

[image:]

Java For Beginners: Get From Zero to Object-Oriented Programming

by Lucas Barzan

Contents

Contents

Introduction

Who is this book for

Who should back away from this book

How to Learn Java

What if something goes wrong?

Chapter 0: Java?

What is Java?

Why Learn Java?

How Java Works

Chapter 1: Getting Started

Java Development Kit

IntelliJ IDEA

What IDE should I download?

Your First Program

What is Camel Case?

The Main Method

Curly braces {}

Indentation

Double quotes " "

Semicolon at the end ;

Chapter 2: Variables and Data Types

Variable Declaration

Primitive Data Types

int

double

boolean

char

Other primitive data types

byte

short

long

float

Comments

Workout Set #1

Answers

Chapter 3: Operators and Math

Arithmetic Operators

Addition: +

Subtraction: -

Multiplication: *

Division: /

Modulus: %

Increment: ++

Decrement: --

Relational Operators

Equal to: ==

Not equal to: !=

Greater than: >

Less than: <

Greater than or equal to: >=

Less than or equal to: <=

Logical Operators

And: &&

Or: ||

Not: !

Precedence

Other assignment Operators

*=

/=

%=

Intro to the Math class

Potentiation

Square root

Workout Set #2

Answers

Chapter 4: Strings and Getting Input

Strings

Input

Workout Set #3

Answers

Chapter 5: Conditionals and Control Flow

If - Else

Ternary Conditional

While Loop

For Loop

Controlling your Loops

Workout Set #4

Answers

Switch

Variable Scope

Workout Set #5

Answers

Chapter 6: Intro to Object-Oriented Java

Classes x Objects

Creating a class

Creating and using an object

Methods

Methods that return something

Objects are accessed through references

Transfer() method

Attributes again

Workout Set #6 - Part One

Answers

Workout Set #6 - Part Two

Answers

Workout Set #6 - Part Three

Answers

Chapter 7: Arrays

Primitive Data Type Array

Object arrays

Iterate through an array

Workout Set #7

Answers

Chapter 8: Access Modifiers and Class Attributes

Controlling access

Encapsulation

Getters and Setters

Constructors

Default constructor

Constructors with arguments

Why do we need a constructor?

Multiple Constructors

Class attributes

Workout Set #8

Answers

Chapter 9: Inheritance and Polymorphism

Inheritance

Super and subclass

Protected

Rewriting a method

Polymorfism

Workout Set #9

Answers

Introduction

I have worked really hard to make this book for you because I know how it can be difficult to learn programming, especially when you’re starting out. So I want to teach you in the way I’ve learned, which is by doing.

Who is this book for

This book is for everyone who wants to learn Java and knows nothing or little about programming. If you want to be a programmer and you want to start by learning Java, this book is your first step. If you want to develop Android apps, this book is your first step. If you want to learn something new, this book is your first step.

Who should back away from this book

First of all, this book is for people who are willing to learn something new. There will be many times in which you’ll feel confused or overwhelmed, but you have to able to handle that frustration if you want to achieve your final goal. Your WHY has to be strong enough so that you won’t give up in the middle of this book.

Also, I don’t recommend this book if you’re looking for an advanced guide that will cover absolutely everything about the Java programming language. I will teach you the essential stuff about Java to get you up and running in your path to become a programmer.

How to Learn Java

Some books only give you the theory and and don’t even bother to make you practice. I think that’s a terrible
 way to teach (programming, at least). You should get hands-on experience as soon as possible and because of that you’ll often be writing and running code in your IDE throughout this book. So I recommend you to be next to a computer. Think of it as a course, not a romance to read on your bed or on the beach.

Practicing should be taken seriously. It’s the one and only way to be a great programmer and I can’t guarantee that you’ll learn anything if you don’t do the exercises. I mean it. There’s no shortcut.

The exercise sections are called Workout Sets
 because our intelligence is like a muscle: the more we use it, the more we grow it.

By the end of this book, you’ll have done 70 exercises.

Although I provide the answers to the exercises in most cases, just thinking about an exercise and jumping to the answer is not practicing. And if you do that, you’ll just be lying to yourself. So, if you’ve downloaded this book, you have to make a commitment to yourself. Read. Think. Do the exercises. Repeat.

Trust the process and great results will come!

What if something goes wrong?

It’s very common to make mistakes when programming, especially in the beginning. So, if you have any questions that are not covered in this book, you can follow these steps to solve your problem:

●

 First, search for your problem. I can almost guarantee you that someone else has been through the same situation. If you get an error, search for that error. If you want to know how to implement something, search for that. You’re probably going to find some answers on

StackOverflow

 , which is the biggest Q&A website for developers.

●

 If you haven’t found
 any
 answer – although that’s very unlikely –, you can create a new question on

StackOverflow

 and wait until someone answers it (it’s the internet, it won’t take much time to happen). Follow the website’s instructions to post your question and, first of all, be sure that there isn’t any similar questions that can help you, otherwise yours will be removed as a duplicate.

Chapter 0: Java?

What is Java?

According to its official website, “Java is a programming language and computing platform first released by Sun Microsystems in 1995. There are lots of applications and websites that will not work unless you have Java installed, and more are created every day. Java is fast, secure, and reliable. From laptops to datacenters, game consoles to scientific supercomputers, cell phones to the Internet, Java is everywhere!”.

Java is a general-purpose language, which means it is used to build almost anything (i.e. it wasn’t created to solve only one type of coding problem).

And before I forget, Java has nothing to do with Javascript, except for the similar name and the fact that they are both famous programming languages.

I will not spam you with pages of Java’s history because that’s out of the scope of this book. All you need to know is that Java is famous and has been on the market for a long time, so there isn’t any plans for its death. Which brings us to the next section...

Why Learn Java?

Although Java is not the most beginner-friendly language out there, it offers other benefits, such as:

- Programs written in Java are easy to maintain;

- Java has a huge community and you’ll never be alone. If you get an error, it’s very likely that it happened to other people as well;

- People who know how to program in Java have access to great career opportunities. Many tech giants such as Google or Amazon also use Java to develop the backend of their websites, and because it has pretty good performance, a lot of startups who reach the scaling point would integrate their apps with Java to power features that need to have good performance;

- Java isn’t going anywhere, unlike other unestablished programming languages.

How Java Works

1. You write the code

First, we write code in Java. It's called our source code. Here's an example:

public
 class
 myFirstClass {

public
 static
 void
 main(
 String
 []
 args)
 {

 System
 .
 out
 .
 println(
 "Hello, World!"
);

 }

}

Don't worry! You don't understand anything now and it might look very confusing, I know.

If I were to give me any advice when I started programming, I'd say "Get used to not knowing what everything means. It's completely OK. It just means you have things to learn!".

2. You compile it

Then there's javaC, which is our Java Compiler. It checks for errors and won't let you compile until it's satisfied that everything will run correctly.

The compiler creates a new document, coded into Java bytecode. Any device capable of running Java will be able to interpret/translate this file into something it can run. The compiled bytecode is platform-independent. And that's where JVM comes in.

3. The JVM runs it

The JVM (Java Virtual Machine) interprets the bytecode that was created and gives instructions that the device will understand. Each OS (whether it's Windows, MacOS, Linux or even a mobile platform) can have its own JVM in order to run Java programs.

No matter in what OS the bytecode gets created, it can run on any device that has a JVM. That's what is called "Write Once, Run Anywhere"
 .

Chapter 1: Getting Started

Java Development Kit

JVM
 = Java Virtual Machine.

JRE
 = Java Runtime Environment, which contains everything you need in order to execute
 Java applications.

JDK
 = Java Development Kit, which contains everything you need in order to develop
 Java applications. That’s what we need to download.

WARNING:
 Unless you have a secret fetish that involves downloading and preparing stuff, things will be a little bit boring for now. But that's something we just have to do once. Then you'll only need to do something like this again if you're updating these tools, which doesn't happen all the time.

By the time I'm writing this, the newest JDK version is JDK 9. Do a little research and if there's a newer and also stable version, download it.

Let's start by googling "JDK 9"
 and clicking on the first result
 . To download, you have to Accept License Agreement
 and then you can select a file that fits your OS (Windows, MacOS or Linux).

[image:]

It might take a while for the download to finish. Then, install it. Leave all the settings as default, unless you really know what you're doing.

IntelliJ IDEA

Doctors have an environment such as a hospital or clinic, that provides them with a bunch of tools and things that will help them do their work. A doctor might be able to examine a patient in that person's house, but (s)he can't do a surgery without a specific environment.

Just like doctors need a surgery room
 , developers need an IDE
 , which stands for Integrated Development Environment
 . According to Wikipedia, "an IDE is a software application that provides comprehensive facilities to computer programmers for software development. An IDE normally consists of a source code editor, build automation tools and a debugger. Most modern IDEs have intelligent code completion."

What IDE should I download?

I'll use IntelliJ IDEA
 in this book, but you can use any IDE. It can be NetBeans, Eclipse, whatever. Actually, some might argue that these are better IDEs for some reason.

But as a beginner, that won't make much of a difference, so that's not the most important thing here
 and you shouldn't spend more than a few seconds to decide.

If you'll download IntelliJ, google "IntelliJ IDEA"
 , click on the first link, and follow the same steps to download the Community Edition (for free) that is compatible with your OS.

[image:]

Your First Program

It’s been a tradition in the programming world to do a “Hello World” program for the first time you’re using some language or tool. Some might even say you’ll be cursed otherwise. Anyway, better safe than sorry. A “Hello World” program is a program that will show a message on the screen – “Hello World”.

Open your IDE. Click on Create New Project
 .

[image:]

Make sure Java
 is selected on the left tab. Then select the Project SDK.

If no Project SDK is available, click on New...
 and select the jdk-9 folder. It probably has this path (if you're using Windows): C:\Program Files\Java\jdk-9. If you have any trouble doing that, don't worry. You can always google it.

Then click Next
 .

[image:]

Click Next
 . (We're gonna build the program from scratch – no shortcuts
 templates for now!)[image:]

In Project Name, type My First Program
 . You can leave the Project Location as it is. Then click Finish
 .

[image:]

The IDE now has handled everything for us. A folder was created on your computer to store the files you’re going to create for you program.

Do you see that little triangle next to My First Program
 in the next image? If you click on it, it'll show other things that are a part of your project: .idea
 , src
 and My First Program.iml
 . That’s how you can navigate through your project structure.

[image:]

Now right-click on src
 , go to New
 and then Java Class
 .

What we're doing is to create a new Java Class inside our project. Later we'll understand what that means.

[image:]

Let's give a name to our class. Type MyFirstClass
 and hit OK
 .

Classes names use upper
 camel case
 .

What is Camel Case?

Camel Case has this name because it is similar to the humps of a camel. It's a very common convention between various programming languages.

[image: File:CamelCase.svg]

It is the practice of writing compound words or phrases, where each word is capitalized
 and merged without
 spaces. Examples:

●

 ClassesStartWithAnUppercaseLetter

●

 MyClass

●

 CodenificIsGreat

●

 LucasBarzan

Lower camel case:
 the first letter of the entire word is lowercase, but subsequent first letters are uppercase. Examples:

●

 functionsAndVariablesDoNot

●

 variableName

●

 age

●

 dateOfBirth

We now have a brand-new class just waiting to be coded. Note that we’ve just created a file MyFirstClass
 that ends with .java
 . It's a Java file.

[image:]

The Main Method

Go ahead and make your code look like this:

public
 class
 MyFirstClass
 {

public
 static
 void
 main(
 String
 []
 args)
 {

}

}

OK, you've just copied the main method
 into your program. I'll explain it soon in this chapter.

You're probably wondering: "Do I have to write these weird words EVERY TIME I want to create a new program?!". Well, they do have to be there. But you don't have to write them all by yourself. Let the IDE do that for you.

Just write the initial letters of the main method declaration (psvm
), hit Enter, and the magic will happen.

[image:]

Now you get to be lazy again! ;)

Let's run our program. Right-click on the tab (MyFirstClass.java as you can see in the last image) and select Run 'MyFirstClass.main()'
 .

After a few seconds, a window will pop up. When you see a message like that (Process finished with exit code 0
) it means the program ran and finished. Apparently, nothing happened. OF COURSE NOTHING HAPPENED. We only created a class and put the main method inside it. There's no instruction for the computer to do anything else.

We have to ask for the computer to do things for us, such as showing messages, doing calculations, creating and modifying files, etc.

Let's start printing some stuff. High priority in our To-do list: get rid of the Hello World curse. We have to print it, otherwise we will never learn Java LOL.

There are some commands that can print a message on the screen. System.out.print()
 and System.out.println()
 are the most used ones. The difference between them is that System.out.println() jumps to a new line after printing the message
 . Since we're going to print out only one line of text, there's no problem in using System.out.print()
 . But in the next chapters, we're going to use System.out.println()
 .

Go ahead and type System.out.print("Hello, World!");
 inside the main method (see image below).

[image:]

Now the file does three things:

1.
 It declares a class
 called MyFirstClass:

The reserved word public
 indicates that this class/file is public, i.e. it can be invoked from any point in the program.

The word class
 introduces a class definition in Java, i.e. defines that the code between the curly braces will be a class. Then we have the class name.

2.
 It defines the main method
 :

-The reserved word void
 is our return type in this case; it indicates that this method will perform a task (print the line of text on the screen, in this case) but will NOT return any information when finished.

-The term String[] args
 inside the parentheses are arguments passed to this program and are required in main
 , although we will not use it here.

3.
 The main
 method calls System.out.print
 to output some text.

In Java, and in all object-oriented
 programming languages, a class
 defines an object
 . An object is a self-contained item that interacts with other objects. In Android, such object would include elements in the UI, a network connection, some location data, and so on.

Each Java program must define a method called main
 in at least one class. It is the entry point, where the program starts executing. In the example above the main
 method has just one line of code, a call to System.out.print
 to output “Hello, World!”.

print()
 is a method that belongs to the PrintStream class and is included as part of the System class.

Here are some things I want you to notice about that code:

Curly braces {}

They are used to indicate the beginning and the ending of a class/method definition body. Every time you open a curly brace {, you have to close it }, otherwise you get a compilation error.

Indentation

Do you see that whitespace before System.out
 ... and also before public static void main...
 ? It's called indentation
 . In Java, your program will run even if you don't indent correctly. For example, the code below will produce the exact same output.

[image:]

So... why don't we write it like that to save lines? Because it's a TERRIBLE
 thing to do!!! (Yes, I AM screaming!) Not only should
 you indent your code, but you have to
 do it. I mean it.

Indentation makes your code a lot more readable
 (for you and for others) and, consequently, facilitates the maintenance.

The IDE helps you automatically with that, but if you ever need to put that whitespace, hit Tab
 on your keyboard.

Double quotes " "

That message was between double quotes, which means it's a String
 . We'll learn about Strings in Chapter 4.

Semicolon at the end ;

At the end of every line, we have to put a semicolon (except for lines that contain an opening or closing bracket). Java statements end with a semicolon and our code won't even compile if that kind of error (missing semicolon) is found.

Pay attention to every detail and try to find patterns. That's a very valuable skill to have as a programmer!

Let's run it!

Right-click on the MyFirstClass.java tab
 that is opened and select Run 'MyFirstClass.main()'
 like we did earlier. On Windows, the shortcut to execute the last executed file is Ctrl+Shift+F10
 .

[image:]

You've just finished your first Java program. Congratulations!

For now on, I'm gonna assume that you know how to do all this (open your IDE, start a new project, create a class and write the main method).

Chapter 2: Variables and Data Types

Consider the following program:

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

System
 .
 out
 .
 println("
 Score
 =
 "
 +
 10
);

System
 .
 out
 .
 println("
 Good
 job!");

}

}

This program prints out “Score = 10” and then “Good job!”. But by the end of the third line, the computer doesn’t even remember that score that was printed. Kind of like when we don’t want to listen to someone and we avoid saving any information in our brains, we just ignore it. But we could store that score in our program by using something called a variable
 . Think of it as a box in which you can put some data and then come back later to retrieve it.

Since data comes in different forms, a variable needs to be defined with a type
 , which tells Java what
 is being stored. Some of Java’s primitive data types
 include int
 (for integer), float
 , double
 (for double precision floating point number), and boolean
 (for a true/false value).

Open your IDE and create a new class called Variables inside the src
 folder. Complete the code with the main method (challenge: don’t use the trick I taught you in the previous lesson and try to remember as much as you can). You can also delete MyFirstClass if you want to.

This is what it should look like:

[image:]

Copy and paste the following snippet into the main method:

int
 i;

i =
 0
 ;

System
 .
 out
 .
 println(
 i);

To run it, right-click on the Variables.java tab and select Run ‘Variables.main()’. After you’ve done it once, you can quickly do it through that beautiful and green play button:

[image:]

You can also select a class that was executed recently, like MyFirstClass:

[image:]

After running Variables.java, this window will show up:

[image:]

That program somehow printed the number 0. Let’s see how that happened. Here’s how the full code should look like:

public
 class
 Variables
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 int
 i;

 i =
 0
 ;

 System
 .
 out
 .
 println(
 i);

 }

}

●

 There’s our
 class
 header

●

 There’s the
 main method

●

 There are 3 statements inside the main method. The first one declares a variable (i.e. creates a variable) of type
 int
 (integer) named
 i

●

 The second one
 initializes
 that variable by storing the value of
 0
 inside it

●

 The third one
 prints
 out the value that is stored in the variable
 i
 . Notice that we’re not printing out the letter
 “i”
 , but the value of the
 variable
 i
 .

Important:
 You have to declare a variable before
 using it! Therefore, the following code is WRONG
 :

// WRONG!

public
 class
 Variables
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 System
 .
 out
 .
 println(
 i);

 int
 i;

 i =
 0
 ;

 }

}

If you make that mistake, your IDE will warn you:

[image:]

Cannot resolve symbol ‘i’
 means the IDE couldn’t find anything about ‘i’. It’s not declared anywhere before the System.out.println()
 call.

Human:
 Hey, can you print out a picture of Hannah?

