

About This eBook

ePUB is an open, industry-standard format for eBooks. However, support of ePUB and its many features varies across reading devices and applications. Use your device or app settings to customize the presentation to your liking. Settings that you can customize often include font, font size, single or double column, landscape or portrait mode, and figures that you can click or tap to enlarge. For additional information about the settings and features on your reading device or app, visit the device manufacturer’s Web site.

Many titles include programming code or configuration examples. To optimize the presentation of these elements, view the eBook in single-column, landscape mode and adjust the font size to the smallest setting. In addition to presenting code and configurations in the reflowable text format, we have included images of the code that mimic the presentation found in the print book; therefore, where the reflowable format may compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on your device or app.

JAVAFX

RICH CLIENT

PROGRAMMING ON THE

NETBEANS PLATFORM

GAIL ANDERSON • PAUL ANDERSON

[image:]

Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information or programs contained herein.

For information about buying this title in bulk quantities, or for special sales opportunities (which may include electronic versions; custom cover designs; and content particular to your business, training goals, marketing focus, or branding interests), please contact our corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact international@pearsoned.com.

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2014947363

Copyright © 2015 Anderson Software Group, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-92771-2
ISBN-10: 0-321-92771-0
Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, September 2014

Contents

Foreword

Preface

About the Authors

Chapter 1 A Tour of the NetBeans Platform

What You Will Learn

1.1 Background Basics

JavaFX Integration

1.2 The NetBeans Platform: The Big Picture

Module System API

Lookup API

Window System API

File System API

Nodes and Explorer Views

But Wait . . . There’s More

1.3 FamilyTreeApp Reference Application

FamilyTreeApp and JavaFX

JavaFX 3D Integration Possibilities

1.4 Documentation

1.5 How to Get Java and the NetBeans Platform Software

1.6 Example Software Bundle

1.7 Key Point Summary

Chapter 2 Background Basics

What You Will Learn

2.1 JavaBeans and Properties

Creating a Java Application

Bound Properties

Coarse-Grained Notification for JavaBean Objects

2.2 Lambda Expressions

Lambda Expressions with Functional Interfaces

Functional Data Structures

2.3 Swing Basics

Creating a GUI-Form Project

Swing Form Designer

Program Structure

Single-Threaded Model

Java Logging Facility

Using Swing Components

Event Handlers and Loose Coupling

2.4 Improving the User Experience

2.5 Concurrency and Thread Safety

Thread-Safe Objects

Adding Listeners and Thread Safety

Concurrency in Swing

2.6 Swing Background Tasks

Introducing SwingWorker

Monitoring SwingWorker Status

2.7 Key Point Summary

What’s Next?

Chapter 3 Introduction to JavaFX

What You Will Learn

3.1 What Is JavaFX?

A Bit of History

The Scene Graph Metaphor

Single-Threaded Model

3.2 Building JavaFX Programs

Creating a JavaFX Application

Java APIs

Creating a JavaFX FXML Application

CSS Files

Animation

3.3 JavaFX Properties

What Is a JavaFX Property?

Using Listeners with Observable Properties

Read-Only Properties

Binding

3.4 Putting It All Together

3.5 Key Point Summary

What’s Next?

Chapter 4 Working with JavaFX

What You Will Learn

4.1 Creating JavaFX Properties

JavaFX Properties with Lazy Evaluation

Object Properties

Immutable Properties

Computed Properties

Methods equals() and hashCode()

4.2 Using JavaFX Properties in a JavaFX Application

Creating a JavaFX FXML Application

4.3 Observable Collections

4.4 JavaFX Applications

Program Structure

Scene Builder and FXML

JavaFX Controls

JavaFX Controller Class

4.5 Concurrency and Thread Safety

Concurrency in JavaFX

Observable Properties and Thread Safety

4.6 JavaFX Background Tasks

Worker and Task

ProgressIndicator

4.7 Monitoring Background Tasks

Using Method updateValue()

Updating a Read-Only JavaFX Property

Updating the JavaFX Scene Graph from a Background Task

4.8 Key Point Summary

Chapter 5 A Taste of Modularity

What You Will Learn

5.1 Modular Architecture

Modules

NetBeans Runtime Container

5.2 Creating a NetBeans Platform Application

5.3 Creating Modules

Creating a NetBeans Module

Creating Additional Modules

5.4 Configuring a Module with Public Packages

5.5 Registering a Service Provider

Global Lookup

5.6 Configuring a Window for Selection

Porting Swing UI Code to a TopComponent

Lookup API

Configuring the TopComponent

5.7 Configuring a Window with Form Editing

Another Look at Lookup

5.8 Module Life Cycle Annotations

Using @OnStart

Using @OnStop

5.9 What We Know So Far

5.10 Key Point Summary

What’s Next?

Chapter 6 JavaFX Integration

What You Will Learn

6.1 JavaFX and the NetBeans Platform

Java 8 and JavaFX 8 Enhancements

Create a NetBeans Platform Application

Create a NetBeans Module

Add a Window to the Module

Add JavaFX Content to the TopComponent

The Magic of JFXPanel

SwingNode

6.2 Communication Strategies

Accessing the JavaFX Controller Instance

6.3 Integrating with the NetBeans Platform

Create a NetBeans Platform Application

Create NetBeans Platform Modules

Configure a Module with Public Packages

Register a Service Provider

Configure a Window with JavaFX for Selection

Configure a Window with JavaFX for Form Editing

6.4 Key Point Summary

Chapter 7 Nodes and Explorer Views

What You Will Learn

7.1 The NetBeans Model View Controller

7.2 Nodes

NodeListener and PropertyChangeListener

Building a Node Hierarchy

Displaying the Node Hierarchy

A Multi-Level Node Hierarchy

Using BeanNode

Creating Your Own Property Sheet

Using FilterNode

7.3 Explorer Views

Quick Search

BeanTreeView

OutlineView

Master-Detail View

PropertySheetView

7.4 Creating a Selection History Feature

Add Features to Your Application

7.5 Key Point Summary

Chapter 8 NetBeans Platform Window System

What You Will Learn

8.1 Window Framework Overview

Window Layout

Window Modes

TopComponents

Window Operations

Limiting the Window System’s Behavior

Window Switching

Window Tab Customization

Window Manager

8.2 TopComponent Basics

TopComponent Java Code

Window Header Animated Notifications

8.3 TopComponent Persistence

Windows2Local Folder

8.4 TopComponent Client Properties

8.5 Creating Non-Singleton TopComponents

Opening Windows from User Code

8.6 Window System Life Cycle Management

Using the Window Manager

Using @OnShowing

8.7 TopComponent Modes

8.8 Window Groups

Window Group Example

8.9 Window Layout

Creating TopComponents

A View-Only Window Layout

8.10 Window Layout Roles

RoleExample Application and Role-Based TopComponents

Credential Checking and Role Assignments

LoginTopComponent

8.11 Key Point Summary

Chapter 9 Action Framework

What You Will Learn

9.1 Type of Actions

Always-Enabled Actions

9.2 Actions and Lookup

Callback Actions

Context-Aware Actions

9.3 Editing the Node Hierarchy

Group Window Node Actions

Reorder and Index.Support

Implementing Drag and Drop

Implementing Cut, Copy, Paste, Delete

9.4 Inter-Window Drag and Drop

Trash Window Node Actions

Implementing Drag and Drop Delete

9.5 Key Point Summary

Chapter 10 Building a CRUD Application

What You Will Learn

10.1 Create-Read-Update-Delete Application

Defining Capabilities

Implementing Read

Implementing Delete

Implementing Create

Implementing Update

10.2 Using CRUD with a Database

Create Wrapped Libraries

JavaDB Server and Database

Implement FamilyTreeManager

10.3 Concurrency in the FamilyTreeApp Application

Concurrency with Read

Concurrency with Delete and Create

Concurrency with Update

10.4 Key Point Summary

Chapter 11 Dialogs

What You Will Learn

11.1 Dialog Overview

11.2 Standard Dialogs

NotifyDescriptor.Message

NotifyDescriptor.Confirmation

NotifyDescriptor.InputLine

11.3 Customizing Standard Dialogs

11.4 Custom Dialogs

Error Handling

11.5 Custom Login Dialog

11.6 Putting It All Together

RoleExample Application

11.7 Key Point Summary

Chapter 12 Wizards

What You Will Learn

12.1 Wizard Overview

12.2 The Wizard Wizard

A Bare-Bones Wizard

Registering a Wizard’s Action

12.3 Wizard Input

12.4 Wizard Validation

Coordinating Input with Other Panel Wizards

Visual Panel Updates

12.5 Simple Validation API

Prepare to Use the Validation Library

Using the Simple Validation API Library

Using a Custom Validator

12.6 Finishing Early Option

12.7 Asynchronous Validation

12.8 Dynamic Sequence Wizards

Building the Dynamic Step Wizard

The PizzaWizardIterator

IdentifyCustomer Panel

BuildPizza Panel

Create the OrderPizzaAction

12.9 Wizard Instantiating Iterators

12.10 Key Point Summary

Chapter 13 File System

What You Will Learn

13.1 File System API

13.2 The File System API Overview

Exploring the FileSystem API

The Output Window

Create a Folder

Get or Create a File in a Folder

Write to and Read from Files

Rename and Delete Files

File System API Useful Methods

13.3 Monitoring File Changes

FileObject Attributes

Favorites Window

Implementing the FileChangeListener

13.4 Including a File with Your Application

Install a File in a Module

Using the InstalledFileLocator Service

Installing an NBM in NetBeans IDE

13.5 The Layer File and System FileSystem

Layer Files and Configuration

Exploring the System FileSystem

Using the Layer File for Inter-Module Communication

13.6 Key Point Summary

Chapter 14 Data System

What You Will Learn

14.1 Data System API Overview

FileObject, DataObject, and Node

FileObject MIME Type and Lookup

DataObject Factory and DataObject Lookup

Accessing FileObjects from DataObjects

DataObjects and Nodes

Using DataNode and Lookup

14.2 Creating a New File Type

Create a New File Type

Create and Edit a New FTR File

Provide Child Nodes Based on Content

14.3 Working with MultiView Windows

Using the Visual Library

Using JavaFX

14.4 Creating an XML-Based File Type

Create a New XML File Type

Add the XML Text Editor

Add JavaFX Content

14.5 Key Point Summary

Chapter 15 JavaFX Charts

What You Will Learn

15.1 JavaFX Charts and the NetBeans Platform

Application Overview

Working with AbstractTableModel

Working with Swing JTable

Integrating JavaFX Charts

15.2 Introducing JavaFX Charts

JavaFX Chart Overview

15.3 Data Visualization with JavaFX Charts

Line Chart

Scatter Chart

Bar Chart

Area Chart

Stacked Area Chart

Stacked Bar Chart

Bubble Chart

Pie Chart

15.4 Adding Behaviors to JavaFX Charts

Accessing JavaFX Chart Nodes

Adding PieChart Features

15.5 Saving Charts

15.6 Key Point Summary

Chapter 16 Using Web Services

What You Will Learn

16.1 RESTful Web Services and the NetBeans Platform

16.2 Creating RESTful Web Services

Create Database

Create RESTful Web Service Application

RESTful Services from Database

Entity Classes and JavaFX Properties

Test the Web Services

16.3 A Java Application Web Service Client

16.4 RESTful Web Services in a NetBeans Platform Application

Generate RESTful Web Service Clients

Application Overview

Using JavaFX Services

Implementing a RESTful Client Service Provider

JavaFX TableView

JavaFX Chart Module

16.5 Key Point Summary

Chapter 17 Branding, Distribution, and Internationalization

What You Will Learn

17.1 What Is Branding?

Using the Branding Menu

Customizing the Application Title

Customizing the Splash Screen

17.2 Application Updates

Enable Updates of Your Application

Create an Update Center

Dynamically Uninstall a Module (Plugin)

Adding Modules to an Application

Install a Plugin

17.3 Application Distribution

Create an Installer

Installing the Application

Customizing the Installer Images

17.4 Application Internationalization

Internationalization and Java

Internationalization and the NetBeans Platform

Number Formatting

Editing Properties Files

Internationalization and JavaFX

Testing Target Locales

NetBeans Platform Application Internationalization

Customizing Resource Bundles

17.5 Key Point Summary

Index

Foreword

“The NetBeans Platform abides,” is what the Dude in the Big Lebowski might have said, had he known about the NetBeans Platform at all, which he probably did, somehow. Over the years, an incredibly wide range of applications have been built on top of the application framework that is the NetBeans Platform, from air defense systems at NATO to medical applications at Stanford, from military software at Northrop Grumman to software development tools at Oracle. . . and hundreds, probably thousands, of other applications in between.

Even whilst the uninitiated queried the relevance of the NetBeans Platform—at first challenging NetBeans Platform users with “what about the browser?” and then a few years later with “what about mobile devices?”—those using the NetBeans Platform have always known its applicability to the niche in which it fits so well. There will always be a need to put together modular applications that run on the desktop, and cross-platform portability will always be a predominant concern, making Java in combination with the NetBeans Platform a uniquely well-suited environment for serious application developers.

There certainly is something deeply intellectual about working with the NetBeans Platform. Once you’re out of the woods of the initial learning experience, you will discover that you’re not only figuring out how to construct a puzzle out of a disparate set of pieces, but that the pieces themselves are objects that you’re constructing. There’s a meta-level of enjoyment that is a strangely distinct feature of progressing in your understanding of the NetBeans Platform and all it provides.

Moreover, as this book shows throughout, what Swing and JavaFX have in common is that they’re UI toolkits, not application frameworks. Neither of these toolkits provides any infrastructure to connect the pieces together. The NetBeans Platform is an application framework for both toolkits, either separately or together. In fact, as you will quickly learn in this book, the NetBeans Platform is a meeting point that unites the stability and depth of experience that Swing developers bring to the table together with the innovation and the rich content that the JavaFX world provides.

I wish you a lot of fun as you acquire new knowledge with the NetBeans Platform, while learning how to create meaningful applications in Java.

Geertjan Wielenga
NetBeans Product Manager

Preface

The NetBeans Platform provides a rich client framework to build desktop applications in Java and JavaFX. Its design has a certain symmetry and elegance. As you use its many APIs, each new feature learned will become familiar. You’ll learn that this familiarity, coupled with code and design reuse, is a good trait.

Simply stated, the NetBeans Platform will save you years in building and maintaining application framework code. Even the simplest NetBeans Platform application has amazing features. And the platform’s best feature is that as users change and technology and requirements evolve, your application can evolve, too.

Our Approach

This book takes a holistic approach to presenting the NetBeans Platform. We begin with the basic Java architectural tenets of event notification, JavaBeans property support, and UI responsiveness with background tasks. As we build upon these Java basics, we present the NetBeans Platform APIs and features in the context of small sample applications. For example, you will learn how the Nodes API, Action framework, Lookup API, and modular architecture all contribute to the overall design of a CRUD-based database application. Our examples are relatively small and familiar, so you can spend more time learning the NetBeans Platform APIs and not our application business logic.

We wanted to write a book that pulls together many of the excellent NetBeans Platform tutorials and documentation so that you don’t have to search for examples. To that end, we provide you with a lot of sample code including screen shots and step-by-step instructions to help you on your journey.

And finally, this book is not just about the NetBeans Platform. With this text, we want to encourage Swing programmers out there to take the plunge with JavaFX. If you want to leverage the ease and beauty of JavaFX, the NetBeans Platform can help you transition from a Swing UI to a JavaFX UI as you develop applications. In fact, the modular architecture of the NetBeans Platform is a great vehicle for easing into JavaFX. Pinpoint your requirements that fit well with JavaFX and start there. Do your visualization requirements include charts or perhaps 3D? Maybe you’d simply like to have stunning effects, such as linear gradients, drop shadows, or animations. Pick and choose all you want, but know that you’ll still have the underpinnings of a modular, well-designed NetBeans Platform application.

About the Examples

You can download the source for the reference application (described briefly in “FamilyTreeApp Reference Application” on page 10) at https://java.net/projects/nbfamilytreeapp. You can download the remaining examples and projects described in this book at http://www.asgteach.com/NetBeansPlatformBook/.

Notational Conventions

We’ve applied a rather light hand with font conventions in an attempt to keep the page uncluttered. Here are the conventions we follow.

[image:]

Acknowledgments

First, we’d like to thank Geertjan Wielenga, without whose involvement, this book would not have been written. Geertjan provided both technical and philosophical support and introduced us to the vast NetBeans Community.

We’d also like to thank our readers. John Kimball provided much valuable feedback that especially shaped our early chapters. Both Mike Kelly and Stephen Voynar participated in reading early versions of the chapters.

Greg Doench, our editor at Pearson Technology Group, is a good friend and was a valuable part of this project. In fact, Greg has guided us through many book projects. Thank you as well to Elizabeth Ryan at Addison-Wesley, who oversaw the book’s production. Her attention to detail and keen eye kept the project on track with a fast-paced production schedule. Our copy editor, Geneil Breeze, performed an amazing feat in making our manuscript as consistent as possible.

The NetBeans Platform has always had a strong, active community of software developers and technical writers. We’d especially like to thank the many members of the NetBeans Community who influenced and helped us in our NetBeans Platform journey, mostly without realizing it. Certain names appear over and over, contributing technical solutions to a myriad of questions asked by the community at large. We’d like to thank and recognize Jaroslav Tulach, Geertjan Wielenga, Toni Epple, Sven Reimers, Tim Boudreau, Tom Wheeler, Jesse Glick, Timon Veenstra, Sean Phillips, and many others who have contributed to the NetBeans Platform body of knowledge.

We’d like to give a shout out to Sharat Chander, who has given us opportunities to meet and mingle with Java experts at home and internationally.

In the JavaFX world, we’d like to thank those who are constantly sharing their knowledge to further the acceptance of JavaFX. Stephen Chin, Jonathan Giles, Richard Bair, Brian Goetz, Jim Weaver, Gerrit Grunwald, and Carl Dea have all contributed to our understanding of the finer points of JavaFX. And finally, we’d like to thank Adam Bien, who has been a strong advocate and an early adopter of JavaFX for real-world applications.

Gail and Paul Anderson
Anderson Software Group, Inc.
www.asgteach.com

About the Authors

Gail Anderson and Paul Anderson are well-known authors, having published books on a wide range of Java technologies, including Enterprise JavaBean Components, Java Studio Creator Field Guide, and Essential JavaFX. In addition, Paul is the author of JavaFX Programming LiveLessons and Java Reflection LiveLessons training videos. Paul and Gail are frequent speakers at JavaOne and cofounders of the Anderson Software Group, Inc., a leading provider of software training courses in Java and JavaFX.

1. A Tour of the NetBeans Platform

Welcome to JavaFX Rich Client Programming on the NetBeans Platform.

Swing and JavaFX both have sophisticated component libraries for creating rich client applications. While Swing is stable and well-entrenched, the newer JavaFX API offers an improved rich media solution. However, both libraries lack a framework. That is, both lack an out-of-the-box solution with a window management system and modular framework that sophisticated desktop applications require.

This chapter is a big picture description of what the NetBeans Platform offers application developers and an executive summary of what you can expect to learn in the rest of the book. We also show you how JavaFX fits into the world of modular desktop application development.

What You Will Learn

• How Swing and JavaFX fit into the NetBeans Platform programming model.

• The main NetBeans Platform systems and APIs.

• Where to find detailed information in this book about the different NetBeans Platform systems.

• Examples of why you might want to incorporate JavaFX into your NetBeans Platform application.

• Where to find the latest JDK software, NetBeans software, and examples for this book.

1.1 Background Basics

Let’s begin our tour of the NetBeans Platform by looking at the Java technology used by application developers. The NetBeans Platform makes use of fundamental Java architecture principles. Before we show you the NetBeans Platform, Chapter 2 takes a brief tour of some of the background basics Java programmers use to create desktop applications. These include

• JavaBeans and JavaBeans Properties.

• Property Change Events and Listeners.

• Swing basics and common Swing components.

• Swing component events and listeners.

• Logging.

• Background threads and thread safety to keep the UI responsive.

In exploring these topics, we’ll build a small desktop Swing application. Later in the book, we break this application into cohesive modules and port it to the NetBeans Platform.

JavaFX Integration

The NetBeans Platform is built with Swing, a well-established single-threaded GUI system in the Java world. JavaFX is a newer GUI system (also single threaded) that offers significant improvements and features.

JavaFX is based on a scene graph model that is different than models used with Java 2D or Swing. With JavaFX, you define objects in terms of a scene graph hierarchy and specify transforms to position these objects relative to one another. Animation is easy to achieve with transforms and effects.

JavaFX is bundled with the JDK and is accessible in NetBeans Platform applications. The modular nature of the NetBeans Platform lets you pick and choose which parts of your application are best fits for JavaFX.

Chapter 3 introduces JavaFX and provides a first look at this relatively new technology. In Chapter 4, we show you how to build desktop applications with JavaFX. You’ll learn how to use observable collections and create JavaFX properties. We also port the Swing application introduced in Chapter 2 to JavaFX. If you have a background in Swing, this chapter shows you how to migrate to JavaFX.

After you learn how to create a basic NetBeans Platform application in Chapter 5, we’ll show you how to integrate JavaFX content into NetBeans Platform applications. We discuss how to structure modules that contain JavaFX and how to make sure you access JavaFX scene graph structures on the JavaFX Application Thread and Swing components on the Event Dispatch Thread (EDT). These communication strategies are necessary whenever you integrate JavaFX content in NetBeans Platform windows.

We’ll also provide an example application that uses the JavaFX Charts package in Chapter 15 and a reference application (briefly described in this chapter).

1.2 The NetBeans Platform: The Big Picture

Now let’s give you a big-picture description of the NetBeans Platform and describe several of its major systems and APIs. Along with the description of each part, we’ll also tell you where you can find more information on these topics in this book. This, then, is the executive summary. If you’re considering developing an application based on the NetBeans Platform, the following descriptions will give you a general idea of your application’s architecture and what the NetBeans Platform offers.

Module System API

Perhaps the most important feature of the NetBeans Platform is the module system, which provides a way to divide your application into cohesive parts. The NetBeans Platform includes a Runtime Container that manages all of the modules in your application. These modules include those contributed by the NetBeans Platform and ones that you create yourself. The module system helps you build loosely-coupled applications that can evolve without breaking. Specifically, the module system

• Provides a way to break up an application into cohesive parts.

• Lets you specify dependencies between modules so these dependencies are deliberate and non-cyclical. This helps keep your modules loosely coupled.

• Lets you add and remove features without breaking your application.

Modules are basically JAR files, but they include meta information that enables the Runtime Container to manage them. When a module uses classes contained in another module, you must explicitly set a dependency on that module. Furthermore, the packages that contain these classes must be declared public. The Runtime Container makes sure any packages in a dependency declaration are available. In this way, you can break up applications into cohesive parts with explicit contracts between modules. This approach lets you design applications with high cohesion and low coupling.

Chapter 5 discusses the Module System and shows you how to break up a Swing application into modules. You’ll learn how to port the example presented in Chapter 2 and create a modular NetBeans Platform application.

All modules have a life cycle, which you can hook into via annotations. Thus, you can execute code when a module starts, shuts down, and when the window system initializes. See “Module Life Cycle Annotations” on page 242 for the module life cycle hooks and “Using @OnShowing” on page 374 for the window system initialization hook.

And What About OSGi Bundles?

The OSGi Framework is an industry standard supported by the OSGi Alliance and described by JSR-291. The OSGi Framework provides a modular runtime environment. An OSGi bundle is comparable to a NetBeans Platform module. You can add dependencies between OSGi bundles and NetBeans Platform modules. Furthermore, the NetBeans Platform has been extended to support OSGi bundles in the following ways.

• Using the Add New Module wizard, you can create new modules that are OSGi bundles in your NetBeans Platform application, as shown in Figure 1.1.

[image:]

Figure 1.1 Create an OSGi bundle in your NetBeans Platform application

• You can add existing OSGi bundles to your NetBeans Platform application—https://platform.netbeans.org/tutorials/nbm-osgi-quickstart.html (shows how to integrate OSGi bundles into a NetBeans Platform application).

• You can build an OSGi-only application by executing NetBeans module code natively as OSGi bundles—http://wiki.netbeans.org/NetBeansInOSGi.

Lookup API

Module systems let you break up your application into loosely coupled parts. These modules must have, however, a way to communicate with each other. This is where you use the Lookup API, as described in the following two related scenarios.

1. In client modules you look up service providers based on an interface or abstract class. The Lookup API returns one or more service providers. The client module must explicitly declare a dependency on the module that defines the interface/abstract class, but no dependencies are required on any service provider modules. With dynamically installed modules, applications have the ability to acquire new features and evolve without breaking.

2. NetBeans Platform objects (such as windows) implement context sensitivity with Lookups. A Lookup is basically a map where the key is an interface, abstract class, or class. The value is an implementation of the interface, an extension of the super class, or a class object.

When a window puts an object in its Lookup, the window instantly acquires the capability that object implements. Another module can listen for the presence of a particular capability in an exposed Lookup and invoke that capability.

Neither the window nor the interested listener has any direct dependencies. There are only dependencies on the module that defines the interface or class represented by the key.

“Registering a Service Provider” on page 214 shows how to use service providers as described above. “Configuring a Window for Selection” on page 219 shows how a window uses a Lookup. “Context-Aware Actions” on page 428 describes how Lookup dynamically enables and disables actions. Furthermore, “Implement Openable and SavablePersonCapability” on page 500 describes the power of capabilities and module communication. Context sensitivity can also apply to selection management, which we explore in “Creating a Selection History Feature” on page 332.

Window System API

Desktop applications need windows to display components and a GUI to let users interact with the application. The NetBeans Platform Window System lets modules create and manipulate application windows.

The Window System provides default behaviors for windows, which you can optionally limit. The default behaviors include opening, closing, floating, docking, minimizing, maximizing, acquiring focus, and moving to different locations. You can also persist the state of each window between restarts and reset the windows to their default state and position.

The NetBeans IDE has a wizard to create and configure application windows. The NetBeans Platform window extends the TopComponent class. TopComponent itself extends JComponent, and therefore is a Swing container. You can create UI content using the NetBeans IDE Matisse designer. Additionally, you can integrate JavaFX content into a TopComponent with the JFXPanel control. Using FXML markup, you build JavaFX content with the stand-alone Scene Builder application.1

1. You can download Scene Builder for free at www.oracle.com.

The NetBeans Platform also includes a Window Manager that manages all of your application’s windows. You can access this Window Manager for programmatic window control.

We discuss the NetBeans Platform Window System in Chapter 8 and JavaFX integration with a NetBeans Platform application window in Chapter 6.

As an example, Figure 1.2 shows the SmartPhoneDataApp from Chapter 15 with windows both docked and floating (separately or in a group). All floating windows can be moved independently, possibly for displaying in a separate monitor. This application uses the JavaFX Charts API and a Swing JTable together.

[image:]

Figure 1.2 Docking and floating windows

File System API

The File System is part of the basic runtime system of a NetBeans Platform application and provides a hierarchical view of configuration information. The File System is made up of folders, files, and data and lets you access a file system in the traditional sense. That is, you can create, read, update, and delete files and folders within the user’s local file system. Each application also stores configuration information in a special file system called the System File System. Here you find folders with names like “Actions” and “Menu Bar” that in turn contain subfolders like “Edit” or “File.” Each of these folders in turn contains files that describe objects through attributes.

Any module can modify the System FileSystem and contribute data or configuration information to the application with a module configuration file, known as the Layer file. When an application runs, all module configuration data is merged into a single configuration.

Importantly, this means that the File System provides a mechanism by which modules can communicate with each other. The File System complements the Lookup API discussed earlier for inter-module communication. That is, one module can register folders and files in a module configuration file that other modules can access without creating dependencies.

We discuss the File System API in Chapter 13, which includes file-oriented operations, installing and accessing files in modules, and accessing and modifying artifacts in the application’s configuration. We show you how to include the Favorites window in a NetBeans Platform application to access the local file system within the UI. “Using the Layer File for Inter-Module Communication” on page 665 uses the File System and Layer file for communication between modules in a NetBeans Platform application.

Nodes and Explorer Views

The Nodes API and Explorer and Property Sheet API go together. In a NetBeans Platform application, nodes provide a model for your business objects. Nodes wrap the business object and have a Lookup. Furthermore, nodes have a context menu with actions that users can invoke.

The Explorer Manager is a controller class that manages a node hierarchy. Explorer Views are Swing-based UI components that display a node hierarchy by accessing an Explorer Manager. You add Explorer Views to NetBeans windows. The NetBeans Platform provides several different Explorer Views with different looks (tree, table-based, icon, property-based, master-detail). Explorer Views are interchangeable because they use the same node-based model.

Finally, because nodes and Explorer Managers both implement selection management, selected nodes and their wrapped objects become available to other modules transparently and without defining dependencies on the modules with Explorer Views. Architecturally, these APIs support the NetBeans Platform concepts of loosely-coupled modules.

We show you how to use nodes, Explorer Views and Property Sheets, and the Explorer Manager in Chapter 7 (“Nodes and Explorer Views”).

But Wait . . . There’s More

The APIs and systems we’ve described in the previous section constitute the central parts of all NetBeans Platform applications. But there are additional modules and APIs in the NetBeans Platform.

Action Framework

An application performs work with menu, toolbar, or keyboard shortcut selections. Chapter 9 introduces the NetBeans Platform Action framework. Because the Action framework registers actions through configuration (with annotations), you’ll learn how to easily add and remove actions to an application. The framework also lets you dynamically enable and disable actions and customize behavior based on selectable context.

CRUD-Based Applications

Chapter 10 explores the concepts of capabilities within the Action framework to create context-aware actions. The example builds a CRUD-based application with a database for persistence. We apply the concepts introduced in Chapter 2 to keep the UI responsive using background threads.

Dialogs and Wizards

Chapter 11 explores the NetBeans Platform Dialogs API that lets you create, display, and obtain input from dialogs. You can build custom dialogs with Swing or even integrate JavaFX in a dialog panel.

The Wizard framework lets you create multi-step processes within your application that users invoke to build application artifacts. The NetBeans IDE uses the Wizard framework for many of its tasks, such as creating projects, windows, files, RESTful web clients, and so forth. You can use JavaFX with visual wizard panels, as well. Chapter 12 discusses the Wizard framework.

Data System API

The Data System API is an important bridge between nodes and files. The Data System lets you integrate new file types into your application. Chapter 14 shows you how to create a new file type, use the NetBeans Platform text editor in an application, and integrate the NetBeans Platform XML editor. We also discuss creating editors with MultiView elements, using both the Visual Library API and JavaFX to build synchronized views in a MultiView editor.

JavaFX Charts

Chapter 15 shows how to build a NetBeans Platform application with JavaFX Charts to visualize data. Long missing from Swing-based applications, JavaFX provides an integrated Chart package with many supported chart types, as shown in Figure 1.3. This example application shows you how to print a TopComponent window, save a chart window (or any window with JavaFX content) to a PNG format file, use binding to keep JavaFX content synchronized, and add special effects (such as animating a pie slice).

[image:]

Figure 1.3 SmartPhoneData application with JavaFX Charts

We apply the design concepts discussed earlier to make the application highly modularized. You can remove any of the Chart modules or easily add modules.

Using Web Services

Chapter 16 explores creating a RESTful web service client within a NetBeans Platform application. Additionally, the application has a JavaFX-based UI for its windows and uses the JavaFX concurrency framework for background services. This example application applies the concepts presented in Chapter 4 (JavaFX background threads), Chapter 6 (JavaFX integration), and Chapter 15 (JavaFX Charts) to create a web service client application.

Branding, Distribution, and Update

Branding helps you customize your application. Chapter 17 shows you how to configure your application’s title, name, and splash screen (or have no splash screen at all). Chapter 17 also discusses how to distribute your application and make updates available to users. Importantly, “Enable Updates of Your Application” on page 857 shows how to integrate the NetBeans Platform Plugin UI into your application. “Create an Update Center” on page 858 explains how to build an update center. We also show you how to dynamically add and remove plugins (modules) in a running application. You can customize any of the text in a NetBeans Platform module (see “Branding and Resource Bundles” on page 854).

Internationalization and Localization

The NetBeans Platform supports internationalization and localization of NetBeans Platform applications. To do this, you isolate target text using the @Messages annotation and provide translated text in Properties files. Chapter 17 describes these steps and shows you how to localize the NetBeans Platform-provided UI components. Figure 1.4 shows a Portuguese version of an application with localized content and a localized menu bar and menu items from the NetBeans Platform.

[image:]

Figure 1.4 SmartPhoneDataApp with localized NetBeans Platform modules

1.3 FamilyTreeApp Reference Application

Throughout this book, you’ll see examples illustrating various NetBeans Platform features. As we researched how to create a book about the NetBeans Platform, we built an example application. This reference application lets you manage a Family Tree by documenting relationships among family members through life events such as marriage, birth, divorce, and death. We embraced the Homer and Marge Simpson family of the popular TV show for our example and created a CRUD-based database application called FamilyTreeApp.

You can find the source for this application at https://java.net/projects/nbfamilytreeapp. This project illustrates many of the features of a modular NetBeans Platform application. The examples we present in this book, however, have been greatly simplified from this application to concentrate on specific NetBeans Platform features.

Nevertheless, this reference application provided many of the insights we gained, especially integrating JavaFX into NetBeans Platform applications. We wanted to explore not only best practices for designing modular desktop applications with the NetBeans Platform, but how to best incorporate JavaFX for a great look and added functionality. We encourage our readers to access the NetBeans Platform FamilyTreeApp to explore a well-developed example.

FamilyTreeApp and JavaFX

Let’s show you a few NetBeans Platform / JavaFX features illustrated in this application. Figure 1.5 shows the application running. The left window is an Explorer View providing a list of Persons and their Events. The right window is a similar Explorer View, providing a list of only Persons. Both of these windows use the NetBeans Platform Explorer Views and Nodes API. (Chapter 7 describes this important topic.) You can select nodes (Person or Event objects), expand nodes, and right click to see a context menu. A double click opens the selected object for editing.

[image:]

Figure 1.5 FamilyTreeApp

The FamilyTreeApp includes a Welcome window, which is a great place to incorporate JavaFX. Here, we use a radial gradient for the background, put drop shadows around the question marks, and initiate a fade animation when the user clicks anywhere in the window’s background.

The Person Timeline window (shown in the lower portion in Figure 1.5 and in Figure 1.6) displays the selected person’s events chronologically. Each event fades in sequentially using animation. The Timeline window displays changes through the powerful NetBeans Platform selection mechanism and updates a person’s event details with property change listeners.

[image:]

Figure 1.6 FamilyTreeApp—Person Timeline window

We also installed roll-over animations to scale up events as the user passes over an event with the mouse. (The last event is scaled up in Figure 1.6). This technique is not just eye candy. The scale-up animation is useful during presentations to highlight an artifact within a window.

We’ve used JavaFX to build the Person Editor, shown in Figure 1.7, creating the JavaFX content using Scene Builder (see “Scene Builder and FXML” on page 155). We added a linear gradient to the background, a drop shadow on the image, and JavaFX controls for textfields, radio buttons, and the text area.

[image:]

Figure 1.7 Using JavaFX with the Person Editor

Similarly, Figure 1.8 shows the Event Editor, which uses JavaFX for the UI controls. Here, we also used Scene Builder to create the UI.

[image:]

Figure 1.8 Using JavaFX with the Event Editor

The NetBeans Platform provides a powerful and flexible Wizard framework that lets you create multi-step processes for building application artifacts (projects, data objects, special files). You can implement each visual Wizard panel with JavaFX, as shown in Figure 1.9. The panel (with JavaFX content) is incorporated into the Swing-based Wizard panel. (Chapter 12 covers wizards.)

[image:]

Figure 1.9 Using JavaFX with a New Event wizard

You can similarly use JavaFX with the NetBeans Platform dialogs or incorporate the JavaFX File Chooser, Color Picker, or Date Picker controls into your application. Figure 1.10 shows the JavaFX File Chooser control, which implements the FamilyTreeApp Add Picture action.

[image:]

Figure 1.10 Using the JavaFX File Chooser control

JavaFX 3D Integration Possibilities

You can incorporate JavaFX 3D content into NetBeans Platform applications. As JavaFX evolves and graphics processing units (GPUs) become faster and more advanced, 3D will no longer be a specialized visualization technique but a common look in many applications.

You use JavaFX 3D by creating a JavaFX Scene with Depth Buffering capabilities (also called Z-buffering) and a perspective camera. This sets up the underlying hardware pipelines to transform pixels into the proper perspective. As an example, Figure 1.11 shows several JavaFX (2D) shapes with different Z values (in 3D, the Z value provides depth to an otherwise two-dimensional XY coordinate system). This is a floating window from a NetBeans Platform application. (The source for this example is available in the book’s download bundle.) The shapes in Figure 1.11 overlap, but you can’t really discern their relative depth.

[image:]

Figure 1.11 JavaFX provides 3D capabilities

However, as you rotate the enclosing group, as shown in the second image, you see their relative depth. This rendering is only possible with a perspective camera and 3D capabilities.

Of course, these are 2D shapes being manipulated within a 3D space. A more compelling example shows actual 3D shapes, such Box, Cylinder, and Sphere primitives. Figure 1.12 shows a second window (and module) added to the ThreeDee example application with a rotating cube built with the Box primitive. Although we don’t specifically cover 3D in this book, you can still leverage all of the best of JavaFX capabilities in your NetBeans Platform applications, including 3D.

[image:]

Figure 1.12 The JavaFX 3D Box primitive

1.4 Documentation

While you’re developing NetBeans Platform applications, you’ll want access to the NetBeans Platform API documentation. The APIs are available online at http://bits.netbeans.org/dev/javadoc/, but you can also install them in the IDE, as follows.

1. From the NetBeans IDE top-level menu, select Tools | PlugIns.

2. NetBeans displays the PlugIns dialog. Select the Available PlugIns tab.

3. In the list of PlugIns, select NetBeans API Documentation, as shown in Figure 1.13, and click Install.

[image:]

Figure 1.13 Installing the NetBeans Platform API documentation

4. NetBeans runs the installer, which will download the selected Plugin and install it.

After restarting the IDE, you’ll have access to the NetBeans API Documentation. For example, you can select a Java class in the NetBeans Platform API, right click, and select Show Javadoc to display the relevant documentation in your browser.

1.5 How to Get Java and the NetBeans Platform Software

Download the latest JDK at http://www.oracle.com/technetwork/java/javase/downloads/index.html. Note that the JDK includes JavaFX.

When you download the NetBeans IDE software, you automatically receive all of the modules you’ll need to build a NetBeans Platform application. Download the NetBeans IDE at https://netbeans.org/downloads/. If you select a language other than English, the localized property files for the officially supported languages are included. Also, note that you can add or remove software bundles later using the IDE’s Plugin Manager (Tools | Plugins).

1.6 Example Software Bundle

You can download the source for the reference application (described above in “FamilyTreeApp Reference Application” on page 10) at https://java.net/projects/nbfamilytreeapp. You can download the remaining examples and projects described in this book at http://www.asgteach.com/NetBeansPlatformBook/.

1.7 Key Point Summary

The NetBeans Platform offers a rich desktop programming environment that supports building complex, modular applications.

We’ve described the main features of the NetBeans Platform application framework and provided you with a road map to begin your exploration of this framework. We hope you enjoy your journey.

2. Background Basics

The Swing graphical user interface, JavaBeans, and JavaBean properties are all central to using the NetBeans Platform. You manipulate Swing components and any business objects that you create with listeners, events, and event handlers. Broadly speaking, these concepts are vital in having objects in an application communicate with each other. This chapter describes techniques for this type of communication, so that when you see them later in a NetBeans Platform application, you’ll understand their purpose and structure.

We begin with JavaBeans, JavaBean properties, and property change events. In building an application, you typically define business objects (or model objects) with JavaBeans and access their data with JavaBean properties. Methods that manipulate business objects make sure these application objects remain consistent with your business logic. We’ll also briefly show you lambda expressions, an important Java 8 language feature that we use in our code examples.

After introducing JavaBeans, properties, and property change handlers, we’ll show examples that give you a broad overview of Swing as a graphical user interface. We’ll explore examples that handle user input events and keep track of changes to model data. This ensures that the view (graphical user interface) and model are always consistent. We’ll also introduce the standard Java Logging facility.

We finish this background chapter by discussing thread safety and threading techniques as they relate to Swing-based applications. Because Swing uses a single-threaded model, dedicated background threads should perform long-running tasks within Swing applications. In this case, thread safety is crucial. We’ll discuss making objects thread safe and how to launch background threads in Swing.

What You Will Learn

• Create JavaBeans and JavaBean properties.

• Use bound properties and property change listeners.

• Replace anonymous inner classes with lambda expressions.

• Understand Swing basics.

• Use common Swing components.

• Create UI forms with the Swing form designer.

• Incorporate Swing component events and listeners into your application.

• Use the Java logging facility.

• Understand concurrency in Swing.

2.1 JavaBeans and Properties

Let’s begin our review of background basics with JavaBeans. A JavaBean is a Java class that encapsulates data as class fields. You access the class data through methods that set values (called setters) and get or read values (called getters). When the methods that access the JavaBean class fields follow well-defined naming conventions we call these fields properties.

We begin with class Person,1 which has fields that hold information for each Person object we create. The naming convention for property names includes an initial lowercase letter, no special symbols, and camel casing for obvious compound words. Listing 2.1 shows class Person with its private fields and constructors. Note that each Person object has an incremented id value.

1. After we fully describe class Person, we’ll show you how to build a Java application with the NetBeans IDE that uses Person.

Listing 2.1 Person.java

Click here to view code image

package com.asgteach.familytree.model;

import java.io.Serializable;
import java.util.Objects;
public final class Person implements Serializable {

private final long id;
 private String firstname;
 private String middlename;
 private String lastname;
 private String suffix;
 private Person.Gender gender;
 private String notes;

private static long count = 0;

public enum Gender {
 MALE, FEMALE, UNKNOWN
 }

public Person() {
 this("", "", Gender.UNKNOWN);
 }

public Person(String first, String last, Person.Gender gender) {
 this.firstname = first;
 this.middlename = "";
 this.lastname = last;
 this.suffix = "";
 this.gender = gender;
 this.id = count++;
 }

public Person(Person person) {
 this.firstname = person.getFirstname();
 this.middlename = person.getMiddlename();
 this.lastname = person.getLastname();
 this.suffix = person.getSuffix();
 this.gender = person.getGender();
 this.notes = person.getNotes();
 this.id = person.getId();
 }
}

Class Person has three constructors: a constructor that creates default values for the fields, a constructor for specifying firstname, lastname, and gender, and a copy constructor that creates a new Person object that is a copy of its parameter.

Property fields are private with getters and setters to manipulate them. We’ll create getters and setters for each field, except for the read-only id field, which needs only a getter.

Generating Getters and Setters
Once you define private fields within a class, NetBeans (and other IDEs) can generate setters and/or getters for you, since these methods follow well-known naming conventions.

To be recognized as a property method, each getter method name includes the prefix “get” followed by the property name with an initial capital letter. A getter’s return type is the same as the field’s type. A boolean property typically uses the prefix “is,” although you can optionally use the prefix “get.” For example, here is a getter for boolean property manager.

Click here to view code image

private boolean manager = true;
 . . .
 // getter for manager
 public boolean isManager() {
 return manager;
 }

Properties and Getters
Not all getters necessarily correspond to a field with the same name. For example, suppose a Person class has private integer age. We can write a boolean getter called isTeenager() as follows.
Click here to view code image
private int age;

// getter for age
 public int getAge() {
 return age;
 }
 . . .
 public boolean isTeenager() {
 return (age >= 13 && age <= 19) ? true : false;
 }
The class includes boolean (read-only) property teenager , but the class does not have a field called teenager. Instead, the getter returns a boolean computed from the age property.

Setters include the prefix “set,” return void, and include a single parameter whose type matches the property’s type. Listing 2.2 shows the getter and setter methods for class Person.

Listing 2.2 Person Getters and Setters

Click here to view code image

public String getNotes() {
 return notes;
 }
 public void setNotes(String notes) {
 this.notes = notes;
 }

public String getFirstname() {
 return firstname;
 }

public void setFirstname(String firstname) {
 this.firstname = firstname;
 }

public Person.Gender getGender() {
 return gender;
 }

public void setGender(Person.Gender gender) {
 this.gender = gender;
 }

public String getLastname() {
 return lastname;
 }

public void setLastname(String lastname) {
 this.lastname = lastname;
 }

public String getMiddlename() {
 return middlename;
 }

public void setMiddlename(String middlename) {
 this.middlename = middlename;
 }

public String getSuffix() {
 return suffix;
 }

public void setSuffix(String suffix) {
 this.suffix = suffix;
 }

public long getId() {
 return id;
 }

There are three additional methods you should override for a JavaBean class: toString(), equals(), and hashCode(). These methods all have default implementations provided by Object, so you’ll get the defaults if you don’t provide your own implementations.

Always override toString() to provide a more meaningful value than the default. (The default value is the class name, followed by “@” and the unsigned hexadecimal value of the hash code. For example, without overriding toString(), the Person class toString() method returns

Click here to view code image

com.asgteach.familytree.model.Person@123

which is not very useful.)

Methods equals() and hashCode() are crucial for correct behavior of your JavaBean in determining equality. You should always override both methods. Method hashCode() is used in Java collection classes that need to compute hash codes. Both hashCode() and equals() should rely on the same fields for their implementations.

NetBeans and other IDEs can also generate implementations for equals() and hashCode(). You specify which field(s) participate in the implementation. For class Person, we use field id. Two Person objects are equal if their id fields are equal; none of the other fields affect equality. This means you can have two Person objects with the same firstname and lastname fields that will be unequal if their ids are not equal. Similarly, two Person objects with equal ids will be equal even if their lastname fields (for example) are not equal.

Correct equals() and hashCode() Generation
If you use an IDE to generate code for these methods, make sure you specify the same fields for equals() code generation as you do for hashCode() code generation.

Listing 2.3 shows methods equals(), hashCode(), and toString() for class Person.

Listing 2.3 Methods equals(), hashCode(), and toString() for Class Person

Click here to view code image

// Class Person
 @Override
 public int hashCode() {
 int hash = 3;
 hash = 97 * hash + Objects.hashCode(this.id);
 return hash;
 }

@Override
 public boolean equals(Object obj) {
 if (obj == null) {
 return false;
 }
 if (getClass() != obj.getClass()) {
 return false;
 }
 final Person other = (Person) obj;
 return Objects.equals(this.id, other.id);
 }

@Override
 public String toString() {
 StringBuilder sb = new StringBuilder();
 if (!firstname.isEmpty()) {
 sb.append(firstname);
 }
 if (!middlename.isEmpty()) {
 sb.append(" ").append(middlename);
 }
 if (!lastname.isEmpty()) {
 sb.append(" ").append(lastname);
 }
 if (!suffix.isEmpty()) {
 sb.append(" ").append(suffix);
 }
 return sb.toString();
 }

Creating a Java Application

We now have a simple JavaBean object with properties. Let’s create a Java application that uses class Person. Use the following steps.2

2. In this chapter we’re providing background information. We introduce creating a NetBeans Platform application in Chapter 5.

1. From the NetBeans IDE top-level menu bar, select File | New Project. NetBeans displays the Choose Project dialog. Under Categories select Java and under Projects select Java Application, as shown in Figure 2.1. Click Next.

[image:]

Figure 2.1 Creating a new Java Application with the NetBeans IDE

2. NetBeans displays the Name and Location dialog. For Project Name, specify PersonAppBasic. For Project Location, click Browse and navigate to the desired project location. Accept the defaults on the remaining fields and click Finish, as shown in Figure 2.2.

[image:]

Figure 2.2 New Java Application: specifying the Name and Location

NetBeans builds a Java application project for you and brings up PersonAppBasic.java in the Java editor. Next, we’ll add the Person class to the project and replace the code in the empty main method.

Add Person.java to Project PersonAppBasic

Follow these steps to create class Person.java.

1. Expand project PersonAppBasic, right click on Source Packages, and select New | Java Class... as shown in Figure 2.3.

[image:]

Figure 2.3 Creating a new Java Class

2. NetBeans displays the Name and Location dialog. For Class Name specify Person and for Package specify com.asgteach.familytree.model, as shown in Figure 2.4. Click Finish.

[image:]

Figure 2.4 Creating class Person

NetBeans creates class Person.java in package com.asgteach.familytree.model, as shown in the Projects view in Figure 2.5. Insert the Java code for class Person (using copy/paste or edit), as indicated in Listing 2.1 through Listing 2.3.

[image:]

Figure 2.5 Projects view for project PersonAppBasic

Program PersonAppBasic

Listing 2.4 shows program PersonAppBasic with two Person objects. After creating the objects homer and marge, we modify their properties (middlename and suffix) using appropriate setters. Because the Person class overrides toString(), we can show useful output with print statements. We can also compare Person objects with equals().

Listing 2.4 Program PersonAppBasic

Click here to view code image

public class PersonAppBasic {
 public static void main(String[] args) {

Person homer = new Person("Homer", "Simpson", Gender.MALE);
 Person marge = new Person("Marge", "Simpson", Gender.FEMALE);

homer.setMiddlename("Chester");
 marge.setMiddlename("Louise");
 homer.setSuffix("Junior");

System.out.println(homer);
 System.out.println(marge);

if (homer.equals(marge)) {
 System.out.println(homer + " is equal to " + marge);
 } else {
 System.out.println(homer + " is not equal to " + marge);
 }
 }

}

Output:
Homer Chester Simpson Junior
Marge Louise Simpson
Homer Chester Simpson Junior is not equal to Marge Louise Simpson

Bound Properties

Bound properties use the well-known Publish-Subscribe pattern to let interested parties know when property values change. This technique is useful for communicating changes among participants in an application.

We will show two approaches for notifying interested parties (listeners) of changes. The first approach is a fine-grained notification. Each setter fires a property change event to its listeners when invoked, since a setter changes its property’s value. The second approach uses a more coarse-grained notification, where interested listeners respond to overall changes to an object, rather than specific property changes. We’ll discuss the second approach in the next section.

Here are the modifications to class Person to create bound properties.

1. Add property change support using convenience class PropertyChangeSupport from package java.beans.

2. Provide methods addPropertyChangeListener() and removePropertyChangeListener() so that interested classes can add and remove themselves as listeners.

3. Provide convenience method getPropertyChangeSupport() to register a Person as the event source for property change events. (Method getPropertyChangeSupport() enables safe registration without an unsafe “leaking this” reference.)

4. Create public static Strings for each bound property so that publishers and subscribers have a consistent way to identify property names.

5. Modify the setters of bound properties to fire a property change event to all registered listeners.

Listing 2.5 shows the modifications (in bold) to class Person to create bound properties for firstname, middlename, lastname, suffix, notes, and gender.

The first step creates a PropertyChangeSupport reference and sets it to null. Next, we create static final Strings for each property name so publishers and subscribers (listeners) can access these Strings instead of the property names directly. (This also lets you use your IDE’s code completion mechanism when accessing the Strings.) Lastly, the getPropertyChangeSupport() method creates a PropertyChangeSupport object the first time it’s invoked. This method is used to add and remove listeners and fire property change events in the setters.

PropertyChangeSupport Thread Safety and Behavior
A PropertyChangeSupport instance is thread safe. (We discuss thread safety and PropertyChangeSupport in more detail. See “Concurrency and Thread Safety” on page 68.) Furthermore, PropertyChangeSupport does not fire a property change event if the property’s old value and new value are the same and non-null.

Listing 2.5 Adding Bound Properties to class Person

Click here to view code image

package com.asgteach.familytree.model;

import java.beans.PropertyChangeListener;
import java.beans.PropertyChangeSupport;
import java.io.Serializable;
import java.util.Objects;

public final class Person implements Serializable {

 private final long id;
 private String firstname;
 private String middlename;
 private String lastname;
 private String suffix;
 private Person.Gender gender;
 private String notes;
 private PropertyChangeSupport propChangeSupport = null;

 // Property names
 public static final String PROP_FIRST = "firstname";
 public static final String PROP_MIDDLE = "middlename";
 public static final String PROP_LAST = "lastname";
 public static final String PROP_SUFFIX = "suffix";
 public static final String PROP_GENDER = "gender";
 public static final String PROP_NOTES = "notes";

private static long count = 0;

public enum Gender {
 MALE, FEMALE, UNKNOWN
 }

. . . constructors unchanged . . .

// Convenience method to make sure object is fully constructed
 // before passing to PropertyChangeSupport constructor
 // (see "Leaking 'this'" on page 32).

 private PropertyChangeSupport getPropertyChangeSupport() {
 if (this.propChangeSupport == null) {
 this.propChangeSupport = new PropertyChangeSupport(this);
 }
 return this.propChangeSupport;
 }
 public void addPropertyChangeListener(PropertyChangeListener listener) {
 getPropertyChangeSupport().addPropertyChangeListener(listener);
 }

 public void removePropertyChangeListener(PropertyChangeListener listener) {
 getPropertyChangeSupport().removePropertyChangeListener(listener);
 }

. . . getters unchanged . . .

 public void setNotes(String notes) {
 String oldNotes = this.notes;
 this.notes = notes;
 // oldNotes is oldValue and notes is newValue
 getPropertyChangeSupport().firePropertyChange(
 PROP_NOTES, oldNotes, notes);
 }

 public void setFirstname(String firstname) {
 String oldFirst = this.firstname;
 this.firstname = firstname;
 getPropertyChangeSupport().firePropertyChange(
 PROP_FIRST, oldFirst, firstname);
 }

 public void setGender(Person.Gender gender) {
 Person.Gender oldGender = this.gender;
 this.gender = gender;
 getPropertyChangeSupport().firePropertyChange(
 PROP_GENDER, oldGender, gender);
 }

 public void setLastname(String lastname) {
 String oldLast = this.lastname;
 this.lastname = lastname;
 getPropertyChangeSupport().firePropertyChange(
 PROP_LAST, oldLast, lastname);
 }

 public void setMiddlename(String middlename) {
 String oldMiddle = this.middlename;
 this.middlename = middlename;
 getPropertyChangeSupport().firePropertyChange(
 PROP_MIDDLE, oldMiddle, middlename);
 }

 public void setSuffix(String suffix) {
 String oldSuffix = this.suffix;
 this.suffix = suffix;
 getPropertyChangeSupport().firePropertyChange(
 PROP_SUFFIX, oldSuffix, suffix);
 }

. . . unchanged code omitted . . .
}

Leaking ‘this’
Don’t do this:
Click here to view code image
private PropertyChangeSupport propChangeSupport =
 new PropertyChangeSupport(this);

Such a construct allows the this reference to escape when it is not yet properly constructed, creating an object that isn’t thread safe.

Project PersonAppBound uses property change support, as shown in Listing 2.6. After creating two Person objects, the program supplies a property change listener and event handler. This property change listener accesses the property name and the event source (the object that fired the property change event). You can also access the property change event’s old value with getOldValue() and new value with getNewValue(). (See “Lambda Expressions” on page 38 to see how this listener can be simplified.)

Listing 2.6 Program PersonAppBound

Click here to view code image

public class PersonAppBound {

public static void main(String[] args) {
 Person homer = new Person("Homer", "Simpson", Gender.MALE);
 Person marge = new Person("Marge", "Simpson", Gender.FEMALE);

// create a property change listener
 final PropertyChangeListener pcl = new PropertyChangeListener() {
 @Override
 public void propertyChange(PropertyChangeEvent evt) {
 System.out.println("Property " + evt.getPropertyName()
 + " changed for " + evt.getSource());
 }
 };

homer.addPropertyChangeListener(pcl);
 marge.addPropertyChangeListener(pcl);

homer.setMiddlename("Chester");
 marge.setMiddlename("Louise");
 homer.setSuffix("Junior");
 homer.setLastname("Jones");

System.out.println(homer);
 System.out.println(marge);
 // old and new value same, no property change event generated
 homer.setMiddlename("Chester");

homer.removePropertyChangeListener(pcl);
 marge.removePropertyChangeListener(pcl);
 }

}

Output:
Property middlename changed for Homer Chester Simpson
Property middlename changed for Marge Louise Simpson
Property suffix changed for Homer Chester Simpson Junior
Property lastname changed for Homer Chester Jones Junior
Homer Chester Jones Junior
Marge Louise Simpson

Optionally, you can also supply methods to add and remove listeners that are only interested in changes to a specific property, as shown in Listing 2.7. These methods support single-property listeners. When using this add/remove listener pair, listeners will only be notified when the specified property is changed.

Listing 2.7 Single Property Listener Support

Click here to view code image

public void addPropertyChangeListener(String propertyName,
 PropertyChangeListener listener) {
 getPropertyChangeSupport().addPropertyChangeListener(
 propertyName, listener);
 }

public void removePropertyChangeListener(String propertyName,
 PropertyChangeListener listener) {
 getPropertyChangeSupport().removePropertyChangeListener(
 propertyName, listener);
 }

Coarse-Grained Notification for JavaBean Objects

CRUD is an acronym for Create, Read, Update, Delete and refers to database-type applications with some sort of persistent store. In a typical CRUD application, you may not care if a particular property has changed. Instead, you may be interested when an object is created, updated, or deleted. In this case, you need some type of manager class that keeps track of your objects. This manager class may simply store objects in memory or it may write objects to a persistent store.

Let’s design a manager class that uses property change support to notify listeners when Person objects are updated, added, or removed. We call this manager class FamilyTreeManager. This is an example of the coarse-grained notification approach we mentioned previously. We’ll retain the code support for a Person’s bound properties. However, changes to a Person’s properties will not generate property change events because we do not register any listeners.

Listing 2.8 shows the FamilyTreeManager class. We could use a database to store Person objects here, but to simplify our example we use a hash map instead.3 The FamilyTreeManager has property change support similar to the property change support you’ve seen in class Person. FamilyTreeManager provides methods for adding, updating, and deleting Person objects. Each of these actions modifies the underlying collection, stores and updates copies of the Person object, and notifies listeners via property change support when changes occur. Note that firePropertyChange() uses null for the old value and Person for the new value as arguments. This makes sure the property change fires, since the old and new values are different. Public static Strings define property names. Both addPerson() and updatePerson() make local copies of the Person argument before modifying the map. A local copy ensures the stored Person object can be modified only through the FamilyTreeManager’s modifier methods.

3. We show a database implementation in Chapter 10 (see “Using CRUD with a Database” on page 501).

FamilyTreeManager provides method getAllPeople() to return a copy of all Person objects stored (as a list), without any kind of sorted ordering.

FamilyTreeManager is a singleton, so users of this class obtain a FamilyTreeManager object through the static factory method getInstance().

Singletons
A singleton class guarantees only one instance of that class object exists. This is typically achieved with a static factory method as shown in Listing 2.8. However, you’ll discover the NetBeans Platform provides a better way to obtain singleton objects (see “Global Lookup” on page 218).

Listing 2.8 FamilyTreeManager

Click here to view code image

public class FamilyTreeManager {

private final Map<Long, Person> personMap = new HashMap<>();
 private PropertyChangeSupport propChangeSupport = null;

// FamilyTreeManager property change names
 public static final String PROP_PERSON_DESTROYED = "removePerson";
 public static final String PROP_PERSON_ADDED = "addPerson";
 public static final String PROP_PERSON_UPDATED = "updatePerson";

private static FamilyTreeManager instance = null;

protected FamilyTreeManager() {
 // Exists only to defeat instantiation.
 }

public static FamilyTreeManager getInstance() {
 if (instance == null) {
 instance = new FamilyTreeManager();
 instance.propChangeSupport = new PropertyChangeSupport(instance);
 }
 return instance;
 }

public void addPropertyChangeListener(PropertyChangeListener listener) {
 this.propChangeSupport.addPropertyChangeListener(listener);
 }

public void removePropertyChangeListener(PropertyChangeListener listener) {
 this.propChangeSupport.removePropertyChangeListener(listener);
 }

public void addPerson(Person p) {
 Person person = new Person(p);
 personMap.put(person.getId(), person);
 this.propChangeSupport.firePropertyChange(
 PROP_PERSON_ADDED, null, person);
 }

public void updatePerson(Person p) {
 Person person = new Person(p);
 personMap.put(person.getId(), person);
 this.propChangeSupport.firePropertyChange(
 PROP_PERSON_UPDATED, null, person);
 }

public void deletePerson(Person p) {
 Person person = personMap.remove(p.getId());
 if (person != null) {
 this.propChangeSupport.firePropertyChange(
 PROP_PERSON_DESTROYED, null, person);
 }
 }

public List<Person> getAllPeople() {
 List<Person> copyList = new ArrayList<>();
 for (Person p : personMap.values()) {
 // Make a copy of Person
 copyList.add(new Person(p));
 }
 return copyList;
 }
}

Unlike class Person, FamilyTreeManager does not need a private method getPropertyChangeSupport() (see Listing 2.5 on page 30). Instead, FamilyTreeManager uses a static factory method and can therefore supply the fully constructed instance object to the PropertyChangeSupport constructor.

Program PersonAppCoarse uses the FamilyTreeManager, as shown in Listing 2.9. This program defines a property change listener with a propertyChange() event handler. Next, it instantiates a FamilyTreeManager object and adds the previously defined property change listener. The program creates Person objects, adds them to the FamilyTreeManager store, and modifies and updates the Person objects. It then deletes one of the Person objects (marge) and displays the modified collection.

The output shows the results of the propertyChange() event handler calls, as well as the output from the getAllPeople() method.

Listing 2.9 Program PersonAppCoarse

Click here to view code image

public class PersonAppCoarse {

public static void main(String[] args) {
 // Define a property change listener
 final PropertyChangeListener pcl = new PropertyChangeListener() {
 @Override
 public void propertyChange(PropertyChangeEvent evt) {
 System.out.println(evt.getPropertyName()
 + " for " + evt.getNewValue());
 }
 };

FamilyTreeManager ftm = FamilyTreeManager.getInstance();
 ftm.addPropertyChangeListener(pcl);
 Person homer = new Person("Homer", "Simpson", Person.Gender.MALE);
 Person marge = new Person("Marge", "Simpson", Person.Gender.FEMALE);
 ftm.addPerson(homer);
 ftm.addPerson(marge);

System.out.println(ftm.getAllPeople());

homer.setMiddlename("Chester");
 homer.setSuffix("Junior");
 ftm.updatePerson(homer);

marge.setMiddlename("Louise");
 marge.setLastname("Bouvier-Simpson");

ftm.updatePerson(marge);
 System.out.println(ftm.getAllPeople());

ftm.deletePerson(marge);
 System.out.println(ftm.getAllPeople());
 // delete marge again
 ftm.deletePerson(marge);
 ftm.removePropertyChangeListener(pcl);
 }

}

Output:
addPerson for Homer Simpson
addPerson for Marge Simpson
[Homer Simpson, Marge Simpson]
updatePerson for Homer Chester Simpson Junior
updatePerson for Marge Louise Bouvier-Simpson
[Homer Chester Simpson Junior, Marge Louise Bouvier-Simpson]
removePerson for Marge Louise Bouvier-Simpson
[Homer Chester Simpson Junior]

In summary, this program has the following features:

• The overridden methods toString(), hashCode(), and equals() in class Person let you use Person objects in hash maps and display their data with print statements.

• FamilyTreeManager implements property change support for operations that modify its underlying store.

• FamilyTreeManager is implemented as a singleton.

• FamilyTreeManager makes sure that Person objects stored in its collection are only updated with addPerson(), updatePerson(), and deletePerson(). It also copies the Person collection before returning objects to the caller.

• The application defines a property change listener and propertyChange() event handler and adds this listener to the FamilyTreeManager.

2.2 Lambda Expressions

Java 8 has acquired a major language innovation: lambda expressions. Because lambdas are significant, let’s take a quick detour and show you how lambda expressions help reduce boilerplate code.

What is a lambda? A lambda is an anonymous method. Like a method, it has a parameter list, return type, and function body. However, unlike “regular” methods, the compiler can infer many of these characteristics so you don’t need to completely specify them. You can use lambdas in place of an anonymous inner class when that class has a single abstract method. Interfaces with a single abstract method are called functional interfaces. Let’s look at a few examples.

Lambda Expressions with Functional Interfaces

The program shown in Listing 2.9 on page 36 implements a property change listener as an anonymous inner class. Interface PropertyChangeListener has one abstract method propertyChange() that returns void and has one parameter, PropertyChangeEvent. To override this method with an anonymous inner class, you use

Click here to view code image

 // Define a property change listener
 final PropertyChangeListener pcl = new PropertyChangeListener() {
 @Override
 public void propertyChange(PropertyChangeEvent evt) {
 System.out.println(evt.getPropertyName()
 + " for " + evt.getNewValue());
 }
 };

This anonymous inner class can be converted to a lambda expression as follows.

Click here to view code image

final PropertyChangeListener pcl = (PropertyChangeEvent evt) -> {
 System.out.println(evt.getPropertyName()
 + " for " + evt.getNewValue());
 };

Because PropertyChangeListener is a functional interface, the compiler can infer that the lambda expression defines void method propertyChange() with parameter type PropertyChangeEvent. You can further reduce code by omitting the parameter type and, if the method body is a single line of code, the surrounding braces. In fact, you can reduce this code even further when you use the lambda expression with the FamilyTreeManager addPropertyChangeListener() method, as follows.

Click here to view code image

ftm.addPropertyChangeListener(evt ->
 System.out.println(evt.getPropertyName()
 + " for " + evt.getNewValue()));

If you only need to print the PropertyChangeEvent argument (instead of using getPropertyName() and getNewValue()), you can use a method reference. In this case, the compiler supplies the PropertyChangeEvent argument to System.out.println() for you.

Click here to view code image

 // method reference
 ftm.addPropertyChangeListener(System.out::println);

Another common functional interface is Runnable. The following pre-Java 8 code instantiates a Swing form (class PersonJFrame), wraps it in a Runnable, and invokes the code on the Swing thread with SwingUtilities.invokeLater(). (We discuss SwingUtilities in more detail in “Swing Basics” on page 40.)

Click here to view code image

/* Create and display the form */
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 PersonJFrame.newInstance().setVisible(true);
 }
 });

With lambda expressions, this code reduces to the following.

Click here to view code image

/* Create and display the form */
 SwingUtilities.invokeLater(() -> {
 PersonJFrame.newInstance().setVisible(true);
 });

Since method run() has no parameters, the empty parentheses act as a placeholder. The braces in this example are optional, since the method body is a single statement.

In general, we use lambda expressions in our code examples instead of anonymous inner classes.

Functional Data Structures

Java 8 also has streams or functional data structures. These are data structures with functional interfaces. Let’s develop an example so when you see streams and lambdas in our code examples, you’ll recognize them.

The following example is FamilyTreeManager method getAllPeople() as shown previously in Listing 2.8 on page 35. This method uses a for loop (an external iterator) to copy each element in the map and add it to an array list.

Click here to view code image

 public List<Person> getAllPeople() {
 List<Person> copyList = new ArrayList<>();
 for (Person p : personMap.values()) {
 // Make a copy of Person
 copyList.add(new Person(p));
 }
 return copyList;
 }

The Java 8 Stream interface forEach() method provides an internal iterator. The verbose form explicitly instantiates an anonymous inner class with functional interface Consumer, as shown here with the getAllPeople() method.

Click here to view code image

 public List<Person> getAllPeople() {
 List<Person> copyList = new ArrayList<>();
 personMap.values().forEach(new Consumer<Person>() {
 public void accept(Person p) {
 copyList.add(new Person(p));
 }
 });
 return copyList;
 }

Because Consumer is a functional interface, we can replace the anonymous inner class with a lambda expression, as follows.

Click here to view code image

 public List<Person> getAllPeople() {
 List<Person> copyList = new ArrayList<>();
 // Use lambda expression
 personMap.values().forEach(p -> copyList.add(new Person(p)));
 return copyList;
 }

Functional data structures (streams) let you use a declarative style of programming. When you want to apply multiple operations on a stream of data, your code becomes more clear. This style also lends itself to easier parallelization.

Our example uses only method forEach() with lambdas, which in itself lets us write more concise code. Other methods (which you can chain together) include filter() (you provide a criterion with a lambda expression), map() (transform an element to a different type), findFirst(), or reduce() (you provide a criterion).

2.3 Swing Basics

Let’s continue our exploration of background basics by examining the Swing graphical user interface (GUI). Swing is part of the Java standard and provides a set of light-weight components based on the JavaBeans model. Knowledge of Swing is important because the NetBeans Platform is based on the Swing GUI. In this section, we’ll introduce these topics.

• Swing threading model

• Java Logging facility

• Swing components and the GUI Form Designer

• Loose-coupling when responding to changes in the model and view

These topics help developers create GUI-based programs that are correct, maintainable, and easily ported to the NetBeans Platform.

We’ll explore each of these concepts with a Swing application called PersonSwingApp. Let’s begin by porting a version of the Person application to Swing; that is, we’ll use the same Person and FamilyTreeManager classes and provide a GUI to display and edit Person objects. We’ll use the NetBeans GUI Builder to compose the look of the application.

Our program will initialize several Person objects and display these in a Swing tree component called JTree. Swing components require a model to hold data that is displayed. Here we’ll use the default model for JTree, called DefaultMutableTreeNode (a JTree model that lets you make modifications to the nodes in the tree).

A JTree provides a selection mechanism, either single selection or multi-selection. We’ll use single selection and display the selected node (Person) in an adjacent panel that lets users edit fields. After editing is complete, the user clicks an Update button to save the changes. (That is, the edited Person object is saved to an in-memory store.)

Figure 2.6 shows this application running. On the left you see a JTree component with its top node People and five child nodes. The node for Marge Simpson is selected and Marge Simpson’s properties are displayed in the right-hand panel. This editing panel uses text field components (JTextField) for the firstname, middlename, lastname, and suffix Person properties. A radio button group includes radio buttons (JRadioButton) to select gender. A text area (JTextArea) holds property notes and text labels are displayed with JLabel components.

[image:]

Figure 2.6 PersonSwingApp running

Below this editing area is an Update button (JButton) that the user clicks to update a selected Person object.

Creating a GUI-Form Project

Let’s begin by creating a project with the NetBeans IDE. Follow these steps to create a project and a JFrame (Swing) container.

1. From the NetBeans IDE top-level menu bar, select File | New Project. NetBeans displays the Choose Project dialog. Under Categories select Java and under Projects select Java Application. Click Next.

2. NetBeans displays the Name and Location dialog. For Project Name, specify PersonSwingApp. For Project Location, click Browse and navigate to the desired project location. Uncheck Create Main Class as shown in Figure 2.7 and click Finish.

[image:]

Figure 2.7 New Java Application with Swing

NetBeans creates an empty Java Application project. You now must add a JFrame container to your project in order to build a Swing-based GUI.

Add a JFrame Container

Follow these steps to add a JFrame container to project PersonSwingApp.

1. From the Projects view window, expand project node PersonSwingApp.

2. Right click on Source Packages and select New | JFrame Form... from the context menu, as shown in Figure 2.8.

[image:]

Figure 2.8 Creating a new JFrame Form

3. NetBeans displays a Name and Location dialog. For Class Name, specify PersonJFrame and for Package, specify personswingapp, as shown in Figure 2.9. Click Finish.

[image:]

Figure 2.9 JFrame Name and Location

NetBeans creates class PersonJFrame.java and brings up the form in the GUI Builder.

Swing Form Designer

The NetBeans IDE Swing Form Designer is an easy way to design the look of your application. You drag and drop components from the Swing component palette onto the form designer. You can align multiple components using right-justified, center alignment, or left-justified. Alternatively, you can align them using column-wise or row-wise placement.

Figure 2.10 shows the entire form with the components placed. Note that the text field opposite label First is selected (highlighted on the form). This in turn highlights the text field in the Component Navigator window (firstTextField as shown on the left in Figure 2.11) and brings up the component’s Property Editor (as shown on the right in Figure 2.11) .

[image:]

Figure 2.10 NetBeans Form Designer

[image:]

Figure 2.11 Form Navigator and Component Property Editor

The Swing Component palette is shown in Figure 2.12.

[image:]

Figure 2.12 Swing Component Palette

The form designer generates Java code that instantiates the components and configures their properties. It also generates code to lay out the components according to your placement. You cannot edit the generated code, but you can configure component properties by invoking setters after the component is initialized. You can also provide custom code with the Property Editor.

Listing 2.10 on page 46 shows a portion of the generated code that instantiates and initializes the Swing components for our application.

Listing 2.10 Form Designer Generated Code

Click here to view code image

// invoked from the constructor
 private void initComponents() {

genderButtonGroup = new javax.swing.ButtonGroup();
 jScrollPane1 = new javax.swing.JScrollPane();
 personTree = new JTree(top);
 jPanel1 = new javax.swing.JPanel();

jLabel4 = new javax.swing.JLabel();
 jLabel5 = new javax.swing.JLabel();
 firstTextField = new javax.swing.JTextField();
 middleTextField = new javax.swing.JTextField();
 lastTextField = new javax.swing.JTextField();
 suffixTextField = new javax.swing.JTextField();
 maleButton = new javax.swing.JRadioButton();
 femaleButton = new javax.swing.JRadioButton();
 unknownButton = new javax.swing.JRadioButton();
 jScrollPane2 = new javax.swing.JScrollPane();
 notesTextArea = new javax.swing.JTextArea();
 updateButton = new javax.swing.JButton();

. . . more code to instantiate components and configure layout . . .
 }

Each component placed on the form requires its own variable, as shown in Listing 2.11. The Property Editor lets you specify an alternate name for the variable. Like the code that initializes the components, you cannot edit these component variable declarations directly. Here, we supply meaningful names to all variables that we subsequently access programmatically. We didn’t bother to rename the JLabel components, since they hold text that doesn’t change and we don’t write code to access them.

Listing 2.11 Swing Component Variable Declarations

Click here to view code image

// Variables declaration - do not modify
 private javax.swing.JRadioButton femaleButton;
 private javax.swing.JTextField firstTextField;
 private javax.swing.ButtonGroup genderButtonGroup;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 . . . code omitted . . .
 private javax.swing.JTextField suffixTextField;
 private javax.swing.JRadioButton unknownButton;
 private javax.swing.JButton updateButton;
 // End of variables declaration

Working with the NetBeans GUI Form Designer
For more information on working with the NetBeans GUI Form Designer, see this tutorial on the NetBeans IDE web site:
https://netbeans.org/kb/docs/java/quickstart-gui.html

Program Structure

Figure 2.13 shows the project structure in the NetBeans IDE. Classes FamilyTreeManager and Person are located in package com.asgteach.familytree.model and class PersonJFrame (the main application class) is located in package personswingapp.

[image:]

Figure 2.13 PersonSwingApp project structure

Before we start throwing methods and variables at you, let’s look at the overall program structure of our main class, PersonJFrame, as shown in Listing 2.12. This class extends JFrame, which is a top-level Swing window.

Next, we define fields or class variables. Variable top is a DefaultMutableTreeNode, which is the root of the JTree model data. Variable ftm is the FamilyTreeManager object (which we initialize with the static factory method getInstance()). Field thePerson contains the currently selected Person. Finally, field logger defines a Logger object (see “Java Logging Facility” on page 51).

The main() method calls factory method newInstance(), which invokes the private constructor. This creates the JFrame window and makes it visible (see “Single-Threaded Model” on page 49 for more on invokeLater()). The Swing Form Designer generates code in initComponents() as well as field declarations for components. This code is not editable in the IDE. Any customized code for the Swing components must follow method initComponents() in the constructor.

We also provide the following three listener classes for program event handling: ActionListener, to respond to Update button clicks, PropertyChangeListener for property change events, and TreeSelectionListener for tree selection changes. We describe these listeners in detail later in this chapter.

Listing 2.12 Overall Program Structure

Click here to view code image

public class PersonJFrame extends javax.swing.JFrame {

 // Class variables
 private final DefaultMutableTreeNode top =
 new DefaultMutableTreeNode("People");
 private final FamilyTreeManager ftm = FamilyTreeManager.getInstance();
 private Person thePerson = null;
 private static final Logger logger =
 Logger.getLogger(PersonJFrame.class.getName());

 // private constructor
 private PersonJFrame() { . . .}

 // factory method
 public static PersonJFrame newInstance() { . . . }

 // initialize components (generated)
 private void initComponents() {
 . . .
 }
 public static void main(String args[]) {
 /* Create and display the form */
 SwingUtilities.invokeLater(()->
 PersonJFrame.newInstance().setVisible(true));
 }

 // Define listeners
 // ActionListener for Update button
 private final ActionListener updateListener = (ActionEvent e) -> { . . . };

// PropertyChangeListener for FamilyTreeManager
 private final PropertyChangeListener familyTreeListener =
 (PropertyChangeEvent evt) -> { . . . };

// TreeSelectionListener for JTree
 private final TreeSelectionListener treeSelectionListener =
 (TreeSelectionEvent e) -> { . . . };

 // Variables declaration - do not modify
 // (generated)
 private javax.swing.JRadioButton femaleButton;
 private javax.swing.JTextField firstTextField;
 . . .
}

Let’s now examine the code in main() and explain why we start up our application in a separate thread.

Single-Threaded Model

Swing component objects are not thread safe. Thread safety is achieved by performing all Swing-related operations on a single thread, called the Event Dispatch Thread or EDT. As it turns out, most GUI frameworks are single threaded because it’s difficult to implement components efficiently while accounting for thread safety issues. Therefore, all GUI operations must be performed in the EDT. Normally, this is not an issue; events occur and are handled in the EDT. Components, in turn, are accessed and updated in the EDT. You only have to worry about executing within the EDT if, during execution of a background thread, you need to access the GUI. We’ll cover this scenario later in the chapter.

To help you work with the EDT, Swing has utility method invokeLater(), which guarantees that its run() method executes in the EDT. We use invokeLater() to set up our Swing application from main(), as shown in Listing 2.13. (We can use a lambda expression here since Runnable is a functional interface.)

Listing 2.13 Swing Application main()

Click here to view code image

public static void main(String args[]) {

 /* Create and display the form */
 SwingUtilities.invokeLater(()->
 PersonJFrame.newInstance().setVisible(true));
 }

Note that the initial thread, that is, the thread that creates and begins executing your application, is not the EDT. The above lambda expression instantiates the PersonJFrame object with the static newInstance() method and makes the window frame visible. We use the newInstance() factory method here so that later we can configure listeners in a thread-safe way.

Listing 2.14 shows the code for the constructor and methods configureListeners() and newInstance(). Method configureListeners() is invoked by newInstance() after the constructor returns.

Listing 2.14 Constructing PersonJFrame

Click here to view code image

 private PersonJFrame() { // constructor
 // Configure Logger
 . . . code omitted . . .

buildData();
 initComponents(); // generated by the form builder
 personTree.getSelectionModel().setSelectionMode(
 TreeSelectionModel.SINGLE_TREE_SELECTION);
 createNodes(top);
 }

 private void configureListeners() {
 // Listeners are registered after constructor returns
 // for thread safety
 ftm.addPropertyChangeListener(familyTreeListener);
 personTree.addTreeSelectionListener(treeSelectionListener);
 updateButton.addActionListener(updateListener);
 }

 public static PersonJFrame newInstance() {
 PersonJFrame pjf = new PersonJFrame();
 pjf.configureListeners();
 return pjf;
 }

Take another look at the PersonJFrame constructor (Listing 2.14). The constructor invokes method buildData() to initialize our Person objects, and initComponents(), a generated method that initializes the Swing components. After initComponents() completes we configure the Swing component JTree. This provides the tree view in our application and is discussed in more detail later (see “JTree” on page 58).

Listing 2.15 shows the code for buildData(). (We also log the collection returned by FamilyTreeManager’s getAllPeople().)

Listing 2.15 Method buildData()

Click here to view code image

// Add Person objects to FamilyTreeManager
 private void buildData() {
 ftm.addPerson(new Person("Homer", "Simpson", Person.Gender.MALE));
 ftm.addPerson(new Person("Marge", "Simpson", Person.Gender.FEMALE));
 ftm.addPerson(new Person("Bart", "Simpson", Person.Gender.MALE));
 ftm.addPerson(new Person("Lisa", "Simpson", Person.Gender.FEMALE));
 ftm.addPerson(new Person("Maggie", "Simpson", Person.Gender.FEMALE));
 logger.log(Level.FINE, ftm.getAllPeople().toString());
 }

Java Logging Facility

Listing 2.12 on page 48 instantiates a Logger object in the PersonJFrame.java class as follows.

Click here to view code image

private static final Logger logger =
 Logger.getLogger(PersonJFrame.class.getName());

A logging facility, especially in large, complex applications, is helpful in generating messages with relevant information during debugging and testing phases. At later stages of program development, you can remove this output since it often clutters the console and is probably not meaningful to the user. By assigning different levels to logging output, you can control which log records appear on the console. Furthermore, you can direct logging to a file, filter records, and format log records.

Table 2.1 shows the logging levels, from highest to lowest. By default the standard logging facility sends all log messages of level INFO and higher to the console. Thus, any debugging-type log messages should be at level CONFIG or lower.

[image:]

TABLE 2.1 Java Logging Levels

To see log messages at levels lower than the standard threshold of INFO, you need to set both the logging level and the log handler level. You can also add additional handlers. For example, the logging API provides a FileHandler that sends log messages to a file.

Our example application configures two handlers in the constructor, as shown in Listing 2.16. One handler (handler) directs log messages of FINE or higher to the console. A second handler (fileHandler) writes log messages to a default file (javaN.log in the user’s home directory).

Listing 2.16 Java Logging and Handler Configuration

Click here to view code image

public class PersonJFrame extends javax.swing.JFrame {

. . . other class variables . . .
 private PersonJFrame() {
 // Configure Logger: set its level to FINE
 // (default threshold level is CONFIG)
 logger.setLevel(Level.FINE);
 // Define a handler to display messages on the console
 // Set level to FINE
 Handler handler = new ConsoleHandler();
 handler.setLevel(Level.FINE);
 logger.addHandler(handler);

 // Define a second handler to write messages to a file
 try {
 FileHandler fileHandler = new FileHandler();
 // records sent to file javaN.log in user's home directory
 fileHandler.setLevel(Level.FINE);
 logger.addHandler(fileHandler);
 logger.log(Level.FINE, "Created File Handler");
 } catch (IOException | SecurityException ex) {
 logger.log(Level.SEVERE, "Couldn't create FileHandler", ex);
 }
 . . . code omitted . . .
 }
}

You can also build log messages with parameters. Here {0} is a placeholder for variable node in this log message.

Click here to view code image

logger.log(Level.FINE, "Node updated: {0}", node);

We have several log statements throughout our program. As Listing 2.16 shows, log messages are also useful in catch handlers. (Catch handler log messages will typically be level SEVERE or WARNING.)

Listing 2.17 shows messages that appear in the File Handler’s log file for our application. All levels here are FINE and the message text is bold for clarity.

Listing 2.17 Log File Output (XML format)

Click here to view code image

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!DOCTYPE log SYSTEM "logger.dtd">
<log>
<record>
 <date>2013-05-18T09:29:16</date>
 <millis>1368894556261</millis>
 <sequence>0</sequence>
 <logger>personswingapp.PersonJFrame</logger>
 <level>FINE</level>
 <class>personswingapp.PersonJFrame</class>
 <method><init></method>
 <thread>13</thread>
 <message>Created File Handler</message>
</record>
<record>
 <date>2013-05-18T09:29:16</date>
 <millis>1368894556362</millis>
 <sequence>1</sequence>
 <logger>personswingapp.PersonJFrame</logger>
 <level>FINE</level>
 <class>personswingapp.PersonJFrame</class>
 <method>buildData</method>
 <thread>13</thread>
 <message>
 [Homer Simpson, Bart Simpson, Marge Simpson, Lisa Simpson, Maggie Simpson]
 </message>
</record>
<record>
 <date>2013-05-18T09:29:26</date>
 <millis>1368894566117</millis>
 <sequence>2</sequence>
 <logger>personswingapp.PersonJFrame</logger>
 <level>FINE</level>
 <class>personswingapp.PersonJFrame$4</class>
 <method>valueChanged</method>
 <thread>13</thread>
 <message>Bart Simpson selected</message>
</record>
<record>
 <date>2013-05-18T09:29:31</date>
 <millis>1368894571564</millis>
 <sequence>3</sequence>
 <logger>personswingapp.PersonJFrame</logger>
 <level>FINE</level>
 <class>personswingapp.PersonJFrame$3</class>
 <method>propertyChange</method>
 <thread>13</thread>
 <message>Node updated: Bart Seymour Simpson</message>
</record>
</log>

Listing 2.18 shows the same messages as they appear on the console (again, each message text is bold).

Listing 2.18 Logging Messages on the Console

Click here to view code image

run:
May 18, 2013 9:29:16 AM personswingapp.PersonJFrame <init>
FINE: Created File Handler
May 18, 2013 9:29:16 AM personswingapp.PersonJFrame buildData
FINE: [Homer Simpson, Bart Simpson, Marge Simpson, Lisa Simpson, Maggie Simp-
son]
May 18, 2013 9:29:26 AM personswingapp.PersonJFrame$4 valueChanged
FINE: Bart Simpson selected
May 18, 2013 9:29:31 AM personswingapp.PersonJFrame$3 propertyChange
FINE: Node updated: Bart Seymour Simpson

Using Swing Components

A discussion of the Swing components and all their APIs would fill an entire book. Our goal here is to familiarize you with some frequently used components (specifically, those that appear in our example program). Swing also has layout components that handle the arrangement of components within a window. The advantage of using the Swing Form Designer, however, is that you can use a drag-and-drop editor to arrange your components.

Figure 2.14 shows a partial class hierarchy of Swing components. Note that most components descend from JComponent, which includes many methods that control appearance, such as font, background color, foreground color, border, and opacity.

[image:]

Figure 2.14 Swing Component Hierarchy (Partial)

Our program uses JLabel components to hold static text and JTextField components to edit text.

JLabel

JLabel holds text that users don’t edit, although you can change the text programmatically. Here’s the code that defines a JLabel that displays “First.”

Click here to view code image

javax.swing.JLabel jLabel1 = new javax.swing.JLabel();
 jLabel1.setText("First");

JLabel components can be more nuanced than the above code indicates. You can use both images (icons) and text with labels, format label text with HTML, and configure their appearance with JComponent methods setFont(), setForeground(), setBorder(), setOpaque(), and setBackground(). You can also connect a label with another component (such as a JTextField) that lets the associated component affect the label’s appearance. For this purpose, use method setLabelFor() to associate a label with another component.

We use JLabel to display the static text in our Swing application, as shown in Figure 2.6 on page 42.

JTextField

JTextField lets users edit text within a single-line field. Use method setText() to write a text field’s text and getText() to read its contents. If the user hits the Enter or Return key, JTextField generates an Action event. The underlying model for JTextField is Document, which lets you listen for insert, delete, and replace edit operations. For our current example, however, we don’t respond to any events and simply use getText() and setText() to keep our model data synchronized with the text fields.

Here’s the code for the text field that holds the Person property firstname and sets its value from a Person object (thePerson).

Click here to view code image

JTextField firstTextField = new javax.swing.JTextField();
 firstTextField.setText(thePerson.getFirstname());

And here’s the code to update a Person object (thePerson) from the text field.

Click here to view code image

thePerson.setFirstname(firstTextField.getText());

JTextArea

While JTextField is useful for single-line input, JTextArea lets you provide multi-line input. We use JTextArea to edit the Person notes property and let the user provide multi-line input. Similar to JTextField, use setText() to write the text and getText() to read the text area’s text.

Click here to view code image

JTextArea notesTextArea = new javax.swing.JTextArea();

// set the text in the text area
 notesTextArea.setText(thePerson.getNotes());

// get the text from the text area
 thePerson.setNotes(notesTextArea.getText());

JRadioButton

JRadioButtons provide an on/off toggle. Radio buttons placed together in a radio button group provide mutually exclusive behavior. This means only one radio button can be selected at once. When you select a different radio button, the other radio buttons in the same group automatically turn “off.” We use this mutually exclusive behavior to determine a person’s gender. The value can be only one of male, female, or unknown.

Here’s the code that defines the three gender radio buttons, the gender radio button group, and the code that initializes them. The ButtonGroup component provides mutually exclusive behavior for the radio button components.

Click here to view code image

// Define the ButtonGroup
 ButtonGroup genderButtonGroup = new javax.swing.ButtonGroup();

// Define the three JRadioButtons
 JRadioButton maleButton = new javax.swing.JRadioButton();
 JRadioButton femaleButton = new javax.swing.JRadioButton();
 JRadioButton unknownButton = new javax.swing.JRadioButton();

// Add the radiobuttons to the ButtonGroup
 genderButtonGroup.add(maleButton);
 maleButton.setText("Male");

genderButtonGroup.add(femaleButton);
 femaleButton.setText("Female");

genderButtonGroup.add(unknownButton);
 unknownButton.setText("Unknown");

The setSelected() and isSelected() methods set and query a JRadioButton. Here, we set the radio buttons from a Person object’s gender property.

Click here to view code image

if (thePerson.getGender().equals(Gender.MALE)) {
 maleButton.setSelected(true);
 } else if (thePerson.getGender().equals(Gender.FEMALE)) {
 femaleButton.setSelected(true);
 } else if (thePerson.getGender().equals(Gender.UNKNOWN)) {
 unknownButton.setSelected(true);
 }

JButton

JButton components provide a graphic that is “pushed” when the user clicks the button. You create buttons with a text label or an icon label (image) or both. Buttons can be programmatically enabled and disabled, and you typically define an action event handler to process button clicks. Here is how we use the Update button in our example program.

Click here to view code image

// Create a JButton with text "Update"
 JButton updateButton = new javax.swing.JButton("Update");

// we begin with the update button disabled
 updateButton.setEnabled(false);

// later we enable the button
 updateButton.setEnabled(true);

// define an action event handler that is invoked
 // when the button is clicked
 updateButton.addActionListener((ActionEvent e) -> {
 // do something
 });

JTree

The JTree component displays hierarchical information. JTree provides graphical handles that let you expand tree nodes as well as compress them. The tree displays data from a model. We use Swing’s default model in our example program, which consists of a root or top node and children nodes. Children nodes can themselves have child nodes, or they can be “leaf” nodes (no children).

The hierarchy in our example is very simple. The top node is a String (“People”) with five child nodes, which are all leaf nodes. Each child node is a Person object. The JTree uses an object’s toString() method for display. Here’s the code to construct the JTree model and the JTree.

Click here to view code image

// Define the top node
 DefaultMutableTreeNode top =
 new DefaultMutableTreeNode("People");

// Create the JTree with node top
 JTree personTree = new JTree(top);

// Set the selection model to single (that is, not multi-select)
 personTree.getSelectionModel().setSelectionMode(
 TreeSelectionModel.SINGLE_TREE_SELECTION);

// Build the JTree model using FamilyTreeManager getAllPeople()
 ftm.getAllPeople().forEach(p -> top.add(new DefaultMutableTreeNode(p)));

Here’s how to access the selected node.

Click here to view code image

// Get the selected node
 DefaultMutableTreeNode node = (DefaultMutableTreeNode)
 personTree.getLastSelectedPathComponent();

You can access the object in a node with method getUserObject(). Here we check to make sure the selected node is a “leaf” node, since all the Person objects (in our example) are stored in leaf nodes.

Click here to view code image

if (node == null) {
 // no node is selected
 } else if (node.isLeaf()) {
 // it's a child node, so we know it's a Person object
 // get the node's user object
 Person person = (Person) node.getUserObject();
 // do something with person
 } else {
 // it's not a leaf node, so it must be the top node
 }

Event Handlers and Loose Coupling

Now that we’ve described our model data and view (the Swing components), let’s examine how the program interacts. Based on user interactions, we have three different kinds of events and three event handlers to process these events.

Our program begins with the JTree component collapsed (showing only the top node People) and the Update button disabled. When the user expands the JTree, the rest of the nodes appear showing Person objects for Homer, Marge, Bart, Lisa, and Maggie. The user can now select one of these nodes or even the top node. Figure 2.15 shows the sequence of a collapsed JTree component, an expanded JTree component, and finally the JTree component with node Bart Simpson selected.

[image:]

Figure 2.15 JTree component behavior

When the user selects a Person node, the Update button is enabled and the Person’s data appear in the Edit area. More precisely, when the user selects a node, the TreeSelection event handler is invoked, as shown in Listing 2.19.

In the event handler lambda expression, we get the selected node and if it’s null, disable the Update button and return.

If the node is a leaf node, the user has selected a Person object (such as Bart Simpson in Figure 2.15). We grab the selected Person object and invoke method editPerson(), which in turn calls updateForm().

Method updateForm() copies the Person properties to the appropriate text fields, radio buttons, and text area for editing. The method also enables the Update button. Now the user can edit and update the Person object.

Listing 2.19 Handling JTree Selection Changes

Click here to view code image

 // TreeSelectionListener for JTree
 private final TreeSelectionListener treeSelectionListener =
 (TreeSelectionEvent e) -> {
 DefaultMutableTreeNode node = (DefaultMutableTreeNode)
 personTree.getLastSelectedPathComponent();
 if (node == null) {
 updateButton.setEnabled(false);
 return;
 }
 if (node.isLeaf()) {
 Person person = (Person) node.getUserObject();
 logger.log(Level.FINE, "{0} selected", person);
 editPerson(person);
 } else {
 updateButton.setEnabled(false);
 }
 };

 private void editPerson(Person person) {
 thePerson = person;
 updateForm();
 }

 private void updateForm() {
 firstTextField.setText(thePerson.getFirstname());
 middleTextField.setText(thePerson.getMiddlename());
 lastTextField.setText(thePerson.getLastname());
 suffixTextField.setText(thePerson.getSuffix());
 if (thePerson.getGender().equals(Gender.MALE)) {
 maleButton.setSelected(true);
 } else if (thePerson.getGender().equals(Gender.FEMALE)) {
 femaleButton.setSelected(true);
 } else if (thePerson.getGender().equals(Gender.UNKNOWN)) {
 unknownButton.setSelected(true);
 }
 notesTextArea.setText(thePerson.getNotes());
 updateButton.setEnabled(true);
 }

Figure 2.16 shows the application as the user edits Bart Simpson fields. Note that the Update button is enabled and several fields have been modified.

[image:]

Figure 2.16 Editing Person Bart Simpson

When the user clicks the Update button, the button’s action event handler is invoked. Listing 2.20 shows this method. We gather all of the information in the text fields, radio buttons, and notes text area and update our Person object. We then use the FamilyTreeManager to update the Person object in the FamilyTreeManager store.

Listing 2.20 Handle Update Button

Click here to view code image

 // ActionListener for Update button
 private final ActionListener updateListener = (ActionEvent e) -> {
 updateModel();
 ftm.updatePerson(thePerson);
 };

 // Get all the data from the components
 private void updateModel() {
 thePerson.setFirstname(firstTextField.getText());
 thePerson.setMiddlename(middleTextField.getText());
 thePerson.setLastname(lastTextField.getText());
 thePerson.setSuffix(suffixTextField.getText());
 if (maleButton.isSelected()) {
 thePerson.setGender(Gender.MALE);
 } else if (femaleButton.isSelected()) {
 thePerson.setGender(Gender.FEMALE);
 } else if (unknownButton.isSelected()) {
 thePerson.setGender(Gender.UNKNOWN);
 }
 thePerson.setNotes(notesTextArea.getText());
 }

After the Update button’s action handler finishes, the edited Person (in this case Bart Simpson) is saved in the FamilyTreeManager store. As a result, the JTree component updates its view and shows the modified Bart Simpson, as shown in Figure 2.17.

[image:]

Figure 2.17 Updating the JTree model

How the JTree correctly displays the underlying Person model is perhaps the most important architectural take-away from this chapter. The JTree component updates its model because we’ve defined a property change listener that listens for changes to the FamilyTreeManager. While we could have put the JTree model update code inside the Update button’s event handler (see Listing 2.20), this would be wrong! Why? Because the JTree model should not be coupled with the Update button’s code. The JTree model’s only job is to make itself consistent with the FamilyTreeManager’s Person objects. How the Person objects are modified (via an Update button or from some other as yet undefined action) should not be relevant.

Indeed, as you begin using the NetBeans Platform, you’ll see that it’s possible for one (independently executing) module to modify model data and a separate module to reflect these changes. The editing code is not aware of the display code and vice versa. This makes the modules loosely coupled. Making modifications to the editing code (for example, replacing the Update button with a Save menu item) should not affect the code that displays the data. Thus, property change events are a powerful mechanism for communicating among otherwise non-connected objects.

Here, both the Update button and the JTree model are dependent on the FamilyTreeManager, but neither of these is dependent on each other.

Listing 2.21 shows the FamilyTreeManager property change listener. The method gets the updated Person object from the PropertyChangeEvent and searches the JTree model to find the target node. Method setUserObject() updates the JTree model and method nodeChanged() lets the JTree model know which node has been updated so that the JTree component can refresh itself.

Not only does the Update button event handler have no code to update the JTree model, the property change listener in Listing 2.21 has no code that deals with any of the components (text fields, radio buttons, and text area) that provide the Update button with new property values for Person. As you can see, event handlers help keep your code loosely coupled.

Listing 2.21 PropertyChangeListener for FamilyTreeManager

Click here to view code image

 private final PropertyChangeListener familyTreeListener =
 (PropertyChangeEvent evt) -> {
 if (evt.getNewValue() != null && evt.getPropertyName().equals(
 FamilyTreeManager.PROP_PERSON_UPDATED)) {
 Person person = (Person) evt.getNewValue();
 DefaultTreeModel model = (DefaultTreeModel) personTree.getModel();
 for (int i = 0; i < model.getChildCount(top); i++) {
 DefaultMutableTreeNode node = (DefaultMutableTreeNode)
 model.getChild(top, i);
 if (person.equals(node.getUserObject())) {
 node.setUserObject(person);
 // Let the model know we made a change
 model.nodeChanged(node);
 logger.log(Level.FINE, "Node updated: {0}", node);
 break;
 }
 }
 }
 };

2.4 Improving the User Experience

The application we showed you in the previous section is very basic. When the user selects different Person nodes, the Update button is enabled, even if the user has not actually made edits to the Person. Furthermore, if the user selects the top node (“People”), the previously selected Person still appears in the Editing panel.

In this section, we’ll make improvements to the user interface and in the process discover more useful features of the Swing GUI and its components. We’ll make the following changes to the application.

• Enable the Update button only after the user makes at least one edit to the Person displayed in the Editing panel. (Why update the Person if you haven’t made any edits?)

• After the user clicks the Update button to save changes, disable the Update button (until the user makes further edits).

• If the user selects a different Person in the JTree component, disable the Update button (even if changes have been made to the currently displayed Person).

• If the user selects the top node, clear the Editing form and disable the Update button. This provides the expected feedback to the user.

Figure 2.18 shows the Editing panel when the user first selects a Person from the JTree component (here the user selects Bart Simpson, shown on the left side). The Update button is initially disabled, but after the user makes the first edit, the Update button becomes enabled (as shown on the right side).

[image:]

Figure 2.18 The Update button is enabled after the first user edit

These improvements require that we listen for changes in the text fields and the text area as soon as the first keystroke is detected. We don’t care what edits the user makes, only that a change has occurred.

We must also listen for selection changes in the radio buttons and enable the Update button when a change occurs.

To do all this requires additional event handlers for these listeners. We need a method to clear the form, and we must make sure that we don’t start listening for changes before the Editing panel is fully initialized with all of its values.

Let’s begin with a boolean class variable called changeOK to regulate when we listen for changes, as shown in Listing 2.22.

Listing 2.22 New PersonJFrame Class Variables

Click here to view code image

public class PersonJFrame extends javax.swing.JFrame {

 private final DefaultMutableTreeNode top =
 new DefaultMutableTreeNode("People");
 private final FamilyTreeManager ftm = FamilyTreeManager.getInstance();
 Person thePerson = null;
 private static final Logger logger =
 Logger.getLogger(PersonJFrame.class.getName());
 private boolean changeOK = false;
. . . code omitted . . .

Next, we provide code that clears the Editing panel, as shown in Listing 2.23. This code disables the Update button, sets boolean changeOK to false, and sets all the text fields and text area to empty strings. We set the selected property of all the radio buttons to false and call clearSelection() on the radio button group.

Listing 2.23 Method clearForm()

Click here to view code image

private void clearForm() {
 updateButton.setEnabled(false);
 changeOK = false;
 firstTextField.setText("");
 middleTextField.setText("");
 lastTextField.setText("");
 suffixTextField.setText("");
 maleButton.setSelected(false);
 femaleButton.setSelected(false);
 unknownButton.setSelected(false);
 genderButtonGroup.clearSelection();
 notesTextArea.setText("");
 }

Once the user selects a Person to edit, we initialize the Editing panel using method updateForm(). The changes include code that disables the Update button and toggles the changeOK boolean. Listing 2.24 shows the new updateForm() method with the changes shown in bold.

Listing 2.24 Method updateForm()

Click here to view code image

 private void updateForm() {
 changeOK = false;
 updateButton.setEnabled(false);
 firstTextField.setText(thePerson.getFirstname());
 middleTextField.setText(thePerson.getMiddlename());
 lastTextField.setText(thePerson.getLastname());
 suffixTextField.setText(thePerson.getSuffix());
 if (thePerson.getGender().equals(Gender.MALE)) {
 maleButton.setSelected(true);
 } else if (thePerson.getGender().equals(Gender.FEMALE)) {
 femaleButton.setSelected(true);
 } else if (thePerson.getGender().equals(Gender.UNKNOWN)) {
 unknownButton.setSelected(true);
 }
 notesTextArea.setText(thePerson.getNotes());
 changeOK = true;
 }

The Editing panel is now ready to detect changes. When any of the listener event handlers are invoked, these methods make a call to the modify() method, which enables the Update button (see Listing 2.25).

Listing 2.25 Method modify()

Click here to view code image

private void modify() {
 updateButton.setEnabled(true);
 }

We make a similar change to method updateModel(), as shown in Listing 2.26.

Listing 2.26 Method updateModel()

Click here to view code image

 private void updateModel() {
 if (!changeOK) {
 return;
 }
 updateButton.setEnabled(false);
 thePerson.setFirstname(firstTextField.getText());
 . . . code unchanged . . .
 }

Now let’s show you the new listeners. First, in order to detect changes to the underlying text in text-based components (such as JTextField and JTextArea), you write DocumentListeners and add these listeners to the underlying Documents of text-based components.

JTextComponent
Note that both JTextField and JTextArea derive from abstract class JTextComponent (see Figure 2.14 on page 55). JTextComponents provide an underlying model called Document to manipulate text. You use DocumentListeners to respond to changes in the Document model.

Listing 2.27 shows the DocumentListener we use to detect changes in the underlying text for the text-based components. DocumentListeners must provide implementations for methods insertUpdate(), removeUpdate(), and changeUpdate() to handle insertions, deletions, and changes to the underlying Document model. In each of these event handlers, we make sure that the Editing panel is ready to listen for changes before we call method modify().

Listing 2.27 DocumentListener for Text Components

Click here to view code image

// DocumentListener for text fields and text area
 private DocumentListener docListener = new DocumentListener() {
 @Override
 public void insertUpdate(DocumentEvent evt) {
 if (changeOK) {
 modify();
 }
 }

@Override
 public void removeUpdate(DocumentEvent evt) {
 if (changeOK) {
 modify();
 }
 }

@Override
 public void changedUpdate(DocumentEvent evt) {
 if (changeOK) {
 modify();
 }
 }
 };

Changes to the radio button selection status is detected with ActionListeners. Listing 2.28 shows the ActionListener we use for the radio buttons.

Listing 2.28 ActionListener for Radio Buttons

Click here to view code image

// ActionListener for Radio Buttons
 private final ActionListener radioButtonListener = (ActionEvent e) -> {
 if (changeOK) {
 modify();
 }
 };

The final change includes adding these new listeners to the respective components. We add listeners to the components in method configureListeners(). Here’s the modified configureListeners() method, as shown in Listing 2.29. The changes are shown in bold. Note that we attach the listener to the text components’ Document model using text component method getDocument().

Listing 2.29 Method configureListeners()

Click here to view code image

private void configureListeners() {
 // Listeners are registered after constructor returns
 // for thread safety
 ftm.addPropertyChangeListener(familyTreeListener);
 personTree.addTreeSelectionListener(treeSelectionListener);
 updateButton.addActionListener(updateListener);

 // add document listeners to text fields, text area
 firstTextField.getDocument().addDocumentListener(this.docListener);
 middleTextField.getDocument().addDocumentListener(this.docListener);
 lastTextField.getDocument().addDocumentListener(this.docListener);
 suffixTextField.getDocument().addDocumentListener(this.docListener);
 notesTextArea.getDocument().addDocumentListener(this.docListener);

 // add action listeners to radiobuttons
 maleButton.addActionListener(this.radioButtonListener);
 femaleButton.addActionListener(this.radioButtonListener);
 unknownButton.addActionListener(this.radioButtonListener);
 }

Our Swing application (called PersonSwingAppEnhancedUI) now has a nicely responsive UI, and the Update button is enabled only when it makes sense to save changes to the underlying model.

2.5 Concurrency and Thread Safety

Before we demonstrate how concurrency works with Swing and make modifications to our Swing application to support execution of background threads, let’s discuss concurrency and thread safety. Some thread safety issues are a result of using Swing (which is not thread safe) in a multi-threaded execution environment, and others are basic concurrency principles that apply even when you’re not using Swing. Let’s discuss these issues now. After we prepare our application to run safely in a multi-threaded environment, we’ll modify the code so that the Update button event handler code runs in a background thread.

Thread-Safe Objects

If your execution environment is multi-threaded, then you need to use objects that are thread safe. An excellent reference on thread safety is Java Concurrency in Practice by Brian Goetz (Addison-Wesley, 2006) as well as Effective Java, Second Edition by Joshua Bloch (Addison-Wesley, 2008).

Thread safety can be achieved several ways. You can work with immutable objects, for instance, or mutable objects that are thread safe. You can also achieve thread safety with objects that are contained within a call stack frame or in a single thread (this is how Swing works).

Both Person and FamilyTreeManager require scrutiny to use them in a multi-threaded environment. Let’s begin with Person, which is a mutable object. To achieve thread safety with Person objects, we’ll use thread containment. That is, we will only invoke setters on a Person object in the EDT. Any Person object used on a background thread will be an exclusive copy. We’ll show you this code when we describe the update action, which will now execute on a background thread.

Let’s discuss the changes required to make the FamilyTreeManager class thread safe.

SwingPropertyChangeSupport

Since we have a multi-threaded Swing application, we want to make sure property change events fire on the EDT (because their event handlers access Swing components). To do this, we’ll replace PropertyChangeSupport with SwingPropertyChangeSupport and call its constructor with true as the second argument. With this modification, SwingPropertyChangeSupport ensures that property change events fire on the EDT. We use SwingPropertyChangeSupport with the FamilyTreeManager class.

ConcurrentHashMap

We use thread-safe ConcurrentHashMap instead of HashMap (HashMap is not thread safe). Next, we use synchronized with static factory method getInstance(). (Since method getInstance() is static, the lock is on the class.) This method needs to be synchronized because of the check and set, which is not atomic.

Synchronized Methods

We provide synchronization for the three FamilyTreeManager modifier methods: addPerson(), updatePerson(), and deletePerson(). The firePropertyChange() method is outside the synchronize block since we’re using SwingPropertyChangeSupport, which fires property change events on the Swing EDT. Method getAllPeople() is also synchronized. It performs a deep copy of the map, creating an ArrayList to return to the caller. Listing 2.30 shows the changes to class FamilyTreeManager in bold.

Listing 2.30 Thread-Safe FamilyTreeManager

Click here to view code image

public class FamilyTreeManager {

 private final ConcurrentMap<Long, Person> personMap =
 new ConcurrentHashMap<>();
 // PropertyChangeSupport and SwingPropertyChangeSupport are thread safe
 private SwingPropertyChangeSupport propChangeSupport = null;
 // FamilyTreeManager property change names
 public static final String PROP_PERSON_DESTROYED = "removePerson";
 public static final String PROP_PERSON_ADDED = "addPerson";
 public static final String PROP_PERSON_UPDATED = "updatePerson";
 private static FamilyTreeManager instance = null;

protected FamilyTreeManager() {
 // Exists only to defeat instantiation.
 }

 // Thread-safe lazy initialization
 public synchronized static FamilyTreeManager getInstance() {
 if (instance == null) {
 instance = new FamilyTreeManager();
 instance.propChangeSupport =
 new SwingPropertyChangeSupport(instance, true);
 }
 return instance;
 }

public void addPropertyChangeListener(PropertyChangeListener listener) {
 this.propChangeSupport.addPropertyChangeListener(listener);
 }

public void removePropertyChangeListener(PropertyChangeListener listener) {
 this.propChangeSupport.removePropertyChangeListener(listener);
 }

 public void addPerson(Person p) {
 Person person;
 synchronized (this) {
 person = new Person(p);
 personMap.put(person.getId(), person);
 }
 this.propChangeSupport.firePropertyChange(
 PROP_PERSON_ADDED, null, person);
 }

 public void updatePerson(Person p) {
 Person person;
 synchronized (this) {
 person = new Person(p);
 personMap.put(person.getId(), person);
 }
 this.propChangeSupport.firePropertyChange(
 PROP_PERSON_UPDATED, null, person);
 }

 public void deletePerson(Person p) {
 Person person;
 synchronized (this) {
 person = personMap.remove(p.getId());
 if (person == null) {
 return;
 }
 }
 this.propChangeSupport.firePropertyChange(
 PROP_PERSON_DESTROYED, null, person);
 }

 public synchronized List<Person> getAllPeople() {
 List<Person> copyList = new ArrayList<>();
 personMap.values().forEach(p -> copyList.add(new Person(p)));
 return copyList;
 }
}

Adding Listeners and Thread Safety

A common mistake with thread safety is to use reference this as an argument to a method inside a constructor. This creates a leaking “this” reference, because the reference is not fully initialized until after the constructor returns. There are various techniques to fix this problem. In the FamilyTreeManager class, for example, the static factory method getInstance() invokes the constructor first. It then provides the returned reference (instance) for the PropertyChangeSupport instantiation as follows.

Click here to view code image

. . .
 // thread safe
 instance = new FamilyTreeManager();
 instance.propChangeSupport = new PropertyChangeSupport(instance);
 . . .

Similarly, in our Swing application, we use a static newInstance() method to call the PersonJFrame constructor and then set the listeners after the constructor is fully initialized. Listing 2.31 shows the code for PersonSwingApp, a Swing program that safely configures listeners.

Listing 2.31 PersonSwingApp class PersonJFrame

Click here to view code image

public class PersonJFrame extends javax.swing.JFrame {
 . . .
 private PersonJFrame() { // constructor
 // Configure Logger
 . . . code omitted . . .
 buildData();
 initComponents();
 personTree.getSelectionModel().setSelectionMode(
 TreeSelectionModel.SINGLE_TREE_SELECTION);
 createNodes(top);
 }

 private void configureListeners() {
 // Listeners are registered after constructor returns
 // for thread safety
 ftm.addPropertyChangeListener(familyTreeListener);
 personTree.addTreeSelectionListener(treeSelectionListener);
 updateButton.addActionListener(updateListener);
 }

 public static PersonJFrame newInstance() {
 PersonJFrame pjf = new PersonJFrame(); // call the constructor
 pjf.configureListeners(); // safely configure listeners
 return pjf;
 }
 . . . code omitted . . .
}

Another thread-safe technique to add listeners is callback methods; that is, methods invoked by a caller after the object is constructed. For example, in the NetBeans Platform you typically add listeners in the TopComponent life cycle method componentOpened() and remove listeners in method componentClosed(). (See “Window System Life Cycle Management” on page 369.)

Concurrency in Swing

Because you typically create background tasks in Swing applications to execute long-running tasks, Swing provides several static methods to manage threads, all callable with SwingUtilities.

• invokeLater()

Click here to view code image

public static void invokeLater(Runnable doRun)

Executes doRun.run() asynchronously on the EDT. This happens after all pending AWT/Swing events have been processed.

• invokeAndWait()

Click here to view code image

public static void invokeAndWait(Runnable doRun)
 throws InterruptedException,
 InvocationTargetException

Executes doRun.run() synchronously on the EDT. This call blocks until all pending AWT events have been processed and doRun.run() returns. Be very careful using this method, since a block can potentially cause a deadlock.

• isEventDispatchThread()

Click here to view code image

public static boolean isEventDispatchThread()

Returns true if the current thread is the event dispatching thread. Use this method when you need to execute code on the EDT, but you could be executing in a background thread.

2.6 Swing Background Tasks

Let’s now turn our attention to background threads in Swing applications that execute potentially long-running tasks. Since Swing uses a single-threaded model, it’s important that event handlers execute quickly. While an event handler is executing (always on the EDT), the EDT is not processing subsequent user input. If an event handler results in a long-running task, the UI will temporarily freeze since no processing of user input can occur until the task finishes. Project PersonSwingAppMultiThread takes our example Swing application and executes the Update button in a background thread.

Introducing SwingWorker

Long-running tasks should run in background threads. Swing provides a helper class to launch background threads called SwingWorker. Listing 2.32 shows how to use SwingWorker to save updated Person objects in a background thread.

Testing Background Threads
To simulate a long-running task, we’ll use Thread.sleep() in method doInBackground(). This technique helps test how long-running background threads affect your application.

Listing 2.32 shows the Update button’s modified event handler, which is invoked on the EDT. Before leaving the EDT, you execute any code that updates or accesses GUI components. Here, we invoke updateModel(), which synchronizes the Person (model) object with the Swing component text fields, radio buttons, and text area. We then make a copy of the Person object, field thePerson.

Concurrency Tip
Making a copy of thePerson is crucial for correct behavior. Without a copy in the background thread, the wrong Person object might be saved if the user selects a different Person in the JTree component. In general, don’t access mutable class fields in background threads without first making a copy.

Generic class SwingWorker provides two parameterized types. The first type (Person) is the return type for methods doInBackground() and get(). The object returned by doInBackground() is accessible with get() when the background task completes. The second parameterized type applies to periodically published values. This is useful when long-running tasks publish partial results. Here, we use Void, since we don’t publish partial results. See “Monitoring SwingWorker Status” on page 76 for an example of SwingWorker that publishes periodic results.

Put code inside method doInBackground() that should execute in a background thread. Here we call ftm.updatePerson() to save the modified Person object with the FamilyTreeManager.

Concurrency and Property Change Events
Recall that method updatePerson() fires a property change event to FamilyTreeManager property change listeners. Because we’re invoking updatePerson() in a background thread, we use SwingPropertyChangeSupport to fire the property change event on the EDT (see “SwingPropertyChangeSupport” on page 69).

To start the background thread, invoke the SwingWorker execute() method. This schedules the thread for execution and immediately returns. We’ve also overridden the done() method, which is invoked on the EDT after the background task completes. This method is where you place code to update or refresh the GUI. Method get() blocks until the background task completes. However, if you call get() within method done(), no block occurs since the background task has finished.

Listing 2.32 Program PersonSwingAppMultiThread—Using SwingWorker

Click here to view code image

 // ActionListener for Update button
 private final ActionListener updateListener = (ActionEvent e) -> {
 // first update the model from the UI
 updateModel();
 // copy Person for background thread
 final Person person = new Person(thePerson);
 SwingWorker<Person, Void> worker = new SwingWorker<Person, Void>() {
 @Override
 public Person doInBackground() {
 // Simulate a long running process
 try {
 Thread.sleep(3000);

 } catch (InterruptedException e) {
 logger.log(Level.WARNING, null, e);
 }
 // save in background thread
 logger.log(Level.FINE, "calling ftm for person {0}", person);
 ftm.updatePerson(person);
 // only if interested in accessing person after
 // background thread finishes; otherwise, return null
 return person;
 }

 // invoked after background thread finishes
 @Override
 protected void done() {
 try {
 if (!isCancelled()) {
 logger.log(Level.FINE, "Done! Saving person {0}", get());
 }
 } catch (InterruptedException | ExecutionException ex) {
 Logger.getLogger(PersonJFrame.class.getName())
 .log(Level.SEVERE, null, ex);
 }
 }
 };
 // invoke background thread
 worker.execute();
 };

SwingWorker Tip
SwingWorker is designed to be executed only once. Executing a SwingWorker object more than once has no effect; it will not result in invoking the doInBackground() method again.

With Family Tree updates executing in a background thread, our new PersonSwingAppMultiThread application lets you interact with the user interface while updates are running. For example, it’s now possible to select different Person objects in the JTree, edit the Person displayed in the Editing pane, and even update a newly edited Person object. (Method Thread.sleep() helps test these concurrency scenarios.)

Monitoring SwingWorker Status

Class SwingWorker provides several callback methods to monitor background tasks. You can make intermediate results available with publish(), set the progress of a task with setProgress(), and safely update the GUI with process(). This section shows you how to use these methods.

To illustrate, let’s add a Process All button to our application that performs a background task on the FamilyTreeManager collection of Person objects. We’ll show you how to publish partial results and synchronize partial completion with a progress bar.

Application PersonSwingAppSwingWorker includes a Process All button, a progress bar, and a status text area. The processing converts (copies of) each Person’s name to all uppercase. Figure 2.19 shows how the new user interface appears with the Process All button, progress bar, and status text area all below the JTree component.

[image:]

Figure 2.19 Incorporating a background task into the GUI

JProgressBar

We use the Swing Form Designer to place a progress bar on our form. The default constructor sets the minimum to 0 and the maximum to 100, with a horizontal orientation and no progress String displayed indicating percent complete. The setProgress() method updates the progress. You can also use a progress bar to reflect an indeterminate-length task with method setIndeterminate(true).

Click here to view code image

private javax.swing.JProgressBar progressBar;
 progressBar = new javax.swing.JProgressBar();
 . . .
 // reset progress to 0
 progressBar.setProgress(0);
 . . .
 // currentProgress is current value, maxProgress is finished value
 // convert currentProgress to percentage for progressBar range 0 to 100
 progressBar.setProgress(100 * currentProgress / maxProgress);

Built-In Progress Indicator
The NetBeans Platform provides an easy-to-use progress indicator for actions that execute in background threads. This means you don’t have to create a progress bar yourself and add it to the Swing form. (See “Progress Indicator” on page 518 for an example.)

Figure 2.20 shows the Process All background task running. Partial results appear in the text area, and the progress bar indicates the task is 60 percent complete. The Process All button is disabled during execution to prevent more than one Process All background task from running at the same time.

[image:]

Figure 2.20 Displaying partial results of a background task

Listing 2.33 shows the Process All action listener. As in the previous example, we first configure the GUI on the EDT. Here, we disable the Process All button, configure the progress bar, and get a collection of Person objects from the FamilyTreeManager.

In this example, the first parameterized type for SwingWorker is Collection<Person>. This type specifies the return type for methods doInBackground() and get(). The second parameterized type (Person) specifies the type of partial results published.

Method doInBackground() processes the list one Person at a time and publishes the processed Person object with method publish(). Method publish() makes its argument available to method process(), which is invoked on the EDT. This enables safe updates of the GUI with partial results.

Method doInBackground() invokes setProgress(), which causes a property change event to fire to registered listeners. We define a property change listener; the property change event handler updates the progress bar. (The property change event handler is called on the EDT so you can safely update the GUI.)

Method doInBackground() returns the processed Person list, which becomes available using method get(). As in the previous example, we override method done() to call get(). Recall that done() is invoked on the EDT when the background task completes. Method done() is also a convenient place to reset GUI components. Here, we re-enable the Process All button, reset the status text area, and reset the progress bar.

Because the Process All event handler spawns a background thread, the application’s GUI remains responsive during the thread’s execution.

Listing 2.33 Program PersonSwingAppSwingWorker—Monitoring SwingWorker

Click here to view code image

 // ActionListener for Process All button
 private final ActionListener processAllListener = (ActionEvent e) -> {
 // get list of people from ftm
 final Collection<Person> processList = ftm.getAllPeople();
 processAllButton.setEnabled(false);
 progressBar.setValue(0);
 progressBar.setStringPainted(true);
 logger.log(Level.FINE, "Process All requested for {0}", processList);
 SwingWorker<Collection<Person>, Person> worker =
 new SwingWorker<Collection<Person>, Person>() {
 final int count = processList.size();

 @Override
 public Collection<Person> doInBackground() {
 int i = 0;
 for (Person person : processList) {
 try {
 // do something with each person
 doProcess(person);
 logger.log(Level.FINE, "Processing person {0}", person);
 publish(person); // make available to process()
 setProgress(100 * (++i) / count);
 // simulate a long-running task
 Thread.sleep(500);
 } catch (InterruptedException e) {
 logger.log(Level.WARNING, null, e);
 }
 }
 return processList;
 }

 private void doProcess(Person p) {
 p.setFirstname(p.getFirstname().toUpperCase());
 p.setMiddlename(p.getMiddlename().toUpperCase());
 p.setLastname(p.getLastname().toUpperCase());
 p.setSuffix(p.getSuffix().toUpperCase());
 }

 @Override
 protected void done() {
 try {
 if (!isCancelled()) {
 logger.log(Level.FINE, "Done! processing all {0}",
 get());
 }
 } catch (InterruptedException | ExecutionException ex) {
 Logger.getLogger(PersonJFrame.class.getName())
 .log(Level.SEVERE, null, ex);
 }
 // reset any GUI elements
 progressBar.setValue(0);
 progressBar.setStringPainted(false);
 statusTextArea.setText("");
 processAllButton.setEnabled(true);
 }

 @Override
 protected void process(List<Person> chunks) {
 chunks.stream().forEach((p) -> {
 statusTextArea.append(p + "\n");
 });
 }
 };
 worker.addPropertyChangeListener((PropertyChangeEvent evt) -> {
 if ("progress".equals(evt.getPropertyName())) {
 progressBar.setValue((Integer) evt.getNewValue());
 }
 });
 worker.execute();
 };

2.7 Key Point Summary

This chapter covers basic concepts used repeatedly in both Swing and NetBeans Platform applications. The approach encourages loosely-coupled designs by building model objects with JavaBeans properties and property change support. Here are the key points in this chapter.

• Use JavaBeans and JavaBean properties to store model data.

• Provide getters for readable properties and setters for writable properties.

• Provide property change support for bound properties.

• Provide implementations for toString(), equals(), and hashCode() for model objects.

• Provide a singleton “manager” class for coarse-grained property change support models.

• To reduce boilerplate code, use lambda expressions for functional interfaces, such as event listeners and Runnable.

• Swing is a well-established GUI framework with a single-threaded model. Swing components are not thread safe and must be accessed only on the Event Dispatch Thread (EDT).

• Use SwingUtilities.invokeLater() to execute code on the EDT.

• The NetBeans IDE Form Designer helps you design and configure Swing components with drag and drop on forms.

• Choose Swing components from the Form Designer’s Swing Component Palette.

• Java has a standard logging facility that helps you configure which messages appear on the console. You can also log messages to other destinations, such as files.

• Use JTextField for single-line text editing and JTextArea for multi-line text editing.

• Use JLabel to display text labels, JButton to represent a graphic action, and JRadioButton for mutually exclusive choices.

• The Swing JTree component lets you display hierarchical data and provides a user selection event.

• Swing components generate one or more specific events, which you can listen for and respond to with corresponding event handlers.

• Writing listeners and event handlers for specific events (property change events, tree selection events, action events) helps your application remain loosely coupled.

• Use DocumentListeners to detect editing events for text-based Swing components.

• JRadioButtons generate action events for selection changes.

• Execute potentially long-running tasks in background threads. Use helper class SwingWorker to create the background thread and manage the communication between the background thread and the EDT.

• When building multi-threaded applications, pay attention to mutable objects that can be accessed concurrently and use them in a thread-safe way.

What’s Next?

Perhaps you noticed that we did not implement user actions to add or delete Persons in our Swing example programs. Once you have a Swing desktop application with several actions, you’ll typically want to use a menu bar with menu items. We didn’t add this functionality to these programs (yet) because this is exactly one of the many features the NetBeans Platform provides: a built-in menu bar, toolbar, and action framework.

We’ll be exploring how to do all this and more in upcoming chapters. But first, let’s take a slight detour and examine the new Java GUI: JavaFX.

3. Introduction to JavaFX

Swing has been around for a long time and some very powerful applications and frameworks are written with this library. One of those powerful applications is the NetBeans IDE, and one of those powerful frameworks is the NetBeans Platform. Just because these applications and frameworks are based on Swing, however, doesn’t mean you can’t or shouldn’t use JavaFX. Indeed, we hope that the material in this book will help you incorporate JavaFX into your NetBeans Platform applications, and by doing so, create rich client applications that both perform well and are beautiful.

We begin with a nice, gentle introduction to JavaFX. But rest assured, we ramp up the material quickly in this chapter. Obviously, we can’t cover everything you need to know about JavaFX here, but like the previous chapter’s presentation of Swing, we want to give you enough so that you’ll be comfortable reading and using JavaFX code in desktop applications.

In this chapter, you’ll learn the basics of JavaFX, its structure, and the philosophy of how JavaFX constructs a GUI. You’ll learn about different coding styles and discover the styles that best suit you and your development team. In the next chapter, we’ll show you how JavaFX fits into the world of desktop application development. We’ll also lay the groundwork for using JavaFX with the NetBeans Platform.

What You Will Learn

• Understand JavaFX basics.

• Build JavaFX programs and use JavaFX APIs.

• Build a scene graph with shapes, controls, and layout.

• Use FXML and controller classes.

• Incorporate CSS files into your JavaFX designs.

• Apply JavaFX animation and event handling.

• Understand JavaFX properties, observables, InvalidationListeners, and ChangeListeners.

• Understand and apply JavaFX binding.

3.1 What Is JavaFX?

If the NetBeans Platform is written with Swing for its GUI and I already know Swing, why should I learn and use JavaFX? This is a good question. Here are several reasons why.

• JavaFX provides a rich graphical user interface. While you can certainly provide rich content with Swing, JavaFX has the structure and APIs specifically for animation, 2D and 3D geometry, charts, special effects, color gradients, graphical controls, and easy manipulation of media, including audio, video, and images. The bottom line: you can create rich content a whole lot easier using JavaFX than with Swing and Java2D.

• JavaFX graphics rendering takes advantage of hardware-accelerated capabilities. This makes rendering graphics and animation perform well.

• You can embed JavaFX content within Swing panels with JFXPanel. The magic of this specialized Swing component lets you create sophisticated NetBeans Platform applications and include JavaFX rich content in your application windows. Furthermore, you can start using JavaFX without throwing away existing Swing applications.

A Bit of History

JavaFX began as a declarative scripting language (JavaFX Script) that was built on top of Java. While developers enjoyed the ease of a declarative script, it was difficult to integrate JavaFX Script with existing Swing applications. Furthermore, JavaFX Script required learning a new language.

JavaFX 2.0 was released in 2011 and is based on Java APIs. With Java 7, JavaFX is included in the standard release, and beginning with Java 8, which includes 3D capabilities with JavaFX 8, all JavaFX libraries (JAR files) are included in the standard classpath. This means that JavaFX is now part of the Java standard when you download the Java Development Kit (JDK).

While you can certainly use JavaFX APIs in the traditional Java coding style, JavaFX also provides FXML, a declarative XML markup language that describes the graphical components in your application. Scene Builder is a stand-alone application that generates FXML markup. With Scene Builder, you drag-and-drop controls and shapes to design the UI in a visual editor. These coding options make it easier to construct complicated UIs and work with user experience designers. You can also style your JavaFX application with CSS, a standard that is used and known by many designers. We’ll introduce FXML in this chapter and further explore FXML and Scene Builder in the next chapter.

The Scene Graph Metaphor

JavaFX programs with a graphical user interface define a stage and a scene within that stage. The stage represents the top-level container for all JavaFX objects; that is, the content area for the application’s window frame. The central metaphor in JavaFX for specifying graphics and user interface controls is a scene graph. A scene defines a hierarchical node structure that contains all of the scene’s elements. Nodes are graphical objects, such as geometric shapes (Circle, Rectangle, Text), UI controls (Button, TreeView, TextField, ImageView), layout panes (StackPane, AnchorPane), and 3D objects. Nodes can be containers (parent nodes) that in turn hold more nodes, letting you group nodes together. The scene graph is a strict hierarchical structure: you cannot add the same node instance to the graph more than once. Figure 3.1 shows the hierarchical structure of a JavaFX scene graph.

[image:]

Figure 3.1 The JavaFX stage and scene

Parent nodes are nodes that contain other nodes, called children. A child node with no children nodes is a leaf node. With parent nodes, you can include Panes (layout containers) and Controls (buttons, table views, tree views, text fields, and so forth). You add a node to a parent with

Click here to view code image

myParent.getChildren().add(childNode);

or

Click here to view code image

myParent.getChildren().addAll(childNode1, childNode2);

The power of the JavaFX scene graph is that, not only do you define the visual aspect of your application in a hierarchical structure, but you can manipulate the scene by modifying node properties. And, if you manipulate a node property over time, you achieve animation. For example, moving a node means changing that node’s translateX and translateY properties over time (and translateZ if you’re working in 3D). Or, fading a node means changing that node’s opacity property over time. JavaFX properties are similar to the JavaBean properties we’ve already presented, but JavaFX properties are much more powerful. Applying these transformations to a node generally propagates to any of the node’s children as well.

Single-Threaded Model

Like Swing, JavaFX uses a single-threaded model. The JavaFX scene graph must be manipulated in the JavaFX Application Thread, a separate thread from Swing’s Event Dispatch Thread.1 Like Swing, working with a single-threaded UI is mostly transparent: events are sent and received on the JavaFX Application Thread. And like Swing, threading issues arise when you create tasks to execute on a background thread. The solutions to these common programming scenarios are similar.

1. There is experimental support in JDK 8 for making the EDT and JavaFX Application Thread (FXT) the same thread. Currently, this is not the default behavior. To run with a single EDT-FXT thread, supply runtime VM option -Djavafx.embed.singleThread=true.

How do JavaFX and Swing code co-exist? Will you be writing intertwined graphical spaghetti code? No, not at all. In this chapter you’ll learn about JavaFX without any Swing. Then when you learn how to integrate JavaFX into a NetBeans Platform application window, you’ll see how to keep the JavaFX code separate, cohesive, and highly modular. Both the NetBeans Platform architecture and JavaFX program structure make it easy to add and maintain JavaFX rich content.

3.2 Building JavaFX Programs

Let’s begin with a simple, graphical example of JavaFX shown Figure 3.2. This application consists of a rounded rectangle geometric shape and a text node. The rectangle has a drop shadow effect and the text node includes a “reflection” effect. The top-level node is a layout node (a StackPane) that stacks and centers its children nodes on top of each other. Let’s show you one way to build this program.

[image:]

Figure 3.2 MyRectangleApp running

Figure 3.3 shows a diagram of the (partial) JavaFX class hierarchy for the Rectangle, Text, and StackPane classes used in the MyRectangleApp application. Rectangle, Text, and Circle (which we’ll use in a later example) are all subclasses of Shape, whereas StackPane is a subclass of Parent, a type of node that manages child nodes.

[image:]

Figure 3.3 JavaFX node class hierarchy (partial) used in MyRectangleApp

Creating a JavaFX Application

To build the MyRectangleApp application with the NetBeans IDE, use these steps.

1. In the NetBeans IDE, select File | New Project. NetBeans displays the Choose Project dialog. Under Categories, select JavaFX and under Projects, select JavaFX Application, as shown in Figure 3.4. Click Next.

[image:]

Figure 3.4 Creating a new JavaFX Application

2. NetBeans displays the Name and Location dialog. Specify MyRectangleApp for the Project Name. Click Browse and navigate to the desired project location. Accept the defaults on the remaining fields and click Finish, as shown in Figure 3.5.

[image:]

Figure 3.5 New JavaFX application: Name and Location dialog

NetBeans builds a “starter” Hello World project for you with a Button and event handler. Figure 3.6 shows the project’s structure, Java file MyRectangleApp.java in package myrectangleapp. NetBeans brings MyRectangleApp.java up in the Java editor. Let’s replace the code in the start() method to build the application shown in Figure 3.2 on page 87.

[image:]

Figure 3.6 MyRectangleApp Projects view

Java APIs

JavaFX, like Swing, lets you create objects and configure them with setters. Here’s an example with a Rectangle shape.

Click here to view code image

Rectangle rectangle = new Rectangle(200, 100, Color.CORNSILK);
 rectangle.setArcWidth(30);
 rectangle.setArcHeight(30);
 rectangle.setEffect(new DropShadow(10, 5, 5, Color.GRAY));

This code example creates a Rectangle with width 200, height 100, and color Color.CORNSILK. The setters configure the arcWidth and arcHeight properties (giving the rectangle a rounded appearance) and add a gray drop shadow effect.

Similarly, we create a Text object initialized with the text “My Rectangle.” The setters configure the Text’s font and effect properties with Font and Reflection objects, respectively.

Click here to view code image

Text text = new Text("My Rectangle");
 text.setFont(new Font("Verdana Bold", 18));
 text.setEffect(new Reflection());

The layout control is a StackPane for the top-level node. Here we use the StackPane’s default configuration, which centers its children, and specify a preferred height and width. Note that StackPane keeps its children centered when you resize the window. You add nodes to a layout control (a Pane) with getChildren().add() for a single node and getChildren().addAll() for multiple nodes, as shown here. (The getChildren() method returns a JavaFX Collection.)

Click here to view code image

StackPane stackPane = new StackPane();
 stackPane.setPrefHeight(200);
 stackPane.setPrefWidth(400);
 stackPane.getChildren().addAll(rectangle, text);

Since the rectangle is added to the StackPane first, it appears behind the text node, which is on top. Adding these nodes in the reverse order would hide the text node behind the rectangle.

JavaFX has other layout controls including HBox (horizontal box), VBox (vertical box), GridPane, FlowPane, AnchorPane, and more.

Import and JavaFX
Be sure you specify the correct package for any import statements. Some JavaFX classes (such as Rectangle) have the same name as their AWT or Swing counterparts. All JavaFX classes are part of package javafx .

Listing 3.1 shows the complete source for program MyRectangleApp.

Listing 3.1 MyRectangleApp.java

Click here to view code image

package myrectangleapp;

import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.effect.DropShadow;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Font;
import javafx.scene.text.Text;
import javafx.stage.Stage;

public class MyRectangleApp extends Application {

@Override
 public void start(Stage primaryStage) {

Rectangle rectangle = new Rectangle(200, 100, Color.CORNSILK);
 rectangle.setArcWidth(30);
 rectangle.setArcHeight(30);
 rectangle.setEffect(new DropShadow(10, 5, 5, Color.GRAY));
 Text text = new Text("My Rectangle");
 text.setFont(new Font("Verdana Bold", 18));
 text.setEffect(new Reflection());

StackPane stackPane = new StackPane();
 stackPane.setPrefHeight(200);
 stackPane.setPrefWidth(400);
 stackPane.getChildren().addAll(rectangle, text);

final Scene scene = new Scene(stackPane, Color.LIGHTBLUE);
 primaryStage.setTitle("My Rectangle App");

primaryStage.setScene(scene);
 primaryStage.show();
 }

 // main() is invoked when running the JavaFX application from NetBeans
 // but is ignored when launched through JavaFX deployment (packaging)2
 public static void main(String[] args) {
 launch(args);
 }
}

2. The NetBeans IDE packages your JavaFX Application for you when you Build and Run a JavaFX project. You can package a JavaFX application yourself using command line tool javafxpackager, which is found in the bin directory of your JavaFX SDK installation.

Figure 3.7 depicts the scene graph for program MyRectangleApp. Stage is the top-level window and is created by the JavaFX Platform. Every Stage has a Scene which contains a root node. In our example, the StackPane is the root node and its children include the Rectangle and the Text nodes. Note that StackPane is a parent node and Rectangle and Text are leaf nodes.

[image:]

Figure 3.7 The JavaFX scene graph for MyRectangleApp

Using CSS

We’re not quite finished with our example. Figure 3.8 shows the same program with a linear gradient added to the rectangle. Originally, we built the rectangle with fill color Color.CORNSILK. Now let’s use CSS to configure the rectangle’s fill property with a linear gradient that gradually transforms from a light orange to a dark orange in a rich-looking fill, as shown in Figure 3.8.

[image:]

Figure 3.8 Applying a linear gradient

(You’ll have to trust our description or run the program, since the book’s black and white print medium lacks color.)

To create this linear gradient, we apply a CSS style with the setStyle() method. This CSS specifies style element -fx-fill, which is the JavaFX-specific CSS style for a Shape’s fill property.

Click here to view code image

rectangle.setStyle("-fx-fill: "
 + "linear-gradient(#ffd65b, #e68400),"
 + "linear-gradient(#ffef84, #f2ba44),"
 + "linear-gradient(#ffea6a, #efaa22),"
 + "linear-gradient(#ffe657 0%, #f8c202 50%, #eea10b 100%),"
 + "linear-gradient(from 0% 0% to 15% 50%, "
 + "rgba(255,255,255,0.9), rgba(255,255,255,0));");

This style defines five linear gradient elements.3

3. We borrowed this awesome five-part linear gradient from Jasper Potts’ style “Shiny Orange” published on fxexperience.com (December 20, 2011).

JavaFX and CSS
There are other ways to apply CSS to nodes. One of the most common is importing a CSS file. Indeed, all JavaFX controls have standard styles that you can access in the runtime JAR file jfxrt.jar. The default JavaFX CSS style in JavaFX 8 is Modena, found in file modena.css. We’ll show you how to apply a CSS file to your JavaFX scene shortly.

The ability to style nodes with CSS is an important feature that allows graphic designers to participate in styling the look of a program. You can replace any or all of the styles in the JavaFX default CSS file and add your own on top of the default styles.

Creating a JavaFX FXML Application

A helpful structural tool with JavaFX is to specify JavaFX scene graph nodes with FXML. FXML is an XML markup language that fits nicely with the hierarchical nature of a scene graph. FXML helps you visualize scene graph structures and lends itself to easier modification that can otherwise be tedious with Java code.

FXML typically requires three files: the program’s main Java file, the FXML file, and a Java controller class for the FXML file. The main Java class uses an FXML Loader to create the Stage and Scene. The FXML Loader reads the FXML file and builds the scene graph. The controller class provides JavaFX node initialization code and accesses the scene graph programmatically to create dynamic content or handle events.

Let’s redo our previous application and show you how to use FXML. You can create a JavaFX FXML Application with the NetBeans IDE using these steps.

1. From the top-level menu, select File | New Project. NetBeans displays the Choose Project dialog. Under Categories, select JavaFX and under Projects, select JavaFX FXML Application, as shown in Figure 3.9. Click Next.

[image:]

Figure 3.9 Creating a JavaFX FXML application project

2. NetBeans displays the Name and Location dialog. Provide MyRectangleFXApp for the Project Name, click Browse to select the desired location, and specify MyRectangleFX for the FXML document name, as shown in Figure 3.10. Click Finish.

[image:]

Figure 3.10 Specifying the project and FXML file name

NetBeans creates a project consisting of three source files: MyRectangleFXApp.java (the main program), MyRectangleFX.fxml (the FXML document), and MyRectangleFXController.java (the controller class).

Listing 3.2 shows the structure of the new main program. Note that the FXML Loader reads in the FXML file, MyRectangleFX.fxml, and builds the scene graph.

Listing 3.2 MyRectangleFXApp.java

Click here to view code image

package myrectanglefxapp;

import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Parent;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

public class MyRectangleFXApp extends Application {

 @Override
 public void start(Stage stage) throws Exception {
 Parent root = FXMLLoader.load(getClass().getResource(
 "MyRectangleFX.fxml"));
 Scene scene = new Scene(root, Color.LIGHTBLUE);
 stage.setScene(scene);
 stage.show();
 }

public static void main(String[] args) {
 launch(args);
 }
}

Figure 3.11 shows the structure of a JavaFX FXML Application. Execution begins with the main program, which invokes the FXML Loader. The FXML Loader parses the FXML document, instantiates the objects, and builds the scene graph. After building the scene graph, the FXML Loader instantiates the controller class and invokes the controller’s initialize() method.

[image:]

Figure 3.11 Structure of a JavaFX FXML Application

Now let’s look at the FXML markup for this application, as shown in Listing 3.3. Each FXML file is associated with a controller class, specified with the fx:controller attribute (marked in bold). With XML markup, you see that the structure of the FXML matches the hierarchical layout depicted in Figure 3.7 on page 92 (that is, starting with the root node, StackPane). The StackPane is the top node and its children are the Rectangle and Text nodes. The Rectangle’s properties are configured with property names and values that are converted to the correct types. The style property matches element -fx-fill we showed you earlier. (Fortunately, you can break up strings across lines in CSS.)

Both the Rectangle and Text elements have their effect properties configured. The Rectangle has a drop shadow and the Text element has a reflection effect.

Object Creation with FXML
Each element that you specify in the FXML file is instantiated. Thus, you will not have Java code that creates the StackPane, Rectangle, Text, Font, DropShadow, or Reflection objects. The FXML Loader creates these objects for you.

Listing 3.3 MyRectangleFX.fxml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.shape.*?>
<?import javafx.scene.text.*?>
<?import javafx.scene.effect.*?>

<StackPane id="StackPane" prefHeight="200" prefWidth="400"
 xmlns:fx="http://javafx.com/fxml"
 fx:controller="myrectanglefxapp.MyRectangleFXController">
 <children>
 <Rectangle fx:id="rectangle" width="200" height="100"
 arcWidth="30" arcHeight="30"
 style="-fx-fill: linear-gradient(#ffd65b, #e68400),
 linear-gradient(#ffef84, #f2ba44),
 linear-gradient(#ffea6a, #efaa22),
 linear-gradient(#ffe657 0%, #f8c202 50%, #eea10b 100%),
 linear-gradient(from 0% 0% to 15% 50%, rgba(255,255,255,0.9),
 rgba(255,255,255,0));" >
 <effect>
 <DropShadow color="GRAY" offsetX="5.0" offsetY="5.0" />
 </effect>
 </Rectangle>
 <Text text="My Rectangle">
 <effect>
 <Reflection />
 </effect>

 </Text>
 </children>
</StackPane>

To access FXML elements from the controller class, give them an fx-id tag. Here, we’ve assigned the Rectangle element fx:id="rectangle" (marked in bold). This references a class variable that you declare in the controller class.

FXML and Controller Class
Name the controller class the same name as the FXML file with Controller appended to it. This is not required but helps identify the link between the FXML file and its controller class.

Now let’s show you the controller class. Listing 3.4 displays the source for MyRectangleFXController.java.

Annotation @FXML marks variable rectangle as an FXML-defined object. The initialize() method is invoked after the scene graph is built and typically includes any required initialization code. Here we configure two additional Rectangle properties, strokeWidth and stroke. While we could have configured these properties in the FXML file, Listing 3.4 shows you how to access FXML-defined elements in the controller class.

Listing 3.4 MyRectangleFXController

Click here to view code image

package myrectanglefxapp;

import java.net.URL;
import java.util.ResourceBundle;
import javafx.fxml.FXML;
import javafx.fxml.Initializable;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;

public class MyRectangleFXController implements Initializable {

 @FXML
 private Rectangle rectangle;

 @Override
 public void initialize(URL url, ResourceBundle rb) {
 rectangle.setStrokeWidth(5.0);
 rectangle.setStroke(Color.GOLDENROD);
 }
}

The controller class also includes event handlers (we’ll add an event handler when we show you animation). Figure 3.12 shows MyRectangleFXApp running with the Rectangle’s stroke and strokeWidth properties configured.

[image:]

Figure 3.12 Rectangle’s customized stroke and strokeWidth properties

CSS Files

Instead of specifying the hideously long linear gradient style in the FXML file (see Listing 3.3 on page 96), let’s hide this code in a CSS file and apply it to the scene graph.

You can specify a CSS file either directly in the FXML file or in the main program. To specify a CSS file in the main program, add a call to scene.getStylesheets(), as shown in Listing 3.5.

Listing 3.5 Adding a CSS Style Sheet in the Main Program

Click here to view code image

package myrectanglefxapp;

import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Parent;
import javafx.scene.Scene;
import javafx.scene.paint.Color;
import javafx.stage.Stage;

public class MyRectangleFXApp extends Application {

 @Override
 public void start(Stage stage) throws Exception {
 Parent root = FXMLLoader.load(getClass().getResource(
 "MyRectangleFX.fxml"));
 Scene scene = new Scene(root, Color.LIGHTBLUE);
 scene.getStylesheets().add("myrectanglefxapp/MyCSS.css");
 stage.setScene(scene);
 stage.show();
 }

public static void main(String[] args) {
 launch(args);
 }
}

It’s also possible to specify the style sheet in FXML, as shown in Listing 3.6. Note that you must include java.net.* to define element URL.

Listing 3.6 MyRectangleFX.fxml—Adding a Style Sheet

Click here to view code image

<?import java.lang.*?>
<?import java.net.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.shape.*?>
<?import javafx.scene.text.*?>
<?import javafx.scene.effect.*?>

<StackPane id="StackPane" fx:id="stackpane" prefHeight="200" prefWidth="400"
 xmlns:fx="http://javafx.com/fxml"
 fx:controller="myrectanglefxapp.MyRectangleFXController">
 <stylesheets>
 <URL value="@MyCSS.css" />
 </stylesheets>
 <children>
 <Rectangle id="myrectangle" fx:id="rectangle" width="200" height="100"
 arcWidth="30" arcHeight="30"
 onMouseClicked="#handleMouseClick" />
 <Text text="My Rectangle">
 <effect>
 <Reflection />
 </effect>

 </Text>
 </children>
</StackPane>

Before we show you the MyCSS.css file, take a look at the Rectangle element in Listing 3.6. It’s much shorter now since the FXML no longer includes the style or effect property values. The FXML does, however, contain a property id value. This id attribute identifies the node for the CSS style definition.

We’ve also defined an event handler for a mouse clicked event in the Rectangle FXML (#handleMouseClick). The onMouseClicked attribute lets you wire an event handler with an FXML component. The mouse clicked event handler is invoked when the user clicks inside the Rectangle. (We’ll show you the updated controller class in the next section.)

Finally, as shown in Listing 3.6, we modified the StackPane to include element fx:id="stackpane" so we can refer to the StackPane in the controller code.

Listing 3.7 shows the CSS file MyCSS.css, which defines a style specifically for the component with id “myrectangle.”

Listing 3.7 MyCSS.css

Click here to view code image

#myrectangle {
 -fx-fill:
 linear-gradient(#ffd65b, #e68400),
 linear-gradient(#ffef84, #f2ba44),
 linear-gradient(#ffea6a, #efaa22),
 linear-gradient(#ffe657 0%, #f8c202 50%, #eea10b 100%),
 linear-gradient(from 0% 0% to 15% 50%, rgba(255,255,255,0.9),
 rgba(255,255,255,0));
 -fx-effect: dropshadow(three-pass-box, gray , 10 , 0 , 5.0 , 5.0);
}

Animation

You don’t actually think we’d introduce JavaFX and not show some animation, do you? As it turns out, animation with JavaFX is easy when you use the high-level animation APIs called transitions.

For our example, let’s rotate the Rectangle node 180 degrees (and back to 0) twice. The animation begins when the user clicks inside the rectangle. Figure 3.13 shows the rectangle during the transition (on the right). We rotate both the Rectangle and the Text.

[image:]

Figure 3.13 The Rectangle node rotates with a rotation animation

Each JavaFX Transition type controls one or more Node (or Shape) properties, as listed in Table 3.1. The RotateTransition controls a node’s rotate property. The FadeTransition controls a node’s opacity property. The TranslateTransition controls a node’s translateX and translateY properties (and translateZ if you’re working in 3D). Other transitions include PathTransition (animates a node along a Path), FillTransition (animates a shape’s fill property), StrokeTransition (animates a shape’s stroke property), and ScaleTransition (grows or shrinks a node over time).

[image:]

TABLE 3.1 JavaFX Transitions

You can play multiple transitions in parallel (ParallelTransition) or sequentially (SequentialTransition). It’s also possible to control timing between two sequential transitions with a pause (PauseTransition), configure a delay before a transition begins (with Transition method setDelay()), or define an action at the completion of a Transition (with Transition action event handler property onFinished).

You start a transition with method play() or playFromStart(). Method play() initiates a transition at its current time; method playFromStart() starts the transition at time 0. Other methods include stop() and pause(). You can query a transition’s status with getStatus(), which returns one of the Animation.Status enum values RUNNING, PAUSED, or STOPPED.

Since transitions are specialized, you configure each one slightly differently. However, all transitions support the common properties duration, autoReverse, cycleCount, onFinished, currentTime, and either node or shape (for Shape-specific transitions FillTransition and StrokeTransition).

Listing 3.8 shows the modifications to the controller class to implement the RotateTransition and mouse click event handler. We instantiate the RotateTransition rt inside method initialize(). In order to rotate both the Rectangle and the Text together, we specify a rotation for the parent StackPane node, which then rotates its children together (the Rectangle and the Text). Then, inside the event handler we initiate the animation with method play().

The @FXML annotation applies to variables stackpane and rectangle, as well as method handleMouseClick(), in order to correctly wire these objects to the FXML markup.

Listing 3.8 MyRectangleFXController.java—RotateTransition

Click here to view code image

package myrectanglefxapp;

import java.net.URL;
import java.util.ResourceBundle;
import javafx.fxml.FXML;
import javafx.fxml.Initializable;
import javafx.scene.input.MouseEvent;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.util.Duration;

public class MyRectangleFXController implements Initializable {

 private RotateTransition rt;

 @FXML
 private Rectangle rectangle;
 @FXML
 private StackPane stackpane;

 @FXML
 private void handleMouseClick(MouseEvent evt) {
 rt.play();
 }
 @Override
 public void initialize(URL url, ResourceBundle rb) {
 rectangle.setStrokeWidth(5.0);
 rectangle.setStroke(Color.GOLDENROD);
 // Create and configure RotateTransition rt
 rt = new RotateTransition(Duration.millis(3000), stackpane);
 rt.setToAngle(180);
 rt.setFromAngle(0);
 rt.setAutoReverse(true);
 rt.setCycleCount(4);
 }
}

The RotateTransition lets you specify either a “to” angle or “by” angle value. If you omit a starting position (property fromAngle), the rotation uses the node’s current rotation property value as the starting rotation angle. Here we set autoReverse to true, which makes the StackPane rotate from angle 0 to 180 and then back again. We set cycle count to four to repeat the back and forth animation twice (back and forth counts as two cycles).

