

Martin Kalin

SECOND EDITION

Java Web Services:
Up and Running

Java Web Services: Up and Running, Second Edition
by Martin Kalin

Copyright © 2013 Martin Kalin. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://my.safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meghan Blanchette
Production Editor: Rachel Steely
Copyeditor: Rachel Leach
Proofreader: BIM Indexing and Proofreading Services

Indexer: Judith McConville
Cover Designer: Randy Comer
Interior Designer: David Futato
Illustrator: Rebecca Demarest

September 2013: Second Edition

Revision History for the Second Edition:

2013-08-23: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781449365110 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of O’Reilly
Media, Inc. Java Web Services: Up and Running, Second Edition, the image of a great cormorant, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trade‐
mark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained
herein.

ISBN: 978-1-449-36511-0

[LSI]

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449365110

Table of Contents

Preface. vii

1. Web Services Quickstart. 1
Web Service Miscellany 3
What Good Are Web Services? 4
Web Services and Service-Oriented Architecture 7
A Very Short History of Web Services 8

From DCE/RPC to XML-RPC 9
Distributed Object Architecture: A Java Example 11
Web Services to the Rescue 12

What Is REST? 13
Verbs and Opaque Nouns 17

Review of HTTP Requests and Responses 18
HTTP as an API 20

Two HTTP Clients in Java 21
A First RESTful Example 24

How the Predictions Web Service Works 25
A Client Against the Predictions Web Service 33

Why Use Servlets for RESTful Web Services? 34
What’s Next? 37

2. RESTful Web Services: The Service Side. 39
A RESTful Service as an HttpServlet 40

Implementation Details 41
Sample Client Calls Against the predictions2 Service 52

A RESTful Web Service as a JAX-RS Resource 53
A First JAX-RS Web Service Using Jersey 54
Publishing JAX-RS Resources with a Java Application 55
Publishing JAX-RS Resources with Tomcat 56

iii

The Adage Class 58
JAX-RS Generation of XML and JSON Responses 62
Porting the Predictions Web Service to JAX-RS 65

A RESTful Web Service as Restlet Resources 75
Sample Calls Against the adages2 Service 83
Publishing the adages2 Restlet Service Without a Web Server 84

A RESTful Service as a @WebServiceProvider 85
What’s Next? 94

3. RESTful Web Services: The Client Side. 95
A Perl Client Against a Java RESTful Web Service 96
A Client Against the Amazon E-Commerce Service 101
A Standalone JAX-B Example 110

The XStream Option 114
Another Client Against the Amazon E-Commerce Service 118
The CTA Bus-Tracker Services 123
RESTful Clients and WADL Documents 126
The JAX-RS Client API 132
JSON for JavaScript Clients 134

JSONP and Web Services 135
A Composed RESTful Service with jQuery 137
An Ajax Polling Example 140

What’s Next? 143

4. SOAP-Based Web Services. 145
A SOAP-Based Web Service 146
The RandService in Two Files 151
Clients Against the RandService 152

A Java Client Against the RandService 153
A C# Client Against the RandService 156
A Perl Client Against the RandService 157

The WSDL Service Contract in Detail 160
The types Section 162
The message Section 163
The portType Section 164
The binding Section 164
The service Section 165
Java and XML Schema Data Type Bindings 166
Wrapped and Unwrapped Document Style 168
wsimport Artifacts for the Service Side 171

SOAP-Based Clients Against Amazon’s E-Commerce Service 173
Asynchronous Clients Against SOAP-Based Services 179

iv | Table of Contents

What’s Next? 182

5. SOAP Handlers and Faults. 185
The Handler Level in SOAP-Based Services and Clients 187
Handlers and Faults in the predictionsSOAP Service 194

The Backend Support Classes 199
From the Client to the Service 201
Signature Verification 211
Faults from the Application and Handler Levels 211
Linking the Service-Side Handler to the Service 212

A Handler Chain with Two Handlers 213
SOAP-Based Web Services and Binary Data 218
The Transport Level 224
Axis2 227
What’s Next? 229

6. Web Services Security. 231
Wire-Level Security 232

HTTPS Basics 233
Symmetric and Asymmetric Encryption/Decryption 234
How HTTPS Provides the Three Security Services 236
The HTTPS Handshake 237
The HttpsURLConnection Class 239

A Very Lightweight HTTPS Server and Client 244
HTTPS in a Production-Grade Web Server 254

Enforcing HTTPS Access to a Web Service 256
An HTTPS Client Against the predictions2 Service 257

Container-Managed Security 260
Linking the Service web.xml with a Tomcat Security Realm 263
The Client Side in Users/Roles Security 265
Using the curl Utility for HTTPS Testing 268
A @WebService Under HTTPS with Users/Roles Security 269
Using a Digested Password Instead of a Password 273

WS-Security 275
Securing a @WebService with WS-Security 277

What’s Next? 290

7. Web Services and Java Application Servers. 291
The Web Container 292

The Message-Oriented Middleware 293
The Enterprise Java Bean Container 293
The Naming and Lookup Service 295

Table of Contents | v

The Security Provider 295
The Client Container 296
The Database System 296

Toward a Lightweight JAS 296
GlassFish Basics 297
Servlet-Based Web Services Under GlassFish 299

An Example with Mixed APIs 302
An Interactive Website and a SOAP-Based Web Service 308
A @WebService as a @Stateless Session EJB 312

Packaging and Deploying the predictionsEJB Service 317
A Client Against the predictionsEJB Service 319

TomEE: Tomcat with Java EE Extensions 321
Porting the predictionsEJB Web Service to TomEE 322
Deploying an EJB in a WAR File 323

Where Is the Best Place to Be in Java Web Services? 324
Back to the Question at Hand 328

Index. 331

vi | Table of Contents

Preface

Welcome to the second edition of Java Web Services: Up and Running. This edition, like
the first, is for programmers interested in developing web services and clients against
such services. This edition, again like the first, emphasizes code. My aim is to make web
services and their clients come alive through focused but realistic programming exam‐
ples in Java but, of course, in other languages as well: web services are designed to be
language-neutral, a point best illustrated through the interaction of services and clients
written in different languages. Indeed, the client of a well-designed web service can
remain agnostic about the service’s implementation details, including the language in
which the service is written. To ease the task of compiling and publishing services, the
ZIP file with the code samples includes an Ant script that compiles, packages, and de‐
ploys web services. The major client examples include either Ant scripts for compiling
and running the clients or executable JAR files with all of the dependencies included
therein. The code examples are available at https://github.com/mkalin/jwsur2.

What’s Changed in the Second Edition?
In the four years or so since the first edition, there has been continuity as well as change.
Web services remain a popular and arguably even dominant approach toward
distributed software systems—that is, systems that require the interaction of software on
physically distinct devices. The Web itself is a prime example of a distributed system,
and the current trend is to blur the distinction between traditional, HTML-centric
websites and modern web services, which typically deliver XML or JSON payloads in‐
stead of HTML ones. Web services are an appealing way to create distributed systems
because these services can piggyback on existing infrastructure such as HTTP(S) trans‐
port, web servers, database systems, modern programming languages of various stripes,
widespread software libraries for JSON and XML processing, security providers, and
so on. Indeed, web services are a lightweight and flexible way to integrate divergent
software systems and to make the functionality of such systems readily accessible.

vii

Java remains a major player in web services, and Java support for these services, in the
form of standard and third-party software libraries and utilities, continues to improve.
Yet two important and related shifts in emphasis have occurred since this book was first
published:

• The consumers or clients of web services are increasingly written in JavaScript,
particularly in the jQuery dialect, and these clients naturally prefer response pay‐
loads in JSON (JavaScript Object Notation) rather than in XML because a JSON
document is the text representation of a native JavaScript object. A JavaScript client
that receives, for example, an array of products as a JSON rather than an XML
document can process the array with the usual JavaScript programming constructs.
By contrast, a JavaScript client that receives an XML payload would face a challenge
common across programming languages: the challenge of parsing an XML docu‐
ment to extract its informational content before moving on to specific application
logic. Modern web services and web service frameworks acknowledge the growing
popularity of JSON by treating JSON and XML formats as equals. In some frame‐
works, such as Rails, JSON even gets the nod over XML.

• REST-style services are increasingly popular among familiar sites such as eBay,
Facebook, LinkedIn, Tumblr, and Twitter. Amazon, a web service pioneer, contin‐
ues to support REST-style and SOAP-based versions of its services. The services
from newer players tend to be REST-style for an obvious reason: REST-style services
are relatively low fuss and their APIs are correspondingly simple. SOAP-based
services still are delivered mostly over HTTP(S), although Java and DotNet con‐
tinue to explore the use of other protocols, especially TCP, for transport. The first
edition of this book underscored that SOAP-based services over HTTP can be seen
as a special case of REST-style services; the second edition pursues the same theme.

The two changes in web services are reflected in how the second edition is organized.
Chapter 1 begins with an overview of web services, including the link between such
services and Service-Oriented Architecture (SOA), and the chapter includes a code-
based contrast of SOA and the competing Distributed Object Architecture (DOA). The
discussion then turns to REST: what the acronym means, why HTTP can be treated as
an API and not just a transport, and how the RESTful mindset continues to impact the
design and implementation of modern web services. The first chapter includes sample
HTTP clients in Java, clients that can be targeted at either websites or web services. The
first chapter ends with a RESTful service implemented as a JSP script with support from
two backend POJO classes; the service is published with the Tomcat web server. The
first chapter goes into the details of installing and running Tomcat; the second chapter
does the same for the Jetty web server. The aforementioned Ant script is also clarified
so that the sample web services can be packaged and deployed automatically.

Although this edition of the book starts with REST-style services, SOAP-based services
are treated thoroughly. Chapter 4 covers SOAP-based services at the application level,

viii | Preface

a level in which the SOAP remains transparent; Chapter 5 explores the handler and the
transport levels at which the SOAP is exposed for inspection and manipulation. Starting
with REST-style services helps to explain the advantages that come with SOAP-based
services, in particular the benefit of having the XML remain mostly under the hood.
Issues such as security cut across the REST/SOAP boundary, and Chapter 6 is dedicated
to practical web security, from wire-level security through users/roles security up to
WS-Security.

Web Service APIs and Publication Options
In the first edition, the JAX-WS APIs and their Metro implementation were dominant.
In this edition, the two are important but less dominant. For REST-style services, the
book has examples based on the following APIs:
HttpServlet

The HttpServlet is well designed for REST-style services because the API is so
close to the HTTP metal. Servlet instances encapsulate callbacks such as doPost,
doGet, doPut, and doDelete, which cover the familiar CRUD operations: create
(POST), read (GET), update (PUT), and delete (DELETE). There are symbolic ver‐
sions of HTTP status codes to signal the outcome of an HTTP request, support for
MIME types, utilities to access HTTP headers and bodies, and so on. JSP and other
Java-based scripts execute as servlet instances and, therefore, fall under the servlet
umbrella. The HttpServlet is grizzled but hardly obsolete. Servlets are still an ex‐
cellent way to deliver REST-style services.

JAX-RS
This is a relatively recent and increasingly popular API for delivering REST-style
services. The API centers on annotations such as @GET and @POST to route HTTP
requests to particular Java methods. There is likewise a convenient @Path annota‐
tion to identify the particular resource targeted in a request. JAX-RS can be con‐
figured to automatically generate XML and JSON responses. This API, like the
Restlet API described next, has a contemporary look and feel. At the implementa‐
tion level, JAX-RS represents a layering atop servlets. The same options for pub‐
lishing servlet-based services are available for their JAX-RS cousins.

Restlet
This API is similar in style to JAX-RS, although the claim is likely to upset propo‐
nents of both. The Restlet API also centers on annotations for routing HTTP re‐
quests to designated Java methods and for generating payloads. Restlet encourages
interplay with other APIs. It is possible, for example, to use JAX-RS annotations in
a Restlet-based service. Restlet offers an easy-to-use publisher for development
and testing. Restlet services, like their JAX-RS counterparts, represent an

Preface | ix

implementation level on top of servlets. Programmers should be able to move easily
between the JAX-RS and Restlet APIs.

JAX-WS @WebServiceProvider
This is a deliberately XML-centric and low-level API that could be used for either
SOAP-based or REST-style services. However, JAX-WS has the @WebService an‐
notation precisely for SOAP-based services; hence, the most obvious use of the
@WebServiceProvider annotation is for XML-based REST-style services. This API
is well suited for services that require granular control over XML generation and
processing.

For SOAP-based services, most of the examples use the reference implementation of
JAX-WS, which is Metro. However, this edition now covers Axis2 as well. Axis2 imple‐
ments JAX-WS but has additional features.

The Publication Options
Each of these APIs, whether for REST-style or SOAP-based services, honors the
separation-of-concerns principle with respect to publishing a web service. The web
service is one concern; its publication is quite another concern. Services developed with
any of these APIs can be published with a standalone web server such as Tomcat, a Java
Application Server (JAS) such as GlassFish, or even with a simple command-line utility
such as the standard Endpoint publisher. To underscore the separation-of-concerns
principle and to emphasize the production-grade options, my examples are published
in the following ways:
Standalone web servers

The two obvious choices in Java are Tomcat and Jetty, although other choices are
available. The aforementioned Ant script automatically compiles and packages web
services, REST-style and SOAP-based alike, for publication. Although the Ant script
is tailored for Tomcat publication, a generated WAR file can be deployed, as is, to
Jetty, Tomcat, or one of the many JASes. Tomcat and Jetty provide the usual services
such as wire-level and users/roles security, logging/debugging, and administration
that one expects from a production-grade web server.

Java Application Servers
The reference implementation is still GlassFish, which is part of the community-
based Metro project. GlassFish can be used to publish either servlet-based services,
which are the type that Tomcat and Jetty can publish, or EJB-based services, which
are @Stateless Session Enterprise JavaBeans. TomEE, which is essentially Tomcat7
with OpenEJB extensions, is an emphatically lightweight publisher of both servlet-
based and EJB-based services. Under TomEE, even an EJB-based service can be
deployed as a standard WAR (Web ARchive) file. TomEE includes an implemen‐
tation of JAX-RS.

x | Preface

Command-line publishers
Examples are the standard Endpoint utility class and the Restlet Component class.
These publishers are useful for development, testing, and even low-volume
production.

Java in general draws strength from the many options that the language and the run-
time offer; this strength carries over to web services as well. There are many ways to
program web services and web service clients in Java, and there are various attractive
options for publishing such services. There is no need to claim any particular way in
web services as the best way. My aim is to examine and clarify the choices so that in the
end, the API, implementation, and method of publication can be determined by what
is best suited for the service.

Chapter-by-Chapter Overview
The second edition has seven chapters. The following list offers a summary of each
chapter.
Chapter 1, Web Services Quickstart

This chapter begins the code-driven tour of web services with an overview of the
differences—and the similarities—between REST and SOAP. Why are web services
of any use? This question is addressed with examples: one example focuses on using
web services to automate access to the data and functionality available on the Web;
the other example focuses on web services as a way to integrate diverse software
systems. The theme of interoperability is pursued throughout the book with ex‐
amples. Chapter 1 includes a short history of web services, with emphasis on how
the SOA approach to distributed systems differs significantly from the DOA ap‐
proach that predates yet continues to compete with web services. The chapter then
focuses on how HTTP itself is at the center of the RESTful way to web-based, dis‐
tributed software systems. XML and JSON are introduced as document-exchange
formats of special interest in RESTful services. The chapter includes code examples:
a pair of Java HTTP clients used to illustrate key features of HTTP; and a first
RESTful service, which consists of a JSP script and two backend POJO classes. The
curl utility is used to make sample client calls, including failed ones, against the first
service. The chapter covers practical matters such as installing the Tomcat web
server and using the provided Ant script to compile, package, and deploy a web
service.

Chapter 2, RESTful Web Services: The Service Side
This chapter introduces various APIs and implementations available for program‐
ming and delivering RESTful web services in Java. The HttpServlet, JAX-RS, Rest‐
let, and JAX-WS @WebServiceProvider APIs are explored through full code ex‐
amples. The chapter clarifies various ways of generating XML and JSON payloads,
using both standard Java classes and different third-party ones. The code examples

Preface | xi

adhere to RESTful principles such as honoring the intended meaning of each CRUD
verb; using intuitive URIs to name resources; relying upon MIME data types to
describe resource representations; and taking full advantage of those HTTP status
codes that report on the outcome of an HTTP request against a RESTful service.
Chapter 2, along with later chapters, looks at options for publishing RESTful serv‐
ices. The options include standalone web servers such as Tomcat and Jetty together
with command-line publishers such as Endpoint, HttpServer, and Restlet Compo
nent. The chapter goes into the technical details of multithreading and thread syn‐
chronization in services deployed with a web server such as Tomcat or Jetty. The
installation and management of Jetty are also covered. Chapter 2 also takes a first
look at the powerful JAX-B (Java API for XML-Binding) and JAX-P (Java API for
XML-Processing) utilities, which are especially important in the Chapter 3 coverage
of the client side in RESTful services.

Chapter 3, RESTful Web Services: The Client Side
This chapter shifts focus from the service to the client side of RESTful services.
There are sample clients written with the weathered but still trusty URLConnec
tion class and also clients written using REST-specific APIs. (JAX-RS, Restlet, and
JAX-WS provide both service-side and client-side APIs.) As evidence of intero‐
perability, the chapter offers jQuery and Perl clients against Java services and Java
clients against commercial services whose implementation language is officially
unknown. The code samples explore various possibilities for dealing with XML and
JSON payloads, in particular the standard JAX-B packages and third-party contri‐
butions such as XStream. These utilities are especially useful in transforming XML
documents into native Java objects, which obviates the need for explicit parsing.
Most RESTful services now furnish a grammar, in the form of an XML Schema or
equivalent, for the service; core Java has utilities such as xjc that convert an XML
Schema into Java classes. Chapter 3 has clients against real-world RESTful services
at Twitter, Amazon, and the Chicago Transit Authority. This chapter pays special
attention to the growing importance of JavaScript clients, which are highlighted in
several examples using jQuery. Finally, the chapter shows how distinct web services
can be orchestrated to form a single, composite service.

Chapter 4, SOAP-Based Web Services
This chapter turns from REST-style to SOAP-based services, in particular to the
JAX-WS API and its central annotation @WebService. The chapter opens by con‐
verting a REST-style service from earlier chapters to a SOAP-based service. The
emphasis in this chapter is on the application level, a level in which the XML in
SOAP-based messaging remains transparent. Indeed, a chief attraction of SOAP-
based services is that neither the services nor their clients require any attention to
the underlying XML: service operations are, in Java, public methods preferably
annotated with @WebMethod, and remote clients invoke the operations straightfor‐
wardly. The data types of arguments and return values include all of the primitive

xii | Preface

types and their wrappers, the String and Calendar types, various other standard
types, arrays of any acceptable type, and programmer-defined classes whose prop‐
erties reduce ultimately to any of these. The chapter explains in detail the
programmer-friendly wsimport utility, which generates client-side support code
from the web service contract, the WSDL (Web Service Description Language)
document. The structure, purpose, and various uses of the WSDL are clarified
through coding examples. The role of XML Schema or equivalent in a WSDL docu‐
ment is given particular emphasis. The chapter includes two Java clients against the
Amazon E-Commerce service together with C# and Perl clients against a Java ser‐
vice. These examples underscore that SOAP-based services, like their REST-style
cousins, are language-neutral. The clients against the SOAP-based version of the
Amazon E-Commerce service introduce but do not explore the handler level of
SOAP-based services; these examples also provide a first look at security issues.

Chapter 5, SOAP Handlers and Faults
This chapter examines the handler and transport levels in SOAP messaging, levels
at which the XML in a SOAP message comes to the fore for inspection and ma‐
nipulation. The chapter begins with a look at the SOAP message architecture, which
distinguishes among a message sender; an intermediary that should confine its ac‐
tivity to the SOAP header rather than the SOAP body or attachments in a message;
and an ultimate receiver, which should have access to the entire SOAP message. The
distinct parts of SOAP messages, the raw XML and any attachments, are accessible
to SOAP handlers, which come in two flavors: message handlers have access to the
entire SOAP message (header, body, and attachments), whereas logical handlers
have access only to the payload in the body. WS-Security and related extensions of
SOAP beyond the basic profile may use such access to inject or inspect security
elements in SOAP headers. Handlers are akin to Filter instances in websites, al‐
though handlers are inherently bidirectional and can occur on either the client or
the service side. The chapter covers both individual handlers and handler chains,
in this case a chain consisting of a message and a logical handler. The handler chain
example mimics the user authentication at work in Amazon’s web services. The
chapter likewise examines the related topic of SOAP faults, special error messages
that can be generated at either the application or the handler level. The chapter also
looks at how SOAP messages can transport arbitrary binary data as attachments.
A final topic is the transport level, usually HTTP; this level is especially useful in
the users/roles security examined in Chapter 6.

Chapter 6, Web Services Security
This chapter covers security, a topic that cuts across the REST/SOAP boundary, at
three levels: wire-level security of the type that HTTPS provides, users/roles secu‐
rity, and WS-Security in SOAP-based messaging. The chapter begins with wire-
level security and its constituent services of peer authentication, message
confidentiality, and message integrity. The clarification of these terms requires, in

Preface | xiii

turn, an examination of concepts such as symmetric and asymmetric encryption/
decryption, public key security, cryptographic hash function, and cryptographic
suite. HTTPS is examined in detail through coding examples: two HTTPS clients
against the Google site and a lightweight HTTPS server built with the HttpsServer
class that comes with the core Java JDK. There is also a sample HTTPS client against
a RESTful service. These and other coding examples clarify additional security ar‐
tifacts such as the keystore and the truststore, digital certificates, and certificate
authority. There is a section to explain how a web server such as Tomcat can be set
up to handle and even to enforce HTTPS connections. Chapter 6 also covers
container-managed users/roles security, again with coding examples that involve a
production-grade web server such as Tomcat. The two-phased user authentication
and roles authorization process is studied in detail and includes examples of HTTP
BASIC and DIGEST authentication. The chapter ends with a code example focused
on WS-Security and its end-to-end approach to security.

Chapter 7, Web Services and Java Application Servers
This chapter introduces the Java Application Server as an alternative to the stand‐
alone web server for deploying REST-style and SOAP-based services. The JAS as a
service publisher also brings the option of deploying a web service as an EJB, in
particular a web service as a @Stateless Session EJB. The chapter begins with a list
of the popular JASes and then clarifies the core components and attendant func‐
tionalities of a JAS. There is a review of how sample services from previous chapters
—from HttpServlet examples through JAX-RS, Restlet, @WebServiceProvider,
and @WebService examples—can be ported to a JAS. In all cases, almost no change
is required. Chapter 7 also motivates the option of a JAS, in particular the benefits
that come with deploying a service in the thread-safe EJB container. A typical JAS
is not only a publisher but also a development, testing, and management environ‐
ment. This chapter has a further coding example of how web services and websites
can interact, and the excellent JPA (Java Persistence API) is introduced with two
coding examples that persist data in different databases: HSQLDB and Java Derby.
The chapter introduces two JASes through code examples: GlassFish, which is the
reference implementation, and TomEE, which is an emphatically lightweight option
among JASes. Various sidebars explain installation and management details. The
chapter ends with a review and a recommendation that programmers embrace the
many excellent choices of API and implementation that Java offers in the area of
web services.

Tools and IDEs
Java programmers have a wide choice of productivity tools. Among the build tools are
Ant, Maven, and Meister; among the many testing tools are EasyMock, JMockit, JUnit,
Mockito, and TestNG. Java likewise offers choices among IDEs, including Eclipse,

xiv | Preface

IntelliJ IDEA, and NetBeans. In a production environment, tools and IDEs are the way
to go as they hide the grimy details that slow the journey from initial design through
deployment and maintenance. In a learning environment, a build tool makes sense
because it facilitates experimentation. My Ant script is meant to serve this purpose: it
allows a web service, with all of the dependencies, to be compiled, built, and deployed
with a single command:

% ant deploy -Dwar.name=myFirstService

Chapter 1 goes into the setup details, which are minimal.

With respect to IDEs, this second edition is, like the first, neutral. The very grimy details
that are an obstacle in a production environment are critical in a learning environment.
For that reason, my code examples include all of the import statements so that depen‐
dencies are clear. Package/directory structure is explained whenever third-party libra‐
ries are used. The code listings usually have numbered statements and expressions for
ease of reference and explanation. The examples themselves are designed to highlight
the challenges inherent in any serious programming, but these examples also focus on
patterned approaches to meeting the challenges. Web services and their clients are, in
the end, code—and this book focuses on code.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, filenames, file extensions, and emphasis.

Constant width

Used for program listings as well as within paragraphs to refer to program elements
such as variable or method names, data types, environment variables, statements,
and keywords.

Sidebars
The book uses sidebars (see “This Is a Sidebar” on page xv) to focus on particular
topics. Sidebars often contain practical information about installing and running
applications such as a standalone web server or a Java Application Server.

This Is a Sidebar
A topic of special interest.

Preface | xv

Using Code Examples
This book is here to help you get your job done. In general, if this book includes code
examples, you may use the code in your programs and documentation. You do not need
to contact us for permission unless you’re reproducing a significant portion of the code.
For example, writing a program that uses several chunks of code from this book does
not require permission. Selling or distributing a CD-ROM of examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of ex‐
ample code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Java Web Services: Up and Running, Second
Edition, by Martin Kalin. Copyright 2013 Martin Kalin, 978-1-449-36511-0.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s lead‐
ing authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

xvi | Preface

mailto:permissions@oreilly.com
http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/Java_web_services.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Edward Yue Shung Wong and Ken Yu were generous enough to review this book and
offer many insightful suggestions for its improvement. They made the book better than
it otherwise would have been. I thank them heartily for the time and effort that they
invested in this project. The remaining shortcomings are mine alone, of course. Meghan
Blanchette, my editor, has provided invaluable support, and the book would not be
without her help. My thanks go as well to the many behind-the-scenes people at O’Reilly
Media who worked on this project.

This edition, like the first, is dedicated to Janet.

Preface | xvii

http://oreil.ly/Java_web_services
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Web Services Quickstart

Although the term web service has various, imprecise, and evolving meanings, a working
definition should be enough for the upcoming code example, which consists of a service
and a client, also known as a consumer or requester. As the name suggests, a web service
is a kind of webified application—an application typically delivered over HTTP (Hy‐
perText Transport Protocol). HTTPS (HTTP Secure) adds a security layer to HTTP;
hence, a service delivered over HTTPS likewise counts as a web service. Until the main
topic of interest is web service security, HTTP should be understood to include HTTPS.

Amazon, a pioneer in web services, is well known for its various websites, among which
is the E-Commerce site for shopping. Amazon has other popular websites as well. Of
interest here is that the data and functionality available at Amazon websites are likewise
available as Amazon web services. For example, someone can use a browser to shop
interactively at the Amazon E-Commerce site, but this person also could write a pro‐
gram, as later examples show, to do the shopping through the corresponding Amazon
E-Commerce web service. Amazon is particularly good at pairing off its websites with
web services.

Web services can be programmed in a variety of languages, old and new. The obvious
way to publish a web service is with a web server; a web service client needs to execute
on a machine that has network access, usually over HTTP, to the web server. In more
technical terms, a web service is a distributed software system whose components can
be deployed and executed on physically distinct devices. Consider, for example, a web
server host1 that hosts a web service and a mobile device host2 that hosts an application
issuing requests against the service on host1 (see Figure 1-1). Web services may be more
architecturally complicated than this, of course; for one thing, a service may have many
clients issuing requests against it, and the service itself may be composed of other serv‐
ices. For instance, a stock-picking web service might consist of several code components,
each hosted on a separate commercial-grade web server, and any mix of PCs, handhelds,
and other networked devices might host programs that consume the service. Although

1

the building blocks of web services are relatively simple, the web services themselves
can be arbitrarily complex.

Figure 1-1. A web service and one of its clients

An HTTP request goes, by definition, from client to server, and an HTTP response goes,
also by definition, from server to client. For web services over HTTP, the HTTP mes‐
sages are the infrastructure, and these HTTP messages can be combined into basic
conversational patterns that characterize a web service. For example, if the web service
conversation starts with an HTTP request that expects an HTTP response, the pattern
is the familiar request/response conversation. By contrast, if the conversation starts with
an HTTP message from the server, a message that expects a message from the client in
return, then the pattern is solicit/response. Richer conversational patterns can be com‐
posed out of such basic two-message patterns. Indeed, these two-message patterns are
composed of even more primitive ones: a message from client to server without a re‐
sponse is a pattern known as one-way, and the reverse pattern, from server to client
without a client response, is known as notification. Web services tend to be simple in
structure. The four conversational patterns enumerated just now cover most modern
web services, and request/response is the pattern that still dominates.

Web services come in two popular flavors: SOAP-based and REST-style. SOAP is an
XML dialect with a grammar that specifies the structure that a document must have in
order to count as SOAP. In a typical SOAP-based service, the client sends SOAP messages
to the service and the service responds in kind, with SOAP messages. REST-style services
are hard to characterize in a sentence or two, but with respect to pattern, these services
tend to be request/response; the same holds for SOAP-based services. For now, a REST-
style service is one that treats HTTP not only as transport infrastructure but also as a
set of guidelines for designing service requests and service responses. In a REST-style
service, HTTP itself can be seen as an API. SOAP has standards, toolkits, and bountiful
software libraries. REST has no official standards, comparatively few toolkits, and un‐
even software libraries among programming languages. Yet there is growing support
for REST-style services across programming languages; hence, it seems only a matter
of time until toolkits and libraries for REST-style services mature.

From a historical perspective, the RESTful approach to web services can be viewed as
an antidote to the creeping complexity of SOAP-based web services. SOAP-based serv‐
ices are designed to be transport-neutral; as a result, SOAP messaging may seem overly
complicated if the transport is, in fact, HTTP. This book covers SOAP-based and

2 | Chapter 1: Web Services Quickstart

REST-style web services, starting with REST-style ones. This chapter ends with a sample
REST-style service and sample client calls against the service. At present, the distinction
between the two flavors of web service is not sharp, because a SOAP-based service
delivered over HTTP can be seen as a special case of a REST-style service; HTTP remains
the dominant transport for SOAP-based services.

SOAP originally stood for Simple Object Access Protocol and then, by serendipity but
never officially, might have stood for Service-Oriented Architecture (SOA) Protocol.
(SOA is discussed in the section “Web Services and Service-Oriented Architecture” on
page 7.) The World Wide Web Consortium (hereafter, W3C) currently oversees SOAP,
and SOAP is officially no longer an acronym.

Web Service Miscellany
Except in test mode, the client of either a SOAP-based or REST-style service is rarely a
web browser but, rather, usually an application without a graphical user interface. The
client may be written in any language with the appropriate support libraries. Indeed, a
major appeal of web services is language transparency: the service and its clients need
not be written in the same language. Language transparency is a key contributor to web
service interoperability—that is, the ability of web services and their consumers to in‐
teract seamlessly despite differences in programming languages, support libraries, op‐
erating systems, and hardware platforms. To underscore this appeal, my examples use
a mix of languages besides Java, among them C#, JavaScript, and Perl. My sample clients
in Java consume services written in languages other than Java; indeed, sometimes in
languages unknown.

There is no magic in language transparency, of course. If a web service written in Java
can have a Python or a Ruby consumer, there must be an intermediary layer that handles
the differences in data types between the service and the client languages. XML tech‐
nologies, which support structured document interchange and processing, act as one
such intermediary level. Another intermediary level is JSON (JavaScript Object Nota‐
tion). XML and JSON are both data-interchange formats, but JSON clearly has the upper
hand with data receivers written in JavaScript because a JSON document is the text
representation of a native JavaScript object. Web service clients are increasingly Java‐
Script programs embedded in HTML documents and executing in a browser; such
clients process JSON with less fuss than they do XML. Even among non-JavaScript
clients, JSON has gained in popularity; for one thing, JSON is more readable than XML
because JSON has relatively less markup. Chapter 2 illustrates various ways in which
REST-style services can generate XML and JSON payloads; Chapter 3 focuses on con‐
suming XML and JSON payloads from RESTful web services. In SOAP-based services,
XML remains the dominant format, although the DotNet framework is especially good
at giving JSON equal status.

Web Service Miscellany | 3

Several features distinguish web services from other distributed software systems. Here
are three:
Open infrastructure

Web services are deployed using industry-standard, vendor-independent protocols
and languages such as HTTP, XML, and JSON, all of which are ubiquitous and well
understood. Web services can piggyback on networking, data formatting, security,
and other infrastructures already in place, which lowers entry costs and promotes
interoperability among services. Organizations that publish websites with
production-grade web servers such as Apache2, IIS, and Nginx can publish web
services with these very web servers. Firewalls and other security mechanisms that
defend websites thereby defend web services as well.

Platform and language transparency
Web services and their clients can interoperate even if written in different pro‐
gramming languages. Languages such as C, C#, Go, Java, JavaScript, Perl, Python,
Ruby, and others provide libraries, utilities, and even frameworks in support of web
services. Web services can be published and consumed on various hardware plat‐
forms and under different operating systems. Web services are an excellent way to
integrate diverse software systems while allowing the programmer to work in the
programmer’s language of choice. The web service approach to software develop‐
ment is not to rewrite but, rather, to integrate.

Modular design
Web services are meant to be modular in design so that new services can be com‐
posed out of existing ones. Imagine, for example, an inventory-tracking service
integrated with an online ordering service to compose a service that automatically
orders the appropriate products in response to inventory levels. Web services are
the small software parts out of which arbitrarily large systems can be built. A guiding
principle in web service design is to begin with very simple service operations,
essentially uncomplicated functions, and then group these operations into services,
which in turn can be orchestrated to work with other services, and so on indefinitely.

What Good Are Web Services?
This obvious question has no simple answer, but the benefits and promises of web
services can be clarified with examples. The first example underscores how the distinc‐
tion between websites and web services continues to blur: the data and functionality
available at one can be available at the other. (One web framework that emphasizes the
blurring is Rails, which is discussed in more detail later.) The second example focuses
on how web services can be used to integrate diverse software systems and to make
legacy systems more widely accessible.

4 | Chapter 1: Web Services Quickstart

A visit to a website such as the Amazon E-Commerce site is often interactive: a shopper
uses a browser to search the Amazon site for desired items, places some of these in a
shopping cart, checks out the cart, finalizes the order with a credit card or the equivalent,
and receives a confirmation page and usually an email. Pioneers in web services, such
as Amazon, expose the information and functionality of websites through web services
as well. Searching and shopping against Amazon, as code examples in later chapters
illustrate, are tasks that are automated readily because Amazon makes a point of coor‐
dinating its websites with its web services. In any case, here is a sketch of how a search-
and-shop experience might be automated.

1. A shopper has a database table or even a simple text file, wishList.txt, that contains
items of interest such as books, movies, or any other search-and-shop category that
Amazon supports.

2. The database table or text file, which acts as a wish list with constraints, provides
pertinent information such as the ISBN of a desired book, the maximum price the
shopper is willing to pay, the number of items to order, and so on.

3. The shopper programs a client, in whatever language the shopper prefers, that reads
the database table or text file, opens a connection to Amazon, searches Amazon for
wishlist items, checks whether the items are available under the constraints in the
wishlist, and orders the items that meet the constraints.

4. The client program checks an email account for the confirming email; if all goes
well, the client places confirmation information in a data store such as a database
table or another simple text file.

An interactive shopping experience thus gives way to an automated one. Of course,
some shoppers derive as much pleasure from the activity as from the outcome. The
point is not that shopping should be automated but, rather, that web services open up
this possibility for many tasks, shopping included. At one time, HTML screen scrap‐
ing was a popular way to have applications other than browsers hit a website, download
HTML documents, and then parse the HTML for its informational content. As more
sites follow the Amazon practice of exposing the same or, at least, nearly the same data
and functionality as both websites and web services, this screen scraping becomes in‐
creasingly unnecessary. Later chapters illustrate, with code examples, the close rela‐
tionship between websites and web services.

The second example of what makes web services attractive focuses on a major challenge
in modern software development: systems integration. Modern software systems are
written in a variety of languages—a variety that seems likely to increase. These software
systems will continue to be hosted on a variety of platforms. Institutions large and small
have significant investment in legacy software systems whose functionality is useful and
perhaps mission critical; few of these institutions have the will and the resources, human
or financial, to rewrite their legacy systems. How are such disparate software systems

What Good Are Web Services? | 5

http://www.amazon.com

to interact? That these systems must interact is taken for granted nowadays; it is a rare
software system that gets to run in splendid isolation.

A challenge, then, is to have a software system interoperate with others, which may
reside on different hosts under different operating systems and may be written in dif‐
ferent languages. Interoperability is not just a long-term challenge but also a current
requirement of production software. Web services provide a relatively simple answer
to question of how diverse software systems, written in many languages and executing
on various platforms under different operating systems, can interoperate. In short, web
services are an excellent way to integrate software systems.

Web services address the problem of interoperability directly because such services are,
first and foremost, language- and platform-neutral. If a legacy COBOL system is ex‐
posed through a web service, the system is thereby interoperable with service clients
written in other currently more widely used languages. Exposing a legacy COBOL sys‐
tem as a web service should be significantly less expensive than, say, rewriting the system
from scratch. Legacy database systems are an obvious source of data and functionality,
and these systems, too, can be made readily accessible, beyond the local machine that
hosts the database, through web services.

In the past, data sources for applications were usually data stores such as relational
database management systems (RDBMS) or even local filesystems. Nowadays web
services also serve as data sources, at least as intermediate ones that are backed up
ultimately with persistent data stores. Indeed, web services integrate readily with
RDBMS and other data storage systems as frontends that are easier conversational
partners than the data storage systems themselves—because web services, at least well-
designed ones, have APIs that publish their functionality in high-level, language-
neutral, and platform-independent terms. A web service thus can be viewed as a uniform
access mechanism for divergent data stores. A web service can act as the frontend of a
database system, a frontend that exposes, through a published API, the data and the
functionality of the database system (see Figure 1-2).

Figure 1-2. A web service as the frontend of a data store

Web services are inherently distributed systems that communicate mostly over HTTP
but can communicate over other popular transports as well. The communication pay‐
loads of web services are typically structured text, usually XML or JSON documents,
which can be inspected, transformed, persisted, and otherwise processed with widely
and even freely available tools. When efficiency demands it, however, web services can

6 | Chapter 1: Web Services Quickstart

also deliver compact binary payloads. Finally, web services are a work in progress with
real-world distributed systems as their test bed. For all of these reasons, web services
are an essential tool in any modern programmer’s toolbox.

The examples that follow, in this and later chapters, are simple enough to isolate critical
features of web services such as security but also realistic enough to illustrate the power
and flexibility that such services bring to software development. The main service ex‐
amples have an accompanying Ant script to compile and then publish the web service
on a production-grade web server such as Tomcat or Jetty; many of the Java clients
against web services are packaged as executable JAR files in order to reduce hassle.

As noted earlier, web services come in different flavors: SOAP-based and REST-style.
SOAP and SOA, though related, remain distinct. The next section goes into detail about
the relationship between SOA and REST-style and SOAP-based web services.

Web Services and Service-Oriented Architecture
Web services and SOA are related but distinct. SOA, like REST, is more an architectural
style—indeed, a mindset—than a body of precisely defined rules for the design and
implementation of distributed systems; web services are a natural, important way to
provide the services at the core of any SOA system. A fundamental idea in SOA is that
an application results from integrating network-accessible services, which are intero‐
perable because each has an interface that clearly defines the operations encapsulated
in the service. Per operation, the interface specifies the number and type of each argu‐
ment passed to the service operation together with the number and type of values re‐
turned from each service operation. The very point of a service interface is to publish
the invocation syntax of each operation encapsulated in the service. One attraction of
the SOA approach is that the ultimate building blocks of even large, complicated systems
are structurally simple components; this simplicity at the base level makes it relatively
easy to test, debug, deploy, extend, and otherwise maintain a software system.

In an SOA system, services as building block components may be characterized as
unassociated and loosely coupled. Consider, for example, two primitive services, S1 and
S2, in an SOA application. The two services are unassociated in that neither S1 nor S2

depends on the other: S1 is not required to use S2 or vice versa. The services are mutually
independent but can be used together or orchestrated as parts of a larger software sys‐
tem. Following the same theme, components such as S1 and S2 are loosely coupled in
that neither needs to know anything about the internal structure of the other in order
for both of these services to work together as parts of a larger distributed system. A
persistent theme in the many discussions of SOA is the modularity of SOA-based
systems.

At the implementation level, a service operation is a function call: the function takes
zero or more arguments and returns zero or more values. Although functions in many

Web Services and Service-Oriented Architecture | 7

languages such as C and even Java technically return, at most, only a single value and
therefore must resort to aggregate data structures such as a lists to return multiple values,
newer languages such as Go have uncomplicated syntax for functions to return arbi‐
trarily many values including, of course, none. This fact underscores the inherent rich‐
ness and flexibility of the function as a system building block. Programmers fluent in
virtually any language are thereby knowledgeable about the syntax and semantics of
functions.

In an SOA system, a very simple service may consist of a single function. The imple‐
mentation model is thus uncomplicated and familiar to programmers, and the simplicity
of service operations promotes code reuse through the composition of new services out
of existing ones. This ground-level simplicity also enables relatively straightforward
troubleshooting because services reduce to primitive function calls. An SOA system can
be quite complicated, of course, but the complication arises from the composition and
not from the simple services into which the system ultimately decomposes.

Web services are well suited as components in an SOA system. Following best practices,
a web service should consist of operations, each of which is implemented as a stateless
function call: the call is stateless in that the return value(s) depend only on the arguments
passed to the call. In an object-oriented language such as a Java, a well-designed web
service is a class that has instance methods as service operations but no instance fields
that impact the value returned from a particular method. In practice, statelessness is
easier said than done, as the many examples in this book illustrate. In the context of
SOA, it is common to distinguish between providers and consumers of web services: the
provider furnishes the service’s functionality, and the consumer is a client that issues
requests against the service’s operations. The provider/consumer pair is commonly used
to describe web services and their clients, respectively.

Perhaps the best way to clarify SOA in the concrete is to contrast this approach to
distributed systems with a quite different approach: DOA (Distributed Object Archi‐
tecture). Web services came to fore as a reaction against the complexity of DOA systems.
The next section provides a short history of web services, with emphasis on the kinds
of software challenges that web services are meant to address.

A Very Short History of Web Services
Web services evolved from the RPC (Remote Procedure Call) mechanism in DCE (Dis‐
tributed Computing Environment), a framework for software development from the
early 1990s. DCE includes a distributed filesystem (DCE/DFS) and a Kerberos-based
authentication system. Although DCE has its origins in the Unix world, Microsoft
quickly did its own implementation known as MSRPC, which in turn served as the
infrastructure for interprocess communication in Windows. Microsoft’s COM/OLE
(Common Object Model/Object Linking and Embedding) technologies and services
were built on a DCE/RPC foundation. There is irony here. DCE designed RPC as a way

8 | Chapter 1: Web Services Quickstart

to do distributed computing (i.e., computing across distinct physical devices), and Mi‐
crosoft cleverly adapted RPC to support interprocess communication, in the form of
COM infrastructure, on a single device—a PC running Windows.

The first-generation frameworks for distributed object systems, CORBA (Common
Object Request Broker Architecture) and Microsoft’s DCOM (Distributed COM), are
anchored in the DCE/RPC procedural framework. Java RMI (Remote Method Invoca‐
tion) also derives from DCE/RPC, and the method calls in Java EE (Enterprise Edition),
specifically in Session and Entity EJBs (Enterprise Java Bean), are Java RMI calls. Java
EE (formerly J2EE) and Microsoft’s DotNet are second-generation frameworks for dis‐
tributed object systems, and these frameworks, like CORBA and DCOM before them,
trace their ancestry back to DCE/RPC. By the way, DCE/RPC is not dead. Various
popular system utilities (for instance, the Samba file and print service for Windows
clients) use DCE/RPC.

From DCE/RPC to XML-RPC
DCE/RPC has the familiar client/server architecture in which a client invokes a proce‐
dure that executes on the server. Arguments can be passed from the client to the server
and return values can be passed from the server to the client. The framework is platform-
and language- neutral in principle, although strongly tilted toward C in practice. DCE/
RPC includes utilities for generating client and server artifacts (stubs and skeletons,
respectively). DCE/RPC also provides software libraries that hide the transport details.
Of interest now is the IDL (Interface Definition Language) document that acts as the
service contract and is an input to utilities that generate artifacts in support of the DCE/
RPC calls. An IDL document can be short and to the point (see Example 1-1).

Example 1-1. A sample IDL document that declares the echo function
/* echo.idl */
[uuid(2d6ead46-05e3-11ca-7dd1-426909beabcd), version(1.0)]
interface echo {
 const long int ECHO_SIZE = 512;
 void echo(
 [in] handle_t h,
 [in, string] idl_char from_client[],
 [out, string] idl_char from_server[ECHO_SIZE]
);
}

The IDL interface named echo, identified with a machine-generated UUID (Universally
Unique IDentifier), declares a single function with the same name, echo. The names are
arbitrary and need not be the same. The echo function expects three arguments, two of
which are in parameters (that is, inputs into the remote procedure) and one of which
is an out parameter (that is, an output from the remote procedure). The first argument,
of built-in type handle_t, is required and points to an RPC data structure. The function

A Very Short History of Web Services | 9

echo could but does not return a value, because the echoed string is returned instead as
an out parameter. The IDL specifies the invocation syntax for the echo function, which
is the one and only operation in the service. Except for annotations in square brackets
to the left of the three echo parameters, the syntax of the IDL is essentially C syntax.
The IDL document is a precursor of the WSDL (Web Service Description Language)
document that provides a formal specification of a web service and its operations. The
WSDL document is discussed at length in Chapter 4 on SOAP-based services.

There is a Microsoft twist to the IDL story as well. An ActiveX control under Windows
is a DLL (Dynamic Link Library) with an embedded typelib, which in turn is a compiled
IDL file. For example, suppose that a calendar ActiveX control is plugged into a browser.
The browser can read the typelib, which contains the invocation syntax for each oper‐
ation (e.g., displaying the next month) in the control. An ActiveX control is thus a chunk
of software that embeds its own interface. This is yet another inspired local use of a
technology designed for distributed computing.

In the late 1990s, Dave Winer of UserLand Software developed XML-RPC, a technology
innovation that has as good a claim as any to mark the birth of web services. XML-RPC
is a very lightweight RPC system with support for elementary data types (basically, the
built-in C types together with a boolean and a datetime type) and a few simple com‐
mands. The original specification is about seven pages in length. The two key features
are the use of XML marshaling/unmarshaling to achieve language neutrality and reli‐
ance on HTTP (and, later, SMTP) for transport. The term marshaling refers to the
conversion of an in-memory object (for instance, an Employee object in Java) to some
other format (for instance, an XML document); unmarshaling refers to the inverse pro‐
cess of generating an in-memory object from, in this example, an XML document. The
marshal/unmarshal distinction is somewhere between close to and identical with the
serialize/deserialize distinction. My habit is to use the distinctions interchangeably. In
any case, the O’Reilly open-wire Meerkat service and the WordPress publishing plat‐
form are based on XML-RPC.

Two key differences separate XML-RPC, on the one side, from DCE/RPC and its off-
shoots, on the other side:

• XML-RPC payloads are text, whereas DCE/RPC payloads are binary. Text is rela‐
tively easy to inspect and process with standard, readily available tools such as
editors and parsers.

• XML-RPC transport uses HTTP rather than a proprietary system. To support XML-
RPC, a programming language requires only a standard HTTP library together
with libraries to generate, parse, transform, and otherwise process XML.

As an RPC technology, XML-RPC supports the request/response pattern. Here is the
XML request to invoke, on a remote machine, the Fibonacci function with an argument
of 11. This argument is passed as a 4-byte integer, as the XML start tag <i4> indicates:

10 | Chapter 1: Web Services Quickstart

<?xml version="1.0">
<methodCall>
 <methodName>fib<methodName>
 <params>
 <param><value><i4>11</i4></value></param>
 </params>
</methodCall>

The integer 11 occurs in the XML-RPC message as text. An XML-RPC library on the
receiving end needs to extract 11 as text and then convert the text into a 4-byte integer
in the receiving language such as Go or Java. Even this short example illustrates the idea
of having XML—in particular, data types expressed in XML—serve as the leveling
mechanism between two different languages involved in an XML-RPC exchange.

XML-RPC is deliberately low fuss and lightweight. SOAP, an XML dialect derived
straight from XML-RPC, is considerably heavier in weight. From inception, XML-RPC
faced competition from second-generation DOA systems such as Java EE (J2EE) and
AspNet. The next section considers the challenges inherent in DOA systems. These
challenges sustained and eventually intensified interest in lighter-weight approaches to
distributed computing—modern web services.

Distributed Object Architecture: A Java Example
What advantages do web services have over DOA technologies such as Java RMI? This
section addresses the question with an example. Java RMI (including the Session and
Entity EJB constructs built on Java RMI) and DotNet Remoting are examples of second-
generation distributed object systems. Consider what a Java RMI client requires in order
to invoke a method declared in a service interface such as this:

import java.util.List;
public interface BenefitsService extends java.rmi.Remote {
 public List<Benefit> getBenefits(Emp emp) throws RemoteException;
}

The interface appears deceptively simple in that it declares only the method named
getBenefits, yet the interface likewise hints at what makes a Distributed Object Ar‐
chitecture so tricky. A client against this BenefitsService requires a Java RMI stub, an
instance of a class that implements the BenefitsService interface. The stub is down‐
loaded automatically from the server to the client as part of the Java RMI setup (see
Figure 1-3).

Figure 1-3. Downloading a stub in Java RMI

A Very Short History of Web Services | 11

Once the stub setup is done, the getBenefits method is executed as a stub method;
that is, the stub acts as the client-side object making a remote method call through one
of stub’s encapsulated methods. The call thus has the following syntax:

Emp fred = new Emp();
//...
List<Benefit> benefits = rmiStub.getBenefits(fred); // rmiStub = reference

Invoking the getBenefits method requires that the byte codes for various Java classes,
standard and programmer-defined, be available on the client machine. To begin, the
client needs the class Emp, the argument type for the getBenefits method, and the class
Benefit, the member type for the List that the method getBenefits returns. Suppose
that the class Emp begins like this:

public class Emp {
 private Department department;
 private List<BusinessCertification> certifications;
 private List<ClientAccount> accounts;
 private Map<String, Contact> contacts;
 ...
}

The standard Java types such as List and Map are already available on the client side
because the client is, by assumption, a Java application. The challenge involves the ad‐
ditional, programmer-defined types such as Department, BusinessCertification,
ClientAccount, and Contact that are needed to support the client-side invocation of a
remotely executed method. The setup on the client side to enable a remote call such as:

Emp fred = new Emp();
// set properties, etc.
List<EmpBenefits> fredBenefits = rmiStub.getBenefits(fred);

is significant, with lots and lots of bytes required to move from the server down to the
client just for the setup. Anything this complicated is, of course, prone to problems such
as versioning issues and outright errors in the remote method calls.

Java RMI uses proprietary marshaling/unmarshaling and proprietary transport, and
DotNet does the same. There are third-party libraries for interoperability between the
two frameworks. Yet a Java RMI service can be expected to have mostly Java clients, and
a DotNet Remoting service can be expected to have mostly DotNet clients. Web services
represent a move toward standardization, simplicity, and interoperability.

Web Services to the Rescue
Web services simplify matters in distributed computing. For one thing, the client and
service typically exchange XML or equivalent documents, that is, text. If needed, non-
text bytes can be exchanged instead, but the preferred payloads are text. The exchanged
text can be inspected, validated, transformed, persisted, and otherwise processed using

12 | Chapter 1: Web Services Quickstart

readily available, nonproprietary, and often free tools. Each side, client and service,
simply needs a local software library that binds language-specific types such as the Java
String to XML Schema or comparable types, in this case xsd:string. (In the qualified
name xsd:string, xsd is a namespace abbreviation and string is a local name. Of
interest here is that xsd:string is an XML type rather than a Java type.) Given these
Java/XML bindings, relatively uncomplicated library modules can convert from one to
the other—from Java to XML or from XML to Java (see Figure 1-4).

Figure 1-4. Java/XML conversions

Processing on the client side, as on the service side, requires only locally available li‐
braries and utilities. The complexities, therefore, can be isolated at the endpoints—the
service and the client applications together with their supporting libraries—and need
not seep into the exchanged messages. Finally, web services are available over HTTP, a
nonpropriety protocol that has become standard, ubiquitous infrastructure; HTTP in
particular comes with a security extension, HTTPS, that provides multifaceted security
services.

In a web service, the requesting client and the service need not be coded in the same
language or even in the same style of language. Clients and services can be implemented
in object-oriented, procedural, functional, and other language styles. The languages on
either end may be statically typed (for instance, Java and Go) or dynamically typed (for
example, JavaScript and Ruby). The complexities of stubs and skeletons, the serializing
and deserializing of objects encoded in some proprietary format, give way to relatively
simple text-based representations of messages exchanged over standard transports such
as HTTP. The messages themselves are neutral; they have no bias toward a particular
language or even family of languages.

The first code example in this chapter, and all of the code examples in Chapter 2 and
Chapter 3, involve REST-style services. Accordingly, the next section looks at what REST
means and why the REST-style service has become so popular. From a historical per‐
spective, REST-style services can be viewed as a reaction to the growing complexity of
SOAP-based ones.

What Is REST?
Roy Fielding coined the acronym REST in his PhD dissertation. Chapter 5 of Fielding’s
dissertation lays out the guiding principles for what have come to be known as REST-
style or RESTful web services. Fielding has an impressive résumé. He is, among other

What Is REST? | 13

http://roy.gbiv.com

things, a principal author of the HTTP 1.1 specification and a cofounder of the Apache
Software Foundation.

REST and SOAP are quite different. SOAP is a messaging protocol in which the messages
are XML documents, whereas REST is a style of software architecture for distributed
hypermedia systems, or systems in which text, graphics, audio, and other media are
stored across a network and interconnected through hyperlinks. The World Wide Web
is the obvious example of such a system. As the focus here is on web services, the World
Wide Web is the distributed hypermedia system of interest. In the Web, HTTP is both
a transport protocol and a messaging system because HTTP requests and responses are
messages. The payloads of HTTP messages can be typed using the MIME (Multipurpose
Internet Mail Extension) type system. MIME has types such as text/html, applica
tion/octet-stream, and audio/mpeg3. HTTP also provides response status codes to
inform the requester about whether a request succeeded and, if not, why. Table 1-1 lists
some common status codes.

Table 1-1. Sample HTTP status codes and their meanings
Status code In English Meaning

200 OK Request OK

303 See Other Redirect

400 Bad Request Request malformed

401 Unauthorized Authentication error

403 Forbidden Request refused

404 Not Found Resource not found

405 Method Not Allowed Method not supported

415 Unsupported Media Type Content type not recognized

500 Internal Server Error Request processing failed

REST stands for REpresentational State Transfer, which requires clarification because
the central abstraction in REST—the resource—does not occur in the acronym. A re‐
source in the RESTful sense is something that is accessible through HTTP because this
thing has a name—URI (Uniform Resource Identifier). A URI has two subtypes: the
familiar URL, which specifies a location, and the URN, which is a symbolic name but
not a location. URIs are uniform because they must be structured in a certain way; there
is a syntax for URIs. In summary, a URI is a standardized name for a resource and, in
this sense, a URI acts as noun.

In practical terms, a resource is a web-accessible, informational item that may have
hyperlinks to it. Hyperlinks use URIs to do the linking. Examples of resources are plen‐
tiful but likewise misleading in suggesting that resources must have something in com‐
mon other than identifiability through URIs. The gross national product of Lithuania
is a resource, as is the Modern Jazz Quartet. Ernie Banks’ baseball accomplishments

14 | Chapter 1: Web Services Quickstart

http://tools.ietf.org/html/rfc3986

count as a resource, as does the maximum flow algorithm. The concept of a resource is
remarkably broad but, at the same time, impressively simple and precise.

As web-based informational items, resources are pointless unless they have at least one
representation. In the Web, representations are MIME typed. The most common type
of resource representation is probably still text/html, but nowadays resources tend to
have multiple representations. For example, there are various interlinked HTML pages
that represent the Modern Jazz Quartet but there are also audio and audiovisual repre‐
sentations of this resource.

Resources have state. Ernie Banks’ baseball accomplishments changed during his career
with the dismal Chicago Cubs from 1953 through 1971 and culminated in his 1977
induction into the Baseball Hall of Fame. A useful representation must capture a re‐
source’s state. For example, the current HTML pages on Ernie at the Baseball Reference
website need to represent all of his major league accomplishments, from his rookie year
in 1953 through his induction into the Hall of Fame.

A RESTful request targets a resource, but the resource itself typically is created on the
service machine and remains there. A resource may be persisted in a data store such as
a database system. Some mix of humans and applications may maintain the state of the
resource. In the usual case of web service access to a resource, the requester receives a
representation of the resource if the request succeeds. It is the representation that trans‐
fers from the service machine to the requester machine. In a REST-style web service, a
client does two things in an HTTP request:

• Names the targeted resource by giving its URI, typically as part of a URL.
• Specifies a verb (HTTP method), which indicates what the client wishes to do; for

example, read an existing resource, create a new resource from scratch, edit an
existing resource, or delete an existing resource.

One of the basic cases is a read request. If a read request succeeds, a typed representation
(for instance, text/html) of the resource is transferred from the server that hosts and
maintains the resource to the client that issues the request. The client is an arbitrary
application written in some language with support for REST-style requests. The repre‐
sentation returned from the service is a good one only if it captures the resource’s state
in some appropriate way. Figure 1-5 depicts a resource with its identifying URI together
with a RESTful client and some typed representations sent back to the client in response
to client requests.

What Is REST? | 15

http://www.baseball-reference.com
http://www.baseball-reference.com

Figure 1-5. A small slice of a RESTful system

In summary, RESTful web services involve not just resources to represent but also client-
invoked operations on such resources. At the core of the RESTful approach is the insight
that HTTP, despite the occurrence of Transport in its name, acts as an API and not
simply as a transport protocol. HTTP has its well-known verbs, officially known as
methods. Table 1-2 lists the HTTP verbs that correspond to the CRUD (Create, Read,
Update, Delete) operations so familiar throughout computing.

Table 1-2. HTTP verbs and their CRUD operations
HTTP verb CRUD operation

POST Create

GET Read

PUT Update

DELETE Delete

Although HTTP is not case sensitive, the HTTP verbs are traditionally written in up‐
percase. There are additional verbs. For example, the verb HEAD is a variation on GET
that requests only the HTTP headers that would be sent to fulfill a GET request.

HTTP also has standard response codes such as 404 to signal that the requested resource
could not be found and 200 to signal that the request was handled successfully. In short,
HTTP provides request verbs and MIME types for client requests and status codes (and
MIME types) for service responses.:

Modern browsers generate only GET and POST requests. If a user enters a URL into
the browser’s input window, the browser generates a GET request. A browser ordinarily
generates a POST request for an HTML form with a submit button. It goes against the

16 | Chapter 1: Web Services Quickstart

spirit of REST to treat GET and POST interchangeably. In Java, for example, an
HttpServlet instance has callback methods such as doGet and doPost that handle GET
and POST requests, respectively. Each callback has the same parameter types: the
HttpServletRequest type (the key/value pairs from the request) and the type HttpServ
letResponse (effectively a channel to communicate back to the requester). It is not
unknown for a programmer to have the two callbacks execute the same code (for in‐
stance, by having one invoke the other), thereby conflating the original HTTP distinc‐
tion between read and create. A key guiding principle of the RESTful style is to respect
the original meanings of the HTTP verbs. In particular, any GET request should be side-
effect free (idempotent) because a GET is a read rather than a create, update, or delete
operation. A GET as a read with no side effects is called a safe GET.

The REST approach does not imply that either resources or the processing needed to
generate adequate representations of them are simple. A REST-style web service might
be every bit as subtle and complicated, in its functionality, as a SOAP-based service or
a DOA application. The RESTful approach tries to simplify a service’s implementation
by taking what HTTP and the MIME type system already offer: built-in CRUD opera‐
tions, uniformly identifiable resources, typed representations that can capture a re‐
source’s state, and status codes to summarize the outcome of a request. REST as a design
philosophy tries to isolate application complexity at the endpoints—that is, at the client
and at the service. A service may require lots of logic and computation to maintain
resources and to generate adequate representation of resources, such as large and subtly
formatted XML documents, and a client may require significant XML processing to
extract the desired information from the XML representations transferred from the
service to the client. Yet the RESTful approach keeps the complexity out of the transport
level, as a resource representation is transferred to the client as the body of an HTTP
response message. For the record, RESTful web services are Turing complete; that is,
these services are equal in power to any computational system, including a system that
consists of SOAP-based web services or DOA stubs and skeletons.

Verbs and Opaque Nouns
In HTTP a URI is meant to be opaque, which means that the URI:

http://bedrock/citizens/fred

has no inherent connection to the URI:

http://bedrock/citizens

although Fred happens to be a citizen of Bedrock. These are simply two different, in‐
dependent identifiers. Of course, a good URI designer will come up with URIs that are
suggestive about what they are meant to identify. The point is that URIs have no intrinsic
hierarchical structure. URIs can and should be interpreted, but these interpretations are
imposed on URIs, not inherent in them. Although URI syntax looks like the syntax used

What Is REST? | 17

to navigate a hierarchical filesystem, this resemblance is misleading. A URI is an opaque
identifier, a logically proper name that should denote exactly one resource.

Review of HTTP Requests and Responses
The next section has a REST-style sample service whose URL is:

http://localhost:8080/predictions/

If this URL is typed into a browser’s window, the browser generates a request similar to:

GET /predictions/ HTTP/1.1
User-Agent: Mozilla/5.0 (X11; Linux x86_64) Chrome/24.0.1312.56
Host: localhost:8080
Accept: text/html

The browser parses the entered URL into these parts, with clarifications below:

• GET /predictions/ HTTP/1.1

This is the HTTP request start line:
— GET is the HTTP method (verb).
— /predictions/ is the URI (resource’s name).
— HTTP/1.1 is the HTTP version that the requester is using.

• User-Agent: Mozilla/5.0 (X11; Linux x86_64) Chrome/24.0

Immediately after the start line come the HTTP request header elements or head‐
ers for short. Each element is a key/value pair with a colon (:) separating the key
on the left from the value on the right. In this element, User-Agent is the key, and
everything to the right of the colon is the value. Chrome is the browser used in this
request, and Mozilla/5.0 specifies a browser compatibility type. The User-Agent
information also includes the operating system in use, 64-bit Linux. Of interest here
is that key User-Agent captures the intended meaning: it is the application (agent)
that a user employs to make a request.

• Host: localhost:8080

In localhost:8080, the network address of the machine that hosts the resource is
to the left of the colon; the port number, in this case 8080, is to the right. In this
example, the network address is localhost and its dotted-decimal equivalent is
127.0.0.1. Because the network address is localhost, the web server and the re‐
questing application are on the same machine, which is convenient during devel‐
opment. In a production environment, the web server might have a network address
such as dcequip.cti.depaul.edu. Port numbers range from 0 to roughly 65000,
with port numbers from 0 through 1023 typically reserved for standard applications
such as web servers (port 80 for HTTP and port 443 for HTTPS), SMTP (email,

18 | Chapter 1: Web Services Quickstart

port 25), SSH (secure shell, port 22), and so on. For convenience, the web servers
Tomcat and Jetty use port 8080 by default, but the number can be changed (for
example, to the standard HTTP port number 80). Under HTTP 1.1, the key/value
pair, with Host as the key, is required. The other header elements are optional,
although the ones shown here are typical.

• Accept: text/html

This is the MIME type (text) and subtype (html), which the browser is ready to
accept. The application running on the web server may not honor the requested
type and respond instead with, for example, text/plain or text/xml.

In summary, the key/value pairs such as:

Accept: text/html

make up the HTTP request headers. These pairs may occur in any order and only the
following pair:

Host: <network address>

is mandatory under HTTP 1.1.

Two newlines terminate the headers section. A GET request has no body; hence, a GET
request consists only of the start line and the headers. A POST request always has a
body, which may be empty. In a POST request, two newlines mark the end of the headers.

Because a GET request has no body, such a request often includes, in the URI, a query
string that consists of key/value pairs. For example, this GET request:

http://.../products?id=27&category=boots

includes a query string with two key/value pairs: id is the first key and 27 is the value;
category is the second key and boots is the value. The query string thus provides a way
for a bodyless GET request to include information within the request. The query string
data is encapsulated in the HTTP request headers. POST requests always have a body,
which is usually nonempty. The body of a POST request holds key/value pairs as well.

If all goes well, sending an HTTP request to the URL:

http://localhost:8080/predictions/

leads to an HTTP response, which is similar to Example 1-2.

Example 1-2. The HTTP response message from the predictions service
HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=35B1E3AA21EB7242FD2FC50044D2166A; Path=/predictions/;
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked

Review of HTTP Requests and Responses | 19

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.7.0" class="java.beans.XMLDecoder">
 <array class="predictions.Prediction" length="32">
 <void index="0">
 <object class="predictions.Prediction">
 <void property="what">
 <string>
 Managed holistic contingency will grow killer action-items.
 </string>
 </void>
 <void property="who">
 <string>
 Cornelius Tillman
 </string>
 </void>
 </object>
 </void>
 ...
</java>

The start line:

HTTP/1.1 200 OK

begins with the HTTP version in use on the server. Next comes the HTTP status code
(SC for short) as a number (200) and in English (OK). Status codes in the 200 range
signal success. Five header elements follow, including the name of the web server that
sends the response and the content type of the response. Note that the response type is
given as text/html rather than as what it actually is: text/xml. The reason is that my
code, which generates the response, does not bother to set the content type; hence, the
Apache-Coyote (that is, Tomcat) web server uses its default type of text/html. Two
newline characters again separate the headers from the HTTP body, which can be empty.
In this case, the body is an XML document that lists corporate predictions together with
their predictors.

HTTP as an API
HTTP can be viewed as an API. Among frameworks for developing websites and
RESTful web services, Rails has pioneered this view of HTTP, which deliberately blurs
the distinction between websites that deliver HTML and web services that deliver XML
or JSON. In a well-designed Rails application, a GET request for the URI /products is
equivalent to the same request for /products.html, and an HTML list of products is
returned in response. A GET request against /products.json or /products.xml would
return the same list but in JSON or XML, respectively. Rails has an often-copied idiom
for combining URIs and HTTP verbs into a RESTful route—the route that a request
takes to the code that handles the request. The Rails routing style is an elegant yet
practical use of HTTP as an API. Table 1-3 is a summary of the Rails approach. In a

20 | Chapter 1: Web Services Quickstart

URI, a term such as :id, which begins with a colon character, indicates a placeholder or
parameter, in this case a placeholder whose intended value is a numerical identifier such
as 27.

Table 1-3. Rails routing idioms
HTTP verb URI (Name) Meaning

GET /products Read all products

POST /products Create a new product from information in the POST body

GET /products/new Read the form to create a new product

GET /products/:id/edit Read the form to edit an existing product

GET /products/:id Read a single product

PUT /products/:id Update a product with information in the POST body

DELETE /products:id Delete the specified product

These verb/name pairs are terse, precise, intuitive, and uniform in style. The pairs il‐
lustrate that RESTful conventions can yield simple, clear routing expressions about
which operation should be performed on which resource. The POST and PUT verbs
are used in requests that have an HTTP body; hence, the request data is in the HTTP
message body. The GET and DELETE verbs are used in requests that have no body;
hence, the request data, if any, is sent as query string key/value pairs.

The decision about whether to be RESTful in a particular application depends, as always,
on practical matters that will come to the fore throughout this book. The current section
looked at REST from on high; it is now time to descend into details with code examples.
The next section summarizes the overview of HTTP with two Java clients. A first REST‐
ful service follows.

Two HTTP Clients in Java
The foregoing descriptions about HTTP can be fleshed out and summarized with two
short Java clients, which can be run against any URL—for a website or a web service.
The first client (see Example 1-3) takes a deliberately low-level approach by building up
the HTTP request as a string, one chunk at a time. The second client (see
Example 1-4) uses the Java utility class URLConnection, which shortens the code and
makes the program more readable.

Example 1-3. A simple Java client that makes an HTTP GET request
import java.net.Socket;
import java.net.URL;
import java.net.MalformedURLException;
import java.net.UnknownHostException;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.BufferedReader;

HTTP as an API | 21

import java.io.InputStreamReader;

public class SimpleHttpClient {
 public static void main(String[] args) {
 // usage
 if (args.length < 1) {
 System.err.println("Usage: SimpleHttpClient <url>");
 return;
 }
 try {
 // Parse the URL.
 URL url = new URL(args[0]);
 String host = url.getHost();
 String path = url.getPath();
 int port = url.getPort();
 if (port < 0) port = 80;
 // Send the request.
 String request = "GET " + path + " HTTP/1.1\n";
 request += "host: " + host;
 request += "\n\n";
 Socket sock = new Socket(host, port);
 PrintWriter writer = new PrintWriter(sock.getOutputStream());
 writer.print(request);
 writer.flush();
 // Read and print the response.
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(sock.getInputStream()));
 String next_record = null;
 while ((next_record = reader.readLine()) != null)
 System.out.println(next_record);
 sock.close();
 }
 catch(MalformedURLException e) {
 throw new RuntimeException("Please try again. Bad URL.\n" + e);
 }
 catch(UnknownHostException e) {
 throw new RuntimeException("Please try again. Unknown host.\n" + e);
 }
 catch(IOException e) {
 throw new RuntimeException("Please try again. Something's wrong.\n" + e);
 }
 }
}

The SimpleHttpClient expects, as a command-line argument (line 1), a URL such as
http://www.amazon.com/index.html. After constructing a URL instance from the string
URL (line 2), the client extracts the host, the path (URI), and the port number (lines 3,
4, and 5) so that an HTTP GET request can be built in chunks. Line 6, for example,
builds the following start line, given the sample Amazon URL:

GET /index.html HTTP/1.1

22 | Chapter 1: Web Services Quickstart

Only the required HTTP header is generated (line 7), with host as the key and the IP
address of the server (in this case, www.amazon.com) as the value. After the request is
sent (line 8), the response is read (lines 9 and 10) and the connection is closed.

Example 1-4. A Java HTTP client that uses the utility URLConnection class
import java.net.URL;
import java.net.URLConnection;
import java.net.MalformedURLException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.BufferedReader;

public class UrlConnectionClient {
 public static void main(String[] args) {
 // usage
 if (args.length < 1) {
 System.err.println("Usage: UrlConnectionClient <url>");
 return;
 }

 try {
 // Parse the URL.
 URL url = new URL(args[0].trim());

 // Connect.
 URLConnection sock = url.openConnection();

 // Read and print.
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(sock.getInputStream()));
 String next_record = null;
 while ((next_record = reader.readLine()) != null)
 System.out.println(next_record);

 // Close.
 reader.close();
 }
 catch(MalformedURLException e) { throw new RuntimeException(e); }
 catch(IOException e) { throw new RuntimeException(e); }
 }
}

The UrlConnectionClient (see Example 1-4) uses the class URLConnection, which
simplifies the code. This client, like the first, expects a URL as a command-line argu‐
ment. A URL instance (line 1) again is constructed but then used immediately (line 2)
to open a connection. By default, the opened connection is a GET request against the
site with the given URL. The response is read chunk by chunk (line 3) and printed. The
connection then is closed (line 4).

HTTP as an API | 23

Clients such as these occur throughout the forthcoming chapters, especially in examples
that involve REST-style services. It is now time to introduce the first RESTful example.

A First RESTful Example
As befits a first example, the implementation is simple but sufficient to highlight key
aspects of a RESTful web service. The implementation consists of a JSP (Java Server
Pages) script and two backend JavaBeans that the JSP script uses to get the data returned
to the client (see Figure 1-6). The data is composed of sage corporate predictions. Here
is a sample:

Decentralized 24/7 hub will target robust web-readiness.
Synergistic disintermediate policy will expedite backend experiences.
Universal fault-tolerant architecture will synthesize bleeding-edge channels.

Figure 1-6. The organization of the predictions web service

There is an Ant script (see “An Ant script for service deployment” on page 31) that
automates the deployment of this and other service examples. Here is a summary of the
service parts and how the Ant script puts the parts together:

1. The service consists of a JSP script together with two POJO (JavaBean) classes. The
classes provide backend support for the JSP script. There is also a small configu‐
ration file, web.xml, that allows the URI to be shortened from:

/predictions/predictions.jsp

to:
/predictions/

2. The Ant script compiles the .java files and then packages the JSP script, the com‐
piled .class files, and—only for convenience—the .java files into a JAR file with
a .war extension (hereafter, a WAR file).

3. The WAR file is copied to the Tomcat webapps subdirectory, which thereby deploys
the service. The section “The Tomcat web server” on page 30 goes into the details of
Tomcat installation and management.

In the predictions service, each prediction has an associated human predictor. The
RESTful resource is thus a list of predictor names (e.g., Hollis McCullough) and their
predictions (Hollis is responsible for the third prediction shown above). The resource
name or URI is /predictions/, and the only allowable HTTP verb is GET, which

24 | Chapter 1: Web Services Quickstart

corresponds to read among the CRUD operations. If the HTTP request is correct, the
RESTful service returns an XML representation of the predictor/prediction list; other‐
wise, the service returns the appropriate HTTP status code (e.g., 404 for “Not Found”
if the URI is incorrect or 405 for “Method Not Allowed” if the verb is not GET).
Example 1-5 shows a slice of the XML payload returned upon a successful request.

Example 1-5. The XML response from the predictions service
<?xml version="1.0" encoding="UTF-8"?>
<java version="1.7.0" class="java.beans.XMLDecoder">
 <array class="predictions.Prediction" length="32">
 <void index="0">
 <object class="predictions.Prediction">
 <void property="what">
 <string>
 Managed holistic contingency will grow killer action-items.
 </string>
 </void>
 <void property="who">
 <string>Cornelius Tillman</string>
 </void>
 </object>
 </void>
 ...
 <void index="31">
 <object class="predictions.Prediction">
 <void property="what">
 <string>
 Versatile tangible application will maximize rich ebusiness.
 </string>
 </void>
 <void property="who">
 <string>Hiram Gulgowski</string>
 </void>
 </object>
 </void>
 </array>
</java>

How the Predictions Web Service Works
When the predictions service is deployed to a web server such as Tomcat, the server
translates the JSP script predictions.jsp (see Example 1-6) into a servlet instance. For
now, this technical detail is overlooked because it is convenient to talk about the JSP
script itself as the target of a request.

Example 1-6. The JSP script predictions.jsp
<jsp:useBean id = "preds"
 type = "predictions.Predictions"
 class = "predictions.Predictions">

A First RESTful Example | 25

 <% // Check the HTTP verb: if it's anything but GET,
 // return 405 (Method Not Allowed).
 String verb = request.getMethod();
 if (!verb.equalsIgnoreCase("GET")) {
 response.sendError(response.SC_METHOD_NOT_ALLOWED,
 "Only GET requests are allowed.");
 }
 // If it's a GET request, return the predictions.
 else {
 preds.setServletContext(application);
 out.println(preds.getPredictions());
 }
 %>
</jsp:useBean>

As requests come to the JSP script, the script first checks the request’s HTTP method.
If the method is GET, an XML representation of the predictions is returned to the
requester. If the verb is not GET, the script returns an error message together with the
HTTP status code. The relevant code follows:

String verb = request.getMethod();
if (!verb.equalsIgnoreCase("GET")) {
 response.sendError(response.SC_METHOD_NOT_ALLOWED,
 "Only GET requests are allowed.");
}

JSP scripts have implicit object references such as request, response, and out; each of
these is a field or a parameter in the servlet code into which the web server, such as
Tomcat or Jetty, translates the JSP script. A JSP script can make the same calls as an
HttpServlet.

On a successful request, the JSP script returns a list of predictions and their predictors,
a list available from the backend JavaBean Predictions. The JSP code is pretty
straightforward:

out.println(preds.getPredictions());

The object reference out, available in every JSP script, refers to an output stream through
which the JSP script can communicate with the client. In this example, the object ref‐
erence preds (line 1) refers to the backend JavaBean that maintains the collection of
predictions; the getPredictions method in the backend bean converts the Java list of
Predictions into an XML document.

The backend code consists of two POJO classes, Prediction (see Example 1-7) and
Predictions (see Example 1-8). The Prediction class is quite simple, consisting of two
properties: who (line 1) is the person making the prediction and what (line 2) is the
prediction.

26 | Chapter 1: Web Services Quickstart

Example 1-7. The backend predictions.Prediction class
package predictions;
import java.io.Serializable;

public class Prediction implements Serializable {
 private String who; // person
 private String what; // his/her prediction
 public Prediction() { }
 public void setWho(String who) { this.who = who; }
 public String getWho() { return this.who; }
 public void setWhat(String what) { this.what = what; }
 public String getWhat() { return this.what; }
}

The Predictions class does the grunt work. For example, its populate method (line 3)
reads the prediction data from a text file, predictions.db, encapsulated in the deployed
WAR file, and the toXML method serializes a Java List<Prediction> into an XML
document, which is sent back to the client. If there were problems reading or formatting
the data, the predictions service would return null to the client.

Example 1-8. The backend predictions.Predictions class
package predictions;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.io.ByteArrayOutputStream;
import java.beans.XMLEncoder; // simple and effective
import javax.servlet.ServletContext;

public class Predictions {
 private int n = 32;
 private Prediction[] predictions;
 private ServletContext sctx;
 public Predictions() { }
 public void setServletContext(ServletContext sctx) { this.sctx = sctx; }
 public ServletContext getServletContext() { return this.sctx; }
 // getPredictions returns an XML representation of
 // the Predictions array
 public void setPredictions(String ps) { } // no-op
 public String getPredictions() {
 // Has the ServletContext been set?
 if (getServletContext() == null) return null;
 // Has the data been read already?
 if (predictions == null) populate();
 // Convert the Predictions array into an XML document
 return toXML();
 }
 private void populate() {
 String filename = "/WEB-INF/data/predictions.db";

A First RESTful Example | 27

 InputStream in = sctx.getResourceAsStream(filename);
 // Read the data into the array of Predictions.
 if (in != null) {
 try {
 InputStreamReader isr = new InputStreamReader(in);
 BufferedReader reader = new BufferedReader(isr);
 predictions = new Prediction[n];
 int i = 0;
 String record = null;
 while ((record = reader.readLine()) != null) {
 String[] parts = record.split("!");
 Prediction p = new Prediction();
 p.setWho(parts[0]);
 p.setWhat(parts[1]);

 predictions[i++] = p;
 }
 }
 catch (IOException e) { }
 }
 }
 private String toXML() {
 String xml = null;
 try {
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 XMLEncoder encoder = new XMLEncoder(out);
 encoder.writeObject(predictions); // serialize to XML
 encoder.close();
 xml = out.toString(); // stringify
 }
 catch(Exception e) { }
 return xml;
 }
}

On a GET request, the JSP script invokes the method setServletContext (line 1 in the
bean, line 2 in the JSP script) with an argument, the implicit object reference named
application. The backend bean needs access to the servlet context in order to read data
from a text file embedded in the deployed WAR file. The ServletContext is a data
structure through which a servlet/JSP script can interact explicitly with the servlet con‐
tainer. The call to the setServletContext method sets up the subsequent call to the
getPredictions method (line 2), which returns the XML representation shown in
Example 1-5. Here is the getPredictions method without the comments:

public String getPredictions() {
 if (getServletContext() == null) return null;
 if (predictions == null) populate();
 return toXML();
}

28 | Chapter 1: Web Services Quickstart

The method populate (line 1 immediately above) reads the data. The predictions
reference in the code segment above refers to the Map in which Prediction references
are values. If the JSP script fails to set the servlet context, there is no way for the back-
end Predictions bean to provide the requested data. The reason is that the populate
method requires the servlet context (the reference is sctx, line 1, in the code below) in
order to access the data:

private void populate() {
 String filename = "/WEB-INF/data/predictions.db";
 InputStream in = sctx.getResourceAsStream(filename);
 ...
}

If the servlet context has been set but the predictions reference is null, then the data
must be read from the predictions.db file into the Map that makes the data available to
clients. Each entry in the Map is a Prediction, which again is a pair: who predicts what.
Finally, the toXML method serializes the Java predictions into an XML document using
the Java utility class XMLEncoder (line 1):

private String toXML() {
 String xml = null;
 try {
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 XMLEncoder encoder = new XMLEncoder(out);
 encoder.writeObject(predictions); // serialize to XML
 encoder.close();
 xml = out.toString(); // stringify
 }
 catch(Exception e) { }
 return xml;
}

The XML document from the toXML method (line 2) becomes the body of the HTTP
response to the client.

Although the XML from the predictions service is generated using the XMLEncoder class,
Java does provide other ways to generate XML—but perhaps none quite as simple as
XMLEncoder. The Prediction objects must be serializable in order to be encoded as
XML using the XMLEncoder; hence, the Prediction class implements the empty (or
marker) Serializable interface and defines the get/set methods for the properties
who (the predictor) and what (the prediction). The Prediction properties are serialized
into XML elements in the response document.

The predictions service can be deployed under the Tomcat web server using a provided
Ant script (with % as the command-line prompt):

% ant -Dwar.name=predictions deploy

A First RESTful Example | 29

The deployed WAR file would be predictions.war in this case. The next section (see “The
Tomcat web server” on page 30) elaborates on the Apache Tomcat server and explains
how to install and use this server. The section “An Ant script for service deployment”
on page 31 clarifies the Ant script, which is packaged with the book’s code examples. The
deployed WAR file predictions.war includes a standard web deployment document,
web.xml, so that the URI can be shortened to /predictions/.

The Tomcat web server
Apache Tomcat is a commercial-grade yet lightweight web server implemented in Java.
Tomcat has various subsystems for administration, security, logging, and troubleshoot‐
ing, but its central subsystem is Catalina, a container that executes servlets, including
JSP and other scripts (e.g., JSF scripts) that Tomcat automatically translates into servlets.
Tomcat is the popular name for the web server, and Catalina is the official name for the
servlet container that comes with Tomcat.

