the line VP0 is a 
solution of (25.3). Before carrying out some examples, let us remember (Sect. 10.5) 
that the equations

Fig. 25.4 Cone with vertex 
V, directrix γ and 
generatrices 
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Fig. 25.5 Right circular 
cone

x = a + t(x0 − a) 
y = b + t(y0 − b) 
z = c + t(z0 − c) 

with t real parameter, are parametric equations of the line VP0. 

Example 25.2 Let us verify that the surface of equation 

(x − a)2 + (y − b)2 = z2 (25.4) 

is a cone with vertex V(a, b, 0). Indeed, if P0(x0, y0, z0) is a solution of (25.4), i.e., 
(x0 − a)2 + (y0 − b)2 = z0 2, then every point 

x − a = t(x0 − a) 
y − b = t(y0 − b) 
z = t z0 

of the line VP0, is a solution of (25.4), for every real t, as we can verify plugging 
the right-hand sides of the previous system in Eq. (25.4). The cone (25.4) is circular 
because any section with a plane z = h, for every non-null h, is a circumference. 

25.3.1 Homogeneous Polynomial 

A polynomial of degree m and n variables, in which only addends (monomials) of 
degree m appear, is called a homogeneous polynomial of degree m. For example, the
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polynomial F(x, y, z) = x2 − y2 + 2xz + z2 is a homogeneous polynomial of degree 
2 and variables x, y, z. For every t ∈ R, the equalities are verified: 

F(t x, t y, t z) = (t x)2 − (t y)2 + 2t2 xz  + (t z)2 = t2
(
x2 − y2 + 2xy  + z2

)

= t2 F(x, y, z) 

The property holds in general. Indeed, for every t and for every n-tuple of real 
numbers (tx1, tx2, …,  txn), if f (tx1, tx2, …,  txn) is a homogeneous polynomial of 
degree m and n variables, then the equality holds: 

f (t x1, t x2, . . . ,  t xn) = tm f (x1, x2, . . . ,  xn) 

The following properties apply (see Example 25.2). 

Property 25.1 If a cone has the vertex at the point (0, 0, 0), then it is represented 
by a homogeneous equation with coordinates x, y, z; vice versa, every homogeneous 
equation with coordinates x, y, z represents a cone with vertex at the point (0, 0, 0).  

Property 25.2 If a cone has its vertex at point V(a, b, c), then it is represented by 
a homogeneous equation with the differences (x − a), (y − b), (z − c) as variables; 
vice versa, every homogeneous equation with variables (x − a), (y − b), (z − c) 
represents a cone with vertex (a, b, c). 

25.4 Exercises 

1. Examine the surface of the space xyz: 

y = x2 (25.5) 

As a first step let us observe that in a coordinate system of the plane xy 
the equation y = x2 represents a parabola (Sect. 17.4.1). The Eq. (25.5) in a  
coordinate system xyz is independent of the variable z and by Remark 25.1 
represents a cylinder with the generatrices parallel to the z axis. The intersection 
of the cylinder (25.5) and the xy plane coincides with the solution set of the 
system of equations 

y = x2 

z = 0 

which is, of course, a parabola of the plane xy. The surface (25.5) is called a 
parabolic cylinder (Fig. 25.6)
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Fig. 25.6 Parabolic cylinder 
y = x2 

2. Analogously, the equation 

z = x2 

represents a parabolic cylinder with generatrices parallel to the y axis (Fig. 25.7). 
The equations x = z2, x = y2, z = y2 and x = z2 represent parabolic cylinders.

Fig. 25.7 Parabolic cylinder 
z = x2 
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Fig. 25.8 Hyperbolic 
cylinder xy = 1 

3. The surface of equation xy = 1 in the space xyz is a cylinder with the generatrices 
parallel to the z axis and intersects the plane xy in the equilateral hyperbola y = 1 x 
(Sect. 17.4.2). The cylinder xy = 1 in the space xyz is called hyperbolic cylinder 
(Fig. 25.8). 

4. Examine the surface 

x2 + y2 − z2 = 0 (25.6) 

Equation (25.6) is homogeneous and, by Property 25.1, it is the equation of a 
cone with the vertex at the origin. The intersections of the surface and the planes 
parallel to the plane xy is represented by the system of equations 

x2 + y2 − z2 = 0 
z = h 

h ∈ R. The equation x2 + y2 − h 2 = 0 is independent of the variable z, it  
represents a cylinder with the generatrices parallel to the z axis. The plane z = 
h intersects the cylinder along the circumference of radius h and center (0, 0, 
h); this circumference coincides with the intersection of the cone (25.6) with the 
same plane. The symmetry axes of the cone and the cylinder coincide with the z 
axis (Fig. 25.9).

5. Examine the surface 

x2 + y2 − z2 + 2x + 1 = 0 (25.7)
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Fig. 25.9 Cone x2 + y2 − 
z2 = 0

The equation can be rewritten as: 

(x + 1)2 + y2 − z2 = 0 

and represents, by Property 25.2, a cone with the vertex at (−1, 0, 0). The sections 
of the cone and the planes z = h not passing through the vertex, i.e., h /= 0, are 
circumferences 

(x + 1)2 + y2 = h2 

z = h 

intersections of the right circular cylinder (x + 1)2 + y2 = h2 with the plane z = 
h. The cone (25.7) is a surface of rotation around the line a parallel to the z axis 
and passing through the point (−1, 0, 0) in the plane xy. The line a, symmetry 
axis of the cone, is represented as the intersection of the two planes: 

x = −1 

y = 0 

6. Find the equation of the cylinder with the generatrices parallel to the line r of 
equations 

x − 2z = 0 
y − z − 3 = 0
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and having the hyperbola of the plane xy 

xy  − 1 = 0 

as directrix. 
Observe that the lines s represented by the equations 

x = 2z − p (25.8) 

y = z − q (25.9) 

for every p and q, are parallel to the line r. 
The line s is a generatrix of the cylinder if and only if the point of s which 

lies on the plane xy, i.e. the point (x, y, z) = (−p, −q, 0) with third coordinate 0, 
satisfies the equation of the directrix xy − 1 = 0, hence pq = 1. 

Eliminate the parameters p and q by replacing p = 1 q in the Eq. (25.8) to get 
1 
q = 2z−x and q = 1 

2z−x ; then plugging this value of q into the Eq. (25.9), obtain 

y = z− 1 
2z−x . 

Therefore, the equation (y − z) (2z − x) = −1 represents the required cylinder 
which is an algebraic surface of order 2 (Sect. 25.1). (The equation can have the 
form 2yz − xy − 2z2 + xz + 1 = 0.) 
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Chapter 26 
Total Differential and Tangent Plane 

26.1 Introduction 

The linear function (Sect. 7.2) in the variable x has the form y = ax + b; the numbers 
a and b are the coefficients of the linear function. We defined (Sect. 20.13) the  
differential of a real-valued function f of a real variable and we proved that the 
differential exists if and only if the derivative of the function f exists. We also know 
that a differentiable function at a point is continuous at that point. Furthermore, the 
graph of a differentiable function f at x0 admits the tangent line at x0 (Sect. 20.3). 

We have also shown that the increment of the function f , relative to the increment
∆x of the independent variable x, and the differential df at x differ by a function ω 
of x and ∆x, ω(x, ∆x), which is an infinitesimal of higher order than ∆x, as ∆x → 
0:

∆ f = d f  + ω(x,∆x) 

The differential df at the point x is defined by the equality df = f '(x)∆x. So the  
differential df is a linear function of∆x. Therefore,∆f in turn is also a linear function 
of ∆x, whose coefficients are f '(x) and ω(x, ∆x). 

26.2 Total Differential 

The concepts of limit and continuity of the real-functions of several variables develop 
in analogy with those related to the functions of a single variable. However, we have 
observed that substantial differences exist, for example, in the Definition 23.10 of 
limit as P → ∞. 

Let f : D  ⊆ R2 → R be a real-valued function of the two real variables x and y. 
The fact that the partial derivatives f x(x0, y0), f y(x0, y0) at the point P0 (x0, y0) exist,
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does not imply that the function f is continuous at P0. In fact, there are functions 
with partial derivatives at a point, which are not continuous at this point. 

For example, consider the function g(x, y), which assumes value 0 on both coor-
dinate axes and 1 on the remaining part of the plane R2. The function g has no limit 
when P approaches the origin (0, 0), because its restriction to the axes has limit 0 
at each point P0 of the axes, when P ( /=P0) approaches P0 moving on the axis that 
contains P0; whereas, if P approaches P0 in any way, i. e., in an open disk centered at 
P0, then g(x, y) has limit 1. However, the limit of the difference quotient calculated 
on the x axis exists and is zero, because the difference quotient is constantly zero 
and therefore its limit is null. The same goes for the y axis. Therefore, the first partial 
derivatives of g(x, y) at (0, 0) exist. The function g(x, y) is an example of a func-
tion not endowed with a limit at a point, and therefore not continuous, but partially 
differentiable with respect to the variables x and y. 

We conclude that if f is a real-valued function defined in an open set D of R2, the  
existence of the partial derivatives at a point P(x, y) of D does not imply the continuity 
of f at P. However, the implication holds by strengthening some hypothesis on partial 
derivatives. In fact, the following theorem applies. 

Theorem 26.1 Let f be a real-valued function of the two real variables x, y, endowed 
with partial derivatives f x and f y in the open set D ⊆ R2. If the partial derivatives are 
bounded in an open neighborhood of the point P ∈ D, then f is continuous at P. 
Proof Let P(x, y) ∈ D be a point satisfying the hypothesis and I(P) the neighborhood 
of P, included in D and including an open rectangular interval H = (x − k, x + k) 
× (y − k, y + k) with half-widths equal to k > 0, so that there exists a positive real 
number h, such that, for every point Q in H 

| fx (Q)| ≤ h,
|
| fy(Q)

|
| ≤ h, (26.1) 

Then, for every point Q(x + ∆x, y + ∆y) belonging to H, i. e., |∆x| <  k and |∆y| 
< k, as a result  (x, y + ∆y) ∈ H. Hence:

∆ f = f (Q) − f (P) = f (x + ∆x, y + ∆y) − f (x, y) = f (x + ∆x, y + ∆y) 
− f (x, y + ∆y) + f (x, y + ∆y) − f (x, y) (26.2) 

The function f (t, y + ∆y) of the single variable t, t ∈ (x – k, x + k), is differentiable 
in (x – k, x + k), and hence continuous; by Lagrange’s theorem (Sect. 21.4), there 
exists r ∈ (0,1) such that: 

f (x + ∆x, y + ∆y) − f (x, y + ∆y) = fx (x + r∆x, y + ∆y)∆x (26.3) 

Similarly, fixed x the function f (x, t), t ∈ (y – k, y + k) is a differentiable and 
continuous function of the second variable; by Lagrange’s theorem there exists s ∈ 
(0,1) such that: 

f (x, y + ∆y) − f (x, y) = fy(x, y + s∆y)∆y (26.4)
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Therefore, plugging the right-hand sides of (26.3) and (26.4) into (26.2), we get

∆ f = fx (x + r∆x, y + ∆y)∆x + fy(x, y + s∆y)∆y 

where the points (x + r∆x, y + ∆y) and (x, y + s∆y) belong to H. Therefore, in 
virtue of (26.1) the inequality: 

|∆ f | ≤ h(|∆x | + |∆y|) 

is obtained. Hence, if Q approaches P, then (∆x, ∆y) approaches (0, 0) and then ∆f 
→ 0. Thus, the continuity of f at P follows, as we wanted to show. ⃞

Let f be a real-valued function of the two real variables x and y defined on an 
open set D ⊆ R2, let ∆x and ∆y be increments given to x0 and y0, respectively, such 
that P(x0, y0) and Q(x0 + ∆x, y0 + ∆y) are points in the domain D of f . The quantity

∆ f = f (Q) − f (P) = f (x0 + ∆x, y0 + ∆y) − f (x0, y0) 

is said to be the increment of f at (x0, y0) relative to the increments ∆x and ∆y of 
the independent variables. 