3.3 JavaFX Properties

The previous sections make frequent references to JavaFX properties. We said that JavaFX properties are similar to JavaBean properties, but JavaFX properties are much more powerful. Clearly, JavaFX properties have considerable significance in JavaFX applications. In fact, JavaFX properties are perhaps the most significant feature in JavaFX. In this section, we’ll explore JavaFX properties in detail and show you how to use them.

What Is a JavaFX Property?

At the heart of JavaFX is its scene graph, a structure that includes (perhaps many) nodes. The JavaFX rendering engine displays these nodes and ultimately what you see depends on the properties of these nodes.

Properties are oh-so-important. They make a Circle red or a Rectangle 200 pixels wide. They determine the gradient for a fill color or whether or not a text node includes reflection or a drop shadow effect. You manipulate nodes with layout controls—which are themselves nodes—by setting properties such as spacing or alignment. When your application includes animation, JavaFX updates a node’s properties over time—perhaps a node’s position, its rotation, or its opacity. In the previous sections, you’ve seen how our example applications are affected by the properties that the code manipulates.

The previous chapter describes how JavaBean properties support encapsulation and a well-defined naming convention. You can create read-write properties, read-only properties, and immutable properties. We also show how to create bound properties—properties that fire property change events to registered listeners. Let’s learn how these concepts apply to JavaFX properties.

JavaFX properties support the same naming conventions as JavaBeans properties. For example, the radius of a Circle (a JavaFX Shape) is determined by its radius property. Here, we manipulate the radius property with setters and getters.

Click here to view code image

Circle circle1 = new Circle(10.5);
 System.out.println("Circle1 radius = " + circle1.getRadius());
 circle1.setRadius(20.5);
 System.out.println("Circle1 radius = " + circle1.getRadius());

This displays the following output.

Circle1 radius = 10.5
 Circle1 radius = 20.5

You access a JavaFX property with property getter method. A property getter consists of the property name followed by the word “Property.” Thus, to access the JavaFX radius property for circle1 we use the radiusProperty() method. Here, we print the radius property

Click here to view code image

System.out.println(circle1.radiusProperty());

which displays

Click here to view code image

DoubleProperty [bean: Circle[centerX=0.0, centerY=0.0, radius=20.5,
 fill=0x000000ff], name: radius, value: 20.5]

Typically, each JavaFX property holds metadata, including its value, the property name, and the bean that contains it. We can access this metadata individually with property methods getValue(), getName(), and getBean(), as shown in Listing 3.9. You can also access a property’s value with get().

Listing 3.9 Accessing JavaFX Property Metadata

Click here to view code image

 System.out.println("circle1 radius property value: "
 + circle1.radiusProperty().getValue());
 System.out.println("circle1 radius property name: "
 + circle1.radiusProperty().getName());
 System.out.println("circle1 radius property bean: "
 + circle1.radiusProperty().getBean());
 System.out.println("circle1 radius property value: "
 + circle1.radiusProperty().get());

Output:
 circle1 radius property value: 20.5
 circle1 radius property name: radius
 circle1 radius property bean: Circle@243e0b62
 circle1 radius property value: 20.5

Using Listeners with Observable Properties

All JavaFX properties are Observable. This means that when a property’s value becomes invalid or changes, the property notifies its registered InvalidationListeners or ChangeListeners. (There are differences between invalidation and change, which we’ll discuss shortly.) You register listeners directly with a JavaFX property. Let’s show you how this works by registering an InvalidationListener with a Circle’s radius property. Since our example does not build a scene graph, we’ll create a plain Java application (called MyInvalidationListener) using these steps.

1. From the top-level menu in the NetBeans IDE, select File | New Project. NetBeans displays the Choose Project dialog. Under Categories, select Java and under Projects, select Java Application, as shown in Figure 3.14. Click Next.

[image:]

Figure 3.14 Create a Java Application when you don’t need a JavaFX scene graph

2. NetBeans displays the Name and Location dialog. Provide MyInvalidationListener for the Project Name, and click Browse to select the desired location, as shown in Figure 3.15. Click Finish.

[image:]

Figure 3.15 Specify the project’s name and location

Using InvalidationListeners

Listing 3.10 creates two Circle objects and registers an InvalidationListener with the radius property of circle2. Inside the event handler, the invalidated() method sets the radius property of circle1 with circle2’s new value. Essentially, we are saying “make sure the radius property of circle1 is always the same as the radius property of circle2.”

A registered InvalidationListener is notified when the current value is no longer valid.4 Invalidation events supply the observable value, which is the JavaFX property including the metadata. If you don’t need to access the previous value, listening for invalidation events instead of change events (discussed next) can be more efficient.

4. You can also use a lambda expression in place of the anonymous inner class in Listing 3.10. However, here we’re leaving in the InvalidationListener with the invalidated() method for clarity. Later in the chapter we’ll show you how to use lambda expressions.

Listing 3.10 Registering a JavaFX InvalidationListener

Click here to view code image

package myinvalidationlistener;

import javafx.beans.InvalidationListener;
import javafx.beans.Observable;
import javafx.scene.shape.Circle;
public class MyInvalidationListener {

public static void main(String[] args) {

// Define some circles
 final Circle circle1 = new Circle(10.5);
 final Circle circle2 = new Circle(15.5);

 // Add an invalidation listener to circle2's radius property
 circle2.radiusProperty().addListener(new InvalidationListener() {
 @Override
 public void invalidated(Observable o) {
 System.out.println("Invalidation detected for " + o);
 circle1.setRadius(circle2.getRadius());
 }
 });

 System.out.println("Circle1: " + circle1.getRadius());
 System.out.println("Circle2: " + circle2.getRadius());
 circle2.setRadius(20.5);
 System.out.println("Circle1: " + circle1.getRadius());
 System.out.println("Circle2: " + circle2.getRadius());
 }

}

Output:
Circle1: 10.5
Circle2: 15.5
Invalidation detected for DoubleProperty [bean: Circle[centerX=0.0,
centerY=0.0, radius=20.5, fill=0x000000ff], name: radius, value: 20.5]
Circle1: 20.5
Circle2: 20.5

The output shows the original radius values for both Circles (10.5 and 15.5), the invalidation event handler output, and the updated radius property for both Circles. The getRadius() method displays the value of the radius property. You can also use radiusProperty().get() or radiusProperty().getValue(), but the traditionally named getRadius() is more familiar and more efficient.

Note that with InvalidationListeners, you must cast the non-generic Observable o to ObservableValue<Number> to access the new value in the event handler.

Click here to view code image

System.out.println("new value = " +
 ((ObservableValue<Number>) o).getValue().doubleValue());

Using ChangeListeners

Listing 3.11 shows the same program with a ChangeListener instead of an InvalidationListener attached to circle2’s radius property (project MyChangeListener). ChangeListener is generic and you override the changed() method.

The event handler’s signature includes the generic observable value (ov), the observable value’s old value (oldValue), and the observable value’s new value (newValue). The new and old values are the property values (here, Number objects) without the JavaFX property metadata. Inside the changed() method, we set circle1’s radius property with the setRadius(newValue.doubleValue()) method. Because ChangeListeners are generic, you can access the event handler parameters without type casts.

Listing 3.11 Registering a JavaFX Property ChangeListener

Click here to view code image

package mychangelistener;

import javafx.beans.value.ChangeListener;
import javafx.beans.value.ObservableValue;
import javafx.scene.shape.Circle;
public class MyChangeListener {

public static void main(String[] args) {

// Define some circles
 final Circle circle1 = new Circle(10.5);
 final Circle circle2 = new Circle(15.5);

 // Use change listener to track changes to circle2's radius property
 circle2.radiusProperty().addListener(new ChangeListener<Number>() {

 @Override
 public void changed(ObservableValue<? extends Number> ov,
 Number oldValue, Number newValue) {
 System.out.println("Change detected for " + ov);
 circle1.setRadius(newValue.doubleValue());
 }
 });

 System.out.println("Circle1: " + circle1.getRadius());
 System.out.println("Circle2: " + circle2.getRadius());
 circle2.setRadius(20.5);
 System.out.println("Circle1: " + circle1.getRadius());
 System.out.println("Circle2: " + circle2.getRadius());
 }

}

Output:
Circle1: 10.5
Circle2: 15.5
Change detected for DoubleProperty [bean: Circle[centerX=0.0, centerY=0.0,
radius=20.5, fill=0x000000ff], name: radius, value: 20.5]
Circle1: 20.5
Circle2: 20.5

The output of the MyChangeListener program is similar to the InvalidationListener output in Listing 3.10.5 Note that ChangeListeners make it possible to access the old value of a changed property and generics mean casting is not needed.

5. Again, a lambda expression can replace the anonymous inner class in Listing 3.11. We’re leaving in the ChangeListener with its changed() method here for clarity.

Read-Only Properties

JavaFX also supports read-only properties. Although you cannot modify read-only properties directly with setters, the value of a read-only property can change. A typical use of a read-only property is with a bean that maintains a property’s value internally. For example, the currentTime property of an Animation object (a Transition or a Timeline) is read only. You can read its value with getCurrentTime() and access the property with currentTimeProperty(), but you can’t update its value with a setter.

Since read-only properties change and are observable, you can listen for change and invalidation events, just as you can with read-write properties. You can also use read-only (as well as read-write) JavaFX properties in binding expressions, which we discuss next.

Binding

There may be situations where you need to define a ChangeListener and register it with an object’s property to monitor its old and new values. However, in many cases, the reason you’d like to track property changes is to update another object with a new value (as we did in Listing 3.10 on page 106 and Listing 3.11 on page 108).

A JavaFX feature called binding addresses this use case. Because JavaFX properties are observable, they can participate in binding expressions. Binding means that you specify a JavaFX property as dependent on another JavaFX property’s value. Binding expressions can be simple, or they can involve many properties in a cascade of property updates initiated perhaps by just one property changing its value (a program’s butterfly effect). Binding is a powerful feature in JavaFX that lets you succinctly express dependencies among object properties in applications without defining or registering listeners. Let’s look at some examples.

Unidirectional Binding

To bind one JavaFX property to another, use method bind() with a JavaFX property.

Click here to view code image

circle1.radiusProperty().bind(circle2.radiusProperty());

This binding expression states that circle1’s radius property will always have the same value as circle2’s radius property. We say that circle1’s radius property is dependent on circle2’s radius property. This binding is one way; only circle1’s radius property updates when circle2’s radius property changes and not vice versa.

Binding expressions include an implicit assignment. That is, when we bind the circle1 radius property to circle2’s radius property, the update to circle1’s radius property occurs when the bind() method is invoked.

When you bind a property, you cannot change that property’s value with a setter.

Click here to view code image

circle1.setRadius(someValue); // can't do this

There are some restrictions with binding. Attempting to define a circular binding results in a stack overflow. Attempting to set a bound property results in a runtime exception.

Click here to view code image

java.lang.RuntimeException: A bound value cannot be set.

Let’s show you an example program with binding now. Listing 3.12 defines two Circle objects, circle1 and circle2. This time, instead of an InvalidationListener or ChangeListener that tracks changes to circle2 and then updates circle1, we bind circle1’s radius property to circle2’s radius property.

Listing 3.12 Unidirectional Bind—MyBind.java

Click here to view code image

package asgteach.bindings;

import javafx.scene.shape.Circle;

public class MyBind {

 public static void main(String[] args) {
 Circle circle1 = new Circle(10.5);
 Circle circle2 = new Circle(15.5);
 System.out.println("Circle1: " + circle1.getRadius());
 System.out.println("Circle2: " + circle2.getRadius());
 // Bind circle1 radius to circle2 radius
 circle1.radiusProperty().bind(circle2.radiusProperty());
 if (circle1.radiusProperty().isBound()) {
 System.out.println("Circle1 radiusProperty is bound");
 }
 // Radius properties are now the same
 System.out.println("Circle1: " + circle1.getRadius());
 System.out.println("Circle2: " + circle2.getRadius());

 // Both radius properties will now update
 circle2.setRadius(20.5);
 System.out.println("Circle1: " + circle1.getRadius());
 System.out.println("Circle2: " + circle2.getRadius());

 // circle1 radius no longer bound to circle2 radius
 circle1.radiusProperty().unbind();
 if (!circle1.radiusProperty().isBound()) {
 System.out.println("Circle1 radiusProperty is unbound");
 }

 // Radius properties are now no longer the same
 circle2.setRadius(30.5);
 System.out.println("Circle1: " + circle1.getRadius());
 System.out.println("Circle2: " + circle2.getRadius());
 }

}

Output:
Circle1: 10.5
Circle2: 15.5
Circle1 radiusProperty is bound
Circle1: 15.5
Circle2: 15.5
Circle1: 20.5
Circle2: 20.5
Circle1 radiusProperty is unbound
Circle1: 20.5
Circle2: 30.5

In this example, the Circle objects are initialized with different values, which are displayed. We then bind circle1’s radius property to circle2’s radius property and display the radius values again. With the bind’s implicit assignment, the circle radius values are now the same (15.5). When the setter changes circle2’s radius to 20.5, circle1’s radius updates.

The isBound() method checks if a JavaFX property is bound and the unbind() method removes the binding on a JavaFX property. Note that after unbinding circle1’s radius property, updating circle2’s radius no longer affects the radius for circle1.

Bidirectional Binding

Bidirectional binding lets you specify a binding with two JavaFX properties that update in both directions. Whenever either property changes, the other property updates. Note that setters for both properties always work with bidirectional binding (after all, you have to update the values somehow).

Bidirectional binding is particularly suited for keeping UI view components synchronized with model data. If the model changes, the view automatically refreshes. And if the user inputs new data in a form, the model updates.

Bidirectional Binding Is Not Symmetrical
Initially, both properties take on the value of the property specified in bindBidirectional() method’s argument. Thus, bidirectional binding is not symmetrical; the order that you specify the binding affects the bound properties’ initial value.

Listing 3.13 shows how to use JavaFX property method bindBidirectional(). After objects circle1 and circle2 have their radius properties bound, both properties acquire value 15.5 (circle2’s radius property value), and a change to either one updates the other. Note that setters update the radius property values.

You can also unbind the properties with method unbindBidirectional().

Listing 3.13 Bidirectional Binding—MyBindBidirectional.java

Click here to view code image

package asgteach.bindings;
import javafx.scene.shape.Circle;

public class MyBindBidirectional {

public static void main(String[] args) {
 Circle circle1 = new Circle(10.5);
 Circle circle2 = new Circle(15.5);

 // circle1 takes on value of circle2 radius
 circle1.radiusProperty().bindBidirectional(circle2.radiusProperty());
 System.out.println("Circle1: " + circle1.getRadius());
 System.out.println("Circle2: " + circle2.getRadius());

 circle2.setRadius(20.5);
 // Both circles are now 20.5
 System.out.println("Circle1: " + circle1.getRadius());
 System.out.println("Circle2: " + circle2.getRadius());

 circle1.setRadius(30.5);
 // Both circles are now 30.5
 System.out.println("Circle1: " + circle1.getRadius());
 System.out.println("Circle2: " + circle2.getRadius());

 circle1.radiusProperty().unbindBidirectional(circle2.radiusProperty());
 }

}

Output:
Circle1: 15.5
Circle2: 15.5
Circle1: 20.5
Circle2: 20.5
Circle1: 30.5
Circle2: 30.5

Fluent API and Bindings API

Method bind() works well with JavaFX properties that are the same type. You bind one property to a second property. When the second property changes, the first one’s value gets updated automatically.

However, in many cases, a property’s value will be dependent on another property that you have to manipulate in some way. Or, a property’s value may need to update when more than one property changes. JavaFX has a Fluent API that helps you construct binding expressions for these more complicated relationships.

The Fluent API includes methods for common arithmetic operations, such as add(), subtract(), divide(), and multiply(), boolean expressions, negate(), and conversion to String with asString(). You can use these Fluent API methods with binding expressions. Their arguments are other properties or non-JavaFX property values.

Here’s an example that displays a temperature in both Celsius and Fahrenheit using the conversion formula in a binding expression for the Fahrenheit label.

Click here to view code image

// Suppose you had a "temperature" object
 Temperature myTemperature = new Temperature(0);

// Create two labels
 Label labelF = new Label();
 Label labelC = new Label();

// Bind the labelC textProperty to the Temperature celsiusProperty
 labelC.textProperty().bind(myTemperature.celsiusProperty().asString()
 .concat(" C"));
 // Bind the labelF textProperty to the Temperature celsiusProperty
 // using F = 9/5 C + 32
 labelF.textProperty().bind(myTemperature.celsiusProperty().multiply(9)
 .divide(5).add(32)
 .asString().concat(" F"));

Another common use for binding is enabling and disabling a control based on some condition. Here we bind the disable property of a button based on the status of an animation. If the animation is running, the button is disabled.

Click here to view code image

// Bind button's disableProperty to myTransition running or not
 startButton.disableProperty().bind(myTransition.statusProperty()
 .isEqualTo(Animation.Status.RUNNING));

The Bindings API offers additional flexibility in building binding expressions. The Bindings class has static methods that let you manipulate observable values. For example, here’s how to implement the Fahrenheit temperature conversion using the Bindings API.

Click here to view code image

labelF.textProperty().bind(
 Bindings.format(" %1.1f F",
 Bindings.add(
 Bindings.divide(
 Bindings.multiply(9, myTemperature.celsiusProperty()),
 5), 32)));

Because the Bindings API requires that you build your expression “inside-out,” the expression may not be as readable as the Fluent API. However, the Bindings methods are useful, particularly for formatting the result of binding expressions. The above Bindings.format() gives you the same flexibility as java.util.Formatter for creating a format String. You can also combine the Bindings API with the Fluent API.

Let’s look at another example of using the Fluent API. Figure 3.16 shows an application with a Rectangle. As you resize the window, the Rectangle grows and shrinks. The opacity of the Rectangle also changes when you resize. As the window gets larger, the rectangle gets more opaque, making it appear brighter since less of the dark background is visible through a less-transparent rectangle.

[image:]

Figure 3.16 The Rectangle’s dimensions and fill color change with window resizing

Listing 3.14 shows the code for this application (project MyFluentBind). Constructors create the drop shadow, stack pane, and rectangle, and setters configure them. To provide dynamic resizing of the rectangle, we bind the rectangle’s width property to the scene’s width property divided by two. Similarly, we bind the rectangle’s height property to the scene’s height property divided by two. (Dividing by two keeps the rectangle centered in the window.)

The rectangle’s opacity is a bit trickier. The opacity property is a double between 0 and 1, with 1 being fully opaque and 0 being completely transparent (invisible). So we rather arbitrarily add the scene’s height and width together and divide by 1000 to keep the opacity within the target range of 0 and 1. This makes the opacity change as the rectangle resizes.

Listing 3.14 Fluent API—MyFluentBind.java

Click here to view code image

package asgteach.bindings;
import javafx.application.Application;
import javafx.geometry.Pos;
import javafx.scene.Scene;
import javafx.scene.effect.DropShadow;
import javafx.scene.layout.StackPane;
import javafx.scene.paint.Color;
import javafx.scene.shape.Rectangle;
import javafx.stage.Stage;

public class MyFluentBind extends Application {

@Override
 public void start(Stage stage) {

DropShadow dropShadow = new DropShadow(10.0,
 Color.rgb(150, 50, 50, .688));
 dropShadow.setOffsetX(4);
 dropShadow.setOffsetY(6);
 StackPane stackPane = new StackPane();
 stackPane.setAlignment(Pos.CENTER);
 stackPane.setEffect(dropShadow);

Rectangle rectangle = new Rectangle(100, 50, Color.LEMONCHIFFON);
 rectangle.setArcWidth(30);
 rectangle.setArcHeight(30);

stackPane.getChildren().add(rectangle);

Scene scene = new Scene(stackPane, 400, 200, Color.LIGHTSKYBLUE);
 stage.setTitle("Fluent Binding");

 rectangle.widthProperty().bind(scene.widthProperty().divide(2));
 rectangle.heightProperty().bind(scene.heightProperty().divide(2));

 rectangle.opacityProperty().bind(
 scene.widthProperty().add(scene.heightProperty())
 .divide(1000));

stage.setScene(scene);
 stage.show();
 }

public static void main(String[] args) {
 launch();
 }
}

Custom Binding

When the Fluent API or Bindings API does not apply to your application, you can create a custom binding object. With custom binding, you specify two items:

• the JavaFX property dependencies

• how to compute the desired value.

Let’s rewrite the previous example and create a custom binding object.

First, here is the binding expression presented earlier for the rectangle’s opacity property.

Click here to view code image

rectangle.opacityProperty().bind(
 scene.widthProperty().add(scene.heightProperty())
 .divide(1000));

The binding has two JavaFX property dependencies: the scene’s width and height properties.

Next, determine how to compute the value with this binding expression. Without using the Fluent API or the Bindings API, the computation (which results in a double value) is

Click here to view code image

double myComputedValue = (scene.getWidth() + scene.getHeight()) / 1000;

That is, the opacity’s value is a double that is the sum of the scene’s width and height divided by 1000.

For this example, the custom binding object is type DoubleBinding. You specify the JavaFX property dependencies as arguments in the binding object’s anonymous constructor using super.bind(). The overridden computeValue() method returns the desired value (here, a double). The computeValue() method is invoked whenever any of the properties listed as dependencies change. Here’s what our custom binding object looks like.

Click here to view code image

 DoubleBinding opacityBinding = new DoubleBinding() {
 {
 // Specify the dependencies with super.bind()
 super.bind(scene.widthProperty(), scene.heightProperty());
 }
 @Override
 protected double computeValue() {
 // Return the computed value
 return (scene.getWidth() + scene.getHeight()) / 1000;
 }
 };

For StringBinding, computeValue() returns a String. For IntegerBinding, computeValue() returns an integer, and so forth.

To specify this custom binding object with the Rectangle’s opacity property, use

Click here to view code image

rectangle.opacityProperty().bind(opacityBinding);

Now let’s show you another custom binding example. Figure 3.17 shows a similar JavaFX application with a rectangle whose size and opacity change as the window resizes. This time, we make sure that the opacity is never greater than 1.0 and we display the opacity in a text node inside the rectangle. The text is formatted and includes “opacity = ” in front of the value.

[image:]

Figure 3.17 The Rectangle displays its changing opacity value in a Text component

Listing 3.15 shows the code for this program (project MyCustomBind). The same code creates the drop shadow, rectangle, and stack pane as in the previous example. The rectangle’s height and width properties use the same Fluent API binding expression. Now method computeValue() returns a double for the opacity and makes sure its value isn’t greater than 1.0.

The text label’s text property combines the custom binding object opacityBinding with method Bindings.format() to provide the desired formatting of the text.

Listing 3.15 Custom Binding Example—MyCustomBind.java

Click here to view code image

public class MyCustomBind extends Application {

@Override
 public void start(Stage stage) {

. . . code omitted to build the Rectangle, StackPane
 and DropShadow . . .

Text text = new Text();
 text.setFont(Font.font("Tahoma", FontWeight.BOLD, 18));

stackPane.getChildren().addAll(rectangle, text);

final Scene scene = new Scene(stackPane, 400, 200, Color.LIGHTSKYBLUE);
 stage.setTitle("Custom Binding");

 rectangle.widthProperty().bind(scene.widthProperty().divide(2));
 rectangle.heightProperty().bind(scene.heightProperty().divide(2));
 DoubleBinding opacityBinding = new DoubleBinding() {
 {
 // List the dependencies with super.bind()
 super.bind(scene.widthProperty(), scene.heightProperty());
 }
 @Override
 protected double computeValue() {
 // Return the computed value
 double opacity = (scene.getWidth() + scene.getHeight()) / 1000;
 return (opacity > 1.0) ? 1.0 : opacity;
 }
 };
 rectangle.opacityProperty().bind(opacityBinding);
 text.textProperty().bind((Bindings.format(
 "opacity = %.2f", opacityBinding)));

stage.setScene(scene);
 stage.show();
 }

public static void main(String[] args) {
 launch();
 }
}

How do you create binding objects that return compute values that are not one of the standard types? In this situation, use ObjectBinding with generics. For example, Listing 3.16 shows a custom binding definition that returns a darker Color based on the fill property of a Rectangle. The binding object is type ObjectBinding<Color> and the computeValue() return type is Color. (The cast here is necessary because a Shape’s fill property is a Paint object, which can be a Color, ImagePattern, LinearGradient, or RadialGradient.)

Listing 3.16 ObjectBinding with Generics

Click here to view code image

ObjectBinding<Color> colorBinding = new ObjectBinding<Color>() {
 {
 super.bind(rectangle.fillProperty());
 }

@Override
 protected Color computeValue() {
 if (rectangle.getFill() instanceof Color) {
 return ((Color)rectangle.getFill()).darker();
 } else {
 return Color.GRAY;
 }
 }
 };

3.4 Putting It All Together

Our final example in this chapter applies what you’ve learned about properties, binding, change listeners, and layout controls to create a program that simulates a race track with one car. As the car travels along the track, a lap counter updates each time the car passes the starting point. Figure 3.18 shows this program running at two points in time.

[image:]

Figure 3.18 A Race Track with PathTransition and Lap Counter

This example pulls together several important concepts from this chapter: binding properties to keep values synchronized as the program runs; using a change listener to track changes in a property; and writing button event handlers that control the execution of the program. We’ll also show you how to organize nodes in a Group to keep items in their relative coordinate positions while still maintaining the layout’s overall positioning. We’ve shown you a RotateTransition example; now we’ll show you how to use PathTransition for the race track.

The program includes a Start/Pause button to start and pause the animation. Once you start, the speed up and slow down buttons alter the car’s travel rate. When the animation is paused (as shown in the left side figure), the Start/Pause button displays Start and the slower/faster buttons are disabled. When the animation is running (the right side), the Start/Pause button displays Pause and the slower/faster buttons are enabled.

We’ll implement the animation with PathTransition, a high-level Transition that animates a node along a JavaFX Path. Path is a Shape consisting of Path elements, where each element can be any one of several geometric objects, such as LineTo, ArcTo, QuadraticCurveTo, and CubicCurveTo. In our example, we build an oval track by combining Path elements MoveTo (the starting point), ArcTo, LineTo, and ClosePath (a specialized Path element that provides a LineTo from the current Path element point to the starting point).

Our race car is a rounded Rectangle and a Text node displays the current lap count. We implement this example using FXML. An associated controller class defines the buttons’ action event handlers, binding, and the PathTransition.

Figure 3.19 shows the scene graph structure. The top-level node is a VBox, which keeps its children (a StackPane and an HBox) in vertical alignment and centered. The StackPane also centers its child Group and Text nodes. The Group, in turn, consists of the Path, the track’s starting Line, and the race car (a Rectangle). These three nodes use the Group’s local coordinate system for their relative placement.

[image:]

Figure 3.19 Scene graph hierarchy for project RaceTrackFXApp

The HBox maintains its children in a horizontal alignment. If you resize the JavaFX application window frame, these components all remain centered.

Listing 3.17 shows the FXML markup for the VBox, StackPane, Group, Text, and HBox nodes (we’ll show you the other nodes next). The scene graph hierarchy from Figure 3.19 matches the FXML elements shown in RaceTrack.fxml. The top node, VBox, specifies the controller class with attribute fx:controller. Note that we also supply an fx:id="text" attribute with the Text node. This lets the Controller class access the Text object in Java controller code.

Listing 3.17 RaceTrack.fxml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.shape.*?>
<?import javafx.scene.text.*?>
<?import javafx.scene.effect.*?>

<VBox id="VBox" prefHeight="300" prefWidth="400" spacing="20"
 alignment="CENTER" style="-fx-background-color: lightblue;"
 xmlns:fx="http://javafx.com/fxml"
 fx:controller="racetrackfxapp.RaceTrackController">
 <children>
 <StackPane >
 <children>
 <Group>
 <children>
 (See Listing 3.18)
 </children>
 </Group>
 <Text fx:id="text" >

 <effect><Reflection /></effect>
 </Text>
 </children>
 </StackPane>
 <HBox spacing="20" alignment="CENTER" >
 (See Listing 3.19)
 </HBox>
 </children>
</VBox>

Listing 3.18 shows the FXML for the Group’s children: the Path, Line, and Rectangle nodes. The Path node includes the elements that form the oval RaceTrack: MoveTo, ArcTo, LineTo, and ClosePath. The Line node marks the starting line on the track. The Rectangle node represents the “race car.” Nodes Path and Rectangle also have fx:id attributes defined for Controller access. Both the Path and Line nodes define a DropShadow effect.

Listing 3.18 Path, Line, and Rectangle Nodes

Click here to view code image

<Group>
 <children>
 <Path fx:id="path" stroke="DARKGOLDENROD"
 strokeWidth="15" fill="orange" >
 <effect>
 <DropShadow fx:id="dropshadow" radius="10"
 offsetX="5" offsetY="5" color="GRAY" />
 </effect>
 <elements>
 <MoveTo x="0" y="0" />
 <ArcTo radiusX="100" radiusY="50" sweepFlag="true" x="270" y="0" />
 <LineTo x="270" y="50" />
 <ArcTo radiusX="100" radiusY="50" sweepFlag="true" x="0" y="50" />
 <ClosePath />
 </elements>
 </Path>
 <Line startX="-25" startY="0" endX="10" endY="0" strokeWidth="4"
 stroke="BLUE" strokeLineCap="ROUND" effect="$dropshadow" />
 <Rectangle fx:id="rectangle" x="-15" y="0" width="35" height="20"
 fill="YELLOW" arcWidth="10" arcHeight="10"
 stroke="BLACK" rotate="90" />
 </children>
</Group>

Listing 3.19 shows the FXML for the three Button nodes that appear in the HBox layout pane. All three buttons include fx:id attributes because they participate in binding expressions within the Controller class. The onAction attribute specifies the action event handler defined for each button. These event handlers control the PathTransition’s animation. The startPauseButton configures property prefWidth. This makes the button maintain a constant size as the button’s text changes between “Start” and “Pause.”

Listing 3.19 HBox and Button Nodes

Click here to view code image

<HBox spacing="20" alignment="CENTER" >
 <Button fx:id="slowerButton" onAction="#slowerAction" />
 <Button fx:id="startPauseButton" prefWidth="80"
 onAction="#startPauseAction" />
 <Button fx:id="fasterButton" onAction="#fasterAction" />
</HBox>

Now that the UI is completely described with FXML, let’s examine the Controller class, class RaceTrackController, as shown in Listing 3.20 through Listing 3.23. The @FXML annotations mark each variable created in the FXML that the Controller class needs to access. Recall that the FXML Loader is responsible for instantiating these objects, so you won’t see any Java code that creates them.

The initialize() method is invoked by the FXML Loader after the scene graph objects are instantiated. Here we perform additional scene graph configuration. Specifically, we instantiate the PathTransition (the animation object responsible for moving the “car” along the RaceTrack path). This high-level animation applies to a node (here, a Rectangle). The orientation property (OrientationType.ORTHOGONAL_TO_TANGENT) keeps the rectangle correctly oriented as it moves along the path. We set the duration, cycle count, and interpolator, making the cycle count INDEFINITE. The animation rate remains constant with Interpolator.LINEAR.

Listing 3.20 RaceTrackController.java

Click here to view code image

package racetrackfxapp;

import java.net.URL;
import java.util.ResourceBundle;
import javafx.animation.Animation;
import javafx.animation.Interpolator;
import javafx.animation.PathTransition;
import javafx.beans.binding.When;
import javafx.beans.property.IntegerProperty;
import javafx.beans.property.SimpleIntegerProperty;
import javafx.beans.value.ObservableValue;
import javafx.event.ActionEvent;
import javafx.fxml.FXML;
import javafx.fxml.Initializable;
import javafx.scene.control.Button;
import javafx.scene.shape.Path;
import javafx.scene.shape.Rectangle;
import javafx.scene.text.Text;
import javafx.util.Duration;

public class RaceTrackController implements Initializable {

 // Objects defined in the FXML
 @FXML
 private Rectangle rectangle;
 @FXML
 private Path path;
 @FXML
 private Text text;
 @FXML
 private Button startPauseButton;
 @FXML
 private Button slowerButton;
 @FXML
 private Button fasterButton;
 private PathTransition pathTransition;

 @Override
 public void initialize(URL url, ResourceBundle rb) {

 // Create the PathTransition
 pathTransition = new PathTransition(Duration.seconds(6),
 path, rectangle);
 pathTransition.setOrientation(
 PathTransition.OrientationType.ORTHOGONAL_TO_TANGENT);
 pathTransition.setCycleCount(Animation.INDEFINITE);
 pathTransition.setInterpolator(Interpolator.LINEAR);
 . . .
 additional code from method initialize() shown in Listing 3.21,
 Listing 3.22, and Listing 3.23
 . . .
 }
}

Listing 3.21 shows how the Lap Counter works. Here, we create a JavaFX property called lapCounterProperty by instantiating SimpleIntegerProperty, an implementation of abstract class IntegerProperty. We need a JavaFX property here because we use it in a binding expression. (We discuss creating your own JavaFX properties in detail in the next chapter; see “Creating JavaFX Properties” on page 132.)

Next, we create a ChangeListener (with a lambda expression) and attach it to the PathTransition’s currentTime property. We count laps by noticing when the animation’s currentTime property old value is greater than its new value. This happens when one lap completes and the next lap begins. We then increment lapCounterProperty.

We create a binding expression to display the Lap Counter in the Text component. We bind the Text’s text property to the lapCounterProperty, using the Fluent API to convert the integer to a String and provide the formatting.

Note that the ChangeListener method is invoked frequently—each time the current time changes. However, inside the listener method, we only update lapCounterProperty once per lap, ensuring that the Text node’s text property only updates once a lap. This two-step arrangement makes the related binding with the Text node an efficient way to keep the UI synchronized.

Listing 3.21 Configuring the Lap Counter Binding

Click here to view code image

// We count laps by noticing when the currentTimeProperty changes and the
// oldValue is greater than the newValue, which is only true once per lap
// We then increment the lapCounterProperty
final IntegerProperty lapCounterProperty = new SimpleIntegerProperty(0);
pathTransition.currentTimeProperty().addListener(
 (ObservableValue<? extends Duration> ov,
 Duration oldValue, Duration newValue) -> {
 if (oldValue.greaterThan(newValue)) {
 lapCounterProperty.set(lapCounterProperty.get() + 1);
 }
});
// Bind the text's textProperty to the lapCounterProperty and format it
text.textProperty().bind(lapCounterProperty.asString("Lap Counter: %s"));

The Start/Pause button lets you start and pause the animation, as shown in Listing 3.22. The @FXML annotations before the action event handlers make the FXML Loader wire the Start/Pause button’s onAction property with the proper event handler. This invokes the handler when the user clicks the button. If the animation is running, method pause() pauses it. Otherwise, the animation is currently paused and the play() method either starts or resumes the animation at its current point.

The button’s text is controlled with binding object When, the beginning point of a ternary binding expression. Class When takes a boolean condition that returns the value in method then() if the condition is true or the value in method otherwise() if it’s false. For the Start/Pause button, we set its text to “Pause” if the animation is running; otherwise, we set the text to “Start.”

Listing 3.22 Start/Pause Button

Click here to view code image

 @FXML
 private void startPauseAction(ActionEvent event) {
 if (pathTransition.getStatus() == Animation.Status.RUNNING) {
 pathTransition.pause();
 } else {
 pathTransition.play();
 }
 }
. . .
 startPauseButton.textProperty().bind(
 new When(pathTransition.statusProperty()
 .isEqualTo(Animation.Status.RUNNING))
 .then("Pause").otherwise("Start"));

Listing 3.23 shows the faster/slower button handler code. Both buttons’ action event handlers (annotated with @FXML to wire them to the respective Buttons defined in the FXML file) manipulate the animation’s rate property. We specify a maximum rate of 7.0 (seven times the default rate) and a minimum rate of .3. Each time the user clicks the faster or slower button the rate changes up or down by .3. We set the new rate by accessing the transition’s currentRate property. The printf() statements let you see the changed rates for each button click.

The faster/slower buttons are disabled when the animation is not running. This is accomplished with binding expressions that check the animation’s status. Finally, the controller sets the text of the faster/slower buttons.

Listing 3.23 Faster and Slower Buttons

Click here to view code image

// Constants to control the transition's rate changes
 final double maxRate = 7.0;
 final double minRate = .3;
 final double rateDelta = .3;
 @FXML
 private void slowerAction(ActionEvent event) {
 double currentRate = pathTransition.getRate();
 if (currentRate <= minRate) {
 return;
 }
 pathTransition.setRate(currentRate - rateDelta);
 System.out.printf("slower rate = %.2f\n", pathTransition.getRate());
 }

@FXML
 private void fasterAction(ActionEvent event) {
 double currentRate = pathTransition.getRate();
 if (currentRate >= maxRate) {
 return;
 }
 pathTransition.setRate(currentRate + rateDelta);
 System.out.printf("faster rate = %.2f\n", pathTransition.getRate());
 }
. . .
 fasterButton.disableProperty().bind(pathTransition.statusProperty()
 .isNotEqualTo(Animation.Status.RUNNING));
 slowerButton.disableProperty().bind(pathTransition.statusProperty()
 .isNotEqualTo(Animation.Status.RUNNING));

fasterButton.setText(" >> ");
 slowerButton.setText(" << ");

A key point with this example is that JavaFX properties and bindings let you write much less code. To enable and disable the buttons without binding, you would need to create a change listener, attach it to the animation’s status property, and write an event handler that updates the button’s disable property. You would also need a similar change listener to control the Start/Pause button’s text property. Binding expressions (including custom binding objects) are much more concise and less error prone than listeners that configure property dependencies such as these.

However, at times you will need a ChangeListener or InvalidationListener, as we show in this example to implement the lap counter.

This example also shows how FXML markup helps you visualize the structure of the scene graph that you’re building. Working with FXML, as opposed to only Java APIs, makes it easier to modify scene graphs. We’ve also built this example using only APIs (see project RaceTrack in the book’s download). We encourage you to compare the two projects. We think you’ll find the FXML version easier to understand.

3.5 Key Point Summary

This chapter introduces JavaFX and shows you how to write JavaFX programs that display and manipulate scene graph objects. Here are the key points in this chapter.

• JavaFX provides a rich graphical user interface. Its hierarchical scene graph lets you easily configure rich content and provide visually pleasing effects such as gradients, drop shadows, and reflection.

• JavaFX graphics take advantage of hardware-accelerated graphics capabilities for rendering and animation that performs well.

• You can embed JavaFX content within a Swing panel. This lets you use JavaFX without throwing away Swing applications. (See “The Magic of JFXPanel” on page 259.)

• Like Swing, JavaFX uses a single-threaded execution environment.

• You use Java APIs and/or FXML markup with a controller class to create JavaFX content.

• FXML is an XML markup language that lets you specify scene graph content. The hierarchical form of FXML lets you visualize the scene graph structure more easily than with Java APIs. FXML also helps you keep visual content separate from controller code (such as event handlers).

• You configure FXML scene graph nodes using property names and values that convert to the correct types.

• The FXML controller class lets you provide JavaFX node initialization code, dynamic content, and event handlers.

• CSS lets you style JavaFX nodes. You can configure the style property on nodes individually, or provide style sheets for styling an entire application.

• You can specify CSS files either in the main program or in the FXML markup.

• JavaFX provides high-level transitions that let you specify many common animations. This includes movement, rotation, fading in or out, scaling, color changes for fill or stroke properties, and movement along a path.

• JavaFX properties are a significant feature in JavaFX. JavaFX properties are observable and provide similar naming conventions to JavaBeans properties.

• JavaFX properties can be read-write, read-only, or immutable.

• You can attach a ChangeListener or InvalidationListener to any JavaFX property.

• Bindings are more concise and less error-prone than listeners. Bindings are a powerful mechanism that keep application variables synchronized.

• You can create bindings between JavaFX properties that specify a dependency of one property on another. Bindings can be unidirectional or bidirectional.

• Use the Fluent API and Bindings API to specify more complicated binding expressions with one or more properties.

• You can create custom binding objects that specify property dependencies and how to compute the binding’s return value.

What’s Next?

With this introduction to JavaFX, you are now ready to learn how to use JavaFX effectively in a desktop application. The approach for these next examples will be similar to the examples we’ve presented previously with Swing.

4. Working with JavaFX

The previous chapter shows you how to create JavaFX applications with simple controls and shapes. We also show you examples with animation. Chapter 3 is mostly about getting comfortable with JavaFX. With the chapter’s examples, you learned how to use the JavaFX scene graph, manipulate JavaFX properties with binding expressions, and create custom binding objects.

In this chapter we move on to desktop applications that use JavaFX for the UI. There really is no “typical” desktop application. But desktop applications all present a UI to the user and let the user manipulate model objects through UI controls. This includes selection controls, button clicks, and editing with text input controls.

Chapter 2 presents a small Swing application that emphasizes loose coupling among event handlers and model objects. These concepts are no less important with JavaFX. This chapter shows you how to build a similar application with JavaFX. You’ll also discover how to manipulate model objects using JavaFX UI controls.

What You Will Learn

• Create JavaFX properties.

• Use ChangeListeners and observable collections.

• Explore Scene Builder and create a JavaFX UI.

• Incorporate JavaFX controls, events, and listeners into JavaFX applications.

• Create background tasks in JavaFX that safely update the UI.

4.1 Creating JavaFX Properties

The previous chapter showed you JavaFX properties in action with ChangeListeners, InvalidationListeners, and most importantly binding expressions and custom binding objects. Binding shows how powerful JavaFX properties are. Now let’s show you how to create and use JavaFX properties in model classes.1

1. We show you how to add JavaFX properties to JPA-annotated entity classes in Chapter 16. See “Entity Classes and JavaFX Properties” on page 807.

We start with the Person class from Chapter 2 (see Listing 2.5 on page 30). Recall that Person has JavaBeans properties, including several String properties, an immutable long property (id), and a Person.Gender property (gender). We’re now going to create JavaFX properties for these values. Listing 4.1 shows a straightforward implementation for JavaFX property firstname.

To construct a StringProperty (an abstract type), we use SimpleStringProperty, which provides an implementation of a JavaFX StringProperty that wraps a String value. The property’s constructor has three arguments: a reference to the containing bean, the name of the property, and the initial value of the property. (The initial value is optional.) The first two values let you invoke getBean() for the containing bean and getName() for the property name, as shown in Listing 3.9 on page 104.

The property’s setter and getter methods forward their calls to the JavaFX property’s setter and getter. Method firstnameProperty() returns the created JavaFX property. This arrangement follows the naming convention for traditional JavaBeans while still providing access to the JavaFX property. Remember, you only need to access a JavaFX property when creating a binding expression or attaching a listener.

Listing 4.1 Person JavaFX Property firstname—Simple Implementation

Click here to view code image

public class Person implements Serializable {

private final StringProperty firstname =
 new SimpleStringProperty(this, "firstname", "");

public String getFirstname() {
 return firstname.get();
 }

public void setFirstname(String firstname) {
 this.firstname.set(firstname);
 }
 public final StringProperty firstnameProperty() {
 return firstname;
 }
. . . code omitted for other properties . . .
}

JavaFX Properties with Lazy Evaluation

Before we discuss the other JavaFX properties for class Person, let’s show you another way to implement the JavaFX property firstname. Consider if you had a JavaFX bean with many JavaFX properties and your application creates many of these objects. Each JavaFX property is itself an Object and therefore the number of Objects created could become large. (For example, the JavaFX node hierarchy consists of classes with many JavaFX properties, and JavaFX applications potentially create many scene graph nodes.)

An alternate implementation delays the creation of the JavaFX property until you attach a listener or use the property in a binding expression. In other words, the JavaFX property is not created until the user invokes the firstnameProperty() method. Simply changing the property’s value does not create the JavaFX property. To achieve this lazy instantiation, you create a shadow field to hold the value until the JavaFX property is needed. Listing 4.2 shows the approach.

The setter and getter first make sure the JavaFX property is not null before using it. Otherwise, you get and set the value using shadow field _firstname. Method firstnameProperty() creates the JavaFX property if it does not yet exist. Therefore, the JavaFX property is only created if method firstnameProperty() is invoked.

Listing 4.2 Person JavaFX Property firstname—Alternate Implementation

Click here to view code image

private StringProperty firstname;
 private String _firstname = ""; // shadow field

public String getFirstname() {
 return (firstname != null) ? firstname.get() : _firstname;
 }

public void setFirstname(String newFirstname) {
 if (firstname != null) {
 firstname.set(newFirstname);
 } else {
 _firstname = newFirstname;
 }
 }
 public final StringProperty firstnameProperty() {
 if (firstname == null) {
 firstname = new SimpleStringProperty(this, "firstname", _firstname);
 }
 return firstname;
 }

Consider using this alternate implementation when your model class has a large number of properties.2

2. We don’t use lazy evaluation with class Person because Person includes a computed property that requires eager JavaFX property evaluations. See “Computed Properties” on page 135.

Object Properties

JavaFX provides property implementations for primitive property types and the String class. You’ve already seen SimpleStringProperty for abstract StringProperty. There is also SimpleIntegerProperty for abstract IntegerProperty, SimpleDoubleProperty for abstract DoubleProperty, and so on. For other types, use SimpleObjectProperty with generics. For example, a Color property uses SimpleObjectProperty-<Color> for abstract ObjectProperty<Color>.

Listing 4.3 shows how to implement the Person gender property using SimpleObjectProperty<Person.Gender> and ObjectProperty<Person.Gender>, which wraps a Person.Gender value. Here, we use the non-lazy implementation that we showed you for property firstname in Listing 4.1 on page 132. The constructor sets a reference to the containing bean (this), the property name ("gender"), and an initial value (Gender.UNKNOWN). The setter and getter forward calls to the JavaFX property’s setter and getter. The genderProperty() method returns the JavaFX property when the user needs to create a binding expression or attach a listener.

Listing 4.3 Person JavaFX Property gender

Click here to view code image

. . .
 public enum Gender {
 MALE, FEMALE, UNKNOWN
 }

private final ObjectProperty<Person.Gender> gender =
 new SimpleObjectProperty<>(this, "gender", Gender.UNKNOWN);

public Person.Gender getGender() {
 return gender.get();
 }
 public void setGender(Person.Gender gender) {
 this.gender.set(gender);
 }

public final ObjectProperty<Person.Gender> genderProperty() {
 return gender;
 }

Immutable Properties

Recall that property id in our Person class is immutable. In this case, there is no need to create a JavaFX property. The JavaFX properties are specifically designed to track changes in the property’s value, which can’t happen with immutable.

You can easily use the value of an immutable property to update another property. Here’s an example that sets the text of a label to the value of the id property.

Click here to view code image

myLabel.setText(myPerson.getId());

If you have a property that depends on the value of the id property, you can still use getId() in a binding expression with the Fluent API.

Immutable Properties
Even though it’s pointless to observe immutable properties, you could provide a JavaFX property implementation for property id (for completeness). In this case, you should use the “lazy creation” approach described in Listing 4.2 on page 133.

Computed Properties

Listing 4.4 shows the implementation of Person method toString() from Chapter 2. This returns a nicely formatted String that depends on properties firstname, middlename, lastname, and suffix and excludes them if the values are empty.

Listing 4.4 Conventional JavaBean toString() Method for Person

Click here to view code image

@Override
 public String toString() {
 StringBuilder sb = new StringBuilder();
 if (!firstname.isEmpty()) {
 sb.append(firstname);
 }
 if (!middlename.isEmpty()) {
 sb.append(" ").append(middlename);
 }
 if (!lastname.isEmpty()) {
 sb.append(" ").append(lastname);
 }
 if (!suffix.isEmpty()) {
 sb.append(" ").append(suffix);
 }
 return sb.toString();
 }

Let’s create a read-only property in JavaFX that computes its value based on these same properties. Like toString(), we’ll use StringBuilder to build a nicely formatted String and only include the values if they are not empty. We call this computed StringProperty fullname.

Since we want method getFullname() to always return the most up-to-date value, we create a custom binding to keep property fullname synchronized with the rest of the properties upon which it depends. Listing 4.5 shows this custom binding object.

Using super.bind(), the anonymous constructor sets the property dependencies: firstname, middlename, lastname, and suffix. Method computeValue() builds the String, which looks very similar to the toString() implementation in Listing 4.4.

Listing 4.5 Custom Binding Object for Property fullname

Click here to view code image

public class Person implements Serializable {
. . .
 private final StringBinding fullNameBinding = new StringBinding() {
 {
 super.bind(firstname, middlename, lastname, suffix);
 }

@Override
 protected String computeValue() {
 StringBuilder sb = new StringBuilder();
 if (!firstname.get().isEmpty()) {
 sb.append(firstname.get());
 }
 if (!middlename.get().isEmpty()) {
 sb.append(" ").append(middlename.get());
 }
 if (!lastname.get().isEmpty()) {
 sb.append(" ").append(lastname.get());
 }
 if (!suffix.get().isEmpty()) {
 sb.append(" ").append(suffix.get());
 }
 return sb.toString();
 }
 };
}

Listing 4.6 shows our implementation of property fullname. Note that it is fully observable and its value can change, but there is no setter. We return a ReadOnlyStringProperty for method fullnameProperty(). This prevents users of the property from changing its value.

JavaFX provides wrapper classes that implement read-only JavaFX properties. When you use a wrapper class, two properties are created: one is read only and the other can be modified. The wrapper class keeps these properties synchronized for you.

Listing 4.6 shows the Person constructors that set the binding for property fullname. With this binding, any changes to properties firstname, middlename, lastname, or suffix update property fullname. If a user binds to property fullname, changes will propagate to the user’s binding, too.

Method toString() now becomes trivial. It returns the fullname property value for the Person.

Listing 4.6 Person JavaFX Property fullname

Click here to view code image

. . .
 private final ReadOnlyStringWrapper fullname =
 new ReadOnlyStringWrapper(this, "fullname");

 public final ReadOnlyStringProperty fullnameProperty() {
 return fullname.getReadOnlyProperty();
 }

public final String getFullname() {
 return fullname.get();
 }

 public Person() {
 this("", "", Gender.UNKNOWN);
 }
 public Person(String first, String last, Person.Gender gender) {
 this.firstname.set(first);
 this.lastname.set(last);
 this.gender.set(gender);
 this.id = count++;
 this.fullname.bind(fullNameBinding);
 }

 public Person(Person person) {
 this.firstname.set(person.getFirstname());
 this.middlename.set(person.getMiddlename());
 this.lastname.set(person.getLastname());
 this.suffix.set(person.getSuffix());
 this.gender.set(person.getGender());
 this.notes.set(person.getNotes());
 this.id = person.getId();
 this.fullname.bind(fullNameBinding);
 }

 @Override
 public String toString() {
 return fullname.get();
 }
. . .

Note that if you have a read-only JavaFX property whose value is maintained internally rather than computed, you would use the same read-only wrapper approach. If the property is not computed, you would not need to bind its value.

Methods equals() and hashCode()

The previous version of class Person based equals() and hashCode() solely on property id (see Listing 2.3 on page 24). This lets you use equals() on objects that perhaps have different values for the name properties but equal id’s. We’re going to take a different approach now and make sure that two Person objects are equal only if all of their properties are equal. We’re making this change to take advantage of the JavaFX observable collection classes, which we discuss in the next section.

Listing 4.7 shows the updated equals() and hashCode() methods for class Person. The computed property fullname necessarily includes all of its dependent properties, so we just need to include properties id, notes, and gender to the computation as well.

Listing 4.7 Person equals() and hashCode() Methods

Click here to view code image

public class Person implements Serializable {

. . . code omitted . . .
 @Override
 public int hashCode() {
 int hash = 3;
 hash = 97 * hash + Objects.hashCode(this.id)
 + Objects.hashCode(this.fullname.get())
 + Objects.hashCode(this.notes.get())
 + Objects.hashCode(this.gender.get());
 return hash;
 }

 @Override
 public boolean equals(Object obj) {
 if (obj == null || getClass() != obj.getClass()) {
 return false;
 }
 final Person other = (Person) obj;
 return Objects.equals(this.id, other.id)
 && Objects.equals(this.fullname.get(), other.fullname.get())
 && Objects.equals(this.notes.get(), other.notes.get())
 && Objects.equals(this.gender.get(), other.gender.get());
 }
}

4.2 Using JavaFX Properties in a JavaFX Application

Now let’s create a JavaFX application that uses binding with a Person object to show how JavaFX properties are observable. Figure 4.1 shows program PersonFXAppBound program running. A label (the component at the top) is bound to Person marge with

Click here to view code image

margeLabel.textProperty().bind(marge.fullnameProperty());

[image:]

Figure 4.1 Program PersonFXAppBound: Binding the label’s text will keep it synchronized with the underlying model

The Change button modifies Person marge, resulting in the updated label (right side). The Reset button resets the Person marge to its original setting, as shown on the left side.

Creating a JavaFX FXML Application

We structure this application with FXML. To build this application using the NetBeans IDE, following these steps.

1. From the top-level menu, select File | New Project

2. From the Choose Project dialog, select JavaFX under Categories and JavaFX FXML Application under Projects, as shown in Figure 4.2. Click Next.

[image:]

Figure 4.2 JavaFX FXML Application in the New Project wizard

3. In the Name and Location dialog, specify PersonFXAppBound for the Project Name and PersonFXBound for the FXML name. Make sure the JavaFX Platform is (at least) JDK 1.8. Accept the defaults for the remaining fields and click Finish, as shown in Figure 4.3.

[image:]

Figure 4.3 New JavaFX Project Name and Location dialog

NetBeans creates a JavaFX Application project. Expand node Source Packages and personfxappbound to view the three files created for this application: PersonFXAppBound.java (the main application class), PersonFXBound.fxml (the FXML file), and PersonFXBoundController.java (the controller class), as shown in Figure 4.4.

[image:]

Figure 4.4 Project PersonFXAppBound shown in the Projects view

Add Person.java to Application PersonFXAppBound

You’ll now create class Person.java in its own package and supply code, as follows.

1. In project PersonFXAppBound, right click on node Source Packages and select New | Java Class from the context menu.

2. NetBeans displays the New Java Class Name and Location dialog. Specify Person for Class Name and com.asgteach.familytree.model for Package, as shown in Figure 4.5. Click Finish.

[image:]

Figure 4.5 New Java Class Name and Location dialog

3. NetBeans creates file Person.java in package com.asgteach.familytree.model.

4. Use the code for Person.java as discussed in the previous section and shown here in Listing 4.8.

Listing 4.8 Class Person.java

Click here to view code image

public class Person implements Serializable {

private final long id;
 private final StringProperty firstname =
 new SimpleStringProperty(this, "firstname", "");
 private final StringProperty middlename =
 new SimpleStringProperty(this, "middlename", "");
 private final StringProperty lastname =
 new SimpleStringProperty(this, "lastname", "");
 private final StringProperty suffix =
 new SimpleStringProperty(this, "suffix", "");
 private final ObjectProperty<Person.Gender> gender =
 new SimpleObjectProperty<>(this, "gender", Gender.UNKNOWN);
 private final StringProperty notes =
 new SimpleStringProperty(this, "notes", "");

private final StringBinding fullNameBinding = new StringBinding() {
 {
 super.bind(firstname, middlename, lastname, suffix);
 }
 @Override
 protected String computeValue() {
 StringBuilder sb = new StringBuilder();
 if (!firstname.get().isEmpty()) {
 sb.append(firstname.get());
 }
 if (!middlename.get().isEmpty()) {
 sb.append(" ").append(middlename.get());
 }
 if (!lastname.get().isEmpty()) {
 sb.append(" ").append(lastname.get());
 }
 if (!suffix.get().isEmpty()) {
 sb.append(" ").append(suffix.get());
 }
 return sb.toString();
 }
 };
 private final ReadOnlyStringWrapper fullname =
 new ReadOnlyStringWrapper(this, "fullname");
 private static long count = 0;

public enum Gender {
 MALE, FEMALE, UNKNOWN
 }

public Person() {
 this("", "", Gender.UNKNOWN);
 }

public Person(String first, String last, Person.Gender gender) {
 this.firstname.set(first);
 this.lastname.set(last);
 this.gender.set(gender);
 this.id = count++;
 this.fullname.bind(fullNameBinding);
 }

public Person(Person person) {
 this.firstname.set(person.getFirstname());
 this.middlename.set(person.getMiddlename());
 this.lastname.set(person.getLastname());
 this.suffix.set(person.getSuffix());
 this.gender.set(person.getGender());
 this.notes.set(person.getNotes());
 this.id = person.getId();
 this.fullname.bind(fullNameBinding);
 }
 public final long getId() {
 return id;
 }

public final ReadOnlyStringProperty fullnameProperty() {
 return fullname.getReadOnlyProperty();
 }

public final String getFullname() {
 return fullname.get();
 }

public String getNotes() {
 return notes.get();
 }

public void setNotes(String notes) {
 this.notes.set(notes);
 }

public final StringProperty notesProperty() {
 return notes;
 }

public String getFirstname() {
 return firstname.get();
 }

public void setFirstname(String firstname) {
 this.firstname.set(firstname);
 }

public final StringProperty firstnameProperty() {
 return firstname;
 }

public Person.Gender getGender() {
 return gender.get();
 }

public void setGender(Person.Gender gender) {
 this.gender.set(gender);
 }

public final ObjectProperty<Person.Gender> genderProperty() {
 return gender;
 }
 public String getLastname() {
 return lastname.get();
 }

public void setLastname(String lastname) {
 this.lastname.set(lastname);
 }

public final StringProperty lastnameProperty() {
 return lastname;
 }

public String getMiddlename() {
 return middlename.get();
 }

public void setMiddlename(String middlename) {
 this.middlename.set(middlename);
 }

public final StringProperty middlenameProperty() {
 return middlename;
 }

public String getSuffix() {
 return suffix.get();
 }

public void setSuffix(String suffix) {
 this.suffix.set(suffix);
 }

public final StringProperty suffixProperty() {
 return suffix;
 }

@Override
 public int hashCode() {
 int hash = 3;
 hash = 97 * hash + Objects.hashCode(this.id)
 + Objects.hashCode(this.fullname.get())
 + Objects.hashCode(this.notes.get())
 + Objects.hashCode(this.gender.get());
 return hash;
 }

@Override
 public boolean equals(Object obj) {
 if (obj == null || getClass() != obj.getClass()) {
 return false;
 }
 final Person other = (Person) obj;
 return Objects.equals(this.id, other.id)
 && Objects.equals(this.fullname.get(), other.fullname.get())
 && Objects.equals(this.notes.get(), other.notes.get())
 && Objects.equals(this.gender.get(), other.gender.get());
 }

@Override
 public String toString() {
 return fullname.get();
 }
}

FXML Markup

Listing 4.9 shows the FXML for this application, which uses a vertical box (VBox) to hold three controls: a Label and two Buttons.

The VBox is the top or root node. We specify the controller class name (PersonFXBoundController), the preferred width and height, and a linear gradient for the VBox’s background color. The alignment is centered and we specify a 20-pixel spacing between children nodes.

The VBox has three children. Label is the first (so it appears at the top). We provide an fx:id value so we can reference the label in the Java controller code. Next, we define two buttons. For each one, we specify the text and onAction properties. The onAction property references a method that is defined in the controller.

Listing 4.9 PersonFXBound.fxml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<VBox id="VBox" prefHeight="200" prefWidth="320"
 xmlns:fx="http://javafx.com/fxml"
 fx:controller="personfxappbound.PersonFXBoundController"
 alignment="CENTER" spacing="20"
 style="-fx-background-color:
 linear-gradient(aliceblue, lightblue);">
 <Label fx:id="margeLabel" />
 <Button text="Change Marge"
 onAction="#changeButtonAction" />
 <Button text="Reset Marge"
 onAction="#resetButtonAction" />
</VBox>

Controller Class

Controller class PersonFXBoundController is shown in Listing 4.10. Annotation @FXML identifies the scene graph object created in FXML (Label margeLabel) as well as the two action methods referenced in the FXML (resetButtonAction() and changeButtonAction()). The controller creates one Person object (marge).

Method initialize() is invoked after the scene graph is created. Here we specify that the label’s text property is bound to the fullname property of Person marge.

Both button action methods modify the middlename property of Person marge. The binding keeps the label synchronized with the updated fullname property.

Listing 4.10 PersonFXBoundController.java

Click here to view code image

package personfxappbound;

import com.asgteach.familytree.model.Person;
import java.net.URL;
import java.util.ResourceBundle;
import javafx.event.ActionEvent;
import javafx.fxml.FXML;
import javafx.fxml.Initializable;
import javafx.scene.control.Label;

public class PersonFXBoundController implements Initializable {

 @FXML
 private Label margeLabel;

final Person marge = new Person("Marge", "Simpson", Person.Gender.FEMALE);

 @FXML
 private void changeButtonAction(ActionEvent event) {
 marge.setMiddlename("Louise");
 }

 @FXML
 private void resetButtonAction(ActionEvent event) {
 marge.setMiddlename("");
 }
 @Override
 public void initialize(URL url, ResourceBundle rb) {
 // margeLabel uses binding to keep the textfield synchronized
 // with Person marge
 margeLabel.textProperty().bind(marge.fullnameProperty());
 }
}

JavaFX Application Code

Listing 4.11 shows the Java application code that reads the FXML, starts the JavaFX Application Thread, and instantiates the scene graph.

Listing 4.11 PersonFXAppBound.java

Click here to view code image

package personfxappbound;

import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Parent;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class PersonFXAppBound extends Application {

 @Override
 public void start(Stage stage) throws Exception {
 Parent root = FXMLLoader.load(getClass()
 .getResource("PersonFXBound.fxml"));
 Scene scene = new Scene(root);
 stage.setScene(scene);
 stage.setTitle("Person Bind Example");
 stage.show();
 }

public static void main(String[] args) {
 launch(args);
 }
}

4.3 Observable Collections

The examples so far deal only with observable variables. JavaFX also has observable collections that let you observe when changes are made as you add to, remove from, or update a collection. You react to changes by attaching change listeners or invalidation listeners to these collections.

Significantly, collections signal change events by using the item’s equals() method. If you replace one item with another, no change event is fired if the two items are equal. Thus, we need to make sure that a modified Person object with perhaps just an updated notes property or middlename property generates a change event. (This is why the Person class equals() verifies that all Person properties are equal, as shown in Listing 4.7 on page 138.)

Listing 4.12 shows the FamilyTreeManager class implemented with JavaFX collections. We create an observable map using static method observableHashMap(). FXCollections provides static methods that return observable versions of the same collection types as java.util.Collections.

The FamilyTreeManager forwards methods addPerson(), updatePerson(), and deletePerson() to the underlying observable map. Method getAllPeople() returns an ArrayList with copies of the Person items from the observable map using functional operations (see “Functional Data Structures” on page 39 for more information). To encapsulate the implementation of FamilyTreeManager as much as possible, we provide addListener() and removeListener() methods and forward these to the underlying observable map.

Listing 4.12 FamilyTreeManager—Using ObservableMap

Click here to view code image

package com.asgteach.familytree.model;

import javafx.collections.FXCollections;
import javafx.collections.ObservableMap;

public class FamilyTreeManager {

 private final ObservableMap<Long, Person> observableMap =
 FXCollections.observableHashMap();
 private static FamilyTreeManager instance = null;

protected FamilyTreeManager() {
 // Singleton class: prevent direct instantiation
 }

public static FamilyTreeManager getInstance() {
 if (instance == null) {
 instance = new FamilyTreeManager();
 }
 return instance;
 }

 public void addListener(
 MapChangeListener<? super Long, ? super Person> ml) {
 observableMap.addListener(ml);
 }
 public void removeListener(
 MapChangeListener<? super Long, ? super Person> ml) {
 observableMap.removeListener(ml);
 }

 public void addListener(InvalidationListener il) {
 observableMap.addListener(il);
 }

 public void removeListener(InvalidationListener il) {
 observableMap.removeListener(il);
 }

 public void addPerson(Person p) {
 Person person = new Person(p);
 observableMap.put(person.getId(), person);
 }

 public void updatePerson(Person p) {
 Person person = new Person(p);
 observableMap.put(person.getId(), person);
 }

 public void deletePerson(Person p) {
 observableMap.remove(p.getId());
 }

 public List<Person> getAllPeople() {
 List<Person> copyList = new ArrayList<>();
 observableMap.values().stream().forEach((p) ->
 copyList.add(new Person(p)));
 return copyList;
 }
}

Let’s show you how to use the FamilyTreeManager in program PersonFXAppCoarse. Since this program does not create a JavaFX scene graph, we create a standard Java application using the following steps.

1. Select File | New Project from the NetBeans top-level menu. Select Java under Categories and Java Application under Projects.

2. NetBeans displays the Name and Location dialog. Specify PersonFXAppCoarse for Project Name and accept the defaults for the remaining fields, as shown in Figure 4.6. Click Finish.

[image:]

Figure 4.6 New Java Application, Name and Location dialog

3. Create package com.asgteach.familytree.model and add files Person.java (as shown in Listing 4.8 on page 142) and FamilyTreeManager.java (as shown in Listing 4.12 on page 149).

The main program, class PersonFXAppCoarse.java, is shown in Listing 4.13. This program manipulates Person objects with the FamilyTreeManager.

After obtaining the singleton FamilyTreeManager object, we add listener mapChangeListener. The program then creates two Person objects (homer and marge) and adds them to the FamilyTreeManager with addPerson(). Because we attach a change listener, the addPerson() generates change events. To test the behavior of the observable map, the program invokes addPerson() again with marge and no change event is fired.

Next, the program modifies both Person objects and invokes method updatePerson(). Again we observe change events.

Finally, Person marge is removed with deletePerson() twice. The first remove generates a change event and the second remove does not.

Listing 4.13 PersonFXAppCoarse—ObservableMap in Action

Click here to view code image

package personfxapp;

import com.asgteach.familytree.model.FamilyTreeManager;
import com.asgteach.familytree.model.Person;
import javafx.collections.MapChangeListener;
public class PersonFXApp {

public static void main(String[] args) {

final FamilyTreeManager ftm = FamilyTreeManager.getInstance();

 // Attach a change listener to FamilyTreeManager
 ftm.addListener(mapChangeListener);

 final Person homer = new Person("Homer", "Simpson", Person.Gender.MALE);
 final Person marge = new Person("Marge", "Simpson",
 Person.Gender.FEMALE);
 // Add Person objects
 ftm.addPerson(homer);
 ftm.addPerson(marge);
 // add marge again, no change event
 ftm.addPerson(marge);

 homer.setMiddlename("Chester");
 homer.setSuffix("Junior");
 // Update homer
 ftm.updatePerson(homer);
 marge.setMiddlename("Louise");
 marge.setLastname("Bouvier-Simpson");
 // Update marge
 ftm.updatePerson(marge);
 ftm.deletePerson(marge);
 // delete marge again, no change event
 ftm.deletePerson(marge);
 }
. . . mapChangeListener shown in Listing 4.14 . . .
}

Listing 4.14 shows the MapChangeListener for this program. The change event (type MapChangeListener.Change<Long, Person>) includes boolean methods wasAdded() and wasRemoved(). Both of these methods return true when the map is updated. You can access the new value with getValueAdded() and the removed or replaced value with getValueRemoved(). Method getValueRemoved() returns null when an object is added, and getValueAdded() returns null when an object is removed. Method getMap() returns the updated map.

Listing 4.14 MapChangeListener for FamilyTreeManager

Click here to view code image

 // MapChangeListener<Long, Person> for FamilyTreeManager
 private static final MapChangeListener<Long, Person> mapChangeListener =
 (change) -> {
 if (change.wasAdded() && change.wasRemoved()) {
 System.out.println("\tUPDATED");
 } else if (change.wasAdded()) {
 System.out.println("\tADDED");
 } else if (change.wasRemoved()) {
 System.out.println("\tREMOVED");
 }
 System.out.println("\tmap = " + change.getMap());
 System.out.println("\t\t" + change.getValueAdded()
 + " was added [" + change.getKey() + "].");
 System.out.println("\t\t" + change.getValueRemoved()
 + " was removed [" + change.getKey() + "].");
 };

Listing 4.15 shows the console output after running program PersonFXAppCoarse. Tracking the changes, you see that Person homer is added, Person marge is added, Person homer is updated, Person marge is updated, and lastly Person marge is removed. Note that the second add for Person marge is not observed as well as the second removal of Person marge.

Listing 4.15 Program PersonFXAppCoarse Output

Click here to view code image

Output:
 ADDED
 map = {0=Homer Simpson}
 Homer Simpson was added [0].
 null was removed [0].
 ADDED
 map = {0=Homer Simpson, 1=Marge Simpson}
 Marge Simpson was added [1].
 null was removed [1].
 UPDATED
 map = {0=Homer Chester Simpson Junior, 1=Marge Simpson}
 Homer Chester Simpson Junior was added [0].
 Homer Simpson was removed [0].
 UPDATED
 map = {0=Homer Chester Simpson Junior, 1=Marge Louise Bouvier-Simpson}
 Marge Louise Bouvier-Simpson was added [1].
 Marge Simpson was removed [1].
 REMOVED
 map = {0=Homer Chester Simpson Junior}
 null was added [1].
 Marge Louise Bouvier-Simpson was removed [1].

4.4 JavaFX Applications

We are now ready to build a JavaFX application with the Person and FamilyTreeManager classes using JavaFX properties and observable collections. This is the JavaFX equivalent of the Swing program presented in Chapter 2 (program PersonSwingAppEnhancedUI described in “Improving the User Experience” on page 63). In this JavaFX example, we display Person objects from the FamilyTreeManager in the left side of the application using the JavaFX TreeView control. Users edit the selected Person object with the form on the right side. The Update button is only enabled when the user makes modifications using the UI controls. The Person editor form is cleared when the user clicks on the top (root) node of the TreeView.

Figure 4.7 shows the JavaFX version of this application (project PersonFXMLAppEnhancedUI) running with the user making edits to Person Lisa Simpson.

[image:]

Figure 4.7 Program PersonFXMLAppEnhancedUI: Editing Person Lisa Simpson

Program Structure

Use the NetBeans IDE to create a new JavaFX FXML Application, as described previously (see “Creating a JavaFX FXML Application” on page 139). Figure 4.8 shows the project structure of this application in the NetBeans IDE. Like the Swing programs you’ve seen, the FamilyTreeManager and Person source files are in the package com.asgteach.familytree.model. Since the application code is structured for FXML, you see three source files: the FXML (PersonFXML.fxml), the controller class (PersonFXMLController), and the main application code (PersonFXMLApp), all in package personfxmlapp.

[image:]

Figure 4.8 PersonFXMLAppEnhancedUI project structure

Before we examine the FXML and controller class, let’s look at the main application code as shown in Listing 4.16. Here you see the now-familiar code that reads and loads the scene graph from the FXML file and configures and shows the stage, the main window for JavaFX applications.

Listing 4.16 PersonFXMLApp JavaFX Application

Click here to view code image

package personfxmlapp;

import javafx.application.Application;
import javafx.fxml.FXMLLoader;
import javafx.scene.Parent;
import javafx.scene.Scene;
import javafx.stage.Stage;

public class PersonFXMLApp extends Application {

 @Override
 public void start(Stage stage) throws Exception {
 Parent root = FXMLLoader.load(getClass().getResource(
 "PersonFXML.fxml"));

Scene scene = new Scene(root);
 stage.setTitle("Person FX Application");
 stage.setScene(scene);
 stage.show();
 }

public static void main(String[] args) {
 launch(args);
 }
}

Scene Builder and FXML

So far we’ve built our FXML markup by manually editing the FXML and configuring the properties of the JavaFX controls we need. This works great for simple JavaFX scene graphs. However, the more controls you add, the more difficult this approach becomes. It’s much nicer to have a visual editor to help you with the layout and generate the FXML markup for you.

Scene Builder is a stand-alone application that lets you create a JavaFX scene. Similar to the Swing Form Designer, you place controls on the design area through drag and drop and use context menus and property sheets to configure the controls. Scene Builder is written in JavaFX so you have some nice UI graphics that help you create your application’s design.

Once you download and install Scene Builder,3 NetBeans automatically brings it up when you open an FXML file (via Open or double-click). If you don’t want to have Scene Builder edit your FXML, just open the FXML file with Edit.

3. You can download Scene Builder for free at www.oracle.com.

Figure 4.9 shows the Scene Builder layout designer where you visually place and position controls. Here you see the controls we use for the PersonFXMLAppEnhancedUI application. Note that the text field opposite label First is highlighted.

[image:]

Figure 4.9 Scene Builder layout designer

Figure 4.10 shows the Scene Builder Hierarchy that displays an expandable/collapsible tree of your scene graph as well as the Inspector that lets you inspect and configure the controls in your design. The same text field that is highlighted in the design view is also highlighted in the Hierarchy.

[image:]

Figure 4.10 Scene Builder Hierarchy and Inspector controls

The Inspector is divided into three categories: Properties (collapsed), Layout (which is currently shown), and Code (not shown in this view). The Inspector is handy for specifying the FXML references from your controller class and for configuring other node properties.

Figure 4.11 shows the Scene Builder Library selector. You use the Library selector to add basic controls, pop-up controls, containers, menu content, shapes, charts, and miscellaneous items to your layout design. The Library selector has a search mechanism that helps you quickly find and select the component you need.

[image:]

Figure 4.11 Scene Builder Library for searching and selecting JavaFX controls

There is a tie between an FXML file and its controller class. Scene Builder reads the designated controller class and provides references in drop down menus that are marked with the @FXML annotation in the controller class. Scene Builder does not modify the controller class.

However, you can use the FXML file’s Make Controller menu item to synchronize the controller code with FXML edits. After saving the FXML file in Scene Builder, select the Make Controller menu item in NetBeans. NetBeans will add or remove @FXML annotated fields and methods in the controller class. As you gain experience working with Scene Builder, you’ll discover the work flow that’s right for you.

Remember, Scene Builder generates FXML code, not Java. Let’s look at the FXML Scene Builder generated for our sample application, shown in Listing 4.17. First, you’ll see that Scene Builder generates very readable FXML. Secondly, Scene Builder favors layout container AnchorPane, which lets you specify how its contained children should behave when the window is resized.

The main window for the application uses an AnchorPane that contains a SplitPane control. The SplitPane (with a left side and a right side) has an AnchorPane for each side. The TreeView control is on the left side and the right side holds the form for editing a Person. This includes a VBox with multiple HBox controls (one for each label and text field), an HBox to hold the radio buttons, a text area for the notes, and an Update button.

The SplitPane control has a linear gradient configured for its background property. The TreeView control is configured for a specific size (properties prefHeight and prefWidth), and the AnchorPane settings resize the TreeView dynamically to maintain its configured anchors.

Each radio button belongs to the same toggle group (providing the mutual exclusion behavior on selection), and its action event references method genderSelectionAction(), which is defined in the controller class. Note that the first radio button creates the toggle group, but the second and third radio buttons use the notation

Click here to view code image

toggleGroup="$genderToggleGroup"

which references the already-created toggle group.

Each text field and associated label appears in an HBox. The text field has an fx:id (so the controller class can reference it) and an onKeyReleased key event reference for the handleKeyAction() event handler, defined in the controller class.

The text area has a similar configuration as the text fields, with an fx:id and an onKeyReleased key event reference. You’ll recognize (from the Swing applications in Chapter 2) that these event handlers detect when a user edits Person properties and subsequently enable the Update button.

Finally, the Update button has text “Update,” an fx:id reference, and an action event reference for the updateButtonAction() event handler.

Listing 4.17 Scene Builder Generated FXML

Click here to view code image

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<AnchorPane id="AnchorPane" prefHeight="328.0" prefWidth="630.0"
 xmlns:fx="http://javafx.com/fxml"
 fx:controller="personfxmlapp.PersonFXMLController">
 <children>
 <SplitPane dividerPositions="0.43630573248407645" focusTraversable="true"
 prefHeight="328.0" prefWidth="630.0"
 style="-fx-background-color: linear-gradient(aliceblue, lightblue);"
 AnchorPane.bottomAnchor="0.0"
 AnchorPane.leftAnchor="0.0"
 AnchorPane.rightAnchor="0.0"
 AnchorPane.topAnchor="0.0">
 <items>
 <AnchorPane minHeight="0.0" minWidth="0.0"
 prefHeight="340.0" prefWidth="257.0">
 <children>
 <TreeView fx:id="personTreeView" prefHeight="289.0"
 prefWidth="225.0" AnchorPane.bottomAnchor="23.0"
 AnchorPane.leftAnchor="23.0" AnchorPane.rightAnchor="23.0"
 AnchorPane.topAnchor="14.0" />
 </children>
 </AnchorPane>
 <AnchorPane minHeight="0.0" minWidth="0.0" prefHeight="326.0"
 prefWidth="351.9998779296875">
 <children>
 <HBox id="HBox" alignment="CENTER_RIGHT" layoutX="31.0"
 layoutY="147.0" spacing="20.0">
 <children>
 <RadioButton fx:id="maleRadioButton"
 onAction="#genderSelectionAction" text="Male">
 <toggleGroup>
 <ToggleGroup fx:id="genderToggleGroup" />
 </toggleGroup>
 </RadioButton>
 <RadioButton fx:id="femaleRadioButton"
 onAction="#genderSelectionAction" text="Female"
 toggleGroup="$genderToggleGroup" />
 <RadioButton fx:id="unknownRadioButton"
 onAction="#genderSelectionAction" text="Unknown"
 toggleGroup="$genderToggleGroup" />
 </children>
 </HBox>
 <VBox id="VBox" alignment="TOP_CENTER" layoutX="14.0"
 layoutY="10.0" spacing="10.0">
 <children>
 <HBox id="HBox" alignment="CENTER_RIGHT" spacing="5.0">
 <children>
 <Label text="First" />
 <TextField fx:id="firstnameTextField"
 onKeyReleased="#handleKeyAction" prefWidth="248.0" />
 </children>
 </HBox>

. . . other <HBox> elements for the rest of the text fields . . .

 </children>
 </VBox>
 <Label layoutX="14.0" layoutY="178.0" text="Notes" />
 <TextArea fx:id="notesTextArea" layoutX="14.0" layoutY="201.0"
 onKeyReleased="#handleKeyAction" prefHeight="62.0"
 prefWidth="303.0" wrapText="true" />
 <Button fx:id="updateButton" layoutX="14.0" layoutY="280.0"
 mnemonicParsing="false" onAction="#updateButtonAction"
 text="Update" />
 </children>
 </AnchorPane>
 </items>
 </SplitPane>
 </children>
</AnchorPane>

JavaFX Controls

Before we examine the controller class, let’s look at a partial hierarchy of the JavaFX controls, shown in Figure 4.12 and Figure 4.13. Node extends Object, Parent extends Node, and Control extends Parent. We don’t use most of these controls in our application, but the diagrams let you see how the TextField, Label, TextArea, RadioButton, Button, and TreeView controls fit into the JavaFX Control class hierarchy.

[image:]

Figure 4.12 JavaFX controls hierarchy (partial)

[image:]

Figure 4.13 JavaFX controls hierarchy (partial)

Labeled is a superclass of Label, CheckBox, and other button controls. Many of the controls in Figure 4.13 are generic, with <T> denoting the type of item contained within the control. JavaFX controls are manipulated with their JavaFX properties and you can attach listeners to these properties or use them in binding expressions. We’ll show you examples of binding properties and attaching listeners with controls in this section.

Let’s look at some of the controls we use in our JavaFX application.

Label

Like Swing’s JLabel, Label holds non-editable text. Label can display text, images, or both. If the text does not fit in the label, the label uses ellipsis to indicate truncated text. In our example, we define all the Label controls in FXML and do not need to reference them in the controller class. Here’s how to create a Label in Java code.

Click here to view code image

Label mylabel = new Label("First");

TextField

The TextField control lets users edit a single line of text. We define a key released event handler for all of the text fields and configure a bidirectional binding between the text field and its corresponding Person property. Here, for example, is the binding for the text field that edits the firstname Person property referenced by person.

Click here to view code image

firstnameTextField.textProperty()
 .bindBidirectional(person.firstnameProperty());

Because the binding is bidirectional, a change to either the text property in the TextField control or the firstname property in the Person object updates the corresponding property.

TextArea

We use a TextArea control to edit the Person notes property. The TextArea control lets users edit multi-line text. Similar to the TextField, we configure a key released event handler and specify bidirectional binding. Here is the binding expression we use for the TextArea.

Click here to view code image

notesTextArea.textProperty().bindBidirectional(person.notesProperty());

TextArea also has a built-in context menu that helps you edit text, as shown in Figure 4.14.

[image:]

Figure 4.14 TextArea built-in context menu

RadioButton

RadioButton is a Labeled control that’s similar to Swing’s JRadioButton. You specify a toggle group when radio buttons must be mutually exclusive. Here is the FXML that sets up a toggle group and adds three radio buttons to it. For each radio button, we specify an fx:id reference and method genderSelectionAction(), the action event handler implemented in the controller class.

Click here to view code image

 <RadioButton fx:id="maleRadioButton"
 onAction="#genderSelectionAction" text="Male">
 <toggleGroup>
 <ToggleGroup fx:id="genderToggleGroup" />
 </toggleGroup>
 </RadioButton>
 <RadioButton fx:id="femaleRadioButton"
 onAction="#genderSelectionAction" text="Female"
 toggleGroup="$genderToggleGroup" />
 <RadioButton fx:id="unknownRadioButton"
 onAction="#genderSelectionAction" text="Unknown"
 toggleGroup="$genderToggleGroup" />

Button

Button is a Labeled control that presents a “pushed” graphic when clicked and invokes an action event handler if one is configured. Here’s the FXML we use to define the Update button.

Click here to view code image

<Button fx:id="updateButton" layoutX="14.0" layoutY="280.0"
 onAction="#updateButtonAction" text="Update" />

Property fx:id is the reference name of the button in the controller class. Method updateButtonAction() is the button’s action handler defined in the controller class.

TreeView

The TreeView control presents a hierarchical display of items that can be expanded and collapsed. Here’s the FXML we use to define the TreeView control. Configuring the AnchorPane setting enables the TreeView control to resize as its containing layout control resizes.

Click here to view code image

<TreeView fx:id="personTreeView" prefHeight="289.0" prefWidth="225.0"
 AnchorPane.bottomAnchor="23.0" AnchorPane.leftAnchor="23.0"
 AnchorPane.rightAnchor="23.0" AnchorPane.topAnchor="14.0" />

The items are displayed with TreeItem<Person>, which we build in the controller class. First, we create a “People” root node and then build the rest of the TreeItem objects. Next, we set the root node of the TreeView with setRoot() and specify that the root node should be expanded initially. FamilyTreeManager method getAllPeople() returns a list, which we use to build the TreeItems for the TreeView.

Click here to view code image

TreeItem<Person> rootNode = new TreeItem<>(new Person(
 "People", "", Person.Gender.UNKNOWN));

// Populate the TreeView control
 ftm.getAllPeople().stream().forEach((p) -> {
 root.getChildren().add(new TreeItem<>(p));
 });
 personTreeView.setRoot(rootNode);
 personTreeView.getRoot().setExpanded(true);

JavaFX Controller Class

Recall that our application lets users select a Person item from the left-side TreeView UI control (see Figure 4.7 on page 154). When a Person is selected, that Person appears in the Person form editor on the right side. The Update button remains disabled until the user edits the Person.

Upon finishing editing, the user updates the application with new values for the Person by clicking the Update button. The FamilyTreeManager updates the application, and the TreeView displays the new values (if any) of the just-edited Person item.

Users can also select the top node (the root node), in which case the Person form editor clears and the Update button is disabled. Any edits made in the Person form editor are lost if the user selects a new item without saving the changes.

Let’s look at the controller class now. This class provides method initialize() to configure the scene graph. The controller class is also responsible for defining the event handlers, change listeners, and other support code that implements the behavior we just described.

Listing 4.18 shows the controller class’s declaration section, where we define any objects created in the FXML file that are accessed here in the controller class. Recall that the FXML loader is responsible for instantiating these objects, so you won’t see any code that creates them.

We also create a Logger object (see “Java Logging Facility” on page 51 for a description) and a FamilyTreeManager instance. There are also several class variables here. Variable thePerson holds the currently selected Person from the TreeView control. Variable genderBinding is a custom binding object that keeps the Person gender property synchronized with the form editor. The changeOK boolean keeps track of when the application should listen for user edits. BooleanProperty enableUpdateProperty (a JavaFX property) controls the Update button’s disable property with binding.

Tip
We could just manually control the Update button’s disable property. However, having a separate property lets us configure different artifacts or controls later, especially if we no longer use the Update button.

Listing 4.18 PersonFXMLController—Controller Class

Click here to view code image

public class PersonFXMLController implements Initializable {

 @FXML
 private TextField firstnameTextField;
 @FXML
 private TextField middlenameTextField;
 @FXML
 private TextField lastnameTextField;
 @FXML
 private TextField suffixTextField;
 @FXML
 private RadioButton maleRadioButton;
 @FXML
 private RadioButton femaleRadioButton;
 @FXML
 private RadioButton unknownRadioButton;
 @FXML
 private TextArea notesTextArea;
 @FXML
 private TreeView<Person> personTreeView;
 @FXML
 private Button updateButton;
 private static final Logger logger = Logger.getLogger(
 PersonFXMLController.class.getName());
 private final FamilyTreeManager ftm = FamilyTreeManager.getInstance();
 private Person thePerson = null;
 private ObjectBinding<Person.Gender> genderBinding;
 private boolean changeOK = false;
 private BooleanProperty enableUpdateProperty;

Listing 4.19 shows the controller’s initialize() method. This method configures the Logger object, instantiates the enableUpdateProperty, binds the Update button to the inverse of the enableUpdateProperty (with .not(), see “Fluent API and Bindings API” on page 113), and defines the custom binding object for the gender property. Method buildData() (shown next) populates the FamilyTreeManager with Person objects. We then build and configure the TreeView control. Note that we also attach a listener to the selection property of the TreeView’s underlying model.

Listing 4.19 Controller Class initialize() Method

Click here to view code image

@Override
 public void initialize(URL url, ResourceBundle rb) {
 // Change level to Level.INFO to reduce console messages
 logger.setLevel(Level.FINE);
 Handler handler = new ConsoleHandler();
 handler.setLevel(Level.FINE);
 logger.addHandler(handler);
 try {
 FileHandler fileHandler = new FileHandler();
 // records sent to file javaN.log in user's home directory
 fileHandler.setLevel(Level.FINE);
 logger.addHandler(fileHandler);
 logger.log(Level.FINE, "Created File Handler");
 } catch (IOException | SecurityException ex) {
 logger.log(Level.SEVERE, "Couldn't create FileHandler", ex);
 }

 enableUpdateProperty = new SimpleBooleanProperty(
 this, "enableUpdate", false);
 updateButton.disableProperty().bind(enableUpdateProperty.not());

 // the radio button custom binding
 genderBinding = new ObjectBinding<Person.Gender>() {
 {
 super.bind(maleRadioButton.selectedProperty(),
 femaleRadioButton.selectedProperty(),
 unknownRadioButton.selectedProperty());
 }

 @Override
 protected Person.Gender computeValue() {
 if (maleRadioButton.isSelected()) {
 return Person.Gender.MALE;
 } else if (femaleRadioButton.isSelected()) {
 return Person.Gender.FEMALE;
 } else {
 return Person.Gender.UNKNOWN;
 }
 }
 };

 buildData();
 TreeItem<Person> rootNode = new TreeItem<>(
 new Person("People", "", Person.Gender.UNKNOWN));
 buildTreeView(rootNode);
 personTreeView.setRoot(rootNode);
 personTreeView.getRoot().setExpanded(true);
 personTreeView.getSelectionModel().selectedItemProperty()
 .addListener(treeSelectionListener);
 }

Listing 4.20 shows the code for private methods buildData() and buildTreeView(). The buildData() method adds Person objects for Homer, Marge, Bart, Lisa, and Maggie to the FamilyTreeManager. The buildTreeView() method fetches Person objects from the FamilyTreeManager to create each TreeItem<Person> object, adding the item to the root node. Note that we also attach a listener to the FamilyTreeManager (its underlying observable map).

Listing 4.20 Methods buildData() and buildTreeView()

Click here to view code image

 private void buildData() {
 ftm.addPerson(new Person("Homer", "Simpson", Person.Gender.MALE));
 ftm.addPerson(new Person("Marge", "Simpson", Person.Gender.FEMALE));
 ftm.addPerson(new Person("Bart", "Simpson", Person.Gender.MALE));
 ftm.addPerson(new Person("Lisa", "Simpson", Person.Gender.FEMALE));
 ftm.addPerson(new Person("Maggie", "Simpson", Person.Gender.FEMALE));
 logger.log(Level.FINE, ftm.getAllPeople().toString());
 }

 private void buildTreeView(TreeItem<Person> root) {
 // listen for changes to the familytreemanager's map
 ftm.addListener(familyTreeListener);
 // Populate the TreeView control
 ftm.getAllPeople().stream().forEach((p) -> {
 root.getChildren().add(new TreeItem<>(p));
 });
 }

TreeView Selection Listener

This JavaFX application includes several listeners that react to changes much like the Swing version (see Listing 2.19 on page 60 and Listing 2.21 on page 63). First, we have the TreeView selection change listener, which we attach to the selection property of the TreeView model as follows. This listener is invoked when the user selects a different item in the TreeView.

Click here to view code image

personTreeView.getSelectionModel().selectedItemProperty()
 .addListener(treeSelectionListener);

Recall that ChangeListeners use generics so that observable values passed in the change event handler can be accessed without type casting. Listing 4.21 shows the code for the tree selection change listener. When a user selects a different Person item, the application performs the following tasks. Specifically, the change listener

• sets the enableUpdateProperty to false (which, because of binding, disables the Update button)

• disallows edits in the Person form editor until a new Person is displayed

• clears the Person editing form and returns if the new selection is either the root TreeView item or null (returned when the user collapses the tree view and a leaf node is selected)

• makes a copy of the selected Person object and configures its bindings. This populates the Person form editor with the newly selected Person’s data. The gender property is a bit tricky, since its type is a Person.Gender enum that corresponds to separate radio buttons.

Once the Person form editor and class variable thePerson are configured, the listener sets boolean changeOK to true, which allows the user to make edits in the Person form editor. The Update button remains disabled.

Listing 4.21 ChangeListener for TreeView Model Selection Property

Click here to view code image

 // TreeView selected item event handler
 private final ChangeListener<TreeItem<Person>> treeSelectionListener =
 (ov, oldValue, newValue) -> {
 TreeItem<Person> treeItem = newValue;
 logger.log(Level.FINE, "selected item = {0}", treeItem);
 enableUpdateProperty.set(false);
 changeOK = false;
 if (treeItem == null || treeItem.equals(personTreeView.getRoot())) {
 clearForm();
 return;
 }
 // set thePerson to the selected treeItem value
 thePerson = new Person(treeItem.getValue());
 logger.log(Level.FINE, "selected person = {0}", thePerson);
 configureEditPanelBindings(thePerson);
 // set the gender from Person, then configure the genderBinding
 if (thePerson.getGender().equals(Person.Gender.MALE)) {
 maleRadioButton.setSelected(true);
 } else if (thePerson.getGender().equals(Person.Gender.FEMALE)) {
 femaleRadioButton.setSelected(true);
 } else {
 unknownRadioButton.setSelected(true);
 }
 thePerson.genderProperty().bind(genderBinding);
 changeOK = true;
 };

Listing 4.22 shows methods configureEditPanelBindings() and clearForm(). Method configureEditPanelBindings() is interesting and deserves a closer look. Note that although bindBidirectional() appears to be symmetric, it is not. That is, when you bind bidirectionally with

a.bindBidirectional(b);

property a takes on the value of property b initially. From then on, the binding is symmetric, where b will take on a’s value if a changes and a will take on b’s value if b changes. With this in mind, note that in method configureEditPanelBindings(), the UI controls invoke the bindBidirectional() method for several properties. This is how we initially configure the UI controls with the Person’s property values and subsequently update the Person’s properties with user edits.

Method clearForm() provides a straightforward clearing of the UI controls.

Listing 4.22 Configure Bindings and Clear Person Form Editor

Click here to view code image

 private void configureEditPanelBindings(Person p) {
 firstnameTextField.textProperty()
 .bindBidirectional(p.firstnameProperty());
 middlenameTextField.textProperty()
 .bindBidirectional(p.middlenameProperty());
 lastnameTextField.textProperty()
 .bindBidirectional(p.lastnameProperty());
 suffixTextField.textProperty().bindBidirectional(p.suffixProperty());
 notesTextArea.textProperty().bindBidirectional(p.notesProperty());
 }

 private void clearForm() {
 firstnameTextField.setText("");
 middlenameTextField.setText("");
 lastnameTextField.setText("");
 suffixTextField.setText("");
 notesTextArea.setText("");
 maleRadioButton.setSelected(false);
 femaleRadioButton.setSelected(false);
 unknownRadioButton.setSelected(false);
 }

We detect when the user makes changes by listening for key released events with the text field and text area controls. Here is the FXML for the TextField control for editing Person property firstname, where property onKeyReleased is set to method handleKeyAction().

Click here to view code image

<TextField fx:id="firstnameTextField"
 onKeyReleased="#handleKeyAction" prefWidth="248.0" />

Similarly, here is the FXML for the RadioButton control where property onAction is set to method genderSelectionAction(). A radio button selection change invokes the onAction event handler.

Click here to view code image

<RadioButton fx:id="femaleRadioButton"
 onAction="#genderSelectionAction" text="Female"
 toggleGroup="$genderToggleGroup" />

Listing 4.23 shows the code for both event handlers. The @FXML annotation makes these method names accessible from the FXML markup. Once the user makes a change (either by releasing a key in the text input controls or by making a selection change with the radio buttons), the handlers set the enableUpdateProperty to true. Because of binding, this enables the Update button.

Listing 4.23 Control onKeyReleased and RadioButton Selection Handlers

Click here to view code image

@FXML
 private void handleKeyAction(KeyEvent ke) {
 if (changeOK) {
 enableUpdateProperty.set(true);
 }
 }

@FXML
 private void genderSelectionAction(ActionEvent event) {
 if (changeOK) {
 enableUpdateProperty.set(true);
 }
 }

Listing 4.24 shows the Update button event handler. Note that class variable thePerson is kept in sync with the editing controls thanks to the bidirectional binding and the custom binding object for the radio button controls. We set the enableUpdateProperty to false and update the Person in the FamilyTreeManager with updatePerson().

Listing 4.24 Update Button Action Event Handler

Click here to view code image

 @FXML
 private void updateButtonAction(ActionEvent event) {
 enableUpdateProperty.set(false);
 ftm.updatePerson(thePerson);
 }

MapChangeListener

FamilyTreeManager method updatePerson() updates the FamilyTreeManager’s observable map with the new Person data. Because we have a listener attached to the FamilyTreeManager observable map, the listener’s event handler is invoked when an update occurs. The event handler method includes the new value. The change listener replaces the Person in the TreeView that corresponds to this new value. Note that we now must compare Person objects using getId(). Person method equals() won’t work, since this method compares all Person properties. Listing 4.25 shows the code.

Listing 4.25 MapChangeListener for FamilyTreeManager’s Map

Click here to view code image

 // MapChangeListener when underlying FamilyTreeManager changes
 private final MapChangeListener<Long, Person> familyTreeListener =
 (change) -> {
 if (change.getValueAdded() != null) {
 logger.log(Level.FINE, "changed value = {0}", change.getValueAdded());
 // Find the treeitem that this matches and replace it
 for (TreeItem<Person> node : personTreeView.getRoot().getChildren()) {
 if (change.getKey().equals(node.getValue().getId())) {
 // an update returns the new value in getValueAdded()
 node.setValue(change.getValueAdded());
 return;
 }
 }
 }
 };

The above change listener uses TreeView method getRoot().getChildren() to loop through the items in the TreeView. A MapChangeListener change event includes methods getKey() (the key of the Person object that is changed), getValueAdded() (the Person object that is added), and getValueRemoved() (the Person object that is removed). When an object is replaced, getValueAdded() is the new value and getValueRemoved() is the old value. Here, we don’t access the old value, but we make sure that the new value is non-null before attempting to perform the replacement.

A Word About Loose Coupling

Note that this small JavaFX application follows the same principles of loose coupling that we described for the Swing example application (see “Event Handlers and Loose Coupling” on page 59). Specifically, the TreeView UI control is not accessed from the Update button event handler, even though the button event handler knows that a Person object displayed in the TreeView is about to change. Also, the FamilyTreeManager and Person are purely model objects and have no dependencies on any of the UI controls.

JavaFX bidirectional binding provides a convenient way to keep the model object (here Person) in sync with UI controls that let the user change the model’s properties.

Program PersonFXMLAppEnhancedUI provides a functional equivalent of the Swing program PersonSwingAppEnchancedUI.

4.5 Concurrency and Thread Safety

JavaFX, like Swing, is a single-threaded GUI. All changes to the scene graph must occur on the JavaFX Application Thread. This means that if you have a long-running background task, you should execute that task in a separate thread so that your UI remains responsive. “Swing Background Tasks” on page 73 shows you how to do this with Swing using helper class SwingWorker. Let’s apply these same principles of concurrency and thread safety to our JavaFX example.

Concurrency in JavaFX

The JavaFX Platform class has several static methods to help you with multi-threaded applications: runLater() and isFXApplicationThread().

Platform.runLater()

The static runLater() method submits a Runnable to be executed at some unspecified time in the future. This is similar to the SwingUtilities.invokeLater(), where other UI events already scheduled may occur first. Use runLater() from a background thread to execute code that updates the JavaFX scene graph.

Platform.isFXApplicationThread()

The static isFXApplicationThread() method returns true if the calling thread is the JavaFX Application Thread. Use this method when you want to execute code that updates the JavaFX scene graph and you may or may not be in a background thread.

Observable Properties and Thread Safety

A general thread safety issue with JavaFX is that you should not update observable values in a background thread that are bound to or affect properties in the scene graph. Observable values include JavaFX properties that you can bind to, as well as properties that you can attach listeners to. With listeners, however, you can take precautions and place code that updates the scene graph in a Platform.runLater() Runnable. With binding, however, you must ensure that updates to properties occur on the JavaFX Application Thread if property changes affect the scene graph.

For class Person and its many JavaFX properties that can be bound to JavaFX UI controls, we ensure thread safety with thread containment. That is, we only update Person objects in the JavaFX Application Thread. Furthermore, when we use a Person object in a background thread, we always make a thread-safe local copy of it first.

Making the JavaFX version of the FamilyTreeManager thread safe is interesting. First, a caller can attach a change listener to the observable map. If map modifications occur on a background thread, the change event will fire on the background thread. In the Swing version, we address this issue by using SwingPropertyChangeSupport. This helper class configures the change support object to fire property change events on the EDT.

With JavaFX, we’ll take the opposite approach with the FamilyTreeManager code. That is, we put the burden on the caller and require the listener to process any change events in the JavaFX Application Thread. We check to see if the method is invoked on the JavaFX Application Thread and process the change by invoking Platform.runLater(). This ensures that any change to the scene graph is performed on the JavaFX Application Thread. Listing 4.26 shows the modified MapChangeListener method in the PersonFXMLController class.

Listing 4.26 Modified MapChangeListener

Click here to view code image

 // MapChangeListener when underlying FamilyTreeManager changes
 // Check to see if on FXT, if not call Platform.runLater()
 private final MapChangeListener<Long, Person> familyTreeListener =
 change -> {
 if (Platform.isFxApplicationThread()) {
 logger.log(Level.FINE, "Is JavaFX Application Thread");
 updateTree(change);
 } else {
 logger.log(Level.FINE, "Is BACKGROUND Thread");
 Platform.runLater(()-> updateTree(change));
 }
 };

 private void updateTree(MapChangeListener.Change<? extends Long,
 ? extends Person> change) {
 if (change.getValueAdded() != null) {
 // Find the treeitem that this matches and replace it
 for (TreeItem<Person> node :
 personTreeView.getRoot().getChildren()) {
 if (change.getKey().equals(node.getValue().getId())) {
 // an update returns the new value in getValueAdded()
 node.setValue(change.getValueAdded());
 return;
 }
 }
 }
 }

Listing 4.27 shows the thread-safe JavaFX version of FamilyTreeManager, which follows many of the steps we showed you in the Swing version from Chapter 2. The observable map uses a ConcurrentHashMap as its underlying collection. Method getInstance() and the add and remove listener methods are also synchronized.

In the methods that make changes to the map, we first make a copy of Person. Method getAllPeople() also makes copies of each Person item as it populates a list. These methods are synchronized.

Listing 4.27 Thread-Safe FamilyTreeManager

Click here to view code image

package com.asgteach.familytree.model;

import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ConcurrentHashMap;
import javafx.beans.InvalidationListener;
import javafx.collections.FXCollections;
import javafx.collections.MapChangeListener;
import javafx.collections.ObservableMap;

public class FamilyTreeManager {
 private final ObservableMap<Long, Person> observableMap =
 FXCollections.observableMap(new ConcurrentHashMap<Long, Person>());
 private static FamilyTreeManager instance = null;

protected FamilyTreeManager() { }

 // Thread-safe lazy initialization
 public synchronized static FamilyTreeManager getInstance() {
 if (instance == null) {
 instance = new FamilyTreeManager();
 }
 return instance;
 }

 public synchronized void addListener(
 MapChangeListener<? super Long, ? super Person> ml) {
 observableMap.addListener(ml);
 }

 public synchronized void removeListener(
 MapChangeListener<? super Long, ? super Person> ml) {
 observableMap.removeListener(ml);
 }

 public synchronized void addListener(InvalidationListener il) {
 observableMap.addListener(il);
 }

 public synchronized void removeListener(InvalidationListener il) {
 observableMap.removeListener(il);
 }

 public synchronized void addPerson(Person p) {
 final Person person = new Person(p);
 observableMap.put(person.getId(), person);
 }
 public void updatePerson(Person p) {
 // both addPerson and updatePerson use observableMap.put()
 addPerson(p);
 }

 public synchronized void deletePerson(Person p) {
 final Person person = new Person(p);
 observableMap.remove(person.getId());
 }

 public synchronized List<Person> getAllPeople() {
 List<Person> copyList = new ArrayList<>();
 observableMap.values().stream().forEach((p)
 -> copyList.add(new Person(p)));
 return copyList;
 }
}

4.6 JavaFX Background Tasks

JavaFX has a concurrency package, javafx.concurrent, with classes that let you create background tasks and safely monitor a task’s progress, state, and results. The JavaFX concurrency package consists of two main classes, Task and Service, that both implement the Worker interface. A Task is not reusable but a Service is. Let’s examine the Task class and learn how to invoke it in a background thread in our JavaFX FamilyTree application.

Worker and Task

Both the Task and Service classes implement the Worker interface with common JavaFX properties and a well-defined life cycle. We only use Task in our examples, but Service also implements the Worker interface and shares this life cycle behavior and properties. A Task object’s life cycle is defined by Worker.State values shown in Table 4.1. A Worker always begins its life cycle in state READY. It then transitions to SCHEDULED and then RUNNING. It stays in state RUNNING until it either completes or is cancelled. After completion the state is one of SUCCEEDED, FAILED, or CANCELLED.

[image:]

TABLE 4.1 Worker.State Values

A Task object maintains several read-only JavaFX properties that you can safely observe from the JavaFX Application Thread. These properties let you monitor the state of a task and access a value upon successful completion or access a task’s progress as it is running. Table 4.2 describes these JavaFX properties.

[image:]

TABLE 4.2 Worker Read-Only JavaFX Properties

A Task must provide the call() method, which is invoked in a background thread. Method call() returns a value of its generic type. In addition, you can define callback methods that correspond to the various completion states of the Task in order to process the results depending on the Task’s outcome.

The Task class also provides several methods you can invoke from any thread to update Task properties, as shown in Table 4.3. Note that the update may not happen immediately, and several update calls may be coalesced to reduce event notifications.

[image:]

TABLE 4.3 Thread-Safe Task Update Methods

With a general description of the JavaFX Task, let’s modify the JavaFX FamilyTree application from the previous section and create a background task to update edited Person items in the FamilyTreeManager. We call this application project PersonFXMLAppMultiThread.

Since the program updates the Person in the FamilyTreeManager in a background task, we’ll add a progress indicator to the scene graph to show that work is being done. Figure 4.15 shows this application running with the added progress indicator visible.

[image:]

Figure 4.15 Program PersonFXMLAppMultiThread: Updating Person data in a background thread

ProgressIndicator

A JavaFX progress indicator control is a circular display that reflects either a percent complete (using a pie-shaped fill for partial completions) or a rotating, dashed circular graphic for indeterminate tasks. The default constructor creates an indeterminate indicator. To create a progress indicator that displays a percentage of completion, specify a starting value for the progress property in the constructor (or in the FXML markup).

Typically, progress indicators are visible only during the execution of a background task. When the task finishes, the indicator becomes invisible again. In this application, we control the progress indicator’s visibility with binding.

To have a progress indicator reflect the completion progress of a task, bind the progress indicator progress property to the progress status of the background task. For example, the following code creates a progress indicator that reflects the completion of a background task called myTask. During the execution of this task, you invoke the Task updateProgress() method as needed. This method, described in Table 4.3, updates the task’s progress, workDone, and totalWork properties in the JavaFX Application Thread, allowing you to safely bind to the progress property.

Click here to view code image

ProgressIndicator myProgressIndicator = new ProgressIndicator(0.0);
 . . .
 // Begin a Background Task
 . . .
 Task<Void> myTask = new Task<Void>() { . . . };

myProgressIndicator.progressProperty().bind(myTask.progressProperty());
 new Thread(myTask).start();

// End a background task

Listing 4.28 shows the updated FXML file with the progress indicator added to the scene graph. We use the default constructor, which configures the progress indicator as indeterminate.

Listing 4.28 Add a ProgressIndicator to Scene Graph

Click here to view code image

<children>
 . . .
 <Button fx:id="updateButton" layoutX="14.0" layoutY="280.0"
 onAction="#updateButtonAction" text="Update" />
 <ProgressIndicator fx:id="updateProgressIndicator" layoutX="117.0"
 layoutY="272.0" />
</children>
 . . .

Most of the changes required to implement the background task are in the Controller class. First, Listing 4.29 shows the changes made to the class declarations and the initialize() method. We provide an @FXML annotation for the progress indicator to control its visibility. We also add an IntegerProperty counter (backgroundActive) that reflects how many background tasks are currently active. We bind the progress indicator’s visibility to this property, using the Fluent API method greaterThan(0). Since we increment property backgroundActive when a background task starts and decrement it when the task completes, the progress indicator remains visible only when a background task is active.

Integer Counter and Thread Safety
Note that we always access property backgroundActive on the JavaFX Application Thread. This means that we can safely update and bind to this property.

Listing 4.29 Changes to Controller Class: Declarations and initialize()

Click here to view code image

. . .
 @FXML
 private Button updateButton;
 @FXML
 private ProgressIndicator updateProgressIndicator;
 private static final Logger logger = Logger.getLogger(
 PersonFXMLController.class.getName());
 private final FamilyTreeManager ftm = FamilyTreeManager.getInstance();
 private Person thePerson = null;
 private ObjectBinding<Person.Gender> genderBinding;
 private boolean changeOK = false;
 private BooleanProperty enableUpdateProperty;
 private IntegerProperty backgroundActive = new SimpleIntegerProperty(0);
 . . .
 @Override
 public void initialize(URL url, ResourceBundle rb) {
 . . .

 updateProgressIndicator.visibleProperty()
 .bind(backgroundActive.greaterThan(0));
 . . .
 }

The big change, of course, happens with the Update button’s action event handler, method updateButtonAction(), shown in Listing 4.30. Before the Task is started the event handler must configure a few variables on the JavaFX Application Thread. First, the event handler makes a local copy of class field thePerson. If another Update button click occurs before this task is finished, the subsequent task will have its own copy of the Person object. Second, we disable the Update button (until further edits are made either to this Person or to another Person). Third, we increment the backgroundActive property.

Because we use an indeterminate progress indicator, the Task has very little work to do. It implements method call() to invoke the FamilyTreeManager updatePerson() method.

We create callback methods for a successful completion (setOnSucceeded) and a failed completion (setOnFailed). These methods are always invoked on the JavaFX Application Thread after the Task completes, so you can perform scene graph modifications here. We decrement property backgroundActive. Because of binding, this makes the progress indicator invisible if backgroundActive’s new value is less than 1.

After the Task is fully defined, we start the background thread with

Click here to view code image

new Thread(updateTask).start();

Note that, as in the Swing examples, we artificially make this a long-running task by including a call to Thread.sleep() in the background thread (in method call()). Method call() returns the updated Person object, which we access within the onSucceeded property’s method. The onFailed property’s method accesses the Exception object (which could be null).

Listing 4.30 Method updateButtonAction()

Click here to view code image

 @FXML
 private void updateButtonAction(ActionEvent event) {
 // update the family tree manager on a background thread
 final Person person = new Person(thePerson);
 enableUpdateProperty.set(false);
 backgroundActive.set(backgroundActive.get() + 1);
 Task<Person> updateTask = new Task<Person>() {
 @Override
 protected Person call() throws Exception {
 Thread.sleep(1000); // for test only
 ftm.updatePerson(person);
 return person;
 }
 };
 updateTask.setOnSucceeded(t -> {
 backgroundActive.set(backgroundActive.get() - 1);
 logger.log(Level.FINE, "Update task finished: {0}",
 t.getSource().getValue());
 logger.log(Level.FINE, "tasks stillInBackground = {0}",
 backgroundActive.get());
 });
 updateTask.setOnFailed(t -> {
 backgroundActive.set(backgroundActive.get() - 1);
 // t.getSource().getException() could be null
 logger.log(Level.WARNING, "Update task failed {0}",
 t.getSource().getException() != null
 ? t.getSource().getException()
 : "Unknown failure");
 logger.log(Level.FINE, "tasks stillInBackground = {0}",
 backgroundActive.get());
 });
 new Thread(updateTask).start();
 }

To show you how all this works, let’s run application PersonFXMLAppMultiThread and edit Person Bart. Here are the log messages produced when we click the Update button to save the changes. As shown, the MapChangeListener event handler is invoked on the background thread (see Listing 4.26 on page 174).

Click here to view code image

Dec 04, 2013 10:05:35 AM personfxmlapp.PersonFXMLController lambda$6
FINE: selected person = Bart Simpson
Dec 04, 2013 10:06:08 AM personfxmlapp.PersonFXMLController lambda$4
FINE: Is BACKGROUND Thread
Dec 04, 2013 10:06:08 AM personfxmlapp.PersonFXMLController updateTree
FINE: changed value = Bart Seymour Simpson
Dec 04, 2013 10:06:08 AM personfxmlapp.PersonFXMLController lambda$1
FINE: Update task finished: Bart Seymour Simpson

4.7 Monitoring Background Tasks

Now let’s show you several examples that provide periodic or partial results to the main JavaFX Application Thread. These example programs let users initiate a background task that converts the FamilyTreeManager’s Person items to all uppercase. The UI displays each Person when it completes the conversion, and a label shows the current Person being processed. These examples all show you how to safely update the JavaFX UI during execution of a background task.

We discuss several approaches that provide partial results to the main JavaFX Application Thread from a background task, as follows.

• Program PersonFXMLAppFXWorker invokes thread-safe method updateValue() to provide intermediate or partial results. We use binding with the task’s valueProperty() to safely update the UI.

• Program PersonFXMLAppFXWorker2 defines a read-only property and updates this property (safely) during execution of the background task. This approach is convenient when the task updates an observable collection. The program shows how easy it is to use an observable collection with a control such as TableView.

• Program PersonFXMLAppFXWorker3 updates the JavaFX scene graph (safely) during execution of the background task. This approach is useful when a long-running background task produces data used to create nodes in the UI.

Let’s show you each of these approaches.

Using Method updateValue()

Figure 4.16 shows application PersonFXMLAppFXWorker running. Note that the UI is active while the background task is running and the user can select and edit Person items concurrently. Here you see both the uppercase conversion task running, as well as the background task that updates a Person to the FamilyTreeManager. (The uppercase conversion does not save the uppercase Person items; it’s just busywork!)

[image:]

Figure 4.16 Program PersonFXMLAppFXWorker: Running a background task with partial results displayed in UI

Before examining the background task code, let’s first show you the UI controls we add to the JavaFX scene graph.

ProgressBar

The progress bar provides a horizontal bar, which, like the progress indicator, can also be indeterminate. In this example, however, we use a progress bar that indicates percent complete by updating its progress property. The progress property is a double value between 0 (0 percent complete) and 1 (100 percent complete).

We add a text area, label, progress bar, and button to the scene graph. Listing 4.31 shows the FXML markup generated by Scene Builder to add these UI controls. The Process All button and the progress bar are maintained by an HBox layout control for horizontal placement. The Label and TextArea are placed above and below the HBox component.

Listing 4.31 Add Controls to FXML

Click here to view code image

<HBox id="HBox" alignment="CENTER" layoutX="7.0" layoutY="176.0" spacing="5.0">
 <children>
 <Button fx:id="processAllButton"
 onAction="#processAllButtonAction" text="Process All" />
 <ProgressBar fx:id="progressBar" prefWidth="161.0" progress="0.0" />
 </children>
</HBox>
<TextArea fx:id="statusTextArea" editable="false" layoutX="7.0"
 layoutY="208.0" prefHeight="106.0" prefWidth="257.0" wrapText="true" />
<Label fx:id="statusMessage" layoutX="7.0" layoutY="147.0" />

Safely Updating the UI

Table 4.3 on page 178 lists the Task methods you can safely invoke from a background thread. These methods make Task update the appropriate JavaFX properties on the JavaFX Application Thread. This lets you safely bind your UI controls to any of these properties or use them in binding expressions. You’ll see that we invoke updateMessage(), updateProgress(), and updateValue() in method call() to keep the Task properties synchronized with the task’s progress.

Extending Task

Our previous example uses class Task directly. Here we extend Task in order to encapsulate several class variables, as shown in Listing 4.32. Class ProcessAllTask extends class Task with <String> for Task’s generic type. This means that method call() returns String, method getValue() returns String, valueProperty() returns a read-only String JavaFX property, and method updateValue() requires a String parameter. Here, String property value holds the constructed names transformed to uppercase letters.

The ProcessAllTask constructor takes an ObservableList<Person> and stores it in ProcessAllTask class variable processList. Class variable buildList is the StringBuilder object we use to construct the transformed names.

Method call() is invoked in a background thread. This method loops through processList, processing each Person, invoking updateMessage() with the current Person, appending the transformed name to buildList, and invoking updateProgress() with the current work done and the total work to be done. Property value is updated with thread-safe updateValue().

The code that converts a Person’s names to all uppercase is contained in method doProcess(). The call to Thread.sleep() helps test the responsiveness of the UI with a long-running background task. Method call() returns the completed String of transformed names.

Listing 4.32 ProcessAllTask

Click here to view code image

 private class ProcessAllTask extends Task<String> {

 private final ObservableList<Person> processList;
 private final StringBuilder buildList = new StringBuilder();

public ProcessAllTask(final ObservableList<Person> processList) {
 this.processList = processList;
 }

 @Override
 protected String call() throws Exception {
 logger.log(Level.FINE, "Begin processing");
 final int taskMaxCount = processList.size();
 logger.log(Level.FINE, "processing list: {0}", processList);
 int taskProgress = 0;
 for (final Person person : processList) {
 if (isCancelled()) {
 break;
 }
 // do something to each person
 updateMessage("Processing " + person);
 logger.log(Level.FINE, "processing: {0}", person);
 doProcess(person);
 buildList.append(person.toString()).append("\n");
 // Update value property with new buildList
 updateValue(buildList.toString());
 updateProgress(100 * (++taskProgress) / taskMaxCount, 100);
 Thread.sleep(500);
 }
 // return the final built String result
 return buildList.toString();
 }

 // Called on the background thread
 private void doProcess(Person p) {
 p.setFirstname(p.getFirstname().toUpperCase());
 p.setMiddlename(p.getMiddlename().toUpperCase());
 p.setLastname(p.getLastname().toUpperCase());
 p.setSuffix(p.getSuffix().toUpperCase());
 }
 }

Listing 4.33 shows the Process All button’s action event handler that initiates the background task. The handler instantiates ProcessAllTask with a list of Person items. Then, it sets up the bindings between the UI controls and the ProcessAllTask properties that are monitored. The event handler also creates callback methods that are invoked on the JavaFX Application Thread when the background task completes (either successfully, with a failure, or with a cancellation). Finally, the event handler starts the task in a new background thread.

The event handler sets up the bindings by binding the UI control progress bar to the task’s progress property. It also binds the UI Label control to the task’s message property, which displays the currently processed Person. Lastly, the event handler binds the UI TextArea control to the task’s value property.

The callback methods log the results of the Task and reset the UI controls (method resetUI() is shown next).

Listing 4.33 Method processAllButtonAction()

Click here to view code image

 @FXML
 private void processAllButtonAction(ActionEvent event) {
 logger.log(Level.FINE, "Process All Button");
 // only one task to run at a time so disable the button
 processAllButton.setDisable(true);
 // create the task with a list
 final ProcessAllTask processTask = new ProcessAllTask(
 FXCollections.observableArrayList(ftm.getAllPeople()));
 // configure the UI
 progressBar.progressProperty().bind(processTask.progressProperty());
 statusMessage.textProperty().bind(processTask.messageProperty());
 statusTextArea.textProperty().bind(processTask.valueProperty());

 // set up handlers for success and failure
 processTask.setOnSucceeded(t -> {
 logger.log(Level.FINE, "Process All task finished: {0}",
 t.getSource().getValue());
 resetUI();
 });
 processTask.setOnFailed(t -> {
 // t.getSource().getException() could be null
 logger.log(Level.WARNING, "Update task failed {0}",
 t.getSource().getException() != null
 ? t.getSource().getException()
 : "Unknown failure");
 resetUI();
 });
 processTask.setOnCancelled(t -> {
 logger.log(Level.FINE, "Process All task cancelled.");
 resetUI();
 });
 // start the task in a background thread
 new Thread(processTask).start();
 }

Listing 4.34 shows how to reset the UI. Note that we must unbind the UI controls before resetting their text properties. Method resetUI() also re-enables the Process All button.

Listing 4.34 Method resetUI()

Click here to view code image

// reset the UI
 private void resetUI() {
 statusTextArea.textProperty().unbind();
 statusTextArea.setText("");
 progressBar.progressProperty().unbind();
 progressBar.setProgress(0);
 statusMessage.textProperty().unbind();
 statusMessage.setText("");
 processAllButton.setDisable(false);
 }

Updating a Read-Only JavaFX Property

Our next example is a slight variation of the previous example. Figure 4.17 shows application PersonFXMLAppFXWorker2 running, which uses a read-only observable list property to publish partial results. We then configure a TableView control with this observable list, automatically displaying partial results. Because the task does not use a thread-safe method to publish partial results, it must wrap updates in a Runnable and invoke Platform.runLater().

[image:]

Figure 4.17 Program PersonFXMLAppFXWorker2: Running a background task with partial results displayed in UI

Publishing Partial Results

As Figure 4.17 indicates, we add controls to the UI with FXML. We include the Process All button, a progress bar, and a TableView control with a single column, as shown in Listing 4.35.

Listing 4.35 Add Controls to FXML

Click here to view code image

<HBox id="HBox" alignment="CENTER" layoutX="7.0" layoutY="153.0" spacing="5.0">
 <children>
 <Button fx:id="processAllButton" mnemonicParsing="false"
 onAction="#processAllButtonAction" text="Process All" />
 <ProgressBar fx:id="progressBar" prefWidth="161.0" progress="0.0" />
 </children>
</HBox>
<TableView fx:id="nameDisplay" layoutX="7.0" layoutY="185.0" prefWidth="257.0"
 maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity"
 minWidth="-Infinity" prefHeight="132.99990000000253" >
 <columns>
 <TableColumn prefWidth="240.0" text="Person" fx:id="personColumn" />
 </columns>
</TableView>

Listing 4.36 shows the ProcessAllTask for this example. This time we extend Task defined with generic ObservableList<Person>. Furthermore, we use a ReadOnlyObjectWrapper to create a read-only JavaFX property (see “Read-Only Properties” on page 109 for a discussion) and provide two public methods to access the property: getPartialResults() and partialResultsProperty(). You’ll see that ProcessAllTask maintains this read-only property on the JavaFX Application Thread, making its access by code that updates the UI thread safe.

Method call() is invoked on the background thread. It processes the list of Person objects passed in the constructor. As it adds Person objects to partialResults observable list, it invokes Platform.runLater().

Listing 4.36 ProcessAllTask

Click here to view code image

 private class ProcessAllTask extends Task<ObservableList<Person>> {

private final ObservableList<Person> processList;

 private final ReadOnlyObjectWrapper<ObservableList<Person>>
 partialResults = new ReadOnlyObjectWrapper<>(this, "partialResults",
 FXCollections.observableArrayList(new ArrayList<>()));

 public final ObservableList getPartialResults() {
 return partialResults.get();
 }

 public final ReadOnlyObjectProperty<ObservableList<Person>>
 partialResultsProperty() {
 return partialResults.getReadOnlyProperty();
 }

public ProcessAllTask(final ObservableList<Person> processList) {
 this.processList = processList;
 }

 @Override
 protected ObservableList<Person> call() throws Exception {
 logger.log(Level.FINE, "Begin processing");

 final int taskMaxCount = processList.size();
 logger.log(Level.FINE, "processing list: {0}", processList);
 int taskProgress = 0;
 for (final Person person : processList) {
 if (isCancelled()) {
 break;
 }
 // do something to each person
 logger.log(Level.FINE, "processing: {0}", person);
 doProcess(person);
 // Update the property on the FX thread
 Platform.runLater(() -> {
 partialResults.get().add(person);
 });
 updateProgress(100 * (++taskProgress) / taskMaxCount, 100);
 Thread.sleep(500);
 }
 return partialResults.get();
 }

// Called on the background thread
 private void doProcess(Person p) {
 p.setFirstname(p.getFirstname().toUpperCase());
 p.setMiddlename(p.getMiddlename().toUpperCase());
 p.setLastname(p.getLastname().toUpperCase());
 p.setSuffix(p.getSuffix().toUpperCase());
 }
 }

Listing 4.37 shows the code to handle the Process All button. Here, you see the power of observable lists, where we set TableView method setItems() to an observable list. As the list changes, the TableView control automatically refreshes. TableColumn method setCellValueFactory() specifies that the column’s cell data is created from the Person object’s fullname property.

Not apparent in the screen shot shown in Figure 4.17 on page 188, the ProcessAll Task completion callback methods invoke method resetUI(). This fades out the TableView control. When the fade animation completes, the Process All button is enabled. (See “Animation” on page 100 for more details on Transitions.)

Listing 4.37 Process All Button

Click here to view code image

 @FXML
 private void processAllButtonAction(ActionEvent event) {
 logger.log(Level.FINE, "Process All Button");
 // only one task to run at a time so disable the button
 processAllButton.setDisable(true);
 // create the task with a list
 final ProcessAllTask processTask = new ProcessAllTask(
 FXCollections.observableArrayList(ftm.getAllPeople()));
 // configure the UI
 progressBar.progressProperty().bind(processTask.progressProperty());
 personColumn.setCellValueFactory(
 new PropertyValueFactory<>("fullname"));
 nameDisplay.setOpacity(1);
 nameDisplay.setItems(processTask.getPartialResults());
 // set up handlers for success and failure
 processTask.setOnSucceeded(t -> {
 logger.log(Level.FINE, "Process All task finished: {0}",
 t.getSource().getValue());
 resetUI();
 });
 processTask.setOnFailed(t -> {
 // t.getSource().getException() could be null
 logger.log(Level.WARNING, "Update task failed {0}",
 t.getSource().getException() != null
 ? t.getSource().getException()
 : "Unknown failure");
 resetUI();
 });
 processTask.setOnCancelled(t -> {
 logger.log(Level.FINE, "Process All task cancelled.");
 resetUI();
 });
 // start the task in a background thread
 new Thread(processTask).start();
 }

 // reset the UI
 private void resetUI() {
 FadeTransition ft = new FadeTransition(Duration.millis(1500),
 nameDisplay);
 ft.setToValue(0);
 ft.setDelay(Duration.millis(2000));
 ft.setOnFinished(a -> {
 processAllButton.setDisable(false);
 });
 ft.play();
 progressBar.progressProperty().unbind();
 progressBar.setProgress(0);
 }

Updating the JavaFX Scene Graph from a Background Task

The previous example updates a read-only property in the background task. You can also safely update the JavaFX scene graph from a background task as long as you wrap any update code in a Runnable and invoke Platform.runLater(). Application PersonFXMLAppFXWorker3 is an example of a background task that creates scene graph content within a background task. Figure 4.18 shows this application running. As each Person is processed, its name is added to the scene graph as a Text control with a Drop Shadow effect, and it fades in using a FadeTransition. When the background task completes, the list of names (Text controls) fades out and the Process All button is re-enabled.

[image:]

Figure 4.18 Program PersonFXMLAppFXWorker3: Running a background task with partial results displayed in UI

To build the UI for this background task, we add a Label, Button, Progress Bar, and TilePane layout to the scene graph, as shown in Listing 4.38. You’ve seen these same controls previously, except we now use a TilePane layout control to display the Text shapes that hold each name. The TilePane includes a drop shadow effect.

Listing 4.38 FXML Controls for Background Task UI

Click here to view code image

<HBox id="HBox" alignment="CENTER" layoutX="7.0" layoutY="226.0" spacing="5.0">
 <children>
 <Button fx:id="processAllButton" mnemonicParsing="false"
 onAction="#processAllButtonAction" text="Process All" />
 <ProgressBar fx:id="progressBar" prefWidth="161.0" progress="0.0" />
 </children>
</HBox>
<Label fx:id="statusMessage" layoutX="7.0" layoutY="197.0" />
<TilePane fx:id="nameDisplay" alignment="TOP_CENTER" hgap="50.0" layoutX="7.0"
 layoutY="268.0" prefHeight="109.0" prefWidth="257.0" vgap="3.0">
 <effect>
 <DropShadow color="#666666" offsetY="3.0" />
 </effect>
 <padding>
 <Insets top="5.0" />
 </padding>
</TilePane>

Listing 4.39 shows class ProcessAllTask. Note that in this example we specify <Void> for the generic type, since the Task does not return anything. As before, we pass in the Person list with the constructor.

The call() method sets a loop to process each person. It updates the message and invokes helper method makeText() to create and configure the Text. It builds a FadeTransition and sets the fade transition’s “to” value to 1 (making the animation fade in the Text node). All the configuration code occurs on the background thread. Not until we add content to the scene graph must we invoke Platform.runLater(), as shown in Listing 4.39.

Listing 4.39 Class ProcessAllTask

Click here to view code image

 private class ProcessAllTask extends Task<Void> {

private final ObservableList<Person> processList;

public ProcessAllTask(final ObservableList<Person> processList) {
 this.processList = processList;
 }

@Override
 protected Void call() throws Exception {
 logger.log(Level.FINE, "Begin processing");

 final int taskMaxCount = processList.size();
 logger.log(Level.FINE, "processing list: {0}", processList);
 int taskProgress = 0;
 for (final Person person : processList) {
 if (isCancelled()) {
 break;
 }
 // do something to each person
 updateMessage("Processing " + person);
 logger.log(Level.FINE, "processing: {0}", person);
 doProcess(person);
 final Text t = makeText(person);
 FadeTransition ft = new FadeTransition(
 Duration.millis(1500), t);
 ft.setToValue(1);
 // Update scene graph on JavaFX Application Thread
 Platform.runLater(() -> {
 nameDisplay.getChildren().add(t);
 ft.play();
 });
 updateProgress(100 * (++taskProgress) / taskMaxCount, 100);
 Thread.sleep(500);
 }
 return null; // because of <Void>
 }
 // Called on the background thread
 private void doProcess(Person p) {
 p.setFirstname(p.getFirstname().toUpperCase());
 p.setMiddlename(p.getMiddlename().toUpperCase());
 p.setLastname(p.getLastname().toUpperCase());
 p.setSuffix(p.getSuffix().toUpperCase());
 }

 private Text makeText(Person p) {
 final Text t = new Text(p.toString());
 t.setFill(Color.NAVY);
 t.setFont(Font.font("Tahoma", FontWeight.THIN, 14));
 t.setOpacity(0);
 return t;
 }
 }

Listing 4.40 shows the code to handle the Process All Button event handler. As before, we instantiate ProcessAllTask with the list of Person objects and bind the Task progress and text properties to UI controls. The completion callback methods reset the UI. This time when we reset the UI, we fade out the TilePane control. When the fade finishes, we clear the TilePane control, enable the Process All Button, and return the (now empty) TilePane to opaque.

Listing 4.40 Process All Button

Click here to view code image

 @FXML
 private void processAllButtonAction(ActionEvent event) {
 logger.log(Level.FINE, "Process All Button");
 // only one task to run at a time so disable the button
 processAllButton.setDisable(true);
 // create the task with a list
 final ProcessAllTask processTask = new ProcessAllTask(
 FXCollections.observableArrayList(ftm.getAllPeople()));
 // configure the UI
 progressBar.progressProperty().bind(processTask.progressProperty());
 statusMessage.textProperty().bind(processTask.messageProperty());

 // set up handlers for success and failure
 processTask.setOnSucceeded(t -> {
 logger.log(Level.FINE, "Process All task finished: {0}",
 t.getSource().getValue());
 resetUI();
 });
 processTask.setOnFailed(t -> {
 // t.getSource().getException() could be null
 logger.log(Level.WARNING, "Update task failed {0}",
 t.getSource().getException() != null
 ? t.getSource().getException()
 : "Unknown failure");
 resetUI();
 });
 processTask.setOnCancelled(t -> {
 logger.log(Level.FINE, "Process All task cancelled.");
 resetUI();
 });
 // start the task in a background thread
 new Thread(processTask).start();
 }

 // reset the UI
 private void resetUI() {
 FadeTransition ft = new FadeTransition(
 Duration.millis(1500), nameDisplay);
 ft.setToValue(0);
 ft.setDelay(Duration.millis(2000));
 ft.setOnFinished(a -> {
 nameDisplay.getChildren().clear();
 processAllButton.setDisable(false);
 nameDisplay.setOpacity(1);
 });
 ft.play();
 progressBar.progressProperty().unbind();
 progressBar.setProgress(0);
 statusMessage.textProperty().unbind();
 statusMessage.setText("");
 }

4.8 Key Point Summary

This chapter explores ways to use JavaFX in desktop applications, where users are presented with model data and make changes to the data. We address creating model classes with JavaFX properties and using observable collections. We show typical JavaFX controls to build a UI, such as TreeView, TextField, RadioButton, Label, TextArea, and Button. We create listeners to respond to changes and use binding expressions to keep model data synchronized with UI controls. Finally, we show how to create background tasks with JavaFX, paying attention to thread safety and updating the scene graph only on the JavaFX Application Thread.

Here are the key points in this chapter.

• JavaFX provides implementations for the abstract JavaFX property classes that wrap the type’s value. For example, SimpleStringProperty implements StringProperty and wraps a String value, SimpleIntegerProperty implements IntegerProperty and wraps Integer, and so forth.

• Use SimpleObjectProperty<T> to provide an implementation of a JavaFX property that wraps an Object of type T. We use SimpleObjectProperty<Person.Gender> to create a JavaFX property that wraps a Person.Gender enum value.

• Consider implementing JavaFX properties with lazy evaluation. This strategy prevents instantiation of the JavaFX property until a listener is attached or binding is applied.

• Immutable values don’t require JavaFX property implementations.

• JavaFX computed properties use binding expressions to keep the computed value in sync with the properties upon which it depends.

• JavaFX provides read-only property wrappers to implement JavaFX read-only properties. When you use a wrapper class, two synchronized properties are created. One is exposed and read only. The other can be modified and is encapsulated in the model class.

• When you create a read-only JavaFX property, expose public methods for the read-only property and the getter, but not the setter.

• When model classes have JavaFX properties, use binding to keep the model and UI synchronized.

• JavaFX provides observable collections. Class FXCollections includes static methods that return observable versions of the same collection types available with java.util.Collections.

• Observable collections let you respond to changes by attaching change and invalidation listeners to the collection. InvalidationListener is type neutral, and the ChangeListener type depends on the underlying collection type.

• We use ObservableMap<Long, Person> in the FamilyTreeManager to maintain the collection of Person items.

• MapChangeListener lets you respond to changes in an observable map. You can determine if the change was an addition, update, or removal, and you can access the old and new values.

• Scene Builder is a stand-alone application that generates FXML. You place controls on the design area using drag and drop and configure controls with context menus and property sheets.

• JavaFX controls generate one or more events, which you can listen for and respond to with event handlers.

• You can attach a ChangeListener to the selection property of a TreeView model to listen for selection changes.

• Use bidirectional binding to keep the UI and model objects synchronized.

• JavaFX is a single-threaded UI. Put long-running tasks in a background thread to keep the UI responsive.

• JavaFX Tasks let you execute long-running code in a background thread and safely update the UI. Background tasks include status properties that you can safely bind to with UI control variables.

• In general, you should not update observable values in a background thread.

• To publish partial results with a background task, use thread safe Task method updateValue() or wrap any updates to public properties or the scene graph in a Runnable and execute with Platform.runLater().

5. A Taste of Modularity

With the background basics of Swing covered, it’s time to explore the NetBeans Platform application architecture. In this chapter, you’ll learn how to build a modular application that uses the NetBeans Platform Window System and leverages NetBeans Platform techniques to keep modules loosely coupled.

What You Will Learn

• Understand the NetBeans module system.

• Create a NetBeans Platform application and add modules to it.

• Port a Swing application to the NetBeans Platform.

• Create windows for a NetBeans Platform application.

• Use Lookup to discover service providers.

• Use Lookup to share objects between modules.

5.1 Modular Architecture

Even though the applications in Chapter 2 are basic, they follow a loosely-coupled design. That is, a user event that changes model data generates a property change event and lets interested subscribers respond. Similarly, when a user selects a different Person to edit, a selection listener lets subscribers know the user selected a new object. These mechanisms keep event-processing code isolated from property change and selection events. However, the applications we presented in Chapter 2 are themselves monolithic, and we encapsulate functionality using Java class visibility. As you add more features to applications like these, it becomes difficult to isolate the different parts of the application, and the dependencies become more entangled.

Not only does the NetBeans Platform provide a wide range of features (window system, action framework, menu bar and toolbar, and so forth), but the NetBeans Platform also provides an architectural framework for your application. That is, the NetBeans Platform provides an execution environment that supports a module system called the Runtime Container. The Runtime Container consists of the minimum modules required to load and execute your application.

Modules

Modules are the basic building blocks of the NetBeans Platform. A module is a collection of functionally related classes stored in a JAR file along with metadata. The metadata provides information to the Runtime Container about the module, such as the module’s name, version information, dependencies, and a list of its public packages, if any.

The NetBeans Platform Runtime Container enforces the encapsulation of modules. This keeps applications loosely coupled and avoids accidental dependencies. Specifically, in order to use or access code in another module (say, Module B accesses classes in Module A), two conditions must be met, as shown in Figure 5.1.

[image:]

Figure 5.1 Setting a dependency on Module A

1. You must put Module A classes in a public package and assign a version number.

2. Module B must declare a dependency on a specified version of Module A.

This arrangement keeps dependencies between modules deliberate, documented, and enforced by the Runtime Container.

NetBeans Runtime Container

The NetBeans Runtime Container consists of the following six modules, as shown in Figure 5.2.

[image:]

Figure 5.2 NetBeans Platform Runtime Container

• Bootstrap—executes initially and loads and executes the Startup module.

• Startup—contains the Main method of the application and initializes the module system and the virtual file system.

• Module System API—manages modules, enforces module visibility and dependencies, and provides access to module life cycle methods.

• Utilities API—provides general utility classes.

• File System API—provides a virtual file system for your application.

• Lookup API—provides a mechanism for finding and loading classes that is loosely coupled and allows modules to communicate with each other.

Note that a NetBeans Platform application can run with just these modules, but your application will lack a GUI and many other useful features.

To show you the NetBeans Platform architecture, including its module system and communication mechanism, let’s port the Swing application presented in Chapter 2, PersonSwingAppEnhancedUI (see “Improving the User Experience” on page 63). The application’s basic functionality will remain unchanged, but the end result is a modular application with very specific dependencies. Furthermore, due to its modular structure, you’ll see how to add features (in later chapters) without the fear of breaking code. And with the NetBeans Platform, we automatically get a fully functional window system, menu bar, and toolbar.

Figure 5.3 shows our complete NetBeans Platform application running (FamilyTreeApp). While this application is very similar to the Swing version, there are key differences.

[image:]

Figure 5.3 FamilyTreeApp running

• The application has a toolbar and menu bar (the menu bar uses the native operating system’s menu bar, so it does not appear in the screen shot).

• The PersonViewer window (on the left) and the PersonEditor window (on the right) are both independently detachable and resizable windows.

• The application is divided into modules.

• The FamilyTreeManager is now a service, and the class that implements this service is in its own module.

• Each of the windows is implemented by separate modules.

• When you select a Person in the PersonViewer window, the selected Person is displayed in the PersonEditor window. This communication requires no dependency between the two windows, only a mutual dependency on the NetBeans Lookup module.

• The Person and FamilyTreeManager classes are in the same module (FamilyTreeModel). This package is public so that other modules can declare a dependency on it.

We’ll show you exactly how to build this application and along the way, we’ll describe two very important features of the NetBeans Platform: Modules and Lookup.

5.2 Creating a NetBeans Platform Application

A NetBeans Platform application project consists of a top-level structure containing one or more modules. When you use the New Project wizard to create a NetBeans Platform application, your application includes the Runtime Container. This application also contains additional modules needed to support the window system, actions, menu, and other features.

Follow these steps to create your NetBeans Platform application project with the NetBeans IDE.

1. From the NetBeans IDE top-level menu bar, select File | New Project. The NetBeans New Project wizard pops up the Choose Project dialog.

2. Under Categories select NetBeans Modules and under Projects select NetBeans Platform Application, as shown in Figure 5.4. Select Next. This is how you create a top-level NetBeans Platform Application to which you can then add your own modules.

[image:]

Figure 5.4 New Project Choose Project dialog

3. NetBeans now displays the Name and Location dialog. Provide the Project Name FamilyTreeApp and click Browse to select a Project Location directory. Accept the defaults for the remaining fields and click Finish, as shown in Figure 5.5.

[image:]

Figure 5.5 New Project Name and Location dialog

NetBeans creates your NetBeans Platform application project with the modules necessary to include a menu bar, toolbar, and empty window system. Let’s examine the project structure and a few of the artifacts before we add functionality to this program.

NetBeans Platform Project

Figure 5.6 shows project FamilyTreeApp in the Projects view. It has no user-created modules (the Modules node is empty). The metadata associated with the application appears under the Important Files node. These files include a Build Script (file build.xml), the Project Properties (file project.properties), NetBeans Platform Config (file platform.properties), and Per-user NetBeans Platform Config (file platform-private.properties).

[image:]

Figure 5.6 FamilyTreeApp Projects view

• An Ant build script is automatically generated for your project in file nbproject/build-impl.xml. You can customize this script by editing the Build Script (file build.xml) under Important Files.

• File Project Properties (file project.properties) describes the modules in your NetBeans Platform application as well as your application’s name. Listing 5.1 shows this file before you create any new modules for your application.

Listing 5.1 Project Properties (project.properties)

app.name=${branding.token}
app.title=FamilyTreeApp
modules=

• Listing 5.2 shows the NetBeans Platform Config file (file platform.properties), which describes the collection of modules (a cluster) that is automatically included in your application. The standard cluster for NetBeans Platform applications is called platform.

This configuration also includes property branding.token (used in the Project Properties file) and the list of disabled modules from the platform cluster. Since these modules are not frequently used, they are disabled to minimize your application’s footprint.

Listing 5.2 NetBeans Platform Config (platform.properties)

Click here to view code image

branding.token=FamilyTreeApp
cluster.path=\
 ${nbplatform.active.dir}/platform
disabled.modules=\
 org.jdesktop.layout,\
 org.netbeans.api.visual,\
 org.netbeans.core.execution,\
 org.netbeans.libs.jsr223,\
 org.netbeans.modules.autoupdate.cli,\
 org.netbeans.modules.autoupdate.services,\
 org.netbeans.modules.autoupdate.ui,\
 org.netbeans.modules.core.kit,\
 org.netbeans.modules.favorites,\
 org.netbeans.modules.templates,\
 org.openide.compat,\
 org.openide.execution,\
 org.openide.options,\
 org.openide.util.enumerations
nbplatform.active=default

The project’s Properties dialog lets you examine and change a project’s settings. Let’s look at the Properties dialog now.

To examine your application’s various properties, select the application’s project node in the Projects window, right click, and select Properties from the context menu. NetBeans displays a Project Properties dialog. Under Categories select Libraries. NetBeans displays the Libraries dialog, as shown in Figure 5.7.

[image:]

Figure 5.7 FamilyTreeApp Project Properties

The list of clusters available appears under heading Nodes. You see all clusters are excluded except cluster platform. If you expand the platform cluster, you’ll see the modules included in this cluster. As you scroll down, module names appear that are included in your application, as well as additional available modules that are excluded. These excluded modules are the ones listed in the NetBeans Platform Config file (Listing 5.2).

You can also add additional projects or clusters to your application using the Add Project or Add Cluster buttons. Dismiss this dialog now by clicking OK.

• The Per-user NetBeans Platform Config file (platform-private.properties) lets you configure build properties that apply only to the local machine or to a specific user. This file is not typically checked into a source repository.

Although you have not yet added any modules of your own, your project contains NetBeans Platform modules that let you run this (not very interesting) application. Select the project in the Projects view and click the green chevron on the toolbar to run FamilyTreeApp. Figure 5.8 shows the application running. Note that the application includes a top-level menu bar, a toolbar, an application title, a search window, a main window area that is empty, and a status line. All of the icons in the toolbar are disabled (Save All, Undo, and Redo), but the menu bar includes many active menu items.

[image:]

Figure 5.8 A bare-bones FamilyTreeApp running

The top-level menu bar has several useful features that you can select. Menu item View configures additional icons in the toolbar, such as the clipboard icons (copy, cut, and paste) and lets you view the IDE output log. Menu item Window opens and closes a Property Window or an Output Window. Most selections under menu item File are disabled except for Page Setup. Many artifacts come pre-configured, and with minimal effort on your part, you can incorporate these items in your application. We will show you how to do this in upcoming chapters.

Figure 5.9 shows the same application running with additional configurations, all performed with the menu bar. Here, we enabled a web browser to display the Anderson Software Group home page (Window | Web | Web Browser), configured the clipboard icons (View | Toolbars | Clipboard), enabled the IDE Output window (View | IDE Log), and opened a Properties window (Window | IDE Tools | Properties).

[image:]

Figure 5.9 FamilyTreeApp with additional windows and toolbar icons configured

If you performed any of the above configurations, you can return to the default configurations as follows. First, exit the application. Next, right click on project FamilyTreeApp and select Clean from the context menu. The next time you run the application, the NetBeans Platform will use the default settings.

5.3 Creating Modules

With the bare bones structure of a NetBeans Platform Application created, it’s time to add modules and functionality to the FamilyTreeApp application. To do this, we’ll add four modules, as follows.

• Module FamilyTreeModel—This module contains class Person.java (our model), and a FamilyTreeManager interface. This interface includes all of the FamilyTreeManager public methods from the Swing version of our application declared as abstract methods.

• Module FamilyTreeManagerImpl—This module contains the implementation of the FamilyTreeManager interface and registers itself as a service provider for the application.

• Module PersonViewer—This module includes a NetBeans Platform TopComponent (window) to display the Person objects from the FamilyTreeManager in a window. We discuss TopComponents in detail in Chapter 8.

• Module PersonEditor—This module also includes a NetBeans Platform TopComponent. Here, we display detailed information about the selected Person in a window that the user can edit and save to the FamilyTreeManager.

Figure 5.10 shows these four modules and the dependencies they form together in application FamilyTreeApp.

[image:]

Figure 5.10 Added modules and their dependencies

Creating a NetBeans Module

To create a module for a NetBeans Platform application, follow these steps. Here we create module FamilyTreeModel.

1. Right click on the Modules node in project FamilyTreeApp and choose Add New... as shown in Figure 5.11. NetBeans begins the New Module Project wizard.

[image:]

Figure 5.11 Add a new module to FamilyTreeApp application

2. NetBeans displays the Name and Location dialog. Specify FamilyTreeModel for the Project Name. Accept the defaults for Project Location and Project Folder and click Next, as shown in Figure 5.12.

[image:]

Figure 5.12 New module Name and Location dialog

3. NetBeans displays the Basic Module Configuration dialog. Specify com.asgteach.familytree.model for the Code Name Base. Accept the defaults for the Module Display Name (FamilyTreeModel) and Localizing Bundle (com/asgteach/familytree/model/Bundle.properties) and leave Generate OSGi Bundle unchecked, as shown in Figure 5.13. Click Finish.

[image:]

Figure 5.13 New module Basic Module Configuration dialog

Creating Additional Modules

The FamilyTreeApp application now contains one user-added module called FamilyTreeModel. Before we add code to this module, repeat the above steps and add three more modules: FamilyTreeManagerImpl, PersonViewer, and PersonEditor, as follows.

1. New Module FamilyTreeManagerImpl, code name base com.asgteach.familytree.manager.impl, and display name FamilyTreeManagerImpl.

2. New Module PersonViewer, code name base com.asgteach.familytree.personviewer, and display name PersonViewer.

3. New Module PersonEditor, code name base com.asgteach.familytree.personeditor, and display name PersonEditor.

Figure 5.14 shows the Projects view for application FamilyTreeApp. When you expand the Modules node, you see the four newly-added modules. You also see new projects for each module. Note that when you work with these module projects, you select the project name outside the FamilyTreeApp project, not the module name under the Modules node, as indicated in Figure 5.14.

[image:]

Figure 5.14 FamilyTreeApp Projects view with added modules

5.4 Configuring a Module with Public Packages

The FamilyTreeModel module contains the model for our application. This includes class Person.java and interface FamilyTreeManager. As shown previously (see Figure 5.10 on page 209), this module will be used by the other modules in our application. Follow these steps to add the Java source files to FamilyTreeModel and configure them so that these classes can be accessed by other modules.

1. Select project FamilyTreeModel in the Projects view (be sure to select the project name, not the module name under Modules).

2. Expand the project name and Source Packages node. You will see package name com.asgteach.familytree.model.

3. As a starting point, use the code from project PersonSwingAppEnhancedUI and copy both Person.java and FamilyTreeManager.java to package com.asgteach.familytree.model. Class Person.java is unchanged. (Listing 2.5 on page 30 shows the version of Person.java used in project PersonSwingAppEnhancedUI.)

4. Modify class FamilyTreeManager so that it is an interface and all methods are abstract. Do not include static method getInstance() or the constructor. (You’ll see soon why we don’t need these anymore.) Remove all class variables except the property names (static final Strings). Listing 5.3 shows the new FamilyTreeManager interface.

Listing 5.3 Interface FamilyTreeManager

Click here to view code image

package com.asgteach.familytree.model;

import java.beans.PropertyChangeListener;
import java.util.List;

public interface FamilyTreeManager {

// FamilyTreeManager property change names
 public static final String PROP_PERSON_DESTROYED = "removePerson";
 public static final String PROP_PERSON_ADDED = "addPerson";
 public static final String PROP_PERSON_UPDATED = "updatePerson";

public void addPropertyChangeListener(PropertyChangeListener listener);

public void removePropertyChangeListener(PropertyChangeListener listener);
 public void addPerson(Person p);

public void updatePerson(Person p);

public void deletePerson(Person p);

public List<Person> getAllPeople();
}

Module FamilyTreeModel now has code for Person and the FamilyTreeManager interface, but we want other modules to reference these classes. Therefore, we must declare the package com.asgteach.familytree.model in this module as public, as illustrated in Figure 5.1 on page 200 (FamilyTreeModel is “Module A”). Let’s do this now.

1. In the Projects view, select project FamilyTreeModel, right click, and select Properties from the context menu.

2. Under Categories, select API Versioning.

3. In the panel, click the checkbox to specify that package com.asgteach.familytree.model is Public, as shown in Figure 5.15. Accept the default for Specification Version 1.0. Click OK.

[image:]

Figure 5.15 API Versioning: Specify Public Packages

Note that this is the first of two required steps in the NetBeans Platform for one module to access a class in another module. We’ll show you the second step next.

5.5 Registering a Service Provider

The FamilyTreeManagerImpl module contains the code that implements interface FamilyTreeManager. Furthermore, it registers itself as a Service Provider for service FamilyTreeManager. The NetBeans Platform Lookup module makes services available in an application’s Global Lookup, which means other modules can “look up” Services based on a class type. You register a service provider with annotation @ServiceProvider.

Because the FamilyTreeManagerImpl module provides an implementation for interface FamilyTreeManager and FamilyTreeManager is in a separate module, you must declare a dependency on module FamilyTreeModel to access classes Person and FamilyTreeManager. This is the second step required in creating module dependencies. Furthermore, in order to register the FamilyTreeManager implementation as a service, you must also declare a dependency on the Lookup API module. Follow these steps to declare module dependencies.