Tomcat also includes a web console, tutorials, and sample code. This section focuses on
installing Tomcat and on basic post-installation tasks such as starting and stopping the
web server. The current version is 7.x, which requires Java SE 6 or higher. Earlier Tomcat
versions are still available.

There are different ways to download Tomcat, including as a ZIP file. Tomcat can be
installed in any directory. For convenience, let TOMCAT_HOME be the install direc‐
tory. The directory TOMCAT_HOME/bin has startup and shutdown scripts for Unixy
and Windows systems. For instance, the startup script is startup.sh for Unix and start‐
up.bat for Windows. Tomcat is written in Java but does not ship with the Java runtime;
instead, Tomcat uses the Java runtime on the host system. To that end, the environment
variable JAVA_HOME should be set to the Java install directory (e.g., to /usr/local/
java7, D:\java7, and the like).

In summary, the key commands (with comments introduced with two semicolons) are:

% startup.sh ;; or startup.bat on Windows to start Tomcat
% shutdown.sh ;; or shutdown.bat on Windows to stop Tomcat

The commands can be given at a command-line prompt. On startup, a message similar
to:

Using CATALINA_BASE: /home/mkalin/tomcat7
Using CATALINA_HOME: /home/mkalin/tomcat7
Using CATALINA_TMPDIR: /home/mkalin/tomcat7/temp
Using JRE_HOME: /usr/local/java
Using CLASSPATH: /home/mkalin/tomcat7/bin/bootstrap.jar

appears.

Under TOMCAT_HOME there is directory named logs, which contains various logfiles,
and several other directories, some of which will be clarified later. A important directory
for now is TOMCAT_HOME/webapps, which holds JAR files with a .war extension

30 | Chapter 1: Web Services Quickstart

http://tomcat.apache.org

(hence the name WAR file). Subdirectories under TOMCAT_HOME/webapps can be
added as needed. Deploying a web service under Tomcat is the same as deploying a
website: a WAR file containing the site or the service is copied to the webapps directory,
and a website or web service is undeployed by removing its WAR file.

Tomcat maintains various logfiles in TOMCAT_HOME/logs, one of which is especially
convenient for ad hoc debugging. In standard configuration, Tomcat redirects output
to System.err and System.out to logs/catalina.out. Accordingly, if a servlet executes:

System.err.println("Goodbye, cruel world!");

the farewell message will appear in the catalina.out logfile.

Apache Tomcat is not the only game in town. There is the related TomEE web server,
basically Tomcat with support for Java EE beyond servlets. Another popular Java-centric
web server is Jetty. The sample services in this book can be deployed, as is, with either
Tomcat or Jetty; the next chapter has a sidebar on how to install and run Jetty.

An Ant script for service deployment
The first sample web service is published with a web server such as Tomcat or Jetty. The
ZIP file with my code examples includes an Ant script to ease the task of deployment.
The Ant utility, written in Java, is available on all platforms. My script requires Ant 1.6
or higher.

To begin, let the current working directory (cwd) be any directory on the local filesystem.
The cwd holds the Ant script build.xml:

cwd: build.xml

The cwd has a subdirectory named src that holds the web service’s artifacts. Suppose,
for example, that a web service includes a JSP script, a backend JavaBean, the standard
Tomcat or Jetty deployment file web.xml, and a JAR file that holds a JSON library. Here
is a depiction:

cwd: build.xml
 |
src: products.jsp, json.jar, web.xml

Suppose, further, that the backend JavaBean has the fully qualified name:

acme.Products

The file structure is now:

cwd: build.xml
 |
src: products.jsp, json.jar, web.xml
 |
acme: Products.java

A First RESTful Example | 31

http://jetty.codehaus.org

Finally, assume that the src directory also holds the datafile new_products.db. From the
cwd command line, the command:

% ant -Dwar.name=products deploy

does the following:

• Creates the directory cwd/build, which holds copies of files in directory src and any
subdirectories

• Compiles any .java files, in this case acme.Products.java
• Builds the WAR file, whose major contents are:

WEB-INF/web.xml
WEB-INF/classes/acme/Products.class
WEB-INF/data/new_products.db
WEB-INF/lib/json.jar
acme/Products.java
products.jsp

In the constructed WAR file:

• Any .xml file winds up in WEB-INF.
• Any .jar file winds up in WEB-INF/lib.
• Any .db file winds up in WEB-INF/data.
• Any .java or .class file winds up in its package/subdirectory.
• Other files, such as .jsp files, wind up in the WAR file’s top level.

For convenience, the Ant script includes, in the WAR file, Java source (.java) and com‐
piled (.class) files. In production, the source files would be omitted.

Finally, the Ant script copies the constructed WAR file to TOMCAT_HOME/webapps
and thereby deploys the web service. The script also leaves a copy of the WAR file in cwd.

The command:

% ant

displays the three most useful commands. The command:

% ant clean

removes any .war files from the cwd and deletes the build directory. The command:

% ant compile

compiles any .java files but does not build or deploy a WAR file. The command:

% ant -Dwar.name=predictions deploy

32 | Chapter 1: Web Services Quickstart

first cleans and compiles; then the command builds and deploys the WAR file
predictions.war.

The Ant file build.xml has extensive documentation and explains, in particular, what
needs to be done to customize this file for your environment. Only one line in the file
needs to be edited. Although the Ant script is targeted at Tomcat deployment, the WAR
files that the script produces can be deployed as is to Jetty as well. As noted earlier,
Chapter 2 goes into the details of installing and running Jetty.

A Client Against the Predictions Web Service
Later examples introduce RESTful clients in Java and other languages; for now, either a
browser or a utility such as curl (see “The curl Utility” on page 33) is good enough. On
a successful curl request to the service:

% curl -v http://localhost:8080/predictions/

the response includes not only the XML shown earlier in Example 1-5 but also a trace
(thanks to the -v flag) of the HTTP request and response messages. The HTTP request
is:

GET /predictions/ HTTP/1.1
User-Agent: curl/7.19.7
Host: localhost:8080
Accept: */*

The HTTP response start line and headers are:

HTTP/1.1 200 OK
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=96C78773C190884EDE76C714728164EC; Path=/test1/;
Content-Type: text/html;charset=ISO-8859-1
Transfer-Encoding: chunked

Recall that an HTTP GET message has no body; hence, the entire message is the start
line and the headers. The response shows the session identifier (a 128-bit statistically
unique number, in hex, that Tomcat generates) in the header. In the JSP script, the session
identifier could be disabled, as it is not needed; for now, the goal is brevity and simplicity
in the code.

The curl Utility
The curl utility (curl.haxx.se) is a command-line tool for requesting data using URL
syntax. The tool supports a wide variety of protocols, including HTTP(S), SMTP,
FTP(S), LDAP(S), and others. The tool is available on Unixy systems and there is port
for Windows. This tool is useful for quick tests to determine whether a service is re‐
sponding appropriately to requests.

A First RESTful Example | 33

If a POST request were sent to the RESTful predictions service:

% curl --request POST --data "foo=bar" http://localhost:8080/predictions/

the request message header becomes:

POST /predictions/ HTTP/1.1
User-Agent: curl/7.19.7
Host: localhost:8080
Accept: */*
Content-Length: 7
Content-Type: application/x-www-form-urlencoded

The response header is now:

HTTP/1.1 405 Method Not Allowed
Server: Apache-Coyote/1.1
Set-Cookie: JSESSIONID=34A013CDC5A9F9F8995A28E30CF31332; Path=/test1/;
Content-Type: text/html;charset=ISO-8859-1
Content-Length: 1037

The error message:

Only GET requests are allowed.

is in an HTML document that makes up the response message’s body. Tomcat generates
an HTML response because my code does not (but could) stipulate a format other than
HTML, the default Tomcat format for a Tomcat response.

This first example illustrates how a JSP script is readily adapted to support web services
in addition to websites. The next section goes into more detail on servlets and JSP scripts.
In summary, the predictions web service is implemented as a JSP script with the two
backend JavaBeans in support. This first example highlights key aspects of a REST-style
service:

• The service provides access to resource under the URI /predictions/.
• The service filters access on the HTTP request verb. In this example, only GET

requests are successful; any other type of request generates a bad method error.
• The service responds with an XML payload, which the consumer now must process

in some appropriate way.

Why Use Servlets for RESTful Web Services?
Chapter 2 explores various ways to implement and publish RESTful services in Java,
which has a rich set of built-in and third-party APIs. The current chapter introduces a
tried-and-true way to do RESTful services in Java: the service is implemented as a JSP
script, which a web server such as Tomcat or Jetty translates into a servlet, and the servlet
then is published with the web server.

34 | Chapter 1: Web Services Quickstart

An HttpServlet is a natural, convenient way to implement RESTful web services for
two main reasons. First, such servlets are close to the HTTP metal. For example, the
HttpServlet class has methods such as doGet, doPost, doPut, and doDelete that match
up with the HTTP verbs aligned with the CRUD operations. These servlet methods
execute as callbacks that the servlet container, explained shortly, invokes as needed. The
HttpServlet class also provides symbolic constants for HTTP status codes, for example,
SC_NOT_FOUND for status code 404 and SC_METHOD_NOT_ALLOWED for status code 405.
Each HttpServlet do-method has the same two arguments: an HttpServletRequest
and an HttpServletResponse. The servlet request contains, as key/value pairs, all of
the appropriate information encapsulated in the HTTP request, regardless of the request
verb—for a GET request, the HttpServletRequest would include any key/value pairs
in a query string; for a POST request, this data structure would include any key/value
pairs in the POST request body. The HttpServletRequest map is easy to read and, if
needed, easy to update and forward. The HttpServletResponse has methods to adjust
the HTTP response message as needed, and this class encapsulates an output stream to
communicate back to the client.

A second major advantage of servlets is that they execute in a servlet container, which
is middleware that mediates between the application code of the servlet and the web
server that provides the usual types of support: wire-level security in the form of HTTPS
transport, user authentication and authorization, logging and troubleshooting support,
server configuration, local or remote database access, naming services, application de‐
ployment and administration, and so on. In the Tomcat web server, the servlet container
is named Catalina. Because the servlet container is such an integral part of a Java-based
web server, it is common to conflate the container name (Catalina) and the server name
(Tomcat), a practice followed here. (In Jetty, the server and the container have the same
name: Jetty.) In any case, a Java-centric web server such as Tomcat is the natural way to
publish real-world web services, including RESTful ones, written in Java. A servlet con‐
tainer typically houses several instances of executing servlets, each awaiting client re‐
quests (see Figure 1-7).

Figure 1-7. A servlet container with servlet instances awaiting requests

Here is a short, more technical review of servlets with emphasis on their use to deliver
RESTful services. The class HttpServlet extends the class GenericServlet, which in
turn implements the Servlet interface. All three types are in a package that is not
included in core Java. (Tomcat and Jetty provide a JAR file servlet-api.jar that contains

Why Use Servlets for RESTful Web Services? | 35

the required package.) The Servlet interface declares five methods, the most important
of which is the service method that a web container invokes on every request to a
servlet. The service method has a ServletRequest and a ServletResponse parameter.
The request is a map that contains the request information from a client, and the
response provides a stream to send responses back to the client. The GenericServlet
class implements the Servlet methods in a transport-neutral fashion, whereas the
HttpServlet subclass of GenericServlet implements these methods in an HTTP-
specific way. Accordingly, the service parameters in the HttpServlet have the types
HttpServletRequest and HttpServletResponse. The HttpServlet also provides re‐
quest filtering that naturally supports a REST-style service: in an HttpServlet, the
overridden service method dispatches a incoming GET request to the method doGet,
an incoming POST request to the method doPost, and so on. Because HTTP is the
dominant transport for websites and web services, the HttpServlet is an excellent
choice for implementing either.

In the HttpServlet class, the do-methods such as doGet and doPost are defined as no-
ops, (methods with empty bodies); these methods can be overridden as needed in a
programmer-derived subclass. For example, if the class MyServlet extends HttpServ
let and overrides doGet but not doPost, then doPost remains a no-op in MyServlet
instances. A servlet programmer overrides the do-methods of interest and ignores the
rest.

Servlets are written in Java and, therefore, have access to all of the Java libraries, standard
and contributed. JSP scripts, by contrast, are an arbitrary mix of HTML and code. In
the case of websites, JSP scripts typically serve as HTML templates and, under best
practices, the major code segments involve references to backend JavaBeans. In the case
of web services, by contrast, JSP scripts would consist predominantly or even exclusively
of code because service clients do not expect HTML payloads as responses. The advan‐
tage of a JSP script over an HttpServlet is that the programmer does not need to compile
a JSP script. The Java-aware web server assumes this responsibility. A JSP script is de‐
ployed as a text file but executes as a servlet because the web server automatically trans‐
lates the script into an HttpServlet before loading one or more instances of the resulting
servlet into the servlet container. For short examples and for the kind of experimentation
typical of code development, JSP scripts are attractive. For deployment to production,
the Java code of a servlet would be best practice. Some of the shorter servlet-based
examples in this book use JSP scripts, but most of the examples use classes that explicitly
extend HttpServlet.

36 | Chapter 1: Web Services Quickstart

What’s Next?
RESTful services are rich enough to warrant two dedicated chapters. Accordingly, the
next chapter focuses on the service side by exploring options for implementing and
publishing RESTful services. The web service APIs include:

• HttpServlet and its equivalents (e.g., JSP scripts)
• JAX-RS, which has various implementations
• Restlet, which is similar in style to JAX-RS
• JAX-WS @WebServiceProvider, which is a relatively low-level API

Web services using any of these APIs can be published with a production-grade web
server such as Tomcat or Jetty; there are even command-line options for such publica‐
tion, although these options vary significantly in ease of use. There are trade-offs among
the APIs, and the next chapter highlights the pluses and minuses of each API.

The servlet approach represents a base-level API in that servlets have been a part of Java
since the late 1990s, and they remain the foundation for websites written in Java. The
servlet API is close to the HTTP metal in that, for example, an HttpServletRequest is
a thin but likewise convenient wrapper around an HTTP request; in similar fashion, an
HttpServletResponse is a thin and equally convenient wrapper around an HTTP re‐
sponse. At the same time, servlets provide high-level filtering of HTTP requests, and a
data structure such as the HttpServletRequest collapses the distinction between the
key/value pairs in a query string of a GET or DELETE request and the key/value pairs
in the body of a POST or PUT request. All such pairs occur, without distinction, in the
HttpServletRequest map. Servlets may seem old hat, but they are a hat worth trying
on for REST-style services. The remaining APIs build upon what servlets offer and, in
this sense, represent a layering on top of servlets.

JAX-RS and Restlet are roughly peers, although this comparison might stir heated de‐
nials from either camp. Both of these APIs emphasize the use of Java annotations to
describe the RESTful access to a particular CRUD operation. For example, methods that
handle GET requests are annotated with @GET or @Get, those that handle POST requests
are annotated with @POST or @Post, and so on. In both frameworks there are symbolic
constants to specify MIME types and status codes. Further, each framework supports
the automated generation of XML and JSON payloads. These frameworks have a con‐
temporary look and feel, but each represents, at the implementation level, a layer above
the servlet layer. When published with a web server such as Tomcat or Jetty, JAX-RS
and Restlet provide servlet interceptors that mediate between the client and the web
service. The details are explored in Chapter 2.

JAW-WS is an API used mostly for SOAP-based services but can be used for REST-style
services as well. In the latter case, the @WebServiceProvider annotation is central. The

What’s Next? | 37

@WebServiceProvider interface is sufficiently flexible that it can be used to annotate
either a SOAP-based or a REST-style service; however, JAX-WS provides a related but
higher level annotation, @WebService, for SOAP-based services. The @WebServicePro
vider API is deliberately lower level than the servlet, JAX-RS, and Restlet APIs, and the
@WebServiceProvider API is targeted at XML-based services. For programmers who
need a low-level API, Java supports the @WebServiceProvider option. JAX-RS, Restlet,
and @WebServiceProvider have both service-side and client-side APIs that can be used
independently of one another. For example, a Restlet client could make calls against a
JAX-RS service or vice versa.

In summary, Chapter 2 focuses on the server side of RESTful services. Chapter 3 shifts
the focus to the client or consumer side of such services. The chapter includes client
code against commercial RESTful services such as Amazon, Twitter, and the Chicago
Transit Authority. The chapter also focuses on how the standard JAX-B (Java API for
XML-Binding) packages and third-party libraries such as XStream can be put to good
use by hiding the XML in the consumption of RESTful services. A dominant trend in
contemporary web services is the occurrence of JavaScript clients against RESTful serv‐
ices. Such clients may be written in JavaScript or a dialect such as jQuery. In any case,
these clients are usually embedded in HTML documents so that the clients execute in
the context of a browser. JavaScript clients in general prefer JSON over XML payloads
for the obvious reason that a JSON document is the text representation of a JavaScript
object, even a JavaScript function. Chapter 3 also looks at various Java options for gen‐
erating JSON as well as XML and plain-text responses, and the chapter explores different
ways in which JavaScript clients can process the JSON payloads.

38 | Chapter 1: Web Services Quickstart

CHAPTER 2

RESTful Web Services: The Service Side

Java has options for implementing and publishing RESTful web services. On the pub‐
lishing side, the choices range from very basic, command-line servers that are well suited
for development, testing, and even low-volume production; through lightweight, Java-
centric web servers such as Tomcat and Jetty; and up to full-blown Java Application
Servers (JAS) such as GlassFish, JBoss, Oracle WebLogic, and WebSphere. This chapter
introduces publication options in the first two categories, and Chapter 7 covers JAS
publication.

There is also variety among the APIs and their implementations for RESTful services.
Here is the list of APIs covered in this chapter:

• The HttpServlet and JSP APIs, introduced briefly in Chapter 1 and examined more
thoroughly in this chapter

• The JAX-RS (Java API for XML-RESTful Services) API
• The third-party Restlet API, which is very similar to JAX-RS in look and feel
• The JAX-WS (Java API for XML-Web Services) API, the @WebServiceProvider

interface in particular

For the most part, the API used to implement the web service does not constrain how
this service can be published. The exception is the servlet API, as servlets need to be
deployed in a servlet container such as Tomcat’s Catalina or Jetty. (Jetty is the name of
both the web server and its servlet container.) There are shortcuts for publishing JAX-
RS and JAX-WS services but these, too, can be published with Tomcat or Jetty; the same
goes for Restlet services.

The decision about how to publish a service depends on many factors. For example, if
service deployment requires wire-level security in the form of HTTPS together with
user authentication/authorization, then a web server such as Tomcat or Jetty is the ob‐
vious starting point. If the published web services are to interact with EJBs, which are

39

deployed in an EJB container, then a souped-up web server such as TomEE (Tomcat
with EE support) or a full JAS is a better choice. In development, simpler command-
line options such as Endpoint, introduced later, are attractive.

A RESTful Service as an HttpServlet
Chapter 1 has a sample RESTful service implemented as a JSP script and two backend
classes: Prediction and Predictions. The JSP-based service supported only GET re‐
quests. This section revises the example to provide an HttpServlet implementation
with support for the four CRUD operations:

• A new Prediction can be created with a POST request whose body should have
two key/value pairs: a who key whose value is the name of the predictor and a what
key whose value is the prediction.

• The Prediction objects can be read one at a time or all together with a GET request.
If the GET request has a query string with an id key, then the corresponding
Prediction, if any, is returned. If the GET request has no query string, then the full
list of Predictions is returned. On any GET request, the client can indicate a pref‐
erence for JSON rather than the default XML format.

• A specified Prediction can be updated with a PUT request that provides the iden‐
tifier for the Prediction and either a new who or a new what.

• A specified Prediction can be deleted.

The earlier JSP service is predictions and the servlet revision is predictions2. The struc‐
ture of predictions2 differs from that of predictions in several ways. The most obvious
change is that an explicit HttpServlet subclass replaces the JSP script. There are also
changes in the details of the Prediction and Predictions classes, which still provide
backend support. The details follow.

The Jetty Web Server
The Jetty web server is available as a ZIP file. Let the install directory be
JETTY_HOME. Its subdirectories are similar to those of TOMCAT_HOME. For exam‐
ple, there is a webapps subdirectory into which WAR files are deployed; a logs subdir‐
ectory; a lib subdirectory with various JAR files, including a versioned counterpart of
Tomcat’s servlet-api.jar; and others. Jetty ships with an executable JAR file start.jar;
hence, Jetty can be started at the command line with the command:

% java -jar start.jar

40 | Chapter 2: RESTful Web Services: The Service Side

http://jetty.codehaus.org

In general, a WAR file deployable under Tomcat is deployable under Jetty and vice versa;
my examples can be deployed under either. The Jetty web server, like Tomcat, listens by
default on port 8080. Jetty is a first-rate web server that has a lighter feel than does
Tomcat, and Jetty’s simplicity makes embedding this web server in other systems rela‐
tively straightforward. It is hard to make a bad choice between Tomcat and Jetty.

Implementation Details
There are small but important changes to the Prediction class (see Example 2-1), which
now includes an id property (line 1), an auto-incremented integer that the service sets
when a Prediction object is constructed.

Example 2-1. The backend Prediction class
package predictions2;
import java.io.Serializable;

public class Prediction implements Serializable, Comparable<Prediction> {
 private String who; // person
 private String what; // his/her prediction
 private int id; // identifier used as lookup key

 public Prediction() { }
 public void setWho(String who) { this.who = who; }
 public String getWho() { return this.who; }
 public void setWhat(String what) { this.what = what; }
 public String getWhat() { return this.what; }
 public void setId(int id) { this.id = id; }
 public int getId() { return this.id; }
 public int compareTo(Prediction other) { return this.id - other.id; }
}

The id property is used to sort the Prediction objects, which explains why the Predic
tion class implements the interface Comparable used in sorting:

public class Prediction implements Serializable, Comparable<Prediction> {

Implementing the Comparable interface requires that the compareTo method be defined:

public int compareTo(Prediction other) {
 return this.id - other.id;
}

The compareTo method uses the comparison semantics of the age-old C function
qsort. For illustration, suppose that this.id in the code above is 7 and other.id is 12,
where this is the current object and other is another Prediction object against which
the current Prediction object is being compared. The difference of 7–12 is the negative
integer –5, which signals that the current Prediction precedes the other Prediction
because 7 precedes 12. In general:

A RESTful Service as an HttpServlet | 41

• A returned negative integer signals that the current object precedes the other object.
• A returned positive integer signals that the current object succeeds the other object.
• A returned zero signals that the two objects are to be treated as equals with respect

to sorting.

The implementation of the compareTo method means the sort is to be in ascending
order. Were the return statement changed to:

return other.id - this.id;

the sort would be in descending order. The Prediction objects are sorted for ease of
confirming that the CRUD operations work correctly. For example, if a Prediction
object is created with the appropriate POST request, then the newly created Predic
tion occurs at the end of the Prediction list. In similar fashion, it is easy to confirm
that the other destructive CRUD operations—PUT (update) and DELETE—work as
intended by inspecting the resulting sorted list of Prediction objects.

A Prediction is still Serializable so that a list of these can be serialized into XML
using the XmlEncoder utility. An added feature is that this list can be formatted in JSON
if the client so requests.

The utility class Predictions has changed as well (see Example 2-2). As explained in
the sidebar about thread synchronization and servlets, the Map of the earlier JSP imple‐
mentation gives way to a ConcurrentMap so that the code can avoid explicit locks in the
form of synchronized blocks.

Example 2-2. The backend Predictions class
package predictions2;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.io.ByteArrayOutputStream;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.Collections;
import java.beans.XMLEncoder; // simple and effective
import javax.servlet.ServletContext;

public class Predictions {
 private ConcurrentMap<Integer, Prediction> predictions;
 private ServletContext sctx;
 private AtomicInteger mapKey;

 public Predictions() {
 predictions = new ConcurrentHashMap<Integer, Prediction>();

42 | Chapter 2: RESTful Web Services: The Service Side

 mapKey = new AtomicInteger();
 }
 public void setServletContext(ServletContext sctx) {
 this.sctx = sctx;
 }
 public ServletContext getServletContext() { return this.sctx; }
 public void setMap(ConcurrentMap<String, Prediction> predictions) {
 // no-op for now
 }
 public ConcurrentMap<Integer, Prediction> getMap() {
 // Has the ServletContext been set?
 if (getServletContext() == null) return null;
 // Has the data been read already?
 if (predictions.size() < 1) populate();
 return this.predictions;
 }
 public String toXML(Object obj) {
 String xml = null;
 try {
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 XMLEncoder encoder = new XMLEncoder(out);
 encoder.writeObject(obj); // serialize to XML
 encoder.close();
 xml = out.toString(); // stringify
 }
 catch(Exception e) { }
 return xml;
 }
 public int addPrediction(Prediction p) {
 int id = mapKey.incrementAndGet();
 p.setId(id);
 predictions.put(id, p);
 return id;
 }
 private void populate() {
 String filename = "/WEB-INF/data/predictions.db";
 InputStream in = sctx.getResourceAsStream(filename);
 // Read the data into the array of Predictions.
 if (in != null) {
 try {
 InputStreamReader isr = new InputStreamReader(in);
 BufferedReader reader = new BufferedReader(isr);
 int i = 0;
 String record = null;
 while ((record = reader.readLine()) != null) {
 String[] parts = record.split("!");
 Prediction p = new Prediction();
 p.setWho(parts[0]);
 p.setWhat(parts[1]);
 addPrediction(p);
 }
 }

A RESTful Service as an HttpServlet | 43

 catch (IOException e) { }
 }
 }
}

The Predictions class now has an addPrediction method:

public int addPrediction(Prediction p) {
 int id = mapKey.incrementAndGet(); // AtomicInteger
 p.setId(id);
 predictions.put(id, p);
 return id;
}

to support POST requests. The servlet’s doPost method creates a new Prediction, sets
the who and what properties with data from the POST message’s body, and then invokes
addPrediction to add the newly constructed Prediction to the map whose object
reference is predictions. The mapKey, a thread-safe AtomicInteger, gets incremented
with each new Prediction and behaves like an auto-incremented integer in a database
system; the mapKey value becomes the id of each newly constructed Prediction, thereby
ensuring that each Prediction has a unique id.

The remaining Predictions code is slightly changed, if at all, from the earlier version.
For example, the populate method is modified slightly to give each newly constructed
Prediction an id, but the method’s main job is still to read data from the text file
encapsulated in the WAR—data that contain the who and what of each Prediction.

The PredictionServlet (see Example 2-3) replaces the JSP script and differs from this
script in supporting all of the CRUD operations. The servlet offers new functionality
by allowing the client to request the JSON format for the response of any GET request.
Further, the earlier JSP script interpreted GET to mean read all but the servlet allows
the client to request one specified Prediction or all of them. The code for the Predic
tionServlet is long enough that it makes sense to isolate important code segments for
clarification.

Example 2-3. The PredictionsServlet with full support for the CRUD operations
package predictions2;

import java.util.concurrent.ConcurrentMap;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.xml.ws.http.HTTPException;
import java.util.Arrays;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.OutputStream;

44 | Chapter 2: RESTful Web Services: The Service Side

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.beans.XMLEncoder;
import org.json.JSONObject;
import org.json.XML;

public class PredictionsServlet extends HttpServlet {
 private Predictions predictions; // backend bean

 // Executed when servlet is first loaded into container.
 // Create a Predictions object and set its servletContext
 // property so that the object can do I/O.
 @Override
 public void init() {
 predictions = new Predictions();
 predictions.setServletContext(this.getServletContext());
 }
 // GET /predictions2
 // GET /predictions2?id=1
 // If the HTTP Accept header is set to application/json (or an equivalent
 // such as text/x-json), the response is JSON and XML otherwise.
 @Override
 public void doGet(HttpServletRequest request, HttpServletResponse response) {
 String param = request.getParameter("id");
 Integer key = (param == null) ? null : new Integer(param.trim());
 // Check user preference for XML or JSON by inspecting
 // the HTTP headers for the Accept key.
 boolean json = false;
 String accept = request.getHeader("accept");
 if (accept != null && accept.contains("json")) json = true;
 // If no query string, assume client wants the full list.
 if (key == null) {
 ConcurrentMap<Integer, Prediction> map = predictions.getMap();
 // Sort the map's values for readability.
 Object[] list = map.values().toArray();
 Arrays.sort(list);
 String xml = predictions.toXML(list);
 sendResponse(response, xml, json);
 }
 // Otherwise, return the specified Prediction.
 else {
 Prediction pred = predictions.getMap().get(key);

 if (pred == null) { // no such Prediction
 String msg = key + " does not map to a prediction.\n";
 sendResponse(response, predictions.toXML(msg), false);
 }
 else { // requested Prediction found
 sendResponse(response, predictions.toXML(pred), json);
 }
 }
 }

A RESTful Service as an HttpServlet | 45

 // POST /predictions2
 // HTTP body should contain two keys, one for the predictor ("who") and
 // another for the prediction ("what").
 @Override
 public void doPost(HttpServletRequest request, HttpServletResponse response) {
 String who = request.getParameter("who");
 String what = request.getParameter("what");
 // Are the data to create a new prediction present?
 if (who == null || what == null)
 throw new HTTPException(HttpServletResponse.SC_BAD_REQUEST);
 // Create a Prediction.
 Prediction p = new Prediction();
 p.setWho(who);
 p.setWhat(what);
 // Save the ID of the newly created Prediction.
 int id = predictions.addPrediction(p);
 // Generate the confirmation message.
 String msg = "Prediction " + id + " created.\n";
 sendResponse(response, predictions.toXML(msg), false);
 }
 // PUT /predictions
 // HTTP body should contain at least two keys: the prediction's id
 // and either who or what.
 @Override
 public void doPut(HttpServletRequest request, HttpServletResponse response) {
 /* A workaround is necessary for a PUT request because neither Tomcat
 nor Jetty generates a workable parameter map for this HTTP verb. */
 String key = null;
 String rest = null;
 boolean who = false;
 /* Let the hack begin. */
 try {
 BufferedReader br =
 new BufferedReader(new InputStreamReader(request.getInputStream()));
 String data = br.readLine();
 /* To simplify the hack, assume that the PUT request has exactly
 two parameters: the id and either who or what. Assume, further,
 that the id comes first. From the client side, a hash character
 # separates the id and the who/what, e.g.,
 id=33#who=Homer Allision
 */
 String[] args = data.split("#"); // id in args[0], rest in args[1]
 String[] parts1 = args[0].split("="); // id = parts1[1]
 key = parts1[1];
 String[] parts2 = args[1].split("="); // parts2[0] is key
 if (parts2[0].contains("who")) who = true;
 rest = parts2[1];
 }
 catch(Exception e) {
 throw new HTTPException(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);
 }
 // If no key, then the request is ill formed.

46 | Chapter 2: RESTful Web Services: The Service Side

 if (key == null)
 throw new HTTPException(HttpServletResponse.SC_BAD_REQUEST);
 // Look up the specified prediction.
 Prediction p = predictions.getMap().get(new Integer(key.trim()));
 if (p == null) { // not found?
 String msg = key + " does not map to a Prediction.\n";
 sendResponse(response, predictions.toXML(msg), false);
 }
 else { // found
 if (rest == null) {
 throw new HTTPException(HttpServletResponse.SC_BAD_REQUEST);
 }
 // Do the editing.
 else {
 if (who) p.setWho(rest);
 else p.setWhat(rest);
 String msg = "Prediction " + key + " has been edited.\n";
 sendResponse(response, predictions.toXML(msg), false);
 }
 }
 }
 // DELETE /predictions2?id=1
 @Override
 public void doDelete(HttpServletRequest request, HttpServletResponse response) {
 String param = request.getParameter("id");
 Integer key = (param == null) ? null : new Integer(param.trim());
 // Only one Prediction can be deleted at a time.
 if (key == null)
 throw new HTTPException(HttpServletResponse.SC_BAD_REQUEST);
 try {
 predictions.getMap().remove(key);
 String msg = "Prediction " + key + " removed.\n";
 sendResponse(response, predictions.toXML(msg), false);
 }
 catch(Exception e) {
 throw new HTTPException(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);
 }
 }
 // Method Not Allowed
 @Override
 public void doTrace(HttpServletRequest request, HttpServletResponse response) {
 throw new HTTPException(HttpServletResponse.SC_METHOD_NOT_ALLOWED);
 }
 @Override
 public void doHead(HttpServletRequest request, HttpServletResponse response) {
 throw new HTTPException(HttpServletResponse.SC_METHOD_NOT_ALLOWED);
 }
 @Override
 public void doOptions(HttpServletRequest request, HttpServletResponse response) {
 throw new HTTPException(HttpServletResponse.SC_METHOD_NOT_ALLOWED);
 }
 // Send the response payload to the client.

A RESTful Service as an HttpServlet | 47

 private void sendResponse(HttpServletResponse response,
 String payload,
 boolean json) {
 try {
 // Convert to JSON?
 if (json) {
 JSONObject jobt = XML.toJSONObject(payload);
 payload = jobt.toString(3); // 3 is indentation level for nice look
 }
 OutputStream out = response.getOutputStream();
 out.write(payload.getBytes());
 out.flush();
 }
 catch(Exception e) {
 throw new HTTPException(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);
 }
 }
}

Recall that each of the do-methods in an HttpServlet take the same arguments: an
HttpServletRequest; a map that contains the information encapsulated in the HTTP
request; and an HttpServletResponse, which encapsulates an output stream for com‐
municating back with the client. Here is the start of the doGet method:

public void doGet(HttpServletRequest request, HttpServletResponse response) {

The HttpServletRequest has a getParameter method that expects a string argument,
a key into the request map, and returns either null if there is no such key or the key’s
value as a string otherwise. The getParameter method is agnostic about whether the
key/value pairs are in the body of, for example, a POST request or in the query string
of, for example, a GET request. The method works the same in either case. There is also
a getParameters method that returns the parameter collection as a whole.

In the case of PredictionsServlet, the doGet method needs to answer two questions
about the incoming request:

• Does the bodyless GET request include a key named id whose value identifies a
particular Prediction?
If the id is present, the doGet method uses the id to perform a lookup against the
ConcurrentMap, which holds references to all of the Prediction objects. If the
lookup fails, then the doGet method returns an XML message to that effect:

Prediction pred = predictions.getMap().get(key);
if (pred == null) { // no such Prediction
 String msg = key + " does not map to a prediction.\n";
 sendResponse(response, predictions.toXML(msg), false);
}

48 | Chapter 2: RESTful Web Services: The Service Side

The last argument to the sendResponse method indicates whether JSON rather
than XML should be sent back to the client. In this example, XML is returned
because the JSON flag is false. If the id parameter is not present, the doGet method
assumes that the client wants to read a list of all Predictions and returns this list
in either JSON or XML format:

ConcurrentMap<String, Prediction> map = predictions.getMap();
// Sort the map's values for readability.
Object[] list = map.values().toArray();
Arrays.sort(list); // other ways to sort shown later
...

• Does the client prefer JSON over XML?
In an HTTP request, the requester can express a preference for the MIME type of
the returned representation. For example, the header element:

Accept: text/html

expresses a preference for the MIME type text/html. Among the MIME combi‐
nations is application/json that, together with several variants, expresses a pref‐
erence for JSON. The doGet method therefore uses the getHeader method in the
HttpServletRequest to inspect the HTTP header element with Accept as its key:

boolean json = false;
String accept = request.getHeader("accept");
if (accept != null && accept.contains("json")) json = true;

This check determines whether the client prefers JSON over XML. (Recall that
HTTP is case insensitive; hence, the key could be Accept, accept, ACCEPT, and so
on.) The json flag is the third argument to the sendResponse method:

private void sendResponse(HttpServletResponse res,
 String payload,
 boolean json) { // json format?
 try {
 if (json) {
 JSONObject jobt = XML.toJSONObject(payload);
 payload = jobt.toString(3); // 3 is indentation level
 }
 OutputStream out = res.getOutputStream();
 out.write(payload.getBytes());
 out.flush();
 }
 catch(Exception e) {
 throw new HTTPException(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);
 }
}

Details about generating the JSON are considered next.

A RESTful Service as an HttpServlet | 49

The deployed WAR file predictions2.war includes a lightweight, third-party JSON li‐
brary in the JAR file json.jar (it is available at the JSON in Java website). If the client
prefers JSON over XML, then the response payload is converted to JSON. If anything
goes awry in sending the response back to the client, the servlet throws an HTTPExcep
tion, which in this case generates a response with HTTP status code 500 for Internal
Server Error, a catchall for request-processing errors on the server.

The doPost and doPut operations are similar in that doPost creates an altogether new
Prediction using data in the body of a POST request, whereas doPut updates an existing
Prediction from data in the body of a PUT request. The main difference is that a PUT
request needs to include the id of the Prediction to be updated, whereas a POST request
creates a new Prediction and then sets its id to an auto-incremented integer. In im‐
plementation, however, doPost and doPut differ significantly because the servlet con‐
tainer’s runtime does not generate a usable parameter map, the HttpServletRequest,
on a PUT request; on a POST request, the map is usable. (This is the case in both Tomcat
and Jetty.) As a result, the doPut implementation extracts the data directly from an input
stream.

To begin, here is the doPost implementation, without the comments:

public void doPost(HttpServletRequest request, HttpServletResponse response) {
 String who = request.getParameter("who");
 String what = request.getParameter("what");
 if (who == null || what == null)
 throw new HTTPException(HttpServletResponse.SC_BAD_REQUEST);
 Prediction p = new Prediction();
 p.setWho(who);
 p.setWhat(what);
 int id = predictions.addPrediction(p);
 String msg = "Prediction " + id + " created.\n";
 sendResponse(response, predictions.toXML(msg), false);
}

The two calls to the getParameter method extract the required data (lines 1 and 2). A
new Prediction is then constructed, its who and what properties are set, and a confir‐
mation is generated for the client (lines 3 through 7).

In the doPut method, the getParameter method does not work correctly because neither
Tomcat nor Jetty builds a usable parameter map in HttpServletRequest. The work‐
around is to access directly the input stream encapsulated in the request structure:

BufferedReader br =
 new BufferedReader(new InputStreamReader(request.getInputStream()));
String data = br.readLine();
...

The next step is to extract the data from this stream. The code, though not pretty, gets
the job done. The point of interest is that the HttpServletRequest does provide access

50 | Chapter 2: RESTful Web Services: The Service Side

http://json.org/java

to the underlying input stream from which the PUT data can be extracted. Using the
getParameter method is, of course, much easier.

The body of doDelete method has simple logic:

String key = request.getParameter("id");
if (key == null)
 throw new HTTPException(HttpServletResponse.SC_BAD_REQUEST);
try {
 predictions.getMap().remove(key);
 String msg = "Prediction " + key + " removed.\n";
 sendResponse(response, predictions.toXML(msg), false);
}
catch(Exception e) {
 throw new HTTPException(HttpServletResponse.SC_INTERNAL_SERVER_ERROR);
}

If the id for the Prediction can be extracted from the parameter map, the prediction
is effectively removed from the collection by removing the lookup key from the Con
currentMap (line 1).

The PredictionsServlet also implements three other do-methods, and all in the same
way. Here, for example, is the implementation of doHead:

public void doHead(HttpServletRequest request, HttpServletResponse response) {
 throw new HTTPException(HttpServletResponse.SC_METHOD_NOT_ALLOWED);
}

Throwing the HTTPException signals to the client that the underlying HTTP verb, in
this case HEAD, is not supported. The numeric status code for Method Not Allowed is
405. The web service designer thus has an idiomatic way to reject particular HTTP verbs:
throw a Method Not Allowed exception.

Servlets and Thread Synchronization
A web server such as Tomcat can instantiate arbitrarily many instances of a servlet,
although the number is typically small (e.g., 1 through 4). The web server itself makes
the decision. For example, Tomcat by default loads one instance of a servlet to begin but
may load more instances thereafter if simultaneous requests for the servlet are sufficient
in number. Whatever the number of servlet instances, the number of client requests per
instance is typically greater—and significantly so. For example, one servlet instance
might handle tens of simultaneous requests. For reasons of efficiency, a web server such
as Tomcat keeps the number of servlet instances as small as possible while supporting
reasonable response time per request. A high-volume web server might have to handle
hundreds of requests per second, distributed across many servlet instances; one servlet
instance per request is out of the question in this real-world scenario. The upshot is that
Java-based web servers rely on multithreading to handle simultaneous requests. The
model is sometimes described as one thread per request.

A RESTful Service as an HttpServlet | 51

For reasons of performance, a web server such as Tomcat creates a thread pool at startup;
as requests come in, each is dispatched to a thread from the pool, which then handles
the request and returns to the pool afterwards. The pooling amortizes the relatively
expensive cost of thread creation across the web server’s uptime. There are, of course,
various ways to measure how well a web server is performing. One critical measure is
response time. For example, a website might require that the upper bound on response
time for 90% of all requests be, say, 10 ms.

The one-thread-per-request model poses challenges for the servlet/JSP programmer, in
particular the challenge of thread coordination or synchronization. For example, if there
are a dozen concurrent requests against the PredictionsServlet of the predictions2
service, then each of these requests is implemented as a thread that executes the appro‐
priate do-method in the servlet. On a multicore server (that is, a server with more than
one CPU), one thread could be executing the doGet method at exactly the same time as
another is executing the doPut method; the result is a simultaneous read and write
operation on the same resource. There are various other concurrency scenarios, any
one of which requires proper thread synchronization to avoid so-called race condi‐
tions, and the programmer rather than the servlet container must ensure that these
scenarios remain thread safe.

A servlet container such as Catalina or Jetty, in contrast to an EJB container, does not
ensure thread safety; instead, the programmer is responsible for proper thread coordi‐
nation. A servlet must be programmed so that, for example, two requests—each exe‐
cuting as a separate thread—cannot simultaneously update the same resource such as
a Prediction. In earlier Java versions, the mainstay of thread coordination was the
synchronized block; later versions of Java have added higher level constructs, many in
the java.util.concurrent package, for managing thread-based concurrency.

The predictions2 service uses a thread-safe ConcurrentMap to coordinate simultaneous
thread access to the Predictions. A ConcurrentMap segments its entries; as a result, the
map usually needs to lock only a portion of its total entries to enforce synchronization.
In any case, the ConcurrentMap synchronizes access to the Predictions collection and
does so in an efficient manner. The java.util.concurrent package offers other thread-
safe data structures; a later example in this chapter, the JAX-RS predictions3 service, uses
one of these data structures, the thread-safe CopyOnWriteArrayList. Finally, the pre‐
dictions2 service uses an integer counter to set the id for each newly created prediction.
The counter is implemented with a thread-safe AtomicInteger.

Sample Client Calls Against the predictions2 Service
Example 2-4 is a list of curl calls against the service. These calls serve as a very prelimi‐
nary test of the service. Two semicolons introduce comments that explain the purpose
of the curl call. Recall that the Ant script can be used to deploy the predictions2 service
under Tomcat:

52 | Chapter 2: RESTful Web Services: The Service Side

% ant -Dwar.name=predictions2 deploy

Example 2-4. A suite of curl calls against the predictions RESTful service
;; GET all predictions (XML response)
% curl localhost:8080/predictions2/ ;; curl --request GET...
;; GET a specified saying (XML response)
% curl localhost:8080/predictions2?id=31
;; GET all predictions (JSON response)
% curl --header "Accept: application/json" localhost:8080/predictions2/
;; GET a specified saying (JSON response)
% curl --header "Accept: application/json" localhost:8080/predictions2?id=31
;; POST a new saying
% curl --request POST --data "who=TSEliot& \
 what=This is the way the world ends" localhost:8080/predictions2/
;; GET all predictions to confirm the POST (new saying is at the end)
% curl localhost:8080/predictions2/
;; PUT new data into an existing saying
% curl --request PUT \
 --data "id=33#what=This is an update" localhost:8080/predictions2/
;; GET all predictions to confirm the PUT (edited saying is at the end)
% curl localhost:8080/predictions2/
;; DELETE a specificed saying
% curl --request DELETE localhost:8080/predictions2?id=33
;; GET all predictions to confirm the DELETE
% curl localhost:8080/predictions2/

The XML responses from the predictions2 service are formatted exactly the same as in
the original version, which did not support JSON responses. Here is a sample JSON
response from a GET request on the Prediction with id 31:

{"java": {"class": "java.beans.XMLDecoder", "object": {"void": [
 {"int": 31, "property": "id"},
 {"string": "Balanced clear-thinking utilisation
 will expedite collaborative initiatives.",
 "property": "what"}, {"string": "Deven Blanda", "property": "who"}],
 "class": "predictions2.Prediction"},
 "version": "1.7.0_17"}}

A RESTful Web Service as a JAX-RS Resource
The servlet API, the grizzled workhorse for producing Java websites, is still nimble
enough to support RESTful web services as well. There are more recent APIs, among
them JAX-RS (Java API for XML-RESTful Services). JAX-RS relies upon Java annota‐
tions to advertise the RESTful role that a class and its encapsulated methods play. Jer‐
sey is the reference implementation (RI) of JAX-RS. RESTEasy, a JBoss project; Apache
Wink; and Apache CXF are other implementations. JAX-RS has APIs for programming
RESTful services and clients against such services; the two APIs can be used independ‐
ently. This section focuses on the service-side API. The first JAX-RS example supports

A RESTful Web Service as a JAX-RS Resource | 53

http://jersey-java.net
http://jersey-java.net
http://bit.ly/1d0ccZx
http://bit.ly/1527t4B
http://bit.ly/1527t4B
http://cxf.apache.org

only GET requests, but the second JAX-RS example supports all of the CRUD
operations.

A First JAX-RS Web Service Using Jersey
JAX-RS web services are resources that can be published with the Tomcat and Jetty web
servers. The first example has one resource, the class Adages, and two supporting Java
classes: the deployment class RestfulApplication and the POJO class Adage. Exactly
how these three classes interact is covered next.

The RestfulAdage class (see Example 2-5) extends the JAX-RS Application class (line
2), which implements a getClasses method that enumerates the individual resources
deployed in the WAR file (line 3). In this example, there is but one such resource,
Adages, but there could be arbitrarily many (line 4).

Example 2-5. The JAX-RS Application subclass that lists Adages.class as a resource
package adages;

import java.util.Set;
import java.util.HashSet;
import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/resourcesA")
public class RestfulAdage extends Application {
 @Override
 public Set<Class<?>> getClasses() {
 Set<Class<?>> set = new HashSet<Class<?>>();
 set.add(Adages.class);
 return set;
 }
}

Recall that any website or web service deployed under Tomcat has a URI that begins
with the name of the deployed WAR file. In the RestfulAdage class, the annotation
ApplicationPath (line 1) spells out how the URI continues. For example, assuming
that the deployed WAR file is named adages.war, the ApplicationPath annotation in‐
dicates that the URI part of the URL continues with resourcesA:

http://localhost:8080/adages/resourcesA

The next part is tricky, so the low-level details are explained in a sidebar. At issue is how
the programmer-defined RestfulAdage class interacts with the Jersey JAX-RS imple‐
mentation under a Tomcat deployment. For context, recall that the getClasses method
(line 3), a callback invoked when the RestfulAdage instance is loaded into the servlet
container, specifies the JAX-RS resources available in the WAR file. Once again, there
is but a single resource, Adages (see Example 2-7), in the example. The RestfulAdage

54 | Chapter 2: RESTful Web Services: The Service Side

class is a Jersey Application because the programmer-defined RestfulAdage class ex‐
tends the JAX-RS Application class. If multiple JAX-RS resources were to be made
available in the deployed WAR file, then the class name of each would occur in a set.add
call in RestfulAdage. In the current example, there is only:

set.add(Adages.class);

because Adages is the only resource.

Publishing JAX-RS Resources with a Java Application
“Publishing JAX-RS Resources with Tomcat” on page 56 explains how a JAX-RS resource
can be published with a production-grade web server such as Tomcat; the section also
explains how the JAX-RS libraries can be downloaded. For now, the point of interest is
that the Jersey implementation of JAX-RS offers other ways to publish, which may be
better suited for development. Here is a standalone Java application that publishes the
adages service:

package adages;

import java.net.InetSocketAddress;
import javax.ws.rs.ext.RuntimeDelegate;
import com.sun.net.httpserver.HttpHandler;
import com.sun.net.httpserver.HttpServer;

public class AdagesPublisher{
 private static final int port = 9876;
 private static final String uri = "/resourcesA/";
 private static final String url = "http://localhost:" + port + uri;
 public static void main(String[] args) {
 new AdagesPublisher().publish();
 }
 private void publish() {
 HttpServer server = getServer();
 HttpHandler requestHandler =
 RuntimeDelegate.getInstance().createEndpoint(new RestfulAdage(),
 HttpHandler.class);
 server.createContext(uri, requestHandler);
 server.start();
 msg(server);
 }
 private HttpServer getServer() {
 HttpServer server = null;
 int backlog = 8;
 try {
 server =
 HttpServer.create(new InetSocketAddress("localhost", port),
 backlog);
 }
 catch(Exception e) { throw new RuntimeException(e); }

A RESTful Web Service as a JAX-RS Resource | 55

 return server;
 }

 private void msg(HttpServer server) {
 String out = "Publishing RestfulAdage on " + url +
 ". Hit any key to stop.";
 System.out.println(out);
 try {
 System.in.read();
 } catch(Exception e) { }
 server.stop(0); // normal termination
 }
}

For convenience, this AdagesPublisher class is in the adages package together with
Adage, Adages, and RestfulAdage. To compile, the JAR file jersey-core.jar must be on
the classpath; to run, that file and jersey-server.jar must be on the classpath. The ZIP
that contains the sample code has an executable JAR file AdagesPublish.jar that includes
all of the dependencies. The JAR can be executed from the command line:

% java -jar AdagesPublish.jar

The AdagesPublisher awaits connections on port 9876 (line 1), and the URI (line 2)
is /resourcesA. Accordingly, the base URL is:

http://localhost:9876/resourcesA/

The JAX-RS utility publisher uses classes such as HttpServer and HttpHandler, which
come with core Java. Later examples will put these and related classes to use. The point
for now is that there are options for publishing JAX-RS services, including a very light‐
weight option. The adages web service performs the same way regardless of how it is
published. The Jersey implementation does a nice job of cleanly separating JAX-RS
services from their publication.

Publishing JAX-RS Resources with Tomcat
The JAX-RS and Jersey packages do not come with the core Java JDK; instead, the
relevant JAR files can be found at jersey.java.net. There is a Maven repository from
which a Maven script can install Jersey and its dependencies, but the standalone JAR
files are available as well. The Maven approach deliberately hides the deployment details
to make life easier for the developer. The goal here, however, is to understand how things
work under the hood. In any case, working directly with the JARs is straightforward.

JAX-RS resources can be published as usual with the Ant build.xml script. For example,
the command to deploy a JAX-RS resource in the WAR file named adages is:

% ant -Dwar.name=adages deploy

56 | Chapter 2: RESTful Web Services: The Service Side

http://jersey.java.net

As usual, the relevant files would be in a src directory. In this example, the three .java
files are in the src/adages subdirectory. The remaining files, including four Jersey JARs,
are in src. The relevant JAR files, with approximate sizes, are:

asm.jar ;; 43K bytes
jersey-core.jar ;; 206K bytes
jersey-server.jar ;; 595K bytes
jersey-servlet.jar ;; 125K bytes

The last three JARs are available, for convenience, in a jersey-bundle.jar.

There are different ways to make these four JARs accessible to Tomcat. The JAR files
could be copied to TOMCAT_HOME/lib and thereby be made available to any WAR
file deployed under Tomcat. (Recall that Tomcat must be restarted after files are copied
to its lib directory in contrast to its webapps directory.) The problem with this approach
is version control. Should new versions of the JARs be installed as they come out? If so,
will these new versions break already deployed web services? A more conservative ap‐
proach is to freeze a deployed WAR file by packing the four JARs within the WAR file.
This approach also makes it easier to port the WAR from one web server to another, for
instance, from Tomcat on one machine to Tomcat on another machine, or from Tomcat
to Jetty, and so on. The one downside to packing the JARs inside the WAR is, of course,
that the WAR file becomes larger. My preference is to include the required JARs within
the WAR file. With this approach, the contents of deployed WAR file adages.war are:

WEB-INF/web.xml
WEB-INF/classes/adages/Adage.class
WEB-INF/classes/adages/Adages.class
WEB-INF/classes/adages/RestfulAdage.class
WEB-INF/lib/asm.jar
WEB-INF/lib/jackson-annotations.jar
WEB-INF/lib/jackson-core.jar
WEB-INF/lib/jackson-databind.jar
WEB-INF/lib/jersey-core.jar
WEB-INF/lib/jersey-server.jar
WEB-INF/lib/jersey-servlet.jar

The three JAR files that begin with jackson handle the generation of JSON documents.
Jackson is a collection of Java packages for producing and consuming JSON documents.
The main text explains how Jackson works with the rest of the service.

The class adages.RestfulAdage (see Example 2-5) encapsulates a getClasses method,
whose role can be clarified with reference to the deployment file web.xml. A JAX-RS
service deployed under Tomcat needs a minimalist web.xml to set up communication
between the servlet container and the service. Here is an example that can be used with
any Jersey JAX-RS service published with Tomcat (or Jetty):

<?xml version="1.0" encoding="UTF-8"?>
<web-app>
 <servlet>

A RESTful Web Service as a JAX-RS Resource | 57

http://jackson.codehaus.org

 <servlet-name>jersey</servlet-name>
 <servlet-class>
 com.sun.jersey.spi.container.servlet.ServletContainer
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
</web-app>

The load-on-startup element prompts Tomcat to instantiate and load an instance of
the Jersey ServletContainer during the WAR bootstrap process; the critical role of the
ServletContainer is to scan the deployed WAR file for Jersey Application classes.
Here is a slice of Tomcat’s catalina.out logfile, edited for readability:

INFO: Deploying web application archive adages.war
INFO: Registering Jersey servlet application, named adages.RestfulAdage,
 at the servlet mapping, /resources/*, with the Application class
 of the same name
INFO: Scanning for root resource in the Web app resource paths:
INFO: Root resource classes found: class adages.Adages
INFO: Instantiated the Application class adages.RestfulAdage

The upshot of this log segment is that the Jersey ServletContainer finds the class
RestfulAdage (line 1), which in turn identifies the JAX-RS resources in the WAR file
(line 2). In this case, there is only one such resource: Adages. By the way, if multiple
JAX-RS services are deployed to a servlet container, then each service should have a
unique name for the class that extends Application. In this first example, the class is
named RestfulAdage; in a later example, the name is RestfulPrediction to avoid
conflict.

The JAX-RS service in the deployed WAR file, adages.war, is now ready to accept re‐
quests such as:

% curl http://localhost:8080/adages/resourcesA/

The Adage Class
The Adage class (see Example 2-6) has an import for the JAX-B annotation XmlRoo
tElement. The term binding refers, in this context, to linking a Java data type such as
String to an XML type, in this case xsd:string.

Example 2-6. The Adage POJO class annotated for XML generation through JAX-B
package adages;

import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement(name = "adage")
public class Adage {
 private String words;
 private int wordCount;

58 | Chapter 2: RESTful Web Services: The Service Side

 public Adage() { }
 @Override
 public String toString() {
 return words + " -- " + wordCount + " words";
 }
 public void setWords(String words) {
 this.words = words;
 this.wordCount = words.trim().split("\\s+").length;
 }
 public String getWords() { return this.words; }
 public void setWordCount(int wordCount) { }
 public int getWordCount() { return this.wordCount; }
}

The @XmlRootElement annotation (line 1) signals that an Adage object can be trans‐
formed into an XML document whose document or root (that is, outermost) element is
named adage. For example, the XML document:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<adage>
 <wordCount>7</wordCount>
 <words>What can be shown cannot be said.</words>
</adage>

results from the JAX-B transformation of an in-memory Adage object.

The Adages class (see Example 2-7) is a JAX-RS resource that accepts RESTful requests,
in this case only GET requests, and responds with payloads of these three MIME types:
text/plain, application/json, and application/xml.

Example 2-7. The Adages class as a JAX-RS resource
package adages;

import javax.xml.bind.annotation.XmlElementDecl;
import javax.xml.bind.JAXBElement;
import javax.xml.namespace.QName;
import javax.ws.rs.GET;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
import java.util.Random;
import com.fasterxml.jackson.databind.ObjectMapper;

@Path("/")
public class Adages {
 // Add aphorisms to taste...
 private String[] aphorisms =
 {"What can be shown cannot be said.",
 "If a lion could talk, we could not understand him.",
 "Philosophy is a battle against the bewitchment of " +

A RESTful Web Service as a JAX-RS Resource | 59

 "our intelligence by means of language.",
 "Ambition is the death of thought.",
 "The limits of my language mean the limits of my world."};
 public Adages() { }
 @GET
 @Produces({MediaType.APPLICATION_XML}) // could use "application/xml"
 public JAXBElement<Adage> getXml() {
 return toXml(createAdage());
 }
 @GET
 @Produces({MediaType.APPLICATION_JSON})
 @Path("/json")
 public String getJson() {
 return toJson(createAdage());
 }
 @GET
 @Produces({MediaType.TEXT_PLAIN})
 @Path("/plain")
 public String getPlain() {
 return createAdage().toString() + "\n";
 }
 // Create an Adage and set the words property, which
 // likewise sets the wordCount property. The adage is
 // randomly selected from the array, aphorisms.
 private Adage createAdage() {
 Adage adage = new Adage();
 adage.setWords(aphorisms[new Random().nextInt(aphorisms.length)]);
 return adage;
 }
 // Java Adage --> XML document
 @XmlElementDecl(namespace = "http://aphorism.adage", name = "adage")
 private JAXBElement<Adage> toXml(Adage adage) {
 return new JAXBElement<Adage>(new QName("adage"), Adage.class, adage);
 }
 // Java Adage --> JSON document
 // Jersey provides automatic conversion to JSON using the Jackson
 // libraries. In this example, the conversion is done manually
 // with the Jackson libraries just to indicate how straightforward it is.
 private String toJson(Adage adage) {
 String json = "If you see this, there's a problem.";
 try {
 json = new ObjectMapper().writeValueAsString(adage);
 }
 catch(Exception e) { }
 return json;
 }
}

Perhaps the best way to clarify how the three Java classes interact is through sample
client calls. To begin, consider the request:

% curl localhost:8080/adages/resourcesA/plain

60 | Chapter 2: RESTful Web Services: The Service Side

On a sample run, the output was:

What can be shown cannot be said. -- 7 words

The RESTful routing of the client’s request works as follows:

• In the URI /adages/resources/plain, the initial segment /adages specifies the de‐
ployed WAR file adages.war.

• The next subsegment /resourcesA represents the JAX-RS ApplicationPath, infor‐
mation that the WAR file’s RestfulAdage provides to the web server.

• The next subsegment is /. Recall that the RESTful resource in this web service is the
Adages class, which begins:

@Path("/")
public class Adages {
...

The @Path("/") annotation represents the last slash in the URI adages/resources/.
Accordingly, this URI maps to the Adages class, which is the one and only JAX-RS
resource in the deployed WAR file adages.war.

• The final subsegment in the URI is plain, so that the full URI is:
/adages/resources/plain

The Adages method getPlain is:
@GET
@Produces({MediaType.TEXT_PLAIN})
@Path("/plain")
public String getPlain() {
 return createAdage().toString() + "\n";
}

The @GET annotation signals that the method/operation getPlain, an arbitrary
name, is accessible through a GET request only. The @Produces annotation prom‐
ises, in effect, to respond with the MIME type text/plain. This is a promise rather
than a guarantee. The @Path annotation indicates that the URI subsegment /plain
completes the path to this service operation.

The RESTful routing idioms used in JAX-RS follow the spirit, if not the exact syntax, of
those from the Rails framework. These idioms support clear, terse URIs such as:

/adages/resourcesA/plain

and:

adages/resourcesA/json

A RESTful Web Service as a JAX-RS Resource | 61

JAX-RS Generation of XML and JSON Responses
The interaction between the JAX-RS resource class Adages and the POJO class Adage
needs clarification. Recall that class Adage begins:

@XmlRootElement(name = "adage")
public class Adage {
...

and that the annotation @XmlRootElement allows an Adage instance to be serialized into
an XML document with <adage> as its document-level start tag. In the language of JAX-
RS, the Adage class is a provider of XML. (See the “How JAX-B Can Transform a Java
Object into an XML Document” on page 62 for details about how JAX-B uses an XML
Schema to generate the XML.) Adage is likewise a POJO class with the familiar get/set
methods for two properties: words and wordCount. The only unusual detail is that the
setWords method also sets the wordCount for the adage:

public void setWords(String words) {
 this.words = words;
 this.wordCount = words.trim().split("\\s+").length; // word count
}

because this is a convenient way to do so.

How JAX-B Can Transform a Java Object into an XML Document
The adages JAX-RS service uses the JAX-B library, under the hood, to transform a Java
object, an Adage instance, into an XML document such as:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<adage>
 <wordCount>14</wordCount>
 <words>
 Philosophy is a battle against the bewitchment of our intelligence
 by means of language.
 </words>
</adage>

The @XmlRootElement annotation on the Adage class guides the transformation by in‐
dicating that the outermost XML element is to be named adage; the return data type
JAXBElement<Adage> in the getXml method represents, in Java, an XML element—
including an entire XML document. This sidebar delves into the details.

62 | Chapter 2: RESTful Web Services: The Service Side

1. In core Java 8, the functionality of the schemagen utility will give way to general annotation processing through
javac.

The core Java JDK has a schemagen utility1 that, when applied to a POJO source file such
as Adage.java, generates an XML Schema. The utility can be invoked from the command
line:

% schemagen Adage.java

The resulting XML Schema document is:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:complexType name="Adage">
 <xs:sequence>
 <xs:element name="words" type="xs:string"/>
 <xs:element name="wordCount" type="xs:int"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

This XML Schema document has all of the information that JAX-B utilities would need
to go from an XML adage document to a Java Adage instance:

• The XML Schema indicates that the data type, an XML complexType, is named
Adage. In this context, a complexType is contrasted with a simple, built-in type such
as xsd:string. The Adage class is programmer-defined rather than built-in as well.
When an Adage instance is constructed, its two properties, words and wordCount,
are available for setting.

• The XML Schema specifies an element named words and another element named
wordCount, with the data type of each: a word in XML is an xs:string, which binds
to a Java String; a wordCount in XML is an xs:int, which binds to a Java int. JAX-
B thus works from the convention that the Adage elements in the XML Schema
correspond to Java properties, with the corresponding set-methods—in this case
setWords and setWordCount.

In summary, the JDK schemagen utility can generate an XML Schema instance from a
Java class. A second JDK utility, xjc, works in the other direction. Given an XML Schema,
xjc can generate Java classes to represent the XML types in the schema. Such processing
details, which remain hidden in the Jersey implementation of JAX-RS, will be investi‐
gated carefully in Chapter 3. This first look at the Java-to-XML transformation sketches
the kind of processing that Jersey must perform to transform an Adage into an XML
document.

The Adages resource has three methods that define the web service operations: getJson,
getPlain, and getXml. The operation names are arbitrary. The important routing infor‐

A RESTful Web Service as a JAX-RS Resource | 63

mation for each operation comes from the annotations that describe the HTTP verb (in
this case, only GET) and the @Path. The getXml operation has no @Path annotation,
which means that the path for the resource, the Adages class, is the path for this oper‐
ation; the path is /adages/resourcesA/. In effect, getXml is the default operation.

The getJson and getXml operations could be combined into a single operation:

@GET
@Produces({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})
...

because Jersey can coordinate directly with the Jackson libraries to process JSON. My
implementation uses Jackson explicitly to show just how simple the API is. Further, if
the two operations were combined into one, then a client would have to disambiguate
the request by adding the HTTP header:

Accept: application/json

to the HTTP request. It seems cleaner to use two different URIs: /adages/resourcesA/
maps to the default getXml operation, whereas /adages/resourcesA/json maps to the
getJson operation. Here for review is the utility method that getJson calls to produce the
JSON:

private String toJson(Adage adage) {
 String json = "If you see this, there's a problem.";
 try {
 json = new ObjectMapper().writeValueAsString(adage);
 } catch(Exception e) { }
 return json;
}

The Jackson ObjectMapper encapsulates the method writeValueAsString (line 1),
which serializes an Adage into a JSON document. The response for a sample request
against the toJson operation, formatted for readability, would look like this:

{"words": "The limits of my language mean the limits of my world.",
 "wordCount":11
}

Similar serialization occurs with respect to an Adage converted into an XML document.
The default operation getXml:

@GET
@Produces({MediaType.APPLICATION_XML}) // could use "application/xml" instead
public JAXBElement<Adage> getXml() {
 return toXml(createAdage());
}

returns a JAXBElement<Adage>, an XML document that represents an Adage. Under the
hood the JAX-B processor converts an Adage instance into an XML document. On a
sample run the output was:

64 | Chapter 2: RESTful Web Services: The Service Side

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<adage>
 <wordCount>10</wordCount>
 <words>If a lion could talk, we could not understand him.</words>
</adage>

The POJO class Adage currently has but one annotation, @XmlRootElement. A variety
of others could be used to refine the XML output. Here is a sample refinement:

package adages;
...
@XmlRootElement(name = "adage")
@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(propOrder = {"words", "wordCount"})
public class Adage {
 @XmlElement(required = true)
 protected String words;
 @XmlElement(required = true)
 protected int wordCount;
 ...

The @XmlType (line 1) is particularly useful if the order of elements in the generated
XML document matters. In the current implementation, the wordCount element pre‐
cedes the words element, but this order could be reversed through the propOrder at‐
tribute in the @XmlType annotation (line 1).

This first JAX-RS example illustrates the style of implementing a RESTful web service
as a JAX-RS resource. The deployment under Tomcat is uncomplicated, and the
adages.war file also can be deployed, as is, under Jetty. The adages service supports only
GET requests. The forthcoming adages2 service, implemented as a set of Restlet re‐
sources, supports all of the CRUD operations. The next section also shows, with a dif‐
ferent example, how JAX-RS nicely supports all of the CRUD operations.

Porting the Predictions Web Service to JAX-RS
The servlet-based predictions2 service supports the four CRUD operations; hence,
the port from the servlet/JSP implementations to JAX-RS is an opportunity to show the
@POST, @PUT, and @DELETE annotations and to illustrate parametrized versions of the
@GET and @DELETE operations. This revision highlights again the JAX-RS idioms for
RESTful URIs. The revised service is called predictions3.

The JAX-RS predictions3 service has four Java classes:

• The RestfulPrediction class extends the JAX-RS Application class. When the
service WAR file is loaded into Tomcat or Jetty, the Jersey ServletContainer finds
the RestfulPrediction instance and invokes its getClasses method to identify
the RESTful resources in the WAR file. In the case of the RestfulPrediction
service, there is only one resource: the PredictionsRS class.

A RESTful Web Service as a JAX-RS Resource | 65

• The PredictionsRS class is the RESTful resource, a POJO class whose methods
carry annotations such as @GET and @POST in support of the standard CRUD oper‐
ations. This resource supports MIME-typed requests for XML, JSON, and plain
text. A GET request can ask for all predictions or for a specific one.

• The Prediction class is also a POJO class with two properties from before: who is
the author of the prediction and what is the prediction itself. There is still an id
property whose value uniquely identifies each Prediction instance; prediction in‐
stances are stored, in ascending order by id, in a PredictionsList, explained in
the next bullet point. The Prediction class is annotated as an @XmlRootElement so
that Jersey can automatically convert a single prediction into an XML document.
The get-methods of the properties are annotated with @XmlElement for emphasis.
A Prediction instance can be transformed into an XML or a JSON document; the
Prediction override of the toString method supports a plain-text format as well.
The Prediction class still implements the Comparable interface in case sorting is
needed. The implementation logic of predictions3 ensures, however, that the pre‐
dictions are always sorted by id in ascending order; hence, additional sorting might
put the predictions in descending order by id, ascending order by who, and so on.

• The PredictionsList is a class that represents a collection of Prediction instances,
with the collection implemented as a thread-safe CopyOnWriteArrayList. The in‐
teger id of each prediction added to the list is generated with a thread-safe Atomi
cInteger. The class PredictionsList is annotated as an @XmlRootElement so that
Jersey automatically serializes a list of predictions, as well as a single prediction,
into XML. The PredictionsList class likewise overrides the toString method,
yet again a convenient way to support a plain-text representation of a predictions
list.

The RestfulPrediction class (see Example 2-8) is the JAX-RS Application class. To
ensure that the adages JAX-RS service and this JAX-RS service can coexist in the same
servlet container, the names of the two Application classes must differ: in the case of
adages, the Application class is RestfulAdage; in this case, the Application class is
RestfulPrediction.

Example 2-8. Registering the PredictionsRS class as a JAX-RS resource
package predictions3;

import java.util.Set;
import java.util.HashSet;
import javax.ws.rs.ApplicationPath;
import javax.ws.rs.core.Application;

@ApplicationPath("/resourcesP")
public class RestfulPrediction extends Application {

66 | Chapter 2: RESTful Web Services: The Service Side

 public Set<Class<?>> getClasses() {
 Set<Class<?>> set = new HashSet<Class<?>>();
 set.add(PredictionsRS.class);
 return set;
 }
}

The backend support for the PredictionsRS source consists of two POJO classes:
Prediction (see Example 2-9) and PredictionsList (see Example 2-10). The class
Prediction is mostly unchanged from the predictions2 version except for the added
@XmlRootElement annotation, which means that the runtime can automatically convert
a Prediction instance into an XML document. Details follow shortly.

Example 2-9. The Prediction class with properties who, what, and id
package predictions3;

import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlElement;

@XmlRootElement(name = "prediction")
public class Prediction implements Comparable<Prediction> {
 private String who; // person
 private String what; // his/her prediction
 private int id; // identifier used as lookup key

 public Prediction() { }
 @Override
 public String toString() {
 return String.format("%2d: ", id) + who + " ==> " + what + "\n";
 }
 public void setWho(String who) { this.who = who; }
 @XmlElement
 public String getWho() { return this.who; }
 public void setWhat(String what) { this.what = what; }
 @XmlElement
 public String getWhat() { return this.what; }
 public void setId(int id) { this.id = id; }
 @XmlElement
 public int getId() { return this.id; }
 public int compareTo(Prediction other) { return this.id - other.id; }
}

The PredictionsList POJO class (see Example 2-10) in the predictions3 service is
simpler overall than the Predictions from class of predictions2 because methods such
as populate have moved into the core JAX-RS class. In any case, the Predictions
List class has a find method to search for a particular Prediction, and the data struc‐
ture used to store the predictions is now a thread-safe CopyOnWriteArrayList.

A RESTful Web Service as a JAX-RS Resource | 67

Example 2-10. The PredictionsList class
package predictions3;

import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
import java.util.concurrent.atomic.AtomicInteger;
import javax.xml.bind.annotation.XmlElement;
import javax.xml.bind.annotation.XmlElementWrapper;
import javax.xml.bind.annotation.XmlRootElement;

@XmlRootElement(name = "predictionsList")
public class PredictionsList {
 private List<Prediction> preds;
 private AtomicInteger predId;

 public PredictionsList() {
 preds = new CopyOnWriteArrayList<Prediction>();
 predId = new AtomicInteger();
 }
 @XmlElement
 @XmlElementWrapper(name = "predictions")
 public List<Prediction> getPredictions() {
 return this.preds;
 }
 public void setPredictions(List<Prediction> preds) {
 this.preds = preds;
 }
 @Override
 public String toString() {
 String s = "";
 for (Prediction p : preds) s += p.toString();
 return s;
 }
 public Prediction find(int id) {
 Prediction pred = null;
 // Search the list -- for now, the list is short enough that
 // a linear search is ok but binary search would be better if the
 // list got to be an order-of-magnitude larger in size.
 for (Prediction p : preds) {
 if (p.getId() == id) {
 pred = p;
 break;
 }
 }
 return pred;
 }
 public int add(String who, String what) {
 int id = predId.incrementAndGet();
 Prediction p = new Prediction();
 p.setWho(who);
 p.setWhat(what);
 p.setId(id);

68 | Chapter 2: RESTful Web Services: The Service Side

 preds.add(p);
 return id;
 }
}

The PredictionsRS class (see Example 2-11) is the JAX-RS resource with annotations
that define the CRUD operations. The class is long enough that inspecting the code in
chunks may be helpful.

Example 2-11. The JAX-RS resource PredictionsRS
package predictions3;

import java.io.InputStream;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.PUT;
import javax.ws.rs.DELETE;
import javax.ws.rs.Path;
import javax.ws.rs.PathParam;
import javax.ws.rs.FormParam;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;
import javax.ws.rs.core.Context;
import javax.ws.rs.core.Response;
import javax.ws.rs.core.Context;
import javax.servlet.ServletContext;
import com.fasterxml.jackson.databind.ObjectMapper;

@Path("/")
public class PredictionsRS {
 @Context
 private ServletContext sctx; // dependency injection
 private static PredictionsList plist; // set in populate()

 public PredictionsRS() { }

 @GET
 @Path("/xml")
 @Produces({MediaType.APPLICATION_XML})
 public Response getXml() {
 checkContext();
 return Response.ok(plist, "application/xml").build();
 }
 @GET
 @Path("/xml/{id: \\d+}")
 @Produces({MediaType.APPLICATION_XML}) // could use "application/xml" instead
 public Response getXml(@PathParam("id") int id) {
 checkContext();
 return toRequestedType(id, "application/xml");

A RESTful Web Service as a JAX-RS Resource | 69

 }
 @GET
 @Produces({MediaType.APPLICATION_JSON})
 @Path("/json")
 public Response getJson() {
 checkContext();
 return Response.ok(toJson(plist), "application/json").build();
 }
 @GET
 @Produces({MediaType.APPLICATION_JSON})
 @Path("/json/{id: \\d+}")
 public Response getJson(@PathParam("id") int id) {
 checkContext();
 return toRequestedType(id, "application/json");
 }
 @GET
 @Path("/plain")
 @Produces({MediaType.TEXT_PLAIN})
 public String getPlain() {
 checkContext();
 return plist.toString();
 }
 @POST
 @Produces({MediaType.TEXT_PLAIN})
 @Path("/create")
 public Response create(@FormParam("who") String who,
 @FormParam("what") String what) {
 checkContext();
 String msg = null;
 // Require both properties to create.
 if (who == null || what == null) {
 msg = "Property 'who' or 'what' is missing.\n";
 return Response.status(Response.Status.BAD_REQUEST).
 entity(msg).
 type(MediaType.TEXT_PLAIN).
 build();
 }
 // Otherwise, create the Prediction and add it to the collection.
 int id = addPrediction(who, what);
 msg = "Prediction " + id +
 " created: (who = " + who + " what = " + what + ").\n";
 return Response.ok(msg, "text/plain").build();
 }
 @PUT
 @Produces({MediaType.TEXT_PLAIN})
 @Path("/update")
 public Response update(@FormParam("id") int id,
 @FormParam("who") String who,
 @FormParam("what") String what) {
 checkContext();
 // Check that sufficient data is present to do an edit.
 String msg = null;

70 | Chapter 2: RESTful Web Services: The Service Side

 if (who == null && what == null)
 msg = "Neither who nor what is given: nothing to edit.\n";
 Prediction p = plist.find(id);
 if (p == null)
 msg = "There is no prediction with ID " + id + "\n";

 if (msg != null)
 return Response.status(Response.Status.BAD_REQUEST).
 entity(msg).
 type(MediaType.TEXT_PLAIN).
 build();
 // Update.
 if (who != null) p.setWho(who);
 if (what != null) p.setWhat(what);
 msg = "Prediction " + id + " has been updated.\n";
 return Response.ok(msg, "text/plain").build();
 }
 @DELETE
 @Produces({MediaType.TEXT_PLAIN})
 @Path("/delete/{id: \\d+}")
 public Response delete(@PathParam("id") int id) {
 checkContext();
 String msg = null;
 Prediction p = plist.find(id);
 if (p == null) {
 msg = "There is no prediction with ID " + id + ". Cannot delete.\n";
 return Response.status(Response.Status.BAD_REQUEST).
 entity(msg).
 type(MediaType.TEXT_PLAIN).
 build();
 }
 plist.getPredictions().remove(p);
 msg = "Prediction " + id + " deleted.\n";
 return Response.ok(msg, "text/plain").build();
 }
 private void checkContext() {
 if (plist == null) populate();
 }
 private void populate() {
 plist = new PredictionsList();
 String filename = "/WEB-INF/data/predictions.db";
 InputStream in = sctx.getResourceAsStream(filename);
 // Read the data into the array of Predictions.
 if (in != null) {
 try {
 BufferedReader reader =
 new BufferedReader(new InputStreamReader(in));
 int i = 0;
 String record = null;
 while ((record = reader.readLine()) != null) {
 String[] parts = record.split("!");
 addPrediction(parts[0], parts[1]);

A RESTful Web Service as a JAX-RS Resource | 71

 }
 }
 catch (Exception e) {
 throw new RuntimeException("I/O failed!");
 }
 }
 }
 private int addPrediction(String who, String what) {
 int id = plist.add(who, what);
 return id;
 }
 // Prediction --> JSON document
 private String toJson(Prediction prediction) {
 String json = "If you see this, there's a problem.";
 try {
 json = new ObjectMapper().writeValueAsString(prediction);
 }
 catch(Exception e) { }
 return json;
 }
 // PredictionsList --> JSON document
 private String toJson(PredictionsList plist) {
 String json = "If you see this, there's a problem.";
 try {
 json = new ObjectMapper().writeValueAsString(plist);
 }
 catch(Exception e) { }
 return json;
 }
 // Generate an HTTP error response or typed OK response.
 private Response toRequestedType(int id, String type) {
 Prediction pred = plist.find(id);
 if (pred == null) {
 String msg = id + " is a bad ID.\n";
 return Response.status(Response.Status.BAD_REQUEST).
 entity(msg).
 type(MediaType.TEXT_PLAIN).
 build();
 }
 else if (type.contains("json"))
 return Response.ok(toJson(pred), type).build();
 else
 return Response.ok(pred, type).build(); // toXml is automatic
 }
}

A summary of the major parts of this class follows:

• There are five operations annotated with @GET.
Three of the @GET operations return the entire list of predictions: in XML, in JSON,
and in plain-text format. In addition, there is a parametrized GET as follows:

72 | Chapter 2: RESTful Web Services: The Service Side

@GET
@Path("/xml/{id: \\d+}")
@Produces({MediaType.APPLICATION_XML}) // could use "application/xml" instead
public Response getXml(@PathParam("id") int id) {
...

If successful, it returns a single prediction in XML. There is a similarly parametrized
GET that, if successful, returns a single prediction in JSON. The @Path annotation:

@Path("/xml/{id: \\d+}")

contains a parameter, id, together with a regular expression that restricts the values
of the parameter to one or more decimal digits. The regular expression also could
be written as:

@Path("/xml/{id: [0-9]+}")

In either case, the regular expression requires at least one but perhaps more decimal
digits. A request such as:

% curl http://localhost:8080/predictions3/resourcesP/xml/13

would succeed and return, as an XML document, the Prediction with id 13 be‐
cause 13 matches the specified pattern. However, a request such as:

% curl http://localhost:8080/predictions3/resourcesP/xml/foo

would result in an HTTP 404 (Not Found) error because foo does not match the
one-or-more-decimal-digits pattern. The JAX-RS support for precise data valida‐
tion through regular expressions is, of course, convenient; the only complication
comes in the regular expressions themselves.
The methods that implement parametrized GET operations use the @PathParam
annotation to identify which argument in a method corresponds to the URI pa‐
rameter. For example, the getJson method begins:

@GET
@Produces({MediaType.APPLICATION_JSON})
@Path("/json/{id: \\d+}")
public Response getJson(@PathParam("id") int id) {
...

The @PathParam named id (line 1) corresponds, in this example, to the int
parameter named id as well. The two names could differ. If a URI had multiple
parameters:

http://...:8080/greetings/resourcesG/msg/fred/Hi

then the order of the Java method’s parameters could differ from the order in the
URI:

A RESTful Web Service as a JAX-RS Resource | 73

...
@Path("/msg/{who}/{what}
public Response echoMessage(@PathParam("what") String p1,
 @PathParam("who") String p2) {
...

Why Does the predictions3 RESTful Service Use Static Class Members?
In a production-grade service, the data typically would be persisted in a database of
some kind. As the PredictionsRS resource in the predictions3 service changes through
POST, PUT, and DELETE operations, however, these changes are not persisted in a
backend database; instead, a static collection is used to store—in memory—the chang‐
ing data. My goal is to keep the focus on the APIs for RESTful services, minimizing
distractions wherever possible, and database access would be one such distraction. In a
production-grade service, of course, a persistent data store almost surely would be the
way to go. Two later examples illustrate how the JPA (Java Persistence API) can be used
to persist Predictions with two different relational database systems.

• The operations annotated with @POST, @PUT, and @DELETE implement the remaining
CRUD operations: create, update, and delete, respectively.
In the predictions3 service, most of the RESTfully annotated operations return the
JAX-RS type Response. This gives the operations a common look and feel that
accentuates critical features of an HTTP response—the HTTP status code together
with the content type of the response. For simplicity, the getPlain method returns
a String. Here is the return statement from the nonparametrized getXml opera‐
tion, which returns all of the predictions in XML format:

return Response.ok(predictions, "application/xml").build();

Consider the contrast between this return statement and its counterpart in the
adages JAX-RS service:

@GET
@Produces({MediaType.APPLICATION_XML}) // could use "application/xml" instead
public JAXBElement<Adage> getXml() {
 return toXml(createAdage());
}

In the adages case, the return type is JAXBElement, and there is an explicit call to
the toXml method to convert an Adage instance into an XML document:

@XmlElementDecl(namespace = "http://aphorism.adage", name = "adage")
private JAXBElement<Adage> toXml(Adage adage) {
 return new JAXBElement<Adage>(new QName("adage"), Adage.class, adage);
}

74 | Chapter 2: RESTful Web Services: The Service Side

By contrast, the predictions3 service simply returns a Predictions instance as the
Response without wrapping the predictions reference in a call to toXml:

//**** No need to invoke toXml on the predictions!
return Response.ok(toXml(predictions), "application/xml").build();

The reason for this simplification is that, with Response as the return type of the
getXml method, the JAX-RS runtime automatically generates the XML, and JAX-
RS runtime does so because the @Produces annotation gives application/xml as
the MIME type of the HTTP response. Recall that the Prediction and Predic
tionsList POJO classes are annotated with @XmlRootElement. The combination
of this annotation and the @Produces annotation together automate the XML
generation.