Definition 26.1 The function f is said to be differentiable at P(x0, y0) ∈ D if it is  
endowed with first partial derivatives f x and f y at (x0, y0) and the function. 

ω = ∆ f − ( fx (x0, y0)∆x + fy(x0, y0)∆y) (26.5) 

is an infinitesimal of higher order than ρ = |PQ| = √

∆x2 + ∆y2, namely 

lim
∆x→0,∆y→0 

ω 
ρ 

= 0 

Let f (x, y) be differentiable at P(x0, y0). The linear combination 

d f  = fx (x0, y0)∆x + fy(x0, y0)∆y (26.6) 

is called the total differential or simply differential of f at (x0, y0). 
Let us apply the definition of total differential to the functions f (x, y) = x and f 

(x, y) = y; we obtain dx = ∆x and dy = ∆y. Then (26.6) can be rewritten 

d f  = fx (x0, y0)dx  + fy(x0, y0)dy  

By definition of total differential, Eq. (26.5) yields

∆ f = d f  + ω (26.7)
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where ω is an infinitesimal of higher order than
√

∆x2 + ∆y2. Equation (26.7) is  
formally equal to Eq. (20.18) found in the case of a function of a single variable. 
However, we observe an essential difference between the two cases: while in the case 
of a single variable the Eq. (26.7) (along with ω infinitesimal of higher order than
∆x) is obtained by assuming only the existence of the derivative of f , in the case 
of two variables, the hypothesis of partial differentiability, w. r. to x and y, of  f is 
not sufficient to guarantee the validity of (26.7) (along with ω infinitesimal of higher 
order than

√

∆x2 + ∆y2). Indeed, there are examples of real-valued functions of two 
variables such that the difference ∆f –  df it is not an infinitesimal of higher order 
than

√

∆x2 + ∆y2. 

Definition 26.2 A function f (x, y) defined in the open set D ⊆ R2, is said to be of  
class Cm(D) or simply  to be Cm, m non negative integer, if it is continuous in D and 
has continuous all the partial derivatives up to the order m. A function of class C0 is, 
by definition, a continuous function. 

So the class C1(D) consists of the continuous functions whose partial derivatives f x 
and f y are continuous in D; such functions are also called continuously differentiable 
in D. 

Theorem 26.2 Let f be a real-valued function of the two real variables x and y. If  f 
(x, y) is defined in the open set D ⊆ R2 and is of class C1(D), then the function f (x, 
y) is differentiable at any point of D. 

Remark 26.1 The inverse of Theorem 26.2 does not hold; indeed, a function can be 
differentiable in D without being C1(D). 

26.3 Vertical Sections of a Surface 

Let us consider some geometric aspects of the continuous function f (x, y) with 
continuous first partial derivatives at the point P(x0, y0). Let us intersect the surface, 
graph of f (x, y), and the plane α of equation x = x0, which is the plane parallel to 
the plane yz containing the points of first coordinate x0 (Fig. 26.1).

The plane α intersects the surface in a curve G, which is the set of the points (x0, 
y, f (x0, y0)), with variable y. The curve G has the tangent line t at y0; in fact, f y(x0, 
y0) exists and this means that the partial function g(y) = f (x0, y) is differentiable at 
y0. 

The line t tangent to the curve G at the point Q(x0, y0, f (x0, y0)) also lies on 
the plane α; the angle δ that t forms with the plane xy, namely with the orthogonal 
projection t' of t on the plane xy, has the tangent, tanδ, which equals f y(x0, y0). 

The existence of the partial derivative f y at the point (x0, y0) indicates that the 
curve G has the tangent line at the point Q(x0, y, f (x0, y0)), laying on the plane x = 
x0.
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Fig. 26.1 The point P(x0, 
y0) belongs to the domain of 
f ; the coordinates of the point 
Q are  (x0, y0, f (x0, y0)); α is 
the plane tP, whose equation 
is x = x0; t' is the orthogonal 
projection of the line t on the 
plane xy, δ is the angle of the 
lines t and t'; the plane β 
contains P and is orthogonal 
to the y axis, β has equation y 
= y0; the  curve G  = [graph 
of f ]

∩
[plane α]; curve H = 

[graph of f ]
∩
[plane β]; the 

line s is the tangent to the 
curve H at the point Q

26.4 The Tangent Plane to a Surface 

Let us consider a real-valued function f having domain D ⊆ R2 and suppose f 
differentiable at the point (x0, y0) of D. We want to stress the relation between the 
geometric properties of the surface S, graph of the equation z = f (x, y), and the 
differential of f at (x0, y0). 

To this aim let us define the tangent plane to the surface S at the point P(x0, y0) [we  
can also say: tangent plane to the surface at the point Q(x0, y0, f (x0, y0)], starting from 
its geometric construction: intersect the surface S with any plane passing through the 
point P and parallel to the z axis; there are infinite planes that form a bundle of planes, 
that have in common the line PQ. Each of these planes and the surface intersect in a 
curve γ passing through the point Q. Observe that if f is differentiable at P(x0, y0), 
it can be shown that all the tangent lines at Q to the curves γ are on a plane called 
the tangent plane at P to the surface. 

Theorem 26.3 If f (x, y) is differentiable at the point P(x0, y0), then the equation of 
the tangent plane at P to the surface S is. 

z − f (x0, y0) = fx (x0, y0)(x − x0) + fy(x0, y0)(y − y0) (26.8) 

Proof Let S be the surface graph of the equation z = f (x, y). The equation of the 
generic plane in a coordinate system of the space xyz is (see Sect. 10.4)
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ax + by + cz + d = 0 (26.9) 

If the plane passes through the point (x0, y0, f (x0, y0)), then the Eq. (26.9) assumes 
the form 

a(x − x0) + b(y − y0) + c(z − f (x0, y0)) = 0 (26.10) 

The tangent plane to S at P(x0, y0) must contain the tangent lines s, t to the curves 
G and H (Sect. 26.3) (Fig. 26.2). Since the orthogonal projection of each segment of 
the line t on the x axis is 0 and the orthogonal projection of each segment of s on the 
y axis is 0, the triples (0, 1, f y(x0, y0)) and (1, 0, f x(x0, y0)), are direction numbers of 
t and s, respectively. 

Since the orthogonal projection of each segment of the line t on the x axis is 0 and 
the orthogonal projection of each segment of s on the y axis is 0, direction numbers 
of t and s are (0, 1, f y(x0, y0)) and (1, 0, f x(x0, y0)) (Sect. 20.3), respectively. 

Let us determine the equation of the plane (26.10) parallel to the two directions 
(0, 1, f y(x0, y0)) and (1, 0, f x(x0, y0)). The condition of parallelism (Sect. 15.4) of  
the plane (26.10) to both directions yields the homogeneous linear system in three 
unknowns a, b, c (Sect. 14.10.6): 

0a + 1b + fy(x0, y0)c = 0 
1a + 0b + fx (x0, y0)c = 0

Fig. 26.2 Tangent plane to 
the surface at Q 
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which is easily solved by setting c = 1, to get b = −  f y(x0, y0), and a = −  f x(x0, y0) 
(see Sect. 14.9). Therefore, the Eq. (26.8) represents the required tangent plane. ⃞

Exercise 26.1 Given the surface 

f (x, y) = x2 − 2xy  − y2 − 2x (26.11) 

find the equation of the tangent plane to the surface at the point P (1, − 1). First 
observe that the domain of f is R2. Furthermore, f is of class C1 in R2: indeed, 

fx (x, y) = 2x − 2y − 2 
fy(x, y) = −2x − 2y 

are continuous in R2. Therefore, f is differentiable in R2 and the tangent plane at P 
to the surface (26.11 has equation 

z − f (1, −1) = fx (1, −1)(x − 1) + fy(1, −1)(y + 1) (26.12) 

where f (1,– 1) = 0, f x(1, − 1) = 2, f y(1, − 1) = 0 and the Eq. (26.12) simplifies: 
2x – z + 2 = 0. 

Remark 26.2 We know that the tangent line to a curve of the plane can leave the 
curve, in a neighborhood of the contact point, in a single half-plane or, as in the case 
of the tangent line in an inflection point (Sect. 21.11.2), it can cross the curve itself. 
Also, the plane tangent to a surface at one point can leave parts of the surface in 
one and the other half-space identified by the tangent plane in a neighborhood of the 
contact point. An example will come in handy. 

Example 26.1 Consider the surface of equation z = xy. The surface is called a 
hyperbolic paraboloid or saddle paraboloid (Fig. 26.3).

The origin (0, 0, 0) belongs to the surface z = xy. The plane tangent to the surface 
at the origin is obtained from (26.8 where (x0, y0) = (0, 0), f (x0, y0) = 0, f x(x0, y0) 
= 0, f y(x0, y0) = 0. Therefore, the tangent plane α at the origin to the surface z = xy 
has equation z = 0. The system of equations 

z = xy  
z = 0 

represents the intersection of the surface and the tangent plane at the origin. This 
intersection consists of two lines: the y axis represented by the system

x = 0
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Fig. 26.3 Saddle paraboloid 
of equation z = xy

z = 0

and the x axis 

y = 0 
z = 0 

If we fix any neighborhood of the origin, which is the contact point of the surface 
and the tangent plane α, we find points of the surface that belong to one of the two 
half-spaces (see Sect. 4.3.1) of origin  α and points that belong to the other half-space. 
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Chapter 27 
Maxima and Minima. Method 
of Lagrange Multipliers 

27.1 Relative and Absolute Extrema of Functions of Two 
Variables 

In Sect. 21.2 we defined absolute and relative extrema of a real-valued function 
of a real variable. Upper bounded and lower bounded real-valued functions of two 
variables were defined in Sect. 23.8. Let us now deal with the extrema of the real-
valued functions of two real variables. The topic develops analogously to what already 
done above. 

Definition 27.1 Let f be a real-valued function defined and continuous in the open 
set A ⊆ R2. The point (x0, y0) ∈ A is called a relative maximum (minimum) point of 
f in A if there exists a circular neighborhood I of the point (x0, y0) such that 

f (x, y) ≤ f (x0, y0) (  f (x, y) ≥ f (x0, y0)) (27.1) 

whatever the point (x, y) ∈ I ∩ A is. 
If (27.1) holds for every point (x, y) of the domain A, then (x0, y0) is called a  

maximum (minimum) point or an absolute maximum (minimum) point of f . The  
value attained by the function at a relative maximum (minimum) point is called a 
relative maximum (minimum) of the function; the value attained by the function at 
an absolute maximum point is said to be the absolute maximum, or the  maximum, of  
f in A; the value attained by f at an absolute minimum point of f in  A is said to be  
the absolute minimum, or the  minimum, of  f in A. 

Maxima and minima (relative maxima and minima) of a function are named 
extrema (relative extrema) and the maximum and minimum (relative maximum and 
minimum) points are named extremum (relative extremum) points of the function. 