Computer (thinking):
 (Who is Hannah? I’ve never heard about her. How could I print a picture of Hannah? Stupid human…)

Computer says:
 CANNOT RESOLVE SYMBOL ‘HANNAH’

Just kidding! It’s OK to make mistakes.
 Actually, you’ll make PLENTY of them throughout your learning path and career.

Variable Declaration

So here’s a generalization about variables declaration:

[image:]

That’s how we did it in our program. But we can join declaration and initialization in one single statement, which is more practical, like this:

[image:]

Values change. And you can change the values that are inside your variables. Replace your current code with the following one and then run it to see what happens:

public
 class
 Variables
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 int
 i =
 10
 ;

 System
 .
 out
 .
 println(
 i);

 i =
 i +
 5
 ;

 System
 .
 out
 .
 println(
 i);

 }

}

I’m waiting…

This is the output:

10

15

First, I declared a variable called i
 that is an integer, assign it the value of 10 and then print it. Then, I add 5 to i
 , which results in 15, which is the second value that gets printed.

Instead of i = i + 5; you can write i += 5;

You can also subtract the value of a variable:

public
 class
 Variables
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 int
 i =
 10
 ;

 System
 .
 out
 .
 println(
 i);

 i =
 i -
 4
 ;

 System
 .
 out
 .
 println(
 i);

 }

}

The output of the code above is

10

6

Again, instead of i = i - 4; you can write i -= 4;

Sometimes you want to do more than adding and subtracting. Sometimes you want to change the value of a variable completely.

public
 class
 Variables
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 int
 i =
 10
 ;

 System
 .
 out
 .
 println(
 i);
 // prints 10

 i +=
 5
 ;

 i =
 7
 ;

 System
 .
 out
 .
 println(
 i);
 // prints 7

 }

}

On the sixth line, I assigned a new value of 7 to the variable i
 . All the previous values are dismissed. Therefore, this is the output:

10

7

Here’s what happened line-by-line.

Line 3:
 we create a new variable of type int called i and assign it the value of 10.

Line 4:
 we print the value of i, which is 10.

Line 5:
 we add 5 to i. Now i holds 15 as its value.

Line 6:
 we assign the value of 7 to i. Now i holds 7 as its value.

Line 7:
 we print the value of i, which is now 7.

We can even combine variables, which is actually a very common thing to do, like everything else we’ve been doing so far:

public
 class
 Variables
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 int
 a =
 20
 ;

 int
 b =
 2
 ;

 int
 c =
 3
 ;

 int
 x =
 a +
 b +
 c;

 System
 .
 out
 .
 println(
 x);

 }

}

System.out.println(x)
 does not print the letter x; it prints the value that is stored inside the variable
 x. Its value is equal to a + b + c
 which is equal to 20 + 2 + 3 = 25
 .

To print the letter
 x, we would do System.out.println(“x”)
 .

Primitive Data Types

We’ve created variables of type int
 earlier in this chapter. But, as I said, there are other types, which are called primitive data types
 , a data type provided by the programming language as a basic building block. They are not some kind of add-on, but rather a simple component of the language.

Let’s see a little bit of Java’s primitive data types.

int

They have a minimum value of -231
 and a maximum value of 231
 - 1. That’s a lot!

Int variables can be used to store your age, a game score and the number of times you were stupid (if it’s less than 231
 -1 LOL
), for example.

double

It can be used to store larger integers
 or more precise floating-point numbers
 (which range from approximately 4.94-324
 to 1.80308
) when compared to other data types. It’s accurate to 14 or 15 significant digits.

In other words, double is the most used type to store real numbers
 but it can also store integers.

// Examples

double
 bigNumber =
 97502250450954097967129782.0
 ;

double
 smallNumber =
 1500;

According to Oracle’s documentation, this data type should never be used for things like currency.

Being able to store larger and more precise values is like having a bigger and better box which, consequently, demands more [memory] space.

boolean

The boolean
 data type has only two possible values: true
 and false
 . Use this data type for simple flags that track true/false conditions. This data type represents one bit of information, but its “size” isn’t something that’s precisely defined.

// Examples

boolean
 isOn =
 true
 ;

boolean
 hasWhippedCream =
 false;

char

They are used to store a single character
 . Unlike Strings (that require double quotes) char
 variables require you to use single quotes.

// Examples

char
 firstLetter =
 'A'
 ;

char
 lastLetter =
 'Z'
 ;

char
 digit =
 '0'
 ;

char
 num =
 '9';

Other primitive data types

As a beginner, not everything has the same level of importance. For now you’ll be well served by variables of type int, double, boolean, char
 (and Strings - in Chapter 4). But you must know that there are other data types to satisfy different needs that programmers may have.

byte

It has a minimum value of -128 and a maximum value of 127 (inclusive). The byte
 data type can be useful for saving memory where it’s necessary.

// Examples

byte
 x =
 -
 128
 ;

byte
 y =
 127;

short

It has a minimum value of -32,768 and a maximum value of 32,767 (inclusive). As with byte, the same guidelines apply: you can use a short
 to save memory.

// Examples

short
 n =
 -
 32768
 ;

short
 p =
 32767;

long

It has a minimum value of -263
 and a maximum value of 263
 -1. Use this data type when you need a range of values wider than those provided by int.

float

It’s used to represent floating-point numbers
 such as 3.14159, 25.0 and 0.0075. The value should have a f
 at the end, indicating that it is a float. Otherwise, it’ll be considered a double.

// Example

float
 n =
 1.5f;

Here’s how you can get an error if you don’t put the f
 at the end of a number that’s going to be stored in a float variable:

[image:]

This data type should never be used for really precise values, such as currency. For that, you will need to use the java.math.BigDecimal
 class instead.

Comments

Imagine you finished writing a big and complex program today. Of course tomorrow you will still remember what each variable stores and what each part of the program does. But will you remember it a month from now? A year from now? You probably won’t, especially if you don’t edit the code in the meanwhile.

There’s another situation. Most of the times, you won’t write code to yourself: someone else will read it and maybe even complement it. Unfortunately, other programmers can’t read your thoughts (we’re not there yet). So, what do we do? We comment our code.

public
 class
 Variables
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 int
 a =
 20
 ;
 // Creates a variable called a

 int
 b =
 2
 ;
 // Creates a variable called b

 int
 c =
 3
 ;
 // Creates a variable called c

 int
 x =
 a +
 b +
 c;
 // Calculates the sum of variables a, b and c

 System
 .
 out
 .
 println(
 x);
 // Prints out the sum

 }

}

In the code above, you can see examples of single line comments
 that start with //
 . The compiler ignores everything from // to the end of the line, so you can write whatever you want and it will not interfere. This type of comment comes in handy when you want to explain what a statement does.

public
 class
 Variables
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

/* I still want to implement a function that

calculates the sum of any set of variables */

 int
 a =
 20
 ;

 int
 b =
 2
 ;

 int
 c =
 3
 ;

 int
 x =
 a +
 b +
 c;

 System
 .
 out
 .
 println(
 x);

 }

}

In the code above, you can see an example of a multiple line comment
 that starts with /*
 and ends with */
 . The compiler ignores everything from /* to */. They come in handy when you want to make a bigger comment that wouldn’t fit in a single line.

Workout Set #1

Write down your answers in a piece of paper to check them in the Answers page.

1)
 What primitive data type is similar to a light switch?

2)
 True or False: "Integer variables can only store positive numbers"

3)
 "All primitive data types demand the same memory space"

4)
 Which variable declarations contain some kind of error?

a
 .
 int
 =
 1;

b
 .
 double
 bigNumber =
 3.402823;

c
 .
 Int
 myNumber =
 10;

d
 .
 String
 name =
 'Lucas';

e
 .
 float
 pi =
 3.14159f;

f
 .
 int
 age =
 5

g
 .
 boolean
 hasWhippedCream =
 true;

h
 .
 double
 bigNumber =
 523154137481728.0;

i
 .
 char
 letter =
 'C';

5)
 Write a program that contains two different Integer variables. Assign them different numbers and then print out the sum.

Answers

1)
 Boolean

2)
 False

3)
 False

4)
 a, c, d, f

5)

// your class can have a different name, depending on the name of your file

public class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 a,
 b;

a =
 1
 ;
 // it could be any number

b =
 2
 ;
 // same here

System
 .
 out
 .
 println(
 a +
 b);

}

}

OR

public class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 a = 1
 ;

int b =
 2
 ;

System
 .
 out
 .
 println(
 a +
 b);

}

}

Chapter 3: Operators and Math

There are a lot more operations other than adding and subtracting and that's what we're going to explore in this chapter.

Arithmetic Operators

Addition: +

int
 a,
 b,
 c;
 // That's how you can declare multiple variables of the same type

a =
 3;

b =
 4;

c =
 a +
 b;

System
 .
 out
 .
 println(
 c);
 // 7

System
 .
 out
 .
 println(
 a +
 c);
 // 10

System
 .
 out
 .
 println(
 15
 +
 10
);
 // 25

Subtraction: -

int
 a,
 b,
 c;

a =
 10;

b =
 3;

c =
 a -
 b;

System
 .
 out
 .
 println(
 c);
 // 7

System
 .
 out
 .
 println(
 a -
 c);
 // 3

System
 .
 out
 .
 println(
 27
 -
 17
);
 // 10

Multiplication: *

int
 a,
 b,
 c;

a =
 5;

b =
 3;

c =
 a *
 b;

System
 .
 out
 .
 println(
 c); // 15

System
 .
 out
 .
 println(
 a * a); // 25

System
 .
 out
 .
 println(
 2 * 7); // 14

For the result to be a double, at least one of the numbers must be double. Therefore, all the expressions below result in 10.0.

●

 2.0 * 5

●

 2 * 5.0

●

 2.0 * 5.0

Do not confuse with float, which has an f
 at the end (see Chapter 2). This rule is applied to the other operations as well.

Division: /

System
 .
 out
 .
 println(
 10 / 3); // 3

System
 .
 out
 .
 println(
 10 / 3.0); // 3.3333333333333335

System
 .
 out
 .
 println(
 10.0 / 3); // 3.3333333333333335

System
 .
 out
 .
 println(
 10.0 / 3.0); // 3.3333333333333335

Again! For the result to be a double, at least one of the numbers must be double. Otherwise, an operation like 10 / 3 will only return the integer part of the result.

Modulus: %

% is known as the modulus or remainder operator, and returns the remainder of two numbers. For instance 10 % 3 is 1 because 10 divided by 3 leaves a remainder of 1. You can use % just as you might use +, -, * and /.

int
 i,
 j;

i =
 6
 ;

j =
 4
 ;

System
 .
 out
 .
 println(
 i %
 j);
 // 2

System
 .
 out
 .
 println(
 6.0
 %
 4.0
);
 // 2.0

Increment: ++

Instead of writing…

i =
 i +
 1;

...or even…

i +=
 1;

…You can write…

i++;

That’s what the increment
 operator does: adding 1 to the number stored in a variable.

Decrement: --

This operator does the opposite.

Instead of writing…

i =
 i -
 1;

...or even…

i -=
 1;

…You can write…

i--;

That’s what the decrement
 operator does: subtracting 1 from the number stored in a variable.

Relational Operators

Relational Operators are used to compare data types that have a defined ordering, like numbers (since numbers are either smaller or larger than other
 numbers).

Equal to: ==

Checks if the values of two operands are equal or not, if yes then condition becomes true.

System
 .
 out
 .
 println(
 1
 ==
 1
)
 // true

System
 .
 out
 .
 println(
 3
 ==
 0
)
 // false

Attention!
 The equality operator == is different from the assignment operator =.

Not equal to: !=

Checks if the values of two operands are equal or not, if values are not equal then condition becomes true.

System
 .
 out
 .
 println(
 3
 !=
 1
)
 // true

System
 .
 out
 .
 println(
 10
 !=
 10
)
 // false

Greater than: >

Checks if the value of left operand is greater than the value of right operand, if yes then condition becomes true.

System
 .
 out
 .
 println(
 3
 >
 1
)
 // true

System
 .
 out
 .
 println(
 10
 >
 10
)
 // false

System
 .
 out
 .
 println(
 1
 >
 10
)
 // false

Less than: <

Checks if the value of left operand is less than the value of right operand, if yes then condition becomes true.

System
 .
 out
 .
 println(
 1 < 40
)
 // true

System
 .
 out
 .
 println(
 12 < 6
)
 // false

System
 .
 out
 .
 println(
 1
 <
 1
)
 // false

Greater than or equal to: >=

Checks if the value of left operand is greater than or
 equal to the value of right operand, if yes then condition becomes true.

System
 .
 out
 .
 println(
 12
 >=
 6
)
 // true

System
 .
 out
 .
 println(
 7
 >=
 7
)
 // true

System
 .
 out
 .
 println(
 1
 >=
 5
)
 // false

Less than or equal to: <=

Checks if the value of left operand is less than or
 equal to the value of right operand, if yes then condition becomes true.

System
 .
 out
 .
 println(
 6
 <=
 12
)
 // true

System
 .
 out
 .
 println(
 7
 <=
 7
)
 // true

System
 .
 out
 .
 println(
 6
 <=
 4
)
 // false

Logical Operators

Also known as Boolean Operators, they are used to compare boolean values (true
 and false
), which can be part of our program’s logic.

And: &&

The and
 operator is represented in Java by &&
 . It returns a boolean value of true
 only when the expressions on both
 sides of && are true.

System
 .
 out
 .
 println(
 true
 &&
 true
);
 // prints true

System
 .
 out
 .
 println(
 false
 &&
 false
);
 // prints false

System
 .
 out
 .
 println(
 false
 &&
 true
);
 // prints false

System
 .
 out
 .
 println(
 true
 &&
 false
);
 // prints false

We can also use the Boolean operator && with Boolean expressions such as the following:

System
 .
 out
 .
 println(
 5
 >
 0
 &&
 9
 <
 10
);

The example above will print out true
 because the statements “5 is greater than 0” and “9 is less than 10” are both true
 .

Or: ||

The or
 operator is represented in Java by ||
 . It returns a Boolean value of true
 when at least one
 expression on either side of || is true
 .

System
 .
 out
 .
 println(
 false
 ||
 false
);
 // prints false

System
 .
 out
 .
 println(
 false
 ||
 true
);
 // prints true

System
 .
 out
 .
 println(
 true
 ||
 false
);
 // prints true

System
 .
 out
 .
 println(
 true
 ||
 true
);
 // prints true

We can also use the Boolean operator || with Boolean expressions such as the following:

System
 .
 out
 .
 println(
 5
 >
 2
 ||
 1
 >
 34
);

// Equivalent to:

System
 .
 out
 .
 println(
 true
 ||
 false
);

The example above will print out true because at least one
 statement — “5 is greater than 2” — is true
 even though the other statement — “1 is greater than 34” — is false.

Not: !

The not operator is represented in Java by !
 .

It will return the opposite
 of the expression immediately after it. It will return false if the expression is true, and true if the expression is false
 .

System
 .
 out
 .
 println(!
 false
);
 // "Not false" - prints true

System
 .
 out
 .
 println(!
 true
);
 // "Not true" - prints false

We can also use the Boolean operator ! with Boolean expressions such as the following:

System
 .
 out
 .
 println(
 !(
 5
 <=
 25
)
);

The example above will print out false
 because the statement “4 is less than or equal to 10” is true
 , but the ! operator will return the opposite value, which is false
 .

Precedence

The three Boolean operators &&
 , ||
 , and !
 can also be used together and used multiple times to form larger Boolean expressions.

However, just like numerical operators, Boolean operators follow rules that specify the order in which they are evaluated
 . This order is called Boolean operator precedence.

The precedence of each Boolean operator is as follows:

	
! is evaluated first

	
&& is evaluated second

	
|| is evaluated third

Like numerical expressions, every expression within parentheses is evaluated first. Expressions are also read from left to right.

The following statement demonstrates how Boolean operator precedence works:

System
 .
 out
 .
 println(
 !(
 false
)
 ||
 false
 &&
 true
);

Step-by-step explanation:

The example above will print out true. In order, the expression is evaluated as follows:

	
First, the ! Boolean operator in !(false) returns true.

	
Second, false && true evaluates to false.

	
Finally, the remaining expression true || false evaluates to true.

It looks like this when you do it step-by-step:

!(
 false
)
 ||
 false
 &&
 true

 true
 ||
 false

 true

Other assignment Operators

We have already seen some of the assignment operators (=, += and -=) but there are others that will help shorten our code.

*=

Multiply AND assignment operator. It multiplies right operand with the left operand and assign the result to left operand.

a =
 a *
 b;

// is equivalent to:

a *=
 b;

/=

Divide AND assignment operator. It divides left operand with the right operand and assign the result to left operand.

a =
 a /
 b;

// is equivalent to:

a /=
 b;

%=

Modulus AND assignment operator. It takes modulus using two operands and assign the result to left operand.

a =
 a %
 b;

// is equivalent to:

a %=
 b;

Intro to the Math class

To do other arithmetic operations like potentiation and square root, we have to use the Math class
 , which contains the needed methods.

Potentiation

To do potentiation, we use Math.pow()
 .

// 1

System
 .
 out
 .
 println(
 Math
 .
 pow(
 2
 ,
 4
));
 // 16.0

// 2

int
 base
 ,
 exponent;

base
 =
 4
 ;

exponent =
 3
 ;

System
 .
 out
 .
 println(
 Math
 .
 pow(
 base
 ,
 exponent));
 // 64

Square root

To do potentiation, we use Math.sqrt()
 .

System
 .
 out
 .
 println(
 Math
 .
 sqrt(
 4
));
 // 2.0

System
 .
 out
 .
 println(
 Math
 .
 sqrt(
 25
));
 // 5.0

int
 x =
 100
 ;

System
 .
 out
 .
 println(
 Math
 .
 sqrt(
 x));
 // 10.0

There are a lot of other methods in the Math class. Here are some things you can do: calculate the absolute value of a number, sine, cosine, tangent, logarithms and make conversions between degrees and radians.

Workout Set #2

Write down your answers in a piece of paper to check them in the Answers page.