The predictions3 service still has a toJson utility method to convert one Prediction or
a collection of these into JSON. This is a design decision, not a necessity. The JAX-RS
runtime also generates JSON automatically if the relevant Jackson libraries are included
and if the HTTP request contains the header element Accept: application/json. The
conversion to JSON is simple enough that predictions3 does it manually, thereby sparing
the client the responsibility of adding a specific header element to the HTTP request.

The request pattern in the predictions3 service is uniform as there is no default URI—
that is, a URI consisting solely of the slash (/). A request for an XML document ends
with /xml for all predictions in XML or, for instance, /xml/7 to get prediction 7 in XML;
a request for JSON ends with /json or, for example, /json/13; and a request for plain
text ends with /plain. The JAX-RS patterns for URIs can adhere to the Rails URI pat‐
terns, now widely imitated, as closely as the programmer likes.

A RESTful Web Service as Restlet Resources
The Restlet web framework supports RESTful web services, and the API is similar to
JAX-RS; indeed, a Restlet application can use JAX-RS annotations such as @Produces
instead of or in addition to Restlet annotations. This section adapts the earlier JAX-RS
adages service to a Restlet implementation, which is published both with a web server
and with a standalone Java application. The revised service, adages2, implements the
four CRUD operations.

A RESTful Web Service as Restlet Resources | 75

Downloading and Using the Restlet Framework
The Restlet JAR files are available for free to download. The current version is 2.x. There
are editions for core and enterprise Java together with tutorials, documentation, and
examples. Restlet, like JAX-RS, provides HTTP-method annotations for resources.
Restlet has a client-side and a service-side API. A Restlet resource published under
Tomcat or Jetty can be published, with little change, using a standard command-line
application and a single Restlet JAR file. The framework does a first-rate job of decou‐
pling the service-as-a-resource from its publication.

The Restlet framework includes JAR files to interoperate with other popular Java frame‐
works such as Spring and the Google Web Toolkit. Restlet even supports, through an
extension, JAX-RS annotations such as @POST and @Produces. There are libraries for
Apache’s Velocity templating engine, email, SSL (Secure Sockets Layer), OAuth, and
various other technologies. Anyone versatile in either JAX-RS or Restlet should have
little trouble adapting to the other, and both approaches are worth a look.

A Restlet web service has three main parts, each of which consists of one or more Java
classes:

• A programmer-defined class, in this example AdagesApplication, extends the
Restlet Application class. The purpose of the extended class is to set up a routing
table, which maps request URIs to resources. The resources are named or anony‐
mous Java classes; the current example illustrates both approaches. The spirit of
Restlet development is to have very simple resource classes.

• There are arbitrarily many resource classes, any mix of named or anonymous. In
best practices, a resource implementation supports a very small number of opera‐
tions on the resource—in the current example, only one operation per resource.
For example, the adages2 service has seven resources: six of these are named classes
that extend the Restlet ServerResource class and the other is an anonymous class
that implements the Restlet interface. The named classes are CreateResource, the
target of a POST request; UpdateResource, the target of a PUT request; XmlAllRe
source, the target of a GET request for all Adages in XML; JsonAllResource, the
target of a GET request for all Adages in JSON; XmlOneResource, the target of a
GET request for a specified Adage; and so on.

• The backend POJO classes are Adage and Adages, each slightly redefined from the
earlier adages web service.

If the Restlet service is deployed with a web server such as Tomcat or Jetty, then the
Restlet ServerServlet acts as an interceptor for requests against the Restlet service.

76 | Chapter 2: RESTful Web Services: The Service Side

http://www.restlet.org
http://www.velocity.apache.org
http://www.oauth.net

The interceptor servlet interacts with the Restlet Application, which contains the rout‐
ing table, so that a properly formatted request winds up at the correct Restlet resource.
The architecture is simple and clean. Deployment of adages2 service requires a web.xml
document (see Example 2-12) that sets up the Restlet interceptor (line 1) and links the
interceptor to the Restlet Application (line 2).

Example 2-12. The web.xml file for the adages2 Restlet service
<?xml version="1.0" encoding="UTF-8"?>
<web-app>
 <!-- Restlet adapter -->
 <servlet>
 <servlet-name>RestletServlet</servlet-name>
 <servlet-class>org.restlet.ext.servlet.ServerServlet</servlet-class>
 <init-param>
 <!-- Application class name -->
 <param-name>org.restlet.application</param-name>
 <param-value>adages2.AdagesApplication</param-value>
 </init-param>
 </servlet>
 <!-- Dispach all requests to the Restlet servlet. -->
 <servlet-mapping>
 <servlet-name>RestletServlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

The Included JAR Files for the Restlet adages2 Web Service
The adages2 service can be deployed to Tomcat in the usual way:

% ant -Dwar.name=adages2 deploy

The deployed WAR file includes these JAR files:

org.json.jar
org.restlet.ext.json.jar
org.restlet.ext.servlet.jar
org.restlet.ext.xml.jar
org.restlet.jar

The two main files are org.restlet.jar and org.restlet.servlet.jar. The remaining three files
support formatting in XML and JSON. Restlet has various options for formatting re‐
sponses; the current example illustrates two of these.

The Adage class (see Example 2-13) is mostly unchanged from the earlier version of the
service. There is now an id property (line 1) to support searching for a specified Adage
on a GET, PUT, or DELETE request.

A RESTful Web Service as Restlet Resources | 77

Example 2-13. The Adage POJO class in the adages2 Restlet service
package adages2;

public class Adage {
 private String words;
 private int wordCount;
 private int id;

 public Adage() { }
 @Override
 public String toString() {
 return String.format("%2d: ", id) + words + " -- " + wordCount + " words";
 }
 public void setWords(String words) {
 this.words = words;
 this.wordCount = words.trim().split("\\s+").length;
 }
 public String getWords() { return this.words; }
 public void setWordCount(int wordCount) { }
 public int getWordCount() { return this.wordCount; }

 public void setId(int id) { this.id = id; }
 public int getId() { return this.id; }
}

The Adages class (see Example 2-14) has a static list (line 1) of the thread-safe type
CopyOnWriteArrayList, which substitutes for a persistence store such as database. The
class has a toPlain method (line 2) to support a text/plain response on a GET request
to the adages2 service. The find method (line 3) supports GET, PUT, and DELETE
requests for a specified Adage in the list adages, and the add method (line 4) supports
POST requests by adding a newly created Adage to the list.

Example 2-14. The POJO class Adages in the adages2 Restlet service
package aphorism2;

import java.util.concurrent.CopyOnWriteArrayList;
import java.util.concurrent.atomic.AtomicInteger;

public class Adages {
 private static CopyOnWriteArrayList<Adage> adages;
 private static AtomicInteger id;

 static {
 String[] aphorisms =
 {"What can be shown cannot be said.",
 "If a lion could talk, we could not understand him.",
 "Philosophy is a battle against the bewitchment of
 our intelligence by means of language.",
 "Ambition is the death of thought.",

78 | Chapter 2: RESTful Web Services: The Service Side

 "The limits of my language mean the limits of my world."};
 adages = new CopyOnWriteArrayList<Adage>();
 id = new AtomicInteger();
 for (String str : aphorisms) add(str);
 }

 public static String toPlain() {
 String retval = "";
 int i = 1;
 for (Adage adage : adages) retval += adage.toString() + "\n";
 return retval;
 }
 public static CopyOnWriteArrayList<Adage> getList() { return adages; }
 public static Adage find(int id) {
 Adage adage = null;
 for (Adage a : adages) {
 if (a.getId() == id) {
 adage = a;
 break;
 }
 }
 return adage;
 }
 public static void add(String words) {
 int localId = id.incrementAndGet();
 Adage adage = new Adage();
 adage.setWords(words);
 adage.setId(localId);
 adages.add(adage);
 }
}

The AdagesApplication class (see Example 2-15) extends the Restlet Application class
(line 1) and interacts with the service’s publisher. In the case of a web server such as
Tomcat, this class works with the Restlet ServerServlet to dispatch incoming service
requests to the proper resource. The dispatching is done through a pattern-driven
routing table at the end of the class.

Example 2-15. The Restlet Application class with the routing table
package adages2;

import org.restlet.Application;
import org.restlet.Restlet;
import org.restlet.Request;
import org.restlet.Response;
import org.restlet.routing.Router;
import org.restlet.data.Status;
import org.restlet.data.MediaType;

public class AdagesApplication extends Application {

A RESTful Web Service as Restlet Resources | 79

 @Override
 public synchronized Restlet createInboundRoot() {
 // To illustrate the different API possibilities, implement the
 // DELETE operation as an anonymous Restlet class. For the
 // remaining operations, follow Restlet best practices and
 // implement each as a Java class.
 // DELETE handler
 Restlet janitor = new Restlet(getContext()) {
 public void handle(Request request, Response response) {
 String msg = null;
 String sid = (String) request.getAttributes().get("id");
 if (sid == null) msg = badRequest("No ID given.\n");
 Integer id = null;
 try {
 id = Integer.parseInt(sid.trim());
 }
 catch(Exception e) { msg = badRequest("Ill-formed ID.\n"); }
 Adage adage = Adages.find(id);
 if (adage == null)
 msg = badRequest("No adage with ID " + id + "\n");
 else {
 Adages.getList().remove(adage);
 msg = "Adage " + id + " removed.\n";
 }
 // Generate HTTP response.
 response.setEntity(msg, MediaType.TEXT_PLAIN);
 }
 };
 // Create the routing table.
 Router router = new Router(getContext());
 router.attach("/", PlainResource.class);
 router.attach("/xml", XmlAllResource.class);
 router.attach("/xml/{id}", XmlOneResource.class);
 router.attach("/json", JsonAllResource.class);
 router.attach("/create", CreateResource.class);
 router.attach("/update", UpdateResource.class);
 router.attach("/delete/{id}", janitor); // instance of anonymous class
 return router;
 }
 private String badRequest(String msg) {
 Status error = new Status(Status.CLIENT_ERROR_BAD_REQUEST, msg);
 return error.toString();
 }
}

Each adages2 resource could be written as an anonymous class encapsulated inside the
Application class; however, under Restlet best practices, these resources should be
implemented as relatively small, individual classes such as PlainResource (line 3),
XmlAllResource (line 4), JsonAllResource (line 5), CreateResource (line 6), and so
on. For illustration, however, the AdagesApplication class does include an anonymous
class that implements the Restlet interface by defining the handle method, which has

80 | Chapter 2: RESTful Web Services: The Service Side

Request and Response parameters; the Response and Request types are quite similar
to the HttpServletRequest and HttpServletResponse types, respectively. The refer‐
ence to an instance of this anonymous class is named janitor (line 2) because the class
handles DELETE requests by removing a specified Adage from the list of adages.

The routing table at the end of AdagesApplication class follows a popular idiom for
RESTful frameworks such as Restlet: a URI pattern maps to a specified resource. A
routing table entry such as:

router.attach("/", PlainResource.class);

maps the URI /, the single slash, to the PlainResource, thereby making this resource
the default one. By contrast, the entry:

router.attach("/xml/{id}", XmlOneResource.class); // {id} is a parameter

includes the parameter id in braces, where the numerical id identifies the desired
Adage. The URI for the UpdateResource does not include the identifier for the Adage
in question because this information is supplied in the body of the PUT request.

The resource classes are quite short because each has very specialized, hence limited,
functionality. For example, the XmlAllResource is Example 2-16.

Example 2-16. The XmlAllResource Restlet resource
package adages2;

import org.restlet.resource.Get;
import org.restlet.resource.ServerResource;
import org.restlet.representation.Representation;
import org.restlet.ext.xml.DomRepresentation;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.restlet.data.Status;
import org.restlet.data.MediaType;
import java.util.List;

public class XmlAllResource extends ServerResource {
 public XmlAllResource() { }
 @Get
 public Representation toXml() {
 List<Adage> list = Adages.getList();
 DomRepresentation dom = null;
 try {
 dom = new DomRepresentation(MediaType.TEXT_XML);
 dom.setIndenting(true);
 Document doc = dom.getDocument();

 Element root = doc.createElement("adages");
 for (Adage adage : list) {
 Element next = doc.createElement("adage");

A RESTful Web Service as Restlet Resources | 81

 next.appendChild(doc.createTextNode(adage.toString()));
 root.appendChild(next);
 }
 doc.appendChild(root);
 }
 catch(Exception e) { }
 return dom;
 }
}

There are various Java ways to generate XML, including the DOM (Document Object
Model) or tree-based method shown in the XmlAllResource (line 2), which builds the
XML tree out of the Adages. This resource is reachable, as the @Get annotation signals
(line 1), only with a GET request.

The CreateResource class (see Example 2-17) highlights some nice features of the
Restlet API. The argument to the create method, of Restlet type Representation (line
1), represents the HTTP request body. The Restlet class Form (line 2) makes it easy to
search for specified keys, in this case words, with which the corresponding values can
be accessed, in this case the text for the new Adage.

Example 2-17. The CreateResource class in the adages2 service
package adages2;

import org.restlet.resource.Post;
import org.restlet.resource.ServerResource;
import org.restlet.representation.Representation;
import org.restlet.representation.StringRepresentation;
import org.restlet.data.Status;
import org.restlet.data.MediaType;
import org.restlet.data.Form;

public class CreateResource extends ServerResource {
 public CreateResource() { }
 @Post
 public Representation create(Representation data) {
 Status status = null;
 String msg = null;
 // Extract the data from the POST body.
 Form form = new Form(data);
 String words = form.getFirstValue("words");
 if (words == null) {
 msg = "No words were given for the adage.\n";
 status = Status.CLIENT_ERROR_BAD_REQUEST;
 }
 else {
 Adages.add(words);
 msg = "The adage '" + words + "' has been added.\n";
 status = Status.SUCCESS_OK;
 }

82 | Chapter 2: RESTful Web Services: The Service Side

 setStatus(status);
 return new StringRepresentation(msg, MediaType.TEXT_PLAIN);
 }
}

A JAX-RS resource typically encapsulates several methods, each annotated with a dis‐
tinct combination of HTTP verb (for instance, @GET or @POST) and URI (that is,
@Path). In this sense, a JAX-RS resource class is multipurpose: its various methods
handle various HTTP requests. The Restlet approach differs. Each resource class is, in
best practices, single-purpose: one annotated method is the callback for an HTTP re‐
quest targeted at a particular URI. The Restlet resource classes thus tend to be small, as
the adages2 service illustrates.

Sample Calls Against the adages2 Service
The RESTful adages2 service can be deployed to Tomcat in the usual way:

% ant -Dwar.name=adages2 deploy

Once the service is deployed, some curl calls can be used to confirm that the service is
behaving correctly. Here is a series of test calls. Each begins with a comment, introduced
with two semicolons, followed by the curl call itself, and ending with the output, which
is formatted for readability.

;; GET all in plain text
% curl --request GET http://localhost:8080/adages2/
 1: What can be shown cannot be said. -- 7 words
 2: If a lion could talk, we could not understand him. -- 10 words
 ...
;; GET all in XML
% curl --request GET http://localhost:8080/adages2/xml
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<adages>
<adage> 1: What can be shown cannot be said. -- 7 words</adage>
<adage> 2: If a lion could talk, we could not understand him. -- 10 words</adage>
...
;; GET all in JSON
% curl --request GET http://localhost:8080/adages2/json
[1: What can be shown cannot be said. -- 7 words,
 2: If a lion could talk, we could not understand him. -- 10 words,
...
;; GET Adage with id of 2 in XML
% curl --request GET http://localhost:8080/adages2/xml/2
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<adage>
 2: If a lion could talk, we could not understand him. -- 10 words
</adage>
;; Create a new adage
% curl --request POST --data "words=This is a test" \
 http://localhost:8080/adages2/create

A RESTful Web Service as Restlet Resources | 83

The adage 'This is a test' has been added.
;; Delete the newly added Adage
% curl --request DELETE http://localhost:8080/adages2/delete/6
Adage 6 removed.

Publishing the adages2 Restlet Service Without a Web Server
Restlet is excellent at separating concerns: the web service is one concern and its pub‐
lication is quite another. The adages2 service can be deployed with Tomcat or Jetty but
also—and with ease—using a standard Java application (see Example 2-18).

Example 2-18. A Java application to publish the Restlet adages2 web service
package adages2;

import org.restlet.Component;
import org.restlet.data.Protocol;

public class Main {
 public static void main(String[] args) throws Exception {
 // Create a new Component.
 Component component = new Component();
 // Add a new HTTP server listening on port 8182.
 component.getServers().add(Protocol.HTTP, 8182);
 // Attach the application.
 component.getDefaultHost().attach("/adages", new AdagesApplication());
 // Start the web server.
 component.start();
 }
}

The two import statements (lines 1 and 2) in Main require only the org.restlet.jar file to
compile and run, but the various Restlet resource classes such as XmlAllResource and
JsonAllResource require other JARs. The command-line server listens to HTTP con‐
nections on port 8182 (line 3) for requests against the URI that begins with /adages
(line 4).

The ZIP file with the sample applications includes Main.jar, an executable JAR file that
can be used instead of Tomcat or Jetty to publish the service:

% java -jar Main

The built-in server listens for requests indefinitely, and the functionality of the ad‐
ages2 service is unchanged in this command-line option for publication. For example,
here is a request for the adages in plain text together with the response:

% curl localhost:8182/adages/

 1: What can be shown cannot be said. -- 7 words
 2: If a lion could talk, we could not understand him. -- 10 words
 3: Philosophy is a battle against the bewitchment of our intelligence

84 | Chapter 2: RESTful Web Services: The Service Side

 by means of language. -- 14 words
 4: Ambition is the death of thought. -- 6 words
 5: The limits of my language mean the limits of my world. -- 11 words

The URI begins with /adages, in effect the counterpart of the WAR filename under
Tomcat or Jetty. The URI ends with the slash, giving /adages/, which maps to the Plain
Resource in the adages2 service.

The command-line option for publishing is nicely suited for development. In a pro‐
duction environment, web servers such as Tomcat and Jetty or application servers such
as GlassFish and WebSphere provide levels of support that a standalone Java application
simply cannot match.

A RESTful Service as a @WebServiceProvider
JAX-WS includes APIs for RESTful and SOAP-based web services, although JAX-WS
seems to be used mostly for the latter. The reference implementation is Metro, which is
part of the GlassFish project. Although JAX-WS technically belongs to enterprise rather
than core Java, the core Java JDK (1.6 or greater) includes enough of the Metro distri‐
bution to compile and publish RESTful and SOAP-based services. JAX-RS and Restlet
are state-of-the-art, high-level APIs for developing RESTful services; by contrast, the
JAX-WS API for RESTful services is low-level. Nonetheless, JAX-WS support for REST‐
ful services deserves a look, and the JAX-WS API for SOAP-based services will be the
centerpiece in Chapter 4 and Chapter 5.

The JAX-WS stack reflects the view that SOAP-based services over HTTP are refine‐
ments of RESTful services. The JAX-WS API has two main annotations. A POJO class
annotated as a @WebService delivers a SOAP-based service, whereas a POJO class an‐
notated as a @WebServiceProvider usually delivers a RESTful one; however, a class
annotated as a @WebServiceProvider can deliver a SOAP-based service as well. Yet
another revision of the adages RESTful service, adages3, introduces the JAX-WS API
for RESTful services.

In the revised adages3 service, the Adage and Adages classes are mostly unchanged from
the adages2 version. One small change is that the package name goes from adages2 to
adages3; another change is that the Adage list is returned as array, which then is serialized
into XML. The toPlain method in the Adages class could be dropped because the re‐
vised service deals only in application/xml and not in text/plain HTTP payloads.
The AdagesProvider class (see Example 2-19) supports the four CRUD operations
against the RESTful service.

Example 2-19. The AdagesProvider class that supports the CRUD operations
package adages3;

import java.beans.XMLEncoder;

A RESTful Service as a @WebServiceProvider | 85

http://metro.java.net

import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import java.io.StringReader;
import java.util.ArrayList;
import java.util.Arrays;
import javax.annotation.Resource;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamResult;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.WebServiceProvider;
import javax.xml.ws.Provider;
import javax.xml.ws.BindingType;
import javax.xml.ws.http.HTTPBinding;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.http.HTTPException;
import javax.xml.xpath.XPathFactory;
import javax.xml.xpath.XPath;
import javax.xml.xpath.XPathConstants;
import org.xml.sax.InputSource;

@WebServiceProvider // generic service provider
@ServiceMode(javax.xml.ws.Service.Mode.MESSAGE) // entire message available
@BindingType(HTTPBinding.HTTP_BINDING) // versus SOAP binding
public class AdagesProvider implements Provider<Source> {
 @Resource
 protected WebServiceContext wctx; // dependency injection

 public AdagesProvider() { }
 // Implement the Provider interface by defining invoke, which expects an XML
 // source (perhaps null) and returns an XML source (perhaps null).
 public Source invoke(Source request) {
 if (wctx == null) throw new RuntimeException("Injection failed on wctx.");
 // Grab the message context and extract the request verb.
 MessageContext mctx = wctx.getMessageContext();
 String httpVerb = (String) mctx.get(MessageContext.HTTP_REQUEST_METHOD);
 httpVerb = httpVerb.trim().toUpperCase();
 // Dispatch on verb to the handler method. POST and PUT have non-null
 // requests so only these two get the Source request.
 if (httpVerb.equals("GET")) return doGet(mctx);
 else if (httpVerb.equals("POST")) return doPost(request);
 else if (httpVerb.equals("PUT")) return doPut(request);
 else if (httpVerb.equals("DELETE")) return doDelete(mctx);
 else throw new HTTPException(405); // bad verb
 }
 private Source doGet(MessageContext mctx) {
 // Parse the query string.
 String qs = (String) mctx.get(MessageContext.QUERY_STRING);
 // Get all Adages.

86 | Chapter 2: RESTful Web Services: The Service Side

 if (qs == null) return adages2Xml();
 // Get a specified Adage.
 else {
 int id = getId(qs);
 if (id < 0) throw new HTTPException(400); // bad request
 Adage adage = Adages.find(id);
 if (adage == null) throw new HTTPException(404); // not found
 return adage2Xml(adage);
 }
 }
 private Source doPost(Source request) {
 if (request == null) throw new HTTPException(400); // bad request
 InputSource in = toInputSource(request);
 String pattern = "//words/text()"; // find the Adage's "words"
 String words = findElement(pattern, in);
 if (words == null) throw new HTTPException(400); // bad request
 Adages.add(words);
 String msg = "The adage '" + words + "' has been created.";
 return toSource(toXml(msg));
 }
 private Source doPut(Source request) {
 if (request == null) throw new HTTPException(400); // bad request
 InputSource in = toInputSource(request);
 String pattern = "//words/text()"; // find the Adage's "words"
 String words = findElement(pattern, in);
 if (words == null) throw new HTTPException(400); // bad request
 // Format in XML is: <words>!<id>
 String[] parts = words.split("!");
 if (parts[0].length() < 1 || parts[1].length() < 1)
 throw new HTTPException(400); // bad request
 int id = -1;
 try {
 id = Integer.parseInt(parts[1].trim());
 }
 catch(Exception e) { throw new HTTPException(400); } // bad request
 // Find and edit.
 Adage adage = Adages.find(id);
 if (adage == null) throw new HTTPException(404); // not found
 adage.setWords(parts[0]);
 String msg = "Adage " + adage.getId() + " has been updated.";
 return toSource(toXml(msg));
 }
 private Source doDelete(MessageContext mctx) {
 String qs = (String) mctx.get(MessageContext.QUERY_STRING);
 // Disallow the deletion of all teams at once.
 if (qs == null) throw new HTTPException(403); // illegal operation
 else {
 int id = getId(qs);
 if (id < 0) throw new HTTPException(400); // bad request
 Adage adage = Adages.find(id);
 if (adage == null) throw new HTTPException(404); // not found
 Adages.remove(adage);

A RESTful Service as a @WebServiceProvider | 87

 String msg = "Adage " + id + " removed.";
 return toSource(toXml(msg));
 }
 }
 private int getId(String qs) {
 int badId = -1; // bad ID
 String[] parts = qs.split("=");
 if (!parts[0].toLowerCase().trim().equals("id")) return badId;
 int goodId = badId; // for now
 try {
 goodId = Integer.parseInt(parts[1].trim());
 }
 catch(Exception e) { return badId; }
 return goodId;
 }
 private StreamSource adages2Xml() {
 String str = toXml(Adages.getListAsArray());
 return toSource(str);
 }
 private StreamSource adage2Xml(Adage adage) {
 String str = toXml(adage);
 return toSource(str);
 }
 private String toXml(Object obj) {
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 XMLEncoder enc = new XMLEncoder(out);
 enc.writeObject(obj);
 enc.close();
 return out.toString();
 }
 private StreamSource toSource(String str) {
 return new StreamSource(new StringReader(str));
 }
 private InputSource toInputSource(Source source) {
 InputSource input = null;
 try {
 Transformer trans = TransformerFactory.newInstance().newTransformer();
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 StreamResult result = new StreamResult(bos);
 trans.transform(source, result);
 input = new InputSource(new ByteArrayInputStream(bos.toByteArray()));
 }
 catch(Exception e) { throw new HTTPException(500); } // internal server error
 return input;
 }
 private String findElement(String expression, InputSource source) {
 XPath xpath = XPathFactory.newInstance().newXPath();
 String retval = null;
 try {
 retval =
 (String) xpath.evaluate(expression, source, XPathConstants.STRING);
 }

88 | Chapter 2: RESTful Web Services: The Service Side

 catch(Exception e) { throw new HTTPException(400); } // bad request
 return retval;
 }
}

Even a glance at the AdagesProvider code looks low-level. Much of this code transforms
one type to another, for example, a Source to an InputSource or an Adage to a Stream
Source. The Source types are sources of XML. The JAX-P (Java API for XML-
Processing) packages, used in the adages3 service, support transforms that convert a
source into a result (see Figure 2-1).

Figure 2-1. A JAX-P transform

For example, a generic Source might be transformed into a specific type such as Stream
Result. The need for such transformations in the adages3 service is explained shortly.
First, however, it will be helpful to consider the overall structure of the AdagesProvider.

Three annotations adorn the AdagesProvider class:

• @WebServiceProvider (line 1) indicates that the AdagesProvider class implements
a templated Provider interface, in this case a Provider<Source> interface, where
Source is a source precisely of XML. The templated Provider interface requires
that the implementing class define the method:

public Source invoke(Source input) { /*...*/ }

This method expects a Source of XML as an argument and returns a Source of
XML. The AdagesProvider class defines the invoke method (line 2), which is the
target of every HTTP request against the adages3 service. The invoke method im‐
plements a simple routing table. After extracting the HTTP verb from the incoming
request, using the MessageContext map (line 5) that the runtime provides, the
invoke method calls one of four AdagesProvider methods (line 6), each of which
returns a Source of XML for the HTTP response body:

// mctc --> MessageContext, request --> Source
if (httpVerb.equals("GET")) return doGet(mctx);
else if (httpVerb.equals("POST")) return doPost(request);
else if (httpVerb.equals("PUT")) return doPut(request);
else if (httpVerb.equals("DELETE")) return doDelete(mctx);
else throw new HTTPException(405); // bad verb

A RESTful Service as a @WebServiceProvider | 89

This table mimics, in the method names, an HttpServlet with its encapsulated
doGet, doPost, doPut, and doDelete methods. The difference here is that each do-
method takes only one argument. The GET and DELETE have no bodies, which
means that the incoming Source is empty. In any case, the doGet and doDelete
methods need only information in the query string, which is stored in the HTTP
headers; hence, doGet and doDelete are passed the MessageContext as the argu‐
ment. By contrast, the doPost and doPut methods require information in the HTTP
request body, a nonempty Source; these methods therefore are passed the request
Source as their single argument.

• The @ServiceMode annotation (line 2) has two possible values: MESSAGE (the entire
request message) or PAYLOAD (the body, if any, of the request message). The ad‐
ages3 service needs access to both the HTTP headers and, for POST and PUT
requests, the HTTP body; hence, the service mode is MESSAGE.

• The @BindingType (line 3) refers to the type of payload in an HTTP message. The
default type is SOAP, which means that the body of an HTTP message (for instance,
a POST request or any response) is a SOAP document. The AdagesProvider speci‐
fies an HTTP binding, which means that the HTTP payload is to be arbitrary XML,
not exclusively the SOAP variant of XML. Even with this binding type, however, a
SOAP document could be a payload because SOAP still counts as XML.

This overview should help in the more detailed analysis that follows. In the adages3
service, the doGet method needs to handle two cases:

• If there is no query string, this method assumes that the client means read all with
the GET request. In this case, the entire list of adages, encoded as XML using the
XMLEncoder, is returned.

• If there is a query string, it should have a key/value pair such as:
id=4

where 4 is then interpreted as the id of the single message to be returned. Here, for
quick review, is the doGet method:

private Source doGet(MessageContext mctx) {
 // Parse the query string.
 String qs = (String) mctx.get(MessageContext.QUERY_STRING);
 if (qs == null) return adages2Xml(); // all adages
 else { // one adage
 int id = getId(qs);
 if (id < 0) throw new HTTPException(400); // bad request
 Adage adage = Adages.find(id);
 if (adage == null) throw new HTTPException(404); // not found
 return adage2Xml(adage);
 }
}

90 | Chapter 2: RESTful Web Services: The Service Side

Utility methods such as adages2Xml (line 1) handle the transformation of Adage
objects into XML documents (text), which in turn are transformed into Stream
Source instances sent back to the client.

The doPost method is:

private Source doPost(Source request) {
 if (request == null) throw new HTTPException(400); // bad request
 InputSource in = toInputSource(request);
 String pattern = "//words/text()"; // find the Adage's "words"
 String words = findElement(pattern, in);
 if (words == null) throw new HTTPException(400); // bad request
 Adages.add(words);
 String msg = "The adage '" + words + "' has been created.";
 return toSource(toXml(msg));
}

This method relies on utility methods, in particular on the tricky toInputSource meth‐
od (line 1) that transforms a Source request, which is likely but not necessarily a Stream
Source, into an InputSource. The reason is that, for convenience, the doPost method
uses an XPath instance to search the incoming XML document for the words in the
Adage to be created. For example, the XML document might look like this in a POST
request:

<ns1:foo xmlns:ns1='http://sample.org'>
 <words>This is the way the world ends.</words>
</ns1:foo>

An XPath search requires a pattern, in this example (line 2):

//words/text()

The two opening slashes mean anywhere in the document and the specific search term
is the literal words. The text() at the end signals XPath to return the text node in the
XML document that contains the new adage; in this case, the phrase:

This is the way the world ends.

The search is flexible in that the XML tag words could be anywhere in the document,
in this example nested inside the root element named ns1:foo. Now let me get back to
the point about needing to transform a Source into an InputSource. The XPath method
evaluate searches an XML document for a pattern such as //words but requires, as a
second argument, an InputSource; hence, the transformation of the incoming but
generic Source to an InputSource sets up the XPath search. There are other ways in
which the XPath search might be supported but any of these would require a transfor‐
mation of some kind.

The doPut method in the AdagesProvider class is similar in structure to the doPost
method because, of course, creating a new Adage (POST) and updating an existing one

A RESTful Service as a @WebServiceProvider | 91

(PUT) are similar operations. However, the doPut implementation allows only the words
of the Adage to be changed; the id property, which the Adages class manages, cannot
be changed through a PUT operation.

Publishing the adages3 Service with Tomcat and Endpoint
With core Java 1.6 or greater, publishing a @WebServiceProvider service (and, for that
matter, a SOAP-based @WebService) from the command line requires very little code.
Here is a sample publisher, included in the ZIP with the sample code:

package adages3;

import javax.xml.ws.Endpoint;
public class Publisher {
 public static void main(String[] args) {
 int port = 8888;
 String url = "http://localhost:" + port + "/";
 System.out.println("Restfully publishing on port " + port);
 Endpoint.publish(url, new AdagesProvider());
 }
}

Once published, the AdagesProvider service awaits requests indefinitely on port 8888.
For example, the request:

% curl localhost:8888/?id=3

elicits the response:

<java version="1.7.0" class="java.beans.XMLDecoder">
 <object class="adages3.Adage">
 <void property="id">
 <int>3</int>
 </void>
 <void property="wordCount">
 <int>14</int>
 </void>
 <void property="words">
 <string>
 Philosophy is a battle against the bewitchment of our intelligence
 by means of language.
 </string>
 </void>
 </object>
</java>

Publishing with Tomcat or Jetty is likewise straightforward, although two configuration
files are needed: the usual web.xml and the additional sun-jaxws.xml. Here is the web.xml
for the adages3 service:

92 | Chapter 2: RESTful Web Services: The Service Side

<?xml version="1.0" encoding="UTF-8"?>
<web-app>
 <listener>
 <listener-class>
 com.sun.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <servlet-name>jaxws</servlet-name>
 <servlet-class>
 com.sun.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>jaxws</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

The Metro classes WSServletContextListener (line 1) and WSServlet (line 2) are in
the JAR file currently named webservices-rt.jar, which can be downloaded with the rest
of Metro JARs. This JAR should be in the src directory so that the Ant script can package
it in the deployed WAR file. In any case, the WSServletContextListener parses the
sun-jaxws.xml file, with more details shortly. The WSServlet acts as the interceptor: the
servlet receives incoming requests and dispatches these to the AdagesProvider service.
This architecture is quite similar to the Restlet version.

The second configuration file, sun-jaxws.xml, is:

<?xml version="1.0" encoding="UTF-8"?>
<endpoints version="2.0"
 xmlns="http://java.sun.com/xml/ns/jax-ws/ri/runtime">
 <endpoint implementation="adages3.AdagesProvider"
 name="AdagesProvider"
 url-pattern="/*"/>
</endpoints>

This file completes the routing by notifying the WSServletContextListener that the
WSServlet should dispatch requests to an AdagesProvider instance (line 2). By the way,
the xmlns attribute in the endpoints element (line 1) is important and should not be
changed or omitted.

With the two configuration files and the Metro library JAR in the src directory, the
adages3 service can be deployed to Tomcat in the usual way:

% ant -Dwar.name=adages3 deploy

Sample requests then can be sent to the service:

% curl localhost:8080/adages3?id=3

A RESTful Service as a @WebServiceProvider | 93

http://metro.java.net

The JAX-WS @WebServiceProvider is a low-level, XML-centric API. Java is well known
for providing options, and this API is among the Java options for delivering REST-style
services. Chapter 7 introduces the client-side API, based on the Dispatch interface, for
RESTful services implemented with @WebServiceProvider.

What’s Next?
This chapter focused on programming and publishing RESTful services; the next chap‐
ter focuses on consuming such services, or the client side. Some of the sample clients
make requests against major RESTful sites such as Amazon and Twitter, whereas others
make requests against the services developed in this chapter. Once again, the goal is to
illustrate, with working code, the various client-side APIs at the Java programmer’s
disposal.

Four different APIs were considered in this chapter, but these APIs fall into three general
groups:

• The HttpServlet API, which has been around since the late 1990s, remains an
excellent way to implement RESTful services. Servlets are HTTP-aware and provide
convenient filtering of requests by HTTP verb. Programmers accustomed to im‐
plementing websites with servlets, JSP, and related scripting languages such as JSF
or Struts, should find servlets a natural and appealing way to deliver web services
as well. The servlet API is at once uncomplicated and powerful.

• The JAX-RS and Restlet APIs take full advantage of Java annotations to advertise
the RESTful aspects of implemented services. These frameworks integrate well with
JAX-B technologies to automate the conversion of Java types into XML and JSON
documents. JAX-RS and Restlet services, like servlet-based servlets, can be pub‐
lished with production-grade web servers such as Tomcat and Jetty. These APIs also
mimic the routing idioms that have become so popular because of frameworks such
as Rails and Sinatra.

• The JAX-WS API, with the @WebServiceProvider at its center, is lower level than
the other options but well suited for programmers who need to be close to the HTTP
and XML metal. This API is sufficiently rich to deliver real-world RESTful services,
but the rival APIs are more appealing in that they hide many of the details that a
JAX-WS service must handle explicitly. For SOAP-based services, the JAX-WS API
is as good as any and will be the focus in Chapters 4 and 5.

94 | Chapter 2: RESTful Web Services: The Service Side

CHAPTER 3

RESTful Web Services: The Client Side

Consider a familiar scenario in which a client accesses a RESTful web service:

1. The client issues a GET request against a RESTful service. In general, a request to
a RESTful service targets a named resource, with a URI as the name.

2. If successful, this GET request results in a response document, a representation of
the resource targeted in the request. The document is usually in XML or JSON,
although other formats might be available. In any case, the response should be
MIME-typed.

3. The client extracts from the document whatever information is required for the
client’s application logic.

For example, the client might be a jQuery script embedded in an HTML document.
This client requests data, such as a product list, from a web service. If the request suc‐
ceeds, the client extracts relevant information; for instance, the client might extract the
name, category, price, and in-stock quantity of each product in the list. The client then
processes the information in some appropriate way; for example, the JavaScript client
might build and display an HTML table that represents the product list, with one row
per product.

Each step in this sample scenario poses a challenge. The GET request must be formatted
properly, and the status code of the response should be inspected to determine whether
the request succeeded and, if not, why not. The toughest challenge for the client, how‐
ever, may be extracting required information from the document: the client may have
to parse the returned document to get the information in a usable format. To build an
HTML table from an XML document, for example, a JavaScript client would need to
extract information items as text without the XML markup; an XML parse would be the
standard way to extract such information. It would be easier if the JavaScript client
received a JSON payload so that the XML parse could be avoided altogether. The

95

@WebServiceProvider service in Chapter 2 illustrates the problem of parsing XML
because successful POST and PUT operations against this service must send, as an XML
document, the data required to construct or edit an Adage, and the service code parses
the document to extract the words that make up the Adage. A dominant theme in this
chapter is how to avoid the explicit parsing of documents, XML or JSON, returned from
RESTful services.

All of the CRUD verbs used in RESTful services pose challenges, although these differ
in degree, for both the service and the client. This chapter focuses on the client side and
pays particular attention to the challenge of extracting usable information from an
HTTP response whose payload is an XML or JSON document. Some examples parse
documents to extract such information, and other examples show how explicit parsing
can be avoided. Java has various libraries, standard and contributed, for dealing with
XML and JSON documents; the examples illustrate such libraries.

Web services in general purport to be language-neutral. Accordingly, the proof of the
pudding is whether a client written in one language can consume, without undue fuss,
a service written in a different language. My first example illustrates how this can be
done with a Perl client against a Java RESTful service. Most of the other examples focus
on Java clients against various services, including two Java clients against Amazon’s
RESTful E-Commerce service. The E-Commerce examples highlight the complexities
encountered in targeting real-world services.

A Perl Client Against a Java RESTful Web Service
The Perl client (see Example 3-1) against the Java predictions2 RESTful service, imple‐
mented as an HttpServlet, makes various calls that cover the CRUD operations. (The
predictions2 service is from Chapter 2.) Perl comes with most Unixy systems and is
available on Windows (see, for example, ActiveState). Although Perl has a quirky syntax
—it has been called line-noise interpreted and even worse—its excellent libraries, stan‐
dard and contributed, more than compensate. In any case, the point of the example is
to provide a first look at how a client interacts with a RESTful service. The curl clients
from the two previous chapters illustrated all of the CRUD operations against several
services; all of the CRUD requests received at least a minimal document in return. Yet
the curl utility is meant for making HTTP requests, not processing HTTP responses.
The Perl client takes the second step; that is, this client performs all of the CRUD op‐
erations and then highlights the challenge of processing response documents. In the
case of response documents in XML, the Perl client parses the XML to extract usable
information, in this case the id, who, and what of a specified Prediction or of the entire
PredictionsList returned from the service.

96 | Chapter 3: RESTful Web Services: The Client Side

http://www.activestate.com

Example 3-1. A Perl client making CRUD calls against the RESTful predictions2 service
#!/usr/bin/perl -w

packages
use strict;
use LWP;
use XML::XPath;
use List::MoreUtils qw(each_array);

my $baseUrl = 'http://localhost:8080/predictions2/';
my $ua = LWP::UserAgent->new;
runTests();

Run CRUD tests against the service.
sub runTests {
 getTest($baseUrl); ## GET all (xml)
 getTest($baseUrl . '?id=4'); ## GET one (xml)
 getTestJson($baseUrl); ## GET all (json)
 getTestJson($baseUrl . '?id=4'); ## GET one (json)
 postTest($baseUrl); ## POST
 getTest($baseUrl); ## GET all (xml)
 putTest($baseUrl); ## PUT
 getTest($baseUrl . '?id=4'); ## GET one (xml)
 deleteTest($baseUrl . '?id=31'); ## DELETE
 getTest($baseUrl); ## GET one (xml)
}
sub getTest {
 my ($url) = @_;
 my $request = HTTP::Request->new(GET => $url);
 my $response = $ua->request($request);
 handleResponse($response, \&parseXml); # pointer to a function
}
sub getTestJson {
 my ($url) = @_;
 my $request = HTTP::Request->new(GET => $url,
 HTTP::Headers->new('Accept' => 'application/json'));
 my $response = $ua->request($request);
 handleResponse($response, \&parseJson);
}
sub postTest {
 my ($url) = @_;
 my $request = HTTP::Request->new(POST => $url);
 $request->content_type('application/x-www-form-urlencoded');
 $request->content('who=TS Eliot&what=This is the way the world ends.');
 my $response = $ua->request($request);
 handleResponse($response, undef);
}
sub putTest {
 my ($url) = @_;
 my $request = HTTP::Request->new(PUT => $url);
 $request->content_type('application/x-www-form-urlencoded');
 $request->content('id=4#who=FOOBAR');

A Perl Client Against a Java RESTful Web Service | 97

 my $response = $ua->request($request);
 handleResponse($response, undef);
}
sub deleteTest {
 my ($url) = @_;
 my $request = HTTP::Request->new(DELETE => $url);
 my $response = $ua->request($request);
 handleResponse($response, undef);
}
sub parseXml {
 my ($rawXml) = @_;
 # print "Raw XML response:\n" . $rawXml . "\n";
 # Set up the XPath search.
 my $xp = XML::XPath->new(xml => trim($rawXml));
 # Extract a list apiece of ids, whos, and whats.
 my @ids = $xp->find('//object/void[@property="id"]/int')->get_nodelist;
 my @whos = $xp->find('//object/void[@property="who"]/string')->get_nodelist;
 my @whats = $xp->find('//object/void[@property="what"]/string')->get_nodelist;
 # Iterate over the lists to print the data.
 my $it = each_array(@ids, @whos, @whats);
 while (my ($id, $who, $what) = $it->()) {
 print sprintf("%2d: ", $id->string_value) .
 $who->string_value . " -> '" .
 $what->string_value . "'\n";
 }
}
sub parseJson {
 my ($json) = @_;
 print "JSON document:\n$json\n";
 # ...
}
sub trim {
 my $string = shift;
 $string =~ s/^\s+//;
 $string =~ s/\s+$//;
 return $string;
}
sub handleResponse {
 my ($response, $callback) = @_;
 if ($response->is_success) {
 if (defined $callback) {
 $callback->($response->content);
 }
 else {
 print $response->content . "\n";
 }
 }
 else {
 print STDERR $response->status_line . "\n";
 }
}

98 | Chapter 3: RESTful Web Services: The Client Side

The Perl client can make a GET request for all predictions or just a specified one, and
the client can express a preference for XML or JSON in either case. Here is the function
getTest, which requests all predictions in XML:

sub getTest {
 my ($url) = @_;
 print "\nGET request against $url\n\n";
 my $request = HTTP::Request->new(GET => $url);
 my $response = $ua->request($request);
 handleResponse($response, \&parseXml);
}

In line 1 the $url variable (in Perl, a scalar variable starts with a $) has, as its value, a
string URL that targets the predictions2 service, whose GET operation is the doGet
method in the HttpServlet. The Perl client generates, in line 2, a request object (the
reference is $request) and then issues this request through a LWP::UserAgent instance,
with $ua as the reference (line 3). The client then invokes, in line 4, the function named
handleResponse with two arguments: the $response reference, which gives access to
the entire HTTP response, including the status code, the headers, and the body; and a
reference to a response-processing function, in this case parseXml, which parses the
returned XML if the request succeeds.

The function parseXml illustrates the challenge of extracting usable information from
the XML payload. Perl, like most general-purpose languages, has various ways to parse
XML. In this example, the Perl XPath library is used. Here is the parsing function without
the comments:

sub parseXml {
 my ($rawXml) = @_;
 print "Raw XML response:\n" . $rawXml . "\n"; # raw xml
 my $xp = XML::XPath->new(xml => trim($rawXml));
 my @ids = $xp->find('//object/void[@property="id"]/int')
 ->get_nodelist;
 my @whos = $xp->find('//object/void[@property="who"]/string')
 ->get_nodelist;
 my @whats = $xp->find('//object/void[@property="what"]/string')
 ->get_nodelist;
 my $it = each_array(@ids, @whos, @whats);
 while (my ($id, $who, $what) = $it->()) {
 print sprintf("%2d: ", $id->string_value) . $who->string_value . " -> '" .
 $what->string_value . "'\n";
 }
}

The function prints the raw XML from the predictions2 service (line 1) and then uses
XPath (line 2) to get three lists: @ids, @whos, and @whats (lines 3, 4, and 5). (Perl lists
begin with @.) The while loop then prints the text representation of each Prediction,
giving the values of its id, who, and what properties. Here is a slice of the output:

A Perl Client Against a Java RESTful Web Service | 99

 1: Cornelius Tillman ->
 'Managed holistic contingency will grow killer action-items.'
 2: Conner Kulas ->
 'Vision-oriented zero administration timeframe will generate
 backend interfaces.'
...
23: Lottie Marks ->
 'Open-source multitasking timeframe will monetize rich partnerships.'

In a production example, the application logic might be considerably more complicated
than simply printing the extracted information. The extracted Prediction instances
might be inserted into a database, mined for relevant patterns, integrated with other
information, sent out as email greetings, and so on. Nonetheless, the XML parsing would
be the first step in support of any such additional processing.

The other requests from the Perl client are very similar to the curl commands used in
Chapters 1 and 2. For example, the predictions2 service returns JSON rather than XML
on a GET request if the appropriate header element is in the HTTP message. The Perl
client inserts the Accept key/value pair, issues the request, and then parses the returned
JSON (line 1):

my $request = HTTP::Request->new(GET => $url,
 HTTP::Headers->new('Accept' => 'application/json'));
my $response = $ua->request($request);
handleResponse($response, \&parseJson);

A POST or a PUT request requires that relevant data about a Prediction be inserted
into the body of the HTTP request. Here is the POST test:

sub postTest {
 my ($url) = @_;
 my $request = HTTP::Request->new(POST => $url);
 $request->content_type('application/x-www-form-urlencoded');
 $request->content('who=TS Eliot&what=This is the way the world ends.');
 my $response = $ua->request($request);
 handleResponse($response, undef); # undef means no callback function
}

Line 1 sets the content type of the HTTP request for x-www-form-urlencoded, the stan‐
dard type for the body of a POST request; this type is commonly abbreviated as the
HTTP form. The form holds two key/value pairs, one for the who and the other for the
what property of a Prediction (line 2). Line 3 sends the request and awaits the response.
In line 4, the call to handleResponse, the Perl value undef (short for undefined) serves
roughly the same purpose as null in Java. In the call to handleResponse, a second
argument with undef as its value signals that the HTTP response should be printed
rather than processed further; for example, on a successful POST, the printed response
would be similar to:

<?xml version="1.0" encoding="UTF-8"?>
<java version="1.7.0" class="java.beans.XMLDecoder">

100 | Chapter 3: RESTful Web Services: The Client Side

 <string>Prediction 36 created.</string>
</java>

The Perl example illustrates language neutrality in RESTful web services because the
predictions2 service is written in Java. At the same time, this example focuses on a central
question in this chapter: How can a RESTful client minimize or even avoid XML/JSON
parsing? Even the relatively short Perl client makes clear that the tricky code involves
XML parsing, although the Perl XPath library has an API that eases the task. The next
section addresses the issue of response-document parsing with two examples, each a
Java client against the Amazon E-Commerce service. The first client contends with the
XML that the Amazon service returns, whereas the second client uses JAX-B to trans‐
form the XML into native Java objects, which are then manipulated with the familiar
get/set methods.

A Client Against the Amazon E-Commerce Service
Amazon Web Services is an umbrella for Amazon’s pioneering contributions, in infra‐
structure and applications, to web services. From early on, Amazon pushed hard to
make its web sites for shopping, storage (S3, Simple Storage Service), utility-priced cloud
computing (EC2), and so on available as web services, too. Among the prominent hosts
of web services, Amazon is unusual in offering both SOAP-based and REST-style ver‐
sions of such services. This chapter and later ones have code examples that involve
Amazon’s E-Commerce or shopping service (see “Registering with Amazon” on page
101), which requires an accessId and a secretKey for access. The accessId is inserted, as is,
into any request against the E-Commerce service; the secretKey is used to create what
Amazon calls a signature, which is likewise inserted into every request and then verified
on the Amazon side. The secretKey itself is not inserted into a request.

Registering with Amazon
Amazon’s E-Commerce web service is free of charge but requires registration. In par‐
ticular, a web service client requires both an access key id (accessId for short) and a secret
access key (secretKey for short), each of which comes from Amazon after registration.
The sample clients against the E-Commerce service, in this and later chapters, require
the accessId and the secretKey as command-line arguments.

The RestfulAmazon client (see Example 3-2) is relatively clean code but only because
the messy details are isolated in the utility class RequestHelper. Amazon requires, in a
RESTful request for item lookups against the E-Commerce service, that the verb be GET
and that the required data be in a strictly formatted query string. Here are some details:

A Client Against the Amazon E-Commerce Service | 101

http://aws.amazon.com
http://affiliate-program.amazon.com

• The keys in the query string must be in lexicographical order with respect to the
first byte in the key’s name.

• The query string must include an ISO-8601 timestamp.
• The query string must be URL-encoded under RFC 3986.
• The query string must include a hash-based message authentication code using the

SHA-256 hash algorithm. This hash value is what Amazon calls the signature.
• The authentication code must be base64-encoded.

Amazon’s RESTful service is fussy about the format of requests against it. The utility
class RequestHelper ensures that a GET request against the E-Commerce service has
the required query string format.

Example 3-2. The RestfulAmazon client against the Amazon E-Commerce web service
package restful;

import java.net.URL;
import java.net.URLConnection;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.ByteArrayInputStream;
import java.util.HashMap;
import java.util.Map;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.DocumentBuilder;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

public class RestfulAmazon {
 private static final String endpoint = "ecs.amazonaws.com";
 private static final String itemId = "0545010225"; // Harry Potter

 public static void main(String[] args) {
 if (args.length < 2) {
 System.err.println("RestfulAmazon <accessKeyId> <secretKey>");
 return;
 }
 new RestfulAmazon().lookupStuff(args[0].trim(), args[1].trim());
 }
 private void lookupStuff(String accessKeyId, String secretKey) {
 RequestHelper helper = new RequestHelper(endpoint, accessKeyId, secretKey);
 String requestUrl = null;
 String title = null;
 // Store query string params in a hash.
 Map<String, String> params = new HashMap<String, String>();
 params.put("Service", "AWSECommerceService");

102 | Chapter 3: RESTful Web Services: The Client Side

 params.put("Version", "2009-03-31");
 params.put("Operation", "ItemLookup");
 params.put("ItemId", itemId);
 params.put("ResponseGroup", "Small");
 params.put("AssociateTag", "kalin"); // any string should do
 requestUrl = helper.sign(params);
 String response = requestAmazon(requestUrl);
 // The string "null" is returned before the XML document.
 String noNullResponse = response.replaceFirst("null", "");
 System.out.println("Raw xml:\n" + noNullResponse);
 System.out.println("Author: " + getAuthor(noNullResponse));
 }
 private String requestAmazon(String stringUrl) {
 String response = null;
 try {
 URL url = new URL(stringUrl);
 URLConnection conn = url.openConnection();
 conn.setDoInput(true);
 BufferedReader in =
 new BufferedReader(new InputStreamReader(conn.getInputStream()));
 String chunk = null;
 while ((chunk = in.readLine()) != null) response += chunk;
 in.close();
 }
 catch(Exception e) { throw new RuntimeException("Arrrg! " + e); }
 return response;
 }
 private String getAuthor(String xml) {
 String author = null;
 try {
 ByteArrayInputStream bais = new ByteArrayInputStream(xml.getBytes());
 DocumentBuilderFactory fact = DocumentBuilderFactory.newInstance();
 fact.setNamespaceAware(true);
 DocumentBuilder builder = fact.newDocumentBuilder();
 Document doc = builder.parse(bais);
 NodeList results = doc.getElementsByTagName("Author");
 for (int i = 0; i < results.getLength(); i++) {
 Element e = (Element) results.item(i);
 NodeList nodes = e.getChildNodes();
 for (int j = 0; j < nodes.getLength(); j++) {
 Node child = nodes.item(j);
 if (child.getNodeType() == Node.TEXT_NODE)
 author = child.getNodeValue();
 }
 }
 }
 catch(Exception e) { throw new RuntimeException("Xml bad!", e); }
 return author;
 }
}

A Client Against the Amazon E-Commerce Service | 103

The RestfulAmazon application expects two command-line arguments: an Amazon
accessId and secretKey, in that order. The client application then sets various properties
such as the requested Amazon operation (in this example, ItemLookup in line 2), the
item’s identifier (in this example, 0545010225 in line 1, which is a Harry Potter novel),
the Amazon associate’s name, and so on. After the RequestHelper utility formats the
request according to Amazon’s requirements, the RestfulAmazon client then opens a
URLConnection to the Amazon service, sends the GET request, and reads the response,
chunk by chunk. The relevant code segment is:

URL url = new URL(stringUrl);
URLConnection conn = url.openConnection();
conn.setDoInput(true);
BufferedReader in =
 new BufferedReader(new InputStreamReader(conn.getInputStream()));
String chunk = null;
while ((chunk = in.readLine()) != null) response += chunk;

The code first creates a URLConnection (line 1) and then wraps a BufferedReader
around the connection’s InputStream (line 2). A while loop is used to read the Amazon
response chunk by chunk (line 3). On a successful GET request, the payload in the HTTP
response body is an XML document. Here is a slice from a sample run:

<?xml version="1.0" ?>
<ItemLookupResponse
 xmlns="http://webservices.amazon.com/AWSECommerceService/2011-08-01">
 <OperationRequest>
 <HTTPHeaders>
 <Header Name="UserAgent" Value="Java/1.7"></Header>
 </HTTPHeaders>
 <RequestId>591ac8db-0435-4c53-9b01-e3756ea9c55d</RequestId>
 <Arguments>
 <Argument Name="Operation" Value="ItemLookup"></Argument>
 <Argument Name="Service" Value="AWSECommerceService"></Argument>
 ...
 <Argument Name="ResponseGroup" Value="Small"></Argument>
 </Arguments>
 <RequestProcessingTime>0.0083090000000000</RequestProcessingTime>
 </OperationRequest>
 <Item>
 <Request>
 <IsValid>True</IsValid>
 <ItemLookupRequest>
 <IdType>ASIN</IdType>
 <ItemId>0545010225</ItemId>
 ...
 </ItemLookupRequest>
 </Request>
 <Item>
 <ASIN>0545010225</ASIN>
 <DetailPageURL>

104 | Chapter 3: RESTful Web Services: The Client Side

 http://www.amazon.com/Harry-Potter-Deathly-Hallows-Book...
 </DetailPageURL>
 <ItemLinks>
 <ItemLink>
 <Description>Technical Details</Description>
 <URL>http://www.amazon.com/Harry-Potter-Deathly-Hallows-Book...</URL>
 </ItemLink>
 ...
 <ItemLink>
 <Description>Add To Wedding Registry</Description>
 <URL>http://www.amazon.com/gp/registry/wedding/add-item.html...</URL>
 </ItemLink>
 ...
 </ItemLinks>
 <ItemAttributes>
 <Author>J. K. Rowling</Author>
 <Creator Role="Illustrator">Mary GrandPré</Creator>
 <Manufacturer>Arthur A. Levine Books</Manufacturer>
 <ProductGroup>Book</ProductGroup>
 <Title>Harry Potter and the Deathly Hallows (Book 7)</Title>
 </ItemAttributes>
 </Item>
 </Items>
</ItemLookupResponse>

Even a cursory look at the XML makes clear, to anyone who has searched on the Amazon
website, that the web service response contains essentially the same information as the
corresponding HTML page viewed in a browser visit. For example, there is an XML
element labeled:

Add To Wedding Registry (line 1)

Amazon’s goal is to make the website and the web service deliver the same information
and the same functionality but in different formats: the website delivers HTML docu‐
ments, whereas the web service delivers XML documents.

With the response XML in hand, the RestfulAmazon client then parses the document
to extract, as proof of concept, the author’s name, J. K. Rowling. The code uses the
relatively old-fashioned DOM parser, implemented as the standard Java Document
Builder class. Here is the relevant code segment:

Document doc = builder.parse(bais);
NodeList results = doc.getElementsByTagName("Author");
for (int i = 0; i < results.getLength(); i++) {
 Element e = (Element) results.item(i);
 NodeList nodes = e.getChildNodes();
 for (int j = 0; j < nodes.getLength(); j++) {
 Node child = nodes.item(j);
 if (child.getNodeType() == Node.TEXT_NODE)
 author = child.getNodeValue();
 }
}

A Client Against the Amazon E-Commerce Service | 105

The code first builds the DOM tree structure from the Amazon response bytes (line 1)
and then gets a list, in this case a list of one element, from DOM elements tagged as
Author. The author’s name, J. K. Rowling, occurs as the contents of a TEXT_NODE (line
3). The parse deals with the usual complexities of the tree structure that a DOM
represents. Similar DOM searches could extract from Amazon’s XML response docu‐
ment any other information of interest, for example, the book’s ISBN number.

The RequestHelper class (see Example 3-3) has one job: format the HTTP GET request
in accordance with Amazon’s strict requirements. This class acts as a utility that hides
many low-level details, but a quick overview should provide some insight about what
the E-Commerce service requires in a well-formed request. Recall that a request against
the E-Commerce service requires both an accessId and a secretKey but the two play quite
different roles in the request. The accessId occurs as a value in a key/value pair, with
AWSAccessKeyId as the key (line 2). There is also a key/value pair for the timestamp that
the E-Commerce service requires (line 3); hence, the accessId and the timestamp are
peers. Amazon uses the timestamp to ensure that the requests are timely—that is,
recently constructed.

Example 3-3. The utility class RequestHelper, which supports the RestfulAmazon class
package restful;

import java.io.UnsupportedEncodingException;
import java.net.URLDecoder;
import java.net.URLEncoder;
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Calendar;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.SortedMap;
import java.util.TimeZone;
import java.util.TreeMap;
import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import org.apache.commons.codec.binary.Base64;

public class RequestHelper {
 private static final String utf8 = "UTF-8";
 private static final String hmacAlg = "HmacSHA256";
 private static final String requestUri = "/onca/xml";
 private static final String requestMethod = "GET";
 private String endpoint = null;
 private String accessKeyId = null;
 private String secretKey = null;
 private SecretKeySpec secretKeySpec = null;
 private Mac mac = null;

106 | Chapter 3: RESTful Web Services: The Client Side

 public RequestHelper(String endpoint,
 String accessKeyId,
 String secretKey) {
 if (endpoint == null || endpoint.length() == 0)
 throw new RuntimeException("The endpoint is null or empty.");
 if (null == accessKeyId || accessKeyId.length() == 0)
 throw new RuntimeException("The accessKeyId is null or empty.");
 if (null == secretKey || secretKey.length() == 0)
 throw new RuntimeException("The secretKey is null or empty.");
 this.endpoint = endpoint.toLowerCase();
 this.accessKeyId = accessKeyId;
 this.secretKey = secretKey;
 try {
 byte[] secretKeyBytes = this.secretKey.getBytes(utf8);
 this.secretKeySpec = new SecretKeySpec(secretKeyBytes, hmacAlg);
 this.mac = Mac.getInstance(hmacAlg);
 this.mac.init(this.secretKeySpec);
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 public String sign(Map<String, String> params) {
 params.put("AWSAccessKeyId", this.accessKeyId);
 params.put("Timestamp", this.timestamp());
 // The parameters need to be processed in lexicographical order, with
 // sorting on the first byte: a TreeMap is perfect for this.
 SortedMap<String, String> sortedParamMap =
 new TreeMap<String, String>(params);
 // Ensure canonical form of the query string, as Amazon REST is fussy.
 String canonicalQS = this.canonicalize(sortedParamMap);
 // Prepare the signature with grist for the mill.
 String toSign =
 requestMethod + "\n"
 + this.endpoint + "\n"
 + requestUri + "\n"
 + canonicalQS;
 String hmac = this.hmac(toSign);
 String sig = null;
 try {
 sig = URLEncoder.encode(hmac, utf8);
 }
 catch(UnsupportedEncodingException e) { System.err.println(e); }
 String url =
 "http://" + this.endpoint + requestUri + "?" + canonicalQS +
 "&Signature=" + sig;
 return url;
 }
 public String sign(String queryString) {
 Map<String, String> params = this.createParameterMap(queryString);
 return this.sign(params);
 }
 private String hmac(String stringToSign) {
 String signature = null;

A Client Against the Amazon E-Commerce Service | 107

 byte[] data;
 byte[] rawHmac;
 try {
 data = stringToSign.getBytes(utf8);
 rawHmac = mac.doFinal(data);
 Base64 encoder = new Base64();
 signature = new String(encoder.encode(rawHmac));
 }
 catch (UnsupportedEncodingException e) {
 throw new RuntimeException(utf8 + " is unsupported!", e);
 }
 return signature;
 }
 // Amazon requires an ISO-8601 timestamp.
 private String timestamp() {
 String timestamp = null;
 Calendar cal = Calendar.getInstance();
 DateFormat dfm = new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss'Z'");
 dfm.setTimeZone(TimeZone.getTimeZone("GMT"));
 timestamp = dfm.format(cal.getTime());
 return timestamp;
 }
 private String canonicalize(SortedMap<String, String> sortedParamMap) {
 if (sortedParamMap.isEmpty()) return "";
 StringBuffer buffer = new StringBuffer();
 Iterator<Map.Entry<String, String>> iter =
 sortedParamMap.entrySet().iterator();
 while (iter.hasNext()) {
 Map.Entry<String, String> kvpair = iter.next();
 buffer.append(encodeRfc3986(kvpair.getKey()));
 buffer.append("=");
 buffer.append(encodeRfc3986(kvpair.getValue()));
 if (iter.hasNext()) buffer.append("&");
 }
 return buffer.toString();
 }
 // Amazon requires RFC 3986 encoding, which the URLEncoder may not get right.
 private String encodeRfc3986(String s) {
 String out;
 try {
 out = URLEncoder.encode(s, utf8)
 .replace("+", "%20")
 .replace("*", "%2A")
 .replace("%7E", "~");
 }
 catch (UnsupportedEncodingException e) { out = s; }
 return out;
 }
 private Map<String, String> createParameterMap(String queryString) {
 Map<String, String> map = new HashMap<String, String>();
 String[] pairs = queryString.split("&");
 for (String pair : pairs) {

108 | Chapter 3: RESTful Web Services: The Client Side

 if (pair.length() < 1) continue;
 String[] tokens = pair.split("=", 2);
 for(int j = 0; j < tokens.length; j++) {
 try {
 tokens[j] = URLDecoder.decode(tokens[j], utf8);
 }
 catch (UnsupportedEncodingException e) { }
 }
 switch (tokens.length) {
 case 1: {
 if (pair.charAt(0) == '=') map.put("", tokens[0]);
 else map.put(tokens[0], "");
 break;
 }
 case 2: {
 map.put(tokens[0], tokens[1]);
 break;
 }
 }
 }
 return map;
 }
}

The secretKey plays a different role than does the accessId. The secretKey is used to
initialize a message authentication code (MAC), which the Java javax.crypto.Mac class
represents. (The initialization occurs in the try block that begins on line 1.) Amazon
requires a particular type of MAC, an HMAC (Hash Message Authentication Code) that
uses the SHA-256 algorithm (Secure Hash Algorithm that generates a 256-bit hash).
The important security point is that the secretKey itself does not go over the wire from
the client to Amazon. Instead the secretKey is used to initialize the process that generates
a message digest (hash value). Finally, this hash value is encoded in base64 (line 7).
Amazon calls the result a signature, which occurs as the value in a key/value pair whose
key is Signature (line 6).

There is a final preparatory step. The E-Commerce service expects, in a GET request,
that the query string key/value pairs be in sorted order. The RequestHelper uses a
TreeMap, as this data structure is ideally suited for the task (line 4). The properly for‐
matted query string results from a call to canonicalize; this query string is then ap‐
pended to the base URL for the Amazon E-Commerce service.

Not every commercial site is as fussy as Amazon when it comes to request formatting.
This first Amazon example shows that generating a correctly formatted RESTful request
may be nontrivial. This client also explicitly parses the returned XML. The next client
addresses the issue of how to avoid such parsing. Before looking at the code for the
second client, however, it will be useful to focus on the JAX-B utilities used in the second
client.

A Client Against the Amazon E-Commerce Service | 109

A Standalone JAX-B Example
Recall that the B in JAX-B stands for data binding, the associating of a Java data type
such as String to an XML Schema (or equivalent) type, in this case xsd:string. There
are built-in bindings for the Java primitive types such as int and double together with
String and Calendar; arrays (including Collections) of any such types; and
programmer-defined types that reduce, via properties, to any of the preceding. The
surprising omission is the Map, a collection of key/value pairs, but a Map is readily handled
as two coordinated collections: a collection of keys and a corresponding collection of
values. An example of JAX-B in action may help to drive these points home.

The Skier class (see Example 3-4) is annotated with @XmlRootElement to inform the
JAX-B utilities that a Skier instance should be transformed into an XML document that
has skier as its root or document (that is, outermost) element. In the default Java nam‐
ing convention, the root element is the lowercase version of the class name; hence, Skier
becomes skier. The annotation could be amended:

@XmlRootElement(name = "NordicSkier")

so that the root element has a specified name, in this example NordicSkier.

Example 3-4. The annotated Skier POJO class
import javax.xml.bind.annotation.XmlRootElement;
import java.util.Collection;

@XmlRootElement
public class Skier {
 private Person person;
 private String nationalTeam;
 private Collection majorAchievements;
 public Skier() { } // required for unmarshaling
 public Skier (Person person,
 String nationalTeam,
 Collection<String> majorAchievements) {
 setPerson(person);
 setNationalTeam(nationalTeam);
 setMajorAchievements(majorAchievements);
 }
 // properties
 public Person getPerson() { return this.person; }
 public void setPerson (Person person) { this.person = person; }

 public String getNationalTeam() { return this.nationalTeam; }
 public void setNationalTeam(String nationalTeam) {
 this.nationalTeam = nationalTeam;
 }
 public Collection getMajorAchievements() { return this.majorAchievements; }

110 | Chapter 3: RESTful Web Services: The Client Side

 public void setMajorAchievements(Collection majorAchievements) {
 this.majorAchievements = majorAchievements;
 }
}

The Skier class has a property of programmer-defined type Person (see Example 3-5),
which in turn is a POJO class with three properties: name, age, and gender. Two of the
Person properties are of Java type String, which binds to XML type xsd:string. The
third Person property is of Java type int, which binds to the XML type xsd:int.

Example 3-5. The annotated Person POJO class with three properties
import javax.xml.bind.annotation.XmlType;

@XmlType
public class Person {
 private String name;
 private int age;
 private String gender;

 public Person() { }
 public Person(String name, int age, String gender){
 setName(name);
 setAge(age);
 setGender(gender);
 }
 public String getName() { return name; }
 public void setName(String name) { this.name = name; }
 public int getAge() { return age; }
 public void setAge(int age) { this.age = age; }
 public String getGender() { return gender; }
 public void setGender(String gender) { this.gender = gender; }
}

The annotation XmlType declares that a Person instance can be transformed into an
XML type, a type that an XML Schema specifies in detail. The upshot of the annotated
Skier and Person classes is this: an in-memory Skier object, which encapsulates a
Person, can be transformed into a single XML document, whose root element is tagged
skier, and the skier document encapsulates a person element.

The application class Marshal (see Example 3-6) does the following:

• Creates a Skier instance
• Marshals this instance into an XML document, which is saved to a file and also

printed to the standard output
• Unmarshals the XML document in the file into a separate Skier instance, an in‐

stance that effectively clones the original Skier instance

A Standalone JAX-B Example | 111

Recall that, in this context, marshaling is the process of serializing an in-memory object
into an XML document; unmarshaling is the inverse process of creating an in-memory
object from an XML document.

Example 3-6. The Marshal application that marshals and unmarshals a Skier
import java.io.File;
import java.io.OutputStream;
import java.io.FileOutputStream;
import java.io.InputStream;
import java.io.FileInputStream;
import java.io.IOException;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.Marshaller;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.JAXBException;
import java.util.List;
import java.util.ArrayList;

class Marshal {
 private static final String fileName = "bd.mar";

 public static void main(String[] args) {
 new Marshal().runExample();
 }
 private void runExample() {
 try {
 JAXBContext ctx = JAXBContext.newInstance(Skier.class);
 Marshaller m = ctx.createMarshaller();
 m.setProperty(Marshaller.JAXB_FORMATTED_OUTPUT, true);
 // Marshal a Skier object: 1st to stdout, 2nd to file
 Skier skier = createSkier();
 m.marshal(skier, System.out);
 FileOutputStream out = new FileOutputStream(fileName);
 m.marshal(skier, out);
 out.close();
 // Unmarshal as proof of concept
 Unmarshaller u = ctx.createUnmarshaller();
 Skier bdClone = (Skier) u.unmarshal(new File(fileName));
 System.out.println();
 m.marshal(bdClone, System.out);
 }
 catch(JAXBException e) { System.err.println(e); }
 catch(IOException e) { System.err.println(e); }
 }
 private Skier createSkier() {
 Person bd = new Person("Bjoern Daehlie", 49, "Male");
 List<String> list = new ArrayList<String>();
 list.add("12 Olympic Medals");
 list.add("9 World Championships");
 list.add("Winningest Winter Olympian");
 list.add("Greatest Nordic Skier");

112 | Chapter 3: RESTful Web Services: The Client Side

 return new Skier(bd, "Norway", list);
 }
}

In the Marshal class, the critical step is the creation of a JAXBContext (line 1), in this
case a structure built from Java reflection on the type Skier. (The one-argument method
newInstance can take, as its argument, a single class or a package identifier.) The utility
class JAXBContext then guides the marshaling and unmarshaling: the Marshaller and
the Unmarshaller are created with JAXBContext methods (lines 2 and 4). By the way,
there is no agreement about whether marshaling and unmarshaling should be spelled
with one l or two.

The marshaling (line 3) produces an XML document (see Example 3-7) that serves as
the source of the unmarshaling (line 4). The only complexity is in the elements tagged
majorAchievement, which include three attributes apiece. The reason is that
a majorAchievement is, in Java, a Collection type—in particular, an Array
List<String>. The corresponding XML type is an array of xs:string objects; the
majorAchievement elements cite the XML Schema grammar (lines 1 and 2), which
includes rules about arrays. By default, the Java marshaling produces an XML document
in which the properties of the source Java object are in alphabetical order.

Example 3-7. The XML document generated from marshaling a sample Skier
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<skier>
 <majorAchievements xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xsi:type="xs:string">12 Olympic Medals
 </majorAchievements>
 <majorAchievements xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xsi:type="xs:string">9 World Championships
 </majorAchievements>
 <majorAchievements xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xsi:type="xs:string">Winningest Winter Olympian
 </majorAchievements>
 <majorAchievements xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xsi:type="xs:string">Greatest Nordic Skier
 </majorAchievements>
 <nationalTeam>Norway</nationalTeam>
 <person>
 <age>49</age>
 <gender>Male</gender>
 <name>Bjoern Daehlie</name>
 </person>
</skier>

A Standalone JAX-B Example | 113

This JAX-B example implies, of course, that the conversion between Java and XML could
be automated. Accordingly, a Java client against a RESTful service could:

• Issue a request whose response is an XML document
• Use JAX-B to unmarshal the XML document into a Java object
• Manipulate the Java object in the usual ways (for instance, with get/set methods) to

serve the application logic

In this scenario, the XML is transparent. The second Amazon example goes into the
details of how this can be done. First, however, an alternative to the standard Java XML
utilities deserves a look.

The XStream Option
Java comes with standard packages for Java-to-XML conversions and XML-to-JSON
conversions. There are also various contributed libraries, among them XStream. This
section examines the XStream option for serializing Java objects to XML/JSON docu‐
ments and deserializing Java objects from such documents. XStream includes a persis‐
tence API and has extensions in support of the Hibernate ORM (Object Relation
Mapper). Among the more interesting features of XStream is that its API does not center
on the get/set methods that define Java properties. XStream can serialize into XML an
instance of a Java class that has nothing but private fields. XStream emphasizes its ease
of use, which the following examples try to capture.

The PersonNoProps class (see Example 3-8) illustrates the ease of XStream use. The class
has three private fields and only a three-argument constructor; of interest is that the
class has no properties—no public get/set methods. Nonetheless, an instance of the
PersonNoProps class can be serialized or deserialized straightforwardly. Line 1 in the
code listing constructs an XStream instance with a DOM driver. Line 2 provides an alias
for the document element’s tag, in this case skier. If an alias were not provided, then
the document element would have a tag named after the class; hence, line 2 is optional.
The serialization in line 3 and the deserialization in line 4 are quick and easy.

Example 3-8. An XStream example with a class that has no properties
import com.thoughtworks.xstream.XStream;
import com.thoughtworks.xstream.io.xml.DomDriver;

public class PersonNoProps {
 private String name;
 private int age;
 private String gender;

 public PersonNoProps(String name, int age, String gender){
 this.name = name;
 this.age = age;

114 | Chapter 3: RESTful Web Services: The Client Side

http://xstream.codehaus.org

 this.gender = gender;
 }
}
class Main {
 public static void main(String[] args) {
 PersonNoProps bd = new PersonNoProps("Bjoern Daehlie", 49, "Male");
 // setup
 XStream xstream = new XStream(new DomDriver());
 xstream.alias("skier", PersonNoProps.class); // for readability
 // serialize
 String xml = xstream.toXML(bd);
 System.out.println(xml);
 // deserialize and confirm
 PersonNoProps bdClone = (PersonNoProps) xstream.fromXML(xml);
 System.out.println(xstream.toXML(bdClone));
 }
}

The output for both println calls is:

<skier>
 <name>Bjoern Daehlie</name>
 <age>49</age>
 <gender>Male</gender>
</skier>

The generated XML is minimalist. Compiling and running this code requires the core
XStream packages, which come in a single JAR file: xstream.jar.

The first XStream example begins with the serialization of an entire PersonNoProps
instance and ends with the deserialization of a clone. XStream also supports selective or
fine-grained serialization and deserialization. The next example (see Example 3-9)
illustrates this.

Example 3-9. The PersonPropsConverter class for customized marshaling
import com.thoughtworks.xstream.converters.Converter;
import com.thoughtworks.xstream.converters.MarshallingContext;
import com.thoughtworks.xstream.converters.UnmarshallingContext;
import com.thoughtworks.xstream.io.HierarchicalStreamReader;
import com.thoughtworks.xstream.io.HierarchicalStreamWriter;

public class PersonPropsConverter implements Converter {
 public boolean canConvert(Class c) {
 return c.equals(PersonProps.class);
 }
 // As proof of concept, marshal/unmarshal only the name.
 public void marshal(Object object,
 HierarchicalStreamWriter writer,
 MarshallingContext context) {
 PersonProps person = (PersonProps) object;
 writer.startNode("Person");

A Standalone JAX-B Example | 115

 writer.setValue(person.getName());
 writer.endNode();
 }
 public Object unmarshal(HierarchicalStreamReader reader,
 UnmarshallingContext context) {
 PersonProps person = new PersonProps();
 reader.moveDown();
 person.setName(reader.getValue());
 reader.moveUp();
 return person;
 }
}

The PersonPropsConverter class (see Example 3-9) serializes and deserializes, as proof
of concept, only one property in a PersonProps instance: the name property. An imple‐
mentation of the Converter interface must define three methods:
canConvert

This method (line 1) returns a boolean to indicate which types are eligible for the
customized serialization and deserialization defined in the methods marshal and
unmarshal (lines 2 and 3, respectively). In this example, an object must be of type
PersonProps (see Example 3-10), which includes any descendants of this class, in
order to be convertible.

marshal

This method (line 2) supports customized serialization (marshaling) of a Person
Props object. In the current example, only the person’s name property is serialized,
but any subset of the properties, including all of them, could be serialized.

unmarshal

This method (line 3), the inverse of marshal, supports customized deserialization
(unmarshaling).

Example 3-10. The code to illustrate customized XStream marshaling/unmarshaling
import com.thoughtworks.xstream.XStream;
import com.thoughtworks.xstream.io.xml.DomDriver;

public class PersonProps {
 private String name;
 private int age;
 private String gender;

 // constructor
 public PersonProps() { }
 // properties
 public void setName(String name) { this.name = name; }
 public String getName() { return this.name; }
 public void setAge(int age) { this.age = age; }
 public int getAge() { return this.age; }

116 | Chapter 3: RESTful Web Services: The Client Side

 public void setGender(String gender) { this.gender = gender; }
 public String getGender() { return this.gender; }
}

class Main {
 public static void main(String[] args) {
 // Create a person and set only the name.
 PersonProps person = new PersonProps();
 person.setName("Bruno");
 XStream xstream = new XStream(new DomDriver());
 xstream.registerConverter(new PersonPropsConverter());
 xstream.alias("name", PersonProps.class);
 String xml = xstream.toXML(person);
 System.out.println(xml);
 PersonProps clone = (PersonProps) xstream.fromXML(xml);
 System.out.println(clone.getName()); // Bruno
 }
}

The PersonProps class (see Example 3-10) revises the PersonNoProps class by adding
properties. The revised class has three conventional Java properties, each defined as a
pair of get/set methods. The properties are name (type String) in line 1, age (type
int) in line 2, and gender (type String) in line 3. The revised class has a no-argument
constructor.

The tester class Main creates an XStream instance as before but now registers a custom‐
ized Converter (line 4), a PersonPropsConverter (see Example 3-9). In the call to toXML
(line 5), the customized converter takes over and serializes only the name property. The
output is:

<person>
 <name>Bruno</name>
</person>

The deserialization (line 6) creates a new PersonProps instance and sets the name prop‐
erty to Bruno. The other properties, age and gender, have the default values for fields,
in this case 0 and null, respectively.

The core XStream library also supports the conversion of Java objects to and from JSON.
There are various JSON drivers available in this library, the simplest of which is the
JsonHierarchicalStreamDriver. This driver supports the serialization of Java objects
to JSON but not the inverse operation. If deserialization from JSON to Java is needed,
then a driver such as Jettison is a good choice because it interoperates cleanly with
XStream.

The JsonTest code (see Example 3-11) illustrates basic JSON serialization in XStream.
An XStream instance is now constructed with a JSON driver (line 1), in this case an
instance of a JsonHierarchicalStreamDriver, which comes with the core XStream JAR

A Standalone JAX-B Example | 117

http://jettison.codehaus.org

file. The serializing method is still named toXML (line 2), but the output is JSON rather
than XML because of the JSON driver.

Example 3-11. An example of XStream serialization to JSON
import com.thoughtworks.xstream.XStream;
import com.thoughtworks.xstream.io.xml.DomDriver;
import com.thoughtworks.xstream.io.json.JsonHierarchicalStreamDriver;

public class JsonTest {
 public static void main(String[] args) {
 PersonNoProps bd = new PersonNoProps("Bjoern Daehlie", 49, "Male");
 XStream xstream = new XStream(new JsonHierarchicalStreamDriver());
 String json = xstream.toXML(bd); // it's really toJson now
 System.out.println(json);
 }
}

Here is the output:

{"PersonNoProps": {
 "name": "Bjoern Daehlie",
 "age": 49,
 "gender": "Male"
}}

XStream supports customized JSON serialization. For example, a programmer might
not want the root element PersonNoProps included in the JSON, and the JSON serializer
can be programmed to exclude this element.

The XStream API is remarkably low fuss but likewise powerful. This API has gained
steadily in popularity among Java developers who are looking for quick and easy ways
to convert between Java objects on the one side and either XML or JSON documents
on the other side.

The JAX-B and XStream examples illustrate serialization from Java to XML or JSON
and deserialization from XML or JSON to Java. In the context of clients against RESTful
web services, the deserialization side of the coin is of primary interest because these
clients need to process the response payloads, in XML or JSON, that come from the
RESTful service. Accordingly, the next section returns to Amazon’s E-Commerce service
but this time with the goal of hiding the XML that this service returns in response to a
successful HTTP request.

Another Client Against the Amazon E-Commerce Service
The second client against the Amazon E-Commerce service does not deal explicitly with
any XML but otherwise has the same functionality as the first client. The steps for setting
up the second client are listed below, but the ZIP file with the sample code includes JAR
Amazon2.jar that can be executed directly:

118 | Chapter 3: RESTful Web Services: The Client Side

% java -jar Amazon2.jar <accessId> <secretKey>

Here are the steps for setting up the second Amazon client. These steps that would be
copied for a Java client against any RESTful service that provides an XML Schema—and
most services do provide a schema. For a depiction of the process and the role of Java’s
xjc utility, see Figure 3-1.