Example 27.1 The function f (x, y) = e−(x2+y2 ) (see Example 23.6; Sect. 23.7) 
is bounded, its range is the left-open interval (0, 1], the point (0, 0) is the absolute 
maximum point of f . The function f has infimum 0.
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Fermat’s theorem (Sect. 21.3) for real-valued functions of two variables holds. 

Theorem 27.1 [Fermat’s theorem]. Let f be a real-valued function defined on an 
open set A ⊆ R2. If the point (x0, y0) of  A is a relative extremum point of f and f is 
endowed with first partial derivatives at (x0, y0), then. 

fx (x0, y0) = fy(x0, y0) = 0 (27.2) 

Let us observe that under the hypotheses of Fermat’s theorem, if f is differentiable 
(Sect. 26.2) in the open set A the total differential of f is zero at the relative extremum 
points and the tangent plane (26.8) to the surface z = f (x, y) at a relative extremum 
point (x0, y0) has equation z = f (x0, y0); therefore, the tangent plane is parallel to 
the xy plane. 

Definition 27.2 A point (x0, y0) in the domain A of f that satisfies the conditions 
(27.2) is called a critical point of f . 

Example 27.2 Consider the function f (x, y) = x2 + 2y2, whose domain is R2. We  
wonder if the function has relative extremum points. We first check if the function 
has critical points. For this purpose, let’s see if there are points at which the first 
derivatives of f are zero: 

fx (x, y) = 2x = 0 
fy(x, y) = 4y = 0 

Therefore, (0, 0) is the only critical point of f . Is (0, 0) a relative maximum or 
minimum point of f ? We observe that f (x, y) = x2 + 2y2 ≥ f (0, 0) = 0, for every 
(x, y). Therefore (0, 0) is a relative minimum point of f . The point (0, 0) is also an 
absolute minimum point, since the function does not assume negative values. 

Each relative extremum point (x0, y0) of the function f is a critical point of f . Vice  
versa is not always true: there are critical points that are neither relative maximum 
points nor relative minimum points of f . 

The following example shows that, although f x(x, y) = f y(x, y) = 0, the point (x, 
y) is not a relative extremum point. 

Example 27.3 Consider the function f (x, y) = xy, defined on R2 (see Example 
26.1), whose graph is a hyperbolic paraboloid. Since f x(x, y) = y and f y(x, y) = 
x the function has a unique critical point (0, 0). However, it happens that in every 
neighborhood of (0, 0), there are points (x, y) such that. 

f (x, y) = xy  > f (0, 0) = 0 

and points (x, y) such that 

f (x, y) = xy  < f (0, 0) = 0
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Hence the point (0, 0) is neither a relative maximum point nor a relative minimum 
point of f . In other words: if x and y have the same sign, i. e., the point (x, y) is in  
the I or III quadrant, then xy > 0; if  x and y have opposite signs, i. e., the point (x, y) 
is in the II or IV quadrant, then xy < 0.  

Definition 27.3 Let the function f be defined in the open set A. The critical point 
(x0, y0) of  f is called a saddle point for f if in every neighborhood of (x0, y0) there 
are points (x, y) such that f (x, y) <  f (x0, y0) and points (x, y) such that f (x, y) >  f (x0, 
y0). 

For example, the point (0, 0) is a saddle point for the function f (x, y) = xy. 

27.2 Exercises 

Find the critical points of the functions: 

a. f (x, y) = x2 − 3xy  − 4y2 
b. g(x, y) = x2 − 2y2 − 2x 
c. h(x, y) = xy2 

Solutions 

a. The critical points of the function f (x, y) = x2 − 3xy − 4y2 are the solutions (x, 
y) of the system of equations 

fx (x, y) = 2x − 3y = 0 
fy(x, y) = −3x − 8y = 0 

This system has the unique solution (x, y) = (0, 0), which is the only critical 
point of the function f . 

b. The critical points of the function g(x, y) = x2 –2y2 –2x are the solutions (x, y) 
of the system of equations 

gx (x, y) = 2x − 2 = 0 
gy(x, y) = −4y = 0 

This system has the unique solution (x, y) = (1, 0), which is the only critical 
point of g. 

c. The critical points of the function h(x, y) = xy2 are the solutions (x, y) of the  
system of equations 

hx (x, y) = y2 = 0 
hy(x, y) = 2xy  = 0
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The partial derivatives vanish simultaneously at the points (x, 0), for every 
real number x. Therefore, all the points of the x axis are critical points of h. 

27.3 Search for Relative Maxima and Minima 

The occurrence of the equalities (27.2) is a necessary condition in order that (x0, y0) 
be a relative extremum point of the function f . 

Let us now state sufficient conditions for the existence of relative extremum points. 

Definition 27.4 Let f (x, y) be a real-valued function of two real variables endowed 
with second partial derivatives. The function H, defined by: 

H ( f (x, y)) = fxx  (x, y) fyy(x, y) −
(
fxy(x, y)

)2 

that can be put in the form of a determinant 

H ( f (x, y)) =
|||
|
fxx  (x, y) fxy(x, y) 
fxy(x, y) fyy(x, y)

|||
|

is called the Hessian determinant, or simply the Hessian of f at (x, y). 

Theorem 27.2 Let f be a real-valued function of two real variables defined on an 
open set D ⊆ R2, with continuous first and second partial derivatives at the point (x0, 
y0) which belongs to the domain of f . If  f x(x0, y0) = 0 and f y(x0, y0) = 0, one of the 
following cases occurs: 

case 1. if H(f (x0, y0)) > 0 and f xx(x0, y0) > 0, then (x0, y0) is a relative  minimum  
point of f ; 

case 2. if H(f (x0, y0)) > 0 and f xx(x0, y0) < 0, then (x0, y0) is a relative maximum 
point of f ; 

case 3. if H(f (x0, y0)) < 0, then (x0, y0) is neither a relative maximum nor a relative 
minimum point. If H(f (x0, y0)) < 0, then (x0, y0) is a  saddle point of f ; 

case 4. if H(f (x0, y0)) = 0, then the problem remains open. In this case one can try 
to operate directly on the function; for instance, the study of the sign of the difference 
f (x0, y0) − f (x, y) near (x0, y0) can give indications. 

Exercise 27.1 Find the relative extremum points of the function 

f (x, y) = x2 − 3xy  + 4y2 + 2x + 4y 

Solution . The domain of f is R2. The critical points are the solutions of the system: 

fx (x, y) = 2x − 3y + 2 = 0 
fy(x, y) = −3x + 8y + 4 = 0
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that has the unique solution (–4, –2). Compute the value H(f (–4, –2)): 

fxx  (−4, −2) = 2, fxy(−4, −2) = −3, fyy(−4, −2) = 8, 

then H(f (–4, –2)) = 16 –9 = 7 > 0. By Theorem 27.2, (–4, –2) is a relative minimum 
point and f (–4, –2) = –8 is the value of f at the relative minimum point. 

Exercise 27.2 Find the relative extremum point of the function 

f (x, y) = 2xy  − x2 (27.3) 

Solution The function has domain R2. The first partial derivatives are 

fx (x, y) = −2x + 2y 
f y(x, y) = 2x 

There exists a unique critical point (0, 0). The second partial derivatives are: 

fxx  (x, y) = −2, fxy(x, y) = 2, fyy(x, y) = 0 

The value of the Hessian of function (27.3) at the point (0, 0) is 

H ( f (0, 0)) = fxx  (0, 0) fyy(0, 0) − f 2 xy(0, 0) = −2(0) − 4 = −4 < 0 

The point (0, 0) is a saddle point for f . The function f (x, y) has no relative 
extremum points. 

Exercise 27.3 Find the critical points of the function f (x, y) = x3 + y3 − 3xy and 
examine the boundedness of f . 

Solution The domain of f is R2. Compute the first derivatives of f and equal them 
to zero: 

fx (x, y) = 3x2 − 3y = 0 
fy(x, y) = 3y2 − 3x = 0 

The system of the two equations takes the equivalent form: 

x2 = y 
y2 − x = 0 (27.4) 

Replace x2 with y in the second equation: 

x2 = y
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x
(
x3 − 1

) = 0 

The system decomposes into two systems: 

x2 = y 
x = 0 

that has the solution (0, 0), and 

x2 = y 
x3 − 1 = 0 

whose solution is (1, 1). Therefore, the first partial derivatives of f vanish at the 
points (0, 0) and (1, 1). The second partial derivatives are: 

fxx  (x, y) = 6x 
fxy(x, y) = −3 
fyy(x, y) = 6y 

The value of the Hessian at the point (0, 0) is 

H ( f (0, 0)) = fxx  (0, 0) fyy(0, 0) − f 2 xy(0, 0) = −9 < 0 

By Theorem 27.2, (0, 0) is a saddle point for f . The value of the Hessian at the 
point (1, 1) is: 

H ( f (1, 1)) = fxx  (1, 1) fyy(1, 1) − f 2 xy(1, 1) = 27 > 0 

By Theorem 27.2, (1, 1) is a relative minimum point of f and f (1, 1) = –1 is the 
value of the relative minimum of f . 

In order to examine the boundedness of f in R2, calculate the limits 

lim 
x → +∞  
y → +∞  

(x3 + y3−3xy) = +∞  

lim 
x → −∞  
y → −∞  

(x3 + y3−3xy) = −∞  

The function f (x, y)= x3 + y3 − 3xy is neither upper bounded, nor lower bounded. 
Therefore, absolute extrema of f in R2 do not exist.
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Remark 27.1 The system (27.4) represents the intersection of the parabolas x2 – y 
= 0 and y2 – x = 0, both passing through the points (0, 0) and (1, 1): what suggests 
an easier way to solve the system of Eqs. (27.4). 

27.4 Absolute Maxima and Minima in R2 

We studied a procedure for determining the possible relative maxima and relative 
minima of a real-valued function of two real variables. 

We now describe a procedure that allows to determine the possible absolute 
maxima and minima of a real-valued function of two real variables f (x, y) defined 
in D ⊆ R2. We observe that the function f (x, y) = x3 + y3 − 3xy examined in the 
Exercise 27.3, has a relative minimum and it is not endowed with a maximum or a 
minimum. 

Weierstrass’ theorem (Sect. 19.2.1) assures that a continuous function defined in 
a closed and bounded set D has a maximum value and a minimum value in D. 

Exercise 27.4 Let us consider the restriction of the function 

f (x, y) = xy  

to the closed circle D having center O(0, 0) and radius 1, defined by the inequality 
x2 + y2 ≤ 1, restriction which we call f (x, y) again. By Weierstrass’ theorem, f has 
minimum and maximum in D. We found (Example 27.3) that the only critical point 
of f is the saddle point (0, 0). So the minimum and maximum points of f in D must 
be found in the boundary of D, namely the circumference x2 + y2 = 1. 