1. In project FamilyTreeManagerImpl, right click the Libraries node and select Add Module Dependency . . . as shown in Figure 5.16. NetBeans displays the Add Module Dependency dialog.

[image:]

Figure 5.16 Add Module Dependency

2. In the list of modules, select both FamilyTreeModel and Lookup API. Click OK. NetBeans adds both FamilyTreeModel and Lookup API to FamilyTreeManagerImpl’s list of dependencies. When you expand the Libraries node, you’ll see these modules listed, as shown in Figure 5.17.

[image:]

Figure 5.17 After adding module dependencies

When you add a module dependency, NetBeans updates the module’s metadata so that the Runtime Container can enforce the declared dependencies. You can view a module’s metadata as follows. Expand the Important Files node and double click Project Metadata (file project.xml). Listing 5.4 shows the project metadata for the FamilyTreeManagerImpl module after adding the module dependencies for the FamilyTreeModel and Lookup API modules. Note that a runtime dependency exists for specification version 1.0 for FamilyTreeModel and specification version 8.22.1 for Lookup API (your Lookup API specification version number may be different).

Listing 5.4 Project Metadata for Module FamilyTreeManagerImpl

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://www.netbeans.org/ns/project/1">
 <type>org.netbeans.modules.apisupport.project</type>
 <configuration>
 <data xmlns="http://www.netbeans.org/ns/nb-module-project/3">
 <code-name-base>com.asgteach.familytree.manager.impl
 </code-name-base>
 <suite-component/>
 <module-dependencies>
 <dependency>
 <code-name-base>com.asgteach.familytree.model
 </code-name-base>
 <build-prerequisite/>
 <compile-dependency/>
 <run-dependency>
 <specification-version>1.0</specification-version>
 </run-dependency>
 </dependency>
 <dependency>
 <code-name-base>org.openide.util.lookup</code-name-base>
 <build-prerequisite/>
 <compile-dependency/>
 <run-dependency>
 <specification-version>8.22.1</specification-version>
 </run-dependency>
 </dependency>
 </module-dependencies>
 <public-packages/>
 </data>
 </configuration>
</project>

Now add the implementation class for interface FamilyTreeManager to the FamilyTreeManagerImpl module. The NetBeans IDE helps out quite a bit with this.

1. In project FamilyTreeManagerImpl, expand the Source Packages node.

2. Select package com.asgteach.familytree.manager.impl, right click, and select New then Java Class from the context menus.

3. In the New Java Class dialog, provide FamilyTreeManagerImpl for Class Name and click Finish. You’ll now see file FamilyTreeManagerImpl.java under the selected package name and the file opens in the Java editor.

4. Edit the Java class so that it implements FamilyTreeManager. Fix imports (right click and select Fix Imports from the context menu).

5. Let NetBeans generate override method stubs for all of the abstract methods in interface FamilyTreeManager. (Click the icon in the left margin and select Implement all abstract methods from the displayed menu as shown in Figure 5.18.)

[image:]

Figure 5.18 Tell NetBeans to generate implementations for all abstract methods

6. Copy the method bodies as well as any class variables and private methods from the FamilyTreeManager class in project PersonSwingAppEnhancedUI.

7. Add private method getPropertyChangeSupport() and invoke this method in all the methods that require accessing class variable propChangeSupport, as shown in Listing 5.5.

8. Add annotation @ServiceProvider to class FamilyTreeManagerImpl. Listing 5.5 shows the entire class.

Listing 5.5 Class FamilyTreeManagerImpl.java

Click here to view code image

package com.asgteach.familytree.manager.impl;

import com.asgteach.familytree.model.FamilyTreeManager;
import com.asgteach.familytree.model.Person;
import java.beans.PropertyChangeListener;
import java.beans.PropertyChangeSupport;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import org.openide.util.lookup.ServiceProvider;

@ServiceProvider(service = FamilyTreeManager.class)
public class FamilyTreeManagerImpl implements FamilyTreeManager {
 private final Map<Long, Person> personMap = new HashMap<>();
 private PropertyChangeSupport propChangeSupport = null;

 private PropertyChangeSupport getPropertyChangeSupport() {
 if (this.propChangeSupport == null) {
 this.propChangeSupport = new PropertyChangeSupport(this);
 }
 return this.propChangeSupport;
 }
 @Override
 public void addPropertyChangeListener(PropertyChangeListener listener) {
 getPropertyChangeSupport().addPropertyChangeListener(listener);
 }

 @Override
 public void removePropertyChangeListener(PropertyChangeListener listener) {
 getPropertyChangeSupport().removePropertyChangeListener(listener);
 }

 @Override
 public void addPerson(Person p) {
 Person person = new Person(p);
 personMap.put(person.getId(), person);
 getPropertyChangeSupport().firePropertyChange(
 FamilyTreeManager.PROP_PERSON_ADDED, null, person);
 }
 @Override
 public void updatePerson(Person p) {
 Person person = new Person(p);
 personMap.put(person.getId(), person);
 getPropertyChangeSupport().firePropertyChange(
 FamilyTreeManager.PROP_PERSON_UPDATED, null, person);
 }

 @Override
 public void deletePerson(Person p) {
 Person person = personMap.remove(p.getId());
 if (person != null) {
 getPropertyChangeSupport().firePropertyChange(
 FamilyTreeManager.PROP_PERSON_DESTROYED, null, person);
 }
 }

@Override
 public List<Person> getAllPeople() {
 List<Person> copyList = new ArrayList<>();
 personMap.values().stream().forEach((p) -> {
 copyList.add(new Person(p));
 });
 return copyList;
 };
}

Note that the FamilyTreeManagerImpl class provides a HashMap to manage Person objects and fires property change events when Person objects are added to, updated, or deleted from the map. Clients can become listeners with the addPropertyChangeListener() method and remove themselves as listeners with the removePropertyChangeListener() method. This is the same behavior you saw with the Swing version of this program.

Annotation @ServiceProvider puts an instance of this class into the application’s Global Lookup so that other modules can find and use it. This automatically provides a singleton object for our application, so we no longer need to provide code to create a singleton instance. We’ll show you how client modules find and use this service provider when we add code to modules PersonViewer and PersonEditor.

Global Lookup

The Global Lookup is an application-wide repository for modules to discover and provide services. This allows the separation of the service interface (FamilyTreeManager) and the service provider (FamilyTreeManagerImpl). A client module can thus use a service without being aware of or dependent on its implementation. This supports loose coupling between modules. Annotation @ServiceProvider lets you register an implementation as a service provider for an interface. The service interface is also known as an extension point of the interface’s module (here, FamilyTreeModel).

The class that is annotated with @ServiceProvider must implement the interface for which it is providing the service. Furthermore, the class must be public and include a public no-argument constructor (or no constructor, as with class FamilyTreeManagerImpl). A module that uses this service does not declare a dependency on the provider’s module (FamilyTreeManagerImpl). Instead, the client declares a dependency on the module that contains the service interface (FamilyTreeModel). We discuss the Lookup API in more detail in “Lookup API” on page 224.

5.6 Configuring a Window for Selection

Application FamilyTreeApp (see Figure 5.3 on page 202) has two windows. The left-side window provides a list of Person objects, which we implement in the PersonViewer module. As described earlier, when a user selects a Person in the PersonViewer window, the selected Person is displayed in the PersonEditor window, the right-side window.

NetBeans Platform Windows
A window in a NetBeans Platform application is provided by class TopComponent, the main display component that is automatically integrated into the NetBeans Platform Window System. We’ll defer details on the Window System and Window Manager to Chapter 8 (“NetBeans Platform Window System”). For now, we’ll show you how to create a TopComponent and add Swing components to it.

In this section, we’ll show you how to create a NetBeans Platform window, add Swing components, and make the Person object selected by the user available to other modules in the application. Let’s begin by configuring module PersonViewer so that it can access classes Person and FamilyTreeManager.

As indicated in Figure 5.10 on page 209, module PersonViewer must declare a dependency on module FamilyTreeModel, as follows.

1. In project PersonViewer, right click the Libraries node and select Add Module Dependency NetBeans displays the Add Module Dependency dialog.

2. In the list of modules, select FamilyTreeModel. Click OK. NetBeans adds FamilyTreeModel to PersonViewer’s list of dependencies. When you expand the Libraries node, you’ll see this module listed.

Now let’s add a window to the PersonViewer module with the following steps.

1. Expand project PersonViewer and Source Packages. Right click on package name com.asgteach.familytree.personviwer and select New | Other from the context menu.

2. NetBeans displays the Choose File Type dialog. Select Module Development under Categories and Window under File Type, as shown in Figure 5.19. Click Next.

[image:]

Figure 5.19 Adding a new window

3. NetBeans displays the Basic Settings dialog. For Window Position, select explorer from the drop down control and check the box Open on Application Start. This window position setting determines where the window will appear in your application’s frame. This selection also influences window behavior.

Leave the other checkboxes unchecked (these options limit the window’s behaviors). Click Next as shown in Figure 5.20.

[image:]

Figure 5.20 Basic Settings dialog for a new window

4. NetBeans displays the Name, Icon and Location dialog. Provide PersonViewer for the Class Name Prefix. Leave the Icon blank and accept the defaults for the rest, as shown in Figure 5.21. Click Finish.

[image:]

Figure 5.21 Name, Icon and Location dialog for a new window

NetBeans creates class PersonViewerTopComponent and brings the class up in the Swing Design View. If you click the Source button, you’ll see the generated code, as shown in Listing 5.6. If you expand the Libraries node under project PersonViewer, you’ll also see that the New Window wizard added dependencies for the following NetBeans Platform modules, in addition to the dependency already configured for FamilyTreeModel.

Lookup API
 Settings API
 UI Utilities API
 Utilities API
 Window System API

Listing 5.6 PersonViewerTopComponent.java

Click here to view code image

package com.asgteach.familytree.personviewer;

. . . import statements omitted . . .

@ConvertAsProperties(
 dtd = "-//com.asgteach.familytree.personviewer//PersonViewer//EN",
 autostore = false)
@TopComponent.Description(
 preferredID = "PersonViewerTopComponent",
 //iconBase="SET/PATH/TO/ICON/HERE",
 persistenceType = TopComponent.PERSISTENCE_ALWAYS)
@TopComponent.Registration(mode = "explorer", openAtStartup = true)
@ActionID(category = "Window",
 id = "com.asgteach.familytree.personviewer.PersonViewerTopComponent")
@ActionReference(path = "Menu/Window" /*, position = 333 */)
@TopComponent.OpenActionRegistration(
 displayName = "#CTL_PersonViewerAction",
 preferredID = "PersonViewerTopComponent")
@Messages({
 "CTL_PersonViewerAction=PersonViewer",
 "CTL_PersonViewerTopComponent=PersonViewer Window",
 "HINT_PersonViewerTopComponent=This is a PersonViewer window"
})
public final class PersonViewerTopComponent extends TopComponent {

public PersonViewerTopComponent() {
 initComponents();
 setName(Bundle.CTL_PersonViewerTopComponent());
 setToolTipText(Bundle.HINT_PersonViewerTopComponent());
 }

. . . form designer code omitted . . .
 @Override
 public void componentOpened() {
 // TODO add custom code on component opening
 }

@Override
 public void componentClosed() {
 // TODO add custom code on component closing
 }

void writeProperties(java.util.Properties p) {
 // better to version settings since initial version as advocated at
 // http://wiki.apidesign.org/wiki/PropertyFiles
 p.setProperty("version", "1.0");
 // TODO store your settings
 }
 void readProperties(java.util.Properties p) {
 String version = p.getProperty("version");
 // TODO read your settings according to their version
 }
}

Porting Swing UI Code to a TopComponent

Because TopComponent is a subtype of JComponent in Swing, we can port our Swing layout code from project PersonSwingAppEnhancedUI, as follows.

1. Open project PersonSwingAppEnhancedUI in NetBeans and expand the project node, Source Packages, and package personswingapp. Open PersonJFrame.java in the editor.

2. Click the Design tab to open the Swing Design View.

3. Right click inside the left panel that contains the JTree and select Copy from the context menu.

4. Return to project PersonViewer and make sure PersonViewerTopComponent.java is open in the Swing Form Designer. Paste the copied contents into the Form Designer. You may see the following message.

Click here to view code image

Copied or inserted - not placed in layout yet.
 Move the component via mouse to place it.

5. Move the newly pasted component using the mouse to place the copied components in the layout.

6. Expand (grow) the component (grab the handles on the JTree component and drag them to the parent panel’s edge) so that it takes up the entire window, as shown in Figure 5.22. There will be red lines in the source code, indicating compilation errors. You will fix these shortly.

[image:]

Figure 5.22 PersonViewerTopComponent.java Design View

You still need to add configuration code to PersonViewerTopComponent.java. Some of the code can be copied over directly from PersonJFrame.java. Before you do that, it’s time to explain how the Lookup API lets you discover and use service providers. We’ll also show you how Lookup allows modules to communicate with each other.

Lookup API

Lookups are one of the most powerful features of the NetBeans Platform. Lookups can be application wide (called the “Global Lookup”) or attached to objects within an application. For example, all TopComponents have a Lookup. Let’s see how you can use Lookups to leverage loosely-coupled communication strategies.

In the previous section we used annotation @ServiceProvider to register a service provider in the application’s Global Lookup. A Lookup is a map where the keys are class types and the values are class type instances. Lookups allow modules to communicate with each other by querying an object’s Lookup. They are also type safe. You can use Lookups to discover service providers, but you can also discover arbitrary objects—not just service providers. You will see examples of both types of Lookups in this chapter as we configure the FamilyTreeApp application.

Lookup as a Service Provider

Before you can use a Lookup, you must obtain it somehow. The Global Lookup that maintains all registered service providers is accessible with static method Lookup.getDefault(). Use the lookup() method to discover a service provider for a particular service interface. For the FamilyTreeApp application, you need a service provider for interface FamilyTreeManager. Here is how you obtain this service provider.

Click here to view code image

 FamilyTreeManager ftm =
 Lookup.getDefault().lookup(FamilyTreeManager.class);
 if (ftm == null) {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager object");
 LifecycleManager.getDefault().exit();
 }
 // do something with ftm

Note that this code assumes the service provider is registered elsewhere via the @ServiceProvider annotation. With a successful return value, ftm holds a reference to a FamilyTreeManagerImpl instance, provided by the Lookup API. This client code has no dependency on the FamilyTreeManagerImpl module. Indeed, you can later provide another implementation without any changes to this client code. We only need a dependency on the FamilyTreeModel module, which includes interface FamilyTreeManager.

Lookup Tip
You should check the lookup() method’s return value against null. In this example, if the return value is null, we exit the application with the NetBeans Platform LifecycleManager method exit().

Lookup as an Object Repository

You’ve seen how Lookup can help you discover and obtain instances of service providers. In the FamilyTreeApp application, we also need a way to communicate the selected Person object to the PersonEditor when the user selects a different node in the JTree UI control. In the Swing version of this program, the TreeSelectionListener directly updates the Swing UI controls (see Listing 2.19 on page 60). In the NetBeans Platform application, however, the PersonEditor code and its UI controls are in their own, separate module. The PersonViewer module (which has the JTree component) must somehow make its selection available to the PersonEditor module. Furthermore, we want to maintain a loosely-coupled architecture, so we don’t want to make either module dependent on the other. Using Lookups is the answer.

Lookups have been described as a data structure or a “bag of things.” Importantly, Lookups help share objects, so that the bag of things can be discovered and accessed by other modules. Again, just like Lookups for service providers, object-sharing Lookups store objects in a map with class types as keys and instances as a set of values. Furthermore, Lookups are observable. That is, you can attach listeners to the result of a Lookup discovery. When a class or TopComponent puts something different into its Lookup, you can listen for this change and grab the new object (or objects) in the Lookup listener’s event handler.

This is exactly how the PersonViewerTopComponent makes the user’s Tree selection object available to any interested modules. The current Tree selection is placed in the TopComponent’s Lookup.

As it turns out, TopComponents already have a Lookup, and TopComponents implement Lookup.Provider, an interface that lets others ask for its Lookup with method getLookup().

Here are the steps required to add and remove content to a TopComponent’s Lookup.

1. First, create the content holder with convenience class InstanceContent.

Click here to view code image

private final InstanceContent instanceContent = new InstanceContent();

2. Next, create a Lookup to hold the InstanceContent and associate this Lookup with the TopComponent’s Lookup. This lets you use the TopComponent Lookup.Provider method getLookup() to access the Lookup. Class AbstractLookup extends Lookup and provides a default way to store class object and type pairs in the Lookup. You typically place this code in the TopComponent’s constructor.

Click here to view code image

 public PersonViewerTopComponent() {
 . . .
 associateLookup(new AbstractLookup(instanceContent));
 }

3. Now you can add, remove, or search for objects of a certain type in instanceContent. For example, in a TreeSelectionListener, add the selected item using InstanceContent method set().

Click here to view code image

 // Put person in this TopComponent's Lookup
 instanceContent.set(Collections.singleton(person), null);

Similarly, if you want to remove this Person object from the Lookup, search for it and then remove it, as follows. (The PersonViewer TopComponent removes the Person object from the Lookup when the user selects the top node “People.”)

Click here to view code image

 // Search for a person object in this TopComponent's Lookup
 // and remove if it's present
 Person person = getLookup().lookup(Person.class);
 if (person != null) {
 instanceContent.remove(person);
 }

The NetBeans Platform provides additional features that are sensitive to what’s in a TopComponent’s Lookup. We explore these in more detail in Chapter 10 (see “Implementing Update” on page 488).

Configuring the TopComponent

With an understanding of Lookups, let’s finish configuring the PersonViewer TopComponent. We’ll add class variables, configure the constructor code, and add code to the TopComponent’s life cycle methods. We’ll also write a TreeSelectionListener (to put the selected Person in the TopComponent’s Lookup) and a PropertyChangeListener (to update the displayed Person objects when they change). These listener methods are similar to the ones you’ve seen already in the Swing version of this program. But here we will take advantage of the NetBeans Platform features that promote modularity and loose coupling.

We’ll add this code starting from the top (class variables). You will encounter compilation errors when the source file is in intermediate states, but these will all be fixed when you are finished.

Configure Class Variables and Constructor

1. Add the following class variables and constructor code to PersonViewerTopComponent.java (as shown in Listing 5.7 in bold). These same class variables are used in the Swing version of this program, except for treeModel and instanceContent. We previously described instanceContent. Variable treeModel provides access to JTree’s model and lets you automatically expand the JTree hierarchy. We show this code later in Listing 5.11 on page 231.

Listing 5.7 PersonViewerTopComponent—Class Variables and Constructor

Click here to view code image

public final class PersonViewerTopComponent extends TopComponent {

 private FamilyTreeManager ftm;
 private final DefaultMutableTreeNode top =
 new DefaultMutableTreeNode("People");
 private final DefaultTreeModel treeModel = new DefaultTreeModel(top);
 private static final Logger logger = Logger.getLogger(
 PersonViewerTopComponent.class.getName());
 private final InstanceContent instanceContent = new InstanceContent();

 public PersonViewerTopComponent() {
 initComponents();
 setName(Bundle.CTL_PersonViewerTopComponent());
 setToolTipText(Bundle.HINT_PersonViewerTopComponent());
 associateLookup(new AbstractLookup(instanceContent));
 }

2. Because we defined a model for the JTree component, its constructor requires different instantiation code. This is done in the Design View. Click tab Design to bring up the Design View.

3. From the Design canvas, select the JTree component. In the Properties window, click tab Code. As shown in Figure 5.23, specify property Custom Creation Code as

new JTree(treeModel)

[image:]

Figure 5.23 JTree Properties window—Custom Creation Code under tab Code

When finished, click the Source tab to return to the Java Editor.

Add Listeners

As in the Swing version of the program, this module has a PropertyChangeListener to respond to changes generated from the FamilyTreeManager and a TreeSelectionListener to respond to the user’s selections.

1. Add the PropertyChangeListener code to PersonViewerTopComponent to listen for changes to the FamilyTreeManager, as shown in Listing 5.8. This code is unchanged from the Swing version of the program.

Listing 5.8 PropertyChangeListener for FamilyTreeManager

Click here to view code image

// PropertyChangeListener for FamilyTreeManager
 private final PropertyChangeListener familyTreeListener =
 (PropertyChangeEvent evt) -> {
 if (evt.getPropertyName().equals(FamilyTreeManager.PROP_PERSON_UPDATED)
 && evt.getNewValue() != null) {
 Person person = (Person) evt.getNewValue();
 DefaultTreeModel model = (DefaultTreeModel) personTree.getModel();
 for (int i = 0; i < model.getChildCount(top); i++) {
 DefaultMutableTreeNode node =
 (DefaultMutableTreeNode) model.getChild(top, i);
 if (person.equals(node.getUserObject())) {
 node.setUserObject(person);
 // Let the model know we made a change
 model.nodeChanged(node);
 logger.log(Level.FINE, "Node updated: {0}", node);
 break;
 }
 }
 }
 };

2. Add the TreeSelectionListener to PersonViewerTopComponent to respond to changes in the selected JTree node, as shown in Listing 5.9.

Note that in this code, we check to make sure the selected JTree node is a leaf node, which means the user selected a Person. If the selected node is not a leaf node, we remove the previously added Person object from the Lookup, if one is present. This lets us implement the ability to clear the PersonEditor forms when no Person object is selected. We show you the code to detect an empty Lookup result when we describe the PersonEditorTopComponent module in the next section.

Listing 5.9 TreeSelectionListener Uses TopComponent’s Lookup

Click here to view code image

 // TreeSelectionListener for JTree
 private final TreeSelectionListener treeSelectionListener =
 (TreeSelectionEvent e) -> {
 DefaultMutableTreeNode node = (DefaultMutableTreeNode)
 personTree.getLastSelectedPathComponent();
 if (node == null) {
 return;
 }
 if (node.isLeaf()) {
 Person person = (Person) node.getUserObject();
 logger.log(Level.INFO, "{0} selected", person);
 // Put person in this TopComponent's Lookup
 instanceContent.set(Collections.singleton(person), null);
 } else {
 logger.log(Level.INFO, "{0} selected", node.getUserObject());
 Person person = getLookup().lookup(Person.class);
 if (person != null) {
 instanceContent.remove(person);
 }
 }
 };

InstanceContent Tip
Note that in Listing 5.9, method instanceContent.set() resets the Lookup to the singleton Person object. To remove a Person object currently in the Lookup, use lookup(Person.class) to find a Person object and instanceContent.remove() to remove it.

Configure TopComponent Life Cycle Methods

Configure the TopComponent life cycle methods componentOpened() and componentClosed() as shown in Listing 5.10. (You typically add listeners in method componentOpened() and remove them in method componentClosed(). TopComponent life cycle methods are discussed in “Window System Life Cycle Management” on page 369.)

In method componentOpened(), we obtain an instance of service provider FamilyTreeManager using the application’s Global Lookup, as explained earlier. Then, using code you’ve seen previously in the Swing application version, we invoke buildData() to instantiate several Person objects and register a property change listener with the FamilyTreeManager service provider.

Method createNodes() builds the JTree data structure. We also register a tree selection listener with JTree personTree. Method componentClosed() removes the registered listeners.

Listing 5.10 TopComponent componentOpened() and componentClosed()

Click here to view code image

 @Override
 public void componentOpened() {
 ftm = Lookup.getDefault().lookup(FamilyTreeManager.class);
 if (ftm == null) {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager object");
 LifecycleManager.getDefault().exit();
 }
 buildData();
 ftm.addPropertyChangeListener(familyTreeListener);
 personTree.getSelectionModel().setSelectionMode(
 TreeSelectionModel.SINGLE_TREE_SELECTION);
 createNodes();
 personTree.addTreeSelectionListener(treeSelectionListener);
 }

 @Override
 public void componentClosed() {
 personTree.removeTreeSelectionListener(treeSelectionListener);
 ftm.removePropertyChangeListener(familyTreeListener);
 }

Adding Helper Methods

Add the code for methods buildData() and createNodes(), as shown in Listing 5.11. Note that buildData() is unchanged from PersonJFrame.java, but createNodes() now contains extra code to expand the JTree with method scrollPathToVisible(). Since this method requires a TreePath argument, we use DefaultTreeModel treeModel to obtain the path. Class variable treeModel is defined in Listing 5.7 on page 227.

Listing 5.11 Methods buildData() and createNodes()

Click here to view code image

private void buildData() {
 ftm.addPerson(new Person("Homer", "Simpson", Person.Gender.MALE));
 ftm.addPerson(new Person("Marge", "Simpson", Person.Gender.FEMALE));
 ftm.addPerson(new Person("Bart", "Simpson", Person.Gender.MALE));
 ftm.addPerson(new Person("Lisa", "Simpson", Person.Gender.FEMALE));
 ftm.addPerson(new Person("Maggie", "Simpson", Person.Gender.FEMALE));
 logger.log(Level.FINE, ftm.getAllPeople().toString());
 }

 private void createNodes() {
 ftm.getAllPeople().stream().forEach((p) -> {
 top.add(new DefaultMutableTreeNode(p));
 });
 // Expand the tree
 if (top.getChildCount() != 0) {
 TreeNode[] nodes = treeModel.getPathToRoot(top.getLastChild());
 TreePath path = new TreePath(nodes);
 personTree.scrollPathToVisible(path);
 }
 }

With these changes, you can now build and run the FamilyTreeApp application. Only the PersonViewer window appears, populated with Person objects, as shown in Figure 5.24. You can select different Person objects in the JTree component to test the TreeSelectionListener.

[image:]

Figure 5.24 PersonViewer window populated with Person objects

5.7 Configuring a Window with Form Editing

The PersonEditor module provides code to implement the right-side window of the FamilyTreeApp application from Figure 5.3 on page 202. Since PersonEditor has a window, we create a TopComponent for this. Also, we declare a dependency on the FamilyTreeModel module to access Person and FamilyTreeManager. We’ll begin with the same steps we used to build the PersonViewer module.

Set Module Dependency

Set the module dependency, as follows.

1. In project PersonEditor, right click the Libraries node and select Add Module Dependency NetBeans displays the Add Module Dependency dialog.

2. In the list of modules, select FamilyTreeModel. Click OK. NetBeans adds FamilyTreeModel to PersonEditor’s list of dependencies. When you expand the Libraries node, you’ll see the module listed.

Create a Window

Create a window (TopComponent) in module PersonEditor.

1. Expand project PersonEditor and Source Packages. Right click on package name com.asgteach.familytree.personeditor and select New | Other from the context menu (or select New | Window if the choice is available and skip the next step).

2. NetBeans displays the Choose File Type dialog. Select Module Development under Categories and Window under File Type. Click Next.

3. NetBeans displays the Basic Settings dialog. For Window Position, select editor from the drop down control and check the box Open on Application Start. Position editor creates a large window for your application. Leave the other checkboxes unchecked. Click Next.

4. NetBeans displays the Name, Icon and Location dialog. Provide PersonEditor for the Class Name Prefix. Editor windows display icons (if one is provided) on their tab. For Icon, optionally provide a suitable 16 x 16 GIF or PNG graphic. (You can use file personIcon.png found in the download bundle for this book.) Click Finish, as shown in Figure 5.25.

[image:]

Figure 5.25 Name, Icon and Location dialog for new editor window

Configure PersonEditorTopComponent UI

NetBeans creates class PersonEditorTopComponent and brings the class up in the Swing Design View. Once again, you can copy and paste the components from project PersonSwingAppEnhancedUI to create the UI form for editing Person objects. Use these steps to create the UI form for PersonEditorTopComponent.

1. Select the UI components for editing as well as the Update button from PersonJFrame.java and paste the components into the Design View of PersonEditorTopComponent.

2. Move the newly pasted components using the mouse to place the copied components in the layout.

3. Resize the panel that contains the components so that it takes up the entire space of the form. Figure 5.26 shows the UI components in PersonEditorTopComponent’s Design View.

[image:]

Figure 5.26 PersonEditorTopComponent Design View

For mutually exclusive behavior, add the radio buttons to the same ButtonGroup with the following steps.

1. Add a ButtonGroup from the Swing Controls palette to the form. You’ll see the ButtonGroup appear in the Navigator View under Other Components.

2. Right click on the ButtonGroup in the Navigator View and choose Change Variable Name from the context menu. Use variable name genderButtonGroup.

3. Right click on the Male radio button in the Design View and select Properties from the context menu. Select genderButtonGroup in the drop down for property buttonGroup, as shown in Figure 5.27. Click Close.

[image:]

Figure 5.27 maleButton JRadioButton Properties dialog

4. Repeat this step for the Female and Unknown radio buttons so that all three radio buttons belong to the same ButtonGroup.

Add Code to PersonEditorTopComponent

You’ll now add code to PersonEditorTopComponent.java. You’ll see that we can reuse much of the code from PersonJFrame.java to process user input. (We are still using project PersonSwingAppEnhancedUI described in “Improving the User Experience” on page 63 as our Swing porting reference.)

1. Select the Source button to return to the Java editor for PersonEditorTopComponent.java.

2. Add the following class variables, as shown in Listing 5.12. We add class variable lookupResult in order to attach a listener to a Lookup.Result object for Person objects. The remaining class variables are the same ones used in PersonJFrame.java. The constructor is unchanged from the generated code.

Listing 5.12 PersonEditorTopComponent—Class Variables and Constructor

Click here to view code image

public final class PersonEditorTopComponent extends TopComponent {

 private FamilyTreeManager ftm;
 private Person thePerson = null;
 private static final Logger logger = Logger.getLogger(
 PersonEditorTopComponent.class.getName());
 private boolean changeOK = false;
 private Lookup.Result<Person> lookupResult = null;

public PersonEditorTopComponent() {
 initComponents();
 setName(Bundle.CTL_PersonEditorTopComponent());
 setToolTipText(Bundle.HINT_PersonEditorTopComponent());

}

3. As shown in Listing 5.13, add method configureListeners() from PersonJFrame.java, but do not include the code to configure the PropertyChangeListener or TreeSelectionListener. (These listeners are now in the PersonViewer module.)

Listing 5.13 Method configureListeners()

Click here to view code image

private void configureListeners() {
 // add action listener to Update button
 updateButton.addActionListener(updateListener);
 // add document listeners to textfields, textarea
 firstTextField.getDocument().addDocumentListener(docListener);
 middleTextField.getDocument().addDocumentListener(docListener);
 lastTextField.getDocument().addDocumentListener(docListener);
 suffixTextField.getDocument().addDocumentListener(docListener);
 notesTextArea.getDocument().addDocumentListener(docListener);
 // add action listeners to radiobuttons
 maleButton.addActionListener(radioButtonListener);
 femaleButton.addActionListener(radioButtonListener);
 unknownButton.addActionListener(radioButtonListener);
 }

4. Add helper methods updateForm(), clearForm(), updateModel(), and modify() unchanged from PersonJFrame.java, as shown in Listing 5.14.

Listing 5.14 Code Ported Unchanged from PersonJFrame.java

Click here to view code image

 private void updateForm() {
 See Listing 2.24 on page 65.
 }

 private void clearForm() {
 See Listing 2.23 on page 65.
 }

 private void updateModel() {
 See Listing 2.26 on page 66.
 }
 private void modify() {
 See Listing 2.25 on page 66.
 }

5. Add action and document listeners unchanged as shown in Listing 5.15. These include the DocumentListener (to detect editing changes), ActionListener (to detect radio button changes), and a second ActionListener (for the Update button’s event handler).

Listing 5.15 Listeners from PersonJFrame.java

Click here to view code image

// Define listeners
 // DocumentListener for text fields and text area
 private final DocumentListener docListener = new DocumentListener() {

@Override
 public void insertUpdate(DocumentEvent evt) {
 if (changeOK) {
 modify();
 }
 }

@Override
 public void removeUpdate(DocumentEvent evt) {
 if (changeOK) {
 modify();
 }
 }
 @Override
 public void changedUpdate(DocumentEvent evt) {
 if (changeOK) {
 modify();
 }
 }
 };

// ActionListener for Radio Buttons
 private final ActionListener radioButtonListener = (ActionEvent e) -> {
 if (changeOK) {
 modify();
 }
 };

// ActionListener for Update button
 private final ActionListener updateListener = (ActionEvent e) -> {
 updateModel();
 ftm.updatePerson(thePerson);
 };

Configure TopComponent Life Cycle Methods

The TopComponent life cycle componentOpened() method lets you configure a TopComponent when it opens.

PersonEditorTopComponent requires access to the FamilyTreeManager service provider, which we obtain using the application’s Global Lookup. This code is the same that we used in PersonViewerTopComponent. Note that we obtain the same instance, since Lookup returns a singleton for service providers.

After we invoke method configureListeners(), we obtain the PersonViewerTopComponent’s Lookup. In the same way that static method Lookup.getDefault() provides the default Lookup, we use WindowManager.getDefault() to obtain the default Window Manager. The Window Manager manages all the application’s TopComponents. We can find a particular TopComponent using WindowManager method findTopComponent(). (See Table 8.1, “Window Manager Useful Methods,” on page 352 for a description of useful Window Manager methods.) Argument “PersonViewerTopComponent” is the TopComponent’s preferredID property as shown in the TopComponent annotations in Listing 5.6 on page 222.

With a reference to the TopComponent, we obtain its Lookup with method getLookup() and register a LookupListener on its Lookup.Result. The LookupListener’s resultChanged() method is invoked whenever PersonViewerTopComponent’s Lookup changes with an addition or removal of a Person.class object.

Why do we invoke the checkLookup() method in componentOpened()? The user can close the PersonEditor window. When the window re-opens, you want to make sure that whatever is currently selected in the PersonViewer also appears in the editor. Since the user can make selection changes while the PersonEditor window is closed, it’s necessary to invoke the checkLookup() method in componentOpened() and not wait for a LookupListener event to update the PersonEditor window.

Method componentClosed() removes the LookupListener.

• Add the following code to the TopComponent life cycle methods componentOpened() and componentClosed(), as shown in Listing 5.16.

Listing 5.16 TopComponent componentOpened() and componentClosed()

Click here to view code image

 @Override
 public void componentOpened() {
 ftm = Lookup.getDefault().lookup(FamilyTreeManager.class);
 if (ftm == null) {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager object");
 LifecycleManager.getDefault().exit();
 }
 configureListeners();
 // Listen for Person objects in the PersonViewerTopComponent Lookup
 TopComponent tc = WindowManager.getDefault().findTopComponent(
 "PersonViewerTopComponent");
 if (tc != null) {
 lookupResult = tc.getLookup().lookupResult(Person.class);
 checkLookup();
 lookupResult.addLookupListener(lookupListener);
 }
 }

 @Override
 public void componentClosed() {
 lookupResult.removeLookupListener(lookupListener);
 }

Add the LookupListener

Listing 5.17 shows the LookupListener code. Lookup inner class Lookup.Result method allInstances() returns a collection of Person objects currently in the Lookup. Recall that in the TreeSelectionListener, we put the selected Person object in the TopComponent’s Lookup (when the user selects a Person). If the user selects the top node, we remove the Person object from the Lookup, if one is present. Thus, in the LookupListener, if a new Person is present in the Lookup, we update the UI form with the Person’s data. Otherwise, the Lookup is empty, so we clear the UI form. This behavior matches the behavior of the Swing version of this program (project PersonSwingAppEnhancedUI).

• Add the following LookupListener code to the PersonEditor TopComponent, as shown in Listing 5.17.

Listing 5.17 LookupListener

Click here to view code image

// LookupListener to detect changes in PersonViewer's Lookup
 LookupListener lookupListener = (LookupEvent le) -> checkLookup();

 private void checkLookup() {
 Collection<? extends Person> allPeople = lookupResult.allInstances();
 if (!allPeople.isEmpty()) {
 thePerson = allPeople.iterator().next();
 logger.log(Level.FINE, "{0} selected", thePerson);
 updateForm();
 } else {
 logger.log(Level.FINE, "No selection");
 clearForm();
 }
 }

Figure 5.28 shows application FamilyTreeApp running with both windows undocked. Like the Swing version of this application, you can select different Person objects in the left PersonViewer window, edit the selected Person in the right PersonEditor window, and save your changes with the Update button. You can also undock either window, resize or maximize it, and re-dock it. You can use the top level Window menu to open and close either window. Furthermore, because the program is modular and uses the Lookup API for discovering service providers and inter-module communication, the application is well designed and loosely coupled.

[image:]

Figure 5.28 FamilyTreeApp running with windows undocked (floating)

Another Look at Lookup

The handshaking between the TreeSelectionListener in module PersonViewer (Listing 5.9 on page 229) and the LookupListener in module PersonEditor (Listing 5.17 on page 239) is a straightforward solution for the use case of editing the selected Person object and clearing the form when the user selects the top node. However, the PersonEditorTopComponent depends on the PersonViewerTopComponent, if for no other reason than it must know the PersonViewerTopComponent’s preferredID string when invoking method findTopComponent().

Tracking Global Selection

A more general solution lets us track the Global Selection Lookup, a Lookup of the TopComponent that currently has focus. When you make a selection in the PersonViewer window, the PersonViewerTopComponent has focus and the contents of its Lookup are available in the Global Selection Lookup. You access this Lookup with

Click here to view code image

private Lookup.Result<Person> lookupResult = null;
 . . .

// Listen for Person objects in the Global Selection Lookup
 lookupResult = Utilities.actionsGlobalContext()
 .lookupResult (Person.class);
 lookupResult.addLookupListener(lookupListener);

Now, whenever a Person object is added to or removed from the Global Selection Lookup, the LookupListener (lookupListener) is invoked. This removes the dependency on the PersonViewerTopComponent’s name.

There is just one problem. When the user clicks inside the PersonEditorTopComponent’s form to begin editing, the form clears because the Person object is no longer in the Global Selection Lookup. Because PersonEditorTopComponent has focus, its (empty) Lookup is now the Global Selection Lookup.

One way to solve this problem is to ignore the Global Selection Lookup when PersonEditorTopComponent has focus. Here is the modified LookupListener, as shown in Listing 5.18. As described in Chapter 8, the TopComponent registry keeps track of the application’s TopComponents. The registry returns the TopComponent that has focus with method getActivated(). If the TopComponent with focus is the PersonEditorTopComponent (this), then the result change is ignored.

Listing 5.18 LookupListener That Ignores Its Own TopComponent

Click here to view code image

// LookupListener to detect changes in PersonViewer's Lookup
 LookupListener lookupListener = (LookupEvent le) -> checkLookup();

private void checkLookup() {
 Collection<? extends Person> allPeople = lookupResult.allInstances();

 // Make sure that the TopComponent with focus isn't this one
 TopComponent tc = TopComponent.getRegistry().getActivated();
 if (tc != null && tc.equals(this)) {
 logger.log(Level.FINER, "PersonEditorTopComponent has focus.");
 return;
 }
 if (!allPeople.isEmpty()) {
 thePerson = allPeople.iterator().next();
 logger.log(Level.FINE, "{0} selected", thePerson);
 updateForm();
 } else {
 logger.log(Level.FINE, "No selection");
 clearForm();
 }
 }

Listing 5.19 shows the modified componentOpened() code that now uses the more general Global Selection Lookup instead of the PersonViewerTopComponent’s Lookup.

Listing 5.19 Method componentOpened()

Click here to view code image

@Override
 public void componentOpened() {
 ftm = Lookup.getDefault().lookup(FamilyTreeManager.class);
 if (ftm == null) {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager object");
 LifecycleManager.getDefault().exit();
 }
 configureListeners();

 // Listen for Person objects in the Global Selection Lookup
 lookupResult = Utilities.actionsGlobalContext()
 .lookupResult (Person.class);
 lookupResult.addLookupListener(lookupListener);
 checkLookup();
 }

We’ve just scratched the surface on the Lookup API. In upcoming chapters you will see how to use the Global Selection Lookup together with the Nodes API to handle object selection. Stay tuned!

5.8 Module Life Cycle Annotations

The Module System API lets you build classes with specific methods that are invoked when your application starts as well as when your application shuts down. You use annotation @OnStart for the startup and @OnStop for the shutdown process. Note that these Runnables are executed in a background thread. If you need to execute UI code, you must be in the EDT. (See “Custom Login Dialog” on page 539 for an example.) If a module needs to invoke code after the UI is initialized, the Window System includes the @OnShowing annotation. (See “Using @OnShowing” on page 374.)

Let’s show you how to use @OnStart by moving the FamilyTreeManager data initialization out of the TopComponent and into one of these special classes invoked during application startup. We’ll build this startup code in module FamilyTreeModel in its own private package, making it easier to add and remove TopComponent modules without being concerned about where we initialize our test data.

We’ll also add shutdown code with the @OnStop annotation to show you how you can customize your module or application shutdown process.

Using @OnStart

To install startup code in module FamilyTreeModel, we define a class that implements Runnable annotated with @OnStart. The system invokes the run() method of such a Runnable as soon as possible during startup. If more than one module has an @OnStart Runnable, the system runs them in parallel to minimize the startup time of the application. The following steps create a module’s @OnStart Runnable. Here, we add the @OnStart Runnable to the FamilyTreeModel module in a private package.

1. The @OnStart annotation requires a dependency on the Module System API, Lookup requires the Lookup API, and LifecycleManager requires Utilities API. Add all of these dependencies to the FamilyTreeModel module. (Select the Libraries node, right click, and select Add Module Dependency . . . from the context menu. In the Add Module Dependencies dialog, select Lookup API, Module System API, and Utilities API from the list of modules. Click OK.)

2. In the FamilyTreeModel project Source Packages node, right click on the package name, and add a new package called data to com.asgteach.familytree.model.

3. Right click on package data and select New | Java Class

4. NetBeans displays the New Java Class dialog. For Class Name, specify DataInstaller (any name is fine) and click Finish. NetBeans adds DataInstaller.java to package com.asgteach.familytree.model.data.

5. Add the following code to DataInstaller.java to initialize the FamilyTreeManager with test data. The run() method is invoked during startup. Listing 5.20 shows the added code.

Listing 5.20 Module FamilyTreeModel—DataInstaller Class

Click here to view code image

package com.asgteach.familytree.model.data;
. . . imports omitted . . .
@OnStart
public final class DataInstaller implements Runnable {
 private static final Logger logger = Logger.getLogger(
 DataInstaller.class.getName());

 @Override
 public void run() {
 FamilyTreeManager ftm = Lookup.getDefault().lookup(
 FamilyTreeManager.class);
 if (ftm == null) {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager object");
 LifecycleManager.getDefault().exit();
 }
 populateMap(ftm);
 }

private void populateMap(FamilyTreeManager ftm) {
 ftm.addPerson(new Person("Homer", "Simpson", Person.Gender.MALE));
 ftm.addPerson(new Person("Marge", "Simpson", Person.Gender.FEMALE));
 ftm.addPerson(new Person("Bart", "Simpson", Person.Gender.MALE));
 ftm.addPerson(new Person("Lisa", "Simpson", Person.Gender.FEMALE));
 ftm.addPerson(new Person("Maggie", "Simpson", Person.Gender.FEMALE));
 logger.log(Level.INFO, "Map populated: {0}", ftm.getAllPeople());
 }
}

Using @OnStop

The @OnStop annotation can be applied to both a Runnable or a Callable. The Callable implementation includes the Boolean call() method. If the call() method returns true, then the system proceeds with shutdown. If you don’t provide an @OnStop Callable, then permission is implicitly granted. If the shutdown is approved, all registered @OnStop Runnables are invoked to perform any module or system cleanup code. The Runnables are invoked in parallel, and their execution will finish before the shutdown process completes.

For an example, add a class called DataRemover to the same module and package as the DataInstaller class. Listing 5.21 shows the code that removes the test data from the FamilyTreeManager data store when the application quits. (This doesn’t do anything useful here, but you see the form for @OnStop Runnables.)

Listing 5.21 FamilyTreeModel—DataRemover Class

Click here to view code image

package com.asgteach.familytree.model.data;
. . . imports omitted . . .
@OnStop
public final class DataRemover implements Runnable {
 private static final Logger logger = Logger.getLogger(
 DataRemover.class.getName());

 @Override
 public void run() {
 FamilyTreeManager ftm = Lookup.getDefault().lookup(
 FamilyTreeManager.class);
 if (ftm != null) {
 ftm.getAllPeople().stream().forEach((p) -> {
 logger.log(Level.INFO, "Removing {0}.", p);
 ftm.deletePerson(p);
 });
 }
 }
}

5.9 What We Know So Far

The application that we built—that you built—does many things right. We’ve divided the application’s functionality into loosely-coupled modules. Our model (Person and FamilyTreeManager) is in a public package in its own module. The other three modules declare dependencies on this FamilyTreeModel module. Furthermore, we provide an implementation of FamilyTreeManager as a service in a separate module. With Lookups and service providers, we can easily provide alternate implementations without changing client code.

We display the application’s artifacts in separate windows: a PersonViewer window displays a tree view of Person objects and a PersonEditor window provides UI controls for editing Person data. There is no direct dependency between these two modules. This is a good first example of a modular NetBeans Platform application. TopComponents use the NetBeans Platform window system and Lookup provides a loosely-coupled architecture for both service providers and inter-module communication.

But let’s take a critical look at what we have so far, if for no other reason than to point to features in our application that don’t quite conform to the “NetBeans Platform” way of doing things (yet). We’d also like to remind you that we want to introduce the NetBeans Platform gradually by building on the work we’ve done both in this chapter and the previous chapters.

Here’s a brief summary of why the application we’ve built so far is not yet complete.

• The Update button doesn’t use the NetBeans Platform action framework. Although button event handlers are a convenient way to port a Swing application, NetBeans Platform applications use the top-level menu bar, the toolbar, and perhaps a right-click context sensitive menu to perform such actions as saving Person data. We cover the action framework in Chapter 9.

• The NetBeans Platform includes a Presentation Layer for displaying hierarchical data: the Nodes API. Wrapping your model data in nodes lets you add different behaviors to selectable, visual objects. Importantly, nodes also have a Lookup. You’ve learned how to add objects to a TopComponent’s Lookup. In the same way, you can add objects to a node’s Lookup, including capabilities which let you dynamically implement node-specific behaviors. We discuss nodes in Chapter 7.

• Explorer Views display your model data using nodes. The NetBeans Platform has multiple Explorer Views that are interchangeable, since they all work with nodes. We discuss Explorer Views in Chapter 7 as well.

• Using a selection to “open” a Person for editing is not a typical user experience. It is better to open a target with a deliberate action, such as a double click, a selection in a context menu, or a selection in a menu or toolbar. We will discuss this common use case when we cover the Action framework in Chapter 9.

• Finally, in the next chapter, we’ll show you how to add JavaFX content to windows to leverage the improvements offered by this UI.

5.10 Key Point Summary

In this chapter you built your first NetBeans Platform application by porting a Swing application from Chapter 2. In the process, you learned about two important features of the NetBeans Platform: Modularity and Lookup.

Here are the key points in this chapter.

• The NetBeans Platform provides an execution environment that includes a Runtime Container and a module system.

• The Runtime Container is responsible for loading the modules and classes in your application, providing the Main method, and executing your application.

• Modules are the basic building blocks of the NetBeans Platform. A module is a JAR file with related classes and metadata that describe a module’s dependencies and public packages.

• A module can only access code from other modules when that code is in a public package and when the module specifically declares a dependency on the module that contains the public package. This enforces loose coupling between modules and prevents accidental dependencies. The Runtime Container enforces the declared dependencies.

• NetBeans Platform applications include default modules that provide (among other features) the menu and toolbar framework, the window system, the modular system, and inter-module communication.

• When porting a Swing application, place each major UI area in its own window and in its own module. This is a guideline only; let your application’s GUI and logic determine how to modularize your application.

• TopComponents are windows that use the NetBeans Platform window system.

• Put service interfaces in public packages to make them accessible by other modules.

• Create a service provider implementation with annotation @ServiceProvider. You typically put service providers in their own modules.

• The Lookup API maintains an application-wide directory of available service providers (the Global Lookup). Use static method Lookup.getDefault().lookup() to discover a service provider. The discovery of service providers with Lookup is type safe and keeps your code loosely coupled.

• Use the Lookup API to share objects between modules. One module can place objects in a Lookup and another module can access objects of a specified type in a Lookup.

• TopComponents implement Lookup.Provider. Use InstanceContent to create a container for objects that can be added or removed. Use AbstractLookup to create a default implementation of Lookup.

• The TopComponent method associateLookup() designates a Lookup as the TopComponent’s Lookup.

• Obtain a TopComponent’s Lookup using TopComponent method getLookup(). Obtain a reference to a TopComponent with the Window Manager method findTopComponent() using a TopComponent’s preferredID string as the argument.

• A LookupListener’s event handler responds to changes in one or more Lookups in a type safe way. In application FamilyTreeApp, we use Lookups and LookupListener to make the selected Person object accessible to the PersonEditor module without module dependencies.

• The Global Selection Lookup provides the Lookup of the TopComponent that has focus. You can listen for the addition or removal of specific object types in the Global Selection Lookup. This lets you track a user’s selection actions without creating dependencies on specific TopComponents.

• Use the @OnStart and @OnStop annotations to implement startup or shutdown code in your application.

What’s Next?

Let’s now turn our attention back to JavaFX and see how we can leverage the improved functionality of JavaFX UI controls with JavaFX integration in a NetBeans Platform application.

6. JavaFX Integration

In this chapter, we’ll explore how to use JavaFX within a NetBeans Platform application. We’ll first create a basic one-window NetBeans Platform application with JavaFX content. This will show you the minimum steps required to add JavaFX to your NetBeans Platform application.

Next, we’ll port a JavaFX program from Chapter 4. We’ll show you how to structure a multi-window NetBeans Platform application that follows the guidelines discussed in Chapter 5, taking advantage of the same NetBeans Platform features. This includes modularizing your application, using service providers, creating modules with public packages, and relying on Lookups and change events to keep your application loosely coupled. The discussion of this example assumes you have read Chapter 5.

We’ll also show you communication strategies you can use to keep your JavaFX UI code isolated and separate from your Swing UI code.

What You Will Learn

• Integrate JavaFX into a NetBeans Platform application.

• Add JavaFX content to a Swing UI.

• Structure JavaFX with FXML and controller class in the context of a NetBeans Platform application.

• Use Lookup to discover service providers and share objects between modules.

• Communicate between a TopComponent Swing window and its embedded JavaFX scene graph.

6.1 JavaFX and the NetBeans Platform

Let’s begin by porting an example program from Chapter 3, project MyRectangleCSSApp in the book’s download bundle. This single-window JavaFX application is described in “Creating a JavaFX FXML Application” on page 93, “CSS Files” on page 98, and “Animation” on page 100. Figure 6.1 shows the application running during a transition that rotates the rectangle and text elements. Recall that this program uses FXML to describe the scene graph and associated controller class to specify event handlers and any additional configuration. The main program invokes the FXML Loader to instantiate the elements in the scene graph and the controller class.

[image:]

Figure 6.1 The Rectangle node rotates with a rotation animation

Figure 6.2 shows this program running as a NetBeans Platform application with the rectangle and text elements during rotation. Although similar, the NetBeans Platform application has a top-level menu and toolbar, a fully floating/docking resizable window, and the ability to open and close the FXDemo window via the Window menu.

[image:]

Figure 6.2 FXDemoApp NetBeans Platform application running

Here are the general steps to build a NetBeans Platform application with JavaFX content.

1. Create a NetBeans Platform Application project.

2. Create a new module in the application.

3. Add a window (TopComponent) to the module.

4. Add JavaFX content to the TopComponent using Swing component JFXPanel.

There is flexibility with the final step. You can, for example, add JavaFX elements directly to the JFXPanel in the TopComponent class. Alternatively, you can use FXML with an FXML controller class. The FXML approach has several advantages.

• You can use Scene Builder and FXML to build and edit your scene graph.

• FXML (with or without Scene Builder) helps you better visualize your scene graph. FXML also makes it easier to edit scene graph elements, since you don’t have to configure them with Java APIs.

• The JavaFX code is separate and isolated from the TopComponent Swing code. Since you are integrating two different GUI APIs in a single application, your code will be much easier to read and maintain with FXML.

• If you already have an FXML document and controller class, it is straightforward to port this code to a NetBeans module.

For these reasons, we will use the FXML approach.

Java 8 and JavaFX 8 Enhancements

Beginning with Java 8, JavaFX is fully integrated into the JDK and the JavaFX runtime libraries are included in the standard Java classpath. This means you don’t have to do anything special to access JavaFX classes in NetBeans Platform applications. Prior to Java 8, however, you had to perform these additional steps.

1. Create a library wrapper for the JavaFX runtime JAR file, jfxrt.jar, and add it to your NetBeans Platform project. A library wrapper is a NetBeans module with all of the JAR file’s packages declared public.

2. Declare a dependency on the wrapped library module with any module that contains JavaFX.

We show how to create and add a library wrapper to a NetBeans Platform project in Chapter 12 (see “Prepare to Use the Validation Library” on page 578). The JavaFX runtime is part of the JDK in Java 7 and can be found in subdirectory jre/lib. Note that these steps are only necessary if you’re running Java 7 or earlier.

Let’s begin our JavaFX integration by creating a NetBeans Platform application.

Create a NetBeans Platform Application

Follow these steps to create your NetBeans Platform application project with the NetBeans IDE.

1. From the NetBeans IDE top-level menu bar, select File | New Project. The NetBeans New Project wizard pops up the Choose Project dialog.

2. Under Categories select NetBeans Modules and under Projects select NetBeans Platform Application, as shown in Figure 6.3. Select Next.

[image:]

Figure 6.3 New Project Choose Project dialog

3. NetBeans displays the Name and Location dialog. Provide the Project Name FXDemoApp and click Browse to select a Project Location directory. Accept the defaults for the remaining fields, as shown in Figure 6.4. Click Finish.

[image:]

Figure 6.4 New Project Name and Location dialog

NetBeans creates a basic NetBeans Platform application with no user modules added. Figure 6.5 shows the Projects view for the newly created FXDemoApp application.

[image:]

Figure 6.5 FXDemoApp Projects view

Create a NetBeans Module

You’ll now create a module for the application’s window.

1. Right click on the Modules node in project FXDemoApp and choose Add New... as shown in Figure 6.6. NetBeans begins the New Module Project wizard.

[image:]

Figure 6.6 Add a new module to FXDemoApp

2. NetBeans displays the Name and Location dialog. Specify FXDemoModule for the Project Name. Accept the defaults for Project Location and Project Folder and click Next, as shown in Figure 6.7.

[image:]

Figure 6.7 New module Name and Location dialog

3. NetBeans displays the Basic Module Configuration dialog. Specify com.asgteach.fxdemomodule for the Code Name Base. Accept the defaults for the Module Display Name (FXDemoModule) and Localizing Bundle (com/asgteach/fxdemomodule/Bundle.properties) and leave Generate OSGi Bundle unchecked, as shown in Figure 6.8. Click Finish.

[image:]

Figure 6.8 New module Basic Module Configuration dialog

NetBeans creates project FXDemoModule for your newly created module.

Add a Window to the Module

Our FXDemoApp application has a single window. To add a TopComponent to the module, follow these steps.

1. Expand the FXDemoModule project and Source Packages nodes. Right click on package name com.asgteach.fxdemomodule and select New | Other from the context menu (or select New | Window if the choice is available and skip the next step).

2. NetBeans displays the Choose File Type dialog. Select Module Development under Categories and Window under File Type. Click Next.

3. NetBeans displays the Basic Settings dialog. For Window Position, select editor from the drop down control and check the box Open on Application Start. Position editor creates a large window for your application. Leave the other checkboxes unchecked. Click Next.

4. NetBeans displays the Name, Icon, and Location dialog. Provide FXDemo for the Class Name Prefix. Editor windows display icons on their tab (if you provide one). For Icon, optionally provide a suitable 16 x 16 GIF or PNG graphic, as shown in Figure 6.9. (You can use file javafx_logo_color16.png found in the download bundle for this book.) Click Finish.

[image:]

Figure 6.9 Name, Icon and Location dialog for New Window wizard

NetBeans creates file FXDemoTopComponent.java and brings it up in the Swing Form Designer. Click Source to bring up the Java Editor in the IDE.

Although you haven’t added any JavaFX content to the window yet, you can run the application. Select project FXDemoApp, right click, and select Run in the context menu. The NetBeans Platform application runs with a single (blank) editor-style window, as shown in Figure 6.10.

[image:]

Figure 6.10 FXDemoApp running with a blank FXDemo window

Add JavaFX Content to the TopComponent

The JFXPanel Swing component lets you add JavaFX content to a TopComponent. We’ll use the JavaFX code from project MyRectangleCSSApp to configure our TopComponent.

1. Open project MyRectangleCSSApp from Chapter 3. Expand the project and the Source Packages nodes. Select files MyCSS.css, MyRectangleFX.fxml, and MyRectangleFXController.java, as shown in Figure 6.11. Copy these three files to package com.asgteach.fxdemomodule under the Source Packages node in project FXDemoModule.

[image:]

Figure 6.11 Copy CSS file, FXML file, and controller class

2. Make changes to the FXML and controller class to account for the different package name. Listing 6.1 shows the changes (in bold) to MyRectangleFXController.java. Listing 6.2 shows the changes to MyRectangleFX.fxml. You don’t need to edit the <stylesheets> element since the reference to MyCSS.css is unchanged.

Listing 6.1 MyRectangleFXController.java

Click here to view code image

package com.asgteach.fxdemomodule;

. . . import statements omitted . . .

public class MyRectangleFXController implements Initializable {

. . . unchanged code omitted . . .
}

Listing 6.2 MyRectangleFX.fxml

Click here to view code image

<StackPane id="StackPane" fx:id="stackpane"
 xmlns:fx="http://javafx.com/fxml"
 fx:controller="com.asgteach.fxdemomodule.MyRectangleFXController">
 <stylesheets>
 <URL value="@MyCSS.css" />
 </stylesheets>
 <children>
 . . . unchanged code omitted . . .
 </children>
</StackPane>

3. Add the following code to the TopComponent, file FXDemoTopComponent.java, as shown in Listing 6.3. This code creates the JFXPanel and adds the scene and FXML-defined scene graph to the JFXPanel component. The added code is in bold.

Listing 6.3 FXDemoTopComponent.java

Click here to view code image

. . . topcomponent annotations and import statements omitted . . .

public final class FXDemoTopComponent extends TopComponent {

 private static JFXPanel fxPanel;

 public FXDemoTopComponent() {
 initComponents();
 setName(Bundle.CTL_FXDemoTopComponent());
 setToolTipText(Bundle.HINT_FXDemoTopComponent());
 setLayout(new BorderLayout());
 init();
 }

 private void init() {
 fxPanel = new JFXPanel();
 add(fxPanel, BorderLayout.CENTER);
 Platform.setImplicitExit(false);
 Platform.runLater(() -> createScene());
 }

 private void createScene() {
 try {
 Parent root = FXMLLoader.load(getClass().getResource(
 "MyRectangleFX.fxml"));
 Scene scene = new Scene(root, Color.LIGHTBLUE);
 fxPanel.setScene(scene);
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
. . . unchanged code omitted . . .
}

Creating JavaFX content in a NetBeans Platform TopComponent requires several actions as shown in Listing 6.3 and further described here.

• Create a Swing BorderLayout component and add it to the TopComponent’s layout. BorderLayout will keep the resizing behavior consistent with a top-level JavaFX Stage (window frame).

Adding JavaFX Content Tip
If you forget the setLayout(new BorderLayout()) statement, you won’t see any JavaFX content in your NetBeans Platform window.

• Instantiate the JFXPanel component and add it to the TopComponent’s layout with Border.CENTER. This keeps the JavaFX content centered in the window.

• When the first JFXPanel object is created, it implicitly initializes the JavaFX runtime (the JavaFX Application Thread). When the final JFXPanel is destroyed, the JavaFX runtime exits. With Platform.setExplicitExit(false), the JavaFX Application Thread does not exit after the last JavaFX content window closes. This setting is necessary to close and then re-open JavaFX-enabled windows.

• Wrap the code that creates the JavaFX content in a runnable (or use a lambda expression) and invoke it with Platform.runLater(). TopComponent code executes on the Swing EDT, whereas JavaFX code that creates and manipulates the scene graph must execute on the JavaFX Application Thread.1

1. As noted in Chapter 3, there is experimental support in JDK 8 for making the EDT and JavaFX Application Thread (FXT) the same thread. Currently, this is not the default behavior. To run with a single EDT-FXT thread, supply runtime VM option -Djavafx.embed.singleThread=true. Since this feature is experimental, we show you how to use JavaFX and Swing in the default configuration (two separate threads).

• The code in createScene() is analogous to the code in a JavaFX application’s start() method (for example, as shown in Listing 3.2 on page 95). In both methods, you invoke the FXML Loader to load the scene graph and create and set the root for the scene. The start() method sets the Stage’s scene, whereas createScene() sets the scene in the JFXPanel component.

With these modifications, FXDemoApp is ready to run. Note that the animation initiated by a mouse click inside the rectangle works exactly the same as the JavaFX-only application. Also note that we made no modifications (other than changing the package name) to either the FXML or the controller class!

The Magic of JFXPanel

The JFXPanel component is a Swing JComponent specifically implemented to embed JavaFX content in a Swing application. JFXPanel starts up the JavaFX runtime for you. It also transparently forwards all input (mouse, key) and focus events to the JavaFX runtime. This transparent handling of user input allows the FXDemoApp application to run with minimal changes from the ported JavaFX program.

The JFXPanel component allows both Swing and JavaFX to run concurrently. You therefore must pay attention to code that manipulates Swing components from the JavaFX environment and code that manipulates the JavaFX scene graph from the Swing environment. To manipulate the Swing UI from JavaFX, you wrap the code in a Runnable and use SwingUtilities.invokeLater() (lambdas help reduce boilerplate code here).

Click here to view code image

SwingUtilities.invokeLater(() -> {
 // Change Swing UI
 });

Conversely, to manipulate the JavaFX UI from Swing, wrap the code in a Runnable and call Platform.runLater().

Click here to view code image

Platform.runLater(() -> {
 // Change JavaFX UI
 });

The communication requirements, however, can be more involved. In the next section we’ll examine the strategies to communicate between Swing and JavaFX from an architectural point of view and in the context of a NetBeans Platform application.

SwingNode

SwingNode is the counterpart to JFXPanel and lets you install Swing content into a JavaFX scene graph. When you use SwingNode you’ll have to pay attention to EDT / JavaFX Application Thread issues. Since SwingNode is part of JavaFX, you instantiate and manipulate it just like any other JavaFX node. However, when you install Swing content, you must execute on the EDT.

Let’s show you how to use SwingNode with a Swing JButton component in our demo application, FXDemoApp. Listing 6.4 shows the modified FXML file with SwingNode added to the StackPane. We set the fx:id attribute to access the SwingNode in the controller class, and the translateY property places the SwingNode above the Text.

Listing 6.4 MyRectangleFX.fxml—Add SwingNode

Click here to view code image

<StackPane id="StackPane" fx:id="stackpane"
 xmlns:fx="http://javafx.com/fxml"
 fx:controller="com.asgteach.fxdemomodule.MyRectangleFXController">
 <stylesheets>
 <URL value="@MyCSS.css" />
 </stylesheets>
 <children>
 . . . unchanged code omitted . . .
 <SwingNode fx:id="swingNode" translateY="-30" />
 </children>
</StackPane>

Listing 6.5 shows you how to install Swing content into SwingNode with SwingUtilities.invokeLater(). We add a Swing ActionListener to the clickButton JButton component. The event handler is invoked on the EDT. However, because we manipulate the JavaFX scene graph in the handler, we must then use Platform.runLater().

Listing 6.5 MyRectangleFXController.java—Using SwingNode

Click here to view code image

public class MyRectangleFXController implements Initializable {

 @FXML
 private Rectangle rectangle;
 @FXML
 private StackPane stackpane;
 @FXML
 private SwingNode swingNode;
 private RotateTransition rt;
 private JButton clickButton;

 @Override
 public void initialize(URL url, ResourceBundle rb) {
 . . . unchanged code omitted
 createAndSetSwingContent(swingNode);
 }
 private void createAndSetSwingContent(final SwingNode swingNode) {
 SwingUtilities.invokeLater(() -> {
 swingNode.setContent(clickButton = new JButton("Click me!"));
 clickButton.addActionListener((ActionEvent e) -> {
 Platform.runLater(() -> rt.play());
 });
 });
 }
}

Figure 6.12 shows the rotating Rectangle, Text, and SwingNode, activated when the user clicks the Swing JButton.2

2. SwingNode is a great way to add custom Swing components to the JavaFX scene graph. However, we recommend keeping the JavaFX and Swing elements as isolated as possible. See the section on “Communication Strategies” on this page for a discussion.

[image:]

Figure 6.12 Using SwingNode in a JavaFX scene graph

6.2 Communication Strategies

Depending on your NetBeans Platform application, there will be various requirements for communication between the TopComponent (which is tightly integrated into the NetBeans Platform framework and window system) and the JavaFX scene graph and controller code. The simplest application requires no communication at all between the TopComponent and JavaFX code. In this case, the JFXPanel transparently forwards all input and focus events to the scene graph. The NetBeans Platform window with JavaFX content behaves like a stand-alone JavaFX program. This is the situation with the FXDemoApp program and its FXDemoTopComponent. As shown in Listing 6.3 on page 258, the TopComponent invokes the FXML Loader and builds the scene graph, and like a wind-up toy, lets the JavaFX code just “run.”

However, to take advantage of the NetBeans Platform APIs, you’ll need a more flexible structure. Any manipulation of the scene graph by the TopComponent should be controlled, deliberate, and well-documented. Public methods (that you write) in the JavaFX controller class provide this access. The TopComponent thus needs access to the controller instance.

Similarly, to maintain its isolation, the controller class should not invoke any methods in its TopComponent class. Instead, any communication from the JavaFX environment is implemented with property change events generated by the JavaFX controller. As we’ve seen from Chapter 2 (see “Event Handlers and Loose Coupling” on page 59), event handlers provide a powerful mechanism for communicating state change and maintaining loose coupling. We want the JavaFX code to be as independent as possible from its TopComponent.

Thus, the overriding goal is that the JavaFX scene graph and its controller should be encapsulated, as illustrated in Figure 6.13. The TopComponent communicates directly with the NetBeans Platform framework and is managed by the NetBeans Platform window system. The TopComponent invokes the FXML Loader and builds the scene graph. The FXML Loader instantiates the controller class. Any further manipulation of the scene graph goes through the controller’s public methods.

[image:]

Figure 6.13 JavaFX in TopComponent communication graph

We can characterize a TopComponent with JavaFX content and its communication requirements as follows.

• Self-contained events—All events that occur in the JavaFX scene graph are self contained and no communication with the TopComponent is required. In the FXDemoApp application, for example, the user generates mouse click events, which initiates a rotation transition. Since the handler is in the controller class, no further communication is required.

• One-way communication—The TopComponent must initiate a change in the JavaFX scene graph (perhaps due to a user-selected top-level menu item). Any action that affects the JavaFX scene graph must occur on the JavaFX Application Thread. Thus, the TopComponent must call Platform.runLater() to invoke the controller method.

If the controller method returns a value or reference, the TopComponent should wait for the controller method to complete. The Concurrent Library’s CountDownLatch provides a safe and straightforward way to do this.

• Two-way communication—In addition to having the TopComponent manipulate the JavaFX scene graph, the JavaFX environment must communicate state change back to the TopComponent. In this situation, PropertyChange events fired to interested listeners provide a workable approach that keeps the JavaFX environment isolated from its TopComponent.

Note that we are not saying you should never access the NetBeans Platform APIs from JavaFX controller code. As you will see in our example application, the powerful Global Lookup can be accessed directly from JavaFX code.

Accessing the JavaFX Controller Instance

To access public methods in the JavaFX controller class, the TopComponent must access the controller instance. Listing 6.6 shows how to do this. Here, we separately instantiate the FXMLLoader so that we can access the associated controller with FXMLLoader method getController(). This approach lets you build the JavaFX scene graph in TopComponents that require access to the JavaFX controller instance.

Listing 6.6 Build the JavaFX Scene Graph with Controller Access

Click here to view code image

public final class MyFXTopComponent extends TopComponent {

 private static JFXPanel fxPanel;
 private MyFXController controller;

public PersonFXEditorTopComponent() {
 initComponents();
 setName(Bundle.CTL_PersonFXEditorTopComponent());
 setToolTipText(Bundle.HINT_PersonFXEditorTopComponent());
 setLayout(new BorderLayout());

 init();
 }

 private void init() {
 fxPanel = new JFXPanel();
 add(fxPanel, BorderLayout.CENTER);
 Platform.setImplicitExit(false);
 Platform.runLater(() -> createScene());
 }

 private void createScene() {
 try {
 URL location = getClass().getResource("MyFX.fxml");
 FXMLLoader fxmlLoader = new FXMLLoader();
 fxmlLoader.setLocation(location);
 fxmlLoader.setBuilderFactory(new JavaFXBuilderFactory());

 Parent root = (Parent) fxmlLoader.load(location.openStream());
 Scene scene = new Scene(root);
 fxPanel.setScene(scene);
 controller = (MyFXController) fxmlLoader.getController();
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
. . . other TopComponent code omitted . . .
}

The next section uses these communication strategies to port a different JavaFX application to the NetBeans Platform.

6.3 Integrating with the NetBeans Platform

Let’s now convert a JavaFX program that is a more typical desktop application to the NetBeans Platform. We’ll port project PersonFXMLAppEnhancedUI, the JavaFX version of the Swing application we converted to the NetBeans Platform in Chapter 5. (Project PersonFXMLAppEnhancedUI is described in detail in Chapter 4. See “JavaFX Applications” on page 153.) As we build this application, we’ll use the same NetBeans Platform features you’ve seen previously. This includes breaking up an application into modules, creating windows with TopComponents, using Global Lookup and Service Providers, and having event listeners that respond to changes in data and user selection events.

Figure 6.14 shows the FamilyTreeFXApp project running as a JavaFX NetBeans Platform application with two windows. The left window (PersonFXViewer) displays Person objects using a JavaFX TreeView control. When the user selects a Person in the TreeView control, the selected Person object is displayed in the right window (the PersonFXEditor window). The user saves edits by clicking the Update button. Selecting the top item clears the controls in the PersonFXEditor window.

[image:]

Figure 6.14 FamilyTreeFXApp running

Here are the general steps to build this application. Note that we leverage the same NetBeans Platform features used in project FamilyTreeApp described in Chapter 5.

• Create a NetBeans Platform application called FamilyTreeFXApp.

• Create module FamilyTreeFXModel (for the Person class and FamilyTreeManager interface) and configure this module with public packages so that other modules can declare a dependency on this module.

• Create module FamiyTreeManagerFXImpl, set a dependency on module FamilyTreeFXModel, and implement FamilyTreeManager as a service provider.

• Create module PersonFXViewer for the left window. Set a dependency on the FamilyTreeFXModel module. Build a TopComponent and configure the window to hold a JavaFX TreeView control to display Person elements stored in the FamilyTreeManager. Use FXML and a controller class.

Module PersonFXViewer accesses the FamilyTreeManager service provider through the Global Lookup. The JavaFX controller code listens for changes to the FamilyTreeManager so that the Person items in the JavaFX TreeView control will be current with the FamilyTreeManager’s data store.

The JavaFX TreeView control’s selection listener uses InstanceContent to publish selection changes through the TopComponent’s Lookup. This makes the selection accessible to the PersonFXEditor module.

• Create module PersonFXEditor for the right window. Set a dependency on the FamilyTreeFXModel module. Build a TopComponent and configure the window to display a form (using JavaFX controls) to edit Person items and an Update button to save changes to the FamilyTreeManager. Use FXML and a controller class.

Module PersonFXEditor accesses the FamilyTreeManager service provider through the Global Lookup.

The PersonFXEditor’s TopComponent implements a LookupListener that responds to changes in the PersonFXViewerTopComponent’s Lookup. The listener invokes a JavaFX controller method to react to selection changes and update the JavaFX Person form.

Figure 6.15 shows the four modules and their dependencies for the FamilyTreeFXApp project. (The JavaFX version has the same module structure as the Swing / NetBeans Platform version shown in Figure 5.10 on page 209.)

[image:]

Figure 6.15 Added modules and their dependencies

These steps are analogous to the steps we followed to create the Swing version of this NetBeans Platform application. As we proceed through these steps, we’ll concentrate on the JavaFX code and the communication required between NetBeans Platform APIs and JavaFX code. You will see that structuring the JavaFX code with FXML makes this communication clearer than using only JavaFX API code.

Create a NetBeans Platform Application

Here are the steps to create the FamilyTreeFXApp NetBeans Platform application.

1. From the NetBeans IDE top-level menu bar, select File | New Project. The NetBeans New Project wizard pops up the Choose Project dialog.

2. Under Categories select NetBeans Modules and under Projects select NetBeans Platform Application. Select Next.

3. NetBeans now displays the Name and Location dialog. Provide the Project Name FamilyTreeFXApp and click Browse to select a Project Location directory. Accept the defaults for the remaining fields and click Finish, as shown in Figure 6.16.

[image:]

Figure 6.16 New Project Name and Location dialog

NetBeans creates a NetBeans Platform application project with modules that include a menu bar, toolbar, and empty window system. Figure 6.17 shows project FamilyTreeFXApp in the Projects view with no user-created modules (the Modules node is empty). The metadata associated with the application appears under node Important Files.

[image:]

Figure 6.17 FamilyTreeFXApp Projects view

Create NetBeans Platform Modules

Next, create a new NetBeans module for the FamilyTreeManager interface and Person class, as follows.

1. Right click on the Modules node in project FamilyTreeFXApp and choose Add New... . NetBeans begins the New Module Project wizard.

2. NetBeans displays the Name and Location dialog. Specify FamilyTreeFXModel for the Project Name. Accept the defaults for Project Location and Project Folder and click Next.

3. NetBeans displays the Basic Module Configuration dialog. Specify com.asgteach.familytreefx.model for the Code Name Base. Accept the defaults for the Module Display Name (FamilyTreeFXModel) and Localizing Bundle (com/asgteach/familytreefx/model/Bundle.properties) and leave Generate OSGi Bundle unchecked, as shown in Figure 6.18. Click Finish.

[image:]

Figure 6.18 Basic Configuration dialog for module FamilyTreeFXModel

The FamilyTreeFXApp application now contains one user-added module called FamilyTreeFXModel. Repeat the above steps and add three more modules: FamilyTreeManagerFXImpl, PersonFXViewer, and PersonFXEditor, as follows.

1. New Module FamilyTreeManagerFXImpl, code name base com.asgteach.familytree.managerfx.impl, and display name FamilyTreeManagerFXImpl.

2. New Module PersonFXViewer, code name base com.asgteach.familytree.personfxviewer, and display name PersonFXViewer.

3. New Module PersonFXEditor, code name base com.asgteach.familytree.personfxeditor, and display name PersonFXEditor.

Figure 6.19 shows the Projects view for application FamilyTreeFXApp with its four modules. You also see new projects for each module. Recall that when you work with these module projects, you select the project name outside the FamilyTreeFXApp project, not the module name under the Modules node.

[image:]

Figure 6.19 FamilyTreeFXApp Projects view with added modules

Configure a Module with Public Packages

Now let’s add code and configure module FamilyTreeFXModel.

1. Begin by copying files Person.java and FamilyTreeManager.java from project PersonFXMLAppEnhancedUI to package com.asgteach.familytreefx.model under Source Packages (use Refactor Copy). Class Person.java is unchanged (see Listing 4.8 on page 142).

2. Modify FamilyTreeManager.java and make it an interface, as shown in Listing 6.7.

Listing 6.7 FamilyTreeManager Interface

Click here to view code image

package com.asgteach.familytreefx.model;

import java.util.List;
import javafx.beans.InvalidationListener;
import javafx.collections.MapChangeListener;

public interface FamilyTreeManager {

public void addListener(
 MapChangeListener<? super Long, ? super Person> ml);

public void removeListener(
 MapChangeListener<? super Long, ? super Person> ml);

public void addListener(InvalidationListener il);

public void removeListener(InvalidationListener il);

public void addPerson(Person p);

public void updatePerson(Person p);

public void deletePerson(Person p);

public List<Person> getAllPeople();
}

3. Since we want other modules to access the code in this module, we declare package com.asgteach.familytreefx.model public. In the Projects view, select project FamilyTreeFXModel, right click, and select Properties from the context menu.

4. Under Categories, select API Versioning.

5. Under Public Packages, select the checkbox to specify that package com.asgteach.familytreefx.model is Public, as shown in Figure 6.20. Accept the default for Specification Version 1.0. Click OK.

[image:]

Figure 6.20 API Versioning: Specify Public Packages

Register a Service Provider

The FamilyTreeManagerFXImpl module contains the code that implements interface FamilyTreeManager. Furthermore, it registers itself as a Service Provider for service FamilyTreeManager. You register a service provider with annotation @ServiceProvider.

Declare Module Dependencies

You must declare a dependency on module FamilyTreeFXModel to access classes Person and FamilyTreeManager. A dependency on the Lookup API module is also necessary to use annotation @ServiceProvider. Follow these steps to declare the module dependencies.

1. In project FamilyTreeManagerFXImpl, right click node Libraries and select Add Module Dependency NetBeans displays the Add Module Dependency dialog.

2. In the list of modules, select both FamilyTreeFXModel and Lookup API as shown in Figure 6.21. Click OK.

[image:]

Figure 6.21 Add Module Dependency

3. NetBeans adds both FamilyTreeFXModel and Lookup API to FamilyTreeManagerFXImpl’s list of dependencies. When you expand the Libraries node, you’ll see these modules listed, as shown in Figure 6.22.

[image:]

Figure 6.22 After adding module dependencies

Create Implementation Class

Now add the implementation class for interface FamilyTreeManager, as follows.

1. In project FamilyTreeManagerFXImpl, expand node Source Packages.

2. Select package com.asgteach.familytree.managerfx.impl, right click, and select New then Java Class from the context menu.

3. In the New Java Class dialog, provide FamilyTreeManagerFXImpl for Class Name and click Finish. You’ll now see file FamilyTreeManagerFXImpl.java under the selected package name and the file opens in the Java editor.

4. Edit the Java class so that it implements FamilyTreeManager. Fix imports (right click and select Fix Imports from the context menu).

5. Let NetBeans generate override method stubs for all of the abstract methods in interface FamilyTreeManager.

6. Copy the method bodies as well as class variable observableMap from the FamilyTreeManager class in project PersonFXMLAppEnhancedUI (see Listing 4.12 on page 149). Do not include either the constructor or the getInstance() method.

7. Add annotation @ServiceProvider to class FamilyTreeManagerFXImpl. Listing 6.8 shows the code for the entire class.

Listing 6.8 Class FamilyTreeManagerFXImpl.java

Click here to view code image

package com.asgteach.familytree.managerfx.impl;

import com.asgteach.familytreefx.model.FamilyTreeManager;
import com.asgteach.familytreefx.model.Person;
import java.util.ArrayList;
import java.util.List;
import javafx.beans.InvalidationListener;
import javafx.collections.FXCollections;
import javafx.collections.MapChangeListener;
import javafx.collections.ObservableMap;
import org.openide.util.lookup.ServiceProvider;

@ServiceProvider(service = FamilyTreeManager.class)
public class FamilyTreeManagerFXImpl implements FamilyTreeManager {

private final ObservableMap<Long, Person> observableMap =
 FXCollections.observableHashMap();

@Override
 public void addListener(MapChangeListener<? super Long,
 ? super Person> ml) {
 observableMap.addListener(ml);
 }

@Override
 public void removeListener(MapChangeListener<? super Long,
 ? super Person> ml) {
 observableMap.removeListener(ml);
 }

@Override
 public void addListener(InvalidationListener il) {
 observableMap.addListener(il);
 }

@Override
 public void removeListener(InvalidationListener il) {
 observableMap.removeListener(il);
 }

@Override
 public void addPerson(Person p) {
 Person person = new Person(p);
 observableMap.put(person.getId(), person);
 }

@Override
 public void updatePerson(Person p) {
 Person person = new Person(p);
 observableMap.put(person.getId(), person);
 }

@Override
 public void deletePerson(Person p) {
 observableMap.remove(p.getId());
 }

@Override
 public List<Person> getAllPeople() {
 List<Person> copyList = new ArrayList<>();
 observableMap.values().stream().forEach((p) ->
 copyList.add(new Person(p)));
 return copyList;
 }
}

Annotation @ServiceProvider puts an instance of this class into the application’s Global Lookup so that other modules can find and use it. This automatically provides a singleton object for our application. Modules PersonFXViewer and PersonFXEditor will find and use this service provider to interact with the FamilyTreeManager.

Configure a Window with JavaFX for Selection

Application FamilyTreeFXApp (see Figure 6.14 on page 266) has two windows. The left window provides a list of Person objects, which we implement in the PersonFXViewer module. As described earlier, when a user selects a Person in the PersonFXViewer window, the selected Person is displayed in the PersonFXEditor window, the right window.

As indicated in Figure 6.15 on page 267, module PersonFXViewer must declare a dependency on module FamilyTreeFXModel. Follow the steps in “Declare Module Dependencies” on page 271. Set a dependency on the FamilyTreeFXModel module.

We’ll now add a window (TopComponent) to module PersonFXViewer with the following steps.

1. Expand project PersonFXViewer and Source Packages. Right click on package name com.asgteach.familytree.personfxviwer and select New | Other from the context menu (or select New | Window if the choice is available and skip the next step).

2. NetBeans displays the Choose File Type dialog. Select Module Development under Categories and Window under File Type. Click Next.

3. NetBeans displays the Basic Settings dialog. For Window Position, select explorer from the drop down control and check the box Open on Application Start. The explorer position makes the window appear on the left side of the application window frame.

4. Leave the other checkboxes unchecked and click Next as shown in Figure 6.23.

[image:]

Figure 6.23 Basic Settings dialog for a new window

5. NetBeans displays the Name, Icon and Location dialog. Provide PersonFXViewer for the Class Name Prefix. Leave the Icon blank and accept the defaults for the rest, as shown in Figure 6.24. Click Finish.

[image:]

Figure 6.24 Name, Icon and Location dialog for the new Window wizard

NetBeans creates PersonFXViewerTopComponent.java and brings the class up in the Design View. Click Source to switch to the Java editor.

Add FXML and Controller Code

As a starting point, copy the FXML document and Controller class from project PersonFXMLAppEnhancedUI with the following steps. Note that after you copy these files, you’ll retain the code for the JavaFX TreeView control (the left window) and you’ll strip out the code for the Person editor (the right window). When you configure the PersonFXEditor module on page 283, you’ll use these same files but strip out the code for the JavaFX TreeView control and retain the code for the Person editor.

1. In project PersonFXMLAppEnhancedUI, expand the Source Packages node and copy file PersonFXML.fxml to project PersonFXViewer | Source Packages under package com.asgteach.familytree.personfxviewer.

2. Rename the FXML file to PersonFXViewer.fxml.

3. Copy file PersonFXMLController.java to the same package in project PersonFXViewer.

4. Rename (refactor) the file to PersonFXViewerController.java.

5. Make sure the class name is PersonFXViewerController and its package name is correct, as shown in Listing 6.9. Fix imports so that the import statements for FamilyTreeManager and Person are correct. We’ll make additional changes after configuring the FXML file.

Listing 6.9 PersonFXViewerController.java

Click here to view code image

package com.asgteach.familytree.personfxviewer;

import com.asgteach.familytreefx.model.FamilyTreeManager;
import com.asgteach.familytreefx.model.Person;
. . . other import statements omitted . . .

public class PersonFXViewerController implements Initializable {
 . . . code omitted . . .
}

Configure the FXML

Using either Scene Builder or the NetBeans FXML editor, remove the FXML declarations that refer to the Person form editor controls in the right window. Edit the controller class attribute so that it refers to PersonFXViewerController. Listing 6.10 shows the updated FXML. Note that the top-level AnchorPane contains a single control, the TreeView, which is anchored as described by its FXML attributes.

Listing 6.10 PersonFXViewer.fxml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<AnchorPane id="AnchorPane" xmlns:fx="http://javafx.com/fxml"
 fx:controller=
 "com.asgteach.familytree.personfxviewer.PersonFXViewerController">
 <children>
 <TreeView fx:id="personTreeView" AnchorPane.bottomAnchor="25.0"
 AnchorPane.leftAnchor="14.0"
 AnchorPane.rightAnchor="14.0"
 AnchorPane.topAnchor="14.0" />
 </children>
</AnchorPane>

Configure the JavaFX Controller

In the NetBeans Platform version of this application, the Controller class has the following responsibilities.

• Obtain an instance of FamilyTreeManager from the Global Lookup to display Person objects in the TreeView control.

• Implement a listener to respond to changes in the FamilyTreeManager’s map of Person objects.

• Implement a TreeSelectionListener and publish the current selection in the TopComponent’s Lookup.

Listing 6.11 shows the JavaFX controller’s class variables and the initialize(), buildData(), and buildTreeView() methods where we populate the TreeView control with Person objects from the FamilyTreeManager and other variables.

We instantiate an InstanceContent object, which will contain the selected Person. The TopComponent publishes the contents of InstanceContent in its Lookup as described in “Lookup as an Object Repository” on page 225. We keep track of the selected Person with class variable selectedPerson.

The Global Lookup returns an instance of the FamilyTreeManager, which we assign to class variable ftm.

Listing 6.11 PersonFXViewerController.java—Class Variables and initialize()

Click here to view code image

public class PersonFXViewerController implements Initializable {

 @FXML
 private TreeView<Person> personTreeView;
 private static final Logger logger =
 Logger.getLogger(PersonFXViewerController.class.getName());
 private FamilyTreeManager ftm = null;
 private final InstanceContent instanceContent = new InstanceContent();
 private Person selectedPerson = null;

 @Override
 public void initialize(URL url, ResourceBundle rb) {
 // Change level to Level.INFO to reduce console messages
 logger.setLevel(Level.FINE);
 Handler handler = new ConsoleHandler();
 handler.setLevel(Level.FINE);
 logger.addHandler(handler);
 try {
 FileHandler fileHandler = new FileHandler();
 // records sent to file javaN.log in user's home directory
 fileHandler.setLevel(Level.FINE);
 logger.addHandler(fileHandler);
 logger.log(Level.FINE, "Created File Handler");
 } catch (IOException | SecurityException ex) {
 logger.log(Level.SEVERE, "Couldn't create FileHandler", ex);
 }
 ftm = Lookup.getDefault().lookup(FamilyTreeManager.class);
 if (ftm == null) {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager object");
 LifecycleManager.getDefault().exit();
 }

 buildData();
 ftm.addListener(familyTreeListener);
 // Create a root node and populate the TreeView control
 TreeItem<Person> rootNode =
 new TreeItem<>(new Person("People", "", Person.Gender.UNKNOWN));
 buildTreeView(rootNode);
 // Configure the TreeView control
 personTreeView.setRoot(rootNode);
 personTreeView.getRoot().setExpanded(true);
 personTreeView.getSelectionModel().selectedItemProperty()
 .addListener(treeSelectionListener);
 }

private void buildData() {
 ftm.addPerson(new Person("Homer", "Simpson", Person.Gender.MALE));
 ftm.addPerson(new Person("Marge", "Simpson", Person.Gender.FEMALE));
 ftm.addPerson(new Person("Bart", "Simpson", Person.Gender.MALE));
 ftm.addPerson(new Person("Lisa", "Simpson", Person.Gender.FEMALE));
 ftm.addPerson(new Person("Maggie", "Simpson", Person.Gender.FEMALE));
 logger.log(Level.FINE, ftm.getAllPeople().toString());
 }

private void buildTreeView(TreeItem<Person> root) {
 // listen for changes to the familytreemanager's map
 ftm.addListener(familyTreeListener);
 // Populate the TreeView control
 ftm.getAllPeople().stream().forEach((p) -> {
 root.getChildren().add(new TreeItem<>(p));
 });
 }
. . . code omitted . . .
}

Listing 6.12 shows the MapChangeListener that responds to changes in the FamilyTreeManager’s map of Person objects. This code is unchanged from the JavaFX-only version of the application.

Listing 6.12 MapChangeListener

Click here to view code image

// MapChangeListener when underlying FamilyTreeManager changes
 private final MapChangeListener<Long, Person> familyTreeListener =
 (change) -> {
 if (change.getValueAdded() != null) {
 logger.log(Level.FINE, "changed value = {0}",
 change.getValueAdded());
 // Find the treeitem that this matches and replace it
 for (TreeItem<Person> node :
 personTreeView.getRoot().getChildren()) {
 if (change.getKey().equals(node.getValue().getId())) {
 // an update returns the new value in getValueAdded()
 node.setValue(change.getValueAdded());
 return;
 }
 }
 }
 };

Listing 6.13 shows the TreeSelectionListener, which updates class variable instanceContent depending on the TreeView control’s selected item. The previously selected Person (stored in class variable selectedPerson) is removed from the InstanceContent if the user selects the top root node. Otherwise, the newly selected Person is saved to class variable selectedPerson and replaces whatever was previously in InstanceContent.

The public method getInstanceContent() returns class variable instanceContent. This method is invoked from the TopComponent’s constructor to associate this InstanceContent object with the TopComponent’s Lookup, publishing it within the running NetBeans Platform application.

Listing 6.13 TreeSelectionListener and InstanceContent

Click here to view code image

 // TreeView selected item event handler
 private final ChangeListener<TreeItem<Person>> treeSelectionListener =
 (ov, oldValue, newValue) -> {
 TreeItem<Person> treeItem = newValue;
 logger.log(Level.FINE, "selected item = {0}", treeItem);
 if (treeItem == null || treeItem.equals(personTreeView.getRoot())) {
 instanceContent.remove(selectedPerson);
 return;
 }
 // set selectedPerson to the selected treeItem value
 selectedPerson = new Person(treeItem.getValue());
 logger.log(Level.FINE, "selected person = {0}", selectedPerson);
 instanceContent.set(Collections.singleton(selectedPerson), null);
 };

 // called from TopComponent constructor
 public InstanceContent getInstanceContent() {
 return instanceContent;
 }

Configure the TopComponent

Let’s now turn our attention to the TopComponent. The constructor builds the JavaFX scene graph and obtains a reference to the JavaFX controller class. After building the scene graph, the TopComponent associates the controller’s InstanceContent object with the TopComponent’s Lookup. Because the TopComponent invokes a controller method in the constructor (here, the controller method getInstanceContent()), it must wait for completion of the createScene() method, which builds the scene graph and instantiates the controller. We use the Concurrency Library CountDownLatch for the wait. Furthermore, the TopComponent associateLookup() method must be invoked on the Swing EDT.3 Listing 6.14 shows this code.

3. Invoking controller method getInstanceContent() on the EDT is safe, since it does not access or modify the JavaFX scene graph.

Listing 6.14 PersonFXViewerTopComponent

Click here to view code image

package com.asgteach.familytree.personfxviewer;

. . . import statements and TopComponent annotations omitted . . .

public final class PersonFXViewerTopComponent extends TopComponent {

 private static JFXPanel fxPanel;
 private PersonFXViewerController controller;
 private static final Logger logger = Logger.getLogger(
 PersonFXViewerTopComponent.class.getName());

 public PersonFXViewerTopComponent() {
 initComponents();
 setName(Bundle.CTL_PersonFXViewerTopComponent());
 setToolTipText(Bundle.HINT_PersonFXViewerTopComponent());
 setLayout(new BorderLayout());
 init();
 }
 private void init() {
 fxPanel = new JFXPanel();
 add(fxPanel, BorderLayout.CENTER);
 Platform.setImplicitExit(false);

 // we need to wait for createScene() to finish
 final CountDownLatch latch = new CountDownLatch(1);

 Platform.runLater(() -> {
 try {
 createScene();
 } finally {
 latch.countDown();
 }
 });

 try {
 latch.await(); // wait for createScene() to finish
 // get the InstanceContent from the controller
 associateLookup(new AbstractLookup(
 controller.getInstanceContent()));
 } catch (InterruptedException ex) {
 logger.log(Level.SEVERE, "JavaFX initialization interrupted");
 LifecycleManager.getDefault().exit();
 }
 }

 private void createScene() {
 try {
 URL location = getClass().getResource("PersonFXViewer.fxml");
 FXMLLoader fxmlLoader = new FXMLLoader();
 fxmlLoader.setLocation(location);
 fxmlLoader.setBuilderFactory(new JavaFXBuilderFactory());

 Parent root = (Parent) fxmlLoader.load(location.openStream());
 Scene scene = new Scene(root);
 fxPanel.setScene(scene);
 controller = (PersonFXViewerController) fxmlLoader.getController();
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
. . . code omitted . . .
}

At this point, you can now run the FamilyTreeFXApp application. The PersonFXViewer window appears, as shown in Figure 6.25, and selection changes are logged.

[image:]

Figure 6.25 PersonFXViewer window populated with Person objects

Configure a Window with JavaFX for Form Editing

Module PersonFXEditor implements the right window in the FamilyTreeFXApp application. You configure this module in a similar way to the PersonFXViewer module, as follows.

1. Set a dependency on module FamilyTreeFXModel so that module PersonFXEditor can access classes Person and FamilyTreeManager.

2. Add a window (TopComponent) to module PersonFXEditor. In the Basics Setting dialog, select editor from the window position drop down control and select the checkbox Open on Application Start. In the Name and Location dialog, provide PersonFXEditor for the Class Name Prefix. For Icon, optionally provide a 16 x 16 GIF or PNG graphic. (You can use file personIcon.png found in the download bundle for this book.) Click Finish to complete the New Window wizard, which creates file PersonFXEditorTopComponent.java.

3. From project PersonFXMLAppEnhancedUI, copy files PersonFXML.fxml and PersonFXMLController.java to project PersonFXEditor | Source Packages under package com.asgteach.familytree.personfxeditor.

4. Rename the FXML file to PersonFXEditor.fxml.

5. Rename the controller class to PersonFXEditorController.java.

6. Edit the controller class so that its class name is PersonFXEditorController and its package name is correct, as shown in Listing 6.15. Fix imports so that the import statements for FamilyTreeManager and Person are correct. We’ll make additional changes to this controller class after configuring the FXML file.

Listing 6.15 PersonFXEditorController.java

Click here to view code image

package com.asgteach.familytree.personfxeditor;

import com.asgteach.familytreefx.model.FamilyTreeManager;
import com.asgteach.familytreefx.model.Person;
 . . . other import statements omitted . . .

public class PersonFXEditorController implements Initializable {
 . . . code omitted . . .
}

Configure the FXML

Edit the FXML file and remove the FXML declarations that describe the TreeView control in the left window. Edit the controller class attribute so that it refers to PersonFXEditorController, as shown in Listing 6.16.

Listing 6.16 PersonFXEditor.fxml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>

<AnchorPane id="AnchorPane"
 style="-fx-background-color: linear-gradient(aliceblue, lightblue);"
 xmlns:fx="http://javafx.com/fxml"
 fx:controller=
 "com.asgteach.familytree.personfxeditor.PersonFXEditorController">
 <children>

 . . . fxml for Person Editor form unchanged from
 project PersonFXMLAppEnhancedUI
 (See Listing 4.17 on page 159) . . .

</children>
</AnchorPane>

Configure the JavaFX Controller

The JavaFX controller class for module PersonFXEditor has the following responsibilities.

• Obtain an instance of FamilyTreeManager from the Global Lookup to update the edited Person object.

• Implement event handlers to process user input from the text field controls, the radio buttons, and the text area control. This code is unchanged from the JavaFX-only version.

• Implement the Update Button event handler, which invokes the FamilyTreeManager updatePerson() method. This is also unchanged.

• Replace the TreeSelectionListener with public method doUpdate(), which displays its Person argument in the Person editor form (or clears the form when no Person is available). The TopComponent invokes this method in its LookupListener event handler.

Listing 6.17 shows the updated controller code with the modified code shown in bold.

Listing 6.17 PersonFXEditorController.java

Click here to view code image

public class PersonFXEditorController implements Initializable {

. . . unchanged code omitted . . .

 private FamilyTreeManager ftm = null;
 private Person thePerson = null;
 private ObjectBinding<Person.Gender> genderBinding;
 private boolean changeOK = false;
 private BooleanProperty enableUpdateProperty;

. . . unchanged code omitted . . .

 // This is invoked from the LookupListener in the TopComponent
 public void doUpdate(Collection<? extends Person> people) {
 enableUpdateProperty.set(false);
 changeOK = false;
 if (people.isEmpty()) {
 logger.log(Level.FINE, "No selection");
 clearForm();
 return;
 }
 thePerson = people.iterator().next();
 logger.log(Level.FINE, "{0} selected", thePerson);
 configureEditPanelBindings(thePerson);
 // set the gender from Person, then configure the genderBinding
 if (thePerson.getGender().equals(Person.Gender.MALE)) {
 maleRadioButton.setSelected(true);
 } else if (thePerson.getGender().equals(Person.Gender.FEMALE)) {
 femaleRadioButton.setSelected(true);
 } else {
 unknownRadioButton.setSelected(true);
 }
 thePerson.genderProperty().bind(genderBinding);
 changeOK = true;
 }

@Override
 public void initialize(URL url, ResourceBundle rb) {

. . . unchanged code omitted . . .

 ftm = Lookup.getDefault().lookup(FamilyTreeManager.class);
 if (ftm == null) {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager object");
 LifecycleManager.getDefault().exit();
 }
 . . . unchanged code omitted . . .
 }
}

Configure the TopComponent

Listing 6.18 shows the TopComponent code, which has two main responsibilities. One, it builds the JavaFX scene graph, saving the controller reference in a class variable. Two, it implements a LookupListener and adds it to the Lookup.Result<Person> lookupResult class variable. The lookupResult variable stores the Lookup that contains Person objects from the Global Selection Lookup. The listener is invoked when the Lookup.Result changes. See “Configure TopComponent Life Cycle Methods” on page 230 for a detailed explanation of how the LookupListener reacts to selection changes in the PersonFXViewer window.

The LookupListener invokes the checkLookup() method. Here, we must make sure we’re executing on the JavaFX Application Thread. If not, we use Platform.runLater() to invoke the JavaFX controller method doUpdate() with the Lookup results. The doUpdate() method updates the Person editor form in the JavaFX scene graph.4

4. Since we invoke the checkLookup() method both in the LookupListener and in the TopComponent life cycle method componentOpened(), we make sure that we always call the JavaFX controller method doUpdate() on the JavaFX Application Thread.

Listing 6.18 PersonFXEditorTopComponent.java

Click here to view code image

public final class PersonFXEditorTopComponent extends TopComponent {

 private static JFXPanel fxPanel;
 private Lookup.Result<Person> lookupResult = null;
 private PersonFXEditorController controller;
 private static final Logger logger =
 Logger.getLogger(PersonFXEditorTopComponent.class.getName());

 public PersonFXEditorTopComponent() {
 initComponents();
 setName(Bundle.CTL_PersonFXEditorTopComponent());
 setToolTipText(Bundle.HINT_PersonFXEditorTopComponent());
 setLayout(new BorderLayout());
 init();
 }

 private void init() {
 fxPanel = new JFXPanel();
 add(fxPanel, BorderLayout.CENTER);
 Platform.setImplicitExit(false);
 Platform.runLater(() -> createScene());
 }

 private void createScene() {
 try {
 URL location = getClass().getResource("PersonFXEditor.fxml");
 FXMLLoader fxmlLoader = new FXMLLoader();
 fxmlLoader.setLocation(location);
 fxmlLoader.setBuilderFactory(new JavaFXBuilderFactory());

 Parent root = (Parent) fxmlLoader.load(location.openStream());
 Scene scene = new Scene(root);
 fxPanel.setScene(scene);
 controller = (PersonFXEditorController) fxmlLoader.getController();
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }

 // LookupListener to detect changes in Global Selection Lookup
 LookupListener lookupListener = (LookupEvent le) -> checkLookup();

 private void checkLookup() {
 TopComponent tc = TopComponent.getRegistry().getActivated();
 if (tc != null && tc.equals(this)) {
 logger.log(Level.INFO, "PersonFXEditorTopComponent has focus.");
 return;
 }
 Collection<? extends Person> allPeople = lookupResult.allInstances();
 if (Platform.isFxApplicationThread()) {
 System.out.println("Already in JavaFX Application Thread");
 controller.doUpdate(allPeople);
 } else {
 System.out.println("NOT in JavaFX Application Thread");
 Platform.runLater(() -> controller.doUpdate(allPeople));
 }
 }

 @Override
 public void componentOpened() {
 // Listen for Person objects in the Global Selection Lookup
 lookupResult = Utilities.actionsGlobalContext()
 .lookupResult (Person.class);
 lookupResult.addLookupListener(lookupListener);
 checkLookup();
 }

 @Override
 public void componentClosed() {
 lookupResult.removeLookupListener(lookupListener);
 }

. . . code omitted . . .
}

Figure 6.26 shows the FamilyTreeFXApp NetBeans Platform application running with both windows detached.

[image:]

Figure 6.26 FamilyTreeFXApp running with windows detached (floating)

As you select different Person items in the TreeView control, the Person details appear in the PersonFXEditor form. Also, if you close the PersonFXEditor window and then select different items in the TreeView, the currently selected Person appears in the PersonFXEditor when you re-open it. (This use case is handled in the PersonFXEditorTopComponent componentOpened() method.) Furthermore, you can close both windows and then re-open them. The call to Platform.setImplicitExit(false) makes sure that the JavaFX runtime does not exit.

The FamilyTreeFXApp application not only shows how to build a NetBeans Platform application with JavaFX content, but it leverages the important NetBeans Platform features of modularity and Lookup to achieve the architectural advantages we describe in Chapter 5.

6.4 Key Point Summary

In the previous chapter, you learned how to build a well-designed, loosely-coupled NetBeans Platform application that is modular and uses the Lookup API for discovering service providers and inter-module communication. In this chapter, we use the same features (modules and Lookup) to build a NetBeans Platform application with JavaFX content. Here, we concentrate on the issues of JavaFX integration. In particular, we discuss the interaction between the Swing EDT and JavaFX Application threads, the mechanics of embedding JavaFX within the JFXPanel component, and the communication strategies between the Swing TopComponent code and the JavaFX scene graph.

Here are the key points in this chapter.

• You embed JavaFX content into a NetBeans Platform application by adding a scene graph to the Swing JFXPanel component.

• You place JavaFX content in a TopComponent (window).

• It is straightforward to copy an FXML document and controller class into a NetBeans module with a TopComponent with only minor modifications.

• The TopComponent constructor instantiates the JFXPanel component and then invokes the FXML Loader to build the scene graph.

• The JFXPanel implicitly initializes the JavaFX runtime.

• Use Platform.setExplicitExit(false) to prevent the JavaFX runtime from exiting when the last window with JavaFX content closes.

• The TopComponent wraps the code that creates the JavaFX content in a Runnable and invokes it with Platform.runLater().

• Code that accesses or manipulates the JavaFX scene graph must execute on the JavaFX Application Thread.

• The TopComponent code that creates the JavaFX scene graph is analogous to the code in a JavaFX application’s start() method.

• The JFXPanel transparently forwards all input and focus events to the JavaFX runtime.

• SwingNode is a JavaFX control that lets you install Swing content into a JavaFX scene graph.

• Communication strategies between a TopComponent and embedded JavaFX scene graph content can be characterized as self contained, one way, one way with waiting, and two way.

• Provide public methods in the JavaFX controller class when the TopComponent must access or modify the JavaFX scene graph.

• Use the Concurrency Library CountDownLatch when the TopComponent must wait for a JavaFX controller method to complete.

• JavaFX-enabled windows that provide selection events put selected items in a Lookup container (InstanceContent) that the TopComponent then publishes.

• JavaFX-enabled NetBeans Platform applications use service providers, listeners, and listener events to provide a modular and loosely-coupled design. This is the same approach you use with NetBeans Platform applications with just Swing-based windows.

7. Nodes and Explorer Views

Most applications require a user to select objects from among many displayed in a window. Fortunately, the NetBeans Platform lets you easily organize your business objects, display them in a window, and manipulate them. In this chapter you’ll learn how to use the Nodes API to organize your business objects. You’ll also learn how to use Explorer Views to display objects and use the Explorer Manager to control the process.

What You Will Learn

• Create a node hierarchy that reflects the structure of business objects.

• Take advantage of node property support, the Properties window, and other components to display and edit business object properties.

• Make user selections available in the Global Selection Lookup.

• Create alternate states of a node hierarchy with FilterNode.

• Select and use the appropriate Explorer View for your presentation requirements.

• Display your business data in table form with business object properties as columns.

• Create a Selection History module that displays a running list of users’ selections.

7.1 The NetBeans Model View Controller

In Chapter 5 (see “What We Know So Far” on page 244) we suggested that the Nodes API makes selection management and display of business objects easier and more flexible. In this chapter, we’ll show you how by introducing the Nodes API, Explorer Views, and a TopComponent’s Explorer Manager.

NetBeans nodes wrap application business objects. In the context of the Model View Controller pattern, nodes are the Model. Nodes have a hierarchical structure with a root node at the top, and every node includes a child container. A leaf node’s child container has the special designation Children.LEAF. To display a node hierarchy, NetBeans provides several Explorer Views, which are Swing components that work with nodes as their model. One or more Explorer View components constitute the View. NetBeans also has an Explorer Manager to manipulate the view and model as a Controller. Figure 7.1 shows the relationship among these three components.

[image:]

Figure 7.1 NetBeans Model View Controller pattern for displaying hierarchical data

You do not directly connect the Explorer Views to the Explorer Manager. Instead, you set the root node of the Explorer Manager (called the Root Context) to the root node of your node hierarchy. The Explorer Views access the Explorer Manager by searching the component tree to find the first component that implements ExplorerManager.Provider. Explorer Views use this provider to access the Explorer Manager and its node hierarchy. You don’t write any code for this. All Explorer Views look for an Explorer Manager provider and take care of finding the node hierarchy. Furthermore, you can have multiple Explorer Views that display the same node hierarchy and share the same Explorer Manager.

All Explorer Views share the following behaviors.

• Display a node hierarchy.

• Respond to user selections.

• Respond to changes in the node hierarchy.

• Find their controller (their Explorer Manager) by searching the component tree for the first component that implements ExplorerManger.Provider. They access the node hierarchy through the Explorer Manager.

Why is this design approach significant to the NetBeans Platform application developer?

• Since all Explorer Views use the same model (nodes), your node hierarchy works with all of them. This means if you want to change the look from a tree view to an icon view or a table view, you only have to change the Explorer View component (one or two lines of code).

• You can use more than one Explorer View with the same node hierarchy by using the same Explorer Manager. This lets you display the same node hierarchy with different views.

• With a single line of code, you can tell the Explorer Manager to put all node selections (single or multi-selection) in the TopComponent’s Lookup.

In this chapter, we’ll show you how to use the Explorer Manager, Explorer Views, and Nodes API to present and manage hierarchical data. We’ll provide multiple examples to show different node types as well as different Explorer Views. As an example, Figure 7.2 shows the FamilyTreeApp just after the user has finished updating Person Bart. This version of the application is based on the FamilyTreeApp presented in Chapter 5. The left window, however, displays its data using the Nodes and Explorer API instead of the Swing JTree component. No changes were made to the Person Editor module.

[image:]

Figure 7.2 FamilyTreeApp running using Nodes and Explorer Views

7.2 Nodes

Let’s begin with the Nodes API. Nodes wrap a business object and create a hierarchical structure. They provide a configurable display for a business object. Nodes have a Lookup, which generally holds the wrapped object. Nodes also have a context, that is, a set of Actions that can be dynamically enabled and disabled. With its Lookup, nodes have a set of dynamically configurable capabilities. In this chapter, however, we’ll limit ourselves to building node hierarchies and describing how nodes interact with the Explorer Manager and Explorer Views. We discuss the Action framework and capabilities in Chapter 9.

The Nodes API offers several implementations of super class Node. AbstractNode (which is not abstract) provides a general-purpose implementation of the Node class. BeanNode uses introspection to provide JavaBean property support of its wrapped object. When using BeanNode, you’ll see other component features enabled that let you inspect and modify the wrapped object. IndexedNode lets you sort lists of data, although you can achieve list sorting and reordering with AbstractNode and BeanNode as well. FilterNode is used in conjunction with an already-created node hierarchy that helps you display a subset of nodes based on one or more criteria. We’ll show you how to use AbstractNode, BeanNode, and FilterNode in this chapter. We discuss DataNode in Chapter 14 (see “Using DataNode and Lookup” on page 677).

Figure 7.3 shows the Node class hierarchy.

[image:]

Figure 7.3 NetBeans node hierarchy

All nodes include a child container with class Node.Children. When you create a node, you also specify how to create its children. If the node is a leaf node (no children), you use the special designation Children.LEAF. The Nodes API includes several options for creating child nodes. However, the recommended approach is to extend ChildFactory<T>, where T is the type of your wrapped business object. This means that when you create a node with children, you provide a ChildFactory.

NodeListener and PropertyChangeListener

Nodes also support the standard Java Event Model and fire change events. Nodes support both NodeListener and PropertyChangeListener. NodeListener support covers changes in the node itself, such as node destroyed, children added, children removed, children reordered, and name, display name, icon and short description changes. PropertyChangeListener support applies to changes to the node’s underlying Property Sets. (We discuss a node’s Property Sets later in the chapter.) When a node hierarchy changes because children are added or removed, the listening Explorer Views respond to these node events and subsequently update the view. All this happens quietly behind the scenes, but you can listen for node events yourself when updates to the underlying model require some action. We will discuss node events further as we explore building a multi-level node hierarchy.

Building a Node Hierarchy

Let’s show you how to build a single-level node hierarchy by replacing the PersonViewer module in the FamilyTreeApp application from Chapter 5 (see Figure 5.3 on page 202). In this example, we’ll create a window that displays Person objects from the FamilyTreeManager. The new module will use nodes and Explorer Views, as shown in Figure 7.2. Once again you’ll see the advantages of using modules when building an application.

Create Module GenderViewer

Remove the PersonViewer module from the FamilyTreeApp application and create a new module using these steps.

1. In the Projects view, expand FamilyTreeApp | Modules node. Right-click on module PersonViewer. From the context menu, select Remove. This removes the PersonViewer module from the application.

Benefits of Modules
Interestingly, the FamilyTreeApp runs without the PersonViewer module, although the PersonEditor window has nothing to display or edit.

2. Select the Modules node in the FamilyTreeApp project, right-click, and select Add New . . . from the context menu. NetBeans displays the Name and Location dialog for the New Project wizard.

3. For Project Name, specify GenderViewer and accept the defaults for the remaining fields. Click Next.

4. NetBeans displays the Basic Module Configuration dialog. Specify com.asgteach.familytree.genderviewer for the Code Name Base and accept the defaults for the remaining fields. Click Finish. NetBeans creates project GenderViewer in the FamilyTreeApp application.

Create a TopComponent

The GenderViewer module requires a TopComponent to display its content.

1. In the Projects view, expand project GenderViewer Source node and right click on node com.asgteach.familytree.genderviewer. Select New | Window . . . from its context menu.

2. NetBeans displays the Basic Settings dialog of the New Window wizard. Select explorer in the Window Position drop down menu and check Open on Application Start. Click Next.

3. NetBeans displays the Name, Icon and Location dialog. Specify Gender for Class Name Prefix, leave the Icon field blank, and accept the defaults for the remaining fields. Click Finish.

NetBeans creates the GenderTopComponent class and brings it up in the Design view. Create a BorderLayout to use with the TopComponent.

1. In the Design view, select the TopComponent in the Navigator window.

2. Right click and select Set Layout | BorderLayout in the context menu, as shown in Figure 7.4.

[image:]

Figure 7.4 Set the TopComponent’s layout to BorderLayout

Create PersonNode Class

Now let’s create the Java classes we need to build our node hierarchy. Figure 7.5 shows the Gender window (detached) with the Person nodes that appear under the root node People. Here we display special symbols in front of a person’s name to indicate gender. We use | for Gender.MALE, * for Gender.FEMALE, and ? for Gender.UNKNOWN.

[image:]

Figure 7.5 People node hierarchy with Gender symbols

In order to access the NetBeans Nodes API and the Explorer and Property Sheet API with the Gender window, you’ll need to set dependencies. You’ll also set a dependency on the FamilyTreeModel module to access both Person and FamilyTreeManager.

1. In the NetBeans Projects view, right click on the Libraries node of project GenderViewer. In the context menu, select Add Module Dependency.

2. NetBeans displays the Add Module Dependency dialog. Select modules Explorer and Property Sheet API, FamilyTreeModel, and Nodes API. Click OK.

NetBeans adds a dependency to these modules, adding the libraries to the Libraries node in the GenderViewer module.

Now let’s build the node classes for the Gender window node hierarchy from the bottom up. That is, we’ll first build class PersonNode, a node that extends AbstractNode and implements PropertyChangeListener. This is a leaf node that wraps a Person object, and its children designation will be Children.LEAF. Listing 7.1 shows PersonNode.java.

Listing 7.1 PersonNode.java

Click here to view code image

@NbBundle.Messages({
 "HINT_PersonNode=Person"
})
public class PersonNode extends AbstractNode
 implements PropertyChangeListener {

public PersonNode(Person person) {
 super(Children.LEAF, Lookups.singleton(person));
 setIconBaseWithExtension(
 "com/asgteach/familytree/genderviewer/resources/personIcon.png");
 setName(String.valueOf(person.getId()));
 setDisplayName(person.toString());
 setShortDescription(Bundle.HINT_PersonNode());
 }

@Override
 public String getHtmlDisplayName() {
 Person person = getLookup().lookup(Person.class);
 StringBuilder sb = new StringBuilder();
 if (person == null) {
 return null;
 }
 sb.append("");
 switch (person.getGender()) {
 case MALE:
 sb.append("| ");
 break;
 case FEMALE:
 sb.append("* ");
 break;
 case UNKNOWN:
 sb.append("? ");
 break;
 }
 sb.append(person.toString()).append("");
 return sb.toString();
 }

@Override
 public void propertyChange(PropertyChangeEvent evt) {
 fireDisplayNameChange(null, getDisplayName());
 }
}

The PersonNode constructor takes a Person object. The call to super() provides Children.LEAF for the children designation and a Lookup for the Person object. The Explorer Manager uses a node’s Lookup to manage the selection behavior. (Nodes implement Lookup.Provider.)

The constructor sets the node’s icon with setIconBaseWithExtension(). This loads not only file personIcon.png, but personIconOpen.png, personIcon32.png, and personIconOpen32.png, if present. (Icon files ending in 32 are larger than the standard 16 x 16 icon file.) Those that include Open are used when a node is opened (or expanded). If these extra icon files don’t exist, NetBeans uses the same icon file for all states of the node. If you don’t provide an icon file, NetBeans uses a generic “document” icon.

The setName() method provides a name for the node. In general, you don’t change a node’s name after setting it. Here, we use the Person getId() method converted to a String.

Nodes also have a human-friendly display name (set with setDisplayName()). The Explorer Views use this (along with the node’s icon) to display the node. Additionally, the Explorer View invokes a node’s getHtmlDisplayName() method, if provided. As its name implies, you can use a subset of HTML codes to alter the font color and style. Here we use a blue font color and specify bold (), as well as provide the gender symbols.

The setShortDescription() method sets a node’s tooltip.

The property change listener is invoked with changes to the wrapped Person object, which invokes the fireDisplayNameChange() method in the event handler. (We add the listener to the Person object in the PersonChildFactory class, shown in Listing 7.2.)

Why do we explicitly fire a display name change event instead of updating the name directly with the setDisplayName() method? The answer to this question is a subtle reflection on how property change events work in general.

A property change event does not fire if the old value and new value are non-null and equal. Here, we’re forcing a NodeListener property change event so that the view will correctly update the node’s display name. When you change the gender of a Person object without changing any other Person properties that affect the name, the setDisplayName() method will not fire a property change event. The getDisplayName() method relies only on the Person toString() method. However, the getHtmlDisplayName() depends on the Person gender property as well. Thus, the displayNameChange event forces the Explorer View to refresh the node’s changed (HTML) display name when only the gender property changes.

Create ChildFactory for Person

Next, we specify how to create the collection of PersonNodes. To do this, we extend ChildFactory<Person> and provide code to build the nodes. Here we’ll need to access the FamilyTreeManager to get the list of Person objects.

1. Right click on the package name under Source Packages for the GenderViewer module and select New | Java Class from the context menu. Provide name PersonChildFactory.

2. NetBeans creates the class and brings it up in the Java Editor. Modify the class so that it extends ChildFactory<Person>. Fix Imports.

3. Use the NetBeans hints in the left column and select Implement all abstract methods for this class. NetBeans generates protected method createKeys().

4. You also override the protected createNodeForKey() method. Use the IDE Insert Code context menu to create a stub for this method.

Listing 7.2 shows the code for the PersonChildFactory class.

Listing 7.2 PersonChildFactory.java

Click here to view code image

public class PersonChildFactory extends ChildFactory<Person> {

private final FamilyTreeManager ftm;
 private static final Logger logger = Logger.getLogger(
 PersonChildFactory.class.getName());

public PersonChildFactory() {
 this.ftm = Lookup.getDefault().lookup(FamilyTreeManager.class);
 if (ftm == null) {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager object");
 LifecycleManager.getDefault().exit();
 }
 ftm.addPropertyChangeListener(familyTreeListener);
 }

@Override
 protected boolean createKeys(List<Person> list) {
 list.addAll(ftm.getAllPeople());
 logger.log(Level.FINER, "createKeys called: {0}", ftm.getAllPeople());
 return true;
 }

@Override
 protected Node createNodeForKey(Person key) {
 logger.log(Level.FINER, "createNodeForKey: {0}", key);
 PersonNode node = new PersonNode(key);
 key.addPropertyChangeListener(WeakListeners.propertyChange(node, key));
 return node;
 }

// PropertyChangeListener for FamilyTreeManager
 private final PropertyChangeListener familyTreeListener =
 (PropertyChangeEvent evt) -> {
 if (evt.getPropertyName().equals(FamilyTreeManager.PROP_PERSON_UPDATED)
 && evt.getNewValue() != null) {
 this.refresh(true);
 }
 };
}

In the constructor, we obtain a reference to the FamilyTreeManager service provider using the Global Lookup and add a property change listener. Recall that the FamilyTreeManager service provider fires a property change event when it updates the underlying store of Person objects.

The createKeys() method specifies how the factory obtains the business objects for the child nodes this factory creates. Here we invoke the familiar getAllPeople() method to add the list of Person objects to the method’s List<Person> list. The return value true means that the list is complete. To build the list with multiple invocations of createKeys(), you return false until the list is complete. This is useful when the list of business objects is extremely large and you want to return data in chunks.

The createNodeForKey() method builds each child node, here PersonNode, with the provided Person argument. We add a property change listener to the wrapped Person object with NetBeans Platform utility method WeakListeners.propertyChange(), as follows.

Click here to view code image

key.addPropertyChangeListener(WeakListeners.propertyChange(node, key));

A “weak” listener lets the Person object weakly reference PersonNode (which may have a shorter life span than the Person object). This technique avoids memory leaks since this listener is never explicitly removed.

Note that the node system invokes these methods for you as the Explorer View displays its content and nodes are dynamically expanded.

The PersonChildFactory property change listener reacts to changes in the FamilyTreeManager. When the user clicks the Update button in the PersonEditor UI, the edited Person object is updated with the FamilyTreeManager. This invokes the property change listener which calls refresh().

The refresh() method is very powerful and efficient. When changes to the underlying data affect the node hierarchy, the refresh() method (and the listening Explorer View) handles the changes. Our simple hierarchy’s structure never changes, so calling refresh() is not really needed. However, if the FamilyTreeManager update results in a re-ordering or restructuring of the node hierarchy, the call to refresh() becomes necessary. We’ll show you this behavior in the next section.

Create the Root Node

The final step in building the classes for this node hierarchy is to create the root node class. In this case, the root node’s job is to use the ChildFactory to specify how to build its children. Note that you don’t create the nodes directly (you don’t call either method createKeys() or createNodeForKey()). Instead, the Nodes API coupled with the Explorer Manager and Explorer Views build the node hierarchy on demand. Listing 7.3 shows the code for the RootNode class, which also extends AbstractNode.

Listing 7.3 RootNode.java

Click here to view code image

@NbBundle.Messages({
 "HINT_RootNode=Show all people",
 "LBL_RootNode=People"
})
public class RootNode extends AbstractNode {

public RootNode() {
 super(Children.create(new PersonChildFactory(), false));
 setIconBaseWithExtension(
 "com/asgteach/familytree/genderviewer/resources/personIcon.png");
 setDisplayName(Bundle.LBL_RootNode());
 setShortDescription(Bundle.HINT_RootNode());
 }
}

The constructor invokes super() with a PersonChildFactory instance and boolean false, which builds the nodes synchronously. Boolean true tells the Node system to build the child nodes on a background thread. This keeps the UI responsive when building the node hierarchy requires time-consuming calls.

Our root node uses the same icon that we use for PersonNode. If you run the application, you’ll see how the icon changes as you expand and collapse the root node.

Displaying the Node Hierarchy

With our node hierarchy defined, let’s show you how to display the nodes in a TopComponent. This requires some plumbing code to connect the three parts of the Model View Controller elements as described in Figure 7.1 on page 292.

• Make the TopComponent class implement ExplorerManager.Provider and instantiate an ExplorerManager class field.

• Override abstract method getExplorerManager() and return the ExplorerManager object.

• Choose an appropriate Explorer View and add it to the TopComponent. Here, we use BeanTreeView. To use an alternate Explorer View, substitute its class name, such as OutlineView for example. Everything else will just work.

• Use ExplorerUtils.createLookup() to create a new Lookup that contains selected nodes and their Lookups. Associate the TopComponent’s Lookup with this new Explorer Manager Lookup. This puts the Explorer View’s selected node(s) in the TopComponent’s Lookup. Other modules that listen for changes in the Global Selection Lookup can access these objects, as described in “Tracking Global Selection” on page 240 and further leveraged in “Creating a Selection History Feature” on page 332. The ActionMap holds actions associated with the nodes.

• Set the EntityManager’s context root to the root of your node hierarchy.

• Activate the Entity Manager in componentOpened() and de-activate it in componentClosed(). This eliminates any Entity Manager processing while the window is closed.

Listing 7.4 lists the TopComponent code that displays the node hierarchy. We’ll describe alternate Explorer Views later in this chapter.

Listing 7.4 Displaying the Node Hierarchy

Click here to view code image

public final class GenderTopComponent extends TopComponent
 implements ExplorerManager.Provider {

 private final ExplorerManager em = new ExplorerManager();

public GenderTopComponent() {
 initComponents();
 setName(Bundle.CTL_GenderTopComponent());
 setToolTipText(Bundle.HINT_GenderTopComponent());

 BeanTreeView view = new BeanTreeView();
 add(view, BorderLayout.CENTER);
 associateLookup(ExplorerUtils.createLookup(em, this.getActionMap()));
 em.setRootContext(new RootNode());
 }
. . . unchanged code omitted . . .

 @Override
 public void componentOpened() {
 ExplorerUtils.activateActions(em, true);
 }

 @Override
 public void componentClosed() {
 ExplorerUtils.activateActions(em, false);
 }

 @Override
 public ExplorerManager getExplorerManager() {
 return em;
 }
}

A Multi-Level Node Hierarchy

Our node hierarchy has a root with a list of child nodes. These child nodes are all leaf nodes, so the hierarchy is only two levels: the root node and its children. In a more complex example, the node hierarchy can be many levels. In fact, a node hierarchy can be infinite. Since children nodes are created on demand, you can expand a potentially infinite hierarchy until you run out of resources.

Let’s review the process for creating the classes you need to represent a node hierarchy, as shown in Figure 7.6. Each time you create a node class, you specify if that node is a leaf node or if it has Children nodes. If it has Children nodes, you build a ChildFactory specific to that type of child node. That child node, in turn, may have its own ChildFactory (quite possibly a different ChildFactory, depending on the structure of your business data).

[image:]

Figure 7.6 Node and ChildFactory relationship

Let’s modify the node structure and create a set of Gender nodes for Male, Female, and Unknown. Under each Gender node you’ll see the appropriate Person that matches its parent Gender node. Figure 7.7 shows this more complex node hierarchy in our running application. We also color code the PersonNode display name and use the same gender symbols as before.

[image:]

Figure 7.7 Using a more complex node hierarchy

Again, let’s build the node classes we need from the bottom up.

PersonNode and PersonChildFactory

PersonNode (the leaf node that displays a Person) has a slightly different getHtmlDisplayName() method, as shown in Listing 7.5.

Listing 7.5 PersonNode

Click here to view code image

public class PersonNode extends AbstractNode implements
 PropertyChangeListener {
. . . unchanged code omitted . . .

 @Override
 public String getHtmlDisplayName() {
 Person person = getLookup().lookup(Person.class);
 StringBuilder sb = new StringBuilder();
 if (person == null) {
 return null;
 }
 switch (person.getGender()) {
 case MALE:
 sb.append("| ");
 break;
 case FEMALE:
 sb.append("* ");
 break;
 case UNKNOWN:
 sb.append("? ");
 break;
 }
 sb.append(person.toString()).append("");
 return sb.toString();
 }
. . . unchanged code omitted . . .
}

Next, we’ll modify PersonChildFactory so that it only builds PersonNodes that match the factory’s gender. To do this, we set the Factory’s gender in its constructor and modify the createKeys() method, as shown in Listing 7.6.

Listing 7.6 PersonChildFactory

Click here to view code image

public class PersonChildFactory extends ChildFactory<Person> {

 private final FamilyTreeManager ftm;
 private static final Logger logger = Logger.getLogger(
 PersonChildFactory.class.getName());
 private final Person.Gender gender;

 public PersonChildFactory(Person.Gender gender) {
 this.gender = gender;
 this.ftm = Lookup.getDefault().lookup(FamilyTreeManager.class);
 if (ftm == null) {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager object");
 LifecycleManager.getDefault().exit();
 }
 ftm.addPropertyChangeListener(familyTreeListener);
 }

 @Override
 protected boolean createKeys(List<Person> list) {
 ftm.getAllPeople().stream().forEach((Person p) -> {
 if (p.getGender().equals(gender)) {
 list.add(p);
 }
 });
 logger.log(Level.FINER, "createKeys called: {0}", list);
 return true;
 }

@Override
 protected Node createNodeForKey(Person key) {
 . . . code unchanged . . .
 }

// PropertyChangeListener for FamilyTreeManager
 private final PropertyChangeListener familyTreeListener =
 (PropertyChangeEvent evt) -> {
 . . . code unchanged . . .
 };
}

GenderNode and GenderChildFactory

Above the Person nodes in our node hierarchy is the GenderNode, a node that displays child nodes categorized by gender. Each of the different GenderNodes has its own icon and display name. The GenderNode uses PersonChildFactory to specify its children. Listing 7.7 shows this code. The icon, name, and display name all depend on the value of the gender argument passed in the constructor.

Listing 7.7 GenderNode

Click here to view code image

@Messages({
 "HINT_GenderNode=Gender Node"
})
public class GenderNode extends AbstractNode {

public GenderNode(Gender gender) {
 super(Children.create(new PersonChildFactory(gender), false),
 Lookups.singleton(gender));
 setGenderStuff(gender);
 setShortDescription(Bundle.HINT_GenderNode());
 }

private void setGenderStuff(Gender gender) {
 StringBuilder sb = new StringBuilder();
 StringBuilder iconString = new StringBuilder(
 "com/asgteach/familytree/genderviewer/resources/");
 switch (gender) {
 case MALE:
 sb.append("Male");
 iconString.append("maleIcon.png");
 break;
 case FEMALE:
 sb.append("Female");
 iconString.append("femaleIcon.png");
 break;
 case UNKNOWN:
 sb.append("Unknnown");
 iconString.append("unknownIcon.png");
 break;
 }
 setName(sb.toString());
 setDisplayName(sb.toString());
 setIconBaseWithExtension(iconString.toString());
 }
}

The GenderChildFactory creates one GenderNode for each of the possible Person.Gender enum values, as shown in Listing 7.8.

Listing 7.8 GenderChildFactory

Click here to view code image

public class GenderChildFactory extends ChildFactory<Gender> {

private static final Logger logger =
 Logger.getLogger(GenderChildFactory.class.getName());

@Override
 protected boolean createKeys(List<Gender> list) {
 list.addAll(Arrays.asList(Gender.values()));
 logger.log(Level.FINER, "createKeys called: {0}", list);
 return true;
 }
 @Override
 protected Node createNodeForKey(Gender key) {
 logger.log(Level.FINER, "createNodeForKey: {0}", key);
 return new GenderNode(key);
 }
}

Modify the Root Node

Finally, the root node now invokes the GenderChildFactory (instead of PersonChildFactory) for its children. Modify the RootNode class to reflect this change, as shown in Listing 7.9.

Listing 7.9 RootNode

Click here to view code image

@NbBundle.Messages({
 "HINT_RootNode=Show all people",
 "LBL_RootNode=People"
})
public class RootNode extends AbstractNode {

 public RootNode() {
 super(Children.create(new GenderChildFactory(), false));
 setIconBaseWithExtension(
 "com/asgteach/familytree/genderviewer/resources/personIcon.png");
 setDisplayName(Bundle.LBL_RootNode());
 setShortDescription(Bundle.HINT_RootNode());
 }
}

Figure 7.8 shows the Gender window (detached) as it looks initially (on the left) and with its hierarchy expanded (on the right). Male gender nodes display in blue, female gender in red, and unknown gender in the default color.

[image:]

Figure 7.8 The Gender window at startup (left) and expanded (right)

Expanding Nodes Programmatically

You expand a node by clicking its “open” handle in the UI (the small triangle shown in the left window in Figure 7.8). Explorer Views (that are based on trees) have two methods that expand a node hierarchy: expandNode(Node node) and expandAll(). Use the expandAll() method only when you know the size of the node hierarchy. To have the node hierarchy expand the gender nodes at startup, add the code in Listing 7.10 to the end of the GenderTopComponent constructor.

Listing 7.10 Expand the Gender Nodes

Click here to view code image

 public GenderTopComponent() {
 . . .
 // expand the second level of nodes
 for (Node node : em.getRootContext().getChildren().getNodes()) {
 view.expandNode(node);
 }
 }

Here we access the gender nodes through the Explorer Manager’s root context and expand them using the Explorer View.

Using BeanNode

Selection and Editing
Selection is not a typical user experience case for displaying business objects in an editor. A better approach opens an editor with a context-sensitive menu item. In this section, we’ll eliminate the PersonEditor module from our application and make changes to the business objects with property editors. In Chapter 9, we’ll show you how to implement Open or Edit actions with editors.

NetBeans Platform applications include a Properties window that you can open from the main menu with Window | IDE Tools | Properties. Because this window is hooked into the Global Selection, each selection appears in the Properties window when you select different nodes in the Gender window. The Properties window displays the node (using its display name) and its tooltip, if present. The Properties window also displays the node’s properties in a default property sheet editor. As you can see from Figure 7.9, there are no properties to display when you select different nodes in the Gender window.

[image:]

Figure 7.9 Including the Properties window

When PersonNode extends BeanNode rather than AbstractNode, a Person’s properties appear in the Properties window. Furthermore, all writable properties can be modified in the BeanNode’s default property sheet. Let’s remove the PersonEditor module (aren’t modules convenient?) and use a Properties window to update Person objects. We’ll open the Properties window when the program starts and move the Gender window into the vacated editor position. The changes are quite straightforward.

1. Remove module PersonEditor from the FamilyTreeApp application. Select the Modules node, right click, and choose Remove from the context menu.

2. In GenderTopComponent.java, change the @TopComponent.Registration annotation to window position (mode) “editor.” (Removing the PersonEditor module vacated the editor position, so we’ll put the GenderTopComponent into this central position.)

3. Include code to open the Properties window at startup.

These changes are shown in Listing 7.11.

Listing 7.11 GenderTopComponent Changes

Click here to view code image

@TopComponent.Registration(mode = "editor", openAtStartup = true)

. . . unchanged code omitted . . .

public final class GenderTopComponent extends TopComponent
 implements ExplorerManager.Provider {

private final ExplorerManager em = new ExplorerManager();

 public GenderTopComponent() {
 initComponents();
 setName(Bundle.CTL_GenderTopComponent());
 setToolTipText(Bundle.HINT_GenderTopComponent());
 BeanTreeView view = new BeanTreeView();
 add(view, BorderLayout.CENTER);
 associateLookup(ExplorerUtils.createLookup(em, this.getActionMap()));
 em.setRootContext(new RootNode());
 // expand the second level of nodes
 for (Node node : em.getRootContext().getChildren().getNodes()) {
 view.expandNode(node);
 }
 // open the Properties window by default
 TopComponent tc = WindowManager.getDefault()
 .findTopComponent("properties");
 if (tc != null) {
 tc.open();
 }
 }
. . .
}

Listing 7.12 shows the modified PersonNode. Note that we supply the Person object to the BeanNode constructor and add a throws clause to the PersonNode constructor. BeanNode uses introspection to determine the wrapped object’s properties and automatically generates property support for each property in your object.

We also modify the PersonNode property change listener to update the FamilyTreeManager when the user updates a Person using the Properties window. The listening PersonChildFactory’s event handler will update the node hierarchy as before.

Listing 7.12 PersonNode Extending BeanNode

Click here to view code image

@NbBundle.Messages({
 "HINT_PersonNode=Person"
})
public class PersonNode extends BeanNode<Person> implements
 PropertyChangeListener {

 public PersonNode(Person person) throws IntrospectionException {
 super(person, Children.LEAF, Lookups.singleton(person));
 setIconBaseWithExtension(
 "com/asgteach/familytree/genderviewer/resources/personIcon.png");
 setName(String.valueOf(person.getId()));
 setDisplayName(person.toString());
 setShortDescription(Bundle.HINT_PersonNode());
 }
 . . . unchanged code omitted . . .
 private final PropertyChangeListener propListener =
 (PropertyChangeEvent evt) -> {
 Person person = (Person) evt.getSource();
 FamilyTreeManager ftm = Lookup.getDefault().lookup(
 FamilyTreeManager.class);
 if (ftm == null) {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager object");
 LifecycleManager.getDefault().exit();
 } else {
 ftm.updatePerson(person);
 fireDisplayNameChange(null, getDisplayName());
 }
 };
}

Extending BeanNode affects the ChildFactory code as well. Listing 7.13 shows the modified PersonChildFactory class. Because of the throws clause in the constructor, the createNodeForKey() method must now wrap the PersonNode instantiation code in a try / catch block.

Listing 7.13 PersonChildFactory with BeanNode Child

Click here to view code image

public class PersonChildFactory extends ChildFactory<Person> {
. . . unchanged code omitted . . .

 @Override
 protected Node createNodeForKey(Person key) {
 logger.log(Level.FINER, "createNodeForKey: {0}", key);
 PersonNode node = null;
 try {
 node = new PersonNode(key);
 key.addPropertyChangeListener(
 WeakListeners.propertyChange(node, key));
 } catch (IntrospectionException ex) {
 logger.log(Level.WARNING, "IntrospectionException: {0}", ex);
 }
 return node;
 }
}

Figure 7.10 shows the FamilyTreeApp running using BeanNode<Person> as the super class for PersonNode and the effect it has on the Properties window. Because of the property change listener, updates made in the Properties window are written to the FamilyTreeManager and reflected in the Gender node hierarchy in the left window.

[image:]

Figure 7.10 The default Properties window with BeanNode

BeanNode Tip
BeanNode is a good option when you want to experiment with a node’s property support, since it provides property support automatically. However, BeanNode has some overhead, since it builds the property support using introspection with each node you create. An alternative is to build your own property support, giving you much more control.

Creating Your Own Property Sheet

Now you can edit the selected Person and make changes to the wrapped Person object. However, the standard Properties window with BeanNode is not particularly user friendly. Properties appear in alphabetical order rather than grouped according to their use. When you want more control over the presentation of the Properties window, you can create your own property sheet.

What is a property sheet? A property sheet holds the properties (that you choose) from the node’s wrapped object. You put properties into property sets. Furthermore, you can designate one or more sets to appear under separate tabs. And you can designate certain properties as read only.

Figure 7.11 shows the FamilyTreeApp running. In the left window you see the node hierarchy arranged by gender. In the right window you see an editable Properties window. Two property sets appear. The first is under heading Names that includes Person properties firstname, middlename, lastname, and suffix. The second set appears under heading Additional Information and includes the gender and notes properties.

[image:]

Figure 7.11 Using a custom property sheet

The second tab (Id Info) includes a third property set with the read-only id property. This arrangement is a substantial improvement over the default BeanNode presentation.

To create a custom property sheet for a node’s wrapped object, override the createSheet() method and return a Sheet object. Inside this method, create a Sheet and divide your object’s properties into Sets. Create the sets, configure them with display names, and add them to the Sheet. Finally, create PropertySupport objects for each property you want included in the sets and add the support objects to the appropriate set. Listing 7.14 shows how we built the property sheet displayed in Figure 7.11. Note that with custom property sheets, PersonNode extends AbstractNode, not BeanNode.

Listing 7.14 Creating a Property Sheet

Click here to view code image

public class PersonNode extends AbstractNode implements
 PropertyChangeListener {
 private static final Logger logger = Logger.getLogger(
 PersonNode.class.getName());

 public PersonNode(Person person) {
 super(Children.LEAF, Lookups.singleton(person));
 setIconBaseWithExtension(
 "com/asgteach/familytree/genderviewer/resources/personIcon.png");
 setName(String.valueOf(person.getId()));
 setDisplayName(person.toString());
 setShortDescription(Bundle.HINT_PersonNode());
 }

. . . unchanged code omitted . . .

 @Override
 protected Sheet createSheet() {
 Sheet sheet = Sheet.createDefault();
 Person person = getLookup().lookup(Person.class);

// create a property set for the names (first, middle, last, suffix)
 Sheet.Set setNames = Sheet.createPropertiesSet();
 setNames.setDisplayName("Names");
 // create a property set for read-only id
 Sheet.Set readOnlySet = new Sheet.Set();
 readOnlySet.setDisplayName("Identification");
 // put it under its own tab
 readOnlySet.setValue("tabName", " Id Info ");

// create a property set for gender and notes
 Sheet.Set infoSet = new Sheet.Set();
 infoSet.setName("Additional Information");

sheet.put(setNames);
 sheet.put(infoSet);
 sheet.put(readOnlySet);

try {
 // create property support for the Names
 Property<String> firstnameProp = new PropertySupport
 .Reflection<String>(person, String.class, "firstname");
 Property<String> middlenameProp = new PropertySupport
 .Reflection<String>(person, String.class, "middlename");
 Property<String> lastnameProp = new PropertySupport
 .Reflection<String>(person, String.class, "lastname");
 Property<String> suffixProp = new PropertySupport
 .Reflection<String>(person, String.class, "suffix");

setNames.put(firstnameProp);
 setNames.put(middlenameProp);
 setNames.put(lastnameProp);
 setNames.put(suffixProp);

// create property support for gender and notes
 Property<Person.Gender> genderProp = new PropertySupport
 .Reflection<Person.Gender>(person, Person.Gender.class, "gender");
 Property<String> notesProp = new PropertySupport
 .Reflection<String>(person, String.class, "notes");

infoSet.put(genderProp);
 infoSet.put(notesProp);

// create read-only property support for id (the setter is null)
 Property<Long> idProp = new PropertySupport.Reflection<Long>(
 person, Long.class, "getId", null);
 readOnlySet.put(idProp);
 } catch (NoSuchMethodException ex) {
 ErrorManager.getDefault();
 }
 return sheet;
 }
}

Property support enables a Properties context menu item for that node and brings up a popup Properties window, as shown in Figure 7.12. (This Properties context menu item is available with BeanNode, too.)

[image:]

Figure 7.12 Node Properties popup window

Using FilterNode

FilterNode lets you filter a node hierarchy using an arbitrary criterion. You create a filtered node hierarchy by having a delegate node with perhaps specialized behavior and a criterion upon which the original hierarchy’s node is either included or not. In general, you implement the specialization by overriding methods that are also present in the original node. For example, if you’d like the filtered node to have a specialized display, then you can override either getDisplayName() or getHtmlDisplayName(), as we do in our example.

Note that when using FilterNode, you do not “replace” the original node or the original hierarchy. The original hierarchy remains intact and the filtered hierarchy affects which nodes are included.

For example, Figure 7.13 shows the Gender window with a filtered node hierarchy. You supply a search string in the provided text field followed by <Return> to display nodes with names that contain the search string (ignoring case). The filtered hierarchy uses italics in the display name instead of bold. To return to the “unfiltered” node hierarchy, you use an empty search String.

[image:]

Figure 7.13 Displaying a filtered node hierarchy

FilterNode is the “delegate” node. A special Children class extends FilterNode.Children to create the acceptance criterion. In our example we use a boolean accept() method that implements the decision logic. Let’s show you how to implement the filtered node hierarchy that appears in Figure 7.13.

Update the Design View

First, you update the TopComponent’s UI to include the text field control using these steps.

1. Bring up GenderTopComponent in the Design view. From the Swing Containers palette, select Panel and add it to the top of the design area. (The TopComponent should already use BorderLayout for its layout. Put the JPanel in BorderLayout.NORTH.)

2. Select the JPanel you just added in the Navigator window, right click, and change its layout to GridLayout.

3. From the Swing Controls palette, select TextField and add it to the JPanel component. The TextField will expand to the width of the Design view.

4. With the TextField selected, in the Properties window under the Code tab, change its Variable Name to filterText. Under the Properties tab, make its text property blank. Figure 7.14 shows the TopComponent Design and Navigator views.

[image:]

Figure 7.14 GenderTopComponent Design and Navigator views

5. Select the TextField in the Design view and double-click. This generates a Swing action event handler that is invoked when the user hits the <Return> key in the TextField. You’ll add the event handling code after creating the FilterNode classes.

With these Design view changes, you can run the program to test the new Gender window design, as shown in Figure 7.15. (The TextField doesn’t do anything yet.)

[image:]

Figure 7.15 Testing out the new Gender window UI

Create FilterNode Hierarchy Classes

With the Design view modifications made, let’s now create the classes we need to filter the Gender node hierarchy. We’ll start with PersonFilterNode, as shown in Listing 7.15.

Listing 7.15 PersonFilterNode

Click here to view code image

public class PersonFilterNode extends FilterNode {

public PersonFilterNode(Node original, String searchString) {
 super(original, new PersonFilterChildren(original, searchString));
 }

@Override
 public Node getOriginal() {
 return super.getOriginal();
 }

@Override
 public String getHtmlDisplayName() {
 Person person = getOriginal().getLookup().lookup(Person.class);
 if (person == null) {
 return null;
 }
 StringBuilder sb = new StringBuilder();
 switch (person.getGender()) {
 case MALE:
 sb.append("<i>| ");
 break;
 case FEMALE:
 sb.append("<i>* ");
 break;
 case UNKNOWN:
 sb.append("<i>? ");
 break;
 }
 sb.append(person.toString()).append("</i>");
 return sb.toString();
 }
}

PersonFilterNode is a proxy or delegate node for every node in the original hierarchy (including the original root node, the GenderNodes, and the selected PersonNodes). The constructor includes the original node. FilterNodes are configured so that the node methods of the original node are invoked, unless the FilterNode specifically overrides them. That’s how we can easily use a FilterNode to proxy all kinds of nodes.

PersonFilterNode overrides the getHtmlDisplayName() method to provide a special look for the filtered nodes. Note that getHtmlDisplayName() is invoked for the root node and each GenderNode. However, these nodes do not have a Person object in their Lookup, so getHtmlDisplayName() returns null and the original node’s getDisplayName() is used instead.

PersonFilterNode creates its children with PersonFilterChildren, as shown in Listing 7.16. This is where we store the search string (which we convert to lowercase in the event handler). The createNodes() method selects the nodes from the original hierarchy. Here, the boolean accept() method accepts the node if either it has no Person object in its Lookup or the Person object’s name contains the search string.

The copyNode() method builds the delegate node from the original one. The method is invoked as the filtered node hierarchy is built.

Listing 7.16 PersonFilterChildren

Click here to view code image

public class PersonFilterChildren extends FilterNode.Children {
 private final String searchString;

public PersonFilterChildren(Node original, String searchString) {
 super(original);
 this.searchString = searchString;
 }

@Override
 protected Node[] createNodes(Node key) {
 List<Node> result = new ArrayList<>();
 for (Node node : super.createNodes(key)) {
 if (accept(node)) {
 result.add(node);
 }
 }
 return result.toArray(new Node[0]);
 }

@Override
 protected Node copyNode(Node original) {
 return new PersonFilterNode(original, this.searchString);
 }

private boolean accept(Node node) {
 Person p = node.getLookup().lookup(Person.class);
 // make case insensitive
 return (p == null || p.toString().toLowerCase()
 .contains(searchString));
 }

}

Display a Filtered Node Hierarchy

Listing 7.17 shows the TextField’s event handler as well as other modifications made to GenderTopComponent. First, we add a tool tip to the TextField in the annotated @Messages list. We also elevate BeanTreeView to a class field so that it is accessible in the event handler.

The event handler either restores the root context to the original root (if the search string is empty), or it builds a filtered node hierarchy based on the search string (converted to lowercase). When you invoke setRootContext(), the gender nodes collapse, so we include code to expand them.

Listing 7.17 GenderTopComponent—Displaying a FilteredNode Hierarchy

Click here to view code image

@Messages({
 "CTL_GenderAction=Gender",
 "CTL_GenderTopComponent=Gender window",
 "HINT_GenderTopComponent=This is a Gender window",
 "HINT_FilterTextField=Provide a search string to filter names and hit
<RETURN>"
})
public final class GenderTopComponent extends TopComponent
 implements ExplorerManager.Provider {
 private final ExplorerManager em = new ExplorerManager();
 private final BeanTreeView view;

 public GenderTopComponent() {
 initComponents();
 filterText.setToolTipText(Bundle.HINT_FilterTextField());
 setName(Bundle.CTL_GenderTopComponent());
 setToolTipText(Bundle.HINT_GenderTopComponent());

 view = new BeanTreeView();
 add(view, BorderLayout.CENTER);
 associateLookup(ExplorerUtils.createLookup(em, this.getActionMap()));
 em.setRootContext(new RootNode());
 // expand the second level of nodes
 for (Node node : em.getRootContext().getChildren().getNodes()) {
 view.expandNode(node);
 }
 }

 private void filterTextActionPerformed(java.awt.event.ActionEvent evt) {
 Node root = em.getRootContext();
 Node newRoot;
 if (root instanceof PersonFilterNode) {
 root = ((PersonFilterNode) root).getOriginal();
 }
 if (filterText.getText().isEmpty()) {
 // use the original root
 newRoot = root;
 } else {
 // make case insensitive
 newRoot = new PersonFilterNode(root,
 filterText.getText().toLowerCase());
 }
 em.setRootContext(newRoot);
 for (Node node : em.getRootContext().getChildren().getNodes()) {
 view.expandNode(node);
 }
 }
}

7.3 Explorer Views

Explorer Views provide the View of a node hierarchy, as shown in Figure 7.1 on page 292. Explorer Views are not all inter-changeable, but they do all work with nodes. Explorer Views are useful for different presentation arrangements. The two most general Explorer Views are BeanTreeView (used in our TopComponent) and OutlineView. Both provide an expandable node tree structure. We briefly describe the Explorer Views in Table 7.1 and provide detailed examples of these in this section.

[image:]

TABLE 7.1 Explorer Views

Quick Search

Explorer Views have a built-in quick search feature. To see this, start typing in the window with an Explorer View, and a text field component will appear. The Explorer View selects the “next” node that matches the text you provide. Figure 7.16 shows this behavior. When you type the text “Bar” in a BeanTreeView, you see the Bart Simpson node is highlighted. In a master-detail window (see “Master-Detail View” on page 327), the quick search applies to whichever portion of the window has focus.

[image:]

Figure 7.16 Explorer View quick search feature

BeanTreeView

BeanTreeView displays the node hierarchy as a tree of all the nodes. This is the Explorer View we’ve used in our examples and is perhaps the most widely-used Explorer View. BeanTreeView uses a triangle icon pointed right to indicate an unexpanded node and pointed down to indicate an expanded (or opened) node. The default action (activated with double click) for a non-leaf node is to toggle between its expanded and unexpanded states.

OutlineView

OutlineView is a powerful Explorer View that displays a node hierarchy in table form. The default configuration is similar to BeanTreeView. In our example, you see what’s shown in Figure 7.17, with a single column (with heading “People”). Listing 7.18 shows the code to create this view in the GenderTopComponent.

[image:]

Figure 7.17 OutlineView with customized heading

Listing 7.18 OutlineView Explorer View

Click here to view code image

public final class GenderTopComponent extends TopComponent
 implements ExplorerManager.Provider {
 private final ExplorerManager em = new ExplorerManager();

 public GenderTopComponent() {
 initComponents();
 setName(Bundle.CTL_GenderTopComponent());
 setToolTipText(Bundle.HINT_GenderTopComponent());
 OutlineView view = new OutlineView("People");
 add(view, BorderLayout.CENTER);
 associateLookup(ExplorerUtils.createLookup(em, this.getActionMap()));
 em.setRootContext(new RootNode());
 }
. . . unchanged code omitted . . .

OutlineView’s columns are sortable (a click on the column header toggles between ascending / descending sort order). In our example, the default sorting behavior is to sort each Gender node, and within the Gender category, sort its children using the display name. Figure 7.18 shows the node hierarchy sorted in descending order.

[image:]

Figure 7.18 OutlineView with hierarchy sorted in descending order

With OutlineView, you can configure additional columns from a node’s wrapped object’s properties, as shown in Figure 7.19. When you configure OutlineView’s columns, you must provide property support for the properties that you use. You can use either BeanNode or your own property sheet with AbstractNode (see Listing 7.14 on page 315) as we have done here. Listing 7.19 shows the code to create columns Gender and Notes.