Figure 3-1. Using the xjc utility to transform an XML Schema into Java classes

1. Download the XML Schema for the E-Commerce service. The URL is:
http://webservices.amazon.com/AWSECommerceServices/AWSECommerceService.xsd

The downloaded schema is about 55K in size. (This is the same schema used in the
SOAP-based versions of the Amazon services.) Put the downloaded document in
a local file such as amazon2/amazon.xsd. The local filename is arbitrary.

2. The amazon.xsd needs some tweaking so that the Java JAX-B utilities can use this
file without complaining. The downloaded XML Schema begins as follows:

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://webservices.amazon.com/AWSECommerceService/2011-08-01"
 targetNamespace=
 "http://webservices.amazon.com/AWSECommerceService/2011-08-01"
 elementFormDefault="qualified">
 <xs:element name="Bin">
 <xs:complexType>
 <xs:sequence>
 ...

The problem lies with the namespace identifier xs, which occurs once to the right
of the colon (line 1) in:

xmlns:xs="http://www.w3.org/2001/XMLSchema"

It also occurs on the second line and everywhere else to the left of the colon (lines
2, 3, and 4). The identifier xs should be changed globally to xsd; any reasonable
text editor can make this change. The result should be:

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://webservices.amazon.com/AWSECommerceService/2011-08-01"
 targetNamespace=
 "http://webservices.amazon.com/AWSECommerceService/2011-08-01"

Another Client Against the Amazon E-Commerce Service | 119

 elementFormDefault="qualified">
 <xsd:element name="Bin">
 <xsd:complexType>
 <xsd:sequence>
 ...

The xjc utility should not be this brittle, of course; Java itself generates schemas that
use the namespace abbreviation xs.

3. Execute the xjc utility, which ships with the core Java JDK, against the schema. In
this example, the command is:

% xjc -p restful2 amazon.xsd

The -p flag stands for package. The xjc utility creates the package/subdirectory
named restful2 and fills the subdirectory with, at present, 84 Java source files. The
files have names such as CartAddRequest.java, ItemLookup.java, ItemSearch.java,
LoyaltyPoints.java, and so on. These files, in compiled form, are the Java types that
correspond to the XML Schema types in amazon.xsd.

4. This step is optional but recommended for convenience. Copy the source files
RestfulAmazon.java and RequestHelper.java from the first Amazon example into
the restful2 subdirectory. The package name in both files needs to change from
restful to restful2. The xjc-generated files could be kept in a separate package,
of course.

5. Compile the .java files in restful2.

The nearly 85 Amazon files in restful2 have JAX-B annotations such as @XmlType. These
xjc-generated files automate the translation between an XML data type such as tns:Item
Search and the corresponding Java type, in this case restful2.ItemSearch. The XML
types are defined in the Amazon schema, and the corresponding Java types are the
classes generated with the xjc utility. The process (see Figure 3-1) of generating Java
artifacts is relatively uncomplicated.

Programming involves trade-offs, and the revised Amazon client illustrates one such
trade-off. On the plus side, the revised RestfulAmazon client no longer needs explicit‐
ly to parse XML; hence, the various import directives that support DOM parsing can
be removed because the getAuthor method no longer uses the imported types such as
DocumentBuilder and NodeList. On the minus side, the xjc-generated classes bring a
new API into play, and this API involves some Russian-doll nesting, as a look at the new
code will show.

The revised client requires no changes to the RequestHelper except for the change in
the package name. The revised RestfulAmazon client (see Example 3-12) is largely the
same as the original; hence, unchanged code is marked with an ellipsis.

120 | Chapter 3: RESTful Web Services: The Client Side

Example 3-12. The revised RestfulAmazon that uses JAX-B to avoid XML parsing
package restful2;

...
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.SchemaFactory;
import javax.xml.validation.Schema;
import javax.xml.XMLConstants;
import javax.xml.validation.Validator;
import javax.xml.bind.JAXBContext;
import javax.xml.bind.Marshaller;
import javax.xml.bind.Unmarshaller;
import javax.xml.bind.JAXBException;

public class RestfulAmazon {
 ...
 public static void main(String[] args) {
 ...
 }
 private void lookupStuff(String accessKeyId, String secretKey) {
 ...
 }
 private String requestAmazon(String string_url) {
 ...
 }
 private String getAuthor(String xml) {
 String author = null;
 try {
 // Create an XML Schema object
 final String fileName = "amazon.xsd"; // downloaded XML Schema
 final String schemaUri = XMLConstants.W3C_XML_SCHEMA_NS_URI;
 SchemaFactory factory = SchemaFactory.newInstance(schemaUri);
 Schema schema = factory.newSchema(new StreamSource(fileName));
 // Create a JAX-B context for unmarshaling
 JAXBContext ctx = JAXBContext.newInstance(ItemLookupResponse.class);
 Unmarshaller um = ctx.createUnmarshaller();
 um.setSchema(schema);
 // Generate a Java ItemSearchResponse instance.
 ItemLookupResponse ilr = (ItemLookupResponse)
 um.unmarshal(new ByteArrayInputStream(xml.getBytes()));
 // Use the standard POJO idiom to extract the author.
 List<Items> itemsList = ilr.getItems(); // list of lists
 for (Items items : itemsList) { // outer list
 List<Item> list = items.getItem(); // inner list
 for (Item item : list) { // items in inner list
 ItemAttributes attributes = item.getItemAttributes();
 List<String> authors = attributes.getAuthor(); // could be several
 author = authors.get(0); // in this case, only one
 }
 }
 }
 catch(JAXBException e) { throw new RuntimeException(e); }

Another Client Against the Amazon E-Commerce Service | 121

 catch(Exception e) { throw new RuntimeException(e); }
 return author;
 }
}

In the revised RestfulAmazon client, the getAuthor method is invoked with an XML
document as the argument but the XML is not parsed. Instead, the method does the
following:

• A JAXBContext is used to get information about the class of interest, in this case
the xjc-generated class, ItemLookupResponse (line 2). This class represents the
E-Commerce response from a lookup operation against the service.

• The JAXBContext instance is used to create an unmarshaler (line 3), which is ini‐
tialized with the E-Commerce schema (lines 1 and 4).

• The unmarshaler transforms the bytes from the E-Commerce response document,
which is XML, into an instance of the ItemLookupResponse class. At this point,
there is no need to parse any XML because the ItemLookupResponse object can be
used instead to find desired information, in this case the author’s name.

• In the current example, the RestfulAmazon client looks up only one item, a book.
In general, however, a look-up request against the E-Commerce service might yield
many hits instead of just one. At the data structure level, the result is lists nested
inside lists; hence, code lines 6 through 8 work from the outermost to the innermost
list. Here, for a closer look, is the looping in isolation:

List<Items> itemsList = ilr.getItems(); // list of lists
for (Items items : itemsList) { // outer list
 List<Item> list = items.getItem(); // inner list
 for (Item item : list) { // items in inner list
 ItemAttributes attributes = item.getItemAttributes();
 List<String> authors = attributes.getAuthor();
 author = authors.get(0); // in this case, only one
 }
}

The getItems method encapsulated in the ItemLookupResponse object returns a
List<Items> (line 1) but each element in this list is itself a list. In the second for
loop (line 2), individual items are finally available; indeed, in this response there is
exactly one such Item, whose ItemAttributes (line 3) include the name of the
author, J. K. Rowling. Her name occurs as the first and only name in a list of authors
(line 4) because, of course, even a single book might have multiple authors.

The two clients against the Amazon RESTful service highlight a typical choice con‐
fronted in programming RESTful clients. The choice can be summarized as follows:

122 | Chapter 3: RESTful Web Services: The Client Side

• Should the client deal directly with the returned XML (or JSON), using parsing and
similar tools to extract the required information?

• Should the client invest in utilities such as JAX-B that can hide the XML but thereby
require the client to work in yet another API?

Is there a compelling answer to either question? For one-off client applications, working
directly with the XML may be the way to go. Tools such as XPath make it relatively easy
to extract information from XML documents, at least XML documents that are of a
reasonable size. It is very hard to define reasonable size in this context, of course. The
problem is that tools such as XPath require a DOM—a tree structure—in order to work.
Building a tree from, say, an XML stream of gigabyte size may be prohibitively slow;
searching the built tree may be the same. For client applications that regularly target a
particular service such as Amazon E-Commerce, working with JAX-B artifacts means
working in familiar Java idioms such as get/set methods. The benefit of using JAX-B is
that the XML effectively disappears into the JAX-B infrastructure.

The CTA Bus-Tracker Services
The Amazon websites for shopping, storage, and cloud computing are rich in content
and functionality—and the corresponding web services inherit these very attributes.
Amazon, moreover, is a pioneer and a major player in web services, SOAP-based and
REST-style. Social networking sites such as Facebook, Twitter, and Tumblr support
RESTful services against their sites. Indeed, the trend among serious websites, large or
small, is to provide RESTful access and an API in support of such access. For contrast,
this section considers a relatively recent and, in comparison with Amazon, small-scale
effort at RESTful web services: bus tracking at the CTA (Chicago Transit Authority).

The Amazon E-Commerce service has a standard design in that a single service encap‐
sulates many operations, for instance, operations to search, look up, order, clear a shop‐
ping cart, and so on. The CTA takes a different approach in that each service consists
of a single operation; there is a separate XML Schema per service. The services are thus
quite simple, and the schemas range in size from about 12 to 36 lines. The simplest
service returns the current local time; more complicated services report on buses en
route and on their routes, expected bus arrival times at particular locations, vehicles in
operation, and the like.

Use of the bus-tracking service, through the website or a web service, requires a key (see
Registering with the CTA) from the CTA. The key occurs as a query string attribute in
a GET request, the only type of HTTP request supported. The sample BusTracker client
(see Example 3-13) first targets the gettime service whose XML Schema is Example 3-14.

The CTA Bus-Tracker Services | 123

Example 3-13. A sample client against the CTA’s RESTful bus-tracking services
package ctaBT;

import java.net.URL;
import java.net.URLConnection;
import java.io.BufferedReader;
import java.io.InputStreamReader;

public class BusTracker {
 private static final String baseUrl =
 "http://www.ctabustracker.com/bustime/api/v1/";

 public static void main(String[] args) {
 if (args.length < 1) {
 System.err.println("BusTracker <CTA key>");
 return;
 }
 new BusTracker().demo("?key=" + args[0]);
 }
 private void demo(String key) {
 // Current official CTA time.
 String url = baseUrl + "gettime" + key;
 makeRequest(url);
 url = baseUrl + "getvehicles" + key;
 makeRequest(url);
 String sampleRoute = "&rt=20&pid=954";
 url = baseUrl + "getpatterns" + key + sampleRoute;
 makeRequest(url);
 }
 private void makeRequest(String stringUrl) {
 String response = null;
 try {
 URL url = new URL(stringUrl);
 URLConnection conn = url.openConnection();
 conn.setDoInput(true);
 BufferedReader in =
 new BufferedReader(new InputStreamReader(conn.getInputStream()));
 String chunk = null;
 while ((chunk = in.readLine()) != null) response += chunk;
 in.close();
 }
 catch(Exception e) { throw new RuntimeException("Arrrg! " + e); }
 report(stringUrl, response);
 }
 private void report(String url, String xml) {
 String msg = url + "\n" + xml;
 System.out.println(msg);
 }
}

124 | Chapter 3: RESTful Web Services: The Client Side

Registering with the CTA
The CTA bus-tracker web services are free of charge but do require
registration. A client call against any service requires a key, which the
CTA provides upon registration.

Example 3-14. The XML Schema for the CTA time service
<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns:xs="www.w3.org/2001/XMLSchema">
 <xs:element name="bustime-response" type=" bustime-response" />
 <xs:complexType name="bustime-response">
 <xs:sequence>
 <xs:element name="error" type="error"
 minOccurs="0" maxOccurs="unbounded"/>
 <xs:element name="tm" type="xs:string"
 minOccurs="0" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="error">
 <xs:sequence>
 <xs:element name="msg" type="xs:string"
 minOccurs="1" maxOccurs="1"/>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

On a successful GET request, the response is similar to:

<?xml version="1.0"?>
<bustime-response>
 <tm>20130302 16:38:49</tm>
</bustime-response>

The invocation syntax for other services is only slightly more complicated. For example,
the GET request with this URL:

http://www.ctabustracker.com/bustime/api/v1/getpatterns?key=...&rt=20&pid=954:

is asking for the traffic patterns of buses en route. A sample response would look like
this:

<bustime-response>
 <ptr>
 <pid>954</pid>
 <ln>40902.0</ln>
 <rtdir>West Bound</rtdir>
 <pt>
 <seq>1</seq>
 <lat>41.882134908777</lat>
 <lon>-87.624528408051</lon>
 </pt>

The CTA Bus-Tracker Services | 125

http://www.ctabustracker.com

 ...
 </ptr>
</bustime-response>

The bus-tracker services are deliberately small and simple, which encourages developers
to experiment with composing other services out of these. The CTA services illustrate
a refreshing trend to make data available on websites equally accessible through web
services. The CTA itself currently has a beta release of train-tracking services modeled
after the bus-tracking ones.

RESTful Clients and WADL Documents
At the core of a SOAP-based service is the service contract, a WSDL document. WSDL
is an XML dialect. In modern web services, the WSDL plays the role that the IDL docu‐
ment plays in the DCE/RPC services introduced in Chapter 1. In any case, the WSDL
document has various sections, all of which are required except for the types section
that contains an XML Schema or equivalent; modern WSDLs almost always include a
schema. The information in the WSDL specifies the invocation syntax for every oper‐
ation encapsulated in the service. SOAP frameworks such as Java Metro and DotNet
provide tools that, given a WSDL, can generate client-side library code, which facilitates
the programming of a client against the service. The WSDL itself is language-neutral,
and the publisher of the service typically generates at least the first draft of this service
contract, which can then be refined as needed. In principle, a WSDL document could
describe either a SOAP-based or a REST-style service; in practice, however, the WSDL
is used predominantly for SOAP-based services. Chapter 4, which introduces SOAP-
based examples, looks closely at the WSDL document. For now, the similarity between
a WSDL document and a WADL (Web Application Description Language) document
is of interest.

As noted, WSDL documents can describe either category of web service, SOAP-based
or REST-style, but there seems to be little interest in WSDLs and WSDL-based tools for
RESTful services. JAX-RS implementations such as Metro do provide a WSDL coun‐
terpart, the WADL document that describes a JAX-RS service and can be used to gen‐
erate client-side code. The wadl2java tool download includes Unixy and Windows
versions. As the name indicates, this tool generates Java code from a WADL document.
The publisher of JAX-RS service generates the WADL dynamically, although a WADL,
like a WSDL, can be edited as needed—or even written from scratch. The syntax for
getting the WADL differs slightly among JAX-RS implementations. In the Jersey im‐
plementation, the document is available as application.wadl. As an example, recall the
predictions3 JAX-RS service from Chapter 2 whose base URL is:

http://localhost:8080/predictions3/resourcesP/

The WADL document for this service is available under Jersey with the URL:

http://localhost:8080/predictions3/resourcesP/application.wadl

126 | Chapter 3: RESTful Web Services: The Client Side

http://wadl.java.net

If the implementation were Apache CXF instead of Jersey, the URL would be:

http://localhost:8080/predictions3/resourcesP?wadl

The WADL document for the predictions3 service (see Example 3-15) is a page or so in
size. The document links the HTTP verb for a CRUD operation with the URI for the
code that implements the operation; the document section also includes information
about the parameters passed into the operation. For example, here is a segment for
creating a new Prediction in the predictions3 service:

<resource path="/create">
 <method name="POST" id="create">
 <request>
 <representation mediaType="application/x-www-form-urlencoded">
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
 type="xsd:string" style="query" name="who"/>
 <param xmlns:xs="http://www.w3.org/2001/XMLSchema"
 type="xsd:string" style="query" name="what"/>
 </representation>
 </request>
 <response>
 <representation mediaType="text/plain"/>
 </response>
 </method>
</resource>

The resource element (line 1) specifies the path or URI, in this case /create, that
identifies the RESTful resource. Next comes the HTTP method (line 2), in this case
POST, together with the implementing Java method, in this case create. The wadl2java
utility gets the names of the resource path and the implementing Java method from the
source code. The WADL segment also gives the MIME types of the request (line 3) and
the response (line 4): the request type application/x-www-form-urlencoded specifies
a URL-encoded form (that is, collection of key/value pairs) in the body of the POST
request; the response type text/plain is, if the request succeeds, a confirmation
message.

Example 3-15. The WADL document for the predictions3 JAX-RS web service
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<application xmlns="http://wadl.dev.java.net/2009/02">
 <doc xmlns:jersey="http://jersey.java.net/"
 jersey:generatedBy="Jersey: 1.10 11/02/2011 03:53 PM"/>
 <grammars/>
 <resources base="http://localhost:8080/predictions3/resourcesP/">
 <resource path="/">
 <resource path="/delete/{id: \d+}">
 <param xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 type="xsd:int" style="template" name="id"/>
 <method name="DELETE" id="delete">
 <response>
 <representation mediaType="application/json"/>

RESTful Clients and WADL Documents | 127

 </response>
 </method>
 </resource>
 <resource path="/create">
 <method name="POST" id="create">
 <request>
 <representation mediaType="application/x-www-form-urlencoded">
 ...
 </representation>
 </request>
 <response>
 <representation mediaType="text/plain"/>
 </response>
 </method>
 </resource>
 ...
 <resource path="/xml/{id: \d+}">
 <param xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 type="xsd:int" style="template" name="id"/>
 <method name="GET" id="getXml">
 <response>
 <representation mediaType="application/xml"/>
 </response>
 </method>
 </resource>
 <resource path="/json">
 <method name="GET" id="getJson">
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>
 </resource>
 <resource path="/json/{id: \d+}">
 <param xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 type="xsd:int" style="template" name="id"/>
 <method name="GET" id="getJson">
 <response>
 <representation mediaType="application/json"/>
 </response>
 </method>
 </resource>
 ...
 </resources>
</application>

The WADL document is language-neutral but its use is confined basically to the Java
world. Other languages and frameworks have their counterparts; for example, Rails has
the ActiveResource construct that lets a client program interact with a service but
without dealing explicitly with documents in XML or JSON. The wadl2java utility serves
the same general purpose for the Java programmer.

128 | Chapter 3: RESTful Web Services: The Client Side

WADL-derived code (see Example 3-16) is not everyday Java code, as the class named
Localhost_Predictions3ResourcesP indicates. This code, like most that comes from
utilities, is not pretty but does support a Java client against the JAX-RS predictions3
service. Perhaps the best way to appreciate the usefulness of the wadl2java tool is to
program a predictions3 client that uses the wadl2java-generated artifacts.

Example 3-16. A segment of the Java source file generated with the wadl2java utility
package predictions3;

import java.net.URI;
import java.util.HashMap;
import java.util.Map;
import javax.annotation.Generated;
import javax.ws.rs.core.UriBuilder;
import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.ClientResponse;
import com.sun.jersey.api.client.GenericType;
import com.sun.jersey.api.client.WebResource;
...
public class Localhost_Predictions3ResourcesP {
 public final static URI BASE_URI;
 static {
 URI originalURI =
 URI.create("http://localhost:8080/predictions3/resourcesP/");
 java.io.InputStream is =
 Localhost_Predictions3ResourcesP.class.getResourceAsStream(
 "/META-INF/jax-rs-catalog.xml");
 if (is != null) {
 ...
 }
 BASE_URI = originalURI;
 }
 ...
 public static class Root {
 public Localhost_Predictions3ResourcesP.Root.DeleteIdD
 deleteIdD(String idD) {
 return new Localhost_Predictions3ResourcesP.Root.DeleteIdD(_client,
 _uriBuilder.buildFromMap(_templateAndMatrixParameterValues), idD);
 }
 public Localhost_Predictions3ResourcesP.Root.Create create() {
 return new Localhost_Predictions3ResourcesP.Root.Create(_client,
 _uriBuilder.buildFromMap(_templateAndMatrixParameterValues));
 }
 public Localhost_Predictions3ResourcesP.Root.Update update() {
 return new Localhost_Predictions3ResourcesP.Root.Update(_client,
 _uriBuilder.buildFromMap(_templateAndMatrixParameterValues));
 }
 ...
 public static class Create {
 private Client _client;
 private UriBuilder _uriBuilder;

RESTful Clients and WADL Documents | 129

 private Map<String, Object> _templateAndMatrixParameterValues;
 private URI _uri;

 public Create(Client client, URI uri) {
 _client = client;
 _uri = uri;
 _uriBuilder = UriBuilder.fromUri(uri);
 _uriBuilder = _uriBuilder.path("/create");
 _templateAndMatrixParameterValues = new HashMap<String, Object>();
 }
 ...
 public<T >T postXWwwFormUrlencodedAsTextPlain(Object input,
 GenericType<T> returnType) {
 UriBuilder localUriBuilder = _uriBuilder.clone();
 WebResource resource =
 _client.resource(localUriBuilder.buildFromMap(
 _templateAndMatrixParameterValues));
 com.sun.jersey.api.client.WebResource.Builder resourceBuilder =
 resource.getRequestBuilder();
 resourceBuilder = resourceBuilder.accept("text/plain");
 ...
 return response.getEntity(returnType);
 }
 ...
 }
 ...
}

From the predictions3.wadl File to the wadl2java-Generated Classes
The wadl2java utility for Jersey downloads as a ZIP file, which includes sample Ant and
Maven scripts that can be adapted as needed. (The sample Ant script builds client-
support code for the Yahoo News Service, a RESTful service that Yahoo no longer pub‐
lishes.) Let WADL_HOME be the base directory for the contents of the unzipped file.
WADL_HOME has a bin subdirectory, with wadl2java utilities for Unixy and Windows
systems, and a lib directory that contains almost all of the JAR files required. The missing
JAR file, as of version WADL 1.1.3, is jersey-bundle.jar, which should be copied into the
WADL_HOME/lib directory.

The Jersey-generated WADL document for the predictions3 service uses xs instead of
xsd as a namespace identifier. Here are the first two occurrences in predictions.wadl,
with one xs to the left of the colon and the other to the right:

<param xmlns:xs="http://www.w3.org/2001/XMLSchema"
 type="xs:int"
...

The xs should be changed globally to xsd.

130 | Chapter 3: RESTful Web Services: The Client Side

http://wadl.java.net

Compiling a wadl2java-generated file such as Localhost_Predictions3ResourcesP.java
requires two JAR files: jersey-bundle.jar and jersey-core.jar. The ZIP file that contains
the sample code includes the Ant script runWADL.xml, which compiles and executes
the WADL-based client against the predictions3 service.

The Predictions3Client (see Example 3-17) is the source code for a sample client
against the predictions3 JAX-RS service. For convenience, the client is in the same pack‐
age, predictions, as the wadl2java-generated code. The Predictions3Client under‐
scores again the trade-off in using a tool such as wadl2java to avoid dealing explicitly
with XML or similar payloads:

• The upside is avoiding an XML or comparable parse.
• The downside is learning yet another API.

Example 3-17. The Predictions3Client, which uses the wadl2java-generated classes
package predictions3;

import java.net.URI;

public class Predictions3Client {
 public static void main(String[] args) {
 new Predictions3Client().demo();
 }
 private void demo() {
 // Get a reference to the Localhost_Predictions3ResourcesP.Root defined
 // inside Localhost_Predictions3ResourcesP, as the "root" provides access
 // to other classes, which in turn support the CRUD functionalities.
 Localhost_Predictions3ResourcesP.Root root =
 Localhost_Predictions3ResourcesP.root();
 // The xmlGetter can make GET requests against the service.
 Localhost_Predictions3ResourcesP.Root.Xml xmlGetter = root.xml();
 String xml = xmlGetter.getAsXml(String.class); // String returned
 System.out.println("The raw XML:\n" + xml); // predictions in XML
 }
}

The setup in the Predictions3Client seems clumsy because the wadl2java-generated
artifacts are nested static classes, an idiom that is uncommon in quotidian Java. The
good news is that, once the clumsiness recedes, the method calls are refreshingly sim‐
ple. For instance, the calls to the root (line 1) and xml (line 2) methods take no argu‐
ments, and the call to getAsXml (line 3) takes but one argument, the Java type for the
returned XML document. The wadl2java-generated code would be even easier to use
if XML Schema documents were produced with, for example, the schemagen utility and
then referenced in the grammars section of predictions3.wadl, which is currently empty.
With this refinement, the call to:

RESTful Clients and WADL Documents | 131

xmlGetter.getAsXml(String.class)

could be changed to the friendlier:

xmlGetter.getAsXml(PredictionsList.class)

Chapter 4 covers the WSDL document and WSDL-based utilities for generating helpful
client-side code. At that point it will be easier to assess the usefulness of WADL docu‐
ments and the related utilities. For now, it is enough to name WADL-related technol‐
ogies as yet another part of the Java support for RESTful web services.

The JAX-RS Client API
JAX-RS, Restlet, and the JAX-WS @WebServiceProvider frameworks for RESTful serv‐
ices include client-side APIs. These APIs are meant to simplify the task of writing
RESTful clients in general, not just clients against a RESTful service implemented in a
particular framework. To underscore the point, this section takes a look at the JAX-RS
client-side API (see Example 3-18); the client, however, goes against the servlet-based
predictions2 RESTful service from Chapter 2.

Example 3-18. A sample client using the JAX-RS client-side API
package jerseyClient;

import com.sun.jersey.api.client.Client;
import com.sun.jersey.api.client.WebResource;
import javax.ws.rs.core.MediaType;
import com.sun.jersey.api.representation.Form;

public class JerseyClient {
 private static final String baseUrl = "http://localhost:8080/predictions2";

 public static void main(String[] args) {
 new JerseyClient().demo();
 }
 private void demo() {
 Client client = Client.create();
 client.setFollowRedirects(true); // in case the service redirects
 WebResource resource = client.resource(baseUrl);
 getAllDemo(resource);
 postDemo(resource); // same resource but different verb
 String url = baseUrl + "?id=32";
 resource = client.resource(url);
 getOneDemo(resource);
 deleteDemo(resource); // delete id = 32
 }
 private void getAllDemo(WebResource resource) {
 // GET all XML
 String response =
 resource.accept(MediaType.APPLICATION_XML_TYPE).get(String.class);
 report("GET all in XML:\n", response);

132 | Chapter 3: RESTful Web Services: The Client Side

 // GET all JSON
 response =
 resource.accept(MediaType.APPLICATION_JSON_TYPE).get(String.class);
 report("GET all in JSON:\n", response);
 }
 private void getOneDemo(WebResource resource) {
 String response =
 resource.accept(MediaType.APPLICATION_XML_TYPE).get(String.class);
 report("GET one in XML:\n", response);
 response =
 resource.accept(MediaType.APPLICATION_JSON_TYPE).get(String.class);
 report("GET one in JSON:\n", response);
 }
 private void postDemo(WebResource resource) {
 Form form = new Form(); // HTTP body, a simple hash
 form.add("who", "William Butler Yeats");
 form.add("what", "I know that I shall meet my fate");

 String response =
 resource.type(MediaType.APPLICATION_FORM_URLENCODED_TYPE)
 .accept(MediaType.TEXT_PLAIN_TYPE)
 .post(String.class, form);
 report("POST:\n", response);
 }
 private void deleteDemo(WebResource resource) {
 String response =
 resource.accept(MediaType.TEXT_PLAIN_TYPE).delete(String.class);
 report("DELETE:\n", response);
 }
 private void report(String msg, String response) {
 System.out.println("\n" + msg + response);
 }
}

The JerseyClient (see Example 3-18) against the servlet-based predictions2 RESTful
service supports all of the CRUD operations. (An executable JAR with the client is
included in the ZIP with the sample code.) This client underscores that the JAX-RS
client API is not restricted to JAX-RS services. In any case, the JerseyClient uses some
nice features of the JAX-RS client-side API. For example, the predictions2 service uses
the same URI in a GET request that returns XML as in one that returns JSON. What
differentiates the two requests is that the one for JSON has the key/value pair:

accept: application/json

or the equivalent in the HTTP headers of a GET request. In the getAllDemo method of
the JerseyClient, the two forms of the GET request are expressed at a high level:

resource.accept(MediaType.APPLICATION_XML_TYPE).get(String.class); // XML
resource.accept(MediaType.APPLICATION_JSON_TYPE).get(String.class); // JSON

The JAX-RS Client API | 133

There is no need for the programmer to inject, using a low-level API, inject this key/
value pair into the HTTP headers using a low-level API:

accept: application/json

By the way, the get(String.class) at the end of each statement signals that the response
to the GET request should be text, a Java String. The API accepts JAX-B types as well
so that, for example, a GET request could indicate that it expects a Prediction object
rather than a String one.

The setup for making CRUD calls is uncomplicated. A Client instance is created, which
can be used to create arbitrarily many WebResource instances, each of which wraps a
URL. Here, for review, is a slice of the JerseyClient:

Client client = Client.create();
client.setFollowRedirects(true); // in case the service redirects
WebResource resource = client.resource(baseUrl); // service URL

In version 2, the JAX-RS client API introduces some advanced features such as filters
and asynchronous requests. These features will be examined in the next chapter but in
the context of SOAP-based web services. Restlet has a client API comparable to the one
in JAX-RS. The JAX-WS client API for calls against the @WebServiceProvider is at a
lower level than both JAX-RS and Restlet. This is appropriate in that the @WebService
Provider service-side API is deliberately low-level. All of these client-side APIs add a
RESTful layer to the familiar Java classes such as URLConnection.

JSON for JavaScript Clients
JavaScript clients, often written in a dialect such as jQuery, are now a major force in
RESTful web services. Gone are the bad old days when a browser downloaded a page
generated on the server and did no further client-side processing. A modern website
typically integrates client-side and server-side processing to serve the overall goal of
high performance combined with professional look and feel, and JavaScript—in a sense
broad enough to encompass languages/frameworks such as Dojo, Enyo, Meteor, midori,
jQuery, and SmartClient—is the dominant language for client-side processing.

At one time, the data displayed on a HTML page typically came from a database through
a server-side application down to a browser. Web services are now a prevalent source
of data, a source accessible directly from a client-side script embedded in an HTML
page. Data flows into an HTML page need not originate, at least not immediately, in a
server-side application connected to a database. These changes further blur the dis‐
tinction between websites and web services because the HTML pages that remain a key
part of any website embed scripts that can act as web service clients. Pioneering Java‐
Script frameworks such as Meteor aim at virtually collapsing the difference between
client-side and server-side functionality by allowing client-side scripts direct access to
a server-side database. These changes and trends together open new possibilities for

134 | Chapter 3: RESTful Web Services: The Client Side

http://www.meteor.com

web services and their clients; these changes likewise point to an even greater role for
JavaScript processing and JSON representations in web services.

JSONP and Web Services
Contemporary web services regularly support not only JSON payloads but also JSONP,
where the P stands for with padding. JSONP originally signified a way to work around
the traditional same domain policy that prevents a page downloaded from a domain
such as server.foo.org from communicating with a domain other than foo.org; JSONP
still serves this purpose. The JSONP workaround involves script elements in a page,
as these elements allow code to be downloaded from anywhere; the downloaded code
can then perform arbitrary processing, which includes communicating with servers in
arbitrary domains. JSONP works nicely with web services.

JSONP brings an event-driven API to client-side processing (Example 3-19). Using
JSONP, the programmer can do the following:

• Provide a URL to a data source.
• Specify a callback function to be executed, in browser context, once the data from

the specified source arrives.

Example 3-19. A JSONP call against the RESTful Twitter search
<!DOCTYPE html>
<html>
<head>
 <title>Twittering</title>
 <script type = "text/javascript"
 src = "http://code.jquery.com/jquery-latest.min.js">
 </script>
 <script type = 'text/javascript'>
 function cBack(data) { alert(JSON.stringify(data)); }
 (function($) {
 var url = "http://search.twitter.com/search.json?q=skiing&rpp=4";
 $.ajax({
 type: 'GET',
 url: url,
 async: false,
 jsonpCallback: 'cBack',
 contentType: "application/json",
 dataType: 'jsonp',
 success: function(json) { console.dir(json.sites); },
 error: function(e) { console.log(e.message); }
 });
 })(jQuery);
 </script>
</head>
<body></body>
</html>

JSON for JavaScript Clients | 135

The HTML document in Example 3-19 embeds jQuery code, which illustrates a JSONP
call against Twitter’s RESTful search service. The three code lines of interest are
numbered. The GET request to Twitter has jsonp as its dataType (line 3), and the
jsonpCallback is a function named cBack (lines 1 and 2) that takes one argument: the
data returned from the Twitter search. The Twitter response can be depicted in text as
follows:

cBack({...})

This is the invocation syntax for a JavaScript function that takes one argument: a Java‐
Script object. (It should be noted that a JavaScript function is likewise a JavaScript
object, as JavaScript treats functions as first-class objects.) The curly braces, { and },
mark the start and the end of the JavaScript argument to the function. This argument
is a mix of metadata about the search and a list (that is, a JavaScript array) of information
about skiing images. Here is a small slice of the argument, with personal data obscured
with ellipses:

{"completed_in":0.009, "max_id":308446633115385860,
 ...
 "query":"skiing","refresh_url":"?
 ...
 [{"created_at": "Mon, 04 Mar 2013 05:19:42 +0000",
 "from_user": "...", "from_user_id": ...,
 "from_user_id_str": "...", "from_user_name" : "... ",
 "geo":null,
 ...
}

The JavaScript callback function cBack, upon receipt of the Twitter data, pops up an
alert window that shows the text representation of the downloaded JSON object.

The JSONP exchange between the client-side script and the Twitter search service can
be summarized as follows. The script, written in the jQuery dialect of JavaScript, makes
a JSONP call that specifies a callback function; the Twitter service accommodates by
returning, as the HTTP response, the name of the callback function together with the
requested data as the argument to the function. The browser executes the function call,
which displays the returned JSON in a pop-up window. This small example thus illus‐
trates the event-driven character of a JSONP request.

With respect to RESTful web services, JSON is an ideal format for JavaScript clients
because JSON is the text representation of a native JavaScript object. With two additional
examples, this section covers the basics and sketches some possibilities. The first ex‐
ample involves a composed web service—a service that includes another service as a
component. This example also illustrates a common task in web services—reformatting
data, in this case reformatting XML as JSON. The second example focuses on Ajax calls:
jQuery embedded in an HTML page regularly polls a server so that the partially updated
page reflects the current state of the resource.

136 | Chapter 3: RESTful Web Services: The Client Side

A Composed RESTful Service with jQuery
The first jQuery example, named cds, is a composed RESTful service. Here is an over‐
view:

• The HTML page, downloaded from the cds service to a browser, contains embedded
jQuery that makes a GET request against getCDs.jsp, a JSP script with support from
a backend JavaBean. This JSP script and the backend bean together implement the
web service that delivers JSON back to a jQuery or comparable script.

• The backend JavaBean, an instance of the FetchXML class, makes its own GET re‐
quest, in this case against a RESTful service that the W3C maintains. This service
delivers a list of CD titles from the 1980s, in XML format, back to the FetchXML
instance, which then converts the XML to JSON.

• The JSP script getCDs.jsp, with the JSON from the backend bean, completes the
service by sending the JSON list of CDs back to the jQuery script embedded in the
HTML page. Here is slice of the returned JSON:

[{"title":"empire burlesque",
 "price":10.9,
 "company":"columbia",
 "year":1985,
 "artist":"bob dylan",
 "country":"usa"},
 ...

• The jQuery script displays, as confirmation, the downloaded JSON in a pop-up
window and then iterates over the JSON array of CDs, displaying the title and
the artist for each CD as an HTML element in an unordered list. The entire
scenario (see Figure 3-2) consists of two GET requests and two response payloads,
one in XML and the ultimate one in JSON.

Figure 3-2. The composed cds service

Perhaps the best way to clarify the architecture is to start with the jQuery client, which
expects the data to come in JSON format. The catch is that the W3C service provides
the data in XML format. The intermediary cds service takes on the job of format con‐
verter (Example 3-20).

JSON for JavaScript Clients | 137

Example 3-20. The jQuery RESTful client embedded in an HTML page
<!DOCTYPE html>
<html>
 <head>
 <title>JSON</title>
 <script type = "text/javascript"
 src = "http://code.jquery.com/jquery-latest.min.js">
 </script>
 <script type = "text/javascript">
 $.getJSON('http://localhost:8080/cds/getCDs.jsp', function(response) {
 var cds = response.catalog.cd;
 alert(JSON.stringify(cds));
 $.each(cds, function(ind, val) {
 $('#container').append('' + cds[ind].title + ': ' +
 cds[ind].artist + ''); });
 });
 </script>
 </head>
 <body>
 <ul id = 'container'>
 </body>
</html>

The HTML page with the embedded jQuery in Example 3-20 is short, and the embedded
jQuery is likewise terse compared to the earlier Twitter sample (see Example 3-19). The
current example shows a jQuery shortcut method, in this example getJSON, that can be
used in place of the generic jQuery ajax method. Of particular interest here, however,
is that the jQuery code does not parse the JSON document returned from the RESTful
service but, rather, treats the JSON document as a native JavaScript array. In the body
of the each iteration (line 1), for example, the jQuery extracts the title and the artist
using regular JavaScript syntax:

cds[ind].title /* line 2: ind is the index into the array */
cds[ind].artist /* line 3 */

No parsing is required.

In the composed cds service, the W3C service is the ultimate data source. The other
service, which consists of the very short JSP script getCDs.jsp (see Example 3-21) and
the backend POJO class FetchXML (see Example 3-22), is the fetch-and-convert module:
a jQuery client hits the JSP script, which returns JSON from the FetchXML instance
method getJson, and the JSON is the result of transforming XML from the W3C service
into JSON.

Example 3-21. The getCDs.jsp script in the cds service
<jsp:useBean id = "fetcher"
 type = "cds.FetchXML"
 class = "cds.FetchXML">

138 | Chapter 3: RESTful Web Services: The Client Side

</jsp:useBean>
<jsp:getProperty name = "fetcher" property = "json" />

When a client request hits the getCDs.jsp script (technically, the servlet instance into
which this JSP script is ultimately transformed), the client gets in response the value
returned from the FetchXML method getJson, named in the JSP script as the property
json (line 1).

Example 3-22. The backend POJO class FetchXML and its getJson method
package cds;

import org.json.JSONObject;
import org.json.XML;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.InputStream;
import java.net.URL;
import java.net.URLConnection;

public class FetchXML {
 public void setJson(String json) { }
 public String getJson() {
 JSONObject json = null;
 try {
 // Fetch the XML document from the W3C site.
 String xml = "";
 URL url = new URL("http://www.w3schools.com/xml/cd_catalog.xml");
 URLConnection conn = url.openConnection();
 BufferedReader in =
 new BufferedReader(new InputStreamReader(conn.getInputStream()));
 // Read the document records.
 String line = null;
 while ((line = in.readLine()) != null) xml += line;
 in.close();
 xml = xml.replace("'", ""); // Clean up the XML.
 // Transform the XML document into a JSON object.
 json = XML.toJSONObject(xml.toLowerCase());
 }
 catch(Exception e) { throw new RuntimeException(e); }
 return json.toString(); // JSON document
 }
}

The FetchXML method getJson uses a URLConnection (line 2) to communicate with the
W3C service at the designated URL (line 1). The W3C service returns the CD list as an
XML document, which the FetchXML instance reads line by line (line 3). For readability,
the XML document is converted to lowercase and otherwise cleaned up (lines 4 and 5)
before being converted into a JSON document (line 6), which is returned to the jQuery
script. A JSON library deployed in the WAR file converts the XML to JSON, and the

JSON for JavaScript Clients | 139

jQuery script, which invokes the composed RESTful service to begin, benefits from
receiving JSON rather than XML. If the jQuery script dealt directly with the W3C ser‐
vice, then this script would take on the task of either parsing the returned XML docu‐
ment or transforming the XML into JSON.

An Ajax Polling Example
The JAX-RS predictions3 web service in Chapter 2 supports all of the CRUD operations,
which means that the resource can change state over time. How should clients against
this RESTful service keep abreast of the changes? Two general ways are available:

• The service itself might maintain a list of connected clients and automatically push
to these clients any changes in the resource.

• The clients might periodically poll the service with GET requests and thereby pull
the current representation of the resource.

The example in this section illustrates the second approach with a jQuery client that
continually polls the predictions3 service with GET requests for a JSON response. The
predictions3 service is unchanged from Chapter 2.

The HTML page poll.html (see Example 3-23) embeds a jQuery script that continually
polls the predictions3 service. The workhorse function is fetch (line 1), which makes
an Ajax call against the RESTful predictions3 service. The URL ends with /json, which
signals that the response should be JSON rather than XML or plain text. As the key
named method and its value indicate (line 2), the Ajax call is essentially a GET request.
This example thus goes back to the generic ajax call rather than a shortcut call such as
getJSON.

Example 3-23. The poll.html page with jQuery to poll the predictions3 service
<!DOCTYPE html>
<html>
 <head>
 <title>Ajax polling example</title>
 <script type = "text/javascript"
 src = "http://code.jquery.com/jquery-latest.min.js">
 </script>
 <script type = "text/javascript">
 var url = 'http://localhost:8080/predictions3/resourcesP/json';
 function displayPreds(preds) {
 $('#container').empty(); // clear the old list, if any
 $.each(preds, function(ind, val) {
 $('#container').append('' + preds[ind].who + ': ' +
 preds[ind].what + ''); });
 }
 function fetch() {
 $.ajax({

140 | Chapter 3: RESTful Web Services: The Client Side

 url: url,
 method: 'GET',
 dataType: 'json',
 contentType: "application/json; charset=utf-8",
 cache: false,
 success: function(res) { displayPreds(res.predictions); },
 error: function(res) { console.log(res); },
 complete: function () {
 setTimeout(function() { fetch() }, 5000)}});
 }
 $(document).ready(fetch); // invoked after DOM is built and loaded
 </script>
 </head>
 <body>
 <ul id = 'container'>
 </body>
</html>

The Ajax request from fetch has two possible outcomes:

• If the request succeeds, then the predictions are displayed on the HTML page as
elements in an unordered list.

• If the request fails, the response message is logged.

In either case, the complete key (line 3) has as its value a function (lines 4 and 5) that
invokes the jQuery setTimeout function, and the setTimeout function pauses for five
seconds before invoking fetch yet again. The complete function executes after either
the success or the error function has executed. The jQuery script thus polls the
predictions3 service repeatedly, with brief pauses in between each polling operation; the
poll.html page displays, to within five seconds or so, the current state of the predictions3
resource.

The deployed poll.html page (see the sidebar) can be tested as follows:

• The page can be displayed and thereby checked in a browser. If none of the pre‐
dictions has been deleted and no new one has been added, there should be 32
predictions in all, the last of which should be:

Hiram Gulgowski: Versatile tangible application will maximize...

• A curl call can then be used, for example, to delete this prediction, whose id is 32:
% curl --request DELETE localhost:8080/predictions3/resourcesP/delete/32

In about five seconds or so, the poll.html page can be inspected again in the browser
to confirm that the Hiram Gulgowski prediction is gone. Similar curl tests involving
POST and PUT requests should have the expected impact on the browser-displayed
poll.html.

JSON for JavaScript Clients | 141

Why Deploy the poll.html Page as a One-Page Website?
The ZIP file with the sample code includes a simple website (ch3/poll) consisting of two
files, poll.html and web.xml. The site can be deployed in the usual way:

% ant -Dwar.name=ajax deploy

After deployment, a browser hits the site with the URL:

http://localhost:8080/ajax/

It is tempting to avoid the deployment altogether and, instead, load the local file poll.html
into the browser with a URL such as:

file:///home/kalin/jwsur2/ch3/poll/poll.html

In some browsers this may be all right, but in others (for example, Chrome), the same
origin policy, discussed earlier with respect to JSONP, comes into play. In the case of
Chrome, even two local files in the same directory are treated as having different origins.
The upshot is that Ajax calls in an HTML page such as poll.html should be tested by
deploying the page as part of a website. Accordingly, the poll.html page is deployed in
the ajax.war file and a browser is then directed to this WAR file.

The Ajax polling example, like the earlier cds service, shows the benefit that a jQuery
or other JavaScipt client enjoys from a JSON response. In the polling example, the who
and the what attributes of a JSON prediction are extracted straightforwardly. Here, for
review, is the code snippet that displays a prediction as an HTML element in an unor‐
dered list:

$('#container').append('' + preds[ind].who + ': ' +
 preds[ind].what + ''); });

In an expression such as:

preds[ind].who

preds refers to the JSON array, ind is an integer index into this array, and who is a field
in the JSON representation of a JavaScript prediction object. The jQuery script can
access the information of interest in a natural way precisely because the script deals with
JSON rather than, say, XML.

JavaScript clients of RESTful web services, such as the jQuery clients illustrated in the
three examples of this section, are becoming increasingly popular. RESTful services are
sufficiently flexible to generate response payloads in whatever format a client prefers.
In the case of JavaScript clients, the preferred format is clear: JSON.

142 | Chapter 3: RESTful Web Services: The Client Side

What’s Next?
The focus in the first three chapters has been on RESTful web services and their clients.
The next chapter turns to SOAP-based services delivered over HTTP(S), which can be
viewed as a special case of RESTful services. The normal request and response payloads
in a SOAP-based service are SOAP envelopes, XML documents whose root element has
a tag with Envelope as the local name. An example is:

<soap:Envelope xmlns:soap = '...'>
 ...
</soap:Envelope>

In a typical SOAP-based exchange, a client sends an Envelope to a service and gets an
Envelope in return. SOAP, like XML in general, is programming-language neutral, and
any language with the appropriate libraries can support SOAP-based services and cli‐
ents. At present, however, only Java and DotNet have strong support for SOAP; the other
language systems have spotty support at best.

There is much to be said for SOAP over HTTP. The HTTP handles the transport and,
in the case of HTTPS, addresses major wire-level security concerns. The SOAP libraries
on the service and the client side typically hide the SOAP, although the SOAP is available
to inspect or even manipulate if a service or a client requires this. Chapter 4 looks at the
service and the client sides of SOAP-based services; this look includes two SOAP-based
clients against the Amazon E-Commerce service. Chapter 5 then examines the handler
level in SOAP-based services. At the application level in SOAP-based services, the SOAP
itself is transparent; at the handler level, the SOAP is exposed for examination and
manipulation.

What’s Next? | 143

CHAPTER 4

SOAP-Based Web Services

JAX-WS is an API for producing and consuming REST-style and SOAP-style web serv‐
ices. Chapter 2 introduced, with a RESTful example, the JAX-WS @WebServiceProvid
er annotation, which can be used for either a REST-style or a SOAP-based service. This
chapter introduces the @WebService annotation, in effect a refinement of @WebService
Provider; a @WebService is emphatically SOAP-based. JAX-WS is thus sufficiently rich
and varied that it might better be described as a collection of APIs. JAX-WS is the
successor to JAX-RPC, which derives from the XML-RPC discussed in Chapter 1. The
reference implementation for JAX-WS is part of the open source GlassFish project and
is named GlassFish Metro or just Metro for short. The current version of JAX-WS is
2.2.x. JAX-WS is officially part of enterprise Java but, with JDK 1.6 or greater, JAX-WS
services can be compiled and published using only core Java. SOAP-based services in
JAX-WS can be published with a standard Java web server such as Tomcat or Jetty; there
is also a convenient Endpoint publisher, used earlier to publish a RESTful service.

Apache Axis2 is an alternative implementation of JAX-WS. Axis2, the successor to Axis,
is based on JAX-WS but has additional features. Yet another JAX-WS implementation
is Apache CXF. This chapter focuses on the Metro implementation of JAX-WS, but the
next chapter includes an Axis2 service and client. The Metro, Axis2, and Apache CXF
implementations of JAX-WS are sufficiently close that a programmer fluent in one im‐
plementation should be able to move easily into any other implementation.

SOAP is an XML dialect that has two W3C-sanctioned versions: 1.1 and 1.2; SOAP is
officially no longer an acronym. The differences between the versions of SOAP are more
about infrastructure than API. For example, the media type for a SOAP 1.1 message is
text/xml, whereas this type changes in SOAP 1.2 to application/soap+xml. The SOAP
1.2 processing model is more thoroughly and precisely specified than is the SOAP 1.1
model; SOAP 1.2 has an official binding framework that opens the way to using transport
protocols other than HTTP for delivering SOAP messages. In practice, however, HTTP
remains the dominant transport for both SOAP 1.1 and SOAP 1.2. In the major SOAP

145

http://metro.java.net
http://axis.apache.org
http://cxf.apache.org

frameworks of Java and DotNet, SOAP 1.1 is the default, but both systems support SOAP
1.2 as well.

SOAP has a basic profile, which comes from the WS-I (Web Services Interoperability)
consortium to encourage and support interoperability among web service languages
and technologies. Beyond the basic profile are various initiatives, some of which are
covered in later chapters; these initiatives (for instance, WS-Reliability and
WS-Security) often are grouped under the acronym WS-*. WSIT (Web Services Inter‐
operability Technology) is a related set of guidelines that promotes interoperability
specifically between Java and DotNet, in particular DotNet’s WCF (Windows Commu‐
nication Foundation). WCF is a framework for developing service-oriented applications
that would include but also go beyond SOAP-based web services (metro.java.net/
guide). From time to time, this chapter refers to one or another SOAP specification in
order to clarify a particular service or client, but the emphasis in this chapter remains
on coding services and their clients. Unless otherwise specified, the examples are in
SOAP 1.1.

A SOAP-Based Web Service
JAX-WS, like JAX-RS, uses annotations, and machine-generated JAX-WS code is awash
with these. The first example is stingy in its use of annotations in order to underscore
exactly what is required for a SOAP-based service. Later examples introduce additional
annotations.:

The RandService class (see Example 4-1) defines a SOAP-based service with two op‐
erations, each an annotated Java method:

• Operation next1 takes no arguments and returns one randomly generated integer.
• Operation nextN takes one argument, the number of randomly generated integers

desired, and returns a list (in this implementation, an array) of integers.

Example 4-1. A SOAP-based service with two operations
package rand;

import javax.jws.WebService;
import javax.jws.WebMethod;
import java.util.Random;

@WebService
public class RandService {
 private static final int maxRands = 16;

 @WebMethod // optional but helpful annotation
 public int next1() { return new Random().nextInt(); }
 @WebMethod // optional but helpful annotation
 public int[] nextN(final int n) {

146 | Chapter 4: SOAP-Based Web Services

http://metro.java.net/guide
http://metro.java.net/guide

 final int k = (n > maxRands) ? maxRands : Math.abs(n);
 int[] rands = new int[k];
 Random r = new Random();
 for (int i = 0; i < k; i++) rands[i] = r.nextInt();
 return rands;
 }
}

The @WebService annotation (line 1) marks the RandService POJO class as a web ser‐
vice, and the @WebMethod annotation (lines 2 and 3) specifies which of the encapsulated
methods is a service operation. In this example, the RandService class has only two
methods and each of these is annotated as @WebMethod. The @WebMethod annotation is
optional but recommended. In a class annotated as a @WebService, a public instance
method is thereby a service operation even if the method is not annotated. This SOAP
service code is compiled in the usual way, assuming JDK 1.6 or greater.

Recall that core Java 6 or greater includes the Endpoint class for publishing web services,
SOAP-based (@WebService) and REST-style (@WebServiceProvider) alike. The class
RandPublisher (see Example 4-2) is the Endpoint publisher for the RandService.

Example 4-2. An Endpoint published for the RandService SOAP-based web service
package rand;

import javax.xml.ws.Endpoint;
public class RandPublisher {
 public static void main(String[] args) {
 final String url = "http://localhost:8888/rs";
 System.out.println("Publishing RandService at endpoint " + url);
 Endpoint.publish(url, new RandService());
 }
}

The publish method used here (line 2) takes two arguments: a URL that specifies the
service endpoint (line 1) and an instance of the service implementation class, in this
case the RandService class (line 2). In the URL, the port number 8888 and the
URI /rs are arbitrary, although a port number greater than 1023 is recommended be‐
cause modern operating systems typically reserve port numbers below 1024 for partic‐
ular applications (e.g., port 80 is typically reserved for HTTP requests to a web server).
The RandPublisher as coded here runs indefinitely, but there are various way to control
an Endpoint publisher’s life span.

The web service publisher can be executed in the usual way:

% java rand.RandPublisher

The output should be similar to this:

A SOAP-Based Web Service | 147

Publishing RandService at endpoint http://localhost:8888/rs

com.sun.xml.internal.ws.model.RuntimeModeler getRequestWrapperClass
INFO: Dynamically creating request wrapper Class rand.jaxws.Next1
com.sun.xml.internal.ws.model.RuntimeModeler getResponseWrapperClass
Dynamically creating response wrapper bean Class rand.jaxws.Next1Response
com.sun.xml.internal.ws.model.RuntimeModeler getRequestWrapperClass
INFO: Dynamically creating request wrapper Class rand.jaxws.NextN
com.sun.xml.internal.ws.model.RuntimeModeler getResponseWrapperClass
INFO: Dynamically creating response wrapper bean Class rand.jaxws.NextNResponse

The first line of output is from the RandPublisher but the others are from the Java run-
time. The dynamically created wrapper classes such as Next1 and Next1Response are
JAX-B artifacts that represent the incoming SOAP request (Next1) and the outgoing
SOAP response (Next1Response).

Once the service is published, a utility such as curl can be used to confirm that the service
is indeed up and running:

% curl http://localhost:8888/rs?xsd=1

This curl request contains the query string entry xsd=1 that asks for the XML Schema
associated with this service; the schema, like the JAX-B artifacts, is generated dynami‐
cally (see Example 4-3).

Example 4-3. The XML Schema generated dynamically for the RandService
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:tns="http://rand/" xmlns:xs="http://www.w3.org/2001/XMLSchema"
 version="1.0" targetNamespace="http://rand/">
 <xs:element name="next1" type="tns:next1"></xs:element>
 <xs:element name="next1Response" type="tns:next1Response"></xs:element>
 <xs:element name="nextN" type="tns:nextN"></xs:element>
 <xs:element name="nextNResponse" type="tns:nextNResponse"></xs:element>
 <xs:complexType name="next1"><xs:sequence></xs:sequence></xs:complexType>
 <xs:complexType name="next1Response">
 <xs:sequence>
 <xs:element name="return" type="xs:int"></xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="nextN">
 <xs:sequence>
 <xs:element name="arg0" type="xs:int"></xs:element>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="nextNResponse">
 <xs:sequence>
 <xs:element name="return" type="xs:int" minOccurs="0" maxOccurs="unbounded">
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:schema>

148 | Chapter 4: SOAP-Based Web Services

The schema will be studied carefully later. For now, the point of interest is that the
schema provides a data type for each SOAP message that travels, in either direction,
between the service and the client. Each message is of an XML Schema complexType as
opposed to an simple type such as xsd:date, xsd:string, or xsd:integer.

In the RandService there are two SOAP messages (for instance, the messages Next1
and Next1Response) per web service operation (in this case, the next1 operation) be‐
cause each operation implements the familiar request/response pattern: a client issues a
request, delivered to the service as a Next1 SOAP message, and gets a response, in this
case a Next1Response message, in return. Accordingly, the schema contains four typed
SOAP messages because the RandService has two operations in the request/response
pattern, which means two messages per operation. The number of complexType oc‐
currences in the XML Schema may exceed the total number of messages needed to
implement the service’s operations because special error messages, SOAP faults, also
may be defined in the XML Schema. SOAP faults are covered in the next chapter.

The XML Schema types such as Next1 and Next1Response are the XML counterparts
to the JAX-B artifacts, noted earlier, with the same names. The schema types and the
JAX-B types together allow the SOAP libraries to transform Java objects into XML
documents (in particular, SOAP Envelope instances) and SOAP Envelope instances
into Java objects. The Endpoint publisher’s underlying SOAP libraries handle the gen‐
eration of the JAX-B artifacts and the generation of the XML Schema.

Publishing a SOAP-Based Service with a Standalone Web Server
Publishing a @WebService with Tomcat or Jetty is almost the same as publishing a
@WebServiceProvider (see “A RESTful Service as a @WebServiceProvider” on page
85) with these web servers. Here, for quick review, are the details.

Two configuration files are needed: the usual file web.xml and the additional file sun-
jaxws.xml. Here is the web.xml, which would work for any implementation annotated
as @WebService or @WebServiceProvider:

<?xml version="1.0" encoding="UTF-8"?>
<web-app>
 <listener>
 <listener-class>
 com.sun.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <servlet-name>jaxws</servlet-name>
 <servlet-class>
 com.sun.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>

A SOAP-Based Web Service | 149

 </servlet>
 <servlet-mapping>
 <servlet-name>jaxws</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

The Metro classes WSServletContextListener and WSServlet are in the JAR file cur‐
rently named webservices-rt.jar, which can be downloaded with the rest of Metro JARs.
A second Metro library file webservices-api.jar is also required. The JAR files in question
should be in the src directory so that the Ant script can package them in the deployed
WAR file. In any case, the WSServletContextListener parses the sun-jaxws.xml file.
The WSServlet acts as the interceptor: the servlet receives incoming requests and dis‐
patches these to the RandService.

The second configuration file, sun-jaxws.xml, is:

<?xml version="1.0" encoding="UTF-8"?>
<endpoints version="2.0"
 xmlns="http://java.sun.com/xml/ns/jax-ws/ri/runtime">
 <endpoint implementation="rand.RandService"
 name="RandService"
 url-pattern="/*"/>
</endpoints>

This file completes the routing by notifying the WSServletContextListener that the
WSServlet should dispatch requests to a RandService instance (line 1).

With the two configuration files and the Metro library JARs in the src directory, the
RandService can be deployed to Tomcat in the usual way:

% ant -Dwar.name=rand deploy

Once the @WebService has been deployed, a curl call or a browser can be used to verify
that the service is up and running:

% curl http://localhost:8080/myWarFileName?xsd=1

If successful, this command returns the XML Schema associated with the service.

Even this first and rather simple example underscores a major appeal of SOAP-
based services: underlying SOAP libraries handle the conversions between native lan‐
guage types (in this case, Java types) and XML Schema types. Figure 4-1 depicts the
architecture.

150 | Chapter 4: SOAP-Based Web Services

http://metro.java.net

Figure 4-1. The architecture of a typical SOAP-based service

The RandService in Two Files
The RandService in the first example (see Example 4-1) combines, in a single source
file, what JAX-WS calls the SEI (Service Endpoint Interface) and the SIB (Service Im‐
plementation Bean). The SEI specifies, at a high level that befits an interface, the service
operations, and the SIB provides an implementation of the operations. A SIB can be one
of the following:

• A POJO class such as RandService annotated as @WebService and encapsulating
service operations, each annotated as a @WebMethod.

• A @Stateless Session EJB that is likewise annotated as a @WebService. EJBs in
general predate JAX-WS; hence, this second type of SIB is an inviting way to expose
legacy EJBs as web services.

Chapter 7 covers the EJB implementation of a @WebService. For now, the SIBs will be
POJO classes. For convenience, most of my examples take the single-file approach,
which combines the SEI and the SIB into one class annotated as a @WebService. The
two-file approach is illustrated with the SEI RandService (see Example 4-4) in one file
and the SIB RandImpl (see Example 4-5) in another file. The RandService is now an
interface, whereas the RandImpl is a class that implements this interface.

Example 4-4. The Service Endpoint Interface for the revised RandService
package rand2;

import javax.jws.WebService;
import javax.jws.WebMethod;
import java.util.Random;

@WebService
public interface RandService {
 @WebMethod
 public int next1();
 @WebMethod
 public int[] nextN(final int n);
}

The RandService in Two Files | 151

Example 4-5. The Service Implementation Bean for the revised RandService
package rand2;

import javax.jws.WebService;
import javax.jws.WebMethod;
import java.util.Random;

@WebService(endpointInterface = "rand2.RandService")
public class RandImpl implements RandService {
 private static final int maxRands = 16;

 @WebMethod
 public int next1() { return new Random().nextInt(); }
 @WebMethod
 public int[] nextN(final int n) {
 final int k = (n > maxRands) ? maxRands : Math.abs(n);
 int[] rands = new int[k];
 Random r = new Random();
 for (int i = 0; i < k; i++) rands[i] = r.nextInt();
 return rands;
 }
}

In the SIB class RandImpl, the @WebService interface has an attribute, the key/value pair:

endpointInterface = "rand2.RandService"

that names the SEI. It is still important for the class RandImpl to employ the standard
implements clause because only the implements clause prompts the compiler to make
sure that the public methods declared in the SEI, in this case the two methods annotated
with @WebMethod, are defined appropriately in the SIB.

The revised RandService has the same functionality as the original. The Endpoint
publisher changes slightly:

Endpoint.publish(url, new RandImpl()); // SIB, not SEI

The second argument to the publish changes to RandImpl precisely because, in the
revision, RandService is an interface. In general, the second argument to the static
version of publish is always the SIB. In a single-file case such as the original version of
RandService, a single class is the combined SEI and SIB.

Clients Against the RandService
The claim that SOAP-based services are language-neutral needs to be taken on faith a
bit longer. The first client against the RandService is in Java but the two thereafter are
in C# and Perl. Starting with a Java client will help to clarify how the critical service
contract, the WSDL document, can be put to good use in writing a client. The WSDL

152 | Chapter 4: SOAP-Based Web Services

will be studied in detail, but putting the WSDL to work first should help to motivate the
detailed study.

A Java Client Against the RandService
Recall the XML Schema (see Example 4-3) that the Endpoint publisher generates dy‐
namically when the RandService is published. The publisher likewise generates a
WSDL, which can be requested as follows:

% curl http://localhost:8888/rs?wsdl

JDK 1.6 and greater ship with a utility, wsimport, that uses a WSDL to generate Java
classes in support of programming a client against the service described in the WSDL.
Here is how the utility can be used in the current example:

% wsimport -p client -keep http://localhost:8888/rs?wsdl

The -p flag stands for “package”: the utility creates a directory named client and puts
the generated Java code in this directory/package. The -keep flag generates source
(.java) as well as compiled (.class) files; without this flag, only compiled files would be
in the client directory. Sixteen files are generated in total, half source and half compiled.
Among these are files with names such as Next1 and Next1Response, the very names
of the classes generated at the publication of the RandService. In any case, these client-
side artifacts correspond to SOAP types described in the XML Schema document for
the RandService.

How are the wsimport-generated files to be used? Two of these are of special interest:

• The class RandServiceService begins with the name of the published SOAP ser‐
vice, RandService, and has another Service stuck on the end. The @WebService
annotation could be used to specify a less awkward name but, for now, the key point
is that this class represents, to the client, the deployed web service.

• The interface RandService has the same name as the published service but there is
a critical difference: this RandService is an interface, whereas the published Rand
Service is a class. This interface, like any Java interface, declares methods—hence,
the interface declares the operations encapsulated in published service and thereby
specifies the invocation syntax for each operation. In this example, there are two
such operations: next1 and nextN.

The RandServiceService and RandService types are used in an idiomatic way to write
the Java client against the service. The RandClient (see Example 4-6) is a sample client
that illustrates the idiom.

Clients Against the RandService | 153

Example 4-6. A Java client built with wsimport-generated artifacts
import client.RandServiceService;
import client.RandService;
import java.util.List;

public class RandClient {
 public static void main(String[] args) {
 // set-up
 RandServiceService service = new RandServiceService();
 RandService port = service.getRandServicePort();
 // sample calls
 System.out.println(port.next1());
 System.out.println();
 List<Integer> nums = port.nextN(4);
 for (Integer num : nums) System.out.println(num);
 }
}

The RandClient imports two types from the wsimport-generated artifacts: the class
RandServiceService and the interface RandService. In the setup phase of the client
code, the class’s no-argument constructor is invoked to create an object that represents,
on the client side, the service itself (line 1). Once this object is constructed, there is a get
call with a distinct pattern:

service.get<name of interface type>Port() // line 2 pattern

In this case, the interface is named RandService and so the call is:

service.getRandServicePort() // line 2

This get method returns a reference to an object that encapsulates the two operations
in the RandService, next1 and nextN. The reference is named port, although any name
would do, for reasons that will become clear once the WSDL is studied in detail. The
port reference is then used to make two sample calls against the service. On a sample
run, the output was:

53378846 // from line 3
-818435924 // from lines 4 and 5
104886422
1714126390
-2140389441

The first integer is returned from the call to next1 and the next four integers from the
call to nextN.

The RandClient does reveal an oddity about the wsimport-generated artifacts. In the
RandService, the method nextN begins:

public int[] nextN(...

154 | Chapter 4: SOAP-Based Web Services

The return type is int[], an array of int values. In the wsimport-generated interface
RandService, the method nextN begins:

public List<Integer> nextN(...

The wsimport utility is within its rights to replace int[] with List<Integer>, as a List
has a toArray method that returns an array; with automatic boxing/unboxing, the Java
types Integer and int are interchangeable in the current context. The point is that the
programmer typically needs to inspect at least the wsimport-generated interface, in this
example RandService, in order to determine the argument and return types of every
operation.

Companion Utilities: wsimport and wsgen
The wsimport utility eases the task of writing a Java client against a service that has a
WSDL as the service contract. This utility has a client-side focus, although the utility
can be helpful on the server side as well; a later example illustrates. The wsgen utility,
which also ships with core Java 1.6 or greater, has a server-side focus. For example, wsgen
can be used to generate a WSDL. The command:

% wsgen -cp . -wsdl rand.RandService

generates a WSDL file named RandServiceService.wsdl. However, this WSDL has a
placeholder for the service endpoint rather than a usable URL:

...
<soap:address location="REPLACE_WITH_ACTUAL_URL"/>
...

When a service publisher such as Endpoint, Tomcat, Jetty, and the like generate the
WSDL, the WSDL includes a usable URL.

The wsgen utility has another use. When the RandService is published with Endpoint,
the publisher outputs information about dynamically generated classes, in this case
Next1, Next1Response, NetxN, and NextNResponse. As noted earlier, these are JAX-B
artifacts that the Java runtime uses to convert Java types into XML types and vice versa.
The wsgen utility can be used to generate the JAX-B artifacts as files on the local system.
For example, the command:

% wsgen -cp . rand.RandService

automatically creates a package/directory rand/jaxws and then populates this directory
with Next1.class, Next1Response.class, NextN.class, and NextNResponse.class. Now if the
Endpoint publisher is started after these files have been created, the publisher does not
generate the JAX-B artifacts dynamically but instead uses the ones that wsgen already
created.

Clients Against the RandService | 155

A final, obvious point about the interaction between the Java client and the Java service
deserves mention: the SOAP is completely transparent. The underlying SOAP libraries
generate the SOAP on the sending side and parse the SOAP on the receiving side so that
the Java code on both sides can remain agnostic about what type of payload is being
sent and received. SOAP transparency is a major selling point for SOAP-based services.

A C# Client Against the RandService
The next client is in C#, a DotNet language similar to Java; DotNet has a wsdl utility
similar to Java’s wsimport utility. The wsdl utility can be targeted at the dynamically
generated WSDL for the RandService:

% wsdl http://localhost:8888/rs?wsdl

This command generates a single file with an awkward name: RandServiceService.cs (see
Example 4-7).

Example 4-7. A C# client, built with wsdl-generated code, against the RandService
using System;
using System.ComponentModel;
using System.Diagnostics;
using System.Web.Services;
using System.Web.Services.Protocols;
using System.Xml.Serialization;

// This source code was auto-generated by wsdl, Version=4.0.30319.1.
...
public partial class RandServiceService :
 System.Web.Services.Protocols.SoapHttpClientProtocol {
 private System.Threading.SendOrPostCallback next1OperationCompleted;
 private System.Threading.SendOrPostCallback nextNOperationCompleted;

 public RandServiceService() { this.Url = "http://localhost:8888/rs"; }
 ...
 public int next1() {
 object[] results = this.Invoke("next1", new object[0]);
 return ((int)(results[0]));
 }
 ...
 public System.Nullable<int>[]
 nextN([System.Xml.Serialization.XmlElementAttribute(
 Form=System.Xml.Schema.XmlSchemaForm.Unqualified)] int arg0) {
 object[] results = this.Invoke("nextN", new object[] {arg0});
 return ((System.Nullable<int>[])(results[0]));
 }
 ...
}
...

156 | Chapter 4: SOAP-Based Web Services

The code excised from the C# RandServiceService class supports asynchronous calls
against the Java RandService. Java, too, supports both synchronous (blocking) and
asynchronous (nonblocking) calls against a web service’s operations, as a sample client
against the RandService later illustrates. For now, only synchronous calls are of interest.
Here is a sample C# client that uses the wsdl-generated code to make calls against the
RandService:

class RandClient {
 static void Main() {
 RandServiceService service = new RandServiceService();
 Console.WriteLine("Call to next1():\n" + service.next1());
 Console.WriteLine("\nCall to nextN(4):");
 int?[] nums = service.nextN(4);
 foreach (int num in nums) Console.WriteLine(num);
 }
}

The C# client code is simpler than its Java counterpart because the new operation with
the no-argument constructor RandServiceService() (line 1) creates an object that
encapsulates the client-side operations next1 and nextN. The C# code does not require
the getRandServicePort() call from the Java client. The call to next1 (line 2) is basically
the same in the C# and Java clients, but the C# call to nextN has unusual syntax. The
return type int?[] (line 3) signifies an integer array that may have null as its value; the
type int[] signifies an integer array that cannot be null. On a sample run, the C# client
output is:

Call to next1():
680641940
Call to nextN(4):
1783826925
260390049
-48376976
-914903224

The C# example does illustrate language interoperability for SOAP-based services, al‐
though C# and Java are at least cousins among programming languages. The next sample
client is written in a language quite different from Java.

A Perl Client Against the RandService
The final client (see Example 4-8) against the Java RandService is in Perl. This client
makes it easy to display the SOAP messages that go back and forth between client and
service; the Perl library SOAP::Lite has an excellent, easy-to-use tracer.

Example 4-8. A Perl client against the RandService
#!/usr/bin/perl -w

use SOAP::Lite +trace => 'debug';

Clients Against the RandService | 157

use strict;

my $soap =
 SOAP::Lite->uri('http://rand/')->proxy('http://localhost:8888/rs/');
my $num = $soap->next1()->result();
print "Response is: $num\n";

In line 1, the Perl client constructs a SOAP::Lite object (the reference is $soap) that
communicates with the RandService. The uri value of http://rand/ is the namespace
that identifies a particular service available at the proxy (that is, the URL) value of
http://localhost:8888/rs. A given service endpoint, a URL, could host any number
of services, with a URI identifying each. In line 2, the call to next1 returns a SOAP
message:

<?xml version="1.0" ?>
<S:Envelope
 xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:next1Response xmlns:ns2="http://rand/">
 <return>1774649411</return>
 </ns2:next1Response>
 </S:Body>
</S:Envelope>

The cascaded call to result (also line 2) extracts the value 1774649411 from the SOAP
envelope, and the value is assigned to the variable $num. The client program prints the
value and exits. This Perl-to-Java request again confirms the language transparency of
a SOAP-based service.

The Perl client is especially useful because of its trace capabilities. Example 4-9 is the
HTTP request that the Perl client generates on a sample run; Example 4-10 is the HTTP
response from the Java service. In the request, the body of the POST request contains
a SOAP envelope, so named because of the local name Envelope in the XML tag’s quali‐
fied name soap:Envelope.

Example 4-9. The HTTP request from the Perl client to the RandService
POST http://localhost:8888/rs HTTP/1.1
Accept: text/xml
Accept: multipart/*
Accept: application/soap
Content-Length: 420
Content-Type: text/xml; charset=utf-8
SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns="http://rand/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

158 | Chapter 4: SOAP-Based Web Services

 soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
 <soap:Body>
 <tns:next1 xsi:nil="true" />
 </soap:Body>
</soap:Envelope>

Example 4-10. The HTTP response from the RandService to the Perl client
HTTP/1.1 200 OK
Content-Type: text/xml;charset="utf-8"
Client-Peer: 127.0.0.1:8888
Client-Response-Num: 1
Client-Transfer-Encoding: chunked

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:next1Response xmlns:ns2="http://rand/">
 <return>1774649411</return>
 </ns2:next1Response>
 </S:Body>
</S:Envelope>

Also in the request, this code in line 1 means that the next1 operation takes no argu‐
ments:

<tns:next1 xsi:nil="true"/>

The HTTP response is more complicated than the request because there is a return value
(line 1):

<return>1774649411</return>

The WSDL document specifies that the response from the RandService occurs in an
element tagged return.

Why Does the Perl Client Not Invoke nextN as Well as next1?
The Perl client invokes the next1 operation but not the parametrized nextN operation
in the RandService. Were the Perl client to invoke nextN, the response from the Rand
Service would be an empty list. When the published RandService receives a request,
the Java runtime uses a SAX (Simple API for XML) parser to parse the incoming request;
this parser belches on the SOAP request that the Perl library generates. In particular,
the SAX parser fails to extract the nextN argument, which specifies how many randomly
generated integers are to be returned. A glitch such as this is not uncommon in web
services, including SOAP-based ones. Web services, REST-style and SOAP-based alike,
are remarkably but not perfectly interoperable among programming languages.

Clients Against the RandService | 159

The examples so far illustrate that the WSDL document can be used even if its detailed
structure remains unknown. Now is the time to take a close look at how the WSDL is
structured.

The WSDL Service Contract in Detail
The WSDL document, which is XML, is structured as follows:

• The document or root element is named definitions. This is appropriate because
the WSDL defines the web service thoroughly enough that utilities such as wsim‐
port can use the WSDL to generate code, typically but not exclusively client-side
support code.

• The first child element of definitions, named types, is technically optional but
almost always present in a modern WSDL. This element contains (or links to) an
XML Schema or the equivalent—a grammar that specifies the data types for the
messages involved in the service. In a modern SOAP-based web service, the argu‐
ments passed to web service operations are typed—but the SOAP messages them‐
selves are also typed. For this reason, the receiver of a SOAP message can check,
typically at the library level, whether the received message satisfies the constraints
that the message’s type impose.

• Next come one or more message elements, which list the messages whose data types
are given in the types section immediately above. Every message has a corre‐
sponding complexType entry in the schema from the types section, assuming that
the types section is nonempty.

• The portType section comes next. There is always exactly one portType element.
The portType is essentially the service interface: a specification of the service’s op‐
erations and the message patterns that the operations exemplify. For example, in
the request/response pattern, the client begins the conversation with a request
message and the service counters with a response message. In the solicit/response
pattern, by contrast, the service starts the conversation with a solicitation message
and the client counters with a response. There is also the one-way pattern (client
to server only) and the notification pattern (server to client only). Richer conver‐
sational patterns can be built out of these simpler ones. The message items in the
preceding section are the components of an operation, and the portType section
defines an operation by placing message items in a specific order.

• Next come one or more binding sections, which provide implementation detail
such as the transport used in the service (for instance, HTTP rather than SMTP),
the service style, and the SOAP version (that is, 1.1 or 1.2). By default, Java generates
a single binding section but DotNet generates two: one for SOAP 1.1 and another
for SOAP 1.2.

160 | Chapter 4: SOAP-Based Web Services

• The last section, named service, brings all of the previous details together to define
key attributes such as the service endpoint—that is, the URL at which the service
can be accessed. Nested in the service element are one or more port subelements,
where a port is a portType plus a binding:

port = portType + binding

Since there is only one portType in a WSDL, the number of port subelements equals
the number of binding elements.

The biggest section in a WSDL is typically the types section because an XML Schema
tends to be wordy. An example from Amazon, introduced shortly, illustrates. For now,
the WSDL (see Example 4-11) for the RandService is only about a page or so in size.

Example 4-11. The dynamically generated WSDL for the RandService
<?xml version="1.0" encoding="UTF-8"?>
<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://rand/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="http://rand/" name="RandServiceService">
 <types>
 <xsd:schema>
 <xsd:import namespace="http://rand/"
 schemaLocation="http://localhost:8888/rs?xsd=1"></xsd:import>
 </xsd:schema>
 </types>
 <message name="next1">
 <part name="parameters" element="tns:next1"></part>
 </message>
 <message name="next1Response">
 <part name="parameters" element="tns:next1Response"></part>
 </message>
 <message name="nextN">
 <part name="parameters" element="tns:nextN"></part>
 </message>
 <message name="nextNResponse">
 <part name="parameters" element="tns:nextNResponse"></part>
 </message>
 <portType name="RandService">
 <operation name="next1">
 <input message="tns:next1"></input>
 <output message="tns:next1Response"></output>
 </operation>
 <operation name="nextN">
 <input message="tns:nextN"></input>
 <output message="tns:nextNResponse"></output>
 </operation>
 </portType>
 <binding name="RandServicePortBinding" type="tns:RandService">

The WSDL Service Contract in Detail | 161

 <soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document"></soap:binding>
 <operation name="next1">
 <soap:operation soapAction=""></soap:operation>
 <input>
 <soap:body use="literal"></soap:body>
 </input>
 <output>
 <soap:body use="literal"></soap:body>
 </output>
 </operation>
 <operation name="nextN">
 <soap:operation soapAction=""></soap:operation>
 <input>
 <soap:body use="literal"></soap:body>
 </input>
 <output>
 <soap:body use="literal"></soap:body>
 </output>
 </operation>
 </binding>
 <service name="RandServiceService">
 <port name="RandServicePort" binding="tns:RandServicePortBinding">
 <soap:address location="http://localhost:8888/rs"></soap:address>
 </port>
 </service>
</definitions>

The first three WSDL sections (types, message, and portType) present the service ab‐
stractly in that no implementation details are present. The binding and service sections
provide the concrete detail by specifying, for example, the type of transport used in the
service as well as the service endpoint.

The portType is of particular interest because it characterizes the service in terms of
operations, not simply messages; operations consist of one or more messages exchanged
in a specified pattern. The two areas of immediate interest in the WSDL for a program‐
mer writing a client against a service would be the portType and the service; the
portType section informs the programmer about what calls can be made against the
service, and the service section gives the service endpoint, the URL through which the
service can be reached.

XML is not fun to read, but the basic profile WSDL for the RandService is not unduly
forbidding. Perhaps the best way to read the document is from top to bottom.

The types Section
This section contains or links to an XML Schema or equivalent. (In the case of Java, the
schema is a separate document shown in Example 4-3; in the case of DotNet, the schema

162 | Chapter 4: SOAP-Based Web Services

is included in the WSDL.) To understand how the schema relates to its WSDL, consider
this segment of the XML Schema from Example 4-3:

<xs:element name="nextNResponse" type="tns:nextNResponse">
</xs:element>
...
<xs:complexType name="nextNResponse">
 <xs:sequence>
 <xs:element name="return"
 type="xs:int" minOccurs="0" maxOccurs="unbounded">
 </xs:element>
 </xs:sequence>
</xs:complexType>

The xs:element in line 1 has a specified type, in this case tns:nextNResponse. The
type is the complexType in line 2. XML Schema has built-in simple types such as xsd:int
and xsd:string, but XML Schema is also extensible in that new complex types can be
added as needed. The complexType in this case is for the nextNResponse message that
the service returns to the client. Here is that message from the WSDL in Example 4-11:

<message name="nextNResponse">
 <part name="parameters" element="tns:nextNResponse"></part>
</message>

The message has an element attribute (line 1) with tns:nextNResponse as the value;
tns:nextNResponse is the name of the element in line 1 of the XML Schema. The
WSDL, in defining a message, points back to the XML Schema section that provides the
data type for the message.

The complexType section of the WSDL indicates that a nextNResponse message returns
zero or more integers (XML type xs:int). The zero leaves open the possibility that the
service, in this case written in Java, might return null instead of an actual array or
equivalent (e.g., List<Integer>). At this point a human editor might intervene by
changing the minOccurs in line 3 from 0 to 1. (If the minOccurs attribute were dropped
altogether, the value would default to 1.) The dynamically generated WSDL may not
capture the intended design of a service; hence, the WSDL may need to be edited by
hand.

The message Section
Each message element in the WSDL points to an element and, more important, to a
complexType in the WSDL’s XML Schema. The result is that all of the messages are typed.
The RandService exposes two operations and each follows the request/response pat‐
tern; hence, the WSDL has four message elements: two for the next1 and nextN requests
and two for the corresponding responses named next1Response and nextNResponse,
respectively.

The WSDL Service Contract in Detail | 163

The portType Section
This section contains one or more operation elements, each of which defines an op‐
eration in terms of messages defined in the immediately preceding section. For example,
here is the definition for the nextN operation:

<operation name="nextN">
 <input message="tns:nextN"></input>
 <output message="tns:nextNResponse"></output>
</operation>

The input message precedes the output message, which signals that the pattern is re‐
quest/response. Were the order reversed, the pattern would be solicit/response. The
term input is to be understood from the service’s perspective: an input message goes
into the service and an output message comes out from the service. Each input and
output element names the message defined in a message section, which in turn refers
to an XML Schema complexType. Accordingly, each operation can be linked to the
typed messages that make up the operation.

The binding Section
This section and the next, service, provide implementation details about the service.
In theory, but rarely in practice, there are several options or degrees of freedom with
respect to the service that the WSDL defines, and a binding section selects among these
options. One option for a SOAP-based service such as the RandService is the SOAP
version: 1.1 or 1.2. SOAP 1.1 is the default in Java; hence, the one and only binding
section is for SOAP 1.1. In DotNet, a dynamically generated WSDL usually has two
binding sections: one for SOAP 1.1 and the other for SOAP 1.2. However, the very same
DotNet WSDL typically has only one service endpoint or URL; this means the same
deployed service is for SOAP 1.1 and SOAP 1.2, thereby signaling that no difference
between the two SOAP versions comes into play for the service.

There are three other options to be considered: transport (line 1) and style (line 2) are
two of the three. Here is the first subelement in the binding section, a subelement that
makes choices on these two options:

<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
 style="document"></soap:binding>

The transport value is a URI that ends with soap/http, which can be summed up as
SOAP over HTTP. Another option would be SMTP (Simple Mail Transport Protocol)
or even TCP (Transmission Control Protocol, which underlies HTTP), but in practice,
HTTP is the dominant transport. HTTP in this context includes HTTPS. The other
option (line 2) concerns the service style, in this case set to document. A web service
in document style always has an XML Schema or equivalent that types the service’s
constituent messages. The other choice for style is misleadingly named rpc, which is

164 | Chapter 4: SOAP-Based Web Services

short for remote procedure call. The name is misleading because a document-style service
such as the RandService can and typically does follow the request/response pattern,
which is the RPC pattern. In the context of a WSDL, rpc style really means that messages
themselves are not typed, only their arguments and return values are typed. The WSDL
for an rpc style service may have no types section at all or only an abbreviated one. In
modern SOAP-based services, document style dominates and represents best practice.
Indeed, both Java and DotNet toyed for a time with the idea of dropping support alto‐
gether for rpc style. The issue of rpc style will come up again later but only briefly.