Let us consider the function f (x, y) = xy with (x, y) belonging to the circumference 
x2 + y2 = 1. The parametric equations of the circumference (Sect. 8.1.3) are:  

x = cos t 
y = sin t 

t ∈ [0, 2π]. Let us consider the extrema of the composite function 

f (cos t, sin t) = cos t sin t 

which is a function g(t) of a single real variable t, continuous in the closed and 
bounded interval [0, 2π]. The extrema of g are, by Weierstrass’ theorem, its maximum 
and its minimum. Therefore, we set 

g(t) = cos t sin t
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and find the maximum and minimum of the function g(t) in [0,  2π]. The relative 
extrema of g lie among the points at which the derivative vanishes: 

g'(t) = −  sin t sin t + cos t cos t = cos2 t − sin2 t 

Hence, g'(t) = 0 if and only if 1 − 2 sin2 t = 0, i. e.,  

sint = ±  
1 √
2 

whose four solutions are 

t = 
π 
4 

, t = 
3π 
4 

, t = 
5π 
4 

, t = 
7π 
4 

and among which the extremum points of g(t) must be found: 

g
(

π 
4

) = cos
(

π 
4

)
sin

(
π 
4

) = 1 √
2 

1 √
2 

= 1 2 
g
(
3π 
4

) = cos
(
3π 
4

)
sin

(
3π 
4

) = − 1 
2 

g
(
5π 
4

) = cos
(
5π 
4

)
sin

(
5π 
4

) = 1 2 
g
(
7π 
4

) = cos
(
7π 
4

)
sin

(
7π 
4

) = − 1 
2 

The maximum of g is attained at the points π 
4 and 

5π 
4 and the minimum at 7π 

4 and 
3π 
4 .The values 

1 
2 and – 

1 
2 are the maximum and the minimum of the restriction of f 

(x, y) = xy to the circle x2 + y2 ≤ 1. 

27.5 Search for Extrema of a Continuous Function 

If the real-valued function of two real variables f (x, y) is defined on the closed 
and bounded set D where it is continuous, then there exist the maximum and the 
minimum of f in D. If partial derivatives of f exist in the interior of D and if a 
maximum (minimum) point of f is in the interior of D, then the partial derivatives at 
this point are equal to zero. If no maximum (minimum) point of f is in the interior 
of D, then this extremum point has to be found on the boundary of D. In order to 
identify the maximum and minimum points of the continuous function f in the closed 
and bounded set D we adopt the following procedure: 

• determine the critical points and relative extrema of f in the interior of D; 
• determine the maximum and minimum of f on the boundary of D; 
• compare the values: the maximum of the function is the greatest of the extrema 

obtained in the two previous phases, the minimum of the function is the least of 
the extrema obtained in the two previous phases.
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Exercise 27.5 Find the extrema of the function z = f (x, y) = e−(x2+y2 ). 

Solution The function e−(x2+y2 ) was studied in the Example 23.6. Now we want to 
determine the extrema of the restriction of the function to the unit circle x2 + y2 ≤ 
1. The function is positive in the domain R2. The partial derivative of f are: 

fx (x, y) = −2xe−(x2+y2 ) 
fy(x, y) = −2ye−(x2+y2 ) 

Moreover, f x(x, y) = 0 if and only if x = 0 and f y(x, y) = 0 if and only if y = 0. The 
point O(0, 0) is the unique critical point of f. The function e−(x2+y2 ) is differentiable 
up to the order 2 in R2. 

fxx  (x, y) = −2e−(x2+y2 ) + 4x2e−(x2+y2 ) 
fxy(x, y) = 4xye−(x2+y2 ) 
fyy(x, y) = 4y2e−(x2+y2 )−2e−(x2+y2 ) 

Since f xx(0, 0) = –2, f xy(0, 0) = 0, f yy(0, 0) = –2, and 

H ( f (0, 0)) = fxx  (0, 0) fyy(0, 0) − f 2 xy(0, 0) = 4 > 0 

The case 2 of Theorem 27.2 occurs and the point (0, 0) is a relative maximum 
point at which e−(x2+y2 ) takes value e0 = 1. At every point (x, y) in the boundary x2 
+ y2 = 1 the value of function f is 

f (x, y) = e−(x2+y2 ) = e−1 

Thus, the function f assumes absolute maximum value 1 e < 1 at every point of 
the circumference x2 + y2 = 1. 

27.6 Constrained Extrema. Method of Lagrange Multiplier 

We will deal with the problem of knowing the extrema of a restriction of a given 
function. It happens along a mountain road, that we want to know the maximum 
altitude we have reached: we do not want to know how high the mountain is, but the 
maximum altitude we have reached in the walk. Still, the mayor has a plan to improve 
waste collection efficiency, but budget constraints exist. Almost all acts, individual 
or collective, are immersed in a context and subject to some conditions. 

We will study some problems of constrained, or  conditional extrema. Let a real-
valued function z = f (x, y) of two real variables be defined on an open set A ⊆ 
R2. We want to calculate the maxima and minima of f (x, y), when x and y are not 
independent but linked by a relation, a constraint, of the type ϕ(x, y) = 0, which
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implicitly defines y as a function of x (Sect. 24.7). From a geometric point of view, 
we consider values of z corresponding to the points of a curve C contained in the set 
A. In this case a point (x0, y0) of the curve will be a maximum (minimum) point if 
there is a neighborhood of it such that the values of z in all the points belonging to the 
intersection of this neighborhood with the curve are less (or greater) than the value z 
= f (x0, y0). These maxima or minima, which are called constrained or conditional 
extrema, can be found by a procedure known as Lagrange’s multiplier method. 

Let specify the data of the problem. We suppose f and ϕ are functions of class 
C1 in A (Sect. 26.2), i. e., the functions f and ϕ and their partial derivatives are 
continuous in A. Suppose that the set C of points of A, represented by the equation 
ϕ(x, y) = 0, is a plane curve. The extrema of the restriction of f to the curve C are 
called constrained or conditional extrema and the equation ϕ(x, y) = 0 is called the  
constraint. 

In order to find constrained relative maximum points and relative minimum points 
of the restriction of f to C the following procedure is implemented: 

1. find the maxima and minima of the following function, called the Lagrangian, 

L(x, y, λ) = f (x, y) + λϕ(x, y) (27.5) 

where λ is a parameter, that fulfils the system of necessary conditions on partial 
derivatives: 

Lx = 0, Ly = 0, Lλ = 0 (27.6) 

2. examine the values of f on the points of the boundary of A that belong to the 
curve C. 

Example 27.4 Find the extrema of the function f (x, y) = 
√
4−x2−y2 subject to 

the constraint ϕ(x, y) = y – x2 –1 = 0. 
The domain of f is the set of points (x, y) such that 

x2 + y2 − 4 ≤ 0 

i. e., the circle with center (0, 0) and radius 2. The curve y – x2 –1 = 0 is the convex 
parabola with vertical axis and vertex (0, 1). We form the auxiliary function (27.5) 

L(x, y, λ) =
√
4−x2−y2 + λ

(
y−x2−1

)

subject to the conditions (27.6): 

Lx = −2x 

2 
√
4−x2−y2 

−2λx = 0 (27.7)
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Ly = −2y 

2 
√
4−x2−y2 

+ λ = 0 (27.8) 

Lλ = y − x2 − 1 = 0 (27.9) 

Let us solve the system of the equations in the open circle x2 + y2 – 4 < 0; this  
implies

√
4−x2−y2 > 0. 

From (27.8) we obtain 

λ = y 
√
4−x2−y2 

which plugged in (27.7), 

−x 
√
4−x2−y2 

− 2xy  
√
4−x2−y2 

= 0 

yields x + 2xy = 0, i. e., 

x(1 + 2y) = 0 

Set x = 0 in (27.9) to obtain y = 1; so the point C(0, 1) is a relative or absolute 
extremum (maximum or minimum) point in the interior of the circle; if we put y = −
1 
2 in the same equation, then we obtain the equation system: 

y = − 1 
2 

x2 = − 3 
2 

that is inconsistent because x2 ≥ 0. Let us find the common points to the constraint 
and the boundary of the circle: 

y = x2 + 1 
x2 + y2 − 4 = 0 

Replace x2 with y –1 in the second equation: 

x2 = y − 1 
y − 1 + y2 − 4 = 0 

Solve the equation y2 + y –  5 = 0: 

y = 
−1 ± 

√
21 

2
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As x2 = y –1, the value x2 = −1− 
√
21 

2 −1 < 0 must be excluded. So 

x = ±  

/
−3 + 

√
21 

2 

Thus C(0, 1) is the extremum point in the interior of the circle, and 

A = 

⎛ 

⎝− 

/
−3 + 

√
21 

2 
, 
−1 + √

21 

2 

⎞ 

⎠ and B = 

⎛ 

⎝ 

/
−3 + √

21 

2 
, 
−1 + √

21 

2 

⎞ 

⎠ 

are the extrema points in common to the constraint and the boundary of the circle. 
In conclusion, from the comparison of the values: 

f (C) = f (0, 1) = √
3 

f (A) = f (B) = 0 

we obtain the maximum
√
3 and the minimum 0 of the given problem of constrained 

extrema. 

Example 27.5 Find the extrema of the function f (x, y) = 10x2 –16xy + 10y2 subject 
to the constraint ϕ(x, y) = x2 + y2 –1 = 0. 

The domain of f is R2. Let us search for the possible maxima and minima of f on 
the unit circumference x2 + y2 –1 = 0. The Lagrangian (27.5) is  

L(x, y, λ) = 10x2 − 16xy  + 10y2 + λ
(
x2 + y2 − 1

)

subject to the conditions 

Lx = 20x − 16y + 2λx = 0 (27.10) 

Ly = 20y − 16x + 2λy = 0 (27.11) 

Lλ = x2 + y2 − 1 = 0 (27.12) 

We must solve the system (27.10) to (27.12) in the unknowns x, y, λ. From (27.10) 
and (27.11) we obtain the equations 

x(10 + λ) = 8y 
y(10 + λ) = 8x
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that yield: 

10 + λ 
8 

= 
y 

x 
and 

8 

10 + λ 
= 

y 

x 

Hence the equality of the left-hand sides: 

10 + λ 
8 

= 8 

10 + λ 

that for λ /= –10, implies 

λ2 + 20λ + 36 = 0 

whose roots are λ = −10 ± √
100−36 = −10 ± 8, i. e.,  λ1 = –2 and λ2 = –18. 

If we set λ1 = –2 in the system of equations then: 

20x − 16y − 4x = 0 
x2 + y2 − 1 = 0 

Hence 

16x − 16y = 0 
x2 + y2 − 1 = 0 

and 

x = y 
2x2 = 1 

The last two equations lead to the values x = ±  1 √
2 
and y = ±  1 √

2 
and determine 

the points
(

1 √
2 
, 1 √

2

)
,
(
− 1 √

2 
, − 1 √

2

)
in the interior of the domain of f . 

If we set λ1 = –18, then 

20y − 16x − 4y = 0 
x2 + y2 − 1 = 0 

Hence 

−16y − 16x = 0 
x2 + y2 − 1 = 0
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and 

y = −x 
2x2 = 1 

The last two equations lead to the values x = ±  1 √
2 
and y = ±  1 √

2 
and determine 

the points
(

1 √
2 
, − 1 √

2

)
,
(
− 1 √

2 
, 1 √

2

)
in the interior of the domain of f . 

So we have found four points that are candidates to solve our problem of 
constrained extrema. Let us make the comparisons of the values of f at these points. 

f
(

1 √
2 
, 1 √

2

)
= 10

(
1 √
2

)2 −16
(

1 √
2

)2 + 10
(

1 √
2

)2 = 5−8 + 5 = 2 

f
(
− 1 √

2 
, − 1 √

2

)
= 10

(
−1 √
2

)2 −16
(

−1 √
2

)2 + 10
(

−1 √
2

)2 = 2 

f
(

1 √
2 
, − 1 √

2

)
= 10

(
1 √
2

)2 −16
(

1 √
2 

−1 √
2

)
+ 10

(
−1 √
2

)2 = 5 + 8 + 5 = 18 

f
(

−1 √
2 
, 1 √

2

)
= 10

(
−1 √
2

)2 −16
(

−1 √
2 

1 √
2

)
+ 10

(
1 √
2

)2 = 18 

Thus, the constrained maximum of f is 18, the constrained minimum is 2. 