[image:]

Figure 7.19 Using OutlineView’s column feature

Listing 7.19 OutlineView Property Columns

Click here to view code image

 public GenderTopComponent() {
 initComponents();
 setName(Bundle.CTL_GenderTopComponent());
 setToolTipText(Bundle.HINT_GenderTopComponent());
 OutlineView view = new OutlineView("People");
 view.setPropertyColumns(
 "gender", "Gender",
 "notes", "Notes"
);
 add(view, BorderLayout.CENTER);
 associateLookup(ExplorerUtils.createLookup(em, this.getActionMap()));
 em.setRootContext(new RootNode());

. . . unchanged code omitted . . .
 }

Master-Detail View

You can easily implement a master-detail view using Explorer Views ContextTreeView for the master and ListView for the detail, as shown in Figure 7.20. These Explorer Views are designed to work together. Listing 7.20 shows you how to use these views when you add them to the same TopComponent. Both Explorer Views search the component tree to find the Entity Manager and hook into the node hierarchy. The master view displays the Gender nodes (which do not expand). When the user selects one of the “master” nodes, its children appear in the bottom area. As before, we open the Properties window so the user can edit a selected Person node.

[image:]

Figure 7.20 Creating a master-detail view

Listing 7.20 Providing a Master-Detail View

Click here to view code image

 public GenderTopComponent() {
 initComponents();
 setName(Bundle.CTL_GenderTopComponent());
 setToolTipText(Bundle.HINT_GenderTopComponent());
 ContextTreeView view = new ContextTreeView();
 ListView list = new ListView();
 add(view, BorderLayout.CENTER);
 add(list, BorderLayout.SOUTH);
 associateLookup(ExplorerUtils.createLookup(em, this.getActionMap()));
 em.setRootContext(new RootNode());
 // open the Properties window by default
 TopComponent tc = WindowManager.getDefault()
 .findTopComponent("properties");
 if (tc != null) {
 tc.open();
 }
 }

Master-Detail View with IconView

Instead of using ListView for the detail, you can also use IconView. This view displays node children in a grid-like layout similar to a Windows Explorer icon listing. Figure 7.21 shows the view when the user selects the root People node (left) and then when the Gender node Female is selected (right). Listing 7.21 shows the code that creates an IconView for the detail view in a master-detail window. Note that IconView uses a node’s 32 x 32 icon file, if available (as shown in Figure 7.21).

[image:]

Figure 7.21 Creating a master-detail view with IconView instead of ListView

Listing 7.21 Using IconView in a Master-Detail Window

Click here to view code image

 public GenderTopComponent() {
 initComponents();
 setName(Bundle.CTL_GenderTopComponent());
 setToolTipText(Bundle.HINT_GenderTopComponent());
 ContextTreeView view = new ContextTreeView();
 IconView icon = new IconView();
 add(view, BorderLayout.CENTER);
 add(icon, BorderLayout.SOUTH);
 associateLookup(ExplorerUtils.createLookup(em, this.getActionMap()));
 em.setRootContext(new RootNode());
 }

Master-Detail View with MenuView

An alternative to ContextTreeView in a master view window is MenuView, which provides two buttons to navigate your node hierarchy, as shown in Figure 7.22. The first button is “Browse from root” and provides a context selection mechanism for child nodes. Once a child node is selected, a second button, “Browse from current point,” is enabled. (In our node hierarchy, the current point is a child node, so it will be empty.) Listing 7.22 shows the code to create a master-detail window with MenuView.

[image:]

Figure 7.22 Creating a master-detail view with MenuView (top) and ListView

Listing 7.22 Using MenuView in a Master-Detail Window

Click here to view code image

public GenderTopComponent() {
 initComponents();
 setName(Bundle.CTL_GenderTopComponent());
 setToolTipText(Bundle.HINT_GenderTopComponent());

 MenuView menu = new MenuView();
 ListView list = new ListView();
 add(menu, BorderLayout.CENTER);
 add(list, BorderLayout.SOUTH);
 associateLookup(ExplorerUtils.createLookup(em, this.getActionMap()));
 em.setRootContext(new RootNode());
 }

Master-Detail View with ChoiceView

Finally, let’s show you ChoiceView in a master-detail window for the detail view, as shown in Figure 7.23. ChoiceView provides a ComboBox with the children nodes of the selected Gender node in the master view. We provide ContextTreeView for the master view here. Listing 7.23 shows the code to create a master-detail window with ChoiceView.

[image:]

Figure 7.23 Creating a master-detail view with ChoiceView

Listing 7.23 Using ChoiceView with a Master-Detail Window

Click here to view code image

public GenderTopComponent() {
 initComponents();
 setName(Bundle.CTL_GenderTopComponent());
 setToolTipText(Bundle.HINT_GenderTopComponent());

 ContextTreeView view = new ContextTreeView();
 ChoiceView choice = new ChoiceView();
 add(view, BorderLayout.CENTER);
 add(choice, BorderLayout.EAST);
 associateLookup(ExplorerUtils.createLookup(em, this.getActionMap()));
 em.setRootContext(new RootNode());
 }

PropertySheetView

PropertySheetView is not really an Explorer View, but a view for presenting a node’s properties. Like the built-in Properties window, PropertySheetView displays the selected node’s properties when defined. Figure 7.24 shows a single window with a node hierarchy displayed with BeanTreeView (in BorderLayout.WEST). We define a PropertySheetView in BorderLayout.CENTER. You can use either BeanNode for your node’s superclass or specify your own property sheet as shown earlier (see “Creating Your Own Property Sheet” on page 314). Listing 7.24 shows the code to display the selected node’s properties with PropertySheetView. The GenderTopComponent window is in the “editor” position, which makes it easier to view the PropertySheetView at startup.

[image:]

Figure 7.24 Using PropertySheetView to provide property editing

Listing 7.24 Using PropertySheetView

Click here to view code image

public GenderTopComponent() {
 initComponents();
 setName(Bundle.CTL_GenderTopComponent());
 setToolTipText(Bundle.HINT_GenderTopComponent());

 BeanTreeView view = new BeanTreeView();
 PropertySheetView propView = new PropertySheetView();
 add(view, BorderLayout.WEST);
 add(propView, BorderLayout.CENTER);
 associateLookup(ExplorerUtils.createLookup(em, this.getActionMap()));
 em.setRootContext(new RootNode());
 for (Node node : em.getRootContext().getChildren().getNodes()) {
 view.expandNode(node);
 }
 }

7.4 Creating a Selection History Feature

Let’s pull together the concepts we’ve covered in this chapter and build a version of the FamilyTreeApp shown running in Figure 7.25. In this version, we’ll make all the PersonNode properties read only except the notes property. We configure the Properties window for edits and use OutlineView as our Explorer View with a column defined for the notes property.

[image:]

Figure 7.25 FamilyTreeApp with new SelectionHistory window

The FamilyTreeApp also includes a new Selection History window that is updated when the user makes a selection (and changes the Global Selection Lookup). This lets you maintain a history of the selected nodes. Furthermore, we display the user’s current selection in the application status line, where it remains for just a second or two before being cleared. The new window is implemented in its own module, so that it can be added or removed. In addition, if you configure the Plugin Manager for your application, users of your application can dynamically uninstall or re-install this module (see “Application Updates” on page 857 for instructions on how to configure the Plugin Manager, as well as how to dynamically install modules).

Modify PersonNode PropertySheet

We’ll begin with the version of FamilyTreeApp used with the OutlineView (see “OutlineView” on page 324). We’ll modify the PersonNode custom property sheet so that its properties are read only, except for the notes property.

1. In project GenderViewer, bring up PersonNode.java in the Java Editor.

2. Modify the createSheet() method for read-only PropertySupport, as shown in Listing 7.25. Note that you can create read-only PropertySupport using PropertySupport.Reflection and make the setter null, or you can use PropertySupport.ReadOnly as shown in Listing 7.25.

Listing 7.25 Modified PersonNode createSheet() Method

Click here to view code image

@Override
 protected Sheet createSheet() {
 Sheet sheet = Sheet.createDefault();
 Person person = getLookup().lookup(Person.class);

// create a property set for the names (first, middle, last, suffix)
 Sheet.Set setNames = Sheet.createPropertiesSet();
 setNames.setDisplayName("Names");

// create a property set read-only id
 Sheet.Set readOnlySet = new Sheet.Set();
 readOnlySet.setDisplayName("Identification");
 // put it under its own tab
 readOnlySet.setValue("tabName", " Id Info ");

// create a property set for gender and notes
 Sheet.Set infoSet = new Sheet.Set();
 infoSet.setName("Additional Information");
 sheet.put(setNames);
 sheet.put(infoSet);
 sheet.put(readOnlySet);

 try {
 // create read-only property support for the Names
 Property<String> firstnameProp = new PropertySupport
 .ReadOnly<String>(
 "firstname", // Name of the property
 String.class, // Type of property value
 "first name", // Display name
 "The person's first name") { // Description
 @Override
 public String getValue() throws IllegalAccessException,
 InvocationTargetException {
 return person.getFirstname();
 }
 };

 // make similar changes to property support for
 // middlenameProp
 // lastnameProp
 // suffixProp
 setNames.put(firstnameProp);
 setNames.put(middlenameProp);
 setNames.put(lastnameProp);
 setNames.put(suffixProp);

 // create read only property support for gender
 Property<Person.Gender> genderProp = new PropertySupport
 .ReadOnly<Person.Gender>(
 "gender",
 Person.Gender.class,
 "gender",
 "The person's gender") {
 @Override
 public Person.Gender getValue() throws
 IllegalAccessException, InvocationTargetException {
 return person.getGender();
 }
 };

// use read-write property support for notes (unchanged)
 Property<String> notesProp = new PropertySupport
 .Reflection<String>(person, String.class, "notes");

infoSet.put(genderProp);
 infoSet.put(notesProp);

// create read-only property support for id (the setter is null)
 Property<Long> idProp = new PropertySupport.Reflection<Long>(
 person, Long.class, "getId", null);
 readOnlySet.put(idProp);
 } catch (NoSuchMethodException ex) {
 ErrorManager.getDefault();
 }
 return sheet;
 }

Modify OutlineView in GenderTopComponent

Modify the GenderTopComponent constructor so that the OutlineView is configured for property column Notes, as shown in Listing 7.26.

Listing 7.26 Using OutlineView with Column Notes

Click here to view code image

public GenderTopComponent() {
 initComponents();
 setName(Bundle.CTL_GenderTopComponent());
 setToolTipText(Bundle.HINT_GenderTopComponent());

 OutlineView view = new OutlineView("People");
 view.setPropertyColumns(
 "notes", "Notes"
);
 add(view, BorderLayout.CENTER);
 associateLookup(ExplorerUtils.createLookup(em, this.getActionMap()));
 em.setRootContext(new RootNode());
 for (Node node : em.getRootContext().getChildren().getNodes()) {
 view.expandNode(node);
 }
 // open the Properties window by default
 TopComponent tc = WindowManager.getDefault()
 .findTopComponent("properties");
 if (tc != null) {
 tc.open();
 }
 }

Add Features to Your Application

Now we are ready to add a brand new feature to the application—a Selection History window that tracks a user’s selections. The concept is straightforward. By listening to the Global Selection Lookup, the new module displays a running list of the user’s selections. To do this, we’ll add a new module to the application.

Create Module SelectionHistory

Add a new module to implement the SelectionHistory window.

1. Select the Modules node in the FamilyTreeApp project, right-click, and select Add New . . . from the context menu. NetBeans displays the Name and Location dialog for the New Project wizard.

2. For Project Name, specify SelectionHistory and accept the defaults for the remaining fields. Click Next.

3. NetBeans displays the Basic Module Configuration dialog. Specify com.asgteach.familytree.selectionhistory for the Code Name Base and accept the defaults for the remaining fields. Click Finish. NetBeans creates project SelectionHistory in the FamilyTreeApp application.

4. Expand project SelectionHistory, right click on node Libraries, and select Add Module Dependency from the context menu.

5. Select the Nodes API from the list of modules and click OK.

Create and Configure SelectionHistoryTopComponent

The SelectionHistory module requires a TopComponent to display its content.

1. In the Projects view, expand project SelectionHistory Source node and right click on node com.asgteach.familytree.selectionhistory. Select New | Window . . . from its context menu.

2. NetBeans displays the Basic Settings dialog of the New Window wizard. Select output in the Window Position drop down menu and check Open on Application Start. Click Next. (This will position the window below the editor position.)

3. NetBeans displays the Name, Icon and Location dialog. Specify SelectionHistory for Class Name Prefix, leave the Icon field blank, and accept the defaults for the remaining fields. Click Finish.

NetBeans creates the SelectionHistoryTopComponent class and brings it up in the Design view. Create a BorderLayout and add a TextArea component.

1. In the Design view, select the TopComponent in the Navigator window.

2. Right click and select Set Layout | BorderLayout in the context menu.

3. In the Swing Controls palette, select TextArea and add it to the center of the TopComponent Design view. This adds both a JScrollPane and a JTextArea.

4. Select the TextArea and in its Properties window under the Code tab, change property Variable Name to displayTextArea.

5. Switch to the Source view and add code to the TopComponent, as shown in Listing 7.27 and described here.

Add class field result to hold the result of Global Selection Lookup. In the componentOpened() method, request Lookup for objects of Node.class and add the TopComponent as a Lookup listener.

In the componentClosed() method, remove the TopComponent as a Lookup listener.

Implement the resultChanged() Lookup listener, which fires when a Node.class object is added to or removed from the Global Selection Lookup. We store the Lookup contents in nodes. If the list is non-empty, we write the display names to the TextArea component and the status line (using StatusDisplay.getDefault().setStatus()). Note that if the user selects multiple nodes, these are all included in the SelectionHistory Window.

This implementation listens for all node objects, including RootNode, GenderNode, and PersonNode. If you want to limit the selection history to Person objects, then listen for Person.class instead. Since PersonNode objects carry a Person object in their Lookup, the SelectionHistory Lookup listener fires when the user selects one or more of the Person nodes.

Listing 7.27 Listen for Changes to the Global Selection Lookup

Click here to view code image

public final class SelectionHistoryTopComponent extends TopComponent
 implements LookupListener {

 private Lookup.Result<Node> result;

. . . unchanged code omitted . . .

 @Override
 public void componentOpened() {
 result = Utilities.actionsGlobalContext().lookupResult(Node.class);
 result.addLookupListener(this);
 }

 @Override
 public void componentClosed() {
 result.removeLookupListener(this);
 }

 @Override
 public void resultChanged(LookupEvent le) {
 Collection<? extends Node> nodes = result.allInstances();
 // only get the selection if there is one
 // otherwise leave the selection unchanged!
 if (!nodes.isEmpty()) {
 StringBuilder status = new StringBuilder();
 StringBuilder sb = new StringBuilder("\n");
 for (Node node : nodes) {
 sb.append(" [").append(node.getDisplayName()).append("] ");
 status.append(" [").append(node.getDisplayName()).append("] ");
 }
 StatusDisplayer.getDefault().setStatusText(status.toString());
 displayTextArea.setText(sb.insert(0,
 displayTextArea.getText()).toString());
 }
 }
}

With this design, module SelectionHistory is not dependent on the FamilyTreeModel module or the GenderViewer module. Adding the SelectionHistory module also does not affect any of these modules (other than to consume space in the application’s window frame). Yet the SelectionHistory module adds a distinct functionality to our application. Similarly, removing this module does not affect the remaining modules. This illustrates one of the major advantages of a modular system. You can add and remove functionality to your application without modifying the rest of the system!

7.5 Key Point Summary

When you use Nodes, Explorer Views, and the Explorer Manager, the NetBeans Platform provides a flexible system for displaying your business data. Together, these components handle selection events and let users dynamically expand and collapse trees of hierarchical data. Here are the key points in this chapter.

• Nodes, Explorer Views, and the Explorer Manager can be understood in the context of a Model View Controller pattern. Nodes are the Model, Explorer Views are the View, and the Explorer Manager is the Controller.

• Nodes wrap business objects and create a hierarchical structure for display.

• Nodes have a Lookup and place their wrapped business object in the Lookup.

• AbstractNode provides a general-purpose implementation of the Node class.

• To build a node hierarchy, create a root node and a ChildFactory for the root node’s children. The ChildFactory is responsible for creating its Child nodes, which will also have a ChildFactory unless the node is a leaf node. Leaf nodes have the designation Children.Leaf for their child container.

• Nodes have names, display names, icons, and optional HTML display code.

• Nodes support the Java Event Model. NodeListener event handlers are invoked for events that change the node, such as children added, removed, or reordered and changes to the node’s name, display name, icon, or tooltip. PropertyChangeListener event handlers are invoked for changes to the node’s underlying property support objects.

• To display a node hierarchy in a TopComponent, implement ExplorerManager.Provider, instantiate an Explorer Manager and an Explorer View, and set the Explorer Manager’s root context to the root node of your node hierarchy.

• BeanNode is an alternate implementation of the Node class that provides property support for its wrapped business object. The property support is used by the standard NetBeans Platform Properties window, as well as the PropertySheetView component and OutlineView Explorer View.

• Alternatively, you can create your own property sheet, which provides property support for its wrapped business object. A custom property sheet is also compatible with the Properties window, PropertySheetView, and the OutlineView Explorer View.

• Use FilterNode to create an alternate display for a node hierarchy. The FilterNode acts as a delegate for the original node. Whether or not a node is selected for display is controlled by the FilterNode.Children implementation.

• All Explorer Views work with Nodes and offer different types of presentation. BeanTreeView and OutlineView are both tree-based components. Other options include ContextTreeView and ListView to implement a master-detail window.

• Explorer Views provide a Quick Search feature for selection that is enabled by typing text into the view’s window.

• Adding a feature to your application, such as a Selection History window, can be accomplished by creating a new module and adding it to your application. Because a NetBeans Platform application is modular, such added features frequently do not require existing modules to be modified.

8. NetBeans Platform Window System

A typical desktop application requires top-level containers that are managed by a window system. What do we mean when we use the term “window system”? First, a window system includes a window manager that responds to user actions such as dragging, undocking, selecting, or minimizing windows to manage work space. Secondly, a window system should include a persistence mechanism so users aren’t required to configure the application with each restart. Thirdly, a window system should provide a way to specify the window layout of an application and a way to group windows for common behavior. Finally, with a window system, you should be able to create multiple perspectives of an application so you can assign roles to different window configurations.

In this chapter you will explore the NetBeans Platform Window System. Significantly, the chapter includes many examples with various windows and operations on those windows. However, these windows, for the most part, lack any significant content.1 In this chapter, we are concerned with window management—opening, closing, window layouts, groupings, floating, maximizing, and resizing. After you have explored the window system itself, subsequent chapters build on examples presented earlier and show you how to manipulate window content.

1. The NetBeans Platform has a powerful selection mechanism in which the Window System participates. When users select a window, for example, objects in the selected window’s Lookup provide a global context for behaviors. We introduced Lookup and selection in “Lookup as an Object Repository” on page 225 and “Tracking Global Selection” on page 240. We further explore Lookup in “Actions and Lookup” on page 421.

What You Will Learn

• Understand the window framework.

• Explore TopComponent basics, persistence, and client properties.

• Create non-singleton TopComponents.

• Understand the window system life cycle extension points.

• Explore window system modes.

• Use window groups in your application.

• Customize your application’s window layout.

• Incorporate window layout roles in your application.

8.1 Window Framework Overview

Neither Swing nor JavaFX offers a framework with window management features. Developers can, of course, build a window management system themselves, but it takes a tremendous effort to create such a feature-rich system. The NetBeans Platform Window System provides this functionality. And, the window system is mostly configurable with Java annotations. Furthermore, you can specify many configuration parameters with the New Window wizard that NetBeans IDE provides.

Freed from having to provide such a sophisticated system (and re-inventing the wheel), developers can instead focus on building their business logic. In other words, they can concentrate on their domain issues and let the NetBeans Platform provide the window system.

We’ll begin with a quick tour of the NetBeans Platform Window System and some of its terminology before delving into how to leverage its many features.

Window Layout

Let’s use the NetBeans IDE itself to examine the framework’s window system. Figure 8.1 shows a typical window layout within the NetBeans IDE. The application framework includes a top-level menu bar and a toolbar, which are not part of the window system.

[image:]

Figure 8.1 The NetBeans IDE application frame layout

The remainder of the frame is the window layout. Here, a main editor-type window is surrounded by helper windows. In this example, the main editor window has three views with the Design view currently active. The Palette and Properties windows (on the right) help a user select components to configure or add to the GUI. The Navigator window (lower left) displays a hierarchical view of the design window’s components.

When you click the Source button and switch views to examine the source code, the Palette and Properties windows automatically close, leaving a larger work area for the Java source editor, as shown in Figure 8.2. The Palette and Properties windows form a window group with the Design view. That is, these three windows automatically open and close together. (Note that the Navigator window doesn’t close, but its contents change when the view is switched to Source.)

[image:]

Figure 8.2 Selecting the Source view changes the window layout

On the left is the explorer area, currently containing three windows. The Projects window is visible and provides file-level information on each opened NetBeans project. You can make the other windows visible by clicking their tabs (Files and Services windows in Figure 8.2). All three windows occupy the same area (mode).

The Output and Tasks windows appear below the editor. Finally, a single status line (which is not a window) occupies the very bottom edge of the application.

Figure 8.3 shows a detailed view of the editor window, which currently contains a Java source file with the Design view active (a GUI form editor). MultiView buttons let a user select among multiple views of the same file or other data.

[image:]

Figure 8.3 Detailed view of editor window

MultiView Windows
MultiView windows are used with editor windows, which we cover in Chapter 14 (see “Working with MultiView Windows” on page 697).

Window tabs let a user select different windows in the same area (mode). Window selection controls in the editor area let the user cycle through window tabs when all the window tabs are not visible. The Design view controls are specific to the GUI form editors.

Window Modes

The location and behavior of an application’s window is defined by its window position, or mode, a container for windows. The NetBeans Platform Window System defines standard modes that you can use in your applications. Figure 8.4 shows these standard modes and their relative placement.

[image:]

Figure 8.4 Window system default modes

There are three types of window modes: editor (typically for holding documents), view, and sliding. The editor mode is the default and provides specialized behaviors, such as window selection controls shown in Figure 8.3. By default, the editor mode always takes up at least part of the window frame. Editor mode windows cannot be minimized. The sliding modes are containers for holding minimized windows. The view modes hold helper windows and are generally placed around the main editor mode window.

The window system configures the standard (non-sliding) modes with XML configuration files. You can create your own modes or modify standard modes using these configuration files. We show you how to do this in “Window Layout” on page 387.

TopComponents

The NetBeans Platform Window System manages windows that extend the TopComponent class. TopComponent, in turn, extends JComponent (a Swing-based container). With TopComponent, all application windows automatically integrate into the window system. That is, they are managed by the NetBeans Platform Window Manager and support a rich set of window operations.

Window Operations

Docking, floating, sliding, moving, opening, and closing are some of the many window operations the NetBeans Platform Window System provides. With drag and drop, you can move windows around and customize a window layout. Click the mouse on the window’s tab and drag it to a new location. Figure 8.5 and Figure 8.6 show a before and after window layout in a sample application. Here, we move the Explorer window to the same location as the Properties window.

[image:]

Figure 8.5 Before: Explorer window, Person window, and Properties window

The reconfiguration is automatically saved between application restarts during development unless you perform a clean and rebuild of your application.

[image:]

Figure 8.6 After: Person window with Explorer window and Properties window sharing the same mode

A right click inside a window’s tab displays a context menu for additional window operations. You can also access the context menu through the top-level menu Window | Configure Window. Here are the available options. Note that the exact end result of a window operation would depend on the application’s current window layout.

• Float detaches a window from the main window frame. This lets you move a window around independently of the application. You can float a single window or a window group. Once you float a window, you can then dock (reattach), resize, maximize, move, or close the window. Float is particularly useful when using multiple monitors. Figure 8.7 shows a floating Explorer window detached from the main window frame.

[image:]

Figure 8.7 Floating a window

• Minimize hides a window or window group, creating a tab (or handle) at the nearest edge. This puts the window into one of the sliding modes at the edge of the application frame. You cannot minimize an editor window. With minimize, you can subsequently view a window by hovering over this tab. You can restore the window or window group by docking it or clicking the restore all button in the sidebar, which restores all windows in that group. Figure 8.8 shows two minimized windows, Explorer window and Properties window. The Explorer window is temporarily viewable by hovering the mouse over its tab.

[image:]

Figure 8.8 Viewing a minimized window

• Dock reattaches a floating window or window group. It also restores a minimized window.

• Maximize is a toggle. If the window is docked, maximize enlarges the window so it takes up the entire application window frame. The other windows are then minimized along the nearest sides, but the status bar remains visible. If a window is floating, maximize enlarges the window so that it takes up the entire monitor space (except for the top-level menu bar). When deselected, maximize restores the window to its previous size. To restore a floating maximized window to its docked size, re-dock the window.

You can also double click a window’s tab to toggle the maximize operation.

• Close removes a window or window group from the window frame. Depending on the application, you may be prompted to save any unsaved data before the window closes. Again (if the window is configured with an open menu item), you can reopen a closed window by selecting Window in the top-level menu and selecting the window’s name.

• Size Group lets you view the current dimensions of the selected window group.

Documents are TopComponents in the editor mode. Here are several window actions that apply exclusively to documents.

• Clone duplicates a window and its contents for viewing. That is, whatever changes you make to one copy are duplicated in the second copy. Only one copy of a document is persisted. You can make a window cloneable by extending CloneableTopComponent instead of TopComponent.

• New Document Tab Group creates a separate area or mode for the selected document or documents. This action can be applied when a document window contains at least two tabbed windows.

• Collapse Document Tab Group combines two or more documents into a single tabbed document area.

From the top level menu, Window | Reset Windows returns the window configuration to its default settings.

Limiting the Window System’s Behavior

You can limit the window system’s behavior in your application through Branding Customization, as follows.

1. Select your NetBeans Platform application node in the Projects window, right click, and select Branding

2. When the Branding dialog appears, select the Window System tab.

3. By default, all behaviors are selected. De-select any standard behaviors that you want to remove and click OK, as shown in Figure 8.9.

[image:]

Figure 8.9 Limiting the window system’s behavior

You can also limit the behavior for any individual window (TopComponent) by selecting specific limitations during the New Window wizard, as shown in Figure 8.14 on page 354, or via client properties in the TopComponent constructor. See “TopComponent Client Properties” on page 363 for option details.

Window Switching

At most one window is active (has focus) in a NetBeans Platform application. You can use the key stroke combination CTRL-TAB to cycle through all open windows to select a different open window, including non-document windows, as shown in Figure 8.10

[image:]

Figure 8.10 Switching active window with CTRL-TAB

Window Tab Customization

You can configure editor tab placement in the Tools/Options (Windows) or NetBeans Preferences dialog (Mac OS X) under Miscellaneous/Windows, as shown in Figure 8.11. Select the desired Tabs placement radio button and/or the Multi-row tabs checkbox. (Note that the multi-row option doesn’t provide multi-row behavior in the Mac OSX environment.)

[image:]

Figure 8.11 Configuring tab placement and multi-row tabs

Window Manager

The NetBeans Platform Window System includes a window manager that keeps track of an application’s windows, modes, window groups, and roles. Providing your own window manager is possible, but most application developers use the standard window manager.

Table 8.1 lists several useful methods for finding modes, TopComponents, TopComponentGroups, and opened TopComponents. We’ll show examples using some of these methods later in the chapter.

[image:]

TABLE 8.1 Window Manager Useful Methods

8.2 TopComponent Basics

Let’s begin our exploration of the NetBeans Platform Window System with its most basic unit—the TopComponent. Each window that you see in Figure 8.1 on page 343 is a TopComponent. Indeed, any window in your application will be a TopComponent (except for Dialogs and Wizard visual panels). At its most basic form, a TopComponent is straightforward to create and easy to use because most of the work of managing it is handled by the NetBeans Platform Window Manager.

Build the Example
To build the example for this and several other sections, create a new NetBeans Platform application called WindowSystemApp. Then create a new NetBeans module called PersonEditor, as shown in Figure 8.12.
[image:]
Figure 8.12 WindowSystemApp example application and PersonEditor module

Use the New Window wizard to create a TopComponent using the following steps.

1. Select the target module’s source code package (com.asgteach.personeditor in our example), right click, and select New | Other.

2. The New File wizard displays the Choose File Type dialog. Under Categories select Module Development and under File Type select Window. Select Next, as shown in Figure 8.13.

[image:]

Figure 8.13 Create a new TopComponent with the New Window wizard

The New Window wizard next requires details on the basic characteristics of your window. The Window Position refers to its mode; choose from the available modes in the drop down selection. The Redefine button lets you create new modes and customize a layout design. We’ll examine modes and layout design later in the chapter.

The remaining options let you specify your window’s behaviors. You can choose to disable any number of these standard features, such as whether the window can be maximized, whether sliding is allowed, and other behaviors listed in the dialog. We discuss these features in more detail in “TopComponent Client Properties” on page 363.

3. For the Window Position, select mode editor. When you select editor, the options that refer to sliding are disabled, since editor mode windows cannot slide (be minimized).

4. For the remaining options, leave all of them unchecked except Open on Application Start, which should be checked, as shown in Figure 8.14. Click Next.

[image:]

Figure 8.14 Specify a TopComponent’s basic settings

5. The New Window wizard displays the Name, Icon and Location dialog. Specify Person for Name. For Icon, optionally provide a suitable 16 x 16 GIF or PNG graphic. Make sure that Project is PersonEditor and Package is com.asgteach.personeditor. Click Finish, as shown in Figure 8.15.

[image:]

Figure 8.15 Name your TopComponent and optionally provide an icon

TopComponent Tip
You aren’t restricted to a 16 x 16 graphic for the icon, but larger formats don’t fit the size constraints of the component tab and menu item as well. Use file personIcon.png found in the download bundle for this book.

When the wizard completes, a new GUI component file PersonTopComponent.java appears in the project window of your module. This file opens in the Form Design editor.

Run the WindowSystemApp now and you’ll see an application with a single window called Person window (with an icon on the tab), as shown in Figure 8.16. Open the top-level Window menu and you’ll see the Person window (with its icon) included in the list of windows you can open.

[image:]

Figure 8.16 WindowSystemApp running showing PersonTopComponent window

Note that if you select Person from the Window menu now, nothing happens, since the Person window is already opened. By default, the New Window wizard creates a TopComponent singleton; that is, at most one window of that type will exist at any given time.

Close the Person window. Now select Person from the Window menu and you’ll see that the Person window reopens in the window frame.

TopComponent Java Code

Return to PersonTopComponent.java and open the code in the Source view (select button Source at the top of the Java editor). Listing 8.1 shows the first part of the Java source created for this TopComponent, which includes the annotations that configure the window. Note that this is the default code generated by the New Window wizard. We describe these annotations in detail below.

TopComponent Tip
The New Window wizard creates a singleton TopComponent and the annotations assume a singleton TopComponent. To create a non-singleton TopComponent, see “Creating Non-Singleton TopComponents” on page 364.

Listing 8.1 PersonTopComonent.java—Part I (Annotations)

Click here to view code image

import org.netbeans.api.settings.ConvertAsProperties;
import org.openide.awt.ActionID;
import org.openide.awt.ActionReference;
import org.openide.util.NbBundle.Messages;
import org.openide.windows.TopComponent;
@ConvertAsProperties(dtd = "-//com.asgteach.personeditor//Person//EN",
autostore = false)
@TopComponent.Description(preferredID = "PersonTopComponent",
iconBase = "com/asgteach/personeditor/personIcon.png",
persistenceType = TopComponent.PERSISTENCE_ALWAYS)
@TopComponent.Registration(mode = "editor", openAtStartup = true)
@ActionID(category = "Window",
 id = "com.asgteach.personeditor.PersonTopComponent")
@ActionReference(path = "Menu/Window", position = 333)
@TopComponent.OpenActionRegistration(displayName = "#CTL_PersonAction",
preferredID = "PersonTopComponent")
@Messages({
 "CTL_PersonAction=Person",
 "CTL_PersonTopComponent=Person Window",
 "HINT_PersonTopComponent=This is a Person window"
})
public final class PersonTopComponent extends TopComponent {

. . . class code, see Listing 8.2 . . .

}

The annotations provided by the New Window wizard configure the window. This includes specifying its persistence, assigning the window to a mode, providing an ID, and creating and registering an action to open the window. This configuration assumes that the TopComponent is a singleton.

@ConvertAsProperties

The ConvertAsProperties annotation specifies that a TopComponent supports persisting TopComponent settings. Element dtd identifies a Document Type Definition (DTD) and must be a unique namespace. (You don’t need to define the DTD.) With this annotation, you provide code for the readProperties() and writeProperties() methods (the New Window wizard generates these methods). Use the read/write methods to persist customized settings associated with this TopComponent. You should persist the information you need to properly reconstruct your component on a restart. “TopComponent Persistence” on page 361 includes a TopComponent persistence example.

The window manager invokes writeProperties() when the application shuts down and readProperties() when the application restarts.

When using ConvertAsProperties, be sure to set TopComponent.Description element persistenceType to TopComponent.PERSISTENCE_ALWAYS or TopComponent.PERSISTENCE_ONLY_OPENED, discussed next.

@TopComponent.Description

The TopComponent.Description annotation includes required element preferredID and optional elements iconBase and persistenceType. Within the window manager, you can find or identify a TopComponent using its preferredID. Element preferredID (String) sets the TopComponent’s ID. Element iconBase (String) provides the pathname for a TopComponent’s icon. This graphic should be a 16 by 16 PNG or GIF file. Element persistenceType (int) specifies the TopComponent’s persistence behavior.

If you always want persistence across restarts—even if the window is never opened—use TopComponent.PERSISTENCE_ALWAYS. This is the default setting and should only be used for singleton TopComponents. If you do not want any persistence, use TopComponent.PERSISTENCE_NEVER. With this setting, you should delete the annotation @ConvertAsProperties and methods readProperties() and writeProperties() . Finally, use TopComponent.PERSISTENCE_ONLY_OPENED to persist TopComponent settings across restarts when the window is open. A TopComponent should not change its persistence setting dynamically.

@TopComponent.Registration

The TopComponent.Registration annotation registers the TopComponent into one of the existing window modes with elements mode (String) and openAtStartup (boolean). Optional element position (int) specifies the relative position of a window within a mode. That is, if more than one TopComponent opens in the same mode, use element position to control the window placement within the mode. A lower position value places the window on the left. Element roles (String[]) provides a comma separated list of roles. “Window Layout Roles” on page 401 includes an example with window layout roles.

@ActionID

Annotations ActionID and ActionReference are not specific to TopComponents but are annotations that let you define actions within your application. In this case, the action defined is opening the window. Annotation TopComponent.OpenActionRegistration also relates to the action of opening the window. If you don’t want your window opened via the top-level menu bar, remove these annotations from your TopComponent Java code.

Annotation ActionID requires element category (“Window”) and id, which should be unique within the category.

@ActionReference

The ActionReference annotation assigns an action identified by @ActionID using element path and optional element position. Element path is set to "Menu/Window" by the New Window wizard, meaning the Window menu of the top-level menu bar. Other possibilities are "Toolbar/Edit" or "Shortcuts" with name="key_sequence" to specify a keyboard shortcut (for example). Element position refers to the placement of the menu item in the specified window or toolbar. You can also specify menu item separators with optional elements separatorBefore and separatorAfter.

@TopComponent.OpenActionRegistration

Annotation TopComponent.OpenActionRegistration is used along with @ActionID and @TopComponent.Description to create an action that opens a window. Required element displayName is the displayed action name (the menu item), and optional element preferredID should match element preferredID in @TopComponent.Description.

@Messages

Use the Messages annotation when you have text to display to a user. This ensures that your application can be easily internationalized and localized. With TopComponent, @Messages are used for the menu item text, the window display name, and the tooltip text. You can customize these as needed.

TopComponent Tip
If you make configuration changes to your TopComponent, perform a Clean All and Build All before running your application, since the Build process generates component configuration files. This ensures that your component is correctly configured. Alternatively, from the Files window, delete the directory build/testuserdir/config in your application’s directory.

Listing 8.2 shows the rest of the generated Java code for a TopComponent, discussed below.

Listing 8.2 PersonTopComonent.java—Part II (TopComponent Java Code)

Click here to view code image

. . . annotations omitted, see Listing 8.1 . . .
public final class PersonTopComponent extends TopComponent {

public PersonTopComponent() {
 initComponents();
 setName(Bundle.CTL_PersonTopComponent());
 setToolTipText(Bundle.HINT_PersonTopComponent());
 }

private void initComponents() {
 . . . code omitted . . .
 }
 @Override
 public void componentOpened() {
 // TODO add custom code on component opening
 }

@Override
 public void componentClosed() {
 // TODO add custom code on component closing
 }

void writeProperties(java.util.Properties p) {
 // better to version settings since initial version as advocated at
 // http://wiki.apidesign.org/wiki/PropertyFiles
 p.setProperty("version", "1.0");
 // TODO store your settings
 }

void readProperties(java.util.Properties p) {
 String version = p.getProperty("version");
 // TODO read your settings according to their version
 }
}

Note that a TopComponent has a public default constructor, so that the system can create a TopComponent instance.

Method initComponents() is generated for any GUI component created with the Matisse design editor. This code cannot be edited in the Java editor, but you can configure components and provide other customization code using the GUI component palette and properties window.

Method componentOpened() and componentClosed() are two of the TopComponent life cycle methods. A common use for these is adding event listeners in componentOpened() and removing them in componentClosed(). Other life cycle methods are componentActivated(), componentDeactivated(), componentHidden(), and componentShowing(). We discuss these methods in detail in “Window System Life Cycle Management” on page 369.

Finally, methods readProperties() and writeProperties() persist your window’s settings according to its configured persistence type, discussed next.

Window Header Animated Notifications

A TopComponent’s window header (its tab) contains an optional icon and the window’s display name. You can display an animated notification that the window is currently busy (for example, window content is being loaded) with TopComponent method makeBusy(true). Use makeBusy(false) to turn off the animated notification. Figure 8.17 shows a TopComponent with an animated “wait” icon in its header.

[image:]

Figure 8.17 TopComponent animated notification appears in its window tab

8.3 TopComponent Persistence

Annotations control the persistence behavior of your TopComponent. For singleton TopComponents, define annotation @ConvertAsProperties and set the persistence type to either PERSISTENCE_ALWAYS or PERSISTENCE_ONLY_OPENED, as discussed in “@ConvertAsProperties” and “@TopComponent.Description” on page 357. With persistence, the NetBeans Platform saves your window configuration (its size, mode, and whether or not the window is opened). You can also persist additional String data specific to your TopComponent instance with methods writeProperties() and readProperties().

To demonstrate, let’s add a label and textfield to the PersonTopComponent and persist the textfield’s entered text. Whatever String a user enters in the textfield will now persist across restarts. Figure 8.18 shows the added JLabel and JTextField in the component’s Design view.

[image:]

Figure 8.18 PersonTopComponent Design view

The text of the JTextField (whose variable name is nameTextField) is persisted as property "name" and subsequently restored, as shown in Listing 8.3. The added code is shown in bold.

Listing 8.3 Methods writeProperties() and readProperties()

Click here to view code image

public final class PersonTopComponent extends TopComponent {

. . . omitted code . . .

 void writeProperties(java.util.Properties p) {
 // better to version settings since initial version as advocated at
 // http://wiki.apidesign.org/wiki/PropertyFiles
 p.setProperty("version", "1.0");
 p.setProperty("name", nameTextField.getText());
 }

 void readProperties(java.util.Properties p) {
 String version = p.getProperty("version");
 nameTextField.setText(p.getProperty("name"));
 }
}

Now on a restart, instead of being blank, the textfield will include the String entered previously by the user, as shown in Figure 8.19.

[image:]

Figure 8.19 PersonTopComponent Design view

TopComponent Tip
Note that methods writeProperties() and readProperties() manipulate a java.util.Properties stream. Each key and its corresponding value in the property list is a String.

Where does NetBeans store user data? NetBeans stores component data in the application’s user configuration file system in config/Windows2Local/Components. For our application, the window system creates XML file PersonTopComponent.settings. Listing 8.4 shows its contents for our example. Here, property "name" has value "Joe Smith".

Listing 8.4 PersonTopComponent.settings

Click here to view code image

<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE properties PUBLIC "-//com.asgteach.personeditor//Person//EN"
 "http://www.netbeans.org/dtds/properties-1_0.dtd">
<properties>
 <property name="version" value="1.0"/>
 <property name="name" value="Joe Smith"/>
</properties>

Windows2Local Folder

During development, configuration data is generated and stored in your project’s build directory under build/testuserdir/config. Therefore, the PersonTopComponent.settings file is located at Your_Application_Name/build/testuserdir/config/Windows2Local/Components. However, when you package your application for distribution, the location of this user directory depends on the underlying operating system and the distribution method. On a Mac OS X using a zip file distribution, the user directory is at User_Home_Directory/Library/Application Support/Your_Application_Name/dev/config. On a Windows system using a zip file distribution, the user directory can be found at User_Home_Directory/.Your_Application_Name/dev/config. We discuss branding and application distribution in more detail in Chapter 17.

8.4 TopComponent Client Properties

When you create a new window using the New Window wizard, you can select behavior limitations that apply to that window. This generates client property settings in the window’s TopComponent constructor, as shown in Listing 8.5. You can always edit the TopComponent constructor later and add or remove any client property settings.

Listing 8.5 TopComponent Client Property Settings

Click here to view code image

public final class LimitedTopComponent extends TopComponent {

public LimitedTopComponent() {
 initComponents();
 setName(Bundle.CTL_LimitedTopComponent());
 setToolTipText(Bundle.HINT_LimitedTopComponent());
 putClientProperty(TopComponent.PROP_CLOSING_DISABLED, Boolean.TRUE);
 putClientProperty(TopComponent.PROP_DRAGGING_DISABLED, Boolean.TRUE);
 putClientProperty(TopComponent.PROP_MAXIMIZATION_DISABLED,
 Boolean.TRUE);
 putClientProperty(TopComponent.PROP_SLIDING_DISABLED, Boolean.TRUE);
 putClientProperty(TopComponent.PROP_UNDOCKING_DISABLED, Boolean.TRUE);
 putClientProperty(TopComponent.PROP_KEEP_PREFERRED_SIZE_WHEN_SLIDED_IN,
 Boolean.TRUE);

}
 . . . omitted code . . .
}

Table 8.2 describe these configurable TopComponent behaviors.

[image:]

TABLE 8.2 TopComponent Behaviors That Can Be Configured

8.5 Creating Non-Singleton TopComponents

By default, the New Window wizard creates a TopComponent singleton, and the annotations that the wizard generates assume a singleton TopComponent. However, it is quite common for an application to require non-singleton TopComponents.

A common use case for non-singleton TopComponents is some sort of editor window where a user opens a file or domain object for editing. In this case, a user typically selects the domain object (or file), right clicks, and chooses Open from a context menu. Or, a user may double click the domain object (or file) and have the selected object open in an editor.

However, to properly illustrate this use case, we’ll need several NetBeans Platform features we haven’t discussed yet, such as conditionally-enabled Actions. So for now, let’s show you how to create non-singleton windows with a simple example. (For a well-developed example of opening a domain object in an editor, see “Implementing Update” on page 488 in Chapter 10.)

Let’s continue with the WindowSystemApp example that contains PersonTopComponent in module PersonEditor. In the previous section, we created a singleton TopComponent.

Listing 8.6 shows the changes that create a non-singleton TopComponent. When you decide to create a non-singleton TopComponent, you must also select a persistence behavior. You have two choices.

1. Specify PERSISTENCE_NEVER in annotation @TopComponent.Description. In this case, remove annotation @ConvertAsProperties and methods writeProperties() and readProperties(). With this persistence type, your window settings will not be saved across restarts.

2. Specify PERSISTENCE_ONLY_OPENED in annotation @TopComponent.Description. With this setting, you retain annotation @ConvertAsProperties as well as methods writeProperties() and readProperties(). Only the windows that are open when the application shuts down will be saved and restored across restarts. This means that if a window is closed before application shutdown, the window will not appear in the next restart, even if it was previously persisted.

TopComponent Tip
Never specify PERSISTENCE_ALWAYS for non-singleton TopComponents. Otherwise, every instance of the TopComponent that is ever created will be persisted on shutdown, even if the associated domain object or file has been deleted. The saved windows accumulate over time, wasting disk space and slowing startup time.

In Listing 8.6 we specify PERSISTENCE_ONLY_OPENED and therefore retain annotation @ConvertAsProperties as well as methods writeProperties() and readProperties().

Listing 8.6 PersonTopComponent.java—Non-Singleton Window

Click here to view code image

@ConvertAsProperties(dtd = "-//com.asgteach.personeditor//Person//EN",
 autostore = false)
@TopComponent.Description(preferredID = "PersonTopComponent",
 iconBase = "com/asgteach/personeditor/personIcon.png",
persistenceType = TopComponent.PERSISTENCE_ONLY_OPENED)
@TopComponent.Registration(mode = "editor", openAtStartup = false)
@ActionID(category = "Window",
 id = "com.asgteach.personeditor.PersonTopComponent")
@ActionReference(path = "Menu/Window", position = 333)
@TopComponent.OpenActionRegistration(displayName = "#CTL_PersonAction"
//,preferredID = "PersonTopComponent"
)
@Messages({
 "CTL_PersonAction=Person",
 "CTL_PersonTopComponent=Person Window",
 "HINT_PersonTopComponent=This is a Person window"
})
public final class PersonTopComponent extends TopComponent {
. . . code omitted . . .
}

Note that we changed attribute openAtStartup to false in annotation @TopComponent.Registration. You will normally specify this setting, since a non-singleton TopComponent typically opens in conjunction with a specific domain object or file action.

In Listing 8.6 we also kept the annotations to create the Windows menu item and action that opens the window. We did this so you could easily open multiple PersonTopComponent windows without writing code to specifically open the window. But, to enable opening multiple windows, you must remove attribute preferredID from annotation @TopComponent.OpenActionRegistration.

Figure 8.20 shows the non-singleton WindowSystemApp running with three open PersonTopComponent windows. Each window has a different textfield value, which persists across restarts. When the application restarts, not only will the same windows open, but they will have their previously specified text in the textfield component. However, once you close a window, its data will not be persisted and the window won’t open with the next restart.

[image:]

Figure 8.20 Non-singleton TopComponent

Since PersonTopComponent is no longer a singleton TopComponent, how does the window system persist each window’s data? Recall that PersonTopComponent persistent data is stored in Application/build/testuserdir/config/Windows2Local/Components/PersonTopComponent.settings using the TopComponent’s preferredID to generate the XML .settings file. With multiple instances of the same TopComponent, the persistent data is stored in PersonTopComponent_1.settings, PersonTopComponent_2.settings, and so on.

Opening Windows from User Code

Now let’s show you how to open the non-singleton TopComponent within your own code; that is, not from the top-level Windows menu. First, remove annotations @ActionID, @ActionReference, and @TopComponent.OpenActionRegistration, which all support the Open action in the top-level Windows menu. Listing 8.7 shows the updated PersonTopComponent code with these annotations removed.

Listing 8.7 PersonTopComponent.java—Annotations for Open Removed

Click here to view code image

@ConvertAsProperties(dtd = "-//com.asgteach.personeditor//Person//EN",
 autostore = false)
@TopComponent.Description(preferredID = "PersonTopComponent",
 iconBase = "com/asgteach/personeditor/personIcon.png",
 persistenceType = TopComponent.PERSISTENCE_ONLY_OPENED)
@TopComponent.Registration(mode = "editor", openAtStartup = false)
@Messages({
 "CTL_PersonAction=Person",
 "CTL_PersonTopComponent=Person Window",
 "HINT_PersonTopComponent=This is a Person window"
})
public final class PersonTopComponent extends TopComponent {
. . . code omitted . . .
}

Now let’s create another (singleton) TopComponent with a button that opens a PersonTopComponent window. Follow these steps.

1. Create a new window with the New Window wizard. Specify Window Position explorer, select Open on Application Start, and click Next.

2. Specify Open for Class Name Prefix. Project should be PersonEditor and package should be com.asgteach.personeditor.

3. Click Finish. Application WindowSystemApp now contains two TopComponents in module PersonEditor as shown in Figure 8.21.

[image:]

Figure 8.21 WindowSystemApp Projects window

4. Bring up OpenTopComponent in the Design view and drop a JButton component with label Open Person Window, as shown in Figure 8.22.

[image:]

Figure 8.22 OpenTopComponent Design view with added JButton component

5. Select the button and click tab Code in the Properties window. This brings up the Code Generation tab for the button.

6. Change the button’s Variable Name to openPersonButton.

7. Now double click the button, which creates method openPersonButtonActionPerformed() (this method will be invoked when a user clicks the button). NetBeans now switches to the Source view for OpenTopComponent.

8. Provide the following code for method openPersonButtonActionPerformed(), as shown in Listing 8.8.

Listing 8.8 Method openPersonButtonActionPerformed

Click here to view code image

private void openPersonButtonActionPerformed(
 java.awt.event.ActionEvent evt) {
 TopComponent tc = new PersonTopComponent();
 tc.open();
 tc.requestActive();
 }

Run application WindowSystemApp again. Click the Open Person Window button several times. Provide text in each window’s textfield and then shut down the application. Run the application again and you’ll see that the windows you previously created now reappear with the persisted textfield data. Figure 8.23 shows a sample run.

[image:]

Figure 8.23 WindowSystemApp with button to open PersonTopComponent

8.6 Window System Life Cycle Management

Let’s continue our exploration of the window system by looking at the TopComponent life cycle methods. Table 8.3 lists these life cycle methods, which you can override in your TopComponent Java code.

[image:]

TABLE 8.3 TopComponent Life Cycle Methods

The New Window wizard generates methods componentOpened() and componentClosed(). You typically place initialization/cleanup code here. (For example, include code that adds and removes event listeners.)

Method canClose() is invoked before a window closes. This is a convenient place for code that checks to see if it’s okay to close a window. For example, if your window is an editor and changes have been made to a file or domain object but have not been saved, you can confirm closing with a user here and return true or false based on the user’s response.

As you can see, the NetBeans Platform Window System makes a distinction between activation and hidden/showing. A window is activated when the window has focus. You can deactivate a window by selecting another window. When there are multiple windows in the same window container, you can hide a window by selecting another window in the same mode.

Let’s experiment a bit with these methods. Modify PersonTopComponent in the same WindowSystemApp applications as follows.

1. Open PersonTopComponent in the Java editor and select Source to manipulate the Java code.

2. Place the cursor after method componentClosed(), right click, and select Insert Code

3. When the context menu appears, select Generate Override Method . . .

4. A dialog appears that lets you select which methods to override. Select methods canClose(), componentActivated(), componentDeactivated(), componentHidden(), and componentShowing(), as shown in Figure 8.24.

[image:]

Figure 8.24 Generate selected override methods for PersonTopComponent

5. Click Generate. NetBeans will generate stub methods for the methods you select.

6. Provide code for these methods as well as methods componentOpened() and componentClosed(), as shown in Listing 8.9. Note that we retain calls to these methods’ superclass with super when NetBeans generates the superclass calls.

Listing 8.9 Overriding TopComponent Methods

Click here to view code image

@Override
 public void componentOpened() {
 System.out.println(nameTextField.getText() + " opened");
 }

@Override
 public void componentClosed() {
 System.out.println(nameTextField.getText() + " closed");
 }

@Override
 public boolean canClose() {
 return !nameTextField.getText().toLowerCase().endsWith("guru");
 }

@Override
 protected void componentActivated() {
 super.componentActivated();
 System.out.println(nameTextField.getText() + " activated");
 }

@Override
 protected void componentDeactivated() {
 super.componentDeactivated();
 System.out.println(nameTextField.getText() + " deactivated");
 }
 @Override
 protected void componentHidden() {
 super.componentHidden();
 System.out.println(nameTextField.getText() + " hidden");
 }

@Override
 protected void componentShowing() {
 super.componentShowing();
 System.out.println(nameTextField.getText() + " showing");
 }

7. Clean All the application; then Run.

Experiment by running the application and examine the NetBeans IDE output window where the results of the System.out.println statements appear. For example, open several Person windows and provide names Amy, Bob, and Charlie. Figure 8.25 shows the application with Amy in the visible Person window.

[image:]

Figure 8.25 WindowSystemApp with TopComponent life cycle methods

Selecting different Person window tabs lets you see the order of the life cycle methods. Suppose the Person window with Charlie is activated and showing. Here is what happens when you then select the tab corresponding to Bob. First, componentShowing() is invoked for Bob followed by componentHidden() and componentDeactivated() for Charlie,” and finally componentActivated() for Bob.

Charlie activated
Bob showing
Charlie hidden
Charlie deactivated
Bob activated

Now select the Open Window tab. Note that this deactivates the Person window but does not affect its hidden/showing status.

Charlie activated
Bob showing
Charlie hidden
Charlie deactivated
Bob activated
Bob deactivated

Close several Person windows and note that method componentClosed() is invoked. Now open a Person window with text Component Guru. Note that you cannot close this window because the code you provided in method canClose() disallows closing windows with a nameTextField text property that ends with String guru (converted to lowercase letters).

Finally, if you shut down the application and restart it, you’ll see that the window manager opens the Person windows that were previously opened. In our example, a restart provided the following output.

Bob opened
Component Guru opened
Bob showing
Bob activated

Using the Window Manager

Let’s now show you some of the window manager methods that manipulate TopComponents. Follow these steps to add a second button to OpenTopComponent. This button lets a user close the top Person window shown in the editor mode.

1. Bring up OpenTopComponent in the Design view and drop a second JButton component with label Close Top Person Window, as shown in Figure 8.26.

[image:]

Figure 8.26 OpenTopComponent Design view with second JButton component

2. Select the button. In the Properties window, click tab Code. This brings up the Code Generation tab for the button.

3. Change the button’s Variable Name to closeTopPersonButton.

4. Now double click the button, which creates method closeTopPersonButtonActionPerformed(). You are now switched to the Source view for OpenTopComponent.

5. Provide the following code for method closeTopPersonButtonActionPerformed(), as shown in Listing 8.10.

Listing 8.10 Method closeTopPersonButtonActionPerformed

Click here to view code image

private void closeTopPersonButtonActionPerformed(
 java.awt.event.ActionEvent evt) {
 WindowManager wm = WindowManager.getDefault();
 Mode editorMode = wm.findMode("editor");
 for (TopComponent tc : wm.getOpenedTopComponents(editorMode)) {
 System.out.println("found " + tc.getName());
 if (tc.isShowing()) {
 if (tc instanceof PersonTopComponent) {
 tc.close();
 }
 break;
 }
 }
 }

Let’s discuss how method closeTopPersonButtonActionPerformed() closes the top Person window.

The first step is to get a WindowManager instance by invoking the static WindowManager method getDefault(). Using the window manager, method findMode() returns the editor Mode object. The next step calls getOpenedTopComponents(), which provides a list of all opened TopComponents for that mode. The for loop looks for the one TopComponent in which isShowing() is true. When we find it, we close the TopComponent and exit the loop.

Note that this method also checks that the component that’s showing is indeed a PersonTopComponent. A bit of defensive programming is not a bad idea here, just in case we later add another (different) TopComponent to the editor window position.

Now run application WindowSystemApp again and make sure you have several Person windows open. Click the Close Top Person Window button. You’ll see that the top Person window closes. Figure 8.27 shows a sample run.

[image:]

Figure 8.27 WindowSystemApp with button to close top Person window

Using @OnShowing

Similar to the Module System API @OnStart and @OnStop annotations (see “Module Life Cycle Annotations” on page 242), the Window System API provides the @OnShowing annotation. You place the @OnShowing annotation on a class that implements Runnable and has a default constructor. You implement the run() method, which is invoked as soon as the window system is shown. Note that @OnShowing Runnables are invoked on the EDT. Therefore, if you configure more than one, they run consecutively.

Let’s add a Runnable with @Showing to the WindowSystemApp. The Runnable displays a custom information dialog, which the user dismisses with either Cancel or OK. The dialog displays after the window system is showing, as shown in Figure 8.28. We can safely perform UI work, since the Runnable executes on the EDT.

[image:]

Figure 8.28 Using @OnShowing to display a dialog

Here are the steps.

1. Build a dialog with a custom inner panel (see “Custom Dialogs” on page 533). In the PersonEditor module, right click on the Source Packages package, and select New | Other. In the Choose File Type dialog, under Categories select Swing GUI Form and under File Types select JPanel Form. Click Next.

2. In the Name and Location Dialog, for Class Name specify Money. Click Finish.

3. NetBeans creates a new Java class Money.java with a top-level JPanel in the Matisse form designer. Add a Label component and specify coins128.png (or any .PNG or .GIF format file) for the label’s icon property from the provided example code.

4. Since we’ll use the standard DialogDisplayer, add a module dependency on the Dialogs API. In the PersonEditor module, select the Libraries node, right click, and select Add Module Dependency . . . from the context menu. In the Add Module Dependencies dialog, select Dialogs API. Click OK.

5. In the same package, create a new Java file called ShowMeTheMoney. Implement Runnable, provide annotation @OnShowing, and implement the run() method, as shown in Listing 8.11. Here we create and display a custom dialog. The dialog blocks until dismissed by the user.

Listing 8.11 ShowMeTheMoney.java—Using @OnShowing

Click here to view code image

package com.asgteach.personeditor;
. . . imports omitted . . .
@OnShowing
public final class ShowMeTheMoney implements Runnable {
 private final Money money = new Money();

 @Override
 public void run() {
 DialogDescriptor dd = new DialogDescriptor(money, "Here is the Money");
 DialogDisplayer.getDefault().notify(dd);
 }
}

8.7 TopComponent Modes

TopComponent modes define positions in the window layout of your application. These positions are basically window containers. The NetBeans Platform defines several default modes whose layout is shown in Figure 8.29. This layout is fluid, however. The window manager typically extends other windows to fill the window frame when you close a window.

Layout Tip
Note that this layout includes two different TopComponents in editor mode, Editor Left and Editor Right. You control the relative position of different windows in the same mode with element position in the @TopComponent.Registration annotation, as described in “@TopComponent.Registration” on page 358.

You can also use the resizing handles on the window frame to resize the entire window, resize individual windows, or change the window layout by dragging and dropping windows. Each mode affects how the overall window layout is resolved.

There are three basic mode types: editor, view, and sliding. Every window layout has a position of type editor, even when there are no editor windows opened. As you resize the window frame, the empty editor area is always present. (If you need to remove the editor area, see “A View-Only Window Layout” on page 395.)

[image:]

Figure 8.29 TopComponent default modes

Let’s have some fun exploring modes. First, we create another window called MyMode. We make it a singleton (the default), and assign it to the explorer window position in application WindowSystemApp.

Next, we define another button in window OpenTopComponent that cycles window MyMode through all of the standard modes, re-docking the window in each mode and updating the status line with the old and new modes. MyModeTopComponent also updates its own label component with its current mode.

You may already have an idea of how to do this. If so, follow along with these steps. If not, use these steps as a guide to add the Change Mode functionality to this application.

1. Create and configure a new TopComponent with the WindowSystemApp we’ve built throughout this chapter (use New | Window).

2. Specify Window Position explorer, select Open on Application Start, and specify Class Name Prefix as MyMode.

3. NetBeans brings up the new TopComponent in the Design view. Add a JLabel component to the UI. Select tab Code in the Properties window and change property Variable Name to title.

4. Select tab Properties in the Properties window and set property text to MyMode as a placeholder. Figure 8.30 shows the configured MyModeTopComponent in the Design view.

[image:]

Figure 8.30 MyModeTopComponent Design view

5. Select the Source button to bring up MyModeTopComponent in the Java editor.

6. Right click inside the file and select Insert Code and override method componentActivated(). Select Generate to insert the generated code.

7. Add code to method componentActivated() as shown in Listing 8.12 in bold. Note that we use the system Window Manager to find this TopComponent’s mode and set its label (variable name title) text to the mode’s name.

This added code updates MyModeTopComponent’s label to display the current mode. As you’ll see next in Listing 8.13, the code that implements the TopComponent’s mode change invokes both open() and requestActive(). The window manager then invokes componentActivated(), making this method a logical place to update the label.

Listing 8.12 MyModeTopComponent Method componentActivated()

Click here to view code image

 @Override
 protected void componentActivated() {
 super.componentActivated();
 WindowManager wm = WindowManager.getDefault();
 title.setText(wm.findMode(this).getName());
 }

Now let’s add another button to OpenTopComponent that changes the mode of MyModeTopComponent. Follow these steps.

1. Bring up OpenTopComponent in the Design view and place a third JButton component with label Change Mode, as shown in Figure 8.31.

[image:]

Figure 8.31 OpenTopComponent Design view with Change Mode button

2. Select the button. In the Properties window, click tab Code. This brings up the Code Generation tab for the button.

3. Change the button’s Variable Name to changeModeButton.

4. Now double click the button, which creates method changeModeButtonActionPerformed(). This switches you to the Source view for OpenTopComponent.

5. Provide the following code for method changeModeButtonActionPerformed(), as shown in Listing 8.13.

Listing 8.13 Method changeModeButtonActionPerformed()

Click here to view code image

private void changeModeButtonActionPerformed(
 java.awt.event.ActionEvent evt) {

WindowManager wm = WindowManager.getDefault();
 TopComponent tc = wm.findTopComponent("MyModeTopComponent");
 if (tc != null) {
 Mode currentMode = wm.findMode(tc);
 Set<? extends Mode> modes = wm.getModes();
 int nextModeIndex = 0;
 Mode[] modeArray = modes.toArray(new Mode[modes.size()]);
 for (int i = 0; i < modeArray.length; i++) {
 // find current mode
 if (currentMode == modeArray[i]) {
 nextModeIndex = i + 1;
 if (nextModeIndex == modeArray.length) {
 nextModeIndex = 0;
 }
 break;
 }
 }

Mode nextMode = modeArray[nextModeIndex];
 String nextModeName = nextMode.getName();
 String currentModeName = currentMode.getName();

nextMode.dockInto(tc);
 tc.open();
 tc.requestActive();
 StatusDisplayer.getDefault().setStatusText("Docking from " +
 currentModeName + " into " + nextModeName);
 }

Method changeModeButtonActionPerformed() obtains a WindowManager instance by invoking the static WindowManager method getDefault(). Using the window manager, we find TopComponent “MyModeTopComponent” (its preferredID) and this TopComponent’s mode.

We then get a set of all the modes currently in the system and convert the set to an array. The method then searches the array to find the current mode and assigns the TopComponent to the next mode using the next array index value. We cycle back to the beginning of the array if we’ve reached the end.

With the current mode and the next mode determined, the next step is to dock the TopComponent into the next mode, open it, and invoke TopComponent method requestActive(). This is the usual sequence of methods you’ll invoke for opening a window programmatically. Method open() opens the window (if not already opened), and requestActive() brings it to the front if hidden or shows the window if minimized (applicable to the sliding modes).

Since we invoke requestActive(), the window manager calls MyModeTopComponent method componentActivated(), which updates that component’s label to display the current mode (see Listing 8.12 on page 379).

Finally, we display the old and new modes in the status line using the NetBeans Platform standard StatusDisplayer instance.

Figure 8.32 shows the application running. Here, MyModeTopComponent is docked into the output mode. Its label displays “output,” and the status line displays “Docking from bottomSlidingSide into output.”

[image:]

Figure 8.32 Window system modes demo

8.8 Window Groups

Window groups let you specify TopComponents that open and close as a group. You are familiar with this use case if you have ever used the NetBeans IDE to design a GUI component (such as a TopComponent). When the TopComponent is open in Design view, you see related helper windows open, including the component palette, the TopComponent properties window, and a TopComponent navigator window. As soon as you switch to Source mode, the component palette and properties windows disappear and the navigator window content relates to the Java source code instead of the visual components. Thus, you have a Design mode window group that opens and closes in conjunction with the TopComponent’s Design mode. Figure 8.33 shows the Design view for PersonTopComponent.java in the NetBeans IDE and the related Palette and Properties windows. Switching to the PersonTopComponent.java Source view closes these windows.

[image:]

Figure 8.33 Palette and Properties windows form a TopComponent group

However, window group opening and closing behavior is more nuanced. A TopComponent that belongs to a window group does not open the next time the group opens if it was specifically closed by a user when the group was last opened. Similarly, a TopComponent that belongs to the window group does not close the next time the group closes if the window was already open when the group opens.

To further customize a window group TopComponent’s behavior, you can specifically exclude a particular TopComponent from either opening or closing (or both) when the group opens and closes.

The good news is that you can use this window group feature in your NetBeans Platform applications with little effort. Once you create the TopComponents that comprise the window group, you specify XML configurations in your module, as shown in the following general steps.

1. Create a window system group definition file (.wsgrp) to define the window group.

2. For each TopComponent in the window group, create a Wstcgrp.xml file.

3. Add the group configuration information to the module’s layer.xml file. If the layer.xml file doesn’t exist, create it using a New | Layer File wizard.

4. Add Java code that opens and closes the window group.

We show an example in the next section.

Window Group Example

Let’s begin with the application WindowSystemApp from the previous section (shown running in Figure 8.32 on page 381). This application has a non-singleton PersonTopComponent that opens with an Open Person Window button. You close the window with either the built-in close button on the window or the Close Top Person Window button.

Two TopComponent helper windows open when a PersonTopComponent window becomes visible and close when the window is hidden or closes. Figure 8.34 shows the application running with two PersonTopComponent windows open and the unrelated hidden MyMode window docked in the editor mode. You see PersonProperty and PersonOutput windows open.

[image:]

Figure 8.34 PersonProperty and PersonOutput windows form a group

When the visible PersonTopComponent with name “Herman” closes or is obscured, MyModeTopComponent becomes visible in the editor mode and both PersonProperty and PersonOutput windows close. The result is shown in Figure 8.35.

[image:]

Figure 8.35 Person window group closes when PersonTopComponent closes or is hidden

Here are the steps to add a Person window group to the WindowSystemApp application.

1. In module PersonEditor, create two new TopComponents using the New | Window wizard. Select window position properties for PersonPropertyTopComponent and window position output for PersonOutputTopComponent. De-select Open on Application Start for both windows. This creates files PersonPropertyTopComponent.java and PersonOutputTopComponent.java in module PersonEditor source package.

2. In the same source package, create file persongroup.wsgrp. Right click the package name and select New | Empty File. In the Name and Location dialog, specify persongroup.wsgrp for File Name. Project should be PersonEditor and Folder should be src/com/asgteach/personeditor. Click Finish.

3. Provide the following XML code for file persongroup.wsgrp, as shown in Listing 8.14.

Listing 8.14 persongroup.wsgrp

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>
 <!DOCTYPE group PUBLIC
 "-//NetBeans//DTD Group Properties 2.0//EN"
 "http://www.netbeans.org/dtds/group-properties2_0.dtd">
 <group version="2.0">
 <name unique="persongroup" />
 <state opened="false" />
</group>

Element name with attribute unique must match the case sensitive filename. Element state with attribute opened="false" specifies that this group should not be open at application start.

4. Create a window system TopComponent group configuration file for each of the group’s windows. Use New | Empty File and provide PersonPropertyTopComponentWstcgrp.xml for File Name (again, the name is case sensitive). Listing 8.15 shows the XML configuration for this file.

Listing 8.15 PersonPropertyTopComponentWstcgrp.xml

Click here to view code image

<?xml version="1.0" encoding="UTF-8" ?>
 <!DOCTYPE tc-group PUBLIC "-//NetBeans//DTD Top Component in Group
 Properties 2.0//EN" "http://www.netbeans.org/dtds/tc-group2_0.dtd">
<tc-group version="2.0">
 <module name="com.asgteach.personeditor" spec="1.0"/>
 <tc-id id="PersonPropertyTopComponent" />
 <open-close-behavior open="true" close="true" />
</tc-group>

The window system TopComponent group configuration file specifies the module that contains the TopComponent, the TopComponent ID (its preferredID), and the open and close default behavior for this TopComponent (normally these are both set to true).

5. Repeat this step and create window system TopComponent group configuration file for PersonOutputTopComponent, as shown in Listing 8.16.

Listing 8.16 PersonOutputTopComponentWstcgrp.xml

Click here to view code image

<?xml version="1.0" encoding="UTF-8" ?>
 <!DOCTYPE tc-group PUBLIC "-//NetBeans//DTD Top Component in Group
 Properties 2.0//EN" "http://www.netbeans.org/dtds/tc-group2_0.dtd">
<tc-group version="2.0">
 <module name="com.asgteach.personeditor" spec="1.0"/>
 <tc-id id="PersonOutputTopComponent" />
 <open-close-behavior open="true" close="true" />
</tc-group>

Note that the files are the same except for element <tc-id>, which matches each TopComponent’s preferredID.

6. Create a Layer File for this module. Use New | XML Layer (If your module already has a Layer file, then you will instead edit the existing layer.xml file.)

XML Layer File
Often you do not need a module Layer file since Java annotations help you specify many configuration options. During the build process, NetBeans generates layer.xml file for you. If you define a Layer file in your module (as you will here by using window groups), the build process will process and combine this configuration information with any annotations when generating the application’s master layer.xml file.

7. Add the following XML configuration to layer.xml, as shown in Listing 8.17.

Listing 8.17 layer.xml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE filesystem PUBLIC "-//NetBeans//DTD Filesystem 1.2//EN" "http://
www.netbeans.org/dtds/filesystem-1_2.dtd">
<filesystem>
 <folder name="Windows2">
 <folder name="Groups">
 <file name="persongroup.wsgrp" url="persongroup.wsgrp"/>
 <folder name="persongroup">
 <file name="PersonOutputTopComponent.wstcgrp"
 url="PersonOutputTopComponentWstcgrp.xml"/>
 <file name="PersonPropertyTopComponent.wstcgrp"
 url="PersonPropertyTopComponentWstcgrp.xml"/>
 </folder>
 </folder>
 </folder>
</filesystem>

This Layer file registers the persongroup window group and specifies the TopComponent configuration files. If you create a new layer.xml file in the previous step, copy the entire XML code shown in Listing 8.17.

If your module already has a Layer file that includes folder Windows2, add the folder Groups to folder Windows2, leaving other subfolders intact.

8. The final steps add Java code to open and close the persongroup window group. In our previous description we open the window group when the PersonTopComponent is visible and close the window group when the PersonTopComponent is closed or hidden. Thus, we must add the code that opens the window group to the PersonTopComponent life cycle method componentShowing(), as shown in Listing 8.18.

Listing 8.18 PersonTopComponent componentShowing() Method

Click here to view code image

@Override
 protected void componentShowing() {
 super.componentShowing();
 TopComponentGroup personGroup =
 WindowManager.getDefault().findTopComponentGroup("persongroup");
 if (personGroup != null) {
 personGroup.open();
 }

}

The window manager finds our TopComponentGroup persongroup and, if found, opens the group, which in turn, opens windows PersonPropertyTopComponent and PersonOutputTopComponent. The application should look something like Figure 8.34 on page 383.

9. Now comes the tricky part. Simply closing the group in method componentHidden() won’t provide the desired behavior because of the order among the different PersonTopComponent life cycle methods. In other words, if the opening window’s method componentShowing() is invoked before the closing window’s method componentHidden(), then the window group closes incorrectly.

To handle this situation, we use the window manager TopComponent registry to find all open TopComponents. If one of them is a PersonTopComponent that is visible (isShowing() is true), we return and don’t close the window group. If no PersonTopComponent is visible (even if one is open), we can safely close the window group. Listing 8.19 shows the code.

Listing 8.19 PersonTopComponent componentHidden() Method

Click here to view code image

@Override
 protected void componentHidden() {
 super.componentHidden();
 WindowManager wm = WindowManager.getDefault();
 TopComponentGroup personGroup =
 wm.findTopComponentGroup("persongroup");
 for (TopComponent tc : wm.getRegistry().getOpened()) {
 if (tc.isShowing() && tc instanceof PersonTopComponent) {
 return;
 }
 }
 if (personGroup != null) {
 personGroup.close();
 }
 }

Testing the Window Group Behaviors

You are now ready to fully test the behavior of the new persongroup window group. Be sure to Clean All before running the application. After creating several PersonTopComponent windows, use the Change Mode button to move window MyMode into the editor position. Experiment with activating and hiding several of the windows to see how window group persongroup correctly opens and closes, depending on whether a PersonTopComponent is visible.

You can also move (drag and drop) a PersonTopComponent to another window position. As long as a PersonTopComponent is visible, the persongroup window group remains open.

When you close one of the windows in the persongroup window group and the window group opens the next time, the closed window remains closed. Similarly, if you open one of the windows in persongroup window group when the group is closed (using the top menu Windows | PersonOutput, for example), the opened window remains open when the window group next closes.

8.9 Window Layout

You have a great idea for a NetBeans Platform application, but you don’t want to use any of the standard window system modes (see Figure 8.29 on page 377). Rather, you want to create your own custom window layout and perhaps specify one or more new window positions (modes).

In previous versions of the NetBeans Platform, creating a new mode required customizing a module’s Layer file. You also had to create a mode configuration file, which is an XML file with wsmode extension. Furthermore, determining the settings of the wsmode elements, especially the constraints and path elements, is challenging for the casual (and quite often the not-so-casual) NetBeans Platform developer. This is all still true, but NetBeans now has a Layout of Windows wizard to help customize a window layout. In this section we hope to dispel some of the mystery and challenge of creating custom window layouts.

Let’s first show you the NetBeans Layout of Windows wizard, which we’ll use to create a custom layout for a new application. This window layout will look like the application as shown in Figure 8.36. Here you see three windows: TopBanner (in mode topbanner), LeftSide, and RightSide.

[image:]

Figure 8.36 A customized window layout for application ModeApp

The TopBanner window spans the entire window frame and takes up about 25 percent of the vertical space. The remaining area is divided horizontally into two areas. The leftside mode consumes approximately 30 percent, and the rightside takes up the remaining 70 percent.

The rightside mode type is editor, whereas topbanner and leftside mode types are view. You can distinguish these types because the editor type mode has a darker line at the top and additional window control buttons at the top right of the window area. Furthermore, the window system treats an editor area differently than view-type modes. Even if no windows are open in your application, a small editor area remains, which grows if you resize your application. Depending on your own window layout, you may need to hide an empty editor area. We’ll show you how to do this later in this section.

Here are the steps. To follow along, create a new NetBeans Platform application called ModeApp and create a new module called Modes1. We’ll create our custom layout using module Modes1. The first step is to run the Layout of Windows wizard, as follows.

1. Expand project Modes1 and select the package name com.asgteach.modes1, right click, and select New | Other.

2. NetBeans displays the New File dialog. Under Categories, select Module Development and for File Types, select Layout of Windows. Click Next as shown in Figure 8.37.

[image:]

Figure 8.37 Window layout wizard

3. The Layout of Windows wizard lets you know that it will start your application in a special mode that lets you adjust the window layout. Click Next as shown in Figure 8.38.

[image:]

Figure 8.38 Window layout wizard—Launch Your Application

4. Your application starts and displays a window layout with the default modes defined.

5. Click the New Mode icon (upper left below the application title). A new window that represents a mode is created in the editor position.

6. Reposition this window to the top of the application. Adjust the window until the red guidelines show a horizontal window that spans the application frame. Specify new Mode Name topbanner in the provided textfield.

7. Delete all the remaining non-minimized modes except the editor mode.

8. Now create a new mode and position it to the left of the editor mode. NetBeans will divide the area in half. Rename this new mode on the left to leftside.

9. Rename the editor mode to rightside. Resize the leftside and rightside modes so that their relative size is approximately 30-70. Figure 8.39 shows the new window layout with modes topbanner, leftside, and rightside.

[image:]

Figure 8.39 Window layout design view

10. When you’re finished customizing the window layout, close the application. This takes you to the wizard’s next step.

Here are some tips for working with the Layout of Windows wizard.

Window Layout Tip
You may find it difficult to place the new “banner” mode so it spans the entire application. By placing the cursor actually outside the top window, we were able to define the new mode so that it is truly a banner and not partitioned horizontally.

Window Layout Tip
Be sure to rename a new mode after you reposition it, not before.

After you exit the launched application, the Layout of Windows wizard continues.

11. The wizard displays the Found Modes list. Select only the new modes you created, as shown in Figure 8.40. Click Next.

[image:]

Figure 8.40 Window layout design—Found modes

12. NetBeans displays a list of created files. Here you see file layer.xml and Wsmode.xml files for each selected mode. Click Finish as shown in Figure 8.41.

[image:]

Figure 8.41 Window layout design—changed files

You can now use these new modes by creating TopComponents and selecting the new window position. However, let’s first look at the configuration files. By familiarizing yourself with these files, you’ll be able to tweak your window design and perhaps even add new modes without re-running the Layout of Windows wizard.

Layout of Windows Wizard Tip
Note that even though you did not select any of the default modes in Figure 8.40, the default modes are still present in the window system. If you plan on using any of the default modes and want their layout to conform to the new window layout that you specified in the Layout of Windows wizard, you should check these default modes along with any new modes you created.

Listing 8.20 shows the Layer file. This file contains the declaration of the module’s modes with a link to each mode’s definition. The build process reads the Layer file and mode definition files and generates the Windows2 file structure that defines your application’s modes.

Listing 8.20 layer.xml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE filesystem PUBLIC "-//NetBeans//DTD Filesystem 1.2//EN" "http://
www.netbeans.org/dtds/filesystem-1_2.dtd">
<filesystem>
 <folder name="Windows2">
 <folder name="Modes">
 <file name="leftside.wsmode" url="leftsideWsmode.xml"/>
 <file name="rightside.wsmode" url="rightsideWsmode.xml"/>
 <file name="topbanner.wsmode" url="topbannerWsmode.xml"/>
 </folder>
 </folder>
</filesystem>

The mode definition file specifies a mode’s configuration. Element name with attribute unique must match the mode.wsmode file as listed in layer.xml. Element kind with attribute type is "view", "editor", or "sliding". (Attribute value "sliding" refers to minimized modes.) Element state with attribute type is "joined" (meaning docked into the main window frame as opposed to "separated"), and element constraints determine how the windows in the mode are sized in relation to other opened windows and modes.

The constraints element provides one or more path elements that split the window frame recursively. When attribute orientation is "vertical", the area is split into rows (cells are defined from top to bottom). When attribute orientation is "horizontal", the area is split into columns (cells are defined from left to right). Attribute number specifies the relative position of that mode in the split area, with 0 being the topmost or leftmost and the highest number used being the bottommost or rightmost.

If you use numbers such as 0, 20, 40, another module provider can specify a mode that appears in between any already-defined modes.

For a specific mode, attribute weight specifies the relative size each window should consume for a given cell within the frame. If all modes are weighted .5, then they will all take up the same space, even as the window frame is resized.

The simplest window layout contains a single frame and its constraints element is empty.

Listing 8.21 shows the mode definition file for topbanner. Here mode topbanner specifies one path element in position 0 (which will always be the first slot in a split cell). The mode consumes 25 percent of the vertical space. It does not share (split) space horizontally; thus it will take up the entire horizontal space providing the banner effect.

You should set element empty-behavior attribute permanent to "true". Otherwise, if the mode is empty (because you floated a window for example), the window system will dynamically delete that mode.

Listing 8.21 topbannerWsmode.xml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?><mode version="2.4">
 <name unique="topbanner"/>
 <kind type="view"/>
 <state type="joined"/>
 <constraints>
 <path orientation="vertical" number="0" weight="0.25"/>
 </constraints>
 <bounds x="0" y="0" width="0" height="0"/>
 <frame state="0"/>
 <empty-behavior permanent="true"/>
</mode>

Listing 8.22 shows the mode definition file for mode leftside. It specifies a horizontal split (meaning columns), position number 0 (leftmost) and weight .3.

Listing 8.22 leftsideWsmode.xml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?><mode version="2.4">
 <name unique="leftside"/>
 <kind type="view"/>
 <state type="joined"/>
 <constraints>
 <path orientation="horizontal" number="0" weight="0.3"/>
 </constraints>
 <bounds x="0" y="0" width="0" height="0"/>
 <frame state="0"/>
 <empty-behavior permanent="true"/>
</mode>

Listing 8.23 also specifies a horizontal split, using position number 1 and weight .7. It will therefore be to the right of the previous mode and take up about .7 of the space. Mode rightside is of type "editor", whereas the other two are of type "view".

Listing 8.23 rightsideWsmode.xml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?><mode version="2.4">
 <name unique="rightside"/>
 <kind type="editor"/>
 <state type="joined"/>
 <constraints>
 <path orientation="horizontal" number="1" weight="0.7"/>
 </constraints>
 <bounds x="0" y="0" width="0" height="0"/>
 <frame state="0"/>
 <empty-behavior permanent="true"/>
</mode>

Creating TopComponents

Let’s test out the new window layout by creating TopComponents, one for each new mode.

1. Inside module Modes1, select the source package com.asgteach.modes1 and select New | Window. NetBeans displays the Basic Settings dialog, as shown in Figure 8.42. The drop down corresponding to Window Position now contains the new modes. Select Window Position topbanner and check Open on Application Start. Click Next.

Note that button Redefine lets you customize the Window Layout using the exact same procedure as the Window Layout wizard we just showed you.

[image:]

Figure 8.42 New Window Basic Settings dialog with new custom mode

2. NetBeans displays the Name, Icon and Location dialog. Specify TopBanner for Class Name Prefix and accept the defaults for Project and Package. Leave Icon blank. Click Finish.

3. Repeat these steps and add windows LeftSideTopComonent at window position leftside and RightSideTopComponent with window position rightside.

Run application ModeApp (be sure to Clean All first). Its layout should resemble Figure 8.36 on page 388. Perform several window operations (floating, maximizing, closing) to see how the layout resizes. The windows will retain their relative sizes.

A View-Only Window Layout

We’ll now go through a second custom window layout example. This example is from a document that describes the NetBeans Platform Window System API Changes (see http://core.netbeans.org/windowsystem/changes.html). This document contains an excellent explanation of the mode definition file elements.

The example defines four new modes, m1, m2, m3, and m4. All modes are type “view” and are shown in a running application in Figure 8.43.

[image:]

Figure 8.43 ModeApp2 running with custom window layout

Here are the steps to create the above custom window layout.

1. Create a new NetBeans Platform application called ModeApp2.

2. Create a new module in ModeApp2 called Modes2 with package name com.asgteach.modes2.

3. Expand module Modes2 Source node. Right click on package name com.asgteach.modes2 and select New | Layout of Windows from the context menu.

4. When the wizard launches the application, create four new modes (named m1, m2, m3, and m4) positioned as shown in Figure 8.44. Exit the application.

5. When the wizard displays the Found Modes dialog, select only the new modes: m1, m2, m3, and m4 and complete the rest of the wizard.

[image:]

Figure 8.44 Window layout design view with four custom modes

The Layout of Windows wizard creates file layer.xml and a mode definition Wsmode.xml file for each mode, which we show in Listing 8.24 through Listing 8.27.

These mode definition files may look slightly different from yours, depending on how you sized the windows in the Window Layout Design view. Feel free to tweak your files to match the following listings. Make sure that each mode is type "view" and element empty-behavior attribute permanent is set to "true".

Look at element constraints for each mode. Note that modes m1, m2, and m3 all have the first path element set to orientation="vertical" and attribute number="0". Mode m4 has path element set to orientation="vertical" and attribute number="1". This splits the desktop into two vertical cells (rows) with the top cell accounting for .7 space and the bottom cell .3 space.

Next m1 and (m2 and m3) divide the top cell into two horizontally (two columns) with each part having equal space. Mode m1 has number "0" (the left side) of this horizontal division, and modes m2 and m3 are both positioned in the right side (with number "1").

Finally, modes m2 and m3 divide the right column into two vertical spaces, giving each mode equal space.

Listing 8.24 shows the mode definition file for mode m1.

Listing 8.24 m1Wsmode.xml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?><mode version="2.4">
 <name unique="m1"/>
 <kind type="view"/>
 <state type="joined"/>
 <constraints>
 <path orientation="vertical" number="0" weight=".7" />
 <path orientation="horizontal" number="0" weight="0.5"/>
 </constraints>
 <bounds x="0" y="0" width="0" height="0"/>
 <frame state="0"/>

<empty-behavior permanent="true"/>
</mode>

Listing 8.25 shows the mode definition file for mode m2.

Listing 8.25 m2Wsmode.xml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?><mode version="2.4">
 <name unique="m2"/>
 <kind type="view"/>
 <state type="joined"/>
 <constraints>
 <path orientation="vertical" number="0" weight=".7" />
 <path orientation="horizontal" number="1" weight="0.5"/>
 <path orientation="vertical" number="0" weight="0.5" />
 </constraints>
 <bounds x="0" y="0" width="0" height="0"/>
 <frame state="0"/>

<empty-behavior permanent="true"/>
</mode>

Listing 8.26 shows the mode definition file for mode m3.

Listing 8.26 m3Wsmode.xml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?><mode version="2.4">
 <name unique="m3"/>
 <kind type="view"/>
 <state type="joined"/>
 <constraints>
 <path orientation="vertical" number="0" weight=".7" />
 <path orientation="horizontal" number="1" weight="0.5"/>
 <path orientation="vertical" number="1" weight="0.5" />
 </constraints>
 <bounds x="144" y="557" width="576" height="164"/>
 <frame state="0"/>
 <empty-behavior permanent="true"/>
</mode>

Finally, Listing 8.27 shows the mode definition file for mode m4.

Listing 8.27 m4Wsmode.xml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?><mode version="2.4">
 <name unique="m4"/>
 <kind type="view"/>
 <state type="joined"/>
 <constraints>
 <path orientation="vertical" number="1" weight="0.3"/>
 </constraints>
 <bounds x="0" y="0" width="0" height="0"/>
 <frame state="0"/>
 <empty-behavior permanent="true"/>
</mode>

Next, create four TopComponent windows, one for each new mode using code prefix M1, M2, M3, and M4. Clean All and Run the application. A small sliver will appear, which is the empty editor window. Resize the application (make it smaller and then larger). Figure 8.45 shows that the empty editor area has grown.

[image:]

Figure 8.45 Window layout with four custom modes and an empty editor area

Follow these steps to hide an empty editor area. You’ll add an @OnStart Runnable (see “Using @OnStart” on page 242). Note that you can still open a window in the editor area, but if the editor area is empty, other windows will completely fill in the space.

1. The @OnStart annotation requires a dependency on the Module System API. In the Modes2 module Libraries node, right click, and select Add Module Dependency . . . from the context menu. In the Add Module Dependencies dialog, select Module System API from the list of modules. Click OK.

2. In the Modes2 module, right click on the package name com.asgteach.modes2, and select New | Java Class . . . from the context menu.

3. NetBeans displays the New Java Class dialog. For Class Name, specify Installer (any name is fine) and click Finish.

4. NetBeans adds the Installer.java class. Make the Installer class implement Runnable, add the @OnStart annotation, and implement the run() method, as shown in Listing 8.28.

Listing 8.28 Installer.java—Provide Module Life Cycle Methods

Click here to view code image

package com.asgteach.modes2;

import org.openide.modules.OnStart;
@OnStart
public class Installer implements Runnable {

 @Override
 public void run() {
 System.setProperty("netbeans.winsys.hideEmptyDocArea", "true");
 }
}

5. Alternatively, you can configure the following runtime argument in your modules platform.properties file (under Modes2/Important Files/Project Properties).

Click here to view code image

run.args.extra=-J-Dnetbeans.winsys.hideEmptyDocArea=true

Now when you run application ModeApp2 again, you’ll see no empty document area, even when resizing (as shown in Figure 8.43 on page 396).

No Mode Is an Island

Once you begin experimenting with your own modes, you’ll discover that the window layout of your system depends on the interactions of all the modes in use and the actions of the user as the window frame is resized or windows are repositioned, floated, opened, and closed. Indeed, no mode is isolated from this behavior. Here are a few additional strategy hints you may find helpful as you experiment with your own window layout.

1. Use the Layout of Windows wizard first. Then fine tune your window layout if necessary by tweaking the generated wsmode files.

2. Try simplifying the constraints element as much as possible.

3. Make sure element empty-behavior attribute permanent is set to "true".

4. We found it easier to create all new modes for a window layout instead of mixing new modes with default modes. If you do mix modes, retain the mode definition files of any default modes that you use (check them in the Found Modes dialog of the Layout of Windows wizard).

5. Experiment with window layouts by dragging and dropping windows into new positions and resizing. When you shut down the application, the most recent window layout will be preserved in directory Windows2Local/Modes under build/testuserdir/config directory in your application directory.

8.10 Window Layout Roles

The NetBeans Platform lets you define different window layouts based on roles. A common use case is to provide distinct role-based perspectives for an application. The Window Manager keeps track of roles that you define and persists a separate Windows2Local hierarchy under build/testuserdir/config in your application directory for each role that you use.

A role comes into existence by invoking WindowManager method setRole("ModeName"). TopComponents can be restricted to one or more named roles. Otherwise, any TopComponent can appear within any role.

If a TopComponent has one or more roles assigned to it, the TopComponent will only open if one of its roles is active. If a TopComponent has no roles assigned to it, it is eligible to open with any role.

When an application starts up, the default role is in effect. You can switch to the default role by invoking the WindowManager setRole() method with argument null. If you want your application to start up in a specific (non-default) role, then invoke the WindowManager method setRole("MyRole") in an @OnStart annotated Runnable.

Normally, when a user manipulates the window frame, resizes windows, or invokes other window operations, the window system saves these changes when the application shuts down. When using roles, the window system saves the window layout separately for each role. Thus, changes a user makes to the window layout in one role do not affect the window layout of any other roles.

Let’s show you a role-based example with an application called RoleExample. This application has three roles: the default role, User, and Admin. The User and Admin roles each have TopComponents assigned specifically to these roles. When you run the application and the User role is active, you see one set of components. Similarly, when you run the application with the Admin role active, you see a distinct set of components.

Application RoleExample also has a LoginTopComponent that has no roles assigned to it. This means that LoginTopComponent can open in the default role and remain open when a new role becomes active.

The LoginTopComponent acts as a gatekeeper, requesting a username and password from a user. When the user clicks the Login button, an event handler looks up the username and password to find the corresponding role for that username. The role is then changed to either User or Admin depending on the username. No role change occurs if the login fails.

Figure 8.46 shows the RoleExample application running with the default role active. There is a single window open (LoginTopComponent) with the username and password fields filled in. As it turns out, Joe is in our data store with role User.

[image:]

Figure 8.46 RoleExample application with the default window layout (no role set)

When the Login button is clicked and Joe’s credentials check out, the application invokes WindowManager method setRole("User"). The LoginTopComponent remains open and you see two additional windows: UserExplorer and UserEditor, as shown in Figure 8.47. These two TopComponents have role User assigned to them.

[image:]

Figure 8.47 RoleExample application with role User

If at this point, Joe resizes the window frame, changes are persisted when the application switches roles or at application shutdown. The default role and Admin role are not affected by Joe’s window operations.

Since the LoginTopComponent is open, another user can log in. Let’s suppose we have a second user Meg with role Admin. When Meg logs in, the application switches to role Admin, as shown in Figure 8.48. With this switch, the User-specific windows UserEditor and UserExplorer close and two different windows open: AdminEditor and AdminOutput. Again, LoginTopComponent remains open. Note that the Admin window layout is different from the User window layout, and its windows are docked into different modes.

[image:]

Figure 8.48 RoleExample application with role Admin

If at any time a user provides invalid information in the Login window, the application switches to the default role. This returns the application to the window layout you see in Figure 8.46 on page 402 with a single LoginTopComponent open (and an error message indicating that the login was incorrect). All other TopComponents are closed.

RoleExample Application and Role-Based TopComponents

Let’s build this example now with the following steps. You’ll first create the application, modules, and role-based TopComponents.

1. Create a new NetBeans Platform application called RoleExample.

2. Create three new modules in RoleExample: AdminModule, UserModule, and RoleModel. Module RoleModel contains the User and UserRole classes that implement the credential checking and role assignments. Modules AdminModule and UserModule contain role-specific TopComponents.

3. Create two TopComponents inside module AdminModule called AdminEditorTopComponent and AdminOutputTopComponent. For AdminEditor, select window position editor and select Open at Application Start.

4. For AdminOutput, select window position output and select Open at Application Start. Assign role “Admin” to both windows by editing the @TopComponent.Registration annotation in the TopComponent source code using element roles.

5. Remove the Action annotations for both components.

Listing 8.29 shows the annotation settings for AdminEditorTopComponent, and Listing 8.30 shows the annotations for AdminOutputTopComponent.

Listing 8.29 AdminEditorTopComponent.java (Annotations)

Click here to view code image

@ConvertAsProperties(dtd = "-//com.asgteach.adminmodule//AdminEditor//EN",
autostore = false)
@TopComponent.Description(preferredID = "AdminEditorTopComponent",
persistenceType = TopComponent.PERSISTENCE_ALWAYS)
@TopComponent.Registration(
 roles = {"Admin"},
 mode = "editor",
 openAtStartup = true)
@TopComponent.OpenActionRegistration(displayName = "#CTL_AdminEditorAction",
preferredID = "AdminEditorTopComponent")
@Messages({
 "CTL_AdminEdAction=AdminEditor",
 "CTL_AdminEdTopComponent=AdminEditor Window",
 "HINT_AdminEdTopComponent=This is a AdminEditor window"
})
public final class AdminEditorTopComponent extends TopComponent {
. . . code omitted . . .
}

Listing 8.30 AdminOutputTopComponent.java (Annotations)

Click here to view code image

@ConvertAsProperties(dtd = "-//com.asgteach.adminmodule//AdminOutput//EN",
autostore = false)
@TopComponent.Description(preferredID = "AdminOutputTopComponent",
persistenceType = TopComponent.PERSISTENCE_ALWAYS)
@TopComponent.Registration(
 roles = {"Admin"},
 mode = "output",
 openAtStartup = true)
@TopComponent.OpenActionRegistration(displayName = "#CTL_AdminOutputAction",
preferredID = "AdminOutputTopComponent")
@Messages({
 "CTL_AdminOutputAction=AdminOutput",
 "CTL_AdminOutputTopComponent=AdminOutput Window",
 "HINT_AdminOutputTopComponent=This is a AdminOutput window"
})
public final class AdminOutputTopComponent extends TopComponent {
. . . code omitted . . .
}

6. Add two TopComponents to module UserModule using code prefix UserEditor and UserExplorer. Specify window position editor and explorer, respectively. Select Open at Application Start for both TopComponents.

7. Assign role “User” to both windows by editing the @TopComponent.Registration annotation in the TopComponent source code using element roles. (Refer to Listing 8.29 and Listing 8.30 but specify role “User” instead of “Admin.”)

8. Remove the Action annotations for both components.

Credential Checking and Role Assignments

Now let’s implement the credential checking and role assignments. We’ll set up a bare-bones map-based collection to store users and roles.

1. In the RoleModel module, create Java interface UserRole in package com.asgteach.rolemodel.api, and provide the abstract methods, as shown in Listing 8.31.

Listing 8.31 Interface UserRole

Click here to view code image

package com.asgteach.rolemodel.api;

public interface UserRole {

public User findUser(String username, String password);
 public User storeUser(User user);
 public String[] getRoles();
 public boolean storeRole(String role);

}

2. In the same package, create Java class User, as shown in Listing 8.32.

Listing 8.32 User.java

Click here to view code image

package com.asgteach.rolemodel.api;

public class User {
 private String username;
 private String password;
 private String role;

public String getPassword() {
 return password;
 }

public void setPassword(String password) {
 this.password = password;
 }

public String getRole() {
 return role;
 }

public void setRole(String role) {
 this.role = role;
 }

public String getUsername() {
 return username;
 }

public void setUsername(String username) {
 this.username = username;
 }

@Override
 public String toString() {
 StringBuilder sb = new StringBuilder(this.getUsername()).append("-");
 sb.append(this.getPassword()).append("-");
 sb.append(this.getRole());
 return sb.toString();
 }
}

3. Add Lookup API dependency to module RoleModel and make package com.asgteach.rolemodel.api public under API Versioning. Create Java class SimpleUserRole in package com.asgteach.rolemodel with the implementation shown in Listing 8.33. Note that we use annotation @ServiceProvider with class UserRole.

Besides providing a map-based lookup for username and password data, SimpleUserRole also initializes the map with user and role values. Here you see data for our test case Joe and Meg.

Listing 8.33 SimpleUserRole

Click here to view code image

@ServiceProvider(service = UserRole.class)
public class SimpleUserRole implements UserRole {

private Map<String, User> userMap = new HashMap<>();
 private List<String> roles = new ArrayList<>();

public SimpleUserRole() {
 initialize();
 }

private void initialize() {
 User user1 = new User();
 user1.setUsername("Joe");
 user1.setPassword("Joe");
 user1.setRole("User");
 storeUser(user1);
 storeRole("Admin");
 User user2 = new User();
 user2.setUsername("Meg");
 user2.setPassword("Meg");
 user2.setRole("Admin");
 storeUser(user2);
 }

@Override
 public User findUser(String username, String password) {
 User user = userMap.get(username);
 if (user != null && user.getPassword().equals(password)) {
 return user;
 }
 return null;
 }
 @Override
 public User storeUser(User user) {
 if (user.getRole() == null || user.getRole().isEmpty()) {
 user.setRole("User");
 }
 storeRole(user.getRole());
 return userMap.put(user.getUsername(), user);
 }

@Override
 public String[] getRoles() {
 return roles.toArray(new String[roles.size()]);
 }

@Override
 public boolean storeRole(String role) {
 if (!roles.contains(role)) {
 return roles.add(role);
 }
 else return false;
 }
}

LoginTopComponent

Next, implement the Login process using these steps.

1. In module AdminModule, add dependencies to the Lookup API and to module RoleModel to access the service provider for UserRole.

2. Still in module AdminModule, create LoginTopComponent. Specify window position editor and select Open at Application Start.

3. Configure the GUI. Add three JLabels, a JTextField, a JPasswordField, and a JButton, arranged as shown in Figure 8.49. Rename the variable names for the components as listed in the figure.

[image:]

Figure 8.49 LoginTopComponent Design view

4. From the Design view, double click the Login button and provide the following button event handling code. Add a new entry into the @Messages list for the incorrect login error message, as shown in Listing 8.34.

Listing 8.34 LoginTopComponent loginButtonActionPerformed() Method

Click here to view code image

@Messages({
 "CTL_LoginAction=Login",
 "CTL_LoginTopComponent=Login Window",
 "HINT_LoginTopComponent=This is a Login window",
 "ERROR_IncorrectLogin=Incorrect login for user "
})
. . . code omitted . . .

 private void loginButtonActionPerformed(
 java.awt.event.ActionEvent evt) {
 errorLabel.setText("");
 UserRole userRole = Lookup.getDefault().lookup(UserRole.class);
 if (userRole != null) {
 User thisUser = userRole.findUser(usernameTextField.getText(),
 new String(passwordField.getPassword()));
 WindowManager wm = WindowManager.getDefault();
 if (thisUser != null) {
 // switch to new role
 wm.setRole(thisUser.getRole());
 } else {
 errorLabel.setText(Bundle.ERROR_IncorrectLogin()
 + usernameTextField.getText());
 if (wm.getRole() != null) {
 // put it back to the default role
 wm.setRole(null);
 }
 }
 }
 }

The button event handler is invoked when the user clicks the Login button. The code first clears errorLabel. After instantiating userRole with a UserRole instance (obtained through the Lookup), the handler calls findUser() with the submitted username and password. If the return is not null, the login is valid and the handler switches roles by invoking WindowManager method setRole() with the user’s assigned role.

The submitted username and password are not valid if the return from findUser() is null. In this case, the handler displays an error message and switches to the default role (unless the default role is already active).

Our application is now ready to build and run. Even though the role-specific TopComponents have attribute openAtStart = true, these windows will not open until their assigned roles are active in the window system.

By default, when the window system switches roles, it first hides the main window, persists the current window layout, loads the window layout of the new role, and then makes the main window visible. This hiding/showing may produce a flicker. To make the switch smoother, you can modify a branding property associated with the application, as follows.

1. Right click the RoleExample application node and select Branding from the context menu.

2. NetBeans displays the RoleExample Branding dialog. Select tab Resource Bundles and type WinSys.Show in the Search Box.

3. Change the value of property WinSys.Show.Hide.MainWindow.While_Switching.Role to false as shown in Figure 8.50. Click OK.

[image:]

Figure 8.50 Property WinSys.Show.Hide.MainWindow.While_Switching.Role

Run the application again. You’ll notice a smoother, flicker-free experience when switching roles.

See “Putting It All Together” on page 544 for an application Login dialog that sets the window system role via login at startup time.

8.11 Key Point Summary

The NetBeans Platform Window System provides standard window features for desktop applications. This includes drag-and-drop reconfiguration and window resizing, docking, maximizing, minimizing, opening, and closing. The window system also provides the following key features.

• Developers create windows by extending class TopComponent, allowing windows to automatically integrate into the NetBeans Platform Window System.

• The default configuration for a TopComponent provides a unique, singleton window, persistence between application restarts, and a registered action to open the window.

• Modes define window containers and specify a window’s relative size and position as a user runs an application or resizes and reconfigures the window frame.

• The windows system provides default modes and you can also define new ones.

• A TopComponent is opened in a mode. The windows system opens a TopComponent in the editor mode if the TopComponent’s mode is not defined or no mode has been assigned.

• There are three mode types: editor, view, and sliding. The editor mode type holds document windows that cannot be minimized. View type modes usually hold helper windows. Minimized windows are put into sliding modes.

• The window system defines TopComponent annotations that specify a window’s configuration. This includes an assigned mode, persistence type, title and tooltip text, and an open action registration.

• TopComponents have three persistent options: PERSISTENCE_ALWAYS, PERSISTENCE_ONLY_OPENED, and PERSISTENCE_NEVER. You can also persist String data for your TopComponent by implementing methods writeProperties() and readProperties().

• Create non-singleton TopComponents by removing element preferredID in annotation @TopComponent.OpenActionRegistration. With non-singleton TopComponents use persistence type PERSISTENCE_NEVER or PERSISTENCE_ONLY_OPENED.

• Override TopComponent methods to customize behavior at certain points in a TopComponent’s life cycle. This includes at component opening, closing, activating, deactivating, hiding, and showing. You can also override method canClose() to dynamically allow or disallow TopComponent closing.

• Set client properties in a TopComponent’s constructor to customize (that is, limit) a window’s behavior.

• A window manager provides programmatic access to useful window operations, such as finding open windows, finding modes, finding TopComponent groups, setting roles, and accessing the current TopComponent registry. With access to a TopComponent instance or a Mode instance, you can open, close, activate, or hide a TopComponent and dock a TopComponent into different modes.

• Window groups let you specify TopComponents that should open and close as a group. Specify and configure groups with a window system group definition file (.wsgrp) and a window system TopComponent group file for each TopComponent in the group.

• NetBeans IDE provides a Layout of Windows wizard to customize window layouts for your applications. This wizard lets you define new modes, redefine standard modes, or rename standard modes.

• You can define different window layouts based on roles and specify TopComponents that belong to certain roles. The window manager keeps track of roles you define and persists a separate Windows2Local hierarchy for each role you use.

• TopComponents with no role configuration can open in any role.

• Switch roles with window manager method setRole() with a String role name. Use role name null for the default window layout, meaning no currently active role.

9. Action Framework

Actions perform work within an application and users initiate this work by selecting menu items, clicking toolbar buttons, or issuing keyboard shortcuts. The NetBeans Platform has an Action framework that provides a configurable UI for action initiation. This framework also provides ways to dynamically enable and disable actions and customize behavior based on selection context. In this chapter we’ll show you how to hook into the NetBeans Platform Action framework, create your own actions, and reuse some of the standard actions provided by the platform. We’ll also introduce context-sensitive actions and capabilities in our continuing effort to create loosely-coupled, modular applications.

What You Will Learn

• Create always-enabled, callback, and conditionally-enabled actions.

• Use annotations to register actions.

• Configure a TopComponent’s ActionMap and a node’s context menu.

• Use the capability pattern to dynamically enable and disable actions.

• Implement drag and drop, delete, cut, copy, and paste, and node reordering actions.

• Implement inter-window drag and drop behaviors.

9.1 Type of Actions

An application’s UI has various ways for users to select actions. By default, a NetBeans Platform application includes a top-level menu bar, an icon-decorated toolbar, and individual context menus that pop up with a right mouse click on configured components. The action itself is identified in the menu item with a display name, an optional icon, and an optional shortcut key sequence. In the toolbar, a required icon identifies the action, and the display name and key shortcut appear in a tooltip.

Actions in menus and in the toolbar have state. They can be enabled or not and pressed or not. In addition, the icon in a menu item is a 16 x 16 PNG or GIF file. In the toolbar, the NetBeans Platform uses a 24 x 24 PNG or GIF file, if available.

You register an action in the menu and toolbar framework with annotations. These annotations also specify the action’s display name, icon, shortcut key sequence, and whether or not separators appear either before or after the menu item (in menus) or icon (in the toolbar). The NetBeans Platform has a New Action wizard that lets you register actions easily. Because actions are configured, a module generally does not need to set a dependency on the module that defines the action. You connect to an action by referencing its key or “path,” or by providing an implementation of a context that the action needs. We’ll show you examples in this chapter.

Menu System Configuration
A NetBeans Platform skeletal application includes a default top-level menu bar and an icon-decorated toolbar. See “Removing Layer Configuration Items” on page 659 to learn how to configure (or hide) the default menu and toolbar framework. Additionally, “Editing the Node Hierarchy” on page 444 shows you how to implement some of the pre-configured menu items, such as Copy, Cut, Paste, and others.

Always-Enabled Actions

We call an action that can be selected in any state of the application an always-enabled action. For example, in the NetBeans IDE top menu bar under menu item NetBeans, both About NetBeans and Quit NetBeans are menu items that are always enabled. These actions don’t depend on the availability of objects, data, or files for their execution. They also don’t depend on a user-selected item or items in any of the application’s windows.

Let’s show you how to create an always-enabled action by adding an action called Calendar to our FamilyTreeApp application. We’ll start with the application previously created in Chapter 7 (see “Creating Your Own Property Sheet” on page 314). This new action pops up a custom dialog with an image, text, and Cancel and OK buttons. Figure 9.1 shows you what it looks like.1

1. Icons for this chapter are from http://www.visualpharm.com.

[image:]

Figure 9.1 Invoking the Calendar action in the FamilyTreeApp application

Add an Always-Enabled Action

Follow these steps to add an always-enabled action to an application.

1. Create a new module called FamilyTreeActions with code name base com.asgteach.familytree.actions (or use an already-existing module).

2. Expand the Source Packages node, right click on the package name, and select New | Action . . . from the context menu, as shown in Figure 9.2.

[image:]

Figure 9.2 Create a new action

3. NetBeans displays New Action’s Action Type dialog. Select Always Enabled, as shown in Figure 9.3 and click Next.

[image:]

Figure 9.3 Specify Always Enabled for Action Type

4. NetBeans displays the GUI Registration dialog. Here you specify where your action should appear (under which menu in the top-level menu bar) and if it should appear in the toolbar.

Actions in the toolbar require an icon. In menus, icons are optional. We register the action in Category Tools under Menu Tools and specify a Separator after the action. We also place the action in the Toolbar (before the Save All icon) and provide a shortcut key combination (Command-E on the Mac, which translates to Meta+E) to initiate the action directly from the keyboard. (E is for Calendar Event.) Figure 9.4 shows these selections. Click Next.

[image:]

Figure 9.4 Specify the action’s GUI Registration

New Action Category
An action’s category determines its “path” in the application’s virtual file system. You can obtain a list of actions for a particular path. There are situations when you want to use a general category name (such as Tools) or a more refined name (such PersonNodeOpen).

5. NetBeans displays the New Action’s Name, Icon and Location dialog. Here, you specify the class file that implements this action, the action’s display name, and the action’s icon, as shown in Figure 9.5. NetBeans’ naming convention for icon files is listed in Table 9.1. You specify a 16 x 16 PNG or GIF file, and NetBeans automatically includes other icon files as long as they’re in the same directory. If you don’t provide the other files, NetBeans provides default presenters for these (although the smaller 16 x 16 doesn’t look very good on the toolbar). Click Finish.

[image:]

Figure 9.5 Specify the action’s name, icon, and location

[image:]

TABLE 9.1 Action Icon Naming Conventions

NetBeans creates the CalendarAction.java class in the FamilyTreeActions project and copies the icon files to the same directory. Listing 9.1 shows the generated annotations that define and register your action class with the application. Class CalendarAction implements the standard Java AWT ActionListener interface, which requires an implementation of the actionPerformed() method.

Listing 9.1 CalendarAction.java

Click here to view code image

@ActionID(
 category = "Tools",
 id = "com.asgteach.familytree.actions.CalendarAction"
)
@ActionRegistration(
 iconBase = "com/asgteach/familytree/actions/calendar.png",
 displayName = "#CTL_CalendarAction"
)
@ActionReferences({
 @ActionReference(path = "Menu/Tools", position = 0, separatorAfter = 50),
 @ActionReference(path = "Toolbars/File", position = 300),
 @ActionReference(path = "Shortcuts", name = "M-E")
})
@Messages("CTL_CalendarAction=Calendar")
public final class CalendarAction implements ActionListener {

@Override
 public void actionPerformed(ActionEvent e) {
 // TODO implement action body
 }
}

While our action doesn’t do anything yet, let’s run the application to see how the new Calendar action is configured in the menu bar and toolbar. Figure 9.6 shows the top-level Tools menu open with the Calendar action, including its icon, display name, and shortcut key sequence.

[image:]

Figure 9.6 Calendar action and icon in the top-level Tools menu

Similarly, Figure 9.7 shows the Calendar action’s icon (the 24 x 24 size) configured in the toolbar. A tooltip displays the action’s name and shortcut key sequence.

[image:]

Figure 9.7 Calendar icon in the toolbar with display name and shortcut teletype

Build a Custom JPanel Form

Now let’s provide an implementation for our Calendar action, as shown in Figure 9.1 on page 415. First, we’ll create a custom panel to hold an image with some text. We’ll then use this custom panel in a NetBeans Platform dialog.2 Build the custom panel with these steps.

2. We discuss dialogs in detail in Chapter 11 and dialogs with custom panels in “Custom Dialogs” on page 533.

1. Expand project FamilyTreeActions Source Packages node and right click on the package name. Select New | JPanel Form . . . from the context menu. In the dialog, specify CalendarPanel for the class name and click Finish.

2. NetBeans creates a new Java class CalendarPanel.java with a top-level JPanel and brings up the form designer.

3. From the Swing Controls palette, add a Label to the form in the upper left. In the Properties view under the Properties tab, specify calendar64.png for the icon property and change the text property to This is the Calendar Action!.

4. Resize the panel so that it holds the Label’s icon and text, as shown in Figure 9.8.

[image:]

Figure 9.8 Custom Swing JPanel for the action’s dialog

Implement ActionListener

Dialogs require a dependency on the Dialogs API.

1. Expand the FamilyTreeActions project, right click on the Libraries node, and select Add Module Dependency In the Module Dependency dialog, select Dialogs API and click OK.

2. Provide code to implement the Calendar action, as shown in Listing 9.2.

Listing 9.2 CalendarAction.java

Click here to view code image

@Messages({
 "CTL_CalendarAction=Calendar",
 "CTL_CalendarTitle=Calendar Action"
})
public final class CalendarAction implements ActionListener {

 private CalendarPanel panel = null;
 private DialogDescriptor dd = null;
 @Override
 public void actionPerformed(ActionEvent e) {
 if (panel == null) {
 panel = new CalendarPanel();
 }
 if (dd == null) {
 dd = new DialogDescriptor(panel, Bundle.CTL_CalendarTitle());
 }
 // display & block
 if (DialogDisplayer.getDefault().notify(dd) ==
 NotifyDescriptor.OK_OPTION) {
 // User clicked OK . . .
 }
 }
}

The DialogDisplayer centers the dialog in the application and blocks until the user dismisses it by clicking either the Cancel or OK button. Figure 9.9 shows the application after clicking on the toolbar Calendar icon. (The toolbar icon remains “pressed” until the user dismisses the dialog.)

[image:]

Figure 9.9 Clicking on the Calendar action icon in the toolbar

9.2 Actions and Lookup

Both TopComponents and nodes have Lookups that hold objects. These objects enable menu items (or toolbar icons) that apply specifically to the focused TopComponent or to the selected node or nodes. You’ll see that the contents of the Global Selection Lookup affect the actions that are available for the user to select.

Callback Actions

Callback actions are global actions with different behaviors depending on which component has focus. They are registered with a key, and you configure them in TopComponents by installing them in the TopComponent’s ActionMap. An ActionMap is inherited by the TopComponent class from Swing JComponent and provides a mapping between a key String and an Action object. You can use the TopComponent’s ActionMap to enable NetBeans Platform actions (such as cut, copy, paste) for your TopComponent.

Furthermore, a callback action can have a “fallback” implementation that is invoked when there isn’t a version installed in the focused TopComponent’s ActionMap. In this case, the action is always enabled, since the fallback version is accessed in the absence of a version referenced in the focused window.

Let’s show you an example of a callback action and explore its behavior by changing the callback action’s configuration, as follows.

1. First, register a Refresh callback action with a fallback implementation. Because the callback action has a fallback implementation, it is always enabled.

2. Next, install a version of this callback action in the Gender TopComponent’s ActionMap. This locally installed implementation executes when the Gender TopComponent has focus. Otherwise, the fallback implementation executes.

3. Last, remove the fallback implementation and you’ll see that the Refresh callback action is enabled only when the Gender TopComponent has focus.

Creating the Fallback Action

Figure 9.10 shows the Refresh menu item and toolbar icon enabled in the application. Executing the Refresh action pops up a dialog that displays “This is the Fallback Refresh Action.”

[image:]

Figure 9.10 Refresh callback action enabled

To build this callback action, create a Refresh action similar to an always-enabled action. The NetBeans Platform New Action wizard creates the annotations that register the action in the application. Here are the steps.

1. Add the Refresh action to the FamilyActions module. Expand the FamilyActions Source Packages node, right click on the source package name, and select New | Action . . . from the context menu.

2. In the Action Type dialog, select Always Enabled and click Next.

3. In the GUI Registration dialog, specify Category File, and put this action in the Global Menu under File at position HERE - <separator>. Also include this action in the Global Toolbar under File after the Save All icon. Specify a Global Shortcut Key sequence (Command - R). Figure 9.11 shows these settings. Click Next.

[image:]

Figure 9.11 GUI Registration dialog

4. NetBeans displays the Name, Icon, and Location dialog as shown in Figure 9.12. Specify RefreshAction for the Class Name, Refresh for the Display Name, and refresh-icon.png for the Icon base name. Click Finish.

[image:]

Figure 9.12 Name, Icon, and Location for Refresh action

NetBeans creates the RefreshAction class and generates the annotations. At this point, the Refresh action is an always-enabled action. To make Refresh a callback action, add a key to the @ActionRegistration, as shown in Listing 9.3. Here we use the key “MyCoolRefreshAction.”

Listing 9.3 RefreshAction.java

Click here to view code image

@ActionID(
 category = "File",
 id = "com.asgteach.familytree.actions.RefreshAction"
)
@ActionRegistration(
 iconBase = "com/asgteach/familytree/actions/refresh-icon.png",
 displayName = "#CTL_RefreshAction",
 key = "MyCoolRefreshAction"
)
@ActionReferences({
 @ActionReference(path = "Menu/File", position = 1300),
 @ActionReference(path = "Toolbars/File", position = 500),
 @ActionReference(path = "Shortcuts", name = "M-R")
})
@Messages("CTL_RefreshAction=Refresh")
public final class RefreshAction implements ActionListener {

 @Override
 public void actionPerformed(ActionEvent e) {
 // Put fallback code here

}
}

Add code to the actionPerformed() method to execute the fallback behavior, as shown in Listing 9.4. In our example, the fallback implementation displays a dialog, as shown in Figure 9.10 on page 423. (The DialogDescriptor uses RefreshPanel, which you build using the same steps used to build the CaldendarPanel. See “Build a Custom JPanel Form” on page 419.)

Listing 9.4 RefreshAction.java—actionPerformed() Fallback Code

Click here to view code image

 . . . Action annotations unchanged . . .
@Messages({
 "CTL_RefreshAction=Refresh",
 "CTL_RefreshTitle=Refresh Action"
})
public final class RefreshAction implements ActionListener {

 private RefreshPanel panel = null;
 private DialogDescriptor dd = null;

 @Override
 public void actionPerformed(ActionEvent e) {
 if (panel == null) {
 panel = new RefreshPanel();
 }
 if (dd == null) {
 dd = new DialogDescriptor(panel, Bundle.CTL_RefreshTitle());
 }
 // display & block
 if (DialogDisplayer.getDefault().notify(dd) ==
 NotifyDescriptor.OK_OPTION) {
 // User clicked OK . . .
 }
 }

}

Create and Install a Callback Action Performer

Next, we’ll define a version of Refresh callback action in the Gender window that is invoked when this window has focus. Recall that when a TopComponent has focus, its ActionMap is in the Global Selection Lookup and any defined actions become enabled.

The Refresh action is already registered in our application. Listing 9.5 shows how to install an implementation of “MyCoolRefreshAction” into the ActionMap of the Gender TopComponent. In the NetBeans Platform documentation, a callback action implementation is called an action “performer.” Note that three steps are required for the TopComponent’s version of RefreshAction to be invoked.

1. Include the ActionMap in the TopComponent’s Lookup. This is accomplished with the associateLookup() method shown in Listing 9.5.

2. Add the action and its key to the TopComponent’s ActionMap, as shown with the getActionMap().put() statement. The key must match the action’s key attribute.

3. When running the application, the Gender window must have focus in order to invoke its version of RefreshAction.

Listing 9.5 GenderTopComponent.java—Installing “MyCoolRefreshAction”

Click here to view code image

public final class GenderTopComponent extends TopComponent
 implements ExplorerManager.Provider {
 private final ExplorerManager em = new ExplorerManager();

public GenderTopComponent() {
 initComponents();
 setName(Bundle.CTL_GenderTopComponent());
 setToolTipText(Bundle.HINT_GenderTopComponent());

 BeanTreeView view = new BeanTreeView();
 add(view, BorderLayout.CENTER);
 associateLookup(ExplorerUtils.createLookup(em, this.getActionMap()));
 em.setRootContext(new RootNode());
 for (Node node : em.getRootContext().getChildren().getNodes()) {
 view.expandNode(node);
 }
 getActionMap().put("MyCoolRefreshAction", new AbstractAction() {

 @Override
 public void actionPerformed(ActionEvent e) {
 em.setRootContext(new RootNode());// Rebuild Node hierarchy
 }
 });
 }

Once an implementation of AbstractAction is installed in the Gender TopComponent’s ActionMap with key “MyCoolRefreshAction” and the Gender TopComponent has focus, invoking the Refresh action executes the local implementation of the actionPerformed() method. Here, the installed, local implementation rebuilds the Explorer View’s node hierarchy (the RootNode is newly instantiated, rebuilding the entire hierarchy). If another window gains focus, the fallback implementation executes unless this other window installs a Refresh action performer as well. In this way, windows can implement their own versions of callback actions.

Removing the Fallback Implementation

Sometimes it may not make sense for a callback action to have a fallback implementation. In this case, the action in the menu and toolbar should enable only if an implementation is installed in the focused component’s ActionMap. To remove the fallback implementation, modify the RefreshAction class, as shown in Listing 9.6. Here are the steps.

1. Define a public static final String inside the class with the same value as the key.

2. Remove the key attribute from the @ActionRegistration annotation.

3. Move the action registration annotations inside the class so that they apply to the static String definition.

4. Remove the ActionListener implementation.

With these changes, the Refresh action is still registered in the top-level Menu and the toolbar, but now there is no fallback implementation.

Listing 9.6 RefreshAction.java—Remove the Fallback Implementation

Click here to view code image

@Messages({
 "CTL_RefreshAction=Refresh",
 "CTL_RefreshTitle=Refresh Action"
})
public final class RefreshAction {
 @ActionID(
 category = "File",
 id = "com.asgteach.familytree.actions.RefreshAction"
)
 @ActionRegistration(
 iconBase = "com/asgteach/familytree/actions/refresh-icon.png",
 displayName = "#CTL_RefreshAction"
)
 @ActionReferences({
 @ActionReference(path = "Menu/File", position = 1300),
 @ActionReference(path = "Toolbars/File", position = 500),
 @ActionReference(path = "Shortcuts", name = "M-R")
 })
 public static final String REFRESH_ACTION = "MyCoolRefreshAction";
}

With no fallback implementation, the Refresh action is only enabled if the Gender window has focus. Otherwise, Refresh is disabled on the toolbar as well as under the File menu, as shown in Figure 9.13.

[image:]

Figure 9.13 Refresh action is disabled

Context-Aware Actions

The previous examples showed you how to register an always-enabled action (Calendar action) and a callback action that is enabled when the TopComponent in which it is registered has focus (Refresh action). Now let’s show you how to create an action that is context aware. This action observes the current selection for a given type and enables itself if instances of the given type are present. Context-aware actions enable when their context is in the Lookup of a selected entity. Typically, the selected entity is one or more nodes, but it can also be a TopComponent.

NetBeans Platform Capability Pattern

Nodes in the NetBeans Platform have context menus and Lookups. The NetBeans Platform builds a node’s context menu from a list of actions provided by the node’s getActions() method. Furthermore, a node’s Lookup holds various “context” objects that enable an action when present in the selected node. Thus, we use a node’s Lookup to install capabilities. In the NetBeans Platform, a capability is described generally by a Java interface or abstract class and realized by the implementation of the interface or concrete class added to the Lookup of an object. This arrangement lets objects dynamically configure their own capabilities that perform actions, such as reloading, storing (saving), opening, and deleting. Capabilities encourage loose coupling, since an unrelated entity can “look up” a capability and invoke it (if it exists) without being privy to the details of its implementation. This is similar to the Global Lookup, which makes Service Providers available to interested entities.

The NetBeans IDE, for example, uses this capability pattern. In the Java Editor, the Save All icon in the toolbar enables when you first make a change to your source code. How exactly does this happen?

When the editor detects an edit to the source code, it adds an implementation of AbstractSavable to its Lookup. The Action framework listens for the presence of an AbstractSavable object in the Global Lookup. When detected, the LookupListener event handler enables the Save All icon in the toolbar and the Save and Save All menu items in the File menu. When you click one of these menu items, the AbstractSavable handleSave() method is invoked. Your file is saved, the AbstractSavable is removed from the Java Editor’s Lookup, and these menu items are once again disabled.3

3. We show you how to do all this with the FamilyTreeApp in Chapter 10. See “Implementing Update” on page 488. We also have an example of dynamically enabling a capability later in this chapter. See “Add Drop Support to the Root Node” on page 465.

The same principle applies to node selection. When you select a node that has a capability in its Lookup that corresponds to the context of a registered action, the action associated with that capability becomes enabled (available). Let’s show you how this works with a different version of the Calendar action.

Implementing a Context-Aware Action

Here’s an overview of how we’ll create a context-aware action and use it with PersonNodes in the GenderTopComponent.

• Remove the always-enabled CalendarAction from the application.

• Create a new Capabilities module and a CalendarCapability interface. Make its package public so that other modules can set a dependency on this module.

• Create a new conditionally-enabled action using the New Action wizard. Name this action Calendar and implement the action with context CalendarCapability.

• Modify PersonNode in module GenderViewer. Implement the CalendarCapability and add it to the PersonNode’s Lookup. Reuse the CalendarPanel form and icons.

• Configure the PersonNode’s list of actions so its context menu includes the Calendar action.

Initially, the Calendar action is disabled until the user selects a single PersonNode. Then, Calendar action is enabled in the File menu, toolbar, and the node’s context menu. The action displays a dialog with the selected Person’s name, as shown in Figure 9.14.

[image:]

Figure 9.14 Invoking the context-aware Calendar action with node Homer Simpson

Create the Capabilities Module

Let’s first create a capability. Since capabilities are viewed as potentially application-wide definitions, we put CalendarCapability in a module (called Capabilities) and make its enclosing package public.

1. Select the Modules node in the FamilyTreeApp project, right-click, and select Add New . . . from the context menu. NetBeans displays the Name and Location dialog for the New Project wizard.

2. For Project Name, specify Capabilities and accept the defaults for the remaining fields. Click Next.

3. NetBeans displays the Basic Module Configuration dialog. Specify com.asgteach.familytree.capabilities for the Code Name Base and accept the defaults for the remaining fields. Click Finish. NetBeans creates project Capabilities in the FamilyTreeApp application.

Create the Capability Interface

1. Expand the Capabilities project Source Packages node, right click on the package name, and select New | Java Interface from the context menu.

2. In the New Interface dialog, specify CalendarCapability for Class Name and click Finish.

3. NetBeans brings up CalendarCapability.java in the Java Editor. Provide the doCalendar() abstract method for the interface, as shown in Listing 9.7.

Listing 9.7 CalendarCapability.java

Click here to view code image

public interface CalendarCapability {

public void doCalendar();

}

Make the Capabilities Module’s Package Public

1. Right click on the Capabilities project and select Properties from the context menu. NetBeans displays the Project Properties dialog.

2. Under Categories, select API Versioning.

3. Under Public Packages, select package com.asgteach.familytree.capabilities as shown in Figure 9.15. Click OK to close the dialog.

[image:]

Figure 9.15 Making package com.asgteach.familytree.capabilities public

Create a Context-Aware Action

Use the New Action wizard to create the Calendar action in the FamilyTreeActions module. Since the Calendar action will use the CalendarCapability, first set a dependency on the Capabilities module.

1. In the FamilyTreeActions project, select the Libraries node, right click, and select Add Module Dependency . . . from the context menu.

2. In the dialog, select the Capabilities module and click OK.

3. Now still in the FamilyTreeActions project, expand the Source Packages node, right click on the package name, and select New | Action . . . from the context menu.

4. NetBeans displays the Action Type dialog of the New Action wizard. Select Conditionally Enabled and specify CalendarCapability for the Cookie Class (the Cookie Class is the context). Select User Selects One Node, as shown in Figure 9.16. Click Next.

[image:]

Figure 9.16 Creating a new context-aware action

One Node or Multiple Nodes
We’ll configure this action for single-node selection first. Then we’ll show you how to make it work for multiple-node selections. Finally, we’ll show you how to make the NodeCalendarAction work for different kinds of nodes (both PersonNode and GenderNode).

5. NetBeans display the GUI Registration dialog. Register this new action in category Nodes, in the File menu and before the Save All icon in the toolbar. Leave the other options unselected, as shown in Figure 9.17. Click Next.

[image:]

Figure 9.17 Register the context-aware action

Action Categories
The action’s Category name lets you categorize actions and identify a set of actions to include in a node’s context menu.

6. NetBeans displays the Name, Icon, and Location dialog. Specify NodeCalendarAction for the Class Name, Calendar for the Display Name, and calendar.png for the icon file, as shown in Figure 9.18. Click Finish.

[image:]

Figure 9.18 Specify the Name, Icon, and Location

7. NetBeans creates the NodeCalendarAction.java file, which uses CalendarCapability for its context type. Implement the actionPerformed() method as shown in Listing 9.8. We also register the shortcut “Meta-E” (E for Event) to invoke the NodeCalendar action. Note that this shortcut is active only when a PersonNode is selected.

Listing 9.8 NodeCalendarAction.java

Click here to view code image

@ActionID(
 category = "Nodes",
 id = "com.asgteach.familytree.actions.NodeCalendarAction"
)
@ActionRegistration(
 iconBase = "com/asgteach/familytree/actions/calendar.png",
 displayName = "#CTL_NodeCalendarAction"
)
@ActionReferences({
 @ActionReference(path = "Menu/File", position = 1200),
 @ActionReference(path = "Toolbars/File", position = 300),
 @ActionReference(path = "Shortcuts", name = "M-E")
})
@Messages("CTL_NodeCalendarAction=Calendar")
public final class NodeCalendarAction implements ActionListener {

 private final CalendarCapability context;

 public NodeCalendarAction(CalendarCapability context) {
 this.context = context;
 }
 @Override
 public void actionPerformed(ActionEvent ev) {
 context.doCalendar();
 }
}

Make Changes to the GenderViewer Module

If you run the FamilyTreeApp application at this point, you will see a Calendar icon in the toolbar and a Calendar menu item in the File menu, but these actions are disabled. Furthermore, if you right click on a PersonNode, you will see only Properties in its context menu (because we configured a PropertiesSheet in PersonNode). To enable the Calendar action, we must provide an implementation of the Calendar action’s context and add it to the PersonNode’s Lookup. Here are the steps to set a dependency on both the Capabilities and the Dialogs API modules and copy the CalendarPanel and icon PNG file to the GenderViewer module.

1. Expand the GenderViewer project, right click on the Libraries node, and select Add Module Dependency In the Module Dependency dialog, select Capabilities and Dialogs API. Click OK.

2. Reuse the CalendarPanel created earlier (see “Build a Custom JPanel Form” on page 419). Expand the FamilyTreeActions project Source Packages and package name node. Select CalendarPanel.java and copy it into the GenderViewer Source Packages com.asgteach.familytree.genderviewer package.

3. Repeat the above step and copy file calendar64.png into the GenderViewer Source Packages com.asgteach.familytree.genderviewer.resources package.

4. Bring up CalendarPanel.java into the design view (click the Design tab). Make sure its JLabel component has Variable Name myLabel. Reset the icon property so that it uses the calendar64.png file in the resources package.

5. Bring up CalendarPanel.java in the Java Editor (click the Source tab). Add the setText() public method to the class, as shown in Listing 9.9.

Listing 9.9 CalendarPanel.java

Click here to view code image

public class CalendarPanel extends javax.swing.JPanel {
. . .
 public void setText(String text) {
 myLabel.setText(text);
 }
}

Implement CalendarCapability in PersonNode

There are several modifications required to make PersonNode have the CalendarCapability. Previously, the PersonNode Lookup contained a single object (Person), which was set in the constructor. Now, however, we want to add other objects to the Lookup. As previously discussed, class InstanceContent lets you dynamically add and remove objects to and from a Lookup (see “Lookup as an Object Repository” on page 225). We’ll use InstanceContent here to give us a Lookup to which we can add objects. We use a private constructor, since a node’s Lookup must be created in a constructor. Note that we now add the Person object to the Lookup in the constructor with instanceContent.add().

Our second modification includes adding an implementation of CalendarCapability to the node’s Lookup. We use an anonymous class and override the doCalendar() method. In it, we instantiate the CalendarPanel and invoke the setText() method to include the Person’s name in the displayed dialog.

Finally, we override the getActions() method to include the Calendar action in the node’s context menu. The getActions() method returns an array of actions. We call super() to include any actions already configured (Properties is already configured in this example). The NetBeans Platform provides the Utilities actionsForPath() method that returns a list of actions registered for a given path (that is, its location in the application’s virtual file system, specified by its category). If you want to include a separator in the context menu, add a null to the List at the appropriate slot. Here, we add a separator before the Calendar menu item.

Listing 9.10 shows these modifications.

Listing 9.10 PersonNode.java—Configuring Calendar Action

Click here to view code image

@Messages({
 "HINT_PersonNode=Person",
 "CTL_CalendarTitle=Calendar Action"
})
public class PersonNode extends AbstractNode implements
 PropertyChangeListener {
 private static final Logger logger = Logger.getLogger(
 PersonNode.class.getName());
 private final InstanceContent instanceContent;

 public PersonNode(Person person) {
 this(person, new InstanceContent());
 }
 private PersonNode(Person person, InstanceContent ic) {
 super(Children.LEAF, new AbstractLookup(ic));
 instanceContent = ic;
 instanceContent.add(person);

setIconBaseWithExtension(
 "com/asgteach/familytree/genderviewer/resources/personIcon.png");
 setName(String.valueOf(person.getId()));
 setDisplayName(person.toString());
 setShortDescription(Bundle.HINT_PersonNode());

 // Add a Calendar Capability to this Node
 instanceContent.add(new CalendarCapability() {

 @Override
 public void doCalendar() {
 CalendarPanel panel = new CalendarPanel();
 panel.setText("<html>Calendar Action applied to<p/>"
 + person + "</html>");
 DialogDescriptor dd = new DialogDescriptor(panel,
 Bundle.CTL_CalendarTitle());
 DialogDisplayer.getDefault().notify(dd); // display & block
 }
 });
 }

 @SuppressWarnings("unchecked")
 @Override
 public Action[] getActions(boolean context) {
 List<Action> personActions = new ArrayList<>(
 Arrays.asList(super.getActions(context)));
 // add a separator
 personActions.add(null);
 personActions.addAll(Utilities.actionsForPath("Actions/Nodes"));
 return personActions.toArray(
 new Action[personActions.size()]);
 }
}

The code we added to PersonNode provides two distinct features.

• One, adding a CalendarCapability implementation to the PersonNode’s Lookup enables the Calendar action when a user selects the node.

• Two, overriding the getActions() method and including the Calendar action in PersonNode’s list of actions makes Calendar show up in PersonNode’s context menu.

If you don’t put the CalendarCapability context in the node’s Lookup but you still override getActions(), then the action will never be enabled, but it will still show up disabled in the node’s context menu.

Conversely, if you put the context in the Lookup but you don’t override the getActions() method, the Calendar action is enabled in the File menu and in the toolbar when a user selects the node, but it does not appear in the node’s context menu.

Figure 9.19 shows the application with the PersonNode’s context menu and the Calendar action icon enabled in the toolbar.

[image:]

Figure 9.19 PersonNode context menu now includes Calendar action

Configuring a Node’s Preferred Action

Double clicking a node invokes a node’s preferred action. To set a node’s preferred action, override the getPreferredAction() method and return an action. To make Calendar action PersonNode’s preferred action, we return the first (and only) action in the path "Actions/Nodes," as shown in Listing 9.11.

Listing 9.11 PersonNode.java—getPreferredAction() Method

Click here to view code image

@SuppressWarnings("unchecked")
 @Override
 public Action getPreferredAction() {
 List<Action> personActions = (List<Action>) Utilities.actionsForPath(
 "Actions/Nodes");
 if (!personActions.isEmpty()) {
 return personActions.get(0);
 } else {
 return super.getPreferredAction();
 }
 }

Note that you can override getPreferredAction() with or without also overriding getActions(). If you don’t override getActions(), the node’s context menu does not include the Calendar action, but you can still invoke the Calendar action with a double click.

The Layer File

The NetBeans Platform Layer file is part of our discussion on window groups (see “Window Group Example” on page 382 in Chapter 8). Historically, you registered actions by editing a module’s Layer file, an XML file used to configure NetBeans Platform applications. The build process in the NetBeans Platform still parses a module’s Layer file (if it exists) and generates a single layer.xml file for the application.

Now, modules can be mostly configured with annotations and a per module Layer file is generally not needed for direct editing. Under the hood, however, Layer files still exist, and it can be helpful to examine them. When registering actions, for example, the category that you assign to an action affects its “path” (its location in the application’s virtual file system).

Listing 9.12 shows the generated Layer file for the FamilyTreeActions module. The Layer file includes the registration information for the NodeCalendarAction and the RefreshAction from our examples. You can view a module’s Layer file in the File view of the application’s build directory, as follows.

Click here to view code image

build/cluster/modules/module-name.jar/META-INF/generated-layer.xml

where module-name.jar is the code name base-named jar file for a module. Not all modules will have a generated Layer file.

Looking at the Layer file, you can see that each action category has its own folder (here you see folder “Nodes” and folder “File”). Similarly, the top-level Menu has its own folder (“Menu”), as well as the Toolbar (“Toolbars”). This Layer file includes the registration information for the actions defined in this module. Other modules provide their own Layer file and action registrations, if any. The context-aware NodeCalendar action is registered for single node selection only ("EXACTLY_ONE"). (See “The File System API Overview” on page 624 for more details on the Layer file.)

Listing 9.12 FamilyTreeActions Module—generated-layer.xml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE filesystem PUBLIC "-//NetBeans//DTD Filesystem 1.2//EN"
 "http://www.netbeans.org/dtds/filesystem-1_2.dtd">
<filesystem>
 <folder name="Actions">
 <folder name="Nodes">
 <file name=
 "com-asgteach-familytree-actions-NodeCalendarAction.instance">
 <!--com.asgteach.familytree.actions.NodeCalendarAction-->
 <attr
 bundlevalue=
 "com.asgteach.familytree.actions.Bundle#CTL_NodeCalendarAction"
 name="displayName"/>
 <attr methodvalue="org.openide.awt.Actions.context"
 name="instanceCreate"/>
 <attr name="type" stringvalue=
 "com.asgteach.familytree.capabilities.CalendarCapability"/>
 <attr methodvalue="org.openide.awt.Actions.inject"
 name="delegate"/>
 <attr name="injectable" stringvalue=
 "com.asgteach.familytree.actions.NodeCalendarAction"/>
 <attr name="selectionType" stringvalue="EXACTLY_ONE"/>
 <attr name="iconBase" stringvalue=
 "com/asgteach/familytree/actions/calendar.png"/>
 <attr boolvalue="false" name="noIconInMenu"/>
 </file>
 </folder>
 <folder name="File">
 <file name=
 "com-asgteach-familytree-actions-RefreshAction.instance">
 <!--com.asgteach.familytree.actions.RefreshAction.REFRESH_ACTION-->
 <attr
 bundlevalue="
 com.asgteach.familytree.actions.Bundle#CTL_RefreshAction"
 name="displayName"/>
 <attr methodvalue="org.openide.awt.Actions.callback"
 name="instanceCreate"/>
 <attr name="key" stringvalue="MyCoolRefreshAction"/>
 <attr name="iconBase" stringvalue=
 "com/asgteach/familytree/actions/refresh-icon.png"/>
 <attr boolvalue="false" name="noIconInMenu"/>
 </file>
 </folder>
 </folder>
 <folder name="Menu">
 <folder name="File">
 <file name=
 "com-asgteach-familytree-actions-NodeCalendarAction.shadow">
 <!--com.asgteach.familytree.actions.NodeCalendarAction-->
 <attr name="originalFile" stringvalue="Actions/Nodes/
 com-asgteach-familytree-actions-NodeCalendarAction.instance"/>
 <attr intvalue="1200" name="position"/>
 </file>
 <file name="com-asgteach-familytree-actions-RefreshAction.shadow">
 <!--com.asgteach.familytree.actions.RefreshAction.REFRESH_ACTION-->
 <attr name="originalFile" stringvalue=
 "Actions/File/com-asgteach-familytree-actions-RefreshAction.instance"/>
 <attr intvalue="1300" name="position"/>
 </file>
 </folder>
 </folder>
 <folder name="Toolbars">
 <folder name="File">
 <file name=
 "com-asgteach-familytree-actions-NodeCalendarAction.shadow">
 <!--com.asgteach.familytree.actions.NodeCalendarAction-->
 <attr name="originalFile" stringvalue="Actions/Nodes/
 com-asgteach-familytree-actions-NodeCalendarAction.instance"/>
 <attr intvalue="300" name="position"/>
 </file>
 <file name="com-asgteach-familytree-actions-RefreshAction.shadow">
 <!--com.asgteach.familytree.actions.RefreshAction.REFRESH_ACTION-->
 <attr name="originalFile" stringvalue="Actions/File/
 com-asgteach-familytree-actions-RefreshAction.instance"/>
 <attr intvalue="500" name="position"/>
 </file>
 </folder>
 </folder>
 <folder name="Shortcuts">
 <file name="M-E.shadow">
 <!--com.asgteach.familytree.actions.NodeCalendarAction-->
 <attr name="originalFile" stringvalue="Actions/Nodes/
 com-asgteach-familytree-actions-NodeCalendarAction.instance"/>
 </file>
 <file name="M-R.shadow">
 <!--com.asgteach.familytree.actions.RefreshAction.REFRESH_ACTION-->
 <attr name="originalFile" stringvalue="Actions/File/
 com-asgteach-familytree-actions-RefreshAction.instance"/>
 </file>
 </folder>
 </filesystem>

Multi-Select Context-Aware Actions

When we built the NodeCalendarAction, we specified that the user selects one node (see Figure 9.16 on page 432). To build a context-aware action that allows users to select multiple nodes, you select the appropriate radio button in the New Action wizard. Then, the wizard generates a List in the action class for the appropriate context type.

If you decide that users can select multiple nodes after you have already created the context-aware action, you can easily modify the action class by converting the context type to a List, as shown in Listing 9.13 (compare this to the single-selection version in Listing 9.8 on page 434).

Listing 9.13 NodeCalendarAction.java—Select Multiple Nodes

Click here to view code image

. . . Annotations Unchanged . . .

public final class NodeCalendarAction implements ActionListener {

 private final List<CalendarCapability> context;

 public NodeCalendarAction(List<CalendarCapability> context) {
 this.context = context;
 }

 @Override
 public void actionPerformed(ActionEvent ev) {
 for (CalendarCapability calendarCapability : context) {
 calendarCapability.doCalendar();
 }
 }
}

Now, when you select multiple PersonNodes, the Calendar action is enabled, as shown in Figure 9.20. In this example, invoking the action results in a succession of dialogs displayed for each selected node. As each dialog is dismissed, the next one appears.

[image:]

Figure 9.20 Calendar action allows a user to select multiple PersonNodes

To emphasize the flexibility and power of capabilities, let’s add this CalendarCapability to GenderNode by adding an implementation to its Lookup. Again, we restructure the GenderNode class to provide for an InstanceContent to which we can add things. Listing 9.14 shows the changes. We also override getActions() so that GenderNode context menu will also include the Calendar action. Note that this implementation of CalendarCapability is customized for GenderNode.

Listing 9.14 GenderNode.java—with CalendarCapability

Click here to view code image

public class GenderNode extends AbstractNode {
 private final InstanceContent instanceContent;

 public GenderNode(Gender gender) {
 this(gender, new InstanceContent());
 }

 private GenderNode(Gender gender, InstanceContent ic) {
 super(Children.create(new PersonChildFactory(gender), false),
 new AbstractLookup(ic));
 instanceContent = ic;
 instanceContent.add(gender);
 setGenderStuff(gender);
 setShortDescription(Bundle.HINT_GenderNode());

 // Add a Calendar capability to this Node
 instanceContent.add(new CalendarCapability() {

 @Override
 public void doCalendar() {
 CalendarPanel panel = new CalendarPanel();
 panel.setText("<html>Calendar Action applied to<p/>Gender "
 + getDisplayName() + "</html>");
 DialogDescriptor dd = new DialogDescriptor(panel,
 Bundle.CTL_CalendarTitle());
 DialogDisplayer.getDefault().notify(dd); // display & block
 }
 });
 }

 @SuppressWarnings("unchecked")
 @Override
 public Action[] getActions(boolean context) {
 List<Action> nodeActions = new ArrayList<>(
 Arrays.asList(super.getActions(context)));
 // add a separator
 nodeActions.add(null);
 nodeActions.addAll(Utilities.actionsForPath("Actions/Nodes"));
 return nodeActions.toArray(
 new Action[nodeActions.size()]);
 }
. . . unchanged code omitted . . .
}

Figure 9.21 shows that we can select both PersonNodes and GenderNodes and invoke the Calendar action, which executes according to the selected context.

[image:]

Figure 9.21 Calendar action implemented for GenderNodes and PersonNodes

9.3 Editing the Node Hierarchy

Applications may require modifying node hierarchies with drag and drop as well as cut, copy, paste, and delete. You may also want to reorder nodes within a node group. The NetBeans Platform provides actions and support for these tasks. To use these actions, you supply support code that hooks into the Action framework and the Explorer View/node hierarchy.4

4. This example is adapted from blog posts and articles provided by Geertjan Wielenga (https://blogs.oracle.com/geertjan/entry/node_cut_copy_paste_delete) and Toni Epple (http://netbeans.dzone.com/nb-how-to-drag-drop-with-nodes-api).

Let’s create a new node hierarchy so that users can move and reorder PersonNodes within three groups (implemented with a GroupNode). We call these groups Happy, Sad, and Undecided. We’ll use the Simpson family from the FamilyTreeManager and let users Cut, Copy, Paste, Delete, Drag and Drop, as well as Reorder, Move Up, and Move Down. In this section, we’ll show you how to implement all of these actions.

Group Window Node Actions

Let’s first look at the Group window and its node structure. Figure 9.22 shows the FamilyTreeApp in its initial state. It includes a single window (Group window) with our favorite group of Person objects from the Simpson family. All family members appear under Group Undecided. You can move one or more Person objects among the three Groups (Happy, Sad, and Undecided) using Copy/Paste, Cut/Paste, or Drag and Drop, putting Person objects in different groups or moving them within the same group. In addition, you can reorder any group.

[image:]

Figure 9.22 Group nodes let you recategorize people

The Group nodes include context menu item Change Order ..., as shown in Figure 9.23. Change Order pops up a separate dialog and lets you use Move Up and Move Down buttons to reorder the group. You dismiss the dialog with either OK to accept the changes or Cancel.

[image:]

Figure 9.23 Group nodes let you reorder and receive pastes

Figure 9.24 shows node Bart Simpson selected and its context menu, which includes Cut, Copy, Delete, Move Up, and Move Down. The Move Up and Move Down actions move the selected node within its group.

[image:]

Figure 9.24 Person nodes let you cut, copy, delete, or move up and down

Basic Node Hierarchy

Let’s first examine the node hierarchy. From Figure 9.24 you see a root node labeled People, intermediate GroupNodes (Happy, Sad, and Undecided), and the familiar PersonNodes with their wrapped Simpson family Person objects.

Because we have a reordering capability, we create a model class (PersonModel) to manipulate the list of Person objects within a GroupNode. Each GroupNode, the PersonChildFactory, and all PersonNodes keep a reference to this model. Listing 9.15 shows the PersonModel class, which maintains an array list of Person objects for each GroupNode. The model also provides methods for adding, removing, and reordering objects as well as change support.

Listing 9.15 PersonModel—Maintaining the GroupNode’s List

Click here to view code image

public class PersonModel {

private final List<Person> persons;
 private final ChangeSupport cs = new ChangeSupport(this);

public PersonModel(List<Person> persons) {
 this.persons = new ArrayList<>(persons);
 }

public List<? extends Person> getPersons() {
 return persons;
 }
 public void add(Person p) {
 persons.add(p);
 cs.fireChange();
 }

public void remove(Person p) {
 persons.remove(p);
 cs.fireChange();
 }

public void reorder(int[] indexOrder) {
 Person[] reordered = new Person[persons.size()];
 for (int i = 0; i < indexOrder.length; i++) {
 int j = indexOrder[i];
 Person p = persons.get(i);
 reordered[j] = p;
 }
 persons.clear();
 persons.addAll(Arrays.asList(reordered));
 cs.fireChange();
 }

public void addChangeListener(ChangeListener l) {
 cs.addChangeListener(l);
 }

public void removeChangeListener(ChangeListener l) {
 cs.removeChangeListener(l);
 }
}

The hierarchy is built with GroupChildFactory, which creates each GroupNode. GroupNode in turn builds its children with PersonChildFactory, creating each PersonNode. Here are the responsibilities of each of these classes.

• GroupNodeChildFactory instantiates PersonModel for each GroupNode, as shown in Listing 9.16. It puts the Simpson family in the GroupNode Undecided when building the hierarchy. Otherwise, it builds an empty model.

Listing 9.16 GroupChildFactory.java

Click here to view code image

public class GroupChildFactory extends ChildFactory<PersonGroup> {

 private static final Logger logger = Logger.getLogger(
 GroupChildFactory.class.getName());
 private final FamilyTreeManager ftm;
 private final List<Person> people = new ArrayList<>();
 GroupChildFactory() {
 ftm = Lookup.getDefault().lookup(FamilyTreeManager.class);
 if (ftm == null) {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager object");
 LifecycleManager.getDefault().exit();
 }
 people.addAll(ftm.getAllPeople());
 }

@Override
 protected boolean createKeys(List<PersonGroup> list) {
 list.addAll(Arrays.asList(GroupNode.PersonGroup.values()));
 return true;
 }

 @Override
 protected Node createNodeForKey(PersonGroup key) {
 // Put all people in group UNDECIDED to start
 if (key.equals(PersonGroup.UNDECIDED)) {
 return new GroupNode(key, new PersonModel(people));
 }
 return new GroupNode(key, new PersonModel(new ArrayList<>()));
 }

}

• GroupNode is one of Happy, Sad, or Undecided and receives a reference to its PersonModel in the constructor, as shown in Listing 9.17. The constructor passes this reference to its Children class (PersonChildFactory).

Listing 9.17 GroupNode.java

click hrer to view code image

@NbBundle.Messages({
 "HINT_GroupNode=Group Node"
})
public class GroupNode extends AbstractNode {

private static final Logger logger = Logger.getLogger(
 GroupNode.class.getName());
 private final PersonModel personModel;
 private final InstanceContent instanceContent;

public enum PersonGroup {
 HAPPY, SAD, UNDECIDED
 }

 public GroupNode(PersonGroup group, final PersonModel personModel) {
 this(group, personModel, new InstanceContent());
 }
 private GroupNode(PersonGroup group,
 final PersonModel personModel,InstanceContent ic) {
 super(Children.create(new PersonChildFactory(personModel), false),
 new AbstractLookup(ic));
 this.instanceContent = ic;
 this.personModel = personModel;
 this.instanceContent.add(group);
 setGroupStuff(group);
 setShortDescription(Bundle.HINT_GroupNode());
 . . .
 }

private void setGroupStuff(PersonGroup group) {
 StringBuilder sb = new StringBuilder();
 StringBuilder iconString = new StringBuilder(
 "com/asgteach/familytree/groupviewer/resources/");
 switch (group) {
 case HAPPY:
 sb.append("Happy");
 iconString.append("happy.png");
 break;
 case SAD:
 sb.append("Sad");
 iconString.append("sad.png");
 break;
 case UNDECIDED:
 sb.append("Undecided");
 iconString.append("undecided.png");
 break;
 }
 setName(sb.toString());
 setDisplayName(sb.toString());
 setIconBaseWithExtension(iconString.toString());
 }
}

• PersonChildFactory (Listing 9.18) extends ChildFactory.Detachable<Person>, which provides the life cycle methods addNotify() and removeNotify(). Here, PersonChildFactory adds/removes itself as a listener to the PersonModel object. PersonChildFactory receives a reference to its PersonModel in the constructor and is the “keeper” of the model, reacting to changes by invoking the refresh() method.