1)
 What will be the output of the following program?

class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 a =
 3;

int
 b =
 8;

int
 c =
 (
 a +
 b)
 /
 2;

System
 .
 out
 .
 println(
 c /
 1.0
);

}

}

a) 6

b) 6.0

c) 5.5

d) 5.0

e) 5

2)
 What will be the output of the following program?

public
 class
 WorkoutSet
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 a =
 3;

int
 b =
 17
 +
 a -
 5;

int
 c =
 a *
 b;

System
 .
 out
 .
 println(
 c);

}

}

3)
 What will be the output of the following program?

public
 class
 WorkoutSet
 {

public
 static
 void
 main(
 String
 []
 args)
 {

System
 .
 out
 .
 println(
 5.1
 >
 5
);

}

}

4)
 What will be the output of the following program?

public
 class
 WorkoutSet
 {

public
 static
 void
 main(
 String
 []
 args)
 {

System
 .
 out
 .
 println(
 2
 >=
 0
);

}

}

5)
 What will be the output of the following program?

public
 class
 WorkoutSet
 {

public
 static
 void
 main(
 String
 []
 args)
 {

System
 .
 out
 .
 println(-
 10
 >
 -
 5
);

}

}

6)
 What will be the output of the following program?

public
 class
 WorkoutSet
 {

public
 static
 void
 main(
 String
 []
 args)
 {

System
 .
 out
 .
 println(
 "Hello"
 ==
 "hello"
);

}

}

7)
 What will be the output of the following program?

public
 class
 WorkoutSet
 {

public
 static
 void
 main(
 String
 []
 args)
 {

System
 .
 out
 .
 println(
 'A'
 ==
 -
 1
);

}

}

8)
 What will be the output of the following program?

public
 class
 WorkoutSet
 {

public
 static
 void
 main(
 String
 []
 args)
 {

System
 .
 out
 .
 println(
 10
 ==
 10.0
);

}

}

9)
 Boolean "and" is represented in Java by what operator?

10)
 Boolean "or" is represented in Java by what operator?

11)
 Which expressions evaluate to true? (example: a, b)

a.
 false
 &&
 false

b.
 true
 &&
 false

c.
 false
 &&
 true

d.
 true
 &&
 true

12)
 Which expressions evaluate to true?

a.
 false
 ||
 false

b.
 true
 ||
 false

c.
 false
 ||
 true

d.
 true
 ||
 true

13)
 Which expressions evaluate to true?

a.
 !(
 false
)
 &&
 10
 >
 1

b.
 5
 >
 5.1
 &&
 true

c.
 5
 <
 6
 &&
 7
 >
 14
 ||
 5
 >=
 5
 &&
 12
 >
 0

d.
 !(
 false
)
 &&
 !(
 true)

Answers

1)
 D

2)
 45

3)
 true

4)
 true

5)
 false

6)
 false

7)
 false

8)
 true

9)
 ||

10)
 &&

11)
 d

12)
 b, c, d

13)
 a, c

Chapter 4: Strings and Getting Input

Create a new class called StringsAreCool
 and replace the generated code with the following:

public
 class
 StringsAreCool
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 // Create a String object called codenific

 String
 codenific =
 "Codenific"
 ;

 System
 .
 out
 .
 println(
 "1. "
 +
 codenific);

// Add `.com`

 codenific +=
 ".com"
 ;

 System
 .
 out
 .
 println(
 "2. "
 +
 codenific);

// Extract the word `Codenific` from the String

 String
 onlyCodenific =
 codenific.
 substring(
 0
 ,
 9
);

 System
 .
 out
 .
 println(
 "3. "
 +
 onlyCodenific);

// Extract the sufix '.com' from the String

 String
 onlyDotCom =
 codenific.
 substring(
 9
 ,
 13
);

 System
 .
 out
 .
 println(
 "4. "
 +
 onlyDotCom);

// Add some trailing spaces and then remove them with trim()

 codenific =
 " "
 +
 codenific +
 " "
 ;

 codenific =
 codenific.
 trim();

 System
 .
 out
 .
 println(
 "5. "
 +
 codenific);

// Now output the string all in UPPERCASE and lowercase

 System
 .
 out
 .
 println(
 "6. "
 +
 codenific.
 toUpperCase());

 System
 .
 out
 .
 println(
 "7. "
 +
 codenific.
 toLowerCase());

System
 .
 out
 .
 println(
 "-> "
 +
 codenific.
 length());

 }

}

First of all, read the code
 and try to figure out what is being done and how is that happening.

Strings

The first part of the program creates a String object called “codenific” and gives it a value of “Codenific”. Although this may look similar to how you declare and assign an integer or another primitive type, actually there is a lot more going on here.
 Java allows simple operators like = and + to be assigned simple tasks.

So really String
 codenific =
 "
 Codenific
 "
 ;
 is actually something like String
 codenific =
 new
 String
 ("
 Codenific
 ")
 ;
 , in other words, create a new object of type String and pass in the value “Codenific” to the constructor. The constructor
 is a special method called only once, at the moment that the object is created. But we will talk more about that on Chapters 6 and 8.

The next part shows how you can concatenate strings, in this case ".com" is added to the end of the string.

codenific +=
 ".com"
 ;

Since String is an object, it can have methods. String.substring()
 is a method which returns part of a string. String
 onlyCodenific =
 codenific.
 substring(
 0
 ,
 9
)
 ;
 returns the first nine characters of the "codenific" String (it includes index 0, but not 9). And String
 onlyDotCom =
 codenific.
 substring(
 9
 ,
 13
)
 ;
 returns the characters from indexes 9 to 13 (it includes index 9, but not 13).

[image:]

The image above was taken from a Python post in my blog
 , but we can use it to explain Java substrings
 as well. Consider the String "This is Codenific" was assigned to a variable called "variable".

The first letter of a String has a zero
 index. So, in "This is Codenific", if you want only the third letter, you just have to do something like variable.substring(2, 3)
 because the second value isn't inclusive
 .

In the same way, variable.substring(0, 16)
 doesn't return the entire String above, it returns "This is Codenifi". To return the entire String, you have to do variable.substring(0, 17)
 .

String.trim()
 is another method which removes leading and trailing spaces. String.toUpperCase()
 and String.toLowerCase()
 methods are very self-explaining.

Lastly, our program gets the String.length()
 and prints it.

Input

The easiest way to get input is by using the Scanner
 class.

Suppose we wanted to get a number. Copy and paste the following code into a new class called Inputs:

import
 java.
 util.
 Scanner;

public
 class
 Inputs
 {

public
 static
 void
 main(
 String
 []
 args)
 {

 Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
);

 System
 .
 out
 .
 println(
 "Enter a number: "
);

 int
 n =
 scan.
 nextInt();

 scan.
 close();

 System
 .
 out
 .
 println(
 "The chosen number is: "
 +
 n);

}

}

[image:]

When you run the program, it asks you a number. I entered 25 and then it printed "The chosen number is: 25"
 . That's no magic, I know. But, as I always say, you have to start somewhere.

How that happened?
 First, we have to import
 the Scanner class by writing import java.util.Scanner; before the class header. By importing it, we get access to the methods and functions of that class (we'll get back to that later in this course).

Then we create a Scanner object
 called "scan" (you can name it however you want):

Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
);

Remember how we could extend a String declaration? Just like that!

String
 scan =
 new
 String
 (
 "Scanning..."
);.

The user can't guess what we want, so we have to put some instruction which, in this case, is printed to the terminal.

We create an integer variable called n
 that will store the next input as an int – scan.nextInt()
 . Therefore, if the user enters a text, for example, the program will crash:

[image:]

Once we are done, we have to finish the Scanner object with scan.close().
 Finally, we print that number we got: System
 .
 out
 .
 println(
 "The chosen number is: "
 +
 n);
 .

The same can be applied to scan for other data types.

●

 To get a
 byte
 :
 byte
 a
 =
 scan
 .
 nextByte
 ();

●

 To get a
 short
 :
 short
 b
 =
 scan
 .
 nextShort
 ();

●

 To get a
 float
 :
 float
 c
 =
 scan
 .
 nextFloat
 ();

●

 To get a
 long
 :
 long
 d
 =
 scan
 .
 nextLong
 ();

●

 To get a
 double
 :
 double
 e
 =
 scan
 .
 nextDouble
 ();

●

 To get a
 boolean
 :
 boolean
 f
 =
 scan
 .
 nextBoolean
 ();

And to get Strings as input we use scan.next()
 (assuming that our Scanner object is called "scan" in this case).

Another way to import

If you type Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
)
 ;
 before importing
 the Scanner class, you can click in the word "Scanner" and then back away your cursor to see a red lamp show up. Click on it, select Import Class
 and then Scanner (java.util)
 , so that the IDE will automatically write the import statement for you!

[image:]

[image:]

Another shortcut!

And instead of typing System.out.println(), you can type sout and click Enter:

[image:]

Workout Set #3

Create a class for each of the following exercises (like Set3Exercise1) and write your solution to then compare with mine.

The inputs in the examples are in italic
 .

1)
 Write a program that contains a String object in which you will put your name and then print it.

2)
 Write a program that asks for the person's name and then greets that person.

Example:

What is your name?

Lucas

Hello, Lucas!

3)
 Write a program that removes leading and trailing spaces from a String entered by the user and then prints the new String.

Example:

Enter a String:

 Lucas

 .

Lucas

4)
 Write a program that gets two Strings, concatenates and prints them, following these rules:

●

 The first String has to be printed as lowercase

●

 The second String has to be printed as uppercase

●

 There has to be one space between the two Strings

Example:

Enter a String:

Code

Enter another String:

Nific

code NIFIC

5)
 Write a program that gets the age of the user and then prints out the year that he/she was born.

Example (in 2017):

How old are you?

16

You were born in 2001

6)
 Write a program that, given a number, prints out its predecessor and successor.

Example:

Enter a number:

10

Predecessor: 9

Successor: 11

7)
 Write a program that, given a number x, prints:

●

 2 times x

●

 x to the power of 2

●

 x divided by 2

●

 square root of x

Example:

Enter a number:

9

18

81

4.5

3

8)
 Write a program that gets two numbers and prints out the average (arithmetic mean) of them.

Example 1:

Enter a number:

8

Enter another number:

10

The average is 9.0

Example 2:

Enter a number:

7

Enter another number:

9.5

The average is 8.25

9)
 Write a program that calculates the price of a product after a 10% discount.

Example 1:

What is the price of the product?

120

After a 10% discount, this product will be sold for $ 108

Example 2:

What is the price of the product?

253.9

After a 10% discount, this product will be sold for $ 228.51

If you're getting this error: Exception in thread "main" java.util.InputMismatchException, you might need to use something like scan.useLocale(Locale.US); (considering your Scanner object is called "scan") and import java.util.Locale;. Or you could enter the input as 120,0 instead of 120.0, for example. That error is caused because your country's number formatting is different from the US (like me, Brazilian).

10)
 Write a program that converts a temperature from Celsius to Fahrenheit. Use the formula below:

[image:]

Example:

Enter the temperature in Celsius:

30

30.0ºC is equivalent to 86.0ºF

Again, if you're getting this error: Exception in thread "main" java.util.InputMismatchException, you might need to use something like scan.useLocale(Locale.US); (considering your Scanner object is called "scan") and import java.util.Locale;. Or you could enter the input as 120,0 instead of 120.0, for example. That error is caused because your country's number formatting is different from the US (like me, Brazilian).

Answers

1)

// your class can have a different name, depending on the name of your file

public class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

String
 name =
 "Your name here";

System
 .
 out
 .
 println(
 name);

}

}

2)

import
 java.
 util.
 Scanner
 ;

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

 System
 .
 out
 .
 println(
 "What is your name?"
);

 Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
);

 String
 name =
 scan.
 next
 ();

 System
 .
 out
 .
 println(
 "Hello, "
 +
 name +
 "!"
);

 }

}

3)

import
 java.
 util.
 Scanner
 ;

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

 System
 .
 out
 .
 println(
 "Enter a String:"
);

 Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
);

 String
 text =
 scan.
 next
 ();

 System
 .
 out
 .
 println(
 text.
 trim());

 }

}

4)

import
 java.
 util.
 Scanner
 ;

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

 Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
);

System
 .
 out
 .
 println(
 "Enter a String:"
);

 String
 s1 =
 scan.
 next
 ();

System
 .
 out
 .
 println(
 "Enter another String:"
);

 String
 s2 =
 scan.
 next
 ();

System
 .
 out
 .
 println(
 s1.
 toLowerCase()
 +
 " "
 +
 s2.
 toUpperCase());

 }

}

5)

import
 java.
 util.
 Scanner
 ;

public
 class
 Main
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
);

 System
 .
 out
 .
 println(
 "How old are you?"
);

 int
 age =
 scan.
 nextInt();

 scan.
 close();

 int
 born =
 2017
 -
 age;

 System
 .
 out
 .
 println(
 "You were born in "
 +
 born);

 }

}

6)

import
 java.
 util.
 Scanner
 ;

public
 class
 Main
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
);

System
 .
 out
 .
 println(
 "Enter a number:"
);

 int
 n =
 scan.
 nextInt();

 scan.
 close();

int
 predecessor =
 n -
 1
 ;

 int
 successor =
 n +
 1
 ;

System
 .
 out
 .
 println(
 "Predecessor: "
 +
 predecessor);

 System
 .
 out
 .
 println(
 "Successor: "
 +
 successor);

 }

}

7)

import
 java.
 util.
 Scanner
 ;

public
 class
 Main
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
);

 System
 .
 out
 .
 println(
 "Enter a number:"
);

 int
 n =
 scan.
 nextInt();

 scan.
 close();

 System
 .
 out
 .
 println(
 2
 *
 n);

 System
 .
 out
 .
 println(
 Math
 .
 pow(
 n,
 2
));
 // or n*n

 System
 .
 out
 .
 println(
 n /
 2.0
);

 System
 .
 out
 .
 println(
 Math
 .
 sqrt(
 n));

// or Math.pow(n, 0.5) if you're really high xD

}

}

8)

import
 java.
 util.
 Scanner
 ;

public
 class
 Main
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
);

System
 .
 out
 .
 println(
 "Enter a number:"
);

 int
 n1 =
 scan.
 nextInt();

System
 .
 out
 .
 println(
 "Enter another number:"
);

 int
 n2 =
 scan.
 nextInt();

scan.
 close();

double
 average =
 (
 n1 +
 n2)
 /
 2.0
 ;

 System
 .
 out
 .
 println(
 "The average is "
 +
 average);

 }

}

9)

import
 java.
 util.
 Locale
 ;

import
 java.
 util.
 Scanner
 ;

public
 class
 Main
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
);

// Use this if you're getting java.util.InputMismatchException:

 scan.
 useLocale(
 Locale
 .
 US);

System
 .
 out
 .
 println(
 "What is the price of the product?"
);

 double
 price =
 scan.
 nextDouble();

 scan.
 close();

double
 newPrice =
 price *
 0.9
 ;

 System
 .
 out
 .
 println(
 "After a 10% discount, this product will be sold for $ "
 +
 newPrice);

 }

}

10)

import
 java.
 util.
 Locale
 ;

import
 java.
 util.
 Scanner
 ;

public
 class
 Main
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
);

// Use this if you're getting java.util.InputMismatchException:

 scan.
 useLocale(
 Locale
 .
 US);

System
 .
 out
 .
 println(
 "Enter the temperature in Celsius:"
);

 double
 c =
 scan.
 nextDouble();

 scan.
 close();

double
 f =
 9
 /
 5.0
 *
 c +
 32
 ;

 System
 .
 out
 .
 println(
 c +
 "ºC is equivalent to "
 +
 f +
 "ºF"
);

 }

}

Chapter 5: Conditionals and Control Flow

We make decisions on a daily basis. Whether it’s about what you’re eating for breakfast or where should you travel to, we often make those decisions based on certain conditions. For example: if it’s raining, you use an umbrella; if you’re hungry, you eat; if you want to cross the street, you only do it after you’re sure that the cars have stopped. I could do this forever, but you get it. If a predefined condition is met, something happens or not.

We can apply the same principle to control the flow of our programs.

If - Else

In Java, the keyword if
 is the first part of a conditional expression. It is followed by a Boolean expression inside parenthesis and then a block of code. If the Boolean expression evaluates to true
 , the block of code that follows will be run.

if
 (
 condition)
 {

// Do stuff here

}

For example:

if
 (
 10
 >
 7
)
 {

System
 .
 out
 .
 println(
 "Codenific.com"
);

}

Step-by-step explanation:

In the example above, 10 > 7
 is the Boolean expression that gets checked. Since the Boolean expression "10 is greater than 7"
 is true
 , "Codenific.com"
 will be printed to the console.

The if statement is not
 followed by a semicolon (;). Instead, it uses curly braces ({
 and }
) to surround the code block that gets run when the Boolean expression is true.

Sometimes we execute one block of code when the Boolean expression after the if
 keyword is true
 . Other times we may want to execute a different block of code when the Boolean expression is false
 .

We could write a second if
 statement with a Boolean expression that is opposite the first, but Java provides a shortcut called the if
 /else
 conditional.

The if
 /else
 conditional will run the block of code associated with the if
 statement if its Boolean expression evaluates to true
 .

Otherwise, if the Boolean expression evaluates to false
 , it will run the block of code after the else
 keyword.

Here's an example of if
 /else
 syntax:

boolean
 isRaining =
 false;

if
 (
 isRaining)
 {

System
 .
 out
 .
 println(
 "I will stay at home")

}
 else
 {

System
 .
 out
 .
 println(
 "I will go to the beach"
);
 // this one gets printed

}

In some cases, we need to execute a separate block of code depending on different Boolean expressions. For that case, we can use the if / else if / else
 statement in Java.

If the Boolean expression after the if
 statement evaluates to true
 , it will run the code block that directly follows.

Otherwise, if the Boolean expression after the else if
 statement evaluates to true
 , the code block that directly follows will run.

Finally, if all previous Boolean expressions evaluate to false
 , the code within the else
 block will run.

Here's an example of control flow with the if / else if / else
 statement:

int
 age =
 17;

if
 (
 age >=
 21
)
 {

System
 .
 out
 .
 println(
 "You can drive. And you can buy an alcoholic drink"
);

}
 else
 if
 (
 age >=
 16
)
 {

System
 .
 out
 .
 println(
 "You can drive"
);

}
 else
 {

System
 .
 out
 .
 println(
 "You will have to wait"
);

}

Step-by-step explanation:

In the example above, the int
 variable age
 is equal to 17, which is not greater than or equal to 21, but it is greater than or equal to 16. Therefore, the else if
 block of code will be run.