Remark 27.2 Example 27.5 deals with a system made of three equations of degree 
two in the unknowns x, y, λ. This means that the system of the Eqs. (27.10) to (27.12) 
is not linear: precisely, it has degree eight; indeed, the degree of an equation system 
is defined as the product of the degrees of the equations. A nonlinear system of 
equations can be inconsistent or consistent. In the latter case the system can have a 
finite number of solutions or infinite solutions. 

27.7 Method of Lagrange Multipliers 

The procedure for finding constrained relative maxima and minima used in 
(Sect. 27.6) can be generalized. Let us consider, for instance, the function f (x, 
y, z) subject to the constraint conditions g(x, y, z) = 0, h(x, y, z) = 0 and form the 
Lagrangian 

L(x, y, z, λ, μ) = f (x, y, z) + λg(x, y, z) + μh(x, y, z) 

Let us search for the triples that make extreme the function f (x, y, z) subject to 
the constraints g(x, y, z) = 0, h(x, y, z) = 0, among the points that are the critical 
points (x, y, z, λ, μ) of the Lagrangian. We must solve the system of equations
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Lx = fx (x, y, z) + λgx (x, y, z) + μhx (x, y, z) = 0 
Ly = fy(x, y, z) + λgy(x, y, z) + μhy(x, y, z) = 0 
Lz = fz(x, y, z) + λgz(x, y, z) + μhz(x, y, z) = 0 
Lλ = g(x, y, z) = 0 
Lμ = h(x, y, z) = 0 

where λ and μ, which are independent of x, y, z, are  the  Lagrange multipliers. 
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Chapter 28 
Directional Derivatives and Gradient 

28.1 Directional Derivatives 

We saw the geometric meaning of the partial derivatives (Sect. 23.11). Referring to 
Fig. 28.1 let us intersect the surface S graph of the function f (x, y) with the plane 
passing through the point Q(x0, y0, f (x0, y0)) and parallel to z and x axes, and with 
the plane passing through Q and parallel to z and y axes. There exist other planes 
which are parallel to z axis and passing through Q each cutting the plane xy in a line.

Definition 28.1 Let A be an open set of R2 and f a function of class C1 in A. Let  r be 
an oriented line with unit vector r and P0(x0, y0) and P(x, y) = (x0 + ∆x, y0 + ∆x) 
distinct points of r. If (PP0) denote the length of the oriented segment PP0 of r, the  
ratio. 

f (P) − f (P0) 
(PP0) 

is called the incremental ratio of f from the starting point P0. Put∆ f = f (P)− f (P0) 
and ∆ρ = (PP0), if the limit 

lim
∆ρ→0

∆ f

∆ρ 

exists and is finite, then it is called the directional derivative of f at P0(x0, y0) in the 
direction and sense of r, or  with respect to the unit vector r, denoted by

(
d f  

dr

)
P0 

Let θ be the oriented angle xr
∆

(Fig. 28.1) and, by (Sect. 8.4.1),

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023 
A. G. S. Ventre, Calculus and Linear Algebra, 
https://doi.org/10.1007/978-3-031-20549-1_28 

501

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-20549-1_28&domain=pdf
https://doi.org/10.1007/978-3-031-20549-1_28


502 28 Directional Derivatives and Gradient

Fig. 28.1 Directional derivative of f in P w. r. to the unit vector r. The point P0(x0, y0) belongs to 
the domain of f ; the point Q has coordinates (x0, y0, f (x0, y0)); the plane ε passes through P0(x0, 
y0), is perpendicular to the xy plane and forms the angle θ = xr

∆

with the x axis; the dashed curve 
L = [graph of f ] ∩ [plane ε]; the line r contains the orthogonal projection of the curve L on the xy 
plane; t tangent line to the curve L at Q; the value tan xr

∆

is the value of the directional derivative 
of f at P0 w. r. to the unit vector r

r = (cos θ,  sin θ)  = (cos xr
∆

, cos yr
∆

) 

the unit vector of the oriented line r (see Sect. 10.3.1). 
In relation to the functions of class C1 in an open of R2 the following property 

holds. 
If f is C1, then each plane of the bundle of planes parallel to the z axis and passing 

through Q cuts the surface S in a curve, contains the tangent line to the surface at the 
point Q and all these tangent lines lie on the tangent plane to the surface at Q. The 

slope of the tangent line t is equal to
(
d f  
dr

)
P0 
. 

The following theorem holds: 

Theorem 28.1 If f is C1 in an open subset A of R2 and the point P0 belongs to A then 
there exists the directional derivative of f at P0(x0, y0) with respect to any oriented 
line passing through P0 and it results. 

d f  

dr 
= 

∂ f 
∂ x 

cos xr
∆ + 

∂ f 
∂y 

cos yr
∆

.
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28.2 Gradient 

Definition 28.2 If f has the first partial derivatives at the point (x, y), the vector of 
R2

(
fx (x, y), fy(x, y)

)

is called the gradient of f (x, y), denoted with the symbol gradf (x, y) or  ∇f (x, y). 
(The symbol ∇ is a vector operator that reads “nabla”.) 

Other expressions of the gradient in terms of unit vectors of the coordinate axes 
are: 

grad f (x, y) = (
fx (x, y), fy(x, y)

) = fx (x, y)x + fy(x, y) y 

and, in form of scalar product: 

grad f (x, y) = (
fx (x, y), fy(x, y)

) · (x, y). 

Let γ be a regular plane curve of parametric equations 

x = x(t) 
y = y(t) 

with t in [a, b]. 
Recall (Sect. 24.2) that the line r tangent to the curve γ at the point P P0(x0, y0) = 

(x(t0), y(t0)) has direction numbers x'(t0), y'(t0). Therefore, the parametric equations 
of the line r are: 

x = x0 + x '(t0)t 
y = y0 + y'(t0)t 

with t in [a, b]. 
If the regular curve γ is represented by the implicit form f (x, y) = 0, then the 

equation of the line r tangent to γ at P0 is
(

∂ f 
∂ x

)
P0 

(x − x0) +
(

∂ f 
∂y

)
P0 

(y − y0) = 0. 

Therefore, the direction numbers of the tangent line r are:

(
∂ f 
∂y

)
P0 

, −
(

∂ f 
∂ x

)
P0 

.
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It follows that the normal line n to γ at P0(x0, y0) (Sect. 24.2.1) has direction 
numbers:

(
∂ f 
∂x

)
P0 

,

(
∂ f 
∂y

)
P0 

. 

Hence, the normal line n to γ at P0(x(t0), y(t0)) has direction numbers 
y'(t0), −x '(t0) 

Therefore, we state: 

Theorem 28.2 If the partial derivatives of f (x, y) at  P0(x0, y0) exists and gradf (x0, 
y0) /= (0, 0), then gradf (x0, y0) is a vector orthogonal to the tangent line to the level 
curve k = f (x0, y0) at the point (x0,y0). 

Exercise 28.1 Let r be the line y = x. If  x and y are the unit vectors of the coordinate 
axes x and y, calculate gradf (1, 1) and the derivative of f (x, y) = x2 + y2 at the 
point (1, 1) w.r. to the unit vector r of r. 

Solution The components of the unit vector of r are: 

r = 
x + y 
|x + y| = 

(1, 0) + (0, 1) √
2

=
(

1 √
2 
, 

1 √
2

)

and gradf ( f (1, 1) = fx (x, y)x + fy(x, y) y = (2x, 2y)(x,y)=(1,1) = (2, 2). 
Then
(
d f  (x, y) 

dr

)
(1,1) 

= grad f (1, 1) · r = (2, 2) ·
(

1 √
2 
, 

1 √
2

)
= 

4 √
2 

= 2 
√
2. 

Example 28.1 Given the surface z = f (x, y) = x2 + y2, let us check that the 
vector gradf (2, 1) is perpendicular to the level curve k = f (2, 1). In fact, gradf 
(2, 1) = (2x, 2y)(x,y)=(2,1) = (4, 2). Furthermore, the level curve f (2,1) = 4 + 1 = 
5 is the circumference γ : x2 + y2 = f (2, 1) = 5 the line r tangent to γ at (2, 1) has 
direction numbers (Fig. 28.2):

(
∂ f 
∂y

)
(2,1) 

= (2y)(2,1) = 2, −
(

∂ f 
∂ x

)
(2,1) 

= (−2x)(2,1) = −4.

The vectors grad f (2,1) = (4,2) and (2, –4) are perpendicular since the scalar 
product (4, 2) × (2, –4) is null. 

The following theorems correlate the gradient with the directional derivative. 

Theorem 28.3 Given the function f (x, y) and the vector gradf (x, y), the directional 
derivative d f  dr with respect to the oriented direction of the unit vector r equals the
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Fig. 28.2 Gradf (2,1) = (4, 
2) is orthogonal to the line 2x 
+ y = 5, tangent at P(2, 1) to 
the circumference x2 + y2 = 
5

projection of the vector gradf on the line r. The relation is expressed by the scalar 
product: 

d f  

dr 
= grad f · (cos xr∆, cos yr

∆

) = fx (x, y) cos xr
∆ + fy(x, y) cos yr

∆

. 

Exercise 28.2 Let r be the bisecting line of the first and third quadrant and x and y the 
unit vectors of the coordinate axes x and y. Calculate gradf (1, 1) and the derivative 
of f (x, y) = x2 + y2 at the point (1, 1) w.r. to the unit vector r of r. 

Solution The unit vector of r has component: 

r = 
x + y 
|x + y| = 

(1, 0) + (0, 1) √
2

=
(

1 √
2 
, 

1 √
2

)

and gradf f (1, 1) = (2x, 2y)(x,y)=(1,1) = (2, 2). 
Then
(
d f  (x, y) 

dr

)
(1.1) 

= grad f (1, 1) · r = (2, 2) ·
(

1 √
2 
, 

1 √
2

)
= 

4 √
2 

= 2 
√
2. 

Theorem 28.4 Let f be of class C1(A), A ⊆ R2. The derivative at a point w.r. to the 
unit vector r has a maximum if the direction of r coincides with that of the gradient: 
the value of the maximum is the modulus |gradf |.
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Fig. 28.3 Downhill racer steepest descent. The racer at (x, y) moves perpendicular to the level 
curve at (x, y) 

28.2.1 Steepest Descent 

The above considerations lead to a procedure of intuitive appeal, called the gradient 
method, for finding a relative extrema or critical points. 

Let us start from a point with the objective of reaching a minimum point: we give an 
increase in the direction of the gradient; the point moves in a direction perpendicular 
to the level line in which it is located (Theorem 28.4). From the reached point the 
procedure iterates: each point reached in consequence of the increase in the direction 
of the gradient is the origin of the path oriented in the direction and sense of the fastest 
decrease: the procedure is known as the steepest descent algorithm (Fig. 28.3). 

A downhill racer (Fig. 28.3) chooses the direction and the sense of—gradf (x, y) 
at each point (x, y), where f (x, y) measures the altitude. 

The streams represented on a topographic map flow in the direction of the steepest 
slope, which, at each point (x, y), is that of—gradf (x, y). 
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Chapter 29 
Double Integral 

29.1 Area of a Plane Set 

We defined the concepts of measurability and area of a plane set starting from the area 
of the polygon (see Sect. 22.3). We now will modify the definition of measurability 
based on the simpler notion of area of the rectangle. The modification will ease the 
extension of the concept of measure to three-dimensional space. 