Listing 9.18 PersonChildFactory.java

click hrer to view code image

public class PersonChildFactory extends ChildFactory.Detachable<Person>
 implements ChangeListener {

private final PersonModel personModel;
 public PersonChildFactory(final PersonModel personModel) {
 this.personModel = personModel;
 }

@Override
 protected boolean createKeys(List<Person> list) {
 list.addAll(personModel.getPersons());
 return true;
 }

@Override
 protected Node createNodeForKey(Person key) {
 PersonNode node = new PersonNode(key, personModel);
 return node;
 }

 // Called immediately before the first call to createKeys().
 @Override
 protected void addNotify() {
 personModel.addChangeListener(this);
 }

 // Called when this child factory is no longer in use,
 // to dispose of resources, detach listeners, etc.
 @Override
 protected void removeNotify() {
 personModel.removeChangeListener(this);
 }

 @Override
 public void stateChanged(ChangeEvent e) {
 refresh(false);
 }

}

• Listing 9.19 shows PersonNode, which wraps the Person object. Its constructor receives the Person object and a reference to PersonModel. You’ll see that PersonNode uses the PersonModel reference when it overrides the destroy() method for the delete-type actions Cut, Drag, and Delete (see Listing 9.23 on page 454).

Listing 9.19 PersonNode.java

click hrer to view code image

@NbBundle.Messages({
 "HINT_PersonNode=Person"
})
public class PersonNode extends AbstractNode {
 // This is the list that this PersonNode is part of!
 private final PersonModel personModel;
 public PersonNode(Person person, PersonModel personModel) {
 super(Children.LEAF, Lookups.singleton(person));
 this.personModel = personModel;
 setIconBaseWithExtension(
 "com/asgteach/familytree/groupviewer/resources/personIcon.png");
 setName(String.valueOf(person.getId()));
 setDisplayName(person.toString());
 setShortDescription(Bundle.HINT_PersonNode());
 }
 . . .
 @Override
 public String getHtmlDisplayName() {
 . . . unchanged code . . .
 }
}

Reorder and Index.Support

You reorder a group in two ways. You can either select a GroupNode’s Change Order ... context menu item (see Figure 9.23 on page 445) or you select a PersonNode’s context menu Move Up or Move Down (see Figure 9.24 on page 446). Here are the steps to implement reorder with GroupNode and PersonNode.

1. In GroupNode, include ReorderAction in the getActions() method, as shown in Listing 9.20. This puts menu item Change Order . . . in the GroupNode’s context menu.

2. Add an implementation of Index.Support to GroupNode’s Lookup, overriding the getNodes(), getNodeCount(), and reorder() methods, as shown in Listing 9.20. This enables the Change Order . . . menu item. The reorder() method manipulates the model (PersonModel).

Listing 9.20 GroupNode.java—Index.Support Implementation

click hrer to view code image

public class GroupNode extends AbstractNode {
 . . .

 private GroupNode(PersonGroup group, final PersonModel personModel,
 InstanceContent ic) {
 super(Children.create(new PersonChildFactory(personModel), false),
 new AbstractLookup(ic));
 . . .
 // A support class that implements methods of Index.Support.
 // This class must be in the Node's Lookup to support the Reorder Action
 // and Move Up and Move Down in its children.
 instanceContent.add(new Index.Support() {
 @Override
 public Node[] getNodes() {
 return getChildren().getNodes(true);
 }

@Override
 public int getNodesCount() {
 return getNodes().length;
 }

 // Reorder by permutation
 @Override
 public void reorder(int[] orderIndex) {
 personModel.reorder(orderIndex);
 }
 });
 }

 @Override
 public Action[] getActions(boolean context) {
 return new Action[]{
 ReorderAction.get(ReorderAction.class),
 PasteAction.get(PasteAction.class),};
 }
}

3. PersonNode includes MoveUpAction and MoveDownAction in the PersonNode’s getActions() method, as shown in Listing 9.21. This puts menu items Move Up and Move Down in the PersonNode’s context menu. These menu items are contextually enabled based on the Index.Support added to the parent GroupNode’s Lookup and the PersonNode’s current position in the group.

Listing 9.21 PersonNode—Implementing MoveUp and MoveDown

click hrer to view code image

public class PersonNode extends AbstractNode {
 . . .

 @Override
 public Action[] getActions(boolean context) {
 return new Action[]{
 CutAction.get(CutAction.class),
 CopyAction.get(CopyAction.class),
 DeleteAction.get(DeleteAction.class),
 MoveUpAction.get(MoveUpAction.class),
 MoveDownAction.get(MoveDownAction.class)
 };
 }
 . . .
}

Implementing Drag and Drop

Drag and drop are closely related to cut, copy, and paste with shared support code. We’ll look at drag and drop first, since these actions don’t require menu items.

The drag and drop gesture executes the equivalent of a cut and paste without using menu items. You can select single or multiple PersonNodes. The target of a drop is a GroupNode, whose responsibility is to receive the dropped object (or objects). Figure 9.25 shows three PersonNodes being dragged to GroupNode Sad, with the target position indicated by a gray rectangle outline. The nodes are dropped into their new position and removed from their original position when the user releases the mouse.

[image:]

Figure 9.25 Drag and drop one or more PersonNodes to a GroupNode

Drag and drop requires building a Transferable object that contains the transferred data, as well as meta information associated with the Transferable (such as whether the transfer is a cut or copy). The Transferable data must be serializable. Transferable support is provided by Swing/AWT (many Swing components support drag and drop). The NetBeans Platform provides an extended Transferable object, called ExTransferable, that works with nodes.

Data integrity is maintained by setting the DataFlavor on a Transferable. DataFlavor encapsulates meta information about the data being transferred. This lets the drop target accept a Transferable of supported flavors (and reject unsupported flavors) and properly extract the data. Swing supports standard DataFlavors such as image (imageFlavor), String (stringFlavor), and a list of java.io.File objects (javaFileList). For this example, we create a new DataFlavor for Person objects.

Here are the steps to implement drag and drop in the Group window. Note that you don’t configure any actions in a node’s getActions() method for drag and drop.

1. Create a new DataFlavor for Person (PersonFlavor), as shown in Listing 9.22. Add this class to the FamilyTreeModel module public package so we can access it from multiple modules (which we access in a later example—see “Inter-Window Drag and Drop” on page 458).

Listing 9.22 PersonFlavor.java

click hrer to view code image

public class PersonFlavor extends DataFlavor {

public static final DataFlavor PERSON_FLAVOR = new PersonFlavor();

public PersonFlavor() {
 super(Person.class, "Person");
 }
}

2. In PersonNode, override the clipboardCut() method, which builds an ExTransferable with PersonFlavor and adds it to the application clipboard. Put an ExTransferable.Single in the ExTransferable object and override the getData() method to return the Person object from this node. You must also override the node’s canDestroy(), canCut(), and destroy() methods, since these are invoked during the drag and drop gesture. Listing 9.23 shows these methods.

Note that the destroy() method removes the wrapped Person object from the underlying model (PersonModel in Listing 9.15 on page 446), which then fires a state change event processed by PersonChildFactory (Listing 9.18 on page 449).

Listing 9.23 PersonNode—Implementing Drag and Drop

click hrer to view code image

public class PersonNode extends AbstractNode {
 . . .
 @Override
 public Transferable clipboardCut() throws IOException {
 ExTransferable extrans = ExTransferable.create(super.clipboardCut());
 extrans.put(new ExTransferable.Single(PersonFlavor.PERSON_FLAVOR) {
 @Override
 protected Person getData() {
 return getLookup().lookup(Person.class);
 }
 });
 return extrans;
 }

 @Override
 public boolean canCut() {
 return true; // OK to cut this node
 }
 @Override
 public boolean canDestroy() {
 return true; // OK to destroy this node
 }

 @Override
 public void destroy() throws IOException {
 personModel.remove(getLookup().lookup(Person.class));
 }
}

3. In GroupNode, override the getDropType() method, as shown in Listing 9.24. This method receives the Transferable from either a cut, copy, or drag and creates a PasteType object if the Transferable is supported. The Person object is extracted from the Transferable and added to this group’s model (personModel). If the transfer is either a cut or a drag and drop, the original node is destroyed.

Note that here, the Person object is added to the GroupNode’s model. Similar to the destroy() method, PersonModel fires a state change event processed by PersonChildFactory, and the ensuing refresh() builds the new PersonNode for the transferred Person object.

Listing 9.24 GroupNode—Implementing Drag and Drop

click hrer to view code image

public class GroupNode extends AbstractNode {
 . . .
 // getDropType is required to support drop targets for drag and drop
 // as well as paste for cut/copy actions
 @Override
 public PasteType getDropType(Transferable t, int action, int index) {
 if (t.isDataFlavorSupported(PersonFlavor.PERSON_FLAVOR)) {
 return new PasteType() {
 @Override
 public Transferable paste() throws IOException {
 try {
 personModel.add((Person) t.getTransferData(
 PersonFlavor.PERSON_FLAVOR));
 final Node node = NodeTransfer.node(t,
 NodeTransfer.DND_MOVE + NodeTransfer.CLIPBOARD_CUT);
 // only destroy the original node for DND move or cut
 if (node != null) {
 node.destroy();
 }
 } catch (UnsupportedFlavorException ex) {
 logger.log(Level.WARNING, null, ex);
 }
 return null;
 }
 };
 }
 return null;
 }
}

Implementing Cut, Copy, Paste, Delete

PersonNode supports Cut, Copy, and Delete context menu items (see Figure 9.24 on page 446). In addition, Figure 9.26 shows the top-level Edit menu. PersonNode supports menu items Cut, Copy, and Delete and GroupNode supports Paste (after a PersonNode Cut or Copy action). (Figure 9.23 on page 445 shows the GroupNode Paste context menu item.)

[image:]

Figure 9.26 Edit menu actions Cut, Copy, Paste, Delete and conditionally enabled

Follow these steps to implement these Edit menu actions.

1. Put the Copy, Cut, Paste, and Delete actions in the TopComponent’s ActionMap, as shown in Listing 9.25. This enables these actions in the Edit menu (if the selected node supports the actions).

Listing 9.25 GroupTopComponent—Implementing Edit Menu Actions

click hrer to view code image

public final class GroupTopComponent extends TopComponent
 implements ExplorerManager.Provider {
 private final ExplorerManager em = new ExplorerManager();

public GroupTopComponent() {
 initComponents();
 setName(Bundle.CTL_GroupTopComponent());
 setToolTipText(Bundle.HINT_GroupTopComponent());
 . . .
 ActionMap map = getActionMap();
 map.put(DefaultEditorKit.copyAction, ExplorerUtils.actionCopy(em));
 map.put(DefaultEditorKit.cutAction, ExplorerUtils.actionCut(em));
 map.put(DefaultEditorKit.pasteAction, ExplorerUtils.actionPaste(em));
 map.put("delete", ExplorerUtils.actionDelete(em, true));
 associateLookup(ExplorerUtils.createLookup(em, map));
 }
 . . .
}

2. In PersonNode, include CutAction, CopyAction, and DeleteAction in the getActions() method, as shown in Listing 9.21 on page 452. This puts Cut, Copy, and Delete in the node’s context menu.

3. For Copy, override the canCopy() and clipboardCopy() methods, as shown in Listing 9.26. The clipboardCopy() method builds the ExTransferable that supports Copy with PersonFlavor.PERSON_FLAVOR data flavor. For Cut and Delete, the canCut(), clipboardCut(), canDestroy(), and destroy() methods were shown previously in Listing 9.23 on page 454.

Listing 9.26 PersonNode—Implementing Edit Menu Actions

click hrer to view code image

public class PersonNode extends AbstractNode {
 . . .

 @Override
 public Transferable clipboardCopy() throws IOException {
 ExTransferable extrans = ExTransferable.create(super.clipboardCopy());
 extrans.put(new ExTransferable.Single(PersonFlavor.PERSON_FLAVOR) {
 @Override
 protected Person getData() {
 return getLookup().lookup(Person.class);
 }
 });
 return extrans;
 }

 @Override
 public boolean canCopy() {
 return true; // OK to copy this node
 }
}

4. In GroupNode, include PasteAction in the node’s context menu and override the createPasteTypes() method, as shown in Listing 9.27. Note that createPasteTypes() invokes the getDropType() method, which is also used with drag and drop (see Listing 9.24 on page 455).

Listing 9.27 GroupNode—Implementing Paste

click hrer to view code image

public class GroupNode extends AbstractNode {
 . . .
 @Override
 public Action[] getActions(boolean context) {
 return new Action[]{
 ReorderAction.get(ReorderAction.class),
 PasteAction.get(PasteAction.class),};
 }

 // This is required for cut and copy actions
 // It is not required for Drag and Drop
 @Override
 protected void createPasteTypes(Transferable t, List<PasteType> s) {
 super.createPasteTypes(t, s);
 PasteType p = getDropType(t, 0, 0);
 if (p != null) {
 s.add(p);
 }
 }
}

9.4 Inter-Window Drag and Drop

The Group window in the previous section illustrates drag and drop that occurs within the same window. You can also drag and drop objects between different windows, since the Transferable object contains all of the necessary information a receiving node needs to accept the transferred object.

Trash Window Node Actions

Let’s build on the previous section and implement a drag and drop Delete operation where the user drags a node to a special Trash window for later removal. The user can retrieve nodes from this Trash container, returning them to the Group window, or empty the Trash for their final removal. Let’s also remove the previously implemented Delete action from the PersonNode context menu. We’ll implement this “fancy delete” feature by creating a new module called TrashCan.

Figure 9.27 shows the Trash window with an empty trash icon, a disabled Empty Trash menu item, and no nodes under the Trash node.

[image:]

Figure 9.27 Trash is empty and Empty Trash menu item is disabled

In contrast, Figure 9.28 shows two nodes in the Trash window, the trash icon is “full,” and the Empty Trash menu item is active.

[image:]

Figure 9.28 Trash is not empty and Empty Trash menu item is active

Basic Node Hierarchy

Let’s start with the basic classes for the root node (TrashNode), its Children class (PersonNodeContainer), and the node that wraps a Person object (RemovePersonNode). The Trash window root node is implemented by TrashNode, as shown in Listing 9.28. It uses InstanceContent so that capabilities can be added and removed from its Lookup.

Listing 9.28 TrashNode.java

click hrer to view code image

public class TrashNode extends AbstractNode {

 private final InstanceContent instanceContent;
 private static final Logger logger = Logger.getLogger(
 TrashNode.class.getName());

 public TrashNode(String title) {
 this(title, new InstanceContent());
 }

 private TrashNode(String title, InstanceContent ic) {
 super(new PersonNodeContainer(), new AbstractLookup(ic));
 instanceContent = ic;
 setDisplayName(title);
 setIconBaseWithExtension(
 "com/asgteach/familytree/trashcan/resources/EmptyTrashicon.png");
 }
}

TrashNode’s children are defined by PersonNodeContainer, which uses Index.ArrayChildren for its structure, as shown in Listing 9.29. Method initCollection() initializes an empty collection.

Children
Note that since we aren’t providing a reorder capability for TrashNode, we don’t need a separate model to hold the children. Index.ArrayChildren supplies a simple ArrayList that contains the child nodes.

Listing 9.29 PersonNodeContainer

click hrer to view code image

public class PersonNodeContainer extends Index.ArrayChildren {
 private final List<Node> personList = new ArrayList<Node>();

@Override
 protected List<Node> initCollection() {
 return personList;
 }
}

Each Person object is wrapped in a RemovePersonNode, as shown in Listing 9.30. RemovePersonNode overrides getHtmlDisplayName() to include the Person’s gender. The node’s icon is a delete symbol to emphasize its precarious condition “in the Trash” (see Figure 9.28 on page 459).

Listing 9.30 RemovePersonNode.java

click hrer to view code image

@NbBundle.Messages({
 "HINT_RemoveNode=Person"
})
public class RemovePersonNode extends AbstractNode {

 public RemovePersonNode(Person person) {
 super(Children.LEAF, Lookups.singleton(person));
 setIconBaseWithExtension(
 "com/asgteach/familytree/trashcan/resources/delete.png");
 setName(String.valueOf(person.getId()));
 setDisplayName(person.toString());
 setShortDescription(Bundle.HINT_RemoveNode());
 }

@Override
 public String getHtmlDisplayName() {
 Person person = getLookup().lookup(Person.class);
 StringBuilder sb = new StringBuilder();
 if (person == null) {
 return null;
 }
 sb.append("");
 switch (person.getGender()) {
 case MALE:
 sb.append("| ");
 break;
 case FEMALE:
 sb.append("* ");
 break;
 case UNKNOWN:
 sb.append("? ");
 break;
 }
 sb.append(person.toString()).append("");
 return sb.toString();
 }
}

The TrashTopComponent uses familiar constructor code to initialize the node hierarchy and set the Explorer Manager’s context root, as shown in Listing 9.31.

Listing 9.31 TrashTopComponent.java

click hrer to view code image

@ConvertAsProperties(
 dtd = "-//com.asgteach.familytree.trashcan//Trash//EN",
 autostore = false
)
@TopComponent.Description(
 preferredID = "TrashTopComponent",
 iconBase = "com/asgteach/familytree/trashcan/resources/delete.png",
 persistenceType = TopComponent.PERSISTENCE_ALWAYS
)
@TopComponent.Registration(mode = "editor", openAtStartup = true)
@ActionID(category = "Window",
 id = "com.asgteach.familytree.trashcan.TrashTopComponent")
@ActionReference(path = "Menu/Window" /*, position = 333 */)
@TopComponent.OpenActionRegistration(
 displayName = "#CTL_TrashAction",
 preferredID = "TrashTopComponent"
)
@Messages({
 "CTL_TrashAction=Trash",
 "CTL_TrashTopComponent=Trash",
 "HINT_TrashTopComponent=This is a Trash window",
 "CTL_TrashTitle=Trash"
})
public final class TrashTopComponent extends TopComponent implements
 ExplorerManager.Provider {
 private final ExplorerManager em = new ExplorerManager();

 public TrashTopComponent() {
 initComponents();
 setName(Bundle.CTL_TrashTopComponent());
 setToolTipText(Bundle.HINT_TrashTopComponent());
 BeanTreeView view = new BeanTreeView();
 add(view, BorderLayout.CENTER);
 em.setRootContext(new TrashNode(Bundle.CTL_TrashTitle()));
 associateLookup(ExplorerUtils.createLookup(em, getActionMap()));
 }

@Override
 public ExplorerManager getExplorerManager() {
 return em;
 }
. . .
}

The new “Fancy Delete” drag and drop replaces the Group window’s Delete. Fortunately, only minor changes are required to the GroupViewer module to remove the original Delete capability.

1. Remove “delete” from the GroupTopComponent’s ActionMap (see Listing 9.25 on page 456 and remove ExplorerUtils.actionDelete() from the map).

2. Remove DeleteAction from PersonNode’s getActions() method (see Listing 9.21 on page 452).

The PersonNode and GroupNode in the GroupViewer module already provide the needed drag behavior, as well as the receiving drop behavior to work with the Trash window.

Implementing Drag and Drop Delete

To implement the Trash window drag and drop Delete, you provide the same drag and drop support methods presented in the previous section. TrashNode is the drop target for the drag gesture originating with the Group window, and RemovePersonNode supports the returning drag gesture. Here are the general tasks.

• In TrashNode, override getDropType() in TrashNode to receive a Transferable.

• In RemovePersonNode, override methods clipboardCut(), canCut(), canDestroy(), and destroy() to support the drag gesture back to the Group window.

• Create a context-aware EmptyTrash action.

The EmptyTrash action is conditionally enabled when at least one RemovePersonNode exists in the node hierarchy. The action is disabled when the node hierarchy is empty. The TrashNode icon also changes depending on whether or not the EmptyTrash action is enabled.

Importantly, you’ll see how to dynamically enable and disable actions by adding and removing capabilities to a node’s Lookup. This is a central pattern with the NetBeans Platform. You will see this pattern again in the next chapter with the FamilyTreeApp Save and Save All actions (see “Implementing Update” on page 488).

Let’s begin with the EmptyCapability interface and the EmptyTrash action.

Create Capability and Context-Aware Action

Add interface EmptyCapability interface and its corresponding context-aware action, EmptyTrashAction to module TrashCan. Listing 9.32 shows the EmptyCapability interface.

Listing 9.32 EmptyCapability.java

click hrer to view code image

public interface EmptyCapability {

public void emptyTrash();

}

Listing 9.33 shows the EmptyTrashAction, created with the New Action wizard. You specify a conditionally enabled action type and EmptyCapability for the Cookie Class (the context type).

Listing 9.33 EmptyTrashAction.java

click hrer to view code image

@ActionID(
 category = "TrashNode",
 id = "com.asgteach.familytree.trashcan.EmptyTrashAction"
)
@ActionRegistration(
 displayName = "#CTL_EmptyTrashAction"
)
@Messages("CTL_EmptyTrashAction=Empty Trash")
public final class EmptyTrashAction implements ActionListener {

 private final EmptyCapability context;

 public EmptyTrashAction(EmptyCapability context) {
 this.context = context;
 }

 @Override
 public void actionPerformed(ActionEvent ev) {
 context.emptyTrash();
 }
}

Add Support for the Action and Implement Its Capability

Listing 9.34 shows the implementation code to support the EmptyTrashAction that is contextually enabled. First, we override the getActions() method to include the EmptyTrashAction in the TrashNode context menu.

The enableEmptyAction() method adds an EmptyCapability implementation to the Lookup and changes the node’s icon. The clearEmptyAction() method removes the EmptyCapability object from the Lookup and changes the node’s icon back to the original “empty trash.” With these two methods, we dynamically enable and disable the EmptyTrashAction in TrashNode.

EmptyCapability’s emptyTrash() method destroys the node’s children. The clearEmptyAction() method is invoked from the nodeDestroyed() event handler shown in Listing 9.35 when the children node count is zero.

Listing 9.34 TrashNode.java—EmptyAction Support

click hrer to view code image

public class TrashNode extends AbstractNode implements NodeListener {
 . . .
 @SuppressWarnings("unchecked")
 @Override
 public Action[] getActions(boolean context) {
 List<Action> actions = new ArrayList<>();
 actions.addAll(Utilities.actionsForPath("Actions/TrashNode"));
 return actions.toArray(new Action[actions.size()]);
 }

 private void enableEmptyAction() {
 EmptyCapability ec = getLookup().lookup(EmptyCapability.class);
 if (ec == null) {
 setIconBaseWithExtension(
 "com/asgteach/familytree/trashcan/resources/FullTrashicon.png");
 instanceContent.add(new EmptyCapability() {

 @Override
 public void emptyTrash() {
 for (Node node : getChildren().getNodes()) {
 try {
 node.destroy();
 } catch (IOException ex) {
 logger.log(Level.WARNING, null, ex);
 }
 }
 }
 });
 }
 }

 // invoked from the NodeListener nodeDestroyed() method
 private void clearEmptyAction() {
 EmptyCapability ec = getLookup().lookup(EmptyCapability.class);
 if (ec != null) {
 instanceContent.remove(ec);
 setIconBaseWithExtension(
 "com/asgteach/familytree/trashcan/resources/EmptyTrashicon.png");
 }
 }
 . . .
}

Add Drop Support to the Root Node

Listing 9.35 shows the all-important getDropType() method. This method returns a PasteType and overrides the paste() method, which performs several steps. First, the paste() method extracts the transferred node and disallows drag gestures from within the same hierarchy. Next, the method extracts the Person object, creates a RemovePersonNode, adds the TrashNode as a NodeListener, and adds the new node to the TrashNode hierarchy. Last, the method invokes the enableEmptyAction() method (see Listing 9.34) and deletes the transferred node from its original hierarchy.

TrashNode implements NodeListener, which requires overriding five methods. We’re interested only in events that destroy nodes, handled by the nodeDestroyed() method. This method removes TrashNode as a listener and disables the EmptyTrashAction if the children node count is now zero.

Listing 9.35 TrashNode.java—Handling Drop

click hrer to view code image

public class TrashNode extends AbstractNode implements NodeListener {
 . . .
 @Override
 public PasteType getDropType(Transferable t, int action, int index) {

 if (t.isDataFlavorSupported(PersonFlavor.PERSON_FLAVOR)) {
 return new PasteType() {
 @Override
 public Transferable paste() throws IOException {
 final Node node = NodeTransfer.node(
 t, NodeTransfer.DND_MOVE + NodeTransfer.CLIPBOARD_CUT);
 if (node != null && !TrashNode.this.equals(
 node.getParentNode())) {
 try {
 final Person person = ((Person) t.getTransferData(
 PersonFlavor.PERSON_FLAVOR));
 Node newNode = new RemovePersonNode(person);
 newNode.addNodeListener(TrashNode.this);
 getChildren().add(new Node[]{newNode});
 // we have at least one RemovePersonNode
 enableEmptyAction();
 if ((action & DnDConstants.ACTION_MOVE) != 0) {
 node.destroy();
 }
 } catch (UnsupportedFlavorException ex) {
 logger.log(Level.WARNING, null, ex);
 }
 }
 return null;
 }
 };
 }
 return null;
 }

@Override
 public void childrenAdded(NodeMemberEvent nme) {}
 @Override
 public void childrenRemoved(NodeMemberEvent nme) {}

@Override
 public void childrenReordered(NodeReorderEvent nre) {}

 @Override
 public void nodeDestroyed(NodeEvent ne) {
 ne.getNode().removeNodeListener(this);
 if (getChildren().getNodesCount() == 0) {
 clearEmptyAction();
 }
 }

@Override
 public void propertyChange(PropertyChangeEvent evt) {}
}

Add Drag Support to Child Nodes

To provide drag support back to the Group window, override the canCut(), canDestroy(), destroy(), and clipboardCut() methods in RemovePersonNode, as shown in Listing 9.36. The clipboardCut() method is the same code we used for PersonNode (see Listing 9.23 on page 454). The destroy() method fires a node destroyed event, which the TrashNode listens for.

Listing 9.36 RemovePersonNode.java—Handling Drag

click hrer to view code image

public class RemovePersonNode extends AbstractNode {
 . . .
 @Override
 public boolean canCut() {
 return true;
 }

 @Override
 public boolean canDestroy() {
 return true;
 }

 @Override
 public void destroy() throws IOException {
 getParentNode().getChildren().remove(new Node[] { this });
 fireNodeDestroyed();
 }

 @Override
 public Transferable clipboardCut() throws IOException {
 ExTransferable extrans = ExTransferable.create(super.clipboardCut());
 extrans.put(new ExTransferable.Single(PersonFlavor.PERSON_FLAVOR) {
 @Override
 protected Person getData() {
 return getLookup().lookup(Person.class);
 }
 });
 return extrans;
 }
}

9.5 Key Point Summary

This chapter shows you how to hook into the NetBeans Platform Action framework. You learn how to create actions that are always enabled and actions that depend on the state of your application. We introduce the concept of capabilities and how to dynamically add and remove them to create loosely-coupled behaviors. Finally, we show you how to use the standard NetBeans Platform Edit actions to manipulate nodes in an Explorer View with Cut, Copy, Paste, Move Up, Move Down, Delete, and Drag and Drop. Here are the key points in this chapter.

• The NetBeans Platform New Action wizard lets you register actions with annotations.

• These annotations configure the top-level Menu and Toolbar as well as configure the action’s display name, icon, shortcut key sequence, and action class.

• An action that can be selected in any state of the application is an always-enabled action. These actions do not depend on user-selected objects or the availability of objects, data, or files.

• NetBeans Platform actions implement ActionListener and override the actionPerformed() method.

• A TopComponent’s ActionMap associates a key with a registered callback action.

• Callback actions perform different functions depending on which component has focus. Callback actions with a fallback implementation are always enabled. The fallback implementation is invoked if the focused TopComponent does not provide its own implementation in its ActionMap.

• Callback actions without a fallback implementation are only enabled when the TopComponent with focus has an implementation in its ActionMap.

• Context-aware actions are enabled when a particular context (Cookie class) becomes available through the Global Selection Lookup.

• Specify Conditionally Enabled in the New Action wizard to create context-aware actions.

• A capability is the implementation of an action context that can be dynamically added and removed from an object’s Lookup. Capabilities encourage loose coupling, since an unrelated entity can look up a capability and invoke it without knowing about its implementation.

• The NetBeans Platform uses the capability pattern to implement the Save and Save All actions.

• You configure context-aware actions for either single or multiple node selection.

• Action categories let you classify actions and include them in a node’s context menu.

• To add an action to a node’s context menu, override the getActions() method and include the action’s path.

• To enable a context-aware action for a node, include an implementation of the action’s context in the node’s Lookup.

• Override the getPreferredAction() method to set a node’s preferred action. The action is invoked with a double click on the node.

• Implement node reordering by adding an implementation of Index.Support in the node’s Lookup. Generally, you provide a model to maintain child node ordering. Include ReorderAction in the node’s getActions() method.

• Include MoveUpAction and MoveDownAction in the context menu of child nodes when the parent node supports reordering.

• Implement drag and drop by configuring an ExTransferable object with a supported DataFlavor. Override the getDropType() method in the target node and the clipboardCut(), canCut(), canDestroy(), and destroy() methods in the draggable.

• Implement Cut, Copy, and Paste with clipboardCut() and clipboardCopy() in the source node and createPasteTypes() and getDropType() in the target node.

• Drag and Drop actions (as well as Cut/Copy and Paste) apply between windows since the ExTransferable object contains all the information the receiving node needs to accept or reject the transferred object.

10. Building a CRUD Application

The FamilyTreeApp application has evolved considerably up to this point. Chapter 2 presents a loosely-coupled Swing application that lets you update Person objects. Chapter 5 shows you how to turn this example program into a modularized NetBeans Platform application. Chapter 7 improves the application with nodes and Explorer Views. And Chapter 9 introduces the Action framework and capabilities.

With these pieces in place, we can now turn our FamilyTreeApp application into a full CRUD-based system. For this enhancement, we’ll use capabilities and the Action framework for the implementation and provide a back-end database for persistence. Finally, we make sure the application remains responsive by accessing the database asynchronously.

What You Will Learn

• Apply capabilities and the Action framework to create context-aware actions.

• Use the NetBeans Platform DeleteAction and NewAction for deletes and object creation.

• Build context menus for application nodes.

• Integrate the Save and Save All menu items and Save All toolbar icon.

• Leverage @ServiceProvider to provide an alternate service implementation.

• Provide persistence with DerbyClient (JavaDB database) and EclipseLink (JPA).

• Use the Nodes API to build a node hierarchy asynchronously.

• Use SwingWorker to implement long-running tasks.

10.1 Create-Read-Update-Delete Application

Now that we’ve discussed the types of actions available with the NetBeans Platform Action framework in Chapter 9, we can show you how to create a CRUD-type application. CRUD is the well-known acronym for Create-Read-Update-Delete for database-type applications. Although the FamilyTreeApp is not a database application yet (we just store Person objects in a HashMap), the loosely-coupled design approach provided by the NetBeans Platform lets us easily migrate to a database implementation.

We’ll use capabilities to implement the functions of a CRUD-based application, using the NetBeans Platform provided context where appropriate. We begin with a version of the FamilyTreeApp that includes a Person Viewer window (implemented by module PersonViewer). This window uses Explorer Views and nodes to display a hierarchy of the Person objects supplied by the FamilyTreeManager service provider.

The example application also includes the PersonEditor module you’ve seen before. However, we modify this module to remove the Update button. In its place, we use the NetBeans Platform Openable and AbstractSavable capabilities for editing. When a user opens a Person in a PersonEditor, the Person object receives a dedicated PersonEditor window. Thus, the user can have more than one Person open concurrently.

Figure 10.1 shows the old application and the starting point for our CRUD development. Figure 10.2 shows what the fully CRUD-based version looks like.

[image:]

Figure 10.1 Old version of FamilyTreeApp BEFORE CRUD-functionality added

[image:]

Figure 10.2 FamilyTreeApp AFTER CRUD-functionality added

Before we begin, let’s point out a few features in this new version (Figure 10.2). First, you’ll see that we have three PersonEditor windows opened and the editor’s tab displays the Person’s name and icon. The Update button is gone from the editor window. Instead, when a user edits a Person, the toolbar’s Save All icon becomes enabled as well as the Save and Save All menu items (as shown in Figure 10.2). These UI actions save changes to the underlying data store.

An Open icon appears on the toolbar, in the PersonNode’s context menu, and under the File menu. Open is also the PersonNode’s preferred action, so a double-click opens the selected Person in an editor window or gives the editor window focus when it’s already open.

The root node (labeled People) has two context menu items: Refresh and Add New Person. Refresh provides the Read function in our CRUD application, and Add New Person (also available in the toolbar and under the File menu) provides the Create function.

A PersonNode has Open and Delete context menu items. Delete is enabled for both single and multiple node selection, but Open applies to single node selection only. In addition, the NetBeans Platform standard Delete menu item (under top-level Edit menu) is enabled when one or more PersonNodes are selected. Open (along with Save and Save All) provide the Update function in our CRUD application, and Delete provides the Delete function.

We’ll show each CRUD implementation in detail. Let’s begin by describing the capabilities that we need.

Defining Capabilities

We define four capabilities (Java interfaces) and add them to the Capabilities module’s public package, as follows.

• RefreshCapability—performs a read

• RemovablePersonCapability—performs a delete

• CreatablePersonCapability—performs a create

• SavablePersonCapability—performs an update

Listing 10.1 shows these interfaces (stored in separate class files in module Capabilities). They are implemented and used within the appropriate context, either in PersonNode (RemovablePersonCapability and SavablePersonCapability), in a PersonCapability object (CreatablePersonCapabilty and RefreshCapability), or in the RootNode (also RefreshCapability). The interfaces throw IOExceptions in anticipation of migrating to a database implementation.

Listing 10.1 FamilyTreeApp Capabilities Defined

Click here to view code image

public interface RefreshCapability {
 public void refresh() throws IOException;
}

public interface RemovablePersonCapability {
 public void remove(Person person) throws IOException;
}

public interface CreatablePersonCapability {
 public void create(Person person) throws IOException;
}

public interface SavablePersonCapability {
 public void save(Person person) throws IOException;
}

There are two NetBeans Platform defined capabilities that we also need.

• Openable—opens a Person in a PersonEditor

• AbstractSavable—enables the NetBeans Platform Save and Save All UI elements

Implementing Read

RefreshCapability implements Read in our CRUD application. First, the RootNode context menu uses a context-aware Refresh action, which rebuilds the Person Viewer window’s node hierarchy. Figure 10.3 shows the RefreshAction in the context menu of the root node.

[image:]

Figure 10.3 RootNode Refresh action rebuilds the node hierarchy

Second, the PersonChildFactory class uses the RefreshCapability to read Person objects from the FamilyTreeManager. We’ll show you both of these “refresh” capabilities, starting with the root node RefreshAction.

Create a Context-Aware Action

In module FamilyTreeActions, use the New Action wizard to create a conditionally enabled action called RefreshAction and use RefreshCapability for the Cookie Class. Put the action in category RootNode and do not select any Toolbar or Menu UI registrations. Make its display name “Refresh.” (Optionally, to register this action with an icon on the toolbar or a menu item in the top-level menu, provide additional annotations in the RefreshAction class, as described in “Create a Context-Aware Action” on page 432.)

After NetBeans creates class RefreshAction.java, implement the actionPerformed() method to use the RefreshCapability, as shown in Listing 10.2.

Listing 10.2 RefreshAction.java

Click here to view code image

@ActionID(
 category = "RootNode",
 id = "com.asgteach.familytree.actions.RefreshAction"
)
@ActionRegistration(
 displayName = "#CTL_RefreshAction"
)
@Messages("CTL_RefreshAction=Refresh")
public final class RefreshAction implements ActionListener
{
 private final RefreshCapability context;

 public RefreshAction(RefreshCapability context) {
 this.context = context;
 }

 @Override
 public void actionPerformed(ActionEvent e) {
 try {
 context.refresh();
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
}

Implement the Capability

Implement the RefreshCapability in RootNode and put RefreshAction (included with path "Actions/RootNode") in the getActions() method. Note that we use InstanceContent to add objects to the node’s Lookup, as described in Chapter 9 (see “Implement CalendarCapability in PersonNode” on page 436). Listing 10.3 shows the changes to RootNode.

By adding an implementation of RefreshCapability to the node’s Lookup, we enable the RefreshAction in the node’s context menu. The call to refresh() happens through the RefreshAction’s actionPerformed() method (Listing 10.2).

Listing 10.3 RootNode.java

Click here to view code image

@Messages({
 "HINT_RootNode=Show all people",
 "LBL_RootNode=People"
})
public class RootNode extends AbstractNode {

 private final InstanceContent instanceContent;
 public RootNode() {
 this(new InstanceContent());
 }

 private RootNode(InstanceContent ic) {
 super(Children.create(new PersonChildFactory(), false),
 new AbstractLookup(ic));
 instanceContent = ic;
 setIconBaseWithExtension(
 "com/asgteach/familytree/personviewer/resources/personIcon.png");
 setDisplayName(Bundle.LBL_RootNode());
 setShortDescription(Bundle.HINT_RootNode());
 instanceContent.add(new RefreshCapability(){

 @Override
 public void refresh() throws IOException {
 setChildren(Children.create(new PersonChildFactory(), false));
 }
 });
 }

 @SuppressWarnings("unchecked")
 @Override
 public Action[] getActions(boolean context) {
 List<Action> actions = new ArrayList<>(Arrays.asList(
 super.getActions(context)));
 actions.addAll(Utilities.actionsForPath("Actions/RootNode"));
 return actions.toArray(new Action[actions.size()]);
 }
}

Using WeakListeners
Since Refresh rebuilds the node hierarchy each time, PersonChildFactory and PersonNode should use WeakListeners. This ensures that replaced node and ChildFactory objects are properly garbage collected. (We discuss WeakListeners in “Create ChildFactory for Person” on page 300.)

Using Refresh in the ChildFactory

Listing 10.4 shows PersonCapability.java, an object with its own Lookup. We store various capabilities in PersonCapability’s Lookup that interact with the FamilyTreeManager routines. Capabilities help centralize implementations, yet they can also be customized. Here, we implement RefreshCapability. Note that RefreshCapability does not correspond to an action, but we invoke the capability directly to build children nodes (see the createKeys() method in Listing 10.5 on page 479).

PersonCapability includes property personList, providing access to the list of Person objects read from the FamilyTreeManager.

Listing 10.4 PersonCapability.java

Click here to view code image

public final class PersonCapability implements Lookup.Provider {

 private final Lookup lookup;
 private final InstanceContent instanceContent = new InstanceContent();
 private static final Logger logger = Logger.getLogger(
 PersonCapability.class.getName());
 private final List<Person> personList = new ArrayList<>();
 private FamilyTreeManager ftm = null;

 public PersonCapability() {
 lookup = new AbstractLookup(instanceContent);
 ftm = Lookup.getDefault().lookup(FamilyTreeManager.class);
 if (ftm == null) {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager object");
 LifecycleManager.getDefault().exit();
 }
 instanceContent.add(new RefreshCapability() {

 @Override
 public void refresh() throws IOException {
 if (ftm != null) {
 personList.clear();
 personList.addAll(ftm.getAllPeople());
 } else {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager");
 }
 }
 });
 . . . other capabilities can be added . . .
 }

 public List<Person> getPersonList() {
 return personList;
 }

@Override
 public Lookup getLookup() {
 return lookup;
 }

}

We modify PersonChildFactory to instantiate PersonCapability, look up the RefreshCapability, and use this capability in its createKeys() method, as shown in Listing 10.5. Also note that PersonChildFactory has a property change listener. This listener calls its own refresh() method to rebuild child nodes as necessary when the underlying data store adds or removes Person objects.

Listing 10.5 PersonChildFactory

Click here to view code image

public class PersonChildFactory extends ChildFactory<Person> {

private static final Logger logger = Logger.getLogger(
 PersonChildFactory.class.getName());
 private final PersonCapability personCapability = new PersonCapability();
 private FamilyTreeManager ftm = null;

 public PersonChildFactory() {
 ftm = Lookup.getDefault().lookup(FamilyTreeManager.class);
 if (ftm == null) {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager object");
 LifecycleManager.getDefault().exit();
 } else {
 ftm.addPropertyChangeListener(
 WeakListeners.propertyChange(familytreelistener, ftm));
 }
 }

 @Override
 protected boolean createKeys(List<Person> list) {
 RefreshCapability refreshCapability =
 personCapability.getLookup().lookup(RefreshCapability.class);
 if (refreshCapability != null) {
 try {
 refreshCapability.refresh();
 list.addAll(personCapability.getPersonList());
 logger.log(Level.FINER, "createKeys called: {0}", list);
 } catch (IOException ex) {
 logger.log(Level.WARNING, null, ex);
 }
 }
 return true;
 }

 @Override
 protected Node createNodeForKey(Person key) {
 logger.log(Level.FINER, "createNodeForKey: {0}", key);
 PersonNode node = new PersonNode(key);
 return node;
 }
 // PropertyChangeListener for FamilyTreeManager
 private final PropertyChangeListener familytreelistener =
 (PropertyChangeEvent evt) -> {
 if (evt.getPropertyName().equals(FamilyTreeManager.PROP_PERSON_ADDED)
 || evt.getPropertyName().equals(
 FamilyTreeManager.PROP_PERSON_DESTROYED)) {
 this.refresh(true);
 }
 };
}

Implementing Delete

The system DeleteAction implements the Delete capability for our nodes. The NetBeans Platform TopComponents and nodes are already set up to perform delete actions—you just need to configure them. We install a Delete context menu item in PersonNode and use the NetBeans Platform Delete menu item under the top-level Edit menu, as shown in Figure 10.4.

[image:]

Figure 10.4 Delete action for PersonNode Maggie Simpson

Delete requires the following modifications. Note that Delete automatically works for multiple PersonNode selections.

• In the PersonViewer TopComponent constructor, create a DeleteAction and register it with the TopComponent’s Explorer Manager. Helper function ExplorerUtils.actionDelete() includes a boolean to specify whether or not a confirmation dialog should appear before DeleteAction calls the node’s destroy() method. Adding the DeleteAction to the TopComponent’s ActionMap (and its Lookup) is required to enable the NetBeans Platform Delete menu items.

Click here to view code image

map.put("delete", ExplorerUtils.actionDelete(manager, true)); // or false

• In PersonNode, override the canDestroy() and destroy() methods. The canDestroy() method returns true and the destroy() method performs the delete. The system’s DeleteAction invokes these methods.

• Add the NetBeans Platform DeleteAction to the PersonNode’s getActions() method to include Delete in the node’s context menu.

Listing 10.6 shows PersonNode.java. Here you see the canDestroy() and destroy() methods, the modified getActions() method, and the implementation of RemovablePersonCapability that is added to PersonNode’s Lookup.

Listing 10.6 PersonNode.java

Click here to view code image

@NbBundle.Messages({
 "HINT_PersonNode=Person"
})
public class PersonNode extends AbstractNode {

 private final InstanceContent instanceContent;
 private static final Logger logger = Logger.getLogger(
 PersonNode.class.getName());

 public PersonNode(Person person) {
 this(person, new InstanceContent());
 }

 private PersonNode(Person person, InstanceContent ic) {
 super(Children.LEAF, new AbstractLookup(ic));
 instanceContent = ic;
 instanceContent.add(person);

. . . other capabilities added to Lookup. . .

 // Add a RemovablePersonCapability to this Node
 instanceContent.add(new RemovablePersonCapability() {
 @Override
 public void remove(final Person p) throws IOException {
 if (ftm != null) {
 ftm.deletePerson(p);
 }
 }
 });
 }
 @SuppressWarnings("unchecked")
 @Override
 public Action[] getActions(boolean context) {
 List<Action> personActions = new ArrayList<>(Arrays.asList(
 super.getActions(context)));
 personActions.add(DeleteAction.get(DeleteAction.class));
 return personActions.toArray(
 new Action[personActions.size()]);
 }

 @Override
 public boolean canDestroy() {
 return true;
 }

 @Override
 public void destroy() throws IOException {
 final RemovablePersonCapability doRemove = getLookup().lookup(
 RemovablePersonCapability.class);
 final Person person = getLookup().lookup(Person.class);
 if (doRemove != null && person != null) {
 doRemove.remove(person);
 }
 }
. . . code omitted . . .
}

Note that the Person Viewer window updates after the DeleteAction executes. That’s because PersonChildFactory listens for FamilyTreeManager.PROP_PERSON_DESTROYED and invokes refresh() in the property change event handler (see Listing 10.5 on page 479).

Implementing Create

To create new objects, the NetBeans Platform provides a NewType context as well as a standard NewAction that is responsive to context NewType. In the FamilyTreeApp, we implement the Create function with dialogs that prompt for a new Person’s first and last names and a capability that adds the new Person to the FamilyTreeManager’s data store.

A user can add a new Person through the context menu of the RootNode, as shown in Figure 10.5. Later, we’ll show you how to configure NewAction in the top-level menu or toolbar.

[image:]

Figure 10.5 New Person action creates a new Person

NewAction and NewType

The NetBeans Platform provides a built-in action called NewAction that enables creation-type actions for nodes. You provide an implementation of NewType and configure NewAction in the node’s context menu, as follows.

• Override the node’s getActions() method and include the system’s NewAction in the returned array of actions.

• Override the node’s getNewTypes() method and include an implementation of NewType in the returned array of NewTypes.

To add NewAction to the RootNode (the top-level node in the Person Viewer window), we configure methods getActions() and getNewTypes(), as shown in Listing 10.7.

Listing 10.7 RootNode.java

Click here to view code image

@Messages({
 "HINT_RootNode=Show all people",
 "LBL_RootNode=People"
})
public class RootNode extends AbstractNode {

. . . code omitted . . .

 private final PersonType personType = new PersonType();

 @Override
 public Action[] getActions(boolean context) {
 List<Action> actions = new ArrayList<>(
 Arrays.asList(super.getActions(context)));
 actions.addAll(Utilities.actionsForPath("Actions/RootNode"));
 // This puts the NewAction in the context menu
 actions.add(SystemAction.get(NewAction.class));
 return actions.toArray(new Action[actions.size()]);
 }

 @Override
 public NewType[] getNewTypes() {
 return new NewType[] { personType };
 }

}

Create a Class That Extends NewType

Listing 10.8 shows PersonType.java, a class that extends NewType and overrides the create() method, which NewAction invokes. Here, we look up a CreatablePersonCapability and use it to create a new Person.

Listing 10.8 PersonType.java

Click here to view code image

@Messages({
 "LBL_NewFirst_dialog=First name:",
 "LBL_NewLast_dialog=Last name:",
 "TITLE_NewPerson_dialog=New Person"
})
public class PersonType extends NewType {

 private final PersonCapability personCapability = new PersonCapability();
 private static final Logger logger = Logger.getLogger(
 PersonType.class.getName());
 @Override
 public String getName() {
 return Bundle.TITLE_NewPerson_dialog();
 }

 @Override
 public void create() throws IOException {
 NotifyDescriptor.InputLine msg = new NotifyDescriptor.InputLine(
 Bundle.LBL_NewFirst_dialog(), Bundle.TITLE_NewPerson_dialog());
 Object result = DialogDisplayer.getDefault().notify(msg);
 if (NotifyDescriptor.CANCEL_OPTION.equals(result)) {
 return;
 }
 String firstname = msg.getInputText();
 // check for a zero-length firstname
 if (firstname.equals("")) {
 return;
 }
 msg = new NotifyDescriptor.InputLine(Bundle.LBL_NewLast_dialog(),
 Bundle.TITLE_NewPerson_dialog());
 result = DialogDisplayer.getDefault().notify(msg);
 String lastname = msg.getInputText();
 if (NotifyDescriptor.YES_OPTION.equals(result)) {
 // Create a new Person object
 final Person person = new Person();
 person.setFirstname(firstname);
 person.setLastname(lastname);
 final CreatablePersonCapability cpc = personCapability
 .getLookup().lookup(CreatablePersonCapability.class);
 if (cpc != null) {
 try {
 cpc.create(person);
 logger.log(Level.FINER, "Creating person {0}", person);
 } catch (IOException e) {
 logger.log(Level.WARNING, e.getLocalizedMessage(), e);
 }
 }
 }
 }
}

Implement the Capability

PersonType requires an implementation of interface CreatablePersonCapability (shown previously in Listing 10.1 on page 474). We implement CreatablePersonCapability in PersonCapability, a class previously shown with RefreshCapability (see Listing 10.4 on page 478).

Listing 10.9 shows PersonCapability.java modified to include an implementation of CreatablePersonCapability.

Listing 10.9 PersonCapability.java

Click here to view code image

public final class PersonCapability implements Lookup.Provider {

. . . code omitted . . .

 public PersonCapability() {
 lookup = new AbstractLookup(instanceContent);
 ftm = Lookup.getDefault().lookup(FamilyTreeManager.class);
 if (ftm == null) {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager object");
 LifecycleManager.getDefault().exit();
 }
 . . . RefreshCapability implementation omitted . . .

 instanceContent.add(new CreatablePersonCapability() {
 @Override
 public void create(Person person) throws IOException {
 if (ftm != null) {
 ftm.addPerson(person);
 }
 }
 });
 }
 . . . code omitted . . .
}

Configuring NewAction in the Toolbar and Menu

With these changes, Add New Person now appears in the RootNode’s context menu, as shown in Figure 10.5 on page 483. To configure NewAction for the toolbar and top-level menu, you first register the action. The easiest way to do this is to create a new context-aware action (call it NewPersonAction) and make its context NewType. Listing 10.10 shows this action, which we add to the FamilyTreeActions module.

Listing 10.10 NewPersonAction.java

Click here to view code image

@ActionID(
 category = "NewNode",
 id = "org.openide.actions.NewAction")
@ActionRegistration(
 iconBase = "com/asgteach/familytree/actions/personIcon.png",
 displayName = "#CTL_NewPersonAction")
@ActionReferences({
 @ActionReference(path = "Menu/File", position = 75),
 @ActionReference(path = "Toolbars/File", position = 50)
})
@Messages("CTL_NewPersonAction=New &Person")
public final class NewPersonAction implements ActionListener {

 private final NewType context;

public NewPersonAction(NewType context) {
 this.context = context;
 }

 @Override
 public void actionPerformed(ActionEvent ev) {
 try {
 context.create();
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
}

Now put the context (NewType) into the RootNode’s Lookup to enable the toolbar and menu items. You can continue to use the NewAction in the context menu or use NewPersonAction instead, which is registered under Actions/NewNode. If you use NewPersonAction, then omit the getNewTypes() method, as shown in the modified RootNode in Listing 10.11.

Listing 10.11 RootNode.java

Click here to view code image

public class RootNode extends AbstractNode {

private final InstanceContent instanceContent;
 private final PersonType personType = new PersonType();
 public RootNode() {
 this(new InstanceContent());
 }

 private RootNode(InstanceContent ic) {
 super(Children.create(new PersonChildFactory(), false),
 new AbstractLookup(ic));
 instanceContent = ic;
 setIconBaseWithExtension(
 "com/asgteach/familytree/personviewer/resources/personIcon.png");
 setDisplayName(Bundle.LBL_RootNode());
 setShortDescription(Bundle.HINT_RootNode());
 // Required to enable New Person in context menu and Toolbar and Menus
 instanceContent.add(personType);
 . . .
 }

 @SuppressWarnings("unchecked")
 @Override
 public Action[] getActions(boolean context) {
 List<Action> actions = new ArrayList<>(Arrays.asList(
 super.getActions(context)));
 actions.addAll(Utilities.actionsForPath("Actions/RootNode"));
 actions.addAll(Utilities.actionsForPath("Actions/NewNode"));
 return actions.toArray(new Action[actions.size()]);
 }

// No longer necessary to override public NewType[] getNewTypes()
}

Figure 10.6 shows a New Person icon in the toolbar, as well as a New Person menu item under the top-level File menu.

[image:]

Figure 10.6 New Person action creates a new Person

Implementing Update

The Update function occurs when a user opens the selected PersonNode in an editor, makes changes, and clicks the Save or Save All menu item. For updates, AbstractSavable enables and disables the Save and Save All menu items. We use Openable to implement opening a Person in an editor. Figure 10.2 on page 473 shows the Save / Save All menu items and the Save All icon enabled after a user makes changes in a PersonEditor. Figure 10.7 shows the built-in Show Opened Document List feature displaying the list of currently opened PersonEditor TopComponents.

[image:]

Figure 10.7 The built-in Show Opened Document List

Implementing Update requires several disparate modifications to the application, but the modifications all follow known guidelines in the NetBeans Platform Action framework. The result is a cohesive and cooperative feature. Here is a summary of the changes.

• Create a new module to hold the EditorManager service provider interface and make its package public.

• Implement the EditorManager service provider and add it to the PersonEditor module. (The PersonEditorTopComponent is already included in the PersonEditor module.)

• Use the standard NetBeans Platform context Openable to implement opening an editor. Put an implementation of Openable in PersonNode. The Openable implementation will look up the EditorManager service provider and acquire and open an editor for the selected PersonNode.

• Create OpenAction as a context-aware action with context Openable. Make OpenAction the preferred action for PersonNode. This makes a double click open the node’s Person in the editor.

• Each Person gets its own PersonEditor (a TopComponent), which is permanently associated with that Person. An EditorManager finds the TopComponent or creates it on demand, and opens the TopComponent with focus.

• In the editor, detect when a user makes changes to the domain object (Person) and put an implementation of AbstractSavable into the editor’s Lookup. This enables Save All in the toolbar and Save and Save All in the File menu.

• Use a FamilyTreeManager property change listener to detect when the Person being edited has been deleted. When a delete occurs, unregister the editor (the TopComponent) and close it.

• The editor overrides the canClose() method and prompts the user to close if there are unsaved changes.

Let’s start with the EditorManager service and its implementation.

Create and Configure Module EditorManager

1. Expand the FamilyTreeApp, right click on the Modules node, and select Add New... from the context menu.

2. NetBeans displays the Add New Module Name and Location dialog. For Project Name, specify EditorManager. Accept the defaults for the remaining fields and click Next.

3. In the Basic Module Configuration dialog, specify com.asgteach.familytree.editor.manager for Code Name Base. Accept the defaults for the remaining fields and click Finish.

NetBeans creates project EditorManager. Now set dependencies.

1. Expand project EditorManager, right click on the Libraries node, and select Add Module Dependency... from the context menu.

2. In the Add Module Dependency dialog under Modules, select FamilyTreeModel and Nodes API. Click OK to add these dependencies.

Create the Java interface for the EditorManager service provider, as follows.

1. In project EditorManager, expand the Source Packages, right click on the package name, and select New | Java Interface....

2. In the New Java Interface dialog, specify Class Name EditorManager and click Finish.

3. In the Java Editor, provide abstract methods for EditorManager.java, as shown in Listing 10.12.

Listing 10.12 EditorManager.java

Click here to view code image

public interface EditorManager {
 public void openEditor(Node node);
 public void unRegisterEditor(Person person);
}

4. Using the Properties context menu of project EditorManager under API Versioning, make the package com.asgteach.familytree.editor.manager public so that other modules can set a dependency on this module.

Implement the EditorManager Service Provider

Put the EditorManager service provider implementation in module PersonEditor. Here are the steps.

1. Expand project PersonEditor, right click on the Libraries node, and select Add Module Dependency... from the context menu.

2. In the Add Module Dependency dialog under Modules, select EditorManager and Nodes API. Click OK to add these dependencies.

3. In project PersonEditor, expand the Source Packages, right click on the package name, and select New | Java Class....

4. In the New Java Class dialog, specify Class Name EditorManagerImpl and click Finish.

5. In the Java Editor, provide the following code for EditorManagerImpl.java, as shown in Listing 10.13. Use annotation @ServiceProvider to register this class as a service provider for EditorManager.

The EditorManager service provider manages a HashMap of PersonEditorTopComponents using Person for the key. When the user opens a Person, the map is checked to see if a TopComponent for that Person exists. If one is found, it is opened and activated (request focus). If none exists, a TopComponent is created for that Person. The PersonEditorTopComponent setPerson() method configures the TopComponent with the Person and PersonNode. (The PersonNode includes needed capabilities in its Lookup.)

Listing 10.13 EditorManagerImpl.java

Click here to view code image

@ServiceProvider(service = EditorManager.class)
public class EditorManagerImpl implements EditorManager {

private static final Logger logger = Logger.getLogger(
 EditorManagerImpl.class.getName());
 Map<Person, PersonEditorTopComponent> tcMap = new HashMap<>();

@Override
 public void openEditor(Node node) {
 Person person = node.getLookup().lookup(Person.class);
 if (person == null) {
 return;
 }
 PersonEditorTopComponent tc = tcMap.get(person);
 if (tc != null) {
 if (!tc.isOpened()) {
 tc.open();
 }
 tc.setPerson(node);
 tc.requestActive();
 return;
 }

// Create a new TopComponent and open it...
 logger.log(Level.INFO, "Creating new Editor for {0}", person);
 tc = new PersonEditorTopComponent();
 tcMap.put(person, tc);
 tc.setPerson(node);
 tc.open();
 tc.requestActive();
 }

@Override
 public void unRegisterEditor(Person person) {
 logger.log(Level.INFO, "Unregistering editor for {0}", person);
 tcMap.remove(person);
 }
}

Configure PersonEditor to Work with AbstractSavable

The PersonEditor described in Chapter 5 (see “Configuring a Window with Form Editing” on page 231) lets a user edit a Person from the Global Selection Lookup. In that version, the TopComponent is a singleton. Now, each Person and PersonNode receive its own PersonEditorTopComponent.

To fulfill the Update portion of our CRUD application and use capabilities, we must make several changes to the PersonEditor. We’ll show you these modifications in several parts. Note that much of the PersonEditorTopComponent is unchanged. This includes the components that let a user make changes, the listeners that detect edits, and the methods for updating the form.

Listing 10.14 shows the PersonEditorTopComponent code with the following updates.

• Change the annotations on the TopComponent so that it’s no longer a singleton (see “Creating Non-Singleton TopComponents” on page 364 for a discussion).

• Add InstanceContent to the TopComponent so that you can add nodes and capabilities to its Lookup as needed.

• Implement a public setPerson() method so that the EditorManager can configure the Editor with the Person and its PersonNode (which has capabilities needed by the PersonEditor).

• Remove the Update button and its actionPerformed() event handler.

• Remove the LookupListener event handler code.

• Modify the window’s name and tooltip to display the Person’s name.

• Change the modify() method so that it puts an AbstractSavable implementation (SavableViewCapability) in the TopComponent’s Lookup.

• Remove the AbstractSavable after a Save or when a Save is no longer needed.

Listing 10.14 PersonEditorTopComponent.java—Modifications for CRUD

Click here to view code image

@TopComponent.Description(
 preferredID = "PersonEditorTopComponent",
 iconBase =
 "com/asgteach/familytree/personeditor/personIcon.png",
 persistenceType = TopComponent.PERSISTENCE_NEVER
)
@TopComponent.Registration(mode = "editor", openAtStartup = false)
@Messages({
 "CTL_PersonEditorAction=PersonEditor",
 "CTL_PersonEditorTopComponent=PersonEditor Window",
 "CTL_PersonEditorSaveDialogTitle=Unsaved Data",
 "CTL_PersonEditorSave_Option=Save",
 "CTL_PersonEditorDiscard_Option=Discard",
 "CTL_PersonEditorCANCEL_Option=Cancel",
 "# {0} - person",
 "HINT_PersonEditorTopComponent=This is an Editor for {0}",
 "# {0} - person",
 "CTL_PersonEditorSaveDialogMsg=Person {0} has Unsaved Data. \nSave?"
})
public final class PersonEditorTopComponent extends TopComponent {
 /*
 TopComponents implement Lookup.Provider.
 In order to add objects to a TopComponents Lookup, instantiate
 InstanceContent and associate it with its Lookup using
 the associateLookup() method and create a Lookup with
 AbstractLookup.
 */

 private Person thePerson = null;
 private static final Logger logger = Logger.getLogger(
 PersonEditorTopComponent.class.getName());
 private boolean changeOK = false;
 private boolean noUpdate = true;
 private final InstanceContent instanceContent = new InstanceContent();
 private FamilyTreeManager ftm;

 public PersonEditorTopComponent() {
 initComponents();
 associateLookup(new AbstractLookup(instanceContent));
 }

 // The EditorManager must invoke the setPerson method with the Node
 // that contains the wrapped Person object in its Lookup
 public void setPerson(Node node) {
 thePerson = node.getLookup().lookup(Person.class);
 Node oldNode = getLookup().lookup(Node.class);
 if (oldNode != null) {
 instanceContent.remove(oldNode);
 }
 instanceContent.add(node);
 }

 private void updateModel() {
 if (noUpdate) {
 return;
 }
 thePerson.setFirstname(firstTextField.getText());
 thePerson.setMiddlename(middleTextField.getText());
 thePerson.setLastname(lastTextField.getText());
 thePerson.setSuffix(suffixTextField.getText());
 if (maleButton.isSelected()) {
 thePerson.setGender(Gender.MALE);
 } else if (femaleButton.isSelected()) {
 thePerson.setGender(Gender.FEMALE);
 } else if (unknownButton.isSelected()) {
 thePerson.setGender(Gender.UNKNOWN);
 }
 thePerson.setNotes(notesTextArea.getText());
 // Update the TopComponent's name and tooltip
 setName(thePerson.toString());
 setToolTipText(Bundle.HINT_PersonEditorTopComponent(
 thePerson.toString()));
 }

 private void modify() {
 // Add AbstractSavable to Lookup
 if (getLookup().lookup(SavableViewCapability.class) == null) {
 instanceContent.add(new SavableViewCapability());
 }
 }

 private void clearSaveCapability() {
 SavableViewCapability savable = getLookup().lookup(
 SavableViewCapability.class);
 while (savable != null) {
 savable.removeSavable();
 instanceContent.remove(savable);
 savable = getLookup().lookup(SavableViewCapability.class);
 }
 }

 @Override
 public void componentOpened() {
 setName(thePerson.toString());
 setToolTipText(Bundle.HINT_PersonEditorTopComponent(
 thePerson.toString()));
 configureComponentListeners();
 updateForm();
 ftm = Lookup.getDefault().lookup(FamilyTreeManager.class);
 if (ftm == null) {
 logger.log(Level.SEVERE, "Cannot get FamilyTreeManager object");
 LifecycleManager.getDefault().exit();
 } else {
 ftm.addPropertyChangeListener(familyListener);
 }
 }

• If the Person being edited in this PersonEditor is deleted, the TopComponent unregisters itself with the EditorManager and closes down. The delete is detected by the PropertyChangeListener, as shown in Listing 10.15. You must wrap the TopComponent close() in a Runnable and call it with invokeWhenUIReady(). This ensures the Window System modification is performed on the EDT.

Listing 10.15 PersonEditorTopComponent—PropertyChangeListener

Click here to view code image

 // PropertyChangeListener for FamilyTreeManager
 private final PropertyChangeListener familyListener =
 (PropertyChangeEvent pce) -> {
 if (pce.getPropertyName().equals(
 FamilyTreeManager.PROP_PERSON_DESTROYED) &&
 pce.getNewValue() != null) {
 if (pce.getNewValue().equals(thePerson)) {
 // Our person has been removed from the FamilyTreeManager, so we
 // need to close!
 clearSaveCapability();
 EditorManager edManager = Lookup.getDefault().lookup(
 EditorManager.class);
 if (edManager != null) {
 edManager.unRegisterEditor(thePerson);
 PersonEditorTopComponent.shutdown(this);
 }
 }
 }
 };

 private static void shutdown(final TopComponent tc) {
 WindowManager.getDefault().invokeWhenUIReady(() -> tc.close());
 }

• Override the TopComponent’s canClose() method to prompt the user what to do with unsaved changes, as shown in Listing 10.16. Here, we customize a NetBeans Platform dialog so that the button labels are Cancel, Discard, and Save. (See “Customizing Standard Dialogs” on page 531 for more on dialogs.)

Listing 10.16 PersonEditor.java—Method canClose()

Click here to view code image

// Check to see if we have unsaved changes
// If so, ask the user if the changes should be saved or discarded
 @Override
 public boolean canClose() {
 SavableViewCapability savable = getLookup().lookup(
 SavableViewCapability.class);
 if (savable == null) {
 // No modified data, so just close
 return true;
 }
 // Detected modified data, so ask user what to do
 String saveAnswer = Bundle.CTL_PersonEditorSave_Option();
 String discardAnswer = Bundle.CTL_PersonEditorDiscard_Option();
 String cancelAnswer = Bundle.CTL_PersonEditorCANCEL_Option();
 String[] options = {cancelAnswer, discardAnswer, saveAnswer};
 String msg = Bundle.CTL_PersonEditorSaveDialogMsg(
 thePerson.toString());
 NotifyDescriptor nd = new NotifyDescriptor(msg, // the question
 Bundle.CTL_PersonEditorSaveDialogTitle(), // the title
 NotifyDescriptor.YES_NO_CANCEL_OPTION, // the buttons provided
 NotifyDescriptor.QUESTION_MESSAGE, // the type of message
 options, // the button text
 saveAnswer // the default selection
);
 Object result = DialogDisplayer.getDefault().notify(nd);
 if (result == cancelAnswer ||
 result == NotifyDescriptor.CLOSED_OPTION) {
 // Cancel the close
 return false;
 }
 if (result == discardAnswer) {
 // Don't save, just close!
 clearSaveCapability();
 return true;
 }
 try {
 // Yes, save the data, then close
 savable.handleSave();
 StatusDisplayer.getDefault().setStatusText(thePerson + " saved.");
 return true;
 } catch (IOException ex) {
 logger.log(Level.WARNING, null, ex);
 return false;
 }
 }

• In PersonEditor.java, extend AbstractSavable with private class SavableViewCapability to handle saves, as shown in Listing 10.17. With AbstractSavable, you override the findDisplayName(), handleSave(), equals(), and hashcode() methods. Note that the handleSave() method looks up the node in the TopComponent’s Lookup, then looks up SavablePersonCapability to perform the actual save. (We show you the implementation of SavablePersonCapability in the next section.) When the user clicks the Save menu item, the NetBeans Platform SaveAction invokes the AbstractSavable object’s handleSave() method. Here, the handleSave() method makes a copy of the TopComponent’s Person object after invoking updateModel(). This copy is required to safely add concurrency with the CRUD actions.

Listing 10.17 SavableViewCapability Class

Click here to view code image

private class SavableViewCapability extends AbstractSavable {

SavableViewCapability() {
 register();
 }

public void removeSavable() {
 unregister();
 }

@Override
 protected String findDisplayName() {
 return thePerson.toString();
 }

 @Override
 protected void handleSave() throws IOException {
 final Node node = getLookup().lookup(Node.class);
 if (node != null) {
 final SavablePersonCapability savable
 = node.getLookup().lookup(SavablePersonCapability.class);
 if (savable != null) {
 updateModel();
 final Person p = new Person(thePerson);
 clearSaveCapability();
 changeOK = true;
 try {
 savable.save(p);
 } catch (IOException ex) {
 logger.log(Level.WARNING, null, ex);
 }
 }
 }
 }
 @Override
 public boolean equals(Object other) {
 if (other instanceof SavableViewCapability) {
 SavableViewCapability sv = (SavableViewCapability) other;
 return tc() == sv.tc();
 }
 return false;
 }

@Override
 public int hashCode() {
 return tc().hashCode();
 }

PersonEditorTopComponent tc() {
 return PersonEditorTopComponent.this;
 }
 }

Note that with AbstractSavable, you automatically get a confirmation dialog if there are unsaved changes and the user attempts to Quit the application, as shown in Figure 10.8.

[image:]

Figure 10.8 NetBeans Platform Save dialog responds to AbstractSavable on a Quit

Create and Configure the OpenAction

A user initiates editing by executing an Open action on a PersonNode. Create a context-aware action (put the action in module FamilyTreeActions) and register it under category OpenNodes. This OpenAction (with an icon) is registered with the File menu and the toolbar. Make the context Openable, which is a standard NetBeans Platform capability. Figure 10.9 shows the Open icon in the toolbar and under the File menu. Listing 10.18 shows the code for OpenAction.java.

[image:]

Figure 10.9 Open in the File menu and in the toolbar

Listing 10.18 OpenAction.java

Click here to view code image

@ActionID(
 category = "OpenNodes",
 id = "com.asgteach.familytree.actions.OpenAction"
)
@ActionRegistration(
 iconBase = "com/asgteach/familytree/actions/open.png",
 displayName = "#CTL_OpenAction"
)
@ActionReferences({
 @ActionReference(path = "Menu/File", position = 1100,
 separatorAfter = 1150),
 @ActionReference(path = "Toolbars/File", position = 200)
})
@Messages("CTL_OpenAction=Open")
public final class OpenAction implements ActionListener {

private final Openable context;

public OpenAction(Openable context) {
 this.context = context;
 }

@Override
 public void actionPerformed(ActionEvent ev) {
 context.open();
 }
}

Implement Openable and SavablePersonCapability

The Openable capability is used by OpenAction and the SavablePersonCapability capability is used in the PersonEditorTopComponent to save edits made by the user (see Listing 10.17 on page 497). Listing 10.19 shows the code that implements both of these capabilities and adds them to the PersonNode Lookup.

Listing 10.19 PersonNode.java—Openable and SavablePersonCapability

Click here to view code image

public class PersonNode extends AbstractNode {

. . . code omitted . . .

private PersonNode(Person person, InstanceContent ic) {
 super(Children.LEAF, new AbstractLookup(ic));
 instanceContent = ic;
 instanceContent.add(person);
 . . . code omitted . . .

 // Add an Openable object to this Node
 instanceContent.add(new Openable() {

 @Override
 public void open() {
 EditorManager edmanager = Lookup.getDefault().lookup(
 EditorManager.class);
 if (edmanager != null) {
 edmanager.openEditor(PersonNode.this);
 }
 }

 });
 // Add a SavablePersonCapability to this Node
 instanceContent.add(new SavablePersonCapability() {

 @Override
 public void save(final Person p) throws IOException {
 if (ftm != null) {
 ftm.updatePerson(p);
 }
 }
 });
. . .

Configure the Node’s Actions

Add Open to the context menu of PersonNode and make it the preferred action, as shown in Listing 10.20. Note that OpenAction is registered under category OpenNodes and is the only action in that category.

Listing 10.20 PersonNode.java—Configure Actions

Click here to view code image

 @SuppressWarnings("unchecked")
 @Override
 public Action[] getActions(boolean context) {
 List<Action> personActions = new ArrayList<>(
 Arrays.asList(super.getActions(context)));
 personActions.addAll(Utilities.actionsForPath("Actions/OpenNodes"));
 personActions.add(DeleteAction.get(DeleteAction.class));
 return personActions.toArray(
 new Action[personActions.size()]);
 }

 @SuppressWarnings("unchecked")
 @Override
 public Action getPreferredAction() {
 // Make OpenAction the preferred action
 List<Action> actions = new ArrayList<>(
 Utilities.actionsForPath("Actions/OpenNodes"));
 if (!actions.isEmpty()) {
 return actions.get(0);
 } else {
 return null;
 }
 }

10.2 Using CRUD with a Database

At this point, we’ve built a FamilyTreeApp with a hashmap for its data store. With our simple example (Person objects with no relationships), a hashmap provides an adequate solution to illustrate many of the NetBeans Platform features. However, this is not a viable solution when your application requires a permanent data store. As we move to the next step, which includes using a database, the NetBeans Platform helps us with this migration in several ways.

• Database CRUD operations are a “black box” operation carried out by the FamilyTreeManager.

• Since the FamilyTreeManager is already a service provider, we can easily substitute a new one that uses a database.

In this section, we’ll show you how to implement a FamilyTreeManager with JavaDB and JPA. JavaDB is a built-in database available with the NetBeans IDE. JPA (Java Persistence API) provides the middleware for persistence-based applications. Note that any JPA and database software is applicable here. We use JavaDB and EclipseLink JPA since they are bundled with the NetBeans IDE and JDK software.

When using a database (or a web service), you must ensure that the application remains responsive. The solution is to execute potentially long-running code in the background. We laid the groundwork for this approach in Chapter 2 (see “Swing Background Tasks” on page 73) and in Chapter 4 (see “JavaFX Background Tasks” on page 176). In the next section, we’ll add concurrency to our application to keep the UI responsive.

Here’s the approach we’ll take to migrate the FamilyTreeApp application to a database.

• Create wrapped libraries for the database and JPA software. Wrapped libraries are NetBeans Platform modules that contain library JAR files configured with public packages.

• Start the JavaDB built-in database server and create a database to hold the application’s data.

• Create a module to hold the persistence unit, entity classes, and FamilyTreeManager service provider to perform the JPA/database operations.

• Create an entity class corresponding to each table in the database (there is just one in this example).

• Create a Persistence Unit to describe the entity classes, database, and table generation strategy for JPA.

• Implement a FamilyTreeManager service provider that uses JPA.

• Modify Person.java so that it no longer auto-increments the id property, but instead gets an id generated from the database.

The improvements to the FamilyTreeApp for CRUD operations can be used with no further modifications (thanks to NetBeans Platform module system and service providers).

Create Wrapped Libraries

The NetBeans Platform lets you use external libraries in applications by creating modules called Library Wrapper Modules or wrapped libraries. Wrapped libraries are modules that contain JAR files (that is, external library archive files). The JAR files’ packages are public so that other modules can set dependencies as needed. You can bundle multiple JAR files into one module.

To implement database functionality, we’ll create two wrapped libraries. The first library contains the JavaDB connection software (the Derby Client JAR file). The second library includes the EclipseLink JAR files that provide JPA. These library files are available with the NetBeans IDE distribution.

Derby Client Module

First, create the Derby Client module, as follows.

1. Select the FamilyTreeApp Modules node, right click, and select Add New Library NetBeans initiates the New Library Wrapper Module Project wizard and displays the Select Library dialog.

2. Click the Browse button, navigate to the NetBeans Glassfish distribution subdirectory javadb/lib, and select derbyclient.jar, as shown in Figure 10.10. Click Select and then Next in the Select Library dialog.

[image:]

Figure 10.10 Select derbyclient.jar to include in Library Wrapper Module

3. In the Name and Location dialog, specify DerbyClient for Project Name, accept the default for the remaining fields, and click Next, as shown in Figure 10.11.

[image:]

Figure 10.11 Specify DerbyClient for Project Name

4. In the Basic Module Configuration dialog, specify org.apache.derby for Code Name Base, accept the default for the remaining fields, and click Finish, as shown in Figure 10.12.

[image:]

Figure 10.12 Specify Code Name Base for Library Wrapper module configuration

NetBeans creates a new module named DerbyClient and makes all its packages public.

EclipseLink Module

Follow the same steps to create a second Library Wrapper Module called EclipseLink. The EclipseLink library consists of four JAR files found in the NetBeans IDE distribution under NetBeans/java/modules/ext/eclipselink (the exact location depends on your operating system and the NetBeans distribution). The JAR files you need are as follows (xx refers to various version numbers). In the JAR file chooser dialog, Control-Click lets you select multiple JAR files.

Click here to view code image

eclipselink-xx.jar
 javax.persistence_xx.jar
 org.eclipse.persistence.jpa.jpql_xx.jar
 org.eclipse.persistence.jpa.modelgen_xx.jar

Select all of the above JAR files. Use project name EclipseLink and code name base org.eclipselink. The two Library Wrapper Modules (DerbyClient and EclipseLink) appear as shown in Figure 10.13 in the Projects view with the Libraries node expanded.

[image:]

Figure 10.13 DerbyClient and EclipseLink wrapped library modules

JavaDB Server and Database

The NetBeans IDE comes with a complete SQL database. To use it, you must start the JavaDB Server, as follows.

• In the NetBeans IDE Services tab, expand the Databases node, right click on JavaDB, and select Start Server from the context menu.

In the IDE Output window, you’ll see a JavaDB Data Process tab with output similar to the following.

Click here to view code image

Tue Feb 18 16:02:47 PST 2014 : Apache Derby Network Server - 10.8.1.2 -
 (1095077) started and ready to accept connections on port 1527

JavaDB Server Tip
Note that you must start the JavaDB Server before running the FamilyTreeApp once you add this database functionality to the application.

Create Database

With the JavaDB Server running, you can now create a database that holds the data managed by the FamilyTreeApp.

1. In the Services window, right click on JavaDB and select Create Database ... from the context menu.

2. NetBeans displays a Create Java DB Database dialog. Specify personftm for all fields (Database Name, User Name, Password, and Confirm Password), as shown in Figure 10.14. Click OK.

[image:]

Figure 10.14 Create a Java DB Database

3. You’ll now see personftm listed under JavaDB (expand it) as well as a JDBC-Derby URL. You can connect to this database, but it doesn’t have any tables or structure yet. You’ll provide the structure by defining a persistence unit and entity class.

Implement FamilyTreeManager

Create a new module to implement the FamilyTreeManager that uses JPA.

Create a New Module and Add Dependencies

1. In the FamilyTreeApp application, right click on the Modules node and select Add New... from the context menu.

2. Make the Project Name FamilyTreeManagerJPA and its code name base com.asgteach.familytree.manager.jpa.

3. This module requires some dependencies. Right click on the Libraries node and select Add Module Dependencies... in the context menu.

4. Set dependencies for modules DerbyClient, EclipseLink, FamilyTreeModel, Lookup API, and Utilities API and click OK.

Create an Entity Class

JPA uses entity classes to persist data. Our entity class will be very similar to the Person class you’ve already seen with annotations that define its persistence behavior. We will keep the entity class (PersonEntity) isolated within this module and retain Person as an application-wide domain object that is not a persistent entity.

Create the class, as follows.

1. Right click on the FamilyTreeManagerJPA package name and select New | Java Class from the context menu.

2. Specify PersonEntity for the class name. Provide code, as shown in Listing 10.21.

There are a few important features worth discussing about this JPA entity class.

• PersonEntity uses @Entity to designate the class as a JPA entity class. The optional annotation @Table specifies its table name (otherwise, JPA uses the class name, PersonEntity, as the table name).

• Annotation @Id and @GeneratedValue specify that field id is the primary key and that its value is automatically generated. (This will require that we remove the auto-increment code in the Person class.)

• Annotation @Version is used by JPA to track the modifications made to the entity and maps to a column named VERSION in the table.

• The PersonEntity properties (firstname, middlename, lastname, suffix, gender, and notes) are mapped to equivalently named columns in the database.

Listing 10.21 PersonEntity.java

Click here to view code image

@Entity
@Table(name="Person")
public class PersonEntity implements Serializable {

private static final long serialVersionUID = 1L;
 @Id
 @GeneratedValue(strategy = GenerationType.AUTO)
 private Long id;

@Version
 private int version;

private String firstname = "";
 private String middlename = "";
 private String lastname = "Unknown";
 private String suffix = "";
 private Person.Gender gender = Person.Gender.UNKNOWN;
 private String notes = "";

public PersonEntity() {
 }

public synchronized String getFirstname() {
 return firstname;
 }
 public synchronized void setFirstname(String firstname) {
 this.firstname = firstname;
 }

public synchronized String getLastname() {
 return lastname;
 }

public synchronized void setLastname(String lastname) {
 this.lastname = lastname;
 }

public synchronized String getMiddlename() {
 return middlename;
 }

public synchronized void setMiddlename(String middlename) {
 this.middlename = middlename;
 }

public synchronized String getNotes() {
 return notes;
 }

public synchronized void setNotes(String notes) {
 this.notes = notes;
 }

public synchronized Person.Gender getGender() {
 return gender;
 }

public synchronized void setGender(Person.Gender gender) {
 this.gender = gender;
 }

public synchronized String getSuffix() {
 return suffix;
 }

public synchronized void setSuffix(String suffix) {
 this.suffix = suffix;
 }

public synchronized Long getId() {
 return id;
 }
 @Override
 public boolean equals(Object o) {
 if (o == null) {
 return false;
 }
 if (getClass() != o.getClass()) {
 return false;
 }
 return this.getId().equals(((PersonEntity) o).getId());
 }

@Override
 public int hashCode() {
 int hash = 7;
 hash = 97 * hash + (this.id != null ? this.id.hashCode() : 0);
 return hash;
 }

@Override
 public String toString() {
 StringBuilder sb = new StringBuilder();
 sb.append("[").append(getId()).append("] ");
 if (!this.getFirstname().isEmpty()) {
 sb.append(this.getFirstname());
 }
 if (!this.getMiddlename().isEmpty()) {
 sb.append(" ").append(this.getMiddlename());
 }
 if (!this.getLastname().isEmpty()) {
 sb.append(" ").append(this.getLastname());
 }
 if (!this.getSuffix().isEmpty()) {
 sb.append(" ").append(this.getSuffix());
 }
 return sb.toString();
 }

}

Create a Persistence Unit

With an entity class and database created and the Java DB server running, you can now create a Persistence Unit for this module. The Persistence Unit is described by an XML file called persistence.xml. You add it to the META-INF directory of module FamilyTreeManagerJPA.

Listing 10.22 shows an example persistence.xml file. The Persistence Unit has a name (PersonFTMPU) and specifies a persistence provider (org.eclipse.persistence.jpa.PersistenceProvider). The persistence unit also describes how to connect to the database (here using JDBC/Derby) and (importantly) the table generation strategy. Here, we specify “drop-and-create-tables,” which creates the database tables each time (deleting any data). If you want to keep the data between program executions, change the generation strategy to “create-tables” (which creates the tables only if needed) or “none” (which performs no table generation).

Table Generation Strategy
Note that if you change the generation strategy from “drop-and-create-tables,” you’ll need to remove the generation of test data in the FamilyTreeModel’s Installer class, which creates the Simpson family test data each time.

You can also change the default logging level for EclipseLink to FINE to see more detailed logging output from the persistence provider. (Warning: FINE produces many messages.)

Listing 10.22 persistence.xml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>
<persistence version="2.0" xmlns="http://java.sun.com/xml/ns/persistence"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd">
 <persistence-unit name="PersonFTMPU" transaction-type="RESOURCE_LOCAL">
 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
 <class>com.asgteach.familytree.manager.jpa.PersonEntity</class>
 <properties>
 <property name="driverClass" value="org.apache.derby.jdbc.ClientDriver"/>
 <!-- <property name="eclipselink.logging.level" value="FINE"/>-->
 <property name="javax.persistence.jdbc.url"
 value="jdbc:derby://localhost:1527/personftm"/>
 <property name="javax.persistence.jdbc.user" value="personftm"/>
 <property name="javax.persistence.jdbc.driver"
 value="org.apache.derby.jdbc.ClientDriver"/>
 <property name="javax.persistence.jdbc.password" value="personftm"/>
 <property name="eclipselink.ddl-generation"
 value="drop-and-create-tables"/>
 </properties>
 </persistence-unit>
</persistence>

Database Configuration Options
You can alternatively use a pre-existing database. In this case, the NetBeans IDE can generate the entity classes and the Persistence Unit for you. To do this, create a Java Class Library Project. Then, from the top-level menu, select File | New File. In the dialog specify category Persistence, then choose Entity Classes from Database. This will create the entity classes and the Persistence Unit you need based on the database connection you provide. Once you have these files, you can copy them into a module in your NetBeans Platform application.

Create a New FamilyTreeManager Service Provider

Now it’s time to create a new class that implements FamilyTreeManager. Call this class FamilyTreeManagerJPA and make it a service provider (using @ServiceProvider) for FamilyTreeManager. Attribute supersedes specifies that this implementation takes precedence over the original FamilyTreeManager service provider. (You can also remove module FamilyTreeManagerImpl from the application.)

A static initializer initializes the EntityManagerFactory and creates an EntityManager. Creating the EntityManager fails if the JavaDB Database server is not running.

Similar to class FamilyTreeManagerImpl, this implementation provides property change support when Person objects are updated, added to, and removed from the database. We use SwingPropertyChangeSupport so that the property change events are fired on the EDT.

Private method buildPerson() creates a Person object with its database-generated id property. (Class Person in module FamilyTreeModel now requires a new constructor.) This replaces the auto-increment id in class Person used in the hashmap version.

With JPA, you execute database operations using the EntityManager, which provides the database management. Listing 10.23 shows class FamilyTreeManagerJPA.java.

Listing 10.23 FamilyTreeManagerJPA.java

Click here to view code image

@ServiceProvider
(service = com.asgteach.familytree.model.FamilyTreeManager.class,
 supersedes = {
 "com.asgteach.familytree.manager.impl.FamilyTreeManagerImpl"})
public class FamilyTreeManagerJPA implements FamilyTreeManager {

// SwingPropertyChangeSupport is thread-safe
 // true means fire property change events on the EDT
 private SwingPropertyChangeSupport propChangeSupport = null;

 private static final EntityManagerFactory EMF;
 private static final Logger logger = Logger.getLogger(
 FamilyTreeManagerJPA.class.getName());
 static {
 try {
 EMF = Persistence.createEntityManagerFactory("PersonFTMPU");
 logger.log(Level.INFO, "Entity Manager Factory Created.");
 // Create/close entity manager to make sure JavaDB Server is running
 // This will fail if the JavaDB Server is not running
 EntityManager em = EMF.createEntityManager();
 em.close();
 } catch (Throwable ex) {
 logger.log(Level.SEVERE,
 "Make sure that the JavaDB Database Server has been started.", ex);
 throw new ExceptionInInitializerError(ex);
 }
 }

private PropertyChangeSupport getPropertyChangeSupport() {
 if (this.propChangeSupport == null) {
 this.propChangeSupport = new SwingPropertyChangeSupport(this, true);
 }
 return this.propChangeSupport;
 }

@Override
 public void addPropertyChangeListener(PropertyChangeListener listener) {
 getPropertyChangeSupport().addPropertyChangeListener(listener);
 }

@Override
 public void removePropertyChangeListener(PropertyChangeListener listener) {
 getPropertyChangeSupport().removePropertyChangeListener(listener);
 }

 private Person buildPerson(PersonEntity pe) {
 Person person = new Person(pe.getId());
 person.setFirstname(pe.getFirstname());
 person.setGender(pe.getGender());
 person.setLastname(pe.getLastname());
 person.setMiddlename(pe.getMiddlename());
 person.setNotes(pe.getNotes());
 person.setSuffix(pe.getSuffix());
 return person;
 }

 @Override
 public void addPerson(final Person newPerson) {
 EntityManager em = EMF.createEntityManager();
 try {
 em.getTransaction().begin();
 PersonEntity person = new PersonEntity();
 person.setFirstname(newPerson.getFirstname());
 person.setLastname(newPerson.getLastname());
 person.setGender(newPerson.getGender());
 person.setMiddlename(newPerson.getMiddlename());
 person.setSuffix(newPerson.getSuffix());
 person.setNotes(newPerson.getNotes());
 em.persist(person);
 em.getTransaction().commit();
 logger.log(Level.INFO,
 "New Person: {0} successfully added.",newPerson);
 getPropertyChangeSupport().firePropertyChange(
 FamilyTreeManager.PROP_PERSON_ADDED, null, buildPerson(person));
 } catch (Exception ex) {
 logger.log(Level.SEVERE, null, ex);
 } finally {
 em.close();
 }
 }

 @Override
 public void updatePerson(final Person p) {
 EntityManager em = EMF.createEntityManager();
 try {
 em.getTransaction().begin();
 PersonEntity target = em.find(PersonEntity.class, p.getId());
 if (target != null) {
 target.setFirstname(p.getFirstname());
 target.setGender(p.getGender());
 target.setLastname(p.getLastname());
 target.setMiddlename(p.getMiddlename());
 target.setNotes(p.getNotes());
 target.setSuffix(p.getSuffix());
 em.merge(target);
 em.getTransaction().commit();
 logger.log(Level.FINE, "Person {0} successfully updated.", p);
 getPropertyChangeSupport().firePropertyChange(
 FamilyTreeManager.PROP_PERSON_UPDATED, null,
 buildPerson(target));
 }
 logger.log(Level.WARNING, "No entity for Person {0}.", p);
 } catch (Exception ex) {
 logger.log(Level.SEVERE, null, ex);
 } finally {
 em.close();
 }
 }

 @Override
 public void deletePerson(Person p) {
 EntityManager em = EMF.createEntityManager();
 try {
 em.getTransaction().begin();
 PersonEntity target = em.find(PersonEntity.class, p.getId());
 if (target != null) {
 em.remove(target);
 em.getTransaction().commit();
 logger.log(Level.FINE, "Person {0} successfully removed.", p);
 getPropertyChangeSupport().firePropertyChange(
 FamilyTreeManager.PROP_PERSON_DESTROYED, null, p);
 } else {
 logger.log(Level.WARNING, "No entity for Person {0}.", p);
 }
 } catch (Exception ex) {
 logger.log(Level.SEVERE, null, ex);
 } finally {
 em.close();
 }
 }

 @SuppressWarnings("unchecked")
 @Override
 public List<Person> getAllPeople() {
 EntityManager em = EMF.createEntityManager();
 try {
 List<Person> people = Collections.synchronizedList(
 new ArrayList<>());
 em.getTransaction().begin();
 Query q = em.createQuery(
 "select p from PersonEntity p order by p.lastname asc, p.firstname asc");
 List<PersonEntity> results = (List<PersonEntity>) q.getResultList();
 if (results != null && results.size() > 0) {
 results.stream().forEach((pe) -> {
 people.add(buildPerson(pe));
 });
 }
 em.getTransaction().commit();
 return Collections.unmodifiableList(people);
 } catch (Exception ex) {
 logger.log(Level.SEVERE, null, ex);
 return null;
 } finally {
 em.close();
 }
 }
}

Updating Class Person

Listing 10.24 shows the modified Person class. The new constructor uses the id generated by the database.

Listing 10.24 Person.java

Click here to view code image

public final class Person implements Serializable {

private long id;
 private String firstname;
 private String middlename;
 private String lastname;
 private String suffix;
 private Person.Gender gender;
 private String notes;

. . . code omitted . . .

public Person() {
 this("", "", Gender.UNKNOWN);
 }

 public Person(long id) {
 this("", "", Gender.UNKNOWN);
 this.id = id;
 }

public Person(String first, String last, Person.Gender gender) {
 this.firstname = first;
 this.middlename = "";
 this.lastname = last;
 this.suffix = "";
 this.gender = gender;
 this.notes = "";
 }

public Person(Person person) {
 this.firstname = person.getFirstname();
 this.middlename = person.getMiddlename();
 this.lastname = person.getLastname();
 this.suffix = person.getSuffix();
 this.gender = person.getGender();
 this.notes = person.getNotes();
 this.id = person.getId();
 }
. . . code omitted . . .
}

Running the Application

To run this application, start the JavaDB Database server and execute the FamilyTreeApp. The first time you run the application, the Persistence Unit generates the database table. The FamilyTreeModel @OnStart class creates the sample data (see “Using @OnStart” on page 242).

Figure 10.15 shows the FamilyTreeApp running after the user makes changes (Person Abraham Simpson is added and several records have been updated). The full CRUD actions we implemented earlier work as before, except now the data is stored in a database.

[image:]

Figure 10.15 Running the application

Viewing the Database

After running the application, you can view the database structure in the Services window of the NetBeans IDE. Expand the Databases node, right click on database jdbc:derby://localhost:1527/personftm [personftm on PERSONFTM], and select Connect. After connecting, expand PERSONFTM | Tables | PERSON to view the database columns, as shown in Figure 10.16.

[image:]

Figure 10.16 Viewing the database structure

You can also view the data. In the Services window, right click on table PERSON and select View Data from the context menu. After executing the SQL, you see the data displayed in the IDE’s window, as shown in Figure 10.17.

[image:]

Figure 10.17 Viewing the data after running the application

10.3 Concurrency in the FamilyTreeApp Application

Now that we’ve added database access to the FamilyTreeApp, we must make sure our application UI remains responsive. To that end, we’ll execute database access code in background threads. In general, SwingWorker provides the needed concurrency (see “Introducing SwingWorker” on page 73) . However, the NetBeans Platform also has built-in concurrency with the Nodes API that we can leverage.

Concurrency with Read

Database reads occur when we build the node structures in the Person Viewer window. Class RootNode invokes Children.create() to build child nodes. The Children.create() method includes an asynchronous flag, which when set to true, builds the children nodes in a background thread and automatically includes a placeholder node with display name “Please wait ... ”. Modify RootNode.java to set the asynchronous flag to true, as shown in Listing 10.25.

Listing 10.25 RootNode.java

Click here to view code image

@Messages({
 "HINT_RootNode=Show all people",
 "LBL_RootNode=People"
})
public class RootNode extends AbstractNode {

private final InstanceContent instanceContent;
 private final PersonType personType = new PersonType();
 public RootNode() {
 this(new InstanceContent());
 }

 private RootNode(InstanceContent ic) {
 // create children asynchronously
 super(Children.create(
 new PersonChildFactory(), true), new AbstractLookup(ic));
 instanceContent = ic;
 setIconBaseWithExtension(
 "com/asgteach/familytree/personviewer/resources/personIcon.png");
 setDisplayName(Bundle.LBL_RootNode());
 setShortDescription(Bundle.HINT_RootNode());
 // Required to enable New Person in context menu and Toolbar and Menus
 instanceContent.add(personType);
 instanceContent.add(new RefreshCapability(){

 @Override
 public void refresh() throws IOException {
 // create children asynchronously
 setChildren(Children.create(new PersonChildFactory(), true));
 }
 });
 }
 . . . code omitted . . .
}

When you invoke the ChildFactory with the asynchronous flag set to true, the factory’s createKeys() and refresh() methods execute in a background thread (the refresh() method’s boolean flag is ignored). No other changes are required in PersonChildFactory to achieve this concurrency.

Progress Indicator

You can configure a progress indicator in the PersonChildFactory’s createKeys() method. In this example, the database read is indeterminate. Figure 10.18 shows the progress indicator, as well as the node hierarchy display (“Please wait ... “) indicating a background thread is busy. You must add a module dependency on Progress API to use this progress indicator.

[image:]

Figure 10.18 Using the NetBeans Platform progress indicator and node busy display

Listing 10.26 shows PersonChildFactory.java with the progress indicator configured. Note that a progress indicator does not appear if a background task is short lived. To make the progress indicator appear and test how a long-running background task affects the responsiveness of the application, we add a call to Thread.sleep() (for testing only) in the createKeys() method.

Listing 10.26 PersonChildFactory—Using a Progress Indicator

Click here to view code image

@NbBundle.Messages({
 "LBLPersonRead=All People . . . "
})
public class PersonChildFactory extends ChildFactory<Person> {

. . . code omitted . . .

 @Override
 protected boolean createKeys(List<Person> list) {
 RefreshCapability refreshCapability =
 personCapability.getLookup().lookup(RefreshCapability.class);
 if (refreshCapability != null) {
 ProgressHandle handle = ProgressHandleFactory.createHandle(
 Bundle.LBLPersonRead());
 try {
 handle.start();
 // testing only !!!
 Thread.sleep(1000);
 refreshCapability.refresh();
 list.addAll(personCapability.getPersonList());
 logger.log(Level.FINER, "createKeys called: {0}", list);
 } catch (IOException | InterruptedException ex) {
 logger.log(Level.WARNING, null, ex);
 } finally {
 handle.finish();
 }
 }
 return true;
 }
 . . . code omitted . . .
}

Concurrency with Delete and Create

Both the delete and create functions of the FamilyTreeApp update the Person Viewer window. This invokes the createKeys() method in the background. However, we must perform the delete and create database functions in the background, too.

The delete function is performed by PersonNode’s destroy() method, as shown in Listing 10.27. It looks up RemovablePersonCapability and Person from the Lookup and invokes the remove() method. Here, we use SwingWorker to execute this remove() method in a background task.

Listing 10.27 PersonNode—Performing Destroy in the Background

Click here to view code image

public class PersonNode extends AbstractNode {

. . . code omitted . . .

 @Override
 public void destroy() throws IOException {
 final RemovablePersonCapability doRemove = getLookup().lookup(
 RemovablePersonCapability.class);
 final Person person = getLookup().lookup(Person.class);
 if (doRemove != null && person != null) {
 SwingWorker<Void, Void> worker = new SwingWorker<Void, Void>() {

 @Override
 protected Void doInBackground() {
 try {
 doRemove.remove(person);
 } catch (IOException e) {
 logger.log(Level.WARNING, null, e);
 }
 return null;
 }
 };
 worker.execute();
 }
 }
}

Similarly, Listing 10.28 shows how class PersonType implements the create function. It looks up CreatablePersonCapability in the Lookup of PersonCapability and invokes the create() method in a background thread with SwingWorker. We configure a progress indicator (again, the indicator only appears if the background task is not short lived).

Listing 10.28 PersonType—Performing Create in the Background

Click here to view code image

public class PersonType extends NewType {

. . . code omitted . . .

@Override
 public void create() throws IOException {

. . . code omitted . . .

 if (NotifyDescriptor.YES_OPTION.equals(result)) {
 // Create a new Person object
 final Person person = new Person();
 person.setFirstname(firstname);
 person.setLastname(lastname);
 final CreatablePersonCapability cpc = personCapability.getLookup()
 .lookup(CreatablePersonCapability.class);
 if (cpc != null) {
 SwingWorker<Void, Void> worker = new SwingWorker<Void, Void>() {

 @Override
 protected Void doInBackground() throws Exception {
 ProgressHandle handle = ProgressHandleFactory
 .createHandle(Bundle.TITLE_NewPerson_dialog());
 try {
 handle.start();
 cpc.create(person);
 logger.log(Level.INFO,
 "Creating person {0}", person);
 } catch (IOException e) {
 logger.log(Level.WARNING,
 e.getLocalizedMessage(), e);
 } finally {
 handle.finish();
 }
 return null;
 }
 };
 worker.execute();
 }
 }
 }
}

Concurrency with Update

Updating occurs in the PersonEditorTopComponent when a user clicks the Save or SaveAll menu item, or when a user selects Save when closing the window with unsaved data. Listing 10.29 shows the handleSave() method. Here, the SavablePersonCapability save() method is invoked in a background thread with SwingWorker. We configure a progress indicator that includes the Person’s name. Again, using the progress indicator requires a module dependency on the Progress API.

Listing 10.29 SavableViewCapability—Performing Update in the Background

Click here to view code image

private class SavableViewCapability extends AbstractSavable {

. . . code omitted . . .

 @Override
 protected void handleSave() throws IOException {
 final Node node = getLookup().lookup(Node.class);
 if (node != null) {
 final SavablePersonCapability savable
 = node.getLookup().lookup(SavablePersonCapability.class);
 if (savable != null) {
 updateModel();
 // make a copy of Person for the background thread
 final Person p = new Person(thePerson);
 clearSaveCapability();
 changeOK = true;
 // perform the save on a background thread
 SwingWorker<Void, Void> worker =
 new SwingWorker<Void, Void>() {

 @Override
 protected Void doInBackground() throws Exception {
 ProgressHandle handle = ProgressHandleFactory
 .createHandle(Bundle.CTL_PersonUpdating(p));
 try {
 handle.start();
 savable.save(p);
 } catch (IOException ex) {
 logger.log(Level.WARNING, "handleSave", ex);
 } finally {
 handle.finish();
 }
 return null;
 }
 };
 worker.execute();
 }
 }
 }
}

Figure 10.19 shows the progress indicator during execution of the handleSave() method.

[image:]

Figure 10.19 Saving the updated Person in a background thread

10.4 Key Point Summary

This chapter shows you how to apply capabilities and actions to implement CRUD operations for a NetBeans Platform application. You also learn how to implement a database for the persistent store and use concurrency to keep your application responsive. Here are the key points in this chapter.

• Adding capabilities to a Lookup (of a node or any object) is an effective way to customize actions. Capabilities and Lookup provide loose coupling between objects that invoke a capability’s method and objects that own the capability.

• Read operations build node hierarchies in a CRUD application.

• The NetBeans Platform system DeleteAction lets you hook into the pre-configured Delete in the Edit menu. To use Delete with nodes, override a node’s canDestroy() and destroy() methods.

• Add DeleteAction to a node’s getActions() method to include Delete in the node’s context menu.

• Use NewType and NewAction to configure Create operations. Override a node’s getNewTypes() method and include an implementation of NewType. You can also register a create action for the top-level menu and toolbar.

• Implement Update operations with open/edit actions. Open an editor suitable for making changes to the domain object. A non-singleton TopComponent allows multiple editors to be opened concurrently.

• For Updates, use AbstractSavable to enable and disable the Save and Save All menu items and toolbar icon. Override TopComponent method canClose() to see if unsaved changes should be saved before closing an editor.

• Implement AbstractSavable to provide the save operation.

• Detect when an opened domain object has been deleted and gracefully close the editor.

• Migrating to a database implementation is straightforward when a service provider performs database actions.

• Create Library Wrapper Modules for library JAR files that your application requires. This integrates the libraries into the NetBeans module system.

• JavaDB provides a database that’s built into the NetBeans Platform.

• EclipseLink provides an implementation of Java Persistence API (JPA) to interface with an underlying database.

• Create or use NetBeans to generate entity classes and a persistence unit that define the JPA/Database properties of your application.

• To keep NetBeans Platform applications responsive, use SwingWorker and the Nodes API asynchronous mode to execute database access in the background.

• Use the progress indicator to provide feedback to the user for long-running tasks.

11. Dialogs

Chances are that at some point in your application, you’ll need to display a dialog to communicate with the user. The NetBeans Platform has a Dialogs API that provides a collection of predefined dialogs and related utilities. Dialog types include simple messages, Yes-No confirmations, OK-Cancel confirmations, and dialogs that request input. The standard dialogs are also configurable, but if the standard fare is not flexible enough for you, you can always create a custom dialog.

In this chapter, we’ll explore all of these offerings.

What You Will Learn

• Create standard message, confirmation, and input line dialogs.

• Customize standard dialogs.

• Process user responses in dialogs.

• Customize dialogs.

• Provide error handling with custom dialogs.

• Use dialog notifications.

• Create a custom login dialog.

11.1 Dialog Overview

The Dialogs API provides several classes that help you create, display, and obtain input from dialogs. To use the Dialog framework, specify a dependency on the Dialogs API in your module.

Dialogs, Windows, or Wizards?
Note that the Dialogs API provides separate, modal message boxes. Use TopComponents to create windows (see Chapter 8, “NetBeans Platform Window System,” on page 341). For a multi-step sequence of input panels, refer to Chapter 12, “Wizards,” on page 551.

The NotifyDescriptor class has subclasses that let you create standard dialogs. You configure dialogs either with alternate constructors or NotifyDescriptor methods. After creating the dialog, you display it with DialogDisplayer methods. You can display the dialog immediately or asynchronously, and NotifyDescriptor provides constants to help you determine user responses.

You can also provide notifications within a dialog, either by defining the notification beforehand or as a response to user input.

For the most part, then, standard dialogs (perhaps with minor configuration) provide a rich selection of dialogs in the NetBeans Platform. For more customized uses, you can build your own panel component and give it to NotifyDescriptor or one of its subclasses. You can configure the dialog title or specify the set of option buttons. For advanced customizations, you build a dialog with DialogDescriptor. We’ll show you how to create custom dialogs with DialogDescriptor later in the chapter.

The NetBeans dialog classes are similar to the Swing JOptionPane class except they provide the following features.

• NotifyDescriptor and DialogDescriptor are integrated into the NetBeans Platform window system and help system.

• Dialogs are automatically centered in the viewing area.

• You can use the ESC key to close a dialog.

• The DialogDisplayer class provides a standard look and feel for displaying dialogs and returning status.

• You can customize any dialog or notice, but many times customization is not necessary.

• You can optionally provide your own inner panel.

11.2 Standard Dialogs

Let’s first look at the standard dialogs in their simplest forms. NotifyDescriptor includes several subclasses that define certain types of standard dialogs.

NotifyDescriptor.Message

NotifyDescriptor.Message is meant to convey a message, as shown in Figure 11.1. The standard dialog includes the dialog title (Information), message text, and an OK button. Although you can access its return value, typically the user simply clicks OK to dismiss the dialog.

[image:]

Figure 11.1 Standard Information dialog

Listing 11.1 creates the standard message dialog shown in Figure 11.1, displays the dialog, and blocks until the user closes the dialog (either by clicking the OK button or closing it explicitly).

Listing 11.1 Standard Message Dialog

Click here to view code image

NotifyDescriptor nd = new NotifyDescriptor.Message("Your order is complete.");
DialogDisplayer.getDefault().notify(nd); // display and block

Variants of the NotifyDescriptor.Message include a Warning message and an Error message. Figure 11.2 shows a Warning message.

[image:]

Figure 11.2 Standard Warning dialog

Listing 11.2 shows how to create this Warning message. Use constructor argument NotifyDescriptor.WARNING_MESSAGE to specify a warning icon and set the title to Warning.

Listing 11.2 Standard Warning Message Dialog

Click here to view code image

NotifyDescriptor nd = new NotifyDescriptor.Message(
 "Your order is not complete.", NotifyDescriptor.WARNING_MESSAGE);
DialogDisplayer.getDefault().notify(nd); // display and block

Similarly, Figure 11.3 shows the NotifyDescriptor.ERROR_MESSAGE dialog. Listing 11.3 shows how to build and display a standard Error message, which sets the title to Error and uses an error-type icon.

[image:]

Figure 11.3 Standard Error message dialog

Listing 11.3 Standard Error Message Dialog

Click here to view code image

NotifyDescriptor nd = new NotifyDescriptor.Message(
 "Your order is not complete.", NotifyDescriptor.ERROR_MESSAGE);
DialogDisplayer.getDefault().notify(nd); // display and block

Table 11.1 lists the available NotifyDescriptor message types. Note that INFORMATION_MESSAGE is the default for NotifyDescriptor.Message and PLAIN_MESSAGE displays no icon. QUESTION_MESSAGE is the default for NotifyDescriptor.Confirmation message, which we discuss next.

[image:]

TABLE 11.1 NotifyDescriptor Message Types

NotifyDescriptor.Confirmation

Confirming or verifying an action before proceeding is a common requirement in applications. The standard Confirmation dialog uses a Question title and supplies button options for Yes, No, and Cancel. You can check for a user’s response (as well as NotifyDescriptor.CLOSED_OPTION) and react accordingly. Figure 11.4 shows the standard Confirmation dialog.

[image:]

Figure 11.4 Standard Confirmation dialog

Listing 11.4 shows a typical usage with the standard Confirmation dialog. Here we check the return value against NotifyDescriptor.YES_OPTION (the user pressed the Yes button).

Listing 11.4 Standard Confirmation Dialog

Click here to view code image

NotifyDescriptor nd = new NotifyDescriptor.Confirmation(
 "Do you REALLY want to delete all those files???");

if (DialogDisplayer.getDefault().notify(nd) == NotifyDescriptor.YES_OPTION) {
 // Yes, really delete all those files.
}

Table 11.2 shows the possible return values for the standard dialogs.

[image:]

TABLE 11.2 NotifyDescriptor Return Values

Although you typically check for a particular response result with a dialog, you might want to make a distinction among several possible return options, including NotifyDescriptor.CLOSED_OPTION (the user closed the dialog without pressing any buttons). The code in Listing 11.5 checks all possible user responses with a Confirmation dialog (such as the dialog shown in Figure 11.4).

Listing 11.5 Checking the User’s Response

Click here to view code image

NotifyDescriptor nd = new NotifyDescriptor.Confirmation(
 "Do you REALLY want to delete all those files???");

Object status = DialogDisplayer.getDefault().notify(nd);
if (status == NotifyDescriptor.YES_OPTION) {
 // Yes
} else if (status == NotifyDescriptor.NO_OPTION) {
 // No
} else if (status == NotifyDescriptor.CANCEL_OPTION) {
 // Cancel
} else if (status == NotifyDescriptor.CLOSED_OPTION) {
 // Window explicitly closed
}

Dialog Tip
Note that DialogDisplayer method notify() displays and blocks a dialog and returns the user input that closed it. If you need a dialog to remain open after the user clicks one or more of the option buttons, then you must supply an ActionListener with method actionPerformed() to process user input. We show you this technique in sections “Custom Login Dialog” on page 539 and “Putting It All Together” on page 544.

NotifyDescriptor.InputLine

Use NotifyDescriptor.InputLine to create dialogs that prompt for user input. Figure 11.5 shows the standard Input Line dialog with a preset text and after the user supplies an email address. InputLine dialogs include Cancel and OK button options.

[image:]

Figure 11.5 Standard InputLine dialog

Dialog NotifyDescriptor.InputLine constructor requires a prompt as the first argument and a dialog title as the second argument. Use setInputText() to optionally preset the text input and getInputText() to read user input after the dialog closes. Typically, you check to make sure the user clicks OK before reading the text, as shown in Listing 11.6.

Listing 11.6 Standard Input Line Dialog

Click here to view code image

NotifyDescriptor.InputLine nd = new NotifyDescriptor.InputLine(
 "Email Address", "Please provide your email address");

nd.setInputText("xxx @ yyy DOT org");
if (DialogDisplayer.getDefault().notify(nd) == NotifyDescriptor.OK_OPTION) {
 // OK, read the input
 doSomethingWithEmailAddress(nd.getInputText());
}

11.3 Customizing Standard Dialogs

You can easily customize any of the standard dialogs, although not all combinations of possible configurations make sense. Besides the various message types listed in Table 11.1, you can also configure the option buttons for a dialog, as shown in Table 11.3.

[image:]

TABLE 11.3 NotifyDescriptor Dialog Option Buttons

Let’s look at an example of customizing the Confirmation dialog. In Figure 11.6, you see a customized title, button options Yes and No (instead of the default Yes, No, and Cancel), and a warning confirmation instead of the standard confirmation.

[image:]

Figure 11.6 Customized Question dialog

In addition, there is a notification warning (“Please pay attention!”) to emphasize the potential consequences of a wrong response. Listing 11.7 shows the code for this customized confirmation dialog.

Listing 11.7 Customized Confirmation Dialog

Click here to view code image

NotifyDescriptor nd = new NotifyDescriptor.Confirmation(
 "Do you REALLY want to delete all those files???",
 "Important Question",
 NotifyDescriptor.YES_NO_OPTION,
 NotifyDescriptor.WARNING_MESSAGE);

nd.createNotificationLineSupport();
nd.getNotificationLineSupport().setWarningMessage("Please pay attention!");

if (DialogDisplayer.getDefault().notify(nd) == NotifyDescriptor.YES_OPTION) {
 // Yes, really delete all those files.
}

11.4 Custom Dialogs

The Dialogs API lets you create custom dialogs with class DialogDescriptor, a class that extends NotifyDescriptor. DialogDescriptor offers several constructors that let you build custom dialogs. The main advantage of DialogDescriptor is that you can specify additional features, such as contextual help, button listeners, button alignment, and button text. You can also build your own inner panel for display inside a dialog, so that a dialog’s view can hold any set of components that you need.

If you build a custom inner panel, you’ll also need public methods that access user input. Let’s build a simple custom dialog that asks for a person’s first and last names. Later we’ll enhance this dialog with error checking.

Figure 11.7 shows a Person Information dialog. We’ve configured the dialog with a title (Person Information), a notification line, and option buttons Cancel and OK.

[image:]

Figure 11.7 Dialog with customized view

For the inner panel, we’ll use a customized JPanel component that includes two labels (First Name and Last Name), two textfields, and an icon, as shown in Figure 11.8. To create this form, right-click on your module’s package and select New | JPanel Form. Call the class CustomPersonPanel. NetBeans creates a new Java class with a top-level JPanel in the Matisse form designer. Now add the labels, textfields, and icon. (Use a JLabel component with a suitable image for the icon.)

[image:]

Figure 11.8 JPanel design view with labels, textfields, and an icon

Dialog Tip
Note that you don’t add the title, notification line, or option buttons to the JPanel. You configure these dialog artifacts with DialogDescriptor.

Listing 11.8 shows the code for CustomPersonPanel.java. After the design is complete, add the public methods to access user input. Here we added methods getFirstName() and getLastName() (shown in bold).

Listing 11.8 CustomPersonPanel—Customized JPanel Form

Click here to view code image

public class CustomPersonPanel extends javax.swing.JPanel {

public CustomPersonPanel() {
 initComponents();
 }

 public String getFirstName() {
 return firstTextField.getText();
 }

 public String getLastName() {
 return lastTextField.getText();
 }

// Generated Code

. . . code omitted . . .

// Variables declaration - do not modify
 private javax.swing.JTextField firstTextField;
 private javax.swing.JLabel imageLabel;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JTextField lastTextField;
 // End of variables declaration
}

With the JPanel complete, we can now build the custom dialog and configure it with DialogDescriptor, as shown in Listing 11.9.

Listing 11.9 Build a Custom Dialog with DialogDescriptor

Click here to view code image

// Create the JPanel Form
CustomPersonPanel panel = new CustomPersonPanel();

// Create the dialog with CustomPersonaPanel panel
DialogDescriptor dd = new DialogDescriptor(panel, "Person Information");
// Configure a notification line
dd.createNotificationLineSupport();
// Specify the notification line; use Information-style
dd.getNotificationLineSupport().setInformationMessage(
 "Please provide your first and last names");

// Display the dialog and wait for the response
Object status = DialogDisplayer.getDefault().notify(dd);
if (status == NotifyDescriptor.OK_OPTION) {
 // Is there any input?
 if (panel.getFirstName().isEmpty() && panel.getLastName().isEmpty()) {
 // No, say hello to 'Anonymous'
 System.out.println("Welcome, Anonymous!");
 } else {
 // Supply a greeting using the person's name
 System.out.println("Welcome " + panel.getFirstName() + " "
 + panel.getLastName() + "!");
 }
} else if (status == NotifyDescriptor.CANCEL_OPTION) {
 // Cancel
} else if (status == NotifyDescriptor.CLOSED_OPTION) {
 // User closed the dialog
}

Note that the above code does not specify any option buttons. As it turns out, the default provides Cancel and OK.

Error Handling

Now let’s modify the Person Information dialog to perform some error handling. Figure 11.9 shows the Person Information dialog with an error message for required input. Note that this dialog is currently marked invalid; that is, the OK button is disabled.

[image:]

Figure 11.9 Custom dialog with error handling and invalid status

Figure 11.10 shows the same dialog. This time both fields are filled in and the dialog’s error message has been cleared. Also, the OK button is enabled, meaning that the dialog is currently valid.

[image:]

Figure 11.10 Custom dialog showing no errors and valid status

A powerful feature of NetBeans dialogs is that you can install property change listeners to detect input changes and update error messages and a dialog’s valid status. This section shows you how to do this. You’ll also see this technique used to validate panels when we build wizards (see “Wizard Validation” on page 565).

First, add DocumentListeners in the inner panel and have the inner panel fire property change events when user input changes. Then, the dialog code checks the input, provides feedback, and validates the dialog.

Let’s begin by making the following modifications to the JPanel form in class CustomPersonPanel2. Here are the steps.

1. Make CustomPersonPanel2 implement DocumentListener and override methods insertUpdate(), removeUpdate(), and changeUpdate().

2. Add public static String constants PROP_FIRST_NAME and PROP_LAST_NAME to identify the property change events.

3. Add document listeners to the first and last name textfield components.

4. Fire property change events when a user modifies a textfield’s input.

Listing 11.10 shows these modifications to CustomPersonPanel2 in bold.

Listing 11.10 CustomPersonPanel2—Implement Dialog Error Handling

Click here to view code image

public class CustomPersonPanel2 extends javax.swing.JPanel implements
 DocumentListener {

 public static String PROP_FIRST_NAME = "firstName";
 public static String PROP_LAST_NAME = "lastName";
 public CustomPersonPanel2() {
 initComponents();
 firstTextField.getDocument().addDocumentListener(this);
 lastTextField.getDocument().addDocumentListener(this);
 }

public String getFirstName() {
 return firstTextField.getText();
 }

public String getLastName() {
 return lastTextField.getText();
 }

private void initComponents() {

. . . generated code omitted . . .

}

// Variables declaration - do not modify
 private javax.swing.JTextField firstTextField;
 private javax.swing.JLabel imageLabel;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JTextField lastTextField;
 // End of variables declaration

 @Override
 public void insertUpdate(DocumentEvent de) {
 if (firstTextField.getDocument() == de.getDocument()) {
 firePropertyChange(PROP_FIRST_NAME, 0, 1);
 } else if (lastTextField.getDocument() == de.getDocument()) {
 firePropertyChange(PROP_LAST_NAME, 0, 1);
 }
 }

 @Override
 public void removeUpdate(DocumentEvent de) {
 if (firstTextField.getDocument() == de.getDocument()) {
 firePropertyChange(PROP_FIRST_NAME, 0, 1);
 } else if (lastTextField.getDocument() == de.getDocument()) {
 firePropertyChange(PROP_LAST_NAME, 0, 1);
 }
 }

 @Override
 public void changedUpdate(DocumentEvent de) {
 if (firstTextField.getDocument() == de.getDocument()) {
 firePropertyChange(PROP_FIRST_NAME, 0, 1);
 } else if (lastTextField.getDocument() == de.getDocument()) {
 firePropertyChange(PROP_LAST_NAME, 0, 1);
 }
 }
}

Now let’s show you the code that creates, configures, and displays the dialog. This code implements the actual validation checking by listening for property change events, as shown in Listing 11.11. The code in bold marks the changes required to implement the error handling.

Listing 11.11 Implement Dialog Error Handling

Click here to view code image

// Create the inner panel
private CustomPersonPanel2 panel2 = new CustomPersonPanel2();

// Create the Dialog and specify title
final DialogDescriptor dd = new DialogDescriptor(panel2,
 "Person Information");

// Configure a notification line
dd.createNotificationLineSupport();
// Specify the notification line; use Error-style
dd.getNotificationLineSupport().setErrorMessage(
 "Fields First Name and Last Name are required.");
// Specify that the dialog is not valid; this disables the OK button
dd.setValid(false);
// Create a property change listener anonymous class
panel2.addPropertyChangeListener(new PropertyChangeListener() {

 // Specify the class' propertyChange method
 // Look for PROP_FIRST_NAME and PROP_LAST_NAME property change
 // events and update valid status and error message
 @Override
 public void propertyChange(PropertyChangeEvent pce) {
 if (pce.getPropertyName().equals(
 CustomPersonPanel2.PROP_FIRST_NAME)
 || pce.getPropertyName().equals(
 CustomPersonPanel2.PROP_LAST_NAME)) {
 if (panel2.getFirstName().isEmpty() ||
 panel2.getLastName().isEmpty()) {
 dd.setValid(false);
 dd.getNotificationLineSupport().setErrorMessage(
 "Fields First Name and Last Name are required.");
 } else {
 dd.setValid(true);
 dd.getNotificationLineSupport().clearMessages();
 }
 }
 }
 });

// Display the dialog and wait for response
Object status = DialogDisplayer.getDefault().notify(dd);
if (status == NotifyDescriptor.OK_OPTION) {
 // Supply a greeting using the person's name
 System.out.println("Welcome " + panel.getFirstName() + " "
 + panel.getLastName() + "!");
} else if (status == NotifyDescriptor.CANCEL_OPTION) {
 // Cancel
} else if (status == NotifyDescriptor.CLOSED_OPTION) {
 // Closed
}

Note that an anonymous class defines the property listener. Overridden method propertyChange() examines each property change event. If either of the panel’s textfield components is empty, we mark the dialog invalid and display an error message using the notification message dialog feature. If both textfields contain input, we mark the dialog valid and clear the notification message.

11.5 Custom Login Dialog

In the previous section you see the makings of a Login process; that is, a dialog that requests a username and password and blocks the application until the user successfully completes the dialog.

We can implement such a login process using the @OnStart annotation with a Runnable to create and display a dialog. As discussed in “Module Life Cycle Annotations” on page 242, the @OnStart Runnable executes in a background thread during initialization. As you will soon see, we make the dialog display in the EDT by using the DialogDisplayer.notifyLater() method.

Let’s examine the dialog first and then show you how to create, display, and process the login dialog.

Figure 11.11 shows a customized Login dialog. As before, we create an inner panel that contains two JLabels, a JTextField for the name, and a JPasswordField for the password.

[image:]

Figure 11.11 Login dialog with name, password, and icon

The dialog itself includes a title (“Please Login”) with the Cancel and OK buttons. Unlike the previous section, error handling for user input is not necessary. Once the user clicks OK, a login process authenticates the user.

If the authentication process succeeds, the dialog closes and the application runs. If the user cancels or closes the dialog, the application exits. If the login fails, the dialog does not close. In this case, the login process displays an appropriate error message and the user attempts to log in again.

This login process must therefore carefully control a user’s ability to dismiss or close the dialog. Any early dismissal without a successful login means the application exits.

Figure 11.12 shows an incorrect login scenario.

[image:]

Figure 11.12 Login dialog when authentication fails

Listing 11.12 shows the Login dialog’s inner panel, LoginPanel.java. Class LoginPanel extends JPanel and defines the Swing components that provide the dialog’s user interface. LoginPanel also includes public methods getUserName() and getPassword() to access the user-provided login credentials.

Listing 11.12 LoginPanel.java—Customized Login JPanel

Click here to view code image

package com.asgteach.dialogs;

public class LoginPanel extends javax.swing.JPanel {

public LoginPanel() {
 initComponents();
 }

 public String getUserName() {
 return nameTextField.getText();
 }

 public String getPassword() {
 return new String(passwordTextField.getPassword());
 }

private void initComponents() {

. . . generated code omitted . . .

}
 // Variables declaration - do not modify
 private javax.swing.JLabel imageLabel;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel jLabel2;
 private javax.swing.JTextField nameTextField;
 private javax.swing.JPasswordField passwordTextField;
 // End of variables declaration
}

We’ll use the Module System API @OnStart annotation with Runnable to create a class that is instantiated during an application’s initialization process. We’ll put the code to create, display, and process this Login dialog in the Runnable’s run() method. (See “Module Life Cycle Annotations” on page 242 for more information on @OnStart.)

We add the @OnStart Runnable to the Dialogs module in its main source package using these steps.

1. The @OnStart annotation requires a dependency on the Module System API. In the Dialogs module, select the Libraries node, right click, and select Add Module Dependency . . . from the context menu. In the Add Module Dependencies dialog, select Module System API and click OK.

2. Right click on the com.asgteach.dialogs package and select New | Java Class

3. NetBeans displays the New Java Class dialog. For Class Name, specify LoginInstaller and click Finish. NetBeans adds file LoginInstaller.java to package com.asgteach.dialogs.

Listing 11.13 shows the code for the LoginInstaller class, which we describe here.

• Add the @OnStart annotation to LoginInstaller, implement Runnable, and override the run() method.

• Instantiate the inner panel that contains the dialog’s user input components.

• Implement the login() method, which determines whether a login is successful or not. In real-world applications, you would access a database or some other means to authenticate the user’s credentials. Here, method login() returns true if the user name and password are the same.

• Use @Messages to create application text and error messages.

• Inside the run() method, create the dialog with DialogDescriptor. In the constructor specify the inner panel and the dialog title, make the dialog modal (which blocks the application until the dialog finishes), and specify a button ActionListener (a lambda expression, described below). You need an ActionListener because you’ll display the dialog with notifyLater() instead of notify() and user responses won’t be available in the return.

• Configure the dialog. Method setClosingOptions() invoked with an empty array prevents the dialog from closing after the user clicks OK. Otherwise, any input (whether valid or not) followed by OK closes the dialog. Method createNotificationLineSupport() provides a way to give the user feedback if the login fails.

• Configure a property change listener (also a lambda expression). Listen for the presence of the DialogDescriptor.CLOSED_OPTION and exit the application. This prevents the user from closing the dialog to bypass the login procedure.

• Process the user interaction with the dialog in the ActionEventListener. If the user cancels, exit the application. Otherwise, the user clicks OK. Read the values from the dialog panel and determine if the login is successful.

If the login is successful, re-enable the normal closing options so that the dialog will close (and the application starts up).

If the login fails, display an error message. Because the closing options are disabled, the dialog remains open and the user can attempt another login.

• Display the dialog with DialogDisplayer.notifyLater(). The dialog displays in the EDT after the NetBeans Platform splash screen and blocks the application until a user completes a successful login.

Listing 11.13 LoginInstaller.java—Processing a Login

Click here to view code image

@OnStart
public class LoginInstaller implements Runnable {

 private final LoginPanel panel = new LoginPanel();
 private DialogDescriptor dd = null;

 // stub method that says if the username and password
 // are the same then the login is good!
 private boolean login (String username, String password) {
 return username.equals(password) && !username.isEmpty();
 }

 @Messages({
 "LoginTitle=Please Login",
 "LoginError=Incorrect user name or password"
 })
 @Override
 public void run() {
 // @Onstart runs in a background thread by default
 // Here we use notifyLater to safely display the dialog.
 // Create a dialog using the LoginPanel and LoginTitle, make it modal,
 // and specify action listener
 dd = new DialogDescriptor(panel, Bundle.LoginTitle(), true,
 (ActionEvent ae) -> {
 // We need to listen for button pressed because we are using
 // notifyLater to display the dialog
 if (ae.getSource() == DialogDescriptor.CANCEL_OPTION) {
 // Adios
 System.out.println("Canceled!");
 LifecycleManager.getDefault().exit();
 } else {
 // Check login
 if (login(panel.getUserName(), panel.getPassword())) {
 // Using null enables all options to close dialog
 // (this is retroactive, so the dialog will close
 // and the app will appear)
 dd.setClosingOptions(null);
 } else {
 // Bad login, try again
 dd.getNotificationLineSupport().setErrorMessage(
 Bundle.LoginError());
 }
 }
 });
 // Specify an empty array to prevent any option from closing the dialog
 dd.setClosingOptions(new Object[]{});
 dd.createNotificationLineSupport();
 // Define a property listener in case the dialog is closed
 dd.addPropertyChangeListener((PropertyChangeEvent pce) -> {
 // look for CLOSED_OPTION
 if (pce.getPropertyName().equals(DialogDescriptor.PROP_VALUE)
 && pce.getNewValue() == DialogDescriptor.CLOSED_OPTION) {
 // Adios
 System.out.println("Closed!");
 LifecycleManager.getDefault().exit();
 }
 });
 // notifyLater will display the dialog in the EDT
 DialogDisplayer.getDefault().notifyLater(dd);
 }
}

11.6 Putting It All Together

Now that you’ve learned about dialogs in general and Login dialogs in particular, we’re going to adapt application RoleExample (see “RoleExample Application and Role-Based TopComponents” on page 404) and use a Login dialog to set the application’s role. We’ll use the same technique we presented in the previous section with a Login dialog that we configure using the @OnStart annotation. Once the user successfully completes the Login dialog as shown in Figure 11.11 on page 540, the application sets the window system to the user’s assigned role.

We’ll also create an always-enabled action in this application that lets a user change roles with a Change Role dialog. This dialog processes a user’s login credentials, but unlike the Login dialog, Cancel and Close do not exit the application. Also, the Change Role dialog does not close if a user login fails. This means we must supply an ActionListener to process user input instead of reading the return from method notify(). Figure 11.13 shows the Change Role dialog, which has a different title but otherwise looks the same as the Login dialog.

[image:]

Figure 11.13 Change Role dialog

RoleExample Application

Let’s start with the RoleExample application from Chapter 8 (see “Window Layout Roles” on page 401). Follow these steps to add the Login dialog to the Runnable class, RoleLogin.java. Figure 11.14 shows the files in module AdminModule when you’re finished adding the Login dialog and Change Role action to application RoleExample.

[image:]

Figure 11.14 Module AdminModule with Login dialog and Change Role action

1. Open project RoleExample and expand project AdminModule.

2. In AdminModule, delete LoginTopComponent, since we’ll replace the TopComponent with a dialog.

3. Create a LoginPanel form with New | JPanel Form to hold the Login/Change Role dialog GUI components, as shown in the previous section. Use personIcon100.png for the dialog’s icon. Provide the same getter methods for LoginPanel.java as shown in Listing 11.12 on page 541.

4. In AdminModule, add Java class RoleLogin.java. Implement Runnable, override the run() method, and specify the @OnStart annotation. Provide code for the run() method as shown in Listing 11.14. This code is very similar to the LoginInstaller class in Listing 11.13 on page 543, except we use the UserRole module to authenticate the login process. Note that this code also prevents a user from canceling or closing the dialog to bypass authentication.

Listing 11.14 RoleLogin.java—Processing a Role-Based Login

Click here to view code image

@OnStart
public class RoleLogin implements Runnable {

 private final LoginPanel panel = new LoginPanel();
 private DialogDescriptor dd = null;
 @Override
 public void run() {
 // Create a dialog using the LoginPanel and LoginTitle, make it modal,
 // and specify action listener
 dd = new DialogDescriptor(panel, Bundle.LoginTitle(), true,
 ((ActionEvent ae) -> {
 // We need to listen for button pressed because we are using
 // notifyLater to display the dialog
 if (ae.getSource() == DialogDescriptor.CANCEL_OPTION) {
 // Adios
 System.out.println("Canceled!");
 LifecycleManager.getDefault().exit();
 } else {
 // Check login
 UserRole userRole = Lookup.getDefault().lookup(UserRole.class);
 if (userRole != null) {
 User thisUser = userRole.findUser(panel.getUserName(),
 panel.getPassword());
 WindowManager wm = WindowManager.getDefault();
 if (thisUser != null) {
 // switch to new role
 wm.setRole(thisUser.getRole());
 // Using null enables all options to close dialog
 // (this is retroactive, so the dialog will close
 // and the app will appear)
 dd.setClosingOptions(null);
 } else {
 // Bad login, try again
 dd.getNotificationLineSupport().setErrorMessage(
 Bundle.LoginError());
 }
 } else {
 // No UserRole instance, bail!
 System.out.println("No UserRole!");
 LifecycleManager.getDefault().exit();
 }
 }
 }));
 // Specify an empty array to prevent any option from closing the dialog
 dd.setClosingOptions(new Object[]{});
 dd.createNotificationLineSupport();
 // Define a property listener in case the dialog is closed
 dd.addPropertyChangeListener((PropertyChangeEvent pce) -> {
 // look for CLOSED_OPTION
 if (pce.getPropertyName().equals(DialogDescriptor.PROP_VALUE)
 && pce.getNewValue() == DialogDescriptor.CLOSED_OPTION) {
 System.out.println("Closed!");
 LifecycleManager.getDefault().exit();
 }
 });
 // notifyLater will display the dialog on the EDT
 DialogDisplayer.getDefault().notifyLater(dd);
 }
}

5. Next, create an always-enabled Action called ChangeRole with New | Action. Put the action under Menu/Tools and use display text Change Role.

6. NetBeans generates class ChangeRole.java, which implements ActionListener. Provide code for the actionPerformed() method, as shown in Listing 11.15.

Listing 11.15 Action Class ChangeRole.java

Click here to view code image

@ActionID(category = "Tools",
id = "com.asgteach.adminmodule.ChangeRole")
@ActionRegistration(displayName = "#CTL_ChangeRole")
@ActionReferences({
 @ActionReference(path = "Menu/Tools", position = 0, separatorAfter = 50)
})
@Messages("CTL_ChangeRole=Change Role")
public final class ChangeRole implements ActionListener {

private DialogDescriptor dd = null;

 @Override
 public void actionPerformed(ActionEvent e) {
 final LoginPanel panel = new LoginPanel();
 dd = new DialogDescriptor(panel, Bundle.CTL_ChangeRole(), true,
 (ActionEvent ae) -> {
 if (ae.getSource() == DialogDescriptor.OK_OPTION) {
 // Check login
 UserRole userRole = Lookup.getDefault().lookup(UserRole.class);
 if (userRole != null) {
 User thisUser = userRole.findUser(
 panel.getUserName(), panel.getPassword());
 WindowManager wm = WindowManager.getDefault();
 if (thisUser != null) {
 // switch to new role
 wm.setRole(thisUser.getRole());
 // Using null enables all options to close dialog
 dd.setClosingOptions(null);
 } else {
 // Bad login, try again
 dd.getNotificationLineSupport().setErrorMessage(
 Bundle.LoginError());
 }
 }
 }
 });
 // Allow Cancel to close the dialog, but OK should not
 dd.setClosingOptions(new Object[]{DialogDescriptor.CANCEL_OPTION});
 dd.createNotificationLineSupport();
 DialogDisplayer.getDefault().notify(dd); // display and block
 }
}

The ChangeRole class registers an always-enabled action with Java annotations @ActionID, @ActionRegistration, and @ActionReferences. Class ChangeRole implements ActionListener and overrides method actionPerformed(), which is invoked when a user selects the Change Role menu item.

Note that there are two actionPerformed() methods here. The outer actionPerformed() method instantiates the LoginPanel and dialog with DialogDescriptor. The inner actionPerformed() belongs to the ActionListener in the DialogDescriptor constructor. When DialogDescriptor method notify() returns, the dialog has already closed. The ActionListener lets you process user input without closing the dialog. The Change Roles dialog must stay open until we verify the UserRole credentials. If the credentials are bad, the dialog remains open and the user can try again.

The code in Listing 11.15 is subtly different than the application Login code in the RoleLogin class (Listing 11.14 on page 545). In Listing 11.15 we allow the user to either cancel or close the dialog, but specifically prohibit OK from closing the dialog. With the RoleLogin dialog, however, we detect both close and cancel, and exit the application.

11.7 Key Point Summary

The Dialogs API provides classes that help you create, display, and obtain input from dialogs. You specify a dependency on the Dialogs API to use dialogs in your application. You can use standard dialogs and notifications or customize these. Here are the main features of the Dialogs API.

• NotifyDescriptor provides several standard dialogs. NotifyDescriptor.Message provides an information dialog with text and OK button.

• Option NotifyDescriptor.WARNING_MESSAGE provides a warning dialog with text, OK button, and warning icon.

• Option NotifyDescriptor.ERROR_MESSAGE provides an error dialog with text, OK button, and error icon.

• NotifyDescriptor.Confirmation provides a question dialog with text and option buttons Cancel, No, and Yes.

• NotifyDescriptor.InputLine provides a dialog that prompts for user input with option buttons Cancel and OK. You include a prompt and dialog title with the constructor. Use method getInputText() to read user input.

• You can configure the option buttons for any of the dialog types.

• Use DialogDisplayer.getDefault() to obtain the NetBeans Platform default DialogDisplayer.

• DialogDisplayer method notify() displays a modal dialog (message box) and blocks until the dialog closes.

• Customize dialogs with DialogDescriptor, a class that extends NotifyDescriptor. DialogDescriptor provides flexibility in handling button clicks and blocking closure. You can also customize button alignment and button text.

• Customize a dialog’s components by providing your own inner panel.

• DialogDisplayer method notifyLater() displays a modal dialog and may be called from any thread. This is useful, for example, for implementing a Login dialog with a Runnable class and the @Onstart annotation. With the notifyLater() method, you configure an ActionEventListener in the DialogDescriptor constructor to listen for and process user button events.

• To implement a Login dialog, override the run() method in an @OnStart Runnable class. With a dialog that implements both PropertyChangeListener and ActionListener, you can block an application until a user provides the necessary login credentials.

12. Wizards

A common scenario in desktop applications is to gather user input to build an object—a new customer, file, Family Tree event, or number sequence, for example. When the building process has multiple steps with multiple options, you need a carefully crafted process to walk a user through the steps. A process that provides this sequence of input panels is called a wizard.

The NetBeans Platform wizard is a multi-class framework that lets you construct such a process. This wizard framework lets a developer specify the graphical components for user input, validate input, store each panel’s state, and dynamically manipulate the wizard step sequence. When the wizard finishes, your application has access to the validated, user-provided input to then construct the target artifact (such as a file, a series of files, or one or more new data objects).

What You Will Learn

• Create and configuring wizards.

• Register wizard actions.

• Store and retrieve wizard properties.

• Validate a wizard’s user input.

• Coordinate validation between wizard steps.

• Use the Simple Validation API.

• Perform asynchronous validation.

• Use dynamic sequence wizards.

• Use instantiating iterators.

• Integrate a progress bar into a wizard.

12.1 Wizard Overview

Figure 12.1 shows the general architecture of a NetBeans Platform wizard example that has three steps. The WizardDescriptor class is the main controller, controlling wizard panels that are in turn controllers for each step that the wizard performs. The wizard panels instantiate visual panels (the views) that solicit input from users. Not shown here is the wizard action class, which starts the wizard process and creates wizard panels and the WizardDescriptor.

[image:]

Figure 12.1 Classes that participate in the example wizard Number

Our three-step wizard in Figure 12.1 is called Number. This wizard guides a user through the steps to create a number sequence. Each wizard panel controls a specific step and creates its own visual panel. The panel class extends JPanel and holds the user interface components needed for input.

To work with the WizardDescriptor, wizard panel classes override WizardDescriptor.Panel methods that the WizardDescriptor invokes. Table 12.1 lists these methods.

[image:]

TABLE 12.1 WizardDescriptor.Panel<WizardDescriptor> Methods

The WizardDescriptor has three main responsibilities:

1. The WizardDescriptor iterates through the collection of wizard panels, proceeding to the next panel when the user clicks Next (or Finish).

2. The WizardDescriptor stores properties needed by wizard panels. It invokes wizard panel methods readSettings() and storeSettings() at the beginning and ending, respectively, of each step.

3. The WizardDescriptor responds to change events fired from the wizard panel class. Typically, these events signal changes to the isValid() and isFinishPanel() methods, but the WizardDescriptor responds to changes in the step sequence as well. Depending on the return values of these methods, the WizardDescriptor enables or disables the Next and/or Finish buttons on the current visual panel.

Wizard Tip
If a wizard panel is always valid, method isValid() returns true and there’s no need to fire change events from the wizard panel. However, if a wizard panel’s valid status depends on user input, the wizard panel must implement addChangeListener() and removeChangeListener() and fire state change events to its ChangeListeners. This makes the WizardDescriptor invoke isValid() and subsequently enable or disable Next and Finish. “Wizard Validation” on page 565 shows you how to do this.

Wizard Tip
Method isFinishPanel() is defined in class WizardDescriptor.FinishablePanel for panels that dynamically enable the Finish button. See “Finishing Early Option” on page 587 for an example of this option.

You can see from Figure 12.1 that each wizard panel class is completely independent from the other wizard panel classes. The wizard panel creates the visual panel that it controls, gets user data from the visual panel components, and provides validation. The wizard panel also uses the WizardDescriptor to store state data. Other wizard panels and the wizard’s action event handler can access this data to build the target artifact.

Let’s look at the Number example now and show you how these wizard panels coordinate with visual panels and let the WizardDescriptor do its job.

12.2 The Wizard Wizard

The NetBeans IDE provides a Wizard wizard—that is, a wizard that helps you create wizards. Let’s now create a wizard for something called New Number Sequence. This example wizard solicits a three-number sequence from the user in three separate steps.

Build the Example
To build the example, create a new NetBeans Platform application called WizardExample. Then create a new NetBeans module called Sequence, as shown in Figure 12.2.
[image:]
Figure 12.2 WizardExample application and Sequence module

To create a new wizard, select the target module (Sequence in our example). Right-click and select New | Other. Start with Figure 12.3. As you proceed through each step, pay attention to the panels with which you interact. The wizard has a title New File, and the steps are listed on the left. The main panel requests information.

[image:]

Figure 12.3 Creating a wizard: Choose File Type

A Bare-Bones Wizard

In Figure 12.3, specify Module Development under Categories and Wizard under File Types. After you’ve made these selections, the Next button is enabled, and the Help, Back, and Finish buttons are all disabled.

After you select Next, the wizard proceeds to the next panel. Here you see Registration Type (Custom or New File), Wizard Step Sequence (Static or Dynamic), and Number of Wizard Panels. Select Custom, Static, and 3, as shown in Figure 12.4.

[image:]

Figure 12.4 Creating a wizard: Specify Wizard Type

In this chapter, you’ll use Registration Type Custom, the wizard registration type that creates arbitrary artifacts (such as domain objects or a directory structure with multiple files) for your application. New File Registration pertains to wizards that create files using a File Type template.

The Wizard Step Sequence provides two options. Static means your wizard always uses the same steps in the same order. Dynamic lets your wizard alter the sequence and the number of steps. We’ll show you an example of a Dynamic Step Sequence wizard later in this chapter (see “Dynamic Sequence Wizards” on page 598).

The Number of Wizard Panels is where you specify the number of steps in your wizard. For Static Step Sequence, this is the total number of steps. For Dynamic Step Sequence, specify the maximum number of different panels your wizard requires, even if a given execution of the wizard uses less.

Note that as you complete this dialog, the wizard provides feedback when there are errors or omissions. When the input is error-free, the Next button is enabled. Again, select Next.

The wizard now displays the final panel: Name and Location, as shown in Figure 12.5. Specify Number for the Class Name Prefix. Make sure the selected Project is Sequence and the package name matches the selected project. NetBeans displays the files the wizard creates for your New Number Sequence wizard. Note that the Finish button is now enabled. Click Finish and the wizard is complete.

[image:]

Figure 12.5 Creating a wizard: Specify Name and Location

Wizard Tip
We won’t rename the classes in this example, but you will typically provide more meaningful names for the wizard and visual panel classes in your wizard. To do this, select the Java source file in the Projects window and click Refactor | Rename in the NetBeans main menu (or select the Java source file and use key sequence Control-R).

You now have a bare-bones wizard consisting of three visual panels, three wizard controllers, and a wizard action class. NetBeans has created these seven files for you, as shown in Figure 12.6.

[image:]

Figure 12.6 Files in a three-panel wizard called Number

For each wizard panel that you specify in the wizard creation dialog, NetBeans creates a visual panel1 (for building your graphical user interface) and a wizard panel (for validating the user input and saving state). NetBeans also creates a wizard action class (to initiate your wizard and build the wizard’s target artifact).

1. The visual panel extends the JPanel Swing component. You can integrate JavaFX content using Swing JFXPanel. The Reference Application has an example of a NetBeans Platform wizard with JavaFX-integrated content. See “FamilyTreeApp Reference Application” on page 10.

The NetBeans Platform sets the following module dependencies for this project.

Click here to view code image

 Dialogs API - Handles the dialog and wizard infrastructure
 UI Utilities API - Helper methods for various UI related tasks
 Utilities API - Various helper methods and basic concept definitions

Registering a Wizard’s Action

To invoke this newly created wizard, you must register the wizard action so that it appears either in the menu or toolbar, or both. Here, we register the New Number Sequence action in the top-level menu under Tools by providing the following action-based annotations, as shown in Listing 12.1. The modified code is in bold; the rest is generated by NetBeans. Chapter 9 discusses actions and how to register them (see “Always-Enabled Actions” on page 414).

As you examine this code, note that method actionPerformed() instantiates an ArrayList to hold the wizard panels, configures the visual panels (accessed through getComponent()), and instantiates WizardDescriptor. When WizardDescriptor finishes, the complete and validated user data is available.

Wizard Tip
Class WizardDescriptor is a subclass of DialogDescriptor. Like classes DialogDescriptor and NotifyDescriptor, you display the wizard and block the application with DialogDisplayer method notify(). We discuss dialogs in detail in Chapter 11.

Listing 12.1 NumberWizardAction.java

Click here to view code image

@ActionID(category = "Tools",
 id = "org.asgteach.sequence.NumberWizardAction")
@ActionRegistration(
 displayName = "#CTL_NumberWizardAction")
@ActionReferences({
 @ActionReference(path = "Menu/Tools",
position = 0, separatorAfter = 50)
})
@NbBundle.Messages({
 "CTL_NumberWizardAction=New Number Sequence",
 "CTL_NumberDialogTitle=Create New Number Sequence"
})
public final class NumberWizardAction implements ActionListener {

 @Override
 public void actionPerformed(ActionEvent e) {
 List<WizardDescriptor.Panel<WizardDescriptor>> panels =
 new ArrayList<WizardDescriptor.Panel<WizardDescriptor>>();
 panels.add(new NumberWizardPanel1());
 panels.add(new NumberWizardPanel2());
 panels.add(new NumberWizardPanel3());
 String[] steps = new String[panels.size()];
 for (int i = 0; i < panels.size(); i++) {
 Component c = panels.get(i).getComponent();
 // Default step name to component name of panel.
 steps[i] = c.getName();
 if (c instanceof JComponent) { // assume Swing components
 JComponent jc = (JComponent) c;
 jc.putClientProperty(
 WizardDescriptor.PROP_CONTENT_SELECTED_INDEX, i);
 jc.putClientProperty(
 WizardDescriptor.PROP_CONTENT_DATA, steps);
 jc.putClientProperty(
 WizardDescriptor.PROP_AUTO_WIZARD_STYLE, true);
 jc.putClientProperty(
 WizardDescriptor.PROP_CONTENT_DISPLAYED, true);
 jc.putClientProperty(
 WizardDescriptor.PROP_CONTENT_NUMBERED, true);
 }
 }
 WizardDescriptor wiz = new WizardDescriptor(
 new WizardDescriptor.ArrayIterator<WizardDescriptor>(panels));
 // {0} will be replaced by
 // WizardDesriptor.Panel.getComponent().getName()
 wiz.setTitleFormat(new MessageFormat("{0}"));
 wiz.setTitle(Bundle.CTL_NumberDialogTitle());
 if (DialogDisplayer.getDefault().notify(wiz) ==
 WizardDescriptor.FINISH_OPTION) {
 // do something after the wizard has successfully finished
 }
 }
}

Wizard Tip
The code inside the braces
Click here to view code image
if (DialogDisplayer.getDefault().notify(wiz) ==
 WizardDescriptor.FINISH_OPTION) {
 // do something after the wizard has successfully finished
}
only executes if the wizard finishes normally. It does not execute if the user clicks Cancel.

Deploy and run the WizardExample application now. Note that with only minimal Java annotations, you can invoke our bare-bones wizard, accessed from Menu | Tools, as shown in Figure 12.7.

[image:]

Figure 12.7 Invoking the New Number Sequence wizard

Initially, the wizard displays the first panel, as shown in Figure 12.8. Of course, there aren’t any components yet, so you just see the standard elements that the NetBeans wizard defines: the title, a list of steps, the title of this panel (Step #1), and control buttons: Help, Back, Next, Finish, Cancel.

[image:]

Figure 12.8 New Number Sequence wizard: Panel 1

Help is not enabled because we haven’t configured any Help, Back is not enabled since this is the first panel, and Finish is not enabled because we still have two more panels to work through. Interestingly, Next is enabled because the default behavior for a wizard panel is a valid status, allowing the user to proceed to the next panel.

Select Next and the wizard displays the second panel. The panel title now displays Step #2 (which is also in bold under the list of steps on the left). The Back button is now enabled, but Finish is still disabled.

Select Next again and Step #3 appears, the final and third panel. The Finish button is now enabled.

Select Finish. At this point the wizard is complete and control is returned to the actionPerformed() method, as shown here.

Click here to view code image

if (DialogDisplayer.getDefault().notify(wiz) ==
 WizardDescriptor.FINISH_OPTION) {
 // do something
 }

The actionPerformed() method gathers any data that the wizard collects (there is no data yet!) and carries out its task (whatever it may be). That’s all fine and good, but our New Number Sequence wizard should do more. Let’s build a simple GUI next and show you how each panel’s wizard gathers information from the user.

12.3 Wizard Input

Our wizard is simple. It prompts for a sequence of three numbers whose values are not important. In this first version, we don’t even verify if the input is actually a number.

For each of the three visual panels, use the NetBeans Form designer to add a label and textfield to each panel. Name the JTextField components firstNumber, secondNumber, and thirdNumber, respectively. Figure 12.9 shows the Form designer for the first visual panel.

[image:]

Figure 12.9 Adding components to the visual panel with the Form designer

Now, run the application again and choose menu Tools | New Number Sequence. You will see a field in each panel where you can provide a number. At this point, there is no code that reads the value or determines if the input is actually a number.

Next, let’s read each value and display the number sequence inside the actionPerformed() method using a predefined Information dialog provided by the NetBeans Platform (see “Standard Dialogs” on page 527). This important first step shows how to read user input and make the data accessible within the actionPerformed() method. Perform the following steps for each panel.

1. Create a property name for each value that you want to save. This will be a public static final String in the visual panel class.

2. Create a public getter to access the user input from each visual panel.

3. Store each property value with the WizardDescriptor to make the data accessible within the actionPerformed() method.

Listing 12.2 shows the changes for NumberVisualPanel1.java, shown in bold. You’ll make comparable changes to NumberVisualPanel2.java and NumberVisualPanel3.java.

1. Define public static final String PROP_FIRST_NUMBER.

2. Define public method getFirstNumber() to return the text value of the JTextField component.

Listing 12.2 NumberVisualPanel1.java

Click here to view code image

public final class NumberVisualPanel1 extends JPanel {

 // Create property names for each piece of data that
 // we want to collect
 public static final String PROP_FIRST_NUMBER = "firstNumber";
 public NumberVisualPanel1() {
 initComponents();
 }

@Override
 public String getName() {
 return "Step #1";
 }

 public String getFirstNumber() {
 return firstNumber.getText();
 }

// Generated code
 . . .