Ternary Conditional

If / else
 statements can become lengthy even when you simply want to return a value depending on a Boolean expression. Fortunately, Java provides a shortcut that allows you to write if / else
 statements in a single line of code. It is called the ternary conditional
 statement. It has:

●

 A
 Boolean expression

●

 A single statement that gets executed if the Boolean expression is
 true

●

 A single statement that gets executed if the Boolean expression is
 false

Example:

int
 points =
 10;

String
 gameResult =
 (
 points >=
 10
)
 ?
 "Winner"
 :
 "Loser";

System
 .
 out
 .
 println(
 gameResult);

char
 justALetter =
 (
 points >=
 10
)
 ?
 'W'
 :
 'L';

System
 .
 out
 .
 println(
 justALetter);

Step-by-step explanation:

In the example above, the Boolean expression is (points >= 10), which evaluates to true. This will return the value of "Winner"
 , which is assigned to the variable gameResult
 and then gets printed to the console.

The same applies to other data types, not just Strings! See the second ternary condition with char.

While Loop

Imagine you want to print out "Hello" two times.

System
 .
 out
 .
 println(
 "Hello"
);

System
 .
 out
 .
 println(
 "Hello"
);

It's easy to copy and paste the statement to execute the action twice. But what if you wanted to print out the same message 100
 times? Don't just go out copying and pasting everything. There's a better way to do that: using a loop
 .

A loop is basically a set of instructions that get executed for a number of times. It lets the computer do the hard work for you, not the other way around.

This is how a while loop is formatted:

while
 (
 condition)
 {

// Do stuff here

}

The instructions inside of the loop will be executed while
 the condition
 is met.

Here's how we could print out "Hello" 10 times:

int
 i =
 0
 ;

while
 (
 i <
 10
)
 {

 System
 .
 out
 .
 println(
 "Hello"
);

 i++;
 // same as i = i + 1;

}

Step-by-step explanation:

First, I created an int variable called i
 to keep track of the times "Hello" was printed. While
 i
 is less than 10, "Hello"
 will be printed and i
 will be incremented by one.

After several incrementations, there will be a point in which i
 is equal to 9. "Hello" will be printed; i
 will be incremented by 1 again and have a value of 10. That's when the loop breaks, because the condition i < 10
 is no longer satisfied. This is the output:

Hello

Hello

Hello

Hello

Hello

Hello

Hello

Hello

Hello

Hello

Infinite while loop

If we didn't increment that i
 variable, it would always be less than 10. Hence, the condition would be always met and the loop would never break. That can be a bad thing – except when you want it to happen in a specific environment (I’ll talk about that later).
 The program would keep printing "Hello" indefinitely. Here are some examples where that happens:

public
 class
 Main
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 int
 i =
 0
 ;

 while
 (
 i <
 10
)
 {

 System
 .
 out
 .
 println(
 "Hello"
);

 }

 }

}

public
 class
 Main
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 while
 (
 true
)
 {

 System
 .
 out
 .
 println(
 "Hello"
);

 }

 }

}

This is what an apparently
 infinite while
 loop looks like:

import
 java.
 util.
 Scanner;

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
);

System
 .
 out
 .
 println(
 "Enter a word:"
);

String
 s;

while
 (
 true
)
 {

s
 =
 scan
 .
 next
 ();

if
 (
 s
 .
 equals
 (
 "Hello"
))
 {

System
 .
 out
 .
 println
 (
 "Correct!"
);

break;

}
 else
 {

System
 .
 out
 .
 println
 (
 "Try again!"
);

continue;

}

}

}

}

Step-by-step explanation:

At the beginning, I created a Scanner
 object and gave it a name of scan
 . I printed out “Enter a word:”
 to let the user know that I’m asking for an input and I also created a String
 variable to store that input. Then I have while (true)
 which basically means that the loop won’t stop UNLESS we break
 it. Moving on, if the input is equal to “Hello”
 , “Correct!”
 gets printed out and the loop breaks with the break
 statement. Else, if the input is not equal to “Hello”
 , “Try again!”
 gets printed out and the loop continues with the continue
 statement until “Hello”
 is entered by the user.

For Loop

For
 Loop is a commonly used loop and even better than while
 .This is its syntax:

for
 (
 initialization;
 condition;
 increment)
 {

// Do stuff here

}

Here’s that same example we did with a while
 loop (print "Hello" 10 times):

for
 (
 int
 i =
 0
 ;
 i <
 10
 ;
 i++)
 {

 System
 .
 out
 .
 println(
 i +
 " Hello"
);

}

Or you can do it like this:

for
 (
 int
 i =
 1
 ;
 i <=
 10
 ;
 i++)
 {

 System
 .
 out
 .
 println(
 i +
 " Hello"
);

}

Let’s see what each part means:

for (int i = 0;
 i < 10;
 i++
) {

System.out.println(i + " Hello");

}

It creates a temporary variable of type
 int
 called
 i
 . While
 i
 is less than 10
 , i
 + “Hello” will be printed
 and the variable
 i
 will be increased by one
 .

Similarly, if you wanted to print the numbers from 10 to 20:

for
 (
 int
 i =
 10
 ;
 i <=
 20
 ;
 i++)
 {

 System
 .
 out
 .
 println(
 i);

}

// OR

for
 (
 int
 i =
 10
 ;
 i <
 21
 ;
 i++)
 {

 System
 .
 out
 .
 println(
 i);

}

Note that this type of loop does not require you to keep track of a count variable “manually”, so it’s easier to set up.

Controlling your Loops

Suppose we wanted to print out only the even numbers from 10 to 20. That means there will be a condition: “Print the numbers in the range of 10 to 20 IF
 the number is even”. Here’s how we can do it with both while
 and for
 loops.

for
 (
 int
 i =
 10
 i <=
 20
 ;
 i++)
 {

if
 (
 i %
 2
 ==
 0
)
 {

System
 .
 out
 .
 println(
 i);

}

}

int
 i =
 0;

while
 (
 i <
 10
)
 {

if
 (
 i %
 2
 ==
 0
)
 {

System
 .
 out
 .
 println(
 "Hello"
);

}

i++;

}

There’s also something called a nested loop
 . It happens when you put a loop inside another loop. Like a for
 loop inside another for
 loop.

Workout Set #4

1)
 What is the output of the following program?

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 age =
 20;

boolean
 isMinor =
 age <
 21;

if
 (
 isMinor)
 {

System
 .
 out
 .
 println(
 "You can NOT buy drinks in the US"
);

}
 else
 {

System
 .
 out
 .
 println(
 "You can buy drinks in the US"
);

}

}

}

2)
 What is the output of the following program?

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

boolean
 boo =
 5
 >
 4.7
 &&
 3.9
 >
 8.2;

if
 (
 boo)
 {

System
 .
 out
 .
 println(
 "Boo!"
);

}
 else
 {

System
 .
 out
 .
 println(
 "Nope"
);

}

}

}

3)
 What is the output of the following program?

P.S. The method .equals() tests if a String is equal to another and returns a boolean. In this case it tests if the String stored in the variable t is equal to "Te"

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

String
 s =
 "Text";

String
 t =
 s.
 substring(
 0
 ,
 2
);

if
 (
 t.
 equals(
 "Te"
))
 {

System
 .
 out
 .
 println(
 "OOO"
);

}
 else
 {

System
 .
 out
 .
 println(
 "UUU"
);

}

}

}

4)
 What is the output of the following program?

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

boolean
 x,
 y;

x =
 2
 *
 4
 >
 2
 *
 3
 &&
 10
 /
 2
 <
 5.1;

y =
 32
 <
 31
 ||
 false;

System
 .
 out
 .
 println(
 "Boom"
);

if
 (
 x ||
 y)
 {

System
 .
 out
 .
 println(
 "Yay"
);

}
 else
 {

System
 .
 out
 .
 println(
 "Wow"
);

}

System
 .
 out
 .
 println(
 "OK"
);

}

}

5)
 Write a program that gets a number from the user and tells if it's even or odd.

Example 1:

Enter a number:

4

4 is even

Example 2:

Enter a number:

3

3 is odd

Remember to use the remainder operator!

6)
 Write a program that gets the name of the user, his/her year of birth and then tells if he/she can already drive in the US. A person can drive in the US if the age is greater than or equal to 16.

Example
 (in 2017):

What is your name?

Lucas

In what year were you born?

2001

Lucas, you are 16 and you can drive in the US

7)
 Write a program that gets a letter (String) as input. If it's "Y" or "y", print "Yes". If it's "N" or "n", print "No". Else, print "Invalid letter".

Example 1:

Enter one letter:

y

Yes

Example 2:

Enter one letter:

N

No

Example 3:

Enter one letter:

L

Invalid letter

8)
 What will be the value of x after the For loop is over?

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 x =
 0;

for
 (
 int
 i =
 1
 ;
 i <
 4
 ;
 i++)
 {

x +=
 i;

}

}

}

9)
 What will be the value of n after the For loop is over?

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 n =
 10;

for
 (
 int
 i =
 0
 ;
 i <
 3
 ;
 i++)
 {

n -=
 i;

}

}

}

10)
 What will happen after the following program gets executed?

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 n =
 10;

while
 (
 n >
 10
)
 {

System
 .
 out
 .
 println(
 "Hello"
);

}

}

}

a)

 An error will occur

b)

 "Hello" will be printed 10 times

c)

 "Hello" will be printed 9 times

d)

 Nothing will be printed

e)

 "Hello" will be printed once

11)
 How many times "n is greater than 0" will be printed?

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 n =
 2;

n++;

while
 (
 n >
 0
)
 {

System
 .
 out
 .
 println(
 "n is greater than 0"
);

n--;

}

}

}

a)

 0

b)

 1

c)

 2

d)

 3

e)

 4

12)
 What will be the value of y after the For loop is over?

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 y =
 2;

while
 (
 y <
 20
)
 {

y +=
 2;

}

}

}

a)

 20

b)

 19

c)

 22

d)

 18

e)

 21

13)
 What does this code do?

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

for
 (
 int
 i =
 1
 ;
 i <=
 10
 ;
 i++)
 {

System
 .
 out
 .
 println(
 i);

}

}

}

It…

a)

 Prints the numbers from 0 to 10

b)

 Prints the numbers from 1 to 10

c)

 Prints the numbers from 1 to 11

d)

 Prints the numbers from 1 to 9

14)
 Write a program that prints out the numbers from 150 to 300, including 150 and 300.

15)
 The "Fizz-Buzz test" is an interview question designed to help filter out the 99.5% of programming job candidates who can't seem to program their way out of a wet paper bag. The text of the programming assignment is as follows:

"Write a program that prints the numbers from 1 to 100. But for multiples of three print “Fizz” instead of the number and for the multiples of five print “Buzz”. For numbers which are multiples of both three and five print “FizzBuzz”."

Answers

1)
 You can NOT buy alcohol in the US

2)
 Nope

3)
 OOO

4)
 Boom

Yay

OK

5)

import
 java.
 util.
 Scanner
 ;

public
 class
 Main
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
);

 System
 .
 out
 .
 println(
 "Enter a number:"
);

 int
 n =
 scan.
 nextInt();

 if
 (
 n %
 2
 ==
 0
)
 {

 System
 .
 out
 .
 println(
 n +
 " is even"
);

 }
 else
 {

 System
 .
 out
 .
 println(
 n +
 " is odd"
);

 }

 }

}

6)

import
 java.
 util.
 Scanner
 ;

public
 class
 Main
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
);

System
 .
 out
 .
 println(
 "What is your name?"
);

 String
 name =
 scan.
 next
 ();

System
 .
 out
 .
 println(
 "In what year were you born?"
);

 int
 age =
 2017
 -
 scan.
 nextInt();

if
 (
 age >=
 16
)
 {

 System
 .
 out
 .
 println(
 name +
 ", you are "
 +
 age +
 " and you can drive in the US"
);

 }
 else
 {

 System
 .
 out
 .
 println(
 name +
 ", you are "
 +
 age +
 " and you can not drive in the US"
);

 }

 }

}

7)

import
 java.
 util.
 Scanner
 ;

public
 class
 Main
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 Scanner
 scan =
 new
 Scanner
 (
 System
 .
 in
);

System
 .
 out
 .
 println(
 "Enter a letter:"
);

 String
 letter =
 scan.
 next
 ();

if
 (
 letter.
 toUpperCase().
 equals(
 "Y"
))
 {

 System
 .
 out
 .
 println(
 "Yes"
);

 }
 else
 if
 (
 letter.
 toUpperCase().
 equals(
 "N"
))
 {

 System
 .
 out
 .
 println(
 "No"
);

 }
 else
 {

 System
 .
 out
 .
 println(
 "Invalid letter"
);

 }

 }

}

8)
 6

9)
 7

10)
 d

11)
 d

12)
 a

13)
 b

14)

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

for
 (
 int
 i =
 150
 ;
 i <=
 300
 ;
 i++)
 {

System
 .
 out
 .
 println(
 i);

}

}

}

15)
 There are several ways to solve the FizzBuzz problem and it’s ok to have a different solution as long as it is efficient and does what is asked. Here’s one solution:

public
 class
 FizzBuzz
 {

public
 static
 void
 main(
 String
 []
 args)
 {

for
 (
 int
 i =
 1
 ;
 i <=
 100
 ;
 i++)
 {

if
 (
 i
 %
 15
 ==
 0
)
 {
 // or i % 3 == 0 && i % 5 == 0

System
 .
 out
 .
 println
 (
 "FizzBuzz")

}
 else
 if
 (
 i
 %
 3
 ==
 0
)
 {

System
 .
 out
 .
 println
 (
 "Fizz"
);

}
 else
 if
 (
 i
 %
 5
 ==
 0
)
 {

System
 .
 out
 .
 println
 (
 "Buzz"
);

}
 else
 {

System
 .
 out
 .
 println
 (
 i
);

}

}

}

}

You can read more about the test here
 .

Switch

The following code example was taken from the official documentation. It declares an int
 named month
 whose value represents a month. The code displays the name of the month, based on the value of month
 , using the switch
 statement.

public
 class
 SwitchDemo
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

int
 month =
 8
 ;

 String
 monthString;

 switch
 (
 month)
 {

 case
 1
 :
 monthString =
 "January"
 ;

 break
 ;

 case
 2
 :
 monthString =
 "February"
 ;

 break
 ;

 case
 3
 :
 monthString =
 "March"
 ;

 break
 ;

 case
 4
 :
 monthString =
 "April"
 ;

 break
 ;

 case
 5
 :
 monthString =
 "May"
 ;

 break
 ;

 case
 6
 :
 monthString =
 "June"
 ;

 break
 ;

 case
 7
 :
 monthString =
 "July"
 ;

 break
 ;

 case
 8
 :
 monthString =
 "August"
 ;

 break
 ;

 case
 9
 :
 monthString =
 "September"
 ;

 break
 ;

 case
 10
 :
 monthString =
 "October"
 ;

 break
 ;

 case
 11
 :
 monthString =
 "November"
 ;

 break
 ;

 case
 12
 :
 monthString =
 "December"
 ;

 break
 ;

 default
 :
 monthString =
 "Invalid month"
 ;

 break
 ;

 }

 System
 .
 out
 .
 println(
 monthString);

 }

}

In this case, "August" is printed out, because month
 is equal to 8.

So, this is the Switch basic syntax:

switch
 (
 variable)
 {

 case
 value:
 action;

 break
 ;

 case
 value2:
 action2;

 break
 ;

 // ...

 default
 :
 defaultAction;

 break
 ;

}

Variable Scope

Remember how we associated the idea of variables with boxes
 in which you can put some data and then come back later to retrieve it? If you lock that box in a room, you can’t access it from the outside – your kitchen, for example – because your room is the scope. That’s a metaphor to explain variable scope, which is the name given to the code snippet where that variable exists and where it can be accessed.

// here variable i does not exist

int
 i =
 5
 ;

// variable i exists from now on

If you declare a variable inside a block of code (a piece that is surrounded by curly braces) you can only access the variable within that block. Otherwise, it’s like it never existed. Look:

// here variable i does not exist

int
 i =
 5
 ;

// variable i exists from now on

while
 (
 condition)
 {

 // variable i can be accessed here

 int
 j =
 7
 ;

 // variable j exists from now on

}

// here j no longer exists, but i does

Workout Set #5

1)
 What will be the output of the following program when the user enters 3972 as input?

import
 java.
 util.
 Scanner;

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Scanner
 scan=
 new
 Scanner
 (
 System
 .
 in
);

System
 .
 out
 .
 println(
 "Enter a number:"
);

int
 n =
 scan.
 nextInt();

switch
 (
 n %
 2
)
 {

case
 0:

System
 .
 out
 .
 println(
 "E"
);

break;

default:

System
 .
 out
 .
 println(
 "O"
);

break;

}

}

}

2)
 What will be the output of the following program when the user enters 1 as input? (same code)

import
 java.
 util.
 Scanner;

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Scanner
 scan=
 new
 Scanner
 (
 System
 .
 in
);

System
 .
 out
 .
 println(
 "Enter a number:"
);

int
 n =
 scan.
 nextInt();

switch
 (
 n %
 2
)
 {

case
 0:

System
 .
 out
 .
 println(
 "E"
);

break;

default:

System
 .
 out
 .
 println(
 "O"
);

break;

}

}

}

3)
 What will be the output of the following program?

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

String
 password =
 "252525";

switch
 (
 password)
 {

case
 "123456":

System
 .
 out
 .
 println(
 "Access granted"
);

break;

case
 "654321":

System
 .
 out
 .
 println(
 "Access denied"
);

break;

case
 "252525":

System
 .
 out
 .
 println(
 "Access granted"
);

break;

default:

System
 .
 out
 .
 println(
 "Invalid password"
);

break;

}

}

}

4)
 What will happen after the following program gets executed?

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 i =
 10;

System
 .
 out
 .
 println(
 n);

}

}

a)

 10
 will be printed

b)

 Nothing will be printed

c)

 An error will occur

5)
 What will happen after the following program gets executed?