The document style deserves to be the default. This style can support services with rich,
explicitly defined Java data types such as Employee or ChessTournament because the
service’s WSDL can define, for the XML side, the required types in an XML Schema.
Any service pattern, including request/response, is possible under the document style.

The last option concerns use, more accurately called encoding, because the choice de‐
termines how the service’s data types are to be encoded and decoded. The WSDL has
to specify how the data types used in an implementation language such as Java are to
be serialized into and deserialized out of WSDL-compliant types—the types laid out in
the WSDL’s XML Schema or equivalent (see Example 4-12). For example, Java and Ruby
have similar but subtly different data types. In a conversation based on SOAP messages,
a conversation in which the SOAP remains transparent, the two languages would need
the ability to serialize from instances of native types to XML and to deserialize from
XML to instances of native types.

Example 4-12. Encoding and decoding XML
 encode decode
Java types-------->XML Schema types-------->Ruby types

Java types<--------XML Schema types<--------Ruby types
 decode encode

The attribute

use = 'literal'

means the service’s type definitions in the WSDL literally follow the WSDL’s schema.
The alternative to literal is named encoded, which means that the service’s type
definitions come from implicit encoding rules, typically the rules in the SOAP 1.1 spec‐
ification. However, the use of encoded does not comply with WS-I (Web Services In‐
teroperability) standards.

The service Section
This section brings the pieces together. Recall that a WSDL has but one portType section
but may have multiple binding sections. The service element has port subelements,

The WSDL Service Contract in Detail | 165

http://www.ws-i.org
http://www.ws-i.org

where a port is a portType linked to a binding; hence, the number of port subelements
equals the number of binding sections in the WSDL. In this example, there is one
binding and, therefore, one port subelement:

<port name="RandServicePort" binding="tns:RandServicePortBinding">
 <soap:address location="http://localhost:8888/rs"></soap:address>
</port>

The address subelement specifies a location (line 1), whose value is commonly called
the service endpoint. A web service with two significantly different bindings (for in‐
stance, one for HTTP and another for SMTP) would have different location values to
reflect the different bindings.

Java and XML Schema Data Type Bindings
The foregoing examination of the WSDL, and in particular its XML Schema, prompts
an obvious question: Which Java data types bind to which XML Schema data types?
Table 4-1 summarizes the bindings.

Table 4-1. Java and XML Schema data type bindings
Java data type XML schema data type

boolean xsd:boolean

byte xsd:byte

short xsd:short

short xsd:unsignedByte

int xsd:int

int xsd:unsignedShort

long xsd:long

long xsd:unsignedInt

float xsd:float

double xsd:double

byte[] xsd:hexBinary

byte[] xsd:base64Binary

java.math.BigInteger xsd:integer

java.math.BigDecimal xsd:decimal

java.lang.String xsd:string

java.lang.String xsd:anySimpleType

javax.xml.datatype.XMLGregorianCalendar xsd:dateTime

javax.xml.datatype.XMLGregorianCalendar xsd:time

javax.xml.datatype.XMLGregorianCalendar xsd:date

javax.xml.datatype.XMLGregorianCalendar xsd:g

166 | Chapter 4: SOAP-Based Web Services

Java data type XML schema data type

javax.xml.datatype.Duration xsd:duration

javax.xml.namespace.QName xsd:QName

javax.xml.namespace.QName xsd:NOTATION

java.lang.Object xsd:anySimpleType

The bindings in Table 4-1 are automatic in the sense that, in a JAX-WS service, the SOAP
infrastructure does the conversions without application intervention. Conversions also
are automatic for arrays of any type in Table 4-1. For example, an array of BigInteger
instances converts automatically to an array of xsd:integer instances, and vice versa.
Programmer-defined classes whose properties reduce to any type in Table 4-1 or to
arrays of these likewise convert automatically. For example, an Employee class that has
properties such as firstName (String), lastName (String), id (int), salary (float),
age (short), hobbies (String[]), and the like would convert automatically to XML
Schema types. The upshot is that the vast majority of the data types used in everyday
Java programming convert automatically to and from XML Schema types. The glaring
exception is the Map—a collection of key/value pairs. However, a Map is readily imple‐
mented as a pair of coordinated arrays: one for the keys, the other for the values.

Code First or Contract First?
Should the web service code be used to generate the WSDL or should the WSDL, de‐
signed beforehand, be used to guide the coding of the web service? This question sums
up the code first versus contract first controversy. The examples so far take the code-first
approach: the service publisher (for example, Endpoint or Tomcat) automatically gen‐
erates the WSDL for the service. The code-first approach has the obvious appeal of being
easy. Yet the code-first approach has drawbacks, including:

• If the service changes under a code-first approach, the WSDL thereby changes—
and client code generated from the WSDL (using, for instance, wsimport) needs to
be regenerated. In this sense, the code-first approach is not client friendly. The code-
first approach compromises a basic principle of software development: a service
contract, once published, should be treated as immutable so that client-side code
written against a published service never has to be rewritten.

• The code-first approach goes against the language neutrality at the core of web
services. If a service contract is done first, the implementation language remains
open.

• The code-first approach does not address tricky but common problems such as
null arguments or return values. Consider, for example, a very simple service that
includes an operation to return the current time as a string:

The WSDL Service Contract in Detail | 167

@WebMethod
public String getTime() { return new java.util.Date().toString(); }

Here is the relevant entry in the XML Schema from the automatically generated
WSDL:

<xs:element name="return" type="xs:string" minOccurs="0"></xs:element>

The minOccurs value of 0 allows the getTime operation to return null. Suppose,
however, the service needs to ensure that returned string has no fewer than, say, 28
characters, which rules out null as a return value. (In Java, a stringified Date has
28 characters.) The relevant schema section might look like this:

<xs:element minOccurs = "1"
 maxOccurs = "1"
 nillable = "false"
 name = "currentTime">
 <simpleType>
 <restriction base = "string">
 <minLength value = "28"/>
 </restriction>
 </simpleType>
</xs:element>

By the way, the minOccurs and maxOccurs elements, each with a value of 1, could
be dropped altogether because 1 is the default value for these attributes. The point
here is that a schema entry such as this must be handcrafted. Even a clever use of
Java annotations is not sufficient to produce this entry automatically.

Given the ease of the code-first approach—not to mention the economic pressures and
hectic pace of software development—there seems to be little chance that a contract-
first approach to web services will eclipse the dominant code-first approach. Nonethe‐
less, a code-first-generated WSDL and its accompanying schema can be refined as
needed to ensure that this contract document reflects service requirements.

Wrapped and Unwrapped Document Style
The source for the RandService class begins as follows:

@WebService
public class RandService {
...

The default style, document, could be overridden with an additional annotation:

@WebService
@SOAPBinding(style = Style.RPC) // versus Style.DOCUMENT, the default
public class RandService {
...

168 | Chapter 4: SOAP-Based Web Services

The RandService is simple enough that the difference would be transparent to clients
against the service. Of interest here is how the different styles impact the underlying
SOAP messages.

Consider a very simple SOAP-based service with operations named add, subtract,
multiply, and divide. Each operation expects two arguments, the numbers on which
to operate. Under the original SOAP 1.1 specification, a request message for document
style—what is now called unwrapped or bare document style—would look like
Example 4-13:

Example 4-13. Unwrapped document style
<?xml version="1.0" ?>
<!-- Unwrapped document style -->
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soapenv:Body>
 <num1 xmlns:ans="http://arith/">27</num1>
 <num2 xmlns:ans="http://arith/">94</num2>
 </soapenv:Body>
</soapenv:Envelope>

The Body of the SOAP message contains two elements at the same level, the elements
tagged num1 and num2; each element is a child of the soapenv:Body element. The glaring
omission is the name of the operation, for instance, add. This name might occur instead,
for example, in the request URL:

http://some.server.org/add

It is peculiar that the SOAP envelope should contain the named arguments but not the
named operation. Under rpc style, however, the operation would be the one and only
child of the Body element; the operation then would have, as its own child elements, the
arguments. Here is the contrasting SOAP message in rpc style or, what now comes to
the same thing, wrapped document style (Example 4-14).

Example 4-14. Wrapped document style, the same as rpc style
<?xml version="1.0" ?>
<!-- Wrapped document or rpc style -->
<soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <soapenv:Body>
 <add xmlns:ans="http://arith/">
 <num1>27</num1>
 <num2>94</num2>
 </addNums>
 </soapenv:Body>
</soapenv:Envelope>

The WSDL Service Contract in Detail | 169

The add element (line 1) now acts as a wrapper for the argument elements, in this case
num1 and num2. The wrapped convention, unofficial but dominant in SOAP frameworks,
gives a document-style service the look and feel of an rpc-style service—at the message
level. The document style still has the advantage of a full XML Schema that types the
messages. In Java as in DotNet, the default style for any SOAP-based service is wrapped
document; hence, a service such as RandService, with only the @WebService annotation,
is wrapped document in style. This style is often shortened to wrapped doc/lit: wrapped
document style with literal encoding.

Another Practical Use for the WSDL and Its XML Schema
A utility such as wsimport consumes a WSDL and produces Java classes that ease the
task of writing a client against the service defined in the WSDL. However, the wsim‐
port utility can also be used to generate service-side code (see the section, “wsimport
Artifacts for the Service Side” on page 171). There are other practical uses for the WSDL.
Consider a scenario (see Figure 4-2) in which incoming SOAP requests target operations
encapsulated in a document-style SOAP-based service.

Figure 4-2. Using the WSDL’s XML Schema for message validation

If the service is doc/lit, there is a WSDL with an attendant XML Schema; this schema
can be used in a validating parse of the incoming SOAP messages. In XML, a validating
parse checks whether a document, in this case a SOAP document, is syntactically correct
but also whether the document conforms to a grammar, the XML Schema. If the parser
does not validate the incoming message, there is no point in wasting CPU cycles on the
execution of the service operation. Every document-style service has an XML Schema
or equivalent as part of service’s WSDL. Accordingly, this schema can be used to check
whether SOAP messages satisfy the grammar that the schema represents.

170 | Chapter 4: SOAP-Based Web Services

wsimport Artifacts for the Service Side
The wsimport utility produces, from a WSDL document, code that directly supports
client calls against a web service. This same code can be used, with a few adjustments,
to program a service. This section illustrates with a simple example.

Here are two operations for a temperature conversion service written in C#:

[WebMethod]
public double c2f(double t) { return 32.0 + (t * 9.0 / 5.0); }
[WebMethod]
public double f2c(double t) { return (5.0 / 9.0) * (t - 32.0); }

The c2f operation converts from centigrade to fahrenheit and the f2c method converts
from fahrenheit to centigrade.

DotNet, by default, generates a WSDL with SOAP 1.1 and SOAP 1.2 bindings. This
temperature conversion service is simple enough that the two bindings have the same
implementation. In general, however, the wsimport utility can handle multiple bindings
with the -extension flag. Assuming that the WSDL for the service is in the file tc.wsdl,
the command:

% wsimport -p tempConvert -keep -extension tc.wsdl

generates the usual artifacts: Java .class files that represent the c2f and f2c request
messages and their corresponding responses, together with various support files. Of
interest here is the interface—the Java file that represents the portType section of the
WSDL. Here is the file, cleaned up for readability:

package tempConvert;

import javax.jws.WebMethod;
import javax.jws.WebParam;
import javax.jws.WebResult;
import javax.jws.WebService;
import javax.xml.bind.annotation.XmlSeeAlso;
import javax.xml.ws.RequestWrapper;
import javax.xml.ws.ResponseWrapper;

@WebService(name = "ServiceSoap",
 targetNamespace = "http://tempConvertURI.org/")
@XmlSeeAlso({
 ObjectFactory.class
})
public interface ServiceSoap {
 @WebMethod(operationName = "c2f",
 action = "http://tempConvertURI.org/c2f")
 @WebResult(name = "c2fResult",
 targetNamespace = "http://tempConvertURI.org/")
 @RequestWrapper(localName = "c2f",
 targetNamespace = "http://tempConvertURI.org/",

The WSDL Service Contract in Detail | 171

 className = "tempConvert.C2F")
 @ResponseWrapper(localName = "c2fResponse",
 targetNamespace = "http://tempConvertURI.org/",
 className = "tempConvert.C2FResponse")
 public double c2F(
 @WebParam(name = "t",
 targetNamespace = "http://tempConvertURI.org/")
 double t);
 @WebMethod(operationName = "f2c",
 action = "http://tempConvertURI.org/f2c")
 @WebResult(name = "f2cResult",
 targetNamespace = "http://tempConvertURI.org/")
 @RequestWrapper(localName = "f2c",
 targetNamespace = "http://tempConvertURI.org/",
 className = "tempConvert.F2C")
 @ResponseWrapper(localName = "f2cResponse",
 targetNamespace = "http://tempConvertURI.org/",
 className = "tempConvert.F2CResponse")
 public double f2C(
 @WebParam(name = "t",
 targetNamespace = "http://tempConvertURI.org/")
 double t);
}

The ServiceSoap interface, like any interface, declares but does not define methods,
which in this case represent service operations. If the semantics of these two operations
c2f and f2c are understood, then converting this wsimport artifact to a web service is
straightforward:

• Change the interface to a POJO class.
...
public class ServiceSoap {
...

• Implement the c2f and f2c operations by defining the methods. Java and C# are
sufficiently close that the two implementations would be indistinguishable. For
example, here is the body of c2f in either language.

public double c2f(double t) { return 32.0 + (t * 9.0 / 5.0); }

Not every language is as close to Java as C#, of course. Whatever the original im‐
plementation of a service, the challenge is the same: to understand what a service
operation is supposed to do so that the operation can be re-implemented in Java.

• Publish the service with, for example, Endpoint or a web server such as Tomcat or
Jetty.
Although the wsimport utility could be used to help write a SOAP-based service in
Java, the main use of this utility is still in support of clients against a SOAP-based
service. The point to underscore is that the WSDL is sufficiently rich in detail to

172 | Chapter 4: SOAP-Based Web Services

support useful code on either the service or the client side. The next section returns
to the Amazon E-Commerce service to illustrate this very point.

SOAP-Based Clients Against Amazon’s E-Commerce Service
Chapter 3 has two Java clients against the RESTful Amazon E-Commerce service. The
first client parses the XML document from Amazon in order to extract the desired
information, in this case the author of a specified Harry Potter book, J. K. Rowling. The
second client uses JAX-B to deserialize the returned XML document into a Java object,
whose get-methods are then used to extract the same information. This section intro‐
duces two more clients against the E-Commerce service; in this case the service is SOAP-
based and, therefore, the clients are as well. The SOAP-based clients use a handler, Java
code that has access to every outgoing and incoming SOAP message. In the case of
Amazon, the handler’s job is to inject into the SOAP request the authentication infor‐
mation that Amazon requires, in particular a digest based on the secretKey used in both
of the RESTful clients of Chapter 2. A message digest generated with the secretKey, rather
than the secretKey itself, is sent from the client to the Amazon service; hence, the se‐
cretKey itself does not travel over the wire. SOAP handlers are the focus of the next
chapter; for now, a handler is used but not analyzed.

The SOAP-based clients against Amazon’s E-Commerce service, like the other SOAP-
based Java clients in this chapter, rely upon wsimport-generated classes as building
blocks. There are some key points about the SOAP-based service and its clients:

• The WSDL and wsimport.
The WSDL for the SOAP-based version of Amazon’s E-Commerce service is avail‐
able at:

http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

This WSDL is more than 1,500 lines in size, with most of these lines in the XML
Schema. The wsimport utility can be applied to this WSDL in the usual way:

% wsimport -p amazon -keep \
 http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl\
 -b custom.xml

The result is a directory/package named amazon filled with client-support classes
generated from the WSDL. The part at the end, with custom.xml, is explained
shortly.

• Client-side API styles.
The Amazon SOAP-based service follows best design practices and is, therefore,
wrapped doc/lit. However, wsimport can generate different client APIs from one and
the same Amazon WSDL. This point deserves elaboration. Consider a very simple

SOAP-Based Clients Against Amazon’s E-Commerce Service | 173

operation in a SOAP-based service, which takes two arguments, text and a pattern,
and returns the number of times that the pattern occurs in the text. For example,
the text might be the novel War and Peace and the pattern might be the name of
one of the heroines, Natasha. The operation is named getCount. There are different
ways in which this operation might be implemented in Java. Perhaps the obvious
implementation would have the declaration:

public int getCount(String text, String pattern);

This version takes two arguments, the text and the pattern, and returns the count
as an int. Yet the client of a SOAP-based web service, following in the footsteps of
DCE/RPC, can distinguish between in and out parameters—arguments passed into
the service and ones passed out of this same service and back to the client. This
possibility opens the way to a quite different version of getCount:

public void getCount(String text, String pattern, Holder result);

The return type for getCount is now void, which means that the count must be
returned in some other way. The third parameter, of the special type Holder, embeds
the desired count of pattern occurrences in the text. This programming style is
uncommon in Java and, accordingly, might be judged inferior to the two-argument
version of getCount that returns the count directly as an int. The point of interest
is that wsimport can generate client-side artifacts in either style, and, perhaps sur‐
prisingly, the second style is the default for wsimport. In Java, the first style is:

SOAPBinding.ParameterStyle.BARE

and the second style is:
SOAPBinding.ParameterStyle.WRAPPED

The critical point is that these parameter styles refer to the wsimport artifacts gen‐
erated from a service WSDL—the parameter styles do not refer to the structure of
the service itself, which remains wrapped doc/lit. Java’s wsimport utility can present
this service style, on the client side, in different ways, known as parameter styles in
Java.

• Authentication credentials in a SOAP-based client.
A SOAP-based client against E-Commerce must send the same authentication cre‐
dentials as a RESTful client: a registered user’s accessId and a hash value generated
with the secretKey. In a REST-style client, these credentials are sent in the query
string of a GET request. A SOAP-based client is different in that its requests are all
POSTs, even if the intended web service operation is a read. In a SOAP-based ex‐
change over HTTP, the request is a SOAP envelope that is the body of a POST
request. Accordingly, a SOAP-based client must process the required credentials in
a different way. In this section, the credential processing is partly the job of a SOAP
handler, which is examined carefully in the next chapter.

174 | Chapter 4: SOAP-Based Web Services

In Chapter 3, the clients against the RESTful E-Commerce service did lookup operations.
For contrast, the SOAP-based client does a search against the Amazon E-Commerce
service. The AmazonClientBareStyle (see Example 4-15) is the first and friendliest
SOAP-based client.

Example 4-15. A SOAP-based Amazon client in bare parameter style
package amazon;

import amazon.AWSECommerceService;
import amazon.AWSECommerceServicePortType;
import amazon.ItemSearchRequest;
import amazon.ItemSearchResponse;
import amazon.ItemSearch;
import amazon.Items;
import amazon.Item;
import amazon.AwsHandlerResolver;
import java.util.List;

class AmazonClientBareStyle {
 public static void main(String[] args) {
 if (args.length < 2) {
 System.err.println("AmazonClientBareStyle <accessId> <secretKey>");
 return;
 }
 final String accessId = args[0];
 final String secretKey = args[1];

 AWSECommerceService service = new AWSECommerceService();
 service.setHandlerResolver(new AwsHandlerResolver(secretKey));
 AWSECommerceServicePortType port = service.getAWSECommerceServicePort();
 ItemSearchRequest request = new ItemSearchRequest();
 request.setSearchIndex("Books");
 request.setKeywords("Austen");
 ItemSearch itemSearch= new ItemSearch();
 itemSearch.setAWSAccessKeyId(accessId);
 itemSearch.setAssociateTag("kalin");
 itemSearch.getRequest().add(request);
 ItemSearchResponse response = port.itemSearch(itemSearch);
 List<Items> itemsList = response.getItems();
 int i = 1;
 for (Items next : itemsList)
 for (Item item : next.getItem())
 System.out.println(String.format("%2d: ", i++) +
 item.getItemAttributes().getTitle());
 }
}

The ZIP file with the sample code includes an executable JAR with the code from
Example 4-15 and its dependencies. The JAR can be executed as follows:

% java -jar AmazonClientBare.jar <accessId> <secretKey>

SOAP-Based Clients Against Amazon’s E-Commerce Service | 175

The AmazonClientBareStyle highlights what SOAP-based services have to offer to their
clients. The wsimport-generated classes include the AWSECommerceService with a no-
argument constructor. This class represents, to the client, the E-Commerce service. The
usual two-step occurs: in line 1 an AWSECommerceService instance is constructed and
in line 3 the getAWSECommerceServicePort method is invoked. The object reference
port can now be used, in line 6, to launch a search against the E-Commerce service,
which results in an ItemSearchResponse. Line 2 in the setup hands over the user’s
secretKey to the client-side handler, which uses the secretKey to generate a hash value
as a message authentication code, which Amazon can then verify on the service side.

The remaining code, from line 7 on, resembles the code in the second RESTful client
against the E-Commerce service. Here is a quick review of the SOAP-based code:

List<Items> itemsList = response.getItems();
int i = 1;
for (Items next : itemsList)
 for (Item item : next.getItem())
 System.out.println(String.format("%2d: ", i++) +
 item.getItemAttributes().getTitle());

The ItemSearchResponse from Amazon encapsulates a list of Items (line 1), each of
whose members is itself a list. The nested for loop iterates (line 2) over the individual
Item instances, printing the title of each book found (line 3). By the way, the search
returns the default number of items found, 10; it is possible to ask for all of the items
found. On a sample run, the output was:

 1: Persuasion (Dover Thrift Editions)
 2: Pride and Prejudice (The Cambridge Edition of the Works of Jane Austen)
 3: Emma (Dover Thrift Editions)
 4: Northanger Abbey (Dover Thrift Editions)
 5: Mansfield Park
 6: Love and Friendship
 7: Jane Austen: The Complete Collection (With Active Table of Contents)
 8: Lady Susan
 9: Jane Austen Collection: 18 Works, Pride and Prejudice, Love and Friendship,
 Emma, Persuasion, Northanger Abbey, Mansfield Park, Lady Susan & more!
10: The Jane Austen Collection: 28 Classic Works

Now is the time to clarify the custom.xml file used in the wsimport command against
the Amazon WSDL. The filename custom.xml is arbitrary and, for review, here is the
wsimport command:

% wsimport -p amazon -keep \
 http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl \
 -b custom.xml

The file custom.xml is:

<jaxws:bindings
 wsdlLocation =

176 | Chapter 4: SOAP-Based Web Services

 "http://ecs.amazonaws.com/AWSECommerceService/AWSECommerceService.wsdl"
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws">
 <jaxws:enableWrapperStyle>false</jaxws:enableWrapperStyle>
</jaxws:bindings>

The key element in the file sets the enableWrapperStyle for the parameters to false
(line 1). The result is the bare parameter style evident in the AmazonClientBareStyle
code. The alternative to this style is the default one, the client-side wrapped style. The
AmazonClientWrappedStyle (see Example 4-16) is a SOAP-based Amazon client in the
default style.

Example 4-16. A SOAP-based Amazon client in wrapped parameter style
package amazon2;

import amazon2.AWSECommerceService;
import amazon2.AWSECommerceServicePortType;
import amazon2.ItemSearchRequest;
import amazon2.ItemSearch;
import amazon2.Items;
import amazon2.Item;
import amazon2.OperationRequest;
import amazon2.SearchResultsMap;
import amazon2.AwsHandlerResolver;

import javax.xml.ws.Holder;
import java.util.List;
import java.util.ArrayList;

class AmazonClientWrappedStyle {
 public static void main(String[] args) {
 if (args.length < 2) {
 System.err.println("java AmazonClientWrappedStyle <accessId> <secretKey>");
 return;
 }
 final String accessId = args[0];
 final String secretKey = args[1];

 AWSECommerceService service = new AWSECommerceService();
 service.setHandlerResolver(new AwsHandlerResolver(secretKey));
 AWSECommerceServicePortType port = service.getAWSECommerceServicePort();
 ItemSearchRequest request = new ItemSearchRequest();
 request.setSearchIndex("Books");
 request.setKeywords("Austen");
 ItemSearch search = new ItemSearch();
 search.getRequest().add(request);
 search.setAWSAccessKeyId(accessId);
 search.setAssociateTag("kalin");
 Holder<OperationRequest> operationRequest = null;
 Holder<List<Items>> items = new Holder<List<Items>>();
 port.itemSearch(search.getMarketplaceDomain(),
 search.getAWSAccessKeyId(),

SOAP-Based Clients Against Amazon’s E-Commerce Service | 177

 search.getAssociateTag(),
 search.getXMLEscaping(),
 search.getValidate(),
 search.getShared(),
 search.getRequest(),
 operationRequest,
 items);
 Items retval = items.value.get(0);
 int i = 1;
 List<Item> item_list = retval.getItem();
 for (Item item : item_list)
 System.out.println(String.format("%2d: ", i++) +
 item.getItemAttributes().getTitle());
 }
}

The AmazonClientWrappedStyle code uses wsimport-generated classes created with the
following command:

% wsimport -p amazon2 -keep \
 http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

The WSDL is the same as in previous examples, but the style of the wsimport-classes
changes from bare to wrapped, a change reflected in the AmazonClientWrappedStyle
code. The change is evident at lines 1 and 2, which declare two object references of type
Holder. As the name suggests, a Holder parameter is meant to hold some value returned
from the E-Commerce service: the operationRequest holds metadata about the re‐
quest, whereas items holds the book list that results from a successful search. This idiom
is common in C or C++ but rare—and, therefore, clumsy—in Java. The Holder param‐
eters are the last two (lines 4 and 5) of the nine parameters in the revised itemSearch
(line 3). On a successful search, items refers to a value (line 6) from which a list of
Items is extracted. This code, too, is awkward in Java. This list of Items has a getItem
method (line 7), which yields a List<Item> from which the individual Item instances,
each representing a Jane Austen book, can be extracted.

The AmazonClientWrappedStyle client is clearly the clumsier of the two clients against
SOAP-based E-Commerce service, a service that has a single WSDL and whose response
payloads to the two clients are identical in structure. The two clients differ markedly in
their APIs, however. The bare style API would be familiar to most Java programmers,
but the wrapped style, with its two Holder types, would seem a bit alien even to an
experienced Java programmer. Nonetheless, the wrapped style remains the default in
Java and in DotNet.

178 | Chapter 4: SOAP-Based Web Services

Asynchronous Clients Against SOAP-Based Services
All of the SOAP-based clients examined so far make synchronous or blocking calls against
a web service. For example, consider these two lines from the bare style client against
the E-Commerce service:

ItemSearchResponse response = port.itemSearch(itemSearch);
List<Items> itemsList = response.getItems();

The call in line 1 to itemSearch blocks in the sense that line 2 does not execute until
itemSearch returns a value, perhaps null. There are situations in which a client might
need the invocation of itemSearch to return immediately so that other application logic
could be performed in the meantime. In this case, a nonblocking or asynchronous call
to itemSearch would be appropriate.

The RandClientAsync (see Example 4-17) is an asynchronous client against the Rand
Service (see Example 4-1).

Example 4-17. A client that makes asynchronous requests against the RandService
import javax.xml.ws.AsyncHandler;
import javax.xml.ws.Response;
import java.util.List;
import clientAsync.RandServiceService;
import clientAsync.RandService;
import clientAsync.NextNResponse;

public class RandClientAsync {
 public static void main(String[] args) {
 RandServiceService service = new RandServiceService();
 RandService port = service.getRandServicePort();
 port.nextNAsync(4, new MyHandler());
 try {
 Thread.sleep(5000); // in production, do something useful!
 }
 catch(Exception e) { }
 System.out.println("\nmain is exiting...");
 }
 static class MyHandler implements AsyncHandler<NextNResponse> {
 public void handleResponse(Response<NextNResponse> future) {
 try {
 NextNResponse response = future.get();
 List<Integer> nums = response.getReturn();
 for (Integer num : nums) System.out.println(num);
 }
 catch(Exception e) { System.err.println(e); }
 }
 }
}

SOAP-Based Clients Against Amazon’s E-Commerce Service | 179

Although an asynchronous client also could be coded against the E-Commerce service,
the far simpler RandService makes the client itself relatively straightforward; it is then
easier to focus on the asynchronous part of the API. No changes are required in the
RandService or its publication, under either Endpoint or a web server such as Tomcat.
The wsimport command again takes a customization file, in this example customA‐
sync.xml; the filename is arbitrary. The wsimport command is:

wsimport -p clientAsync -keep http://localhost:8888/rs?wsdl -b customAsync.xml

The customized binding file is:

<jaxws:bindings
 wsdlLocation="http://localhost:8888/rs?wsdl"
 xmlns:jaxws="http://java.sun.com/xml/ns/jaxws">
 <jaxws:enableAsyncMapping>true</jaxws:enableAsyncMapping>
</jaxws:bindings>

The customized binding sets the enableAsyncMapping to true (line 1). The wsimport
utility generates the same classes as in the earlier examples: Next1, Next1Response, and
so on. The request/response classes such as Next1 and Next1Response have additional
methods, however, to handle the asynchronous calls, and these classes still have the
methods that make synchronous calls.

The setup in the asynchronous client is the familiar two-step: first create a service in‐
stance and then invoke the getRandService method on this instance. The dramatic
change is line 1, the asynchronous call, which now takes two arguments:

port.nextNAsync(4, new MyHandler());

Although the nextNAsync method does return a value, my code does not bother to assign
this value to a variable. The reason is that the Java runtime passes the NextNResponse
message from the RandService to the client’s event handler, an instance of MyHandler,
which then extracts and prints the randomly generated integers from the service.

The call to nextNAsync, a method declared together with nextN in the wsimport-
generated RandService interface, takes two arguments: the number of requested ran‐
dom numbers and an event handler, in this case a MyHandler instance. The handler class
MyHandler must implement the AsyncHandler interface (line 2) by defining the han
dleResponse method (line 3). The handleResponse method follows the standard Java
pattern for event handlers: the method has void as its return type and it expects one
argument, an event triggered by a Response<NextNResponse> that arrives at the client.

When the client runs, the main thread executes the asynchronous call to nextNAsync,
which returns immediately. To prevent the main thread from exiting main and thereby
ending the application, the client invokes Thread.sleep. This is contrived, of course;
in a production environment, the main thread presumably would go on to do mean‐
ingful work. In this example, the point is to illustrate the execution pattern. When the

180 | Chapter 4: SOAP-Based Web Services

RandService returns the requested integers, the Java runtime starts a (daemon) thread
to execute the handleResponse callback, which prints the requested integers. In the
meantime, the main thread eventually wakes up and exits main, thereby terminating the
client’s execution. On a sample run, the output was:

1616290443
-984786015
1002134912
311238217
main is exiting...

The daemon thread executing handleResponse prints the four integers, and the main
thread prints the good-bye message.

Java and DotNet take different approaches toward generating, from a WSDL, support
for asynchronous calls against a service. DotNet automatically generates methods for
synchronous and asynchronous calls against the service; Java takes the more conser‐
vative approach of generating the asynchronous artifacts only if asked to do so with a
customized binding such as the one used in this example. The key point is that Java API,
like its DotNet counterpart, fully supports synchronous and asynchronous calls against
SOAP-based services such as the RandService.

How Are WSDL and UDDI Related?
WSDL documents, as service contracts, should be publishable and discoverable, as are
the services that they describe. A UDDI (Universal Description Discovery and Integra‐
tion) registry is one way to publish a WSDL so that potential clients can discover the
document and ultimately consume the web service that the WSDL describes. UDDI has
a type system that accommodates WSDL documents as well as other kinds of formal
service contracts. From a UDDI perspective, a WSDL appears as a two-part document.
One part, which comprises the types through the binding sections, is the UDDI service
interface. The other part, which comprises any import directives and the service sec‐
tion, is the UDDI service implementation. In WSDL, the service interface (portType
section) and service implementation (binding sections) are two parts of the same docu‐
ment. In UDDI, they are two separate documents, and these UDDI terms do not match
up exactly with their WSDL counterparts.

A WSDL does not explain service semantics or, in plainer terms, what the service is
about. The WSDL does explain, in a clear and precise way, the service’s invocation syntax:
the names of the service operations (e.g., an operation such as getTime); the operation
pattern (e.g., request/response rather than solicit/response); the number, order, and type
of arguments that each operation expects; faults, if any, associated with a service oper‐
ation; and the number, order, and types of response values from an operation. The W3C
is pursuing initiatives in web semantics under the rubric of WSDL-S (Semantics).

SOAP-Based Clients Against Amazon’s E-Commerce Service | 181

http://bit.ly/16X5hKD

As of now, however, a WSDL is useful only if a programmer already understands what
the service is about. The WSDL can guide you through technical aspects of a web service,
but this document presupposes rather than provides an insight into service semantics.

What’s Next?
JAX-WS has two distinct but related APIs for SOAP-based web services. One API, with
annotations such as @WebService and @WebMethod, focuses on what might be called the
application level. On the service side, annotations are used to create web services and
to specify their operations. Additional annotations such as @WebParam are available for
fine-tuning and documenting different aspects of a service and its operations. On the
client side, the application API enables clients to draw upon wsimport-generated classes
to access a SOAP-based service and to invoke its operations. A central feature of the
application level is the WSDL contract, which captures in XML the service and its op‐
erations, including essential details such as the invocation syntax for the service oper‐
ations, the encoding/decoding scheme for data types, the transport used for messages,
and the service endpoint. Frameworks such as JAX-WS and DotNet come with utilities
that put the WSDL to practical use.

A major appeal of the application level in JAX-WS is that the SOAP itself—the XML—
remains hidden on the service and the client sides. The underlying SOAP libraries se‐
rialize from Java into XML and deserialize from XML into Java, thereby allowing both
service and service client to work in Java data structures and in familiar Java program‐
ming idioms. JAX-B and related utilities allow REST-style services in Java to work
around the XML or JSON payloads typical of REST-style services, but JAX-WS, which
uses JAX-B under the hood, takes the further step of automating the serialization/
deserialization. JAX-WS is programmer-friendly on both the service and client side.

The examples in this chapter have remained, for the most part, at the JAX-WS appli‐
cation level but have touched on another level, the handler level. A second JAX-WS API,
with the Handler interface and its two subinterfaces LogicalHandler and SOAPHan
dler, provides access to the underlying SOAP. A SOAPHandler gives the programmer
access to the entire SOAP message, whereas the convenient LogicalHandler gives the
programmer access to the payload of the SOAP body. A SOAPHandler often is called a
message handler and a LogicalHandler is called simply a logical handler.

The handler API allows the programmer to inspect and, if needed, to manipulate the
SOAP that the underlying libraries generate. The distinction between the JAX-WS
application and handler APIs in web services corresponds roughly to the distinction
between the servlet and filter API in Java-based websites. (One important difference is
that JAX-WS handlers are available on both the client and the service side.) This chapter
introduced but did not explore the handler API in the clients against Amazon’s
E-Commerce service. In the REST-style clients of Chapter 3 against the E-Commerce

182 | Chapter 4: SOAP-Based Web Services

service, the clients made GET requests, and critical pieces of information (e.g., the user’s
accessId and an HMAC hash generated from the user’s secretKey) had to be sent in the
query string. The very same pieces of information are required in a SOAP-based client,
but such a client, even when invoking a read operation on the E-Commerce service,
sends a POST request whose body is a SOAP envelope. The JAX-WS libraries generate
the SOAP envelope, but a client-side handler, an instance of the mentioned but not listed
AwsServiceHandler class, inserts the user’s accessId, the HMAC hash, and a strictly
formatted timestamp into the SOAP envelope, in particular into the SOAP body. The
next chapter takes a close look at the AwsServiceHandler class.

The next chapter goes down to the JAX-WS handler level by explaining, first, how the
class AwsServiceHandler works in the E-Commerce service clients. This chapter then
does a full example with a client-side and a service-side handler, an example that de‐
liberately mimics the way that Amazon’s more complicated E-Commerce service works.
JAX-WS also exposes to the programmer the transport level, which is almost always
HTTP(S). On either the client side or the service side, JAW-WS code can inspect and,
if appropriate, modify the HTTP messages that carry SOAP messages as their payloads.
JAX-WS thus covers three distinct levels of SOAP-based web services: the application
level, the handler level, and the transport level. Chapter 5 also looks at some miscella‐
neous but related topics: SOAP faults in the application and handler levels, binary
payloads in SOAP services, and the Axis2 implementation of JAX-WS, which is an
alternative to the Metro implementation.

What’s Next? | 183

CHAPTER 5

SOAP Handlers and Faults

SOAP messages have some similarity to the HTTP messages that commonly transport
them. Each type of message, SOAP and HTTP, can have a header and a body, although
the header in a SOAP message is optional. In HTTP 1.1, there must be a header with at
least the one key/value pair, with Host as the key, but HTTP headers usually contain at
least a half dozen or so header elements. A SOAP message must have a body, which can
be, but typically is not, empty. Not every HTTP message has a body, of course, with GET
and DELETE messages as two bodyless examples. In each kind of message, the header,
if present, is meant to contain metadata; the body, if present, is meant to contain data.

SOAP has a messaging architecture that centers on the different uses envisioned for the
SOAP header and the SOAP body. At the base level of this architecture is the SOAP
message, a one-way transmission from a sender to a receiver. The fundamental message
exchange pattern (MEP) is thus one-way. SOAP-based applications such as web services
are free to establish conversational patterns that combine one-way messaging in richer
ways, for example, in the familiar request/response pattern that involves two one-way
messages in the opposite direction. Even request/response and solicit/response are brief
conversational patterns but these, too, can be combined to construct even richer pat‐
terns. There is no limit to how complex a SOAP conversational pattern may become.

A SOAP message has a sender and targets a receiver, but the SOAP messaging architec‐
ture allows for intermediaries, which are nonterminal recipients along the route from
the sender to the ultimate receiver. The sender, the receiver, and the intermediaries are
alike in being nodes along the path from the sender to the receiver. Figure 5-1 depicts
this architecture with a sender, a receiver, and two intermediaries.

185

Figure 5-1. SOAP message architecture: sender, intermediary, and receiver nodes

Along the route from sender to receiver, an intermediary node is supposed to inspect
and otherwise process elements in the SOAP message’s header, known as header
blocks; the SOAP message’s body, which contains the data, is supposed to be reserved
for the receiver alone. By contrast, the sender and the receiver are meant to enjoy access
to the entire SOAP message, including the body. The SOAP specification does not pre‐
scribe how an intermediary node is to process a header block, as this is an application-
specific rather than a SOAP requirement. Consider, for example, an application in which
a sender inserts a security credential into the SOAP message’s header. An intermediary
node might access this credential in order to verify it: if the verification succeeds, the
intermediary node might add a verification block to the SOAP message’s header and
then send the message on its way; if the verification fails, the intermediary node might
throw a SOAP fault, thereby terminating the message. The intermediaries thus can
function as filters that screen out messages that should not make their way to the ter‐
minal receiver.

In summary, the header/body distinction plays a key role in SOAP’s message architec‐
ture, and JAX-WS has an API that supports this architecture. This chapter focuses on
the JAX-WS handler API, which gives the nodes in the SOAP messaging architecture
low-level access to the entire SOAP message: header, body, and attachments. The chapter
also covers SOAP faults and SOAP attachments.

Chapter 4 introduced but did not clarify handlers. In the SOAP-based API for Amazon’s
E-Commerce service, a handler is used in order to insert critical information into a
SOAP request: an HMAC hash value generated from the user’s secretKey and a properly
formatted timestamp. Although such information counts as metadata, Amazon requires
that it be inserted into a SOAP request’s body, in particular as two children of the wrapper
element, which names the operation (for instance, lookup or search) that the request
targets. If the information is not inserted into the request body, then Amazon generates
a SOAP fault—an error message sent back to the client in place of a normal response.
Figure 5-2 depicts this situation.

186 | Chapter 5: SOAP Handlers and Faults

Figure 5-2. A SOAP fault versus a normal SOAP response

SOAP faults can be generated in two different contexts: from within the service code
itself or from within a handler. Examples of both are presented in this chapter.

The Handler Level in SOAP-Based Services and Clients
Figure 5-3 shows the structure of a SOAP message. In SOAP over HTTP, such a message
is itself the body of either an HTTP request, typically a POST request, or an HTTP
response. The message consists of:

• The SOAP part, which comprises the SOAP envelope, which in turn consists of an
optional header and a required body. The body can be, but typically is not, empty.
The header and the body are text, in particular XML.

• Arbitrarily many attachments, including none. Attachments are an efficient way to
transport media types such as audio or video as binary payloads belonging to a
SOAP message.

Figure 5-3. The structure of a SOAP message

SOAP attachments are covered later in this chapter. For now, the distinction between
the SOAP header and the SOAP body is of interest because this difference is a way to

The Handler Level in SOAP-Based Services and Clients | 187

focus on two related but separate SOAP APIs: an API for what might be called the
application level and a separate API for what might be called the handler level. (This
distinction roughly mirrors, in Java-based websites, the distinction between the servlet
API and the filter API, although servlets and filters occur only on the server side.) The
application and handler levels occur on the service side and on the client side. In the
examples so far, the focus has been on the application level with the use of annotations
such as @WebService and @WebMethod. The Amazon E-Commerce clients in Chap‐
ter 4 touched on the handler level because a hash generated from the user’s secretKey
together with a timestamp had to be inserted in a specified location within a SOAP
message; a handler did the required work. This section introduces the handler level in
two steps: first, by examining the AwsHandlerResolver class used in the two SOAP-
based E-Commerce clients of Chapter 4, and second, with an example that has code at
the handler level on both the client and the service side.

A quick look at how the application and handler levels interact may be useful before a
full code example. Recall the RandClient from Chapter 4, in particular these three lines
of code:

RandServiceService service = new RandServiceService();
RandService port = service.getRandServicePort();
System.out.println(port.next1()); // invoke next1

The first two lines set up the call to next1, which returns a randomly generated integer.
When this call executes, the underlying SOAP libraries generate the appropriate SOAP
envelope and send it, over HTTP, to the RandService. The three lines of code are at the
application level. The RandClient does not use any handlers; hence, nothing happens
at the handler level. Suppose that there was a handler; for now, the code details can be
ignored, but a depiction (see Figure 5-4) may be helpful.

A handler is inherently bidirectional: on either side, client or service, a handler handles
incoming and outgoing messages. A handler can detect whether a given SOAP message
is coming in or going out and react accordingly. Figure 5-4 depicts a single handler, but
multiple ones, a handler chain, are possible on either side. The service side in the figure
has no handlers.

Figure 5-4. The RandClient with an assumed handler

Handlers come in two types:

188 | Chapter 5: SOAP Handlers and Faults

• A SOAPHandler, abbreviated as a message handler, has access to the entire SOAP
message: headers, body, and attachments.

• A LogicalHandler has access only to the payload in the body of a SOAP message.

A SOAPHandler can do anything that a LogicalHandler can do because the former has
access to the entire SOAP message, but a LogicalHandler is convenient if the handler
code requires access only to the payload in the body of a SOAP message. Examples of
both LogicalHandler code and SOAPHandler code are forthcoming. How handlers of
different types can be chained together also is covered in the examples.

Handlers are close to the metal in that they have access to either the entire SOAP message
or just the payload in the body. In Figure 5-4, the SOAP libraries that underlie the
RandClient generate a SOAP request message in calls to next1 or nextN. By default,
these libraries create a message without a SOAP header. The message then goes to the
handler before being handed over to HTTP for transport to the service. The handler
can perform arbitrary logic on the SOAP message. For example, the handler could add
a SOAP header if the SOAP message did not have one already. The handler could add,
edit, remove, and otherwise process elements in the SOAP message—header, body, and
attachments. JAX-WS confines such low-level processing to the handler level so that
the application level remains a high level at which service operations are invoked and
response values are processed. In short, the handler/application distinction represents
a separation of concerns.

The AwsHandlerResolver and AwsSoapHandler classes (see Example 5-1) make up the
handler-level code mentioned but not explained in Chapter 4.

Example 5-1. The AwsHandlerResolver and AwsSoapHandler classes
package amazon;

import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.List;
import java.util.Set;
import java.util.TimeZone;
import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPMessage;
import javax.xml.ws.handler.Handler;
import javax.xml.ws.handler.HandlerResolver;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.PortInfo;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;

The Handler Level in SOAP-Based Services and Clients | 189

import org.apache.commons.codec.binary.Base64;
import org.w3c.dom.Element;
import org.w3c.dom.Node;

public class AwsHandlerResolver implements HandlerResolver {
 private String awsSecretKey;

 public AwsHandlerResolver(String awsSecretKey) {
 this.awsSecretKey = awsSecretKey;
 }
 public List<Handler> getHandlerChain(PortInfo portInfo) {
 List<Handler> handlerChain = new ArrayList<Handler>();
 QName serviceQName = portInfo.getServiceName();
 if(serviceQName.getLocalPart().equals("AWSECommerceService")) {
 handlerChain.add(new AwsSoapHandler(awsSecretKey));
 }
 return handlerChain;
 }
}

class AwsSoapHandler implements SOAPHandler<SOAPMessageContext> {
 private byte[] secretBytes;

 public AwsSoapHandler(String awsSecretKey) {
 secretBytes = getBytes(awsSecretKey);
 }
 public void close(MessageContext mCtx) { }
 public Set<QName> getHeaders() { return null; }
 public boolean handleFault(SOAPMessageContext mCtx) {
 return true;
 }
 public boolean handleMessage(SOAPMessageContext mCtx) {
 Boolean outbound =
 (Boolean) mCtx.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);
 if (outbound) {
 try {
 SOAPMessage soapMessage = mCtx.getMessage();
 SOAPBody soapBody = soapMessage.getSOAPBody();
 Node firstChild = soapBody.getFirstChild(); // operation name
 String timeStamp = getTimestamp();
 String signature = getSignature(firstChild.getLocalName(),
 timeStamp,
 secretBytes);
 append(firstChild, "Signature", signature);
 append(firstChild, "Timestamp", timeStamp);
 }
 catch(Exception e) {
 throw new RuntimeException("SOAPException thrown.", e);
 }
 }
 return true; // continue down the handler chain
 }

190 | Chapter 5: SOAP Handlers and Faults

 private String getSignature(String operation, String timeStamp,
 byte[] secretBytes) {
 try {
 String toSign = operation + timeStamp;
 byte[] toSignBytes = getBytes(toSign);
 Mac signer = Mac.getInstance("HmacSHA256");
 SecretKeySpec keySpec = new SecretKeySpec(secretBytes, "HmacSHA256");
 signer.init(keySpec);
 signer.update(toSignBytes);
 byte[] signBytes = signer.doFinal();
 String signature = new String(Base64.encodeBase64(signBytes));
 return signature;
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private String getTimestamp() {
 Calendar calendar = Calendar.getInstance();
 SimpleDateFormat dateFormat =
 new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss'Z'");
 dateFormat.setTimeZone(TimeZone.getTimeZone("UTC"));
 return dateFormat.format(calendar.getTime());
 }
 private void append(Node node, String elementName, String elementText) {
 Element element = node.getOwnerDocument().createElement(elementName);
 element.setTextContent(elementText);
 node.appendChild(element);
 }
 private byte[] getBytes(String str) {
 try {
 return str.getBytes("UTF-8");
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
}

The code in the AwsHandlerResolver class registers handlers with the runtime, and the
AwsSoapHandler is the message rather than a logical handler that gets registered. The
handler API is event-driven: the application registers a handler chain, which may be a
chain with just one handler, with the Java runtime; the runtime then invokes the ap‐
propriate handler methods on incoming and outgoing messages. The handler itself can
detect a message’s direction and react accordingly.

In the E-Commerce clients of Chapter 4, the AwsHandlerResolver class is used in this
context (line 1):

AWSECommerceService service = new AWSECommerceService();
service.setHandlerResolver(new AwsHandlerResolver(secretKey));
AWSECommerceServicePortType port = service.getAWSECommerceServicePort();

The Handler Level in SOAP-Based Services and Clients | 191

Line 1 links the service with an AwsHandlerResolver instance that encapsulates the
user’s secretKey. As the name suggests, the AwsHandlerResolver resolves which han‐
dlers, if any, are to be in play.

To implement the HandlerResolver interface, a class must define one method:

public List<Handler> getHandlerChain(PortInfo portInfo);

In this case, the implementation is short because there is only one handler to put into
the chain:

public List<Handler> getHandlerChain(PortInfo portInfo) {
 List<Handler> handlerChain = new ArrayList<Handler>();
 QName serviceQName = portInfo.getServiceName();
 if (serviceQName.getLocalPart().equals("AWSECommerceService"))
 handlerChain.add(new AwsSoapHandler(awsSecretKey));
 return handlerChain;
}

The getHandlerChain method creates an empty List<Handler> (line 1) and then
checks whether the service in question is Amazon’s AWSECommerceService, the official
name for the E-Commerce service (line 2). If so, an instance of the AwsSoapHandler
class, initialized with the user’s secretKey, is constructed (line 3). The Java runtime now
ensures that the handlers in the list, in this case just one, are invoked after the SOAP
message has been built but before this message is handed off to HTTP for transport to
the service.

The handler class AwsSoapHandler, which the resolver registers with the runtime, is a
SOAPHandler rather than a LogicalHandler:

class AwsSoapHandler implements SOAPHandler<SOAPMessageContext> {
 ...

The reason is that the AwsSoapHandler needs to add elements to the message body, and
a LogicalHandler provides access only to the current payload in the body. The methods
in the AwsSoapHandler class add to this initial payload. To implement the SOAPHan
dler interface and its superinterface Handler, the AwsSoapHandler class must define
four methods:
getHeaders

This is a convenience method that gives the handler access to the SOAP header
elements or headers for short. The runtime invokes this method first. In the current
example, the method is minimally defined but not used. Later examples use the
getHeaders method.

close

As the name suggests, this method is the last one that the runtime invokes. Once
again, the current example minimally defines but does not use this method.

192 | Chapter 5: SOAP Handlers and Faults

handleMessage and handleFault
The runtime invokes exactly one of these. For example, the two E-Commerce clients
in Chapter 4 send a search request to the Amazon service with one of two results:
the Amazon service accepts the request, conducts the search, and returns the results;
or the Amazon service generates a SOAP fault. Either a standard SOAP response
message or a fault message returns to the client: if a standard response, then the
runtime invokes handleMessage in the handler; if a SOAP fault, then the runtime
invokes handleFault in the handler.

The return type for the methods handleMessage and handleFault is boolean. A return
value of true means continue executing other handlers, if any, in the chain; a return value
of false means do not execute other handlers, if any, in the chain. The logic is similar
to the logic of filters in servlet-based websites. In this example, handleFault is mini‐
mally defined (that is, the method simply returns true), but handleMessage has logic
to make the SOAP request comply with the requirements of the E-Commerce service.

The handleMessage method deserves a closer look. Here is the main part of the code,
slightly reformatted:

Boolean outbound = (Boolean) mCtx.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);
if (outbound) {
 try {
 SOAPMessage soapMessage = mCtx.getMessage();
 SOAPBody soapBody = soapMessage.getSOAPBody();
 Node firstChild = soapBody.getFirstChild(); // operation name
 String timeStamp = getTimestamp();
 String signature = getSignature(firstChild.getLocalName(),
 timeStamp,
 secretBytes);
 append(firstChild, "Signature", signature);
 append(firstChild, "Timestamp", timeStamp);
 }
 ...

The handleMessage method first checks, in line 1, whether it is being invoked on an
outgoing (that is, request) or incoming (that is, response) SOAP message. Incoming
messages are of no interest to this handler. For an outgoing or request SOAP message,
the method uses the mCtx argument (of type SOAPMessageContext) to get the full SOAP
message from which the SOAPBody is extracted (line 2). The first child in the SOAP body
is the wrapper element, the name of the E-Commerce service operation (in this example,
the search operation), because the E-Commerce service uses wrapped document style
(line 3). Two utility methods provide the current time in the required format and an
HmacSHA256 digest generated from the user’s secretKey and other information (lines 4
and 5). These low-level operations are not of particular interest right now, but they are
required in any SOAP-based request to E-Commerce service. (Chapter 6, on security,

The Handler Level in SOAP-Based Services and Clients | 193

goes into the details of a hash such as HmacSHA256, and the next example in this chapter
clarifies HmacSHA256 further.)

Once the required timestamp and hash value are in hand, the handleMessage method
appends two XML elements to the wrapper element in the SOAP body: one with the so-
called signature, which is the message digest or hash value, and another with the time‐
stamp. After handleMessage returns true, the runtime invokes the close method—and
then hands the amended SOAP message off to the HTTP transport. Example 5-2 depicts
the before and after situation with respect to the work of the AwsSoapHandler: this
handler adds lines 1 and 2 to the already created SOAP request message.

Example 5-2. A before/after depiction of how the AwsSoapHandler works
 <Soap:Envelope> <Soap:Envelope>
 <Soap:Body> handler <Soap:Body>
 <ItemSearch> ==========> <ItemSearch>
 ... <Signature>...</Signature>
 </ItemSearch> <Timestamp>...</Timestamp>
 </Soap:Body> ...
 <Soap:Envelope> </ItemSearch>
 </Soap:Body>
 </Soap:Envelope>

 # Before handler runs # After handler runs

The SOAP-based version of Amazon’s E-Commerce service enforces strict conditions
on the structure of a SOAP request message. In particular, this service requires that a
message digest (the signature) and a timestamp be in the request body as children of
the wrapper element.

JAX-WS handlers are a way to separate low-level concerns, which require inspection
and even manipulation of SOAP messages, from the high-level concerns of invoking,
as transparently as possible, web service operations. At the application level, the SOAP
is completely hidden; at the handler level, the SOAP is exposed for whatever processing
is required. The next example uses handlers on the client and on the service side; this
example also introduces SOAP faults, which can be thrown at either the application or
the handler level.

Handlers and Faults in the predictionsSOAP Service
This section ports the various REST-style versions of the predictions web service to a
SOAP-based version. The new version is predictionsSOAP, whose structure can be
summarized as follows:

• There is a service client and a client-side message handler. The handler inserts an
HMAC hash into every client request against the predictionsSOAP service.

194 | Chapter 5: SOAP Handlers and Faults

However, the handler departs from the Amazon practice by inserting the hash into
the SOAP header rather than the SOAP body.

• The client, built atop wsimport-generated classes, invokes various CRUD opera‐
tions in the predictionsSOAP service.

• There is a service-side message handler whose job is to verify the HMAC hash from
the client.

• The service implements the standard CRUD operations.
• The service throws SOAP faults from both the handler and the application level in

order to contrast the two different APIs. As the name suggests, a SOAP fault signals
an error condition; the fault is a special message sent back to the client in place of
an error-free SOAP response. The service WSDL indicates, in the portType section,
that a client request may result in a fault message rather than a standard response.
The architecture of the predictionsSOAP service is sketched in Figure 5-5.

Figure 5-5. The architecture of the predictionsSOAP service

The predictionsSOAP service mirrors, in its structure, the SOAP-based version of Am‐
azon’s E-Commerce service. In each case, a client-side handler modifies an outgoing
SOAP message by inserting a security credential; a service-side handler then verifies the
credential before dealing with the request itself.

The PredictionsSOAP class (see Example 5-3), the main class for the predictions‐
SOAP service, has five service operations: getAll, getOne, create, edit, and delete.

Example 5-3. The PredictionsSOAP class with two methods that throw SOAP faults
package predictions;

import javax.annotation.Resource;
import javax.jws.WebService;
import javax.jws.WebMethod;
import javax.jws.HandlerChain;
import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;
import java.util.List;
import javax.servlet.ServletContext;

Handlers and Faults in the predictionsSOAP Service | 195

@WebService
@HandlerChain(file = "../../../WEB-INF/serviceHandler.xml")
public class PredictionsSOAP {
 @Resource
 private WebServiceContext wsCtx;
 private ServletContext sCtx;
 private static final Predictions predictions= new Predictions();
 private static final int maxLength = 16;
 @WebMethod
 public List<Prediction> getAll() {
 init();
 return predictions.getPredictions();
 }
 @WebMethod
 public Prediction getOne(int id) {
 init();
 return predictions.getPrediction(id);
 }
 @WebMethod
 public String create(String who, String what) throws VerbosityException {
 int count = wordCount(what);
 if (count > maxLength)
 throw new VerbosityException(count + " is too verbose!",
 "Max words: " + maxLength);
 init();
 Prediction p = new Prediction();
 p.setWho(who);
 p.setWhat(what);
 int id = predictions.addPrediction(p);
 String msg = "Prediction " + id + " created.";
 return msg;
 }
 @WebMethod
 public String edit(int id, String who, String what) throws VerbosityException {
 int count = wordCount(what);
 if (count > maxLength)
 throw new VerbosityException(count + " is too verbose!",
 "Max words: " + maxLength);
 init();
 String msg = "Prediction " + id + " not found.";
 Prediction p = predictions.getPrediction(id);
 if (p != null) {
 if (who != null) p.setWho(who);
 if (what != null) p.setWhat(what);
 msg = "Prediction " + id + " updated.";
 }
 return msg;
 }
 @WebMethod
 public String delete(int id) {
 init();
 String msg = "Prediction " + id + " not found.";

196 | Chapter 5: SOAP Handlers and Faults

 Prediction p = predictions.getPrediction(id);
 if (p != null) {
 predictions.getMap().remove(id);
 msg = "Prediction " + id + " removed.";
 }
 return msg;
 }
 private void init() {
 if (wsCtx == null) throw new RuntimeException("DI failed on wsCtx!");
 if (sCtx == null) { // ServletContext not yet set?
 MessageContext mCtx = wsCtx.getMessageContext();
 sCtx = (ServletContext) mCtx.get(MessageContext.SERVLET_CONTEXT);
 predictions.setServletContext(sCtx);
 }
 }
 private int wordCount(String words) {
 if (words == null) return -1;
 return words.trim().split("\\s+").length;
 }
}

Two of the implementing methods, create and edit (lines 1 and 2), throw an exception
named VerbosityException if the creation of a new Prediction or the editing of an
existing one results in a candidate prediction that exceeds the maximum length, cur‐
rently set to 16 words. Each of the methods create and edit is annotated as a @WebMethod
and each throws a VerbosityException, which becomes a fault at the SOAP level. As
a result, the service’s WSDL now contains an extra message in the portType section for
the create and edit operations. Here is a WSDL segment that includes the portion for
create and, for contrast, delete:

<portType name="PredictionsSOAP">
 <operation name="delete">
 <input wsam:Action="http://predictions/PredictionsSOAP/deleteRequest"
 message="tns:delete" />
 <output wsam:Action="http://predictions/PredictionsSOAP/deleteResponse"
 message="tns:deleteResponse" />
 </operation>
 <operation name="create">
 <input wsam:Action="http://predictions/PredictionsSOAP/createRequest"
 message="tns:create" />
 <output wsam:Action="http://predictions/PredictionsSOAP/createResponse"
 message="tns:createResponse" />
 <fault message="tns:VerbosityException"
 name="VerbosityException"
 wsam:Action=
 "http://predictions/PredictionsSOAP/create/Fault/VerbosityException"/>
 </operation>
 ...

Handlers and Faults in the predictionsSOAP Service | 197

The delete operation has the usual input and output messages (line 1), whereas the
create operation now has, in addition to the usual two, a fault message as well (line 2);
the fault message, like all of the other messages, is defined in the XML Schema.

A VerbosityException is thrown at the application rather than at the handler level.
Accordingly, the underlying SOAP libraries handle the details of converting a Java
Exception into a SOAP fault message. The VerbosityException class is standard Java:

package predictions;
public class VerbosityException extends Exception {
 private String details;
 public VerbosityException(String reason, String details) {
 super(reason);
 this.details = details;
 }
 public String getFaultInfo() { return this.details; }
}

A VerbosityException has a reason (line 1) to explain why the fault occurred together
with details (line 2) that provide additional information. Both the reason and the
details become part of the SOAP fault message.

Generating a VerbosityException is standard Java—a throw clause is used to generate
an exception. The bodies of the create and edit methods begin in the same way—with
a check of whether the submitted Prediction (the parameter name is what) is too long:

int count = wordCount(what);
if (count > maxLength)
 throw new VerbosityException(count + " is too verbose!",
 "Max words: " + maxLength);

If a candidate Prediction exceeds the maximum length, a VerbosityException is
thrown (line 1) with the regular Java syntax. Generating a SOAP fault at the application
level requires just two conditions:

• A service operation (that is, a @WebMethod) throws a customized Exception, in this
case a VerbosityException.

• The customized Exception should invoke the superclass constructor with the rea‐
son for the fault (line 1 in the full listing) and also should implement the method
getFaultInfo (line 2 in the full listing), which can provide additional detail about
the fault.

For the fault message returned from the PredictionsSOAP service when a submitted
prediction is 18 words in length, see Example 5-4.

198 | Chapter 5: SOAP Handlers and Faults

Example 5-4. A fault generated from a verbose prediction
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header/>
 <S:Body>
 <S:Fault xmlns:ns4="http://www.w3.org/2003/05/soap-envelope">
 <faultcode>S:Server</faultcode>
 <faultstring>18 is too verbose!</faultstring>
 <detail>
 <ns2:VerbosityException xmlns:ns2="http://predictions/">
 <faultInfo>Max words: 16</faultInfo>
 <message>18 is too verbose!</message>
 </ns2:VerbosityException>
 </detail>
 </S:Fault>
 </S:Body>
</S:Envelope>

The Backend Support Classes
The PredictionsSOAP class has backend classes in support, in particular Prediction
(see Example 5-5) and Predictions (see Example 5-6). Neither the PredictionsSOAP
class nor any of the backend classes does any explicit XML processing, of course, because
the underlying SOAP libraries handle the serialization and deserialization automatically.

Example 5-5. The Prediction supporting class
package predictions;

import java.io.Serializable;

public class Prediction implements Serializable, Comparable<Prediction> {
 private String who; // person
 private String what; // his/her prediction
 private int id; // identifier used as lookup key
 public Prediction() { }
 public void setWho(String who) { this.who = who; }
 public String getWho() { return this.who; }
 public void setWhat(String what) { this.what = what; }
 public String getWhat() { return this.what; }
 public void setId(int id) { this.id = id; }
 public int getId() { return this.id; }
 public int compareTo(Prediction other) {
 return this.id - other.id;
 }
}

The Prediction class implements Comparable and, therefore, defines the compareTo
method so that a client against the predictionsSOAP service can get a sorted list of
Predictions on a getAll request. Otherwise, the Prediction class is a POJO class with

Handlers and Faults in the predictionsSOAP Service | 199

three properties: id, which identifies a Prediction; who, which names the author of the
Prediction; and what, which consists of the actual words in the Prediction.

Example 5-6. The Predictions supporting class
package predictions;

import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import java.io.ByteArrayOutputStream;
import java.util.Arrays;
import java.util.List;
import java.util.ArrayList;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicInteger;
import javax.servlet.ServletContext;

public class Predictions {
 private ConcurrentMap<Integer, Prediction> predictions;
 private ServletContext sctx;
 private AtomicInteger mapKey;

 public Predictions() {
 predictions = new ConcurrentHashMap<Integer, Prediction>();
 mapKey = new AtomicInteger();
 }
 public void setServletContext(ServletContext sctx) {
 this.sctx = sctx;
 }
 public ServletContext getServletContext() { return this.sctx; }
 public void setMap(ConcurrentMap<String, Prediction> predictions) { }
 public ConcurrentMap<Integer, Prediction> getMap() {
 if (good2Go()) return this.predictions;
 else return null;
 }
 public int addPrediction(Prediction p) {
 int id = mapKey.incrementAndGet();
 p.setId(id);
 predictions.put(id, p);
 return id;
 }
 public Prediction getPrediction(int id) {
 return predictions.get(id);
 }
 public List<Prediction> getPredictions() {
 List<Prediction> list;
 if (good2Go()) {
 Object[] preds = predictions.values().toArray();
 Arrays.sort(preds);

200 | Chapter 5: SOAP Handlers and Faults

 list = new ArrayList<Prediction>();
 for (Object obj : preds) list.add((Prediction) obj);
 return list;
 }
 else
 return null;
 }
 private boolean good2Go() {
 if (getServletContext() == null) return false;
 if (predictions.size() < 1) populate();
 return true;
 }
 private void populate() {
 String filename = "/WEB-INF/data/predictions.db";
 InputStream in = sctx.getResourceAsStream(filename);
 // Read the data into the array of Predictions.
 if (in != null) {
 try {
 InputStreamReader isr = new InputStreamReader(in);
 BufferedReader reader = new BufferedReader(isr);
 int i = 0;
 String record = null;
 while ((record = reader.readLine()) != null) {
 String[] parts = record.split("!");
 Prediction p = new Prediction();
 p.setWho(parts[0]);
 p.setWhat(parts[1]);
 addPrediction(p);
 }
 }
 catch (IOException e) { }
 }
 }
}

The Predictions class provides the supporting data structures, in particular a thread-
safe ConcurrentMap (line 1), together with convenience methods such as the method
getPredictions (line 3), which returns a sorted List<Prediction>, and the method
addPrediction (line 2), which adds a newly created Prediction to the existing collec‐
tion. The predictionsSOAP service invokes these methods as needed. As in the earlier
versions, the service initializes the Prediction collection from the predictions.db file in
the deployed WAR file.

From the Client to the Service
There remains one more service-side class to discuss, the ServiceHashHandler. Perhaps
the best way to clarify this handler, however, is to switch first to the client side. The
reason is that the service-side handler extracts and verifies a credential that a client-side
handler needs to inject into every SOAP request message. One motivation behind the

Handlers and Faults in the predictionsSOAP Service | 201

predictionsSOAP example is to mimic the authentication scheme used in Amazon’s
E-Commerce service.

The PredictionsClient class (see Example 5-7) is a client against the predictions‐
SOAP service.

Example 5-7. The PredictionsClient against the predictionsSOAP service
import clientSOAP.PredictionsSOAP;
import clientSOAP.PredictionsSOAPService;
import clientSOAP.Prediction;
import clientSOAP.ClientHandlerResolver;
import java.util.List;

public class PredictionsClient {
 public static void main(String[] args) {
 if (args.length < 2) {
 System.err.println("Usage: PredictionsClient <name> <key>");
 return;
 }
 new PredictionsClient().runTests(args[0], args[1]);
 }
 private void runTests(String name, String key) {
 PredictionsSOAPService service = new PredictionsSOAPService();
 service.setHandlerResolver(new ClientHandlerResolver(name, key));
 PredictionsSOAP port = service.getPredictionsSOAPPort();

 getTests(port);
 postTest(port);
 getAllTest(port); // confirm the POST
 deleteTest(port, 33); // delete the just POSTed prediction
 getAllTest(port); // confirm the POST
 putTest(port);
 }
 private void getTests(PredictionsSOAP port) {
 getAllTest(port);
 getOneTest(port);
 }
 private void getAllTest(PredictionsSOAP port) {
 msg("getAll");
 List<Prediction> preds = port.getAll();
 for (Prediction pred : preds)
 System.out.println(String.format("%2d: ", pred.getId()) +
 pred.getWho() + " predicts: " + pred.getWhat());
 }
 private void getOneTest(PredictionsSOAP port) {
 msg("getOne (31)");
 System.out.println(port.getOne(31).getWhat());
 }
 private void postTest(PredictionsSOAP port) {
 msg("postTest");
 String who = "Freddy";

202 | Chapter 5: SOAP Handlers and Faults

 String what = "Something bad may happen.";
 String res = port.create(who, what);
 System.out.println(res);
 }
 private void putTest(PredictionsSOAP port) {
 msg("putTest -- here's the record to be edited");
 getOneTest(port);
 msg("putTest results");
 String who = "FooBar";
 String what = null; // shouldn't change
 int id = 31;
 String res = port.edit(id, who, what);
 System.out.println(res);
 System.out.println("Confirming:");
 Prediction p = port.getOne(31);
 System.out.println(p.getWho());
 System.out.println(p.getWhat());
 }
 private void deleteTest(PredictionsSOAP port, int id) {
 msg("deleteTest");
 String res = port.delete(id);
 System.out.println(res);
 }
 private void msg(String s) {
 System.out.println("\n" + s + "\n");
 }
}

As usual, the PredictionsClient uses wsimport-generated artifacts, which are in the
clientSOAP package. This client, together with dependencies, is packaged in the exe‐
cutable JAR file PredictionsClient.jar:

% java -jar PredictionsClient.jar
Usage: PredictionsClient <name> <key>

The client expects two command-line arguments (line 1): a name (in Amazon E-
Commerce, the accessId) and a key (in Amazon E-Commerce, the secretKey). The
predictionsSOAP service includes a DataStore class that mimics a database with a map
with names as the lookup keys and secret keys as their values. Accordingly, the
command:

% java -jar PredictionsClient.jar moe MoeMoeMoe

provides the required pair of command-line arguments, with moe as the name and
MoeMoeMoe as the key.

The PredictionsClient dynamically sets the client-side handler whose job is to turn
the command-line arguments into a credential that the service-side handler can verify.
Here is the relevant code segment:

Handlers and Faults in the predictionsSOAP Service | 203

PredictionsSOAPService service = new PredictionsSOAPService();
service.setHandlerResolver(new ClientHandlerResolver(name, key));
PredictionsSOAP port = service.getPredictionsSOAPPort();

In line 1, name and key are the two command-line arguments. After setting the handler,
the PredictionsClient runs the expected tests against the CRUD operations that the
predictionsSOAP service implements: getAll, getOne, create, edit, and delete. It should
be noted that the PredictionsClient, like the predictionsSOAP service, does absolutely
no XML processing but instead works exclusively with Java data structures such as
List<Prediction>.

The ClientHandlerResolver class (see Example 5-8) registers an instance of the class
ClientHashHandler with the runtime system. Before digging into the details, it may be
helpful to do a before/after comparison with respect to the handler.

Example 5-8. The ClientHandlerResolver and ClientHashHandler classes
package clientSOAP;

import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.List;
import java.util.Set;
import java.util.TimeZone;
import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPMessage;
import javax.xml.soap.SOAPEnvelope;
import javax.xml.soap.SOAPHeader;
import javax.xml.ws.handler.Handler;
import javax.xml.ws.handler.HandlerResolver;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.PortInfo;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;
import org.apache.commons.codec.binary.Base64;
import org.w3c.dom.Element;
import org.w3c.dom.Node;

public class ClientHandlerResolver implements HandlerResolver {
 private String name;
 private String key;

 public ClientHandlerResolver(String name, String key) {
 this.name = name;
 this.key = key;
 }
 public List<Handler> getHandlerChain(PortInfo portInfo) {
 List<Handler> handlerChain = new ArrayList<Handler>();

204 | Chapter 5: SOAP Handlers and Faults

 handlerChain.add(new ClientHashHandler(this.name, this.key));
 return handlerChain;
 }
}

class ClientHashHandler implements SOAPHandler<SOAPMessageContext> {
 private byte[] secretBytes;
 private String name;

 public ClientHashHandler(String name, String key) {
 this.name = name;
 this.secretBytes = getBytes(key);
 }
 public void close(MessageContext mCtx) { }
 public Set<QName> getHeaders() { return null; }
 public boolean handleFault(SOAPMessageContext mCtx) {
 try {
 SOAPMessage msg = mCtx.getMessage();
 msg.writeTo(System.err);
 }
 catch(Exception e) { throw new RuntimeException(e); }
 return true;
 }
 public boolean handleMessage(SOAPMessageContext mCtx) {
 Boolean outbound =
 (Boolean) mCtx.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);
 if (outbound) {
 try {
 SOAPMessage soapMessage = mCtx.getMessage();
 SOAPEnvelope envelope = soapMessage.getSOAPPart().getEnvelope();
 // Ensure there is a header and add a 'wrapper' element.
 if (envelope.getHeader() == null) envelope.addHeader();
 SOAPHeader header = envelope.getHeader();
 QName qn = new QName("http://predictionsSOAP", "credentials");
 header.addHeaderElement(qn);
 // Now insert credentials into the header.
 String timeStamp = getTimestamp();
 String signature = getSignature(this.name,
 timeStamp,
 this.secretBytes);
 Node firstChild = header.getFirstChild();
 append(firstChild, "Name", this.name);
 append(firstChild, "Signature", signature);
 append(firstChild, "Timestamp", timeStamp);
 soapMessage.saveChanges();
 }
 catch(Exception e) {
 throw new RuntimeException("SOAPException thrown.", e);
 }
 }
 return true; // continue down the handler chain
 }

Handlers and Faults in the predictionsSOAP Service | 205

 private String getSignature(String name, String timestamp, byte[] secretBytes) {
 try {
 System.out.println("Name == " + name);
 System.out.println("Timestamp == " + timestamp);
 String toSign = name + timestamp;
 byte[] toSignBytes = getBytes(toSign);
 Mac signer = Mac.getInstance("HmacSHA256");
 SecretKeySpec keySpec = new SecretKeySpec(secretBytes, "HmacSHA256");
 signer.init(keySpec);
 signer.update(toSignBytes);
 byte[] signBytes = signer.doFinal();
 String signature = new String(Base64.encodeBase64(signBytes));
 return signature;
 }
 catch(Exception e) {
 throw new RuntimeException("NoSuchAlgorithmException thrown.", e);
 }
 }
 private String getTimestamp() {
 Calendar calendar = Calendar.getInstance();
 SimpleDateFormat dateFormat =
 new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss'Z'");
 dateFormat.setTimeZone(TimeZone.getTimeZone("UTC"));
 return dateFormat.format(calendar.getTime());
 }
 private void append(Node node, String elementName, String elementText) {
 Element element = node.getOwnerDocument().createElement(elementName);
 element.setTextContent(elementText);
 node.appendChild(element);
 }
 private byte[] getBytes(String str) {
 try {
 return str.getBytes("UTF-8");
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
}

As an example, consider the first test that the PredictionsClient runs: the client in‐
vokes getAll on the service to get a list of all of the predictions. Here is what happens:

• The underlying SOAP libraries generate the appropriate SOAP message:
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body><ns2:getAll xmlns:ns2="http://predictions/"/></S:Body>
</S:Envelope>

This automatically generated SOAP message has no header.
• Before this message is handed over to HTTP for transport to the service, the runtime

invokes the ClientHashHandler, which amends the outgoing message to:

206 | Chapter 5: SOAP Handlers and Faults

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header>
 <credentials xmlns="http://predictionsSOAP">
 <Name xmlns="">moe</Name>
 <Signature xmlns="">
 vkIQm8isdpomHeQ1aFqckzQawlZakj+hWOQaxsQcPgU=
 </Signature>
 <Timestamp xmlns="">2014-03-26T01:12:47Z</Timestamp>
 </credentials>
 </S:Header>
 <S:Body>
 <ns2:getAll xmlns:ns2="http://predictions/"/>
 </S:Body>
</S:Envelope>

A SOAP header together with a credentials element is added; the credentials ele‐
ment has three subelements tagged Name, Signature, and Timestamp in that lexico‐
graphical order. The Name is the command-line argument moe and the Signature is an
HmacSHA256 hash encoded in base64, the same kind of hash used in Amazon’s E-
Commerce service. The Signature hash is generated from the provided key value
MoeMoeMoe, but this secretKey cannot be recovered from the hash. (Chapter 6, on secu‐
rity, explains why.) Accordingly, Moe’s secret key is not in jeopardy of being hijacked
when the SOAP request is sent over the wire.

The ClientHashHandler class implements the SOAPHandler interface and, therefore,
defines the four methods getHeaders, close, handleFault, and handleMessage (lines
1 through 4 in the code listing). Only handleFault and handleMessage are of interest
here. Recall that handlers are inherently bidirectional; that is, they handle incoming
and outgoing messages alike, and only one of these methods is invoked in either case:
if there is a fault, the runtime invokes handleFault; otherwise, the runtime invokes
handleMessage.

The handleMessage method has work to do only on outgoing messages or requests;
hence, this method checks the direction of the message (line 5). If the message is indeed
outgoing, the handler does the following:

• Checks whether there is a SOAP header and, if not, adds one (line 6).
• Adds, as the first child of the SOAP header, an element tagged credentials (line

7).
• Adds, as children of the credentials element, three elements tagged Name (with a

value such as moe), Signature (whose value is an HmacSHA256 hash generated with,
in this case, Moe’s secret key), and Timestamp (whose value is a properly formatted
timestamp).

Handlers and Faults in the predictionsSOAP Service | 207

The outgoing SOAP message, a request, is now properly structured. The SOAP body
names the operation of interest (for instance, getOne) and includes any required argu‐
ments (in this example, the integer identifier of the Prediction to get). The SOAP
header contains the requester’s name, a hash value that serves as a signature, and a
timestamp.

The handler method handleFault does not check the message direction because a fault
would arrive, in any case, as a response from the predictionsSOAP service. This service
generates a SOAP fault as a VerbosityException if a candidate Prediction is exces‐
sively wordy. At present, handleFault simply prints the SOAP fault to the standard
error; in a production environment, more elaborate logic might be brought into play—
for instance, the fault might be saved in a data store for later analysis.

Handlers, especially SOAP handlers, are powerful in that they can amend the SOAP
message created at the application level. In this example, a SOAP rather than a Logical
handler is needed because the handler needs access to the SOAP header. On the service
side, the handler also needs to be a SOAP handler.

The ServiceHashHandler (see Example 5-9) is a service-side SOAP handler. On any
incoming message, this handler checks for the following:

• Does the message include a SOAP header? If not, generate a SOAP fault (line 1).
• Are there at least three children of the element tagged credentials? If not, generate

a SOAP fault (line 2).
• Are the Name, Signature, and Timestamp values all non-null? If not, generate a

SOAP fault (line 3).
• Does the Name, used as a lookup key in the service-side data store, have a value?

(The value should be the user’s secret key.) If not, generate a SOAP fault (line 4).
• Does the Signature generated on the service side match the Signature sent in the

client request? If not, generate a SOAP fault (line 5).

Example 5-9. The service-side ServiceHashHandler, which verifies the credentials in a
request
package predictions;

import java.text.SimpleDateFormat;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.List;
import java.util.Set;
import java.util.Map;
import java.util.HashMap;
import java.util.TimeZone;
import java.util.Iterator;

208 | Chapter 5: SOAP Handlers and Faults

import java.util.Arrays;
import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPHeader;
import javax.xml.soap.SOAPBody;
import javax.xml.soap.SOAPFault;
import javax.xml.soap.SOAPMessage;
import javax.xml.ws.soap.SOAPFaultException;
import javax.xml.soap.SOAPException;
import javax.xml.ws.handler.Handler;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;
import org.apache.commons.codec.binary.Base64;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

public class ServiceHashHandler implements SOAPHandler<SOAPMessageContext> {
 private byte[] secretBytes;

 public ServiceHashHandler() { }
 public void close(MessageContext mCtx) { }
 public Set<QName> getHeaders() { return null; }
 public boolean handleFault(SOAPMessageContext mCtx) {
 return true;
 }
 public boolean handleMessage(SOAPMessageContext mCtx) {
 Boolean outbound =
 (Boolean) mCtx.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);
 if (!outbound) {
 try {
 SOAPMessage msg = mCtx.getMessage();
 SOAPHeader soapHeader = msg.getSOAPHeader();
 if (soapHeader == null)
 generateFault(msg, "No header!");
 Node node = soapHeader.getFirstChild(); // credentials
 NodeList nodeList = node.getChildNodes(); // Name, Timestamp, Sig.
 if (nodeList.getLength() < 3)
 generateFault(msg, "Too few header nodes!");
 // Extract the required attributes.
 String name = nodeList.item(0).getFirstChild().getNodeValue();
 String signature = nodeList.item(1).getFirstChild().getNodeValue();
 String timestamp = nodeList.item(2).getFirstChild().getNodeValue();
 if (name == null || timestamp == null || signature == null)
 generateFault(msg, "Missing header key/value pairs!");
 // Generate comparison signature and compare against what's sent.
 String secret = DataStore.get(name);
 if (secret == null)
 generateFault(msg, name + " not registered!");
 byte[] secretBytes = getBytes(secret);
 String localSignature = getSignature(name, timestamp, secretBytes);

Handlers and Faults in the predictionsSOAP Service | 209

 if (!verify(signature, localSignature))
 generateFault(msg, "HMAC signatures do not match.");
 }
 catch(Exception e) {
 throw new RuntimeException("SOAPException thrown.", e);
 }
 }
 return true; // continue down the handler chain
 }
 private boolean verify(String sig1, String sig2) {
 return Arrays.equals(sig1.getBytes(), sig2.getBytes());
 }
 private String getSignature(String name, String timestamp, byte[] secretBytes) {
 try {
 System.err.println("Name == " + name);
 System.err.println("Timestamp == " + timestamp);
 String toSign = name + timestamp;
 byte[] toSignBytes = getBytes(toSign);
 Mac signer = Mac.getInstance("HmacSHA256");
 SecretKeySpec keySpec = new SecretKeySpec(secretBytes, "HmacSHA256");
 signer.init(keySpec);
 signer.update(toSignBytes);
 byte[] signBytes = signer.doFinal();
 String signature = new String(Base64.encodeBase64(signBytes));
 return signature;
 }
 catch(Exception e) {
 throw new RuntimeException("NoSuchAlgorithmException thrown.", e);
 }
 }
 private String getTimestamp() {
 Calendar calendar = Calendar.getInstance();
 SimpleDateFormat dateFormat =
 new SimpleDateFormat("yyyy-MM-dd'T'HH:mm:ss'Z'");
 dateFormat.setTimeZone(TimeZone.getTimeZone("UTC"));
 return dateFormat.format(calendar.getTime());
 }
 private byte[] getBytes(String str) {
 try {
 return str.getBytes("UTF-8");
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void generateFault(SOAPMessage msg, String reason) {
 try {
 SOAPBody body = msg.getSOAPBody();
 SOAPFault fault = body.addFault();
 fault.setFaultString(reason);
 throw new SOAPFaultException(fault);
 }
 catch(SOAPException e) { }

210 | Chapter 5: SOAP Handlers and Faults

 }
}

Signature Verification
The predictionsSOAP service does signature verification in basically the same way that
Amazon does. To make a request against the predictionsSOAP service, a client needs a
key. How this is distributed to the client is ignored in this example. In the Amazon case,
the secretKey is provided when a user registers with Amazon, and, of course, Amazon
maintains a copy of the secretKey. In the predictionsSOAP example, the service-side
DataStore has a map whose lookup keys are usernames (for instance, Moe) and whose
values are the users’ secret keys (in this case, MoeMoeMoe). On an incoming message,
the ServiceHashHandler recomputes the hash value—generated on the client side with
the user’s key—and then does a byte-by-byte comparison of the sent signature and the
signature computed on the service side. The code is in the verify utility method:

private boolean verify(String sig1, String sig2) {
 return Arrays.equals(sig1.getBytes(), sig2.getBytes());
}

The argument sig1 is the sent signature, and the argument sig2 is the signature com‐
puted on the service side.