// Variables declaration - do not modify
 private javax.swing.JTextField firstNumber;
 private javax.swing.JLabel jLabel1;
 // End of variables declaration

}

Now, inside the wizard panel, save the property value in method storeSettings(). This stores the value in the WizardDescriptor’s cache of properties. Listing 12.3 shows method storeSettings() for NumberWizardPanel1.java.

The WizardDescriptor invokes method storeSettings() when the wizard panel’s step has finished. This is where you store property values in the WizardDescriptor’s property cache. With the WizardDescriptor property cache, you can share data among any of your wizard panels and the wizard action class.

Similarly, the WizardDescriptor invokes method readSettings() at the beginning of a wizard panel’s step. This is where you read properties from the WizardDescriptor’s property cache. You can also put any “step initialization code” in method readSettings()—code that executes at the beginning of the wizard panel’s step. As we continue to develop our Number wizard, you’ll see why these two step life cycle methods are important.

Listing 12.3 NumberWizardPanel1.java

Click here to view code image

public class NumberWizardPanel1 implements
 WizardDescriptor.Panel<WizardDescriptor> {

private NumberVisualPanel1 component;
 @Override
 public NumberVisualPanel1 getComponent() {
 if (component == null) {
 component = new NumberVisualPanel1();
 }
 return component;
 }

. . . code omitted . . .

 @Override
 public void storeSettings(WizardDescriptor wiz) {
 // use wiz.putProperty to remember current panel state
 wiz.putProperty(NumberVisualPanel1.PROP_FIRST_NUMBER,
 getComponent().getFirstNumber());
 }
}

Make similar modifications to NumberWizardPanel2.java and NumberWizardPanel3.java to store values for properties NumberVisualPanel2.PROP_SECOND_NUMBER and NumberVisualPanel3.PROP_THIRD_NUMBER, respectively.

The actionPerformed() method in NumberWizardAction performs two steps. First, it displays a finish message in the status bar of the application with NetBeans Platform utility StatusDisplayer. Second, it displays the new number sequence using a NetBeans Platform predefined Information dialog. Note that the sequence numbers are available because we stored each one in the WizardDescriptor’s property cache in storeSettings(). The WizardDescriptor method getProperty() retrieves each number.

All of the code in actionPerformed() (see Listing 12.4) is generated by NetBeans, except for the code in bold that performs these two tasks.

Listing 12.4 Method actionPerformed—Version I

Click here to view code image

@Override
 public void actionPerformed(ActionEvent e) {

 . . . code is unchanged . . .
 WizardDescriptor wiz = new WizardDescriptor(
 new WizardDescriptor.ArrayIterator<WizardDescriptor>(panels));
 // {0} will be replaced by
 // WizardDesriptor.Panel.getComponent().getName()
 wiz.setTitleFormat(new MessageFormat("{0}"));
 wiz.setTitle(Bundle.CTL_NumberDialogTitle());
 if (DialogDisplayer.getDefault().notify(wiz) ==
 WizardDescriptor.FINISH_OPTION) {
 StatusDisplayer.getDefault().setStatusText("Wizard Finished");
 // retrieve and display the numbers
 StringBuilder message = new StringBuilder("Number Sequence = \n(");
 message.append(wiz.getProperty(
 NumberVisualPanel1.PROP_FIRST_NUMBER)).append(", ");
 message.append(wiz.getProperty(
 NumberVisualPanel2.PROP_SECOND_NUMBER)).append(", ");
 message.append(wiz.getProperty(
 NumberVisualPanel3.PROP_THIRD_NUMBER)).append(")");
 DialogDisplayer.getDefault().notify(
 new NotifyDescriptor.Message(message.toString()));
 }
 }

Figure 12.10 shows the result when you run the New Number Sequence wizard again with the numbers 15, 25, and 44.

[image:]

Figure 12.10 The New Number Sequence wizard completes

12.4 Wizard Validation

Now that you have learned how to read user input and make it available to the actionPerformed() method, let’s add validation to the New Number Sequence wizard. For each panel input, we’ll make sure the number field is not empty and that it is a non-negative integer.

To perform this validation, we install property listeners to inform the wizard panel of any updates from a user.

Note that validation occurs in the wizard panel and not in the visual panel. The WizardDescriptor oversees the wizard’s progress and is responsible for maintaining the correct status of the Back, Next, Cancel, and Finish buttons in the visual panels, since these buttons are affected by the status of each panel. To maintain this visual status, the WizardDescriptor responds to state change events (from the wizard panel) by invoking wizard panel method isValid().

Here are the general changes to the Number Sequence wizard for validation.

1. Implement document listeners in each visual panel to detect changes in the textfield and fire property change events when input changes.

2. Add property listeners to each wizard panel and react to property changes in the visual panel as user input changes.

3. Write a propertyChange() method in each wizard panel that validates input. When a change in validation occurs, fire state change events. The WizardDescriptor class updates the visual panel’s wizard control buttons (Next, Finish) based on the panel’s validation. That is, if the current panel is not valid, then its Next (or Finish) button is disabled.

Listing 12.5 shows the code changes in bold for the first visual panel, NumberVisualPanel1.java. Make similar changes to NumberVisualPanel2.java and NumberVisualPanel3.java.

1. Add DocumentListener to the firstNumber text field component.

2. Override document listener methods insertUpdate(), removeUpdate(), and changedUpdate().

3. Provide a more descriptive name for the panel with method getName().

Listing 12.5 NumberVisualPanel1.java—Implementing Validation

Click here to view code image

public final class NumberVisualPanel1 extends JPanel {

// Create property names for each piece of data that
 // we want to collect
 public static final String PROP_FIRST_NUMBER = "firstNumber";

 public NumberVisualPanel1() {
 initComponents();
 // add a document listener to the textfield component
 firstNumber.getDocument().addDocumentListener(new DocumentListener() {

 @Override
 public void insertUpdate(DocumentEvent de) {
 fireChange(de);
 }
 @Override
 public void removeUpdate(DocumentEvent de) {
 fireChange(de);
 }
 @Override
 public void changedUpdate(DocumentEvent de) {
 fireChange(de);
 }

 private void fireChange(DocumentEvent de) {
 if (firstNumber.getDocument() == de.getDocument()) {
 firePropertyChange(PROP_FIRST_NUMBER, 0, 1);
 }
 }
 });
 }

 // Create localized text for the panel
 @NbBundle.Messages({
 "CTL_Panel1Name=Provide Sequence Initial Value"
 })
 @Override
 public String getName() {
 return Bundle.CTL_Panel1Name();
 }

public String getFirstNumber() {
 return firstNumber.getText();
 }

private void initComponents() {

jLabel1 = new javax.swing.JLabel();
 firstNumber = new javax.swing.JTextField();

. . . code omitted . . .
 }
}

Now make related changes to the wizard panel. The wizard panel becomes a property change listener and validates user input when changes are detected. The wizard’s valid status must initially be false since the wizard requires user input. Here are the changes, which are shown in Listing 12.6.

1. Implement PropertyChangeListener interface and override method propertyChange().

2. Create an Integer field variable called firstNumber to store validated user input for the first number. Use firstNumber instead of getComponent().getFirstNumber() in method storeSettings().

3. Create field variable WizardDescriptor wizard. Set its value inside method readSettings().

4. Use EventListenerList to build ChangeListener support in the wizard panel and override methods addChangeListener() and removeChangeListener(). The WizardDescriptor invokes these to add itself as a ChangeListener; EventListenerList is a standard Swing class that manages listener lists.

5. Add a property change listener for the visual panel in getComponent(). Adding the listener in the conditional block that instantiates the visual panel guarantees that the listener is added just once.

6. Create method checkValidity() to implement any validation required of the user input. Create appropriate error messages for the WizardDescriptor to display.

7. In method propertyChange(), invoke checkValidity() and fire a state change event with method fireChangeEvent(). This notifies the WizardDescriptor (a ChangeListener) that the wizard panel’s state has changed. The WizardDescriptor will invoke isValid() and update the control buttons Next and/or Finish.

Listing 12.6 NumberWizardPanel1.java—Implementing Validation

Click here to view code image

public class NumberWizardPanel1 implements
 WizardDescriptor.Panel<WizardDescriptor>, PropertyChangeListener {

 private NumberVisualPanel1 component;
 private WizardDescriptor wizard = null;
 private boolean isValid = false;
 private Integer firstNumber;
 . . .

 @Override
 public boolean isValid() {
 return isValid;
 }

 @Override
 public NumberVisualPanel1 getComponent() {
 if (component == null) {
 component = new NumberVisualPanel1();
 this.component.addPropertyChangeListener(this);
 }
 return component;
 }

 private final EventListenerList listeners = new EventListenerList();

 @Override
 public void addChangeListener(ChangeListener l) {
 listeners.add(ChangeListener.class, l);
 }
 @Override
 public void removeChangeListener(ChangeListener l) {
 listeners.remove(ChangeListener.class, l);
 }

 @Override
 public void readSettings(WizardDescriptor wiz) {
 this.wizard = wiz;
 }

 @Override
 public void storeSettings(WizardDescriptor wiz) {
 // use wiz.putProperty to remember current panel state
 // Method storeSettings() is called when the step finishes
 wiz.putProperty(NumberVisualPanel1.PROP_FIRST_NUMBER, firstNumber);
 }

 @Override
 public void propertyChange(PropertyChangeEvent event) {
 if (event.getPropertyName().equals(
 NumberVisualPanel1.PROP_FIRST_NUMBER)) {
 boolean oldState = isValid;
 isValid = checkValidity();
 fireChangeEvent(this, oldState, isValid);
 }
 }

 private void setMessage(String message) {
 wizard.getNotificationLineSupport().setErrorMessage(message);
 }

 @NbBundle.Messages({
 "CTL_Panel1NegativeNumber= Number must be non-negative",
 "CTL_Panel1InputRequired= Number field input is required",
 "CTL_Panel1BadNumber= Bad number format"
 })
 private boolean checkValidity() {
 if (getComponent().getFirstNumber().isEmpty()) {
 setMessage(Bundle.CTL_Panel1InputRequired());
 return false;
 }
 try {
 firstNumber = Integer.parseInt(getComponent().getFirstNumber());
 if (firstNumber < 0) {
 setMessage(Bundle.CTL_Panel1NegativeNumber());
 return false;
 }
 setMessage(null);
 return true;
 } catch (NumberFormatException e) {
 setMessage(Bundle.CTL_Panel1BadNumber());
 return false;
 }
 }

 protected final void fireChangeEvent(Object source, boolean oldState,
 boolean newState) {
 if (oldState != newState) {
 ChangeEvent ev = new ChangeEvent(source);
 for (ChangeListener listener :
 listeners.getListeners(ChangeListener.class)) {
 listener.stateChanged(ev);
 }
 }
 }
}

Make similar changes to the second and third panels, NumberWizardPanel2.java and NumberWizardPanel3.java.

Figure 12.11 shows how each visual panel fires a property change event when user input changes. The wizard panel, in turn, re-validates input when it receives the property change event. If the isValid state of the panel changes, the wizard panel fires a state change event. The WizardDescriptor responds to state change events by invoking the wizard panel’s isValid() method. This updates the Next and/or Final buttons on the visual panel accordingly.

[image:]

Figure 12.11 Property change events notify listeners to monitor and validate user input.

Run the application again and invoke the New Number Sequence wizard. Figure 12.12 and Figure 12.13 show examples of error messages for missing input and negative numbers, respectively. An error message appears when input is required. Note that the Next button is disabled when there are errors.

[image:]

Figure 12.12 Input is required, Next button disabled

[image:]

Figure 12.13 Negative numbers not valid, Next button disabled

Likewise, an error message appears when the number is negative.

When input is valid, the WizardDescriptor enables the Next button and no error message appears, as shown in Figure 12.14.

[image:]

Figure 12.14 Input is valid, Next button enabled

Coordinating Input with Other Panel Wizards

Once you make these changes to each visual panel and each wizard panel, all three sequence numbers will be well formed and non-negative. Suppose, however, that in addition to this validation, you’d also like to verify that each successive number is larger than the previous one. To do this, wizard panels 2 and 3 must access validated input from the previous panels.

Fortunately, this is straightforward. You read the previous panel’s input value in method readSettings() and check its value with the current input value in the checkValidity() method. Helper method updatePanel() encapsulates the updating chores for input validation. (Remember, the WizardDescriptor invokes readSettings() at the beginning of a panel’s step, so this is where you put step initialization code.)

You must validate the panel in readSettings() since the current input may be invalid. Using the Back button, a user can change the previous panel’s value and, as a side effect, invalidate the current panel’s number.

Listing 12.7 shows the changes (in bold) to wizard panel 2 to ensure that a user supplies a number greater than the value supplied in panel 1. Make similar changes to wizard panel 3, which checks the input provided in panel 2.

Listing 12.7 NumberWizardPanel2—Modifications for Additional Validation

Click here to view code image

public class NumberWizardPanel2 implements
 WizardDescriptor.Panel<WizardDescriptor>,
 PropertyChangeListener {

 private Integer firstNumber;
 private Integer secondNumber;
 . . . code omitted . . .

 @Override
 public void readSettings(WizardDescriptor wiz) {
 // use wiz.getProperty to retrieve previous panel state
 this.wizard = wiz;
 firstNumber = (Integer) wizard.getProperty(
 NumberVisualPanel1.PROP_FIRST_NUMBER);
 updatePanel();
 }

 @Override
 public void propertyChange(PropertyChangeEvent event) {
 if (event.getPropertyName().equals(
 NumberVisualPanel2.PROP_SECOND_NUMBER)) {
 updatePanel();
 }
 }

private void updatePanel() {
 boolean oldState = isValid;
 isValid = checkValidity();
 fireChangeEvent(this, oldState, isValid);
 }

 @NbBundle.Messages({
 "# {0} - previous sequence number",
 "CTL_Panel2BadSequence= Number must be greater than {0}."
 })
 private boolean checkValidity() {
 if (getComponent().getSecondNumber().isEmpty()) {
 setMessage(Bundle.CTL_Panel1InputRequired());
 return false;
 }
 try {
 secondNumber = Integer.parseInt(getComponent().getSecondNumber());
 if (secondNumber < 0) {
 setMessage(Bundle.CTL_Panel1NegativeNumber());
 return false;
 }
 if (secondNumber <= firstNumber) {
 setMessage(Bundle.CTL_Panel2BadSequence(firstNumber));
 return false;
 }
 setMessage(null);
 return true;
 } catch (NumberFormatException e) {
 setMessage(Bundle.CTL_Panel1BadNumber());
 return false;
 }
 }
}

Figure 12.15 shows the second panel when the first number is 25 and the user provides number 22.

[image:]

Figure 12.15 Validation of second number depends on value of first number

Visual Panel Updates

Displaying data from previous panels on the current panel provides helpful visual feedback and shows how a wizard is progressing. Let’s modify our New Number Sequence example to display the numbers from the previous panels. This shows users the minimum value required for the current panel.

To provide this visual feedback, modify visual panels 2 and 3. Add a JLabel, JTextArea, or JTextField component to display the data. We use a JLabel and place it below the JTextField component. We also provide a setter so that the wizard panel can update the JLabel component.

Here are the changes to visual panels 2 and 3.

1. Use the Form designer to add a JLabel component under the JTextField component. Change the JLabel variable name to currentSequence.

2. Provide public method setCurrentSequence(String text) to update the JLabel component.

Listing 12.8 shows the code with the changes in bold for visual panel 3.

Listing 12.8 NumberVisualPanel3.java—Provide JLabel for Feedback

Click here to view code image

public final class NumberVisualPanel3 extends JPanel {

public static final String PROP_THIRD_NUMBER = "thirdNumber";

. . . code omitted . . .

 public void setCurrentSequence(String text) {
 currentSequence.setText(text);
 }

. . . code omitted . . .

 // Variables declaration - do not modify
 private javax.swing.JLabel currentSequence;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JTextField thirdNumber;
 // End of variables declaration

. . . code omitted . . .

}

Next, update wizard panels 2 and 3, as follows.

1. Get all the previously supplied user data. This requires reading the value for the first number and the second number in wizard panel 3.

2. Invoke setCurrentSequence() to set the text of the JLabel component with the current sequence.

3. After invoking checkValidity(), update the current sequence. Include the current user input if the input is valid.

Listing 12.9 shows the added Message bundle to NumberWizardPanel2.java, and Listing 12.10 displays the changes to NumberWizardPanel3.java shown in bold. Make the corresponding changes to NumberVisualPanel2.java.

Listing 12.9 NumberWizardPanel2.java—Providing Visual Feedback

Click here to view code image

public class NumberWizardPanel2 implements
 WizardDescriptor.Panel<WizardDescriptor>, PropertyChangeListener {

. . . code omitted . . .

 @NbBundle.Messages({
 "# {0} - current sequence string",
 "CTL_Panel2CurrentSequence= Current Sequence: {0}."
 })

Listing 12.10 NumberWizardPanel3.java—Providing Visual Feedback

Click here to view code image

public class NumberWizardPanel3 implements
WizardDescriptor.Panel<WizardDescriptor>,
 PropertyChangeListener {

 private NumberVisualPanel3 component;
 private WizardDescriptor wizard = null;
 private boolean isValid = false;
 private Integer firstNumber;
 private Integer secondNumber;
 private Integer thirdNumber;

. . . code omitted . . .

 @Override
 public void readSettings(WizardDescriptor wiz) {
 this.wizard = wiz;
 firstNumber = (Integer) wiz.getProperty(
 NumberVisualPanel1.PROP_FIRST_NUMBER);
 secondNumber = (Integer) wiz.getProperty(
 NumberVisualPanel2.PROP_SECOND_NUMBER);
 updatePanel();
 }

 private void updatePanel() {
 boolean oldState = isValid;
 isValid = checkValidity();
 if (isValid) {
 getComponent().setCurrentSequence(
 Bundle.CTL_Panel2CurrentSequence(
 firstNumber + ", " + secondNumber + ", " + thirdNumber));
 } else {
 getComponent().setCurrentSequence(
 Bundle.CTL_Panel2CurrentSequence(
 firstNumber + ", " + secondNumber));
 }
 fireChangeEvent(this, oldState, isValid);
 }
}

Now run the application again and invoke the New Number Sequence wizard. Figure 12.16 shows panel 3 when the user supplies invalid data.

[image:]

Figure 12.16 User sees current sequence

When user input is valid, the current sequence includes the current panel’s input number, as shown in Figure 12.17.

[image:]

Figure 12.17 User input is valid and current sequence includes new input

12.5 Simple Validation API

Panels that have textfields (like those shown in the previous section) often require repetitive and tedious validation code. For example, in Listing 12.11 the checkValidity() method validates the second sequence number in NumberWizardPanel2 using several steps. First, the method verifies the input is not empty. Second, it converts the input to an integer (making sure the integer is well-formed), Third, it verifies the number is non-negative. And finally, it checks the input value against the first sequence number.

Listing 12.11 Validate Second Sequence Number (NumberWizardPanel2)

Click here to view code image

private boolean checkValidity() {
 if (getComponent().getSecondNumber().isEmpty()) {
 setMessage(Bundle.CTL_Panel1InputRequired());
 return false;
 }
 try {
 secondNumber = Integer.parseInt(getComponent().getSecondNumber());
 if (secondNumber < 0) {
 setMessage(Bundle.CTL_Panel1NegativeNumber());
 return false;
 }
 if (secondNumber <= firstNumber) {
 setMessage(Bundle.CTL_Panel2BadSequence(firstNumber));
 return false;
 }
 setMessage(null);
 return true;
 } catch (NumberFormatException e) {
 setMessage(Bundle.CTL_Panel1BadNumber());
 return false;
 }
 }

Wouldn’t it be nice to reduce this validation code? Fortunately, a general-purpose validation library is available for exactly this kind of input validation. Created by Tim Boudreau of NetBeans fame, this library is called Simple Validation API and is open-sourced and included in the NetBeans distribution. In this section, we’ll show you how to use the validation library within a NetBeans Platform application. As an example, we’ll use the library with the New Number Sequence wizard.

Prepare to Use the Validation Library

To use the Simple Validation API in a NetBeans Platform application, you need to create a library wrapper for the JAR file. NetBeans will do this for you when you add the JAR file to your application, as follows.

1. In the Projects window, select application WizardExample, right-click, and choose Add Existing Library

2. In the Select Library dialog, click Browse. Navigate to NetBeans/ide/modules/ext/ValidationAPI.jar and click Select. Back in the Select Library dialog, click Next as shown in Figure 12.18.

[image:]

Figure 12.18 Creating a new library wrapper module project

3. In the Name and Location dialog, make sure the Project Name and directory locations are correct and click Next, as shown in Figure 12.19.

[image:]

Figure 12.19 Name and Location dialog

4. Provide a Code Name Base in the Basic Module Configuration dialog and click Finish. NetBeans creates module ValidationAPI and adds it to your project, as shown in Figure 12.20.

[image:]

Figure 12.20 Module ValidationAPI is a wrapped JAR file

5. Add a new dependency on the Validation API in module Sequence. Now you can use the library in this module.

Extend the Swing component palette, as follows.

1. In the NetBeans IDE, make sure the component design palette is open. Right-click inside the design palette and choose Palette Manager from the context menu.

2. Choose button Add from JAR, and browse to the same ValidationAPI.jar. Click Next.

3. Select ValidationPanel from the list of components and click Next.

4. Choose Swing Containers and click Finish. This adds the Validation Panel component to your palette under category Swing Containers. With this extension, you can drag and drop Validation Panels to a Swing UI.

Using the Simple Validation API Library

To use the Validation library, you must add a Validation Panel component to your Swing UI. Validation Panels let you specify which validators should apply to which input components. They also provide a convenient way to display error messages. Typically, you’ll use Validation Panels to validate JTextField component input.

Table 12.2 shows ten useful validators from the Validation library (there are more). When you specify one or more validators for a specific component, validation proceeds in the order that you add them. For example, to validate input for an integer, you chain together REQUIRE_NON_EMPTY_STRING, NO_WHITESPACE, and REQUIRE_VALID_INTEGER. Note that the order is significant. Each validator is invoked until a problem occurs or the list is exhausted. Checking for empty strings first makes error messages clearer for the user.

[image:]

TABLE 12.2 Ten Useful Validators

In situations where these validators aren’t suitable, you can build a custom validator. We’ll show you how to do this shortly.

Let’s begin by adding validation to the firstNumber textfield in the first visual panel, NumberVisualPanel1.

1. Open NumberVisualPanel1 in the Design view.

2. Select ValidationPanel from the palette and drag and drop it on the visual panel under the JTextField. This adds component validationPanel1.

3. Go to Source view and add the code as shown in Listing 12.12 to NumberVisualPanel1.java.

Validation configuration starts with validationPanel1. From validationPanel1 we first obtain a ValidationGroup object. We then assign a target component for validation and add validators. Here, we add validators to verify that input is not empty, contains no white space, is a valid integer, and is a non-negative number. We also make sure the integer is within the specified minimum and maximum values.

We’ve modified the DocumentListener for firstNumber to invoke method checkValidation(), which includes a call to group.validateAll().

We also override method isValid() so that NumberWizardPanel1 knows if the input is valid. We still fire a property change event whenever input changes.

Listing 12.12 Add Validation to NumberVisualPanel1

Click here to view code image

public final class NumberVisualPanel1 extends JPanel {

 public static final String PROP_FIRST_NUMBER = "firstNumber";
 public static final Integer MAX_SEQUENCE_NUMBER = 10000; // arbitrary
 private ValidationGroup group = null;
 private boolean isValid = false;

 public NumberVisualPanel1() {
 initComponents();
 firstNumber.setName(Bundle.CTL_Panel1FieldName());
 group = validationPanel1.getValidationGroup();
 group.add(firstNumber,
 Validators.REQUIRE_NON_EMPTY_STRING,
 Validators.NO_WHITESPACE,
 Validators.REQUIRE_VALID_INTEGER,
 Validators.REQUIRE_NON_NEGATIVE_NUMBER,
 Validators.numberRange(0, MAX_SEQUENCE_NUMBER-2));

firstNumber.getDocument().addDocumentListener(new DocumentListener() {

 @Override
 public void insertUpdate(DocumentEvent e) {
 checkValidation();
 }

 @Override
 public void removeUpdate(DocumentEvent e) {
 checkValidation();
 }

 @Override
 public void changedUpdate(DocumentEvent e) {
 checkValidation();
 }

 private void checkValidation() {
 Problem validateAll = group.validateAll();
 isValid = !validateAll.isFatal();
 firePropertyChange(PROP_FIRST_NUMBER, 0, 1);
 }
 });
 }

 @Override
 public boolean isValid() {
 return isValid;
 }
 . . . code omitted . . .
}

Since validation now takes place within the visual panel, the wizard panel no longer performs validation. However, the wizard panel must still store Integer firstNumber and keep the WizardDescriptor informed of the panel’s valid status. (Remember, the WizardDescriptor must update the Next/Finish buttons as input changes.) Listing 12.13 shows the modified method checkValidity() in NumberWizardPanel1. Note that a NumberFormatException should not occur since the component returns already-validated text.

Listing 12.13 NumberWizardPanel1: Method checkValidity()

Click here to view code image

private boolean checkValidity() {
 if (getComponent().isValid()) {
 try {
 firstNumber = Integer.parseInt(getComponent().getFirstNumber());
 setMessage(null);
 return true;
 } catch (NumberFormatException e) {
 setMessage(Bundle.CTL_Panel1BadNumber());
 return false;
 }
 }
 return false;
 }

Using a Custom Validator

Now that we’ve implemented validation with the Validation API for the first panel, we can apply similar changes to the second and third panels. In this case, however, we must set the minimum value for the range validator through the wizard panel method readSettings(), since this minimum depends on the previous panel’s number.

We must also be able to change the minimum range when a user clicks the Back button, changes the previous number, and returns to the second and third panels.

The general model for the built-in validators makes them immutable. In other words, you can’t change a validator’s parameters once you set them. While some might see this as less than ideal, mutable state validators are more complex. These validators are simple (hence the name) and easy to use.

The solution to the immutable validator restriction is to create a custom validator. To do this, implement the Validator interface and override method validate(). With a custom validator, we can delegate validation to a standard range validator created at validation time and thus achieve dynamic range validation.

With a bona fide motivation to create our own validator, let’s do that now. Listing 12.14 shows CustomRangeValidator, a validator that lets you modify a validator’s minimum and maximum range values.

Two setters configure the validator’s range. In method validate(), we create a number range validator (using the built-in static numberRange() method) with range parameters minVal and maxVal. We then invoke validate() using the newly created delegate validator.

Listing 12.14 CustomRangeValidator

Click here to view code image

public class CustomRangeValidator implements Validator<String> {
 private Integer minVal = new Integer(0);
 private Integer maxVal= new Integer(0);

public void setMaxVal(Integer maxVal) {
 this.maxVal = maxVal;
 }

public void setMinVal(Integer minVal) {
 this.minVal = minVal;
 }

@Override
 public boolean validate(Problems prblms, String string, String t) {
 Validator<String> rangeDelegate =
 Validators.numberRange(minVal, maxVal);
 return rangeDelegate.validate(prblms, string, t);
 }
}

Listing 12.15 shows the corresponding changes to the visual panel. Note that we create a new class variable customrange for our CustomRangeValidator. Public method setMinRange() configures the minimum range value. The list of validators added to the ValidationGroup is the same, except we use the custom range validator instead of the built-in range validator.

We also define a public method updateValidation() that lets the wizard panel check validation from readSettings(). This is necessary to ensure correct behavior when the Back button is used to change the previous panel’s value.

Listing 12.15 Add Validation to NumberVisualPanel2

Click here to view code image

public final class NumberVisualPanel2 extends JPanel {

 public static final String PROP_SECOND_NUMBER = "secondNumber";
 private boolean isValid = false;
 private CustomRangeValidator customrange = new CustomRangeValidator();
 private ValidationGroup group = null;

public NumberVisualPanel2() {
 initComponents();
 secondNumber.setName(Bundle.CTL_Panel1FieldName());

 // setup validation
 group = validationPanel1.getValidationGroup();
 customrange.setMaxVal(NumberVisualPanel1.MAX_SEQUENCE_NUMBER - 1);
 customrange.setMinVal(0);
 group.add(secondNumber,
 Validators.REQUIRE_NON_EMPTY_STRING,
 Validators.NO_WHITESPACE,
 Validators.REQUIRE_VALID_INTEGER,
 Validators.REQUIRE_NON_NEGATIVE_NUMBER,
 customrange);
 secondNumber.getDocument().addDocumentListener(new DocumentListener() {

@Override
 public void insertUpdate(DocumentEvent de) {
 checkValidation();
 }

@Override
 public void removeUpdate(DocumentEvent de) {
 checkValidation();
 }

@Override
 public void changedUpdate(DocumentEvent de) {
 checkValidation();
 }

 private void checkValidation() {
 updateValidation();
 firePropertyChange(PROP_SECOND_NUMBER, 0, 1);
 }
 });
 }

 public void setMinRange(Integer minNumber) {
 customrange.setMinVal(minNumber);
 }

 public void updateValidation() {
 Problem validateAll = group.validateAll();
 isValid = !validateAll.isFatal();
 }
. . . code omitted . . .
}

Listing 12.16 shows the changes required to NumberWizardPanel2 methods. Now, if a user clicks the Back button, changes the first sequence number, and then returns to the second panel, the range validator is configured with a new minimum range.

Listing 12.16 NumberWizardPanel2 methods

Click here to view code image

 @Override
 public void readSettings(WizardDescriptor wiz) {
 this.wizard = wiz;
 firstNumber = (Integer) wizard.getProperty(
 NumberVisualPanel1.PROP_FIRST_NUMBER);
 if (firstNumber == null) {
 firstNumber = 0;
 }
 getComponent().setMinRange(firstNumber + 1);
 updatePanel();
 }

. . . code omitted . . .

 private void updatePanel() {
 boolean oldState = isValid;
 getComponent().updateValidation();
 isValid = checkValidity();
 if (isValid) {
 getComponent().setCurrentSequence(
 Bundle.CTL_Panel2CurrentSequence(
 firstNumber + ", " + secondNumber));
 } else {
 getComponent().setCurrentSequence(
 Bundle.CTL_Panel2CurrentSequence(firstNumber));
 }
 fireChangeEvent(this, oldState, isValid);
 }

Make the corresponding changes to NumberVisualPanel3 and NumberWizardPanel3 to implement a dynamic range validator for the third panel. Figure 12.21 shows the error message when a number is outside the required range.

[image:]

Figure 12.21 A custom number range validator

12.6 Finishing Early Option

The NetBeans Platform wizard lets you provide users with an option to finish a wizard early. Finishing early is always only an option, however, and not a requirement. The user is still able to proceed to the next panel by selecting Next.

This distinction is important. If you want to create a dynamic use case, where the user works through different panels depending on their selections, or the wizard ends early because of a user selection, then select the Dynamic Wizard Step Sequence instead of the Static Wizard Step Sequence when creating your wizard. (See “Dynamic Sequence Wizards” on page 598.)

Returning to our New Number Sequence wizard, let’s say that if the second number is greater than 500, the user has the option of specifying only two numbers for the sequence instead of three. That is, in the second panel, we enable the Finish button so the user can optionally finish after providing valid input if the second number is greater than 500.

To implement this behavior, we store the number selections in an ArrayList, which simplifies the coding for sequences of different sizes. With an ArrayList, it’s more convenient to retrieve all the numbers in the actionPerformed() method.

First, let’s look at the modifications to store and retrieve the numbers using an ArrayList. Listing 12.17 shows the changes to NumberWizardPanel1 in bold.

Array mynumbers holds the numbers. In method storeSettings(), we put the ArrayList property into the WizardDescriptor’s property cache.

Listing 12.17 NumberWizardPanel1.java—Using ArrayList Property

Click here to view code image

public class NumberWizardPanel1 implements
 WizardDescriptor.Panel<WizardDescriptor>,
 PropertyChangeListener {

 private NumberVisualPanel1 component;
 private WizardDescriptor wizard = null;
 private boolean isValid = false;
 private Integer firstNumber;
 private List<Integer> mynumbers = new ArrayList<Integer>();
 public final static String PROP_NUMBER_LIST = "mynumbers";

 @Override
 public void storeSettings(WizardDescriptor wiz) {
 wiz.putProperty(NumberVisualPanel1.PROP_FIRST_NUMBER, firstNumber);
 mynumbers.clear();
 mynumbers.add(firstNumber);
 wiz.putProperty(PROP_NUMBER_LIST, mynumbers);
 }
 . . . code omitted . . .
}

Make similar changes to NumberWizardPanel2 and NumberWizardPanel3. Listing 12.18 shows the code for NumberWizardPanel3. Note that here we must retrieve the mynumbers ArrayList in readSettings() as well as save it in storeSettings().

Listing 12.18 NumberWizardPanel3.java—Using ArrayList Property

Click here to view code image

public class NumberWizardPanel3 implements
 WizardDescriptor.Panel<WizardDescriptor>,
 PropertyChangeListener {

 private NumberVisualPanel3 component;
 private WizardDescriptor wizard = null;
 private boolean isValid = false;
 private Integer firstNumber;
 private Integer secondNumber;
 private Integer thirdNumber;
 private List<Integer> mynumbers;

. . . code omitted . . .

 @Override
 public void readSettings(WizardDescriptor wiz) {
 this.wizard = wiz;
 firstNumber = (Integer) wiz.getProperty(
 NumberVisualPanel1.PROP_FIRST_NUMBER);
 secondNumber = (Integer) wiz.getProperty(
 NumberVisualPanel2.PROP_SECOND_NUMBER);
 mynumbers = (List<Integer>) wizard.getProperty(
 NumberWizardPanel1.PROP_NUMBER_LIST);
 updatePanel();
 }

 @Override
 public void storeSettings(WizardDescriptor wiz) {
 wiz.putProperty(NumberVisualPanel3.PROP_THIRD_NUMBER, thirdNumber);
 mynumbers.clear();
 mynumbers.add(firstNumber);
 mynumbers.add(secondNumber);
 mynumbers.add(thirdNumber);
 wiz.putProperty(NumberWizardPanel1.PROP_NUMBER_LIST, mynumbers);
 }
 . . . code omitted . . .
}

Now in NumberWizardAction’s method actionPerformed(), we retrieve the numbers from property NumberWizardPanel1.PROP_NUMBER_LIST to display the new sequence, as shown in Listing 12.19.

Listing 12.19 Method actionPerformed—Version II

Click here to view code image

@Override
public void actionPerformed(ActionEvent e) {

. . . code omitted . . .

 if (DialogDisplayer.getDefault().notify(wiz) ==
 WizardDescriptor.FINISH_OPTION) {
 StatusDisplayer.getDefault().setStatusText("Wizard Finished");
 // retrieve and display the numbers
 StringBuilder message = new StringBuilder("Number Sequence = \n(");
 List<Integer> numbers = (List<Integer>) wiz.getProperty(
 NumberWizardPanel1.PROP_NUMBER_LIST);
 for (int i = 0; i < numbers.size()-1; i++) {
 message.append(numbers.get(i)).append(", ");
 }
 message.append(numbers.get(numbers.size()-1)).append(")");
 DialogDisplayer.getDefault().notify(
 new NotifyDescriptor.Message(message.toString()));
 }

}

With that bit of housekeeping out of the way, let’s return to NumberWizardPanel2. This is the panel we’ll make “finishable.”

To make a panel with a Finish button that is optionally enabled—finishable—the panel implements WizardDescriptor.FinishablePanel<WizardDescriptor> and overrides method isFinishPanel(). That’s it. However, when the status of method isFinishPanel() changes, you must fire a state change event to the panel’s listeners just like you do with method isValid(). This allows the WizardDescriptor to update the Finish button as the user input changes. Listing 12.20 shows how NumberWizardPanel2 implements FinishablePanel.

The boolean field isFinishPanel is updated whenever this class receives a property change event from the visual panel as the user provides input. After performing the normal validation check, we update isFinishPanel. If its status has changed, method fireChangeEvent() fires a state change event. This in turn causes the WizardDescriptor to invoke method isFinishPanel() and update the Finish button accordingly. Even if isFinishPanel() returns true, the Finish button is not enabled unless isValid() also returns true.

Listing 12.20 NumberWizardPanel2.java—Implementing a Finish Early Option

Click here to view code image

public class NumberWizardPanel2 implements
 WizardDescriptor.FinishablePanel<WizardDescriptor>,
 PropertyChangeListener {

 private NumberVisualPanel2 component;
 private WizardDescriptor wizard = null;
 private boolean isValid = false;
 private boolean isFinishPanel = false;
 private Integer firstNumber;
 private Integer secondNumber;
 private List<Integer> mynumbers;
 private static final int FINISH_LIMIT = 500;

. . . code omitted . . .

@Override
 public void propertyChange(PropertyChangeEvent event) {
 if (event.getPropertyName().equals(
 NumberVisualPanel2.PROP_SECOND_NUMBER)) {
 updatePanel();
 }
 }

 private void updatePanel() {
 boolean oldState = isValid;
 isValid = checkValidity();
 if (isValid) {
 getComponent().setCurrentSequence(
 Bundle.CTL_Panel2CurrentSequence(
 firstNumber + ", " + secondNumber));
 } else {
 getComponent().setCurrentSequence(
 Bundle.CTL_Panel2CurrentSequence(firstNumber));
 }
 fireChangeEvent(this, oldState, isValid);
 oldState = isFinishPanel;
 if (secondNumber != null) {
 isFinishPanel = secondNumber > FINISH_LIMIT;
 fireChangeEvent(this, oldState, isFinishPanel);
 }
 }
 @Override
 public boolean isFinishPanel() {
 return isFinishPanel;
 }
}

Run the WizardExample application again and invoke the New Number Sequence wizard. You’ll see that if the second number is greater than 500, you can click Finish early and provide a number sequence of just two numbers, as shown in Figure 12.22. (Note that the Next button is also enabled.)

[image:]

Figure 12.22 The second number is greater than 500, so the Finish button is enabled

After clicking Finish in the panel above, the new number sequence (consisting of only two numbers) shows in the Information window shown in Figure 12.23.

[image:]

Figure 12.23 The new number sequence consists of only two numbers because the wizard finished early

12.7 Asynchronous Validation

The example you’ve seen so far includes validation that doesn’t take much time—that is, the visual panel responds to a document change in the graphical user component. That in turn fires a property change event to the wizard panel which re-validates the input. What happens, however, if validation requires a longer process, such as a web service call or a database access? In this case, you don’t want to block the user interface (and prevent the user from clicking the Cancel button). Instead, you provide asynchronous validation after the user clicks the Next button. This means the WizardDescriptor does not proceed to the next panel until the validation is complete, but the Cancel button is still active.

Let’s show you how to implement asynchronous validation with a somewhat contrived example. Suppose the new number sequence must begin with a unique number; that is, a number that hasn’t been previously used for the initial number. In our case, we assume that this check could take some time, so we want to perform the validation asynchronously.

Here are the general steps we’ll follow to implement asynchronous validation in our example. We’ll provide detailed descriptions of each step following this list.

1. Let’s mimic a database call by providing a separate module (SequenceStore) that stores each initial sequence number and a method that lets a client validate a new number sequence. We must therefore create this new module, make its API package public, and add the module as a dependency to the Sequence module.

2. We add a JLabel component to the visual panel with public method setStatus() and make the JTextField component (the number input component) accessible from the wizard panel. (This is just to provide visual feedback to the user.)

3. The wizard panel implements WizardDescriptor.AsynchronousValidatingPanel<WizardDescriptor> instead of WizardDescriptor.Panel<WizardDescriptor>. In our example, we make this change to NumberWizardPanel1.

4. Override method prepareValidation(), which is invoked synchronously and performs any pre-validating access to the visual panel. Note that the asynchronous validation method should not access the components in the visual panel.

5. Override method validate(). This method is invoked in a separate thread. If validation fails, throw WizardValidationException (of course!). The WizardDescriptor handles the WizardValidationException, displays the provided error message, and prevents the user from proceeding to the next panel.

6. After the wizard finishes, store the initial sequence number in the SequenceStore module.

Wizard Tip
Another option is to perform synchronous validation when between-panel validation is not time-critical. To do this, implement interface WizardDescriptor.ValidatingPanel<WizardDescriptor> and override method validate() , which the WizardDescriptor invokes synchronously. See Listing 12.28 on page 610 for an example.

Let’s begin our asynchronous validation example by creating a new module in the WizardExample application. Call the new module SequenceStore. In the SequenceStore module, create Java interface NumberStore in package com.asgteach.sequencestore.api and provide abstract methods store() and isUnique(), as shown in Listing 12.21.

Listing 12.21 NumberStore.java

Click here to view code image

package com.asgteach.sequencestore.api;

public interface NumberStore {

public boolean isUnique(Integer num);

public boolean store(Integer num);

}

Add Lookup API dependency to module SequenceStore and make package com.asgteach.sequencestore.api public in API Versioning. Now create new Java class SimpleNumberStore in package com.asgteach.sequencestore with the implementation shown in Listing 12.22. Note that we use annotation @ServiceProvider for class NumberStore.

Listing 12.22 SimpleNumberStore.java—A NumberStore Service Provider

Click here to view code image

package com.asgteach.sequencestore;

import com.asgteach.sequencestore.api.NumberStore;
import java.util.HashSet;
import java.util.Set;
import org.openide.util.lookup.ServiceProvider;

@ServiceProvider(service = NumberStore.class)
public class SimpleNumberStore implements NumberStore {

private Set<Integer> numberSet = new HashSet<Integer>();
 @Override
 public boolean isUnique(Integer num) {
 return !numberSet.contains(num);
 }

@Override
 public boolean store(Integer num) {
 // add returns true if the collection changed
 // (if num was not already present)
 return numberSet.add(num);
 }
}

Add a JLabel component to the Design view of NumberVisualPanel1 and change the JLabel’s Variable Name property to status, as shown in Figure 12.24. (Remove the text from the label’s text property.)

[image:]

Figure 12.24 NumberVisualPanel1 with the added JLabel component

Listing 12.23 shows the changes required for the visual panel, NumberVisualPanel1.java. We add getNumberComponent() and setStatus() public methods, as shown in bold.

Listing 12.23 NumberVisualPanel1.java

Click here to view code image

public final class NumberVisualPanel1 extends JPanel {

. . . code omitted . . .

 public JTextField getNumberComponent() {
 return firstNumber;
 }

 public void setStatus(String text) {
 status.setText(text);
 }
 . . . code omitted . . .

 // Variables declaration - do not modify
 private javax.swing.JTextField firstNumber;
 private javax.swing.JLabel jLabel1;
 private javax.swing.JLabel status;
 // End of variables declaration

. . .
}

Now turn your attention to NumberWizardPanel1, the wizard panel that provides the asynchronous validation (see Listing 12.24). First, add dependencies to the Lookup API and module SequenceStore to access the service provider for NumberStore. Note that we still validate user input here to make sure the input is a valid, non-negative number. After this validation succeeds and the user clicks Next, the WizardDescriptor initiates the asynchronous validation by invoking prepareValidation() followed by validate(). These methods are required with interface WizardDescriptor.AsynchronousValidatingPanel, and we provide implementations of them in NumberWizardPanel1.

Method prepareValidation() performs any GUI-related functions required by the validation. Here, we write a status message to the visual panel and get a reference to the JTextField component. This component is needed for the WizardValidationException.

Method validate() performs the actual number sequence validation in a separate thread. First, we obtain a reference to the NumberStore service provider via the Global Lookup. We invoke method isUnique() to determine whether or not the initial number is unique. If it is, we return and the validation succeeds. If not, we throw WizardValidationException. The exception arguments include the input component from the visual panel that is responsible for the data and error messages that the WizardDescriptor displays.

Listing 12.24 NumberWizardPanel1.java—Asynchronous Validation

Click here to view code image

public class NumberWizardPanel1 implements
 WizardDescriptor.AsynchronousValidatingPanel<WizardDescriptor>,
 PropertyChangeListener {

 private NumberVisualPanel1 component;
 private WizardDescriptor wizard = null;
 private boolean isValid = false;
 private Integer firstNumber;
 private JComponent numberComponent = null;

 . . . Code unchanged . . .
 @Override
 public void prepareValidation() {
 getComponent().setStatus(Bundle.CTL_Panel1_CheckUnique(firstNumber));
 numberComponent = getComponent().getNumberComponent();
 }

 @NbBundle.Messages({
 "# {0} - current sequence number",
 "CTL_Panel1_DuplicateNumErr= {0} is not unique.",
 "CTL_Panel1_BadLookup=Can't get NumberStore",
 "# {0} - current sequence number",
 "CTL_Panel1_CheckUnique= Checking for {0} uniqueness . . ."
 })
 @Override
 public void validate() throws WizardValidationException {

 NumberStore numStore = Lookup.getDefault().lookup(NumberStore.class);
 if (numStore == null) {
 throw new WizardValidationException(numberComponent,
 Bundle.CTL_Panel1_BadLookup(),
 Bundle.CTL_Panel1_BadLookup());
 }
 // we don't store the first sequence number
 // until after the wizard finishes (so Back button doesn't bite us)
 if (!numStore.isUnique(firstNumber)) {
 throw new WizardValidationException(numberComponent,
 Bundle.CTL_Panel1_DuplicateNumErr(firstNumber),
 Bundle.CTL_Panel1_DuplicateNumErr(firstNumber));
 }
 }
}

When the asynchronous validation succeeds and the user proceeds through the remaining panels to complete the wizard, we store the new initial sequence number using the NumberStore service provider. Listing 12.25 shows the update to NumberWizardAction.java and method actionPerformed(). Once again, we get a reference to the NumberStore service provider through the Global Lookup and invoke numStore.store() to store the initial sequence number.

Listing 12.25 NumberWizardAction.java—Store the Initial Sequence Number

Click here to view code image

@ActionID(category = "Tools",
 id = "org.asgteach.sequence.NumberWizardAction")

. . . code omitted . . .
public final class NumberWizardAction implements ActionListener {

@Override
 public void actionPerformed(ActionEvent e) {
 List<WizardDescriptor.Panel<WizardDescriptor>> panels =
 new ArrayList<WizardDescriptor.Panel<WizardDescriptor>>();

. . . code omitted . . .

 WizardDescriptor wiz = new WizardDescriptor(
 new WizardDescriptor.ArrayIterator<WizardDescriptor>(panels));
 wiz.setTitleFormat(new MessageFormat("{0}"));
 wiz.setTitle(Bundle.CTL_NumberDialogTitle());
 if (DialogDisplayer.getDefault().notify(wiz) ==
 WizardDescriptor.FINISH_OPTION) {
 // Store the number
 NumberStore numStore =
 Lookup.getDefault().lookup(NumberStore.class);
 if (numStore != null) {
 numStore.store((Integer) wiz.getProperty(
 NumberVisualPanel1.PROP_FIRST_NUMBER));
 }

// Retrieve and display the numbers
 StringBuilder message = new StringBuilder("Number Sequence = \n(");
 List<Integer> numbers = (List<Integer>) wiz.getProperty(
 NumberWizardPanel1.PROP_NUMBER_LIST);
 for (int i = 0; i < numbers.size()-1; i++) {
 message.append(numbers.get(i)).append(", ");
 }
 message.append(numbers.get(numbers.size()-1)).append(")");
 DialogDisplayer.getDefault().notify(
 new NotifyDescriptor.Message(message.toString()));
 }
 }
}

Figure 12.25 shows the first panel after it performs the asynchronous validation and finds a duplicate first sequence number. The user must now provide a new number and click Next again to validate the new input.

[image:]

Figure 12.25 Performing asynchronous validation

If the validation succeeds, the user automatically proceeds to the second panel. However, we don’t store the first sequence number in NumberStore until after the wizard finishes. This lets a user click the Back button and use the same initial number without causing a validation error.

12.8 Dynamic Sequence Wizards

With a NetBeans Platform wizard, the steps you take are not always the same. User input in one panel may affect the next panel you see. To handle this use case, you need a wizard with a dynamic step sequence.

To illustrate, let’s create an example wizard that takes a user through a multi-step process to order a pizza. In the first step, the user provides a customer name. If the customer is new, the next panel asks for additional customer details. For returning customers, the user skips the new customer panel and goes directly to ordering a pizza. Here the customer selects a pizza size and toppings and whether the pizza is for pickup or delivery. If the user selects delivery, the next step requests an address, telephone number, and credit card number. If the user selects pickup, the user skips the delivery information panel and goes directly to the order confirmation panel.

Note that this wizard has five steps, but, depending on the input, the user sees either three, four, or five steps. Figure 12.26 shows an activity diagram depicting this pizza ordering sequence flow.

[image:]

Figure 12.26 PizzaWizard activity diagram

Figure 12.27 shows the PizzaWizard application. This application consists of two modules: Customer, which provides a very simplistic customer storage mechanism using a map, and NewPizza, the module that contains the OrderPizza wizard.

[image:]

Figure 12.27 PizzaWizard application and NewPizza module

PizzaWizard Example Application
For this example that shows how to create a dynamic step wizard, we’ll show you only partial code for each visual and wizard panel. You can obtain the complete source code for the PizzaWizard example application in the book’s download bundle.

In this application, the visual and wizard panel classes are very similar to the code we showed you with the New Number Sequence wizard. That is, the visual panels consist of graphical components that gather input. If the input requires validation, the visual panels set up listeners to detect user input changes and fire property change events. The wizard panels become property listeners for the visual panels and validate input when it changes. A change in validation status makes the wizard panels fire state change events to the listening WizardDescriptor. The WizardDescriptor then invokes the wizard panel’s isValid() method and updates the Next and/or Finish buttons accordingly.

If the user selects Next, the WizardDescriptor increments the index value of the panels collection. If the user selects Back, the WizardDescriptor decrements the index value of the panels collection.

When you build a dynamic step wizard, the NetBeans Platform provides a WizardIterator class that includes iteration methods current() (provide the current panel), hasNext() (true if there are more panels), hasPrevious() (true if there are previous panels), nextPanel() (increment the panels index number), and previousPanel() (decrement the panels index number). The WizardDescriptor calls these methods to work its way through the wizard process. The WizardIterator maintains an ArrayList of panels and can dynamically add or remove panels (i.e., steps) from this ArrayList. It also maintains a separate String array that holds the name of each step.

Consistent with how NetBeans Platform wizards behave, the WizardIterator adjusts the panels ArrayList when it receives a property change event from one of its wizard panels. When the WizardIterator makes adjustments to the panels ArrayList, it notifies the WizardDescriptor. The WizardDescriptor then makes its adjustments (such as displaying a different panel when the user clicks Next).

Building the Dynamic Step Wizard

Let’s begin with the dynamic Pizza wizard. First, invoke the New Wizard by selecting the target module (NewPizza in this example), right-click, and select New | Other. Under Categories select Module Development and for File Type select Wizard. Click Next.

NetBeans displays the Wizard Type panel. For Registration Type, select Custom, for Wizard Step Sequence select Dynamic, and for Number of Wizard Panels specify 5.

Wizard Tip
When you select Dynamic for the Step Sequence, the number of panels is the maximum number of panels you need for your wizard, even if a given sequence uses fewer panels. You can always add more visual and wizard panel classes manually if you later determine that you need more steps.

Click Next. Specify the Class Name Prefix (Pizza) and verify that the Project and Package names are correct. Click Finish.

As before, NetBeans creates two classes (a view and a controller) for each panel. Because you selected Dynamic Step Sequence, NetBeans also creates a WizardIterator class. Rename (refactor) the visual and wizard classes and give them meaningful class names. Note that NetBeans does not create the action class that invokes the wizard, but it does provide the code (with comments) to build your own action class.

Wizard Tip
When specifying a Dynamic Step Sequence, don’t give visual and wizard panel classes names with step numbers because the number will not be consistent. Instead, give descriptive names to these classes, as we have done in Table 12.3. Note that each class name corresponds to an activity in Figure 12.26 on page 599.

[image:]

TABLE 12.3 Provide Meaningful Names for the NewPizza Wizard Classes

Let’s show you the OrderPizza wizard in action now with sample input. We’ll describe each panel in general terms and show partial code for each visual and wizard panel.

The wizard begins with the IdentifyCustomer panel. This panel asks for a customer name (Figure 12.28). The visual panel implements DocumentListener to detect changes in the name textfield. The wizard panel listens for property change events to make sure the textfield is not empty. The IdentifyCustomer wizard panel implements AsynchronousValidatingPanel. Therefore, when a user clicks Next, the wizard panel verifies if the provided name represents a new or returning customer. If the customer is returning, the next step is skipped. Otherwise, the user proceeds to the New Customer panel.

[image:]

Figure 12.28 IdentifyCustomer panel in the OrderPizza wizard

The New Customer panel (Figure 12.29) asks for a phone number (the name is filled in from the previous panel). Again, a DocumentListener on the phone number textfield component notifies the New Customer wizard panel when the input changes. The wizard panel provides validation to make sure the textfield is not empty.

[image:]

Figure 12.29 NewCustomer panel in the OrderPizza wizard

After clicking Next, the WizardDescriptor proceeds to the Size and Toppings panel (the BuildPizza step).

The Size and Toppings panel (Figure 12.30) has no validation, but the visual panel updates the Total field based on the size, toppings, and delivery selections. The BuildPizza visual panel therefore has change listeners for the various components, but it does not fire property change events. Instead, it simply updates Total. If the user selects Delivery, the wizard proceeds to the Delivery Information panel. The Pickup option skips this step and goes directly to the Order Confirmation step.

[image:]

Figure 12.30 BuildPizza panel in the OrderPizza wizard

The Delivery Information panel (Figure 12.31) requests address, phone number, and credit card information from the user. Once again, this panel uses DocumentChangeListeners to monitor input and fires property change events to the listening wizard panel when input changes. Validation consists only of making sure the textfields are not empty. More realistic applications would likely provide phone and credit card number validation and make sure the address is within a certain proximity to the pizza shop.

[image:]

Figure 12.31 DeliveryInformation panel in the OrderPizza wizard

The final panel is Order Confirmation (Figure 12.32). When the user checks the Order Is Confirmed checkbox, the Finish button is enabled. The ConfirmOrder visual panel listens for changes to the checkbox and fires a property change event. The wizard panel considers the panel valid if the checkbox is checked. Usually, panel component settings are maintained when the user clicks Back and then returns. In this case, the checkbox is reset each time, forcing the user to re-confirm the order.

[image:]

Figure 12.32 ConfirmOrder panel in the OrderPizza wizard

Wizard Tip
Use the wizard panel’s readSettings() method to reset a component’s value. The WizardDescriptor invokes this method before it displays the visual panel.
Click here to view code image
 @Override
 public void readSettings(WizardDescriptor wiz) {
 . . .
 // Reset the confirmCheckBox component each time
 getComponent().getConfirmCheckBox().setSelected(false);
 }

The PizzaWizardIterator

Now let’s examine the PizzaWizardIterator, as shown in Listing 12.26. Recall that the NetBeans Platform wizard generates this class for you when you select Dynamic Steps. We show the modifications for the Order Pizza example in bold and describe these modifications here.

1. Class PizzaWizardIterator implements PropertyChangeListener and becomes a listener for wizard panels IdentifyCustomerController and BuildPizzaController. These panels collect input that affect the wizard’s sequence flow.

2. Create wizard panel class fields for each wizard panel so that you can access them. Note that we add all panels to the ArrayList, but you could just add a subset, depending on how you want your “standard beginning list of steps” to appear.

3. Create method updateSteps(), which builds a steps String array containing each step name. All step names are displayed in the left hand portion of each panel. We extracted this code from method getPanels() so that we can invoke it separately as the step sequence changes.

4. Implement methods addChangeListener() and removeChangeListener() so that the WizardDescriptor is notified when a step sequence changes.

5. Implement method propertyChange(). If the source event property name is IdentifyCustomerController.PROP_IS_NEW_CUSTOMER, we either add or remove the NewCustomer panel. If the source event property name is BuildPizzaController.PROP_IS_PICKUP, we either add or remove the DeliveryInformation panel. Note that method add() uses relative positioning for the DeliveryInformation panel (it will always be the next to last panel). Thus, the ArrayList remains consistent without regard to which panels are currently in the collection when you add to the list.

6. Implement method fireChangeEvent(). This lets the WizardDescriptor know that the sequence list changed.

Listing 12.26 PizzaWizardIterator.java—Control the Wizard’s Steps

Click here to view code image

public final class PizzaWizardIterator implements
 WizardDescriptor.Iterator<WizardDescriptor>,
 PropertyChangeListener {

private int index;
 private List<WizardDescriptor.Panel<WizardDescriptor>> panels;

 // give panels variable names so we can add/remove them as needed
 IdentifyCustomerController icc = new IdentifyCustomerController();
 NewCustomerController ncc = new NewCustomerController();
 BuildPizzaController bpc = new BuildPizzaController();
 DeliveryInfoController delic = new DeliveryInfoController();
 ConfirmOrderController confoc = new ConfirmOrderController();

 private List<WizardDescriptor.Panel<WizardDescriptor>> getPanels() {
 if (panels == null) {
 panels = new ArrayList<WizardDescriptor.Panel<WizardDescriptor>>();
 panels.add(icc);
 panels.add(ncc);
 panels.add(bpc);
 panels.add(delic);
 panels.add(confoc);

 // Become a ChangeListener for IdentifyCustomerController and
 // BuildPizzaController
 icc.addPropertyChangeListener(this);
 bpc.addPropertyChangeListener(this);
 updateSteps();
 }
 return panels;
 }

 private void updateSteps() {
 String[] steps = new String[panels.size()];
 for (int i = 0; i < panels.size(); i++) {
 Component c = panels.get(i).getComponent();
 // Default step name to component name of panel.
 steps[i] = c.getName();
 if (c instanceof JComponent) { // assume Swing components
 JComponent jc = (JComponent) c;
 jc.putClientProperty(
 WizardDescriptor.PROP_CONTENT_SELECTED_INDEX, i);
 jc.putClientProperty(
 WizardDescriptor.PROP_CONTENT_DATA, steps);
 jc.putClientProperty(
 WizardDescriptor.PROP_AUTO_WIZARD_STYLE, true);
 jc.putClientProperty(
 WizardDescriptor.PROP_CONTENT_DISPLAYED, true);
 jc.putClientProperty(
 WizardDescriptor.PROP_CONTENT_NUMBERED, true);
 }
 }
 }

@Override
 public WizardDescriptor.Panel<WizardDescriptor> current() {
 return getPanels().get(index);
 }

 @Override
 public String name() {
 return index + 1 + " out of " + getPanels().size();
 }

@Override
 public boolean hasNext() {
 return index < getPanels().size() - 1;
 }

@Override
 public boolean hasPrevious() {
 return index > 0;
 }

@Override
 public void nextPanel() {
 if (!hasNext()) {
 throw new NoSuchElementException();
 }
 index++;
 }

@Override
 public void previousPanel() {
 if (!hasPrevious()) {
 throw new NoSuchElementException();
 }
 index--;
 }

 private final EventListenerList listeners = new EventListenerList();

 @Override
 public void addChangeListener(ChangeListener l) {
 listeners.add(ChangeListener.class, l);
 }
 @Override
 public void removeChangeListener(ChangeListener l) {
 listeners.remove(ChangeListener.class, l);
 }

 @Override
 public void propertyChange(PropertyChangeEvent pce) {
 if (pce.getPropertyName().equals(
 IdentifyCustomerController.PROP_IS_NEW_CUSTOMER)) {
 if (icc.isIsNewCustomer()) {
 panels.add(1, ncc);
 } else {
 panels.remove(ncc);
 }
 updateSteps();
 fireChangeEvent(this, 0, 1);
 } else if (pce.getPropertyName().equals(
 BuildPizzaController.PROP_IS_PICKUP)) {
 if (bpc.isIsPickup()) {
 panels.remove(delic);
 } else {
 panels.add(panels.size()-1, delic);
 }
 updateSteps();
 fireChangeEvent(this, 0, 1);
 }
 }

 protected final void fireChangeEvent(Object source, int oldState,
 int newState) {
 if (oldState != newState) {
 ChangeEvent ev = new ChangeEvent(source);
 for (ChangeListener listener : listeners.getListeners(
 ChangeListener.class)) {
 listener.stateChanged(ev);
 }
 }
 }
}

Wizard Tip
The code in the propertyChange() method (Listing 12.26) reflects the activity diagram in Figure 12.26 on page 599, where panels are added or removed based on user input. Your dynamic sequence wizard, however, may dictate a different flow, such as two or more completely separate collections of steps. In this case, define separate panel collections and activate the appropriate collection in propertyChange().

IdentifyCustomer Panel

The IdentifyCustomer panel dynamically changes the step sequence. Let’s show you how this controller class participates in the step sequence change.

Class IdentifyCustomerController implements WizardDescriptor.AsynchronousValidatingPanel. When the user clicks Next, method validate() determines whether or not the provided customer name represents a returning customer or a new customer. Since this affects the sequence, method validate() sends a property change event to the PizzaWizardIterator.

Listing 12.27 shows the code in IdentifyCustomerController that performs this check. Method prepareValidation() fetches the customer name from the visual panel. Method validate() then uses the Global Lookup to access the service provider for CustomerStore. CustomerStore method findCustomer() returns null if the customer does not exist. Method setIsNewCustomer() fires a property change event to the PizzaWizardIterator, which responds by adjusting the panels ArrayList.

Listing 12.27 IdentifyCustomerController.java—New Customer?

Click here to view code image

public class IdentifyCustomerController implements
 WizardDescriptor.AsynchronousValidatingPanel<WizardDescriptor>,
 PropertyChangeListener {

private IdentifyCustomerVisual component;

. . . code omitted . . .

private String customerName;
 private Customer customer;
 public static final String PROP_CUSTOMER = "customer";
 private boolean isNewCustomer = true;
 private PropertyChangeSupport propChangeSupport;
 public static final String PROP_IS_NEW_CUSTOMER = "isNewCustomer";

. . . code omitted . . .

public void setIsNewCustomer(boolean isNewCustomer) {
 boolean oldValue = this.isNewCustomer;
 this.isNewCustomer = isNewCustomer;
 this.propChangeSupport.firePropertyChange(
 PROP_IS_NEW_CUSTOMER, oldValue, isNewCustomer);
 }

@Override
 public void prepareValidation() {
 customerName = getComponent().getCustomerName();
 }
 @Override
 public void validate() throws WizardValidationException {
 CustomerStore custStore = Lookup.getDefault().lookup(
 CustomerStore.class);
 if (custStore != null) {
 customer = custStore.findCustomer(customerName);
 wizard.putProperty(PROP_CUSTOMER, customer);
 setIsNewCustomer(customer == null);
 }
 }
}

BuildPizza Panel

The BuildPizza step also affects the wizard’s step sequence. Class BuildPizzaController collects the input required to create a PizzaOrder object. No validation is necessary since all input choices are either checkboxes or radio buttons. However, BuildPizzaController must determine if the pizza is for pickup or delivery. If the pizza is for delivery, the next panel is DeliveryInformation; otherwise the next panel is ConfirmOrder.

There are two approaches we can take here and the resulting wizard behavior is slightly different with each implementation. We’ll show you both approaches. The first approach is to make BuildPizzaController implement WizardDescriptor.ValidatingPanel and override method validate(). In this case, the user doesn’t see a change in the sequence flow until after clicking Next. This is the same behavior you see with the IdentifyCustomer panel. Listing 12.28 shows the code for this approach.

Recall that WizardDescriptor.ValidatingPanel provides synchronous validation after the user clicks Next. Synchronous validation is appropriate here because the code in method validate() does not take a long time. Method validate() gets PizzaOrder from the visual panel and invokes setIsPickup(), which fires a property change event if property PROP_IS_PICKUP has changed. Again, the PizzaWizardIterator listens for property change events, adjusts the panels ArrayList, and notifies the WizardDescriptor if the step sequence changes.

Listing 12.28 BuildPizzaController—Pickup or Delivery? First Approach

Click here to view code image

public class BuildPizzaController implements
 WizardDescriptor.ValidatingPanel<WizardDescriptor> {

private BuildPizzaVisual component;
 private PizzaOrder pizzaOrder;
 private boolean isPickup;
 private PropertyChangeSupport propChangeSupport;

. . . code omitted . . .
 public void setIsPickup(boolean isPickup) {
 boolean oldValue = this.isPickup;
 this.isPickup = isPickup;
 this.propChangeSupport.firePropertyChange(
 PROP_IS_PICKUP, oldValue, isPickup);
 }

@Override
 public void validate() throws WizardValidationException {
 pizzaOrder = getComponent().getPizzaOrder();
 setIsPickup(pizzaOrder.isPickup());
 }
}

The second approach does not use WizardDescriptor.ValidatingPanel for class BuildPizzaController. Instead, BuildPizzaController detects changes to the Pickup / Delivery option. In its propertyChange() method, BuildPizzaController immediately fires a property change event to PizzaWizardIterator.

This approach makes the sequence change happen as soon as the user changes the Pickup / Delivery option, providing a more dynamic and immediate effect. Listing 12.29 shows the code to implement the second approach.

Listing 12.29 BuildPizzaController—Pickup or Delivery? Second Approach

Click here to view code image

public class BuildPizzaController implements
 WizardDescriptor.Panel<WizardDescriptor>, PropertyChangeListener {

private BuildPizzaVisual component;
 private PizzaOrder pizzaOrder;
 private Customer customer;
 public static final String PROP_PIZZA_ORDER = "pizzaOrder";
 public static final String PROP_IS_PICKUP = "isPickup";
 private boolean isPickup;
 private PropertyChangeSupport propChangeSupport;

. . . code omitted . . .

@Override
 public BuildPizzaVisual getComponent() {
 if (component == null) {
 component = new BuildPizzaVisual();
 this.component.addPropertyChangeListener(this);
 }
 return component;
 }
 public void setIsPickup(boolean isPickup) {
 boolean oldValue = this.isPickup;
 this.isPickup = isPickup;
 this.propChangeSupport.firePropertyChange(
 PROP_IS_PICKUP, oldValue, isPickup);
 }

@Override
 public void propertyChange(PropertyChangeEvent pce) {
 if (pce.getPropertyName().equals(BuildPizzaVisual.PROP_IS_PICKUP)) {
 pizzaOrder = getComponent().getPizzaOrder();
 setIsPickup(pizzaOrder.isPickup());
 }
 }
}

Wizard Tip
Having the WizardIterator fire a state change event (see Listing 12.26 on page 606) is only really necessary when the WizardDescriptor updates the step sequence as soon as the user modifies panel input. If all checks for panel changes occur when the user clicks Next, the WizardDescriptor will automatically grab the updated step panels. However, since the WizardIterator is not aware of when each wizard panel checks for changes, the safest approach is to have the WizardIterator always fire state change events, as we show in Listing 12.26.

Create the OrderPizzaAction

Our final step is to create the OrderPizzaAction to initiate the Order Pizza wizard. Listing 12.30 shows class OrderPizzaAction, an action registered under Tools in the main menu bar. Method actionPerformed() instantiates PizzaWizardIterator, which builds the five wizard panels and the WizardDescriptor. When the wizard completes, method actionPerformed() obtains the Customer and PizzaOrder objects from the WizardDescriptor property cache.

Method actionPerformed() also stores the Customer (using CustomerStore from the Global Lookup) and builds the Information message dialog.

Listing 12.30 OrderPizzaAction.java—Always Enabled Action

Click here to view code image

@ActionID(category = "Tools",
id = "com.asgteach.newpizza.OrderPizza")
@ActionRegistration(displayName = "#CTL_OrderPizza")
@ActionReferences({
 @ActionReference(path = "Menu/Tools", position = 150)
})
@Messages("CTL_OrderPizza=Order Pizza")
public final class OrderPizzaAction implements ActionListener {

@Override
 public void actionPerformed(ActionEvent e) {
 WizardDescriptor wiz = new WizardDescriptor(new PizzaWizardIterator());
 wiz.setTitleFormat(new MessageFormat("{0} ({1})"));
 wiz.setTitle(Bundle.CTL_OrderPizza());
 if (DialogDisplayer.getDefault().notify(wiz) ==
 WizardDescriptor.FINISH_OPTION) {
 // Store the customer with module CustomerStore
 CustomerStore custStore = Lookup.getDefault().lookup(
 CustomerStore.class);
 if (custStore != null) {
 Customer customer = (Customer) wiz.getProperty(
 IdentifyCustomerController.PROP_CUSTOMER);
 custStore.storeCustomer(customer);
 PizzaOrder p = (PizzaOrder) wiz.getProperty(
 BuildPizzaController.PROP_PIZZA_ORDER);
 // Access the PizzaOrder and build an Information Dialog
 StringBuilder sb = new StringBuilder();
 sb.append("Thank you, ").append(customer.getName()).append(
 ", for your order!\n");
 sb.append(p.getPizzaSize());
 sb.append(" Pizza\n");
 if (!p.getToppings().isEmpty()) {
 sb.append("With ");
 for (String topping : p.getToppings()) {
 sb.append(topping).append(", ");
 }
 sb.append("\n");
 }
 if (p.isPickup()) {
 sb.append("For Pickup");
 } else {
 sb.append("For Delivery");
 }
 DialogDisplayer.getDefault().notify(
 new NotifyDescriptor.Message(sb.toString()));
 }
 }
 }
}

Figure 12.33 shows the Information dialog that the OrderPizza wizard displays upon completion.

[image:]

Figure 12.33 The OrderPizza wizard is complete

12.9 Wizard Instantiating Iterators

When you select Dynamic Step Sequence to build your wizard, as we did in the previous section, NetBeans provides a WizardIterator class for you that implements WizardDescriptor.Iterator<WizardDescriptor>. As you saw with PizzaWizardIterator, this class provides iterator methods and builds an ArrayList of your wizard panel objects. Property listeners adjust panel sequences as needed according to user input.

The NetBeans Platform has alternatives to this standard iterator class that let you build target artifacts when a wizard completes. Let’s discuss these instantiating iterators and show you an example of how they work.

Wizard Tip
You may want to use one of the instantiating iterators even if you don’t dynamically alter your wizard step sequence. In this case, choose Dynamic Step Sequence during the New Wizard wizard and replace WizardDescriptor.Iterator with one of the instantiating iterators we discuss in this section.

WizardDescriptor.InstantiatingIterator

All the iterator classes are alternatives to WizardDescriptor.InstantiatingIterator, which extends WizardDescriptor.Iterator. To use them, replace WizardDescriptor.Iterator in your code with one of the alternative classes and override the necessary methods.

All instantiating iterator classes include method instantiate() that lets an iterator class build artifacts from the wizard process. The WizardDescriptor invokes instantiate() after the wizard successfully completes and (in most cases) blocks the wizard until this method completes.

Inside instantiate(), you build (instantiate) any objects that your wizard should create. A typical use case is the New Project wizard in the NetBeans IDE. Here, the IDE creates many files and directories in the target user directory according to the project type and the input provided by a user.

When the wizard completes with status WizardDescriptor.FINISH_OPTION in the invoking method, instantiate() has already executed. You can access the instantiated objects with WizardDescriptor method getInstantiatedObjects().

If instantiate() fails for any reason, you should throw IOException. In this case, the WizardDescriptor keeps the wizard open and a user has a chance to change panel input. Method instantiate() is invoked again after the user clicks Finish. Reasons for failure typically fall outside normal validation, but include errors creating files or directories during instantiation, for example.

Method initialize() lets you initialize any objects required by the iterator. A typical use here is to store the WizardDescriptor object so the iterator has access to the WizardDescriptor property cache within instantiate().

Method uninitialize() performs uninitialization tasks. This method is invoked when the wizard closes for all closing options (not just FINISH_OPTION).

Table 12.4 lists these additional methods that you override when using WizardDescriptor.InstantiatingIterator.

[image:]

TABLE 12.4 WizardDescriptor.InstantiatingIterator Methods

WizardDescriptor.AsynchronousInstantiatingIterator

The AsynchronousInstantiatingIterator is a subinterface of InstantiatingIterator. It has the same methods except that method instantiate() is invoked outside the Event Dispatch Thread (EDT). The wizard still remains open, however, which means you can handle errors as described above by throwing IOException within instantiate().

Note that the user can’t cancel or close the wizard while instantiate() is running.

WizardDescriptor.ProgressInstantiatingIterator

ProgressInstantiatingIterator is a subinterface of AsynchronousInstantiatingIterator. It defines method instantiate() with a ProgressHandle parameter. To use this iterator, you must add a dependency on the Progress API. The WizardDescriptor instantiates the ProgressHandle object, but method instantiate() must start, update, and finish the progress bar. Like AsynchronousInstantiatingIterator, method instantiate() is invoked outside the EDT thread.

Let’s modify the PizzaWizard to use ProgressInstantiatingIterator. Here are the steps.

1. Add a new dependency on the Progress API in module New Pizza.

2. Make PizzaWizardIterator implement WizardDescriptor.ProgressInstantiatingIterator and have NetBeans generate methods for instantiate(), instantiate(ProgressHandle), initialize(), and uninitialize().

3. Provide implementations for these methods, as shown in Listing 12.31. Note that the PizzaWizardIterator is unchanged except for the new methods.

We initialize private class field wizard in method initialize(). This lets us access the WizardDescriptor’s property cache so we can retrieve the required input provided by the user.

Method instantiate(ProgressHandle) does the work that was previously performed in the Order Pizza actionPerformed() method. We grab the Customer and PizzaOrder objects from the property cache, build the pizza, store Customer in the CustomerStore, and return PizzaOrder in the instantiate() method’s return object.

We simulate a long-running process using Thread.sleep() and periodically update the progress bar with ProgressHandle method progress().

We also throw IOException if “JoeCriminal” is our customer. The WizardDescriptor catches this and returns focus to the wizard so the user can correct any problems. The WizardDescriptor invokes instantiate() again when the user clicks Finish.

Finally, we override instantiate() to guard against WizardDescriptor invoking the no-argument version, which should not be invoked with ProgressInstantiatingIterator.

Listing 12.31 PizzaWizardIterator—Using a Progress Bar

Click here to view code image

public final class PizzaWizardIterator implements
 WizardDescriptor.ProgressInstantiatingIterator<WizardDescriptor>,
 PropertyChangeListener {
 private int index;
 private List<WizardDescriptor.Panel<WizardDescriptor>> panels;
 private WizardDescriptor wizard = null;

. . . Unchanged Code Omitted . . .

 @Override
 public Set<PizzaOrder> instantiate(ProgressHandle ph) throws IOException {
 Set<PizzaOrder> pizzaSet = new HashSet<>();
 PizzaOrder p = (PizzaOrder) wizard.getProperty(
 BuildPizzaController.PROP_PIZZA_ORDER);
 pizzaSet.add(p);
 Customer customer = (Customer) this.wizard.getProperty(
 IdentifyCustomerController.PROP_CUSTOMER);

 // Simulate a long-running multi-step task:
 ph.start(5);
 try {
 ph.progress("Storing customer " + customer.getName(), 1);
 Thread.sleep(1500);
 if (customer.getName().contains("JoeCriminal")) {
 throw new IOException(" Cannot sell to JoeCriminal");
 }
 CustomerStore custStore = Lookup.getDefault().lookup(
 CustomerStore.class);
 if (custStore != null) {
 custStore.storeCustomer(customer);
 }
 ph.progress("Building " + p.getPizzaSize() + " pizza", 2);
 Thread.sleep(2000);
 ph.progress("Place toppings " + p.getToppings().toString(), 3);
 Thread.sleep(2000);
 ph.progress("Cooking pizza", 4);
 Thread.sleep(2000);
 ph.progress("Ready!", 5);
 Thread.sleep(2000);

} catch (InterruptedException e) {
 Exceptions.printStackTrace(e);
 }
 ph.finish();
 return pizzaSet;
 }

 @Override
 public Set instantiate() throws IOException {
 assert false : "This method cannot be called if the class implements
 WizardDescriptor.ProgressInstantiatingWizardIterator.";
 return null;
 }
 @Override
 public void initialize(WizardDescriptor wd) {
 this.wizard = wd;
 }

 @Override
 public void uninitialize(WizardDescriptor wd) {
 this.panels = null;
 this.wizard = null;

}
}

4. Make changes to OrderPizzaAction method actionPerformed(), as shown in Listing 12.32. Note that DialogDisplayer method notify() blocks until the user successfully completes and wizard and method instantiate() completes. This lets you access any objects created in method instantiate() with WizardDescriptor method getInstantiatedObjects(), as shown.

Listing 12.32 OrderPizzaAction actionPerformed()—Using a Progress Bar

Click here to view code image

 @Override
 public void actionPerformed(ActionEvent e) {
 WizardDescriptor wiz = new WizardDescriptor(new PizzaWizardIterator());
 wiz.setTitleFormat(new MessageFormat("{0} ({1})"));
 wiz.setTitle(Bundle.CTL_OrderPizza());
 if (DialogDisplayer.getDefault().notify(wiz) ==
 WizardDescriptor.FINISH_OPTION) {
 // User clicked Finish and method instantiate() has finished
 Set<PizzaOrder> pizzaSet = wiz.getInstantiatedObjects();
 if (pizzaSet.iterator().hasNext()) {
 PizzaOrder p = pizzaSet.iterator().next();
 Customer customer = p.getCustomer();
 StringBuilder sb = new StringBuilder();
 sb.append("Thank you, ").append(customer.getName()).append(
 ", for your order!\n");
 sb.append(p.getPizzaSize());
 sb.append(" Pizza\n");
 if (!p.getToppings().isEmpty()) {
 sb.append("With ");
 for (String topping : p.getToppings()) {
 sb.append(topping).append(", ");
 }
 sb.append("\n");
 }
 if (p.isPickup()) {
 sb.append("For Pickup");
 } else {
 sb.append("For Delivery");
 }
 DialogDisplayer.getDefault().notify(
 new NotifyDescriptor.Message(sb.toString()));
 }
 }
 }

Figure 12.34 shows the OrderPizza wizard running after the user clicks Finish. Note that the wizard is still running, even though the buttons are all disabled. The progress bar displays the completion percentage as well as the current task label.

[image:]

Figure 12.34 Showing a ProgressBar—40 percent complete

WizardDescriptor.BackgroundInstantiatingIterator

BackgroundInstantiatingIterator is also a subinterface of AsynchronousInstantiatingIterator, and you must override the same methods. For this iterator, the WizardDescriptor closes the wizard (when completed successfully) and then invokes the instantiate() method in a background thread. Because control returns to the invoking method, the instantiated objects are not available when the wizard completes. When using BackgroundInstantiatingIterator, you are responsible for handling GUI feedback and progress for the user as well as catching any exceptions thrown in method instantiate().

BackgroundInstantiatingIterator is appropriate for an instantiation that is long-running or when it is not desirable to have the wizard remain open.

12.10 Key Point Summary

A process that guides users through multiple steps to create one or more artifacts is called a wizard. The NetBeans Platform provides a multi-class framework that lets you construct wizards for your application. The wizard framework has the following features.

• Classes that participate in a wizard include the WizardDescriptor, wizard panel classes (one for each step), visual panel classes, wizard iterators, and a wizard action class.

• Each step in a wizard has a visual component and a controller (a wizard panel). The wizard panel creates its visual panel, obtains user input, and updates panel state.

• A wizard is controlled by a WizardDescriptor. The WizardDescriptor is responsible for stepping through the wizard (using an iterator), maintaining state, and updating the visual component’s buttons (Help, Back, Next, Cancel, and Finish).

• The WizardDescriptor invokes wizard panel method readSettings() at the beginning of each step so the wizard panel can read state from the WizardDescriptor and configure the step’s visual panel.

• The WizardDescriptor invokes wizard panel method storeSettings() at the end of a step so the wizard panel can store state with the WizardDescriptor.

• Use Static step sequencing when the order and number of steps in a wizard is constant. Use Dynamic step sequencing when user input affects the order or number of steps.

• Use the standard DialogDisplayer method notify() to start a wizard. The return value WizardDescriptor.FINISH_OPTION means the wizard completed normally.

• Create public getter methods in the visual panel to obtain user input.

• Use listeners in the visual panel to respond to changes in user input. The wizard panels become property change listeners that respond to changes in user input.

• In general, the wizard panel implements user input validation and notifies the WizardDescriptor of changes in the validity of the current panel.

• Use the WizardDescriptor property cache to store state and coordinate input with other panels.

• The Simple Validation API provides validators suitable for visual panel input. This reduces tedious and redundant validation code in wizard panels.

• If a wizard panel can finish early, implement interface WizardDescriptor.FinishablePanel and override method isFinishPanel(). The wizard panel must fire a state change event to notify the WizardDescriptor when a panel’s finishable state changes.

• To validate user input asynchronously, implement interface WizardDescriptor.AsynchronousValidatingPanel in the wizard panel. Override the prepareValidation() method, which is accessed in the main thread, and the validate() method, which is invoked in a background thread. The WizardDescriptor invokes these methods after a user clicks Next. The Cancel button is active during asynchronous validation.

• Synchronous validation is appropriate when between-panel validation is not long running. Implement interface WizardDescriptor.ValidatingPanel and override method validate().

• Dynamic sequence wizards include a Wizard Iterator class that lets you control a wizard sequence.

• Use property change events to communicate from wizard panels to the Wizard Iterator when user input causes changes to the wizard sequence.

• The Wizard framework includes several instantiating iterators. After a user completes a wizard, the WizardDescriptor invokes method instantiate() which creates one or more artifacts based on obtained input.

• The WizardDescriptor invokes method instantiate() synchronously, asynchronously, asynchronously with a ProgressBar, or as a background task, depending on which instantiating iterator you use.

13. File System

The NetBeans Platform File System API provides an abstraction for standard Java files. With the File System API you can perform all the expected file operations that create, rename, and delete files and folders. You can read and write files with IOStreams and use convenience methods for reading. Furthermore, the NetBeans Platform enhances this abstraction by providing attributes for files and folders. You can also monitor changes to file system hierarchies with FileChangeListeners.

This chapter explores the File System API with several examples. You’ll also learn about the Layer file, how it affects your application’s configuration data, and how to access and contribute to this configuration information.

What You Will Learn

• Use the File System API classes FileSystem, FileObject, and FileUtil to explore file-oriented operations.

• Use file attributes to store information about files and folders.

• Use FileChangeListener to monitor file and folder changes.

• Use the Output window to display status information.

• Include the Favorites window in your NetBeans Platform application to access the local file system within the UI.

• Install and access files in modules.

• Create and modify a module’s Layer file.

• Access the System FileSystem programmatically.

• Use the Layer file for inter-module communication.

13.1 File System API

So far the applications we’ve built have persisted data in a database or in memory. The FamilyTree Application developed in Chapter 10 lets users manipulate data using the full CRUD operations of create, read, update, and delete. This application, however, does not perform any file-level operations.

In this chapter we examine the File System API that lets you manipulate files and folders on disk, in ZIP files, or in XML files. First, we’ll explore the File System API with an application that creates and manipulates folders and files on the user’s local file system. Next, we’ll show you how to use the File System API’s FileChangeListener to monitor changes to a file system hierarchy. You’ll also learn how to include files in a NetBeans Platform application and how to access these files programmatically. Finally, we’ll examine the Layer file, which is the gateway to a NetBeans Platform application’s System FileSystem, and show you how to access this configuration file system programmatically. In the process of building these examples, you’ll also learn how to use the Favorites window and write information to the Output window.

13.2 The File System API Overview

Let’s begin with an overview of the File System API, the API that NetBeans uses to manipulate files and directories. The NetBeans Platform File System API provides support for virtual files. These files (or folders) may reside on disk, in memory, in a JAR or ZIP file, on a remote server, or even as elements in an XML document. The File System API provides this abstraction with the help of three main classes, FileSystem (a hierarchical collection of FileObjects), FileObject (an abstraction for java.io.File), and FileUtil, a utility class with many methods that manipulate FileSystems, FileObjects, and even standard java.io.File objects.

A FileSystem is a collection of FileObjects, which can be your computer’s file system or a single JAR file, for example. A FileSystem is hierarchical and has a root. The FileSystem abstraction lets you view data from physically different sources in the same way.

A FileObject represents either a file or a directory (folder) in the FileSystem. A FileObject must exist in the FileSystem (unlike Java’s java.io.File) and has a MIME type (which determines how the file is handled), but the data associated with a FileObject is just raw data. (The importance of MIME types will become clearer when we examine the Data System API in the next chapter.) If the FileObject represents a folder, you can delete, create, or obtain a list of its “children” (subfolders or files). You read FileObjects with InputStream and write to them with OutputStream. You can also read FileObjects with the convenience methods asBytes(), or in the case of text files, asLines() and asText().

A FileObject also includes support for attributes. Attributes are arbitrary objects identified with a String and accessible with getters and setters. The File System API stores these String/serialized Object pairs according to the FileObject’s path in an XML file called attributes.xml in the application’s user directory.

With FileChangeListener, the FileSystem API supports notification for events such as file creation, folder creation, renaming, file modification, deletion, or attribute changing. You can add a FileChangeListener to a FileObject (file or folder) or to a java.io.File object using FileUtil.1 You can also add a recursive listener to a folder, which receives file change events for all files and folders under the provided folder. Depending on the size of the hierarchy and the nature of the underlying file system, recursive listeners can be expensive in processing file change events.

1. Since JDK 7, Java also supports file change events with java.nio.FileSystem, Path, and WatchServices. Here, you register a WatchService to listen for key events. This is a low-level mechanism, necessary to account for differences in the underlying operating system. In contrast, the NetBeans Platform is able to provide event listener notification, since the NetBeans Platform File System API provides a level of abstraction above the traditional Java File class.

In general, event notification works with file system modifications that occur within your application. Event notifications for modifications made outside of your application may not be received by your program.

Exploring the FileSystem API

FileSystem, FileObject, and FileUtil all contain methods that manipulate files. Let’s explore several of these methods by building a NetBeans Platform application that performs file operations and displays information in the Output window, as shown in Figure 13.1. This file system exploration is activated with an action called Explore File Actions, which we add to the toolbar and the top-level Tools menu.

[image:]

Figure 13.1 Exploring the File System APIs

The Explore File Actions menu item performs several operations. First, the action creates a folder and a text file in the user’s local file system. Next, the action writes text to the file and reads the text back. Finally, the action renames the text file and then deletes it. Along the way, this action displays each step in the Output window.

Building this applications requires the following steps.

• Create a NetBeans Platform application called FileSystemApp.

• Create a module called FSExploration.

• Create and register a new action for the top-level Tools menu and the toolbar.

• Add module dependencies to the File System API, the I/O APIs, and the Lookup API.

• Implement the action.

Create a NetBeans Platform Application and Module

Here are the steps to create the application and add the FSExploration module.

1. Create a new application called FileSystemApp using the NetBeans Platform New Project wizard.

2. Next, create a module and add it to the FileSystemApp application. Call the module FSExploration and provide package name com.asgteach.fsexploration. The application and module are shown in the Projects view in Figure 13.2.

[image:]

Figure 13.2 FileSystemApp and module FSExploration

Create a New Action

Create and register an action to perform File System API operations.

1. In module FSExploration, expand Source Packages and right click on the package name. Select New | Action from the context menu.

2. NetBeans initiates the New Action wizard. In the Action Type dialog, select Always Enabled and click Next.

3. In the GUI Registration dialog, select Category Tools. Select the Global Menu Item checkbox. Specify Menu Tools with position Here - Tools, and Separator After. Select the Global Toolbar Button checkbox. Specify Toolbar File and Position Here - Save All. Click Next. Figure 13.3 shows this dialog.

[image:]

Figure 13.3 Register the File System Explorer action

4. NetBeans displays the Name, Icon, and Location dialog. For Class Name specify ExploreFileAction, for Display Name specify Explore File Actions, and click the Browse button and navigate to the provided icon file ExploreFS.png, as shown in Figure 13.4. Click Finish.

[image:]

Figure 13.4 Specify the action class and icon

NetBeans creates ExploreFileAction.java and copies the icon files to the module’s source package.

Add Module Dependencies

Add module dependencies for File System API (for file actions), Lookup API (the FileObject class uses Lookups), and I/O APIs (to write to the Output window).

The Output Window

The NetBeans IDE uses an Output window to communicate status and job progress (such as running a program) to the user. Let’s display the information from our application to this Output window. We’ll configure the Output window with a labeled tab and set up the I/O in the ExploreFileAction’s constructor. (More than one module or process can write to the Output window, each having its own tabbed window.) We’ll also create a helper method to display the content.

Listing 13.1 shows ExploreFileAction.java with the annotations that register the ExploreFileAction. We’ve included a label for the Output window’s tab in the @Messages annotation and fields io and writer that write content to the window. The displayMessage() helper method writes a String to the Output window.

Static method IOProvider.getDefault().getIO() returns an InputOutput object for the Output window (field io), and method io.getOut() returns an OutputWriter. All of this configuration happens the first time the user invokes the Explore File Actions menu item.

Listing 13.1 ExploreFileAction—Configure Output Window

Click here to view code image

@ActionID(
 category = "Tools",
 id = "com.asgteach.fsexploration.ExploreFileAction"
)
@ActionRegistration(
 iconBase = "com/asgteach/fsexploration/ExploreFS.png",
 displayName = "#CTL_ExploreFileAction"
)
@ActionReferences({
 @ActionReference(path = "Menu/Tools", position = 0, separatorAfter = 50),
 @ActionReference(path = "Toolbars/File", position = 300)
})
@Messages({
 "CTL_ExploreFileAction=Explore File Actions",
 "CTL_FileActionTab=Explore File Actions"
})
public final class ExploreFileAction implements ActionListener {
 private final InputOutput io;
 private final OutputWriter writer;

 public ExploreFileAction() {
 io = IOProvider.getDefault().getIO(Bundle.CTL_FileActionTab(), false);
 writer = io.getOut();
 }

 private void displayMessage(String msg) {
 writer.println(msg);
 }

@Override
 public void actionPerformed(ActionEvent e) {
 // TODO implement action body
 }
}

Now let’s walk you through the different file manipulation activities that the Explore File Actions menu item performs in the overridden actionPerformed() method. We’ll discuss the implementation code in separate sections.

Clear and Select the Output Window

Each time a user invokes the Explore File Actions menu item, we clear the Output window and select its tab. (Since the Output window can be shared among multiple modules performing multiple tasks, selecting a tab with io.select() makes the contents associated with this InputOutput object visible.) Listing 13.2 shows this code. Note that the reset() method (invoked on the Output window’s OutputWriter) requires catching IOException.

Listing 13.2 Method actionPerformed—Clear and Select Output Window

Click here to view code image

 @Override
 public void actionPerformed(ActionEvent e) {
 try {
 writer.reset(); // clear the window each time
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 return;
 }
 io.select(); // select this tab
 displayMessage("Exploring NetBeans Platform FileObjects:");
 . . .
 }

Create a Folder

In the File System API, directories are referred to as “folders,” so we will use this terminology. We first invoke the System property to find the user’s home folder and create a standard Java java.io.File object for a subfolder under it. Creating the File object, however, does not necessarily mean the target folder FamilyTreeData exists.

Next, we create a FileObject from the file using the FileUtil toFileObject() method. If the folder doesn’t exist, the FileUtil method returns null. We then create the folder with the FileUtil createFolder() method. Listing 13.3 shows this code.

Listing 13.3 Method actionPerformed—Create a Folder

Click here to view code image

 @Override
 public void actionPerformed(ActionEvent e) {
 . . .
 // Look in the User's home directory
 String home = System.getProperty("user.home");
 File dir = new File(home + "/FamilyTreeData");
 FileObject myfolder = FileUtil.toFileObject(dir);
 if (myfolder == null) {
 displayMessage("Creating folder " + dir.getPath());
 try {
 // Create folder
 myfolder = FileUtil.createFolder(dir);
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
 . . .
 }

Get or Create a File in a Folder

The next step is to see if file myfile.txt exists and if not, create it, as shown in Listing 13.4. Here, we use methods in the parent folder’s FileObject instance. Object myfolder can return an individual entry with the getFileObject() method, which we use here to see if folder myfolder contains our target file. You can also return a folder’s children as an array of FileObjects with the getChildren() method.

As before, a null return value indicates the file does not exist. In this case, we create the file in the myfolder folder using the FileObject method createData(). (The createData() method creates a file, and the createFolder() method creates a folder.)

Here are several FileObject methods that return a file or folder’s name and/or path.

• getpath()—Return the FileObject’s full path.

• getName()—Get the file or folder’s name excluding the extension.

• getExt()—Get the file or folder’s extension.

• getNameExt()—Get the file or folder’s name and include the extension.

Listing 13.4 Method actionPerformed—Create a File

Click here to view code image

 @Override
 public void actionPerformed(ActionEvent e) {
 . . .
 if (myfolder != null) {
 displayMessage("Using folder " + myfolder.getPath());
 // Is there a file called myfile.txt in this folder?
 FileObject myfile = myfolder.getFileObject("myfile.txt");
 if (myfile == null) {
 // No, create the file
 displayMessage("Creating file " + myfolder.getPath()
 "/myfile.txt");
 try {
 // Create file
 myfile = myfolder.createData("myfile.txt");
 } catch (IOException ex) {
 displayMessage("Can't create file "
 + myfolder.getPath() + "/myfile.txt");
 Exceptions.printStackTrace(ex);
 }
 }
 . . .
 }

Write to and Read from Files

We’ve created a text file. Now let’s write some text to it, read it back, and display the text in the Output window. Listing 13.5 shows this code.

First, we make sure FileObject myfile is not null and check to see if we can perform write operations with the canWrite() method. Next, we use a try-with-resources statement to obtain resource PrintWriter from the file’s output stream.2 With a try-with-resources statement, PrintWriter closes automatically, so we don’t need to invoke close() in a finally clause.

2. The try-with-resources statement was introduced in JDK 7.

We write three lines of text to the file with the PrintWriter println() method and then read the text back. FileObject has several convenience methods for reading files, as follows (all methods throw IOException). We use the asLines() method and display each line to the Output window (as shown in Figure 13.1 on page 626).

• asLines()—Read the full text of a file line by line and return as a List<String>.

• asLines(String encoding)—Read the full text of a file line by line using the supplied encoding and return as a List<String>.

• asText()—Read the full text of a file and return as a String.

• asText(String encoding)—Read the full text of a file using the supplied encoding and return as a String.

• asBytes()—Read the file and return an array of bytes.

Listing 13.5 Method actionPerformed—Write and Read Files

Click here to view code image

 @Override
 public void actionPerformed(ActionEvent e) {
 . . .
 if (myfile != null) {
 // write some text to file
 if (myfile.canWrite()) {
 displayMessage("can write " + myfile.getPath());
 try (PrintWriter output = new PrintWriter(
 myfile.getOutputStream())) {
 output.println("This is some text");
 for (int i = 0; i < 2; i++) {
 output.println("Line number " + (i + 2));
 }
 displayMessage("Text written to file "
 + myfile.getNameExt());
 } catch (IOException ex) {
 displayMessage("Warning: problems writing file "
 + myfile.getNameExt());
 Exceptions.printStackTrace(ex);
 }
 }
 // read file
 if (myfile.canRead()) {
 displayMessage("can read " + myfile.getPath());
 try {
 for (String line : myfile.asLines()) {
 displayMessage(line);
 }
 } catch (IOException ex) {
 displayMessage("Warning: problems reading file "
 + myfile.getNameExt());
 Exceptions.printStackTrace(ex);
 }

}
 . . .
 }

You can also read FileObjects with streams using BufferedReader. Here is the equivalent code, as shown in Listing 13.6 (again, using a try-with resource statement).

Listing 13.6 Read a File with Streams

Click here to view code image

// read file
if (myfile.canRead()) {
 displayMessage("can read " + myfile.getPath());
 try (BufferedReader input = new BufferedReader(
 new InputStreamReader(myfile.getInputStream()))) {
 String line;
 while ((line = input.readLine()) != null) {
 displayMessage(line);
 }
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
}

Rename and Delete Files

Listing 13.7 shows the code for renaming and deleting files. Since we rename and delete our sample file, the user can invoke the Explore File Actions menu item multiple times.

Before renaming a folder or file, you must acquire a lock from the FileObject with the lock() method, which returns a FileLock object. Put the lock’s releaseLock() call in a finally block. Rename will fail if the new name already exists. In our example, we rename the FileObject myfile (myfile.txt) to mynewname.txt.

Next, we delete our sample file (still referenced with FileObject myfile). The FileObject delete() method takes care of acquiring and releasing a lock. Alternatively, you can supply a FileLock object to the delete() method, which will be used instead of the one that’s used implicitly.

Deleting a FileObject folder recursively deletes its contents.

Listing 13.7 Method actionPerformed—Rename and Delete Files

Click here to view code image

 @Override
 public void actionPerformed(ActionEvent e) {
 . . .
 // rename, requires a lock
 FileLock lock = null;
 try {
 lock = myfile.lock();
 myfile.rename(lock, "mynewname", myfile.getExt());
 displayMessage("Renamed file to " + myfile.getNameExt());

} catch (IOException ex) {
 displayMessage("Warning: " + ex.getLocalizedMessage());
 Exceptions.printStackTrace(ex);

 } finally {
 if (lock != null) {
 lock.releaseLock();
 }
 }
 try {
 // delete file
 myfile.delete();
 displayMessage("Deleted file " + myfile.getNameExt());
 } catch (IOException ex) {
 displayMessage("Warning: " + ex.getLocalizedMessage());
 Exceptions.printStackTrace(ex);
 }
 }
 }

File System API Useful Methods

Table 13.1 provides a list of useful methods available with FileObject. (This is a partial list. The reader is encouraged to access the File System API documentation for a complete list.) In this table, fo represents a FileObject (file or folder), and folder represents a FileObject folder.

[image:]

TABLE 13.1 File System API Useful Methods with FileObject

Table 13.2 provides a partial list of methods available with utility class FileUtil. These are all static methods. In this table, fo represents a FileObject (file or folder), file represents a java.io.File, and folder represents a FileObject folder.

[image:]

TABLE 13.2 File System API Useful Methods with FileUtil

13.3 Monitoring File Changes

One of the big advantages with the NetBeans Platform File System API is that you can attach FileChangeListeners to FileObjects (either files or folders). You can also attach recursive FileChangeListeners to folders in a directory tree. In this section, we’ll add a new module to the FileSystemApp we built in the previous section to show you how you can monitor changes to a file system.

FileObject Attributes

For this file monitor, we’ll use the FileObject attribute feature, which lets you associate arbitrary objects with FileObjects. These attributes persist through restarts of the application and are stored in the application’s user directory (that is, they are not stored in the files themselves). During development, the attributes.xml file that stores the serialized attributes is deleted when you perform a Clean of the project.

We’ll also introduce the Favorites window in this section. You enable this feature when you include the Favorites module from the platform cluster in your application. Here’s a summary of the steps to create and configure this new module.

• Include the Favorites and Templates modules from cluster platform. (The Templates module lets you create empty files and folders from the Favorites window.)

• Add new module ChangeDetector to the FileSystemApp application.

• Add a new window (TopComponent) to module ChangeDetector.

• Add dependencies to the File System API and the I/O APIs in module ChangeDetector.

• Implement the TopComponent code to display a portion of the user’s file system on the local disk. The display uses a FileObject’s attributes to indicate its most recent modification to the file. The TopComponent uses a FileChangeListener to report event notification messages to a new tab in the Output window and refresh the TopComponent’s display.

Figure 13.5 shows this application running with the Favorites window on the left and the ChangeDetector window in the editor position. The Output window appears below with two tabs, the previously built Explore File Actions tab, and a new tab entitled Watch Directory.

[image:]

Figure 13.5 The FileSystemApp with the ChangeDetector window

The application reports any changes made to the file system starting from directory FamilyTreeData under the user’s home directory. After invoking the Explore File Actions menu item from the previous section, the Watch Directory Output window displays the changes that create, rename, and delete a text file.

Let’s show you how to build these windows, starting with the Favorites window.

Favorites Window

The Favorites window lets you view files in the your local file system, as well as create new empty files and folders (when you also add the Templates module).

Once the Favorite modules is installed, an action appears in the top-level Windows menu to open the Favorites window in the Explorer mode. Follow these steps to include both the Favorites and Templates modules in the FileSystemApp application.

1. Right click project FileSystemApp in the Projects view and select Properties from the context menu.

2. Under Categories, select Libraries. NetBeans lists all of the Platform Modules organized in clusters. Under cluster platform, select modules Favorites (as shown in Figure 13.6) and Templates. Select OK.

[image:]

Figure 13.6 Select the Favorites and Templates modules in cluster platform

3. Now run the FileSystemApp application. When the application comes up, open the top-level Window menu and select Favorites. This opens the Favorites window in the Explorer view, as shown in Figure 13.7.

[image:]

Figure 13.7 Select menu item Favorites to open the Favorites window

4. Expand the top-level directory (the home directory on your local file system). You can selectively add folders to and remove them from the Favorites window.

5. Experiment with different file manipulation actions. Create a new folder in a selected folder using right-click New | All Templates. In the Choose Template dialog, expand Other and select Folder. Click Next. Provide a new Folder Name and click Finish.

6. Create a new empty file with New | All Templates. Now expand Other, select Empty File, and click Next. In the New Object Name dialog, provide a file name. If the extension is recognized and corresponds to a text file (such as .txt or .xml), NetBeans will open the file in a plain Text Editor.

Use these file manipulation actions to test the FileChangeListener example in this section.

Favorites Window Tip
You may find the Favorites window useful when working in the NetBeans IDE. Select the top-level Windows menu and select Favorites. With the Favorites window, you can open a file that does not belong to a NetBeans Platform project and edit the file depending on its MIME type: HTML, XML, FXML, or even Java, for example.

Add Module ChangeDetector

Use these steps to create module ChangeDetector in the FileSystemApp application.

1. Expand project FileSystemApp, select the Modules node, right-click, and select New

2. NetBeans initiates the New Module Project wizard. In the Name and Location dialog, specify ChangeDetector for Project Name and accept the defaults for the remaining fields. Click Next.

3. NetBeans displays the Basic Module Configuration dialog. Specify com.asgteach.changedetector for Code Name Base, accept the defaults for the remaining fields, and click Finish.

NetBeans creates module ChangeDetector in application FileSystemApp.

Add the ChangeDetector Window

The ChangeDetector module displays a TopComponent (window) in the application. Follow these steps to create and register a TopComponent window in module ChangeDetector.

1. In the Projects view, expand module ChangeDetector | Source Packages. Select the package name, right click, and select New | Window. NetBeans initiates the New Window wizard.

2. In the Basic Settings dialog, select Window Position editor and Open at Application Start. Click Next.

3. NetBeans displays the Name, Icon, and Location dialog. For Class Name Prefix specify ChangeDetector. For the icon, click Browse and select the provided icon file check.png, and click Finish, as shown in Figure 13.8.

[image:]

Figure 13.8 Creating the ChangeDetector window in module ChangeDetector

The ChangeDetector window is now registered. Next, we’ll add code to the TopComponent.

Add Module Dependencies

Add module dependencies in module ChangeDetector for the File System API (for file actions) and I/O APIs (to write content to the Output window).

Configure the TopComponent

We use a Swing Text Panel to display information about the user’s file system. The JTextPanel component lets you manipulate the text color. Here are the steps to configure the TopComponent’s layout with a Text Panel.

1. Open ChangeDetectorTopComponent in the Design view.

2. In the Palette under Swing Controls, select Text Panel and drop it onto the Design view.

3. NetBeans automatically encloses the JTextPanel with a JScrollPane. Expand the JScrollPane so that it covers the entire design area.

4. In the Navigator window, select the JTextPane component, right click, and select Change Variable Name. . . . In the dialog, provide new variable name display and click OK. Figure 13.9 shows the Navigator view for this TopComponent with the renamed JTextPanel component.

[image:]

Figure 13.9 Navigator view of ChangeDetectorTopComponent

5. Click Source to return to the Source view and save your changes.

Add TopComponent Code

The code we add to the TopComponent provides all the functionality of this module. This window opens when the application starts and displays the file hierarchy under folder FamilyTreeData in the user’s home directory.

As the user makes changes to the hierarchy, the TopComponent refreshes and any file system events are reported in the Output window (under tab Watch Directory). We’ll present this code in sections and explain each part.

First, Listing 13.8 shows the generated code to register the TopComponent. We add a Watch Directory label to the @Messages annotation and class fields to configure. We also create margins for the JTextPanel component.

Listing 13.8 ChangeDetectorTopComponent

Click here to view code image

@ConvertAsProperties(
 dtd = "-//com.asgteach.changedetector//ChangeDetector//EN",
 autostore = false
)
@TopComponent.Description(
 preferredID = "ChangeDetectorTopComponent",
 iconBase = "com/asgteach/changedetector/check.png",
 persistenceType = TopComponent.PERSISTENCE_ALWAYS
)
@TopComponent.Registration(mode = "editor", openAtStartup = true)
@ActionID(category = "Window",
 id = "com.asgteach.changedetector.ChangeDetectorTopComponent")
@ActionReference(path = "Menu/Window" /*, position = 333 */)
@TopComponent.OpenActionRegistration(
 displayName = "#CTL_ChangeDetectorAction",
 preferredID = "ChangeDetectorTopComponent"
)
@Messages({
 "CTL_ChangeDetectorAction=ChangeDetector",
 "CTL_ChangeDetectorTopComponent=ChangeDetector Window",
 "HINT_ChangeDetectorTopComponent=This is a ChangeDetector window",
 "CTL_ChangeLabel=Watch Directory"
})
public final class ChangeDetectorTopComponent extends TopComponent {

 private FileObject root;
 private OutputWriter writer;
 private boolean updateOK = true;
 public static final String FO_MODIFICATION_COLOR = "FOModificationColor";
 public ChangeDetectorTopComponent() {
 initComponents();
 setName(Bundle.CTL_ChangeDetectorTopComponent());
 setToolTipText(Bundle.HINT_ChangeDetectorTopComponent());
 display.setMargin(new Insets(5, 5, 5, 5));
 }
. . .
}

Configure the TopComponent Life Cycle Methods

Listing 13.9 shows the code for the componentOpened(), componentActivated(), and componentClosed() life cycle methods (see “Window System Life Cycle Management” on page 369 for more on window life cycle methods). The componentOpened() method configures the Output window, adds a FileChangeListener (fcl) to the target folder in the user’s home directory (class variable root), and updates the TopComponent’s display with the updateDisplay() helper method (shown later).

We add a recursive FileChangeListener to the target folder. This potentially expensive arrangement (depending on how big the hierarchy is) fires change events for any of the files and folders below the target folder, including the target folder. Here, the hierarchy is small. We present the FileChangeListener implementation in an upcoming section.

The componentActivated() method is invoked when the user selects the ChangeDetector window. Here, we force a refresh on the parent of our target folder. This allows the FileChangeListener to detect changes made outside the FileSystemApp application.

The componentClosed() method removes the FileChangeListener from the target folder (root) so that the listener isn’t active when the window is closed.

We also include the displayMessage() helper method that writes its String argument to the Output window using class field writer (OutputWriter).

Listing 13.9 ChangeDetectorTopComponent—Life Cycle Methods

Click here to view code image

public final class ChangeDetectorTopComponent extends TopComponent {
 . . .
 @Override
 public void componentOpened() {
 InputOutput io = IOProvider.getDefault().getIO(
 Bundle.CTL_ChangeLabel(), false);
 io.select(); // tab is selected
 writer = io.getOut();
 String home = System.getProperty("user.home");
 File file = new File(home + "/FamilyTreeData");
 root = FileUtil.toFileObject(file);
 if (root == null) {
 displayMessage("Warning: File Object " + file.getPath()
 + " does not exist.");
 displayMessage("Create " + file.getPath()
 + ", close & reopen Window "
 + Bundle.CTL_ChangeDetectorTopComponent());
 return;
 }
 root.addRecursiveListener(fcl);
 displayMessage("Recursive File listener installed for "
 + root.getPath() + "!");
 updateDisplay();
 }

 @Override
 protected void componentActivated() {
 if (root != null) {
 try {
 root.getParent().getFileSystem().refresh(true);
 displayMessage("Component Activated: Refresh on parent.");
 updateDisplay();
 } catch (FileStateInvalidException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
 }

 @Override
 public void componentClosed() {
 if (root != null) {
 root.removeFileChangeListener(fcl);
 }
 }

private void displayMessage(String message) {
 writer.println(message); }

}

Updating and Displaying the Hierarchy in the Window

Our TopComponent consists of a Swing JTextPanel added to a JScrollPane. Listing 13.10 shows how to write String messages to the window that are color coded and how to display the complete hierarchy that we are monitoring with the FileChangeListener.

Method appendToDisplay() writes a String with Color to the JTextPanel display. We temporarily make the Text Panel editable and set attributes that define the text color, font style, and alignment. We set the caret position at the end, add the String argument to the Text Panel, and return the Text Panel to non-editable.

The updateDisplay() method is invoked in componentOpened() and in the FileChangeListener code when a file change event is received. This method calls displayFiles() with the root (which then recursively calls itself for the entire hierarchy) so that each file and folder in the hierarchy is written to the window’s Text Panel. The displayFiles() method handles archives by obtaining the archive’s root and recursively displaying its contents (showing the power of the FileObject and FileSystem abstraction).

The displayFiles() method is invoked with a FileObject argument. If the FileObject has a Color attribute, this color is used to write the FileObject’s path name. If the Color attribute is not present, then a default Color.DARK_GRAY color value is used.

Recall that a FileObject’s attributes are stored in the user directory of the NetBeans Platform application. These attributes persist when the user reruns the FileSystemApp application.

Listing 13.10 ChangeDetectorTopComponent—Updating the Text Panel

Click here to view code image

 private void appendToDisplay(String msg, Color c) {
 display.setEditable(true);
 StyleContext sc = StyleContext.getDefaultStyleContext();
 AttributeSet attrset = sc.addAttribute(SimpleAttributeSet.EMPTY,
 StyleConstants.Foreground, c);

attrset = sc.addAttribute(attrset, StyleConstants.FontFamily,
 "Lucida Console");
 attrset = sc.addAttribute(attrset, StyleConstants.Alignment,
 StyleConstants.ALIGN_JUSTIFIED);

 display.setCaretPosition(display.getDocument().getLength());
 display.setCharacterAttributes(attrset, false);
 display.replaceSelection(msg);
 display.setEditable(false);
 }

 private void updateDisplay() {
 if (root == null || !updateOK) {
 return;
 }
 updateOK = false;
 display.setText("");
 displayFiles(root);
 updateOK = true;
 }
 private void displayFiles(FileObject fo) {
 Color displayColor = (Color) fo.getAttribute(FO_MODIFICATION_COLOR);
 if (displayColor == null) {
 displayColor = Color.DARK_GRAY;
 }

 appendToDisplay(FileUtil.getFileDisplayName(fo) + "\n", displayColor);
 if (FileUtil.isArchiveFile(fo)) {
 FileObject arcRoot = FileUtil.getArchiveRoot(fo);
 displayFiles(arcRoot);
 } else if (fo.isFolder()) {
 for (FileObject childFileObject : fo.getChildren()) {
 displayFiles(childFileObject);
 }
 }
 }

Implementing the FileChangeListener

The FileChangeListener interface has six methods to override, as listed in Table 13.3. (If it is not necessary to handle all the events in the FileChangeListener interface, you can use the FileChangeAdapter adapter class.)

[image:]

TABLE 13.3 FileChangeListener Interface Methods

Listing 13.11 shows the FileChangeListener implementation. For each method (except for the fileAttributeChanged() method, which is empty), we write the event name and affected file to the Output window and update the hierarchy in the TopComponent. We also set an attribute in the affected FileObject that color codes the event. (This attribute is read by the displayFiles() method shown previously in Listing 13.10 on page 645.) Green corresponds to a new folder, orange for a new file, blue for a changed file or folder, and magenta for a renamed file or folder. No attribute is set for a delete event, since that folder or file will no longer be displayed in the hierarchy.

Listing 13.11 ChangeDetectorTopComponent—FileChangeListener

Click here to view code image

 private final FileChangeListener fcl = new FileChangeListener() {
 @Override
 public void fileFolderCreated(FileEvent fe) {
 displayMessage("File Folder Created: " + fe.getFile().getPath());
 try {
 fe.getFile().setAttribute(FO_MODIFICATION_COLOR, Color.GREEN);
 updateDisplay();
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }

 @Override
 public void fileDataCreated(FileEvent fe) {
 displayMessage("File Data (file) Created: "
 + fe.getFile().getPath());
 try {
 fe.getFile().setAttribute(FO_MODIFICATION_COLOR, Color.ORANGE);
 updateDisplay();
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }

 @Override
 public void fileChanged(FileEvent fe) {
 displayMessage("File Changed: " + fe.getFile().getPath());
 try {
 fe.getFile().setAttribute(FO_MODIFICATION_COLOR, Color.BLUE);
 updateDisplay();
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }

 @Override
 public void fileDeleted(FileEvent fe) {
 displayMessage("File/Folder Deleted: " + fe.getFile().getPath());
 updateDisplay();
 }

 @Override
 public void fileRenamed(FileRenameEvent fre) {
 displayMessage("File Renamed: " + fre.getFile().getPath());
 try {
 fre.getFile().setAttribute(FO_MODIFICATION_COLOR,
 Color.MAGENTA);
 updateDisplay();
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }

@Override
 public void fileAttributeChanged(FileAttributeEvent fae) { }
 };

Trying Out the ChangeDetector Using the Favorites Window

With the TopComponent code in place, you can now use the Favorites window to create and rename files and folders and edit text files. You can also view how the hierarchy is updated in the ChangeDetector window. Figure 13.10 shows the FileSystemApp after several files and folders have been manipulated.

[image:]

Figure 13.10 Running the FileSystemApp with the ChangeDetector window

Here, we add files and folders to folder FamilyTreeData (the target directory that module ChangeDetector watches). We also edit a text file and delete several files. The Output window (tab Watch Directory) lists the FileChange events and the ChangeDirectory window shows the most recent state of the hierarchy.3

3. You can also modify the target hierarchy using your native system file utility. The detected events might be different, however. For example, on our system a rename event is reported as a file create event followed by a file delete event.

13.4 Including a File with Your Application

Suppose you want to include a file in one of your modules and access the file programmatically. Let’s show you how to do this in a new module called AppConfigFile. The file that we provide is SimpsonFamilyTree.xml and we’ll install it in a folder called configFile within our module.

For testing, we’ll create an action in the FileSystemApp application that locates the file and displays its contents in the Output window, as shown in Figure 13.11. (Note that we now have three independent tabs in the Output window: Watch Directory, Config File Contents, and Explore File Actions. The order of the tabs depends on the order that you invoke the actions associated with the tabs.)

[image:]

Figure 13.11 Locating and displaying the Config File

Here’s a summary of the steps we’ll perform to create and configure this module.

• Add new module AppConfigFile to the FileSystemApp application.

• Install file configFile/SimpsonFamilyTree.xml in module AppConfigFile’s release directory.

• Register a new action in module AppConfigFile.

• Add module dependencies to the File System API, I/O APIs, Module System API, and Lookup API.

• Implement the action.

Create Module AppConfigFile

Use these steps to create module AppConfigFile in the FileSystemApp application.

1. Expand project FileSystemApp, select the Modules node, right-click, and select New

2. NetBeans initiates the New Module Project wizard. In the Name and Location dialog, specify AppConfigFile for Project Name and accept the defaults for the remaining fields. Click Next.

3. NetBeans displays the Basic Module Configuration dialog. Specify com.asgteach.appconfigfile for Code Name Base, accept the defaults for the remaining fields, and click Finish.

NetBeans creates module AppConfigFile in application FileSystemApp.

Install a File in a Module

To include a file (which could be a third-party library, a data file, documentation files, or a configuration file, for example), you place the file in a directory called release under the main directory of your module. The build process automatically includes any files or directories it finds in this specially-named directory. Here are the steps.

1. In the Files view, create a folder called release in the top-level directory of your module. (You must use name release.)

2. Next, create a containing folder (or folders) for your files. We create folder configFile. You can use any folder name here.

3. Copy any files you want included to this folder. We added file SimpsonFamilyTree.xml, as shown in Figure 13.12.

[image:]

Figure 13.12 Adding files to the module’s release directory

Register an Action

Register a new action in module AppConfigFile using these steps.

1. In module AppConfigFile, expand Source Packages and right click on the package name. Select New | Action from the context menu.

2. NetBeans initiates the New Action wizard. In the Action Type dialog, select Always Enabled and click Next.

3. In the GUI Registration dialog, select Category Tools. Select the Global Menu Item checkbox. Specify Menu Tools with position Here - Tools, and Separator After. Select the Global Toolbar Button checkbox. Specify Toolbar File and Position Here - Save All. Click Next.

4. NetBeans displays the Name, Icon, and Location dialog. For Class Name specify ConfigFileAction, for Display Name specify Config File, and click the Browse button and navigate to the provided icon file Favorites.png. Click Finish.

NetBeans creates ConfigFileAction.java and copies the icon files to the module’s source package.

Add Module Dependencies

Add module dependencies for File System API (for file actions), I/O APIs (to write content to the Output window), and both Lookup API and Module System API (required by the InstalledFileLocator service).

Implement the Action

We show the implementation of the ConfigFileAction in two parts. Listing 13.12 shows the action’s registration annotations and the code that configures the Output window. This code is similar to Listing 13.1 on page 629 (see “The Output Window” on page 628 for a detailed description).

Listing 13.12 ConfigFileAction—Registration Annotations

Click here to view code image

@ActionID(
 category = "Tools",
 id = "com.asgteach.appuserfile.ConfigFileAction"
)
@ActionRegistration(
 iconBase = "com/asgteach/appconfigfile/Favorites.png",
 displayName = "#CTL_ConfigFile"
)
@ActionReferences({
 @ActionReference(path = "Menu/Tools", position = 25, separatorAfter = 37),
 @ActionReference(path = "Toolbars/File", position = 350)
})
@Messages({
 "CTL_ConfigFile=Config File",
 "CTL_configFileTab=Config File Contents"
})
public final class ConfigFileAction implements ActionListener {

 private final InputOutput io;
 private final OutputWriter writer;
 private static final String filename = "configFile/SimpsonFamilyTree.xml";

 public ConfigFileAction() {
 io = IOProvider.getDefault().getIO(Bundle.CTL_configFileTab(), false);
 writer = io.getOut();
 }

 private void displayMessage(String msg) {
 writer.println(msg);
 }
. . .
}

We implement the actionPerformed() method in Listing 13.13. First, we configure the Output window by resetting its content and activating the window with io.select(). Next, we get the default service provider for InstalledFileLocator and invoke the locate() method. This method looks for the provided file in the application and returns null if the file is not there.

We convert the File to FileObject and use the convenience method asLines() to read the file and display each line in the Output window.

Listing 13.13 ConfigFileAction—actionPerformed() Method

Click here to view code image

 @Override
 public void actionPerformed(ActionEvent e) {
 try {
 writer.reset(); // clear the window each time
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 return;
 }
 io.select(); // select this tab
 File configFile = InstalledFileLocator.getDefault().locate(filename,
 "com.asgteach.appconfigfile", false);
 FileObject fo = null;
 if (configFile != null) {
 fo = FileUtil.toFileObject(configFile);
 if (fo != null) {
 displayMessage("File " + fo.getNameExt() + " found!");
 try {
 for (String lines : fo.asLines()) {
 displayMessage(lines);
 }
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
 }
 if (fo == null || configFile == null) {
 displayMessage("Warning: File " + filename + " is missing!");
 }
 }

Using the InstalledFileLocator Service

Let’s take a closer look at the locate() method of the InstalledFileLocator service. The first argument is the path of the target file, including its enclosing directory but excluding the release directory. The second argument is the code name of the module that contains the file. This can be null and may (or may not) be used in the location service. However, providing the code name can speed up the location process. The third argument is a boolean indicating whether or not the file is localized. This is useful when the target file is a zip file containing localized documentation files, for example. In this case, you provide the “unlocalized” file name with locate() method, set the localized boolean to true, and install the localized file, as shown here.

Click here to view code image

docs/mydocs_es.zip // installed in release directory of module MyModule

File file = locate("docs/mydocs.zip", "com.mymodule", true);

The InstalledFileLocator service also provides method locateAll(), which is useful when locating more than one file from a directory. The path should not include the trailing “/” and the return value is a (possibly empty) Set<File>.

Click here to view code image

Set<File> set = locateAll("docs", "com.mymodule", true); // or false

The exact location of the file depends on the environment in which this module runs. In the development environment, the file is copied to the cluster/configFile directory of the application’s build directory.

Installing an NBM in NetBeans IDE

Now let’s show you that you can use the InstalledFileLocator service in a module installed in the NetBeans IDE with no changes, although the file is physically located in a different place. You can install module AppConfigFile in your running NetBeans IDE as a PlugIn using the following steps.

1. First, create an NBM file (NBM stands for NetBeans Module). See “Create the Module NBM” on page 861. An NBM file can be installed in the IDE as a PlugIn.

2. From the NetBeans IDE top-level Tools menu, select PlugIns.

3. In the PlugIns window, click Downloaded.

4. Click the Add PlugIns . . . button.

5. Browse to the build/updates directory where you will see NBM files for each module in your application, as shown in Figure 13.13.

[image:]

Figure 13.13 Adding module AppConfigFile to the NetBeans IDE as a PlugIn

6. Select com-asgteach-appconfigfile.nbm, then Open to install this module.

Figure 13.14 shows that the Config File action has been added to the NetBeans IDE and the installed file, SimpsonFamilyTree.xml, has been located within the running application. (We changed the Config File actionPerformed() method to display the file’s complete path, which is shown in the screen shot.)

[image:]

Figure 13.14 Module AppConfigFile has been added to the NetBeans IDE as a PlugIn

13.5 The Layer File and System FileSystem

Someday someone will write a book on the NetBeans Platform and not have to discuss the Layer file, that ubiquitous file that historically showed up regularly in your module’s Projects view. Traditionally (and tediously) configured manually by the developer, the Layer file is now mostly generated by the various NetBeans IDE wizards. You can specify many configuration options with annotations (such as TopComponents, actions, menu and toolbar items, key bindings, and service providers, for example). Viewed from the Files window under the build directory as classes/META-INF/generated-layer.xml, a module now includes a generated Layer file if you’ve used any of these “configuration-type” annotations in your Java code.

But there are still occasions when creating a Layer file in a module is necessary (see, for example “Window Groups” on page 381). Furthermore, the Layer file is the gateway to your NetBeans Platform application’s complete configuration data. From the information in each module’s contributed Layer file, the Platform builds an actual writable file system on disk (called the System FileSystem) used to define all of the actions, menus, menu items, icons, key bindings, toolbars, and services available in your application. This configuration data tells the application how to configure menus and actions (for example) and even how to instantiate objects! Importantly, you can contribute to your application’s configuration by specifying files and Java objects in a module’s Layer file.

You can manipulate files and folders on the local disk file system with the File System API. The same File System API can also examine the System FileSystem and modify content. In this section, we’ll examine both the Layer file and its relationship to the System FileSystem.

Layer Files and Configuration

Let’s examine Layer files now and see how a Layer file affects a NetBeans Platform application. First, most modules don’t have an editable Layer file. Even when you create a Java class with annotations that affects registration information, the Layer file is quietly generated behind the scenes and regenerated with each build of your application.

But you can explicitly create a Layer file for a module and then modify its contents. Let’s do that now and show you how a Layer file is structured.

Create a Layer File

We’ll continue to work with the application that was built in this chapter, FileSystemApp. First, we create a Layer file in module AppConfigFile. This is the module we created in the previous section that includes a file in our application’s release directory (see “Including a File with Your Application” on page 649).

1. Select project AppConfigFile, right click, and select New | Other from the context menu.

2. NetBeans initiates the New File wizard and displays the Choose File Type dialog. Under Categories select Module Development and under File Types select XML Layer. Click Next.

3. NetBeans displays the Layer Location dialog and specifies AppConfigFile for the Project, as shown in Figure 13.15. Click Finish.

[image:]

Figure 13.15 Creating a module’s XML Layer file

NetBeans creates file layer.xml in the module’s Source Package, brings up layer.xml in the XML text editor, and modifies the Module Manifest file (under Important Files) to include the entry describing its location in the module, as follows.

Click here to view code image

OpenIDE-Module-Layer: com/asgteach/appconfigfile/layer.xml

To add entries to this Layer file, break up the <filesystem/> tag into an open and close tag with <filesystem></filesystem> on separate lines, as shown in Listing 13.14.

Listing 13.14 Layer.xml—Initial Contents

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE filesystem PUBLIC "-//NetBeans//DTD Filesystem 1.2//EN"
 "http://www.netbeans.org/dtds/filesystem-1_2.dtd">
<filesystem>
</filesystem>

The Projects view is extremely useful for examining the concept of a Layer file. Once you’ve created a Layer file in a module (even one with no new content, as in Listing 13.14), build the application. You’ll see two entries under Important Files | XML Layer called <this layer> and <this layer in context>. Entry <this layer> refers to configuration information in this module, and entry <this layer in context> refers to the entire application.

The AppConfigFile module also includes an Action that we registered previously via annotations. Because of this registration, our newly created XML Layer displayed in the Projects view under <this layer> contains this registration information, as shown in Figure 13.16 (even though the file layer.xml is empty). You see the Config File action is registered in three places: folders Actions/Tools, Menu/Tools, and Toolbars/File.

[image:]

Figure 13.16 Examining a module’s XML Layer file

Dissecting the Layer File

Now let’s look at the generated XML Layer file that corresponds to the Projects view displayed in Figure 13.16. Listing 13.15 shows the Actions folder and the Toolbars folder. (We omitted the Menu folder.)

The Layer file consists of four main tags: <filesystem>, <folder>, <file>, and <attr>.

• The <filesystem> tag defines the overall file system and is merged with an actual file system on disk, specifically the System FileSystem. You can use the File System API FileUtil class to access the root folder. (We’ll show you how later in this chapter.)

• The <folder> tag defines folders (i.e., directories) within the file system. These are accessed with the File System API class FileObject, and the isFolder() method returns true for folders.

• The <file> tag refers to a file and can also be accessed with the FileObject class. In this case, isFolder() returns false.

• The <attr> tag defines attributes, arbitrary Objects identified by String names. Attributes are accessed with FileObject method getAttribute(name) shown previously (see “FileObject Attributes” on page 637). For examples that show attribute getters and setters, see Listing 13.10 on page 645 and Listing 13.11 on page 647.

Listing 13.15 Folder “Actions” in Generated Layer File

Click here to view code image

<filesystem>
 <folder name="Actions">
 <folder name="Tools">
 <file name="com-asgteach-appuserfile-ConfigFileAction.instance">
 <!--com.asgteach.appconfigfile.ConfigFileAction-->
 <attr
 bundlevalue=
 "com.asgteach.appconfigfile.Bundle#CTL_ConfigFile" name="displayName"/>
 <attr
 methodvalue=
 "org.openide.awt.Actions.alwaysEnabled" name="instanceCreate"/>
 <attr name="delegate" newvalue=
 "com.asgteach.appconfigfile.ConfigFileAction"/>
 <attr name="iconBase" stringvalue=
 "com/asgteach/appconfigfile/Favorites.png"/>
 <attr boolvalue="false" name="noIconInMenu"/>
 </file>
 </folder>
 </folder>
 <folder name="Toolbars">
 <folder name="File">
 <file name="com-asgteach-appuserfile-ConfigFileAction.shadow">
 <!--com.asgteach.appconfigfile.ConfigFileAction-->
 <attr name="originalFile" stringvalue=
 "Actions/Tools/com-asgteach-appuserfile-ConfigFileAction.instance"/>
 <attr intvalue="350" name="position"/>
 </file>
 </folder>
 </folder>
</filesystem>

Files as Objects

Instance files (file names ending in .instance) describe objects created either with a default constructor or a static method. Listing 13.15 shows the instance file for ConfigFileAction. This arrangement lets the application delay instantiating objects (for example, an Action) until it is actually needed. This optimizes startup time and system resources, such as memory.

Shadow files refer to previously referenced instance files and include attribute “originalFile” that references the instance file. The ConfigFileAction is defined in folder Action, where it is described as an instance file. ConfigFileAction is also defined in folder Toolbars, where it is a shadow file linked to the previously described instance file.

Layer File in Context

Now let’s examine the Layer file for the entire application, which you can view under <this layer in context>, as shown in Figure 13.17. Here, we’ve shown the Toolbars folder, which contains the File, Clipboard, and Undo/Redo subfolders. The Config File action appears under the File subfolder.

[image:]

Figure 13.17 Examining a module’s XML Layer file

Other actions contributed by other modules also appear here. In the File subfolder, you see the AlwaysEnabledAction previously added and the Save All action, which is part of the NetBeans Platform.

Similarly, in subfolder Clipboard, you see the Cut, Copy, and Paste actions. The toolbar also includes Undo/Redo. This subfolder refers to the icons in the toolbar fragment in the FileSystemApp application shown in Figure 13.17.

Removing Layer Configuration Items

In general, you can remove a menu item or other configuration object from your application by deleting its corresponding entry in the Layer file. These items are not actually deleted, however. Rather, their definition is modified in the Layer file to include the suffix “_hidden,” which effectively hides that menu item from the configuration. You can also hide individual files (actions or menu items, for example), or you can hide complete folders.

To remove the Undo/Redo folder from the toolbar, select the Undo/Redo folder in the Projects view, right click, and select Delete from the context menu. Figure 13.18 shows the Projects view Layer file before and after this folder is hidden. The next time you run the application, the Undo/Redo items will not appear in the toolbar, as shown in Figure 13.19.

[image:]

Figure 13.18 Hiding Layer file items

[image:]

Figure 13.19 Hiding Layer file configuration items

To restore this Layer file entry, right click on the UndoRedo_hidden item and select Restore from the context menu.

You can also remove items from the Layer file by directly editing their entry in any module’s Layer file. For example, to remove the Undo/Redo toolbar items, provide the following modified entry for folder UndoRedo in the local Layer file, as shown in Listing 13.16.

Listing 13.16 Hiding Undo/Redo Manually in Layer File

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE filesystem PUBLIC "-//NetBeans//DTD Filesystem 1.2//EN" "http://
www.netbeans.org/dtds/filesystem-1_2.dtd">
<filesystem>
 <folder name="Toolbars">
 <folder name="UndoRedo_hidden"/>
 </folder>
</filesystem>

To restore this folder, remove the folder name with “_hidden” suffix in the Layer file.

Exploring the System FileSystem

Let’s apply what you’ve learned about Layer files and the File System API and display the contents of the System FileSystem to the Output window. We’ll include all files and folders and color code them according to FileObject type (orange for folders and blue for Files). Furthermore, let’s display the attributes for any of the files that have them defined. Figure 13.20 shows this application running.

[image:]

Figure 13.20 Displaying the System FileSystem

Here’s a summary of the steps we need to display the contents of the System FileSystem.

• Add a new module to the FileSystemApp application called FileSystemViewer.

• Create an Action called View System FileSystem to the Toolbar and under the top-level menu Tools.

• Add dependencies to the File System API, Lookup API, and I/O APIs.

• Implement the action.

Create Module FileSystemViewer

Use these steps to create module FileSystemViewer in the FileSystemApp application.

1. Expand project FileSystemApp, select the Modules node, right-click, and select New

2. NetBeans initiates the New Module Project wizard. In the Name and Location dialog, specify FileSystemViewer for Project Name and accept the defaults for the remaining fields. Click Next.

3. NetBeans displays the Basic Module Configuration dialog. Specify com.asgteach.filesystem.viewer for Code Name Base, accept the defaults for the remaining fields, and click Finish.

NetBeans creates module FileSystemViewer in application FileSystemApp.

Create the View System FileSystem Action

Register a new action in module FileSystemViewer using these steps.

1. In module FileSystemViewer, expand Source Packages and right click on the package name. Select New | Action from the context menu.

2. NetBeans initiates the New Action wizard. In the Action Type dialog, select Always Enabled and click Next.

3. In the GUI Registration dialog, select Category Tools. Select the Global Menu Item checkbox. Specify Menu Tools with position Here - Tools, and Separator After. Select the Global Toolbar Button checkbox. Specify Toolbar File and Position Config File - Here - Save All. Click Next.

4. NetBeans displays the Name, Icon, and Location dialog. For Class Name specify ViewSysFSAction. For Display Name specify View System File System. Click the Browse button and navigate to icon file fileSysIcon.png. Click Finish.

NetBeans creates ViewSysFSAction.java and copies the icon files to the module’s source package.

Add Module Dependencies

Add module dependencies for File System API (for file actions), Lookup API (certain FileObject operations), and I/O APIs (to write content to the Output window).

Implement the Action

We show the implementation of the ViewSysFSAction in two parts. Listing 13.17 includes the action’s registration annotations and the code that configures the Output window. This code is similar to Listing 13.1 on page 629 (see “The Output Window” on page 628 for a detailed description).

Listing 13.17 ViewSysFSAction—Registration Annotations

Click here to view code image

@ActionID(
 category = "Tools",
 id = "com.asgteach.filesystem.viewer.ViewSysFSAction"
)
@ActionRegistration(
 iconBase = "com/asgteach/filesystem/viewer/fileSysIcon.png",
 displayName = "#CTL_ViewSysFSAction"
)
@ActionReferences({
 @ActionReference(path = "Menu/Tools", position = -100,
 separatorAfter = -50),
 @ActionReference(path = "Toolbars/File", position = 375)
})
@Messages("CTL_ViewSysFSAction=View System FileSystem")
public final class ViewSysFSAction implements ActionListener {
 private final InputOutput io;
 private final OutputWriter writer;
 public ViewSysFSAction() {
 io = IOProvider.getDefault().getIO(
 Bundle.CTL_ViewSysFSAction(), false);
 writer = io.getOut();
 }
. . .
}

Listing 13.18 shows the implementation of the actionPerformed() method. Static FileUtil getConfigRoot() method returns the root folder of the System FileSystem. We then select the System FileSystem tab and clear the Output window. The file system is displayed by invoking the recursive displayChildren() method with the System FileSystem root folder (root). The root path is the application project’s folder in directory build/testuserdir/config, as follows.

Click here to view code image

/[. . . local file system path . . .]/FileSystemApp/build/testuserdir/config

Note that some of the configuration information is in the NetBeans Platform distribution, which in our system is as follows.

Click here to view code image

/Applications/NetBeans/NetBeans 8.0.app/Contents/Resources/NetBeans/platform/
config/Modules

And some of the folders and files are displayed relative to the Default System, as follows.

Click here to view code image

Actions in Default System
Actions/Window in Default System

If the displayChildren() argument is a folder, each child returned from the getChildren() method is subsequently used as an argument with the displayChildren() method.

If the displayChildren() argument is a file, a different color is used with the display. The getAttributes() method is called for each file and each attribute name is displayed with color magenta.

Listing 13.18 ViewSysFSAction—actionPerformed() Method

Click here to view code image

@Override
 public void actionPerformed(ActionEvent e) {
 FileObject root = FileUtil.getConfigRoot();
 // "System FileSystem" tab is created in output window
 io.select(); // select System FileSystem tab
 try {
 writer.reset(); // clear the output window
 displayChildren(root);
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 } finally {
 writer.flush();
 writer.close();
 }
 }

 private void displayChildren(FileObject fo) throws IOException {
 if (fo.isFolder()) { // display folder (orange)
 writeMsg(FileUtil.getFileDisplayName(fo), Color.ORANGE);
 for (FileObject childFileObject : fo.getChildren()) {
 displayChildren(childFileObject);
 }
 } else { // display file (blue)
 writeMsg(FileUtil.getFileDisplayName(fo), Color.BLUE);
 Enumeration<String> attrNames = fo.getAttributes();
 while (attrNames.hasMoreElements()) {
 // display attributes (magenta)
 writeMsg("Attribute " + attrNames.nextElement(), Color.MAGENTA);
 }
 }
 }

private void writeMsg(String str, Color color) {
 try {
 if (IOColorLines.isSupported(io)) {
 IOColorLines.println(io, str, color);
 } else {
 writer.println(str);
 }
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }

Using the Layer File for Inter-Module Communication

You’ve seen how you use the Lookup API for inter-module communication. One module can implement a service provider that is available to other modules. The client modules must declare a dependency on the module that defines the interface, but not on the module that provides the implementation. You also use Lookup to manage selection and context sensitivity. This system helps create an application consisting of loosely-coupled modules.

The file system provides another type of inter-module communication. Using the Layer file, a module can register folders and files that another module can use. These folders and files affect the system file system and can be accessed to build any number of application artifacts.

Let’s show you an example. Here, we’ll modify the FamilyTreeApp we built in a previous chapter (see “Using CRUD with a Database” on page 501) and supply a customized application title using the Layer file. Figure 13.21 shows the application running. The module that implements the FamilyTreeManager using JPA and JavaDB also supplies text for a customized title identifying its persistence strategy.

[image:]

Figure 13.21 Customizing the application title through the Layer file

The module that actually customizes the title, however, is not dependent on the module that provides the customized text. Instead, this information is accessed through the file system.

Here are the steps to build this customized title.

1. Open the FamilyTreeApp application in the NetBeans IDE. Expand the FamilyTreeModel project.

2. Add Module Dependencies to the FileSystem API and the WindowSystem API.

3. Under Source Packages | com.asgteach.familytree.model.data edit file Installer.java. This Java class is annotated with @OnStart to provide code that executes when the application starts and the module loads (see “Using @OnStart” on page 242).

4. Add code to the run() method to read the file system and possibly customize the application title, as shown in Listing 13.19. Note that we must use the invokeWhenUIReady() method because code that modifies the UI must run on the EDT. We check for null in case the target folder or attribute does not exist.

Listing 13.19 Installer.java—Read for System File System to Customize

Click here to view code image

@OnStart
public final class Installer implements Runnable {
. . .
 @Override
 public void run() {
 FamilyTreeManager ftm =
 Lookup.getDefault().lookup(FamilyTreeManager.class);
 . . .
 // Read configuration information from the system filesystem
 FileObject root = FileUtil.getConfigRoot();
 FileObject persistencetype = root.getFileObject("PersistenceType");
 if (persistencetype != null) {
 final String persistenceTypeName
 = persistencetype.getAttribute("pTypeName").toString();
 if (persistenceTypeName != null) {
 WindowManager.getDefault().invokeWhenUIReady(() -> {
 WindowManager.getDefault().getMainWindow().setTitle(
 WindowManager.getDefault().getMainWindow().getTitle()
 + " Using "
 + persistenceTypeName);
 });
 }
 }

}

5. Follow the steps in “Create a Layer File” on page 656 to create a Layer file for the FamilyTreeManagerJPA module. This is the module that provides the FamilyTreeManager implementation using JPA and JavaDB.

6. Add a folder and attribute to the file system, as shown in Listing 13.20.

Listing 13.20 Layer.xml—Adding Application Configuration

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE filesystem PUBLIC "-//NetBeans//DTD Filesystem 1.2//EN" "http://
www.netbeans.org/dtds/filesystem-1_2.dtd">
<filesystem>
 <folder name="PersistenceType">
 <attr name="pTypeName" stringvalue="JPA + JavaDB" />
 </folder>
</filesystem>

When you run the FamilyTreeApp application, you’ll see the customized application title as shown in Figure 13.21. Another module providing a different persistence strategy could then supply its own “PersistenceType” folder and attribute and similarly affect the application title.

13.6 Key Point Summary

This chapter shows you how to use the NetBeans Platform File System API. You learn how to create folders and files in the local file system, how to read and write files, and how to rename and delete files and folders. You learn how to use FileObject attributes and monitor changes within a file system hierarchy, folder, or file with FileChangeListener. You learn how to include files with your NetBeans Platform application and access them using the File System API. And, you learn about the System FileSystem and Layer file, which define the complete configuration data for a NetBeans Platform application. You see how to customize your application by creating folders, files, and attributes in a module’s Layer file. Here are the key points in this chapter.

• The NetBeans Platform File System API lets you manipulate folders and files.

• A FileSystem is a collection of FileObjects. This collection is hierarchical and has a root. The FileSystem abstraction lets you view data from physically different sources in the same way.

• A FileObject represents either a file or folder and is an abstraction above the standard Java File. A FileObject supports file creation, deletion, reading, writing, and accessing attributes with getters and setters.

• FileObjects representing folders let you create subfolders and files. FileObjects also let you access their containing files and folders (children).

• Deleting a FileObject folder performs a recursive delete.

• FileUtil provides static methods for manipulating FileObjects.

• You can add a FileChangeListener to a FileObject (folder or file) and monitor changes to files and folders. You can also add a recursive FileChangeListener to folders in a directory tree.

• FileChangeListener receives events for folder creation, file creation, file (or folder) changes, file (or folder) delete, file (or folder) rename, and file (or folder) attribute changes. There are six methods to override in the FileChangeListener. Alternatively, you can use the FileChangeAdapter adapter class to override only the methods you need.

• The Output window is a predefined TopComponent that supports multiple tabs. This window is convenient for reporting status from different modules.

• The Favorites window lets you view files in your local file system. To add the Favorites window to a NetBeans Platform application, include module Favorites from the platform cluster.

• Add the Templates module to your NetBeans Platform application to let users create empty files and folders from the Favorites window.

• Create folder release in the top-level directory of your module to install one or more files in your NetBeans application.

• Access installed files with the locate() or locateAll() method from InstalledFileLocator. These methods handle localized files as well.

• To install a module as a PlugIn in the NetBeans IDE, create an NBM file and install it with the PlugIns menu under Tools.

• The Layer file is the gateway to your NetBeans Platform application configuration data. This configuration data is written as a hierarchical file system to disk, called the System FileSystem.

• A module may contribute at most one Layer file. When your application runs, each module’s Layer file is read and merged into a single application-wide Layer file.

• Typically, you contribute content to a generated Layer file with annotations. These annotations register services, actions, TopComponents, menu items, toolbar contents, and key bindings.

• You can create a Layer file and view it in context in the Projects view.

• To remove standard NetBeans Platform actions, menu items, and toolbar entries, append the suffix “_hidden” to the entry in a module’s Layer file.

• Alternatively, use the context menu delete from the Projects view to remove items in the Layer file. Use context menu restore to subsequently restore any hidden items.

• You can access an application’s System FileSystem programmatically with FileUtil.getConfigRoot(). This method returns a FileObject representing the System FileSystem root.

• Customize an application in a loosely-coupled way by having one module register folders and/or files in its Layer file that another module can access.

14. Data System

This chapter explores the Data System API, which is an important bridge between files and nodes. You’ll learn how to create file types that are recognized by the NetBeans Platform and how to manipulate these file types using both the File System API and Data System API.

DataObject and DataNode are the main classes in the Data System API. These important classes let you manage files within a NetBeans Platform application.

A MultiView editor lets users examine different views of the same file, typically a text-based view and a Visual view. You’ll learn how to use DataObjects to build a MultiView editor. A Visual view creates a Swing JPanel, which lets you add Swing components, Visual Library API widgets (flexible graphical components), or JavaFX content.

Not all NetBeans Platform applications need to make use of the Data System API. If you do not need to integrate new types of files into your application, you probably do not need the Data System API.

What You Will Learn

• Use the File System, the Data System, and the Nodes APIs to understand the relationship between file, FileObject, DataObject, and node objects.

• Create new file types and register their MIME types, DataLoader, Template File, and MultiView elements.

• Create a MultiView editor based on a text-based MIME type. Learn how to synchronize the underlying document among multiple views.

• Use both the Visual Library and JavaFX to build views in a MultiView editor.

• Build node hierarchies for DataObjects based on file contents.

• Create new XML-based file types with specific root elements.

• Parse XML files with the NetBeans Platform XMLUtil class.

• Incorporate the NetBeans Platform XML editor into a NetBeans Platform application.

• Create conditionally-enabled actions for specific file types.

• Create conditionally-enabled actions for specific MultiView windows.

14.1 Data System API Overview

The NetBeans Platform File System API lets you work with files and provides enhanced file manipulation functionality. You’ve seen how to add arbitrary attributes to files or monitor changes with a FileChangeListener. FileObjects, however, represent raw data. You can’t do much with files other than read and write them with IOStream. (You can also read them as an array of bytes or as strings or lines with text files.)

The Data System API, in contrast, is the glue between the Nodes API and the File System API. Its main class, the DataObject, wraps a FileObject, and lets you perform tasks related to particular kinds of files. The nodes associated with a file let you visualize the file within Explorer Views. Nodes, DataObjects, and FileObjects each have a Lookup, which is important for accessing the capabilities associated with a file.

A FileObject has a MIME type. Registered DataLoaders exist for MIME types and create DataObjects subtypes that know something about the file (for example, how to open the file in an appropriate editor). Figure 14.1 shows the relationship between files, FileObject, DataObject, and nodes.

[image:]

Figure 14.1 Relationship between files, FileObject, DataObject, and nodes

DataLoaders construct a single DataObject for a FileObject. However, sometimes more than one FileObject corresponds to a DataObject. For example, when you edit a Swing Design form using the NetBeans IDE Java editor, a pair of FileObjects correspond to the single DataObject (a .java file and a .form file).

The DataLoader recognizes the FileObject type via its MIME type, creating the DataObject associated with the FileObject. Typically you don’t call methods directly on a DataObject. Rather, you ask for capabilities via the DataObject’s Lookup and invoke methods on that capability. This is an application of the Capability Pattern described earlier (see “NetBeans Platform Capability Pattern” on page 428). DataObjects provide programmatic access to files and create models from their contents.

Nodes wrap DataObjects and provide human-readable information in a presentation layer. For example, in the Favorites window, each file and folder is represented by a node. Different file types have different nodes with their own set of actions and icons.

DataLoaders are factories for DataObjects. A FileObject with a particular MIME type has an associated DataLoader that creates a DataObject for that file. A FileObject’s MIME type is determined by a MIME type resolver. MIME resolvers are registered in the folder Services/MIMEResolver in a module’s layer.

Typically MIME resolvers use a file’s extension to determine its MIME type. For XML files, the MIME resolver also looks at the file’s root element.

When you create new file types, the New File Type wizard registers a MIME resolver, DataLoader, file template, and DataObject for that file type.

FileObject, DataObject, and Node

Let’s now see how you access these related objects programmatically. To illustrate, we’ll access a text file called myfile.txt. A file with extension .txt is an unknown MIME type and is treated as a generic text file in NetBeans. When you open the Favorites window, myfile.txt (if it exists) is shown with a generic document icon.

The code fragments in this section all use custom displayMessage() method to write information to the Output window. Furthermore, code is embedded in try blocks with catch handlers for IOException, as shown in Listing 14.1. (See “The Output Window” on page 628 for an introduction to the Output window.)

Listing 14.1 Helper Method displayMessage() and try Block Code

Click here to view code image

. . .
 private final InputOutput io;
 private final OutputWriter writer;
 private static final String FILENAME = "myfile.txt";

public FileManipulations() {
 io = IOProvider.getDefault().getIO(Bundle.CTL_FileManipulations(),
 false);
 writer = io.getOut();
 }

 private void displayMessage(String msg) {
 writer.println(msg);
 }

. . .
 // Example code manipulating FileObject, DataObject, and Node
 try {
 . . .

 [See Listing 14.2, Listing 14.3, Listing 14.4,
 Listing 14.5, and Listing 14.6]
 . . .

 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }

FileObject MIME Type and Lookup

Let’s begin by accessing file myfile.txt as a FileObject. We use the getFileObject() method of its parent FileObject folder, as shown in Listing 14.2. The call to getMIMEType() returns “content/unknown.”

FileObjects have a Lookup, which we access to open the file. Here, we look up an implementation of Openable and, if found, invoke its open() method to open the file in the NetBeans Platform plain text editor.

Listing 14.2 FileObjects Have MIME Types and Lookup

Click here to view code image

 . . .
 // Is there a file called myfile.txt in this folder?
 FileObject myfile = myfolder.getFileObject(FILENAME);
 . . .
 // Show that the FileObject has a MIME Type
 displayMessage(myfile.getNameExt() + " MIME Type: " + myfile.getMIMEType());

 // Show that the FileObject has a lookup
 Openable open_impl = myfile.getLookup().lookup(Openable.class);
 if (open_impl != null) {
 displayMessage("Openable found in fileobject");
 // Open the file (this opens the file in a plain text editor)
 open_impl.open();
 }

Output Window
 myfile.txt MIME Type: content/unknown
 Openable found in fileobject

DataObject Factory and DataObject Lookup

The DataLoader lets you access a FileObject’s DataObject. DataLoaders are factories for DataObjects and are registered in your application. You use the static DataObject find() method to access a FileObject’s DataObject as shown in Listing 14.3.

DataObjects also have Lookups. Listing 14.3 shows the equivalent code for opening the file represented by this DataObject. As before, we invoke the Openable method open(). If the file is already opened, the plain text editor window receives focus.

Listing 14.3 Factory Creates DataObject; DataObjects Have a Lookup

Click here to view code image

 // Find the DataObject associated with the file
 // Use static DataObject method find()
 DataObject dob = DataObject.find(myfile);
 if (dob != null) {
 displayMessage("Found DataObject " + dob.getName() + " for "
 + myfile.getNameExt());
 // Show that the DataObject also has a Lookup
 open_impl = dob.getLookup().lookup(Openable.class);
 if (open_impl != null) {
 displayMessage("Openable found in dataobject");
 // If already opened, focuses on the Editor Window
 open_impl.open();
 }
 . . .
 }

Output Window
 Found DataObject myfile.txt for myfile.txt
 Openable found in dataobject

Accessing FileObjects from DataObjects

In many cases, multiple FileObjects can be associated with a DataObject. However, one FileObject is designated as the primary file, which you access with the DataObject getPrimaryFile() method. Listing 14.4 shows how to access the FileObject from the DataObject and then read the file’s contents using convenience method asLines().