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 i =
 10;

for
 (
 int
 x =
 1
 ;
 x <=
 5
 ;
 x++)
 {

System
 .
 out
 .
 println(
 i);

}

}

}

a)

 10
 will be printed five times

b)

 10
 will be printed once

c)

 x will be printed

d)

 Nothing will be printed

e)

 An error will occur

6)
 What is wrong with the code below?

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 a =
 10;

for
 (
 int
 b =
 1
 ;
 b <=
 5
 ;
 b++)
 {

int
 c =
 5;

System
 .
 out
 .
 println(
 b);

}

System
 .
 out
 .
 println(
 c);

}

}

7)
 What is wrong with the code below?

public
 class
 Main
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 n =
 10;

while
 (
 n ==
 10
)
 {

System
 .
 out
 .
 println(
 n);

}

}

}

8)
 If you've come this far, congratulations!

Now you're going to build a game that involves variables, input manipulation, relational operators, loops, conditionals and a class called Random
 to generate pseudorandom numbers. Pay close attention to the following instructions and read them until you completely understand what is asked, before writing any code.

This is how it works: the computer generates a (secret) random integer in the range of 1 to 10 (including 1 and 10). The user keeps trying to guess the secret number, until he/she gets it right. Every time the user doesn't type the right value, he/she gets a tip ("The secret number is greater than that" or "The secret number is less than that"). Once the correct number is entered, the game ends and the user receives a message of "Congratulations! You won!".

I won't provide you the answer to this question, but I can give you some advice:

●

 To keep asking for input while the given number is not correct use a while (true) loop that will keep asking for input, guiding the user, and will only break when the number is correct (when the number entered by the user is equal to the number generated by the computer).

Answers

1)
 E

2)
 O

3)
 Access granted

4)
 c

5)
 a

6)
 The variable 'c' gets created inside the for
 loop, therefore it can't be accessed from the outside (i.e., it no longer exists after the loop is completely executed). The lines after the for
 loop are out of the scope
 of 'c'.

7)
 The condition (n == 10) will always evaluate to true, because 'n' is never increased or decreased. That results in an infinite while loop.

8)
 -

Chapter 6: Intro to Object-Oriented Java

Object-oriented programming (OOP) is a programming language model organized around objects rather than "actions" and data rather than logic. Examples of objects range from human beings (described by name, address, and so forth) to buildings and floors – whose properties (attributes
) can be described and modified (through methods
) down to the little.

What are the advantages of programming in object-oriented languages like Java?

●

 Being more organized

●

 Writing less

●

 Concentrating responsibilities at the right points, making your application more flexible, encapsulating business logic.

Soon we will see all this advantage, but first you need to know a bit more about the syntax and creation of types and references in Java.

Classes x Objects

In a banking software, a crucial part of the system is an account
 . The idea is to generalize some information, along with functionalities that every bank account
 must have. Like…

●

 Bank account number

●

 Name of the owner

●

 Bank account balance

●

 Limit (to withdraw)

What every account does that is important to us? That is, what would we like to ask the account to do?

●

 Draw an amount of x dollars

●

 Deposit an amount of x dollars

●

 Print out the name of the owner

●

 Get the current balance

●

 Get the limit

●

 Transfer an amount of x dollars to another account

●

 Get the type of account

With those things in mind, we have the project of a bank account. Can we take that project and get its current balance? No. What we have is just a project. First, we have to build an actual account in order to access it and ask it to do something.

[image:]

Notice the image: although the paper on the left side specifies an Account, is it an Account? Do we deposit and take money out of that paper? No. We use the Account specification to be able to create instances
 that really are accounts, where we can perform the operations we create.

Even though we declare that every account has a balance, a number, and an agency on the piece of paper (as on the left in the image), it is in the instances
 of this project that there is room to store those values.

That “project” (specifications for a bank account) is called a class
 . And what we can construct from that class are called objects
 .

The word class
 in this context comes from biology’s taxonomy. All living things that belong to the same biological class have a series of attributes
 and behaviors
 in common, but they aren’t equal, because the values
 of these attributes and behaviors can differ from one living being to another.

Homo sapiens sapiens
 defines a group of beings that have characteristics in common, but is the definition/idea/concept of a Homo sapiens sapiens
 an actual
 human being? Everything is specified in Homo sapiens sapiens
 class, but in order to ask a person to run, eat or jump, we’ll need to instantiate
 that class, by creating an object
 of type
 Homo sapiens sapiens
 .

Another example: a cake recipe. We don’t eat a cake recipe, but we use it to make an actual cake. The recipe is the class
 and the cake is the object
 . We can create thousands of cakes based on that single recipe. Some cakes may be similar and some might even be identical, but they are different objects
 .

Think about a class
 as a blueprint
 and the object
 as the tangible thing.

Creating a class

Open your IDE, create a new Java class called Account and start typing what you see next. Let’s start with what an account has:

public
 class
 Account
 {

int
 number;

String
 owner;

double
 balance;

}

These are the attributes
 that every created account will have. Note that those variables were not declared inside a block, like we did when we had the main method. When a variable is declared directly inside the scope of a class, it’s called an object variable, or attribute. The balance will be a double, but it shouldn’t be used for currencies.

Creating and using an object

We already have a class in Java that specifies what every object of that class must have. But how can we use it? Besides that class, we will have Program.java, in which we’ll use the Account
 class.

To create (construct, instantiate) an Account, we have to use the keyword new
 and parenthesis.

public class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

new
 Account
 ();

}

}

Well, the code above creates an object of type Account
 , but how can we access that object? We need a way to reference it. We need a… variable! In this case, a variable of type Account.

public class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Account myAccount;

myAccount = new
 Account
 ();

}

}

Through myAccount
 , we can access the newly created object to change its owner
 , balance
 , limit
 , etc.

public class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Account
 myAccount;

myAccount =
 new
 Account
 ();

myAccount.
 owner =
 "
 Lucas
 ";

myAccount.
 balance =
 10000.0;

System
 .
 out
 .
 println("
 Current
 balance:
 "
 +
 myAccount.
 balance);

}

}

It’s important to say that the dot
 was used to access something in myAccount
 . In the code above, myAccount
 belongs to Lucas – me! – and has 10,000 dollars.

Methods

Inside the class, we’ll also declare what each account does and how it’s done – its behaviors. For example, if there’s a specific way to draw an amount of money, we’re going to put it inside the Account
 class itself. That’s why those “functions” are called methods
 , because they are a way to do some operation with an object.

We want to create a method that draws an amount of money from the account and doesn’t retrieve any information to whom uses this method.

public class
 Account
 {

// other attributes and methods...

void
 draw(
 double
 amount)
 {

double
 newBalance =
 this
 .
 balance -
 amount;

this
 .
 balance =
 newBalance;

}

}

The keyword void
 indicates that no information is going to be sent back to whom asked to draw from the account.

When someone asks to draw from the account, that person will also say how much he/she wants to draw. That’s why we have to declare the method with something inside the parenthesis. And what goes inside it is called the method’s argument
 (or parameter
). You can have multiple parameters in the same method. That variable is also called a temporary or local variable that no longer exists once the method is done executing.

We declared a variable inside the method (newBalance
) that will be destroyed by the end of the method, because that is its scope. We used the keyword this
 to show that balance
 was an attribute, not just a simple variable.

Note that the person can violate the limit that was fixed by the bank, because there’s no actual limitation so far. But we’re going to fix that soon.

We can also have a method to make a deposit:

public class
 Account
 {

// other attributes and methods...

void
 deposit(
 double
 amount)
 {

this
 .
 balance +=
 amount;

}

}

Do you see how we didn’t declare more variables this time? And we also used the operator +=
 to keep things short.

We also use the dot
 to send a message to the object and ask it to execute a method. That’s called method invocation
 .

The following code withdraws money from the account and then deposits another amount.

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Account
 myAccount;

myAccount =
 new
 Account
 ();

myAccount.
 number =
 12345;

myAccount.
 owner =
 "Lucas";

myAccount.
 balance =
 1000.0;

myAccount.
 draw(
 200.0
);

myAccount.
 deposit(
 500.0
);

System
 .
 out
 .
 println(
 myAccount.
 balance);

}

}

Methods that return something

When a method does not return anything, we use the keyword void
 . But we can return some value of any data type. In our draw
 method, we could return a boolean
 value to tell if the operation was completed successfully.

public class
 Account
 {

// other attributes and methods...

boolean
 draw(
 double
 amount)
 {

if
 (
 this
 .
 balance <
 amount)
 {

return
 false;

}
 else
 {

this
 .
 balance
 -=
 amount;

return
 true;

}

}

}

In the code above, the operation won’t happen if there isn’t enough money in the account. In this case, the method will return false
 . Else, the operation will happen and true
 will be returned.

Note that I replaced void
 with boolean
 , to indicate the new return type. And inside the method there are return
 statements that return the value we want. Don’t forget the semicolon. Our method stops once something is returned.

Therefore…

public class
 Account
 {

// other attributes and methods...

boolean
 draw(
 double
 amount)
 {

if
 (
 this
 .
 balance <
 amount)
 {

return
 false;

System
 .
 out
 .
 println
 ("
 False
 ");

}
 else
 {

this
 .
 balance
 -=
 amount;

return
 true;

System
 .
 out
 .
 println
 ("
 True
 ");

}

}

}

With the code above, nothing would be ever printed, because the System.out.println() statements are placed after
 the return statements.

Here’s how we could use that new draw
 method:

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Account
 myAccount =
 new
 Account
 ();

myAccount.
 balance =
 1000.0;

boolean
 success =
 myAccount.
 draw(
 200.0
);

if
 (
 success)
 {

System
 .
 out
 .
 println
 ("
 I got
 my
 money
 !");

}
 else
 {

System
 .
 out
 .
 println
 ("
 Where
 is
 my
 money
 ?");

}

}

}

I can even eliminate the intermediate variable (success
):

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Account
 myAccount =
 new
 Account
 ();

myAccount.
 balance =
 1000.0;

if
 (
 myAccount.
 draw(
 200.0
))
 {

System
 .
 out
 .
 println
 ("
 I got
 my
 money
 !");

}
 else
 {

System
 .
 out
 .
 println
 ("
 Where
 is
 my
 money
 ?");

}

}

}

And, of course, you can have multiple accounts in the same program:

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Account
 myAccount =
 new
 Account
 ();

myAccount.
 balance =
 1000.0;

Account
 mySecondAccount =
 new
 Account
 ();

mySecondAccount.
 balance =
 500.0;

}

}

Objects are accessed through references

When we declare a variable and assign it an object, the variable does not hold the object itself, but rather a way to access it, which is called a reference
 .

That’s why we need to use new
 when declaring the variable, unlike what we do with primitive data types like int
 and long
 .

Account
 a1;

a1 =
 new
 Account
 ();

Account
 a2;

a2 =
 new
 Account
 ();

In the code above, we can not
 say that a1
 is an object, because a1
 is a variable that references an object
 . So keep in mind that, in Java, a variable is never an object
 .

[image:]

On the inside, a1
 and a2
 will keep a number that identifies in which position of the memory the Account is. This way, by using “.
 ” to navigate, Java will access the Account
 that is in the desired position, not another one.

public class
 TestReferences
 {

 public
 static
 void
 main(
 String
 args[])
 {

 Account
 a1 =
 new
 Conta
 ();

 a1.
 deposit(
 100
);

Account
 a2 =
 a1;
 // !!!

 a2.
 deposit(
 200
);

System
 .
 out
 .
 println(
 a1.
 balance);

 System
 .
 out
 .
 println(
 a2.
 balance);

 }

}

What happens when you run the code above?

The operator =
 copies the value of a variable. But what is the value of variable a1
 ? Is it the object? No. Actually, the stored value is the reference
 (address) of the object in the memory.

Account
 a1 =
 new
 Account
 ();

Account
 a2 =
 a1;

[image:]

So, when I wrote a2 = a1
 , a2 now references that same object that is referenced by a1. Hence, in this particular case, it doesn’t matter if we use a1 or a2, because they both reference to the same object!
 That means the expression a1 == a2
 would evaluate to true.

Another way to see that happening is knowing that we used the keyword new
 only once, so there is only one Account object in the memory.

public
 static
 void
 main(
 String
 []
 args)
 {

 Account
 a1 =
 new
 Account
 ();

 a1.
 owner =
 "Luke"
 ;

 a1.
 balance =
 250
 ;

Account
 a2 =
 new
 Account
 ();

 a2.
 owner =
 "Luke"
 ;

 a2.
 balance =
 250
 ;

if
 (
 a1 ==
 a2)
 {

 System
 .
 out
 .
 println(
 "Equal accounts!"
);

 }

}

The operator ==
 compares the value that is stored inside the variables a1
 and a2
 , but those variables don’t hold an object, they hold its address
 . Since two different
 Accounts were created and each variable references to one of them, they have different addresses. Therefore, a1 == a2
 evaluates to false
 because we’re talking about different objects in the memory. It’s a little tricky, because we tend to compare their attributes which, in this case, are identical.

[image:]

Transfer() method

What if we want to transfer money from one account to another? This is how it would look like:

public class
 Account
 {

// other attributes and methods...

void
 transfer(
 Account
 destiny,
 double
 amount)
 {

this
 .
 balance -=
 amount;

destiny.
 balance +=
 amount;

}

}

We could be tempted to get 2 parameters of type Account
 (account1
 and account2
), but that would be a procedural way of programming.

We want to call the transfer()
 method on an object of type Account
 (which will be this
), therefore the method gets only one parameter of type Account – the destiny of the money.

Let’s use that method and transfer some money.

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Account
 a1 =
 new
 Account
 ();

a1.
 balance =
 1000.0;

Account
 a2 =
 new
 Account
 ();

a2.
 balance =
 500.0;

a1.
 transfer(
 a2,
 250
);
 // !!!

System
 .
 out
 .
 println(
 "a1 = "
 +
 a1.
 balance);

System
 .
 out
 .
 println(
 "a2 = "
 +
 a2.
 balance);

}

}

See how I did a1.
 transfer(
 a2,
 250
)
 ;
 to transfer 250
 dollars to a2
 ? In this case, a1
 is that “this
 ” I talked about and a2
 is the destination. We might as well call that method transferTo
 because it makes more sense.

Let’s also implement some logic to avoid transferring money from an account that doesn’t have enough funds. And make the method return a boolean to tell if the operation was completed successfully. I know we’re not in a Workout Set, but try to implement those things on your own. Come on!

…

This is how it will look like after those changes:

boolean
 transferTo(
 Account
 destiny,
 double
 amount)
 {

if
 (
 this
 .
 balance <
 amount)
 {

return
 false;

}
 else
 {

this
 .
 balance -=
 amount;

destiny.
 balance +=
 amount;

return
 true;

}

}

We should go even further and use the methods we’ve created earlier to draw
 money from a1
 and make a deposit
 to a2
 . Try to implement that too!

…

boolean
 transferTo(
 Account
 destiny,
 double
 amount)
 {

if
 (
 this
 .
 draw(
 amount))
 {

destiny.
 deposit(
 amount);

return
 true;

}
 else
 {

return
 false;

}

}

Attributes again

Remember those attributes we created for the Account
 class?

class
 Account
 {

int
 number;

String
 owner;

double
 balance;

// methods…

}

When we create an object, these variables get a default value. Numeric variables get 0
 , booleans get false
 , and objects get null
 (e.g. String). But you can also set your default values, like this:

public class
 Account
 {

int
 number = 12345;

String
 owner = “Lucas”;

double
 balance = 0;

// methods…

}

In this case, the attributes will be populated with these default values when you create a new Account
 object.

Imagine we start to grow our class and want to put other information such as the person’s last name and address. Should we put it in the Account
 class? Actually, an Account
 does not have a name, or and address. You know who has all these attributes? A Client
 . So we should create another class for Clients. Soon we’ll make the connections.

public class
 Client
 {

String
 name;

String
 lastName;

String
 address;

}

And this is how the Account
 class should be now:

public
 class
 Account
 {

int
 number;

double
 balance;

double
 limit;

Client
 owner;
 // !!!

// methods...

}

If you try to access a method or attribute of an object that hasn’t been assigned any value yet (i.e., it points to null
), you will get an error during execution: NullPointerException
 .

Besides the Bank that we are creating, let's see how certain classes related to a car factory would look like. Let's create a Car class, with certain attributes that describe its characteristics and certain methods that describe its behavior.

public class
 Car
 {

String
 color;

String
 model;

double
 currentSpeed;

double
 maxSpeed;

// turns on the car

void
 on()
 {

System
 .
 out
 .
 println(
 "The car is on"
);

}

// accelerates a certain amount

void
 accelerate(
 double
 amount)
 {

double
 newSpeed =
 this
 .
 currentSpeed +
 amount;

if
 (
 newSpeed <=
 maxSpeed)
 {

 currentSpeed =
 newSpeed;

}

}

Let’s test our car in a new program:

public class
 TestCar
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Car
 myCar =
 new
 Car
 ();

myCar.
 color =
 "
 Green
 ";

myCar.
 model =
 "
 Lamborghini
 ";

myCar.
 currentSpeed =
 0;

myCar.
 maxSpeed =
 70;

// Turns on the car

myCar.
 on();

// Accelerates the car

myCar.
 accelerate(
 20
);

System
 .
 out
 .
 println("
 Current
 Speed
 :
 "
 +
 myCar.
 currentSpeed);

}

}

We know our car has an engine. So why don’t we create a class to describe it?

public class
 Engine
 {

int
 power;

String
 type;

}

// This is the new Car class

public class
 Car
 {

String
 color;

String
 model;

double
 currentSpeed;

double
 maxSpeed;

Engine
 engine;
 // !!!

// methods...

}

We can create multiple cars
 and engines
 , just like we did with Accounts
 and Clients
 in our imaginary Bank. How cool is that?

Workout Set #6 - Part One

The following employee model will be used in the exercises of the next chapters.

The goal here is to create a system for managing Bank employees. The exercises in this chapter are extremely important.

1)
 Create a class called Employee
 that will have these attributes: name
 (String
), his/her date of birth
 (String
), the day he/she was hired
 (String
), job
 (String), and salary
 (double
 , represents the monthly payment).