Faults from the Application and Handler Levels
The API for generating a SOAP fault at the handler level differs significantly from the
API for generating a SOAP fault at the application level. At the application level, the
regular Java syntax of:

throw new VerbosityException(...);

suffices; at the handler level, by contrast, the SOAP fault needs to be constructed and
then thrown. Here again is the generateFault method in the ServiceHashHandler:

private void generateFault(SOAPMessage msg, String reason) {
 try {
 SOAPBody body = msg.getSOAPBody();
 SOAPFault fault = body.addFault();
 fault.setFaultString(reason);
 throw new SOAPFaultException(fault);
 }
 catch(SOAPException e) { }
}

The generateFault method uses the incoming SOAP message (msg is the reference) to
get the SOAP body (line 1). A SOAP fault is then added to body (line 2); the reason for
the fault is given; and a SOAPFaultException, initialized with the fault information (line
3), is thrown—which in turn causes a SOAP fault message to be sent back to the requester

Handlers and Faults in the predictionsSOAP Service | 211

(line 4). If desired, additional Detail could be added to the SOAPFault, which has an
addDetail method.

Linking the Service-Side Handler to the Service
The service-side handler ServiceHashHandler needs to be linked to the service itself,
whose @WebService-annotated class is PredictionsSOAP. On the client side, the linking
is dynamic. Here, for review, are the two critical lines of code in the PredictionsClient:

PredictionsSOAPService service = new PredictionsSOAPService();
service.setHandlerResolver(new ClientHandlerResolver(name, key));

Line 2 in the listing performs the dynamic linking. With Tomcat deployment, this option
is not available. Instead, the predictionsSOAP service and the ServiceHashHandler are
linked through an XML configuration file encapsulated in the deployed WAR file:

<handler-chains xmlns="http://java.sun.com/xml/ns/javaee">
 <handler-chain>
 <handler>
 <handler-name>predictions.ServiceHashHandler</handler-name>
 <handler-class>predictions.ServiceHashHandler</handler-class>
 </handler>
 </handler-chain>
</handler-chains>

The name of the configuration file is arbitrary. A handler-chain (line 1) can include
arbitrarily many handler instances but, in this case, there is but one handler in the
handler-chain, the handler ServiceHashHandler (line 2). This configuration file then
is referenced with a @HandlerChain annotation in the PredictionsSOAP class:

@WebService
@HandlerChain(file = "../../../WEB-INF/serviceHandler.xml")
public class PredictionsSOAP {
...

The serviceHandler.xml file winds up in the WEB-INF directory of the deployed WAR
file because the usual Ant script is used to deploy the predictionsSOAP service to Tomcat.

The configuration document serviceHandler.xml shown above indicates, with its
handler-chain tag, that multiple handlers might be in play on either the service or the
client side. Figure 5-6 depicts the structure of such a chain. For an outgoing message,
logical handlers come into play first. This is appropriate because such handlers have
limited scope; that is, they have access only to the payload in the SOAP body. The (SOAP)
message handlers then come into play and these handlers, as noted earlier, have access
to the entire SOAP message. For an incoming message, the order is reversed: the (SOAP)
message handlers have first access and the logical handlers have last access. Message
handlers are sufficient for any handler logic precisely because they have access to the

212 | Chapter 5: SOAP Handlers and Faults

entire SOAP message, but logical handlers are convenient in that the runtime makes
available only the SOAP body’s payload.

Figure 5-6. The handler-chain structure

The next section adds a second handler, in this case a LogicalHandler, to the client side
of the predictionsSOAP service. The result is a true chain of handlers.

A Handler Chain with Two Handlers
In the predictionsSOAP service, three of the operations require the id of a Predic
tion: the getOne, edit, and delete operations. The id is a positive integer. What happens
if the client, through oversight or mischief, submits a negative integer or zero as the
id? The service throws a SOAP fault. A SOAP request with a bad id is a waste of time
and bandwidth, and avoiding such a request would be a gain in efficiency.

To guard against an invalid id, a client-side handler could inspect every outgoing SOAP
message to determine if it has an id and, if so, whether the id is a positive integer. If the
id is negative, the handler could substitute the absolute value and let the request con‐
tinue on its way to the service; if the id is zero, the handler could throw an exception
immediately and thereby short-circuit a request that is doomed to fail on the service
side. The client-side SOAPHandler already in place could be amended to do this work,
as the SOAP handler has access to the entire SOAP message; however, a LogicalHan
dler is better suited to the proposed task because the id is part of the payload in the
SOAP request’s body. The existing SOAPHandler can be left as is and a LogicalHan
dler can be added to the handler chain. Modular design recommends this approach,
which is also an opportunity to show a two-member handler chain in action.

A Handler Chain with Two Handlers | 213

There are two ways in which the LogicalHandler can access the payload of a SOAP
message: as a native Java object generated with JAX-B or as an XML document. This
example uses a Java object so that the id property can be inspected and perhaps changed
using the familiar get/set idiom. If the id in the client request message is negative, a
set-method then can be used to change the id value. If the id is zero, the handler can
disable any further client-side handling and throw a fault to signal that the message
cannot be fixed. With JAX-B in support, the processing is straightforward.

The IdHandler class (see Example 5-10) implements the LogicalHandler rather than
the SOAPHandler interface (line 1). To implement this interface, the IdHandler needs
to define close, handleFault, and handleMessage, but a LogicalHandler implemen‐
tation, unlike a SOAPHandler implementation, does not define the getHeaders method
precisely because a logical handler has no access to the SOAP headers. In this example,
the close and handleFault methods are minimally defined.

Example 5-10. The client-side IdLogicalHandler
class IdHandler implements LogicalHandler<LogicalMessageContext> {
 public void close(MessageContext mctx) { }
 public boolean handleFault(LogicalMessageContext lmctx) {
 return true;
 }
 public boolean handleMessage(LogicalMessageContext lmctx) {
 Boolean outbound =
 (Boolean) lmctx.get(MessageContext.MESSAGE_OUTBOUND_PROPERTY);
 if (outbound) { // request?
 LogicalMessage msg = lmctx.getMessage();
 try {
 JAXBContext jaxbCtx = JAXBContext.newInstance("clientSOAP");
 Object payload = msg.getPayload(jaxbCtx);
 // Check payload to be sure it's what we want.
 if (payload instanceof JAXBElement) {
 Object value = ((JAXBElement) payload).getValue();
 // Three possibilities of interest: GetOne, Edit, or Delete
 int id = 0;
 boolean getOne, edit, delete;
 getOne = edit = delete = false;
 if (value.toString().contains("GetOne")) {
 id = ((GetOne) value).getArg0();
 getOne = true;
 }
 else if (value.toString().contains("Edit")) {
 id = ((Edit) value).getArg0();
 edit = true;
 }
 else if (value.toString().contains("Delete")) {
 id = ((Delete) value).getArg0();
 delete = true;
 }
 else

214 | Chapter 5: SOAP Handlers and Faults

 return true; // GetAll or Create
 // If id > 0, there is no problem to fix on the client side.
 if (id > 0) return true;
 // If the request is GetOne, Edit, or Delete and the id is zero,
 // there is a problem that cannot be fixed.
 if (getOne || edit || delete) {
 if (id == 0) // can't fix
 throw new RuntimeException("ID cannot be zero!");
 // id < 0 and operation is GetOne, Edit, or Delete
 int newId = Math.abs(id);
 // Update argument.
 if (getOne) ((GetOne) value).setArg0(newId);
 else if (edit) ((Edit) value).setArg0(newId);
 else if (delete) ((Delete) value).setArg0(newId);
 // Update payload.
 ((JAXBElement) payload).setValue(value);
 // Update message
 msg.setPayload(payload, jaxbCtx);
 }
 }
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 return true;
 }
}

The logic in the handleMessage method is a bit tricky. Like the ClientHashHandler,
the IdHandler needs to work only on outgoing (that is, request) messages; hence, the
IdHandler first checks on the direction of the SOAP message. The logical handler then
extracts the payload from an outgoing message. The payload is available in two formats:

• If the getPayload method is invoked with no arguments (line 3), the payload would
be returned as an XML document. This document then could be parsed and edited,
as required; the corresponding setPayload method would then be used to update
the message payload.

• If the getPayload method is invoked with a JAXBContext as the argument, a ref‐
erence to an Object is returned (line 3). In this example, the JAXBContext is created
from the soapClient package (line 2) because three classes in this package are of
interest: GetOne, Edit, and Delete. These wsimport-generated classes are the Java
data types that represent SOAP request messages against the service’s getOne, edit,
and delete operations, respectively. If only a single SOAP request type were of in‐
terest, then the JAXBContext could be created for a single class instead of for the
entire package of classes.

The extracted payload could be from any request. The next task, therefore, is to exclude
requests that do not include an id. There are two such requests, one against the getAll

A Handler Chain with Two Handlers | 215

operation and another against the create operation. The requests of interest are against
the getOne, edit, and delete operations; an if construct, which starts on line 4, then
determines whether the request is against one of these three operations. In summary,
requests against the create and getAll operations are filtered out, and the remaining
requests are inspected to determine if the outgoing id is a bad value.

If the outgoing message has an id, the handler extracts the id from the payload with a
statement such as:

id = ((GetOne) value).getArg0();

There is one such statement for each of the three types: GetOne, Edit, and Delete. If the
outgoing SOAP message is none of these, then true is returned from the else clause to
signal that the IdHandler has finished its work and other handlers in the chain, if any,
can begin theirs. Here is the code segment for review:

if (value.toString().contains("GetOne")) {
 id = ((GetOne) value).getArg0();
 getOne = true;
}
else if (value.toString().contains("Edit")) {
 id = ((Edit) value).getArg0();
 edit = true;
}
...
else
 return true; // GetAll or Create: no id

Once the payload’s id value has been extracted, there are three possible outcomes:

• If the extracted id is a positive value, there is nothing more for the IdHandler to
do and, therefore, the handler returns true (line 5), thereby indicating that other
handlers in the chain, in any, can begin their processing. In fact, there is now another
handler in the chain: the ClientHashHandler, which executes after the logical
IdHandler. By the way, the id still may be out of bounds in the sense that no
Prediction has such an id, but this is a problem that must be detected and managed
on the service side, not the client side.

• If the extracted id is zero, a RuntimeException is thrown (line 6) to terminate the
entire request process because zero is not a legitimate value for an id. It makes no
sense to send an id of zero to the predictionsSOAP service.

• If the extracted id is negative (for instance, -31), then its absolute value (in this
case, 31) is treated as the intended value. A set-method is invoked with the new id
value (line 7), which updates the payload’s value. The payload itself is updated (line
8) and, finally, this newly edited payload is inserted as a replacement in the outgoing
SOAP message (line 9).

216 | Chapter 5: SOAP Handlers and Faults

This handler logic is clearly lower level than is the application logic of invoking service
operations such as edit or getAll. JAX-WS is designed under the separation of concerns
principle: low-level message inspection and tweaking occur at the handler level, whereas
high-level operation invocations occur at the application level.

The IdHandler, like the ClientHashHandler, is a nonpublic class in the same file as the
ClientHandlerResolver, a public class. The reason is convenience: one file holds all
of the low-level artifacts. The handlers and the resolver all could be public classes and,
accordingly, in their own files. The IdHandler, again like the ClientHashHandler, needs
to be registered with the runtime. Here is the revised getHandlerChain method in the
ClientHandlerResolver class:

public List<Handler> getHandlerChain(PortInfo portInfo) {
 List<Handler> handlerChain = new ArrayList<Handler>();
 handlerChain.add(new IdHandler());
 handlerChain.add(new ClientHashHandler(this.name, this.key));
 return handlerChain;
}

The logical handler IdHandler is added to the chain (line 1) in front of the message
handler ClientHashHandler (line 2) because, on an outgoing message, logical handlers
execute before message handlers. Yet even if the order were reversed in this code, the
runtime still would ensure that the logical IdHandler executed before the message han‐
dler ClientHashHandler. For handlers in the same group (e.g., logical handlers), the
specified order in the getHandlerChain method matters; for handlers in different
groups, as in this example, the runtime orders the execution so that all logical handlers
execute before any message handlers do.

The handler examples illustrate the various ways in which SOAP messages can be in‐
spected and manipulated. The client-side AwsSoapHandler, a message handler, adds
elements to the body of a SOAP request, and the client-side ClientHashHandler, also
a message handler, adds blocks to the header of a SOAP request. The logical handler
IdHandler inspects the payload of a SOAP request and, under the right circumstances,
edits this payload so that the request has a chance of succeeding with the service. The
code in all three handlers is appropriately low-level, as befits code designed to be close
to the SOAP metal.

There are three possible parts to a SOAP message: the header blocks, the body, and
attachments. The first and the last are optional. The examples so far have examined the
SOAP header and the SOAP body through code examples. The next section does the
same for SOAP attachments.

A Handler Chain with Two Handlers | 217

SOAP-Based Web Services and Binary Data
In the examples so far, the SOAP messages contain text that is converted to service-
appropriate types such as List<Prediction>. The type conversion is typically auto‐
matic, occurring in the JAX-WS infrastructure without application intervention, but
handlers could use JAX-B and related technologies for converting text to and from Java
types. Even a very simple example illustrates the power of this underlying, automatic
conversion. Here is a SOAP response from the RandService, in particular a call to the
next1 operation, which returns a randomly generated integer:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:next1Response xmlns:ns2="http://rand/">
 <return>-1691660782</return>
 </ns2:next1Response>
 </S:Body>
</S:Envelope>

The returned value -1691660782 occurs as text in the SOAP message but is converted
automatically to an int for a Java client, which does not need to do any explicit type
conversion.

Type conversions come to the forefront in the issue of how binary data such as images,
movies, and the like can be arguments passed to or values returned from SOAP-based
service operations. SOAP-based services can deal with binary payloads but such pay‐
loads raise issues of efficiency. There are two general approaches to dealing with binary
data in SOAP-based services:

• The binary data can be encoded using a scheme such as base64 encoding and then
transmitted as the payload of the SOAP body—in other words, as text. The down‐
side is that base64 and similar encoding schemes result in payloads that may be
significantly larger in size than the original, unencoded binary data. Encoding bi‐
nary data as text results in data bloat.

• The binary data be can transmitted as attachments, which minimizes data bloat.

In the course of SOAP development, there have been three options for attachments.
SwA (SOAP with Attachments) is the original specification but does not work well with
document-style services, which are the default. Moreover, some frameworks such as
DotNet do not support SwA out of the box. DIME (Direct Internet Message Encapsu‐
lation) is a lightweight but proprietary encoding scheme, which has received little play
outside of Windows. MTOM (Message Transmission Optimization Mechanism), which
is based on XOP (XML-Binary Optimized Packaging), has the W3C seal of approval
and enjoys widespread support. In short, MTOM is a modern, efficient, and interoper‐
able way to share binary data through SOAP-based services.

218 | Chapter 5: SOAP Handlers and Faults

To underscore the efficiency of MTOM, the first example uses base64 encoding. The
SkiImageService class (see Example 5-11) has two @WebMethod operations: getImage
returns a specified image about skiing, for instance, a picture of a nordic skier;
GetImageList returns a list of the available skiing images.

Example 5-11. The SkiImageService, which delivers images encoded as base64 text
package images;

import javax.jws.WebService;
import javax.jws.WebMethod;
import java.util.Map;
import java.util.HashMap;
import java.util.Set;
import java.util.List;
import java.util.ArrayList;
import java.util.Iterator;
import java.awt.Image;
import java.io.FileInputStream;
import java.io.ByteArrayOutputStream;
import java.io.ByteArrayInputStream;
import javax.imageio.ImageIO;
import javax.imageio.stream.ImageInputStream;
import javax.imageio.ImageReader;

@WebService
public class SkiImageService {
 private Map<String, String> photos;

 @WebMethod
 public Image getImage(String name) { return createImage(name); }
 @WebMethod
 public List<Image> getImages() { return createImageList(); }
 public SkiImageService() {
 photos = new HashMap<String, String>();
 photos.put("nordic", "nordic.jpg");
 photos.put("alpine", "alpine.jpg");
 photos.put("telemk", "telemk.jpg");
 }
 private Image createImage(String name) {
 String fileName = photos.get(name);
 byte[] bytes = getRawBytes(fileName);
 ByteArrayInputStream in = new ByteArrayInputStream(bytes);
 Iterator iterators = ImageIO.getImageReadersByFormatName("jpeg");
 ImageReader iterator = (ImageReader) iterators.next();
 Image image = null;
 try {
 ImageInputStream iis = ImageIO.createImageInputStream(in);
 iterator.setInput(iis, true);
 image = iterator.read(0);
 }
 catch(Exception e) { throw new RuntimeException(e); }

SOAP-Based Web Services and Binary Data | 219

 return image;
 }
 private List<Image> createImageList() {
 List<Image> list = new ArrayList<Image>();
 for (String key : photos.keySet()) {
 Image image = createImage(key);
 if (image != null) list.add(image);
 }
 return list;
 }
 private byte[] getRawBytes(String fileName) {
 if (fileName == null) fileName = "nordic.jpg";
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 try {
 FileInputStream in = new FileInputStream(fileName);
 if (in == null) in = new FileInputStream("nordic.jpg");
 byte[] buffer = new byte[2048];
 int n = 0;
 while ((n = in.read(buffer)) != -1)
 out.write(buffer, 0, n); // append to array
 in.close();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 return out.toByteArray();
 }
}

Most of the code consists of utility methods that read bytes from a file and transform
these into a Java Image. This service can be published straightforwardly with Endpoint:

package images;
import javax.xml.ws.Endpoint;
public class SkiImagePublisherBase64 {
 public static void main(String[] args) {
 System.out.println("URL: http://localhost:9876/ski");
 Endpoint.publish("http://localhost:9876/ski", new SkiImageService());
 }
}

Here is a Perl client against the service—a client that explicitly consumes the service
WSDL before making a request:

#!/usr/bin/perl -w
use SOAP::Lite +trace => 'debug';
use strict;

my $url = 'http://localhost:9876/ski?wsdl';
my $service = SOAP::Lite->service($url);
print $service->getImage("nordic"), "\n"; # base64 string

There is nothing unusual in either the service or the client: a client request results in a
SOAP response whose body is text, but in this case it is text that is potentially huge in

220 | Chapter 5: SOAP Handlers and Faults

size because of the base64 encoding. The XML Schema in the service WSDL points to
the problem. Here is a slice:

<xs:complexType name="getImageResponse">
 <xs:sequence>
 <xs:element name="return" type="xs:base64Binary" minOccurs="0"></xs:element>
 </xs:sequence>
</xs:complexType>

Line 1 shows that the XML Schema type of the response message getImageResponse is,
indeed, xs:base64Binary. For dramatic effect, here is a slice of the more than 30K-byte
response to a getImage request:

<?xml version="1.0" ?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:getImageResponse xmlns:ns2="http://images/">
 <return>iVBORw0KGgoAAAANSUhEUgAAAHwAAABWCAIAAACCS2W5AABY...</return>
 </ns2:getImageResponse>
 </S:Body>
</S:Envelope>

The element tagged return (line 1) contains the base64 encoding of the image. The
image itself, nordic.jpg, is just under 3K bytes—and the SOAP response is just over 30K
bytes. In this case, the data bloat is ten-fold.

To avoid the data bloat associated with base64 or equivalent encoding, the service can
be revised to take advantage of MTOM optimizations. Here are the steps to the revision:

• The SkiImageService class can be annotated to signal that MTOM is in play. The
revision is line 1:

@WebService(wsdlLocation = "mtom.wsdl")
@BindingType(value = SOAPBinding.SOAP11HTTP_MTOM_BINDING) // optional
public class SkiImageService {

There is also a SOAP 1.2 binding for MTOM.
• The XML Schema for the service WSDL needs to be edited in two places, as indi‐

cated in lines 1 and 2:
<xsd:complexType name="getImagesResponse">
 <xsd:sequence>
 <xsd:element name="return" type="xsd:base64Binary"
 minOccurs="0" maxOccurs="unbounded"
 xmime:expectedContentTypes="application/octet-stream"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 </xsd:element>
 </xsd:sequence>
</xsd:complexType>
...
<xsd:complexType name="getImageResponse">
 <xsd:sequence>

SOAP-Based Web Services and Binary Data | 221

 <xsd:element name="return" type="xsd:base64Binary" minOccurs="0"
 xmime:expectedContentTypes="application/octet-stream"
 xmlns:xmime="http://www.w3.org/2005/05/xmlmime">
 ...

The MIME type application/octet-stream indicates that the images are to be
sent from the service to the client as a byte stream. For simplicity and for proof of
concept, the revised XML Schema can be inserted into the WSDL directly (line 1):

<definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://images/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 targetNamespace="http://images/" name="SkiImageServiceService">
 <types>
 <xsd:schema xmlns:tns="http://images/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 ...

Assume that the revised WSDL file, with the XML Schema inserted into it, is
mtom.wsdl.

• The @WebService annotation for the SkiImageService needs to be parametrized
with the location of the revised WSDL (line 1):

@WebService(wsdlLocation = "mtom.wsdl")
@BindingType(value = SOAPBinding.SOAP11HTTP_MTOM_BINDING) // optional
public class SkiImageService {

• If Endpoint is used to publish the revised service, then the publisher can be revised
to indicate MTOM optimization (line 1), although this step is optional. Here is the
revised SkiImagePublisherMTOM in full:

package images;
import javax.xml.ws.Endpoint;
import javax.xml.ws.soap.SOAPBinding;
public class SkiImagePublisherMTOM {
 private Endpoint endpoint;
 public static void main(String[] args) {
 SkiImagePublisherMTOM me = new SkiImagePublisherMTOM();
 me.createEndpoint();
 me.configureEndpoint();
 me.publish();
 }
 private void createEndpoint() {
 endpoint = Endpoint.create(new SkiImageService());
 }
 private void configureEndpoint() {
 SOAPBinding binding = (SOAPBinding) endpoint.getBinding();
 binding.setMTOMEnabled(true);
 }
 private void publish() {
 int port = 9876;

222 | Chapter 5: SOAP Handlers and Faults

 String url = "http://localhost:" + port + "/ski";
 endpoint.publish(url);
 System.out.println(url);
 }
}

The revised publisher shows that the Endpoint API is rich and flexible.

With these changes in place, an efficient Java client against the revised MTOM-based
SkiImageService can be built upon the usual wsimport artifacts. The by now familiar
command:

% wsimport -p clientMTOM -keep http://localhost:9876/ski?wsdl

generates the support classes for the revised SkiImageClient (see Example 5-12).

Example 5-12. A Java client against the MTOM-based SkiImageService
import clientMTOM.SkiImageServiceService;
import clientMTOM.SkiImageService;
import java.util.List;
import javax.activation.DataHandler;

public class SkiImageClient {
 public static void main(String[] args) {
 SkiImageService port = new SkiImageServiceService().getSkiImageServicePort();
 DataHandler image = port.getImage("nordic");
 dump(image);
 List<DataHandler> images = port.getImages();
 for (DataHandler dh : images) dump(dh);
 }
 private static void dump(DataHandler dh) {
 try {
 System.out.println("MIME type: " + dh.getContentType());
 System.out.println("Content: " + dh.getContent());
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
}

The Java DataHandler type (lines 1 and 2) binds to the type application/octet-
stream. Each image from the service is a DataHandler instance whose properties (for
instance, the contentType and content properties shown in lines 3 and 4) are accessible
with the familiar get-methods. The output from a sample client run is:

MIME type: application/octet-stream
Content: java.io.ByteArrayInputStream@3f3e10ce
...
MIME type: application/octet-stream
Content: java.io.ByteArrayInputStream@ca753f7

SOAP-Based Web Services and Binary Data | 223

The ByteArrayInputSteam instances contain the bytes sent from the MTOM-enabled
SkiImageService. Although the transmission is relatively efficient, the client now must
deal with these bytes in some application-appropriate way—for instance, by recon‐
structing the JPG images from the bytes.

In JAX-WS a client, too, can use MTOM to send media attachments to a service. Here
is a revision of the SkiImageClient that shows the setup (lines 1 through 3):

SkiImageService port = new SkiImageServiceService().getSkiImageServicePort();
BindingProvider bp = (BindingProvider) port;
SOAPBinding binding = (SOAPBinding) bp.getBinding();
binding.setMTOMEnabled(true);

SOAP-based web services are at their best when dealing with text payloads, as the SOAP
infrastructure then assumes the burden of converting between native language types
(for instance, a Java List<Prediction>), on the one side, and XML Schema types, on
the other side. This advantage goes away once the SOAP payloads are binary, regardless
of whether the payload is base64 encoded text in the SOAP body or SOAP attachments.
Can SOAP-based services handle binary payloads? The answer is a firm yes, but this
answer invites the further question of whether SOAP-based services are ideally suited
for binary payloads. The answer to this second question is no.

The Transport Level
So far this chapter has focused on the distinction, within JAX-WS, between the appli‐
cation and handler levels. JAX-WS also provides access, on either the client side or the
service side, to the transport level, which is usually HTTP(S). Such access has been used
but not studied in earlier examples. This section focuses on the transport level with the
deliberately minimalist Echo service and a sample EchoClient. Access to the transport
level will be especially useful in the next chapter on security.

The Echo service (see Example 5-13) relies upon dependency injection through the
@Resource annotation to get a non-null reference to the WebServiceContext (line 1).
The WebServiceContext, in turn, can be used to access the MessageContext (line 2),
which provides information about the transport level. To illustrate such access, the echo
method gets the HTTP request headers as a Map (line 3) and then prints the map’s
contents to the standard output (line 4).

Example 5-13. The Echo service, which accesses the transport level
package mctx;

import java.util.Map;
import java.util.Set;
import javax.annotation.Resource;
import javax.jws.WebService;
import javax.jws.WebMethod;

224 | Chapter 5: SOAP Handlers and Faults

import javax.xml.ws.WebServiceContext;
import javax.xml.ws.handler.MessageContext;

@WebService
public class Echo {
 @Resource
 WebServiceContext wctx;
 @WebMethod
 public String echo(String in) {
 String out = "Echoing: " + in;
 // Hit the transport level to extract the HTTP headers.
 MessageContext mctx = wctx.getMessageContext();
 Map requestHeaders = (Map) mctx.get(MessageContext.HTTP_REQUEST_HEADERS);
 dump(requestHeaders, "");
 return out;
 }
 private void dump(Map map, String indent) {
 Set keys = map.keySet();
 for (Object key : keys) {
 System.out.println(indent + key + " : " + map.get(key));
 if (map.get(key) instanceof Map)
 dump((Map) map.get(key), indent += " ");
 }
 }
}

On a sample run of the EchoClient, to be studied shortly, the output of the dump method
was:

Host : [localhost:7777]
Content-type : [text/xml; charset=utf-8]
Accept-encoding : [gzip]
Content-length : [193]
Connection : [keep-alive]
Greeting : [Hello, world!]
User-agent : [JAX-WS RI 2.2.4-b01]
Soapaction : ["http://mctx/Echo/echoRequest"]
Accept : [text/xml, multipart/related]

Most of the lines in the HTTP header are standard (e.g., the blocks with Content-
type and Accept as their keys). By contrast, the EchoClient manually inserts lines 1
and 2 into the HTTP headers. HTTP 1.1 allows arbitrary header blocks to be added to
an HTTP message. In a security context, a username and a supporting credential could
be inserted into an HTTPS header.

The EchoClient class (see Example 5-14) is a sample client against the Echo service.
The client, too, accesses the transport level by casting the port reference to a Binding
Provider. As the name suggests, a BindingProvider binds a SOAP message to a trans‐
port message, in this case an HTTP request message.

The Transport Level | 225

Example 5-14. The EchoClient against the EchoService
import java.util.Map;
import java.util.Set;
import java.util.List;
import java.util.Collections;
import java.util.HashMap;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.handler.MessageContext;
import echoClient.EchoService;
import echoClient.Echo;

public class EchoClient {
 private static final String defaultUrl = "http://localhost:7777/echo";
 public static void main(String[] args) {
 Echo port = new EchoService().getEchoPort();
 Map<String, Object> requestContext =
 ((BindingProvider) port).getRequestContext();

 /* Sample invocation:
 java EchoClient http://localhost:7777/ echo */
 String url = (args.length >= 2) ? (args[0] + args[1]) : defaultUrl;
 requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, url);
 // Add application-specific HTTP header blocks.
 Map<String, Object> myHeaders = new HashMap<String, Object>();
 myHeaders.put("Accept-Encoding", Collections.singletonList("gzip"));
 myHeaders.put("Greeting", Collections.singletonList("Hello, world!"));
 requestContext.put(MessageContext.HTTP_REQUEST_HEADERS, myHeaders);
 String response = port.echo("Have a nice day :)");
 Map<String, Object> responseContext =
 ((BindingProvider) port).getResponseContext();
 dump(responseContext, "");
 }
 private static void dump(Map map, String indent) {
 Set keys = map.keySet();
 for (Object key : keys) {
 System.out.println(indent + key + " : " + map.get(key));
 if (map.get(key) instanceof Map)
 dump((Map) map.get(key), indent += " ");
 }
 }
}

The BindingProvider reference is used to invoke getRequestContext (line 1), which
is a Map of the key/value pairs in the HTTP request. As proof of concept, the Echo
Client shows how the endpoint address of the request can be set at the transport level
(line 2). In lines 3 and 4, the class EchoClient adds two key/value pairs to a Map and
then, in line 5, appends this Map to the HTTP headers that the underlying Java libraries
produce.

226 | Chapter 5: SOAP Handlers and Faults

The EchoClient prints the responseContext (line 6) to the standard output. On a
sample run, the HTTP message from the Echo service was:

javax.xml.ws.wsdl.port : {http://mctx/}EchoPort
javax.xml.ws.soap.http.soapaction.uri : null
com.sun.xml.internal.ws.server.OneWayOperation : true
javax.xml.ws.wsdl.service : {http://mctx/}EchoService
com.sun.xml.internal.ws.client.handle : JAX-WS RI 2.2.4-b01:
 Stub for http://localhost:7777/echo
javax.xml.ws.reference.parameters : []
com.sun.xml.internal.ws.api.server.WSEndpoint : null
javax.xml.ws.http.response.code : 200
javax.xml.ws.wsdl.interface : {http://mctx/}Echo
javax.xml.ws.wsdl.operation : {http://mctx/}echo
com.sun.xml.internal.ws.handler.config :
 com.sun.xml.internal.ws.client.HandlerConfiguration@6c3a6465
javax.xml.ws.http.response.headers : {null=[HTTP/1.1 200 OK],
 Content-type=[text/xml; charset=utf-8],
 Transfer-encoding=[chunked]}
 null : [HTTP/1.1 200 OK]
 Content-type : [text/xml; charset=utf-8]
 Transfer-encoding : [chunked]
 javax.xml.ws.service.endpoint.address : http://localhost:7777/echo
 com.sun.xml.internal.ws.api.message.HeaderList : []
 com.sun.xml.internal.ws.client.ContentNegotiation : none

The format here is Java’s own rather than standard HTTP. Nonetheless, the details are
readily recognized. Line 1 is the start line in the actual HTTP response, line 3 contains
the endpoint address of the Echo service, and line 2 is the standard key/value pair for
the key Content-type.

In summary, JAX-WS is more than just an application-level API. There is a powerful
handler-level API and even a transport-level API. In the coming chapters, the transport-
level API will be put to further use.

Axis2
Axis2, which implements but also extends JAX-WS, is an alternative to the Metro im‐
plementation. The current version is 1.6.x. Axis2 can be downloaded in various formats,
including as a self-contained WAR file, axis2.war, which can be copied to TOM‐
CAT_HOME/webapps. An Axis2 service does not require annotations if the proper
configuration file is used. This section introduces Axis2 using a deliberately simple
service so that the focus is on the deployment steps.

The HiService class (see Example 5-15) is a POJO class, free of annotations, that im‐
plements the SOAP-based HiService in Axis2. Any public instance method in the class
is thereby a service operation; in this case, there is a single operation: echo.

Axis2 | 227

http://bit.ly/12jbYqA

Example 5-15. The HiService in Axis2
package hello;

public class HiService { // service
 public String echo(String name) { // service operation
 String msg =
 (name == null || name.length() < 1) ? "Hello, world!" : "Hello, " + name + "!";
 return msg;
 }
}

The configuration file services.xml (see Example 5-16) specifies that an instance of the
Axis2 class RPCMessageReceiver will act as the interceptor for requests against the
operation named echo. The configuration document services.xml must be deployed in
the JAR file’s META-INF directory.

Example 5-16. The services.xml configuration file for the Axis2 HiService
<service>
 <parameter name = "ServiceClass" locked = "false">hello.HiService</parameter>
 <operation name = "echo">
 <messageReceiver class = "org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>
 </operation>
</service>

Here are the steps for deploying this Axis2 service:

1. The downloaded Axis2 implementation file, axis2.war, should be copied to webapps
directory under TOMCAT_HOME. Tomcat unwars this WAR file, creating the di‐
rectory webapps/axis2, which in turn has a subdirectory named WEB-INF/serv‐
ices. An Axis2 service is deployed as a JAR file copied to the services subdirectory.

2. The compiled service class, in this case hello.HiService, together with the con‐
figuration file META-INF/services.xml, should be put in a JAR file with an .aar
extension, for example, hi.aar. Here is a snapshot of the contents of hi.aar:

hello/HiService.java
hello/HiService.class
META-INF/services.xml

The source code, HiService.java, is included in the JAR file for convenience.
3. The deployable JAR file, hi.aar, is then copied to webapps/axis2/WEB-INF/services.

Once the Axis2 service is deployed, wsimport can be used to generate client-side
artifacts. The command is the usual one:

% wsimport -p clientAxis2 -keep http://localhost:8080/axis2/services/hi?wsdl

228 | Chapter 5: SOAP Handlers and Faults

The wsimport utility outputs a warning that the portType in the WSDL is not standard
and that, accordingly, there may be problems with the generated JAX-WS artifacts. This
issue is addressed next.

The AxisClient class (see Example 5-17) is code for a sample client against the Axis2
HiService. The client is built on the familiar wsimport-generated classes in the package/
directory clientAxis2. These wsimport-generated classes are close but not identical to
the classes that would be generated from a Metro service. In any case, the Axis2 versions
do not set the service endpoint according to JAX-WS standards, which explains lines 2
and 3 in the code: these two lines change the endpoint address to the correct one, in this
case to the endpoint given in line 1. Lines 2 and 3 represent transport-level code. With
this small change using the JAX-WS transport-level API, the service operation can be
invoked in the usual way (lines 4 and 5).

Example 5-17. The AxisClient against the HiService
import clientAxis2.HiPortType;
import clientAxis2.Hi;
import javax.xml.ws.BindingProvider;

public class AxisClient {
 public static void main(String[] args) {
 final String endpoint = "http://localhost:8080/axis2/services/hi";

 HiPortType port = new Hi().getHiHttpEndpoint();
 // Override the endpoint in the wsimport-derived classes.
 BindingProvider bp = (BindingProvider) port;
 bp.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 endpoint);
 System.out.println(port.echo(null));
 System.out.println(port.echo("Fred"));
 }
}

The output is

Hello, world!
Hello, Fred!

Axis2 is a popular alternative to the Metro implementation of JAX-WS. Axis2 and Metro
are close enough that the transition from one to the other should be mostly trouble-
free.

What’s Next?
This chapter rounded out the coverage of SOAP-based services by focusing on the JAX-
WS handler APIs, which provide fine-grained control, on either the client side or the
service side, over incoming and outgoing SOAP messages. Such control is required in

What’s Next? | 229

the SOAP message architecture, with its distinctions among sender, receiver, and in‐
termediary nodes; this control allows any SOAP message to be inspected and manipu‐
lated as needed along the route from the message sender to the ultimate receiver. The
chapter also examined SOAP faults at the handler and the application level. SOAP at‐
tachments are yet another relatively low-level part of JAX-WS. Although SOAP is not
ideally suited for dealing with binary payloads, SOAP can do so efficiently with MTOM.
The chapter also covered the JAX-WS transport-level API, which provides access to the
(usually) HTTP messages that carry SOAP messages. Finally, this chapter introduced
Axis2, a JAX-WS implementation that is an alternative to Metro.

Web services, whether REST-style or SOAP-based, typically require security. The term
security is vague. In general, however, there are two broad security challenges. One
challenge involves wire-level security; technologies such as HTTPS address this multi-
faceted challenge. A second challenge involves users/roles security—user authentication
and authorization. Java has various ways to address this challenge. The next chapter
clarifies various security challenges through a series of examples, thereby highlighting
the technologies available for securing web services.

230 | Chapter 5: SOAP Handlers and Faults

CHAPTER 6

Web Services Security

Security for web services covers a lot of territory, which cannot be explored all at once.
To make the exploration more manageable, it seems best to analyze small chunks, one
at a time, before pulling the exploration results together. Here is a sketch of how this
chapter breaks up the broad topic of security into smaller pieces:
Wire-level security

Security begins at the transport or wire level with basic protocols that govern com‐
munications between a web service, whether SOAP-based or REST-style, and its
clients. Security at this level typically provides three services. First, the client and
service need transport-level assurance that each is communicating with the other
rather than with some impostor. Second, the data sent from one side to the other
need to be encrypted strongly enough so that an interceptor cannot decrypt the
data and thus gain access to the confidential information carried therein. Third,
each side needs assurance that the received message is the same as the sent message.
This chapter covers the basics of wire-level security with code examples, most of
which focus on HTTPS as a provider of wire-level security.

User authentication and authorization
Web services provide clients with access to resources. If a resource is secured, then
a client needs the appropriate credentials to gain access. The credentials are pre‐
sented and verified through a process that usually has two phases. In the first phase,
a client (user) presents information such as a username together with a credential
such as a password. If the credential is not accepted, access to the requested resource
is denied. The first phase is known as user authentication. The second phase, which
is optional, consists of fine-tuning the authenticated subject’s access rights. For
example, a stock-picking web service might provide all paying customers with a
username and password, but the service might divide the customers into categories
such as regular and premier. Access to certain resources might be restricted to

231

premier clients. The second phase is known as role authorization. This chapter
introduces users/roles security, a common name for the two-phase process.

WS-Security
WS-Security, or WSS for short, is a collection of protocols that specify how different
levels of security can be enforced within the SOAP-messaging infrastructure rather
than through a particular transport (for instance, HTTPS) or through a particular
service container (for instance, Tomcat). For example, WSS specifies how digital
signatures and encryption information can be inserted into SOAP headers. If
SOAP-based services are to be transport-neutral, then various security features
must be built into SOAP itself. Accordingly, WSS is meant to provide comprehen‐
sive end-to-end security regardless of the underlying transport and the container
that hosts the service. This chapter introduces WS-Security with an example.

Wire-Level Security
Consider a pay-for web service such as Amazon’s S3 storage service. This service needs
to authenticate requests to store and retrieve data so that only the paying clients have
access to the service and that, moreover, a particular client has privileged access to its
paid-for storage. In the RESTful version of S3, Amazon uses a customization of keyed
HMAC to authenticate client requests. Amazon allows the authentication credential to
be in either the query string (which is part of the HTTP headers) or in another header
key/value pair with Authorization as the key. In either case, the basic approach is the
same:

• Parts of the request data are concatenated together to form a single string, which
becomes the input value for a hash computation. This string is the input message.

• The AWS (Amazon Web Services) secretKey, a unique bit string that Amazon pro‐
vides to each client and which has been discussed with respect to clients against the
Amazon E-Commerce service, is used to compute the hash value of the input mes‐
sage (see Figure 6-1). A hash value is also called a message digest, which is a fixed-
length digest of arbitrarily many input bits. For the S3 service, Amazon uses the
SHA-1 (Secure Hash Algorithm-1) version of HMAC, which produces a 160-bit
digest no matter what the bit length of the input may be. Amazon calls this hash
value the signature because the value functions like a digital signature, although
technically a digital signature is an encrypted message digest. What Amazon calls
the signature is not encrypted but is encoded in base64.

232 | Chapter 6: Web Services Security

Figure 6-1. A message digest

• The Amazon signature is added to the request in the HTTP 1.1 Authorization
header (or the query string).

• Upon receipt of the request, the Amazon S3 first validates the Amazon signature
and then honors the request only if the validation succeeds. Essentially this is the
same validation process used in the predictionsSOAP example of Chapter 5.

What prevents a client’s request to Amazon S3 from being intercepted and the value of
its Authorization header, the Amazon authentication signature, from being pirated?
Amazon assumes that the request is sent over the secure communications channel that
HTTPS (HyperText Transport Protocol Secure) provides. HTTPS is HTTP with an
added security layer. Netscape did the original work in the design and implementation
of this security layer and called it SSL. The IETF (International Engineering Task Force)
has taken over SSL and renamed it TLS (Transport Layer Security). Although SSL and
TLS differ in version numbers and in some technical details, they will be treated as
basically the same here. In any case, it is common to use SSL, TLS, and SSL/TLS inter‐
changeably.

Java has various packages that support SSL/TLS in general and HTTPS in particular.
The JSSE (Java Secure Sockets Extension) API, which covers the packages javax.net
and javax.net.ssl, has been part of core Java since JDK 1.4. Of interest here is that
higher levels of security, such as user authentication, usually require wire-level security
of the kind that HTTPS provides. Accordingly, the discussion of web services security
begins with HTTPS and the wire-level security that this protocol provides.

HTTPS Basics
HTTPS is easily the most popular among the secure versions of HTTP. HTTPS provides
three critical security services over and above the transport services that HTTP provides.
The following is a summary of the three (see Figure 6-2). In the figure, Alice needs to
send a secret message to Bob. Eve, however, may be eavesdropping. Eve may try to dupe
Alice and Bob into believing that they are communicating with one another when, in
fact, each is communicating instead with Eve. This scenario is known as the MITM
(Man in the Middle) attack. For secure communications, Alice and Bob need these three
services:

Wire-Level Security | 233

Peer authentication
Alice needs Bob to authenticate himself so that she is sure about who is on the
receiving end before she sends the secret message. Bob, too, needs Alice to authen‐
ticate herself so that he knows that the secret message is from her rather than an
impostor such as Eve. This step also is described as mutual authentication or mutual
challenge.

Confidentiality
Once Alice and Bob have authenticated each other, Alice needs to encrypt the secret
message in such a way that only Bob can decrypt it. Even if Eve intercepts the
encrypted message, Eve should not be able to decrypt the message, because doing
so requires enormous computational power or incredibly good luck.

Integrity
The message that Alice sends should be identical to the one that Bob receives. If
not, an error condition should be raised. The received message might differ from
the sent one for various reasons; for instance, noise in the communications channel
or deliberate tampering on Eve’s part. Any difference between the sent and the
received message should be detected.

Figure 6-2. A secret message from Bob to Alice despite Eve

These features can be implemented in different ways. Before considering how HTTPS
implements the three features, it will be useful to look briefly at data encryption and
decryption because confidentiality is among the three services that HTTPS provides.

Symmetric and Asymmetric Encryption/Decryption
Modern approaches to encryption follow two different approaches: symmetric and
asymmetric. Under either approach, the bits to be encrypted (plain bits) are one input
to an encryption engine. An encryption key is the other input (see Figure 6-3).

234 | Chapter 6: Web Services Security

Figure 6-3. Basic encryption and decryption

The encrypted bits are the cipher bits. If the input bits represent text, then they are the
plaintext and the output bits are the ciphertext. The cipher bits are one input to the
decryption engine; a decryption key is the other input. The decryption produces
the original plain bits. In the symmetric approach, the same key—called the secret or
single key—is used to encrypt and decrypt (see Figure 6-4). The symmetric approach
has the advantage of being relatively fast but the disadvantage of what is known as the
key distribution problem. How is the secret key itself to be distributed to the sender and
the receiver?

Figure 6-4. Single key encryption and decryption

In the asymmetric approach, the starting point is a key pair, which consists of a private
key and a public key. As the names suggest, the private key should not be distributed
but, rather, safeguarded by whoever generated the key pair. The public key can be dis‐
tributed freely and publicly. If message bits are encrypted with the public key, they can
be decrypted only with the private key—and vice versa. Figure 6-5 illustrates. The
asymmetric approach solves the key distribution problem, but asymmetric encryption
and decryption are roughly a thousand times slower than their symmetric counterparts.

Wire-Level Security | 235

Figure 6-5. Public key encryption and decryption

The public key approach solves the confidentiality problem for Alice and Bob. If Alice
encrypts the message with the public key from Bob’s key pair, and Bob has the only copy
of the private key from this pair, then only Bob can decrypt the message. Even if Eve
intercepts Alice’s message, she cannot decrypt the message with Bob’s public key.

How HTTPS Provides the Three Security Services
Of the three required security services—peer authentication, confidentiality, and in‐
tegrity—the last is the least complicated. The message sent over HTTPS includes a digest
value, which the receiver recomputes. If the sent digest value differs from the digest
value that the receiver computes, then the message was altered during transmission,
either by accident or design. If the sent digest value itself is altered during transmission,
this likewise counts as integrity failure.

HTTPS handles peer authentication through the exchange of digital certificates. In
many cases, however, it is only the client that challenges the server. Consider a typical
website application in which a shopper finalizes an order for the contents of his shopping
cart by submitting a credit card number to the vendor. Here is a summary of what
typically happens when the client-side browser and the web server negotiate to set up
an HTTPS connection:

• The customer’s browser challenges the vendor’s web server to authenticate itself,
and the server responds by sending one or more digital certificates to the browser.

• The browser checks the web server’s digital certificates against the browser’s trust‐
store, which is a database of digital certificates that the browser trusts. The browser’s
validation of an incoming certificate can be and, for practical reasons, typically is
indirect. For example, suppose that the browser receives a certificate from Amazon
but does not have an Amazon certificate in its truststore. Suppose further that the
Amazon certificate contains a vouching signature from VeriSign, a well-known
certificate authority (CA). If the browser’s truststore has a VeriSign certificate, then

236 | Chapter 6: Web Services Security

the browser can use the VeriSign certificate to validate the VeriSign signature on
the Amazon certificate.
How is the VeriSign certificate to be verified? For the verification process to termi‐
nate, at least one certificate in the chain must be taken as verified. For now, the point
of interest is that the browser’s truststore is its repository of certificates that are used
to verify incoming certificates. If the browser cannot validate an incoming certifi‐
cate against its truststore, then the browser typically asks the human user whether
the certificate should be trusted this time only or permanently. If the user selects
permanently, the browser adds the certificate to its truststore.

• The web server typically does not challenge the browser. For one thing, the website
is interested in the shopper’s credit card rather than in the identity of the user agent
(in this case, the browser) that the shopper happens to be using. In web services as
opposed to websites, two-way or peer authentication is common.

The usually one-sided authentication challenge at play in websites, with the client chal‐
lenging the server but not the other way around, shows up in Tomcat’s configuration
file, TOMCAT_HOME/conf/server.xml. Here is the entry for HTTPS:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
 maxThreads="150" scheme="https" secure="true"
 clientAuth="false"
 sslProtocol="TLS"/>

The clientAuth attribute is set to false (line 1), thereby indicating that Tomcat does
not challenge the client. If the clientAuth attribute were set to true, then Tomcat would
challenge the client’s user agent; a setting of true might be of interest for web services
in particular. In this configuration file, there is no setting for a serverAuth because the
default client behavior is to challenge the server.

The HTTPS Handshake
For authentication and confidentiality, HTTPS relies on digital certificates, which are
widely used in public key cryptography precisely because the exchange of secret keys is
so difficult among many users. Here is a summary of how HTTPS authentication is
intertwined with HTTPS confidentiality. The process is sometimes described as the
handshake between client and server that culminates in a secure network connection.
In this scenario, the client might be a browser or an application functioning as a web
service client. For convenience, the term web server covers both a standard website
server such as Tomcat or a full-bodied Java Application Server such as Oracle WebLogic,
GlassFish, JBoss, or WebSphere:

• The client challenges the web server, which sends one or more digital certificates
as authentication. Modern digital certificates usually have the X.509 format. The
current X.509 version is named v3.

Wire-Level Security | 237

• An X.509 certificate is a public key certificate that serves as an identity certificate by
binding the public key from a key pair to an identity such as a person (for instance,
Alice) or an organization (for instance, Bob’s employer). The certificate contains
the digital signature of a CA such as VeriSign, although certificates can be self-
signed for testing purposes. In signing a digital certificate, a CA endorses the cer‐
tificate and thereby verifies that the certificate’s public key is bound to a particular
identity. For instance, VeriSign signs Alice’s certificate and thereby verifies that the
certificate’s public key belongs to Alice’s key pair.

• The client can determine whether to accept the server’s digital certificates by check‐
ing these against its truststore. The check can be direct or indirect. In a direct check,
the received digital certificate is checked against a copy in the truststore. In an
indirect check, the CA’s digital signature, which occurs as part of the certificate and
vouches for its legitimacy, needs to be verified; this verification, in turn, requires a
digital certificate from the CA.

• The server has the option of challenging the client. For a website, such a challenge
is unusual; for a web service, such a challenge can serve as a way of identifying and
authenticating the web service client.

• Once the challenge phase is over, the client begins the process of generating a secret
key. The process begins with the client’s generation of a pre-master secret, a string
that is shared with the server. The pre-master is then used on each side to generate
the same master secret key, which is used to encrypt and decrypt the traffic between
the client and the server. At issue here is how the pre-master secret is sent securely
from the client to the server.

• In a common scenario, the client encrypts a 48-bit pre-master secret with the serv‐
er’s public key, available on the server’s digital certificate downloaded during the
peer authentication phase. The encrypted pre-master secret is sent to the server,
which decrypts the secret. If everything is still in order, each side confirms that
encryption of traffic between them is to begin. The public key/private key pair is
thus critical in solving the key distribution problem for secret keys.

• At any point, either the client or the server may insist on starting the entire process
all over again. For example, if either Alice or Bob suspects that Eve is up to no good,
either Alice or Bob can restart the handshake process.

A secret key is used to encrypt and decrypt traffic for several reasons. First, symmetric
encryption has relatively high performance. Second, if the server does not challenge the
client, then the server does not have the client’s public key to encrypt messages to the
client. The server cannot encrypt messages with its own private key, as any receiver (for
instance, Eve) with access to the server’s public key then could decrypt the message.
Finally, encrypting and decrypting with two separate key pairs is inherently trickier—
and significantly slower—than using a shared secret key.

238 | Chapter 6: Web Services Security

The primary challenge is to get the pre-master secret securely from the client to the
server, and the server’s public key, available to the client in the server’s digital certificate
after the mutual challenge phase, fits the bill perfectly. The master secret key is generated
only after the client and the server have agreed upon which cipher suite, or set of cryp‐
tographic algorithms, should be used. A cipher suite, including a key-pair algorithm
and a hash algorithm, will be examined through a code example shortly.

Although digital certificates now play a dominant role in mutual challenge scenarios,
they are not the only game in town. For example, SRP (Secure Remote Protocol) im‐
plements mutual challenge but without digital certificates. For more on SRP, see
srp.stanford.edu.

The HttpsURLConnection Class
It is time to flesh out these architectural sketches with a code example. The class
HttpsURLConnection, which extends the HttpURLConnection class, supports HTTPS
connections. The GoogleClient application (see Example 6-1) uses this class to issue a
GET request under HTTPS against Google’s home site. Note that the port number in
the URL is 443 (line 1), the standard port for HTTPS connections.

Example 6-1. A client that makes an HTTPS connection to Google
import java.net.URL;
import javax.net.ssl.HttpsURLConnection;
import java.net.MalformedURLException;
import java.security.cert.Certificate;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;

public class GoogleClient {
 private static final String endpoint = "https://www.google.com:443/";

 // Send a GET request and print the response status code.
 public static void main(String[] args) {
 new GoogleClient().doIt();
 }
 private void doIt() {
 try {
 URL url = new URL(endpoint);
 HttpsURLConnection conn = (HttpsURLConnection) url.openConnection();
 conn.setDoInput(true);
 conn.setRequestMethod("GET");
 conn.connect();
 dumpDetails(conn);
 }
 catch(MalformedURLException e) { System.err.println(e); }
 catch(IOException e) { System.err.println(e); }
 }

Wire-Level Security | 239

http://srp.stanford.edu

 private void dumpDetails(HttpsURLConnection conn) {
 try {
 print("Status code: " + conn.getResponseCode());
 print("Cipher suite: " + conn.getCipherSuite());
 Certificate[] certs = conn.getServerCertificates();
 for (Certificate cert : certs) {
 print("\tCert. type: " + cert.getType());
 print("\tHash code: " + cert.hashCode());
 print("\tAlgorithm: " + cert.getPublicKey().getAlgorithm());
 print("\tFormat: " + cert.getPublicKey().getFormat());
 print("");
 }
 }
 catch(Exception e) { System.err.println(e); }
 }
 private void print(Object s) { System.out.println(s); }
}

The endpoint URL for an HTTPS connection to Google begins with https (known in
HTTP as the scheme), and the port number, 443, is the standard one for HTTPS con‐
nections. Modern web servers typically accept HTTP connections on port 80 and
HTTPS connections on port 443, although these numbers are configurable. For exam‐
ple, Tomcat by default listens on port 8080 for HTTP connections and on port 8443 for
HTTPS connections. The HTTPS URL for Google is line 1 in the code listing.

The GoogleClient next opens an HTTPS connection (line 2) and prepares for a GET
request against Google (line 3). Once the connection is made, the application invokes
dumpDetails to print information about the secure connection: the type of certificates
returned from Google during the challenge, the hash code or fingerprint that identifies
each certificate, the algorithm used to generate the key pair, and the format of the cer‐
tificate (lines 5 through 9 in the code listing). The dumpDetails method also prints the
response code, the by now familiar 200 that signals a successful GET request. On a
sample run, the output from dumpDetails was:

Status code: 200
Cipher suite: TLS_ECDHE_RSA_WITH_RC4_128_SHA
 Cert. type: X.509
 Hash code: 12584213
 Algorithm: RSA
 Format: X.509

 Cert. type: X.509
 Hash code: 2815543
 Algorithm: RSA
 Format: X.509

Line 1 in the listing gives the cipher suite, a collection of information about the algo‐
rithms used in the initial handshake and in the encryption/decryption of messages

240 | Chapter 6: Web Services Security

exchanged after a successful handshake. Underscore characters separate the parts of the
cipher suite. Here is a summary of the parts:
TLS

The Transport Layer Security, added to HTTP, yields HTTPS and thus accounts for
the S in HTTPS.

ECDHE
The acronym stands for Elliptic Curve Diffie-Hellman Key Exchange, which is the
algorithm that governs the handshake.

RSA
This is the public key cryptography algorithm, named after Rivest, Shamir, and
Adleman, the former MIT professors who designed it. RSA is the most commonly
used public key algorithm. It is used to encrypt the pre-master that is sent from the
client to the server. Also, the public key on exchanged digital certificates comes
from an RSA-generated key pair.

RC4_128
The stream cipher algorithm, which is used to encrypt and decrypt the bit traffic
between client and server, has a key length of 128 bits. The R is for Rivest in RSA,
and the C is for cipher. (Sometimes RC is said to be shorthand for Ron’s Code, as
Rivest’s first name is Ron.) RC4 is the most commonly used stream cipher. RC4_128
is used to encrypt the data traffic once the handshake is completed.

SHA
The certificate’s 160-bit identifying hash, also called its fingerprint, is generated
with the Secure Hash Algorithm, officially officially known as a cryptographic hash
function. There is a family of SHA algorithms but SHA-1, used here, is probably
still the most widely used member of this family.

The Google web server sent two digital certificates during the mutual challenge phase.
Each is an X.509 certificate generated with the RSA algorithm, and each of the SHA
fingerprints is 160 bits in length. The format of each certificate follows the X.509 spec‐
ification.

How does the GoogleClient verify the two X.509 certificates the Google web server
sends? There is nothing in the GoogleClient code to suggest certificate verification.
The core Java JDK ships with a default truststore (JAVA_HOME/jre/lib/security/
cacerts). Because the GoogleClient opens an HTTPS connection to the Google web
server, the Java runtime intervenes to handle the certificate verification, and because
Google is such a standard website, the cacerts truststore has entries to verify the Google
certificates. What about HTTPS connections to less popular and prominent sites? Java’s
security API makes it possible to disable peer authentication so that a client such as the
GoogleClient can take over certificate verification and make its own decisions about
what to accept and reject. The GoogleTrustingClient (see Example 6-2) revises the

Wire-Level Security | 241

GoogleClient and shows how programmatic verification can be done—or bypassed
altogether.

Example 6-2. The GoogleTrustingClient, which turns off certificate verification
import java.net.URL;
import java.security.SecureRandom;
import java.security.cert.X509Certificate;
import javax.net.ssl.SSLContext;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.TrustManager;
import javax.net.ssl.X509TrustManager;
import java.net.MalformedURLException;
import java.security.cert.Certificate;
import java.io.IOException;
import java.io.BufferedReader;
import java.io.InputStreamReader;

class GoogleTrustingClient {
 private static final String endpoint = "https://www.google.com:443/";

 public static void main(String[] args) {
 new GoogleTrustingClient().doIt();
 }
 private void doIt() {
 try {
 // Configure the HttpsURLConnection so that it does not
 // check certificates.
 SSLContext sslCtx = SSLContext.getInstance("TLS");
 TrustManager[] trustMgr = getTrustMgr();
 sslCtx.init(null, // key manager
 trustMgr, // trust manager
 new SecureRandom()); // random number generator
 HttpsURLConnection.setDefaultSSLSocketFactory(
 sslCtx.getSocketFactory());

 URL url = new URL(endpoint);
 HttpsURLConnection conn = (HttpsURLConnection) url.openConnection();
 conn.setDoInput(true);
 conn.setRequestMethod("GET");
 conn.connect();
 dumpDetails(conn);
 }
 catch(MalformedURLException e) { System.err.println(e); }
 catch(IOException e) { System.err.println(e); }
 catch(Exception e) { System.err.println(e); }
 }
 private TrustManager[] getTrustMgr() {
 // No exceptions thrown in any of the methods.
 TrustManager[] certs = new TrustManager[] {
 new X509TrustManager() {
 public X509Certificate[] getAcceptedIssuers() {

242 | Chapter 6: Web Services Security

 return null;
 }
 public void checkClientTrusted(X509Certificate[] certs,
 String type) { }
 public void checkServerTrusted(X509Certificate[] certs,
 String type) { }
 }
 };
 return certs;
 }
 private void dumpDetails(HttpsURLConnection conn) {
 try {
 print("Status code: " + conn.getResponseCode());
 print("Cipher suite: " + conn.getCipherSuite());
 Certificate[] certs = conn.getServerCertificates();
 for (Certificate cert : certs) {
 print("\tCert. type: " + cert.getType());
 print("\tHash code: " + cert.hashCode());
 print("\tAlgorithm: " + cert.getPublicKey().getAlgorithm());
 print("\tFormat: " + cert.getPublicKey().getFormat());
 print("");
 }
 }
 catch(Exception e) { System.err.println(e); }
 }
 private void print(String s) { System.out.println(s); }
}

The GoogleTrustingClient first gets an instance of an SSLContext (line 1) and then
invokes getTrustManager (line 2) to get a TrustManager[], an array of managers for
the in-memory truststore. A TrustManager defines three methods:
getAcceptedIssuers

This method (line 8) returns an array of X509Certificate instances. In this case,
null is returned, which is explained shortly.

checkClientTrusted

This method (line 9) expects, as one argument, an array of X509Certificate in‐
stances and, as a second argument, a String that describes the certificate’s type (for
instance, X509). The method has void as the return type.

checkServerTrusted

This method (line 10) expects the same arguments as checkClientTrusted.

Each method is minimally defined but—and this is the critical point—no method
throws a CertificateException, which means that the TrustManager effectively ac‐
cepts all certificates. The TrustManager array returned from the getTrustManager
method (line 7) has a single member, and this member is all-trusting. The result is that
GoogleTrustingClient effectively turns off certificate verification, a move that can be

Wire-Level Security | 243

useful during development. In production, the TrustManager could implement what‐
ever certificate-inspection logic is appropriate.

The security details about HTTPS can be examined concretely with a lightweight
HTTPS server, introduced in the next section. The Endpoint utility class, used in earlier
chapters to publish both REST-style and SOAP-based services, does not support HTTPS
connections. The Endpoint publisher is built with the HttpServer class, which ships
with core Java. The next section uses the related class HttpsServer to clarify, with code,
how HTTPS works.

A Very Lightweight HTTPS Server and Client
An HTTPS server needs two stores for digital certificates:
keystore

A keystore contains digital certificates, including the certificates that an HTTPS
server sends to clients during the peer authentication phase of the HTTPS hand‐
shake. When the server is challenged to establish its identity, the server can send
one or more certificates for its keystore to the challenger. If peer authentication is
truly mutual, then a client needs a keystore with the client’s own digital certificates,
which can be sent to the server for verification.

truststore
A truststore is a keystore with a specified function: the truststore stores trusted
certificates used to verify other certificates. When a host, server or client, receives
a certificate to be verified, this received certificate can be compared against trust‐
store entries. If the truststore does not contain such a certificate, the truststore may
contain at least a certificate from a CA such as VeriSign, whose digital signature is
on the received certificate.

Although the keystore and the truststore differ in core purpose (see Figure 6-6), one
and the same file can function as both keystore and truststore, and, in development,
this option is attractively simple.

Figure 6-6. A depiction of how a keystore and a truststore function

244 | Chapter 6: Web Services Security

In fleshing out these and related details about HTTPS security, the HttpsPublisher (see
Example 6-3) code may be useful.

Example 6-3. The lightweight HttpsPublisher
import java.net.InetSocketAddress;
import javax.net.ssl.SSLContext;
import javax.net.ssl.SSLParameters;
import javax.net.ssl.SSLEngine;
import javax.net.ssl.TrustManager;
import javax.net.ssl.X509TrustManager;
import java.security.cert.X509Certificate;
import java.security.KeyStore;
import javax.net.ssl.KeyManagerFactory;
import javax.net.ssl.TrustManagerFactory;
import java.io.FileInputStream;
import javax.xml.ws.http.HTTPException;
import java.io.OutputStream;
import java.io.InputStream;
import java.security.SecureRandom;
import com.sun.net.httpserver.HttpHandler;
import com.sun.net.httpserver.HttpsServer;
import com.sun.net.httpserver.HttpsConfigurator;
import com.sun.net.httpserver.HttpExchange;
import com.sun.net.httpserver.HttpsParameters;
import service.IService;

public class HttpsPublisher {
 private static final int defaultPort = 3443;
 private static final int backlog = 12;
 private static final String keystore = "test.keystore";
 private IService serviceInstance;

 public static void main(String[] args) {
 if (args.length < 2) {
 System.err.println("Usage: java HttpsPublisher <service> <path>");
 return;
 }
 // % java HttpsPublisher myService.Service /service
 new HttpsPublisher().init(args[0], // service name
 args[1]); // URI
 }
 private void init(String serviceName, String uri) {
 try {
 Class serviceClass = Class.forName(serviceName);
 serviceInstance = (IService) serviceClass.newInstance();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 HttpsServer server = getHttpsServer(uri, defaultPort);
 if (server != null) {
 server.createContext(uri);
 System.out.println("Server listening on port " + defaultPort);

A Very Lightweight HTTPS Server and Client | 245

 server.start();
 }
 else
 throw new RuntimeException("Cannot create server instance.");
 }
 private HttpsServer getHttpsServer(String uri, int port) {
 HttpsServer server = null;
 try {
 InetSocketAddress inet = new InetSocketAddress(port);
 server = HttpsServer.create(inet, backlog);
 SSLContext sslCtx = SSLContext.getInstance("TLS");
 // password for keystore
 char[] password = "qubits".toCharArray();
 KeyStore ks = KeyStore.getInstance("JKS");
 FileInputStream fis = new FileInputStream(keystore);
 ks.load(fis, password);
 KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509");
 kmf.init(ks, password);
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
 tmf.init(ks); // same as keystore
 sslCtx.init(kmf.getKeyManagers(),
 tmf.getTrustManagers(),
 new SecureRandom());
 // Create SSL engine and configure HTTPS to use it.
 final SSLEngine eng = sslCtx.createSSLEngine();
 server.setHttpsConfigurator(new HttpsConfigurator(sslCtx) {
 public void configure(HttpsParameters parms) {
 parms.setCipherSuites(eng.getEnabledCipherSuites());
 parms.setProtocols(eng.getEnabledProtocols());
 }
 });
 server.setExecutor(null); // use default, hence single-threaded
 server.createContext(uri, new MyHttpsHandler(this.serviceInstance));
 }
 catch(Exception e) { throw new RuntimeException(e); }
 return server;
 }
}
// The handle method is called on a particular request context,
// in this case on any request to the server that ends with /<uri>.
class MyHttpsHandler implements HttpHandler {
 private IService service;

 public MyHttpsHandler(IService service) {
 this.service = service;
 }
 public void handle(HttpExchange ex) {
 // Implement a simple routing table.
 String verb = ex.getRequestMethod().toUpperCase();
 if (verb.equals("GET")) service.doGet(ex);
 else if (verb.equals("POST")) service.doPost(ex);
 else if (verb.equals("PUT")) service.doPut(ex);

246 | Chapter 6: Web Services Security

 else if (verb.equals("DELETE")) service.doDelete(ex);
 else throw new HTTPException(405);
 }
}

The HttpsPublisher can be started with a command such as:

% java HttpsPublisher service.TestService /test

The first command-line argument, service.TestService (see Example 6-4), is the fully
qualified name of a RESTful service’s implementation class; the second command-line
argument, in this case /test, is the URI that identifies the service. Any service deployed
with the HttpsPublisher must implement the IService interface (see Example 6-5),
which means that the four CRUD methods doGet, doPost, doPut, and doDelete must
be defined. The HttpsPublisher declares a reference of data type IService (line 1 in
the listing) and then uses the Class.forName utility to load a service class such as
TestService from the filesystem (line 2) and create an instance (line 3). The ISer
vice interface thus allows the HttpPublisher to publish any service that implements
the RESTful CRUD operations with the designated method names.

The HttpsPublisher sets the context for requests (line 4), which in this example means
that a client must use the URI /test to hit the TestService. The publisher maintains
a queue of up to backlog requests, currently set to 16, on the specified HTTPS port
3443. Finally, the start method is invoked on the HttpsServer instance (line 5), which
starts the server for an indefinitely long run.

Example 6-4. The TestService published with the HttpsPublisher
package service;

import java.io.OutputStream;
import com.sun.net.httpserver.HttpExchange;

public class TestService implements IService {
 public void doGet(HttpExchange e) { respond2Client(e, "doGet"); }
 public void doPost(HttpExchange e) { respond2Client(e, "doPost"); }
 public void doPut(HttpExchange e) { respond2Client(e, "doPut"); }
 public void doDelete(HttpExchange e) { respond2Client(e, "doDelete"); }

 private void respond2Client(HttpExchange ex, String response) {
 try {
 ex.sendResponseHeaders(200, 0); // 0 == as many bytes as there are
 OutputStream out = ex.getResponseBody();
 out.write(response.getBytes());
 out.close(); // effectively ends session
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
}

A Very Lightweight HTTPS Server and Client | 247

Example 6-5. The IService interface
package service;
import com.sun.net.httpserver.HttpExchange;

public interface IService {
 public void doGet(HttpExchange e);
 public void doPost(HttpExchange e);
 public void doPut(HttpExchange e);
 public void doDelete(HttpExchange e);
}

Once the RESTful service class has been loaded, the HttpsServer begins the tricky
security configuration. A client that opens an HTTPS connection to the HttpsServer
is going to challenge this server to verify its identity, and the HttpsServer responds
with a digital certificate. The core Java JDK comes with a keytool utility that can be used
to create a self-signed rather than a CA-certified digital certificate. For development, the
self-signed digital certificate is good enough; for production, a CA-certified digital cer‐
tificate would be needed. The command:

% keytool -genkey -keyalg RSA -keystore test.keystore

eventually creates the file test.keystore, which contains an X.509 digital certificate gen‐
erated using the RSA algorithm. This file is the keystore. The keytool utility is interactive,
prompting the user with questions that must be answered. The first such question is
about a password to protect access to the keystore. In this case, the password is qubits.
For the current example, the keystore file test.keystore (the name is arbitrary) performs
various functions:

• The file acts as a regular keystore that contains the digital certificate that the
HttpsPublisher sends to any challenger, in this case the HttpsClient, which is
introduced shortly.

• The file doubles as the HttpsPublisher truststore and as the HttpsClient trust‐
store. Accordingly, the fix is in. When the HttpsPublisher sends the one and only
digital certificate in the keystore test.keystore, the HttpsClient verifies this digital
certificate by checking it against the very same keystore—but a keystore now func‐
tioning as a truststore. Were the HttpsPublisher to challenge the HttpsClient,
the client would send the same digital certificate as its identity voucher—and the
HttpsPublisher would verify this digital certificate against itself, in effect.

Using the keystore for multiple purposes simplifies the setup and keeps the focus on the
technical coding details. In a production environment, of course, there would be four
keystores involved in this scenario: the HttpsPublisher would have a keystore with its
certificates and a truststore with the certificates that it trusts; the same would hold for
the HttpsClient.

248 | Chapter 6: Web Services Security

The HttpsPublisher reads into memory the digital certificate stored in the file named
test.keystore. Here is a block of initialization code:

SSLContext sslCtx = SSLContext.getInstance("TLS");
char[] password = "qubits".toCharArray();
KeyStore ks = KeyStore.getInstance("JKS");
FileInputStream fis = new FileInputStream(keystore);
ks.load(fis, password);
KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509");
kmf.init(ks, password);
TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
tmf.init(ks); // same as keystore
sslCtx.init(kmf.getKeyManagers(),
 tmf.getTrustManagers(),
 new SecureRandom());
final SSLEngine eng = sslCtx.createSSLEngine();
server.setHttpsConfigurator(new HttpsConfigurator(sslCtx) {
 public void configure(HttpsParameters parms) {
 parms.setCipherSuites(eng.getEnabledCipherSuites());
 parms.setProtocols(eng.getEnabledProtocols());
 }});
server.setExecutor(null); // use default, hence single-threaded
server.createContext(uri, new MyHttpsHandler(this.serviceInstance));

The SSLContext (line 1) is the central data structure, and this context supports secure
(that is, TLS-based) communications from clients to the HttpsPublisher. After the
password bytes are stored in an array (line 2), the contents of the keystore file, test.key‐
store, are loaded into memory (line 3) and a KeyManagerFactory is initialized with the
contents of this keystore file (line 4). There is now an in-memory version of the file
test.keystore. The TrustStoreFactory (line 5) is initialized with the contents of the very
same keystore file. At this point, the SSLContext is initialized with the key managers of
the keystore file and the trust managers of the truststore file, which are the same file.

The next security initialization steps involve setting the appropriate cipher suites (line
6), which are used during the handshake negotiations with a client. The security pro‐
tocols that are available to the server are likewise part of the initialization (line 7). For
demonstration purposes, the HttpsPublisher remains single-threaded, which explains
the null in line 8. To make the publisher multithreaded, a non-null value for the
Executor (that is, the thread manager) would be used. Finally, the HTTPS server speci‐
fies a handler to handle requests against the URI, in this case /test (line 9).

The setup code is tricky, but its gist can be summarized as follows:

• An SSLContext data structure is populated with security information, in particular
the keystore and truststore contents that the HttpsPublisher needs to conduct the
handshake with a prospective client.

A Very Lightweight HTTPS Server and Client | 249

• The HttpsPublisher also uses the SSLContext to create an SSLEngine, which
manages the cipher suites and related security protocols.

When the setup is complete, the HttpsPublisher is ready to accept HTTPS connections
from potential clients. Client requests are dispatched to an instance of the class My
HttpsHandler:

server.createContext(uri, new MyHttpsHandler(this.serviceInstance));

The constructor call to MyHttpsHandler has, as its single argument, a reference to the
IService instance so that GET requests can be forwarded to the serviceInstance
method doGet, POST requests to doPost, and so on. The MyHttpsHandler class imple‐
ments the HttpHandler interface, which has a single method: handle. Here is the
implementation:

public void handle(HttpExchange ex) {
 String verb = ex.getRequestMethod().toUpperCase();
 if (verb.equals("GET")) service.doGet(ex);
 else if (verb.equals("POST")) service.doPost(ex);
 else if (verb.equals("PUT")) service.doPut(ex);
 else if (verb.equals("DELETE")) service.doDelete(ex);
 else throw new HTTPException(405); // bad verb
}

The flow of control (see Figure 6-7) is straightforward: a request targeted at the
URI /test goes to the MyHttpsHandler instance, which implements the handle method.
The handle method dispatches GET requests to the service’s doGet method, POST re‐
quests to the service’s doPost method, and so on. The critical point is that the commu‐
nications between the HttpsPublisher and the client are over a secure HTTPS channel.

Figure 6-7. The routing in the HttpsPublisher

In the current implementation, the TestService instance encapsulates minimalist ver‐
sions of doGet, doPost, doPut, and doDelete operations. The point of interest is the
security configuration, not the actual behavior of the RESTful service. Each CRUD op‐
eration returns a string confirming that the operation has been invoked. For HTTPS
requests with bodies (that is, POST and PUT), the HttpsClient (see Example 6-6) sends
a short string that the service operations ignore.

250 | Chapter 6: Web Services Security

Example 6-6. The sample HttpsClient against the TestService
import java.net.URL;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLContext;
import java.security.KeyStore;
import javax.net.ssl.TrustManagerFactory;
import javax.net.ssl.X509TrustManager;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLSession;
import java.security.cert.X509Certificate;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.OutputStream;
import java.security.SecureRandom;

public class HttpsClient {
 private static final String endpoint = "https://localhost:3443/test/";
 private static final String truststore = "test.keystore";

 public static void main(String[] args) {
 new HttpsClient().runTests();
 }
 private void runTests() {
 try {
 SSLContext sslCtx = SSLContext.getInstance("TLS");
 // password for truststore (same as server's keystore)
 char[] password = "qubits".toCharArray();
 KeyStore ks = KeyStore.getInstance("JKS");
 FileInputStream fis = new FileInputStream(truststore);
 ks.load(fis, password);
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
 tmf.init(ks); // same as keystore
 sslCtx.init(null, // not needed, not challenged
 tmf.getTrustManagers(),
 null); // use default: SecureRandom
 HttpsURLConnection.setDefaultSSLSocketFactory(sslCtx.getSocketFactory());
 URL url = new URL(endpoint);
 HttpsURLConnection conn = getConnection(url, "GET");
 getTest(conn);
 conn = getConnection(url, "POST");
 postTest(conn);
 conn = getConnection(url, "PUT");
 putTest(conn);
 conn = getConnection(url, "DELETE");
 deleteTest(conn);
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private HttpsURLConnection getConnection(URL url, String verb) {
 try {
 HttpsURLConnection conn = (HttpsURLConnection) url.openConnection();
 conn.setDoInput(true);

A Very Lightweight HTTPS Server and Client | 251

 conn.setDoOutput(true);
 conn.setRequestMethod(verb);
 // Guard against "bad hostname" errors during handshake.
 conn.setHostnameVerifier(new HostnameVerifier() {
 public boolean verify(String host, SSLSession session) {
 return host.equals("localhost"); // for development
 }
 });
 return conn;
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void getTest(HttpsURLConnection conn) {
 try {
 conn.connect();
 readResponse("GET request: ", conn);
 conn.disconnect();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void postTest(HttpsURLConnection conn) {
 try {
 conn.connect();
 writeBody(conn);
 readResponse("POST request: ", conn);
 conn.disconnect();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void putTest(HttpsURLConnection conn) {
 try {
 conn.connect();
 writeBody(conn);
 readResponse("PUT request: ", conn);
 conn.disconnect();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void deleteTest(HttpsURLConnection conn) {
 try {
 conn.connect();
 readResponse("PUT request: ", conn);
 conn.disconnect();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void writeBody(HttpsURLConnection conn) {
 try {
 OutputStream out = conn.getOutputStream();
 out.write("foo bar baz".getBytes()); // anything will do
 out.flush();
 }

252 | Chapter 6: Web Services Security

 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void readResponse(String msg, HttpsURLConnection conn) {
 try {
 byte[] buffer = new byte[512]; // plenty for testing
 InputStream in = conn.getInputStream();
 in.read(buffer);
 System.out.println(msg + new String(buffer));
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
}

The HttpsClient (see Example 6-6) makes requests against the four CRUD operations
(lines 1, 2, 3, and 4) in the TestService published with the HttpsPublisher. This client
is similar in structure to the GoogleTrustingClient examined earlier except that the
HttpsClient does demand a digital certificate from the HttpsPublisher and does verify
this certificate against a truststore. As noted earlier, the client’s truststore is the same
file, test.keystore, as the server’s keystore; hence, the verification is guaranteed to succeed.
The HttpsClient reads the truststore data into memory and uses these data to initialize
the all-important SSLContext. Here is the relevant code:

FileInputStream fis = new FileInputStream(truststore);
ks.load(fis, password);
TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
tmf.init(ks); // same as keystore
sslCtx.init(null, // not needed, not challenged
 tmf.getTrustManagers(),
 new SecureRandom());

In the call to init (line 1), the first argument is null, which represents the keystore
managers. The assumption is that the HttpsPublisher will not challenge the
HttpsClient, which therefore does not need a keystore for the handshake. Were mutual
challenge in operation, then the HttpsClient setup would be the same, with respect to
the keystore and the truststore, as in the HttpsPublisher.

Of course, a non-Java client also can connect over HTTPS to the HttpsPublisher. As
proof of concept, here is a very short Perl client that connects but does not bother to
verify the digital certificates that the HttpsPublisher sends to the client:

use Net::SSLeay qw(get_https);
my ($type, $start_line, $misc, $extra) = get_https('localhost', 3443, '/test');
print "Type/value: $type\n";
print "Start line: $start_line\n";
print "Misc: $misc => $extra\n";

The output from a sample run was:

A Very Lightweight HTTPS Server and Client | 253

Type/value: doGet
Start line: HTTP/1.1 200 OK
Misc: CONNECTION => close

Changing from HTTP to HTTPS transport does not imperil the language neutrality
and interoperability of web services—assuming, of course, that the languages used on
client side and the service side include HTTPS libraries, as modern languages usually
do.

HTTPS in a Production-Grade Web Server
The HttpsPublisher is simple enough in structure to illustrate the basics of wire-level
security. Among the several reasons for going with a production-grade web server such
as Tomcat or Jetty is that these servers provide such good support for HTTPS, at the
application and at the administrative level. Although these web servers provide first-
rate HTTPS support, they do require setup comparable to that illustrated with the
HttpsPublisher. This section focuses on Tomcat.

Tomcat does not ship with a keystore of digital certificates and, accordingly, does not
enable HTTPS by default. The service must be turned on by editing the configuration
file TOMCAT_HOME/conf/server.xml, with details provided shortly. The same keystore
file used in the HttpsPublisher example, test.keystore, could be re-used for Tomcat. A
modern browser connecting over HTTPS to Tomcat should complain that the digital
certificate in test.keystore is self-signed and, therefore, worthless as a security credential.
In production, a keystore with commercial-grade keystore digital certificates would be
needed. Yet the point of immediate interest is that Tomcat does require the programmer
to jump through a few hoops in order to switch from an HTTP-accessible to an HTTPS-
accessible service. There are only three such hoops:

• HTTPS connections must be enabled in Tomcat by editing the server.xml file. De‐
tails follow shortly.

• A keystore must be made available so that Tomcat can perform the handshake with
potential clients and afterwards support the encryption and decryption of ex‐
changed messages.

• The configuration file web.xml must turn on HTTPS support for the website or web
service. No change is required to the site or service code, however.

254 | Chapter 6: Web Services Security

The first two changes are covered in “Setting Up Tomcat for HTTPS Support” on page
255.

Setting Up Tomcat for HTTPS Support
The primary configuration file for Tomcat is TOMCAT_HOME/conf/server.xml. If this
file is edited, Tomcat must be restarted in order for the changes to take effect. The file
contains several elements tagged Connector. For example, here is the entry for the HTTP
connector:

<Connector executor="tomcatThreadPool"
 port="8080" protocol="HTTP/1.1"
 connectionTimeout="20000"
 redirectPort="8443" />

The Tomcat port of HTTP connection is 8080 but this could be changed to, for instance,
port 80. The last attribute in this XML element has redirectPort as its key and 8433 as
its value. Suppose that a website or web service requires HTTPS access but that a client
tries to hit the site or service using HTTP. Tomcat then counters with an HTTP redi‐
rect, instructing the client (for instance, a browser in the case of a website) to redirect
to port 8443, the port at which Tomcat awaits HTTPS connections. Tomcat, however,
is not yet configured for HTTPS.

The Connector element for HTTPS is commented out in server.xml:

<!--
<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
 maxThreads="150" scheme="https" secure="true"
 clientAuth="false" sslProtocol="TLS" />
-->

After removing the comment delimiters and restarting Tomcat, HTTPS should be
enabled.