Listing 14.4 Get FileObject from DataObject and Read Contents

Click here to view code image

 // Get the FileObject from the DataObject
 FileObject myfob = dob.getPrimaryFile();
 if (myfob != null) {
 displayMessage("Got FileObject " + myfob.getNameExt()
 + " from DataObject");
 displayMessage("Display Contents:");
 // Use FileObject to read the contents
 for (String line : myfob.asLines()) {
 displayMessage(line);
 }
 }

Output Window
 Got FileObject myfile.txt from DataObject
 Display Contents:
 testing
 one
 two

DataObjects and Nodes

You’ve already seen how the NetBeans Platform Favorites window displays files and folders from your local file system in an Explorer View. As you may have surmised from Chapter 7 (see “Building a Node Hierarchy” on page 295 for details), each of these folders and files in the Explorer View is a node. Node is the presentation of your data and represents a DataObject, which in turn wraps a FileObject, representing a file on disk.

Nodes not only provide the human-friendly view but also offer a context menu of actions and capabilities stored in its Lookup. You’re already familiar with nodes, but a specialized subclass of AbstractNode called DataNode wraps DataObjects (see Figure 7.3 on page 295 for a diagram of the Node class hierarchy).

DataObjects create node hierarchies. You invoke the getNodeDelegate() method, which returns the DataObject’s node. With node, you can now access the familiar objects associated with nodes: actions, icons, and of course, the all-important Lookup.

Listing 14.5 shows how to access the node from the DataObject and access the node’s icon and list of actions.

Listing 14.5 Node from DataObject / Manipulate Node

Click here to view code image

 // Get the Node that represents the DataObject
 Node node = dob.getNodeDelegate();
 if (node != null) {
 displayMessage("Node is: " + node.getDisplayName());

 // See if the Node has an Icon (Image)
 Image image = node.getIcon(BeanInfo.ICON_COLOR_16x16);
 if (image != null) {
 displayMessage("Got the Node's Icon " + image.toString());
 }

 // Get the Node's Context-Menu Actions
 displayMessage("-------Node Context Menu Actions-------");
 for (Action action : node.getActions(true)) {
 if (action == null) {
 // separator
 displayMessage("-------");
 } else {
 displayMessage("Action " + action.toString());
 }
 }

Output Window
 Node is: myfile.txt
 Got the Node's Icon BufferedImage@893049b: type = 3 DirectColorModel:
 rmask=ff0000 gmask=ff00 bmask=ff amask=ff000000 IntegerInterleavedRaster:
 width = 16 height = 16 #Bands = 4 xOff = 0 yOff = 0 dataOffset[0] 0
 -------Node Context Menu Actions-------
 . . . (output truncated)

Using DataNode and Lookup

Now let’s reverse direction and show you how to obtain the DataObject from a node. To use the node directly, you must cast node to DataNode and invoke the getDataObject() method. However, a cleaner approach is to use the node’s Lookup and obtain its DataObject with the type-safe lookup() method. Listing 14.6 shows both approaches.

Listing 14.6 Get the DataObject from the Node

Click here to view code image

 // Get the DataObject from the DataNode (cumbersome)
 if (node instanceof DataNode) {
 // cast to DataNode
 DataNode dataNode = (DataNode) node;
 displayMessage("Node is a DataNode: " + dataNode.getDisplayName());
 DataObject mydob = dataNode.getDataObject();
 if (mydob != null) {
 displayMessage("Got the DataObject from the DataNode: "
 + mydob.getName());
 }
 }

 // Better to use Lookup (type-safe)
 DataObject dob2 = node.getLookup().lookup(DataObject.class);
 if (dob2 != null) {
 displayMessage("Got the DataObject from the Node's Lookup: "
 + dob2.getName());
 }

Output Window
 Node is a DataNode: myfile.txt
 Got the DataObject from the DataNode: myfile.txt
 Got the DataObject from the Node's Lookup: myfile.txt

14.2 Creating a New File Type

Now that you’ve learned about FileObject, DataObject, and DataNode, let’s build an application with a new file type and register this file type in the application. This example shows you how to manipulate FileObjects, DataObjects, and nodes within the context of a NetBeans Platform application. You’ll learn how to manipulate particular kinds of files within your program. With the New File Type wizard, you define a MIME type and register a DataLoader, which creates the necessary DataObjects when needed. The wizard also registers a File Template. The application then applies this File Template when a user creates a new file of this type.

Figure 14.2 shows the application running. You see that the Favorites window on the left includes several files with extension ftr (the new file type) identified with a special icon. Opening an FTR file brings up the file in a plain text editor in a MultiView window with two tabs labeled Text and Visual. For now, we’ll work with just the Text window. We discuss adding functionality to the Visual tab in the next section (see “Working with MultiView Windows” on page 697).

[image:]

Figure 14.2 FileTypeApp with familytree (ftr) file defined

When the user expands the file (clicks the expansion icon in the Favorites window), additional nodes appear based on the file’s content. When the user edits the file and saves a new version, the Favorites window is synchronized with the new contents. This fairly simple example lets you see the relationship among file, FileObject, DataObject, DataNode, and node.

Because the Favorites window deals with displaying files, this new file type has the expected behaviors associated with files in general. Actions such as copy, delete, and rename are implemented by default. With the Templates module included, you can also create new FTR files, new empty files, and new folders. We also provide a context-sensitive action for this new file type that displays information about the file.

Here’s a summary of the steps to build this application and create a new file type.1

1. Alternatively you can build a NetBeans module outside of a NetBeans Platform application. Such a module runs inside a version of the NetBeans IDE, giving you access to all of the IDE’s file-oriented features and editors. Here, we show you how to build a non-IDE based application and include just the NetBeans modules you need.

• Create a new NetBeans Platform application called FileTypeApp.

• Create a new module called FamilyTreeSupport and add it to the FileTypeApp application.

• Add the Favorites and Templates modules to the FileTypeApp application.

• In module FamilyTreeSupport, create a new file type based on extension ftr or FTR (familytree).

• Create a new FTR file and open it for editing.

• Add a custom context-sensitive action to familytree files.

• Provide child nodes based on content. These nodes are displayed when the user expands the file’s node in an Explorer View window. Respond to edit changes so the Favorites window is synchronized with the file’s edited contents.

Create a NetBeans Platform Application and Module

Let’s begin with the steps to create the application and add the FamilyTreeSupport module.

1. Create a new application called FileTypeApp using the NetBeans Platform New Project wizard.

2. Next, create a Module and add it to the FileTypeApp application. Call the module FamilyTreeSupport and provide package name com.asgteach.familytreesupport. The application and module are shown in the Projects view in Figure 14.3.

[image:]

Figure 14.3 FileTypeApp and module FamilyTreeSupport

Add the Favorites and Templates Modules

The Favorites window is a file viewer for your local disk. See “Favorites Window” on page 637 for a description of this useful module. The Templates module lets you create empty files and folders from the Favorites window. Follow these steps to include both the Favorites and Templates modules in the FamilyTreeApp application.

1. Right click project FileTypeApp in the Projects view and select Properties from the context menu.

2. Under Categories, select Libraries. NetBeans lists all of the Platform Modules organized in clusters. Under cluster platform, select modules Favorites and Templates and click OK.

3. When you run the FileTypeApp application, the Favorites window is now available in the top-level Window menu.

Create a New File Type

Create a new file type that is recognized by your application. The result of running the New File Type wizard registers a MIME type resolver and a DataLoader that recognizes this MIME type. The wizard also creates and registers a template for this file type and instantiates a DataObject when the user opens a file of this type. The Favorites window displays this file’s DataNode with its own icon. Furthermore, the DataNode includes menu items, actions, and properties (and if defined, child nodes).

Here are the steps.

1. In the Projects view, expand module FamilyTreeSupport | Source Packages, select the package name, right click, and select New | Other from the context menu.

2. In the Choose File Type dialog, under Categories select Module Development and under File Types select File Type. Click Next.

3. NetBeans displays the File Recognition dialog that lets you specify how your application will recognize this new file type. First, specify the MIME Type as text/x-familytree. This specifies that the file is a text-based file type called familytree. Select radio button by Filename Extension and provide one or more extensions. Use extension ftr and FTR2, as shown in Figure 14.4. This defines a new MIME type that applies to files with extension ftr (or FTR). Click Next.

2. Do not include a “dot” preceding the file extension in the dialog.

[image:]

Figure 14.4 New File Type File Recognition dialog

4. NetBeans displays the Name, Icon, and Location dialog. For Class Name Prefix, specify FamilyTree. Click the Browse button and navigate to the provided icon file check.png. Make sure the Use MultiView checkbox is selected and accept the defaults for the remaining fields, as shown in Figure 14.5. Click Finish.

[image:]

Figure 14.5 Name, Icon, and Location dialog

Now let’s examine the files that NetBeans creates to support this new file type.

• FamilyTreeDataObject.java—This is a generated DataObject class that wraps a FileObject for FTR files. Annotations register the MIME type, the file’s icon, an editor, and typical actions associated with Explorer View file elements: Open, Copy, Cut, Paste, Delete, Properties, and so forth. Note that this class extends MultiDataObject, which is a subclass of DataObject. MultiDataObjects are DataObjects that can handle more than one FileObject. Listing 14.7 on page 683 and Listing 14.8 on page 685 show this generated file.

• FamilyTreeTemplate.ftr—This file is the template used by the New File wizard when the user creates a new FTR file (see Listing 14.10 on page 687).

• FamilyTreeVisualElement.java—This Java file extends JPanel and implements MultiViewElement, which provides similar life cycle methods as TopComponents (see Listing 14.9 on page 685). MultiViewElement is one of perhaps several that provide different representations of the same file. This JPanel can hold Swing components, Visual Library elements, or even JavaFX components with the JFXPanel control.

• check.png—This is the 16 x 16 graphic icon attached to FTR files.

• package-info.java—This Java file registers FamilyTreeTemplate.ftr for the New File wizard (see Listing 14.11 on page 688).

Let’s look at the FamilyTreeDataObject first. Listing 14.7 includes the annotations that register the MIME resolver and the actions available for this file type.

Listing 14.7 FamilyTreeDataObject—Registration Information

Click here to view code image

@Messages({
 "LBL_FamilyTree_LOADER=Files of FamilyTree"
})
@MIMEResolver.ExtensionRegistration(
 displayName = "#LBL_FamilyTree_LOADER",
 mimeType = "text/x-familytree",
 extension = {"ftr", "FTR"}
)
@DataObject.Registration(
 mimeType = "text/x-familytree",
 iconBase = "com/asgteach/familytreesupport/check.png",
 displayName = "#LBL_FamilyTree_LOADER",
 position = 300
)
@ActionReferences({
 @ActionReference(
 path = "Loaders/text/x-familytree/Actions",
 id = @ActionID(category = "System",
 id = "org.openide.actions.OpenAction"),
 position = 100,
 separatorAfter = 200
),
 @ActionReference(
 path = "Loaders/text/x-familytree/Actions",
 id = @ActionID(category = "Edit",
 id = "org.openide.actions.CutAction"),
 position = 300
),
 @ActionReference(
 path = "Loaders/text/x-familytree/Actions",
 id = @ActionID(category = "Edit",
 id = "org.openide.actions.CopyAction"),
 position = 400,
 separatorAfter = 500
),
 @ActionReference(
 path = "Loaders/text/x-familytree/Actions",
 id = @ActionID(category = "Edit",
 id = "org.openide.actions.DeleteAction"),
 position = 600
),
 @ActionReference(
 path = "Loaders/text/x-familytree/Actions",
 id = @ActionID(category = "System",
 id = "org.openide.actions.RenameAction"),
 position = 700,
 separatorAfter = 800
),
 @ActionReference(
 path = "Loaders/text/x-familytree/Actions",
 id = @ActionID(category = "System",
 id = "org.openide.actions.SaveAsTemplateAction"),
 position = 900,
 separatorAfter = 1000
),
 @ActionReference(
 path = "Loaders/text/x-familytree/Actions",
 id = @ActionID(category = "System",
 id = "org.openide.actions.FileSystemAction"),
 position = 1100,
 separatorAfter = 1200
),
 @ActionReference(
 path = "Loaders/text/x-familytree/Actions",
 id = @ActionID(category = "System",
 id = "org.openide.actions.ToolsAction"),
 position = 1300
),
 @ActionReference(
 path = "Loaders/text/x-familytree/Actions",
 id = @ActionID(category = "System",
 id = "org.openide.actions.PropertiesAction"),
 position = 1400
)
})
public class FamilyTreeDataObject extends MultiDataObject {
. . .
}

Listing 14.8 shows the remaining code for class FamilyTreeDataObject. The DataObject registers an editor for the appropriate MIME type and includes a static method to create a MultiViewEditorElement (see the related FamilyTreeVisualElement.java in Listing 14.9 on page 685). We also change the button’s label for the plain text editor to Text from the default label Source.

Because we register a text editor here, the DataObject includes an EditorCookie in its Lookup. This makes it possible to access the editor’s underlying model (a Swing text document) that reflects the current state of user edits.

Listing 14.8 FamilyTreeDataObject—File Loader and MultiElement Registration

Click here to view code image

. . .
public class FamilyTreeDataObject extends MultiDataObject {

 public FamilyTreeDataObject(FileObject pf, MultiFileLoader loader)
 throws DataObjectExistsException, IOException {
 super(pf, loader);
 registerEditor("text/x-familytree", true);
 }

@Override
 protected int associateLookup() {
 return 1;
 }

 @MultiViewElement.Registration(
 displayName = "#LBL_FamilyTree_EDITOR",
 iconBase = "com/asgteach/familytreesupport/check.png",
 mimeType = "text/x-familytree",
 persistenceType = TopComponent.PERSISTENCE_ONLY_OPENED,
 preferredID = "FamilyTree",
 position = 1000
)
 @Messages("LBL_FamilyTree_EDITOR=Text")
 public static MultiViewEditorElement createEditor(Lookup lkp) {
 return new MultiViewEditorElement(lkp);
 }
}

Listing 14.9 shows the FamilyTreeVisualElement, which is similar in structure to TopComponent. The FamilyTreeVisualElement has a Lookup, a generated design section, actions that can be defined, and window life cycle methods. The MultiViewElement also includes field MultiViewElementCallback, which provides access to the enclosing TopComponent.

Method getVisualRepresentation() returns JComponent, the instance of the MultiViewElement, and is invoked whenever this view is activated. The default implementation returns this.

We’ll return to this file when we add visual components.

Listing 14.9 FamilyTreeVisualElement.java

Click here to view code image

@MultiViewElement.Registration(
 displayName = "#LBL_FamilyTree_VISUAL",
 iconBase = "com/asgteach/familytreesupport/check.png",
 mimeType = "text/x-familytree",
 persistenceType = TopComponent.PERSISTENCE_NEVER,
 preferredID = "FamilyTreeVisual",
 position = 2000
)
@Messages("LBL_FamilyTree_VISUAL=Visual")
public final class FamilyTreeVisualElement extends JPanel
 implements MultiViewElement {

 private FamilyTreeDataObject ftDataObject;
 private JToolBar toolbar = new JToolBar();
 private transient MultiViewElementCallback callback;

 public FamilyTreeVisualElement(Lookup lkp) {
 ftDataObject = lkp.lookup(FamilyTreeDataObject.class);
 assert obj != null;
 initComponents();
 }

@Override
 public String getName() {
 return "FamilyTreeVisualElement";
 }
. . .
 Generated Matisse Design Code*
. . .

 @Override
 public JComponent getVisualRepresentation() {
 return this;
 }

@Override
 public JComponent getToolbarRepresentation() {
 return toolbar;
 }

@Override
 public Action[] getActions() {
 return new Action[0];
 }

 @Override
 public Lookup getLookup() {
 return ftDataObject.getLookup();
 }
 @Override
 public void componentOpened() {
 }
 @Override
 public void componentClosed() {
 }

@Override
 public void componentShowing() {
 }

@Override
 public void componentHidden() {
 }

@Override
 public void componentActivated() {
 }

@Override
 public void componentDeactivated() {
 }

@Override
 public UndoRedo getUndoRedo() {
 return UndoRedo.NONE;
 }

@Override
 public void setMultiViewCallback(MultiViewElementCallback callback) {
 this.callback = callback;
 }

@Override
 public CloseOperationState canCloseElement() {
 return CloseOperationState.STATE_OK;
 }

}

Listing 14.10 shows the Template file, which you customize for your application as we have here. NetBeans uses the Template file as a starting point when a user creates a new FTR file.

Listing 14.10 FamilyTreeTemplate.ftr

Click here to view code image

FAMILY Family Tree

Listing 14.11 shows how the Template file is registered with the generated package-info.java.

Listing 14.11 package-info.java

Click here to view code image

@TemplateRegistration(folder = "Other", content = "FamilyTreeTemplate.ftr")
package com.asgteach.familytreesupport;

import org.netbeans.api.templates.TemplateRegistration;

All of this registration information is included in the module’s generated-layer.xml file when you build the module. The generated Layer file registers the FamilyTree FTR file type with <folder>, <file>, and <attr> tags that specify configuration information available through the System FileSystem (see “The Layer File and System FileSystem” on page 654).

The main folder names include editors to register the MultiView editor for text-based x-familytree type files, Services/MIMEResolvers to describe the MIME Resolver for FamilyTreeDataObject, loaders for both actions and factories with text/x-familytree files, and Templates to register FamilyTreeTemplate.ftr for creating new files of this type.

Create and Edit a New FTR File

With the FamilyTree file type defined, let’s run the application and create a new FTR file, as follows.

1. Run the FileTypeApp application and open the Favorites window.

2. From the Favorites window, select a folder, right click, and select New | All Templates. The application displays the Choose Template dialog. Select FamilyTreeTemplate.ftr, as shown in Figure 14.6. Click Next.

[image:]

Figure 14.6 Choose Template dialog

3. The application now displays the New Object Name dialog. Specify a name for the new file, as shown in Figure 14.7. Click Finish.

[image:]

Figure 14.7 New Object Name dialog

4. Figure 14.8 shows the new file created (SimpsonFamilyTree.ftr) in the Favorites window and opened in the FamilyTree MultiView editor.

[image:]

Figure 14.8 Editing file SimpsonFamilyTree.ftr

5. Edit the file and provide the Simpson Family names, as shown in Figure 14.9. Note that as you edit the file, the Save All icon is enabled. When you click the Save All icon, the changes are saved to the SimpsonFamilyTree.ftr file.

[image:]

Figure 14.9 Plain text editor for FileTypeApp application

Context-Sensitive Action

To add a context-sensitive action to your file as it’s displayed in an Explorer View, you create a conditionally-enabled action (see “Context-Aware Actions” on page 428 in Chapter 9 for more information). Here, we add a Get Info action for our file type to the FamilyTreeSupport module, which displays an Information Dialog, as shown in Figure 14.10.

[image:]

Figure 14.10 Get Info action added to file’s context menu

Note that the file’s context menu also includes typical file-type actions, such as Open, Cut, Copy, Delete, Rename, Tools, Properties, and Add to Favorites (because we’re using the Favorites window).

Follow these steps to add this context-sensitive action to the text/x-familytree file type.

1. In the FamilyTreeSupport module Source Packages, right click on the package name and select New | Action.

2. In the Action Type dialog, select Conditionally Enabled. For the Cookie Class, specify FamilyTreeDataObject, which is the DataObject type for this file type. Select radio button User Selects One Node and click Next, as shown in Figure 14.11.

[image:]

Figure 14.11 New Action Type dialog

3. Figure 14.12 shows the GUI Registration dialog. Register an action both in the top-level menu under File and in the context menu of this particular file type. Select Global Menu File and choose a position. Select File Type Context Menu Item and text/x-familytree from the drop down list for the context type. Click Finish. (Note that the Get Info action in the File menu will only be enabled if a file of type text/x-familytree is selected.)

[image:]

Figure 14.12 New Action GUI Registration for File Type Context Menu

4. NetBeans next displays the Name, Icon, and Location dialog shown in Figure 14.13. For Class Name specify GetInfoAction and for Display Name specify Get Info. Optionally provide an icon (for the top-level Menu item; context menus do not include icons). Accept the defaults for the remaining fields and click Finish.

[image:]

Figure 14.13 New Action Name, Icon and Location dialog

Listing 14.12 shows GetInfoAction.java, which includes annotations that register this action. We add code to the actionPerformed() method to pop up a dialog with information about the file. The Get Info action displays the selected file’s name, extension, MIME type, the number of bytes, the number of lines, its last modification date, and its full path, as shown in Figure 14.10 on page 690.

Of interest is the @ActionReference with path "Loaders/text/x-familytree/Actions," which adds this action to the context menu of these file types (identified by the appropriate DataLoader).

The context is type FamilyTreeDataObject, which we specified in the New Action wizard.

Listing 14.12 GetInfoAction.java

Click here to view code image

@ActionID(
 category = "File",
 id = "com.asgteach.familytreesupport.GetInfoAction"
)
@ActionRegistration(
 iconBase = "com/asgteach/familytreesupport/info.png",
 displayName = "#CTL_GetInfoAction"
)
@ActionReferences({
 @ActionReference(path = "Menu/File", position = 1450,
 separatorAfter = 1475),
 @ActionReference(path = "Loaders/text/x-familytree/Actions",
 position = 150, separatorBefore = 125)
})
@Messages("CTL_GetInfoAction=Get Info")
public final class GetInfoAction implements ActionListener {

 private final FamilyTreeDataObject context;
 private static final Logger logger = Logger.getLogger(
 GetInfoAction.class.getName());

 public GetInfoAction(FamilyTreeDataObject context) {
 this.context = context;
 }

 @Override
 public void actionPerformed(ActionEvent ev) {
 FileObject f = context.getPrimaryFile();
 String displayName = FileUtil.getFileDisplayName(f);
 String name = f.getName();
 StringBuilder sb = new StringBuilder("Name: ").append(name);
 sb.append(":\nExtension: ").append(FileUtil.getExtension(displayName));
 sb.append("\nMIME Type: ").append(FileUtil.getMIMEType(f));
 try {
 sb.append("\nFile Size: ").append(f.getSize());
 sb.append("\nLines: ").append(f.asLines().size());
 sb.append("\nLast Modified: ").append(f.lastModified());
 sb.append("\nFull Path:\n").append(f.getPath());
 NotifyDescriptor nd = new NotifyDescriptor.Message(sb.toString());
 DialogDisplayer.getDefault().notify(nd);
 } catch (IOException e) {
 logger.log(Level.WARNING, null, e);
 }
 }
}

The actionPerformed() method obtains the FileObject from the DataObject context. With the FileObject, we can display the file name, the extension, MIME type, length in bytes, number of lines, the last modification data, and the file’s full path. The standard NotifyDescriptor and DialogDisplayer pop up an Information dialog and block until dismissed by the user. (See “NotifyDescriptor.Message” on page 527 for more on the NotifyDescriptor dialogs.)

Provide Child Nodes Based on Content

The FamilyTreeDataObject (see Listing 14.8 on page 685) instantiates a MultiView editor when the user opens an FTR file. The generated code does not include the overloaded createNodeDelegate() method. Instead FamilyTreeDataObject relies on a default implementation inherited from DataObject. The createNodeDelegate() method returns a node (typically a DataNode) that represents this DataObject in an Explorer View. The default method sets the icon and display name and adds the DataObject to the node’s Lookup.

To customize this default behavior, override the createNodeDelegate() method. For this example, we create a list of child nodes, one for each line in the FTR text file. The Favorites window automatically displays these child nodes when the user expands the file’s node (see Figure 14.14 on page 697). The Favorites window must also be synchronized as users edit and save changes to the file.

[image:]

Figure 14.14 FileTypeApp synchronized Favorites window and text editor

As shown previously, a ChildFactory creates child nodes (for Person objects, see Listing 7.2 on page 300). Listing 14.13 shows the overridden createNodeDelegate() method, which likewise uses private class FamilyTreeChildFactory to create child nodes. Note that the FamilyTreeDataObject is included (this) in both the DataNode constructor and the FamilyTreeChildFactory constructor.

The FamilyTreeChildFactory has three tasks.

• Add a FileChangeListener to the underlying FileObject and refresh its data when receiving a file change event. This keeps the Favorites window synchronized when the user edits an FTR file. Here, we use the FileChangeAdapter class, since we only care about file change events. (We discuss FileChangeListeners in “Monitoring File Changes” on page 636.) The refresh() method rebuilds the child node hierarchy as needed.

• In the createKeys() method, parse the file, adding a String-based key to its underlying list of keys. (Blank lines are ignored.)

• In the createNodeForKey() method, create an AbstractNode based on the String key (line of text), using the personIcon.png graphic for the icon.

We discuss nodes, ChildFactory, and creating node hierarchies in detail in Chapter 7 (see “Building a Node Hierarchy” on page 295).

Listing 14.13 FamilyTreeDataObject and FamilyTreeChildFactory

Click here to view code image

public class FamilyTreeDataObject extends MultiDataObject {
 . . .
 @Override
 protected Node createNodeDelegate() {
 return new DataNode(this, Children.create(
 new FamilyTreeChildFactory(this), true), getLookup());
 }
 private static class FamilyTreeChildFactory extends ChildFactory<String> {

private final FileObject fileObject;

 public FamilyTreeChildFactory(FamilyTreeDataObject dataObject) {
 fileObject = dataObject.getPrimaryFile();
 fileObject.addFileChangeListener(new FileChangeAdapter() {
 @Override
 public void fileChanged(FileEvent fe) {
 refresh(true);
 }
 });
 }

 @Override
 protected boolean createKeys(List<String> list) {
 // create a String for each line in the file
 try {
 // skip blank lines
 for (String line : fileObject.asLines()) {
 if (!line.isEmpty()) {
 list.add(line);
 }
 }
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 return true;
 }

 @Override
 protected Node createNodeForKey(String key) {
 AbstractNode childNode = new AbstractNode(Children.LEAF);
 childNode.setDisplayName(key);
 childNode.setIconBaseWithExtension(
 "com/asgteach/familytreesupport/personIcon.png");
 return childNode;
 }
 }
}

These changes create two enhancements. First, the Favorites window displays each line of text with a node. Second, as you edit an FTR file and save it (click Save All in the top-level toolbar), the Favorites window refreshes with the new file contents, as shown in Figure 14.14.

The NetBeans default text editor handles installing and subsequently removing a Savable in the TopComponent’s Lookup as a user makes and saves changes. (See “Implement Openable and SavablePersonCapability” on page 500 for examples on working with Savable.)

14.3 Working with MultiView Windows

The FamilyTreeDataObject includes support for MultiView windows. A MultiView editor is a TopComponent with more than one embedded window, called a MultiViewElement. MultiViewElements are selectable with buttons in a toolbar that let you switch views. Our FileTypeApp has a window labeled Text that displays a plain text editor. The editor is completely supplied by the NetBeans Platform. The other window labeled Visual is currently empty (blank).

Let’s add a Visual view of our file now so that users can switch between the text editor and the Visual view. As users make edits in the Visual view, these changes appear in the Text view and vice versa. Thus, both views access the same underlying document model that is synchronized as users edit the file. A change made through either view enables the Save All toolbar icon, and after saving, the Favorites window shows the updated contents.

Figure 14.15 shows the FileTypeApp with file SimpsonFamilyTree.ftr opened in the Visual view of the FTR editor. The Visual view uses the NetBeans Platform Visual Library to create movable widgets corresponding to each line in the FTR file. In this screenshot, the user is editing element Bart. The changes have not yet been saved to the file (so the Favorites window is not yet updated), and the Save All icon is enabled reflecting a modification to the underlying model.

[image:]

Figure 14.15 Editing with the FileTypeApp Visual view

At any time, users can select the Text button in the editor’s toolbar to activate the Text view of this file, as shown in Figure 14.16. Here, you see the edited contents from the underlying document model.

[image:]

Figure 14.16 Keeping the Text and Visual views synchronized

When users click either the Save All icon or the File | Save menu item, the Favorites window shows the saved contents, as shown in Figure 14.17. The Save All icon is then disabled.

[image:]

Figure 14.17 Saving refreshes the Favorites window

Now let’s show you how to create a visual element with the Visual Library and keep the underlying document model consistent among multiple views.

Using the Visual Library

A complete description of the Visual Library is beyond the scope of this book, but we can provide a cursory outline to get you started. As its name implies, the Visual Library lets you create views with selectable, movable, and changeable graphical components called widgets. When you build a view with the Visual Library, you construct a Scene, which is a specialized widget that consists of a tree structure of widgets. The Scene is the root element and creates a Swing-compatible JComponent view that you can add to a Swing component.

To create actions for widgets, use ActionFactory and add them to the widgets with method addAction(). Some ActionFactory methods require a provider (such as the EditAction). Other actions have default providers (such as the MoveAction). In this application, we add both a MoveAction and an in-place editor action, using an implementation of TextFieldInplaceEditor.

A widget can be a container for additional widgets and also have a layout. Our example uses LayoutWidget (a transparent widget that has a layout and holds other widgets) and a LabelWidget (a widget that displays text).

A default NetBeans Platform application does not include the Visual Library API module. Therefore, before you can set a dependency on this module, you must first include the module in your application’s build. Here are the steps.

1. In the Projects view, right click on the FileTypeApp project and select Properties from the context menu.

2. In the Project Properties dialog under Categories, select Libraries.

3. In the list of Platform Modules, scroll down and expand cluster platform.

4. Scroll to the end of the platform cluster, select Visual Library API, and click OK.

Now you can set a dependency on this module, as follows.

1. In the Projects view, expand project FamilyTreeSupport, right click on the Libraries node, and select Add Module Dependency . . . from the context menu.

2. In the list of modules, scroll down to the end, select Visual Library API, and click OK.

Building a Scene and Adding Widgets

Let’s now return to FamilyTreeVisualElement.java and build a Scene with widgets for each text line in the file. This requires a set of LabelWidgets (one for each non-empty text line) based on the opened document from the FTR file. Because the FamilyTreeDataObject is configured with a file type and registered editor, we can access both the editor and the underlying document through the FamilyTreeDataObject Lookup.

Although this example is basic, you will see how the MultiViewElement’s life cycle methods synchronize the underlying model when changes are made. Listing 14.14 shows the FamilyTreeVisualElement with added fields and a modified constructor, which now builds a Scene from the Visual Library.

The LayoutWidget field layer has a layout and is a container for other widgets. We use the default layout, which provides absolute positioning. We obtain the EditorCookie from the FamilyTreeDataObject Lookup and use it to access the underlying document model (StyledDocument). Field scene is the top-level Visual Library Scene object that creates a Swing-compatible view. Finally, border is a reusable Border element constructed through the Visual Library’s BorderFactory and provides a rounded border with a yellow background in all of the LabelWidgets.

The constructor includes code to set the JPanel’s layout (BorderLayout), instantiate the LayerWidget and add it to the Scene, and add the Scene’s view to a Swing JScrollPane.

Listing 14.14 FamilyTreeVisualElement—Adding Widgets

Click here to view code image

@Messages("LBL_FamilyTree_VISUAL=Visual")
public final class FamilyTreeVisualElement extends JPanel
 implements MultiViewElement {

 private final FamilyTreeDataObject ftDataObject;
 private final JToolBar toolbar = new JToolBar();
 private transient MultiViewElementCallback callback;
 private final LayerWidget layer;
 private EditorCookie editCookie = null;
 private StyledDocument doc = null;
 private final Scene scene = new Scene();
 private final Border border = BorderFactory.createRoundedBorder(
 10, 10, Color.yellow, Color.gray);
 private static final Logger logger = Logger.getLogger(
 FamilyTreeVisualElement.class.getName());

 public FamilyTreeVisualElement(Lookup lkp) {
 ftDataObject = lkp.lookup(FamilyTreeDataObject.class);
 assert ftDataObject != null;
 initComponents();
 setLayout(new BorderLayout());
 layer = new LayerWidget(scene);
 scene.addChild(layer);
 add(new JScrollPane(scene.createView()));
 }
. . .
}

Similar to TopComponents, MultiViewElements implement overridden life cycle methods that let you control how a MultiViewElement is initialized and refreshed. Here we use the componentShowing() method to initialize the widgets in the Scene from the open document. The componentShowing() method is invoked each time the user switches views and also when the application starts up with this view showing. (See “Window System Life Cycle Management” on page 369 for a description of these life cycle methods.) We use the DataObject’s EditorCookie (from the Lookup) to make sure the editor is open and that the document has been initialized.

Opening an FTR file opens the file in the plain text editor by default. This open initializes the underlying document, making it available through the EditorCookie getDocument() method. If, however, the application last quit with the FTR file opened in the Visual view, then this visual element opens first with the underlying document not yet initialized. The componentShowing() method makes sure the document is properly initialized in this scenario.

The refreshLines() method parses the document and creates a LabelWidget for each line (ignoring empty lines). Since the componentShowing() method is invoked each time the user switches view from the Text to the Visual view, the Scene always displays the current edited document.

The makeWidget() method builds a LabelWidget (a widget that displays text) and sets its location, border, and text label. This method also configures the widget with two actions, an EditAction (that lets the user edit the widget’s label) and a a MoveAction (that lets the user move the widget within the Scene). MoveAction has a default provider obtained from the ActionFactory. For EditAction, we configure a Provider, shown next.

Listing 14.15 shows the code for the componentShowing(), refreshLines(), and makeWidget() methods.

Listing 14.15 FamilyTreeVisualElement—Adding the Widgets

Click here to view code image

public final class FamilyTreeVisualElement extends JPanel
 implements MultiViewElement {
. . .
 @Override
 public void componentShowing() {
 editCookie = ftDataObject.getLookup().lookup(EditorCookie.class);
 if (editCookie != null) {
 doc = editCookie.getDocument();
 if (doc == null) {
 editCookie.open(); // open
 try {
 doc = editCookie.openDocument(); // get document
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 return;
 }
 }
 refreshLines();
 }
 }

 private void refreshLines() {
 layer.removeChildren();
 try {
 String docString = doc.getText(0, doc.getLength());
 int i = 1;
 for (String text : docString.split("\n")) {
 if (!text.isEmpty()) {
 LabelWidget widget = makeWidget(text,
 new Point(20, 40 * i++));
 layer.addChild(widget);
 }
 }
 scene.validate();
 } catch (BadLocationException ex) {
 Exceptions.printStackTrace(ex);
 }
 }

 private LabelWidget makeWidget(String text, Point point) {
 LabelWidget widget = new LabelWidget(scene, text);
 widget.getActions().addAction(editorAction);
 widget.getActions().addAction(ActionFactory.createMoveAction());
 widget.setPreferredLocation(point);
 widget.setBorder(border);
 return widget;
 }
. . .
}

The makeWidget() method adds a TextFieldInplaceEditor to the LabelWidget. Listing 14.16 shows the code that implements this in-place editor, which requires overriding the isEnabled(), getText(), and setText() methods. The setText() method updates both the LabelWidget and the underlying document. The NetBeans-provided plain text editor receives the resulting DocumentListener events and responds by adding a Savable implementation to the TopComponent’s Lookup. This, in turn, enables the toolbar’s Save All icon. If the user switches views, the Text view shows the updated text.

The updateDocument() method performs the actual update to the underlying document. Because we create widgets from non-empty lines only, we massage the document to remove any extra newline characters. This ensures that correct positions are provided when updating the document’s text.

If the user sets the widget’s label to an empty string, the method removes the widget from the scene by invoking refreshLines() (shown previously).

Listing 14.16 FamilyTreeVisualElement—Implementing the LabelWidget Editor

Click here to view code image

 private final WidgetAction editorAction =
 ActionFactory.createInplaceEditorAction(new LabelTextFieldEditor());

 private class LabelTextFieldEditor implements TextFieldInplaceEditor {

@Override
 public boolean isEnabled(Widget widget) {
 return true;
 }

@Override
 public String getText(Widget widget) {
 return ((LabelWidget) widget).getLabel();
 }

 @Override
 public void setText(Widget widget, String text) {
 LabelWidget lw = (LabelWidget) widget;
 String oldText = lw.getLabel();
 lw.setLabel(text);
 updateDocument(lw, oldText.length());
 }
 }

 private void updateDocument(LabelWidget labelWidget, int oldTextSize) {
 if (editCookie != null) {
 doc = editCookie.getDocument();
 if (doc != null) {
 try {
 //normalize the file--get rid of extra newlines
 String docString = doc.getText(0, doc.getLength());
 StringBuilder sb = new StringBuilder();
 for (String text : docString.split("\n")) {
 if (!text.isEmpty()) {
 sb.append(text);
 sb.append("\n");
 }
 }
 // replace with normalized text
 doc.remove(0, doc.getLength());
 doc.insertString(0, sb.toString(), null);

 // find the starting position in the document for the
 // new String
 int startPosition = 0;
 for (Widget widget : layer.getChildren()) {
 if (widget instanceof LabelWidget) {
 LabelWidget lw = ((LabelWidget) widget);
 if (lw.equals(labelWidget)) {
 doc.remove(startPosition, oldTextSize + 1);
 if (labelWidget.getLabel().isEmpty()) {
 // get rid of the widget if it's empty
 refreshLines();
 } else {
 doc.insertString(startPosition,
 labelWidget.getLabel() + "\n", null);
 }
 break;
 } else {
 startPosition += lw.getLabel().length() + 1;
 }
 }
 }
 } catch (BadLocationException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
 }
 }
}

Create a Toolbar Action to Add a Widget to the View

The Visual view of the FTR editor lets users edit a widget’s text label and remove the widget (by setting its label to an empty string). Let’s now add an action to the application’s toolbar and top-level File menu that lets users add widgets to the view (and a new line of text to the document). This action will be conditionally-enabled, available only when the Visual view has focus (is active).

We know that context is determined by the contents of the Global Lookup. Therefore, let’s create a new capability and add an implementation to the FamilyTreeVisualElement’s Lookup. We also create a new conditionally-enabled action that invokes a specific method in this capability. Here are the steps.

• Create a new capability called Droppable with abstract method drop().

• Create a new conditionally-enabled Add Name action that invokes the drop() method.

• Implement Droppable with the code that builds a LabelWidget. Add this implementation to the FamilyTreeVisualElement’s Lookup.

Figure 14.18 shows the FileTypeApp running. The Add Name action is enabled only when the Visual view of the FTR editor has focus. After clicking the Add Name icon in the toolbar, the action displays a dialog to prompt for the new name. When the user supplies a name and clicks OK, a new LabelWidget appears at the bottom of the Visual view. The Save All icon then becomes enabled.

[image:]

Figure 14.18 Invoking the Add Name action

Here are the steps.

1. Add Java Interface Droppable to module FamilyTreeSupport, as shown in Listing 14.17.

Listing 14.17 Droppable.java

Click here to view code image

public interface Droppable {
 public void drop(String text);
}

2. Add a new conditionally-enabled action to module FamilyTreeSupport called AddNameAction that requests a text String from the user and invokes the drop() method with the text. Specify Droppable as the Cookie Class (the context). Listing 14.18 shows the action implementation.

Listing 14.18 AddNameAction.java

Click here to view code image

@ActionID(
 category = "Edit",
 id = "com.asgteach.familytreesupport.AddNameAction"
)
@ActionRegistration(
 iconBase = "com/asgteach/familytreesupport/personIcon.png",
 displayName = "#CTL_AddNameAction"
)
@ActionReferences({
 @ActionReference(path = "Menu/File", position = 1300,
 separatorAfter = 1350),
 @ActionReference(path = "Toolbars/File", position = 300)
})
@Messages("CTL_AddNameAction=Add Name")
public final class AddNameAction implements ActionListener {

 private final Droppable context;

 public AddNameAction(Droppable context) {
 this.context = context;
 }

 @Override
 public void actionPerformed(ActionEvent ev) {
 NotifyDescriptor.InputLine inputLine =
 new NotifyDescriptor.InputLine("Text:", "Add Name");
 Object result = DialogDisplayer.getDefault().notify(inputLine);
 if (result == NotifyDescriptor.OK_OPTION) {
 String text = inputLine.getInputText();
 if (!text.isEmpty()) {
 context.drop(text);
 }
 }
 }
}

3. Listing 14.19 shows the changes to FamilyTreeVisualElement to support the AddNameAction. To add an object to the FamilyTreeVisualElement Lookup, you must instantiate InstanceContent and configure a proxy Lookup to include the FamilyTreeDataObject’s Lookup. A proxy Lookup lets you combine Lookups from more than one source. (See “Lookup as an Object Repository” on page 225 for more on using InstanceContent with Lookups.) We re-implement the getLookup() method to return this proxy Lookup.

Next, we implement Droppable, override the drop() method, and add the implementation to the Lookup. Adding the Droppable implementation to the FamilyTreeVisualElement’s Lookup enables the AddNameAction in the application’s toolbar when the Visual view has focus.

The drop() method inserts the provided text into the underlying document and invokes refreshLines() to rebuild the view. (Listing 14.15 on page 702 shows the refreshLines() method.)

Listing 14.19 FamilyTreeVisualElement—Implementing Droppable

Click here to view code image

public final class FamilyTreeVisualElement extends JPanel
 implements MultiViewElement {

 private final FamilyTreeDataObject ftDataObject;
 private final JToolBar toolbar = new JToolBar();
 private transient MultiViewElementCallback callback;
 private ProxyLookup proxyLookup = null;
 private final InstanceContent instanceContent = new InstanceContent();
. . .

 public FamilyTreeVisualElement(Lookup lkp) {
 proxyLookup = new ProxyLookup(
 lkp, new AbstractLookup(instanceContent));
 ftDataObject = lkp.lookup(FamilyTreeDataObject.class);
 assert ftDataObject != null;
 initComponents();
 setLayout(new BorderLayout());
 layer = new LayerWidget(scene);
 scene.addChild(layer);
 add(new JScrollPane(scene.createView()));
 instanceContent.add(new Droppable() {
 @Override
 public void drop(String text) {
 // add text to end of document and call refreshLines()
 if (doc != null) {
 try {
 if (!(doc.getText(doc.getLength(), 1)).endsWith("\n")) {
 doc.insertString(doc.getLength(), "\n", null);
 }
 doc.insertString(doc.getLength(), text + "\n", null);
 refreshLines();
 } catch (BadLocationException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
 }
 });
 }

 @Override
 public Lookup getLookup() {
 return proxyLookup;
 }
. . .
}

Using JavaFX

Let’s continue our exploration of MultiView windows and add a Visual view with JavaFX content to our application. We’ll provide the same functionality as the Visual view we just showed you. This VisualFX view includes synchronizing the underlying document among all the views, an in-place editor, a mouse drag of the visual elements, and a toolbar action to add elements. In addition, a fade-in transition plays when the user switches to the VisualFX view. And because we’re using JavaFX, we style the elements with CSS.

Figure 14.19 shows the application running. The MultiView window now has three views: Text, Visual, and the VisualFX view shown. The user is editing the document and the toolbar’s Save All icon is enabled. Similar to the MultiView window behavior you’ve already seen, changes made in the VisualFX view appear in both the Text and Visual views. Edits made in each of the other views similarly affect the VisualFX view.

[image:]

Figure 14.19 VisualFX view showing JavaFX content

The key strategy here is applying the same approach from Chapter 6 that integrates JavaFX content with NetBeans Platform applications. We use FXML for layout and an FXML controller class to manage and isolate JavaFX content. The VisualFX view uses all three types of communication strategies: self-contained events, one-way communication, and two-way communication (see “Communication Strategies” on page 261). In particular, note that property change support in the FXML controller class communicates user-initiated changes in the underlying document back to the enclosing MultiView element. We’ll explain all of this as we show you how to build the VisualFX view.

Figure 14.20 shows the FileTypeApp application as the user clicks the VisualFX button. The text elements fade in, one by one. Also, note that the toolbar Add Name icon is enabled for both the Visual and VisualFX views.

[image:]

Figure 14.20 VisualFX view fading in

Here’s a summary of the steps required to add the VisualFX view to the FTR MultiView editor.

• Create the FamilyTreeVisualFXElement.java Java file by refactor copying FamilyTreeVisualElement.java.

• Create files FtrVisual.fxml, FtrVisualController.java, and FtrCSS.css for the JavaFX content.

• Configure FamilyTreeVisualFXElement to build the JavaFX scene graph and store a reference to the JavaFX controller. Build the JavaFX content in the componentShowing() life cycle method and when a property change event is received. Clear the JavaFX content in the componentHidden() life cycle method. Initiate a fade-in transition when the user switches to the VisualFX view.

• Configure the JavaFX controller class. Add a public refresh() method that builds the JavaFX scene graph based on the underlying document. Include drag mouse handlers to move elements around. Include a double-click mouse event that opens the in-place editor. Fire property change events when the user edits names. Add a public doFadeIn() method that plays the fade-in transitions and a public clear() method that clears the JavaFX content.

Add FamilyTreeVisualFXElement.java

1. In module FamilyTreeSupport | Source Packages, right click FamilyTreeVisualElement.java and select Copy from the context menu.

2. Select the package name, right click, and select Paste. In the context menu, select Refactor Copy. In the dialog, specify FamilyTreeVisualFXElement for the new Java class name.

You will make changes to build the JavaFX Scene and instantiate the JavaFX controller class. First, create the JavaFX-related files.

Create the JavaFX FXML, Controller Class, and CSS Files

Add files FtrVisualFX.fxml, FtrVisualFXController.java, and FtrCSS.css to the FamilyTreeSupport module.3 We’ll configure these files after we’ve made changes to the MultiView element file, FamilyTreeVisualFXElement.java.

3. To create the FXML and JavaFX Controller files, build a new JavaFX FXML Application project in the NetBeans IDE and copy the resulting FXML document and FXML Controller class to the FamilyTreeSupport module Source Package.

Configure FamilyTreeVisualFXElement.java

FamilyTreeVisualFXElement has a structure that is similar to the MultiView element you’ve already seen. Here, however, we construct the JavaFX scene and store a reference to the JavaFX controller class. To safely store the reference, we use a countdown latch to wait for the createScene() method to complete.

As in the previous section, we also implement Droppable and add it to this element’s Lookup. This implementation appends the provided String to the end of the document and then invokes the controller’s refresh() method (using Platform.runlater() to execute on the JavaFX application Thread).

Listing 14.20 shows the code that registers the MultiView element, configures the proxy Lookup with InstanceContent and AbstractLookup, adds the Droppable to the Lookup, and creates the JavaFX content.

Listing 14.20 FamilyTreeVisualFXElement—Initializing JavaFX Content

Click here to view code image

@MultiViewElement.Registration(
 displayName = "#LBL_FamilyTreeFX_VISUAL",
 iconBase = "com/asgteach/familytreesupport/check.png",
 mimeType = "text/x-familytree",
 persistenceType = TopComponent.PERSISTENCE_NEVER,
 preferredID = "FamilyTreeFXVisual",
 position = 2000
)
@Messages("LBL_FamilyTreeFX_VISUAL=VisualFX")
public final class FamilyTreeVisualFXElement extends JPanel
 implements MultiViewElement, PropertyChangeListener {

 private final FamilyTreeDataObject ftDataObject;
 private final JToolBar toolbar = new JToolBar();
 private transient MultiViewElementCallback callback;
 private ProxyLookup proxyLookup = null;
 private final InstanceContent instanceContent = new InstanceContent();
 private EditorCookie editCookie = null;
 private StyledDocument doc = null;
 private static JFXPanel fxPanel;
 private FtrVisualFXController controller;
 private static final Logger logger = Logger.getLogger(
 FamilyTreeVisualFXElement.class.getName());

 public FamilyTreeVisualFXElement(Lookup lkp) {
 proxyLookup = new ProxyLookup(lkp,
 new AbstractLookup(instanceContent));
 ftDataObject = lkp.lookup(FamilyTreeDataObject.class);
 assert ftDataObject != null;
 initComponents();
 setLayout(new BorderLayout());
 init();
 instanceContent.add(new Droppable() {

 @Override
 public void drop(String text) {
 // add the text to the end of the document, then refreshLines()
 if (doc != null) {
 try {
 if (!(doc.getText(doc.getLength(), 1)).endsWith("\n")) {
 doc.insertString(doc.getLength(), "\n", null);
 }
 doc.insertString(doc.getLength(), text + "\n", null);
 String docString = doc.getText(0, doc.getLength());
 Platform.runLater(() -> controller.refresh(docString));
 } catch (BadLocationException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
 }
 });
 }

 private void init() {
 fxPanel = new JFXPanel();
 add(fxPanel, BorderLayout.CENTER);
 Platform.setImplicitExit(false);
 // need to wait for this to complete so that we can
 // safely add ourselves as a property change listener
 final CountDownLatch latch = new CountDownLatch(1);
 Platform.runLater(() -> {
 try {
 createScene();
 } finally {
 latch.countDown();
 }
 });
 try {
 latch.await();
 } catch (InterruptedException ex) {
 logger.log(Level.WARNING, null, ex);
 }
 }

 private void createScene() {
 try {
 URL location = getClass().getResource("FtrVisualFX.fxml");
 FXMLLoader fxmlLoader = new FXMLLoader();
 fxmlLoader.setLocation(location);
 fxmlLoader.setBuilderFactory(new JavaFXBuilderFactory());
 Parent root = (Parent) fxmlLoader.load(location.openStream());
 javafx.scene.Scene scene = new javafx.scene.Scene(root);
 fxPanel.setScene(scene);
 controller = (FtrVisualFXController) fxmlLoader.getController();
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
. . .
}

Listing 14.21 shows the FamilyTreeVisualFXElement life cycle methods and the property change event handler. The componentOpened() method adds the class as a property change listener to the JavaFX controller class, and the componentClosed() method removes the listener.

The componentShowing() method (which is invoked when the user selects the VisualFX tab to make this element visible) accesses the underlying document from the DataObject EditorCookie. The refresh() method synchronizes the JavaFX content with the current state of the document.

The doFadeIn() method fades in the individual JavaFX scene graph elements with a sequential FadeTransition. A countdown latch makes sure this method executes after refresh() completes.

The propertyChange() method is invoked when the user makes a change to the text in the JavaFX scene graph. This event handler receives the updated String and replaces the underlying document with this new value. The updated document is detected in the NetBeans-provided Text editor, which responds by placing a Savable in its Lookup.

The propertyChange() event handler refreshes the JavaFX content after processing the document changes.

Listing 14.21 FamilyTreeVisualFXElement—Life Cycle and Property Change

Click here to view code image

public final class FamilyTreeVisualFXElement extends JPanel
 implements MultiViewElement, PropertyChangeListener {
. . .
 @Override
 public void componentOpened() {
 // requires a countdown latch to make sure
 // controller is properly initialized
 controller.addPropertyChangeListener(this);
 }

 @Override
 public void componentClosed() {
 controller.removePropertyChangeListener(this);
 }

 @Override
 public void componentShowing() {
 editCookie = ftDataObject.getLookup().lookup(EditorCookie.class);
 if (editCookie != null) {
 doc = editCookie.getDocument();
 if (doc == null) {
 editCookie.open(); // open
 try {
 doc = editCookie.openDocument(); // get document
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 return;
 }
 }
 try {
 String docString = doc.getText(0, doc.getLength());
 final CountDownLatch latch = new CountDownLatch(1);
 Platform.runLater(() -> {
 try {
 controller.refresh(docString);
 } finally {
 latch.countDown();
 }
 });
 try {
 latch.await();
 // wait for refresh() to complete before calling the fade-in
 Platform.runLater(() -> controller.doFadeIn());
 } catch (InterruptedException ex) {
 logger.log(Level.WARNING, null, ex);
 }
 } catch (BadLocationException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
 }

 @Override
 public void componentHidden() {
 Platform.runLater(() -> controller.clear());
 }

 @Override
 public void propertyChange(PropertyChangeEvent evt) {
 // the controller made changes; we have to update
 // the underlying document and refresh the JavaFX scene
 if (evt.getPropertyName().equals(
 FtrVisualFXController.PROP_DOCELEMENT_REMOVED) ||
 evt.getPropertyName().equals(
 FtrVisualFXController.PROP_DOCUMENT_UPDATED)) {
 // update the document
 if (doc != null) {
 try {
 doc.remove(0, doc.getLength());
 doc.insertString(0, (String) evt.getNewValue(), null);
 Platform.runLater(() ->
 controller.refresh((String) evt.getNewValue()));
 } catch (BadLocationException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
 }
 }
}

Configure FXML, CSS, and Controller Class Files

Create the JavaFX content and controller code. Let’s begin with the FXML file, shown in Listing 14.22. Here you see a FlowPane layout control with its alignment set to TOP_CENTER and padding insets of 10 pixels on all sides. The FlowPane control includes an assigned fx:id ("mypane") that the controller class uses to reference this layout control. The FXML code also identifies the controller class (FtrVisualFXController) and specifies a CSS style sheet file.

Note that the FlowPane does not contain any child nodes. The controller class generates child nodes based on the underlying document (provided by the FamilyTreeVisualFXElement class).

Listing 14.22 FtrVisualFX.fxml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.net.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.geometry.Insets?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.shape.*?>
<?import javafx.scene.text.*?>
<?import javafx.scene.effect.*?>

<FlowPane
 hgap="20"
 vgap="20"
 alignment="TOP_CENTER"
 id="FlowPane"
 fx:id="mypane"
 xmlns:fx="http://javafx.com/fxml"
 fx:controller="com.asgteach.familytreesupport.FtrVisualFXController">
 <padding>
 <Insets bottom="10.0" left="10.0" right ="10.0" top="10.0"/>
 </padding>
 <stylesheets>
 <URL value="@FtrCSS.css" />
 </stylesheets>
 <children> </children>
</FlowPane>

Listing 14.23 shows the CSS file, which defines class-based styles for the Rectangle, Text, and FlowPane. The Rectangle style has a multi-element gradient for its fill and a drop shadow effect and the Text style specifies font, weight, and size. The FlowPane background color is a 3-part linear gradient.

Listing 14.23 FtrCSS.css

Click here to view code image

.ftr-rectangle {
 -fx-fill:
 linear-gradient(#ffd65b, #e68400),
 linear-gradient(#ffef84, #f2ba44),
 linear-gradient(#ffea6a, #efaa22),
 linear-gradient(#ffe657 0%, #f8c202 50%, #eea10b 100%),
 linear-gradient(from 0% 0% to 15% 50%, rgba(255,255,255,0.9),
 rgba(255,255,255,0));
 -fx-effect: dropshadow(three-pass-box , gray , 10 , 0 , 5.0 , 5.0);
 -fx-stroke-width:3.0;
 -fx-stroke: goldenrod;
}
.ftr-text {
 -fx-font: Verdana;
 -fx-font-weight: bold;
 -fx-font-size: 14;
}
.ftr-pane {
 -fx-background-color: linear-gradient(lightblue, #c9d9e8, #ddeeeb);
}

Listing 14.24 shows the first part of the JavaFX controller class, FtrVisualFXController.java. Annotation @FXML identifies field mypane from the FXML file. The controller will use mypane to add nodes to the JavaFX scene graph. The controller also adds property change support with SwingPropertyChangeSupport so that the property change event fires on the EDT. The public static Strings define the monitored property names for property change support.

Event handlers nodeOnMousePressedHandler and nodeOnMouseDraggedHandler implement node dragging (move action) and use the orgSceneX, orgSceneY, orgTranslateX, and orgTranslateY fields to maintain node dragging.

Listing 14.24 FtrVisualFXController—Fields and Mouse Dragging

Click here to view code image

public class FtrVisualFXController implements Initializable {

 @FXML
 private FlowPane mypane;
 private SwingPropertyChangeSupport propChangeSupport = null;
 private final SequentialTransition seqTran = new SequentialTransition();

 public static final String PROP_DOCUMENT_UPDATED = "DocumentUpdated";
 public static final String PROP_DOCELEMENT_REMOVED = "DocElementRemoved";

private double orgSceneX;
 private double orgSceneY;
 private double orgTranslateX;
 private double orgTranslateY;

private static final Logger logger = Logger.getLogger(
 FtrVisualFXController.class.getName());

 @Override
 public void initialize(URL url, ResourceBundle rb) {
 propChangeSupport = new SwingPropertyChangeSupport(this, true);
 mypane.getStyleClass().add("ftr-pane");
 }

 EventHandler<MouseEvent> nodeOnMousePressedEventHandler = ((event) -> {
 if (event.getButton().equals(MouseButton.PRIMARY)) {
 orgSceneX = event.getSceneX();
 orgSceneY = event.getSceneY();
 orgTranslateX = ((Node) (event.getSource())).getTranslateX();
 orgTranslateY = ((Node) (event.getSource())).getTranslateY();
 }
 });

 EventHandler<MouseEvent> nodeOnMouseDraggedEventHandler = ((event) -> {
 if (event.getButton().equals(MouseButton.PRIMARY)) {
 double offsetX = event.getSceneX() - orgSceneX;
 double offsetY = event.getSceneY() - orgSceneY;
 double newTranslateX = orgTranslateX + offsetX;
 double newTranslateY = orgTranslateY + offsetY;

((Node) (event.getSource())).setTranslateX(newTranslateX);
 ((Node) (event.getSource())).setTranslateY(newTranslateY);
 }
 });
. . .
}

Now let’s look at the public methods that the MultiView element class invokes. Listing 14.25 shows the doFadeIn() method (which plays the sequential FadeTransitions), the refresh() method, and the clear() method.

The refresh() method receives a String argument and builds a multi-node element for each non-empty line in the String. The multi-node element consists of a StackPane layout control containing a Rectangle and Text element. There is also a hidden TextField control that becomes visible when the user double clicks the StackPane. This provides the in-place editor.

The TextField event handler invokes the updateDocument() method, which processes the user edits and fires a property change event.

Let’s point out a few interesting JavaFX coding points.

• Variable seqTran is a SequentialTransition. This is cleared and rebuilt each time with each StackPane FadeTransition, fading in from opacity 0 to opacity 1.

• The MultiView element class invokes clear() from the componentHidden() method, which clears the FlowPane layout control. This makes sure that the JavaFX content doesn’t flash but fades in smoothly when the user switches to the VisualFX view.

• The width of the Rectangle is determined by the bounds of the Text control, so that each Rectangle is only as wide as necessary to fit the Text node.

• The width of the hidden TextField is bound to the width of the Rectangle. This makes the TextField fit nicely over the underlying Rectangle when the TextField becomes visible.

• The TextField event handler is invoked when the user finishes editing with the Return key. The handler replaces the new text in the Text element, makes the TextField invisible again, adjusts the width of the underlying Rectangle, and invokes the updateDocument() method.

• The updateDocument() method processes the JavaFX node hierarchy and inserts the new text String into its proper place in the underlying document String. The firePropertyChange() method makes the edited String available to the listening MultiView element class.

Listing 14.25 FtrVisualFXController—Build Content from String

Click here to view code image

public class FtrVisualFXController implements Initializable {
. . .
 // Invoked by Swing visual element on the JavaFX Application Thread
 public void doFadeIn() {
 seqTran.playFromStart();
 }

 // Invoked by Swing visual element on the JavaFX Application Thread
 public void clear() {
 seqTran.getChildren().clear();
 mypane.getChildren().clear();
 }

 // Invoked by Swing visual element on the JavaFX Application Thread
 public void refresh(String docString) {
 clear();
 for (String line : docString.split("\n")) {
 if (!line.isEmpty()) {
 // Build the StackPane
 StackPane stack = new StackPane();

 // Build the Text
 final Text ftrText = new Text(line);
 ftrText.getStyleClass().add("ftr-text");
 ftrText.setEffect(new Reflection());

 // Build the Rectangle
 Rectangle ftrRectangle = new Rectangle(
 ftrText.getBoundsInParent().getWidth() + 40, 55);
 ftrRectangle.setArcHeight(30);
 ftrRectangle.setArcWidth(30);
 ftrRectangle.getStyleClass().add("ftr-rectangle");

 // Build a TextField for editing
 TextField tf = new TextField();
 tf.prefWidthProperty().bind(ftrRectangle.widthProperty());
 tf.setVisible(false);
 tf.setOnAction(event -> {
 String oldText = ftrText.getText();
 ftrText.setText(tf.getText());
 tf.setVisible(false);
 updateDocument(ftrText, oldText.length(), docString);
 ftrRectangle.setWidth(
 ftrText.getBoundsInParent().getWidth() + 30);
 });

 // Add the Rectangle, Text, TextField to StackPane
 stack.getChildren().addAll(ftrRectangle, ftrText, tf);

 stack.setOnMouseClicked(event -> {
 // enable editing on a double-click event
 if (event.getClickCount() == 2 &&
 event.getButton().equals(MouseButton.PRIMARY)) {
 tf.setText(ftrText.getText());
 tf.setVisible(true);
 }
 });
 // Add the drag handlers
 stack.setOnMousePressed(nodeOnMousePressedEventHandler);
 stack.setOnMouseDragged(nodeOnMouseDraggedEventHandler);

// Add the StackPane to the top-level Node (mypane)
 mypane.getChildren().add(stack);
 FadeTransition ft = new FadeTransition(
 Duration.millis(650), stack);
 ft.setFromValue(0);
 ft.setToValue(1);
 seqTran.getChildren().add(ft);
 }
 }
 }

 private void updateDocument(Text theText, int oldTextSize,
 String docString) {
 //normalize the file--get rid of extra newlines
 StringBuilder sb = new StringBuilder();
 for (String text : docString.split("\n")) {
 if (!text.isEmpty()) {
 sb.append(text);
 sb.append("\n");
 }
 }
 // find the starting position in the document for the new String
 int startPosition = 0;
 for (Node node : mypane.getChildren()) {
 if (node instanceof StackPane) {
 StackPane sp = (StackPane) node;
 for (Node childNode : sp.getChildren()) {
 if (childNode instanceof Text) {
 Text textNode = (Text) childNode;
 if (textNode.equals(theText)) {
 if (theText.getText().isEmpty()) {
 sb.delete(startPosition,
 startPosition + oldTextSize + 1);
 this.propChangeSupport.firePropertyChange(
 PROP_DOCELEMENT_REMOVED, docString, sb.toString());
 } else {
 sb.replace(startPosition,
 startPosition + oldTextSize, theText.getText());
 this.propChangeSupport.firePropertyChange(
 PROP_DOCUMENT_UPDATED, docString, sb.toString());
 }
 break;
 } else {
 // not our Text node, keep looking
 startPosition += textNode.getText().length() + 1;
 }
 }
 }
 }
 }
 }

 public void addPropertyChangeListener(
 PropertyChangeListener listener) {
 this.propChangeSupport.addPropertyChangeListener(listener);
 }

 public void removePropertyChangeListener(
 PropertyChangeListener listener) {
 this.propChangeSupport.removePropertyChangeListener(listener);
 }
}

14.4 Creating an XML-Based File Type

Now let’s show you how to create an application with a new XML file type. This is an XML file with the expected XML extension, yet with a unique root element that includes a specific namespace. The New File Type wizard registers a MIME Resolver that recognizes an XML file root element with a specific namespace. We’ll call this MIME type text/familytree+xml (that is, a text-based XML file with namespace familytree).

The New File Type wizard registers the file type, specifies a MIME resolver, and registers a DataLoader that recognizes this file type. We also provide an icon for this new file type. Like the previous example, the New File Type wizard creates a template for this file type, registers the template, and generates a DataObject. The wizard also creates a skeletal MultiView editor.

With an XML file type, you can incorporate the rich editing capabilities of the NetBeans Platform XML editor, including formatting, schema code completion, and XML verification. You enable this rich XML editor by including the required modules from the NetBeans Platform ide cluster in your application. We’ll show you how to do this later in this section.

Figure 14.21 and Figure 14.22 show this application running. Let’s point out a few features before we begin building this application.

[image:]

Figure 14.21 FamilyTreeApp with special XML file defined

• The XML file called SimpsonFamilyTree.xml shown in the Favorites window has a special icon that we assign to this particular XML file type.

• This file is opened in the XML editor, which provides color-coded XML element editing and a toolbar at the top of the editor for operations such as XML verification. The XML verification process appears in the Output window, shown below the editor window.

• When you right click the SimpsonFamilyTree.xml file, a context menu appears with expected operations such as Open, Cut, Copy, Delete, Rename, and others. These operations are automatically included when you create a new file type.

• The context menu also includes menu item Show XML Structure, a custom action built specifically for our new file type. The action parses the XML file and displays XML Elements and Attributes in the Output window, as shown in Figure 14.22.

[image:]

Figure 14.22 FamilyTree XML file action displays information about the file

• The MultiView editor includes two views. The Source view is the standard NetBeans Platform XML editor. The VisualFX view shows a JavaFX view of the XML file and displays contents only with no editing. It does, however, reflect any edits made to the Source view.

• You can expand the file node in the Favorites window and each child node displays the attributes and values of the <person> element tag.

• As in the previous example, the Save All icon and Save All and Save menu items are enabled when you edit the file. After saving the changes, the Favorites windows shows the changes. When you switch between the Source and VisualFX views, the window always shows the current edited state of the file.

Note that you can optionally create this module as a NetBeans IDE plugin and have the full features of the NetBeans IDE available in your application.4 However, we show you how to create a stand-alone NetBeans Platform application. This requires that you manually add the modules that provide XML file editing support.

4. To create this as a NetBeans IDE plugin, do not create a NetBeans Platform Application project. Instead, create a Module Project for the PersonFileType module and Run the module. This installs the module into a version of the NetBeans IDE.

Here’s a summary of the steps to build the FamilyTreeApp application with an XML file type. We add a custom VisualFX view to the XML editor in a later section.

• Create a NetBeans Platform application called FamilyTreeApp.

• Create a module called PersonFileType.

• Add the Favorites and Template modules to the application.

• Create and register a new XML-based file type called FamilyTree.

• Add code to create child nodes for the FamilyTree DataNodes.

• Add the NetBeans IDE XML editor support.

• Add a context menu action to all FamilyTree XML files called Show XML Structure.

Create a NetBeans Platform Application and Module

Here are the steps to create the application and add the PersonFileType module.

1. Create a new application called FamilyTreeApp using the NetBeans Platform New Project wizard.

2. Create a Module and add it to the FamilyTreeApp application. Call the module PersonFileType and provide package name com.asgteach.familytree.personfiletype. The application and module are shown in the Projects view in Figure 14.23.

[image:]

Figure 14.23 FamilyTreeApp and module PersonFileType in the Projects view

Add the Favorites and Templates Modules

The Favorites window is a file viewer for your local disk. See “Favorites Window” on page 637 for a description of this useful module. The Templates module lets you create empty files and folders from the Favorites window. Follow these steps to include the Favorites and Templates modules in the FamilyTreeApp application.

1. Right click project FamilyTreeApp in the Projects view and select Properties from the context menu.

2. Under Categories, select Libraries. NetBeans lists all of the Platform Modules organized in clusters. Under cluster platform, select modules Favorites and Templates and click OK.

3. When you run the FamilyTreeApp application, the Favorites window will now appear in the top-level Window menu.

Create a New XML File Type

Here are the steps to create a new file type for your application.

1. In the Projects view, expand module PersonFileType | Source Packages, select the package name, right click, and select New | Other from the context menu.

2. In the Choose File Type dialog under Categories, select Module Development. Under File Types select File Type. Click Next.

3. NetBeans displays the File Recognition dialog. Specify the MIME Type as text/familytree+xml. This defines a text-based XML file type called familytree. Select radio button by XML Root Element and provide familytree for Namespace, as shown in Figure 14.24. This new MIME type applies to XML files with root element familytree. Click Next.

[image:]

Figure 14.24 New File Type File Recognition dialog

4. NetBeans displays the Name, Icon, and Location dialog. For Class Name Prefix, specify FamilyTree. Click the Browse button and navigate to the provided icon file FamilyTreeIcon.png. Make sure the Use MultiView checkbox is selected and accept the defaults for the remaining fields, as shown in Figure 14.25. Click Finish.

[image:]

Figure 14.25 Name, Icon and Location dialog

NetBeans creates the following files to support this new file type. See “Create a New File Type” on page 681 for more details about these files.

• FamilyTreeDataObject.java—A DataObject that wraps a FileObject for FamilyTree XML files. Listing 14.28 on page 728 shows this file.

• FamilyTreeTemplate.xml—A template used by the New File wizard when the user creates a new Family Tree XML file.

• FamilyTreeVisualElement.java—This Java file extends JPanel and implements MultiViewElement. We rename this file FamilyTreeVisualFXElement.java and build JavaFX content (see Listing 14.31 on page 735).

• FamilyTreeIcon.png—This is the 16 x 16 graphic icon attached to Family Tree XML files.

• package-info.java—This Java file registers FamilyTreeTemplate.xml as a template for the New File wizard.

Your application will now recognize an XML file with namespace root of familytree. Listing 14.26 shows the template file that was created for this application.

Listing 14.26 FamilyTreeTemplate.xml

Click here to view code image

<root xmlns="familytree">
</root>

Next, we’ll create test file SimpsonFamilyTree.xml with familytree root and place it in our file system. Listing 14.27 shows this test file.

Listing 14.27 SimpsonFamilyTree.xml

Click here to view code image

<root xmlns="familytree">
 <person
 firstname="Homer"
 lastname="Simpson" >
 </person>
 <person
 firstname="Marge"
 lastname="Simpson" >
 </person>
 <person
 firstname="Bart"
 lastname="Simpson" >
 </person>
 <person
 firstname="Lisa"
 lastname="Simpson" >
 </person>
 <person
 firstname="Maggie"
 lastname="Simpson" >
 </person>
</root>

Add Child Nodes for the FamilyTreeDataObject DataNodes

Modify FamilyTreeDataObject.java and override the createNodeDelegate() method to build child nodes based on file content. This code is similar to Listing 14.13 on page 695. Here we parse the XML file and build the child nodes based on the <person> element tag. Listing 14.28 shows the code.

Class FamilyTreeChildFactory uses the NetBeans Platform XMLUtil parse() method to create a DOM document5 from an XML file. With the DOM document, you can request a list of element tags by name and get attribute maps. The getElementsByTagName() method returns a list of org.w3c.dom.Node objects (not Node from the Nodes API). The createKeys() method uses this information to build its list of keys based on type Person. Person.java is shown in Listing 14.29 on page 730.

5. DOM stands for Document Object Model. The XMLUtil parse() method builds a DOM based on XML content. The DOM lets you build documents, navigate their structure, and add, modify, or delete elements and content. See http://www.w3.org/DOM/ for further information.

The ChildFactory also installs a FileChangeListener that performs a refresh when the underlying file is updated.

Listing 14.28 FamilyTreeDataObject

Click here to view code image

@Messages({
 "LBL_FamilyTree_LOADER=Files of FamilyTree"
})
@MIMEResolver.NamespaceRegistration(
 displayName = "#LBL_FamilyTree_LOADER",
 mimeType = "text/familytree+xml",
 elementNS = {"familytree"},
 position = 0
)
@DataObject.Registration(
 mimeType = "text/familytree+xml",
 iconBase = "com/asgteach/familytree/personfiletype/FamilyTreeIcon.png",
 displayName = "#LBL_FamilyTree_LOADER",
 position = 0
)
@ActionReferences({
. . . code omitted . . .
})
public class FamilyTreeDataObject extends MultiDataObject {

public FamilyTreeDataObject(FileObject pf, MultiFileLoader loader)
 throws DataObjectExistsException, IOException {
 super(pf, loader);
 registerEditor("text/familytree+xml", true);
 InputSource inputSource = DataObjectAdapters.inputSource(this);
 CheckXMLCookie checkCookie = new CheckXMLSupport(inputSource);
 getCookieSet().add(checkCookie);
 ValidateXMLCookie validateXMLCookie = new ValidateXMLSupport(
 inputSource);
 getCookieSet().add(validateXMLCookie);
 }

@Override
 protected int associateLookup() {
 return 1;
 }

 @MultiViewElement.Registration(
 displayName = "#LBL_FamilyTree_EDITOR",
 iconBase =
 "com/asgteach/familytree/personfiletype/FamilyTreeIcon.png",
 mimeType = "text/familytree+xml",
 persistenceType = TopComponent.PERSISTENCE_ONLY_OPENED,
 preferredID = "FamilyTree",
 position = 1000
)
 @Messages("LBL_FamilyTree_EDITOR=Source")
 public static MultiViewEditorElement createEditor(Lookup lkp) {
 return new MultiViewEditorElement(lkp);
 }
 @Override
 protected Node createNodeDelegate() {
 return new DataNode(this, Children.create(new
 FamilyTreeChildFactory(this), true), getLookup());
 }

 private static class FamilyTreeChildFactory extends ChildFactory<Person> {

private final FileObject fileObject;
 private final FamilyTreeDataObject dataObject;

 public FamilyTreeChildFactory(FamilyTreeDataObject dataObject) {
 this.dataObject = dataObject;
 fileObject = dataObject.getPrimaryFile();
 fileObject.addFileChangeListener(new FileChangeAdapter() {
 @Override
 public void fileChanged(FileEvent fe) {
 refresh(true);
 }
 });
 }

 @Override
 protected boolean createKeys(List<Person> list) {
 try {
 EditorCookie editorCookie = dataObject.getLookup().lookup(
 EditorCookie.class);
 // Get the InputStream from the EditorCookie
 try (InputStream is = ((org.openide.text.CloneableEditorSupport)
 editorCookie).getInputStream()) {
 // use XMLUtil to create a org.w3c.dom.Document
 Document doc = XMLUtil.parse(
 new InputSource(is), true, true, null, null);
 NodeList nodeList = doc.getElementsByTagName("person");
 for (int i = 0; i < nodeList.getLength(); i++) {
 //For each node in the list, get a org.w3c.dom.Node
 org.w3c.dom.Node personNode = nodeList.item(i);
 NamedNodeMap map = personNode.getAttributes();
 Person person;
 if (map != null) {
 person = new Person();
 person.setLastname("Unknown");
 for (int j = 0; j < map.getLength(); j++) {
 org.w3c.dom.Node attrNode = map.item(j);
 if (attrNode.getNodeName().equals("firstname")) {
 person.setFirstname(attrNode.getNodeValue());
 }
 if (attrNode.getNodeName().equals("lastname")) {
 person.setLastname(attrNode.getNodeValue());
 }
 }
 list.add(person);
 }
 }
 }
 } catch (SAXException | IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 return true;
 }

 @Override
 protected Node createNodeForKey(Person key) {
 AbstractNode childNode = new AbstractNode(Children.LEAF);
 childNode.setDisplayName(key.toString());
 childNode.setIconBaseWithExtension(
 "com/asgteach/familytree/personfiletype/personIcon.png");
 return childNode;
 }
 }
}

Listing 14.29 is a simple Person class with properties firstname and lastname.

Listing 14.29 Person.java

Click here to view code image

public class Person {

private String firstname = "";
 private String lastname = "";

public String getFirstname() {
 return firstname;
 }

public void setFirstname(String firstname) {
 this.firstname = firstname;
 }

public String getLastname() {
 return lastname;
 }

public void setLastname(String lastname) {
 this.lastname = lastname;
 }

@Override
 public String toString() {
 return new StringBuilder(firstname).append(" ")
 .append(lastname).toString();
 }
}

Add the XML Text Editor

The NetBeans Platform includes an XML Text editor that you can add to applications. This editor provides color-coding on XML elements, syntax checking, schema code completion, formatting, and many actions you would expect from a sophisticated XML editor. Here are the steps to add the XML Text editor to our application.

1. In the Projects view, right click the application name (FamilyTreeApp) and select Properties.

2. NetBeans displays the Project Properties dialog. Select category Libraries.

3. NetBeans displays all the modules available in the various clusters that form the NetBeans Platform.

4. In the Platform Modules window, expand node ide as shown in Figure 14.26 on page 733.

[image:]

Figure 14.26 Adding modules for XML text editing support

5. Select the modules from the ide cluster as listed in Table 14.1. These modules will configure a full-blown, fancy XML editor with color coding, formatting, and XML validation in your application.

[image:]

[image:]

TABLE 14.1 XML Editing Modules

With the XML editor modules included and a new FileType installed, you can now edit a FamilyTree XML file in your application.

Add a Context-Sensitive Action

Follow the steps in “Context-Sensitive Action” on page 689 to add a conditionally-enabled action to module PersonFileType. Call the action ShowXMLStructureAction and add it to the top-level File menu and the FamilyTree XML DataNode context menu. The Cookie Class is FamilyTreeDataObject. Listing 14.30 shows the code to implement this action.

Note that we use the same NetBeans XMLUtil method to parse the XML file and create a DOM document. The XML content information is displayed in the Output window (see Figure 14.22 on page 723). See “The Output Window” on page 628 for more details about the Output window.

Listing 14.30 ShowXMLStructureAction.java

Click here to view code image

@ActionID(
 category = "File",
 id = "com.asgteach.familytree.personfiletype.ShowXMLStructureAction"
)
@ActionRegistration(
 iconBase = "com/asgteach/familytree/personfiletype/info.png",
 displayName = "#CTL_ShowXMLAction"
)
@ActionReferences({
 @ActionReference(path = "Menu/File", position = 1465,
 separatorAfter = 1482),
 @ActionReference(path = "Loaders/text/familytree+xml/Actions",
 position = 150, separatorBefore = 125)
})
@Messages({
 "CTL_ShowXMLAction=Show XML Structure",
 "CTL_SHOWXMLStructureActionListener=Show XML Structure"})
public final class ShowXMLStructureAction implements ActionListener {

 private final FamilyTreeDataObject context;

 public ShowXMLStructureAction(FamilyTreeDataObject context) {
 this.context = context;
 }
 @Override
 public void actionPerformed(ActionEvent ev) {
 InputOutput io = IOProvider.getDefault().getIO(
 Bundle.CTL_SHOWXMLStructureActionListener(), false);
 io.select(); // "XML Structure" tab is selected
 try {
 EditorCookie editorCookie = context.getLookup().lookup(
 EditorCookie.class);
 io.getOut().reset();
 try (InputStream is = (
 (org.openide.text.CloneableEditorSupport) editorCookie)
 .getInputStream()) {
 Document doc = XMLUtil.parse(
 new InputSource(is), true, true, null, null);
 parseDoc(doc, "root", io);
 parseDoc(doc, "person", io);
 }
 } catch (SAXException | IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }

 private void parseDoc(Document doc, String element, InputOutput io) {
 NodeList nodeList = doc.getElementsByTagName(element);
 io.getOut().println("Child Nodes, Size = " + nodeList.getLength());
 for (int i = 0; i < nodeList.getLength(); i++) {
 org.w3c.dom.Node personNode = nodeList.item(i);
 String nodeName = personNode.getNodeName();
 // Print the element and its attributes to the Output window
 io.getOut().println("Element: " + nodeName);
 // Create a map for Element's attributes
 NamedNodeMap map = personNode.getAttributes();
 if (map != null) {
 StringBuilder attrBuilder = new StringBuilder();
 // Iterate through map and display attribute name and value
 for (int j = 0; j < map.getLength(); j++) {
 org.w3c.dom.Node attrNode = map.item(j);
 String attrName = attrNode.getNodeName();
 attrBuilder.append("\n\t\t").append(attrName);
 attrBuilder.append("\t\t").append(attrNode.getNodeValue());
 }
 if (!attrBuilder.toString().isEmpty()) {
 io.getOut().println(" \tAttributes:"
 + attrBuilder.toString());
 }
 }
 }
 }
}

Add JavaFX Content

Now let’s add JavaFX content to our renamed VisualFX view. The structure will be the same as the JavaFX content shown in the previous section (see “Using JavaFX” on page 708). Here, however, we have less work to do, since we only display content from the XML file. We’ve also changed the appearance with different CSS styles. To add JavaFX content, use the following files, which keeps the JavaFX and Swing code loosely coupled.

• FamilyTreeVisualFXElement.java—This Java file extends JPanel and implements MultiViewElement. The class stores a reference to the FamilyTreeFXController and invokes public methods in this controller class to build the JavaFX scene graph.

• FamilyTree.css—CSS style definitions to style the JavaFX scene.

• FamilyTreeFX.fxml—Declarative FXML code that defines the static part of the JavaFX scene graph.

• FamilyTreeFXController.java—The JavaFX controller class with public methods that the visual element class can invoke as needed.

Listing 14.31 shows the FamilyTreeVisualFXElement code. Because this element invokes the controller’s refresh() method, a countdown latch is necessary to make sure the controller reference is safely initialized. We refresh the JavaFX content in the componentShowing() method, which updates the JavaFX scene graph each time the user switches to the VisualFX view. As before, we clear the JavaFX content in the componentHidden() method.

Listing 14.31 FamilyTreeVisualFXElement.java

Click here to view code image

@MultiViewElement.Registration(
 displayName = "#LBL_FamilyTree_VISUALFX",
 iconBase = "com/asgteach/familytree/personfiletype/FamilyTreeIcon.png",
 mimeType = "text/familytree+xml",
 persistenceType = TopComponent.PERSISTENCE_NEVER,
 preferredID = "FamilyTreeVisualFX",
 position = 2000
)
@Messages("LBL_FamilyTree_VISUALFX=VisualFX")
public final class FamilyTreeVisualFXElement extends JPanel
 implements MultiViewElement {

private final FamilyTreeDataObject ftDataObject;
 private final JToolBar toolbar = new JToolBar();
 private transient MultiViewElementCallback callback;
 private EditorCookie editCookie = null;
 private Document doc = null;
 private static JFXPanel fxPanel;
 private FamilyTreeFXController controller;
 private static final Logger logger = Logger.getLogger(
 FamilyTreeVisualFXElement.class.getName());

public FamilyTreeVisualFXElement(Lookup lkp) {
 ftDataObject = lkp.lookup(FamilyTreeDataObject.class);
 assert ftDataObject != null;
 initComponents();
 setLayout(new BorderLayout());
 init();
 }

private void init() {
 . . . see the init() method in Listing 14.20 on page 711 . . .
 }

 private void createScene() {
 . . . see the createScene() method in Listing 14.20 on page 711 . . .
 }
. . . code omitted . . .

 @Override
 public void componentShowing() {
 editCookie = ftDataObject.getLookup().lookup(EditorCookie.class);
 if (editCookie != null) {
 try (InputStream is = ((org.openide.text.CloneableEditorSupport)
 editCookie).getInputStream()) {
 doc = XMLUtil.parse(new InputSource(is),
 true, true, null, null);
 final CountDownLatch latch = new CountDownLatch(1);
 Platform.runLater(() -> {
 try {
 controller.refresh(doc);
 } finally {
 latch.countDown();
 }
 });
 try {
 latch.await();
 // wait for refresh() to complete before initiating fade-in
 Platform.runLater(() -> controller.doFadeIn());
 } catch (InterruptedException ex) {
 logger.log(Level.WARNING, null, ex);
 }
 } catch (IOException | SAXException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
 }

 @Override
 public void componentHidden() {
 Platform.runLater(() -> controller.clear());
 }
}

Listing 14.32 is the CSS to style our JavaFX content. Note that the Rectangles have a “leaner” look and the Text is no longer bold.

Listing 14.32 FamilyTree.css

Click here to view code image

.ftr-rectangle {
 -fx-fill: linear-gradient(#c9d9e8, #e7f7ff);
 -fx-effect: dropshadow(three-pass-box , gray , 10 , 0 , 5.0 , 5.0);
 -fx-stroke-width:1.0;
 -fx-stroke: darkblue;
}
.ftr-text {
 -fx-font-size: 14;
}
.ftr-pane {
 -fx-background-color: linear-gradient(lightblue, #c9d9e8, #ddeeeb);
}

Listing 14.33 is the FXML for the JavaFX content. Again, a FlowPane control handles the scene’s layout.

Listing 14.33 FamilyTreeFX.fxml

Click here to view code image

<FlowPane
 hgap="20"
 vgap="20"
 alignment="TOP_CENTER"
 id="FlowPane"
 fx:id="mypane"
 xmlns:fx="http://javafx.com/fxml"
 fx:controller=
 "com.asgteach.familytree.personfiletype.FamilyTreeFXController">
 <padding>
 <Insets bottom="10.0" left="10.0" right ="10.0" top="20.0"/>
 </padding>
 <stylesheets>
 <URL value="@FamilyTree.css" />
 </stylesheets>
 <children> </children>
</FlowPane>

Listing 14.34 shows the all-important FX controller class, FamilyTreeFXController.java. Here are a few interesting points about this JavaFX code.

• A double-click mouse event on the FlowPane control initiates the sequential transition that fades in the StackPane elements.

• The VisualFX MultiView element class invokes the public refresh(), doFadeIn(), and clear() methods on the JavaFX Application Thread. These methods implement one-way communication between Swing and the JavaFX controller.

• The private makeElement() method builds each StackPane element by parsing the editor’s underlying document.

• Each StackPane element includes an ImageView control that displays the Image file personIcon32.png, a 32 x 32 PNG file.

• The StackPane groups a VBox control with an ImageView and Text on top of the Rectangle.

Listing 14.34 FamilyTreeFXController.java

Click here to view code image

public class FamilyTreeFXController implements Initializable {

 @FXML
 private FlowPane mypane;
 private final SequentialTransition seqTran = new SequentialTransition();
 private static final Logger logger = Logger.getLogger(
 FamilyTreeFXController.class.getName());
 private final Image image = new Image(
 FamilyTreeFXController.class.getResourceAsStream("personIcon32.png"));

 @Override
 public void initialize(URL url, ResourceBundle rb) {
 mypane.getStyleClass().add("ftr-pane");
 mypane.setOnMouseClicked((event) -> {
 if (event.getClickCount() == 2) {
 doFadeIn();
 }
 });
 }

 // Invoked by Swing visual element on the JavaFX Application Thread
 public void doFadeIn() {
 seqTran.playFromStart();
 }
 // Invoked by Swing visual element on the JavaFX Application Thread
 public void clear() {
 seqTran.getChildren().clear();
 mypane.getChildren().clear();
 }

 // Invoked by Swing visual element on the JavaFX Application Thread
 // Document is a parsed XML org.w3c.dom.Document
 public void refresh(Document doc) {
 clear();
 NodeList nodeList = doc.getElementsByTagName("person");
 for (int i = 0; i < nodeList.getLength(); i++) {
 //For each node in the list, create a org.w3c.dom.Node
 org.w3c.dom.Node personNode = nodeList.item(i);
 NamedNodeMap map = personNode.getAttributes();
 Person person;
 if (map != null) {
 person = new Person();
 person.setLastname("Unknown");
 for (int j = 0; j < map.getLength(); j++) {
 org.w3c.dom.Node attrNode = map.item(j);
 if (attrNode.getNodeName().equals("firstname")) {
 person.setFirstname(attrNode.getNodeValue());
 }
 if (attrNode.getNodeName().equals("lastname")) {
 person.setLastname(attrNode.getNodeValue());
 }
 }
 StackPane stack = makeElement(person.toString());
 // Add the StackPane to the top-level Node (mypane)
 mypane.getChildren().add(stack);
 FadeTransition ft = new FadeTransition(
 Duration.millis(650), stack);
 ft.setFromValue(0);
 ft.setToValue(1);
 seqTran.getChildren().add(ft);
 }
 }
 }

 private StackPane makeElement(String displayName) {
 // Build the StackPane
 StackPane stack = new StackPane();

 // Build the Text
 final Text ftrText = new Text(displayName);
 ftrText.getStyleClass().add("ftr-text");
 ftrText.setEffect(new Reflection());
 // Build the ImageView, put ImageView & Text in VBox
 ImageView iv = new ImageView(image);
 VBox vbox = new VBox(3, iv, ftrText);
 vbox.setAlignment(Pos.TOP_CENTER);
 vbox.setPadding(new Insets(10, 0, 0, 0));

 // Build the Rectangle
 Rectangle ftrRectangle = new Rectangle(
 ftrText.getBoundsInParent().getWidth() + 40, 90);
 ftrRectangle.setArcHeight(20);
 ftrRectangle.setArcWidth(20);
 ftrRectangle.getStyleClass().add("ftr-rectangle");

 // Add the Rectangle, VBox to StackPane
 stack.getChildren().addAll(ftrRectangle, vbox);
 return stack;
 }
}

14.5 Key Point Summary

This chapter explores the Data System API, which provides handshaking between the Nodes API and the File System API. Here are the key points in this chapter.

• The DataObject class wraps a FileObject and creates a node that lets you visualize the file in an Explorer View.

• The DataObject’s node may represent a multi-level node hierarchy, where child nodes depend on a file’s contents.

• FileObjects have registered MIME types and DataLoaders, which are factories that create DataObjects.

• DataObjects have a Lookup that hold capabilities (such as editors) associated with a file.

• When you create a new file type, the New File Type wizard registers a MIME type resolver, DataLoader, file template, and DataObject subtype for that file type.

• In the New File Type wizard, use the MultiView checkbox to generate a MultiView editor associated with a file type. A MultiView window is a TopComponent with more than one window that is selectable with toolbar buttons. The default is Source (for text-based editors) and Visual (for Swing JComponent-based views).

• MultiViewElements have life cycle methods similar to TopComponent life cycle methods. You override these methods to control how views are initialized and refreshed.

• The New File Type wizard creates a default template that generates contents when creating a new file of that type. You can customize the template.

• Use the DataObject type associated with the file for the Cookie Class to create a conditionally-enabled action associated with a file type. To include the action in the file’s Explorer View context menu, include checkbox File Type Context Menu Item and specify its MIME Type.

• Override a DataObject’s createNodeDelegate() method to provide a custom node hierarchy. Install a FileChangeListener to keep the node hierarchy synchronized with the underlying file.

• Use Swing, the Visual Library, or JavaFX to create content for MultiView visual windows.

• Keep the views synchronized by updating the underlying document with any edits. You access the document through the DataObject’s EditorCookie, available through its Lookup.

• The Visual Library lets you build Scenes with selectable, movable, and modifiable graphical components called widgets. The Scene is the root element and creates a Swing-compatible JComponent view that you can add to a Swing JPanel.

• Add actions to widgets to provide new behaviors, such as editing content.

• To add an action that is enabled when a particular visual element has focus, create a capability and add its implementation to the visual element’s Lookup. The conditionally-enabled action depends on this capability. Use InstanceContent, AbstractLookup, and ProxyLookup to properly configure the visual element’s Lookup.

• To build visual elements with JavaFX content, use the JavaFX integration strategies that keep JavaFX and Swing code loosely coupled.

• One-way communication between Swing visual elements and JavaFX controllers invoke public JavaFX controller methods on the JavaFX Application Thread. Use property change events to communicate user-initiated changes in the JavaFX scene graph back to the visual element.

• Create new XML file types with specific root elements.

• The NetBeans Platform is bundled with a full-featured XML editor. To use it in your NetBeans Platform application, include modules from the ide cluster.

• Use the NetBeans Platform XMLUtil class to manipulate XML content. The XMLUtil parse() method builds DOM documents from XML files.

• Build node hierarchies based on XML content by parsing the file and obtaining a DOM NodeList for specific tag names.

15. JavaFX Charts

Before JavaFX, Swing developers had to rely on third-party libraries for chart components. Now that JavaFX is part of the JDK, developers can use the JavaFX Charts API to visualize data in their applications. And with the NetBeans Platform, you have the beauty of JavaFX charts and the architectural advantages of a sophisticated framework that lets you build applications with integrated JavaFX and Swing content.

This chapter shows you how to use the JavaFX Charts API with the NetBeans Platform. You’ll learn how to create modular, loosely-coupled applications that display data with a wide variety of chart types in separate windows. You’ll also learn how to apply JavaFX features such as animation, effects, and event handling to enhance your application.

What You Will Learn

• Use JavaFX charts in a NetBeans Platform application.

• Structure modules that display chart data.

• Structure a NetBeans Platform application with multiple chart windows, keeping chart modules and data loosely coupled.

• Create a service provider for modules to access chart data from the Global Services Lookup.

• Explore each JavaFX chart.

• Style JavaFX charts with CSS.

• Add effects, animations, and event handlers to charts or individual display artifacts within a chart.

• Enable data editing in a Swing JTable or JavaFX chart window, and propagate these data changes throughout the application.

• Use binding to keep JavaFX controls synchronized.

• Create a NetBeans Platform conditionally-enabled action that applies to JavaFX chart windows.

• Save a chart window (or any window with JavaFX content) to a PNG-format file.

• Print a TopComponent window.

15.1 JavaFX Charts and the NetBeans Platform

Let’s begin by showing you JavaFX charts in the context of a NetBeans Platform application. The JavaFX Chart package currently provides eight different charts to visualize data. Our example, the SmartPhone Data application, provides a set of sales data for smartphone companies over a four-year period. Each company’s data is a series represented by a row in a table, and each year of data corresponds to a table column.

Before we discuss how JavaFX handles chart data, let’s describe the application and its features.

Figure 15.1 shows the SmartPhone Data application (called the SDA) running. There are ten windows in total. Nine windows contain JavaFX charts, and the tenth window displays the raw data in table form (the lower-right window). You can edit the data in the table, and edits are propagated to the other chart windows. When you change JavaFX chart data, the charts use animation to redraw their contents. These changes may also reposition the chart legend and rescale the chart.

[image:]

Figure 15.1 SmartPhone Data application: using JavaFX charts

Visible chart windows in Figure 15.1 include the Pie Chart (on the left), Bar Chart (top center), and Line Chart (top right).

JavaFX charts are rendered as nodes in the scene graph. This means you can apply effects and add animations to charts. You can also manipulate the scene graph. Figure 15.2 shows two examples with Pie Chart windows. The left window depicts a selected wedge animating outward. The percentage represented by the selected wedge is shown in a label that fades in during the wedge animation. The right window shows a JavaFX TextField that displays the value of the selected wedge. The TextField appears with a control mouse-click event over a pie slice. When the user provides a new number, the change updates the other charts and the table.

[image:]

Figure 15.2 Pie Chart with animated wedge and editing capabilities

Figure 15.3 shows another set of windows, including a horizontal Bar Chart on the left, a Bubble Chart in the center, and an Area Chart in the top-right window.

[image:]

Figure 15.3 SmartPhone Data application with different charts visible

The user can edit the raw data in the TableDataEditor window or in the PieChart window. The user can also restore the original data with the Reload Data button, print a chart window, or save any chart to disk as a PNG file.

Application Overview

The SDA is organized into modules, with each chart in a separate module. The TableDataEditor is also in its own module. Each module accesses the data with a Global Lookup using a customized version of Swing AbstractTableModel (MyTableDataModel). To work with a different set of data, you would extend MyTableDataModel and include your own data. Different service providers for MyTableDataModel can obtain the data from other sources, such as a web service or database. Figure 15.4 shows the relationship of the modules in the SDA.

[image:]

Figure 15.4 SmartPhone Data application module organization

The TableDataAPI module exposes MyTableDataModel, a specialized TableModel class that other modules access through the Global Lookup. The TableDataEditor displays a window with the data in table form. Each chart module accesses the data by obtaining the service provider for MyTableDataModel through the Global Lookup.

The JavaFX chart modules all use FXML for chart controls and a corresponding JavaFX controller class that builds the chart data. When the data changes, the table model implementation fires a Swing TableModelEvent, allowing registered listeners to respond. Each JavaFX controller class implements a TableModelListener to respond to user edits of the table data.

Steps to Build the SmartPhone Data Application

Let’s summarize the steps required to build the SmartPhone Data application. The summarized application structure shows you how a NetBeans Platform application can effectively use the JavaFX chart controls to visualize data. We’ll discuss the individual modules in more detail throughout this chapter.

• Create a new NetBeans Platform application called SmartPhoneDataApp.

• Create a TableDataAPI module and add it to the SmartPhoneDataApp application. Create abstract Java class MyTableDataModel to extend AbstractTableModel. Make MyTableDataModel’s enclosing package public so that other modules can add a module dependency on the TableDataAPI module.

• Create a SmartPhoneDataImpl module and set a module dependency on the TableDataAPI module. Create concrete Java class SmartPhoneDataImpl that extends MyTableDataModel. Install the data and provide implementations for the methods in AbstractTableData and MyTableDataModel. Register SmartPhoneDataImpl as a @ServiceProvider for MyTableDataModel.

• Create a TableDataEditor module and set a module dependency on the TableDataAPI module. Create a TopComponent window. Add a JTable and a Reload Data button. Initialize the JTable using the Global Lookup to access the data.

• Create modules for each of the JavaFX charts. Include separate modules for a Bar Chart displayed vertically and horizontally. Set module dependencies on the TableDataAPI module. Create TopComponent windows, FXML files, and JavaFX controller classes for each module. Initialize the JavaFX chart controls using the Global Lookup to access the data. Enable printing for the TopComponents.

• Add special behaviors to the JavaFX chart controller classes as you like. We discuss features added to the PieChart module.

• Create a ChartUtilities module and add a conditionally-enabled action that saves the selected chart window to a file on disk. Implement the ChartSaveCapability in each TopComponent to provide the support code for saving a chart.

Working with AbstractTableModel

Access to table data in Swing requires the TableModel interface, which provides methods for manipulating table data. The AbstractTableModel class provides default implementations for most of the methods in the TableModel interface. This abstract class manages listeners and provides methods for generating TableModelEvents, which are then dispatched to registered listeners. With AbstractTableModel you must provide implementations minimally for the getRowCount(), getColumnCount(), and getValueAt() methods.

The MyTableDataModel abstract class has methods for extracting additional information to decorate JavaFX charts. The information includes a title, category names (names assigned to each data series), and descriptive labels for the data. Additionally, the getOriginalData() method restores the data to the original values, which lets users experiment with different data values.

The MyTableDataModel class extends AbstractTableModel and is the service provider target class for accessing the application’s data. We add this class, shown in Listing 15.1, to the TableDataAPI module’s public package.

Listing 15.1 MyTableDataModel.java

Click here to view code image

public abstract class MyTableDataModel extends AbstractTableModel {

public abstract Object[][] getOriginalData();
 public abstract double getTickUnit();
 public abstract List<String> getColumnNames();

public abstract List<String> getCategoryNames();
 public abstract int getCategoryCount();
 public abstract String getCategoryName(int row);
 public abstract String getDataDescription();
 public abstract String getNameDescription();
 public abstract String getTitle();

}

Listing 15.2 shows the SmartPhoneDataImpl class, which provides a concrete extension of the MyTableDataModel abstract class. We install this class in the SmartPhoneDataImpl module and register the class as a service provider for MyTableDataModel.

The names and categories String arrays provide labels for the data columns and category names. Similarly, the dataDescription and nameDescription Strings provide legend labels. The title String provides the title text.

The actual data is a two-dimensional Object array used by TableModel. The clone() method makes a deep copy of the original data for later retrieval.

The SmartPhoneDataImpl class implements the public methods from MyTableDataModel (see Listing 15.1) and the methods required by AbstractTableModel. The isCellEditable() method returns true, allowing user updates. The setValueAt() method updates the data and fires a table cell updated event. (The AbstractTableModel class handles listener registration and event dispatching.)

Since the data is configured with the Swing TableModel, the Swing JTable component can use this class directly. The JavaFX charts, however, need to extract the data and inject them into the required JavaFX charts observable collections.1

1. SmartPhone sales data sources: Year 2008: Gartner (March 2009); Year 2009: Tomi Ahonen (April 2010); Years 2010 and 2011: IDC (February 2012).

Listing 15.2 SmartPhoneDataImpl.java

Click here to view code image

@ServiceProvider(service = MyTableDataModel.class)
public class SmartPhoneDataImpl extends MyTableDataModel {

 private final String[] names = {"2008", "2009", "2010", "2011"};
 private final String[] categories =
 {"Nokia", "RIM", "Apple", "HTC", "Samsung", "Others"};
 private final String dataDescription = "Units Sold in Millions";
 private final String nameDescription = "Year";
 private final String title = "Smart Phone Sales";
 private final Object[][] data = {
 // Sources:
 // 2008: Gartner (March 2009)
 // 2009: Tomi Ahonen (April 2010)
 // 2010, 2011: IDC (February 2012)
 // Nokia
 {61.0, 68.0, 100.1, 77.3},

 // ResearchInMotion
 {23.1, 37.0, 48.8, 51.1},

 // Apple
 {11.4, 25.0, 47.5, 93.2},

 // HTC
 {5.9, 9.0, 21.7, 43.5},

 // Samsung
 {4.0, 7.0, 22.9, 94.0},

 // Others
 {33.9, 30.0, 63.7, 132.3}
 };

private final Object[][] orig = clone(data);

// provide deep copy semantics
 private static Object[][] clone(Object[][] g) {
 Object[][] newArray = new Object[g.length][];
 for (int i = 0; i < g.length; i++) {
 newArray[i] = new Object[g[i].length];
 System.arraycopy(g[i], 0, newArray[i], 0, g[i].length);
 }
 return newArray;
 }

@Override
 public final Object[][] getOriginalData() {
 return orig;
 }

@Override
 public double getTickUnit() {
 return 1000;
 }

@Override
 public List<String> getColumnNames() {
 return Arrays.asList(names);
 }

// Add support for Category Names
 @Override
 public List<String> getCategoryNames() {
 return Arrays.asList(categories);
 }
 @Override
 public int getCategoryCount() {
 return getRowCount();
 }
 @Override
 public String getCategoryName(int row) {
 return categories[row];
 }

@Override
 public String getDataDescription() {
 return dataDescription;
 }

@Override
 public String getNameDescription() {
 return nameDescription;
 }

@Override
 public String getTitle() {
 return title;
 }

 @Override
 public int getRowCount() {
 return data.length;
 }

 @Override
 public int getColumnCount() {
 return names.length;
 }

 @Override
 public Object getValueAt(int row, int column) {
 return data[row][column];
 }

@Override
 public String getColumnName(int column) {
 return names[column];
 }

@Override
 public Class<?> getColumnClass(int columnIndex) {
 return getValueAt(0, columnIndex).getClass();
 }

 @Override
 public boolean isCellEditable(int row, int column) {
 return true;
 }

 @Override
 public void setValueAt(Object value, int row, int column) {
 if (value instanceof Double) {
 data[row][column] = (Double) value;
 }
 fireTableCellUpdated(row, column);
 }
}

Working with Swing JTable

The TableDataEditor module includes a TopComponent configured in the output mode. This window appears in the lower-right location as shown in Figure 15.1 on page 745. The TopComponent has a Swing JTable that displays the raw data and a Data Reload button to restore the original data values from the clone array.

Listing 15.3 shows the TopComponent registration and initialization code for the TableDataEditorTopComponent class. The constructor initializes the tableModel field with the MyTableModelData service provider from the Global Lookup. The TopComponent includes custom initialization code to set the JTable component model property with this data.

Listing 15.3 TableDataEditorTopComponent.java—Initialization Code

Click here to view code image

@ConvertAsProperties(
 dtd = "-//org.smartphone.data.editor//TableDataEditor//EN",
 autostore = false
)
@TopComponent.Description(
 preferredID = "TableDataEditorTopComponent",
 iconBase = "org/smartphone/tabledata/editor/line_chart.png",
 persistenceType = TopComponent.PERSISTENCE_ALWAYS
)
@TopComponent.Registration(mode = "output", openAtStartup = true)
@ActionID(category = "Window",
 id = "org.smartphone.tabledata.editor.TableDataEditorTopComponent")
@ActionReference(path = "Menu/Window" /*, position = 333 */)
@TopComponent.OpenActionRegistration(
 displayName = "#CTL_TableDataEditorAction",
 preferredID = "TableDataEditorTopComponent"
)
@Messages({
 "CTL_TableDataEditorAction=TableDataEditor",
 "CTL_TableDataEditorTopComponent=TableDataEditor",
 "HINT_TableDataEditorTopComponent=This is a TableDataEditor window"
})
public final class TableDataEditorTopComponent extends TopComponent {

 private static MyTableDataModel tableModel;
 private static final Logger logger = Logger.getLogger(
 TableDataEditorTopComponent.class.getName());

 public TableDataEditorTopComponent() {
 // initialize tableModel before invoking initComponents()
 tableModel = Lookup.getDefault().lookup(MyTableDataModel.class);
 if (tableModel == null) {
 logger.log(Level.SEVERE, "Cannot get TableModel object");
 LifecycleManager.getDefault().exit();
 }
 initComponents();
 setName(Bundle.CTL_TableDataEditorTopComponent());
 setToolTipText(Bundle.HINT_TableDataEditorTopComponent());
 // setup the JTable
 init();
 }

// Generated code to initialize the components
 private void initComponents() {

 reloadButton = new javax.swing.JButton();
 jScrollPane1 = new javax.swing.JScrollPane();
 table = new javax.swing.JTable();
 . . .

 table.setModel(tableModel); // custom code
 . . .
 }
. . .
}

The JTable table component uses a custom cell renderer to format the numbers and provide cell editing. Listing 15.4 shows the init() method that the TopComponent constructor calls. This method sets the JTable’s row sorter, grid color, and installs a custom renderer for each cell.

Listing 15.4 TableDataEditorTopComponent.java—Table Configuration

Click here to view code image

public final class TableDataEditorTopComponent extends TopComponent {
. . .
 public void init() {
 table.setAutoCreateRowSorter(true);
 table.setGridColor(Color.DARK_GRAY);

 TableDataEditorTopComponent.DecimalFormatRenderer renderer =
 new TableDataEditorTopComponent.DecimalFormatRenderer();
 renderer.setHorizontalAlignment(JLabel.RIGHT);
 for (int i = 0; i < table.getColumnCount(); i++) {
 table.getColumnModel().getColumn(i).setCellRenderer(renderer);
 }
 }

 private static class DecimalFormatRenderer extends
 DefaultTableCellRenderer {

private static final DecimalFormat formatter = new DecimalFormat("#.0");

@Override
 public Component getTableCellRendererComponent(
 JTable table, Object value,
 boolean isSelected,
 boolean hasFocus,
 int row,
 int column) {
 value = formatter.format((Number) value);
 return super.getTableCellRendererComponent(
 table, value, isSelected, hasFocus, row, column);
 }
 }
. . .
}

Listing 15.5 shows the Reload Data button event handler. The handler invokes MyTableDataModel method getOriginalData() to load the original data into the JTable table component. The JTable setValueAt() method invokes the model’s setValueAt() method, which fires table cell updated events for registered listeners. This in turn updates the chart windows.

Listing 15.5 TableDataEditorTopComponent.java—Reload Data Event Handler

Click here to view code image

public final class TableDataEditorTopComponent extends TopComponent {
. . .
 private void reloadButtonActionPerformed(
 ActionEvent evt) {
 // Get the original data
 Object[][] orig = tableModel.getOriginalData();
 for (int row = 0; row < orig.length; row++) {
 for (int col = 0; col < orig[row].length; col++) {
 Double current = (Double)orig[row][col];
 table.setValueAt(current, row, col);
 }
 }
 }
. . .
}

Integrating JavaFX Charts

In a NetBeans Platform application with JavaFX charts, you configure the JavaFX content as described in Chapter 6 (see “JavaFX and the NetBeans Platform” on page 250). Our SDA application has a module for each chart, giving maximum flexibility for window layout. Each module includes the window (TopComponent), FXML markup for the JavaFX controls, and the JavaFX controller class. All JavaFX modules have the same structure, which we’ll describe next using the Line Chart as an example. We’ll discuss the other charts in the following sections.

Create Chart Module

Create a new module named Chart - Line and add it to the SDA application. Use package name org.smartphone.chart.line.

Chart FXML

Add FXML file linechart.fxml to the Source Package in module Chart - Line, as shown in Listing 15.6. We place the chart in a StackPane control since StackPane automatically centers its content, even with window resizing.

The FXML markup specifies the controller class with the fx:controller attribute. The StackPane and LineChart both specify fx:id attributes that let the controller class access these controls. LineChart is an XYChart, which requires xAxis and yAxis elements. These also have fx:id definitions. The axis element type (CategoryAxis or NumberAxis) depends on the data, chart, and chart layout.

Listing 15.6 linechart.fxml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.geometry.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.chart.*?>

<StackPane id="StackPane" fx:id="stackpane"
 xmlns:fx="http://javafx.com/fxml"
 fx:controller="org.smartphone.chart.line.LineChartController">

 <LineChart fx:id="chart" >
 <xAxis>
 <CategoryAxis fx:id="xAxis"/>
 </xAxis>
 <yAxis>
 <NumberAxis fx:id="yAxis"/>
 </yAxis>
 </LineChart>
</StackPane>

Chart Controller

Listing 15.7 shows the chart controller code. All chart controllers have @FXML annotations that identify the FXML file controls. The Global Lookup returns the MyTableDataModel service provider (the tableModel field) to access the data. The JavaFX controller configures each chart (shown in the next section) and defines a public getImage() method that returns a Swing-compatible snapshot of the JavaFX scene graph.2 The TopComponent invokes the getImage() method to implement the Save Chart action. (See “Saving Charts” on page 789 for the Save Chart action implementation.)

2. Note that a “snapshot” reflects the scene graph as it is configured within the enclosing TopComponent; resizing a window affects the resulting image.

Listing 15.7 LineChartController.java

Click here to view code image

public class LineChartController implements Initializable {

 @FXML
 private StackPane stackpane;
 @FXML
 private CategoryAxis xAxis;
 @FXML
 private NumberAxis yAxis;
 @FXML
 private LineChart<String, Number> chart;

 private ObservableList<XYChart.Series<String, Number>> lcData;
 private MyTableDataModel tableModel;
 private static final Logger logger = Logger.getLogger(
 LineChartController.class.getName());

 @Override
 public void initialize(URL url, ResourceBundle rb) {
 createLineChart();
 }

 private void createLineChart() {
 tableModel = Lookup.getDefault().lookup(MyTableDataModel.class);
 if (tableModel == null) {
 logger.log(Level.SEVERE, "Cannot get TableModel object");
 LifecycleManager.getDefault().exit();
 }
 . . . code to setup and configure JavaFX Chart using tableModel data . . .
 }

 public BufferedImage getImage() {
 // must be in JavaFX Application Thread
 SnapshotParameters params = new SnapshotParameters();
 Image jfximage = stackpane.snapshot(params, null);
 return SwingFXUtils.fromFXImage(jfximage, null);
 }
}

Chart TopComponent

Add a LineChartTopComponent window to the Chart - Line module, as shown in Listing 15.8. The constructor uses JFXPanel to initialize the JavaFX content in the scene graph. Build the JavaFX content on the JavaFX Application Thread by loading the FXML and instantiating the JavaFX controller class.

A single line of code provides the print capabilities for the window, which sets the print.printable property to true. InstanceContent (see “Lookup as an Object Repository” on page 225) lets you add objects to the TopComponent’s Lookup. We’ll use InstanceContent to implement the Save Chart capability.

Listing 15.8 LineChartTopComponent.java

Click here to view code image

@ConvertAsProperties(
 dtd = "-//org.smartphone.chart.line//LineChart//EN",
 autostore = false)
@TopComponent.Description(
 preferredID = "LineChartTopComponent",
 //iconBase="SET/PATH/TO/ICON/HERE",
 persistenceType = TopComponent.PERSISTENCE_ALWAYS)
@TopComponent.Registration(mode = "properties", openAtStartup = true)
@ActionID(category = "Window",
 id = "org.smartphone.chart.line.LineChartTopComponent")
@ActionReference(path = "Menu/Window" /*, position = 333 */)
@TopComponent.OpenActionRegistration(
 displayName = "#CTL_LineChartAction",
 preferredID = "LineChartTopComponent")
@Messages({
 "CTL_LineChartAction=LineChart",
 "CTL_LineChartTopComponent=LineChart Window",
 "HINT_LineChartTopComponent=This is a LineChart window"
})
public final class LineChartTopComponent extends TopComponent {

 private static JFXPanel chartFxPanel;
 private LineChartController controller;
 private final InstanceContent content = new InstanceContent();

 public LineChartTopComponent() {
 initComponents();
 setName(Bundle.CTL_LineChartTopComponent());
 setToolTipText(Bundle.HINT_LineChartTopComponent());
 associateLookup(new AbstractLookup(content));

 setLayout(new BorderLayout());
 // Enable the Print action for the TopComponent:
 putClientProperty("print.printable", true);
 init();
 }

 public void init() {
 chartFxPanel = new JFXPanel();
 add(chartFxPanel, BorderLayout.CENTER);
 Platform.setImplicitExit(false);
 Platform.runLater(() -> createScene());
 }

 private void createScene() {
 try {
 URL location = getClass().getResource("linechart.fxml");
 FXMLLoader fxmlLoader = new FXMLLoader();
 fxmlLoader.setLocation(location);
 fxmlLoader.setBuilderFactory(new JavaFXBuilderFactory());
 Parent root = (Parent) fxmlLoader.load(location.openStream());
 chartFxPanel.setScene(new Scene(root));
 controller = (LineChartController) fxmlLoader.getController();

} catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
. . .
}

15.2 Introducing JavaFX Charts

The JavaFX Chart API is an important feature for applications that visualize data. Fortunately, you can easily integrate JavaFX charts into your NetBeans Platform applications. Depending on your data’s characteristics and the type of visualization that you require, you can choose one or more charts. In the SmartPhone Data application, we use all charts with the same data, which shows each chart’s visualization strengths.

You’ll discover the JavaFX charts are straightforward to use. Although the charts are highly configurable, default settings fit most requirements. You can also alter any chart’s appearance with custom CSS styling. Let’s begin with an overview of the JavaFX Chart API.

JavaFX Chart Overview

Figure 15.5 shows the JavaFX chart class hierarchy. Abstract class Chart extends Node, Parent, and Region, and therefore inherits all the features of these superclasses, including animation, effects, and CSS styling. All charts have an XY axis except Pie Chart.

[image:]

Figure 15.5 JavaFX Chart class hierarchy

Chart is the base class for all charts and defines the title, legend, and content for each chart. The chart content is populated by the specific subclass of Chart. For example, Figure 15.6 shows a Line Chart, which is responsible for creating its chart contents. In this example, the contents include the X axis with a label, Y axis with a label, and plotted lines and tick marks.

[image:]

Figure 15.6 Parts of a chart

Chart Properties

Table 15.1 lists the properties common to all charts. Note that these JavaFX properties can participate in binding expressions. Typically, the only property you’ll need to set is the title property.

[image:]

TABLE 15.1 Properties Common to All Charts

By default, charts animate changes to their data. For example, in Figure 15.6, if a LineChart value changes in one of the series for 2008, the line angle moves as the data point travels to its new plot location. Similarly, in a PieChart, a new value affects the entire wedge layout. The content is not re-drawn from scratch. Rather, all wedges dynamically resize as their relative shapes adjust to the new values. You can disable this feature by setting the animated property to false.

As shown in Table 15.1, you can also configure the legend location, the title and its location, and whether or not the legend is visible.The legend property itself is protected and configured by chart subclasses.

XY Charts

The XYChart abstract class is the base class for all two-axis charts and is responsible for drawing the axes and plot contents. Subclasses of XYChart are shown in Figure 15.5 on page 760. Properties for the XYChart class include controlling grid line visibility and whether alternating columns and rows have a visible fill. The most important property for XYChart is the data, whose type is as follows.

Click here to view code image

ObjectProperty<ObservableList<XYChart.Series<X,Y>>>

A chart’s data is stored in an ObservableList (see “Observable Collections” on page 148). The list type is XYChart.Series<X,Y>, which is a named series of data items (XYCharts manipulate a list of lists). Data items are type XYChart.Data<X,Y>, a generic type where X represents the X axis type and Y represents the Y axis type. Data items also include an extra value (extraValue property) that can be used in any way the subclassed chart needs.

For example, the LineChart in Figure 15.6 on page 760, has six series (Nokia, RIM, Apple, HTC, Samsung, and Others) whose names are displayed in the chart’s legend. Each series has four data points, and each data point has an X value String for the year and a Y value Number for the sales in millions of units. (You can review the raw data in Listing 15.2 on page 750.) Thus, the LineChart’s ObservableList is type

Click here to view code image

ObservableList<XYChart.Series<String, Number>>

where the X axis is a String type and the Y axis is a Number type. The data item for this series is

XYChart.Data<String, Number>

where the X axis value is a String (the year) and the Y axis value is a Number (units sold in millions).

Table 15.2 shows the properties of the XYChart.Series<X,Y> type. Table 15.3 shows useful properties of the XYChart.Data<X,Y> type. For example, to get the node that represents the series, use getNode() for the node or nodeProperty() for the JavaFX property getter. To set the XValue and YValue of a data item, use

Click here to view code image

XYChart.Data<String, Number> myData;
 . . .
 myData.setXValue("2009");
 myData.setYValue(25.5);

[image:]

TABLE 15.2 XYChart.Series<X, Y> Useful Properties

[image:]

TABLE 15.3 XYChart.Data<X, Y> Useful Properties

Because charts manage observable lists, chart objects respond to data changes automatically, updating their content with animation (and redrawing the legend and axes as necessary). Charts also respond to resizing events. For example, the Line Chart in Figure 15.7 appears in a floating window that has been reduced in size. The StackPane layout control keeps the chart centered, and the LineChart adjusts the contents. Here, the legend is no longer visible, the Y axis description is shortened, and the Y axis labels are reduced. The plot points have also been adjusted to appropriately fill the chart space.

[image:]

Figure 15.7 Automatic adjustments after resizing a chart

Ultimately, the chart’s data items are represented by nodes in a scene graph. You can access a data item’s node, the chart’s node, and the data series’ node. You can therefore configure these nodes with event listeners (such as mouse clicks), effects, and animations. We’ll show you how to do this in “Accessing JavaFX Chart Nodes” on page 782.

Chart Styling

Charts use CSS for styling. You can configure the padding, text sizes, and fonts, and define legend and plot data symbols. CSS styles also define default colors for pie wedges and series data. The JavaFX charts have been restyled in JavaFX 8 to use the Modena theme. You can customize chart styles by providing your own values for the CSS chart styles. See “CSS Files” on page 98 for locating the default Modena CSS file.

For example, Figure 15.8 shows a restyled Line Chart. Three series colors are customized, along with their corresponding legend colors. In addition, we increase the Line Chart’s line stroke width (a change you can actually discern in the black and white screenshot).

[image:]

Figure 15.8 Customize styling with CSS

Listing 15.9 shows the CSS styles used. Each chart type has its own styles. To load the CSS file, add attribute stylesheets="org/smartphone/chart/line/lineChartStyle.css" to the top-level StackPane in the Line Chart module’s FXML file, linechart.fxml.

Listing 15.9 lineChartStyle.css

Click here to view code image

.chart-series-line {
 -fx-stroke-width: 10px;
 -fx-effect: null;
}

.default-color0.chart-series-line { -fx-stroke: #ff3300; }
.default-color1.chart-series-line { -fx-stroke: #00ff00; }
.default-color2.chart-series-line { -fx-stroke: #0033ff; }

.default-color0.chart-line-symbol { -fx-background-color: #ff3300, white; }
.default-color1.chart-line-symbol { -fx-background-color: #00ff00, white; }
.default-color2.chart-line-symbol { -fx-background-color: #0033ff, white; }

15.3 Data Visualization with JavaFX Charts

Each chart emphasizes different aspects of the same data. In this section, we’ll summarize the features of the JavaFX charts. First, let’s build charts from what we know about charts, series, and data items. We’ll start with the Line Chart. Unless otherwise indicated, all charts are built exactly how we describe in the following section for Line Chart.

Line Chart

Line Charts (see Figure 15.6 on page 760 and Figure 15.8) show you comparative trends with plotted data series. Because the chart draws lines connecting plot points, you can visualize trends within a series and comparative trends when there is more than one series. Plotting stock prices over time is a common application for Line Charts.

Listing 15.10 shows how to build the LineChart’s data. The LineChartController class configures and sets the data for the Line Chart.

First, the declarations for the xAxis, yAxis, chart, and lcdata fields show that chart is a LineChart with a String value for the X Axis and a Number value for the Y Axis. The xAxis field is therefore a CategoryAxis type (String label), and yAxis is a NumberAxis type (Number value). The lcData LineChart data field type is an ObservableList <XYChart.Series<String, Number>>.

The createLineChart() method configures the LineChart. The methods we added to the MyTableDataModel abstract class define the labels and descriptive values of the axes. X axis is a CategoryAxis with an observable list of Strings for the category names. These are the MyTableDataModel column names (the years in String form). The X Axis label is set from the MyTableDataModel name description.

The Y Axis also has a label. Because the Y Axis is a NumberAxis type, we set the tick unit. Lastly, we set the chart’s title and its data with the getLineChartData() method (shown in Listing 15.11 on page 766).

Listing 15.10 LineChartController.java—Configure the LineChart

Click here to view code image

public class LineChartController implements Initializable {

 @FXML
 private StackPane stackpane;
 @FXML
 private CategoryAxis xAxis;
 @FXML
 private NumberAxis yAxis;
 @FXML
 private LineChart<String, Number> chart;
 private ObservableList<XYChart.Series<String, Number>> lcData;
 private MyTableDataModel tableModel;
 private static final Logger logger = Logger.getLogger(
 LineChartController.class.getName());

@Override
 public void initialize(URL url, ResourceBundle rb) {
 createLineChart();
 }

 private void createLineChart() {
 tableModel = Lookup.getDefault().lookup(MyTableDataModel.class);
 if (tableModel == null) {
 logger.log(Level.SEVERE, "Cannot get TableModel object");
 LifecycleManager.getDefault().exit();
 }
 xAxis.setCategories(FXCollections.observableArrayList(
 tableModel.getColumnNames()));
 xAxis.setLabel(tableModel.getNameDescription());
 yAxis.setTickUnit(tableModel.getTickUnit());
 yAxis.setLabel(tableModel.getDataDescription());

 chart.setTitle(tableModel.getTitle());
 chart.setData(getLineChartData());

. . . Add TableModelListener to tableModel, see Listing 15.12 on page 767 . . .
 }
. . .
}

Listing 15.11 shows the getLineChartData() method, which builds an observable collection containing the XYChart.Series for each row in the table data. Each Series, in turn, has a list of data items set by the appropriate row and column data from the table model. The table model getColumnName() method returns the column’s String name (the year in String form).

Listing 15.11 LineChartController.java—getLineChartData()

Click here to view code image

public class LineChartController implements Initializable {
 . . .

 private ObservableList<XYChart.Series<String, Number>>
 getLineChartData() {
 if (lcData == null) {
 lcData = FXCollections.observableArrayList();
 for (int row = 0; row < tableModel.getRowCount(); row++) {
 XYChart.Series<String, Number> series = new XYChart.Series<>();
 series.setName(tableModel.getCategoryName(row));
 for (int column = 0;
 column < tableModel.getColumnCount(); column++) {
 series.getData().add(new XYChart.Data<>(
 tableModel.getColumnName(column),
 (Number) tableModel.getValueAt(row, column)));
 }
 lcData.add(series);
 }
 }
 return lcData;
 }
}

Listing 15.12 shows the TableModelListener that we add to the tableModel field. Recall that tableModel extends AbstractTableModel, which provides support for adding listeners. The event handler obtains the row and column number of the changed value and gets the new value from the event source. In the JavaFX Application Thread, the handler gets the series that corresponds to the changed row, and data.setYValue() updates the corresponding data item.

Listing 15.12 LineChartController.java—TableModelListener

Click here to view code image

public class LineChartController implements Initializable {
 . . .
 private void createLineChart() {
 . . . code omitted . . . (see Listing 15.10) . . .

 // set up the event handler to respond to changes in the table data
 // This is a Swing event, so we must use Platform.runLater()
 // to update JavaFX components
 tableModel.addTableModelListener((TableModelEvent e) -> {
 if (e.getType() == TableModelEvent.UPDATE) {
 final int row = e.getFirstRow();
 final int column = e.getColumn();
 final Number value = (Number)((MyTableDataModel)
 e.getSource()).getValueAt(row, column);
 Platform.runLater(() -> {
 XYChart.Series<String, Number> s = chart.getData().get(row);
 LineChart.Data<String, Number> data =
 s.getData().get(column);
 data.setYValue(value);
 });
 }
 });
 }
. . .
}

Scatter Chart

Figure 15.9 shows the Scatter Chart (also called an XY Plot) for the SDA. Scatter Charts excel at displaying large sets of data and possibly showing correlations between X Axis and Y Axis values. For the SmartPhone sales data, we see a slight positive correlation between the sales year and the number of units sold. That is, each year, more and more units were sold.

[image:]

Figure 15.9 Scatter Chart

You build the Scatter Chart with the SmartPhone sales data exactly like the Line Chart. First, create a module for the Scatter Chart and create a window (ScatterChartTopComponent). Next, add the scatterchart.fxml FXML file and the JavaFX controller class, ScatterChartController.java.

In scatterchart.fxml, use the <ScatterChart> element for the chart control. The JavaFX controller class builds the data and configures the chart. The code is unchanged from the Line Chart code shown in the previous section, except you use ScatterChart in place of LineChart.

You can change the Scatter Chart symbols with CSS styling, as explained in “Chart Styling” on page 763.

Bar Chart

The JavaFX Bar Chart is an XY Chart that draws bars for values. Bar Charts help visualize change over time. You can also compare multiple series within each time frame. The horizontal Bar Chart emphasizes maximum values as your eye follows the chart from left to right. The vertical Bar Chart emphasizes changes over time.

In the JavaFX BarChart, the bar orientation depends on which axis is the CategoryAxis and which axis is the NumberAxis. In Figure 15.10, the left chart is a vertical Bar Chart, defining the X axis as the CategoryAxis and the Y axis as the NumberAxis. The right-side chart is a horizontal Bar Chart that switches the Number and Category axes.

[image:]

Figure 15.10 Vertical and Horizontal Bar Charts

Building the vertical Bar Chart and defining the TableModelListener is unchanged from the Line Chart. For the horizontal Bar Chart, Listing 15.13 shows the createBarChartData() method, which switches the axes.

Listing 15.13 BarChartHorizontalController.java—getBarChartData()

Click here to view code image

public class BarChartHorizontalController implements Initializable {

 @FXML
 private StackPane stackpane;
 @FXML
 private CategoryAxis catAxis;
 @FXML
 private NumberAxis numAxis;
 @FXML
 private BarChart<Number, String> chart;
 private ObservableList<BarChart.Series<Number, String>> bcData;
 private MyTableDataModel tableModel;

. . .

 private ObservableList<XYChart.Series<Number, String>> getBarChartData() {
 if (bcData == null) {
 bcData = FXCollections.observableArrayList();
 for (int row = 0; row < tableModel.getRowCount(); row++) {
 XYChart.Series<Number, String> series = new XYChart.Series<>();
 series.setName(tableModel.getCategoryName(row));
 for (int column = 0;
 column < tableModel.getColumnCount(); column++) {
 series.getData().add(new BarChart.Data<>(
 (Number) tableModel.getValueAt(row, column),
 tableModel.getColumnName(column)));
 }
 bcData.add(series);
 }
 }
 return bcData;
 }
}

Similarly, Listing 15.14 shows the horizontal Bar Chart’s TableModelListener. This listener must use the data item’s setXValue() method instead of setYValue() when updating the modified data item.

Listing 15.14 BarChartHorizontalController.java—TableModelListener

Click here to view code image

public class BarChartHorizontalController implements Initializable {
 . . .

 // set up the event handler to respond to changes in the table data
 // This is a swing event, so we must use Platform.runLater()
 // to update JavaFX components
 tableModel.addTableModelListener((TableModelEvent e) -> {
 if (e.getType() == TableModelEvent.UPDATE) {
 final int row = e.getFirstRow();
 final int column = e.getColumn();
 final Number value = (Number) ((MyTableDataModel)
 e.getSource()).getValueAt(row, column);
 Platform.runLater(() -> {
 XYChart.Series<Number, String> s = chart.getData().get(row);
 XYChart.Data<Number, String> data = s.getData().get(column);
 data.setXValue(value);
 });
 }
 });
. . .

Area Chart

Figure 15.11 shows an Area Chart for the SDA. Area Charts are similar to Line Charts. However, Area Charts shade the area below lines that connect data points. Recall that each line represents a named series. Because Area Charts create overlapping shaded areas, a reduced opacity makes the obscured areas visible.

[image:]

Figure 15.11 Area Chart

You build the Area Chart with the SmartPhone sales data exactly like the Line Chart. Create a module for the Area Chart and create a window (AreaChartTopComponent). Next, add the areachart.fxml FXML file and the JavaFX controller class, AreaChartController.java.

Stacked Area Chart

Figure 15.12 shows a Stacked Area Chart for the SDA. As its name implies, a Stacked Area Chart stacks plotted areas on top of each other instead of plotting the Y values for each series from 0. This chart provides a more obvious view of the change in the total amount for each time frame. Stacked Area Charts also emphasize relative shapes of each named series, showing how a series changes over time. For example, the Nokia and RIM series have relatively “flat” shapes, whereas the remaining four series have shapes that “expand.”

[image:]

Figure 15.12 Stacked Area Chart

You build the Stacked Area Chart exactly like the Line Chart. Here, the X axis is CategoryAxis and the Y axis is NumberAxis. Create a module for the Stacked Area Chart and create a window (StackedAreaChartTopComponent). Next, add the stackedareachart.fxml FXML file and the JavaFX controller class, StackedAreaChartController.java.

Stacked Bar Chart

Figure 15.13 shows a Stacked Bar Chart for the SDA. A Stacked Bar Chart stacks each series’ bar on top of each other instead of rendering the bars next to each other from 0. This emphasizes changes in the total amount for each time frame. In Figure 15.13, you can see how each bar is larger than the bar from the preceding time frame, indicating an obvious growth in total sales.

[image:]

Figure 15.13 Stacked Bar Chart

You build the Stacked Bar Chart exactly like the Line Chart. Again, the X axis is CategoryAxis and the Y axis is NumberAxis. Create a module for the Stacked Bar Chart and create a window (StackedBarChartTopComponent). Add the stackedbarchart.fxml FXML file and the JavaFX controller class, StackedBarChartController.java

Bubble Chart

Figure 15.14 shows a Bubble Chart for the SDA, which uses both the relative size and location of the plotted “bubbles” to visualize a data item’s value. With Bubble Charts, you can optionally provide a third data value (besides the X and Y plot point values) to indicate the radius of the bubble. Here, we configure this extra value to show the relative percentage of a data item’s value compared to the total for that time frame. Thus, a larger bubble indicates a bigger market share for that time frame, and a smaller bubble represents a smaller market share. If you don’t provide an extra value, the bubbles are all the same size.3

3. Note that as you resize a Bubble Chart, the relative size of the plot bubbles is constant. However, the shape of the bubbles can change as you expand or shrink either the vertical or horizontal axis of the chart.

[image:]

Figure 15.14 Bubble Chart

BubbleCharts do not use CategoryAxis. Both X and Y axis types are NumberAxis. To make the chart more visually appealing, we provide a String formatter for the X axis year values. Because both axes use NumberAxis types, the chart, observable list, and data item specify Number for their generic types.

Now let’s show you the BubbleChartController class that configures the chart and builds the chart’s data. We also show you the custom formatter for the X axis and the TableModelListener code, since these are all slightly different than the XY Charts you’ve seen so far.

Listing 15.15 shows the @FXML declarations and the createBubbleChartData() method, which computes an extra value for the data item. This value is based on the total for that time frame (column in the table data model).

Constant XFACTOR is an integer that scales the X Axis. This makes the X and Y axes scales similar and keeps the bubble shapes proportional to the chart.

Listing 15.15 BubbleChartController.java—getBubbleChartData()

Click here to view code image

public class BubbleChartController implements Initializable {

 @FXML
 private StackPane stackpane;
 @FXML
 private NumberAxis xAxis;
 @FXML
 private NumberAxis yAxis;
 @FXML
 private BubbleChart<Number, Number> chart;

. . .

 private ObservableList<BubbleChart.Series<Number, Number>>
 getBubbleChartData() {
 if (bcData == null) {
 bcData = FXCollections.observableArrayList();
 // Find totals for each column
 double[] totals = new double[tableModel.getColumnCount()];
 for (int column = 0; column < tableModel.getColumnCount();
 column++) {
 for (int row = 0; row < tableModel.getRowCount(); row++) {
 totals[column] +=
 (double)tableModel.getValueAt(row, column);
 }
 }
 for (int row = 0; row < tableModel.getRowCount(); row++) {
 XYChart.Series<Number, Number> series = new XYChart.Series<>();
 series.setName(tableModel.getCategoryName(row));

 for (int column = 0; column < tableModel.getColumnCount();
 column++) {
 Integer year = Integer.valueOf(
 tableModel.getColumnName(column));
 Number units = (Number) tableModel.getValueAt(row, column);
 series.getData().add(new XYChart.Data<Number, Number>(
 year * XFACTOR,
 units,
 (units.doubleValue() / totals[column]) * XFACTOR));
 }
 bcData.add(series);
 }
 }
 return bcData;
 }
}

Similarly, Listing 15.16 shows the Bubble Chart’s TableModelListener. This listener must not only update the new YValue for the changed data item but also recompute the percentage of the total for all data items in that time frame (column).

Listing 15.16 BubbleChartController.java—TableModelListener

Click here to view code image

public class BubbleChartController implements Initializable {
 . . .

 // set up the event handler to respond to changes in the table data
 // This is a swing event, so we must use Platform.runLater()
 // to update JavaFX components
 tableModel.addTableModelListener((TableModelEvent e) -> {
 if (e.getType() == TableModelEvent.UPDATE) {
 final int row = e.getFirstRow();
 final int column = e.getColumn();
 final Number value = (Number) ((MyTableDataModel)
 e.getSource()).getValueAt(row, column);
 // Get new total for column
 double total = 0;
 for (int r = 0; r < tableModel.getCategoryCount(); r++) {
 total += (double) tableModel.getValueAt(r, column);
 }
 final double newTotal = total;

 Platform.runLater(() -> {
 XYChart.Series<Number, Number> s = chart.getData().get(row);
 BubbleChart.Data<Number, Number> data =
 s.getData().get(column);
 data.setYValue(value);
 // update extra value for the entire column
 for (int r = 0; r < tableModel.getCategoryCount(); r++) {
 XYChart.Series<Number, Number> ss =
 chart.getData().get(r);
 BubbleChart.Data<Number, Number> data1 =
 ss.getData().get(column);
 data1.setExtraValue(((double) tableModel.getValueAt(
 r, column) / newTotal) * XFACTOR);
 }
 });
 }
 });
. . .

Finally, Listing 15.17 shows the custom formatter we use for the X axis, which is a Number value. The StringConverter overrides the toString() and fromString() methods. These methods provide the conversion between the data item Number and the displayed String representing the year.

Constant XFactor makes the X axis and Y axis proportional so that the bubble shape is within an appealing range.

Listing 15.17 BubbleChartController.java—Customize X Axis

Click here to view code image

public class BubbleChartController implements Initializable {
 . . .

 xAxis.setAutoRanging(false);
 xAxis.setLowerBound((Integer.valueOf(
 tableModel.getColumnName(0)) - 1) * XFACTOR);
 xAxis.setUpperBound(((Integer.valueOf(tableModel.getColumnName(
 tableModel.getColumnCount() - 1)) + 1) * XFACTOR) + 1);

 xAxis.setTickLabelFormatter(new StringConverter<Number>() {
 @Override
 public String toString(Number t) {
 return String.valueOf(t.intValue() / XFACTOR);
 }

 @Override
 public Number fromString(String string) {
 return Integer.valueOf(string) * XFACTOR;
 }
 });
 xAxis.setTickUnit(XFACTOR);
 xAxis.setMinorTickCount(0);
 xAxis.setLabel(tableModel.getNameDescription());
. . .

Pie Chart

Figure 15.15 shows a Pie Chart window. Because PieChart is not an XY Chart and cannot display two-axes data, we must apply the table data differently. Pie Charts are suitable for visualizing product market share, since they show you relative percentages of a whole. In Figure 15.15, the Pie Chart visualizes a single column in the table data. Each pie wedge represents the company’s sales for a specific year. Since the total of each column represents the total product sold for a given year, the Pie Chart reflects each company’s market share for that year.

[image:]

Figure 15.15 Pie Chart

PieChart data is stored in an ObservableList<PieChart.Data> type. PieChart.Data includes a read-only reference to its chart, a name StringProperty (used as a wedge label), and a pieValue DoubleProperty.

In addition to the chart properties inherited from Chart, PieChart includes the properties shown in Table 15.4.

[image:]

TABLE 15.4 PieChart Properties

In the SDA PieChart window, a JavaFX ComboBox control lets users select a year. The chart title includes the selected year for clarity.

Let’s examine the FXML and JavaFX controller class for the PieChart window. Listing 15.18 shows piechart.fxml. The StackPane has two child nodes, PieChart and ComboBox, and all three elements include fx:id attributes. StackPane normally stacks child nodes on top of each other, but in the controller we reposition the ComboBox.

Listing 15.18 piechart.fxml

Click here to view code image

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.chart.*?>

<StackPane id="StackPane" fx:id="stackpane"
 xmlns:fx="http://javafx.com/fxml/1"
 fx:controller="org.smartphone.chart.pie.PieChartController">
 <children>
 <PieChart fx:id="chart" />
 <ComboBox fx:id="yearChoice" />
 </children>
</StackPane>

Listing 15.19 shows the class fields for the PieChartController class and the code that configures the Pie Chart. We’ll present this code in several listings. Here you see the stackpane, chart, and yearChoice fields from the FXML file. We also define a tableModel field to hold the data and the Pie Chart data’s observable list.

The createPieChart() method builds and configures the pie chart data. First, we obtain the tableModel field from the Global Lookup. Next, we position the ComboBox in the upper right area of the StackPane with margins.

The next step configures the ComboBox<String>. The ComboBox itemsProperty is an observable list of Strings that we initialize from the list of column names (the years). We invoke the ComboBox selection model selectFirst() method to select year “2008” initially. We also add an invalidation listener to the ComboBox selection model’s selectedIndexProperty (see “Using Listeners with Observable Properties” on page 105). The handler uses a lambda expression to reset the Pie Chart data from the tableModel field based on the selected year.

The last step configures the Pie Chart. We invoke the getPieChartData() method (shown Listing 15.20 on page 780) with the selected index value of the ComboBox.

This integer value is the column number index from the table model data. A binding expression concatenates the chart’s title with the selected year.

This binding expression uses static Bindings methods. The Bindings.concat() method concatenates two String expressions. The first expression is the table model’s title followed by a : and <space>.

Click here to view code image

 Bindings.concat(tableModel.getTitle() + ": ",

The second expression returns the selected String item from the ComboBox.

Click here to view code image

 Bindings.stringValueAt(yearChoice.itemsProperty().get(),
 yearChoice.getSelectionModel().selectedIndexProperty()))

The Bindings.stringValueAt() method takes two arguments, an observable list and an index into the list. The list is the ComboBox selection model (the list of items). The index corresponds to the selected value.

Note that the invalidation handler could have updated the chart’s titleProperty. However, property binding is better because bindings always perform implicit assignments. This avoids the extra step of separately initializing the titleProperty value.

Listing 15.19 PieChartController.java—Set Up PieChart Data

Click here to view code image

public class PieChartController implements Initializable {

 @FXML
 private StackPane stackpane;
 @FXML
 private PieChart chart;
 @FXML
 private ComboBox<String> yearChoice;
 private MyTableDataModel tableModel;
 private ObservableList<PieChart.Data> pcData;

private static final Logger logger = Logger.getLogger(
 PieChartController.class.getName());

@Override
 public void initialize(URL url, ResourceBundle rb) {
 createPieChart();
 }

 private void createPieChart() {
 // set up the tableModel data
 tableModel = Lookup.getDefault().lookup(MyTableDataModel.class);
 if (tableModel == null) {
 logger.log(Level.SEVERE, "Cannot get TableModel object");
 LifecycleManager.getDefault().exit();
 }

 // position the combobox within the stackpane
 StackPane.setAlignment(yearChoice, Pos.TOP_RIGHT);
 StackPane.setMargin(yearChoice, new Insets(30, 15, 8, 8));

 // set up the combobox
 yearChoice.setItems(FXCollections.observableArrayList(
 tableModel.getColumnNames()));
 yearChoice.getSelectionModel().selectFirst();
 yearChoice.setTooltip(new Tooltip("Select the sales data year"));
 yearChoice.getSelectionModel().selectedIndexProperty().addListener(o->{
 getPieChartData(yearChoice.getSelectionModel().getSelectedIndex());
 });

 // configure the pie chart
 chart.setData(getPieChartData(yearChoice.getSelectionModel()
 .getSelectedIndex()));
 chart.titleProperty().bind(
 Bindings.concat(tableModel.getTitle() + ": ",
 Bindings.stringValueAt(yearChoice.itemsProperty().get(),
 yearChoice.getSelectionModel().selectedIndexProperty())));
 . . .
 }
}

Listing 15.20 shows the getPieChartData() method. Here we set the Pie Chart’s data using the provided column number to index into the table model’s column. The first time this method is invoked, we instantiate an observable arraylist for the pcData field and the PieData.Data values. Subsequent calls use the setPieValue() method to update existing PieData.Data elements. The update is registered as a change to the Pie Chart data. The chart responds by resizing the existing wedges with animation.

Listing 15.20 PieChartController.java—getPieChartData()

Click here to view code image

 // Return the data corresponding to the column number (year)
 private ObservableList<PieChart.Data> getPieChartData(int column) {
 if (pcData == null) {
 pcData = FXCollections.observableArrayList();
 for (int row = 0; row < tableModel.getRowCount(); row++) {
 pcData.add(new PieChart.Data(tableModel.getCategoryName(row),
 (Double) tableModel.getValueAt(row, column)));
 }
 } else {
 for (int row = 0; row < tableModel.getRowCount(); row++) {
 PieChart.Data data = chart.getData().get(row);
 data.setPieValue((Double) tableModel.getValueAt(row, column));
 }
 }
 return pcData;
 }

Listing 15.21 shows the TableModelListener added to the tableModel field. First, we make sure the changed table data refers to the currently displayed year. After accessing the changed data, we update the Pie Chart data item with the setPieValue() method in the JavaFX Application Thread.

Listing 15.21 PieChartController.java—TableModelListener

Click here to view code image

public class PieChartController implements Initializable {
 . . .
 private void createPieChart() {
 . . .
 tableModel.addTableModelListener((TableModelEvent e) -> {
 if (e.getType() == TableModelEvent.UPDATE) {
 final int row = e.getFirstRow();
 final int column = e.getColumn();
 if (column != yearChoice.getSelectionModel()
 .getSelectedIndex()) {
 return;
 }
 final Double value = (Double) ((MyTableDataModel)
 e.getSource()).getValueAt(row, column);
 Platform.runLater(() -> {
 // Update JavaFX scene in JavaFX Application Thread
 PieChart.Data data = chart.getData().get(row);
 data.setPieValue(value);
 });
 }
 });
 }
. . .
}

15.4 Adding Behaviors to JavaFX Charts

All displayed parts of a chart are JavaFX nodes. This means you can attach mouse event handlers, set effects, and have chart nodes participate in transitions. In this section, we add a transition that animates a selected Pie Chart wedge. During the wedge animation, a label that displays the wedge’s percentage of the total will fade in. We also add an in-place editor that is invoked with a right-mouse click on the selected pie wedge. So far, all of the JavaFX charts have been read-only displays, so this in-place editor shows you how to add editing capabilities to JavaFX charts.

Figure 15.16 is a snapshot of a Pie Chart wedge animating outward, initiated with a mouse click inside the wedge. The wedge has a drop shadow effect. The label in the upper left corner displays the percentage value, which is dynamically updated when the value changes. Furthermore, when the user clicks anywhere in the background of the window, the wedge loses the drop shadow and the label gradually fades out. With JavaFX, we can easily add these user-initiated effects to charts.

[image:]

Figure 15.16 Pie Chart wedge animation

Figure 15.17 shows an in-place text editor. Invoked with a right click or a control click, this editor lets users change selected pie wedge values. The user hits the Enter or Return key to finish editing, which makes the TextField control fade out. New values propagate to the table model and update the entire application (including the JTable that displays the raw table data).

[image:]

Figure 15.17 Pie Chart editing

These two features require new controls in the FXML file, binding to keep the controls synchronized, and mouse click event handlers for the individual nodes that represent the pie wedges. The event handler builds transitions to perform wedge animation and fade in/out the label and textfield.

Before we show you this code, let’s review how to access chart nodes so that you can add features and special effects.

Accessing JavaFX Chart Nodes

JavaFX makes it easy to attach event handlers to JavaFX charts or to individual data items. To attach an event handler to the background area of a chart, for example, use the chart object directly (since Chart extends Node and is part of the scene graph).

Click here to view code image

Chart myChart;
 . . .
 myChart.addEventHandler(MouseEvent.MOUSE_CLICKED, (MouseEvent t) -> {
 . . . event handler code here . . .
 });

Similarly, to apply an effect to a chart, use setEffec() as follows.

Click here to view code image

myChart.setEffect(new DropShadow());

You can also manipulate a chart’s individual data items using the getNode() method of the data item. Here, we get the first element of a Pie Chart data list and add an event handler to the data item’s node.

Click here to view code image

PieChart chart;
 . . .
 chart.getData().get(0).getNode().addEventHandler(
 MouseEvent.MOUSE_CLICKED, (MouseEvent t) -> {
 . . . event handler code . . .
 });

With XYCharts, data access requires slightly different code. For example, here’s how to access the node representing the first series of a Line Chart, to which we apply a drop shadow effect.

Click here to view code image

LineChart<String, Number> chart;
 . . .
 XYChart.Series series = chart.getData().get(0); // get first series
 series.getNode().setEffect(new DropShadow());

And here’s how to access the first data item of the first series and add a mouse event handler for a data item with type XYChart.Data<String, Number>.

Click here to view code image

XYChart.Data<String, Number> dataItem =
 chart.getData().get(0).getData().get(0); // get first data item
 dataItem.getNode().addEventHandler(
 MouseEvent.MOUSE_CLICKED, (MouseEvent t) -> {
 . . . event handler code . . .
 });

Let’s apply these concepts to add new features to the PieChart window.

Adding PieChart Features

We begin with piechart.fxml, the FXML file for the PieChart window. Listing 15.22 shows the added <TextField> and <Label> elements. Both include fx:id attributes so the JavaFX controller class can access them. These added controls have their opacity properties set to zero. This makes them invisible initially, but the controls will fade in and out as needed.

The TextField control sets its maxWidth property, and the Label control configures its textFill and style properties.

Listing 15.22 piechart.fxml

Click here to view code image

<StackPane id="StackPane" fx:id="stackpane"
 xmlns:fx="http://javafx.com/fxml/1"
 fx:controller="org.smartphone.chart.pie.PieChartController">
 <children>
 <PieChart fx:id="chart" />
 <ComboBox fx:id="yearChoice" />
 <TextField fx:id="textField"
 maxWidth="75"
 opacity="0.0" />
 <Label fx:id="label"
 textFill="RoyalBlue"
 opacity="0.0"
 style="-fx-font-size: 20 ; -fx-font-weight: bold; "/>
 </children>
</StackPane>

Listing 15.23 shows the class fields added to PieChartController class. The @FXML annotations identify the controls defined in the FXML file. We also add a JavaFX Node field called lastNode that is set to the most recent node that takes on effects and animation.

Listing 15.23 PieChartController.java—Add Class Fields

Click here to view code image

public class PieChartController implements Initializable {

 @FXML
 private Label label;
 @FXML
 private StackPane stackpane;
 @FXML
 private PieChart chart;
 @FXML
 private ComboBox<String> yearChoice;
 @FXML
 private TextField textField;
 private MyTableDataModel tableModel;
 private ObservableList<PieChart.Data> pcData;
 private Node lastNode = null;
. . .

Now let’s show you the PieChartController code that configures the event handlers. These handlers create the animation and in-place editing and restore the wedges to normal. We’ll show this code in several parts. First, Listing 15.24 shows the resetTextField() method that fades out the TextField control and returns the TextField to its original location at the bottom of the window.

Next, we define a background mouse click event handler that invokes this resetTextField() method, fades out the label, restores the pie wedge to its normal location, and removes the drop shadow effect from the pie wedge.

Listing 15.24 PieChartController.java—Event Handler Code Part 1

Click here to view code image

 private void resetTextField() {
 FadeTransition ft = new FadeTransition(Duration.millis(1000),
 textField);
 ft.setToValue(0.0);
 ft.playFromStart();
 ft.setOnFinished((event) -> {
 textField.setTranslateX(0);
 textField.setTranslateY(0);
 });
 }

 private void setupEventHandlers() {
 final DropShadow dropShadow = new DropShadow();
 // add a MOUSE_CLICKED handler to the background chart
 // to turn off any dropshadow effects
 // and make the Label/TextField fade out
 chart.addEventHandler(MouseEvent.MOUSE_CLICKED, (MouseEvent t) -> {
 resetTextField();
 FadeTransition ft = new FadeTransition(Duration.millis(1500),
 label);
 ft.setToValue(0.0);
 ft.playFromStart();
 if (lastNode != null) {
 lastNode.setEffect(null);
 lastNode.setTranslateX(0);
 lastNode.setTranslateY(0);
 }
 t.consume();
 });

. . . method setupEventHandlers() continues in Listing 15.25 . . .

Listing 15.25 continues with the setupEventHandlers() method. First, we have a for loop that invokes chart.getData() to access each PieChart data item. An integer row counter keeps track of the current row number, which we assign to currentRow for access within the event handler. The row variable updates at the end of the for loop.

Next, we define a StringBinding percentBinding object. This custom binding object (see “Custom Binding” on page 116 for more information) returns the percentage of the whole for the selected wedge. Note that binding makes this value always correct, even if the user selects a different pie wedge or different year, or if the user updates the table data.

Listing 15.25 PieChartController.java—Event Handler Code Part 1I

Click here to view code image

 private void setupEventHandlers() {
 . . .

 // set up bindings and event handlers for piechart nodes
 int row = 0;
 for (final PieChart.Data data : chart.getData()) {
 final int currentRow = row;
 final StringBinding percentBinding = new StringBinding() {
 {
 pcData.stream().forEach((data) -> {
 super.bind(data.pieValueProperty());
 });
 }

 @Override
 protected String computeValue() {
 double total = 0;
 for (final PieChart.Data thisdata : pcData) {
 total += thisdata.getPieValue();
 }
 return String.format("%.1f%%", data.getPieValue()
 / total * 100);
 }
 };

. . . method setupEventHandlers() continues in Listing 15.26 . . .

Listing 15.26 shows the continuation of the for loop from Listing 15.25. Here we invoke data.getNode() to add mouse click event handlers to each PieChart data node. Each handler is divided into two parts. We process the in-place editor if the mouse event isMetaDown() method returns true. Otherwise, the handler initiates the pie wedge animation.