Example:

name: “Lucas”

dateOfBirth: “25/10/2001”

wasHiredOn: “01/09/2017”

job: “CEO”

salary: 50000.0

Create some methods:

●

 promote
 : increases the employee's salary according to the parameter
 amount
 passed as argument. No return.

●

 calculateAnnualSalary
 : does not receive any parameters; returns the salary multiplied by 12 (months).

2)
 Create a class to test your Employee
 class. I’ll call mine TestEmployee
 , but you can call it whatever you want.

This class must have the main method. Create a new object of type Employee
 and give it the attributes you want to.

Answers

1)

public
 class
 Employee
 {

String
 name;

String
 dateOfBirth;

String
 wasHiredOn;

String
 job;

double
 salary;

void
 promote(
 double
 amount)
 {

this
 .
 salary +=
 amount;

}

double
 calculateAnnualSalary()
 {

return
 this
 .
 salary *
 12;

}

}

2)
 Here’s an example of how your test class might look like:

public
 class
 TestEmployee
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Employee
 e =
 new
 Employee
 ();

e.
 name =
 "Lucas";

e.
 dateOfBirth =
 "25/10/2001";

e.
 wasHiredOn =
 "01/09/2017";

e.
 job =
 "CEO";

e.
 salary =
 50000.0;

e.
 promote(
 1000.0
);

double
 annualSalary =
 e.
 calculateAnnualSalary();

System
 .
 out
 .
 println(
 "Annual Salary = "
 +
 annualSalary);

}

}

Workout Set #6 - Part Two

3)
 Create a show()
 method, which neither receives nor returns any parameters and simply prints all the attributes of our employee. That way, you don’t have to keep copying and pasting a bunch of System.out.println() for every changes and testings you do with each of your employees. With that method, you're simply going to do:

Employee
 employee =
 new
 Employee
 ();

// …

employee .
 show();

[image:]

Answers

3)

void
 show()
 {

System
 .
 out
 .
 println(
 "Name: "
 +
 this
 .
 name);

System
 .
 out
 .
 println(
 "Date of Birth: "
 +
 this
 .
 dateOfBirth);

System
 .
 out
 .
 println(
 "Hired on: "
 +
 this
 .
 wasHiredOn);

System
 .
 out
 .
 println(
 "Job: "
 +
 this
 .
 job);

System
 .
 out
 .
 println(
 "Salary: "
 +
 this
 .
 salary);

System
 .
 out
 .
 println(
 "Annual Salary: "
 +
 this
 .
 calculateAnnualSalary());

}

Workout Set #6 - Part Three

It's time to train your learning muscles!

Create the following classes with the respective attributes and methods. Don’t be afraid to play around, it’s time to discover things on you own!

1) Class:
 Person

Attributes:
 name - String

age - int

Method:
 void oneMoreYear() - increases the age of the person by 1

Create a person, put her/his name and initial age, make birthdays (increase age) and print the person’s name and age.

2) Class:
 Door

Attributes:
 opened - boolean

color - String

dimensionX - double

dimensionY - double

dimensionZ - double

Methods:
 void open() - opens the door

void close() - closes the door

void paint(String s) - paints the door with color s

boolean isOpen - returns true if the door is open, and false if the door is closed

Create a door, open and close it, paint it in different colors, change its dimensions, and use the open() method to check if it is open.

3) Class:
 House

Attributes:
 color - String

door1 - boolean

door2 - boolean

door3 - boolean

Methods:
 void paint(String s) - paints the door with color s

int howManyDoorsOpened() - returns the number of doors that are opened

Create a house and paint it. Open and close the three doors as desired.

 Use howManyDoorsOpened()
 method to print the number of open doors.

Answers

No answers this time!

Chapter 7: Arrays

Primitive Data Type Array

Imagine you want to store your age in a variable. You probably thought of something like this:

int
 age;

And you’re correct. But what if you need to store the ages of a big group of people? Let’s say 10.

int
 age1;

int
 age2;

int
 age3;

int
 age4;

int
 age5;

…

That doesn’t seem very practical, right? Because it really isn’t. I’m glad you noticed that.

So, what is the solution?

Arrays.

In this case, integer arrays, which you can declare like this:

int
 []
 ages;

// or:

int
 ages[];

int[]
 is a type. An array is always an object, therefore, variable ages
 is a reference. Let’s create an object to use that array with 10 ages:

ages =
 new
 int
 [
 10
];

The statement above created an array of integers with 10 positions and assigned its “address” in the memory.

[image:]

Notice how variable ages
 references to the array we’ve created.

We can access those positions of our array. Remember how you sliced Strings in Chapter 4? The process here is very similar. Let’s say we want to put age 32 in the first position.

ages[
 0
]
 =
 32;

In Java, array indexes range from 0
 to n - 1
 (n being the size of the array, in this case n = 10).

[image:]

If you try to access a position that is outside of that range, you get an error. A common mistake is to access the last index using the number that represents the size of the array (n) instead of the real last index (n - 1).

Object arrays

Instead of storing numeric values like 10, 25 and 32, arrays can also reference to other objects
 . We could create an array for our Account
 objects from last chapter.

Account
 []
 myAccounts;

myAccounts =
 new
 Account
 [
 10
];

How many Accounts were created in the code above? None
 , actually. We’ve just created 10 positions
 (spaces in memory) that can be used to store references to the Accounts we want. For now, they reference to nowhere (null
). If you try to do the following, an error will occur…

System
 .
 out
 .
 println(
 myAccounts[
 0
].
 balance);

The first position of the array is pointing to null
 . You have to populate your array before trying to access its positions.

Account
 a =
 new
 Account
 ();

a.
 balance =
 2500.0;

myAccounts[
 0
]
 =
 a;

Or you can do it more directly:

myAccounts[
 1
]
 =
 new
 Account
 ();

myAccounts[
 1
].
 balance =
 1000.0;

[image:]

An array of primitive data types stores values and an object array stores references.

Iterate through an array

Imagine you want to print out all the values in your array, or plenty of them, for example. It’s unsustainable to do...

System
 .
 out
 .
 println(
 myArray[
 0
]);

System
 .
 out
 .
 println(
 myArray[
 1
]);

System
 .
 out
 .
 println(
 myArray[
 2
]);

System
 .
 out
 .
 println(
 myArray[
 3
]);

Instead, we use a for loop (Chapter 5).

public
 static
 void
 main(
 String
 []
 args)
 {

int
 []
 ages =
 new
 int
 [
 10
];

for
 (
 int
 i =
 0
 ;
 i <
 10
 ;
 i++)
 {

ages[
 i]
 =
 i *
 2;

}

for
 (
 int
 i =
 0
 ;
 i <
 10
 ;
 i++)
 {

System
 .
 out
 .
 println(
 ages[
 i]);

}

}

First, I populated the array:

for
 (
 int
 i =
 0
 ;
 i <
 10
 ;
 i++)
 {

ages[
 i]
 =
 i *
 2;

}

For every i
 in the range or 0 to 10 (including 0 but not 10), the respective position in the array (ages[i]
) will be assigned a value of i * 2
 .

So, this is the array represented graphically:

[image:]

Then I printed each element of the array:

for
 (
 int
 i =
 0
 ;
 i <
 10
 ;
 i++)
 {

System
 .
 out
 .
 println(
 ages[
 i]);

}

And this is what gets printed:

0

2

4

6

8

10

12

14

16

18

However, in many cases, we get arrays we didn’t create and we might not now how big they are. So, when should our for
 loop stop? Here’s an example with a function that would print the items of a given array.

void
 printArray(
 int
 []
 array)
 {

 for
 (
 int
 i =
 0
 ;
 i <
 ????;
 i++)
 {

 System
 .
 out
 .
 println(
 array[
 i]);

 }

}

To solve that problem, we can use an attribute that every array in Java has: length.

void
 printArray(
 int
 []
 array)
 {

 for
 (
 int
 i =
 0
 ;
 i <
 array.
 length;
 i++)
 {

 System
 .
 out
 .
 println(
 array[
 i]);

 }

}

Oh! And Arrays can’t change its size.

Once you create an array, it will have the same size (number of positions) as long as it exists. If you need more spaces, you’ll have to create a new array and copy the elements from the old array.

Java 5.0 has a new syntax to iterate through arrays when you don’t need a temporary variable to keep track of the current index. It’s an enhanced-for
 loop. See the code example:

public class
 MyClass
 {

 public
 static
 void
 main(
 String
 []
 args)
 {

 int
 []
 ages =
 new
 int
 [
 10
];

 for
 (
 int
 i =
 0
 ;
 i <
 10
 ;
 i++)
 {

 ages[
 i]
 =
 i *
 10
 ;

 }

// print all the items in the array

 for
 (
 int
 x :
 ages)
 {

 System
 .
 out
 .
 println(
 x);

 }

 }

}

Here’s that same function but written with an enhanced-for loop:

void
 printArray(
 int
 []
 array)
 {

 for
 (
 int
 x :
 array)
 {

 System
 .
 out
 .
 println(
 x);

 }

}

The same is true for reference arrays. This is for nothing more than a trick to make it easier to iterate through arrays and make the process more readable.

Workout Set #7

1)
 Write a program that creates an array and populates it with the numbers from 1 to 10 and then prints them out by iterating through the array.

2)
 Create a new class called “Employee” (if don’t have one yet) and paste the following code:

public
 class
 Employee
 {

String
 name;

double
 salary;

}

Also create a new class called “Company” (if don’t have one yet) and paste the following code:

public
 class
 Company
 {

Employee
 []
 employees =
 new
 Employee
 [
 3
];

int
 i =
 0;

void
 add(
 Employee
 employee)
 {

this
 .
 employees[???]
 =
 employee;

i +=
 ???;

}

void
 showEmployees()
 {

for
 (
 Employee
 e :
 employees)
 {

System
 .
 out
 .
 println(???);

}

}

}

Finally, create a new class called “Program” (if don’t have one yet) and paste the following code:

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Employee
 e1 =
 new
 Employee
 ();

e1.
 name =
 "Lucas";

e1.
 salary =
 100000;

Employee
 e2 =
 new
 Employee
 ();

e2.
 name =
 "Mary";

e2.
 salary =
 120000;

Employee
 e3 =
 new
 Employee
 ();

e3.
 name =
 "Nick";

e3.
 salary =
 85000;

Company
 company =
 new
 Company
 ();

company.
 add(
 e1);

company.
 add(
 e2);

company.
 add(
 e3);

company.
 showEmployees();

}

}

Now replace every “???” with the correct code in order to do this:

●

 add() takes an Employee as argument and adds it to the array
 employees
 in the first empty position of the array.

●

 showEmployees() does not return anything. It just prints out the employee’s name and salary for every employee in the array
 employees
 .

●

 You can only replace the question marks with new code

●

 This is the desired output:

Lucas
 ->
 100000.0

Mary
 ->
 120000.0

Nick
 ->
 85000.0

3)
 Let’s do the FizzBuzz exercise again, but now using arrays.

"Write a program that prints the numbers from 1 to 100. But for multiples of three print “Fizz” instead of the number and for the multiples of five print “Buzz”. For numbers which are multiples of both three and five print “FizzBuzz”."

Create an array of length 100 and populate it with the numbers from 1 to 100. Then iterate through that array to print the numbers by following the conditions.

4)
 Create an array of any length and populate it with any numbers. Now iterate through it to copy those numbers to a new array.

Answers

1)

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 []
 array =
 new
 int
 [
 10
];

for
 (
 int
 i =
 0
 ;
 i <=
 9
 ;
 i++)
 {

array[
 i]
 =
 i +
 1;

}

for
 (
 int
 x :
 array)
 {

System
 .
 out
 .
 println(
 x);

}

}

}

2)

public
 class
 Company
 {

Employee
 []
 employees =
 new
 Employee
 [
 3
];

int
 i =
 0;

void
 add(
 Employee
 employee)
 {

this
 .
 employees[
 i]
 =
 employee;

i +=
 1;

}

void
 showEmployees()
 {

for
 (
 Employee
 e :
 employees)
 {

System
 .
 out
 .
 println(
 e.
 name +
 " -> "
 +
 e.
 salary);

}

}

}

3)

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 []
 array =
 new
 int
 [
 100
];

for
 (
 int
 i =
 1
 ;
 i <=
 100
 ;
 i++)
 {

array[
 i-
 1
]
 =
 i;

}

for
 (
 int
 x :
 array)
 {

if
 (
 x %
 15
 ==
 0
)
 {

System
 .
 out
 .
 println
 (
 "Fizzbuzz"
);

}
 else
 if
 (
 x %
 5
 ==
 0
)
 {

System
 .
 out
 .
 println
 (
 "Buzz"
);

}
 else
 if
 (
 x %
 3
 ==
 0
)
 {

System
 .
 out
 .
 println
 (
 "Fizz"
);

}
 else
 {

System
 .
 out
 .
 println
 (
 x
);

}

}

}

}

4)

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 []
 oldArray =
 new
 int
 [
 3
];

oldArray[
 0
]
 =
 1;

oldArray[
 1
]
 =
 2;

oldArray[
 2
]
 =
 3;

int
 []
 newArray =
 new
 int
 [
 3
];

for
 (
 int
 i =
 0
 ;
 i <=
 2
 ;
 i++)
 {

newArray[
 i]
 =
 oldArray[
 i];

}

}

}

Chapter 8: Access Modifiers and Class Attributes

Controlling access

We’re going to get back to the Account
 class we created earlier in Chapter 6.

public class
 Account
 {

int
 number;

double
 balance;

double
 limit;

Client
 owner;

boolean
 draw(
 double
 amount)
 {

if
 (
 this
 .
 balance <
 amount)
 {

return
 false;

}
 else
 {

this
 .
 balance -=
 amount;

return
 true;

}

}

void
 deposit(
 double
 amount)
 {

this
 .
 balance +=
 amount;

}

boolean
 transferTo(
 Account
 destiny,
 double
 amount)
 {

if
 (
 this
 .
 draw(
 amount))
 {

destiny.
 deposit(
 amount);

return
 true;

}
 else
 {

return
 false;

}

}

}

We fixed the draw()
 method with an if-else to prevent it from taking money that wasn’t in the account and leaving a negative balance.

But what if someone (another programmer) tries to draw money from the account or change its balance not by using the method we created, but by modifying the balance
 variable directly? Like this:

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Account
 account =
 new
 Account
 ();

account.
 balance =
 -
 100;

}

}

The best way to solve that is by making the person use the draw()
 method we provided to change the balance
 value. This solution does that by not allowing the attribute to be directly accessed.

In Java, we use the keyword private
 . It’s called an access modifier
 or visibility modifier.

public
 class
 Account
 {

private
 double
 balance;

private
 double
 limit;

// ...

}

And this is what happens once we change that:

[image:]

We can no longer access the variables balance
 and limit
 directly!

In object-oriented programming (OOP), protecting your attributes with private is almost an obligatory practice.

Each class is responsible for controlling its attributes
 , so it must judge whether the new value for an attribute is valid or not! This validation should not be done by those who are using the class, but by the class itself, centralizing that responsibility and making future changes in the system a lot easier. There are times when we don’t even want other classes to know the existence of a certain attribute, so we hide it completely, since it’s a part of the inner workings of the objects that come from that class.

Note that anyone who invokes the draw()
 method has no idea that there is a limit
 that is being checked. A person that is going to use this class just needs to know what
 the method does and not how
 exactly it does (what a method does is always more important than how it does, because changing the implementation is easy, but changing the signature*
 of a method will generate problems).

*A method signature is part of the method declaration. It is the combination of the method name and the parameter list.

The private
 keyword can also be used to modify access to a method
 . This functionality is used in several scenarios, the most common being: a) when there is a method that is only used to assist the class itself and b) when there is code repeated within two methods of the class. We should always expose as few functionalities as possible to create a low coupling between our classes.

On the other hand, we also have the public
 access modifier, which allows everyone to access a particular attribute or method:

public
 class
 Account
 {

// ...

public
 boolean
 draw(
 double
 amount)
 {
 // anyone can access this method

if
 (
 amount >
 this
 .
 balance +
 this
 .
 limit)
 {

return
 false;

}
 else
 {

this
 .
 balance -=
 amount;

return
 true;

}

}

Note that our classes were declared with the modifier public
 , in which case those classes are visible to all classes everywhere.

See how the IDE shows open and closed locks to represent public and private things, respectively:

[image:]

What about methods/attributes that don’t have an access modifier,
 like deposit()
 , owner
 , number
 and transferTo()
 ?
 They are neither public nor private. They are default
 , as you can see below.

	
Visibility

	
Public

	
Protected

	
Default

	
Private

	
From the same class

	
Yes

	
Yes

	
Yes

	
Yes

	
From any class in the same package

	
Yes

	
Yes

	
Yes

	
No

	
From a subclass in the same package

	
Yes

	
Yes

	
Yes

	
No

	
From a subclass outside the same package

	
Yes

	

Yes,
 through inheritance

	
No

	
No

	
From any non-subclass class outside the package

	
Yes

	
No

	
No

	
No

We’re not diving into the details of each access modifier now (I haven’t even talked about Protected
 yet!). I just want you to know for now that there are some differences between each keyword and you don’t have to memorize them. Keep in mind that they are like security levels for your attributes and methods.

It is very common to make your attributes private and almost all your methods public, although that’s not a rule.

Encapsulation

What we began to see in this chapter is the idea of encapsulating
 , that is, hiding all members of a class, as well as hiding how the routines (methods) of our system work.

Encapsulating is key to making your system susceptible to changes: we will not need to change a business rule in multiple places, but in only one place, since that rule is encapsulated. (see the draw()
 method example).

The set of public methods in a class is also called the class interface
 , since they are the only way you can communicate with objects of that class. See how that’s represented in the image below:

[image:]

It is always a good idea to program with the interface of your class in mind
 – how your users will be using it – and not just how it will work.