One further change is in order. Tomcat needs access to a keystore. The test.keystore from
the HttpsPublisher example could be used, of course, or a fresh keystore could be
created. In any case, the recommended change is to have the HTTPS Connector element
point explicitly to this file:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
 maxThreads="150" scheme="https" secure="true"
 clientAuth="false" sslProtocol="TLS"
 keystoreFile="${user.home}/tcKeystore.keystore"
 keystorePass="qubits"/>

Line 1 is the change, with the keystore file tcKeystore.keystore stored in my home di‐
rectory with the password qubits (line 2). The keystore file can be located anywhere on
the local filesystem. Recall that Tomcat now must be restarted for these changes to take
effect.

HTTPS in a Production-Grade Web Server | 255

With these changes in place, entering the URL:

https://localhost:8443/

in a browser or as an argument to the curl utility results in the fetch of Tomcat’s familiar
welcome page, the same page accessible through the HTTP URL:

http://localhost:8080/

The attributes in the HTTPS Connector element are intuitive. The maxThreads value of
150 signals that Tomcat will queue up to 150 requests against an HTTPS service before
issuing a connection refused response to a client attempting to connect. The SSL protocol
is the current standard, TLS; the HTTP scheme used to connect over HTTPS is, as
expected, https.

Enforcing HTTPS Access to a Web Service
A website or a web service can instruct Tomcat to enforce HTTPS access to either the
entire resource (for instance, all of the HTML pages in the website and all of the oper‐
ations in the web service) or only parts thereof (for instance, to administrative HTML
pages in the site or to selected operations in the service). The instructions to Tomcat
occur in a security-constraint section of the web.xml deployment file. To illustrate,
the RESTful predictions2 service of Chapter 2, originally deployed with HTTP access
only, can be redeployed with HTTPS access only. This requires no change whatsoever
in the code. The revised web.xml is Example 6-7.

Example 6-7. The web.xml revised for security
<?xml version = "1.0" encoding = "UTF-8"?>
<web-app>
 <servlet>
 <servlet-name>predictor</servlet-name>
 <servlet-class>predictions2.PredictionsServlet</servlet-class>
 </servlet>
 <security-constraint>
 <web-resource-collection>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <servlet-mapping>
 <servlet-name>predictor</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

256 | Chapter 6: Web Services Security

The changes are limited to the security-constraint section (line 1). In this example,
the security constraint is enforced on the entire resource because the url-pattern (line
2) has /* as its value. The deployed WAR file predictions2.war (created, as usual, with
the Ant script) could be partitioned in subdirectories, for example:

/admin ;; contains administrative operations
/public ;; contains publicly accessible operations

Under this partition, the service operations in the /admin directory might require
HTTPS but not the ones in the /public directory. To enforce this policy, the url-
pattern in line 2 would change to /admin/*. The transport-guarantee element, with
a value of CONFIDENTIAL (line 3), instructs Tomcat to enforce HTTPS access on the
specified resource, in this example on the entire predictions2 WAR file. If a client tried
to access the predictions2 service under HTTP, Tomcat would respond with an HTTP
status code of 302 and the appropriate https URL, thereby signaling to the client that a
new request with an HTTPS connection should be attempted.

Within the web-resource-collection element of web.xml, access constraints can be
specified that depend on the HTTP verb of the client request. For example, the web.xml
segment:

<web-resource-collection>
 <url-pattern>/*</url-pattern>
 <http-method>POST</http-method>
 <http-method>PUT</http-method>
</web-resource-collection>

specifies that access to the resource, in this case the entire predictions2 service, is con‐
strained only on POST and PUT requests (lines 1 and 2). If no specific HTTP verbs are
specified, then the constraint covers them all.

An HTTPS Client Against the predictions2 Service
Example 6-8 shows the HttpsPredictionsClient against the predictions2 service.

Example 6-8. The HttpsPredictionsClient against the predictions2 service
import java.net.URL;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLContext;
import java.security.KeyStore;
import javax.net.ssl.TrustManagerFactory;
import javax.net.ssl.X509TrustManager;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLSession;
import java.security.cert.X509Certificate;
import java.security.SecureRandom;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.OutputStream;

HTTPS in a Production-Grade Web Server | 257

import java.io.ByteArrayOutputStream;

public class PredictionsHttpsClient {
 private static final String endpoint = "https://localhost:8443/predictions2";
 private static final String truststore = "test.keystore";

 public static void main(String[] args) {
 new PredictionsHttpsClient().runTests();
 }
 private void runTests() {
 try {
 SSLContext sslCtx = SSLContext.getInstance("TLS");
 char[] password = "qubits".toCharArray();
 KeyStore ks = KeyStore.getInstance("JKS");
 FileInputStream fis = new FileInputStream(truststore);
 ks.load(fis, password);
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
 tmf.init(ks); // same as keystore
 sslCtx.init(null, // not needed, not challenged
 tmf.getTrustManagers(),
 new SecureRandom());
 HttpsURLConnection.setDefaultSSLSocketFactory(sslCtx.getSocketFactory());
 getTest();
 postTest();
 getTestAll(); // confirm POST test
 deleteTest("31");
 getTestAll(); // confirm DELETE test
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private HttpsURLConnection getConnection(URL url, String verb) {
 try {
 HttpsURLConnection conn = (HttpsURLConnection) url.openConnection();
 conn.setDoInput(true);
 conn.setDoOutput(true);
 conn.setRequestMethod(verb);
 conn.setHostnameVerifier(new HostnameVerifier() {
 public boolean verify(String host, SSLSession session) {
 return host.equals("localhost"); // for development
 }
 });
 return conn;
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void getTest() {
 getTestAll();
 getTestOne("31");
 }
 private void getTestAll() {
 try {
 URL url = new URL(endpoint);

258 | Chapter 6: Web Services Security

 HttpsURLConnection conn = getConnection(url, "GET");
 conn.connect();
 readResponse("GET all request:\n", conn);
 conn.disconnect();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void getTestOne(String id) {
 try {
 URL url = new URL(endpoint + "?id=" + id);
 HttpsURLConnection conn = getConnection(url, "GET");
 conn.connect();
 readResponse("GET request for " + id + ":\n", conn);
 conn.disconnect();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void postTest() {
 try {
 URL url = new URL(endpoint);
 HttpsURLConnection conn = getConnection(url, "POST");
 conn.connect();
 writeBody(conn);
 readResponse("POST request:\n", conn);
 conn.disconnect();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void deleteTest(String id) {
 try {
 URL url = new URL(endpoint + "?id=" + id);
 HttpsURLConnection conn = getConnection(url, "DELETE");
 conn.connect();
 readResponse("DELETE request:\n", conn);
 conn.disconnect();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void writeBody(HttpsURLConnection conn) {
 try {
 String pairs = "who=Freddy&what=Avoid Friday nights if possible.";
 OutputStream out = conn.getOutputStream();
 out.write(pairs.getBytes());
 out.flush();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void readResponse(String msg, HttpsURLConnection conn) {
 try {
 byte[] buffer = new byte[4096];
 InputStream in = conn.getInputStream();
 ByteArrayOutputStream out = new ByteArrayOutputStream();

HTTPS in a Production-Grade Web Server | 259

 int n = 0;
 while ((n = in.read(buffer)) != -1) out.write(buffer, 0, n);
 in.close();
 System.out.println(new String(out.toByteArray())); // stringify and print
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
}

The PredictionsHttpsClient (see Example 6-8) is a test client against the HTTPS-
deployed version of the predictions2 service. This client is roughly similar to the
HttpsClient (Example 6-6) but methods such as readResponse and writeBody now
are beefed up in order to make realistic CRUD requests against the service. For example,
the postTest adds new Prediction to the collection, which requires that writeBody
insert the key/value pairs for the key who (the predictor) and the key what (the predic‐
tion); the getTestAll must read all of the bytes returned from the service in order to
display the Prediction list.

Tomcat’s approach to HTTPS exemplifies the separation-of-concerns principle. A web
service (or a website) need not be changed at the code level to move from HTTP to
HTTPS access. It bears repeating that no code in the original predictions2 service had
to be changed; instead, only the deployment descriptor web.xml needed to change, and
then only a little. Tomcat also assumes responsibility for enforcing HTTPS access in
accordance with the policy given in the web.xml document: a client that now tries to hit
the predictions2 service with an HTTP-based request is signaled that an HTTPS-based
request should be used instead.

Container-Managed Security
Wire-level security and users/roles security are related as follows. Under users/roles
security, a client furnishes an identification such as a username or even a digital certif‐
icate together with a security credential that vouches for the identification (for instance,
a password or a signature on the digital certificate from a certificate authority). To avoid
hijacking, the identification and the credential should be sent from the client to the
server through a secure channel, for instance, over an HTTPS connection. Wire-level
security is thus the foundation upon which users/roles security should be implemented,
and HTTPS is an ideal way to provide wire-level security for web-based systems such
as web services.

Users/roles security is a two-phase process (see Figure 6-8). In the first and required
phase, the user provides an identification and a credential that vouches for the identi‐
fication. A successful user authentication phase results in an authenticated subject. In
the optional second phase, role authorization, the access permissions of the authenti‐
cated subject can be refined as needed. For example, in a software development
organization there might be a distinction between a senior engineer and a starting

260 | Chapter 6: Web Services Security

programmer, in that the former can access resources (for instance, sensitive records in
a database) that the latter cannot access. This distinction could be implemented with
different authorization roles.

Figure 6-8. Users/roles security

At what level should users/roles security be enforced? Enforcement at the application
level does not scale easily, in that every web service (or website) would require code,
perhaps consolidated into a library, dedicated to security; a web service still would need
to link to such library code. The preferred approach is to hand over the security concerns
to the service container—to Tomcat or Jetty. This is container-managed security, which
is considered best practice. Tomcat’s implementation of container-managed security,
like its management of wire-level security, is unobtrusive at the service level: no changes
are required in the web service code to enable users/roles security. Once again, the
configuration document web.xml is the key.

The RESTful predictions2 service once again can be augmented with container-managed
security—and without any change to the code. The revised web.xml document is dis‐
played in Example 6-9.

Example 6-9. The revised web.xml to support both HTTPS and users/roles security
<?xml version = "1.0" encoding = "UTF-8"?>
<web-app>
 <servlet>
 <servlet-name>predictor</servlet-name>
 <servlet-class>predictions2.PredictionsServlet</servlet-class>
 </servlet>
 <security-role>
 <role-name>bigshot</role-name>
 <!-- other roles as needed -->
 </security-role>
 <security-constraint>
 <web-resource-collection>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>bigshot</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>

Container-Managed Security | 261

 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>
 <servlet-mapping>
 <servlet-name>predictor</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

The numbered lines in the revised web.xml need clarification.
Security role declaration

Line 1 declares a security-role, which is an authorization role, and line 2 sets the
role’s name to bigshot. On the Tomcat side, a data store must contain the same role
name, with details to follow.

Authorization constraint
The security-constraint element, introduced earlier, now contains two specific
constraints: the user-data-constraint, which enforces HTTPS transport, from
the earlier example; and the new auth-constraint (line 3), which is an authoriza‐
tion rather than an authentication constraint in the context of users/roles security.
The authorization constraint specifies that access to the predictions2 resource, the
service and its operations, is restricted to a client authorized as a bigshot.

User authentication method
The login-config element (line 4) designates BASIC as the user authentication
method (line 5). HTTP 1.1 supports four authentication types: BASIC, FORM,
DIGEST, and CLIENT-CERT. These four types were designed with websites in
mind but are adaptable to web services as well. Here is a summary of the differences:

• The BASIC type, a holdover from HTTP 1.0, centers on a username and a
password, each passed from the client to the server for authentication. The
username/password pair is encoded in base64 but not encrypted unless, of
course, HTTPS is also in play.

• The FORM type refines the BASIC type by providing a form-based authenti‐
cation mechanism, with specified names for the input fields in the form. This
type also requires an error form to handle authentication failures. Further, the
authentication procedure is laid out in detail for the FORM variant, unlike the
BASIC variant. For modern websites, FORM-based authentication is best prac‐
tice. The FORM type, like the BASIC type, requires HTTPS or equivalent
transport-level support to provide data encryption.

• The BASIC and FORM types require that the username and the password be
stored on the server side because the server needs to compare the submitted
username/password pair against the server’s own copies of these. A modern
user, who is aware of the threat that security breaches represent, may be

262 | Chapter 6: Web Services Security

understandably wary of having a password stored on devices that the user does
not control. The DIGEST type meets this challenge by sending a digest (hash
value) of the password rather than the password itself. Accordingly, only a
digest of the password needs to be stored on the server. The server-side login
process computes the digest, compares the computed digest against the stored
digest, and grants access only if these match. In general, digest or hash functions
are one-way secure: given the digest and even the algorithm used to compute
the digest, it is still computationally intractable to recover the original pass‐
word. Indeed, message digests are fixed-length; hence, from the digest itself it
is a daunting task to recover even the length of the original password. The
DIGEST type as well requires HTTPS or the equivalent transport-level support
to provide data encryption.

• The CLIENT-CERT type uses a digital certificate instead of a username/pass‐
word or username/password-digest pair for authentication. For user access to
websites, this approach may be impractical because a user may wish to hit a
website from a device that does not have a copy of the user’s digital certificate.
Also, such certificates have expiration dates and so must be refreshed period‐
ically. For web service clients, by contrast, the CLIENT-CERT type may have
more appeal. For example, the client application might access the digital cer‐
tificate from a database or similar data store that is managed automatically to
ensure up-to-date digital certificates.

The very simplicity of the BASIC type is attractive for clients against RESTful services,
especially if BASIC authentication is combined with HTTPS transport, which then
provides the required username/password encryption.

Linking the Service web.xml with a Tomcat Security Realm
The revised web.xml document specifies the type of HTTP authentication in use, BASIC,
as well as the authorization role, bigshot, required of the client that accesses the pre‐
dictions2 service. The next question is how Tomcat puts this security information to
use, in other words, how Tomcat’s container-managed security works under the hood.
Tomcat implements container-managed security with realms, which are akin to groups
in Unix-type operating systems. In simplest form, a realm is a collection of usernames
and passwords together the authorization roles, if any, associated with the usernames.
The purpose of a realm is to coordinate various security resources in support of a single
policy on access control. On the service side, security information needs to be saved in
a data store such as a relational database system; Tomcat realms provide the details about
how the security information is to be saved and accessed.

Container-Managed Security | 263

Tomcat7 comes with six standard plug-ins, all of which have Realm in their names.
Developers are free to develop additional Realm plug-ins. Here are the six native Tomcat
plug-ins with a short description of each:
JDBCRealm

The authentication information is stored in a relational database accessible through
a JDBC driver.

DataSourceRealm
The authentication information again is stored in a relational database and acces‐
sible through a Java JDBC DataSource, which in turn is available through a JNDI
(Java Naming and Directory Interface) lookup service.

JNDIRealm
The authentication information is stored in an LDAP-based (Lightweight Directory
Access Protocol) directory service, which is available through a JNDI provider.

UserDatabaseRealm
The authentication information is stored in a JNDI resource coordinated by default
with the file TOMCAT_HOME/conf/tomcat-users.xml. This is the default realm in
Tomcat7.

MemoryRealm
The authentication information is read into memory, at Tomcat startup, from the
file tomcat-users.xml. This is an earlier version of the UserDatabaseRealm and re‐
mains as an option for backward compatibility.

JAASRealm
The authentication information is available through a JAAS (Java Authentication
and Authorization Service) framework. This is the most powerful but also the most
complicated realm. Java Application Servers such as WebSphere and JBoss rely
upon JAAS providers for users/roles security, and this option is available in Tomcat
as well.

Under any of these choices, it is the Tomcat container rather than the application that
becomes the security provider. With respect to the options, the path of least resistance
leads to the default, the UserDatabaseRealm. Here is the data store, the XML file tomcat-
users.xml. The five elements commented out act as Tomcat’s tutorial about how the file
is to be used. My additions are lines 1 and 2. Line 1 declares the security role used in
line 2, which specifies a username and an associated password:

<tomcat-users>
 <role rolename="bigshot"/>
 <user username="moe" password="MoeMoeMoe" roles="bigshot"/>
</tomcat-users>

264 | Chapter 6: Web Services Security

With the UserDatabaseRealm now configured, the security process can be summarized
as follows:

• The revised deployment file web.xml requires not only HTTPS transport but also
users/roles authentication and authorization.

• To access the secured predictions2 service, a client must provide a username and a
password that match an entry in tomcat-users.xml.

• For the authorization phase to succeed, a matching user entry in the file tomcat-
users.xml must include bigshot among the roles.

The Client Side in Users/Roles Security
On the service side, Tomcat is responsible for conducting the user authentication and
role authorization. The burden now shifts to the client, which must properly format,
within an HTTPS request, the username and password information. On the service side,
the required changes are limited to the web service’s configuration file, web.xml, and to
the Tomcat UserDatabaseRealm file, tomcat-users.xml. No code in the predictions2
service needs to change.

The PredictionsHttpsClientAA (see Example 6-10) adds users/roles security on the
client side to the earlier HTTPS client against the predictions2 service. The changes are
quite small.

Example 6-10. The PredictionsHttpsClientAA client against the predictions2 service
import java.net.URL;
import javax.net.ssl.HttpsURLConnection;
import javax.net.ssl.SSLContext;
import java.security.KeyStore;
import javax.net.ssl.TrustManagerFactory;
import javax.net.ssl.X509TrustManager;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLSession;
import java.security.cert.X509Certificate;
import java.security.SecureRandom;
import java.io.FileInputStream;
import java.io.InputStream;
import java.io.OutputStream;
import java.io.ByteArrayOutputStream;
import org.apache.commons.codec.binary.Base64;

public class PredictionsHttpsClientAA {
 private static final String endpoint = "https://localhost:8443/predictions2";
 private static final String truststore = "test.keystore";

 public static void main(String[] args) {
 new PredictionsHttpsClientAA().runTests();

Container-Managed Security | 265

 }
 private void runTests() {
 try {
 SSLContext sslCtx = SSLContext.getInstance("TLS");
 char[] password = "qubits".toCharArray();
 KeyStore ks = KeyStore.getInstance("JKS");
 FileInputStream fis = new FileInputStream(truststore);
 ks.load(fis, password);
 TrustManagerFactory tmf = TrustManagerFactory.getInstance("SunX509");
 tmf.init(ks); // same as keystore
 sslCtx.init(null, // not needed, not challenged
 tmf.getTrustManagers(),
 new SecureRandom());
 HttpsURLConnection.setDefaultSSLSocketFactory(sslCtx.getSocketFactory());
 // Proof of concept tests.
 String uname = "moe";
 String passwd = "MoeMoeMoe";
 getTest(uname, passwd);
 postTest(uname, passwd);
 getTestAll(uname, passwd); // confirm POST test
 deleteTest(uname, passwd, "31");
 getTestAll(uname, passwd); // confirm DELETE test
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private HttpsURLConnection getConnection(URL url,
 String verb,
 String uname,
 String passwd) {
 try {
 HttpsURLConnection conn = (HttpsURLConnection) url.openConnection();
 conn.setDoInput(true);
 conn.setDoOutput(true);
 conn.setRequestMethod(verb);
 // authentication (although header name is Authorization)
 String userpass = uname + ":" + passwd;
 String basicAuth = "Basic " +
 new String(new Base64().encode(userpass.getBytes()));
 conn.setRequestProperty ("Authorization", basicAuth);
 conn.setHostnameVerifier(new HostnameVerifier() {
 public boolean verify(String host, SSLSession session) {
 return host.equals("localhost"); // for development
 }
 });
 return conn;
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void getTest(String uname, String passwd) {
 getTestAll(uname, passwd);
 getTestOne(uname, passwd, "31");
 }

266 | Chapter 6: Web Services Security

 private void getTestAll(String uname, String passwd) {
 try {
 URL url = new URL(endpoint);
 HttpsURLConnection conn = getConnection(url, "GET", uname, passwd);
 conn.connect();
 readResponse("GET all request:\n", conn);
 conn.disconnect();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void getTestOne(String uname, String passwd, String id) {
 try {
 URL url = new URL(endpoint + "?id=" + id);
 HttpsURLConnection conn = getConnection(url, "GET", uname, passwd);
 conn.connect();
 readResponse("GET request for " + id + ":\n", conn);
 conn.disconnect();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void postTest(String uname, String passwd) {
 try {
 URL url = new URL(endpoint);
 HttpsURLConnection conn = getConnection(url, "POST", uname, passwd);
 conn.connect();
 writeBody(conn);
 readResponse("POST request:\n", conn);
 conn.disconnect();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void deleteTest(String uname, String passwd, String id) {
 try {
 URL url = new URL(endpoint + "?id=" + id);
 HttpsURLConnection conn = getConnection(url, "DELETE", uname, passwd);
 conn.connect();
 readResponse("DELETE request:\n", conn);
 conn.disconnect();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void writeBody(HttpsURLConnection conn) {
 try {
 String pairs = "who=Freddy&what=Avoid Friday nights if possible.";
 OutputStream out = conn.getOutputStream();
 out.write(pairs.getBytes());
 out.flush();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private void readResponse(String msg, HttpsURLConnection conn) {
 try {

Container-Managed Security | 267

 byte[] buffer = new byte[4096];
 InputStream in = conn.getInputStream();
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 int n = 0;
 while ((n = in.read(buffer)) != -1) out.write(buffer, 0, n);
 in.close();
 System.out.println(new String(out.toByteArray())); // stringify and print
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
}

The getConnection method has three newlines:

String userpass = uname + ":" + passwd;
String basicAuth = "Basic " +
 new String(new Base64().encode(userpass.getBytes()));
conn.setRequestProperty ("Authorization", basicAuth);

A userpass string is created as a key/value pair, with the colon, :, as the separator, from
the parameters uname and passwd (line 1). The userpass is then encoded in base64 and
has Basic prepended (line 2). The result is inserted into the HTTPS headers, with
Authorization as the key. For moe as the username and MoeMoeMoe as the password, the
resulting header is:

Authorization: Basic bW9lOk1vZU1vZU1vZQ==

This setup follows HTTP 1.1 guidelines and meets Tomcat expectations about how the
authentication/authorization information is to be formatted in the HTTPS request. As
usual, a client against a RESTful service needs to stay close to the HTTP/HTTPS metal.

Using the curl Utility for HTTPS Testing
The curl utility is an alternative to a full-blown RESTful client written in Java or some
other language. For the predictions2 service accessible through HTTPS and with user-
authentication/role authorization in play, this curl command sends a GET request:

% curl --verbose --insecure --user moe:MoeMoeMoe \
 https://localhost:8443/predictions2

The --insecure flag means that curl goes through handshake process but does not
verify the digital certificates sent from the server; the verification would require that
curl be pointed to the appropriate truststore file. In any case, the output from a sample
run, edited slightly for readability, is shown in Example 6-11.

Example 6-11. The output from a curl request over HTTPS
* About to connect() to localhost port 8443 (#0)
* Trying ::1... connected
* Connected to localhost (::1) port 8443 (#0)
* successfully set certificate verify locations:

268 | Chapter 6: Web Services Security

* CAfile: none
 CApath: /etc/ssl/certs
* SSLv3, TLS handshake, Client hello (1):
* SSLv3, TLS handshake, Server hello (2):
* SSLv3, TLS handshake, CERT (11):
* SSLv3, TLS handshake, Server key exchange (12):
* SSLv3, TLS handshake, Server finished (14):
* SSLv3, TLS handshake, Client key exchange (16):
* SSLv3, TLS change cipher, Client hello (1):
* SSLv3, TLS handshake, Finished (20):
* SSLv3, TLS change cipher, Client hello (1):
* SSLv3, TLS handshake, Finished (20):
* SSL connection using EDH-RSA-DES-CBC3-SHA
* Server certificate:
 ...
* SSL certificate verify result: self signed certificate (18),
 continuing anyway.
* Server auth using Basic with user 'moe'
> GET /predictions2 HTTP/1.1
> Authorization: Basic bW9lOk1vZU1vZU1vZQ==
> User-Agent: curl/7.19.7 (x86_64-pc-linux-gnu) libcurl/7.19.7
 OpenSSL/0.9.8k zlib/1.2.3.3 libidn/1.15
> Host: localhost:8443
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: Apache-Coyote/1.1
< Cache-Control: private
< Expires: Wed, 31 Dec 1969 18:00:00 CST
< Transfer-Encoding: chunked
...
<
<?xml version="1.0" encoding="UTF-8"?>
<java version="1.6.0_21" class="java.beans.XMLDecoder">
...

In the curl output, the character > introduces text lines sent from curl to the server,
whereas the character < introduces text lines from from the server to curl. The lines that
begin with a star, *, trace the TLS handshake process. Although curl recognizes (line 1)
that the self-signed certificate from the server is worthless as a security credential, curl
continues the process, again because of the --insecure flag, by sending a GET request
over HTTPS to the predictions2 service; the service responds with a list of the
predictions.

A @WebService Under HTTPS with Users/Roles Security
Tomcat supports HTTPS transport and users/roles security for SOAP-based services as
well. A SOAP-based client built atop wsimport-generated artifacts can use a slightly
higher level API than its REST-style counterpart to insert the required security

Container-Managed Security | 269

credentials into an HTTPS request. This section uses a minimal SOAP-based service to
focus on security in the client against the service.

The SOAP-based TempConvert service (see Example 6-12) has two operations: f2c
converts temperatures from fahrenheit to centigrade and c2f converts them from
centigrade to fahrenheit. With respect to security, the web.xml for this service is essen‐
tially the same as for the RESTful and secure predictions2 service.

Example 6-12. The SOAP-based TempConvert service
package tc;
import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService
public class TempConvert {
 @WebMethod
 public float c2f(float t) { return 32.0f + (t * 9.0f / 5.0f); }
 @WebMethod
 public float f2c(float t) { return (5.0f / 9.0f) * (t - 32.0f); }
}

However, the web.xml for the SOAP-based service needs to reference the Metro WSServ
let (line 2), which acts as the intermediary between the servlet container and the service
(see Example 6-13); the additional configuration file, sun-jaxws.xml, is likewise
required.

Example 6-13. The web.xml document for the SOAP-based TempConvert service
<?xml version = "1.0" encoding = "UTF-8"?>
<web-app>
 <listener>
 <listener-class>
 com.sun.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <servlet-name>wsservlet</servlet-name>
 <servlet-class>
 com.sun.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 </servlet>
 <security-role>
 <role-name>bigshot</role-name>
 <!-- other roles as needed -->
 </security-role>
 <security-constraint>
 <web-resource-collection>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>

270 | Chapter 6: Web Services Security

 <role-name>bigshot</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>
 <servlet-mapping>
 <servlet-name>wsservlet</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

Lines 1 and 2 are the only changes to the web.xml used in the earlier predictions2 service.
With the web.xml and sun-jaxws.xml in place, the TempConvert service can be deployed
in the usual way:

% ant deploy -Dwar.name=tc

How should the wsimport-generated artifacts be generated for a service accessible only
through HTTPS? The attempt:

% wsimport -p tcClient -keep https://localhost:8443/tc?wsdl

generates a sun.security.validator.ValidatorException precisely because wsim‐
port is unable to conduct the HTTPS handshake: the utility does not have access to a
truststore against which the server’s digital certificate(s) can be verified. The service is
HTTPS-secured and, therefore, so is the service’s dynamically generated WSDL. The
wsgen utility provides a workaround. The command:

% wsgen -cp . tc.TempConvert -wsdl

generates the TempConvertService.wsdl file and the TempConvertService_schema1.xsd
file. The wsimport utility can now be targeted at the WSDL:

% wsmport -p tcClient -keep TempConvertService.wsdl

The only drawback is that the service’s URL is not in the class TempConvertService
because the WSDL used is not generated dynamically. The TempConvertClient (see
Example 6-14) shows how to overcome this drawback.

Example 6-14. The TempConvertClient against the SOAP-based TempConvert service
import tcClient.TempConvertService;
import tcClient.TempConvert;
import javax.xml.ws.BindingProvider;
import java.util.Map;
import javax.net.ssl.HostnameVerifier;
import javax.net.ssl.SSLSession;
import javax.net.ssl.SSLContext;

Container-Managed Security | 271

import javax.net.ssl.TrustManager;
import javax.net.ssl.X509TrustManager;
import javax.net.ssl.HttpsURLConnection;
import java.security.cert.Certificate;
import java.security.cert.X509Certificate;

public class TempConvertClient {
 private static final String endpoint = "https://localhost:8443/tc";
 // Make the client "trusting" and handle the hostname verification.
 static {
 HttpsURLConnection.setDefaultHostnameVerifier(new HostnameVerifier() {
 public boolean verify(String name, SSLSession session) {
 return true; // allow everything
 }
 });
 try {
 TrustManager[] trustMgr = new TrustManager[] {
 new X509TrustManager() {
 public X509Certificate[] getAcceptedIssuers() { return null; }
 public void checkClientTrusted(X509Certificate[] cs, String t)
 { }
 public void checkServerTrusted(X509Certificate[] cs, String t)
 { }
 }
 };
 SSLContext sslCtx = SSLContext.getInstance("TLS");
 sslCtx.init(null, trustMgr, null);
 HttpsURLConnection.setDefaultSSLSocketFactory(sslCtx.getSocketFactory());
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 public static void main(String args[]) {
 if (args.length < 2) {
 System.err.println("Usage: TempConvertClient <uname> <passwd>");
 return;
 }
 String uname = args[0];
 String passwd = args[1];
 TempConvertService service = new TempConvertService();
 TempConvert port = service.getTempConvertPort();
 BindingProvider prov = (BindingProvider) port;
 prov.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 endpoint);
 prov.getRequestContext().put(BindingProvider.USERNAME_PROPERTY,
 uname);
 prov.getRequestContext().put(BindingProvider.PASSWORD_PROPERTY,
 passwd);
 System.out.println("f2c(-40.1) = " + port.f2C(-40.1f));
 System.out.println("c2f(-40.1) = " + port.c2F(-40.1f));
 System.out.println("f2c(+98.7) = " + port.f2C(+98.7f));
 }
}

272 | Chapter 6: Web Services Security

The TempConvertClient uses a static block (line 1) to make itself into a trusting client
that does not check the server’s digital certificate during the HTTPS handshake; the
static block also instructs the HostnameVerifier to allow client access to any host,
including localhost. The static block isolates the transport-level security so that the
focus can be kept on the users/roles security. By the way, the static block exploits the
fact that a JAX-WS client uses, under the hood, the HttpsURLConnection of earlier
RESTful examples.

To gain access to the transport level, in particular to the headers in the HTTPS request,
the TempConvertClient casts the port reference to a BindingProvider (line 2). The
endpoint then is set (line 3) to the correct URL because the wsimport-generated classes
do not have a usable URL. The username and password, entered as command-line
arguments, are likewise placed in the HTTPS headers (lines 4 and 5). This SOAP-based
client need not bother with creating a single string out of the username and password
or with encoding these in base64. Instead, the client uses the intuitive:

BindingProvider.USERNAME_PROPERTY
BindingProvider.PASSWORD_PROPERTY

keys and sets the value for each. After the setup, the client makes three calls against the
SOAP-based service. The output is:

f2c(-40.1) = -40.055557
c2f(-40.1) = -40.18
f2c(+98.7) = 37.055557

Using a Digested Password Instead of a Password
A downside of BASIC authentication is that a client’s password must be stored, as is, on
the server side so that the received password can be compared against the stored pass‐
word. The DIGEST option requires only that the hash value of the password be stored
on the server. The setup for the DIGEST option is trickier than for the BASIC option,
however. Yet the BASIC option can be tweaked so that it behaves just like the DIGEST
option. This section illustrates.

Tomcat comes with a digest utility: digest.sh for Unixy systems and digest.bat for Win‐
dows. The command:

% digest.sh -a SHA MoeMoeMoe

generates a 20-byte hash value, in hex, using the SHA-1 algorithm. Here is the value:

0f9e52090a322d7f788db2ae6b603e8efbd7fbd1

In the TOMCAT_HOME/conf/tomcat-users.xml file, this value replaces the password
for moe (line 1):

<?xml version='1.0' encoding='utf-8'?>
<tomcat-users>

Container-Managed Security | 273

 <role rolename="bigshot"/>
 <user username="moe"
 password="0f9e52090a322d7f788db2ae6b603e8efbd7fbd1"
 roles="bigshot"/>
</tomcat-users>

The file is otherwise unchanged.

The digest utility is implemented with the RealmBase.Digest method, which can be
used in a Java client. The revised client against the TempConvertService, named Temp
ConvertClient2 (see Example 6-15), illustrates.

Example 6-15. The revised TempConvertClient2
import tcClient.TempConvertService;
import tcClient.TempConvert;
...
import org.apache.catalina.realm.RealmBase;

public class TempConvertClient2 {
 private static final String endpoint = "https://localhost:8443/tc";

 static {
 ...
 }
 public static void main(String args[]) {
 if (args.length < 2) {
 System.err.println("Usage: TempConvertClient <uname> <passwd>");
 return;
 }
 String uname = args[0];
 String passwd = args[1];
 String passwdHash = RealmBase.Digest(passwd, // password
 "SHA", // algorithm
 null); // default encoding: utf-8
 TempConvertService service = new TempConvertService();
 TempConvert port = service.getTempConvertPort();
 BindingProvider prov = (BindingProvider) port;
 prov.getRequestContext().put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY,
 endpoint);
 prov.getRequestContext().put(BindingProvider.USERNAME_PROPERTY,
 uname);
 prov.getRequestContext().put(BindingProvider.PASSWORD_PROPERTY,
 passwdHash);
 ...
 }
}

Most of the code in the TempConvertClient2 client is the same as that in the original.
The import in line 1 is the first difference: the Tomcat libraries include the RealmBase
class whose Digest method is of interest (line 2). The Digest method generates the hash

274 | Chapter 6: Web Services Security

value for the sample password, in this case MoeMoeMoe, which is given as a command-
line argument. The hash value instead of the actual password then is placed in the
HTTPS headers (line 3). On the service side, the send hash value is compared against
the hash value stored in the revised tomcat-users.xml. The ZIP with the sample code
includes runClient.xml, an Ant script to compile and execute the TempConvert
Client2. A sample invocation with output is:

% ant -f runClient.xml -Darg1=moe -Darg2=MoeMoeMoe

Buildfile: run.xml
compile:
run:
 [java] f2c(-40.1) = -40.055557
 [java] c2f(-40.1) = -40.18
 [java] f2c(+98.7) = 37.055557

WS-Security
WS-Security is a family of specifications (see Figure 6-9) designed to augment wire-level
security (e.g., HTTPS) and container-managed security (e.g., Tomcat) by providing a
unified, transport-neutral, container-neutral, end-to-end framework for higher levels
of security such as message confidentiality and authentication/authorization.

Figure 6-9. The WS-Security specifications

The layered blocks above WS-Security in Figure 6-9 can be clarified briefly as follows.
The first layer consists of WS-Policy, WS-Trust, and WS-Privacy. The second layer of
WS-SecureConversation, WS-Federation, and WS-Authorization builds upon this first
layer. The architecture is thus modular but also complicated. Here is a short description
of each specification, starting with the first layer:

WS-Security | 275

WS-Policy
This specification describes general security capabilities, constraints, and policies.
For example, a WS-Policy assertion could stipulate that a message requires security
tokens or that a particular encryption algorithm be used.

WS-Trust
This specification deals primarily with how security tokens are to be issued,
renewed, and validated. In general, the specification covers brokered trust
relationships.

WS-Privacy
This specification explains how services can state and enforce privacy policies. The
specification also covers how a service can determine whether a requester intends
to follow such policies.

WS-SecureConversation
This specification covers, as the name indicates, secure web service conversations
across different sites and, therefore, across different security contexts and trust
domains. The specification focuses on how a security context is created and how
security keys are derived and exchanged.

WS-Federation
This specification addresses the challenge of managing security identities across
different platforms and organizations. At the heart of the challenge is how to main‐
tain a single, authenticated identity (for example, Alice’s security identity) in a het‐
erogeneous security environment.

WS-Authorization
This specification covers the management of authorization data such as security
tokens and underlying policies for granting access to secured resources.

WS-Security is often associated with federated security in the broad sense, which has
the goal of cleanly separating web service logic from the high-level security concerns,
in particular authentication/authorization, that challenge web service deployment. This
separation of concerns is meant to ease collaboration across computer systems and trust
realms.

Recall that SOAP-based web services are meant to be transport-neutral. Accordingly,
SOAP-based services cannot depend simply on the reliable transport that HTTP and
HTTPS provide, although most SOAP messages are transported over HTTP. HTTP and
HTTPS rest on TCP/IP (Transmission Control Protocol/Internet Protocol), which sup‐
ports reliable messaging. What if TCP/IP infrastructure is not available? The WS-
ReliableMessaging specification addresses precisely the issue of delivering SOAP-based
services over unreliable infrastructure.

276 | Chapter 6: Web Services Security

A SOAP-based service can rely on the authentication/authorization support that a web
container such as Tomcat or an application server such as Oracle WebLogic, JBoss,
GlassFish, or WebSphere may provide. In this case, the service outsources users/roles
security to the service container. The WS-Security specifications are a guide to how
security in general can be handled from within SOAP messaging. Accordingly, the WS-
Security specifications address security issues as part of SOAP itself rather than as the
part of the infrastructure that happens to be in place for a particular SOAP-based service.
The goals of WS-Security are often summarized with the phrase end-to-end security,
which means that security matters are not delegated to either the transport level (e.g.,
HTTPS) or a particular service container (e.g., Tomcat) but, rather, handled directly
through an appropriate security API. A framework for end-to-end security needs to
cover the situation in which a message is routed through intermediaries, each of which
may have to process the message, before reaching the ultimate receiver; thus, end-to-
end security focuses on message content rather than on the underlying transport or
the service container. As a result, SOAP messaging becomes considerably more
complicated.

Securing a @WebService with WS-Security
In order to focus squarely on WS-Security, the sample web service (see Example 6-16)
is deliberately bare bones. Further, the Endpoint publisher is used to host the service
despite the fact that Endpoint supports neither wire-level security nor users/roles au‐
thentication and authorization. The very point of WS-Security is to provide security
within SOAP messaging. The Echo service focuses on how WS-Security supports user
authentication in particular.

The publisher (see Example 6-17) first sets an Echo instance as the service endpoint (line
1) and then gets the Binding (line 2) in order to register a service-side handler (lines 3,
4, and 5). The publisher finishes its work by publishing the service at the specified URL
(line 6).

Example 6-16. The bare-bones Echo service
package echoService;
import javax.jws.WebService;
import javax.jws.WebMethod;

@WebService
public class Echo {
 @WebMethod
 public String echo(String msg) { return "Echoing: " + msg; }
}

WS-Security | 277

The Echo class gives no hint of WS-Security, which is delegated to the handler level, in
this case to the message handler ServiceHandler. This separation of concerns means
that, at the application level, the Echo service looks like any other @WebService: the
service is a collection of operations, in this case only the echo method.

Example 6-17. The EchoPublisher, which publishes the Echo service
package echoService;

import javax.xml.ws.Endpoint;
import javax.xml.ws.Binding;
import java.util.List;
import java.util.LinkedList;
import javax.xml.ws.handler.Handler;

public class EchoPublisher {
 public static void main(String[] args) {
 Endpoint endpoint = Endpoint.create(new Echo());
 Binding binding = endpoint.getBinding();
 List<Handler> hchain = new LinkedList<Handler>();
 hchain.add(new ServiceHandler());
 binding.setHandlerChain(hchain);
 endpoint.publish("http://localhost:7777/echo");
 System.out.println("http://localhost:7777/echo");
 }
}

At this point, a shift to the client side may be helpful because the client, too, has a handler;
the service-side handler validates the information that the client-side handler puts into
the SOAP request message. The client-side handler inserts a username and a password
into the header of every SOAP request from the client. The service-side handler then
verifies the identity of the user by using the password as the credential that vouches for
the identity. The client’s request hits the Echo service only if the service-side handler is
successful in its verification.

On the client side and on the service side, the labor is divided in similar ways. The client-
side message handler inserts the username and password into the outgoing SOAP mes‐
sage but relies upon the Prompter, which in turn is a CallbackHandler, to prompt for
and read in the username and password; this CallbackHandler obscures but, in this
example, does not encrypt the password. The client-side message handler also inserts
other security information into the SOAP request message (see Figure 6-10).

278 | Chapter 6: Web Services Security

Figure 6-10. The client-side architecture in the Echo service

On the service side, the message handler delegates verification to a CallbackHandler
of its own, the Verifier (see Figure 6-11). The Verifier, in turn, relies on other
CallbackHandler instances to extract the authentication information and to verify the
sent username/password against service-side copies of these. The architecture on the
service side thereby complements the architecture on the client side.

Figure 6-11. The service-side architecture in the Echo service

An examination of a familiar request/response exchange, starting from a client request
through the service response, should cast light on the implementation details. The
EchoClientWSS client (see Example 6-18) relies on the usual wsimport-generated arti‐
facts (lines 1 and 2) to get a port reference (line 3), which is cast to the data type
BindingProvider (line 4) so that the client-side SOAPHandler, an instance of the
ClientHandler class, can be linked dynamically with the client (line 5). With this setup
in place, the EchoClientWSS then makes a call against the Echo service (line 6) and prints
the response for confirmation (line 7). All of the WS-Security code is relegated to the
ClientHandler.

Example 6-18. The sample EchoClientWSS against the Echo service
import java.util.List;
import java.util.LinkedList;
import javax.xml.ws.handler.Handler;
import javax.xml.ws.BindingProvider;
import javax.xml.ws.Binding;

WS-Security | 279

import echoClient.EchoService;
import echoClient.Echo;

public class EchoClientWSS {
 public static void main(String[] args) {
 try {
 List<Handler> hchain = new LinkedList<Handler>();
 hchain.add(new ClientHandler());
 EchoService service = new EchoService();
 Echo port = service.getEchoPort();
 Binding binding = ((BindingProvider) port).getBinding();
 binding.setHandlerChain(hchain);
 String response = port.echo("Goodbye, cruel world!");
 System.out.println("From Echo service: " + response);
 }
 catch (Exception e) { throw new RuntimeExceptione(e); }
 }
}

The ClientHandler receives, from the underlying SOAP libraries on the client side, a
SOAP message that represents a call to the echo operation in the Echo service. This
message is passed to the ClientHandler (see Example 6-19), which does the WS-
Security work. The result of this work impacts only the SOAP header, not the SOAP
body; hence, the ClientHandler must be a SOAPHandler in order to access the
SOAP header.

Example 6-19. The client-side ClientHandler, which uses the Prompter
import java.util.Set;
import java.util.HashSet;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPMessage;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;
import java.io.FileInputStream;
import java.io.File;
import com.sun.xml.wss.ProcessingContext;
import com.sun.xml.wss.SubjectAccessor;
import com.sun.xml.wss.XWSSProcessorFactory;
import com.sun.xml.wss.XWSSProcessor;

public class ClientHandler implements SOAPHandler<SOAPMessageContext> {
 private XWSSProcessor xwssClient;
 private boolean trace;

 public ClientHandler() {
 XWSSProcessorFactory fact = null;
 try {
 fact = XWSSProcessorFactory.newInstance();
 FileInputStream config = new FileInputStream(new File("client.xml"));

280 | Chapter 6: Web Services Security

 xwssClient =
 fact.createProcessorForSecurityConfiguration(config, new Prompter());
 config.close();
 }
 catch (Exception e) { throw new RuntimeException(e); }
 trace = true; // set to true to enable message dumps
 }
 // Add a security header block
 public Set<QName> getHeaders() {
 String uri = "http://docs.oasis-open.org/wss/2004/01/" +
 "oasis-200401-wss-wssecurity-secext-1.0.xsd";
 QName securityHdr = new QName(uri, "Security", "wsse");
 HashSet<QName> headers = new HashSet<QName>();
 headers.add(securityHdr);
 return headers;
 }
 public boolean handleMessage(SOAPMessageContext msgCtx) {
 Boolean outbound = (Boolean)
 msgCtx.get (MessageContext.MESSAGE_OUTBOUND_PROPERTY);
 SOAPMessage msg = msgCtx.getMessage();
 if (outbound.booleanValue()) {
 ProcessingContext pCtx = null;
 try {
 pCtx = xwssClient.createProcessingContext(msg);
 pCtx.setSOAPMessage(msg);
 SOAPMessage secureMsg = xwssClient.secureOutboundMessage(pCtx);
 msgCtx.setMessage(secureMsg);

 if (trace) dump("Outgoing message:", secureMsg);
 }
 catch (Exception e) { throw new RuntimeException(e); }
 }
 return true;
 }
 public boolean handleFault(SOAPMessageContext msgCtx) { return true; }
 public void close(MessageContext msgCtx) { }
 private void dump(String msg, SOAPMessage soapMsg) {
 try {
 System.out.println(msg);
 soapMsg.writeTo(System.out);
 System.out.println();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
}

The ClientHandler no-argument constructor creates an XWSSProcessor (lines 1
through 3), which generates the WS-Security artifacts that go into the revised SOAP
message. Two arguments are required for the creation of the XWSSProcessor: a file from
which configuration information can be read and a CallbackHandler, in this case the

WS-Security | 281

Prompter, that provides the username and password. The configuration file is
minimalist:

<xwss:SecurityConfiguration
 xmlns:xwss="http://java.sun.com/xml/ns/xwss/config"
 dumpMessages="true" >
 <xwss:UsernameToken digestPassword="false"/>
</xwss:SecurityConfiguration>

The code for the Prompter is examined shortly.

A SOAP message handler must define four methods: getHeaders, handleMessage,
handleFault, and close. Of the four methods, getHeaders executes first. Earlier ex‐
amples of SOAP handlers defined the getHeaders method but never put this method
to work. In this case, the getHeaders method (line 4) is put to work—the method adds
an empty header block in the SOAP message:

<S:Header>
 <wsse:Security
 xmlns:wsse="http://docs.oasis-open.org/ \
 wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 S:mustUnderstand="1">
 </wsse:Security>
</S:Header>

Although this header block is empty, it does contain the mustUnderstand attribute, with
a value of 1 for true; WS-Security requires the attribute. Once the getHeaders method
has done its part, the handleMessage method takes over to complete the work. This
method creates a WS-Security processing context (line 5) that is used to transform the
current SOAP message (line 6), with its newly added wsse:Security header block, into
a secured SOAP message whose header contains the username and password (lines 7
and 8). Behind the scenes, the Prompter instance works with the XWSSProcessor to
provide the required username and password. When the handleMessage method exits,
the SOAP message has been transformed into something much larger. The client-side
SOAP message before the handler operates is small (see Example 6-20), but this message
becomes significantly larger after the handler has done its work (see Example 6-21).

Example 6-20. The SOAP request before the ClientHandler transforms the message
<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Body>
 <ns2:echo xmlns:ns2="http://echoService/">
 <arg0>Goodbye, cruel world!</arg0>
 </ns2:echo>
 </S:Body>
</S:Envelope>

282 | Chapter 6: Web Services Security

Example 6-21. The SOAP request after the ClientHandler transforms the message
<?xml version="1.0" encoding="UTF-8"?>
<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header>
 <wsse:Security
 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/\
 oasis-200401-wss-wssecurity-secext-1.0.xsd"
 S:mustUnderstand="1">
 <wsse:UsernameToken
 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/\
 oasis-200401-wss-wssecurity-utility-1.0.xsd"
 wsu:Id="XWSSGID-1365549760320-535388749">
 <wsse:Username>fred</wsse:Username>
 <wsse:Password
 Type="http://docs.oasis-open.org/wss/2004/01/\
 oasis-200401-wss-username-token-profile-1.0#PasswordText">

 </wsse:Password>
 <wsse:Nonce
 EncodingType="http://docs.oasis-open.org/wss/2004/01/\
 oasis-200401-wss-soap-message-security-1.0#Base64Binary">
 Q945eYMcu3NWuq90IjmNXjDy
 </wsse:Nonce>
 <wsu:Created>...</wsu:Created>
 </wsse:UsernameToken>
 </wsse:Security>
 </S:Header>
 <S:Body>
 <ns2:echo xmlns:ns2="http://echoService/">
 <arg0>Goodbye, cruel world!</arg0>
 </ns2:echo>
 </S:Body>
</S:Envelope>

The outgoing SOAP request now has, in the header, three items of security interest:

• The username, which is the client’s identity (line 1).
• The obscured but not encrypted password, which is the credential that vouches for

the username (line 2).
• A cryptographic nonce, a randomly generated value that is used just once in order

to thwart so-called replay attacks (line 3). Each time that the EchoClientWSS sends
a request to the Echo service, the username and password might be the same but
the nonce differs from preceding ones; the WSS libraries on the service side validate
the nonce.

The low-level work on the client side falls to the Prompter class (see Example 6-22),
which implements the CallbackHandler interface by defining the handle method. The
details are tedious but the gist is clear: the Prompter, in a production environment,

WS-Security | 283

would prompt for a username and password by using a UsernameCallback (line 1) and
a PasswordCallback, respectively. The XWSSProcessor, which has access to the two
callbacks through the processing context, extracts the username and password so that
these can be inserted into the outgoing SOAP message.

Example 6-22. The Prompter callback handler, which helps the ClientHandler
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import com.sun.xml.wss.impl.callback.PasswordCallback;
import com.sun.xml.wss.impl.callback.PasswordValidationCallback;
import com.sun.xml.wss.impl.callback.UsernameCallback;
import java.io.BufferedReader;
import java.io.InputStreamReader;

// For ease of testing, the username and password are
// hard-wired in the handle method with local variables
// username and password. For production, the hard wirings
// would be removed.
public class Prompter implements CallbackHandler {
 private String readLine() {
 String line = null;
 try {
 line = new BufferedReader(new InputStreamReader(System.in)).readLine();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 return line;
 }
 // Prompt for and read the username and the password.
 public void handle(Callback[] callbacks) {
 try {
 for (int i = 0; i < callbacks.length; i++) {
 if (callbacks[i] instanceof UsernameCallback) {
 UsernameCallback cb = (UsernameCallback) callbacks[i];
 /* Disable for testing.
 System.out.print("Username: ");
 String username = readLine();
 */
 String username = "fred"; // hard-wire for testing
 if (username != null) cb.setUsername(username);
 }
 else if (callbacks[i] instanceof PasswordCallback) {
 PasswordCallback cb = (PasswordCallback) callbacks[i];
 /* Disable for testing
 System.out.print("Password: ");
 String password = readLine();
 */
 String password = "rockbed"; // hard-wire for testing
 if (password != null) cb.setPassword(password);
 }
 }
 }

284 | Chapter 6: Web Services Security

 catch(Exception e) { throw new RuntimeException(e); }
 }
}

On the client side, the XWSSProcessor could do more than it does in this example. For
instance, the security processor could encrypt the blocks in the SOAP header, particu‐
larly the one with the password, and encrypt even the payload in the SOAP body. How‐
ever, this first look at WS-Security is focused on the architecture and flow of control,
and these additional steps would distract from that focus. It is now time to move over
to the service side.

On the service side, the incoming SOAP message goes to the ServiceHandler (see
Example 6-23), which verifies the security header blocks that the ClientHandler injects
into the SOAP request. This handler also pares down the incoming message (see
Example 6-21) to an ordinary-looking SOAP request:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">
 <S:Header/>
 <S:Body>
 <ns2:echo xmlns:ns2="http://echoService/">
 <arg0>Goodbye, cruel world!</arg0>
 </ns2:echo>
 </S:Body>
</S:Envelope>

This is almost the very request that the EchoClientWSS generates before the client-side
handler goes into action. The one difference is that the pared-down, incoming message
has a SOAP header—but an empty one.

Example 6-23. The service-side ServiceHandler
package echoService;

import java.util.Set;
import java.util.HashSet;
import javax.xml.namespace.QName;
import javax.xml.soap.SOAPMessage;
import javax.xml.ws.handler.MessageContext;
import javax.xml.ws.handler.soap.SOAPHandler;
import javax.xml.ws.handler.soap.SOAPMessageContext;
import java.io.ByteArrayInputStream;
import com.sun.xml.wss.ProcessingContext;
import com.sun.xml.wss.SubjectAccessor;
import com.sun.xml.wss.XWSSProcessorFactory;
import com.sun.xml.wss.XWSSProcessor;

public class ServiceHandler implements SOAPHandler<SOAPMessageContext> {
 private XWSSProcessor xwssServer = null;
 private boolean trace;

 public ServiceHandler() {

WS-Security | 285

 XWSSProcessorFactory fact = null;
 try {
 fact = XWSSProcessorFactory.newInstance();
 ByteArrayInputStream config = getConfig();
 xwssServer =
 fact.createProcessorForSecurityConfiguration(config,
 new Verifier());
 }
 catch (Exception e) { throw new RuntimeException(e); }
 trace = true; // set to true to enable message dumps
 }
 public Set<QName> getHeaders() {
 String uri = "http://docs.oasis-open.org/wss/2004/01/" +
 "oasis-200401-wss-wssecurity-secext-1.0.xsd";
 QName securityHdr = new QName(uri, "Security", "wsse");
 HashSet<QName> headers = new HashSet<QName>();
 headers.add(securityHdr);
 return headers;
 }
 public boolean handleMessage(SOAPMessageContext msgCtx) {
 Boolean outbound = (Boolean)
 msgCtx.get (MessageContext.MESSAGE_OUTBOUND_PROPERTY);
 SOAPMessage msg = msgCtx.getMessage();
 if (!outbound.booleanValue()) {
 // Validate the message.
 try{
 ProcessingContext pCtx =
 xwssServer.createProcessingContext(msg);
 pCtx.setSOAPMessage(msg);
 SOAPMessage verifiedMsg =
 xwssServer.verifyInboundMessage(pCtx);
 msgCtx.setMessage(verifiedMsg);
 if (trace) dump("Incoming message:", verifiedMsg);
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 return true;
 }
 public boolean handleFault(SOAPMessageContext msgCtx) { return true; }
 public void close(MessageContext msgCtx) { }
 private void dump(String msg, SOAPMessage soapMsg) {
 try {
 System.out.println(msg);
 soapMsg.writeTo(System.out);
 System.out.println();
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 private ByteArrayInputStream getConfig() {
 String config =
 "<xwss:SecurityConfiguration " +
 "xmlns:xwss=\"http://java.sun.com/xml/ns/xwss/config\" " +

286 | Chapter 6: Web Services Security

 "dumpMessages=\"true\"><xwss:RequireUsernameToken " +
 "passwordDigestRequired=\"false\"/> " +
 "</xwss:SecurityConfiguration>";
 return new ByteArrayInputStream(config.getBytes());
 }
}

The structure of the ServiceHandler is very close to that of the ClientHandler. In the
ServiceHandler, the handleMessage method is interested only in incoming SOAP
messages, that is, requests. This handler has a XWSSProcessor (lines 1 through 3) created
from a hard-wired configuration document (line 9) and associated with a Verifier
instance, a Callbackhandler that extracts the security information—the nonce, the
username, and the password—from the SOAP header for verification. Once the SOAP
request has been validated, the newly verified and simplified SOAP message is passed
on to the usual SOAP libraries, which transform the XML document into the appropriate
Java objects so that the Echo service can do its thing.

The ServiceHandler also makes use of the getHeaders method, which is particularly
important with respect to the SOAP response from the EchoService. Recall that the
ServiceHandler, like every handler, is inherently bidirectional. The handleMessage
method is coded so that this method ignores outgoing messages, but the getHeaders
method injects, into the SOAP response from the Echo service, a WS-Security header
with the mustUnderstand attribute set to true (line 5). In effect, the ServiceHandler is
demanding that any receiver of the SOAP response, including the EchoClientWSS, stick
by the WS-Security rules. If the getHeaders method simply returned null, a client-side
exception would be thrown because the incoming message would not be formatted
according to WS-Security standards.

The service-side Verifier, like the client-side Prompter, is a CallbackHandler dele‐
gated to do grunt work. In a production environment, the Verifier might check the
username and password against a database record, but here, for simplicity, these are
hard-wired in the code. The Verifier also uses a PlainTextPasswordVerifier because
the password itself rather than a hash value of the password is sent in the message
(Example 6-24).

Example 6-24. The service-side Verifier, a callback handler that helps the Service
Handler

package echoService;

import javax.security.auth.callback.Callback;
import javax.security.auth.callback.CallbackHandler;
import javax.security.auth.callback.UnsupportedCallbackException;
import com.sun.xml.wss.impl.callback.PasswordCallback;
import com.sun.xml.wss.impl.callback.PasswordValidationCallback;
import com.sun.xml.wss.impl.callback.UsernameCallback;

WS-Security | 287

// Verifier handles service-side callbacks for password validation.
public class Verifier implements CallbackHandler {
 // Username/password hardcoded for simplicity and clarity.
 private static final String _username = "fred";
 private static final String _password = "rockbed";

 // For password validation, set the validator to the inner class below.
 public void handle(Callback[] callbacks) throws UnsupportedCallbackException {
 for (int i = 0; i < callbacks.length; i++) {
 if (callbacks[i] instanceof PasswordValidationCallback) {
 PasswordValidationCallback cb =
 (PasswordValidationCallback) callbacks[i];
 if (cb.getRequest() instanceof
 PasswordValidationCallback.PlainTextPasswordRequest)
 cb.setValidator(new PlainTextPasswordVerifier());
 }
 else
 throw new UnsupportedCallbackException(null, "Not needed");
 }
 }
 // Encapsulated validate method verifies the username/password.
 private class PlainTextPasswordVerifier
 implements PasswordValidationCallback.PasswordValidator {
 public boolean validate(PasswordValidationCallback.Request req)
 throws PasswordValidationCallback.PasswordValidationException {
 PasswordValidationCallback.PlainTextPasswordRequest plain_pwd =
 (PasswordValidationCallback.PlainTextPasswordRequest) req;
 return_username.equals(plain_pwd.getUsername()) &&
 _password.equals(plain_pwd.getPassword());
 }
 }
}

On a successful verification, the Verifier validates fred (the username) as an authen‐
ticated subject whose public credential is the name fred and whose private credential is
the password that vouches for Fred’s identity.

The security illustrated in this sample could be ratcheted up to Mutual Challenge Se‐
curity (MCS) with digital certificates used on both sides for peer authentication. Further,
the contents of SOAP messages could be encrypted at the SOAP level, which would
result in significantly larger SOAP headers that specified all of the cryptographic infor‐
mation: encryption and message digest algorithms, digital certificate formats, policies
on confidentiality, encoding practices, specification of which parts of the SOAP message
are to be encrypted and even digitally signed, and so on.

288 | Chapter 6: Web Services Security

Compiling and Running the Echo Service and the EchoClientWSS
The WS-Security packages do not ship with core Java but can be downloaded in a single
JAR file. The current version, xws-security-3.0.jar, is included in the ZIP file with the
sample code. The ZIP file also includes an executable JAR for the service and an Ant
script to compile and execute the client.

• The EchoPublisher.jar file can be used to launch the publisher:
% java -jar EchoPublisher.jar

• The script runClient.xml can be used to compile and execute the EchoClientWSS:
% ant -f runClient.xml

The client-side message handler, like its service-side counterpart, has a dump utility
that can be turned on or off in the code. With the dump turned off, the output should
be similar to:

Buildfile: runClient.xml
compile:
 [javac] Compiling 4 source files to /home/mkalin/jwsur2/ch6/wss
run:
 [java] com.sun.xml.wss.impl.filter.DumpFilter process
 [java] From Echo service: Echoing: Goodbye, cruel world!

The client uses wsimport-generated artifacts, which are created in the usual way:

% wsimport -p echoClient -keep http://localhost:777/echo?wsdl

In a production environment, the Prompter on the client side would read the username
and password either from a data store or interactively, with the latter as the default. It is
easier to execute the client from the Ant script runClient.xml without any interaction;
hence, for testing purposes, the username and password are hard-wired in the code. For
a more realistic experience, the Prompter sections currently commented out can be
uncommented. In this case, the Prompter awaits client input. At the command-prompt,
the input should be:

fred
rockbed

These are the username and password that the ServiceHandler will verify.

Also in a production environment, the Verifier on the service side would verify a
received username/password pair against a data store such as a database. Again for
simplicity, the Verifier has the data hard-wired in the code.

WS-Security | 289

http://bit.ly/13zIOGy

What’s Next?
The examples so far have published RESTful and SOAP-based services with command-
line utilities such as Endpoint and production-grade web servers such as Tomcat and
Jetty. At the production level, Tomcat or Jetty represent a lightweight option; a JAS such
as IBM WebSphere, JBoss, GlassFish (the reference implementation), or Oracle Web‐
Logic (formerly BEA WebLogic) represents a heavier-weight option. In the early 2000s,
the lightweight Java movement, often associated with the Spring framework, emerged
as a reaction against the complexities of J2EE and the JASes used to deliver J2EE appli‐
cations. In the meantime, the move from J2EE to Java EE 5 and 6 has meant significant
weight loss for JASes because Java EE 5/6 offers a lightweight alternative to the earlier
J2EE. The popular JASes now support the updated Java EE specifications.

Packaging and configuration have become significantly easier with the new JAS ver‐
sions, which have administrative and other utilities that make the JAS an attractive
option for deploying web services. For example, Java EE applications now can express
configuration information with annotations instead of with complicated XML docu‐
ments; indeed, a Java EE application, including a web service, officially can be deployed
without any configuration document, although the web.xml remains the rule rather than
the exception for both websites and web services. The next chapter considers the pub‐
lication of REST-style and SOAP-based services under GlassFish and TomcatEE, em‐
phasizing the nuts and bolts details of such software but also the trade-offs involved in
using a JAS for deployment.

290 | Chapter 6: Web Services Security

http://www.springsource.org

CHAPTER 7

Web Services and Java Application Servers

This chapter examines how web services can be deployed using a JAS, the software
centerpiece of enterprise Java. The current version of enterprise Java is Java EE 6, which
includes EJB 3.x. Yet if web services, REST-style and SOAP-based alike, can be published
straightforwardly using the production-grade web servers such as Tomcat and Jetty,
why bother with a JAS at all? The chapter also delves into the reasons why a JAS might
be preferred over a standalone web server such as Tomcat or Jetty. To begin, an overview
of available JASes might be useful.
Apache Geronimo

This is an open source project.

Apache TomEE
This is essentially the Tomcat7 web server with OpenEJB extensions. This chapter
includes a code example of a SOAP-based service deployed as a @Stateless Session
EJB and using JPA to persist data in an HSQLDB database. The service is deployed
under TomEE as a standard WAR file—indeed, as a WAR file that requires no
web.xml document.

IBM WebSphere
This is a JAS with various extensions. There is a free version for developers.

JBoss
This JAS has been a community-based project and a JAS innovator from the start.
It is currently under Red Hat.

GlassFish
This JAS is part of the community-based GlassFish Metro project, which includes
the Metro implementation of JAX-WS. GlassFish is the reference implementation.
This chapter includes a pair of examples that involve GlassFish, including a SOAP-
based service deployed as a @Stateless Session EJB and using JPA to persist data
in a backend Apache Derby database.

291

http://geronimo.apache.org
http://tomee.apache.org
http://ibm.com/products
http://jboss.org
http://glassfish.java.net

Oracle WebLogic
This JAS originated as BEA WebLogic, another pioneering innovator. There is a
free version for developers available, as well as more information about this JAS
(which is also known as Fusion).

The complexity of a JAS results from its combining, into a single software application,
a variety of APIs and their implementations. The following subsections describe the
different architectural pieces that together make up a JAS. Even this overview of a JAS
may seem overwhelming because there are so many details to cover. It is worth keeping
in mind that a JAS is a very powerful, but likewise complicated, software system.

The Web Container
A web container hosts websites and web services, both of which are deployed as WAR
files. Tomcat Catalina is the RI for a web container. A website in Java is a mix of static
HTML pages; servlets; higher level servlet generators and HTML-templating constructs
such as JSP and JSF (Java Server Faces) scripts; backend JavaBeans dedicated specifically
to servlets and the equivalent; utility classes of all kinds; and, of course, JavaScript
embedded in the HTML pages. There are many JVM-centric frameworks for web
development, including Netty, Seam, Sitemesh, Tapestry, Wicket, Struts, Spring MVC,
VRaptor, Grails, and even Rails on JRuby.

Tomcat, like other web containers such as Jetty, can be embedded in an application
server as the JAS web container. JBoss, for example, once bundled Tomcat into one JAR
file (with a .sar extension for service archive) and Jetty into another, leaving it up to the
JAS administrator about which of these to use as the JBoss web container. Some JASes
still use embedded Tomcat for the community edition but roll their own for the pro‐
duction edition. Whatever the implementation choice, a JAS has a web container for
deploying websites and, increasingly, web services. The deployed WAR files typically
contain the standard configuration document web.xml and may contain vendor-specific
configuration documents as well. To host web services, a web container usually relies
upon a servlet interceptor that mediates between the client and the web service.

In contemporary websites, the model-view-controller (MVC) pattern has become pop‐
ular, even dominant. A model maintains state information about the site and is respon‐
sible for persistence through a data store such as a database system; a view provides an
appropriate representation of a model; and a controller is a request endpoint that im‐
plements the business logic that coordinates interaction between models on the one side
and views on the other side. Java EE has the @Entity annotation to signal that instances
of the annotated class are to be persisted, typically in a relational database system. An
@Entity class is thus a natural way to build a model with persistence. (The section below
on the EJB container goes into more detail on the @Entity annotation.) In interactive
web applications, JSP, JSF, or even higher level templating constructs can generate an

292 | Chapter 7: Web Services and Java Application Servers

http://www.oracle.com/weblogicserver

HTML view of a model; either a servlet or a servlet coordinated with a Session EJB,
discussed shortly, is a natural way to implement a controller.

For Java-based web services deployed in an application server such as GlassFish, @En
tity instances are likewise a natural way to implement models. The web service itself
is the controller that exposes business logic in @WebMethod or RESTful code and interacts,
as appropriate, with models. Views in web services are basically response documents,
with XML and JSON as the usual formats.

The Message-Oriented Middleware
The message-oriented middleware in a JAS requires a JMS (Java Message Service) pro‐
vider, which furnishes the store-and-forward technologies lumped together under the
term messaging. JMS supports synchronous and asynchronous messaging styles and
two types of message repository: topics, which are akin to bulletin boards in that a read
operation does not automatically remove a posted message; and queues, which are FIFO
(First In, First Out) lists in which a read operation, by default, removes the read item
from a queue. Under JMS, a publisher publishes messages to a topic and a sender sends
messages to a queue. A subscriber to a topic or a receiver on a queue receives such
messages either synchronously through a blocking read operation or asynchronously
through either a nonblocking read or the JMS event-driven notification mechanism.
JMS topics implement the publisher/subscriber model of messaging, whereas JMS
queues implement the point-to-point model.

The Enterprise Java Bean Container
The EJB container holds EJB instances, which are of three types: Session, Entity, and
Message-Driven. Session and traditional Entity EJBs are built on a Java RMI foundation,
whereas Message-Driven EJBs are built on a JMS foundation. A Message-Driven EJB is
a JMS MessageListener implemented as an EJB. A listener receives an event notification
whenever a new message arrives at a topic or a queue at which the listener has registered
interest.

A Session EJB typically implements an enterprise application’s business logic and in‐
teracts as needed with other application components, either local (for instance, other
EJBs in the same container) or remote (for instance, clients on a different host). As the
name suggests, a Session EJB is designed to maintain a client session. A Session EJB is
either stateless or stateful. A stateless Session EJB is, in effect, a collection of mutually
independent instance methods that should operate only on data passed in as arguments.
The EJB container assumes that a stateless Session EJB instance does not maintain state
information in instance fields. Suppose, for example, that a Session EJB encapsulates
two instance methods, m1 and m2. If this EJB were deployed as stateless, then the EJB
container would assume that a particular client, C, could invoke m1 in one EJB instance
and m2 in another EJB instance because the two methods do not share state. If the same

The Web Container | 293

Session EJB were deployed as stateful, then the EJB container would have to ensure that
the C invocation of m1 and m2 involved the same EJB instance because the two methods
presumably share state. As this summary implies, an EJB container automatically man‐
ages a pool of EJB instances for all types of EJB. A @Stateless Session EJB automatically
becomes a SOAP-based web service by adding the @WebService annotation; hence,
legacy stateless session EJBs become SOAP-based web services through a single addi‐
tional annotation.

In J2EE, the precursor to Java EE 5, EJBs in general and Entity EJBs in particular were
tricky to code and even trickier to configure, as the configuration required a complicated
XML document, the notorious ejb-jar.xml document—the DD (Deployment Descrip‐
tor). A case could be made that J2EE is too much work for too little reward. Things are
much better with Java EE. For example, Java EE 5 and greater allow the programmer to
configure an EJB with in-code annotations such as @Stateless instead of with a separate
XML document; hence, the DD is now optional. Prior to Java EE 5, an Entity EJB instance
was the preferred way to provide an enterprise application with an in-memory cache of
a database object such as a table row. The Entity EJB was the persistence construct that
brought ORM capabilities to the application. A traditional Entity EJB could be deployed
with either BMP (Bean Managed Persistence) or CMP (Container Managed Persis‐
tence). At issue was whether the programmer or the EJB container maintained coher‐
ence between the data source (for instance, a table row) and the EJB instance. In the
early days of EJB containers, the case could be made that BMP was more efficient. Yet
the EJB containers quickly improved to the point that CMP became the obvious choice.
Indeed, CMP emerged as a major inducement for and benefit of using traditional Entity
EJBs. An EJB deployed with CMP also had to deploy with CMT (Container Managed
Transactions). All of this changed with Java EE 5, which extended the capabilities of the
original Entity EJB to POJO classes annotated with @Entity. In effect, the @Entity
annotation let Java programmers enjoy many benefits of the traditional Entity EJB
without enduring the pain of configuring and programming this kind of EJB. Although
the legacy Entity EJB remains a powerful programming construct, it has given way to
the @Entity annotation at the center of the JPA. JPA integrates features from related
technologies such as Hibernate, Oracle’s TopLink, Java Data Objects, and traditional
Entity EJBs. The @Entity is now the preferred way to handle persistence. This chapter
has two examples that illustrate JPA.

EJBs, unlike servlets, are thread-safe: the EJB container assumes responsibility for thread
synchronization. As in the case of requests against servlets, each request against an EJB
executes as a separate thread. Even in a traditional browser-based web application, EJBs
are thus well suited as backend support for servlets. For instance, a servlet might pass
a request along to a Session EJB, which in turn might use instances of various classes,
annotated with @Entity, as persisted data sources (see Figure 7-1).

294 | Chapter 7: Web Services and Java Application Servers

Figure 7-1. Architecture of an enterprise application

The Naming and Lookup Service
The web container, message-oriented-middleware provider, and the EJB container
expose different APIs, and components in each container may require security and
persistence services (e.g., with a relational database management system handling the
persistence). A challenge is for components in one container or service to find those in
another. The JNDI provider in a JAS handles the registering-by-name and finding-by-
name of components across containers and services. In a JAS, the JNDI provider main‐
tains, at the least, a naming service in which names (for instance, the deployed name of
an EJB or a message queue) are bound to entities (in this case, the deployed EJB or the
queue). If the JNDI provider supports directory services as well, then the name of an
entity binds to the entity and its attributes. In the simple case, a JNDI provider maintains
a hierarchical database of name/entity pairs. Any component dropped into a JAS con‐
tainer is automatically registered with the naming service and thereafter available for
lookup. In Java EE 5 and later, the JNDI provider is largely unseen infrastructure; the
naming conventions are simpler than they once were.

The Security Provider
The security provider brings to the JAS high-level security services for components
deployed in any of the containers. Among these services are, of course, authentication
and authorization. The security provider has to be JAAS compliant. Nowadays a security
provider typically has plug-ins for providers such as an LDAP provider. The security in
an application server is usually integrated. For instance, the container-managed security
that the web container provides is integrated into the default JAAS-based security that
the EJB container provides. It is common, moreover, for a JAS such as GlassFish to
deploy, by default, a web service with both an HTTP and an HTTPS endpoint.

The Web Container | 295

The Client Container
The client container consists of the software libraries that a client requires to interact
with deployed components such as message topics or EJBs and to use services such as
JNDI and security. In the case of web service clients, however, there is essentially no
change if the service is deployed under the lightweight Endpoint publisher, a web server
such as Tomcat or Jetty, or a JAS. Even in the JAS environment, web services represent
a simplified approach to distributed systems.

The Database System
A JAS typically comes with a RDBMS, which serves as the persistence store. In a modern
JAS, the JPA provider manages connections between in-memory objects such as
@Entity instances and database entities such as table rows or join views. A modern JAS
also allows an RDBMS to be plugged in so that the administrator has a range of choices.
GlassFish, for example, comes with Apache Derby but it is uncomplicated to use a
different system such as MySQL or PostgreSQL. This chapter has examples that involve
Derby and HSQLDB, both of which are implemented in Java. HSQLDB supports in-
memory as well as disk-based tables, and both database systems support transactions.

Toward a Lightweight JAS
As a bundle of so many components, features, containers, and services, a JAS is un‐
avoidably complicated software. At issue among Java programmers is whether the ben‐
efits that come with a JAS offset the complexity of using a JAS. This complexity stems,
in large part, from the fact that so many APIs come into play. For example, a deployed
application that incorporates servlets, JSP scripts, JSF scripts, messaging, and EJBs must
deal with at least five distinct APIs. This state of affairs accounts for recent efforts among
vendors to provide seamless integration of Java EE components, which presumably
would result in a lighter-weight, more programmer-friendly framework for doing en‐
terprise Java. JBoss Seam and TomEE OpenEJB are examples. It should be emphasized,
however, that Java EE 5 is significantly easier to use than its predecessor, J2EE 1.4. Java
EE is definitely moving down the road that lighter frameworks such as Spring cut out
for enterprise Java. As a result, the JASes that deliver Java EE applications are more
nimble and manageable.

The GlassFish application server is open source and the reference implementation of a
JAS. (To be legalistic, a particular snapshot of GlassFish is the RI.) It is available either
separately or integrated with the NetBeans IDE. TomEE likewise represents a
deliberately lightweight approach to Java EE. This chapter has examples deployed under
both GlassFish and TomEE.

296 | Chapter 7: Web Services and Java Application Servers

http://db.apache.org/derby
http://www.hsqldb.org
http://glassfish.java.net

GlassFish Basics
GlassFish can be installed in various ways, including via installers for the standard op‐
erating systems. The entire download is also available as a ZIP file. However GlassFish
is installed, the installation process includes prompts for an administrator username
(the default is admin) and a password. GlassFish has a web console (localhost:4848 by
default) and a command-line utility named asadmin (in Windows, asadmin.bat) that
can be used to administer the JAS. The web console (see Figure 7-2) can be used only
if GlassFish is already running.

Figure 7-2. The GlassFish web console home page

During installation, it is possible to have GlassFish made into a system service so that
GlassFish starts automatically whenever the system reboots. At startup, GlassFish checks
for available ports on which to listen for connections. For example, if Tomcat or some
other application is running and listening already on port 8080 for client connections,
GlassFish notes this and asks for an alternative port to receive HTTP connections. (On
my system, Tomcat listens on port 8080 for HTTP connections and GlassFish listens
on port 8081.) By default, GlassFish listens for HTTPS connections on port 8181.
GlassFish allows administrative overrides of all defaults.

The GlassFish web console is well organized and informative. GlassFish groups together,
under the tab Applications, websites, web services, EJBs, and other deployed artifacts.
This tab gives pertinent information about each deployed item and supports operations
such as undeploy. The web console is particularly helpful because it lists, in the case of

GlassFish Basics | 297

SOAP-based web services, the URLs for the WSDL; in the case of EJB-based services,
GlassFish also provides a web-based test client. The use of plural URLs also deserves
clarification: by default, GlassFish publishes a site or a service under HTTP and HTTPS.
GlassFish comes with a keystore, although the self-signed certificates therein would
need to be upgraded for production-level use.

The GlassFish Applications tab makes it easy to check whether a service has deployed.
This tab also can be used to upload WAR files and deploy them. For that reason, my
sample deployments under GlassFish use the web console rather than the Ant script
familiar from earlier examples of Tomcat deployment.

In the web console, there is also a Resources tab in the same left panel as the Applica‐
tions tab. The Resources tab lists database connections, JMS message topics and queues,
email sessions, and other resources that GlassFish applications are likely to use. In this
chapter, the section on EJB-based services illustrates a database connection with two
@Entity examples, one involving GlassFish and the other involving TomEE.

If AS_HOME points to the GlassFish install directory, the AS_HOME/bin subdirectory
has the asadmin utility that runs as a command-line application. This utility can be used,
as can the web console, to administer GlassFish. At the asadmin prompt, the command:

asadmin>list-commands

gives a sorted list of the local and remote commands available. Some of these commands
require administrator privilege. For example, the stop-instance command, which stops
an executing instance of the GlassFish JAS, requires administrator status; hence, the
asadmin utility would prompt for the administrator name and password given during
the GlassFish installation.

GlassFish lets the administrator organize deployed applications into domains. At start-
up, for example, it is common to have GlassFish create a domain named domain1; the
domain names are arbitrary but, of course, each must be unique. A domain can be
stopped:

% asadmin stop-domain domain1

and started again:

% asadmin start-domain domain1

A domain also can be restarted with the restart-domain command.

GlassFish domains are implemented as subdirectories of the domains directory, and
each domain, in turn, has an autodeploy subdirectory. Deploying an application is
straightforward. Consider the predictions.war file RESTful service from Chapter 1,
which is created using the Ant script. This file, with no changes, can be deployed to the
GlassFish domain1 by copying the WAR file to:

AS_HOME/glassfish/domains/domain1/autodeploy

298 | Chapter 7: Web Services and Java Application Servers

The copying can be done at the command line or through the GlassFish web console.
To confirm a successful deployment, GlassFish creates an empty marker file:

AS_HOME/glassfish/domains/domain1/autodeploy/predictions.war_deployed

If the deployment fails, GlassFish indicates so with a marker file:

AS_HOME/glassfish/domains/domain1/autodeploy/predictions.war_deployedFailed

If the predictions service is undeployed by removing the file predictions.war from the
autodeploy subdirectory, GlassFish likewise confirms with another marker file:

AS_HOME/glassfish/domains/domain1/autodeploy/predictions.war_undeployed

As noted earlier, the GlassFish web console is an easy way to deploy applications, in‐
cluding web services, to a specified domain. The deployed file (for instance, a WAR file
or a web service) can be uploaded from a remote machine to the GlassFish server.

The Derby database system, which ships with GlassFish3, is not started automatically
when a domain is activated. The database system can be started with the command:

% asadmin start-database

An EJB example in this chapter accesses Derby with JPA.

Servlet-Based Web Services Under GlassFish
GlassFish distinguishes between servlet-based and EJB-based web services. Servlet-
based services include REST-style and SOAP-based services of the sort published earlier
with Tomcat, Jetty, or a command-line publisher. EJB-based services also may be REST-
style or SOAP-based services implemented as Session EJBs. For example, a JAX-RS
service might be implemented as a Session EJB. Yet GlassFish and other JASes make it
especially attractive to implement legacy @Stateless EJBs as SOAP-based web services
because this requires only an additional annotation, @WebService. For servlet-based
services under the JAX-WS umbrella, @WebService and @WebServiceProvider instan‐
ces, the deployment under GlassFish is simpler than the deployment under Tomcat
because GlassFish includes, among its libraries, the full Metro implementation of JAX-
WS; hence, the Metro JAR files need not be (indeed, should not be) packaged in the
deployed WAR file. GlassFish can handle JAX-WS out of the box.

Among the services in the previous chapters deployed with Tomcat or Jetty, all would
count as servlet-based in GlassFish terms. They can be deployed, as is, to GlassFish as
servlet-based services. Here is a sample selection of services from Chapters 2 and 5. This
review focuses on what needs to be included in a WAR file for GlassFish deployment of
servlet-based services.
predictions2

This is the predictions RESTful service implemented as an HttpServlet. Here, for
review, are the contents of the deployed WAR file under GlassFish:

Servlet-Based Web Services Under GlassFish | 299

WEB-INF/web.xml
WEB-INF/classes/predictions2/Prediction.class
WEB-INF/classes/predictions2/Predictions.class
WEB-INF/classes/predictions2/PredictionsServlet.class
WEB-INF/data/predictions.db
WEB-INF/lib/json.jar

None of the source code needs to change; indeed, this WAR file can be deployed,
as is, under Tomcat, Jetty, or GlassFish. For review, the service supports all of
the CRUD operations and responds with either XML (the default) or JSON (if the
HTTP header includes the key/value pair Accept: application/json). The
json.jar file in the deployed WAR generates the JSON.

There is a subtle difference between the URLs used in calls against the Tomcat or
Jetty deployment, on the one side, and the GlassFish deployment, on the other side.
For example, for Tomcat/Jetty, the curl call:

% curl localhost:8080/predictions2?id=31

returns in XML format the Prediction with an id value of 31. Against the GlassFish
deployment, the URL becomes:

% curl localhost:8081/predictions2/?id=31 ;; /?id=31 instead of ?id=31

Under GlassFish deployment, a slash, /, occurs after the WAR filename. In this
example, the port number for Tomcat is 8080 as usual. For the sample runs in this
section, the assumption is that GlassFish is started after Tomcat was already run‐
ning; hence, GlassFish awaits HTTP connections on port 8081.