The intervals of the plane R2 are rectangles with sides parallel to the coordinate 
axes (Sect. 23.1). A set of the points of the plane that is the union of a finite number of 
intervals of R2, two by two without interior common points, is called a pluri-interval 
of the plane. The area of a pluri-interval is defined as the sum of the areas of the 
rectangles, two by two without interior common points, which constitute it. 

A bounded plane set A endowed with interior points is said to be measurable if 
the numerical set of the areas of the pluri-intervals contained in A and the numerical 
set of the areas of the pluri-intervals containing A are contiguous (Sect. 6.9). If A is 
measurable, the separation element a of the two numerical sets is called the area of 
the set A, a = areaA, or the  measure of A. A bounded plane set A without interior 
points is said to be measurable with measure zero if the set of the areas of the pluri-
intervals containing A has infimum zero. The definition of measurability given in 
terms of pluri-intervals is not substantially different from that of measurability in 
terms of polygons. In fact, every pluri-interval is also a polygon and, therefore, every 
measurable set according to the new definition is also so according to the previous 
one; and vice versa. Hence, both definitions lead to the same value of the area of a 
measurable set. 

Definition 29.1 A subset A of R2, or  R3, is called a domain if the following 
conditions are met: 

• A is closed; 
• each point of A is an accumulation point for the interior of A.
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Example 29.1 A closed 3-dimensional sphere (Sect. 23.1) is a domain of R3, while 
the union of a closed 3-dimensional sphere and an isolate point exterior to the sphere 
is not a domain. 

Remark 29.1 It can be shown that if A is a domain, then 

• A is the closure of an open set and 
• A is a closed set and is the union of an open set and its boundary ∂A. 

Definition 29.2 The diameter of a bounded subset A of R2, or  R3, is, by definition, 
the supremum of the numerical set of the distances of any two points of A. 

Theorem 29.1 Any bounded and measurable domain A of R2 can be decomposed 
into a finite number of measurable domains, having diameter less than any fixed 
positive real ε, two by two without interior points in common and whose union 
equals A. 

29.2 Volume of a Solid 

We dealt with the intervals of R3 (see Sect. 23.1). A closed interval of R3 is a 
rectangle parallelepiped with the sides parallel to the coordinates axes and whose 
points P have coordinates x, y, z that belong to non-degenerate closed intervals of 
R. If  a ≤ x ≤ b, c ≤ y ≤ d and e ≤ z ≤ f , the  volume, or  measure, of the interval 
I = [a, b] × [c, d] × [e, f ] of R3 is defined by the product 

volI = (b − a)(d − c)( f − e) 

We learned from elementary geometry how to calculate the volumes of some solids 
such as parallelepipeds, cylinders and circular cones, pyramids, some polyhedra, the 
sphere. Let us now define a generalization of the concept of volume. 

To this aim we extend the concept of pluri-interval to the space R3 and define 
a particular class of polyhedra, called pluri-rectangles or pluri-intervals. A  pluri-
interval, or  pluri-rectangle, of  R3 is, by definition, a polyhedron which is the union 
of a finite number of rectangles of R3 (i. e., parallelepipeds with the edges parallel to 
the coordinate axes) two by two without interior points in common. The volume of a 
pluri-interval of R3 is the sum of the volumes of the parallelepipeds which constitute 
it. (Fig. 29.1).

If a parallelepiped of R3 is degenerate, i. e., it reduces to a point, or a segment, 
or a plane rectangle, its volume is zero. 

Every pluri-interval Y of R3 can be decomposed into a finite number of closed 
parallelepipeds I1, I2, …,  In, included in Y, two by two without interior points in 
common and such that Y =∪i=1,…,nIi. 

Such a decomposition is not unique. Indeed, each closed parallelepiped A 
is the union of two closed parallelepipeds without interior points in common.
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Fig. 29.1 A pluri-interval of 
R3

However, from elementary geometry we know that the sum of the volumes of two 
parallelepipeds without interior points in common equals the volume of their union. 

Definition 29.3 Let A be a bounded domain of R3 endowed with interior points. 
The set A is said to be measurable if the set of the volumes of the pluri-rectangles 
containing A and the set of the volumes of the pluri-rectangles contained in A are 
contiguous. Then the element of separation of the two numerical sets is called the 
volume of A, or the  measure of A, and is denoted with the symbols vol(A), or m(A). The 
bounded subset A of R3 without interior points is said to be measurable with measure 
zero if the set of the volumes of the pluri-rectangles containing A has infimum zero. 

Property 29.1 If the subset A of R2, or  R3, is the union of two bounded and measur-
able domains A1 and A2 without interior points in common, then A is measurable 
and 

m(A) = m(A1) + m(A2) 

Let A be a bounded domain in the plane xy. If [a, b] is a closed interval, the set C 
of the points in the space R3 having coordinates (x, y, z) such that (x, y) ∈ A and z ∈ 
[a, b], i. e., the set C = A × [a, b],, is called a cylinder of R3. The domains of the 
planes z = a and z = b which have A as orthogonal projection on the plane xy are 
called the bases and the number h = b – a the height of the cylinder. 

Property 29.2 If the plane domain A is measurable, then the cylinder C of base A 
and height h is measurable and
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m(C) = hm(A) 

Definition 29.4 A subset of R3 that can be decomposed into a finite number of 
cylinders measurable and two by two with no interior points in common is called a 
pluri-cylinder. 

By Property 29.1, a pluri-cylinder is a domain whose measure equals the sum of 
the measures of the cylinders which form it. 

The following property expresses the measurability criterion of a domain of R3 

in terms of measurable pluri-cylinders. 

Property 29.3 Let A be a bounded domain of R3. The domain A is measurable if 
the set of measures of the pluri-cylinders contained in A and the set of measures of 
the pluri-cylinders containing A are contiguous. The element of separation of the two 
numerical sets is called the measure of A. 

29.3 Cylindroid 

Definition 29.5 Let f (P) = f ((x, y) be a real-valued function of the two real variables 
x and y, continuous and non-negative in the bounded and measurable domain A ⊆ 
R2. The  cylindroid of base A relative to the function f is, by definition, the set of 
points (x, y, z) ∈ R3, such that 

(x, y) ∈ A and 0 ≤ z ≤ f (x, y) 

whose boundary is made of the union of the graph of f (P), the domain A and a 
portion of the cylindrical surface formed by the lines parallel to z axis and passing 
through the points of the boundary of A. Of course, if f ((x, y) is constant the cylindroid 
is a cylinder of base A. 

Property 29.4 If A is a bounded and measurable domain of R2, the cylindroid of 
base A relative to the continuous and positive function f is a measurable domain. 

29.4 Double Integral 

If A is a domain of R2 and A1,A2,…,  An are domains of R2 two by two without interior 
points in common such that A = A1 ∪ A2 ∪ . . .  ∪ An,, the set of domains {A1,A2, 
…, An} is called a decomposition of A into partial domains. Such a decomposition 
is denoted D( A1, A2, . . . ,  An) or simply D. 

If A is a bounded domain the greatest diameter of the domains Ai is named the 
size or the diameter of the decomposition D.
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Let f be a real-valued function of two real variables continuous in a bounded and 
measurable domain A of R2. Given a decomposition D(A1, A2, . . . ,  An) of A into 
measurable domains, in each domain Ai, i = 1,…, n, let us choose a point Pi(xi, yi) 
and calculate the sum 

σD = 
n∑

i=1 

f (Pi )m(Ai ). 

It can be shown that there exists a real number J such that, for every ε > 0 there 
exists a number δ(ε) > 0, such that, for every decomposition of the domain A into a 
finite number of measurable domains of size less than δ(ε), it follows: 

|σ − J | < ε.  

The number J is called the double integral, or  integral, of the function f (x, y) 
extended to the domain A and is denoted by

∫
A f (P)d A  or 

˜ 
A f (x, y)dxdy. 

Let us state the following theorem. 

Theorem 29.2 If f (x, y) is a function continuous and positive in the bounded and 
measurable domain A of the plane, then the volume of the cylindroid of base A relative 
to the function f is equal to the integral of the function f extended to the domain A. 

Remark 29.2 Consider the restriction of the function f (x, y) = 1 to the bounded and 
measurable domain A. We have:  

¨ 

A 

f (x, y)dxdy  = 
¨ 

A 

1dxdy  

= volume of the cylinder of base A and height 1 

= m(A) = area of the domain A. 

Let the functions f (x, y) and g(x, y) be continuous in the bounded and measurable 
domain A of the plane, such that f (x,y) <  g(x, y) in  A – ∂A. The set of points (x, y, 
z) of  R3 such that (x, y) belongs to A and f (x, y) ≤ z ≤ g(x, y) is a domain called a 
normal domain with respect to the xy plane, relative to the functions f and g. 

It can be shown that the normal domain with respect to the xy plane, relative to 
the continuous functions f and g is a measurable domain whose volume is given by 

¨ 

A 

(g(x, y) − f (x, y))dxdy (29.1)
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29.5 Properties of the Double Integral 

The double integral enjoys properties similar to those related to the integral of the 
real-valued functions of a single variable. 

If f and g are real-valued functions of two real variables continuous in the bounded 
and measurable domain A of R2, then the following properties hold: 

Property 29.5 If f and g are real-valued functions of two real variables continuous 
in the bounded and measurable domain A of R2, then whatever the real numbers h 
and k are, the following equality holds.

∫

A 

(h f  (P) + kg(P))d A  = h
∫

A 

f (P)d A  + k
∫

A 

g(P)d A. 

Property 29.6 If f is a continuous function in the bounded and measurable domain 
A and if A is the union of two measurable domains A1, A2 without interior points in 
common, then

∫

A 

f (P)dA =
∫

A1 

f (P)d A  +
∫

A2 

f (P)d A  

Property 29.7 (Mean value theorem) If f is a continuous function in the bounded 
and measurable domain A, if  e' and e'' are the minimum and maximum of f in A, 
respectively, then 

e'm(A) ≤
∫

A 

f (P)dA ≤ e''m(A). 

If, moreover, A is a connected set (see Definition 23.1), then there exists in A a 
point Q such that:

∫

A 

f (P)dA = f (Q)m(A). 

Let A be a bounded and measurable domain of R2. 

Property 29.8 If the function f is continuous and non-negative in the bounded and 
measurable domain A, then

∫

A 

f (P)d A  ≥ 0.
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Property 29.9 If f and g are continuous in A and f (P) ≥ g(P) in A, then

∫

A 

f (P)d A  ≥
∫

A 

g(P)d A. 

Property 29.10 If f is continuous and non-negative in A and if B is a measurable 
domain contained in A, then

∫

B 

f (P)d A  ≤
∫

A 

f (P)d A. 

Property 29.11 If f is continuous in A, then

||||||

∫

A 

f (P)d A

||||||
≤

∫

A 

| f (P)|d A. 

29.6 Double Integral Reduction Formulas 

We describe a procedure for calculating a class of double integrals. For this purpose, 
some reduction formulas will be used, which allow the calculation of the double 
integral to be traced back to that of several integrals of functions of a single variable. 

We state a theorem that provides a reduction formula that can be applied if the 
bounded and measurable integration domain A is normal with respect to one of the 
coordinate axes (Sect. 22.9). 