The implementation itself (the content of the methods) doesn’t not matter so much to the user of the class, since he/she only needs to know what
 each method does, not how
 it does (as it may change with time). Whenever we are going to access an object, we use its interface. There are several analogies in the real world. Here’s one:

When you drive a car, what matters to you are the pedals and the steering wheel (interface) - not the engine you are using (implementation). Of course a different engine can give you better results, but what
 it does is the same as a less powerful engine, the difference lies in how
 it does. If you get a new engine, you don’t have to relearn how to drive! Changing the implementation does not imply in changing the interface, which allows other classes to continue using it the same way.

Getters and Setters

The private
 modifier causes no one to be able to modify, or even read, a desired attribute. So how can we show the balance of an Account, if we can no longer access it?

Let’s use a method then! It makes sense to call it getBalance()
 :

public
 class
 Account
 {

// ...

private
 double
 balance;

public
 double
 getBalance()
 {

return
 this
 .
 balance;

}

// ...

}

Here’s how we can access the balance of an account:

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Account
 account =
 new
 Account
 ();

account.
 deposit(
 250
);

System
 .
 out
 .
 println(
 "Balance = "
 +
 account.
 getBalance());

}

}

To allow access to the attributes (since they are private) in a controlled way, the most common practice is to create two methods: one that returns the value and another that changes the value.

The convention is that they start with the words get
 and set
 , respectively. This is how our class would look like if we wanted to write getters and setters for balance
 , limit
 and owner
 :

public
 class
 Account
 {

private
 double
 balance;

private
 double
 limit;

private
 Client
 owner;

public
 double
 getBalance()
 {

return
 balance;

}

public
 void
 setBalance(
 double
 balance)
 {

this
 .
 balance =
 balance;

}

public
 double
 getLimit()
 {

return
 limit;

}

public
 void
 setLimit(
 double
 limit)
 {

this
 .
 limit =
 limit;

}

public
 Client
 getOwner()
 {

return
 owner;

}

public
 void
 setOwner(
 Client
 owner)
 {

this
 .
 owner =
 owner;

}

}

But you don’t have to write all those methods by yourself. Use your IDE! Let your cursor in an empty line in which you want to put the getters and setters. Select Code >> Generate...

[image:]

Select Getter and Setter.

[image:]

Use Shift or Ctrl (Windows) to select the attributes you want to generate getter/setter for (balance
 , limit
 and owner
 in this case) and then hit OK.

[image:]

There you go!

It is a bad practice to create a class and then create getters and setters for all
 its attributes. You should only create a getter or setter if you really need it
 . Note that in this example setBalance()
 should not have been created, since we want everyone to use deposit()
 and draw()
 .

Another important detail: a getX
 method does not necessarily return the value of an attribute called X
 that belongs to the respective object. This is interesting for encapsulation. Imagine this situation: we want the bank to always show the balance as limit + balance
 (a common practice among banks to deceive their customers).

We could always call account.getLimit() + account.getBalance()
 , but this could generate a "replace all" situation when we needed to change how the balance is shown. Let’s encapsulate it inside the getBalance()
 itself. Look:

public
 double
 getBalance()
 {

return
 this
 .
 balance +
 this
 .
 limit;

}

And we also shouldn’t create getLimit()
 and setLimit()
 or even getOwner()
 and setOwner()
 right now since we don’t need those yet. That leaves us with just the necessary for now:

public
 class
 Account
 {

// attributes...

public
 double
 getBalance()
 {

return
 this
 .
 balance +
 this
 .
 limit;

}

// methods...

}

Using getters and setters not only helps you protect your attributes, but it also allows you to make changes in just one place – what we call encapsulating –, because it hides the way objects store their data. It is a very important practice!

There is still another issue with our class. If a person deposits a negative amount (even though it doesn’t exist in real life, it can happen here), the balance will be negative. Like this:

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Account
 account =
 new
 Account
 ();

account.
 deposit(-
 250
);

}

}

What method should we fix in order to prevent that from happening?

The deposit()
 method, of course! It has to check if the amount entered is positive before depositing it. And thanks to encapsulation, that’s the only change we need to do. Go ahead and do that.

…

void
 deposit(
 double
 amount)
 {

if
 (
 amount >
 0
)
 {

this
 .
 balance +=
 amount;

}

}

Constructors

When we use the new
 keyword, we’re constructing an object. new
 always runs the class constructor
 , which is a block of code with the same name of the class:

public
 class
 Account
 {

// attributes...

// constructor:

Account
 ()
 {

System
 .
 out
 .
 println(
 "Constructing an account..."
);

}

// methods...

}

So when we do:

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Account
 account =
 new
 Account
 ();

}

}

“Constructing an account…” gets printed. It’s like a initialization routine for whenever we create a new object. A constructor is not a method!
 (even though it looks like one)

Default constructor

When you don’t declare a constructor in your class, Java creates one for you. This constructor is the default constructor, it receives no arguments and its body is empty.

That’s why we could create new
 objects earlier, even without having specified any constructor. Now the default constructor is no longer in use, because we provided ours.

Constructors with arguments

Constructors can receive arguments, to initialize some kind of information. Look how awesome is that:

public
 class
 Account
 {

// attributes…

Account
 (
 Client
 owner)
 {

this
 .
 owner =
 owner;

System
 .
 out
 .
 println(
 "Constructing an account for "
 +
 owner.
 name +
 "..."
);

}

// methods...

}

this.owner = owner
 means that the owner of the new account (this.owner) will be the client that is entered as argument (owner).

Now you have to enter a Client when creating a new Account object:

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Client
 myClient =
 new
 Client
 ();

myClient.
 name =
 "Lucas";

Account
 account =
 new
 Account
 (
 myClient);

}

}

And this is printed: Constructing an account for Lucas...

Awesome!

Why do we need a constructor?

We survived before having a constructor. So why do we need one?

Since every Account needs an owner
 , the best thing you can do is to require an owner at the moment you’re creating an object of type Account.

That’s what a constructor does. It gives possibilities or forces the user to enter some data
 when creating a new object.

Multiple Constructors

You can have multiple constructors
 in your class and the appropriate one will be chosen.

public
 class
 Account
 {

int
 number;

private
 double
 balance;

private
 double
 limit;

Client
 owner;

Account
 (
 Client
 owner)
 {
 // #1

this
 .
 owner =
 owner;

}

Account
 (
 int
 number,
 Client
 owner)
 {
 // #2

this
 .
 owner =
 owner;

this
 .
 number =
 number;

}

}

--

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Client
 c1 =
 new
 Client
 ();

c1.
 name =
 "Olivia";

Account
 a1 =
 new
 Account
 (
 c1);
 // #1

Client
 c2 =
 new
 Client
 ();

c2.
 name =
 "Fitz";

Account
 a2 =
 new
 Account
 (
 199525
 ,
 c2);
 // #2

}

}

Note that Account a1
 uses the constructor #1
 and Account a2
 uses the constructor #2
 .

But there is some repetition in constructor #2: this
 .
 owner =
 owner; gets repeated.

To solve that, we call constructor #1 within constructor #2, like this:

public
 class
 Account
 {

int
 number;

private
 double
 balance;

private
 double
 limit;

Client
 owner;

Account
 (
 Client
 owner)
 {

this
 .
 owner =
 owner;

}

Account
 (
 int
 number,
 Client
 owner)
 {

this
 (
 owner);
 // !!!

this
 .
 number =
 number;

}

}

In this
 (
 owner)
 ,
 you can think of this
 (
)
 as Account
 (
)
 . And since it’s only taking owner
 as argument, it’s calling the constructor #1 – Account
 (
 Client
 owner)
 .

Class attributes

Suppose our Bank also wants to control the quantity of existing accounts. How could we implement that?

A simple idea would be:

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 totalOfAccounts =
 0;

Client
 c1 =
 new
 Client
 ();

c1.
 name =
 "Olivia";

Account
 a1 =
 new
 Account
 (
 c1);

totalOfAccounts +=
 1;

}

}

But doing that would spread statements all over our code, making it hard to track them and change stuff. Imagine having to increment that variable manually every time we created a new Account object! It would be hard to remember, right? So why don’t we automate that?

What about this…?

public
 class
 Account
 {

private
 int
 totalOfAccounts;

// ...

Account
 (
 Client
 owner)
 {

this
 .
 owner =
 owner;

totalOfAccounts +=
 1;

}

}

If we create two objects, for example, each one will have its own totalOfAccounts
 variable that will be equal to 1. That’s not what we wanted.

We want this variable to be unique
 , shared by all objects in that class
 . In this way, when you change it through an object, another object would see the same value. To do this in Java, we declare the variable as static
 .

private
 static
 int
 totalOfAccounts;

When we declare an attribute as static
 , it becomes a class attribute
 , which is stored by the class, not by a single object. To access a static attribute, we don’t use the keyword this
 , but rather the name of the class itself.

public
 class
 Account
 {

private
 static
 int
 totalOfAccounts;

// ...

Account
 ()
 {

Account
 .
 totalOfAccounts +=
 1;

}

}

Since the attribute totalOfAccounts
 is private
 , we need a getter
 to access its value from outside the Account
 class. Let’s create one:

public
 class
 Account
 {

private
 static
 int
 totalOfAccounts;

// ...

Account
 ()
 {

Account
 .
 totalOfAccounts +=
 1;

}

public
 int
 getTotalOfAccounts()
 {

return
 Account
 .
 totalOfAccounts;

}

}

How can we know how many accounts were created?

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Client
 c1 =
 new
 Client
 ();

c1.
 name =
 "Olivia";

Account
 a1 =
 new
 Account
 (
 c1);

int
 total =
 a1.
 getTotalOfAccounts();

}

}

But there’s a problem: we have to create an account in order to get the total of accounts. We want to access that value without depending on an object.

getTotalOfAccounts(
)
 should belong to the whole class, not each object. Just like we did with variable totalOfAccounts
 .

public
 class
 Account
 {

private
 static
 int
 totalOfAccounts;

// ...

public
 static
 int
 getTotalOfAccounts()
 {

return
 Account
 .
 totalOfAccounts;

}

// ...

}

And this is how we access it now:

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

int
 total =
 Account
 .
 getTotalOfAccounts();

}

}

Workout Set #8

1)

Employee.java

public
 class
 Employee
 {

private
 String
 name;

private
 double
 salary;

}

Program.java

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Employee
 e1 =
 new
 Employee
 ();

e1.
 name =
 "Lucas";

e1.
 salary =
 100000;

}

}

What is wrong with those codes in the way they are presented?
 Write down your answer.

2)
 Create a new class called “Client” (if don’t have one yet) and paste the following code:

class
 Client
 {

String
 name;

String
 lastName;

String
 address;

}

Now manually create getters and setters for all attributes.

Attention!
 That’s not something you should do when creating a real program. We’re just doing this to practice. Only create getters and setters when they are needed!

3)
 Paste the following codes in the appropriate Java classes and replace the question marks with the correct code to produce the desired output:

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Employee
 e1 =
 new
 Employee
 (
 "Lucas"
 ,
 100000
);

Employee
 e2 =
 new
 Employee
 (
 "Olivia"
 ,
 120000
);

Employee
 e3 =
 new
 Employee
 (???);
 // Enter your name and salary

}

}

public
 class
 Employee
 {

String
 name;

double
 salary;

Employee
 (???)
 {

System
 .
 out
 .
 println(???);

}

}

Output:

Lucas --- 100000.0

Olivia --- 120000.0

…

4)
 What will be printed
 after Program.java gets executed?

Employee.java

public
 class
 Employee
 {

String
 name;

double
 salary;

Employee
 ()
 {

System
 .
 out
 .
 println(
 "Creating employee..."
);

}

Employee
 (
 String
 name)
 {

System
 .
 out
 .
 println(
 "Creating employee "
 +
 name +
 "..."
);

}

}

Program.java

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

String
 name =
 "Luke";

Employee
 employee =
 new
 Employee
 ();

}

}

5)
 What happens when you declare something as static
 ?

Answers

1)
 The attributes name
 and salary
 are private
 , so they can’t be accessed directly from outside the class Employee
 . We need getters/setters to do that.

2)

class
 Client
 {

String
 name;

String
 lastName;

String
 address;

public
 String
 getName()
 {

return
 name;

}

public
 void
 setName(
 String
 name)
 {

this
 .
 name =
 name;

}

public
 String
 getLastName()
 {

return
 lastName;

}

public
 void
 setLastName(
 String
 lastName)
 {

this
 .
 lastName =
 lastName;

}

public
 String
 getAddress()
 {

return
 address;

}

public
 void
 setAddress(
 String
 address)
 {

this
 .
 address =
 address;

}

}

3)

public
 class
 Program
 {

public
 static
 void
 main(
 String
 []
 args)
 {

Employee
 e1 =
 new
 Employee
 (
 "Lucas"
 ,
 100000
);

Employee
 e2 =
 new
 Employee
 (
 "Olivia"
 ,
 120000
);

Employee
 e3 =
 new
 Employee
 (
 "Your name"
 ,
 0
);

}

}

public
 class
 Employee
 {

String
 name;

double
 salary;

Employee
 (
 String
 name,
 double
 salary)
 {

System
 .
 out
 .
 println(
 name +
 " --- "
 +
 salary);

}

}

4)
 “Creating employee…”. Since no argument is given to the constructor, the object will be created by using the following:

Employee
 ()
 {

System
 .
 out
 .
 println(
 "Creating employee..."
);

}

5)
 When we declare an attribute as static
 , it becomes a class attribute
 , which is stored by the class, not by a single object. Something static in Java is unique
 , shared by all objects in that class
 . In this way, when you change it through an object, another object would see the same value. To access a static attribute, we don’t use the keyword this
 , but rather the name of the class itself.

Chapter 9: Inheritance and Polymorphism

Inheritance

In Workout Set #6, you created a class called Employee. Now we’re going to use it, but with less attributes:

public
 class
 Employee
 {

String
 name;

String
 id;

double
 salary;

}

This is what your project structure should look like:

[image:]

Go ahead and delete classes that we’re no longer using / create new ones that are missing.

Besides regular employees, a bank has job titles like managers. They have the same data that other employees have plus
 extra information like a password to access the internal banking system and the number of employees that are managed.

public
 class
 Manager
 {

String
 name;

String
 id;

double
 salary;

int
 password;

int
 numberOfEmployeesManaged;

public
 boolean
 authenticate(
 int
 password)
 {

if
 (
 this
 .
 password ==
 password)
 {

System
 .
 out
 .
 println
 (
 "Access granted!"
);

return
 true;

}
 else
 {

System
 .
 out
 .
 println
 (
 "Access denied!"
);

return
 false;

}

}

// ...

}

Do we really need another class?

Well, you could think “Why don’t we put all those attributes inside the Employee
 class and some of them woul be just optional?”. That’s a possibility, but if there are so many optional attributes, the class would start looking weird and not very readable. Think about the methods: authenticate() doesn’t even make sense in the Employee
 class.

So, we need another class, but this way we’re copying and pasting a bunch of code that is the same in both classes. Imagine if we had to create another one for a different job title!

There is a way, in Java, of connecting classes in such a way that one of them inherits
 everything the other has. In our case, we would like to make the Manager
 have everything an Employee
 has, we would like it to be an extension
 of the class Employee
 . We do this through the keyword extends
 .

public
 class
 Manager
 extends
 Employee
 {

int
 password;

int
 numberOfEmployeesManaged;

public
 boolean
 authenticate(
 int
 password)
 {

if
 (
 this
 .
 password ==
 password)
 {

System
 .
 out
 .
 println
 (
 "Access granted!"
);

return
 true;

}
 else
 {

System
 .
 out
 .
 println
 (
 "Access denied!"
);

return
 false;

}

}

// password setter...

}

When we create an object of type Manager
 , it has all the attributes that objects of type Employee
 have. Because, after all, a manager is an employee in the bank.

The Manager
 class inherits all the attributes and methods of the parent class
 (Employee). It also inherits private attributes and methods, but can not access them directly
 . In order to access a private member in the “child” indirectly, it would be necessary for the “parent” to expose another visible method that invokes this private attribute or method.

Super and subclass

The most used nomenclature is:

●

 Employee is the
 superclass
 of Manager

●

 Manager is the
 subclass
 of Employee

It’s another way of saying that Employee is the parent
 and Manager is the child
 .

Protected

What do we do if we need to access the attributes we inherited? Leaving them public
 is not an option, because everyone would be able to access them. There’s another access modifier that is between private
 and public:
 protected
 .

protected
 attributes are visible to its class and subclasses. There are more details about protected
 , but you can see the table and search for more.

public
 class
 Employee
 {

protected
 String
 name;

protected
 String
 id;

protected
 double
 salary;

}

In the same way, you can create a class called Director
 that extends Manager
 , or whatever makes sense in the business logic. A class can have multiple “children”, but only one “parent”!

Rewriting a method

At the end of the year, our imaginary Employees get a raise of 10% and Managers get a raise of 15%. Let’s write a public method in Employee
 that can be accessed in Manager
 .

public
 class
 Employee
 {

protected
 String
 name;

protected
 String
 id;

protected
 double
 salary;

public
 double
 getRaise()
 {

return
 this
 .
 salary *
 0.10;

}

}

Manager
 class will inherit that method, but we’re not there yet. Managers get a bigger raise, so let’s implement that by rewriting
 the method getRaise()
 inside our Manager
 class.

public
 class
 Manager
 extends
 Employee
 {

int
 password;

int
 numberOfEmployeesManaged;

public
 boolean
 authenticate(
 int
 password)
 {

// ...

}

public
 double
 getRaise()
 {

return
 this
 .
 salary *
 0.15;

}

}

Now the method fits our needs.

[image:]

See how an icon appears next to the method to say that it overrides a method in Employee. Which leads us to another thing: you can explicit that fact by using the annotation @Override
 above our code:

[image:]

The advantage of using @Override
 is that we have to
 rewrite an existing method, that is, we couldn’t change the name of the method, for example. And that prevents us from creating a new method and leaving “duplicates”.

See what happens if I change the name to getTheRaise()
 .

[image:]

[image:]

After overriding a method, you can’t access the original method from the superclass!

Now imagine that Manager
 s always get a raise of $1000 more
 than Employee
 s. So, if Employees get a raise of $500, Managers get $1500. Employees $1500, Managers $2500, and so forth. We could do something like this for Managers:

@Override

public
 double
 getRaise()
 {

return
 this
 .
 salary *
 0.10
 +
 1000;

}

But if Employees start to get a bigger or smaller raise (different than 10%), we would have to change the method in Manager
 to keep up with the Employess’ raise.