The predictions2 service does not require an interceptor servlet that acts as the in‐
termediary between client requests and the web service. In the case of the predic‐
tions2 service, the implementation class is PredictionsServlet, a subclass of
HttpServlet. In short, the service instance is itself a servlet. In this sense, the
predictions2 service is the least complicated implementation among the REST-style
and SOAP-based implementations of the predictions and adages services in Chap‐
ter 2. The SOAP-based predictionsSOAP implementation uses the Metro WSServ
let as the interceptor. The JAX-RS implementation, predictions3, uses the Jersey
ServletContainer as the interceptor, and the Restlet implementation of the adages
RESTful service relies upon the ServerServlet as the interceptor.

predictions3
This a RESTful version of the service using JAX-RS. The WAR file can be deployed,
as is, under Tomcat, Jetty, or GlassFish. Here, for review, are the contents of the
deployed WAR file:

WEB-INF/web.xml
WEB-INF/classes/predictions3/Prediction.class
WEB-INF/classes/predictions3/PredictionsList.class
WEB-INF/classes/predictions3/PredictionsRS.class

300 | Chapter 7: Web Services and Java Application Servers

WEB-INF/classes/predictions3/RestfulPrediction.class
WEB-INF/data/predictions.db
WEB-INF/lib/asm.jar
WEB-INF/lib/jackson-annotations.jar
WEB-INF/lib/jackson-core.jar
WEB-INF/lib/jackson-databind.jar
WEB-INF/lib/jersey-core.jar
WEB-INF/lib/jersey-server.jar
WEB-INF/lib/jersey-servlet.jar

The various jackson JAR files provide the JSON support and the jersey JARs are the
RI implementation of JAX-RS. The predictions3 service also supports all of the
CRUD operations. The syntax of the CRUD calls changes deliberately in order to
highlight the JAX-WS @Path annotation. For example, the curl call:

% curl http://localhost:8081/predictions3/resourcesP/json/31

would return, in JSON format, the Prediction with the id value 31.

adages2
This is a Restlet implementation of the RESTful adages service. Nothing in the WAR
file changes from the Tomcat or Jetty deployments. The service supports all of the
CRUD operations with intuitive URIs such as /create to create a new Adage
or /delete/9 to delete the Adage with the id value of 9. For review, here are the
contents of the deployed WAR file:

WEB-INF/web.xml
WEB-INF/classes/aphorism2/Adage.class
WEB-INF/classes/aphorism2/Adages.class
WEB-INF/classes/aphorism2/AdagesApplication$1.class
WEB-INF/classes/aphorism2/AdagesApplication.class
WEB-INF/classes/aphorism2/CreateResource.class
WEB-INF/classes/aphorism2/JsonAllResource.class
WEB-INF/classes/aphorism2/PlainResource.class
WEB-INF/classes/aphorism2/UpdateResource.class
WEB-INF/classes/aphorism2/XmlAllResource.class
WEB-INF/classes/aphorism2/XmlOneResource.class
WEB-INF/lib/org.json.jar
WEB-INF/lib/org.restlet.ext.json.jar
WEB-INF/lib/org.restlet.ext.servlet.jar
WEB-INF/lib/org.restlet.ext.xml.jar
WEB-INF/lib/org.restlet.jar

This service, like the others, deploys straightforwardly to GlassFish.

predictionsSOAP
This is the SOAP-based implementation of the predictions service, which also sup‐
ports all of the CRUD operations but in this case with four methods annotated with
@WebMethod. The implementation includes a service-side handler that verifies a
security credential sent with a request. For the GlassFish deployment, the

Servlet-Based Web Services Under GlassFish | 301

interceptor servlet is the Metro WSServlet, but the Metro JAR files are not in the
deployed WAR file because GlassFish comes with the Metro libraries. Here, for
review, are the contents of the deployed WAR file:

WEB-INF/web.xml
WEB-INF/classes/predictions/DataStore.class
WEB-INF/classes/predictions/Prediction.class
WEB-INF/classes/predictions/Predictions.class
WEB-INF/classes/predictions/PredictionsSOAP.class
WEB-INF/classes/predictions/ServiceHashHandler.class
WEB-INF/classes/predictions/VerbosityException.class
WEB-INF/data/predictions.db
WEB-INF/lib/commons-codec.jar
WEB-INF/serviceHandler.xml
WEB-INF/sun-jaxws.xml

The upshot of this review is that services deployed under Endpoint, Tomcat, or Jetty
should deploy either as is or with very small changes (for instance, removing Metro
JARs from the WAR file) to GlassFish.

The next section picks up a theme from Chapter 3, which focused on clients against
REST-style services. The idea is to illustrate how a service-side API (in this case, Restlet)
can be combined with a different client-side API (in this case, the JAX-WS Dispatch
interface). In the world of JASes, mixed APIs are more the rule than the exception. The
Restlet/JAX-WS combination is not without complication, however; the section is thus
an opportunity to review, in the context of GlassFish deployment, the challenges of
RESTful services before moving on to SOAP-based services under GlassFish.

An Example with Mixed APIs
JAX-RS, Restlet, and JAX-WS with @WebServiceProvider have service-side and client-
side APIs. Chapter 3 includes an example of the JAX-RS client-side API. This section
introduces a client-side API designed specifically for @WebServiceProvider services,
but this API will be used, as an illustration, against the Restlet adages2 service deployed
with GlassFish. In summary, the service-side API is Restlet and the client-side API is
JAX-WS, in particular the Dispatch client-side API targeted at @WebServiceProvider
services.

“A RESTful Service as a @WebServiceProvider” on page 85 of Chapter 2 covers the REST-
style adages3 service, which is implemented as a @WebServiceProvider. The imple‐
mentation class begins as follows:

public class AdagesProvider implements Provider<Source> {

The Provider<Source> provides XML documents: a Source is a source of XML specif‐
ically. To implement the Provider interface, the AdagesProvider class defines the
method:

302 | Chapter 7: Web Services and Java Application Servers

public Source invoke(Source request); // declaration

The invoke method on the service side expects an XML Source, perhaps null, and
returns an XML Source, which also could be null. In the usual case, the response Source
is not null; the request Source would be null on HTTP bodyless requests such as GETs
and DELETEs. A Source can serve as the source of a transformation, which yields a
Result. For example, a Source of XML might be transformed into an HTML, plain text,
or some other MIME type of document. The standard JAX-P Transformer class en‐
capsulates a transform method that takes two arguments: the first is a Source of XML
and the second is a Result (see Figure 7-3).

Figure 7-3. A transformation from a Source to a Result

The Provider interface used on the service side has, as a client-side counterpart, the
Dispatch interface. A Dispatch object, which serves as dynamic service-proxy, likewise
encapsulates an invoke method that expects a Source (perhaps null) and returns a
Source (perhaps null but typically not). The details of a Dispatch and Provider in‐
teraction can be summed up as follows (see Figure 7-4):

• A client calls the Dispatch method invoke with an XML document as the Source.
If the request does not require such a document as an argument, the Source can be
null.

• The client request is dispatched, on the service side, to the invoke method in a
Provider. The Source argument passed to the service-side invoke corresponds to
the Source argument passed to the client-side invoke.

• The service transforms the Source into an appropriate Result—for instance, a
DOM tree that can be searched for content of interest or an HTML document
suitable for display in a browser.

• The service returns an XML Source as a response; the response is typically not null.
• The client receives the Source from the service as the return value of the Dis
patch method invoke. The client then transforms this Source, as needed, into an
appropriate Result for client-side processing.

Servlet-Based Web Services Under GlassFish | 303

Figure 7-4. The interaction between the Dispatch and Provider invoke methods

The DispatchClient (see Example 7-1) uses the invoke method in a Dispatch service-
proxy to make CRUD calls against the Restlet adages2 service. This client creates a
Service instance (line 1), whose identity is a QName, in this case uri:restlet. The name
is arbitrary but should be unique. The Restlet service, written with an altogether dif‐
ferent API, has no invoke method to pair up with the Dispatch method named in
voke. Nonetheless, the communication between the two is mostly trouble-free. The
trouble spot is clarified next.

Example 7-1. The DispatchClient against the Restlet adages2 service
import javax.xml.ws.Service;
import javax.xml.namespace.QName;
import javax.xml.ws.http.HTTPBinding;
import javax.xml.ws.ServiceMode;
import javax.xml.ws.Dispatch;
import javax.xml.transform.Source;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;
import javax.xml.ws.handler.MessageContext;
import java.util.Map;
import java.io.StringReader;

public class DispatchClient {
 private static final String baseUrl = "http://localhost:8081/aphorisms2/";

 public static void main(String[] args) {
 new DispatchClient().callRestlet();
 }
 private void callRestlet() {
 QName qname = getQName("uri", "restlet"); // service's name
 Service service = Service.create(qname);

304 | Chapter 7: Web Services and Java Application Servers

 runTests(service);
 }
 private void runTests(Service service) {
 // get all -- plain text
 Dispatch<Source> dispatch = getDispatch(service, getQName("get", "All"),
 baseUrl);
 setRequestMethod(dispatch, "GET");
 Source result = dispatch.invoke(null);
 stringifyAndPrintResponse("Result (plaintext):", result);
 // get all -- xml
 dispatch = getDispatch(service, getQName("get", "AllXml"), baseUrl + "xml");
 setRequestMethod(dispatch, "GET");
 result = dispatch.invoke(null);
 stringifyAndPrintResponse("Result (xml):", result);
 // get all -- json
 dispatch =
 getDispatch(service, getQName("get", "AllJson"), baseUrl + "json");
 setRequestMethod(dispatch, "GET");
 result = dispatch.invoke(null);
 stringifyAndPrintResponse("Result (json):", result);
 // get one -- xml
 dispatch =
 getDispatch(service, getQName("get", "OneXml"), baseUrl + "xml/2");
 setRequestMethod(dispatch, "GET");
 result = dispatch.invoke(null);
 stringifyAndPrintResponse("Result (one--xml):", result);
 // delete
 dispatch =
 getDispatch(service, getQName("delete", "One"), baseUrl + "delete/3");
 setRequestMethod(dispatch, "DELETE");
 result = dispatch.invoke(null);
 stringifyAndPrintResponse("Result (delete):", result);
 // post -- failure
 dispatch =
 getDispatch(service, getQName("post", "Create"), baseUrl + "create");
 setRequestMethod(dispatch, "POST");
 String cargo = "<a>words=This test will not work!"; // minimal XML
 StringReader reader = new StringReader(cargo);
 result = dispatch.invoke(new StreamSource(reader));
 stringifyAndPrintResponse("Result (post):", result);
 }
 private Dispatch<Source> getDispatch(Service service, QName portName,
 String url) {
 service.addPort(portName, HTTPBinding.HTTP_BINDING, url);
 return service.createDispatch(portName,
 Source.class,
 javax.xml.ws.Service.Mode.MESSAGE);
 }
 private void setRequestMethod(Dispatch<Source> dispatcher, String method) {
 Map<String, Object> rc = dispatcher.getRequestContext();
 rc.put(MessageContext.HTTP_REQUEST_METHOD, method);
 }

Servlet-Based Web Services Under GlassFish | 305

 private QName getQName(String ns, String ln) {
 return new QName(ns, ln);
 }
 private void stringifyAndPrintResponse(String msg, Source result) {
 String str = null;
 if (result instanceof StreamSource) {
 try {
 StreamSource source = (StreamSource) result;
 byte[] buff = new byte[1024]; // adages are short
 source.getInputStream().read(buff);
 str = new String(buff);
 }
 catch(Exception e) { throw new RuntimeException(e); }
 }
 System.out.println("\n" + msg + "\n" + str);
 }
}

After the setup, the DispatchClient makes six calls against the Restlet service (lines 2
through 4 illustrate), which can be summarized as follows:
getAllPT

The first call gets all of the Adages in plain text. The response, extracted from the
Source, is:

 1: What can be shown cannot be said. -- 7 words
 2: If a lion could talk, we could not understand him. -- 10 words
 ...

This call uses a GET request with the default URI /, the slash.

For all of the calls against the Restlet service, the Source of XML returned as a
response is sent to the stringifyAndPrintResponse method. This method first
checks whether the Source is, in fact, a StreamSource and, if so, extracts the bytes
from the InputStream encapsulated in the StreamSource. These bytes then are fed
to a String constructor, which produces a string. The resulting string may be plain
text, as in this first sample call, or XML and JSON, as in later sample calls.

getAllXml

This call becomes another GET request but the URI is now /xml. The response has
the same informational content as getAllPT but the format is XML.

getAllJson

This call also results in a GET request but with a URI of /json. The response is in
JSON format.

getOne

This call results in yet another GET request with the URI /xml/2, which specifies
the Adage with an id of 2. The response is an XML document.

306 | Chapter 7: Web Services and Java Application Servers

deleteOne

This call becomes a DELETE request with the URI /delete/3, which specifies the
Adage with an id of 3 as the one to remove from the list of Adages. The response is
a plain text confirmation of the deletion.

create

This call fails. The response is an error message:

No words were given for the adage.

The problem arises because, with a POST request against the URI /create, the
Source argument to the invoke method cannot be null but, rather, must contain
the words in the Adage to be created. The Restlet service expects a simple HTML-
like form in the body of the POST request, and this form has key/value pairs such
as:

words=This is the way the world ends

The Restlet service searches on the key words to get the value, in this case the line
from the T. S. Eliot poem “The Hollow Men.” On the client side, however, the call
to the create operation uses a POST request against the URI /create, and the con‐
tents of the POST body are given as a Source instance—of XML. When the un‐
derlying XML libraries parse the non-XML string above, the parser throws an
exception. The fix is to turn the string into XML, for example, the minimalist XML
document (line 5):

<a>words=This is the way the world ends

When this document is turned into a StreamSource argument to the Dispatch
method invoke, the XML parser is satisfied. The problem now shifts to the service
side because the Restlet service expects a simple key/value pair, not a key/value pair
embedded as text in an XML element. As a result, the Restlet service complains that
it cannot find the lookup key words in the body of the POST request.

The example reinforces a hard lesson in programming and many other activities: the
devil is in the details. The fix to the problem would be relatively straightforward; perhaps
the easiest fix would be to make the Restlet service flexible enough to handle POST
requests whose cargo is either plain text or XML. The example also underscores that
the JAX-WS @WebServiceProvider API is XML-centric. In this API, a Dispatch client
against a Provider service such as the adages3 service (see Section 2.5 in Chapter 2)
would be natural because each side would be dealing with XML Source arguments and
return values.

Servlet-Based Web Services Under GlassFish | 307

An Interactive Website and a SOAP-Based Web Service
This section has an example that uses GlassFish to host a website and Tomcat to host a
SOAP-based web service that the website accesses. Chapter 3, on RESTful clients, has
examples in which jQuery clients make calls against REST-style services that respond
with JSON payloads; the JavaScript embedded in the web page puts the JSON to good
use. The website in the current example is old school in that the HTML page contains
no JavaScript. Instead, the page has a familiar submit button that, when pressed, causes
an HTML form to be POSTed to a JSP script, which then calls upon a SOAP-based
service to perform simple computations. The results of these computations are displayed
on the web page. The interaction is among an HTML page, a JSP script with access to
wsimport-generated artifacts, and a SOAP-based service (see Figure 7-5). This dis‐
tributed application performs temperature conversions. To make the example realistic
and to set up a comparison between deployment details, the web service is published
with standalone Tomcat and the website is published with GlassFish.

Figure 7-5. An architectural sketch of the tcSiteAndService

The HTML page index.html (see Example 7-2) contains a simple form with a text box
into which a user enters temperatures to be converted into fahrenheit and centigrade.
To keep matters simple, the CSS styling is embedded in the HTML. When the HTML
form is submitted with a button push, a POST request is sent to the JSP script named
tempConvert.jsp. There is also an error script, error.jsp, to handle errors that result from
trying to convert non-numeric input (e.g., the string foo) into a decimal number. The
two JSP scripts and the HTML page, together with some other artifacts discussed shortly,
are deployed in the WAR file tcWeb.war. GlassFish hosts the website.

Example 7-2. The HTML document index.html
<!DOCTTYPE html>
<html>
 <head>
 <style type = "text/css">
 input {background-color: white; font-weight: bold; font-size: medium}
 legend {color:#990000; font-size: large;}
 fieldset {width: 600px; background-color: rgb(225, 225, 225);}
 </style>
 </head>
 <body>

308 | Chapter 7: Web Services and Java Application Servers

 <form method = 'post' action = 'tempConvert.jsp'>
 <fieldset>
 <legend>Temperature conversion</legend>
 <table>
 <tr>
 <td>Temperature:</td>
 <td><input type = 'text' name = 'temperature'/></td>
 </tr>
 </table>
 <input type = 'submit' value = ' Convert '/>
 </fieldset>
 </form>
 </body>
</html>

For context, the main contents of the website WAR file are:

WEB-INF/web.xml
WEB-INF/classes/tempConvertClient/C2F.class
WEB-INF/classes/tempConvertClient/C2FResponse.class
WEB-INF/classes/tempConvertClient/F2C.class
WEB-INF/classes/tempConvertClient/F2CResponse.class
WEB-INF/classes/tempConvertClient/ObjectFactory.class
WEB-INF/classes/tempConvertClient/TempConvert.class
WEB-INF/classes/tempConvertClient/TempConvertService.class
error.jsp
index.html
tempConvert.jsp

The HTML page index.html provides a text field (line 2) into which a user can enter
input. When the form (line 1) is submitted by clicking the submit button (line 3), the
targeted action is the JSP script tempConvert.jsp, which receives the contents of the text
field as request data.

The code of JSP script tempConvert.jsp (see Example 7-3) has two page directives (lines
1 and 2), which import wsimport-generated classes for the web service. These classes
reside in the package/directory tempConvertClient, which is included in the deployed
WAR file tcWeb.war. The JSP script extracts the user input from the HTTP POST re‐
quest (line 3) and then tries to convert the input to a floating-point number. If there are
any errors, control immediately goes via an automatic redirect, which GlassFish man‐
ages, to the error page error.jsp (see Example 7-4); the HTTP status code is 400 for bad
request (see line 1 in the displayed error page). The error page announces an input error
and, through a hyperlink back to index.html, gives the user the option of trying again.

Example 7-3. The JSP script tempConvert.jsp, deployed in the tcWeb.war file
<!DOCTYPE html>
<%@ page errorPage = "error.jsp" %>
<!-- wsimport-generated artifacts -->
<%@ page import = "tempConvertClient.TempConvertService" %>
<%@ page import = "tempConvertClient.TempConvert" %>

An Interactive Website and a SOAP-Based Web Service | 309

<html>
 <head>
 <style type = 'text/css'>
 a {color: #151b8d; text-decoration:none;}
 a:visited {color: #151b8d;}
 a:hover {color: #fff; background-color: #666;}
 .p {color: blue; font-size: large;}
 legend {color:#990000; font-size: large;}
 fieldset {width: 600px; background-color: rgb(225, 225, 225);}
 </style>
 <%! private float f2c, c2f, temp; %>
 <%
 String tempStr = request.getParameter("temperature"); // text field
 if (tempStr != null) this.temp = Float.parseFloat(tempStr.trim());
 this.f2c = this.c2f = this.temp;
 TempConvert port = new TempConvertService().getTempConvertPort();
 c2f = port.c2F(temp);
 f2c = port.f2C(temp);
 %>
 <body>
 <fieldset>
 <legend>Temperature conversions</legend>
 <p><%= this.temp %>F = <%= this.c2f %>C</p>
 <p><%= this.temp %>C = <%= this.f2c %>F</p>
 </fieldset>
 <hr/>
 Try another
 </body>
</html>

If the conversion of the input data to a floating-point number succeeds, the JSP script
calls the SOAP-based tcService, running on Tomcat, to convert the number into centi‐
grade (line 4) and fahrenheit (line 5). The values returned from the tcService then are
displayed (lines 6 and 7). A hyperlink at the bottom of the page (line 8) gives the user
the option to try again.

Example 7-4. The error page error.jsp
<%@ page isErrorPage = "true" %>
<!DOCTYPE html>
<html>
 <head>
 <style type = 'text/css'>
 a {color: #151b8d; text-decoration:none;}
 a:visited {color: #151b8d;}
 a:hover {color: #fff; background-color: #666;}
 .p {color: red; font-size: large;}
 </style>
 </head>
 <body>
 <% response.setStatus(400); %> <!-- bad request -->
 <p class = 'p'>Numbers only, please.</p>

310 | Chapter 7: Web Services and Java Application Servers

 <hr/>
 Try again.
 </body>
</html>

The tcService.war file, which contains the SOAP-based web service, has these contents:

WEB-INF/web.xml
WEB-INF/classes/tempConvert/TempConvert.class
WEB-INF/lib/webservices-api.jar
WEB-INF/lib/webservices-rt.jar
WEB-INF/sun-jaxws.xml

Two deployment files are needed (lines 1 and 4) because the Metro JWSServlet acts as
the intermediary between the client request and the TempConvert service. The web.xml
(see Example 7-5) specifies the Metro servlet (line 1) as the request handler, and the
sun-jaxws.xml then routes the request from the Metro servlet to a TempConvert instance
(see Example 7-5). Further, the two Metro JAR files (lines 2 and 3) are needed because
Tomcat does not come with the Metro implementation of JAX-WS.

Example 7-5. The web.xml for the TempConvert service deployed under Tomcat
<?xml version="1.0" encoding="UTF-8"?>
<web-app>
 <listener>
 <listener-class>
 com.sun.xml.ws.transport.http.servlet.WSServletContextListener
 </listener-class>
 </listener>
 <servlet>
 <servlet-name>jaxws</servlet-name>
 <servlet-class>
 com.sun.xml.ws.transport.http.servlet.WSServlet
 </servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>
 <servlet-mapping>
 <servlet-name>jaxws</servlet-name>
 <url-pattern>/*</url-pattern>
 </servlet-mapping>
</web-app>

The JSP script tempConvert.jsp makes calls against the tcService by using the
wsimport-generated classes in the package/directory tempConvertClient. This JSP script
together with the HTML page, the error page, and the contents of the tempConvert‐
Client directory are encapsulated in the WAR file tcWeb.war, which is deployed with
GlassFish instead of Tomcat. The point of interest is that the Metro JAR files are not
included in the deployed tcWeb.war precisely because GlassFish itself comes with the
full Metro implementation. Accordingly, if the tcService were deployed under GlassFish
instead of standalone Tomcat, the two JAR files in tcService.war could be removed—

An Interactive Website and a SOAP-Based Web Service | 311

indeed, these JAR files would have to be removed in order to avoid a conflict with the
Metro library that comes installed with GlassFish. The tcService still would use the
JWSServlet as the intermediary, which in turn means that the web.xml and the sun-
jaxws.xml configuration files would be needed as well.

It is hardly surprising that GlassFish includes the Metro libraries. Metro is the reference
implementation of JAX-WS; the GlassFish JAS includes this implementation as one of
the JAS components. The GlassFish JAS officially comes under the GlassFish Metro
Project, which in turn includes the full web service stack that implements JAX-WS. As
earlier examples with Tomcat and Jetty illustrate, the web service stack can be used
independently of the GlassFish JAS. Among JASes, Oracle WebLogic also includes the
Metro web service stack.

A @WebService as a @Stateless Session EJB
Why should SOAP-based web services be deployed as EJBs instead of as POJOs? One
answer is quite practical. If an organization already has stateless Session EJBs in place,
these can become SOAP-based services as well by adding the @WebService annotation
to the EJB code; no other change to the EJB code is needed. At a more technical but still
practical level, the EJB container is programmer-friendly in handling issues such as
thread safety. A web container such as Tomcat’s Catalina or Jetty does not provide thread
safety for web sites and web services, but an EJB container does provide such safety.
Concurrency issues are formidable challenges in Java, and it is appealing to offload such
challenges from the programmer to the container. GlassFish and other JASes also offer
first-rate development support for web services deployed as @Stateless Session EJBs.
Upon successful deployment of the service, for example, GlassFish generates a web page
that can be used to test all of the service operations; another page to inspect the WSDL;
another page to inspect performance; and so on. In any event, the good news is that Java
programmers have options about how to implement SOAP-based as well as REST-style
web services. This section explores one such option for SOAP-based services: the
@Stateless Session EJB. The EJB example also uses a database for persistence, which
is an opportunity to illustrate how the @Entity annotation works. For reference, this
version of the service is predictionsEJB.

In the predictionsEJB service, instances of the Prediction class, which is annotated as
an @Entity (line 1 in Example 7-6), are persisted in the database, in this case the Derby
database that comes with GlassFish. A configuration document, clarified shortly, in‐
structs the GlassFish JPA provider to generate a table that stores Prediction instances.
Because a Prediction has three properties (who, what, and id), the table will have three
fields. By default, the field names are the property names and the table name is the class
name.

312 | Chapter 7: Web Services and Java Application Servers

Example 7-6. The Prediction class, annotated as an @Entity
package predEJB;

import javax.persistence.Entity;
import javax.persistence.NamedQuery;
import javax.persistence.NamedQueries;
import javax.persistence.Id;
import javax.persistence.GeneratedValue;
import java.io.Serializable;

@Entity
@NamedQueries({
 @NamedQuery(name = "pred.list", query = "select p from Prediction p")
})
public class Prediction implements Serializable {
 private String who; // person
 private String what; // his/her prediction
 private int id; // identifier used as lookup key

 public Prediction() { }
 public String getWho() { return this.who; }
 public void setWho(String who) { this.who = who; }
 public String getWhat() { return this.what; }
 public void setWhat(String what) { this.what = what; }
 @Id
 @GeneratedValue
 public int getId() { return this.id; }
 public void setId(int id) { this.id = id; }
}

The Prediction class uses four annotations but JPA has others that might be of interest.
Immediately after the @Entity annotation (line 1) come two additional annotations:
@NamedQueries and @NamedQuery (line 2). For convenience, the Prediction class in‐
cludes a named query in the JPA QL (Query Language), which is close to but not iden‐
tical with SQL. QL acts as a uniformly structured alternative to the various SQL dialects;
hence, QL promotes portability across database systems. In the select query the letter
p, short for prediction, is arbitrary but serves as a placeholder for each Prediction row
to be selected. The query is used in the PredictionEJB class, which is clarified shortly.

In the Prediction class, the id property is annotated as an @Id (line 3), which means
that the id of a Prediction becomes the primary key for a record in the database table.
The id also is annotated as a @GeneratedValue (line 4), which means that the database
system will generate unique primary keys for each Prediction; the keys are ascending
integers, starting with 1. Other annotations are available. For example, the who property
might be annotated with:

@Column(name = "predictor", nullable = false, length = 64)

A @WebService as a @Stateless Session EJB | 313

In this case, the database field would be named predictor; the database would ensure
that the content of the field could not be NULL; and the database would enforce a
maximum length of 64 characters on the who value.

The JPA details for the predictionsEJB service could be provided programmatically, but
the best practice is to isolate such details in a configuration document named persis‐
tence.xml (see Example 7-7). Under this approach, the database configuration could be
changed without changing any code. The persistence.xml file in this example is delib‐
erately minimalist to show that database configuration need not be complicated. The
persistence-unit (line 1) has a name that is referenced in the EJB, which is examined
shortly, and the persistence unit also has a transaction-type, in this case JTA (Java
Transaction API, the default). Three properties are set in the document (lines 2, 3, and
4). The first property (line 1) automates the creation of the database table and also causes
the table to be dropped whenever the application is redeployed; in production, create-
tables might be used instead. The second property (line 2) ensures that the table gen‐
eration impacts the database resource associated with the predictionsEJB service; in this
example, the database is the default, Apache Derby. The third and last property (line 3)
specifies the JDBC driver that connects the service to the database system; this driver,
as its name indicates, targets the Derby database system.

Example 7-7. The persistence.xml JPA configuration document
<?xml version = "1.0" encoding = "UTF-8"?>
<persistence>
 <persistence-unit name = "predictionsDB" transaction-type = "JTA">
 <properties>
 <property name = "eclipselink.ddl-generation"
 value = "drop-and-create-tables"/>
 <property name = "eclipselink.ddl-generation.output-mode"
 value = "database"/>
 <property name = "javax.persistence.jdbc.driver"
 value = "org.apache.derby.jdbc.ClientDriver"/>
 </properties>
 </persistence-unit>
</persistence>

The persistence.xml document does not specify what, in GlassFish terminology, is the
JDBC Resource. Each Resource has a JNDI name for identification in lookup opera‐
tions. Neither does the persistence.xml document specify a table name in the database.
As a result, the defaults kick in. The default JDBC Resource, which is a DataSource, is
named:

jdbc/__default

The default table name derives from the name of class annotated as an @Entity, in this
case Prediction. Accordingly, the Prediction table is accessible through a data source

314 | Chapter 7: Web Services and Java Application Servers

named jdbc/__default. Of course, GlassFish allows an administrator to create and name
other data sources.

The PredictionEJB class (see Example 7-8) is the service implementation. The class is
annotated with both @Stateless (line 1) and @WebService (line 2), although this order
is arbitrary. Line 3 is the all-important @PersistenceContext annotation on the Enti
tyManager reference em. In the @PersistenceContext annotation, the name attribute
has predictionsDB as its value, which is likewise the value of the name attribute in the
persistence-unit element of the persistence.xml document. Accordingly, the @Persis
tenceContext annotation links the PredictionEJB service to the configuration file
persistence.xml. The @PersistenceContext annotation also causes dependency injec‐
tion on the em reference: the runtime ensures that em refers to a suitable EntityManag
er instance, which manages the connection between the PredictionEJB and the back-
end database.

The predictionsEJB service implements the CRUD operations, all of which now refer‐
ence the database using the EntityManager methods, which can include JPA QL con‐
structs. The EntityManager operations, which are implemented under the hood as
transactions, are the four CRUD operations with intuitive method names: for example,
the create operation in the predictionsEJB service occurs in the create method (line 4).

Example 7-8. The PredictionEJB class, annotated as a @Stateless @WebService
package predEJB;

import javax.ejb.Stateless;
import javax.jws.WebService;
import javax.jws.WebMethod;
import java.util.List;
import java.util.Arrays;
import javax.persistence.PersistenceContext;
import javax.persistence.EntityManager;

@Stateless
@WebService
public class PredictionEJB {
 @PersistenceContext(name = "predictionsDB")
 private EntityManager em;

 @WebMethod
 public Prediction create(String who, String what) {
 if (who == null || what == null) return null;
 if (who.length() < 1 || what.length() < 1) return null;
 Prediction prediction = new Prediction();
 prediction.setWho(who);
 prediction.setWhat(what);
 try {
 em.persist(prediction);
 }

A @WebService as a @Stateless Session EJB | 315

 catch(Exception e) {
 throw new RuntimeException("create:persist -- " + e);
 }
 return prediction;
 }
 @WebMethod
 public Prediction edit(int id, String who, String what) {
 if (id < 1 || who == null || what == null) return null;
 if (who.length() < 1 || what.length() < 1) return null;
 Prediction prediction = em.find(Prediction.class, id);
 if (prediction == null) return null;

 prediction.setWho(who);
 prediction.setWhat(what);
 return prediction;
 }
 @WebMethod
 public String delete(int id) {
 String msg = "Could not remove prediction with ID " + id;
 if (id < 1) return msg;
 Prediction prediction = em.find(Prediction.class, id);
 if (prediction == null) return msg;
 em.remove(prediction); // delete from database

 return prediction.toString() + " -- deleted";
 }
 @WebMethod
 public Prediction getOne(int id) {
 if (id < 1) return null;
 Prediction prediction = em.find(Prediction.class, id);
 if (prediction == null) return null;
 return prediction;
 }
 @WebMethod
 public List<Prediction> getAll() {
 List<Prediction> predList =
 em.createNamedQuery("pred.list", Prediction.class).getResultList();
 return predList;
 }
}

After a new Prediction is constructed and its who and what properties are set, the
EntityManager method persist is invoked with the new Prediction as its argument:

em.persist(prediction);

This statement saves the Prediction to the database.

The delete operation (line 6) first requires a read operation (line 5). The Prediction
has to be found before it can be removed:

Prediction prediction = em.find(Prediction.class, id);

316 | Chapter 7: Web Services and Java Application Servers

If the find succeeds, the Prediction then can be removed from the database:

em.remove(prediction);

The same call to find is used in the getOne operation (line 7).

Updating a Prediction in the edit operation requires no explicit JPA call. Instead, the
who and what properties are set in the usual way. The JPA infrastructure manages the
coherence between an in-memory Prediction instance and the corresponding database
record. After the find call fetches the Prediction to be updated, its properties are set
in the usual way—and that is the end of the update operation.

The getAll operation in the predictionsEJB service uses the @NamedQuery from the Pre
diction class to select all of the Prediction rows from the table (line 8). For review,
the statement is:

List<Prediction> predList =
 em.createNamedQuery("pred.list", Prediction.class).getResultList();

The string pred.list is the @Query name and the result list includes all of the rows
selected. The getAll method returns the predList reference. The EntityManager en‐
capsulates several methods besides createNamedQuery for creating queries against a
database.

All of the methods in the PredictionEJB class are annotated with @WebMethod. In the
predictionsEJB service, these annotations are mandatory in order for a public method
to count as a @WebService operation. The EJB container takes seriously the distinction
between the SEI and the SIB, the latter of which is now the @Stateless Session EJB. In
a standalone SEI, the @WebService annotation is required; hence, the EJB container
insists that this annotation be present in a case such as the PredictionEJB, the single
class that serves as both the SEI and the SIB. In the servlet-based implementations seen
so far, the annotation @WebService is recommended but technically optional. The pre‐
dictionsEJB service could have a separate SEI and SIB but, for convenience, these have
been combined into one class, PredictionEJB.

Packaging and Deploying the predictionsEJB Service
Packaging and deploying a @WebService as a @Stateless Session EJB is simpler overall
than deploying its servlet-based counterpart. It bears repeating that the EJB-based
deployment enjoys complete thread safety. Here is a summary of the steps:

• The .java classes obviously need to be compiled, but packages such as javax.ejb
and javax.persistence are not included among the core Java libraries. GlassFish
provides these packages in the JAR file AS_HOME/glassfish/lib/javaee.jar. This JAR
file thus needs to be on the classpath for compilation.

A @WebService as a @Stateless Session EJB | 317

• The compiled .class files can be placed, as is, in a JAR file with any name. In this
example, the JAR file is ejbWS.jar and its main contents are:

META-INF/persistence.xml
predEJB/PredictionEJB.class
predEJB/Prediction.class

The critical requirement is that the persistence.xml document (line 1) be in the
META-INF subdirectory.

• The JAR file with the EJB (in this case, PredictionEJB) and any supporting classes
(in this case, Prediction) is then placed inside another JAR file, preferably with an
ear (Enterprise ARchive) extension. The name is arbitrary. In this example, the EAR
file is predService.ear and its contents are:

ejbWS.jar

• The EAR file is copied to AS_HOME/glassfish/domains/domain1/autodeploy. The
GlassFish web console is an easy way, under the Applications tab, to confirm that
the deployment succeeded.

• The GlassFish domain domain1 must be up and running. To ensure that the domain
is active, the command is:

% asadmin start-domain domain1

Also, the database must be started. The command is:
% asadmin start-database

Neither the JAR file ejbWS.jar nor the EAR file predService.ear requires any configura‐
tion document other than the persistence.xml file in ejbWS.jar. GlassFish generates the
traditional ejb-jar.xml document for the JAR file and the traditional application.xml
document for the EAR file if these are not provided.

Once the predictionsEJB service is deployed, there is no need to write a test client because
GlassFish generates such a client automatically. In the GlassFish web console, under the
Applications tab, is a list of all deployed applications; for web services, the list includes
servlet-based and EJB-based instances. In the Applications tab, the name given for the
predictionsEJB service is the name of the EAR file: predService without the .ear ex‐
tension. Clicking on this name makes the service endpoints available. There are two:

• Endpoints for the WSDL, one for HTTP and another for HTTPS. The URI for each
is:

/PredictionEJBService/PredictionEJB?wsdl

The naming convention used in this URI is:
— the name of the @WebService class, in this case PredictionEJB, with Service

appended

318 | Chapter 7: Web Services and Java Application Servers

— a slash (/)
— the name of the @WebService class again
— the query string ?wsdl

The WSDL can be used with the wsimport utility to generate the by now familiar
client-support classes.

• The endpoint is /PredictionEJBService/PredictionEJB?Tester, which is the
GlassFish-generated test client as a web page (see Figure 7-6). The test page covers
all of the operations and displays, including the request and the response SOAP
message for each. Operations carried out on the test page impact the database. This
test page obviates the need to write the kind of test client familiar in the servlet-
based examples.

Figure 7-6. The GlassFish-generated test client against the predictionsEJB service

A Client Against the predictionsEJB Service
Although the test page in the GlassFish web console is excellent for round one of testing,
a Java client can be built in the usual way with wsimport:

% wsimport -p clientEJB -keep \
 http://localhost:8081/PredictionEJBService/PredictionEJB?wsdl

A @WebService as a @Stateless Session EJB | 319

The ClientEJB (see Example 7-9) uses the wsimport-generated artifacts.

Example 7-9. The sample ClientEJB built with wsimport-generated classes
import clientEJB.PredictionEJBService;
import clientEJB.PredictionEJB;
import clientEJB.Prediction;
import java.util.List;

public class ClientEJB {
 public static void main(String[] args) {
 new ClientEJB().runTests();
 }
 private void runTests() {
 PredictionEJB port =
 new PredictionEJBService().getPredictionEJBPort();
 create(port);
 getAll(port);
 edit(port); // id == 2
 getOne(port); // id == 2
 delete(port); // id == 2
 getAll(port);
 }
 private void getAll(PredictionEJB port) {
 System.out.println("\n### getAll:");
 List<Prediction> predictions = port.getAll();
 for (Prediction pred : predictions) stringify(pred);
 }
 private void getOne(PredictionEJB port) {
 System.out.println("\n### getOne:");
 Prediction pred = port.getOne(2);
 stringify(pred);
 }
 private void create(PredictionEJB port) {
 System.out.println("\n### create:");
 String who = "River Friesen";
 String what = "Decentralized 24/7 hub will target robust web-readiness.";
 Prediction pred = port.create(who, what);
 stringify(pred);

 who = "Kaden Crona";
 what = "Optional static definition will unleash dynamic e-tailers.";
 pred = port.create(who, what);
 stringify(pred);
 }
 private void edit(PredictionEJB port) {
 System.out.println("\n### edit:");
 Prediction pred = port.edit(2, "Testing! New who", "Testing! New what");
 stringify(pred);
 }
 private void delete(PredictionEJB port) {
 System.out.println("\n### delete:");
 String msg = port.delete(2);

320 | Chapter 7: Web Services and Java Application Servers

 System.out.println(msg);
 }
 private void stringify(Prediction pred) {
 if (pred == null) return;
 String s = String.format("%2d ", pred.getId()) +
 pred.getWho() + ": " + pred.getWhat();
 System.out.println(s);
 }
}

The ClientEJB runs preliminary tests against the service’s CRUD operations (lines 1
through 6): predictions are created, fetched all at once and one at a time, edited, and
deleted. Here is the output from a sample run right after the predictionsEJB had been
deployed:

create:
 1 River Friesen: Decentralized 24/7 hub will target robust web-readiness.
 2 Kaden Crona: Optional static definition will unleash dynamic e-tailers.
getAll:
 1 River Friesen: Decentralized 24/7 hub will target robust web-readiness.
 2 Kaden Crona: Optional static definition will unleash dynamic e-tailers.
edit:
 2 Testing! New who: Testing! New what
getOne:
 2 Testing! New who: Testing! New what
delete:
predEJB.Prediction@dbb5965 -- deleted
getAll:
 1 River Friesen: Decentralized 24/7 hub will target robust web-readiness.

It should be noted that this sample run occurred immediately after deploying the service
for the first time. The Derby database system maintains the primary keys—the integers
that identify the Prediction records in the database table. Subsequent test runs of the
ClientEJB will result in different primary keys, which means that the tests for editing
and deleting need to be modified. At present, each of these tests uses 2 as the key.

TomEE: Tomcat with Java EE Extensions
Apache TomEE can be downloaded in various ways, including as a standalone Java EE
application server or as a bundled WAR file that can be published with Tomcat7. TomEE
adds the OpenEJB container to Tomcat7 but also includes, for example, the Apache CXF
implementation of the JAX-RS API and a JMS provider. TomEE, like Tomcat, can be
installed anywhere on the filesystem, and the TomEE directory structure is almost

TomEE: Tomcat with Java EE Extensions | 321

http://tomee.apache.org

identical to that of Tomcat7. TomEE is designed with simplicity in mind. The Java world
is awash with options and, with respect to JASes, TomEE is one worth considering.

Managing the TomEE Web Server and EJB Container
In a TomEE installation, the web server can be started and stopped independently of
the EJB components, which includes the EJB container. A typical startup scenario would
be:

• In TomEE_HOME/bin, run the startup script:
% shartup.sh ;; startup.bat under Windows

• In the same directory, run the startup script for the EE components:
% tomee.sh start

The TomEE web server would be stopped in the usual way:

% shutdown.sh ;; shutdown.bat under Windows

The TomEE EE components are stopped with this command:

% tomee.sh stop

The TomEE web server furnishes the usual Tomcat7 web console (localhost:8080), which
also includes a TomEE web console (localhost:8080/tomee) for the distinctly EE
components.

Porting the predictionsEJB Web Service to TomEE
The two .java files in the predictionsEJB service, Prediction.java (see Example 7-6) and
PredictionEJB.java (see Example 7-8), are completely unchanged in the port from
GlassFish to TomEE. The configuration files, however, are different. The TomEE con‐
figuration files are the persistence.xml file (see Example 7-10), the same name as in
GlassFish, and the openejb.xml file (see Example 7-11).

Example 7-10. The persistence.xml document for the TomEE port of the predictionsEJB
service
<persistence>
 <persistence-unit name = "predictionsDB">
 <jta-data-source>predictionsDB</jta-data-source>
 <class>predEJB.Prediction</class>
 <properties>
 <property name = "openjpa.jdbc.SynchronizeMappings"
 value = "buildSchema(ForeignKeys=true)"/>
 </properties>
 </persistence-unit>
</persistence>

322 | Chapter 7: Web Services and Java Application Servers

In the persistence.xml document, lines 2 and 3 ensure that the OpenJPA provider auto‐
matically generates whatever database tables are required to persist Prediction instan‐
ces. The configuration document also names the @Entity class Prediction (line 1)
whose instances are mapped to table rows.

Example 7-11. The openejb.xml for the TomEE port of the predictionsEJB service
<Resource id = "predictionsDB" type = "DataSource">
 JdbcDriver = org.hsqldb.jdbcDriver
 JdbcUrl = jdbc:hsqldb:mem:predictionsDB
</Resource>

The second configuration document, openejb.xml, names the DataSource (line 1);
specifies the JDBC driver (line 2), in this case the driver for the HSQLDB database, a
convenient RDBMS with, by default, in-memory tables; and ends with the JNDI name
(line 3) of the database system. The HSQLDB system comes with TomEE. TomEE doc‐
umentation covers sample Resource configuration for various other popular database
systems such as Derby, MySQL, and PostgreSQL. The two configuration files shown
here must occur in the META-INF subdirectory of the deployed JAR file. The deploy‐
ment options and details are laid out in the next section.

TomEE, like GlassFish, provides a JAR file with the required Java EE packages such as
javax.persistence. All of the TomEE libraries come as JAR files and most of these are
in the TomEE_HOME/lib directory, which contains more than 100 JAR files, including
the files for the Apache CXF implementation of JAX-RS. There is also the directory
TomEE_HOME/endorsed, which holds a few additional JAR files. The TomEE JAR for
the core Java EE packages is named javaee-api-N-tomcat.jar, with a version number
where the N occurs. This JAR, roughly the TomEE counterpart of the GlassFish file
javaee.jar, can be used for compilation.

Deploying an EJB in a WAR File
TomEE comes with the familiar TomEE_HOME/webapps subdirectory already in place.
The subdirectory TomEE_HOME/apps is not present but can be created manually, and
the TomEE_HOME/bin/tomee.sh command has deploy and undeploy options that can
be used to deploy EAR files whose contents are one or more JAR files, each with its own
EJB. The deploy and undeploy options target the apps subdirectory, which TomEE sup‐
ports for backwards compatibility with versions of Java EE earlier than 6. Under Java
EE 6, the same Java class loader can load the contents of servlets and EJBs; hence, the
Java EE 6 specification enables EJB deployment in a WAR file. This style of deployment
is preferred practice in TomEE. The deployment details for the predictionsEJB service
under TomEE can be summarized as follows:

• A standard WAR can be built using the (perhaps slightly modified) Ant script from
earlier chapters. A web.xml document is not required. Suppose that the name of

TomEE: Tomcat with Java EE Extensions | 323

this file is pred.war. The two configuration files can be inserted into the WAR file
subdirectory META-INF:

% jar uf pred.war META-INF/*.xml ;; persistence.xml and openejb.xml

The resulting WAR structure is:
META-INF/MANIFEST.MF
META-INF/openejb.xml
META-INF/persistence.xml
WEB-INF/classes/predEJB/PredictionEJB.class
WEB-INF/classes/predEJB/Prediction.class

• The WAR file is copied to TomEE_HOME/webapps for deployment. A website or
a servlet-based service would be deployed in exactly the same way.

• The usual client-side artifacts can be constructed with the wsimport utility:
% wsimport -p clientEJB -keep \
 http://localhost:8080/pred/webservices/PredictionEJB?wsdl

The TomEE endpoint URL for an EJB service differs slightly from the GlassFish
endpoint. In particular, the TomEE URI in this example is /pred/webservices/Predictio‐
nEJB: the URI begins with the slash and the name of the WAR file (/pred), the term
webservices is appended (/pred/webservices), and then the name of the @WebService
class is appended to yield /pred/webservices/PredictionEJB. The very same ClientEJB
used for the GlassFish deployment of predictionsEJB (see Example 7-9) can be used,
once recompiled against the wsimport-generated artifacts to get the correct endpoint
URL, against the TomEE deployment. It is a nice TomEE touch to support conventional
WAR deployment of even EJBs, including EJB-based web services.

Where Is the Best Place to Be in Java Web Services?
This book is a code-centric tour through the APIs and implementation technologies
that support web services under Java. The tour has taken seven chapters. To set up an
answer to the question posed in this section’s title, it may be useful to review the stops
along the way.
Chapter 1

This chapter opens the tour with a broad look at REST-style and SOAP-based serv‐
ices. This overview includes a short history of alternatives to distributed software
systems, such as systems based on the DOA that predate and still compete with
deliberately lightweight web services. The chapter sketches the relationship between
web services and SOA, which can be viewed as a reaction against DOA. Chap‐
ter 1 likewise clarifies the core meaning and especially the spirit of REST as an
approach to the design of distributed software systems, especially systems built on
in-place, widely available, and free protocols and technologies such as HTTP
and XML/JSON. A dominant theme in this overview of web services is

324 | Chapter 7: Web Services and Java Application Servers

interoperability, which in turn requires language and platform neutrality. Chap‐
ter 1 ends with the implementation of a small RESTful service that consists of a JSP
script and two backend POJO classes. The predictions RESTful service is published
with the Tomcat web server, and the sample client calls are done with the curl utility.

Chapter 2
This chapter narrows the focus to the various APIs and API implementations avail‐
able for programming and delivering REST-style services in Java. The main APIs
are:

• HttpServlet classes along with JSP and other scripts that become, at runtime,
instances of HttpServlet.

• JAX-RS and Restlet classes with high-level annotations for HTTP verbs, URIs
(paths), MIME types, and status codes together with support for automatically
generating XML and JSON payloads.

• JAX-WS with its relatively low-level @WebServiceProvider and XML-centric
API that gets the programmer close to the metal.
This chapter looks at various ways of generating both XML and JSON payloads,
particularly given the rising popularity of JSON as a data-interchange format.
Java offers a range of options for XML generation, from the XMLEncoder class
to the rich assortment of classes in the JAX-B packages. The code samples
adhere to RESTful principles such as honoring the intended meaning of each
CRUD verb, using intuitive URIs to name resources, and taking full advantage
of HTTP status codes to signal the fate of a request against a REST-style service.
Chapter 2 and later chapters also explore, for publishing these RESTful services,
production-grade web servers such as Tomcat and Jetty together with
development-level publishers such as Endpoint, HttpsServer, and the Restlet
Component. All of the APIs are quite good, on the service side and on the client
side, at adhering to the separation-of-concerns principle: the programming of
a web service is one thing and its publication is another—and independent—
thing.

Chapter 3
This chapter turns from the service side to the client side. There are clients based
upon the grizzled but trusty URLConnection class and upon REST-specific client-
side APIs such as JAX-RS. As proof of concept for interoperability, clients are writ‐
ten in different languages. For instance, there are Perl and jQuery clients against
Java services and Java clients against services whose implementation language is
unknown. The code samples explore the various possibilities for dealing with XML
and JSON payloads, in particular with the standard JAX-B and the third-party
utilities such as XStream for automating the transformation of XML documents in
particular into native Java objects. Most modern RESTful services furnish at least

Where Is the Best Place to Be in Java Web Services? | 325

an XML Schema for the service, and Java has utilities such as xjc that covert an XML
Schema or comparable XML-based grammar into Java types. The chapter has clients
against real-world services. For instance, there are two sample clients against Am‐
azon’s E-Commerce service as well as clients against the Twitter and Chicago Transit
Authority RESTful services.

The chapter pays special attention to the growing importance of JavaScript clients
against RESTful services, in particular JavaScript clients embedded in HTML docu‐
ments. The JavaScript clients are written in the widely used jQuery dialect, and these
clients highlight ways in which JSON payloads can be treated as native JavaScript
objects. This chapter also illustrates how web services can be composed or orches‐
trated, that is, built out of other web services.

Chapters 4 and 5
These chapters turn from REST-style to SOAP-based web services, in particular to
the JAX-WS API and its @WebService annotation. Chapter 4 focuses on the appli‐
cation level in SOAP-based services, a level at which SOAP, an XML dialect, remains
transparent. Chapter 5 studies the handler level at which the entire SOAP message
or the payload in the SOAP body are exposed for inspection and manipulation. This
chapter also looks at the transport level, which provides access to HTTP(S) trans‐
port in particular. The handler level and the transport level are especially important
for security, the topic of Chapter 6.

In terms of popularity, SOAP-based services have lost ground in recent years to
REST-style ones; indeed, REST-style services can be seen as a reaction against the
creeping complexity of SOAP-based frameworks and services. Yet if SOAP-based
services are delivered over HTTP(S), then such services can be seen as a
programmer-friendly variant of REST-style services. The programmer-friendliness
comes from the fact that SOAP hides the XML payloads, allowing programmers on
either the service side or the client side to deal with familiar native data types.

SOAP effectively and fully automates the transformation between native language
types and XML types: there is no reason, at the application level, ever to create
manually or to parse an XML document. The basic profile of SOAP remains
uncomplicated, and this profile promotes interoperability through its powerful,
high-level API. Furthermore, dynamically generated service contracts—the WSDL
documents—are ubiquitous in the SOAP world. Major SOAP frameworks such as
Java and DotNet furnish utilities (in Java, wsimport) that can generate client-support
code from the document. Although WSDLs could be used in the RESTful world,
they typically are not; nothing in the RESTful world quite matches the ease of writing
a client against a SOAP-based service. In short, SOAP-based services still deserve
serious consideration.

326 | Chapter 7: Web Services and Java Application Servers

Chapters 4 and 5 also include clients against real-world services such as the
Amazon’s E-Commerce service, and the chapters explore both synchronous and
asynchronous clients. SOAP-based web services, like their REST-style cousins,
usually work with text payloads—XML or JSON documents. Yet SOAP messages
can include arbitrarily many binary attachments, which Chapter 5 shows with code
examples. For the most part, the examples in Chapters 4 and 5 use the Metro im‐
plementation of JAX-WS. However, there is also an example of an Axis2 service
and an Axis2 client. Axis2 remains a popular, alternative implementation of
JAX-WS.

Chapter 6
This chapter covers security, a core issue that cuts across SOAP and REST. The
chapter opens with a study of wire-level security and services that a transport pro‐
tocol such as HTTPS offers: peer authentication, message confidentiality, and mes‐
sage integrity. Underlying technologies like message digest, message encryption and
decryption, digital certificate, certificate authority, and cipher suite are clarified in
due course. The concepts are fleshed out in a series of examples, starting with a
simple Java HTTPS client against the Google home site. Another example builds a
very lightweight HTTPS server and an HTTPS client against a RESTful service
published with this server. Wire-level security is, for services delivered over HTTP,
required infrastructure for the next security level, commonly known as users/roles
security. The relevant concepts are user authentication (that is, establishing a user’s
true identity) and role authorization (that is, fine-tuning the access permissions for
an authenticated user).

Managing users/roles security at the service level is tricky; for one thing, this ap‐
proach does not scale well. The recommended approach is container-managed se‐
curity: the user authentication and role authorization are handed off from the web
service to the (servlet) container. The configuration is relatively easy and the re‐
sponsibility then shifts from the web service to the publisher such as Tomcat or
Jetty. Indeed, a chief benefit of using a production-grade web server is that it can
handle both wire-level security (typically in the form of HTTPS) and users/roles
security.

For users/roles security, client access to the transport level is critical because an
identity such as username and a credential such as a password typically are expected,
on the service side, to be inside the HTTP request header. Various ways of injecting
header blocks in an HTTP request are thus covered with examples. Wire-level and
users/roles security are equally pertinent in REST-style and SOAP-based services.
By contrast, WS-Security is a relevant only in SOAP-based services and represents
an effort to provide end-to-end security at the SOAP level rather than at the trans‐
port (that is, HTTPS) or container (that is, Tomcat or Jetty) level. The WS-*
initiatives, which promote the goals of transport-neutral and container-neutral

Where Is the Best Place to Be in Java Web Services? | 327

messaging, are what make SOAP complicated. The chapter ends with a WS-Security
example, which provides a first look at SOAP beyond the basic profile.

Chapter 7
The current chapter considers the trade-offs in deploying web services with a JAS
rather than with a standalone web server such as Tomcat or Jetty. Various JASes are
available: IBM WebSphere, Oracle WebLogic, Red Hat JBoss, Apache Geronimo,
GlassFish, and Apache TomEE. This chapter begins with an overview of the
components and resources that are bundled into a JAS. Among these are a web
container, an EJB container, a message-oriented middleware provider, a naming
service, a security service, and usually a database management system. A web ser‐
vice, REST-style or SOAP-based, that can be published with a standalone web server
such as Tomcat can be published, essentially as is, with a JAS. Such services are
described as servlet-based because the service itself either executes as an HttpServ
let instance or relies upon such an instance (e.g., the WSServlet that comes with
Metro) as an intermediary between the client and web service. A JAS offers, as an
alternative, an EJB-based service, which could be REST-style or SOAP-based.

Of particular interest is that a @Stateless Session EJB becomes a SOAP-based web
service if annotated as a @WebService. The EJB’s public methods become service
operations if annotated with @WebMethod. An EJB-based service, unlike a servlet-
based one, is thread-safe because the EJB container bestows thread safety on the
components therein. This chapter also covers some miscellaneous topics such as
the interaction of a GlassFish-hosted website and a Tomcat-hosted web service; the
chapter revisits the JAX-WS client-side API with a sample client against a Restlet
service. The main example is a SOAP-based service that uses JPA to persist data in
a backend database. GlassFish and TomEE are contrasted as two modern JASes.

Back to the Question at Hand
In summary, the book explores Java-based web services with code examples that cover
a range of APIs and implementations. The code examples themselves are meant to
highlight the pluses and minuses. Nonetheless, this code-driven exploration invites an
obvious question: Where is the best place to be with respect to Java web services? Which
API is superior to the rest? Which implementation should be preferred over the oth‐
ers? These questions, natural as they are, overlook a principal reason for using Java in
the first place. To be sure, the Java language and the JVM runtime are major players in
the world of software development and deployment, and the runtime is best-in-breed
among production-grade virtual machines. From the start, however, Java has been re‐
nowned for its options. There is no single IDE for Java or even a single library for, say,
parsing XML, making network connections, or implementing users/roles security.
There is now growing variety among the languages that compile to JVM byte-codes and

328 | Chapter 7: Web Services and Java Application Servers

are able to reference the huge number of runtime libraries, standard and third party,
available in the JVM. There is even choice about which Java runtime to use.

A sensible principle in software development is to pick the least complicated toolset that
is up to the task at hand. The toolkit for Java web services is rich in tools. It makes no
sense to declare a winner among, for example, the HttpServlet, JAX-RS/Restlet, and
@WebServiceProvider APIs for REST-style services. These APIs differ and in this dif‐
ference are to be found choices for addressing specific programming and deployment
challenges. For SOAP-based services, even the JAX-WS API has at least two excellent
implementations, Metro and Axis2; Axis2 adds features to JAX-WS for those who
require such extensions. For publishing web services, the choices are likewise varied,
from development and testing environments through staging and up to production-
level publishing. Tomcat and Jetty are excellent standalone web servers that include
first-rate servlet containers. It is hard to make a bad choice here. The next step up, in
complexity but also in features, is where the Java Application Servers are. Even here
there are choices. WebSphere and Oracle WebLogic have been in the game for a long
time, and their for-free counterparts such as Geronimo, GlassFish, JBoss, and TomEE
are likewise fine pieces of software. Over the past decade, the Java EE API has become
simpler and, therefore, more attractive. JPA is an API that deserves a special pat on the
back. At the implementation level, the thread safety that comes with an EJB container
is enticing.

Where is the best place to be in Java web services? The answer depends on the challenges
in place and resources at hand. Java comes with first-rate options for programming and
publishing web services, REST-style and SOAP-based. This means that the question has
more than one good answer. Let the task at hand and the resources in place decide the
matter.

Where Is the Best Place to Be in Java Web Services? | 329

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
@Entity, 293, 294, 296, 298, 312–315
@GET operations, 72
@Stateless, 291, 294, 299, 312–319
@WebService, 145, 270, 277, 317
@WebServiceProviders

basics of, 37
in mixed API example, 302–307
refinement for SOAP-based services, 145
RESTful service as, 85–94

A
access key id (accessId), 101, 104, 106
access rights, 232
ActiveX controls, 10
Adages class, 54, 59
adages web service, 56
addPrediction method, 44
Ajax polling, 140
Amazon E-Commerce site

choosing a client for, 122
clients against, 101–109, 119–123, 173–182
multiple operations in, 123
query string formatting, 101
request message restrictions, 194
search-and-shop automation, 5
SOAP fault messages, 186
website vs. web service, 105

Ant scripts, 24, 31, 56
Apache Axis2, 145, 227
Apache Geronimo, 291
Apache Software Foundation, 14
Apache TomEE, 291
asymmetric encryption/decryption, 234
asynchronous clients, 179
authentication/authorization

basics of, 232
constraints on, 262
one-sided, 237
user authentication methods, 262

AwsHandlerResolver class, 189
AwsSoapHandler class, 189, 192
Axis 2, 145, 227

B
bare parameter style, 175
base64 encoding, 218
BASIC type authentication, 262, 273
binary data, 218–224

approaches to dealing with, 218
attachment options, 218
base64 encoding of, 218
MTOM (Message Transmission Optimiza‐

tion Mechanism) for, 219
transmission as attachments, 218

331

C
C# clients, 156
c2f operation, 171, 270
cacerts truststore, 242
centigrade conversion, 171
certificate authorities (CA), 237
cipher bits, 235
cipher suites, 239, 241
ciphertext, 235
CLIENT-CERT type authentication, 263
ClientHandlerResolver class, 204
ClientHashHandler class, 204
code vs. contract first, 167
confidentiality, 234
container-managed security

@WebService under HTTPS, 270
client-side users/roles security, 265
digested passwords, 273
testing with curl utility, 268
user/roles security, 260
web.xml service with Tomcat, 263

controllers, 293
conversion, automation of, 114
CORBA (Common Object Request Broker Ar‐

chitecture), 9
create, 307
CRUD (Create, Read, Update, Delete), 16, 40,

44, 74, 96
cryptographic algorithms, 239
cryptographic nonce, 283
CTA (Chicago Transit Authority) bus-tracking

service, 123–126
curl utility, 33, 52, 83, 268

D
data bloat, 218, 221
data sources, web services as, 6
data storage, 74, 296
data types, binding of, 166
DataSourceRealm, 264
DCE (Distributed Computing Environment), 9
deleteOne, 307
dependency injection, 225
deserializing/serializing, 114
DIGEST type authentication, 263, 273
digital certificates, 236, 242, 244
digital signatures, 232

DIME (Direct Internet Message Encapsulation),
218

distributed computing
benefits of, 13
definition of, 9

distributed software systems, 2, 7
DLL (Dynamic Link Library), 10
DOA (Distributed Object Architecture)

challenges in, 11
evolution of, 9

document parsing, 95, 100–101
documents, wrapped vs. unwrapped, 168
doDelete method, 90
doGet method, 48, 90, 99
doPost, 50
DotNet, 126

E
e-commerce web services (see Amazon E-

Commerce site)
ECDHE (Elliptic Curve Diffie-Hellman Key Ex‐

change), 241
echo function, 10
Echo service, 224, 277
EchoClient example, 224
EchoClientWSS, 289
EJB (Enterprise Java Bean) web containers, 293,

323
encoding, 165
encryption/decryption, 234
end-to-end security, 277
Entity EJBs (Enterprise Java Bean), 9
error messages, SOAP faults, 186

F
Fahrenheit conversion, 171
federated security, 276
Fielding, Roy, 14
fingerprints, 241
FORM type authentication, 262
405 status code, 51
function calls, 8

G
Geronimo, 291
GET requests, 16, 19, 21
getAll, 317

332 | Index

getAllJson, 306
getAllXml, 306
getBenefits method, 11
getOne, 306, 317
getParameter method, 50
getTest function, 99
GlassFish Metro

Axis2 alternative to, 227
domain implementation, 298
installation of, 296
JAX-WS reference implementation in, 145
overview of, 291
servlet-based web services under, 299
web console home page, 297

GoogleTrustingClient, 242

H
handler chains, 188, 213–217
handshake process, 237
header blocks, 186
HiService class, 227, 247
HMAC (hash-based message authentication

code), 109, 232
HTML screen scraping, 5
HTTP (HyperText Transport Protocol)

as API, 21–23
HTTP requests in REST, 15, 49
message architecture, 185
methods/verbs in, 16
MIME types in, 16
opaque nouns in, 17
requests/responses in, 18–20
transport/messaging functions of, 14
web services delivered by, 1
widespread use of, 13

HTTP forms, 100
HTTPException, 51
HTTPS (HTTP Secure)

design of, 233
lightweight security with, 244–254
message digest value, 236
multi-faceted security in, 13
production-grade security with, 254–260
web services delivered by, 1

HttpServlet, 35, 37, 40–53, 94
HttpServletRequest, 51
HttpsPublisher, 245
HttpsURLConnection class, 239

I
IBM WebSphere, 291
IDL (Interface Definition Language), 9
IdLogicalHandler, 213
input messages, 232
integrity, 234
intermediary layers, 3
intermediary nodes, definition of, 185
interoperability

challenge of, 6, 12, 95
definition of, 3
solutions for, 13

invalid ids, 213
invocation syntax, 126

J
JAAS (Java Authentication and Authorization

Service), 295
JAASRealm, 264
JAS (Java Application Server)

@WebService and stateless EJB, 312–321
available types

Apache Geronimo, 291
Apache TomEE, 291
GlassFish Metro, 291
IBM WebSphere, 291
JBoss, 291
Oracle WebLogic, 292

complexity of, 292, 296
interactive website/SOAP-based web service,

308–312
lightweight configuration of, 296
overview of available types, 291
servlet-based web services, 299–307
TomEE and, 322
web containers

basics of, 292
client containers, 296
database system, 296
EJB (Enterprise Java Bean) container, 293
message-oriented middleware, 293
model-view-controller (MVC) pattern,

293
naming and lookup service, 295
security provider, 295

Java clients
against predictionsEJB service, 319
against RandService, 153

Index | 333

binary data and, 223
HTTP GET requests in, 21
utility URLConnection class in, 23
web containers in, 296

Java data types, binding of, 166
Java EE (Enterprise Edition), 9
Java EE extensions, 322
Java Metro, 126
Java objects, 62

serializing/deserializing, 114
Java RMI (Remote Method Invocation), 9, 11
Java web services

benefits of, 328
overview of, 324–328

Java-to-XML conversion, 114
Java/XML conversions, 13
JAX-B (Java API for XML-Binding), 58, 62, 94,

110–118
JAX-P (Java API for XML-Processing), 89
JAX-RS (Java API for XML-RESTful Services),

53–75
JAX-RS (Java API for XML-RESTful Web Serv‐

ices), 37, 94, 132
generating XML/JSON responses, 62
porting predictions Web Service to, 65
publishing with Tomcat, 56
using Jersey, 54

JAX-WS (Java API for SML-Web Services), 37,
85, 94, 145, 186

JBoss, 291
JDBCRealm, 264
Jersey, 54–61
Jetty web servers, 40, 52, 77, 149
JMS (Java Message Service), 293
JNDI (Java Naming and Directory Interface),

264
JNDIRealm, 264
JPA (Java Persistence API), 74
jQuery, 137
JSF (Java Server Faces), 292
JSON (JavaScript Object Notation)

Ajax polling, 140
avoiding same domain policies, 135
client- vs. server-side functionality, 134
composed RESTful service, 137
customized serialization with XStream, 118
generating responses in JAX-RS, 62
generation for HTTPServlets, 50
HTTP request preferences, 49, 99

JSONP (JSON with padding), 135
JSP (Java Server Pages), 24
JSP scripts, 25
JSSE (Java Secure Sockets Extension), 233
JVM-centric frameworks, 292

K
key pairs, 235
keystores, 244
keytool utility, 248

L
language transparency, 3–6, 96
LDAP (Lightweight Directory Access Protocol),

264
LogicalHandler, 189, 213
lookup/naming service, 295
loose coupling, 7

M
marshaling, 10, 12, 111, 114
master secret keys, 238
Maven, 56
MCS (Mutual Challenge Security), 288
MemoryRealm, 264
message authentication code (MAC), 109
message digest, 232
message exchange pattern (MEP), 185
message validation, 170
message-oriented middleware, 293
messaging architecture

end-to-end security in, 277
message components, 187
security enforcement through, 232
SOAP vs. HTTP, 185

metadata, 186
Method Not Allowed exceptions, 51
Metro, 145, 227
Microsoft’s DCOM (Distributed COM), 9
Microsoft’s DotNet, 9, 12
middleware, message-oriented, 293
MIME (Multipurpose Internet Mail Extension),

14, 16, 49
MITM (Man in the Middle), 233
models, 293
modular design, 4

334 | Index

MTOM (Message Transmission Optimization
Mechanism), 218

multithreading, 51
mutual authentication, 234
mutual challenge, 234
MVC (model-view-controller) pattern, 293

N
naming/lookup service, 295
nextN vs. next1, 159
nodes, in messaging architecture, 185
notifications, 2
nouns, 17

O
one-sided authentication, 237
one-way patterns, 2
opaque nouns, 17
open infrastructure, 4
Oracle WebLogic, 292

P
parameter styles, 174
parseXml function, 99
parsing, 95
password authentication, 263, 273
peer authentication, 234
Perl clients

against Java RandService, 157
against Java RESTful web service, 96
binary data and, 220
CRUD calls in, 96
scalar variables in, 99

persistent data stores, 74
plain bits, 234
platform transparency, 4, 6
POJO classes, 54, 58, 312
polling, 140
POST requests, 16, 19, 100
pre-master secrets, 238
Prediction class, 41
predictions web service example

Ant script in, 31
as stateless Session EJB, 317
backend prediction code, 26
client against, 33
getPredictions method, 28

HTTPS client against, 257
HttpServlet implementation, 40–53
JSP script in, 25
organization of, 24
porting to TomEE, 322
SOAP backend support classes, 199
SOAP credential injection, 202–208
SOAP service-side handler, 212
SOAP signature verification in, 211
SOAP-based handlers/faults in, 194–198, 211
SOAP-based implementation of, 302
Tomcat web server, 30
WADL document for, 127
XML response from, 25

PredictionsClient, 202
PredictionServlet, 44
private keys, 235
programmatic verification, 242
provider/consumer pair, 8
public key encryption/decryption, 235, 238, 241
PUT requests, 100

Q
query string formatting, 101

R
Rails routing style, 21
RandService

asynchronous clients against, 179
clients against, 153–160
in SOAP-based web services, 146
in two files, 151
WSDL for, 161

RC4_128 stream cipher algorithm, 241
read requests, 15
relational database management systems

(RDMS)
web containers and, 296
web services integration, 6

request/response pattern, 2, 10, 18–20, 185
RequestHelper class, 101, 106
resource, concept of, 14, 54
response-document parsing, 101
REST (REpresentational State Transfer), 14
RESTful web service clients

against Amazon E-Commerce site, 101–109,
119–123

avoiding document parsing, 95

Index | 335

choosing, 122
CTA bus-tracking service, 123–126
JAX-RS client API, 132
JSON for JavaScript clients, 134–142
Perl clients, 96–101
standalone JAX-B, 110–118
WADL documents and, 126–132

RESTful web services
API choice, 39
as @WebServiceProvider, 85–94
as HttpServlet, 40–53
as JAX-RS resource, 53–75
as Restlet resources, 75–85
example of, 24–34
HTTP requests in, 15, 49
message patterns in, 2
overview of, 14–18
publication options for, 39
servlets in, 34

RestfulAdage class, 54
RestfulApplication class, 54
Restlet framework, 37, 75–85, 94

downloading, 75
main parts of, 76
publishing with Java application, 84
routing table, 79

role authorization, 232
RPC (Remote Procedure Call), 9
RSA (Rivest, Shamir, Adleman) public key algo‐

rithm, 241

S
S3 (Simple Storage Service), 101, 232
same domain policies, 135
.sar extension, 292
SAX (Simple API for XML), 159
schemagen utility, 63, 131
search-and-shop automation, 5
secret access key (secretKey), 101, 104, 106, 238
security issues

Amazon’s secretKey, 109
broad view of, 231
container-managed security, 260–275
HTTPS in production-grade web servers,

254–260
HTTPS server/client, 244–254
in web containers, 295
wire-level security, 232–244
WS-Security, 275–289

security role declaration, 262
SEI (Service Endpoint Interface), 151
self-signed digital certificates, 248
sendResponse method, 49, 49
serializing/deserializing, 114
service archive, 292
service contracts, 126, 160

(see also WSDL documents)
service operations, 8
service semantics, 181
service-oriented architecture (see SOA (service-

oriented architecture))
ServiceHashHandler, 212
servlets

advantages of, 34, 94
for web services under GlassFish, 299–307
implementation of, 35
servlet containers, 35
thread synchronization, 51

Session, 9
SHA (Secure Hash Algorithm), 241
SHA-256 (Secure Hash Algorithm 256-bit), 109
SIB (Service Implementation Bean), 151
signature verification, 211, 237
signatures, 109, 232
Simple Object Access Protocol, 3
single key encryption/decryption, 235
SMTP (Simple Mail Transport Protocol), 165
SOA (service-oriented architecture)

modularity of, 7
service operation in, 8
statelessness in, 8

SOAP (Service-Oriented Architecture Proto‐
col), 3

SOAP handlers/faults
application vs. handler levels, 187, 194, 211
AwsSoapHandler class, 192
Axis2, 227
backend support classes for, 199
binary data and, 218–224
credential injection in, 202–208
event-driven reactions, 191
fault vs. normal response, 186
handler chains, 213–217
handler functions, 189
handler types, 188
in predictions web service example, 194–198
linking service-side handler, 212
signature verification, 211

336 | Index

SOAP messaging architecture, 185
transport level access, 224

SOAP-based web services
asynchronous clients against, 179
basics of, 145–146
binary data in, 218–224
clients against Amazon’s E-Commerce site,

173–182
clients against RandService, 153–160
message patterns in, 2
publishing with standalone web servers, 149
RandService class, 146
RandService in two files, 151
vs. REST, 14
with JAS (Java Application Server), 308–312

social networking sites, 123
solicit/response pattern, 2
SSL (Secure Sockets Layer), 233
statefulness, of resources, 15
statelessness

in Session EJBs, 312
in SOA systems, 8

static class members, 74
SwA (SOAP with Attachments), 218
symmetric encryption/decryption, 234
synchronization, 51
systems integration, 6

T
TCP (Transmission Control Protocol), 165
temperature conversion service, 171, 270
thread synchronization, 51
TLS (Transport Layer Security), 233, 241
Tomcat Catalina, 292
Tomcat web server

as JAS web container, 292
basics of, 30
HTTPS security for, 254
one-sided authentication challenge in, 237
publishing JAX-RS resources with, 56
publishing SOAP-based service with, 149
Restlet service on, 77
security realms in, 263
thread synchronization in, 51

TomEE, 291
TomEE web server, 322
trace capabilities, 158
transformations

from Source to Result, 303

using JAX-B library, 62
using JAX-P, 89
using xjc utility, 119

transport level, 224
TreeMap data structure, 109
truststores, 237, 242, 244
two-message patterns, 2

U
UDDI (Universal Description Discovery and

Integration) registry, 181
unmarshaling, 10, 12, 111, 114
URI (Uniform Resource Identifier)

subtypes of, 14
URLConnection, 104
URLConnection class, 23
user authentication/authorization

basics of, 232
methods of, 262

user/roles security, 260
UserDataBaseRealm, 264
UserLand Software, 10
username/password-digest pairs, 263, 273
utility URLConnection class, 23
utility-priced cloud computing (EC2), 101

V
verb specification, 15, 17
VerbosityException, 197
verification, of signatures, 211, 237
VeriSign, 237
views, 293

W
WADL (Web Application Description Lan‐

guage) documents, 126–132
Apache CXF implementaion and, 127
counterparts in non-Java languages, 128
dynamic generation of, 126
Jersey implementaion and, 126, 130
vs. WSDL documents, 126
wadl2java utility, 129

wadl2java utility, 129
web containers

basics of, 292
client containers, 296
database systems for, 296

Index | 337

EJB (Enterprise Java Bean) container, 293
message-oriented middleware, 293
model-view-controller (MVC) pattern, 293
naming and lookup service, 295
security provider, 295
Tomcat web server as, 292

web services
APIs for, 37
as data sources, 6
as essential tools, 7
basics of, 1
benefits of, 13
consumers vs. providers of, 8
distinguishing features of, 4
enforcing HTTPS access to, 256
history of, 9–13
HTTP as API, 21–23
intermediary layers, 3
language transparency in, 3, 96
over HTTP, 2, 18
REST vs. SOAP, 14–18
RESTful example, 24–34
search-and-shop automation, 4
servlets in, 34
systems integration, 6
types of, 2
vs. service-oriented architecture (SOA), 7

WebLogic, 292
WebSphere, 291
Winer, Dave, 10
wire level security

basics of, 231, 232
encryption/decryption, 234
HTTPS basics, 233
HTTPS handshake, 237
HTTPS security services, 236
HttpsURLConnection class, 239–244

World Wide Web, 14
wrapped parameter style, 177
wrapped vs. unwrapped document style, 168
WS-I (Web Services Interoperability), 146
WS-WSIT (Web Services Interoperability Tech‐

nology), 146
WSDL (Web Service Description Language)

documents
binding section, 164
code vs. contract first, 167
Java/XML schema binding, 166

message section, 163
portType section, 164
service section, 166
service semantics and, 182
structure of, 160
types section, 162
UDDI registries and, 181
vs. WADL documents, 126
wrapped vs. unwrapped document style, 168
wsimport artifacts, 171

wsdl utility, 156
wsgen utility, 155
wsimport artifacts, 171
wsimport utility, 153, 170
WSS (WS-Security), 275–289

comprehensiveness of, 232
configuration file in, 282
ECHO service, 278
encryption in, 285
for unreliable infrastructures, 276
header security items, 283
Mutual Challenge Security and, 288
passwords and, 278
request/response exchange, 279
separation of concerns in, 276
specifications in, 275
within SOAP messaging, 277
WS-Authorization, 276
WS-Federation, 276
WS-Policy, 276
WS-Privacy, 276
WS-SecureConversation, 276
WS-Trust, 276

X
x.509 certificates, 238
xjc utility, 119
XML (eXtensible Markup Language)

generating responses in JAX-RS, 62
HTTP request preferences, 49, 99

XML documents, 62
XML marshaling/unmarshaling, 10, 12, 111
XML Schema, 63, 119, 148, 166
XML-RPC protocol, vs. DCE/RPC, 10
XML-to-JSON conversion, 114
XOP (XML-Binary Optimized Packaging), 218
XStream marshaling/unmarshaling, 114

338 | Index

About the Author
Martin Kalin has a PhD from Northwestern University and is a professor in the College
of Computing and Digital Media at DePaul University. He has cowritten a series of books
on C and C++ and written a book on Java for programmers. He enjoys commercial
programming and has codeveloped large distributed systems in process scheduling and
product configuration.

Colophon
The animal on the cover of Java Web Services: Up and Running, Second Edition, is a
great cormorant (Phalacrocorax carbo). This bird is a member of the Phalacrocoracidae
family, which consists of about 40 species of cormorants and shags—large seabirds with
hooked bills, colored throats, and stiff tail feathers. The name “cormorant” is derived
from the Latin corvus marinus, or sea raven, because of its black plumage.

An adult cormorant is about 30 inches long and has a wingspan of 60 inches. It has a
long neck, a yellow throat, and a white chin patch. The cormorant has a distinctive way
of spreading its wings as it perches, which many naturalists believe is a way of drying
its feathers, although this explanation is disputed. The cormorant lives mainly near
Atlantic waters, on western European and eastern North American coasts, and partic‐
ularly in the Canadian maritime provinces. It breeds on cliffs or in trees, building nests
out of twigs and seaweed.

The cormorant is an excellent fisher, able to dive to great depths. In China and Japan,
other species of cormorants are trained to fish using a centuries-old method, in which
they tie cords around the throats of the birds—to prevent them from swallowing—and
send them out from boats. The cormorants then catch fish in their mouths, return to
the boats, and the fishermen retrieve their catch. Although once a successful industry,
today cormorant fishing is primarily used for tourism.

The cover image is from Cassell’s Popular Natural History, Vol. III: Birds. The cover
font is Adobe ITC Garamond. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Preface
	What’s Changed in the Second Edition?
	Web Service APIs and Publication Options
	The Publication Options

	Chapter-by-Chapter Overview
	Tools and IDEs
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Web Services Quickstart
	Web Service Miscellany
	What Good Are Web Services?
	Web Services and Service-Oriented Architecture
	A Very Short History of Web Services
	From DCE/RPC to XML-RPC
	Distributed Object Architecture: A Java Example
	Web Services to the Rescue

	What Is REST?
	Verbs and Opaque Nouns

	Review of HTTP Requests and Responses
	HTTP as an API
	Two HTTP Clients in Java

	A First RESTful Example
	How the Predictions Web Service Works
	A Client Against the Predictions Web Service

	Why Use Servlets for RESTful Web Services?
	What’s Next?

	Chapter 2. RESTful Web Services: The Service Side
	A RESTful Service as an HttpServlet
	Implementation Details
	Sample Client Calls Against the predictions2 Service

	A RESTful Web Service as a JAX-RS Resource
	A First JAX-RS Web Service Using Jersey
	Publishing JAX-RS Resources with a Java Application
	Publishing JAX-RS Resources with Tomcat
	The Adage Class
	JAX-RS Generation of XML and JSON Responses
	Porting the Predictions Web Service to JAX-RS

	A RESTful Web Service as Restlet Resources
	Sample Calls Against the adages2 Service
	Publishing the adages2 Restlet Service Without a Web Server

	A RESTful Service as a @WebServiceProvider
	What’s Next?

	Chapter 3. RESTful Web Services: The Client Side
	A Perl Client Against a Java RESTful Web Service
	A Client Against the Amazon E-Commerce Service
	A Standalone JAX-B Example
	The XStream Option

	Another Client Against the Amazon E-Commerce Service
	The CTA Bus-Tracker Services
	RESTful Clients and WADL Documents
	The JAX-RS Client API
	JSON for JavaScript Clients
	JSONP and Web Services
	A Composed RESTful Service with jQuery
	An Ajax Polling Example

	What’s Next?

	Chapter 4. SOAP-Based Web Services
	A SOAP-Based Web Service
	The RandService in Two Files
	Clients Against the RandService
	A Java Client Against the RandService
	A C# Client Against the RandService
	A Perl Client Against the RandService

	The WSDL Service Contract in Detail
	The types Section
	The message Section
	The portType Section
	The binding Section
	The service Section
	Java and XML Schema Data Type Bindings
	Wrapped and Unwrapped Document Style
	wsimport Artifacts for the Service Side

	SOAP-Based Clients Against Amazon’s E-Commerce Service
	Asynchronous Clients Against SOAP-Based Services

	What’s Next?

	Chapter 5. SOAP Handlers and Faults
	The Handler Level in SOAP-Based Services and Clients
	Handlers and Faults in the predictionsSOAP Service
	The Backend Support Classes
	From the Client to the Service
	Signature Verification
	Faults from the Application and Handler Levels
	Linking the Service-Side Handler to the Service

	A Handler Chain with Two Handlers
	SOAP-Based Web Services and Binary Data
	The Transport Level
	Axis2
	What’s Next?

	Chapter 6. Web Services Security
	Wire-Level Security
	HTTPS Basics
	Symmetric and Asymmetric Encryption/Decryption
	How HTTPS Provides the Three Security Services
	The HTTPS Handshake
	The HttpsURLConnection Class

	A Very Lightweight HTTPS Server and Client
	HTTPS in a Production-Grade Web Server
	Enforcing HTTPS Access to a Web Service
	An HTTPS Client Against the predictions2 Service

	Container-Managed Security
	Linking the Service web.xml with a Tomcat Security Realm
	The Client Side in Users/Roles Security
	Using the curl Utility for HTTPS Testing
	A @WebService Under HTTPS with Users/Roles Security
	Using a Digested Password Instead of a Password

	WS-Security
	Securing a @WebService with WS-Security

	What’s Next?

	Chapter 7. Web Services and Java Application Servers
	The Web Container
	The Message-Oriented Middleware
	The Enterprise Java Bean Container
	The Naming and Lookup Service
	The Security Provider
	The Client Container
	The Database System

	Toward a Lightweight JAS
	GlassFish Basics
	Servlet-Based Web Services Under GlassFish
	An Example with Mixed APIs

	An Interactive Website and a SOAP-Based Web Service
	A @WebService as a @Stateless Session EJB
	Packaging and Deploying the predictionsEJB Service
	A Client Against the predictionsEJB Service

	TomEE: Tomcat with Java EE Extensions
	Porting the predictionsEJB Web Service to TomEE
	Deploying an EJB in a WAR File

	Where Is the Best Place to Be in Java Web Services?
	Back to the Question at Hand

	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