Theorem 29.3 Let p(x) and q(x) be continuous functions in the closed interval [a, 
b] such that, for every x ∈ [a, b], p (x) ≤ q(x) and, for every x ∈ (a, b), p(x) <  q(x). 
If A is the normal domain with respect to the x axis, defined by 

A = {
(x, y) ∈ R2 : a ≤ x ≤ b; p(x) ≤ y ≤ q(x)

}

and if the function f (x, y) is continuous in A, then 

¨ 

A 

f (x, y)dxdy  = 
b∫

a 

⎡ 

⎢⎣ 

q(x)∫

p(x) 

f (x, y)dy  

⎤ 

⎥⎦dx . (29.2) 

A formula similar to (29.2) applies if A is a normal domain with respect to the y 
axis:
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A = {
(x, y) ∈ R2 : c ≤ y ≤ d; u(y) ≤ x ≤ v(y)

}

where u(y), v(y) are continuous functions in [c, d] such that u(y) <  v(y) in (c, d). 
Indeed, 

¨ 

A 

f (x, y)dxdy  = 
d∫

c 

⎡ 

⎢⎣ 

v(y)∫

u(y) 

f (x, y)dx  

⎤ 

⎥⎦dy. (29.3) 

Exercise 29.1 Calculate the volume of the cylindroid of base 

A = {
(x, y) : 0 ≤ x ≤ 1; x2 ≤ y ≤ x

}

relative to the constant function f (x, y) = 1. 

Solution From (29.2) and Remark 29.2, we obtain: 

¨ 

A 

1dxdy  = 
1∫

0 

⎡ 

⎣ 
x∫

x2 

dy  

⎤ 

⎦dx  = 
1∫

0 

[y]x x2dx  = 
1∫

0

(
x − x2

)
dx  

=
[
x2 

2 
− 

x3 

3

]1 

0 

= 
1 

6 

Exercise 29.2 Calculate the area of the domain A whose boundary is made of the 
parabola y = x2 and the lines y = 2x and x = 1 (Fig. 29.2). 

Solution 1. The domain is normal w. r. to the x axis. So, by (29.2) we have:

Fig. 29.2 The 
domain bounded by the 
parabola, the line y = 2x and 
the line x = 1 
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¨ 

A 

1dxdy  = 
1∫

0 

⎡ 

⎣ 
2x∫

x2 

dy  

⎤ 

⎦dx  =
[
x2 − 

x3 

3

]1 

0 

= 1 − 
1 

3 
= 

2 

3 
. 

Solution 2. The domain is normal w. r. to the y axis. In order to apply (29.3), 
subdivide the domain A into the domains A1 above the line y = 1 and A2 below the 
line y = 1. By Property 29.6 and Remark 29.2,we obtain: 

¨ 

A 

dxdy  = 
1∫

0 

⎡ 

⎢⎣ 

√
y∫

y 
2 

dx  

⎤ 

⎥⎦dy  + 
2∫

1 

⎡ 

⎢⎣ 
1∫

y 
2 

dx  

⎤ 

⎥⎦dy  

= 
2 

3
− 
1 

4 
+ 

2∫

1 

[x]x=1 
x= y 2 

dy  = 
5 

12 
+ 

1 

4 
= 

2 

3 

Exercise 29.3 Find the volume of the subset D of R3 bounded by the right circular 
cylinder x2 + y2 = 4, by the plane y + z = 4 and the plane z = 2. 

Solution 1. The restrictions of the functions z = f (x, y) = 2, z = g(x, y) = 4 –  y to 
the circle A of the xy plane of equation x2 + y2 ≤ 4, define a domain normal with 
respect to the xy plane. Indeed, for each (x, y) of the  circle  A, f (x, y) = 2 ≤ z ≤ 
g(x, y) = 4 –  y, and f (x, y) <  g(x, y) in the open circle x2 + y2 < 4. To calculate the 
volume of domain D apply (29.1): 

volD = 
¨ 

A 

(g(x, y) − f (x, y))dxdy  = 
2∫

−2 

⎡ 

⎢⎢⎣ 

√
4−y2∫

− 
√

4−y2 

(2 − y)dx  

⎤ 

⎥⎥⎦dy  

= 
2∫

−2 

⎡ 

⎢⎢⎣(2 − y) 

√
4−y2∫

− 
√

4−y2 

dx  

⎤ 

⎥⎥⎦dy  = 
2∫

−2 

(2 − y)[x] 
√

4−y2 

−
√

4−y2 
dy  

= 
2∫

−2 

(2 − y)2 
√
4 − x2dy  = 2 

2∫

−2 

(2 − y) 
√
4 − x2dy. 

Recall
∫ 2 
−2(2−x) 

√
4−x2dx  = 4π (Sect. 22.10.1). Hence volD = 8π. 

Solution 2. The exercise can be solved in an elementary way (Fig. 29.3). Let us 
consider a cube with the side of length 4 and two parallel sides a, b not lying on the 
same face. Let the plane α pass through a and b. Inscribe a right circular cylinder of 
height 4 in the cube: the bases of the cylinder lie in parallel faces of the cube. The 
plane α cuts the cube into two congruent figures and the cylinder into two congruent
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Fig. 29.3 The line a, 
parallel to the y axis is the 
line common to the plane z 
= 2 and  the  α plane of 
equation z = 4 –  y; the upper 
face of the cube is on the z = 
2 plane, the lower face on the 
xy plane 

figures. The volume of the cube is 4 × 4 × 4 = 16 × 4. The volume of the cylinder 
is 4 × 4 × π = 16π. The volume of the solid D is half of the volume of the cylinder, 
volD = 8π. 

Exercise 29.4 Calculate the double integral 

¨ 

A 

xydxdy  

where A is the triangle with vertices O = (0, 0), B = (0, 1) and C = (1, 0) (Fig. 29.4). 
The domain 

A = {
(x, y) ∈ R2 : a ≤ x ≤ b; p(x) ≤ y ≤ q(x)

}

with (a, b) = (0, 1), p(x) = 0 and q(x) = 1–x, is normal with respect to the x axis. 
Formula (29.2) yields 

I = 
b∫

a 

⎡ 

⎢⎣ 

q(x)∫

p(x) 

f (x, y)dy  

⎤ 

⎥⎦dx  = 
1∫

0 

⎡ 

⎣ 
1−x∫

0 

xydy  

⎤ 

⎦dx .

Fig. 29.4 The domain of the 
plane xy: 0  ≤ x ≤ 1, 
0 ≤ y ≤ 1 –  x 
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Let us start by calculating 

1−x∫

0 

xydy  =
[
xy2 

2

]y=1−x 

y=0 

= 
x(1−x)2 

2
= 

x3−2x2 + x 
2 

. 

Therefore, 

I = 
1∫

0 

x3−2x2 + x 
2 

dx  = 
1 

2

[
x4 

4 
− x3 

3 
+ 

x2 

2

]x=1 

x=0 

= 
1 

24 
. 
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Chapter 30 
Differential Equations 

30.1 Introduction 

We know equations whose solutions are numbers. We studied (see Chap. 22) some  
methods for calculating a function whose the first derivative is known. We now 
present the first elements of a wider problem: to determine an unknown function 
y(x) knowing a relation between y(x) and its first n derivatives, y', y'', …,  y(n), and 
the independent variable x. Any equation where at least one of these derivatives 
intervenes, along with x and y, is called a differential equation. The number n is 
called the order of the differential equation. 

Differential equations are also frequently met in mechanics, in social and 
economic phenomena, in engineering, biology, physics and natural sciences. We will 
outline a short introduction to the topic through examples and some applications. 

30.2 Separable Equations 

Definition 30.1 A solution of a differential equation is a function y that satisfies 
the equation. Integrating or solving a differential equation means to calculate all the 
functions that satisfy the equation. The set of the solutions of a differential equation 
is called the general integral of the equation. 

Examples of differential equations are d3 y 
dx3 −4 dy  dx  + cos2x = 0 and dy  = 

(y − x)dx . The first can be written as y'''– 4y' + cos2x = 0. The first equations 
is of order three, and the second is of order one. 

Exercise 30.1 Examine the problem of finding a curve having tangent line at each 
of its points with slope equal to the double of the abscissa of the point. 

Solution The question can be expressed in terms of a differential equation. Indeed, 
suppose that the curve is the graph of the unknown function y(x); then the required 
condition leads to the equality
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dy  

dx  
= 2x (30.1) 

which is a differential equation of the first order. The Eq. (30.1) has the property that 
the variables x and y are separable since the equation may be rewritten as 

dy  = 2xdx (30.2) 

where y appears only in the left-hand side and x only in the right-hand side; Eq. (30.2) 
is called a separable differential equation and can be solved by the indefinite 
integration of both sides:

∫
dy  =

∫
2xdx  

which implies y + c1 = x2 + c2 and setting c = c2 – c1, we obtain: 

y = x2 + c (30.3) 

where the numbers c1, c2 and c are arbitrary constants. For every c ∈ R a function is 
determined by (30.3) which defines the set of the solutions of the Eq. (30.1). The set 
of functions (30.3) is a family of parabolas having the y axis as the orthogonal axis 
of symmetry (Sect. 21.8): if c ≤ 0 each parabola intersects the x axis at the points of 
abscissas ± 

√
c. 

Exercise 30.2 Examine the problem of finding a curve such that the tangent at each 
of its points has a slope equal to twice the second coordinate of the point. 

Solution This condition can be expressed in terms of the differential equation 

dy  

dx  
= 2y (30.4) 

We can separate the variables: 

dy  

y 
= 2dx  

and calculate the indefinite integrals in the following equality:

∫
dy  

y 
=

∫
2dx  

Hence, ln y = 2x + c and, for every c ∈ R,
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y = e2x+c (30.5) 

The set of functions (30.5) is the general integral of Eq. (30.4) and defines a family 
of exponential curves. 

Exercise 30.3 Solve the differential equation 

y' = 3x2 (30.6) 

Solution Equation (30.6) is a first order equation. Put the equation in the form 

dy  

dx  
= 3x2 

separate the variables 

dy  = 3x2 dx  

and integrate

∫
dy  =

∫
3x2 dx  

Therefore, 

y = x3 + c (30.7) 

Equation (30.7) provides the set of solutions of the differential Eq. (30.6), i. e., its 
general integral. There is a unique solution of (30.6) for each value of the constant c. 

Exercise 30.4 Solve the equation 

dy  

dx  
= 3x2 

√
y (30.8) 

Solution The first-order Eq. (30.8) is separable: indeed, from (30.8) we obtain 

dy  √
y 

= 3x2 dx  

and integration yields

∫
y− 1 

2 dy  =
∫

3x2 dx
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The general solution of Eq. (30.8) is expressed in the implicit form 2y 
1 
2 = x3 + c. 

Exercise 30.5 Solve the equation 

dy  

dx  
+ 2xy  = 0 (30.9) 

Solution The first-order Eq. (30.9) is separable and assumes the form: 

dy  

y 
= −2xdx  

Let’s integrate both sides to obtain the general solution: 

lny  = −x2 + c 

Exercise 30.6 Solve the equation

(
1 + y2

)
y' = 

3 

x 
(30.10) 

Solution The equation may be rewritten:

(
1 + y2

)dy 
dx 

= 
3 

x 

Separate the variables and integrate:

∫ (
1 + y2

)
dy  =

∫
3 

x 
dx 

Then 

y + 
y3 

3 
= 3ln|x | + lnc  = lncx3 

which can be expressed in the form: 

ey+ y
3 

3 = cx3 

which is the implicitly defined general solution of (30.10). 