Remember: in this case we would like to just complement
 the original method, by adding an extra 1000 dollars to the raise that was calculated for Employees.

To do that, we can access the getRaise()
 that is in the Employee
 class by using the keyword super
 :

@Override

public
 double
 getRaise()
 {

return
 super
 .
 getRaise()
 +
 1000;

}

Polymorfism

In inheritance, we said that every Manager is an Employee, because the Manager class extends the Employee class
 . We can refer to a Manager as being an Employee. That’s the semantics of inheritance.

Polymorphism is the ability of an object to be referenced in various ways
 . Polymorphism does not mean that the object gets transformed. Remember: objects belong to the same type, from the moment they get created until they get destroyed – what can
 change is the way we refer to it.

Manager
 manager =
 new
 Manager
 ();

Employee
 employee =
 manager;

employee.
 setSalary(
 5000.0
);

What do you think will happen if I do the following?

employee.
 getRaise();

What does that method return? 500? 750?

In Java, method invocation will always be decided at runtime. Java will look for the object in memory and then decide which method to call, always relating to its true class, not the one we are using to reference it
 . Although we are referring to this Manager
 as being an Employee
 , the method executed is the Manager’s. The return is 750.

It seems weird to create a Manager
 object and refer to it as an Employee
 . Why would we do that? In fact, we could use that to send the Manager
 as an argument to a method that requires an Employee
 :

public
 class
 PaymentRecord {

 private
 double
 totalOfPayments =
 0
 ;

public
 void
 register
 (
 Employee
 employee)
 {

 this
 .
 totalOfPayments +=
 employee.
 getRaise();

 }

public
 double
 getTotalOfPayments()
 {

 return
 this
 .
 totalOfPayments;

 }

}

And somewhere in our program we could invoke those methods:

PaymentRecord
 record =
 new
 PaymentRecord
 ();

Manager
 employee1 =
 new
 Manager
 ();

employee1.
 setSalary(
 6000.0
);

record.
 register
 (
 employee1);
 // !!!

Employee
 employee2 =
 new
 Employee
 ();

employee2.
 setSalary(
 2000.0
);

record.
 register
 (
 employee2);

System
 .
 out
 .
 println(
 record.
 getTotalOfPayments());

Workout Set #9

1)
 What is the correct way of representing inheritance between classes Car and Ferrari?

Option A

public
 class
 Ferrari
 {

// ...

}

public
 class
 Car
 extends
 Ferrari
 {

// ...

}

Option B

public
 class
 Car
 {

// ...

}

public
 class
 Ferrari
 extends
 Car
 {

// ...

}

2)
 Create a Dog
 class and a GoldenRetriever
 class that extends Dog
 . Create the attributes and methods that are necessary to get this result in the Program
 class:

[image:]

Here are some tips for you:

●

 In
 Dog
 , create two constructors: the one where you put all those arguments and assign them to your new object; and a default one that has no instructions inside.

●

 Create a
 public
 int
 canineToHumanAge
 (
)
 method that returns the human equivalent to the age of the dog. If a dog was born a year ago, it’s as if he/she had 9 years old (approximately).

●

 Create a
 public
 void
 bark
 (
)
 method that prints out “Woof woof!!! I’m “ + the name of the dog.

●

 The
 GoldenRetriever
 ’s constructor doesn’t get color as argument because it sets it automatically to “Golden” (don’t forget to implement that).

3)
 What is wrong with the following code?

Employee.java

public
 class
 Employee
 {

protected
 double
 salary;

public
 double
 getRaise()
 {

return
 this
 .
 salary *
 0.10;

}

}

Manager.java

public
 class
 Manager
 extends
 Employee
 {

@Override

public
 double
 getValueOfRaise()
 {

return
 this
 .
 salary *
 0.15;

}

}

4)
 A programmer was writing attributes for two classes: Person and Dog. He/She noticed that both classes would have the attributes name, age and gender. Because of that, the programmer decided to make the Dog class inherit the attributes from the Person class in order to save a few lines of code.

public
 class
 Person
 {

String
 name;

int
 age;

char
 gender;

}

public
 class
 Dog
 extends
 Person
 {

// ...

}

Considering what you’ve learned about inheritance, does that make sense? Why?

Answers

1)
 Option B, of course. Every Ferrari is a car, but not every car is a Ferrari. And a Ferrari has extra
 features when compared to a regular car.

2) Dog.java

public
 class
 Dog
 {

String
 name;

String
 color;

char
 gender;

int
 canineAge;

Dog
 ()
 {}

Dog
 (
 String
 name,
 String
 color,
 char
 gender,
 int
 canineAge)
 {

this
 .
 name =
 name;

this
 .
 color =
 color;

this
 .
 gender =
 gender;

this
 .
 canineAge =
 canineAge;

}

public
 int
 canineToHumanAge()
 {

return
 this
 .
 canineAge *
 9;

}

public
 void
 bark()
 {

System
 .
 out
 .
 println(
 "Woof woof!!! I'm "
 +
 this
 .
 name);

}

}

GoldenRetriever.java

public
 class
 GoldenRetriever
 extends
 Dog
 {

GoldenRetriever
 (
 String
 name,
 char
 gender,
 int
 canineAge)
 {

this
 .
 name =
 name;

this
 .
 color =
 "Golden";

this
 .
 gender =
 gender;

this
 .
 canineAge =
 canineAge;

}

}

3)
 In Manager.java, we’re trying to override a getValueOfRaise(
)
 method that does not exist in the super class. We are actually creating
 a new method, but the @Overrid
 e
 annotation doesn’t allow us to do that. The person probably changed the name of the method and forgot to refactor every occurrence.

4)
 That’s not a good practice, because Dogs and People aren’t related in any way (hierarchically speaking). A dog is not a person and a person is not a dog. Even though they have some characteristics in common, there are a lot more differences between them. Read more about some mistakes on inheritance here
 .

images/00043.jpeg
Accoun

interfa
draw() These car
deposit()
transferTo
implementati
These

balance
limit

images/00016.jpeg
Run (@ MyFirstClass

> "C:\Program Files\Java\jdk-9\bin\java" "-javaag
Hello, World!
Process finished with exit code 0

X% B

1) e e e e e s

images/00045.jpeg
Eile Edit View Navigate Code Analyze Refactor
= A “
ly First Program B src . (@ Account

PR © oo

b

=R PuBLiE class Account {

B e

L private double balance;

H

g =

v Constructor -

= Getter
Setter

equals() and hashCode()
s toString0

Override Methods... Ctrl+O
1 Delegate Methods

=W Copyright

images/00025.jpeg
Thiils| lils| Iclodelnlilflilc

3 45 6 7 8 9 10 11 12 13 14 15 16

images/00050.jpeg
@override

public double getTheRaise() {
return this.salary * 0.15;

images/00024.jpeg
public class Variables {
public static void main(String(] args) {

floatn =19

3 Incompatible types.
Required: float
Found: ~ double

images/00027.jpeg
Program Files\Java\jdk-9\bin\java" "-javaagent:C:\Program File
R—

+
+

Exception in thread "main” java.util.lInputhismatchException

>
n
I

ot 3ava.base/3ava. uril. Scamer. chroufor (Scanner. java:80)
B . javelbase/sava usit.scanner nex (scanner.avar1asn)
/B at java.base/java.ucil.Scanner nextine (Scaner. ava:Zlel)

at java.base/Java.util.Scanner.nextInt (Scanner.Java:211s)

L]
= at Inputs.main (Inputs. java:g)
=

Process finished with exit code 1

X

B
T e e e s S (e)

images/00026.jpeg
"C:\Program Files\Java\jdk-9\bin\java" "-javaagent
Enter a number:

The chosen number is: 25

=mav

S [B rrocess sintanea vith exic cose 0
B
L]

NX% B &E

[Allfiles are up-to-date (moments ago)

images/00001.jpeg
&
K
l

LUCAS BARZAN

JAVA

FOR BEGINNERS _

Get.from Zeroto
Object<OrientedProgramming

images/00017.jpeg
Ele Edtt View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

g My First Program B src @ Variables

& project - © 4 | #- 1~ @ MyFintClassjava | @ Varables
My First Program C\Users\Luces\deaProjecs\VIy Fist © b | public class Variables {
> Mides 2> public stavic void main(Scring(] args) (
> o
v msc s =
@ MyFirstClass
@ Variables

My First Program.iml
>l External Libraries.

images/00051.jpeg
Method does not override method from its superclass

}

images/00018.jpeg
= Varisbles v | b € % W@ Q

v

images/00041.jpeg
» public class Program {

4 public static void main(String[] args) {
Account account = new Account () ;
account.balance = -100;

‘balance’ has private access in ‘Account’

images/00008.jpeg
T |
Projectngme: | IR]

Project location: | C:\Users\Lucas\IdeaProjects\My First Program

» More Settings

| Previous Finish | | Concel | Help

images/00033.jpeg
Memory

images/00029.jpeg
public static void main(String[] args) {
Scanner scan = new Scanner (System.in):

Classto Import
1
@ = Scanner jdknsshom.ntemal parser <o> B
[——) <o> M
© = Scanner (comsunjava_cupintemslauntime) <95 B,
@ = Scanner (comsuntoolsjavac.parser) N

images/00010.jpeg
B Project - 0 % | %1
ers\Lucas\IdeaProjects\My Fis

oy I 7 =S

>l External Li 6 Cut Cirtex | I Kotlin File/Class

1) cory cuiec B Fie
CoyPatn Cuesnc B Sertch e CueAltSifnsert
Copy Reference. Ctr Alt ShiftrC | D Packsge
9 poste Cuy 4 P Fe
sckage-nfojava
Find Usages aner d‘g i 5
Find in Path CuleshifesF st P)
Replace i Pth Cueshiton £ HTMLFe ‘
Analyze) ik JavaFXApplication
e , & Sigleon |
HSLT Syesheet
Addto Favores ,
it i Templtes. J
Show mage Thumbnals CubeShitsT
£ GuiForm
Beformat Code cnanel o o)
Optimize Imports Ctrl+Alt+ O lalog
[tp—
Delete. Excluir

i Resource Bundle

images/00048.jpeg
1 g 1

o Overides method n Emplovee
|Ockorpres ot ommvigme [0)

}

images/00034.jpeg
Memory /

images/00006.jpeg
Project SDK: (java version " v] [New
Andrcid ‘Additional Libraries and Frameworks:
(& Intel Platform Plugin B O Groowy
M Maven 1 K Kotlin/JVM
 Gradle I Kotlin/1s
© Groovy,
@ Giiffon
K Kotlin
Empty Project
Uselibrary: | [No library selected] Create.

Ertor: library i not specified

Previous Next Cancel Help

images/00046.jpeg
Getter template] Itell Defautt
Setertemplte] Inell Defalt
e@z=
v O Account

@ © numberint

7

@[o =

images/00019.jpeg
Variables v

Edit Configurations.
I8l Save Variables' Configuration
MyFirstClass

Variables

images/00004.jpeg
Version: 2017.2.5
Build.

Download IntelliJ IDEA

Windows macos Linux

Ultimate

Web, mobile and enterprise
development

Free trial

Community

Java, Groovy, Scala and
Android development

Free, open-source

images/00030.jpeg
sout]

sout Prints a string to System.
soutm Prints current class and method names to System.
soutp Prints method parameter names and values to System
soutv. Prints a value to System.

Pres ot Ponto Fina 0 choos the seleced (or frs) suggestion and nsen 2 dot afenwards 2>

out

out
out
out

images/00007.jpeg
I Create project from template

Command Line App

())

images/00047.jpeg
Bl Projec v © & | %
v 2 My Frst Program C
> Mides
[T
v s

sers\Lucas!

Account
Client
Employee
Program

My First Program.iml
>l External Libraries

images/00049.jpeg
@Override
public double getRaise() {
return this.salary * 0.15;

images/00012.jpeg
public class MyFizstClass
]

images/00032.jpeg
Specifications
of a Bank
Account

number: 65
client: Luc
balance:
10000000

A\ 4

number: 49
client: Ste
balance: 20!
l[imit: 500

number: 27
client: Mari

balance: 73
limit: 150

images/00003.jpeg
Overview || Downloads |(Documentation | Community |[Technologies |(Training

Java SE Development Kit 9 Downloads

‘Thank you for downloading this release of the Java™ Platform, Standard Edition Development Kit
(DK™). The JDK is a development environment for buiing applications, and components using the
Java programming language

‘The JDK includes tools useful for developing and testing programs written in the Java programming
language and running on the Java platform.

See also.

+ Java Developer Newslatier: From your Oracle account, select Subscriptions, expand
Technology, and subscribe to Java

+ Java Developer Day hands-or
+ Java Magazine
JDK9.0.1 checksum

workshops (fres) and other svents

Java SE Development Kit 9.0.1

You must accept the Oracle Binary Code License Agreement for Java SE to download this

software.
Accept License Agreement © Decline License Agreement
Product/ File Description File Size Download
Linux 30499 MB_ $idic9.0.1_linuxx64_bin rpm
Linux 33811 MB_ $/0k-9.0.1_linwx64_bintar gz
macos 38211MB_ $10k-9.0.1_0sx-x64_bindmg
Windows 37551 MB_ $id-0.0.1_windows-x64_bin exe

Solaris SPARC 206.85 MB_ 3;0k-9.0.1_solaris-sparcv_bin.tar.gz

images/00028.jpeg
lic static void main(String[] args) {

® Createclass Scanner

® Creste enum ‘Scanner

® Creste inner cass ‘Scanner
® Creste inteface Scanner

% Spitinto declartion and assignment >

images/00011.jpeg

images/00039.jpeg
mvuvAccniintc

points to

the ? *

points to the points to the
obiect jiect

images/00036.jpeg
File Edit View Navigate Code Analyze Refactor Build Run
W My First Program B src - @& TestEmployee

O Employeejava »

1 b public class TestEmployee {

= 2 public static void main(String[] args) {
Employee & = n=w Employee():

4 €e.name = "Lucas”";

3 e.dateOfBirth = "25/10/2001";

€ e.wasHiredOn = "01/09/2017";

7 e.job = "CEO";
e.salary = 50000.0;

10 e.show():

Name: Lucas
Date of Birth: 25/10/2001
Hired on: 01/09/2017

&
Job: CEO
O . Salary: 50000.0

Annual Salary: 600000.0

Run [_'E] TestEmployee
’ 1 "C:\Program Files\Java\jdk-9\bin\java" "-jaw
n| 3

E8 u Process finished with exit code 0

images/00021.jpeg
public class Variables {
public static void main(String(] args)
System.out.println(:

Cannot resolve symbol

images/00038.jpeg

images/00013.jpeg
MyFirstClassjava
public class Y

]

Class |

povn main() method declaravion
Prec o Pono Finsi o chocs the seected (o s suggeston and nser 3 ot sfennarcs >>

images/00014.jpeg
L b |public class MyFirstClass |
> public static void main(String(] args) {
System. out.prine ("Hello, World!");

}

images/00009.jpeg
Ele Edtt View Navigate Code Analyze Refactor Build Run Tools VCS Window Help

5 My First Program
B9 project B O & | % 1=
> Mides
s

My First Program.iml
» Il External Libraries

Search Everywhere Double Shift
GotoFile Ctrl+Shift+N

Recent Files Ctrl+E

Navigation Bar Alt+Inicio

Drop files here to open

images/00035.jpeg

images/00020.jpeg
Run [Variables.

4 "Ci\Program Files\Java\jdk-S\bim\java" "-jav
o
+

Process finished with exit code 0

= @

=
B

Compilation completed successfully in 15 824ms (moments ago)

images/00005.jpeg
)

IntelliJ IDEA

Version 2017.2.5

H Create New Project
& mport Project
& Open

¥ Check out from Version Control +

Configure + GetHelp +

images/00022.jpeg
type “Aame
int count;
declaration
initial
value

count = 0;

initialization

images/00040.jpeg

images/00042.jpeg
public boolean draw(double amount) {
if (amount > this.balance + this.) {

return fal o © balance double

} else { @ o deposit (double amount) void
this.balan o o limit double

=BT e @ b draw (double amount) boolean

} : @ © owner Client
@ © number int

void deposit (doublq @ s hashCode () int
@ o transferTo (Account destiny, double amount) boolean

boolean transferTo|@ £ clone () Object

images/00031.jpeg
9
—C + 32
5

images/00023.jpeg
type variable Initial

int count = 0;

declaration

initialization

images/00037.jpeg

images/00015.jpeg
@ MyFistClass

1 b b | public class MyFirstClass(public static void main(String[]args) System.out.print ("Hello, World!"):]}

images/00052.jpeg
1
2
3
4
5
6
7
8

g
10
11
12
13

aa

public class Program {

v
public static void main(String[] args) {
Dog rufus = new Dog(name: "Rufus", color: "Black", gender: 'M', canineAge: 3);

rufus.bark() ;
System.out.println("I'm " + rufus.canineToHumanAge() + " human years old");

System.out.println ("

GoldenRetriever marley = new GoldenRetriever (name: "Marley", gender: 'M', canineAge:
marley.bark();
System.out.println("I'm " + marley.canineToHumanAge () + " human years old");

Rn@Pogem ok
> t
"

"C:\Program Files\Java\jdk-9\bin\java" "-javaagent:
Woof woof!!! T'm Rufus

I'm 27 human years old

Woof woof!!! I'm Marley

I'm 45 human years old

\Program Files\JetBrains\Intelli

images/00044.jpeg
File Edit View Novigate [[CodEl Analyze Refactor Build Run Tools VCS Window

= B D ¢ 4) OverideMethods [
e o, melement Methocs, Curel
e J Delegate Methods.
g O T A
g+ [P cles
£ nc o Surround With CurleAtsT
L privatef Unwrap/Remove. Ctrl+Shift+ Excluir
privace
Completion »
g Client et
£ Folding »
E Insert Live Template, Curtes
= ‘Surround with Live Template. Ctrl+Alt+)
v public L

3 iz CommentwithLine Comment Ctrl+Barra