Exercise 30.7 Solve the equation 

xydy  = (
1 − y2

)
dx
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Solution The equation is separable 

y 

1−y2 
dy = 

dx  

x 

Integrating both sides

∫
y 

1−y2 
dy =

∫
dx  

x 

we get 

− 
1 

2 
ln

||1−y2
|| = lnx  + lnc  

and from the properties of the logarithm (Sect. 17.9), 

1 √
1 − y2 

= cx 

squaring and taking the reciprocals we obtain 

y = ±  
/
1− 

1 

c2x2 

which is the required general solution. 

30.3 Exponential Growth and Decay 

Human populations, bacterial colonies, radioactivity, capital investment projects, 
epidemics are among the natural, social and economic phenomena represented by 
quantities that increase or decrease over time in proportion to their value at a given 
instant. Differential equations are often useful in the study of such phenomena we 
generically call quantities. 

We will mention the quantities that, in their temporal evolution, follow an expo-
nential growth or decrease (decay) model: this means that the rapidity of growth or 
decrease of these quantities is proportional to its value at a given instant. 

Let y(t) be the value at instant t of a quantity that follows the model. Let us assume 
y(t) > 0,  for every  t. As stated above, the rate of change of y(t) is proportional to its 
value at a given instant t, i. e.,
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dy  

dt  
= ky  

where k is a constant called the growth constant if k > 0 and y is said to grow 
exponentially; if  k < 0 then k is called the decay constant and y is said to decay 
exponentially. 

If k > 0 then dy  dt  > 0 , then y is an increasing function of time and the model is 
called a growth model. If  k < 0,  y decreases over time and the model is called a decay 
model. 

Suppose now that at the instant t = 0 the value of the quantity is y0, i. e.,  y(0) = 
y0. In order to know the state of the quantity at any t we solve the problem: 

dy  

dt  
= ky  

at the initial state y(0) = y0. We can separate the variables: 

dy  

y 
= kdx 

Hence, lny = kt + lnc, with c the arbitrary constant to be determined by setting 
the condition y(0) = y0. So  y = cekt and y0 = ce0 = c and, therefore, 

y = y0ekt 

Exercise 30.8 If a quantity follows an exponential growth model the time required 
for doubling its initial value is said doubling time; if a quantity follows an exponential 
decay model, the time required for its initial value to be reduced by half is called the 
half-life. The doubling time and half-life are independent of the initial quantity. In 
fact, in the case of a quantity that follows an exponential growth model, we have: 

y = y0ekt 

with k > 0. The  value of  y at time t1 is 

y1 = y0ekt1 (30.11) 

Let us find the time interval T so that y doubles, i.e., the value of y becomes 2y1 
at time t1 + T: 

2y1 = y0ek(t1+T ) = y1ekt1 ekT  

By (30.11)
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2y1 = y1ekT  

and 2 = ekT . In conclusion, T = 1 k ln2. 
Therefore, it can be seen that the doubling time T is independent of y0 and t1. 

Similarly, if y follows an exponential decay model the half-life time is independent 
of y0 and t1. 

Example 30.1 If we hypothesize that a certain human population grows by 2% per 
year, the doubling time of the population is T = 1 

0.02 ln2 
∼= 34.7 years. 
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A 
Abscissa, 83, 101 

curvilinear abscissa, 459 
Absolute maxima and minima in R2, 491 
Absolute value, 90 

absolute value function, 120 
Algorithms, 257 

Euclid’s algorithm, 258 
Application, 74 
Arccos, 331 
Arcsin, 331 
Asymptote, 314 

horizontal asymptote, 315 
oblique asymptote, 316 
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B 
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Boundary, 429 
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Bundle of planes, 248 

C 
Capitalization factor, 430 
Cartesian product, 40 
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equation of the circumference, 125 
Class 

class Cm, 480 
equipollence classes, 140 
equivalence class, 46 

remainder class, 9, 47 
Closed sphere, 428 
Cofactor, 215 
Commensurable, 98 
Compatible, 85 
Completeness, 96 
Component 

component of the n-tuple, 40 
components of a vector, 145 
scalar components, 145 

Concave figure, 54 
Conditional extrema, 493 
Cone, 470 
Conjecture, 35 
Connected, 429 
Continuously differentiable, 480 
Continuous plane curve, 453 
Convex figure, 54 
Coordinate system of the space, 146 
Correspondence, 40 
Cosine, 130 
Countable set, 78 
Curve, 106 

closed curve, 455 
Jordan curve, 455 
length of curve, 456 
level curves, 434 
regular curve, 453 
skew curve, 453 
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Derivative, 336 
derivative of the second order, 348 
directional derivative, 501 
partial derivative, 444 

Difference, 4 
Difference quotient, 336 
Differentiable, 336 
Differential, 353 
Dihedral, 65 
Dimension, 186 
Discontinuity, 327 
Distance, 103, 147 
Domain, 507 

normal w.r. to an axis, 410 
normal w.r. to a plane, 511 

Domain of a function, 74 
Doubling time, 524 

E 
Equilateral hyperbola, 274 
Equivalence, 45 
Euclidean division, 8 
Euler-Venn diagrams, 3 
Explicit equation, 111 
Extrema of a real-valued function, 104, 357 

F 
Factor 

differential, 408 
finite, 408 

Field, 177 
Function, 73 
Function 

circular functions, 125 
composite function, 79 
concave function, 377 
constant function, 107 
continuous function, 321 
convex function, 377 
determinant function, 209 
elementary functions, 269 
even function, 276 
exponential function, 281 
identical function, 108 
implicit function, 462 
injective function, 75 
integral function, 395 
invertible function, 77 
logarithmic function, 284 
monotonic function, 269 
odd function, 276 

periodic functions, 129 
power function, 271 
power function with non-integer real 
exponent, 280 

power function with rational exponent, 
278 

real-valued function, 104 
regular function, 292 
root function, 277 
surjective function, 74 
tangent function, 131 

G 
Gauss elimination, 263 
Gradient, 503 
Graph, 74 
Greatest common divisor, 258 
Growth model, 524 

H 
Half-life, 524 
Hessian, 488 
Homogeneous magnitudes, 18 
Homogeneous polynomial, 471 

I 
Image, 74 
Imaginary unit, 175 
Implication, 20 
Improperly parallel, 245 
Inclusion, 3 
Incommensurable, 98 
Incompatible, 85 
Increment, 336 
Indeterminate forms, 304 
Induction principle, 31 
Inequalities, 87 
Inequations, 87 
Infimum, 97 
Infinitesimal, 349 

principal infinitesimal, 350 
Infinity, 351 

points at infinity, 291 
principal infinity, 351 

Instructions, 257 
Integrable, 390 
Integral 

definite integral, 390 
double integral, 511 
general integral, 519 
improper integral, 415
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indefinite integral, 401 
Integrand, 390 
Interior, 428 
Intersection, 3 
Interval, 89, 427 

degenerate interval, 89 
length of an interval, 89 

Isomorphism, 187 
n-dimensional, 427 

J 
Jordan measurable set, 394 

L 
Lagrange’s multiplier method, 494 
Limit, 291 

right (left) limit, 309 
Line 

secant line, 336 
tangent line, 337 

Linear combination 
linear combination of the equations, 164 
linear combination of the n-tuples, 137 

Linear equation, 113, 161 
Linearly dependent system, 180 
Linearly independent system, 180 
Linear span, 185 

M 
MacLaurin expansion of order n, 375 
Magnitude, 140 
Matrix, 195 

complementary matrix, 214 
identity matrix, 204 
invertible matrix, 219 
transpose matrix, 219 
triangular matrix, 204 

Maximum, 96 
absolute maximum, 357 
absolute maximum point, 357 

Measure of the segment, 82 
Minimum, 96 

absolute minimum, 357 
absolute minimum point, 357 

Minor, 214 
bordered minor, 221 

Modulus, 140 

N 
Napier’s number, 283 

N-coordinate real space, 427 
Neighborhood, 89 

circular neighborhood, 426 
neighborhood of infinity in R2, 426 
rectangular neighborhood, 426 
spherical neighborhood, 426 

Numbers 
complex numbers, 175 
direction numbers, 114 
extended set of real numbers, 93 
integer numbers, 13 
irrational numbers, 17 
natural numbers, 7 
prime number, 11 
rational number, 14 
real numbers, 17 

O 
Open circle, 426 
Open set, 428 
Open sphere, 428 
Operation 

elementary operations, 167 
elementary row operation, 200 
external binary operation, 177 
internal binary operation, 176 

Optimization, 357 
Order 

strict order, 43 
total order, 44 
weak order, 43 

Ordinate, 101 
Orthogonal projection, 63 

P 
Parabola, 272 
Parametric equations of the line, 114 
Partition, 47 
Plane, 50 

coordinate plane, 101 
equation of the plane, 156 
tangent plane, 481 

Pluri-cylinder, 510 
Pluri-interval, 508 
Point 

accumulation point, 93 
adherent point, 429 
closure point, 429 
critical point, 486 
point of inflection, 379 
relative maximum (minimum) point, 
358
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saddle point, 487 
Polygon rule, 142 
Positively (negatively) divergent, 292 
Postulates, 50 

postulate of Eudoxus-Archimedes, 18 
Preference, 45 
Primitive, 397 
Properly parallel, 245 

Q 
Quadratic approximation, 374 

R 
Range, 74 
Rank, 200 
Relation, 40 

binary relation, 41 
congruence relation, 57 

Restriction, 80 
Riemann sum, 389 
Rule 

chain rule, 341 
Cramer’s rule, 227 
definite integration rule by parts, 409 
de l’Hospital’s rule, 367 
implicit differentiation rule, 464 
indefinite integration rule by parts, 408 
product rule, 340 
quotient rule, 341 
sum rule, 339 

S 
Saddle paraboloid, 483 
Scalar product, 151 
Separable differential equation, 520 
Set, 2 

bounded, 392 
equipotent sets, 77 
separate sets, 99 

Sine, 130 
Size of a decomposition, 389 
Sphere, 149 

closed n-dimensional, 428 
open n-dimensional, 428 

Submatrix, 214 
Subspace, 185 
Substitution, 170 
Supremum, 96 
Surface 

algebraic surface, 467 
Symmetries, 68 

System, 40 
homogeneous linear system, 163 
reduced system, 167 
system of linear equations, 163 
triangular system, 264 

T 
Tangent line 

tangent line to a regular curve, 454 
Taylor’s expansion of ordern, 375 
Taylor’s formula, 374 
Theorem 

Binet’s theorem, 218 
Bolzano’s theorem, 324 
Cantor’s theorem, 325, 361 
Darboux’s theorem, 324 
Dini’s theorem, 463 
Fermat’s theorem, 359 
first theorem of comparison, 306 
inverse theorem, 28 
Kronecker’s theorem, 224 
Lagrange’s theorem, 361 
Leibniz-Newton’s theorem, 398 
permanence of the sign, 305 
Pythagorean theorem, 25 
Rolle’s theorem, 360 
Rouché-Capelli’s theorem, 203 
Second theorem of comparison, 306 
Thales’ theorem, 70 
theorem of the limit of the composite 
function, 308 

Torricelli-Barrow’s theorem, 396 
uniqueness of the limit, 299 
Weierstrass’ theorem, 326, 442 

Total differential, 479 
Transformation, 74 

U 
Uniformly continuous, 325 
Union, 3 
Unit vectors, 149 

V 
Vector, 137 

addition of free vectors, 141 
column vectors, 196 
free vector, 141 
geometric applied vector, 140 
numeric vector, 136 
projection vectors, 147 
row vectors, 195
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unit vectors, 147 
vector components, 145 

vector space, 178
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