The lastNode field is set so that the background mouse click handler can reset the most recently selected pie wedge node (see Listing 15.24 on page 785).

The in-place editor places the TextField at the mouse click location, makes the TextField visible, and initializes the TextField text property to the node’s pieValue property. The TextField action event handler (the setOnAction() method) reads the value from the TextField, updates the PieChart data pieValue property, resets the TextField, and updates the corresponding table data value in the Swing EDT. This update propagates to the other charts and the TableDataEditor window.

If the isMetaDown() method returns false then we animate the pie wedge. Here, the selected node’s getBoundsInLocal() method helps calculate X and Y values for the TranslateTransition (the animation that moves the node). We bind the label’s textProperty to the percentBinding object defined earlier (see Listing 15.25 on page 786) and place a drop shadow effect on the selected node. We then build both the TranslateTransition to move the wedge and the FadeTransition to fade in the label. A ParallelTransition plays them at the same time.

Listing 15.26 PieChartController.java—Event Handler Code Part 1II

Click here to view code image

 private void setupEventHandlers() {
 . . .
 // Still inside the chart.getData() for loop
 for (final PieChart.Data data : chart.getData()) {
 . . .
 data.getNode().addEventHandler(
 MouseEvent.MOUSE_CLICKED, (MouseEvent t) -> {
 if (lastNode != null) {
 lastNode.setEffect(null);
 }
 lastNode = data.getNode();
 if (t.isMetaDown()) { // In-Place Editor
 // Move the textfield to where the mouse click is
 textField.setTranslateX(
 t.getSceneX() - textField.getLayoutX());
 textField.setTranslateY(
 t.getSceneY() - textField.getLayoutY());
 textField.setText(data.getPieValue() + "");
 textField.setOpacity(1.0);
 textField.setOnAction((event) -> { // User edit complete
 try {
 final Double num = Double.valueOf(
 textField.getText());
 data.setPieValue(num);
 resetTextField();
 final int currentColumn = yearChoice
 .getSelectionModel().getSelectedIndex();
 SwingUtilities.invokeLater(() -> {
 tableModel.setValueAt(num,
 currentRow,
 currentColumn);
 });
 } catch (NumberFormatException e) {
 // Just use the original number if the format is bad
 textField.setText(data.getPieValue() + "");
 }
 });
 } else { // Do the Pie Wedge animation
 resetTextField();
 Bounds b1 = data.getNode().getBoundsInLocal();
 double newX = (b1.getWidth()) / 2 + b1.getMinX();
 double newY = (b1.getHeight()) / 2 + b1.getMinY();
 label.setOpacity(0);
 label.textProperty().bind(percentBinding);
 data.getNode().setEffect(dropShadow);
 TranslateTransition tt = new TranslateTransition(
 Duration.millis(1500), data.getNode());
 tt.setByX(newX);
 tt.setByY(newY);
 tt.setAutoReverse(true);
 tt.setCycleCount(2);

 FadeTransition ft = new FadeTransition(
 Duration.millis(1500), label);
 ft.setToValue(1.0);
 ParallelTransition pt = new ParallelTransition(
 tt, ft);
 pt.play();
 }
 t.consume();
 });
 row++;
 } // end of for loop
 } // end of setupEventHandlers() method
}

Special Behaviors for Other Charts

In addition to the animation and editing added to the Pie Chart, we also added behaviors to the Bubble Chart (selected bubbles rotate using a ScaleTransition) and Bar Charts (selected bars fade in a label displaying the bar’s value). Since we use the same techniques for accessing the chart’s nodes and building transitions based on mouse click events, we leave it to the reader to peruse this code from the book’s download bundle.

15.5 Saving Charts

The SDA application also includes the ability to save any JavaFX chart window to a PNG file. This feature uses a NetBeans Platform conditionally-enabled action and the communication strategies discussed in integrating JavaFX (see “Communication Strategies” on page 261).

Figure 15.18 shows the Save Chart icon on the toolbar and the Save Chart menu item under the top-level File menu. These icons and menu items are enabled when any JavaFX chart window has focus. The chart image saved corresponds to the specific window that has focus. Selecting a non-JavaFX chart window (such as the TableDataEditor window) disables the Save Chart menu selections.

[image:]

Figure 15.18 Saving charts

Selecting the Save Chart icon or menu item displays a File Chooser dialog with the name of the chart window to be saved. For example, Figure 15.19 shows a File Chooser for the LineChart window. The File Chooser lets the user select the enclosing folder and file name for the resulting PNG file to be saved to disk.

[image:]

Figure 15.19 Invoking the FileChooser window

Here’s a summary of the steps to implement the Save Chart feature.

• Create a module called ChartUtilities with package name org.smartphone.chart.utilities. Make its package public so that other modules can set a module dependency on this module.

• Create ChartSaveCapability and add this interface to the ChartUtilities public package.

• Create conditionally-enabled action ChartSaveAction and specify ChartSaveCapability for its Cookie class.

• Implement the ChartSaveAction using context ChartSaveCapability.

• In each module with a JavaFX chart, add an implementation of ChartSaveCapability to the TopComponent’s Lookup. Invoke the JavaFX controller method getImage() to obtain a BufferedImage of the JavaFX scene graph. Use the appropriate communication strategies between the Swing TopComponent and the JavaFX controller.

ChartSaveCapability

Listing 15.27 shows the ChartSaveCapability interface in the ChartUtilities public package.

Listing 15.27 ChartSaveCapability.jave

Click here to view code image

package org.smartphone.chart.utilities;

import java.awt.image.BufferedImage;

public interface ChartSaveCapability {

public String getChartName();
 public BufferedImage getImage();

}

ChartSaveAction

In module ChartUtilities, add a new conditionally-enabled action called ChartSaveAction. Use ChartSaveCapability as the action’s Cookie class (see “Context-Aware Actions” on page 428 for a discussion of context-aware actions). Implement the actionPerformed() method, as shown in Listing 15.28.

The ChartSaveAction class includes annotations to configure the action in the toolbar and the top-level menu system. The ChartSaveAction constructor defines the ChartSaveCapability as its context. This context is provided by the selected TopComponent through the Global Selection Lookup.

To save the PNG file, the actionPerformed() method invokes the context getChartName() method for the chart name and the getImage() method for the BufferedImage.

The FileChooserBuilder (discussed next) provides a popup dialog that lets users choose a file. The Save Chart action creates the file if it doesn’t exist and prompts if overwriting is okay when the file does exist. Both DialogDisplayer and NotifyDescriptor configure these additional popup dialogs (see Chapter 11 for details on using the Dialogs API).

Listing 15.28 ChartSaveAction.java

Click here to view code image

@ActionID(
 category = "File",
 id = "org.smartphone.chart.utilities.ChartSaveAction"
)
@ActionRegistration(
 iconBase = "org/smartphone/chart/utilities/saveChartIcon.png",
 displayName = "#CTL_ChartSaveAction"
)
@ActionReferences({
 @ActionReference(path = "Menu/File", position = 1300),
 @ActionReference(path = "Toolbars/File", position = 200)
})
@Messages({
 "CTL_ChartSaveAction=Save Chart",
 "# {0} - windowname",
 "MSG_SAVE_DIALOG=Save {0}",
 "# {0} - Filename",
 "MSG_SaveFailed=Could not write to file {0}",
 "# {0} - Filename",
 "MSG_Overwrite=File {0} exists. Overwrite?"
})
public final class ChartSaveAction implements ActionListener {

 private final ChartSaveCapability context;
 private static final Logger logger = Logger.getLogger(
 ChartSaveAction.class.getName());

 public ChartSaveAction(ChartSaveCapability context) {
 this.context = context;
 }

 @Override
 public void actionPerformed(ActionEvent ev) {
 // use a FileChooser to get a user-supplied filename
 String title = "Save " + context.getChartName() + " to File";
 File f = new FileChooserBuilder(
 ChartSaveAction.class).setTitle(title).showSaveDialog();
 if (f != null) {
 if (!f.getAbsolutePath().endsWith(".png")) {
 f = new File(f.getAbsolutePath() + ".png");
 }
 try {
 if (!f.exists()) {
 // the file doesn't exist; create it
 if (!f.createNewFile()) {
 DialogDisplayer.getDefault().notify(
 new NotifyDescriptor.Message(
 Bundle.MSG_SaveFailed(f.getName())));
 return;
 }
 } else {
 // the file exists; asks if it's okay to overwrite
 Object userChose = DialogDisplayer.getDefault().notify(
 new NotifyDescriptor.Confirmation(
 Bundle.MSG_Overwrite(f.getName())));
 if (NotifyDescriptor.CANCEL_OPTION.equals(userChose)) {
 return;
 }
 }
 // Need getAbsoluteFile(),
 // or X.png and x.png are different on windows
 BufferedImage image = context.getImage();
 if (image != null) {
 ImageIO.write(image, "png", f.getAbsoluteFile());
 logger.log(Level.INFO, "Image saved to file {0}",
 f.getName());
 } else {
 logger.log(Level.WARNING, "Could not get Image from {0}",
 context.getChartName());
 }
 } catch (IOException ioe) {
 Exceptions.printStackTrace(ioe);
 }
 }
 }
}

FileChooserBuilder

FileChooserBuilder is a utility class in the File System API that works with JFileChooser. One nice feature is the ability to remember the last-used directory for a given file. You pass a string key or a class type (here we use the ChartSaveAction class type) to the constructor. The key is used to look up the most recently-used directory from any previous invocations with the same key.

FileChooserBuilder is structured using the “Builder” pattern (like StringBuilder, for example), so it’s possible to chain invocations that simplify the setup of a file chooser. We use the setTitle() method (to provide a title for the dialog) and, to complete the configuration, the showSaveDialog(), which returns the user-selected file as File. Other show dialog methods include showOpenDialog(), which also returns File, and showMultiOpenDialog(), which returns a File[] array and lets users select more than one file.

The return from any show dialog method is null if the user clicked Cancel or closed the dialog without selecting OK.

BufferedImage

BufferedImage is a subclass of AWT’s Image class, and ImageIO is a class containing static convenience methods that encode and decode image data. The following statements write the BufferedImage (an encoding of the JavaFX scene graph) to a file with a PNG format.

Click here to view code image

BufferedImage image = context.getImage();
 . . .
ImageIO.write(image, "png", f.getAbsoluteFile());

Implementing the ChartSaveCapability

Each module with a JavaFX chart TopComponent sets a module dependency on the ChartUtilities module and implements ChartSaveCapability. Listing 15.29 shows how we do this for the LineChartTopComponent. The other JavaFX Chart modules implement ChartSaveCapability the same way.

First, we use InstanceContent and AbstractLookup to add objects to the TopComponent’s Lookup. These objects are exposed to the Global Selection Lookup when the TopComponent has focus. (“Lookup as an Object Repository” on page 225 discusses the Global Selection Lookup.) We then add an implementation of ChartSaveCapability to the TopComponent Lookup.

The implementation of ChartSaveCapability requires overriding two methods. The getChartName() method returns “LineChart” here. The getImage() method invokes the JavaFX controller getImage() method. Here, we must use a countdown latch to wait for the getImage() method to finish executing, since the TopComponent invokes this method on the JavaFX Application Thread. When the method finishes executing, we return the BufferedImage object to the caller. (See Listing 15.7 on page 756 for the JavaFX controller’s getImage() method.)

Listing 15.29 LineChartTopComponent.java—Implement ChartSaveCapability

Click here to view code image

public final class LineChartTopComponent extends TopComponent {

 private static JFXPanel chartFxPanel;
 private LineChartController controller;
 private BufferedImage image = null;
 private final InstanceContent content = new InstanceContent();

 public LineChartTopComponent() {
 initComponents();
 setName(Bundle.CTL_LineChartTopComponent());
 setToolTipText(Bundle.HINT_LineChartTopComponent());
 // Connect our lookup to the rest of the system, so that
 // Save Chart action can access the image
 associateLookup(new AbstractLookup(content));
 setLayout(new BorderLayout());
 //Enable the Print action for the TopComponent:
 putClientProperty("print.printable", true);
 init();
 content.add(new ChartSaveCapabilityImpl());
 }
 . . .
 private class ChartSaveCapabilityImpl implements ChartSaveCapability {

 @Override
 public String getChartName() {
 return Bundle.CTL_LineChartAction();
 }

 @Override
 public BufferedImage getImage() {
 if (controller == null) {
 return null;
 }
 final CountDownLatch latch = new CountDownLatch(1);
 Platform.runLater(() -> {
 // get the JavaFX image from the controller
 // must be in JavaFX Application Thread
 try {
 image = controller.getImage();
 } finally {
 latch.countDown();
 }
 });
 try {
 latch.await();
 return image;
 } catch (InterruptedException ex) {
 Exceptions.printStackTrace(ex);
 return null;
 }
 }
 }
. . .
}

15.6 Key Point Summary

This chapter explores the JavaFX Charts API, which lets you visualize data within a NetBeans Platform application. The chapter shows how to use all of the JavaFX charts in the context of a modular system. Here are the key points in this chapter.

• The NetBeans Platform is well suited for a data visualization application with JavaFX charts. The NetBeans Platform modular architecture coupled with the flexibility of the JavaFX charts create compelling charting applications.

• The SmartPhone Data application presents sales data for smartphone companies over a four-year period and uses JavaFX charts to visualize the data. Each chart is configured in a separate module. The application integrates JavaFX charts with a Swing JTable presentation.

• The SmartPhone Data application uses the Global Lookup to access the chart data. This provides flexibility in obtaining alternate sources of data.

• The application extends Swing AbstractTableModel to provide additional methods applicable to JavaFX charts.

• Each chart module includes a TopComponent for display, an FXML file for JavaFX controls, and a JavaFX controller class.

• The chart modules use the communication strategies discussed in Chapter 6 to keep the Swing EDT and JavaFX Application threads properly managed.

• The JavaFX controller class is responsible for building the chart contents, legend, and title.

• The JavaFX controller class supplies a snapshot of the chart window with the scene graph’s root node snapshot() method. This returns a JavaFX Image object. The JavaFX Image is then converted to a BufferedImage with the static SwingFXUtils fromFXImage() method.

• The JavaFX controller class implements a TableModelListener that responds to changes in the displayed data. By default, JavaFX charts update their rendered chart display with animation.

• The JavaFX Chart class hierarchy includes an abstract Chart superclass, an abstract XYChart class for all two-axes charts, and a PieChart class. XYCharts include BarChart, AreaChart, LineChart, ScatterChart, StackedBarChart, StackedAreaChart, and BubbleChart.

• All XYCharts include an X Axis and Y Axis, which is either NumberAxis (numerical values) or CategoryAxis (String values). BubbleCharts require both axes to be NumberAxis types.

• The data type for XYCharts is an ObservableList of Series. Each Series, in turn, is an ObservableList of data items. A data item is an XYChart.Data<X, Y> generic type, where X corresponds to the X axis type (Number or String) and Y corresponds to the Y axis type (Number or String).

• The BubbleChart uses the data item’s extraValue property to set the radius of the rendered bubble.

• A chart’s displayed parts are JavaFX nodes. You can add effects, animations, and event handlers to these nodes.

• Charts use CSS for styling, and you can provide your own chart-specific style classes.

• LineChart, ScatterChart, AreaChart, BarChart, StackedBarChart, and StackedAreaChart are all configured the same way.

• Switch the X and Y axes types to convert a vertical BarChart to a horizontal BarChart.

• The PieChart data is an ObservableList of PieChart.Data items. Each data item represents a portion of a whole and includes a name StringProperty and a pieValue DoubleProperty.

• The SmartPhone Data application lets users select years with a JavaFX ComboBox control in the PieChart window. The selected year corresponds to a column in the TableModel.

• The SmartPhone Data application includes animation effects added for Pie Chart wedges and an in-place editor for changing the selected Pie wedge value.

• Each chart window implements a ChartSaveCapability and installs it in the TopComponent Lookup. This enables the Save Chart menu items when one of the chart windows has focus. The Save Chart feature saves the selected chart window to a PNG file.

16. Using Web Services

A RESTful web service is a common technology that lets remote clients interact with services. In this chapter, we’ll show you the steps to create and test RESTful web services and how to build a RESTful web service client in a NetBeans Platform application. Since web services should be accessed in background threads, we’ll show you how to build several JavaFX Service objects to handle multi-threading.

We’ll build JavaFX-integrated content with the JavaFX TableView control and provide another look at the JavaFX LineChart. We’ll also show you how to add JavaFX properties to JPA entity classes.

What You Will Learn

• Create RESTful web services from a database.

• Add JavaFX properties to JPA entity classes.

• Create a Java Application RESTful web service client for testing.

• Configure a Jersey client in a NetBeans Platform module.

• Use the JavaFX Service class for re-usable background tasks.

• Create JavaFX-integrated modules as web service clients.

16.1 RESTful Web Services and the NetBeans Platform

REST is an architectural style based on web standards and the HTTP protocol. Access to a RESTful web service is provided by resources. A RESTFul web service typically defines the base URI (resource) for the service and a set of operations (POST, GET, PUT, DELETE). Resources can have different representations, such as text, XML, JSON, or even user-defined.

Java supports RESTful web services with JAX-RS (Java API for RESTful Web Services), defined with the JSR 311 specification. Jersey is the reference implementation for JSR 311. The NetBEans IDE bundles Jersey with the Java EE download.

RESTful web services are scalable and flexible. The HTTP protocol is stateless, cacheable, and layered. The NetBeans IDE lets you build both RESTful web services and web service clients. Furthermore, the IDE includes registered RESTful web services from Amazon, Delicious, Flickr, Google, StrikeIron, Weatherbug, Zillow, and Zevents.

In this chapter, we’ll build a RESTful web service client in a NetBeans Platform application. Such a client must include the RESTful client code, support libraries, and any applicable entity classes. Furthermore, you’ll want to invoke web service calls within a background thread to keep the UI responsive.

The RESTful client application in this chapter is similar to our JavaFX Charts application that displays smartphone sales data (see “JavaFX Charts and the NetBeans Platform” on page 744). With this example, we’ll focus on the support that consumes sales data from the web service.

The SmartPhoneDataApp consists of two windows, as shown in Figure 16.1. The TableView window displays smartphone data with a JavaFX TableView control. The second window visualizes the same data with a JavaFX LineChart. The windows are in separate modules and have no dependencies on each other. They both form dependencies on the modules that provide access to the data via web services.

[image:]

Figure 16.1 Smartphone Data application using web services

The TableView window supports data filtering using the JavaFX FilteredList class. Figure 16.2 shows a user-supplied filter text String “apple” that limits the TableView window to Company names matching this text. You can filter by year as well.

[image:]

Figure 16.2 JavaFX TableView with sorting and filtering

TableView also supports column sorting by default. Our application disables this feature and instead pre-sorts the data by Company then Year using the JavaFX SortedList class.

The TableView window configures the Units Sold column to support editing, as shown in Figure 16.3. When the user supplies a new value and presses the Return or Enter key, the Update Salesdata web service is invoked in the background. Here, you see the new value 75.0 for year 2009. A progress indicator shows the background thread is active. Upon completion, the LineChart reflects the new value by animating the updated plot point to its new position on the chart.1

1. Despite the image in Figure 16.3, the chart doesn’t actually update until after the web service successfully completes.

[image:]

Figure 16.3 Updating using the underlying web service

Before we build this application, let’s take you through the steps to create the underlying database. We’ll also show you how to build the web application that provides the RESTful smartphone sales data web services.

16.2 Creating RESTful Web Services

In this section, you’ll create a database, populate the database with data, and create a web application with RESTful web services to manipulate the data. Fortunately, the NetBeans IDE generates much of this code for you.

Create Database

Using the NetBeans IDE built-in database server JavaDB, create a database with these steps.

1. Follow the steps in Chapter 10 to start the JavaDB Server and create a database. See “JavaDB Server and Database” on page 505 and “Create Database” on page 505.

2. In the Create Java DB Database dialog, specify phonedata for all the fields. JavaDB creates a database listed under the Databases node as

Click here to view code image

jdbc:derby://localhost:1527/phonedata [phonedata on PHONEDATA]

3. Right-click on this phonedata database node and select Connect.

4. Open the SmartPhoneDataSales.sql file in the book’s download bundle and connect to the PhoneData database as shown in Figure 16.4. Click the Run SQL icon in the SQL Editor window to execute the SQL. These SQL statements create the Salesdata and Company tables and populate them with data. Disregard any errors that say “‘DROP TABLE’ cannot be performed.”

[image:]

Figure 16.4 Select Database Connection dialog

5. You can re-execute this SQL file any time to restore the data. The ‘DROP TABLE’ errors do not appear with subsequent executions of this SQL file.

Create RESTful Web Service Application

You’ll now create a RESTful web service application.

NetBeans IDE Configuration
This project uses Java EE technologies and a bundled server (GlassFish), optionally included with the NetBeans IDE. Download and install these technologies if your configuration does not include them. You can add these modules with the IDE’s Plugin Manager (Tools | Plugins).

1. In the Projects window, select File | New Project. In the Choose Project dialog, under Categories, select Java Web and under Projects select Web Application.

2. NetBeans displays the Name and Location dialog. Specify SmartPhoneDataServer for the Project Name. Click the Browse button to choose the appropriate Project Location and click Next.

3. Figure 16.5 shows the Server and Settings dialog. Specify the Server (GlassFish Server). If you haven’t yet added a Server to the IDE, click the Add button to do that. Select Java EE 7 Web for the Java EE Version. Accept the default for the web application Context Path and click Finish.

[image:]

Figure 16.5 Specify the web application’s server and settings

(Note that if you click Next, you’ll be asked to specify a framework. Leave the frameworks unchecked and click Finish.)

With the SmartPhoneDataServer web application project created, you can now use the RESTful Services from Database wizard to generate entity classes and the RESTful web services. This wizard also generates the persistence unit.

RESTful Services from Database

Create the RESTful services with the NetBeans IDE wizard using these steps.

1. In the Projects window, right click on the SmartPhoneDataServer project and select New | Other. In the Choose File Type dialog, select Web Services under Categories and RESTful Web Services from Database under File Types, as shown in Figure 16.6. Click Next.

[image:]

Figure 16.6 Create RESTful web services from database wizard

2. NetBeans prompts you to configure the connection to the PhoneData database. After the database data source is configured, you’ll see the tables in the selection list. Choose both Company and Salesdata and click Add. The selected tables then move to the right side, as shown in Figure 16.7. Click Next.

[image:]

Figure 16.7 Select database tables

3. Supply a package name for the entity classes that NetBeans will generate. Here we use package com.server.smartphonedata.entities, as shown in Figure 16.8. Click Next.

[image:]

Figure 16.8 Configure entity classes

4. Review the configuration information for the generated classes and click Finish, as shown in Figure 16.9.

[image:]

Figure 16.9 Review generated classes configuration

5. NetBeans generates both the services and entity classes. Now deploy the application. In the Services window, expand Servers | GlassFish Server | Applications. You should see the web application SmartPhoneDataServer listed.

Entity Classes and JavaFX Properties

The RESTful services wizard generates the Company and Salesdata entity classes. These are Plain Old Java Objects (POJOs) with Java Persistence API (JPA) annotations. By default, the wizard annotates the POJO’s class fields. Thus, JPA uses the class fields to synchronize the entity’s state with the database.

Although JPA is not aware of JavaFX properties, you can implement JavaFX properties in entity classes and still maintain compatibility with JPA. Instead of using class fields to synchronize the entity’s state with the database, you tell JPA to use the Java property getters and setters. To do this, move the annotations from the class fields to the property getters. Since entity classes must define a consistent JPA access strategy, you can annotate either class fields or property getters (but you can’t mix the access strategy).

Once you move the annotations to the property getters, replace the class fields with corresponding JavaFX properties. You’ll then modify the accessors to use the JavaFX property and add a JavaFX property getter. Listing 16.1 shows these modifications for the Salesdata.java entity class in bold. Perform similar modifications to the Company.java entity class.

Listing 16.1 Salesdata.java—Entity Class and JavaFX Properties

Click here to view code image

@Entity
@Table(name = "SALESDATA")
@XmlRootElement
@NamedQueries({ . . . })
public class Salesdata implements Serializable {

private static final long serialVersionUID = 1L;

 private final IntegerProperty salesidProperty =
 new SimpleIntegerProperty();
 private final StringProperty salesyearProperty =
 new SimpleStringProperty();
 private final ObjectProperty<BigDecimal> unitsinmillionsProperty =
 new SimpleObjectProperty<>();
 private final ObjectProperty<Company> companyidProperty =
 new SimpleObjectProperty<>();

public Salesdata() {
 }

 public Salesdata(Integer salesid) {
 salesidProperty.set(salesid);
 }

 @Id
 @GeneratedValue(strategy = GenerationType.IDENTITY)
 @Basic(optional = false)
 @Column(name = "SALESID")
 public Integer getSalesid() {
 return salesidProperty.get();
 }

 public void setSalesid(Integer salesid) {
 salesidProperty.set(salesid);
 }

 public IntegerProperty salesidProperty() {
 return salesidProperty;
 }

 @Size(max = 10)
 @Column(name = "SALESYEAR")
 public String getSalesyear() {
 return salesyearProperty.get();
 }

 public void setSalesyear(String salesyear) {
 salesyearProperty.set(salesyear);
 }

 public StringProperty salesyearProperty() {
 return salesyearProperty;
 }

 @Column(name = "UNITSINMILLIONS")
 public BigDecimal getUnitsinmillions() {
 return unitsinmillionsProperty.get();
 }

 public void setUnitsinmillions(BigDecimal unitsinmillions) {
 unitsinmillionsProperty.set(unitsinmillions);
 }

 public ObjectProperty<BigDecimal> unitsinmillionsProperty() {
 return unitsinmillionsProperty;
 }

 @JoinColumn(name = "COMPANYID", referencedColumnName = "COMPANYID")
 @ManyToOne
 public Company getCompanyid() {
 return companyidProperty.get();
 }

 public void setCompanyid(Company companyid) {
 companyidProperty.set(companyid);
 }
 public ObjectProperty<Company> companyidProperty() {
 return companyidProperty;
 }

 @Override
 public int hashCode() {
 int hash = 0;
 hash += (getSalesid() != null ? getSalesid().hashCode() : 0);
 return hash;
 }

 @Override
 public boolean equals(Object object) {
 if (!(object instanceof Salesdata)) {
 return false;
 }
 Salesdata other = (Salesdata) object;
 return (getSalesid() != null || other.getSalesid() == null)
 && (getSalesid() == null
 || getSalesid().equals(other.getSalesid()));
 }

 @Override
 public String toString() {
 return "com.server.smartphonedata.entities.Salesdata[salesid="
 + getSalesid() + "]";
 }
}

Test the Web Services

Test your newly-created web services using the following steps.

1. In the Projects view, right click on the SmartPhoneDataServer project and select Test RESTful Web Services. NetBeans displays a dialog to configure the Test Client. Select the Web Test Client in Project radio button and click Browse.

2. Select the SmartPhoneDataServer project. NetBeans supplies the Target Folder path, as shown in Figure 16.10. Click OK.

[image:]

Figure 16.10 Configure the REST test client.

3. NetBeans brings up a browser and provides a testing menu for either Company or Salesdata. Here, we select the Salesdata service for GET() and select Test. Figure 16.11 shows a portion of the (successful) response displaying raw XML-formatted data.

[image:]

Figure 16.11 Testing the web service

16.3 A Java Application Web Service Client

Next, let’s build a RESTful web service client as a regular Java application. While it is not necessary to create this web service client, we recommend this step if you’re unfamiliar with working with RESTful web services. Once you’re able to successfully execute a Java application web service client, moving the pieces to a NetBeans Platform application is straightforward.

To successfully execute client code you must do the following.

• Deploy a web application and start its required database and enterprise servers.

• Include libraries to access RESTful resources.

• Include libraries to convert XML and/or JSON responses to POJOs.

• Include access to entity classes (POJOs).

Create Java Application

Create a Java application client to test the web services with these steps.

1. In the Projects view, select File | New Project. Under Categories select Java and under Projects select Java Application. Click Next.

2. In the Name and Location dialog, specify SmartPhoneDataClient for Project Name. Click the Browse button to choose an appropriate location for the project. Accept the defaults for the remaining fields and make sure option Create Main Class is selected. Click Finish.

Add RESTful Java Client

Generate RESTful Java client code and add the necessary libraries with these steps.

1. In the Projects view, expand SmartPhoneDataClient, right click on the Source Packages node, and select New | Other.

2. In the Choose File Type dialog, select Web Services under Categories and RESTful Java Client under File Types, as shown in Figure 16.12. Click Next.

[image:]

Figure 16.12 Generate RESTful a Java client

3. In the Name and Location dialog, specify CompanyJerseyClient for Class Name and select the smartphoneclient package (or provide another package name), as shown in Figure 16.13.

[image:]

Figure 16.13 Configure the RESTful Java client

4. Still in the same dialog, click Browse to select the REST resource. In the Select REST Resource dialog, expand the SmartPhoneDataServer node and select CompanyFacadeREST from the available choices, as shown in Figure 16.14 (the SmartPhoneDataServer web application must be deployed). Click OK.

[image:]

Figure 16.14 Select the REST resource

5. Now with the RESTful Java client configured, click Finish. NetBeans generates file CompanyJerseyClient.java in your Java Application project and adds support libraries to the project.

6. Repeat the above steps and add a RESTful Java client called SalesdataJerseyClient for the REST resource SalesdataFacadeREST.

Add JAR Files to Project

The client code (shown in Listing 16.2 on page 814) references entity classes. You can either copy these from the SmartPhoneDataServer project or include the SmartPhoneDataServer WAR file in the Java application web service client’s build. Here are the steps to include the WAR file.

1. In the Projects view, right click on SmartPhoneDataClient | Libraries and select Add JAR/Folder from the context menu.

2. In the dialog, navigate to the dist folder in project SmartPhoneDataServer and select the WAR file, as shown in Figure 16.15. Click Choose. NetBeans adds SmartPhoneDataServer.war to the list of Libraries.

[image:]

Figure 16.15 Select the WAR file

The test program also invokes JSON resources. When you generate a RESTful Java client, the libraries do not include a JSON MessageBodyReader provider. For JSON, use the third-party Genson Library available at http://owlike.github.io/genson/.

1. Click the Download link on the owlike.gethub.io/genson/ page and download the Genson library JAR file.

2. Follow the above steps and add the Genson library to your project.

Add Client Code to Main Program

Next, add the following code to the main() method in SmartPhoneClient.java, as shown in Listing 16.2. Right-click and select Fix Imports to resolve any errors.2

2. Note that NetBeans currently bundles Jersey 2.x, which provides different classes than Jersey 1.x.

Listing 16.2 SmartPhoneClient.java—main() Method

Click here to view code image

import com.server.smartphonedata.entities.Company;
import com.server.smartphonedata.entities.Salesdata;
import java.util.List;
import javax.ws.rs.core.GenericType;
import javax.ws.rs.core.Response;

public class SmartPhoneClient {

public static void main(String[] args) {
 CompanyJerseyClient client = new CompanyJerseyClient();
 Company company = client.find_XML(Company.class, "2");
 System.out.println("Company = " + company.getCompanyname());

Response response = client.find_XML(Response.class, "1");
 company = response.readEntity(Company.class);
 System.out.println("Company = " + company.getCompanyname());

company = client.find_JSON(Company.class, "2");
 System.out.println("Company = " + company.getCompanyname());

GenericType<List<Company>> gType1 =
 new GenericType<List<Company>>() {};
 response = client.findAll_XML(Response.class);
 List<Company> companies = response.readEntity(gType1);
 System.out.println("Companies = " + companies);

SalesdataJerseyClient client2 = new SalesdataJerseyClient();
 Salesdata data = client2.find_XML(Salesdata.class, "1");
 System.out.println("Salesdata = " + data.getSalesyear() + ", "
 + data.getCompanyid() + ", "
 + data.getUnitsinmillions());

GenericType<List<Salesdata>> gType2 =
 new GenericType<List<Salesdata>>() {};
 response = client2.findAll_XML(Response.class);
 List<Salesdata> dataList = response.readEntity(gType2);
 System.out.println("Data List = " + dataList);

// print out all the data
 for(Company c : companies) {
 System.out.println("Data for Company: " + c.getCompanyname());
 for (Salesdata dataItem : dataList) {
 if (dataItem.getCompanyid().getCompanyid().equals(
 c.getCompanyid())) {
 System.out.println("Year=" + dataItem.getSalesyear()
 + ", " + "Units Sold in Millions = "
 + dataItem.getUnitsinmillions());
 }
 }
 }

// test JSON
 System.out.println("Testing JSON");
 response = client2.findAll_JSON(Response.class);
 List<Salesdata> dataList2 = response.readEntity(gType2);
 System.out.println("Data List = " + dataList2);

// print out all the data
 for(Company c : companies) {
 System.out.println("Data for Company: " + c.getCompanyname());
 for (Salesdata dataItem : dataList2) {
 if (dataItem.getCompanyid().getCompanyid().equals(
 c.getCompanyid())) {
 System.out.println("Year=" + dataItem.getSalesyear()
 + ", " + "Units Sold in Millions = "
 + dataItem.getUnitsinmillions());
 }
 }
 }
 }
}

Run this Java RESTful client application. Listing 16.3 shows the truncated output.

Listing 16.3 SmartPhoneClient—Output

Click here to view code image

Company = RIM
Company = Nokia
Company = RIM
Companies = [com.server.smartphonedata.entities.Company[companyid=1],
com.server.smartphonedata.entities.Company[companyid=2],
com.server.smartphonedata.entities.Company[companyid=3],
com.server.smartphonedata.entities.Company[companyid=4],
. . . truncated . . .
Salesdata = 2008,
com.server.smartphonedata.entities.Company[companyid=1], 61.00
Data List = [com.server.smartphonedata.entities.Salesdata[salesid=1],
com.server.smartphonedata.entities.Salesdata[salesid=2],
com.server.smartphonedata.entities.Salesdata[salesid=3],
com.server.smartphonedata.entities.Salesdata[salesid=4],
. . . truncated . . .
Data for Company: Nokia
Year=2008, Units Sold in Millions = 61.00
Year=2009, Units Sold in Millions = 68.00
Year=2010, Units Sold in Millions = 100.10
Year=2011, Units Sold in Millions = 77.30
Data for Company: RIM
Year=2008, Units Sold in Millions = 23.10
Year=2009, Units Sold in Millions = 37.00
Year=2010, Units Sold in Millions = 48.80
Year=2011, Units Sold in Millions = 51.10
Data for Company: Apple
Year=2008, Units Sold in Millions = 11.40
Year=2009, Units Sold in Millions = 25.00
Year=2010, Units Sold in Millions = 47.50
Year=2011, Units Sold in Millions = 93.20
. . . truncated . . .
Testing JSON
Data List = [com.server.smartphonedata.entities.Salesdata[salesid=1],
com.server.smartphonedata.entities.Salesdata[salesid=2],
com.server.smartphonedata.entities.Salesdata[salesid=3],
. . . truncated . . .
Data for Company: Nokia
Year=2008, Units Sold in Millions = 61.0
Year=2009, Units Sold in Millions = 68.0
Year=2010, Units Sold in Millions = 100.1
Year=2011, Units Sold in Millions = 77.3
. . . truncated . . .

16.4 RESTful Web Services in a NetBeans Platform Application

Let’s now show you how to build a NetBeans Platform application that consumes our two RESTful web services. You’ll create this application with the following steps.

1. Build a new NetBeans Platform application called SmartPhoneDataApp and a new module for the RESTful web services clients with the name PhoneDataWebService.

2. Use the NetBeans IDE to generate the RESTful web service clients and add JAR files to the module. Create an @OnStart Runnable to test the client.

3. Create JavaFX Services to invoke the RESTful web service clients in a background thread. Create a service provider so that other modules can access these services in a loosely-coupled way.

4. Build a new module that displays the data using a JavaFX TableView control. Let the user edit and update the sales amount field.

5. Build a new module that displays the data using a JavaFX LineChart control. Update the chart with any changes in the underlying data.

Create a NetBeans Platform Application and Module

First, let’s create the application and the PhoneDataWebService module.

1. Create a new application called SmartPhoneDataApp using the NetBeans Platform New Project wizard.

2. Create a module and add it to the SmartPhoneDataApp application. Call the module PhoneDataWebService and provide code name com.asgteach.phonedata.webservice.

Generate RESTful Web Service Clients

Use the NetBeans IDE to generate RESTful Java clients as follows.

1. Expand PhoneDataWebService | Source Packages, right click and select New | RESTful Java Client.

2. Use the same steps to complete the wizard (see “Add RESTful Java Client” on page 811) to add the RESTful Java client to the PhoneDataWebService module. Figure 16.16 shows the Project View with the CompanyJerseyClient.java and SalesdataJerseyClient.java files added. Note that you must manually add JAR files to the module to resolve the source code errors.

[image:]

Figure 16.16 PhoneDataWebService module Projects view

Add Libraries to the Module

Add the JAR files to the PhoneDataWebService module as listed in Table 16.1.3 Right click the module name and select Properties then Libraries. In the dialog, select the Wrapped JARs tab and click Add JAR. You can add more than one JAR file at once. Figure 16.17 shows several JARs. Click OK to complete the process.

3. These JAR files may not always be in the listed locations, and the version numbers will certainly change as new releases of these libraries are distributed. (On Mac OS X, create a symbolic link to the directory that contains the NetBeans application to view the directory contents from the NetBeans IDE dialogs.)

[image:]

TABLE 16.1 RESTful Java Client Support Libraries

[image:]

Figure 16.17 PhoneDataWebService module’s added JARs

Adding a Library to a Module vs. Wrapped Library Modules
Note that we add libraries directly to a module here instead of creating Wrapped Library Modules (see “Create Wrapped Libraries” on page 502). Wrapped Library Modules allow other modules to add dependencies on these libraries. The packages of the added libraries are not exposed and therefore can only be used by a specific module (here, the PhoneDataWebService module). In general, use Wrapped Library Modules. However, when you know that libraries will be used exclusively by a single module, you can add them directly. This avoids cluttering your application with additional modules.

Figure 16.18 shows the PhoneDataWebService module after adding the required JAR files. Now you can fix imports in the CompanyJerseyClient.java and SalesdataJerseyClient.java files and any source code errors should resolve.

[image:]

Figure 16.18 PhoneDataWebService module’s added JARs

Create the @OnStart Runnable for Testing

You’re almost ready to test the application. Here are the steps to create a Java class for testing.

1. In the PhoneDataWebService module, add a module dependency on the Module System API.

2. In the PhoneDataWebService module Source Packages node, create a new Java package called com.asgteach.phonedata.entities.

3. Copy and Refactor | Paste classes Salesdata.java and Company.java from the SmartPhoneDataServer web application. (You can disregard the warnings associated with the @Entity annotation.)

4. Create a new Java class called ClientTest.java that implements Runnable. Add the @OnStart annotation and implement the run() method as shown in Listing 16.4. Include the test code from the SmartPhoneClient project’s main() method (Listing 16.2 on page 814).

Listing 16.4 ClientTest—run() Method

Click here to view code image

package com.asgteach.phonedata.webservice;

import com.asgteach.phonedata.entities.Company;
import com.asgteach.phonedata.entities.Salesdata;
import java.util.List;
import javax.ws.rs.core.GenericType;
import javax.ws.rs.core.Response;
import org.openide.modules.OnStart;

@OnStart
public final class ClientTest implements Runnable {

 @Override
 public void run() {
 CompanyJerseyClient client = new CompanyJerseyClient();
 Company company = client.find_XML(Company.class, "2");
 System.out.println("Company = " + company.getCompanyname());

 . . . remaining test code omitted, see Listing 16.2 on page 814 . . .

}
}

5. Run the SmartPhoneDataApp. The application will execute and create an empty window frame. In the NetBeans IDE Output window, the same test output should appear as shown in Listing 16.3 on page 816.

Now that you have a working NetBeans Platform application client module, you can add JavaFX services and windows with integrated JavaFX content.

Application Overview

Figure 16.19 shows the modules in the SmartPhoneDataApp. The PhoneDataWebService module contains the entity classes and the RESTful web service client code. This module also contains a Java interface called PhoneDataShare, which defines how other modules can access the smartphone data. In the next section, you’ll add JavaFX Services to this module. These classes provide access to the RESTful services in a background thread.

[image:]

Figure 16.19 SmartPhoneDataApp modules

The CoreTableView module implements the JavaFX TableView window (see Figure 16.1 on page 801) and the LineChart module implements the JavaFX LineChart window. Finally, the @ServiceProvider module implements the PhoneDataShare interface.

Using JavaFX Services

Chapter 4 describes the JavaFX Worker interface, which lets you create background tasks and services (see “JavaFX Background Tasks” on page 176). Here we’ll use the Service class to create a reusable implementation of the Worker interface for background execution.

Recall that Service (like Task) is aware of the JavaFX Application Thread. Therefore, all Service methods and state must be invoked from the JavaFX Application Thread. However, you can initially configure and start a service from any thread.

Service includes the same Worker.State values as Task (see Table 4.1 on page 176) as well as the Worker JavaFX Properties and Task Update Methods (see Table 4.2 on page 177 and Table 4.3 on page 178).

Let’s show you how to define a Service first. Then we’ll show you code that uses it.

Listing 16.5 shows the GetSmartPhoneSalesService class, which extends Service. Here, the generic type for Service is ObservableList<Salesdata>, which is also the return type for a successful completion of this Service.

When you extend Service, you must override the protected createTask() method. This method builds a Task object and overrides the call() method. Here, call() invokes the findAll_XML() method in the SalesdataJerseyClient RESTful Java client. By providing GenericType, we transform the Response object with readEntity() into a List<Salesdata>. We then create the ObservableList with the FXCollections observableArrayList() method.

Listing 16.5 GetSmartPhoneSalesService.java

Click here to view code image

public class GetSmartPhoneSalesService extends
 Service<ObservableList<Salesdata>> {
 private static final Logger logger =
 Logger.getLogger(GetSmartPhoneSalesService.class.getName());
 private ObservableList<Salesdata> salesdata =
 FXCollections.observableArrayList();

 @Override
 protected Task<ObservableList<Salesdata>> createTask() {

 return new Task<ObservableList<Salesdata>>() {
 private final SalesdataJerseyClient client1 =
 new SalesdataJerseyClient();

 @Override
 protected ObservableList<Salesdata> call() throws Exception {
 logger.log(Level.INFO, "GetSmartPhoneSalesTask called.");
 Response response = client1.findAll_XML(Response.class);
 GenericType<List<Salesdata>> genericType =
 new GenericType<List<Salesdata>>() {};
 int status = response.getStatus();
 if (status != Response.Status.OK.getStatusCode()) {
 logger.log(Level.WARNING, "Bad status {0}",
 response.getStatusInfo().getReasonPhrase());
 throw new Exception("Bad status: " + status
 + " for web service call");
 }
 // Returns an ArrayList of SalesData from the web service
 List<Salesdata> data = (response.readEntity(genericType));
 salesdata = FXCollections.observableArrayList(data);
 return salesdata;
 }
 };
 }
}

Listing 16.6 shows how to use this service. The UseService class instantiates the GetSmartPhoneSalesService service (salesService) and defines public method refreshData() with an optional ProgressIndicator control. The refreshData() method, in turn, invokes the private getDataInBackground() method. Inside this method, the salesService service is started. Note that you must reset the service each time it completes in order to reuse the service.

UseService also defines two event handlers, setOnSucceeded() and setOnFailed(). The setOnSucceeded() event handler provides access to the underlying Task’s return object with t.getSource().getValue(), where t is WorkerStateEvent.

Note that the event handlers run in the JavaFX Application Thread. Therefore, we can safely update visual controls (such as the ProgressIndicator) and safely manipulate JavaFX properties. Here, the setOnSucceeded() event handler sets the underlyingData ListProperty. A JavaFX TableView control can safely bind to this property.

Listing 16.6 UseService Example

Click here to view code image

public class UseService {

 private final ListProperty<Salesdata> underlyingData = new
 SimpleListProperty<Salesdata>(FXCollections.observableArrayList());

 private final GetSmartPhoneSalesService salesService = new
 GetSmartPhoneSalesService();

 public void refreshData(ProgressIndicator progressIndicator) {
 getDataInBackground(progressIndicator);
 }

 @SuppressWarnings("unchecked")
 private void getDataInBackground(ProgressIndicator progressIndicator) {
 // This service can be invoked multiple times
 salesService.setOnSucceeded((WorkerStateEvent t) -> {
 logger.log(Level.INFO, "sales data Done.");
 if (progressIndicator != null) {
 progressIndicator.setVisible(false);
 }
 underlyingData.set((ObservableList<Salesdata>)
 t.getSource().getValue());
 }
 });
 salesService.setOnFailed((WorkerStateEvent t) -> {
 if (progressIndicator != null) {
 progressIndicator.setVisible(false);
 }
 logger.log(Level.WARNING, "Failed: Read Salesdata");
 });
 // only start the service if it's ready
 if (salesService.getState() == Worker.State.SUCCEEDED) {
 salesService.reset();
 }
 if (salesService.getState() == Worker.State.READY) {
 if (progressIndicator != null) {
 progressIndicator.setVisible(true);
 }
 salesService.start();
 }
 }
}

Add JavaFX Service Classes to the Module

Here are the steps to add the JavaFX Service classes to the PhoneDataWebService module.

1. Create a new Java package in the PhoneDataWebService module called com.asgteach.phonedata.services and add the following Service classes to the package.

• GetSmartPhoneSalesService.java—a service that accesses the smartphone sales data via a RESTful web service client

• GetCompanyDataService.java—a service that accesses the smartphone companies via a RESTful web service client

• UpdateSalesItemService.java—a service that updates a single Salesdata item via a RESTful web service client

2. Make the com.asgteach.com.phonedata.services package public.

Listing 16.5 on page 822 shows the code for GetSmartPhoneSalesService. Using a similar approach, Listing 16.7 shows GetCompanyDataService.java. Here, the Task’s call() method invokes the findAll_XML() method of the RESTful Java client, CompanyJerseyClient.

Listing 16.7 GetCompanyDataService.java

Click here to view code image

public class GetCompanyDataService extends Service<ObservableList<Company>> {
 private static final Logger logger =
 Logger.getLogger(GetCompanyDataService.class.getName());

@Override
 protected Task<ObservableList<Company>> createTask() {
 return new Task<ObservableList<Company>>() {

 private final CompanyJerseyClient client1 =
 new CompanyJerseyClient();

 @Override
 protected ObservableList<Company> call() throws Exception {
 Response response = client1.findAll_XML(Response.class);
 GenericType<List<Company>> genericType =
 new GenericType<List<Company>>() {};
 int status = response.getStatus();
 if (status != Response.Status.OK.getStatusCode()) {
 logger.log(Level.WARNING, "Bad status {0}",
 response.getStatusInfo().getReasonPhrase());
 throw new Exception("Bad status: " + status
 + " for web service call");
 }

 // Returns an ArrayList of Companies from the web service
 List<Company> data = (response.readEntity(genericType));
 ObservableList<Company> companyList =
 FXCollections.observableArrayList(data);
 return companyList;
 }
 };
 }
}

Listing 16.8 shows the code for UpdateSalesItemService, which invokes the Salesdata web service for edit (update) using the data stored in the salesdata class variable. The createTask() method accesses the salesdata variable in the JavaFX Application Thread before creating the Task. The call() method invokes the edit_XML() SalesdataJerseyClient method. To reuse this service, the caller invokes the setSalesdata() method with the new data before calling the UpdateSalesItemService start() method.

Listing 16.8 UpdateSalesItemService.java

Click here to view code image

public class UpdateSalesItemService extends Service<Salesdata> {

private Salesdata salesdata;

public Salesdata getSalesdata() {
 return salesdata;
 }

 public void setSalesdata(Salesdata salesdata) {
 this.salesdata = salesdata;
 }

 @Override
 protected Task<Salesdata> createTask() {
 final Salesdata _salesdata = getSalesdata();
 return new Task<Salesdata>() {
 private final SalesdataJerseyClient client1 =
 new SalesdataJerseyClient();

 @Override
 protected Salesdata call() throws Exception {
 client1.edit_XML(_salesdata,
 _salesdata.getSalesid().toString());
 return _salesdata;
 }
 };
 }
}

Implementing a RESTful Client Service Provider

The windows in the SmartPhoneDataApp display the data with a TableView control and in a JavaFX Line Chart. These modules use a Service Provider to access the data. In this section, you’ll perform the steps to configure this Service Provider.

• Create package com.asgteach.phonedata.share in the PhoneDataWebService module and make this package public.

• Create the PhoneDataShare interface in package com.asgteach.phonedata.share.

• Create the PhoneDataShareImpl module. Add a dependency to the PhoneDataWebService module and the Lookup API.

• Create class PhoneDataShareImpl and implement PhoneDataShare.

Listing 16.9 shows the PhoneDataShare interface, which you add to the PhoneDataWebService module.

The refreshData() and updateSales() methods include a ProgressIndicator control. This is useful for keeping the user informed when a background task is currently executing. Note that a caller can supply a null value when not using a ProgressIndicator. The implementation code must therefore check for a null-value ProgressIndicator.

Listing 16.9 PhoneDataShare Interface

Click here to view code image

public interface PhoneDataShare {
 // Salesdata
 public abstract ListProperty<Salesdata> theDataProperty();
 // Company
 public abstract ListProperty<Company> companyNamesProperty();
 // year as a String
 public abstract ListProperty<String> categoryListProperty();
 public abstract String getDataDescription();
 public abstract String getNameDescription();
 public abstract String getTitle();
 public abstract double getTickUnit();
 public abstract void refreshData(ProgressIndicator progressIndicator);
 public abstract void updateSales(Salesdata salesdata,
 ProgressIndicator progressIndicator);
}

Listing 16.10 shows the PhoneDataShareImpl class, which you add to the PhoneDataShareImpl module. This class creates several JavaFX ListProperty objects to manage the ObservableLists for the Salesdata, Company names, and Category names.

The class also instantiates the JavaFX Service classes we described in the previous section: GetSmartPhoneSalesService, GetCompanyDataService, and UpdateSalesItemService. The services manipulate the ListProperty objects.

Listing 16.10 PhoneDataShareImpl—Implement PhoneDataShare

Click here to view code image

@ServiceProvider(service = PhoneDataShare.class)
public class PhoneDataShareImpl implements PhoneDataShare {

private final ListProperty<Salesdata> underlyingData = new
 SimpleListProperty<>(FXCollections.observableArrayList());
 private final ListProperty<Company> companyDataNames = new
 SimpleListProperty<>(FXCollections.observableArrayList());
 private final ListProperty<String> categoryDataNames = new
 SimpleListProperty<>(FXCollections.observableArrayList());
 private static final String dataDescription = "Units Sold in Millions";
 private final String nameDescription = "Year";
 private final String title = "Smart Phone Sales";

private final GetSmartPhoneSalesService salesService =
 new GetSmartPhoneSalesService();
 private final GetCompanyDataService companyService =
 new GetCompanyDataService();
 private final UpdateSalesItemService update = new UpdateSalesItemService();

private static final Logger logger
 = Logger.getLogger(PhoneDataShareImpl.class.getName());

 public PhoneDataShareImpl() {
 getDataInBackground(null);
 getCompanyDataInBackground();
 }

 @Override
 public ListProperty<Company> companyNamesProperty() {
 return companyDataNames;
 }

 @Override
 public ListProperty<String> categoryListProperty() {
 return categoryDataNames;
 }

 @Override
 public String getDataDescription() {
 return dataDescription;
 }

 @Override
 public String getNameDescription() {
 return nameDescription;
 }

 @Override
 public String getTitle() {
 return title;
 }

 @Override
 public double getTickUnit() {
 return 1000;
 }

 @Override
 public void refreshData(ProgressIndicator progressIndicator) {
 getDataInBackground(progressIndicator);
 }

 @Override
 public void updateSales(Salesdata salesdata,
 ProgressIndicator progressIndicator) {
 updateSalesDataInBackground(salesdata, progressIndicator);
 }

 @Override
 public ListProperty<Salesdata> theDataProperty() {
 return underlyingData;
 }

 @SuppressWarnings("unchecked")
 private void getCompanyDataInBackground() {
 // This service is only invoked once
 companyService.setOnSucceeded((WorkerStateEvent t) -> {
 companyDataNames.set(
 (ObservableList<Company>) t.getSource().getValue());
 });
 companyService.setOnFailed((WorkerStateEvent t) -> {
 logger.log(Level.WARNING, "Failed: Read Company data.");
 });
 companyService.start();
 }

 private void updateSalesDataInBackground(final Salesdata newSalesdata,
 ProgressIndicator progress) {
 // This service can be invoked multiple times
 update.setOnSucceeded((WorkerStateEvent t) -> {
 if (progress != null) {
 progress.setVisible(false);
 }
 // this will cause 2 separate change events: a remove and then an add
 underlyingData.remove(newSalesdata);
 underlyingData.add(newSalesdata);
 });
 update.setOnFailed((WorkerStateEvent t) -> {
 logger.log(Level.WARNING, "Failed: Salesdata UPDATED for {0}",
 newSalesdata.getCompanyid().getCompanyname());
 if (progress != null) {
 progress.setVisible(false);
 }
 });
 // only start the service if it's ready
 if (update.getState() == Worker.State.SUCCEEDED) {
 update.reset();
 }
 if (update.getState() == Worker.State.READY) {
 if (progress != null) {
 progress.setVisible(true);
 }
 update.setSalesdata(newSalesdata);
 update.start();
 }
 }

 @SuppressWarnings("unchecked")
 private void getDataInBackground(ProgressIndicator progressIndicator) {
 // This service can be invoked multiple times
 salesService.setOnSucceeded((WorkerStateEvent t) -> {
 if (progressIndicator != null) {
 progressIndicator.setVisible(false);
 }
 underlyingData.set(
 (ObservableList<Salesdata>) t.getSource().getValue());
 for (Salesdata sales : underlyingData.get()) {
 if (!categoryDataNames.contains(sales.getSalesyear())) {
 categoryDataNames.add(sales.getSalesyear());
 }
 }
 });
 salesService.setOnFailed((WorkerStateEvent t) -> {
 if (progressIndicator != null) {
 progressIndicator.setVisible(false);
 }
 logger.log(Level.WARNING, "Failed: Read Salesdata");
 });
 // only start the service if it's ready
 if (salesService.getState() == Worker.State.SUCCEEDED) {
 salesService.reset();
 }
 if (salesService.getState() == Worker.State.READY) {
 if (progressIndicator != null) {
 progressIndicator.setVisible(true);
 }
 salesService.start();
 }
 }
}

There is a subtle relationship between the Services and the JavaFX ListProperty objects. When a client looks up PhoneDataShare, the PhoneDataShareImpl constructor code (invoked once, since this class is a singleton) calls the getDataInBackground() method. Because this method invokes the web services in a background thread, the data may not yet be installed in the ListProperty object returned by theDataProperty() method. However, since we use JavaFX properties, the client will be notified with either a bind expression or a listener when the ListProperty changes. We’ll show you how to do this with JavaFX UI code in the upcoming sections.

JavaFX TableView

The SmartPhoneDataApp includes a TableView window implemented with the CoreTableView module (see Figure 16.19 on page 822 for a diagram of the applications modules). Here is a summary of the steps you’ll follow to build this module.

• Create module CoreTableView with code name com.asgteach.coretableview.

• Add a new window (TopComponent) to the module in the Explorer position with name TableView. This creates file TableViewTopComponent.java.

• Set a dependency on the PhoneDataWebService module and the Lookup API.

• This module includes integrated JavaFX content, which you structure using FXML and JavaFX as described in “Integrating with the NetBeans Platform” on page 265. Add the FXML markup with file TableView.fxml and its controller class with file TableViewController.java.

Let’s first explore the JavaFX TableView control and then we’ll examine the TableView.fxml and TableViewController.java files in detail.

JavaFX TableView Control

Figure 16.20 shows the TableView window, which includes a JavaFX TableView control, a title, a TextField control for filtering table data, and a Button control to refresh the data.

[image:]

Figure 16.20 TableView window

The JavaFX TableView control is a general purpose visualization of tabular data. Minimally, you instantiate the control with an ObservableList. The generic type of the ObservableList matches the generic type for the TableView. For example, the following code instantiates a TableView of Salesdata objects and invokes the TableView setItems() method to set its data. Note that when data in the ObservableList changes, the TableView automatically updates.

Click here to view code image

TableView<Salesdata> tableview = new TableView<>();
 ObservableList<Salesdat> theList = getTheListSomeHow();
 tableview.setItems(theList);

To define columns in a TableView control, use the TableColumn class. If the data matches a JavaFX property in the TableView’s generic type, the TableColumn configuration is straightforward. For example, here we define a String TableColumn for year data and set the heading to “Year.” We specify that the value is from the salesyear property using the setCellValueFactory() method.

Click here to view code image

TableColumn<Salesdata, String> colYear = new TableColumn<>("Year");
 colYear.setCellValueFactory(
 new PropertyValueFactory<Salesdata, String>("salesyear"));

The Company column is trickier, since a company name is not a direct property. Instead, we get the company name from the companyid property with the getCompanynameProperty() method in a JavaFX Callback construct, as follows.

Click here to view code image

 TableColumn<Salesdata, String> colCompany = new TableColumn<>("Company");
 colCompany.setCellValueFactory(new Callback<CellDataFeatures<Salesdata,
 String>, ObservableValue<String>>() {
 @Override
 public ObservableValue<String> call(CellDataFeatures<Salesdata,
 String> p) {
 // p.getValue() returns the Salesdata instance for a row
 return p.getValue().getCompanyid().companynameProperty();
 }
 });

Since Callback is a functional interface, we can use a lambda expression, as follows (the return statement is implied).

Click here to view code image

colCompany.setCellValueFactory((TableColumn.CellDataFeatures
 <Salesdata, String> p) ->
 p.getValue().getCompanyid().companynameProperty());

Similarly, we define the colUnitsSold TableColumn with a BigDecimal type set from the unitsinmillions property in a JavaFX Callback construct, as follows.

Click here to view code image

TableColumn<Salesdata, BigDecimal> colUnitsSold
 = new TableColumn<>("Units Sold");
 colUnitsSold.setCellValueFactory((TableColumn.CellDataFeatures
 <Salesdata, BigDecimal> cell) ->
 cell.getValue().unitsinmillionsProperty());

Finally, here’s how you add columns to the TableView control.

Click here to view code image

tableview.getColumns().setAll(colCompany, colYear, colUnitsSold);

Build the JavaFX TableView UI

With the basics of TableView explored, let’s show you how to use TableView to display and edit the Salesdata obtained from the RESTful web services client. We’ll examine the FXML markup first.

Listing 16.11 shows TableView.fxml, the FXML for this window. Let’s point out a few interesting constructs.

• The "%key" notation references a key in a Resource file (a properties file) containing key value pairs for text. This makes internationalizing applications straightforward. (See “Application Internationalization” on page 868 for how to adapt a NetBeans Platform application to different languages and locales.)

• We define all our JavaFX controls in this FXML file. This means you don’t need to create the controls in Java code. You also don’t need to add the TableColumns to the TableView, since the FXML Loader performs this step.

• Although FXML definitions do not include generic notation, you still use generics with the Java object declaration in the controller class (for example, see the TableView declaration in Listing 16.12 on page 836).

• Each TableColumn disables sorting, and the colUnitsSold TableColumn enables editing.

• The "#refreshData" notation defines the Button’s onAction event handler. This references the refreshData() method in the TableViewController class.

• The ProgressIndicator control is set to indeterminate (-1) and initially not visible. Its visibility is controlled by the JavaFX Service classes.

Listing 16.11 TableView.fxml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>

<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.geometry.Insets?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.collections.*?>

<BorderPane fx:controller="com.asgteach.coretableview.TableViewController"
 xmlns:fx="http://javafx.com/fxml">
 <top>
 <GridPane alignment="center" hgap="10" vgap="15">
 <padding>
 <Insets top="10" right="10" bottom="10" left="10"/>
 </padding>
 <Label text="%smartphonetitle"
 GridPane.columnIndex="0"
 GridPane.rowIndex="0"
 GridPane.halignment="center"
 style="-fx-font: NORMAL 20 Tahoma;"/>
 </GridPane>
 </top>
 <center>
 <GridPane alignment="center" hgap="10" vgap="15">
 <padding>
 <Insets top="10" right="10" bottom="10" left="10"/>
 </padding>
 <TableView fx:id="tableview"
 editable="true"
 GridPane.columnIndex="0"
 GridPane.rowIndex="0" >
 <columns>
 <TableColumn fx:id="colCompany" text="%company"
 sortable="false" minWidth="150" />
 <TableColumn fx:id="colYear" text="%year"
 sortable="false" minWidth="150" />
 <TableColumn fx:id="colUnitsSold" text="%unitsSold"
 editable="true" sortable="false"
 minWidth="175" />
 </columns>
 </TableView>
 </GridPane>
 </center>
 <bottom>
 <GridPane alignment="center" hgap="10" vgap="15">
 <padding>
 <Insets top="10" right="10" bottom="10" left="10"/>
 </padding>
 <VBox spacing="10" alignment="BOTTOM_CENTER"
 GridPane.columnIndex="0"
 GridPane.rowIndex="0">
 <HBox spacing="10" alignment="CENTER" >
 <Label text="Filter Data" />
 <TextField fx:id="filterText" prefColumnCount="20"
 promptText="%filterPrompt" />
 </HBox>
 <Button text="%refreshData" onAction="#refreshData" />
 <Label fx:id="displayMessage" />
 <ProgressIndicator fx:id="progress"
 visible="false"
 progress="-1" />
 </VBox>
 </GridPane>
 </bottom>
</BorderPane>

TableViewController Class

Now let’s show you the TableViewController class, which we’ll present in several parts. Listing 16.12 shows the @FXML annotations and class fields. Note that the TableView and TableColumn fields have generic types.

The other fields include a logger and a PhoneDataShare reference (which is instantiated via the Global Lookup). To both filter and sort the data, we also define a FilteredList, SortedList, and Comparator. These are all initialized in the initialize() method.

Listing 16.12 TableViewController—Class Fields

Click here to view code image

public class TableViewController implements Initializable {

@FXML
 private TableView<Salesdata> tableview;
 // Columns
 @FXML
 private TableColumn<Salesdata, String> colCompany;
 @FXML
 private TableColumn<Salesdata, String> colYear;
 @FXML
 private TableColumn<Salesdata, BigDecimal> colUnitsSold;
 @FXML
 private ProgressIndicator progress;
 @FXML
 private Label displayMessage;
 @FXML
 private TextField filterText;

private static final Logger logger
 = Logger.getLogger(TableViewController.class.getName());
 private PhoneDataShare share = null;
 FilteredList<Salesdata> filteredData = null;
 SortedList<Salesdata> sortedData = null;
 Comparator<? super Salesdata> comparatorSalesdata = null;
. . .
}

Listing 16.13 shows the first part of the initialize() method. Recall that the FXML Loader invokes this method after instantiating all the declared objects in the FXML markup and the controller class.

First, we look up a Service Provider for PhoneDataShare. This is how we invoke the web service calls to access the data and update the persistent store when the user edits the table.

Next, we configure the TableColumns using the setCellValueFactory() method to configure all three columns. For the Units Sold column, we invoke the setCellFactory() method to create a TextField control for editing. We also define a converter to convert values between BigDecimal and String during edits.

The onEditCommit() event handler (defined for the Units Sold column) updates the edited data in the table and also invokes the PhoneDataShare service provider updateSales() method. This method eventually invokes the JavaFX Service previously defined with the new data and the ProgressIndicator control (progress). The updated Salesdata value is available through the CellEditEvent object t.

If the conversion between String and BigDecimal fails, the converter returns null. In this case, the handler leaves the old data intact and displays an error message.

Listing 16.13 TableViewController—initialize() Method Part I

Click here to view code image

 @Override
 public void initialize(final URL url, final ResourceBundle resources) {
 share = Lookup.getDefault().lookup(PhoneDataShare.class);
 if (share == null) {
 logger.log(Level.SEVERE, "Cannot get PhoneDataShare object");
 LifecycleManager.getDefault().exit();
 }

 // Configure the Columns
 colCompany.setCellValueFactory((TableColumn.CellDataFeatures
 <Salesdata, String> p) ->
 p.getValue().getCompanyid().companynameProperty());

 colYear.setCellValueFactory(new PropertyValueFactory<Salesdata,
 String>("salesyear"));

 colUnitsSold.setCellValueFactory((TableColumn.CellDataFeatures
 <Salesdata, BigDecimal> cell) ->
 cell.getValue().unitsinmillionsProperty());
 colUnitsSold.setCellFactory(TextFieldTableCell.
 <Salesdata, BigDecimal>forTableColumn(
 new DecimalConverter()));

 // Configure editing for the UnitsSold column
 colUnitsSold.setOnEditCommit(
 (TableColumn.CellEditEvent<Salesdata, BigDecimal> t) -> {
 // If the new value is null, use the old value
 BigDecimal bd;
 if (t.getNewValue() != null) { // good value
 bd = t.getNewValue();
 t.getRowValue().setUnitsinmillions(bd);
 displayMessage.setText("");
 displayMessage.setStyle("-fx-text-fill: black;");
 share.updateSales(t.getRowValue(), progress);
 } else { // bad conversion
 bd = t.getOldValue();
 t.getRowValue().setUnitsinmillions(bd);
 // force a refresh
 t.getTableColumn().setVisible(false);
 t.getTableColumn().setVisible(true);
 displayMessage.setStyle("-fx-text-fill: red;");
 displayMessage.setText(Bundle.salesAmountBadFormat());
 }
 });
. . .

Listing 16.14 shows you how to filter and sort the ObservableList displayed in the TableView control. First, we define a comparator for sorting. The Salesdata list is sorted first by company name and then by year.

Next, we define a change listener for the ListProperty returned by the PhoneDataShare theDataProperty() method. The change listener builds a FilteredList based on the user-provided text String and a SortedList based on the previously defined comparator. The FilteredList predicate converts the filter target to lowercase and compares first the company name, then the year for a match. The predicate returns true for a match (or if the filter TextField text is empty).

Next, we define a change listener for the filterText TextField’s textProperty. This change listener is invoked for each key stroke and dynamically reapplies the filter.

Listing 16.14 TableViewController—initialize() Method Part II

Click here to view code image

@Override
 public void initialize(final URL url, final ResourceBundle resources) {
 , , ,

 // Define the Comparator for Sorting
 comparatorSalesdata = (Salesdata o1, Salesdata o2) -> {
 // First compare the company name, then compare the year
 int result = o1.getCompanyid().getCompanyname().compareToIgnoreCase(
 o2.getCompanyid().getCompanyname());
 if (result == 0) {
 return o1.getSalesyear().compareTo(o2.getSalesyear());
 }
 return result;
 };

 // When the underlying data change, reset the filtering and sorting
 share.theDataProperty().addListener(
 (ListChangeListener.Change<? extends Salesdata> change) -> {
 filteredData = new FilteredList<>(
 share.theDataProperty().get(), salesdata -> {
 // Reapply filter when data changes
 String newValue = filterText.getText();
 // If filter text is empty, display all data
 if (newValue == null || newValue.isEmpty()) {
 return true;
 }
 // Compare company name and year with filter text
 String lowerCaseFilter = newValue.toLowerCase();
 if (salesdata.getCompanyid().getCompanyname().toLowerCase()
 .contains(lowerCaseFilter)) {
 return true; // Filter matches company
 } else if (salesdata.getSalesyear().contains(lowerCaseFilter)) {
 return true; // Filter matches sales year
 }
 return false; // No match
 });
 sortedData = new SortedList<>(filteredData);
 sortedData.setComparator(comparatorSalesdata);
 tableview.setItems(sortedData);
 });

 // Reapply the filter when the user supplies a new filter text
 filterText.textProperty().addListener(
 (observable, oldValue, newValue) -> {
 filteredData.setPredicate(salesdata -> {
 // If filter text is empty, display all data.
 if (newValue == null || newValue.isEmpty()) {
 return true;
 }
 // Compare company name and year with filter text.
 String lowerCaseFilter = newValue.toLowerCase();

if (salesdata.getCompanyid().getCompanyname().toLowerCase()
 .contains(lowerCaseFilter)) {
 return true;
 } else if (salesdata.getSalesyear().contains(lowerCaseFilter)) {
 return true;
 }
 return false;
 });
 });
 }

Listing 16.15 shows the DecimalConverter that performs conversions for String and BigDecimal in the TableColumn’s in-place editor. You override both the toString() and fromString() methods. The NumberFormat class is sensitive to the locale because we invoke Locale.getDefault() with the getInstance() method.

Listing 16.15 TableViewController—DecimalConverter

Click here to view code image

private class DecimalConverter extends StringConverter<BigDecimal> {

 NumberFormat nf = NumberFormat.getInstance(Locale.getDefault());

public DecimalConverter() {
 nf.setMaximumFractionDigits(2);
 nf.setMinimumFractionDigits(1);
 }

 @Override
 public String toString(BigDecimal t) {
 try {
 return nf.format(t);
 } catch (Exception e) {
 return null;
 }
 }

 @Override
 public BigDecimal fromString(String string) {
 try {
 Number newValue = nf.parse(string);
 BigDecimal result = new BigDecimal(newValue.doubleValue());
 return result.setScale(2, BigDecimal.ROUND_HALF_EVEN);
 } catch (ParseException e) {
 return null;
 }
 }
 }

JavaFX Chart Module

The SmartPhoneDataApp also includes a LineChart window, shown in Figure 16.21. This chart is implemented with the LineChart module. (See Figure 16.19 on page 822 for a diagram of the application’s modules.)

[image:]

Figure 16.21 LineChart Window

Here is a summary of the steps you’ll follow to build this module.

• Create the LineChart module with code name com.asgteach.linechart.

• Add a new window (TopComponent) to the module in the Editor position with name LineChart. This creates file LineChartTopComponent.java.

• Set a dependency on the PhoneDataWebService module and the Lookup API.

• This module includes integrated JavaFX content, which you structure using FXML and JavaFX as described in “Integrating with the NetBeans Platform” on page 265. Add the FXML markup with file LineChart.fxml and its controller class with file LineChartController.java. Refer to the description of the JavaFX Chart package in Chapter 15, especially “Line Chart” on page 764.

Build the JavaFX LineChart UI

Let’s examine the FXML markup and then show you the LineChartController code.

Listing 16.16 is LineChart.fxml, the FXML for this window. We define a LineChart control inside of a StackPane. The LineChart has a CategoryAxis for its X-axis and a NumberAxis for its Y-axis. The fx:id attributes allow the controller class to access these controls.

Listing 16.16 LineChart.fxml

Click here to view code image

<?xml version="1.0" encoding="UTF-8"?>
<?import java.lang.*?>
<?import java.util.*?>
<?import javafx.geometry.*?>
<?import javafx.scene.*?>
<?import javafx.scene.control.*?>
<?import javafx.scene.layout.*?>
<?import javafx.scene.chart.*?>

<StackPane id="StackPane" fx:id="stackpane"
 xmlns:fx="http://javafx.com/fxml"
 fx:controller="com.asgteach.linechart.LineChartController">
 <padding>
 <Insets top="10" right="10" bottom="10" left="10"/>
 </padding>

 <LineChart fx:id="chart" >
 <xAxis>
 <CategoryAxis fx:id="xAxis"/>
 </xAxis>
 <yAxis>
 <NumberAxis fx:id="yAxis"/>
 </yAxis>
 </LineChart>
</StackPane>

The controller class, LineChartController, initializes the LineChart’s data and keeps the data current when changes are detected. Since the user can edit data in the TableView window, the LineChart must react to these updates. We’ll present the LineChartController class in several parts.

Listing 16.17 shows the LineChartController class fields, including the controls defined in the FXML file. These class fields include the LineChart data (lcdata) and a logger. The data field is the PhoneDataShare service provider. Finally, we have a SortedList and a comparator that sorts sales data before initializing and/or updating the chart.

Listing 16.17 LineChartController—Class Fields

click hrer to view code image

public class LineChartController implements Initializable {

@FXML
 private StackPane stackpane;
 @FXML
 private CategoryAxis xAxis;
 @FXML
 private NumberAxis yAxis;
 @FXML
 private LineChart<String, Number> chart;
 private ObservableList<XYChart.Series<String, Number>> lcData
 = FXCollections.observableArrayList();
 private static final Logger logger
 = Logger.getLogger(LineChartController.class.getName());
 private PhoneDataShare data = null;
 SortedList<Salesdata> sortedData = null;
 Comparator<? super Salesdata> comparatorSalesdata = null;

Listing 16.18 shows the LineChartController’s initialize() method. Although this code is similar to the LineChartController presented in Chapter 15, here we use data from an ObservableList instead of the Swing TableModel’s two-dimensional array.

First, we look up the PhoneDataShare service provider from the Global Lookup, which provides the label text for the chart axes and the Y-axis tick unit.

Next, we define the comparator for sorting. We sort by company name, then year. Sorting the data by year makes LineChart plot points always appear in increasing year order. We then set the chart’s title and its data.

Last, we add ListChangeListeners to both the data list (theDataProperty()) and the company names list (companyNamesList()). Because these lists are populated after web service calls complete in a background thread, these lists may not yet contain data. Adding a ListChangeListener to these properties notifies the LineChartController code when the lists are complete. Changes make the handlers invoke the getLineChartData() method, shown next.

Listing 16.18 LineChartController—initialize() Method

click hrer to view code image

 @Override
 public void initialize(URL url, ResourceBundle rb) {
 data = Lookup.getDefault().lookup(PhoneDataShare.class);
 if (data == null) {
 logger.log(Level.SEVERE, "Cannot get PhoneDataShare object");
 LifecycleManager.getDefault().exit();
 }
 xAxis.setCategories(data.categoryListProperty());
 xAxis.setLabel(data.getNameDescription());
 yAxis.setTickUnit(data.getTickUnit());
 yAxis.setLabel(data.getDataDescription());
 logger.log(Level.INFO, "yAxis label = {0}", data.getDataDescription());
 logger.log(Level.INFO, "xAxis label = {0}", data.getNameDescription());
 comparatorSalesdata = (Salesdata o1, Salesdata o2) -> {
 // First compare the company name, then compare the year
 int result = o1.getCompanyid().getCompanyname().compareToIgnoreCase(
 o2.getCompanyid().getCompanyname());
 if (result == 0) {
 return o1.getSalesyear().compareTo(o2.getSalesyear());
 }
 return result;
 };
 chart.setTitle(data.getTitle());
 chart.setData(lcData);

 data.theDataProperty().addListener(
 (ListChangeListener.Change<? extends Salesdata> c) -> {
 while (c.next()) {
 if (c.wasAdded()) {
 logger.log(Level.INFO, "was added");
 getLineChartData();
 }
 }
 });
 data.companyNamesProperty().addListener(
 (ListChangeListener.Change<? extends Company> change) -> {
 getLineChartData();
 });
 }

Listing 16.19 shows the getLineChartData() method, which builds the XYChart.Series for each company. After sorting the data, this method installs the data into the appropriate series. Note that the processing code only creates new XYChart.Data objects if necessary. This avoids completely redrawing the LineChart when changes are detected. Instead, changed plot points animate to new plot point locations.

Listing 16.19 LineChartController—getLineChartData() Method

click hrer to view code image

 private void getLineChartData() {
 // create all the series if necessary
 if (data.companyNamesProperty().getSize() != lcData.size()) {
 for (int i = 0; i < lcData.size(); i++) {
 lcData.clear();
 }
 for (int row = 0; row < data.companyNamesProperty().getSize();
 row++) {
 XYChart.Series<String, Number> series = new XYChart.Series<>();
 series.setName(data.companyNamesProperty().get(row)
 .getCompanyname());
 lcData.add(series);
 }
 }

// Sort the data so that the Chart looks nice
 sortedData = new SortedList<>(data.theDataProperty().get());
 sortedData.setComparator(comparatorSalesdata);

 // install each datum in the correct series if necessary
 for (Salesdata sales : sortedData) {
 boolean processed = false;
 for (XYChart.Series<String, Number> series : lcData) {
 if (sales.getCompanyid().getCompanyname().equals(
 series.getName())) {
 // correct series
 for (XYChart.Data<String, Number> currentDatum :
 series.getData()) {
 // correct year
 if (currentDatum.getXValue().equals(
 sales.getSalesyear())) {
 processed = true;
 if (!currentDatum.getYValue().equals(
 sales.getUnitsinmillions())) {
 // replace
 currentDatum.setYValue(
 sales.getUnitsinmillions());
 }
 break;
 }
 }
 // need new data point
 if (!processed) {
 XYChart.Data<String, Number> datum = new XYChart.Data<>(
 sales.getSalesyear(), sales.getUnitsinmillions());
 series.getData().add(datum);
 }
 break;
 }
 }
 }
 }

16.5 Key Point Summary

This chapter shows you how to use RESTful web services in a NetBeans Platform application. Here are the key points in this chapter.

• You can create RESTful web services from a database with the NetBeans IDE RESTful Services from Database wizard. This generates the web services, entity classes, and database persistence unit.

• You can add JavaFX property support to JPA entity classes by moving generated annotations. This approach synchronizes the entity class with the database using accessor methods instead of class fields. JavaFX properties replace the class fields. Accessor methods then use the JavaFX properties to get and set the data.

• When you deploy a web application that implements web services, you can test the RESTful web services with the NetBeans IDE.

• A Java application web service client helps you correctly configure libraries for a RESTful web service client.

• A NetBeans IDE wizard generates RESTful web service clients for a NetBeans Platform module. You can then add the required libraries to the module.

• Adding Wrapped JARs lets you add libraries to a module without creating wrapped library modules.

• The SmartPhoneDataApp consists of a PhoneDataWebService module that includes Jersey clients, entity classes, and a service provider interface.

• Our application includes two windows: a TableView window with a JavaFX TableView control and a LineChart window with a JavaFX LineChart. Both windows access the data through RESTful clients.

• The JavaFX Service class lets you build re-usable Worker objects that manage their execution in a background thread.

• A Service object lets you safely access setup and return objects on the JavaFX Application Thread. Service objects are suitable for RESTful web service clients.

• The JavaFX TableView is a general-purpose control with TableColumns for visualizing tabular data. Use the setCellValueFactory() method to configure TableColumns.

• Configure a TableColumn with TextFieldTableCell to create a TextField component for editing. Use the setOnEditCommit() method to configure an event handler to handle edits.

• The TableView control supports an ObservableList. Use SortedList with a comparator for sorting and FilteredList with a filter predicate for filtering.

• When configuring JavaFX Charts, sort the data before you create the XYChart.Data objects. This makes the chart’s plot points appear in a consistent order.

17. Branding, Distribution, and Internationalization

NetBeans Platform applications should be customized to fit the distributor and the users of the application. By customizing the splash screen, application title, and text, you can control the look and usefulness of your application.

This chapter shows you how to brand your application so that it correctly reflects what the application does and who its users are. You’ll learn how to configure applications for dynamic updates, create distribution files, and build localized versions for international users.

What You Will Learn

• Customize an application name and title.

• Provide version numbers in an application title.

• Customize the splash screen.

• Customize text in Resource Bundles.

• Enable updates of your application.

• Build an update center.

• Create distribution files for your application.

• Internationalize and localize your application.

17.1 What Is Branding?

Branding lets you customize your application with a display name, splash screen, and text that your users see. You can also customize Resource Bundles or modify Window System behavior. (See “Limiting the Window System’s Behavior” on page 349 for modifications to the Window System.)

In this section we’ll show you how to modify an application’s display name (its title) and the name in the top-level menu bar. You’ll also learn how to customize the application “branding name” and change the splash screen.

Figure 17.1 shows an application from Chapter 5 running. By default, an application’s branding name appears in the top-level menu (familytreeapp). The application’s title (FamilyTreeApp) appears in the top JFrame title bar with a build number. Let’s first show you how to change the project name, application title, and branding name.

[image:]

Figure 17.1 FamilyTreeApp running

Using the Branding Menu

Here are the steps to change the project name and application title using the project’s Branding menu.

1. Right click the project name in the Projects view window and select Branding . . . from the context menu. NetBeans displays the Branding dialog with the Basic tab selected.

2. Supply another title in the Application Title text field, as shown in Figure 17.2. This menu item changes the title and project name. (Note that the project’s directory name does not change.)

[image:]

Figure 17.2 Branding: Basic dialog used to change the application title.

3. Click OK to accept the name change and rerun the application.

The application’s title and project name change, but not its branding name, which remains familytreeapp, as shown in Figure 17.3.

[image:]

Figure 17.3 MyFamilyTreeApp running

Rename Branding Token

Use these steps to customize the branding token.

1. In the Projects view, select the application project name, right click, and select Properties from the context menu. In the Project Properties dialog under Categories, select Application.

2. Change property Branding Name to myfamilytreeapp and click OK, as shown in Figure 17.4.

[image:]

Figure 17.4 Project Properties dialog, category Application

Figure 17.5 shows the MyFamilyTreeApp application running with the top-level menu title changed to myfamilytreeapp.

[image:]

Figure 17.5 Top-level menu title changed

When you modify the application’s title and branding name, this affects the application’s Project Properties file (project.properties) and NetBeans Platform Config file (platform.properties). In the Project Properties file, the app.title property is set to MyFamilyTreeApp. The app.name property is ${branding.token}.

Click here to view code image

app.name=${branding.token}
 app.title=MyFamilyTreeApp

The platform.properties file defines property branding.token, as follows.

Click here to view code image

branding.token=myfamilytreeapp

Branding Token Tip
Note that the branding token is for internal code use and is not intended for display to the user.

You can change the branding token, but it must begin with a lowercase letter and exclude special characters. Here are the rules for branding.token names.

1. Only lowercase letters, numbers, and the _ character (under bar) are allowed.

2. The branding token must begin with a lowercase letter.

3. At least one lowercase letter must follow an _ character (under bar).

If you supply an illegal name, the Branding Token dialog lets you know.

By default, NetBeans Platform applications use the branding.token property to create the name that appears in the top-level menu and in the operating system’s task manager (property app.name). If you want this name to match the application title (property app.title), change these properties so that they are the same, as follows.

app.name=MyFamilyTreeApp
 app.title=${app.name}

Figure 17.6 shows the application running with its application name and title both set to MyFamilyTreeApp (with mixed case letters). Figure 17.6 also shows the Mac OS X Force Quit applications list with application name MyFamilyTreeApp.

[image:]

Figure 17.6 MyFamilyTreeApp running and Force Quit Applications running (Mac OS X)

Customizing the Application Title

By default, NetBeans includes a NetBeans IDE build number with your application title. You might prefer to include a version number for your application instead of the build number from NetBeans IDE in the title. One way to do this is to modify the Build Script in the Important Files folder of your application. Here are the steps.

1. In the Projects view, expand the Important Files node under your application project.

2. Add an app.version property to the project.properties file. Set it to the desired version number for your application. Here we use 3.2, as shown in Listing 17.1.

Listing 17.1 Project Properties—Add app.version Property

click hrer to view code image

app.name=MyFamilyTreeApp
app.title=${app.name}
app.version=3.2
modules=\
 ${project.com.asgteach.familytree.model}:\
 ${project.com.asgteach.familytree.personviewer}:\
 ${project.com.asgteach.familtree.personeditor}:\
 ${project.com.asgteach.familytree.manager.impl}
project.com.asgteach.familtree.personeditor=PersonEditor
project.com.asgteach.familytree.manager.impl=FamilyTreeManagerImpl
project.com.asgteach.familytree.model=FamilyTreeModel
project.com.asgteach.familytree.personviewer=PersonViewer

3. Double click the Build Script node to bring the build.xml file up into the XML editor. (The Build Script lets you make changes to the ANT-based build system provided by the NetBeans IDE.)

4. Add the XML code as shown in bold in Listing 17.2.1

1. This build script is adapted from a blog by Tonny Kohar at http://blogs.kiyut.com/tonny/2007/08/06/netbeans-platform-branding-and-version-info/.

Listing 17.2 Build Script—Show Application Build Information in Title

click hrer to view code image

<?xml version="1.0" encoding="UTF-8"?>
<!-- You may freely edit this file. -->
<!-- See harness/README in the NetBeans platform -->
<!-- for some information on what you could do (e.g. targets to override). -->
<!-- If you delete this file and reopen the project it will be recreated. -->
<project name="FamilyTreeApp" basedir=".">
 <description>Builds the module suite FamilyTreeApp.</description>
 <!-- override build to add update branding -->
 <target name="build" depends="build-brand,suite.build"/>
 <target name="build-brand" depends="-init">
 <propertyfile
 file="${basedir}/branding/core/core.jar/org/netbeans/core/startup/
 Bundle.properties"
 comment="Updated by build script">
 <entry key="currentVersion" value="${app.title} ${app.version} " />
 </propertyfile>

 <propertyfile
 file="${basedir}/branding/modules/org-netbeans-core-windows.jar/
 org/netbeans/core/windows/view/ui/Bundle.properties"
 comment="Updated by build script">
 <entry key="CTL_MainWindow_Title"
 value="${app.title} ${app.version}" />
 <entry key="CTL_MainWindow_Title_No_Project"
 value="${app.title} ${app.version}" />
 </propertyfile>
 </target>
 <import file="nbproject/build-impl.xml"/>
</project>

Figure 17.7 shows the customized version number displayed with the application’s title.

[image:]

Figure 17.7 Displaying a customized version number with the application title

Branding and Resource Bundles

Now let’s show you how to remove version and build information from the application title. (If you added the code in Listing 17.1 and Listing 17.2, you should remove it first.)2

2. Note that you can use these steps to modify menus or dialog text in any NetBeans Platform module.

1. Bring up the Branding dialog.

2. Click the Resource Bundles tab.

3. In the search window, specify MainWindow_Title for the search string. NetBeans displays two entries as shown in Figure 17.8.

[image:]

Figure 17.8 Change how the title is displayed for your application

4. For both entries, right click on the property entry and select Add to Branding. NetBeans displays an editing dialog. Remove the {0} argument placeholder, which removes the build number from the title. Click OK to accept the change. In the Branding dialog, click OK to complete the process.

5. In the Files view, expand the branding folder as shown in Figure 17.9, and open the modified .properties file shown in the Editor.

[image:]

Figure 17.9 Modified Bundle.properties file

With this change, your application JFrame will include a title without any version information.

Customizing the Splash Screen

Your application will display a standard NetBeans Platform splash screen unless you provide your own. We’ve created a custom PNG splash screen for the FamilyTreeApp application. Here’s how to incorporate this custom splash screen into the application.

1. In the Projects view, right click the application name and select Branding . . . from the context menu.

2. Select the Splash Screen tab and click Browse to select a .gif or .png graphic file.

3. Adjust the color and placement of the progress bar and the size, color, and placement of the running text. Figure 17.10 shows the dialog with the adjustable options for the splash screen.

[image:]

Figure 17.10 Customize the splash screen

4. Click OK to accept the settings.

When you customize the splash screen, NetBeans adds the following entry to the Project Properties file.

Click here to view code image

app.icon=branding/core/core.jar/org/netbeans/core/startup/frame48.gif

Removing the Splash Screen

Add the following line to the application’s Project Properties file to eliminate the splash screen in your application.

run.args.extra=--nosplash

17.2 Application Updates

Two important events occur with a released application: distribution and updates. You can generate an Installer for your NetBeans Platform application, and you can configure your application for dynamic updates. For updates to work, however, you must first include two modules in your application. With these modules installed, users can update applications by accessing an Update Center or by installing downloaded modules individually. We’ll discuss application updates first and then cover creating application installers in the next section. To show you these features, we’ll use the FamilyTreeApp we created in Chapter 7 (see “Creating a Selection History Feature” on page 332).

Enable Updates of Your Application

To let users dynamically update your NetBeans Platform application, you must include the AutoUpdate Services and AutoUpdate UI modules in the platform cluster, as follows.

1. In the Projects view window, right click FamilyTreeApp and select Properties from the context menu. NetBeans displays the Project Properties window.

2. Under Categories, select Libraries. Under Nodes, scroll down and expand the platform cluster.

3. Select modules AutoUpdate Services and AutoUpdate UI as shown in Figure 17.11. Click OK.

[image:]

Figure 17.11 Adding Auto Update Services and UI to FamilyTreeApp

4. Run the FamilyTreeApp. (Note that you must perform a Clean and Build to see the Plugins menu item.) You will now have a Plugin Manager that you access through the top-level menu item Tools | Plugins.

Create an Update Center

This section shows you how to create an Update Center for your application and activate it through your application’s Plugin Manager.

An Update Center consists of a URL that contains an updates.xml file and the most up-to-date versions of all of your application’s modules. Fortunately, NetBeans will build these files for you through your application’s context menu.

For the FamilyTreeApp, follow these steps to create the Update Center contents.

• In the Projects view window of the NetBeans IDE, right click the FamilyTreeApp project and select Package As | NBMs from the context menu.

NetBeans creates directory build/updates and includes the updates.xml file and your application module NBM files, as shown in Figure 17.12. The XML file contains descriptions for each module with required dependencies and build and version information.

[image:]

Figure 17.12 Create Update Center content

This is the content you need for an Update Center. The Update Center itself resides at a publicly accessible URL or in a directory on the local file system (for testing or local use only). Here we use the local file system.

Now you need to configure an Update Center inside your application. To do this, run the FamilyTreeApp application and follow these steps.

1. From the top-level menu bar, select Tools | Plugins. NetBeans displays the Plugin Manager.

2. In the Plugin Manager, select Settings. Click Add to add an Update Center.

3. In the Update Center Customizer, supply an Update Center name and URL. You can use the location of the updates directory you created in the previous steps with URL resource file://, as shown in Figure 17.13 (or the appropriate URL with the required files). Click OK.

[image:]

Figure 17.13 Update Center Customizer

Figure 17.14 shows the newly customized FamilyTreeApp Update Center. Note that the Plugin Manager now shows six Installed plugins under tab Installed.

[image:]

Figure 17.14 Customizing the FamiilyTreeApp Update Center

With the Plugin Manager configured in your application, let’s now show you how to dynamically remove a plugin as well as a few options for re-installing a plugin.

Dynamically Uninstall a Module (Plugin)

Let’s remove the SelectionHistory module from the FamilyTreeApp. Recall from Chapter 7 that the FamilyTreeApp runs just fine without this module (plugin) installed. To remove the plugin, run the FamilyTreeApp and follow these steps.

1. From the top-level menu, select Tools | Plugins. NetBeans brings up the Plugin Manager.

2. Select the Installed tab. In the list, select plugin SelectionHistory and click Uninstall, as shown in Figure 17.15.

[image:]

Figure 17.15 Uninstall a plugin

3. NetBeans begins the Plugin Uninstaller process, as shown in Figure 17.16. Click Uninstall.

[image:]

Figure 17.16 The Plugin Uninstaller process

4. NetBeans removes the SelectionHistory module from the FamilyTreeApp. You can choose to restart the application now or later. Click Finish, as shown in Figure 17.17.

[image:]

Figure 17.17 Restart now or later and Finish the uninstall process

Adding Modules to an Application

You can add modules to an application with either your application’s Update Center or by installing a downloaded NetBeans Module (NBM). Both options require an application with a Plugin Manager.

Let’s first show you how you might add a new NBM to a running application by adding the SelectionHistory module to the FamilyTreeApp. This scenario applies when you’ve downloaded an NBM file and now wish to install it in your running application. You use the Plugin Manager, but you do not need to access the Update Center.

Create the Module NBM

To add the SelectionHistory module to a running application as an NBM, you first must create the NBM file (if you haven’t done this previously) and somehow send to your user.

1. In the Projects view, right click project SelectionHistory and select Create NBM from the context menu.

2. NetBeans builds the module and places the NBM file under the modules build directory with the name com-asgteach-familytree-selectionhistory.nbm. You can view the NBM using the Files window as shown in Figure 17.18.

[image:]

Figure 17.18 Creating an NBM for module SelectionHistory

Install a Downloaded NBM

You’ll now add the module to the FamilyTreeApp using the following steps.

1. Run the FamilyTreeApp and from the top menu, select Tools | Plugins. The application displays the Plugin Manager.

2. Select the Downloaded tab, then click Add Plugins . . . as shown in Figure 17.19.

[image:]

Figure 17.19 Add a plugin to an application

3. NetBeans displays a file chooser window. Browse to the directory that contains the NBM file (here we browse to the build directory under project SelectionHistory) and select the NBM file, as shown in Figure 17.20. Click Open.

[image:]

Figure 17.20 Choose the NBM file

4. NetBeans displays the Plugin in the Downloaded window. Select plugin SelectionHistory and click Install, as shown in Figure 17.21.

[image:]

Figure 17.21 Install the SelectionHistory plugin

5. NetBeans initiates the Plugin Installer, which takes you through the steps to install the NBM into the FamilyTreeApp, including a license agreement. When the installation completes, click Finish and then close the Plugin Manager.

When the Plugin Manager closes, you’ll see the SelectionHistory window open in your application.

Install a Plugin

When you create and configure an Update Center with your application’s modules, new and updated modules become available for installation through the Update Center. A Plugin Manager checks for updates and categorizes available plugins. With an Update Center configured and the SelectionHistory module uninstalled, this module shows up under tab Available Plugins. Follow these steps to install it.

1. From the top-level menu bar, select Tools | Plugins. NetBeans displays the Plugin Manager.

2. Click Available Plugins and select the SelectionHistory plugin.

3. Click Install, as shown in Figure 17.22.

[image:]

Figure 17.22 Install a plug using the Update Center

4. NetBeans initiates the Plugin Installer, which takes you through the steps to install the NBM into the FamilyTreeApp, including a license agreement. When the installation completes, click Finish and then close the Plugin Manager.

When the Plugin Manager closes, you’ll see the SelectionHistory window open in your application.

17.3 Application Distribution

The NetBeans IDE lets you create distribution files for users to install your application. You can create an installation that is compatible with Windows, Linux, Mac OS X, or Solaris. As part of the process for creating a distribution, you can include a custom License Agreement.

Enabling the Plugin Manager
Prior to creating a distribution for your application, if you want to provide updates either through an Update Center or with individual NBM files, you must enable the Plugin Manager, as described in “Enable Updates of Your Application” on page 857.

Create an Installer

By default, NetBeans assumes you want to create an Installer that is compatible with your development system. To create Installers for other systems, use the Properties menu, as follows.

1. Right click on the FamilyTreeApp application project and select Properties from the context menu. Under Categories, select Installer, as shown in Figure 17.23.

[image:]

Figure 17.23 Choosing Installer targets

2. Options include Windows, Linux, Mac OS X, and Solaris. Check all that apply.

3. For Application license, select the option that applies to your application from the drop down menu, as shown in Figure 17.24. If you want to supply your own license, choose Select license file . . . and a File Chooser lets you select a text file that contains the license wording. This license text will then be used during application installation.

[image:]

Figure 17.24 Choosing Installer targets

4. Specify Use pack200 compression if you want to reduce the installer size.

5. Click OK to set the Installer properties.

6. To create the Installers, right click project FamilyTreeApp and select Package as ... | Installers from the context menu. NetBeans builds installers in the application’s dist directory (as shown in Figure 17.25) for each target specified, as follows.

[image:]

Figure 17.25 Installers are created in the project’s dist directory

Click here to view code image

Installer(s) for [windows linux macosx] are available
 at <full path>/FamilyTreeApp/dist

Installer Tip
Creating Installers can take a long time. Monitor the process in the NetBeans IDE Output window.

Installing the Application

Let’s show you the installation process on a Mac. Other target systems have similar installation processes.

On a Mac, once you double-click the .zip or .tgz file, you’ll see an executable Installer. When you run the Installer, an Installer wizard takes you through the installation. Figure 17.26 shows the first panel. Click Next to continue to successive panels, which include a License Agreement, installation directory and icon creation, and a summary panel that recaps the install features.

[image:]

Figure 17.26 Running the Installer wizard

Figure 17.27 shows the last panel after the installation completes. You can optionally launch the application when you click Finish to end the Installer wizard.

[image:]

Figure 17.27 Installation Complete panel

Customizing the Installer Images

The default Installer uses standard images for the Installer wizard. You can customize these images by modifying image files found in the standard NetBeans Installation (nbi) hierarchy in your NetBeans installation directory, located at <Your NetBeans Installation>/harness/nbi.

Table 17.1 shows the images used in the standard Installer wizard and their locations. You can replace these files with your own. After regenerating the Installer, you’ll see the new images.

[image:]

TABLE 17.1 Location and Name of Default Installer Images

17.4 Application Internationalization

Internationalizing an application configures the application for one or more locales. Internationalization includes target language translations and localizing the look and feel, such as number formatting and currency symbols. Internationalization is a big topic, but with an example, you’ll gain a good understanding of the issues.

We have internationalized the SmartPhoneDataApp presented in the previous chapter and localized the application for English, Spanish, and Portuguese. (See “RESTful Web Services and the NetBeans Platform” on page 800 for a description of this application.)3

3. With apologies to native speakers of Spanish and Portuguese, we have mainly relied on web-based translation services.

Figure 17.28 shows the TableView window of the SmartPhoneDataApp. The left window is localized for Spanish, and the right window is localized for Brazilian Portuguese. Localization includes text for the window names, titles, labels, and buttons, as well as localized number formatting.

[image:]

Figure 17.28 Localized TableView window

Similarly, Figure 17.29 shows localized versions of the LineChart window from the same application.

[image:]

Figure 17.29 Localized LineChart window

Internationalization and Java

Java and the NetBeans Platform have long supported application internationalization. You can find helpful documentation and tutorials at the following URLs.

• http://docs.oracle.com/javase/tutorial/i18n/—Internationalization Learning Trail

• http://docs.oracle.com/javase/7/docs/technotes/guides/intl/—Internationalization Technical Guide

• http://bits.netbeans.org/dev/javadoc/org-openide-modules/org/openide/modules/doc-files/i18n-branding.html—Internationalization and Branding Guide for NetBeans

Internationalization and the NetBeans Platform

Let’s describe how to internationalize your application and provide examples with the SmartPhoneDataApp. In general, the process includes the following steps.

1. Identify all text that should be localized and assign a key, unique within the Java package where the text appears.

2. Provide translations of these text strings in the target language or languages in locale-specific .properties files.

3. Use the @Messages annotation (described below) to define key-value properties for the text.

4. Provide localized JAR files for the NetBeans Platform modules’ localized text (discussed in the next section).

The NetBeans Platform provides the @Messages annotation to isolate text for localization. You put all of the key-value text Strings directly in the Java source file. This annotation generates a Bundle.properties file and creates static methods based on the message key. Keys must be unique within the same package. You can have multiple @Messages annotations within a Java file. For example, when you create a TopComponent, NetBeans generates an initial @Messages annotation for you.

Click here to view code image

@Messages({
 "HINT_TableViewTopComponent=This is a TableView window",
 "CTL_TableViewAction=TableView",
 "CTL_TableViewTopComponent=TableView Window"
})
. . .

setName(Bundle.CTL_TableViewTopComponent());
 setToolTipText(Bundle.HINT_TableViewTopComponent());

The @Messages annotation generates static methods as follows.

• A Bundle.java file is generated in your module’s directory build/classes-generated/your_package_name with the static methods.

Click here to view code image

package com.asgteach.coretableview;
/** Localizable strings for {@link com.asgteach.coretableview}. */
@javax.annotation.Generated(value=
 "org.netbeans.modules.openide.util.NbBundleProcessor")
class Bundle {
 /**
 * @return <i>TableView</i>
 * @see TableViewTopComponent
 */
 static String CTL_TableViewAction() {
 return org.openide.util.NbBundle.getMessage(Bundle.class,
 "CTL_TableViewAction");
 }
 /**
 * @return <i>TableView Window</i>
 * @see TableViewTopComponent
 */
 static String CTL_TableViewTopComponent() {
 return org.openide.util.NbBundle.getMessage(Bundle.class,
 "CTL_TableViewTopComponent");
 }
. . .
}

• This file updates as you save your Java source file, giving you edit-time source code checks for static methods with localized Strings. This edit-time source code checking avoids run-time MissingResourceException errors.

• The build system then compiles your Java classes, including Bundle.java, and generates the proper Bundle.properties file in directory build/classes/your_package_name. (Resource properties files are loaded by classloader.)

• The key-value pairs configured in the @Messages annotation create the default message bundle for that package.

You build alternate Bundle.properties files as needed when internationalizing an application, as follows.

• To create message bundles for other locales, create Bundle_xx.properties files for each locale that you support. Use either a two-character language code or a combined four character language_region code with a separator. For example, a properties file that supports Portuguese uses suffix _pt and Portuguese localized for Brazil is suffix pt_BR, as follows.

Bundle_pt.properties
 Bundle_pt_BR.properties

• When users run your application, the user’s default Locale applies. If the user’s Locale does not match any of the provided .properties files, then the default message bundle applies.

Number Formatting

The Java NumberFormat class supports Locales. Thus, if your application displays numbers, you can format them with NumberFormat using the default locale. For example, the DecimalFormat class in the SmartPhoneDataApp shown in Listing 17.3 instantiates a NumberFormat object with the default Locale. The toString() method invokes the NumberFormat format() method for locale-sensitive formatting. Similarly, the fromString() method accepts the locale-specific decimal and number separator characters used with the in-place editor. Note that the decimal separator in both the Spanish and Portuguese TableView windows shown in Figure 17.28 on page 869 is a comma.

Listing 17.3 DecimalFormat.java

click hrer to view code image

private class DecimalConverter extends StringConverter<BigDecimal> {

 NumberFormat nf = NumberFormat.getInstance(Locale.getDefault());

public DecimalConverter() {
 nf.setMaximumFractionDigits(2);
 nf.setMinimumFractionDigits(1);
 }

 @Override
 public String toString(BigDecimal t) {
 try {
 return nf.format(t);
 } catch (Exception e) {
 return null;
 }
 }

 @Override
 public BigDecimal fromString(String string) {
 try {
 Number newValue = nf.parse(string);
 BigDecimal result = new BigDecimal(newValue.doubleValue());
 return result.setScale(2, BigDecimal.ROUND_HALF_EVEN);
 } catch (ParseException e) {
 return null;
 }
 }
 }

Editing Properties Files

The @Messages annotation generates a default Bundle.properties file. To support additional locales, you must create the Bundle.properties file for each supported locale. You can either edit these files individually or edit them together. Figure 17.30 shows the NetBeans IDE simultaneous edit capability with the Bundle.properties file for en, es, and pt_BR locales. The default language is empty, since these Strings are generated from the @Messages annotation.

[image:]

Figure 17.30 Editing Properties files

Internationalization and JavaFX

The SmartPhoneDataApp windows also include JavaFX content. You can specify a ResourceBundle when you build the JavaFX scene graph, typically in TopComponent code. The JavaFX controller class (Java code) uses the @Messages static methods and can define additional key-value pairs with the @Messages annotation. Listing 17.4 shows you how to invoke the FXMLLoader to set the resources for the scene graph described by TableView.fxml inside the TopComponent code.

Listing 17.4 TableViewTopComponent.java—Initializing ResourceBundle

click hrer to view code image

public final class TableViewTopComponent extends TopComponent {

 private static JFXPanel fxPanel;
 private TableViewController controller;
 private final ResourceBundle resources;

 public TableViewTopComponent() {
 initComponents();
 resources = ResourceBundle.getBundle(
 "com.asgteach.coretableview.Bundle", Locale.getDefault());
 setName(Bundle.CTL_TableViewTopComponent());
 setToolTipText(Bundle.HINT_TableViewTopComponent());

setLayout(new BorderLayout());
 init();
 }

 public void init() {
 fxPanel = new JFXPanel();
 add(fxPanel, BorderLayout.CENTER);
 Platform.setImplicitExit(false);
 Platform.runLater(() -> createScene());
 }

private void createScene() {
 try {
 URL location = getClass().getResource("TableView.fxml");
 FXMLLoader fxmlLoader = new FXMLLoader();

 fxmlLoader.setResources(resources);
 fxmlLoader.setLocation(location);
 fxmlLoader.setBuilderFactory(new JavaFXBuilderFactory());

Parent root = (Parent) fxmlLoader.load(location.openStream());
 fxPanel.setScene(new Scene(root));
 controller = (TableViewController) fxmlLoader.getController();
 } catch (IOException ex) {
 Exceptions.printStackTrace(ex);
 }
 }
. . .
}

With the ResourceBundle defined, you can use the %key notation in FXML, as shown in Listing 17.5. Here is a portion of TableView.fxml that defines the TableView control and its embedded TableColumns. We define each TableColumn text property with the %key notation.

Listing 17.5 TableView.fxml—Using Resource Keys

click hrer to view code image

 <TableView fx:id="tableview"
 editable="true"
 GridPane.columnIndex="0"
 GridPane.rowIndex="0" >
 <columns>
 <TableColumn fx:id="colCompany" text="%company"
 sortable="false" minWidth="150" />
 <TableColumn fx:id="colYear" text="%year"
 sortable="false" minWidth="150" />
 <TableColumn fx:id="colUnitsSold" text="%unitsSold"
 editable="true" sortable="false"
 minWidth="175" />
 </columns>
 </TableView>

Note that %key bypasses compile-time checking for valid keys, however. Here is the exception you get when using a key that doesn’t exist.

Click here to view code image

SEVERE [org.openide.util.Exceptions]
 javafx.fxml.LoadException: Resource "blahblah" not found.

@Messages and FXML
To retain the compile-time safeguards of @Messages , move the FXML text property initializations into the controller code, as follows. Here we invoke the setText() method with the static Bundle methods for the appropriate keys.
Click here to view code image
@Override
public void initialize(final URL url, final ResourceBundle resources) {
 . . .
 colCompany.setText(Bundle.company());
 colYear.setText(Bundle.year());
 colUnitsSold.setText(Bundle.unitsSold());
 . . .

Testing Target Locales

Test your application for different locales by defining the run.args.extra property with the target locale in the application’s project.properties file, as shown in Listing 17.6. Here the default locale changes to pt_BR for the Portuguese language (Brazil). The project.properties file appears in the Projects view under node Important Files of your NetBeans Platform Application project.

Listing 17.6 Application’s project.properties File

click hrer to view code image

app.name=${branding.token}
app.title=SmartPhoneDataApp
to test a new locale, uncomment the following line
and specify your target locale
run.args.extra=run.args.extra=-J-Duser.language=pt -J-Duser.region=BR
modules=\
 ${project.com.asgteach.coretableview}:\
 ${project.com.asgteach.phonedata.webservice}:\
 ${project.com.asgteach.linechart}:\
 ${project.com.asgteach.phonedatashareimpl}
project.com.asgteach.coretableview=CoreTableView
project.com.asgteach.linechart=LineChart
project.com.asgteach.phonedata.webservice=PhoneDataWebService
project.com.asgteach.phonedatashareimpl=PhoneDataShareImpl

NetBeans Platform Application Internationalization

The preceding steps show how to internationalize/localize text that you provide in your application. However, since you are building on top of the NetBeans Platform, there are still menus, tooltips, error messages, and other text that originate from the NetBeans Platform modules. These will still be in English unless you provide the JAR files containing localized property bundles.4

4. Geertjan Wielenga provided guidance for this approach to localization.

The NetBeans IDE (and therefore, the NetBeans Platform) supports the following languages.

• Brazilian Portuguese (locale pt_BR)

• Russian (locale ru)

• Japanese (locale ja)

• Simplified Chinese (locale zh_CN)

If you specify one of these languages on the NetBeans IDE Download page (https://netbeans.org/downloads/), you can install an international version of the IDE. (This version includes English as well.) With the international version installed, you can use localized JAR files in your own NetBeans Platform application. Here are the steps to add support for Brazilian Portuguese. We’ll continue to use the SmartPhoneDataApp described in this chapter.

1. Download and install the international version of the NetBeans IDE.

2. Open up the SmartPhoneDataApp in the international version of the IDE.

3. Specify the target locale in the application’s project.properties file for testing, as shown in Listing 17.6 on page 876.

4. Run the application using the international version of the NetBeans IDE. You will see Brazilian Portuguese for the NetBeans Platform modules.

Creating a Localized Application Bundle

The previous steps test the application using the localized bundles from the international version of the NetBeans IDE. These next steps are necessary to run a localized version of your application as a stand-alone application outside the environment of the NetBeans IDE.

For this, you must copy the localized JAR files (which are included in the international version of the IDE) from the NetBeans distribution into your application. Furthermore, to create a modularized structure for localization support, create a module for each target locale. As an example, here are the steps to add support for Brazilian Portuguese.

1. Create a new module in the SmartPhoneDataApp called Locale_PT_BR with code name com.asgteach.localeptbr.

2. Switch to the File view and create the following folders at the top level. These folders will be at the same level as nbproject and src.

• release/core/locale

• release/lib/locale

• release/modules/locale

3. Now browse to the NetBeans IDE installation and find the corresponding platform/core/locale, platform/lib/locale, and platform/modules/locale folders. For Brazilian Portuguese support, copy all JAR files with names ending in pt_BR.jar to the corresponding folders in the Locale_PT_BR module under the release directory, as shown in Figure 17.31 (the list of JAR files under release/modules/locale is truncated).

[image:]

Figure 17.31 Adding localized property bundles for the NetBeans Platform

4. For each supported language, create a module with these release folders to hold the NetBeans Platform locale JAR files as shown in the above steps.

Using this modular approach, users can dynamically add or remove language support for the NetBeans Platform modules (see “Dynamically Uninstall a Module (Plugin)” on page 860 and “Adding Modules to an Application” on page 861).

Figure 17.32 shows the SmartPhoneDataApp with localized top-level menus and menu items from the NetBeans Platform module localized bundles in Portuguese.

[image:]

Figure 17.32 SmartPhoneDataApp with localized NetBeans Platform modules

Note that your application probably doesn’t require the full complement of locale JAR files. However, the entire group of JAR files for Brazilian Portuguese, for example, does not consume much space.

Localization Support for Additional Languages5

5. Besides the information presented here, NetBeans.org has created a NetBeans localization project. See the following Blog Entry by Geertjan Wielenga at https://blogs.oracle.com/geertjan/entry/lightweight_process_for_translating_netbeans.

Although the NetBeans IDE gives you the localized bundles for languages that NetBeans officially supports, you may want to support other languages. Fortunately, a community project exists that provides localized bundles for additional languages.

The AgroSense6 team led by Timon Veenstra has published community translations for additional languages. These localized JARs are from the NetBeans Platform 7.2 release. Fortunately, most changes to the NetBeans Platform modules since then do not affect UI components and other text-sensitive behaviors.

6. See http://agrosense.eu/.

Let’s now access this resource that includes localized JAR files to support Spanish. Here are the steps using the same modularized approach.

1. Create a new module in the SmartPhoneDataApp called Locale_ES with code name com.asgteach.localees.

2. Switch to the File view and create the same folders at the top level that you created for the Portuguese localization: release/core/locale, release/lib/locale, and release/modules/locale.

3. Go to https://java.net/projects/nb-library-wrappers/sources/core/show/lib-platform-l10n/nb72_platform_l10n/platform and download the JARs you need for your target language. For Spanish, download the JAR files ending in _es.jar.7

7. Alternatively, check out the entire project to access all of the localized JAR files.

4. Populate the locale folders in the Locale_ES module, as shown in Figure 17.33 (the list of JAR files under modules/locale is truncated).

[image:]

Figure 17.33 Add the localized JAR files to the Locale_ES module

Figure 17.34 shows the SmartPhoneDataApp with localized top-level menus and menu items for Spanish.

[image:]

Figure 17.34 SmartPhoneDataApp with localized NetBeans Platform modules

Customizing Resource Bundles

The JAR files that you add to your module’s locale directories are Resource Bundles. You can customize these if the translations are incomplete or if you’d like to modify a particular translation.

For example, in the Spanish version we acquired, Figure 17.34 shows that there isn’t a translation for the Show Only Editor menu item under View (Ver). Here’s how to fix this omission.

1. In the SmartPhoneDataApp Projects view, right click on the application name and select Branding . . . from the context menu.

2. Select the Internationalization Resource Bundles tab and choose the locale you want to modify. Here, we specify the locale “es” for Spanish.

3. Use the Search field to look for the target text as shown in Figure 17.35 (here, we search for “Only Editor”).

[image:]

Figure 17.35 Select target locale and provide search String

Search Tip
If your target search string is a menu item with an attached accelerator (as in our example), then include an ampersand before the accelerator letter when searching. Alternatively, try limiting the search term.

4. Right click the target text and select Add to Branding. In the dialog, provide the translated text and click OK. NetBeans changes the value associated with this key for the es resource bundle, as shown in Figure 17.36. Click OK to close the Branding dialog.

[image:]

Figure 17.36 Modifying selected key-value pairs for localization

5. The Files view shows that NetBeans created file Bundle_es.properties under folders branding/modules (expand the directory hierarchy under the JAR file). Figure 17.37 shows the directory hierarchy and the corresponding .properties file in the Editor.

[image:]

Figure 17.37 Add to Branding creates a Bundle_es.properties file

And now, when you re-run the SmartPhoneDataApp, the Show Only Editor menu item has a Spanish translation, as shown in Figure 17.38.

[image:]

Figure 17.38 SmartPhoneDataApp with localized menu item included

17.5 Key Point Summary

This chapter shows you how to brand your application, provide distribution files and updates to your users, and internationalize and localize your application. Here are the key points in this chapter.

• Branding lets you customize your application’s name and title, splash screen, as well as any text found in the application’s resource bundles.

• Use the Branding dialog to change an application’s title.

• Use the Properties dialog to change an application’s branding name. The branding name is mainly for internal use and has restrictions on its form.

• Modify the app.name property in the application’s Project Properties file to customize the application’s name as it appears in the top-level menu and your operating system’s task manager.

• You can customize an application’s title to include your own version number (instead of the NetBeans IDE build number). You can also remove any version information from the title.

• Use the Branding dialog to customize your application’s splash screen. You can also modify how the progress bar appears and the position, font size, and color of the running text.

• In order for users to dynamically update a NetBeans Platform application, include the AutoUpdate Services and AutoUpdate UI modules.

• Create content for an Update Center using the application’s Package As | NBMs menu.

• Configure an Update Center for your application using the Plugin Manager.

• Use the Plugin Manager to dynamically install and uninstall modules in your application.

• You can create distribution files so that users can install your application. NetBeans supports Windows, Linux, Mac OS X, and Solaris.

• You can customize an installer by providing your own License Agreement and installer images.

• Internationalizing an application means configuring the application for one or more locales.

• The first step to internationalize an application is to isolate its text.

• The NetBeans Platform @Messages annotation provides edit-time checking for key-value properties stored in resource bundles.

• The Java NumberFormat class is locale-sensitive, and any numbers used in your application can be localized.

• The NetBeans IDE lets you simultaneously edit multiple .properties files.

• You can easily internationalize your JavaFX code. We recommend using the @Messages annotation to retain edit-time checking for the key-value properties.

• Add the -J-Duser.language and -J-Duser.region properties to the application’s Project Properties file to test target locales.

• The NetBeans Platform officially supports English, Brazilian Portuguese, Russian, Japanese, and simplified Chinese. Download the international version of the IDE to access the localized JAR files for these locales and add them to your application.

• You can access the AgroSense community project that supports localizing bundles for other languages. See also the NetBeans Localization project at java.net described at https://blogs.oracle.com/geertjan/entry/lightweight_process_for_translating_netbeans.

• Use the Internationalization Resource Bundles tab in the Branding dialog to customize any localized JAR files in your application.

Index

A

AbstractAction 426

AbstractLookup 226

AbstractNode 298

DataNode 676

AbstractSavable 475, 492

confirmation dialog 498

findDisplayName() method 496

handleSave() method 496

AbstractTableModel Swing component 746, 748–752

Action framework 8

ActionFactory for widgets, Visual Library 699

@ActionID annotation 358, 418

ActionListener interface 417

ActionListener, Listing 61

ActionMap for TopComponents 426

@ActionReference annotation 358

@ActionReferences annotation 418

@ActionRegistration annotation 418

actions

AbstractAction 426

action performer 426

ActionListener interface 417

ActionMap 426

actionPerformed() method 421

actionsForPath() method 436

add Visual Library widget 705–708

always enabled 414–421

callback 422–428

Capability pattern 428

Category names 433

Change Order node 445

ChartSaveAction 791

conditionally enabled 432

context aware 428–444

capabilities 432

context-sensitive File Type 690–694, 732–734

Cookie Class (context) 432

cut, copy, paste, drag and drop 445–457

CutAction, CopyAction, DeleteAction 457

DataFlavor class 453

DeleteAction 480–482

drag and drop 453

dynamically enable and disable 463

edit node hierarchy 444–457

fallback implementation 422–428

icon naming conventions, Table 417

inter-window drag and drop 458–467

key 424

Layer file registration 439

Move Up, Move Down nodes 445

MoveDownAction 452

MoveUpAction 452

multi-selection context aware 441–444

New Action wizard 415

NewAction for nodes 483–488

NewType context 482

node preferred action 438

Openable context 488–501

register 416

remove fallback implementation 427

ReorderAction 451

Save, Save All 488–501

activate window 350

AnchorPane JavaFX layout control 158

animation 100–103

INDEFINITE cycle count 124

JavaFX transitions 101

pause() method 102

play() method 102

playFromStart() method 102

SequentialTransition 718

stop() method 102

Animation.Status 102

annotations

@ActionID 358, 418

@ActionReference 358

@ActionReferences 418

@ActionRegistration 418

@ConvertAsProperties 357

@DataObject.Registration 683

@FXML 97

@Messages 359

@MIMEResolver.ExtensionRegistration 683

@OnShowing 374–376

@OnStart 242

@OnStop 243

@ServiceProvider 214, 217

@TopComponent.Description 357

@TopComponent.OpenActionRegistration 359

@TopComponent.Registration 358

module life cycle 242–244

TopComponent 356

anonymous inner class 38

API Versioning, module public package 213

application title, change 848

arcHeight property, Rectangle 89

arcWidth property, Rectangle 89

Area Chart 770

attributes.xml file 625

autoReverse animation property 102

AutoUpdate Services module 857

AutoUpdate UI module 857

B

background tasks

asynchronous flag for nodes 303

CRUD 517–523

JavaFX 176–194

JavaFX Service class 822–826

monitoring JavaFX 182–194

Progress Indicator 518, 522

publishing partial results, JavaFX 188

safely updating JavaFX UI 184, 191

Swing GUI 73–79

SwingWorker 73–79

Worker interface, JavaFX 176

Bar Chart 768

BeanNode 310–313

IntrospectionException 312

overhead 313

Properties window 310

BeanTreeView Explorer View 323, 324

bidirectional binding 111, 172

bind() method 110

bindBidirectional() method 112

binding 109–119

advantages 127

between JavaFX controls 718

bidirectional 111

bind() method 110

bindBidirectional() method 112

Bindings API 114

Bindings concat() method 779

Bindings stringValueAt() method 779

computeValue() method 117

custom 116–119

Fluent API 113–115

implicit assignment 111, 779

isBound() method 111

JavaFX controls 139

ObjectBinding 119

unidirectional 110

When ternary binding expression 126

Bindings API, JavaFX 114

concat() method 779

stringValueAt() method 779

book examples, download bundle 18

Bootstrap module 201

BorderLayout Swing component

with JavaFX content 258

bound properties 29–33

branding

application name 851

application title 848, 851

customize branding token 850

customize build number in application title 852

customize ResourceBundles 881

customize splash screen 855

hide main window while switching roles 410

limit the Window system’s behavior 349

remove application title build information 854

remove splash screen 856

Branding dialog 854

Bubble Chart 773

custom formatter 776

extra value 773

StringConverter 776

BufferedImage

from JavaFX image 757

to PNG format file 793

BufferedReader 633

Build Script 204, 205

build.xml file 204, 205

Bundle.properties file 870

Button JavaFX control 164

ButtonGroup Swing component 56

C

callback actions 422–428

key 424

remove fallback implementation 427

callback methods, JavaFX Worker 181

CANCEL_OPTION, Dialog 530

capabilities

AbstractSavable 475

adding to NetBeans Platform application 474

ChartSaveCapability 794

Openable 474

using Lookup 476

Capability pattern 428

DataObject 672

node selection 429

CategoryAxis, JavaFX Chart 768

changed() method, JavaFX ChangeListener 108

ChangeListener 108

charts See JavaFX Charts

ChartSaveAction context-aware action 791

ChartSaveCapability

add to TopComponent’s Lookup 794

interface 790

ChildFactory 300, 727

asynchronous flag 518

createKeys() method 301

createNodeForKey() method 301

refresh() method 302

ChildFactory.Detachable class 449

Children nodes 304

Children.LEAF node container 292

ChoiceView Explorer View 323, 330

client properties, TopComponents 363–364

clone window operation 349

close window operation 349

CLOSED_OPTION, Dialog 530

clusters, NetBeans Platform 206

coarse-grained notification 34

collapse document tab group 349

ComboBox JavaFX control 778

component palette, Swing 46

add component JAR file to 579

computeValue() method, custom binding 117

concurrency

nodes 518

thread safety 68–73, 172–176

with CRUD 517–523

concurrency package, JavaFX 176

ConcurrentHashMap 69, 174

conditionally-enabled actions 432

CONFIG logging level 51

configuration, System FileSystem 655

context sensitivity 5

context-aware actions 428–444

multi-select 441–444

ContextTreeView Explorer View 323, 327

@ConvertAsProperties annotation 357

Cookie Class 432

CountDownLatch 281, 713, 795

CRUD

acronym 472

concurrency 517–523

implement Create 483–488

implement Delete 480–482

implement Read 475–480

implement Update 488–501

with database 501–516

CSS 91

-fx-fill 92

FXML stylesheets tag 99

linear gradient 92

Modena style 93

scene.getStylesheets()method 98

specifying CSS files 98

currentTime animation property 102

custom binding 116–119

cycleCount animation property 102

D

3D, JavaFX 15

Box primitive 15

Data System API 9

overview 672–677

relationship with File, FileObject, DataObject, DataNode, Figure 673

database

create 505, 802

create RESTful web services 804

CRUD operations 501–516

Derby Client module 503

JavaDB 505

view data 516

DataFlavor class 453

DataLoaders 672, 673, 675

MIME types 672

DataNode 672, 676, 695

Lookup 677

DataObject 672, 682

access FileObject 676

Capability pattern 672

ChildFactory 695

create child nodes 694–696, 727–730

create DataNode 695

createNodeDelegate() method 695, 727

DataLoaders 675

EditorCookie 684, 700

getNodeDelegate() method 677

Lookup 672, 675

node 676

@DataObject.Registration annotation 683

DEFAULT_OPTION, Dialog 531

DefaultTableCellRenderer, JTable Swing component 754

DefaultTreeModel, JTree Swing component 227

dependencies, module 200

Derby Client module 503

DialogDescriptor

custom dialog 533

setClosingOptions() method 548

DialogDisplayer 526

display and block 530

notify() method 530

notifyLater() method 539

wizards 560

Dialogs 526–548

Confirmation 529

custom Login 539–542

customize 533

error handling 535–539

Error message 528

Information message 527

input line 531

JPanel Swing component 533

message types, Table 529

NotifyDescriptor class 526

NotifyDescriptor return values, Table 530

NotifyDescriptor.Message 527

option buttons, Table 531

prohibit close 548

Warning message 527

Dialogs API 526

distribution, NetBeans Platform application 864–868

dock window operation 347

documentation for NetBeans Platform 17

DocumentListener, Listing 67

DOM document 727

DropShadow effect, JavaFX 89

duration animation property 102

E

EclipseLink Library 504

editor

create non-singleton TopComponent 491

plain text editor 674

editor mode, TopComponent 345

EditorCookie 684

from DataObject 700

getDocument() method 701

EDT 49

DialogDisplayer notifyLater() method 542

@OnShowing annotation 375

single thread with JavaFX Application Thread 86, 259

SwingPropertyChangeSupport 69, 716

entity class 506

add JavaFX properties to 807

equals() method 23

error handling, dialogs 535–539

ERROR_MESSAGE message type 528, 529

Event Dispatch Thread See EDT

event handlers and loose coupling 63

EventListenerList 568

example software, download bundle 18

Explorer and Property Sheet API 7

Explorer Manager 7, 292, 293

Root Context 292

root node 302

Explorer View 7, 292

advantages 293

BeanTreeView 324

ChoiceView 330

ContextTreeView 327

expand nodes programmatically 309

IconView 328

ListView 327

Master-Detail View 327, 328

MenuView 329

OutlineView 324

PropertySheetView 331

Quick Search 323

Table 323

ExplorerManger.Provider 293

ExTransferable object 454, 457

F

FadeTransition 101, 713

FamilyTreeApp reference application 10

JavaFX integration 12

Favorites window 637, 676, 679, 695

steps to include 638, 680

File System API 7, 201, 624

create a folder 630

FileChangeListener 625

FileChooserBuilder 793

install file with application 649–654

InstalledFileLocator service 653

inter-module communication 665–667

Layer file 654–667

overview 624–636

System FileSystem 655

useful methods with FileObject, Table 635

useful methods with FileUtil, Table 636

File Type

add context-sensitive action 690–694, 732–734

add new 681

context menu item 691

create child nodes 694–696, 727–730

create new XML 725

XML type 721–740

file, install in module 650

FileChangeAdapter 646, 696

FileChangeListener 625, 636–648, 727

FileChangeAdapter class 646

methods, Table 646

recursive listener 643

FileChooserBuilder FileSystem utility class 793

FileObject 624

attributes 625, 637

BufferedReader 633

create a file 631

DataObject 672

FileChangeAdapter 696

getFileObject() method 674

Lookup 674

MIME type 624

monitoring changes 636–648

Openable capability 674

read and write files 632

rename and delete files 634

Templates module 680

useful methods, Table 635

FileUtil 625

getConfigRoot() method 664

useful methods, Table 636

FillTransition 101

filter() method, streams 40

FilteredList, JavaFX 838

FilterNode 317–322

findFirst() method, streams 40

FINE logging level 51

FINER logging level 51

FINEST logging level 51

float window operation 347

FlowPane layout control 715

Fluent API, JavaFX 113–115

focus window 350

forEach() method, streams 40

functional data structures 39

functional interfaces 38

fx:controller attribute 95

FXCollections 149

-fx-fillCSS style 92

fx-id tag 97

FXML 85

@FXML annotation 97

advantages with NetBeans Platform application 250–251

controller class 95

fx:controller attribute 95

fx-id tag 97

generic types 834

Make Controller menu item 157

object instantiation 96

onAction attribute 123

onMouseClicked attribute 99

RadioButton control 158

Scene Builder 156

stylesheets tag 99

ToggleGroup control 158

@FXML annotation 97

FXML Loader 95, 259

access JavaFX controller 264

set ResourceBundle 875

G

generated-layer.xml 655

generic types, with FXML 834

Genson Library 813

getters 20

naming convention 22

Global Lookup 218, 224

JavaFX integration 278

with chart data 748

Global Selection

listen for changes to 337

Lookup 240, 335, 336

tracking 240

H

hashCode() method 23

HBox JavaFX layout control 121

HTTP protocol, web services 800

I

icon files 299

IconView Explorer View 323, 328

immutable JavaFX properties 135

INDEFINITE cycle count 124

Index.Support, node reordering 451

INFO logging level 51

INFORMATION_MESSAGE message type 529

InputOutput object 629

install a file in a module 650

InstalledFileLocator service 653

with NBMs 654

Installer, create 865

instance files, Layer file 659

InstanceContent 226, 230

with JavaFX 278

internationalization 868–882

additional language support 878

Bundle.properties file 870

editing property files 873

Java resources 869

@Messages annotation 359

NetBeans Platform modules 876

testing target locales 876

IntrospectionException, BeanNode 312

invalidated() method, JavaFX InvalidationListener 105

InvalidationListener 105

invokeAndWait() method 73

invokeLater() method 49, 72, 260

IOProvider 629

getIO method 629

isBound() method 111

isEventDispatchThread() method 73

isFXApplicationThread() method 173

J

Java Logging Facility 51–54

log file 53

log handler 52

log messages 53

logging levels 54

Table 51

JavaBeans 20–38

bound properties 29–33

coarse-grained notification 34

equals() method 23

getters 20

hashCode() method 23

PropertyChangeSupport 29

setters 20

toString() method 23

JavaDB

create database 505, 802

server 505

table generation strategy 510

JavaFX

advantages 84

animation 100–103

binding 109–119

concurrency package 176

CSS 91

DropShadow effect 89

FadeTransition 101, 713

FillTransition 101

FilteredList 838

FXCollections 149

FXML application 93

Figure 95

internationalization 873

JavaFX image to Swing BufferedImage 757

javafxpackager command line tool 91

linear gradient 92

localization 873

manipulate Swing UI 259

Modena CSS styles 93

node dragging 717

observable collections 148–153

ObservableMap 149

Path shape 120

PathTransition 101

PauseTransition 101

port to NetBeans Platform 255–259

Rectangle shape 88

Reflection effect 89

RotateTransition 101

ScaleTransition 101

scene 85

Scene Builder 156–158

scene graph 85

Figure 86

SequentialTransition 101, 718

Service class 176, 821, 822–826

single-threaded model 86

SortedList 838

stage 85

StrokeTransition 101

Task class 176

thread safety 172–176

transitions 100

Table 101

TranslateTransition 101

Worker interface 176

JavaFX Application Thread 86, 172, 259

binding and thread safety 180

single thread with EDT 86, 259

JavaFX Charts 9, 744

accessing scene graph nodes 782

adding an in-place text editor 782

adding behaviors to 781–789

Area Chart 770

Bar Chart 768

Bubble Chart 773

custom formatter 776

extra value 773

StringConverter 776

CategoryAxis 768

Chart class 759

Chart properties, Table 761

class hierarchy, Figure 760

CSS for styling 763

integrate into TopComponent 755–759

Line Chart 764, 840

NumberAxis 768

ObservableList 761

overview 759–764

Pie Chart 776

useful properties, Table 777

wedge animation 782

PieChart.Data 777

resizing 763

save charts to PNG file 789–795

Scatter Chart 767

scene graph nodes 763

SmartPhone Data application overview 744–748

Stacked Area Chart 771

Stacked Bar Chart 772

title property 761

update with animation 763

XYChart class 761–763

XYChart.Data<X,Y> 761

useful properties, Table 762

XYChart.Series<X,Y> 761

useful properties, Table 762

JavaFX controller

configure from TopComponent 264

JavaFX controls 160–164

AnchorPane layout 158

binding 139

Button 164

ComboBox 778

FlowPane layout 715

HBox layout 121

hierarchy, Figure 161, 162

Label 162

ProgressBar 183

ProgressIndicator 178

RadioButton 163

SplitPane 158

StackPane layout 89

SwingNode 260–261

TableColumn 835

TableView 188, 800, 831–839

Text shape 89

TextArea 163

TextField 162

TilePane layout 194

TreeView 158, 164

VBox layout 121

JavaFX 3D 15

JavaFX integration 2, 252–259

access JavaFX controller 264

associateLookup() method 281

BorderLayout Swing component 258

communication strategies 261–264

configure a window for form editing 283

configure a window for selection 275

configure FXML 277

configure the JavaFX controller 278

configure TopComponent 281

CountDownLatch 281, 713, 795

declare module dependency 271

JavaFX Application Thread 259

JavaFX controller public methods 280

JFXPanel Swing component 259

LookupListener 286

MultiView windows 708–721, 735–740

port to NetBeans Platform 265

register a Service Provider 271

runLater() method 259

save scene graph node to PNG file 789–795

setExplicitExit() method 259

SwingNode 260–261

TopComponent communication, Figure 263

using InstanceContent 278

JavaFX node

children nodes 85

graphical objects 85

parent nodes 85

scene graph 85

Figure 86

snapshot() method 757

JavaFX properties 103–119

binding 139

ChangeListener 108

creating 132–138

immutable 135

InvalidationListener 105

lazy evaluation 133

metadata 104

naming convention 104

Observable 105

property getter method 104

read only 109, 137

ReadOnlyObjectWrapper 189

SimpleObjectProperty 134

SimpleStringProperty 132

StringProperty 132

thread safety 173

with entity classes 807

JavaFX Script 84

javafxpackager command line tool 91

JAX-RS, Java API for RESTful web services 800

JButton Swing component 57

ActionListener, Listing 61

Jersey reference implementation 800

JFXPanel Swing component 256, 259

JLabel Swing component 55

JPA

EclipseLink Library 504

entity class 506, 807

JavaFX properties 807

persistence unit 509

JPanel Form

customize dialog 533

JProgressBar Swing component 76

JRadioButton Swing component 56

JSON, with client application 813

JSR 311 800

JTable Swing component 752–755

DefaultTableCellRenderer 754

TableModelListener 747

JTextArea Swing component 56

DocumentListener, Listing 67

JTextField Swing component 56

DocumentListener, Listing 67

JTextPane Swing component 641, 645

JTree Swing component 58

DefaultTreeModel 227

TreeSelectionListener, Listing 60

L

Label JavaFX control 162

LabelWidget, Visual Library 703

lambda expressions 38–40

Layer file 439, 654–667

<attr> tag 658

<file> tag 658

<filesystem> tag 658

<folder> tag 658

_hidden suffix 659

create in IDE 656

customization 666

generated-layer.xml 655

instance files 659

inter-module communication 665–667

new File type registration information 688

Projects view 657

remove configuration items 659

remove default menu items 660

shadow files, Layer file 659

this layer in context 657

Layout of Windows wizard 388

LayoutWidget, Visual Library 699

leaking “this” reference 32, 71

Library Wrapper Modules 502

Line Chart 764

with RESTful web services 840

linear gradient 92

ListView Explorer View 323, 327

Locale, default 872

localization 868–882

additional language support 878

default Locale 872

@Messages annotation 359

NetBeans Platform modules 876

NumberFormat class 872

testing target locales 876

log file 53

log handler 52

log messages 53

Logger See Java Logging Facility

Login dialog 539–542

set application role 544–548

Lookup

AbstractLookup 226

actionsGlobalContext() method 240

add and remove content in TopComponent 226

and nodes 299

context sensitivity 5

context-aware actions 436

DataNode 677

DataObject 675

dynamically enable and disable actions 464

enable capabilities 476

FileObject 674

Global Lookup 218

Global Selection 240, 335, 336

InstanceContent 226, 230

JavaFX integration 278

Lookup.Result 237

LookupListener 237, 336

object repository 225

ProxyLookup 707, 711

Service Provider 5, 224

Lookup API 5, 201

Lookup.Result 237

allInstances() method 238

LookupListener 237, 336

JavaFX integration 286

resultChanged() method 336

tracking changes to Global Selection 336

loose coupling 63, 172

of modules 200

M

makeBusy() method, TopComponent 360

map() method, streams 40

map, JavaFX ObservableMap 149

MapChangeListener 152

Master-Detail View 327, 328, 330

MenuView Explorer View 329

Matisse design editor 44

TopComponents 222

maximize window operation 347

menu items, remove default 660

MenuView Explorer View 323, 329

@Messages annotation 359

internationalization 870

method reference 39

MIME resolver 673

action registration 683

annotations 683

XML root element 721

MIME type 624, 672

@MIMEResolver.ExtensionRegistration annotation 683

minimize window operation 347

MissingResourceException, avoiding 871

Model View Controller pattern 292

Figure 292

Modena CSS styles 93

modes, TopComponent 343, 345–346, 376–381

module

create 209

declare public package 213

life cycle annotations 242–244

OSGi bundle 4

set dependencies, Figure 200

wrapped libraries 502

module dependency 214, 215

declare public package 213

Module System API 3, 200–203

modules

dynamically install 861

dynamically remove 860

install downloaded NBM 862

uninstall 860

Modules node, NetBeans IDE 211

MoveDownAction 452

MoveUpAction 452

MultiDataObject 682, 684

multi-row window tab customization 350

MultiView windows 697–721

JavaFX integration 708–721, 735–740

Save All capability 698

Visual Library 699–708

MultiViewEditorElement

set button label 684

MultiViewElement 682, 685

add widget to view 705–708

life cycle methods 701, 713

MultiViewElementCallback 685

N

NBM

create 861

install 862, 864

NetBeans IDE

add a JFrame Form 43

add New Library Wrapper Module 503

build number in application title 852

create a Java application 25

create a JavaFX application 88

create a JavaFX FXML application 93

create a NetBeans Platform application 203

create a NetBeans Platform module 209

create a Swing application 41

editing property files 873

international version 877

New Action wizard 415

New File Type wizard 681, 721

New Window wizard 222

New Wizard wizard 555

XML Text Editor 731

NetBeans Module See NBM

NetBeans Platform

documentation 17

download software 17

internationalization 876

module system 200–203

Runtime Container 200–201

Figure 201

NetBeans Platform application

add new File Type 681

add window 219

advantages with FXML 250–251

communication strategies with JavaFX 261–264

create an Update Center 858

distribution 864–868

enable updates 857

internationalization and localization 868–882

JavaFX integration 252–259, 265

Modules node 211

port from Swing GUI 202–242

TopComponent class 219

NetBeans Platform Config 204, 205

NetBeans Platform project

Build Script 204, 205

NetBeans Platform Config 204, 205

Per-user NetBeans Platform Config 204, 206

Project Properties 204, 205

Properties dialog 205

new document tab group 349

New Window wizard 353

NewType context 482

NO_OPTION, Dialog 530

NodeListener 295, 466

nodes 292, 293–322

JavaFX scene graph See JavaFX node

AbstractNode 298

and ChildFactory relationship, Figure 305

asynchronous flag 303

BeanNode 310–313

build a hierarchy 295

canCut() method 454

canDestroy() method 454

Change Order context menu item 445

ChildFactory 300

ChildFactory.Detachable class 449

Children 304

Children.LEAF 292

class hierarchy, Figure 295

clipboardCopy() method 457

clipboardCut() method 454

concurrency 518

context menu 437

context-aware actions 436

create child nodes from DataObject 694–696, 727–730

create Property Sheet 314–317

createSheet() method 315

cut, copy, paste, drag and drop 445–457

CutAction, CopyAction, DeleteAction 457

DataFlavor class 453

DataNode 672

destroy() method 454

display node hierarchy 303–304

edit hierarchy 444–457

expand programmatically 309

ExTransferable object 454

FilterNode 317–322

fire displayNameChange event 300

getActions() method 436

getDropType() method 455

getHtmlDisplayName() method 299

getPreferredAction() method 438

icon files 299

Index.Array Children 460

Index.Support 451

inter-window drag and drop 458–467

Lookup 299

Model View Controller pattern 292

Move Up, Move Down context menu items 445

MoveDownAction 452

MoveUpAction 452

multi-level node hierarchy 304–310

NodeListener 295, 466

PasteType object 455, 465

preferred action 501

Progress Indicator 518

PropertyChangeListener 295

PropertySheetView 331

ReorderAction 451

root node 302

selection and capabilities 429

Selection History window 332–338

setIconBaseWithExtension() method 299

setName() method 299

setShortDescription() method 299

Transferable object 453

Nodes API 7

non-singleton TopComponents 364–369

NotifyDescriptor 526

customized dialog 532

dialog option buttons, Table 531

ERROR_MESSAGE 529

INFORMATION_MESSAGE 529

Message types, Table 529

PLAIN_MESSAGE 529

QUESTION_MESSAGE 529

return values, Table 530

NotifyDescriptor.CLOSED_OPTION 529

NotifyDescriptor.Confirmation 529

NotifyDescriptor.InputLine 531

NotifyDescriptor.Message 527

NotifyDescriptor.YES_OPTION 529

NumberAxis, JavaFX Chart 768

NumberFormat class 872

locale sensitive 839

O

ObjectBinding 119

observable collections 148–153

Observable, JavaFX properties 105

ObservableList 761, 838

ObservableMap 149

OK_CANCEL_OPTION, Dialog 531

OK_OPTION, Dialog 530

onAction attribute, FXML 123

onFinished animation property 102

onMouseClicked attribute, FXML 99

@OnShowing annotation 374–376

@OnStart annotation 242

@OnStop annotation 243

Openable capability 474, 674

Openable context 498

OSGi bundle 4

OutlineView Explorer View 323, 324

sorting 325

Output window 628

clear 630

configure, Listing 629

select tab 630

write to 628

OutputWriter 630

P

PasteType object 455, 465

Path JavaFX shape 120

Listing 122

PathTransition 101, 120

pause() animation method 102

PAUSED animation status 102

PauseTransition 101

persistence

TopComponents 361–363

with non-singleton TopComponents 365

persistence unit 509

table generation strategy 510

PERSISTENCE_NEVER TopComponent setting 365

PERSISTENCE_ONLY_OPENED TopComponent setting 365

Per-user NetBeans Platform Config 204, 206

Pie Chart 776

useful properties, Table 777

wedge animation 782

PLAIN_MESSAGE message type 529

Platform

isFXApplicationThread() method 173

runLater() method 173, 259, 260

setExplicitExit() method 259

platform cluster 206

platform.properties file 204, 205

platform-private.properties file 204, 206

play() animation method 102

playFromStart() animation method 102

Plugin Installer 864

Plugin Manager

create and configure Update Center 864

dynamically install modules 861

dynamically remove modules 860

enable 858

install downloaded NBM 862

PNG file, save from JavaFX node 789–795

porting

JavaFX to TopComponent 255–259

Swing GUI to TopComponent 223

print.printable TopComponent property 757

Progress API 519, 522

Progress Indicator, NetBeans Platform component 518, 522

ProgressBar JavaFX control 183

ProgressHandle 522

ProgressIndicator JavaFX control 178

Project Properties 204, 205

project.properties file 204, 205

Projects view, Layer file 657

properties

JavaBeans 20–38

JavaFX 103–119

JavaFX, creating 132–138

naming convention 20, 104

Properties dialog, NetBeans Platform project 205

Properties window

BeanNode 310

create Property Sheet 314–317

open at startup 311

Property Editor, Swing Form Designer 47

property getter method 104

Property Sheet 314–317

OutlineView Explorer View 325

PropertyChangeListener 295

Listing 32

PropertyChangeSupport 29

PropertySheetView Explorer View 323, 331

ProxyLookup 707, 711

putClientProperty() method, TopComponent 363–364

Q

QUESTION_MESSAGE message type 529

Quick Search, Explorer View 323

R

RadioButton JavaFX control 158, 163

read-only properties 109

ReadOnlyObjectWrapper 189

ReadOnlyStringProperty 137

readProperties() method, TopComponent 361

Rectangle JavaFX shape 88

arcHeight property 89

arcWidthproperty 89

reduce() method, streams 40

Reflection effect, JavaFX 89

ReorderAction 451

repository See Lookup

reset windows operation 349

Resource Bundles

customization 881

set resource, FXML Loader 875

tab, Branding dialog 854

REST architectural style 800

RESTful Java client 825

RESTful web services

client service provider 827

create a Java application client 810–816

create NetBeans Platform application client 817–821

create web service application 803–809

entity classes 807

from database 804

Genson Library 813

JavaFX Service class 821

JAX-RS 800

JSON 813

testing 809

roles

default 402

hide main window while switching 410

Login dialog example 544–548

window system 401–410

Root Context 292

root node 302

RotateTransition 101

runLater() method 173, 259, 260

RUNNING animation status 102

Runtime Container 3, 200–201

Figure 201

S

Save All toolbar icon 698

ScaleTransition 101

Scatter Chart 767

Scene Builder 156–158

download URL 156

Hierarchy display 156

Inspector display 156

Library selector 157

scene graph, JavaFX 85

scene, JavaFX 85

getStylesheets()method 98

Scene, Visual Library widget 699

Selection History window 332–338

SequentialTransition 101, 718

Service class, JavaFX 176, 822–826

RESTful Java client 825

safely update visual controls 823

service providers 5

@ServiceProvider annotation 214, 217

supersedes attribute 511

setDelay() transition method 101

setExplicitExit() method 259

setOnFailed Task callback method

Listing 187

setOnSucceeded Task callback method

Listing 187

setters 20

naming convention 22

SEVERE logging level 51

shadow files, Layer file 659

Simple Validation API 577–586

custom validators 583–586

useful validators, Table 580

SimpleObjectProperty 134

SimpleStringProperty 132

singleton class 34

size group window operation 349

sliding mode, TopComponent 345

SmartPhone Data application

module organization, Figure 747

overview 744–748

SortedList, JavaFX 838

splash screen

customize 855

remove 856

SplitPane JavaFX layout control 158

SQL, JavaDB 505, 803

Stacked Area Chart 771

Stacked Bar Chart 772

StackPane JavaFX layout control 89

stage, JavaFX 85

Startup module 201

Status Line, write to 337

StatusDisplay setStatus() method 337

stop() animation method 102

STOPPED animation status 102

streams 39–40

filter() method 40

findFirst() method 40

forEach() method 40

map() method 40

reduce() method 40

StringConverter, with JavaFX Charts 776

StringProperty 132

StrokeTransition 101

stylesheets tag 99

supersedes attribute, @ServiceProvider 511

Swing components 54–58

Swing Form Designer 44

Property Editor 47

TopComponents 222

Swing GUI 41–78

background tasks 73–79

ButtonGroup component 56

component palette 46, 579

DataFlavor 453

EDT 49

form designer 44

JButton component 57

JFXPanel component 259

JLabel component 55

JProgressBar component 76

JRadioButton component 56

JTable component 752–755

JTextArea component 56

JTextField component 56

JTextPane component 641, 645

JTree component 58

manipulate JavaFX 259

port to NetBeans Platform 202–242

port to TopComponent 223

Swing component hierarchy, Figure 55

Swing components 54–58

SwingNode 260–261

thread safety 49

SwingFXUtils

fromFXImage() method 757

SwingNode JavaFX control 260–261

SwingPropertyChangeSupport 69, 74, 716

SwingUtilities

invokeAndWait() method 73

invokeLater() method 49, 72, 260

isEventDispatchThread() method 73

SwingWorker 73–79

doInBackground() method 78

done() method 78

get() method 78

process() method 76

publish() method 76

setProgress() method 76

synchronized methods 69

System FileSystem 7, 655, 661–665

T

TableColumn JavaFX control 835

editable 834

onEditCommit() 836

setCellFactory() 836

setCellValueFactory() 836

TableModelListener, Swing JTable 747

TableView JavaFX control 188, 800, 831–839

ObservableList 838

tabs, window 345

multi-row 350

Task class, JavaFX 176

Example, Listing 181–182

Templates module 680

add to application 724

Text JavaFX shape 89

TextArea JavaFX control 163

TextField JavaFX control 162

TextFieldInplaceEditor, Visual Library 703

thread safety 68–73, 172–176

ConcurrentHashMap 69

immutable objects 69

leaking “this” reference 32, 71

observable properties 173

single thread confinement 69

Swing GUI 49

SwingPropertyChangeSupport 69

synchronized methods 69

thread-safe objects 68

TilePane JavaFX layout control 194

ToggleGroup JavaFX control 158

TopComponent 219, 352–361

AbstractSavable 492

access JavaFX controller 264, 280

ActionMap 426

add and remove content to Lookup 226

animated busy notification 360

annotations 356

associateLookup() method 281

canClose() method 495

client properties 363–364

close() method 495

communication graph with JavaFX, Figure 263

configure for JavaFX integration 281

Cut, Copy, Delete, Paste actions 456

default modes, Figure 377

Explorer Manager 292

group configuration file 385

inter-window drag and drop 458–467

life cycle methods 230, 237, 369–373

Table 369

limiting behaviors, Table 364

LookupListener 336

makeBusy() method 360

modes 376–381

MultiView windows 697–721

MultiViewElement 685

New Window wizard 353

non-singleton 364–369

non-singleton editors 491

open a window programmatically 367

open() method 369

persistence 361–363

port from JavaFX 255–259

port from Swing GUI 223

print.printable property 757

readProperties() method 361

registry 241

requestActive() method 369

role assignments 401

singleton 356

window groups 381–387

window system 346

Windows2Local folder 363

writeProperties() method 361

wstgrp XML file 384

@TopComponent.Description annotation 357

@TopComponent.OpenActionRegistration annotation 359

@TopComponent.Registration annotation 358

toString() method 23

Transferable object 453

transitions, JavaFX 100

setDelay() transition method 101

Table 101

TranslateTransition 101

TreeSelectionListener, Listing 60

TreeView JavaFX control 158, 164

selection listener 168

try-with-resources statement 632

U

unidirection binding 110

uninstall modules 860

Update Center

create for your application 858

install NBM 864

update NetBeans Platform application 857

Utilities

actionsForPath() method 436

actionsGlobalContext() method 240

Utilities API 201

V

validation, Simple Validation API 577–586

VBox JavaFX layout control 121

view mode, TopComponent 345

Visual Library 699–708

ActionFactory 699

add widget to view 705–708

include Visual Library module 699

LabelWidget 703

LayoutWidget 699

Scene 699

TextFieldInplaceEditor 703

W

WARNING logging level 51

WARNING_MESSAGE message type 527

WeakListeners 301, 313, 477, 479

web services See RESTful web services

When binding object 126

widget, add to view 705–708

window groups 343, 381–387

registration 386

window layout 342, 388–401

default role 402

Layout of Windows wizard 388

roles 401–410

view only 395

window life cycle management methods

Table 369

Window Manager 6, 350–352

dockInto() method 380

findMode() method 374

getOpenedTopComponents() method 374

setRole() method 401

useful methods, Table 352

window operations 346–349

window position See modes, TopComponent

window switching 350

Window system 5

group definition file 384

hideEmptyDocArea flag 400

layout roles 401–410

limit window behavior 349

modes 343, 345–346

multi-row window tab customization 350

@OnShowing annotation 374–376

tabs 345

TopComponent 346, 352–361

TopComponent group configuration file 384

view-only window layout 395

window groups 343, 381–387

window layout 342, 388–401

window operations 346–349

wsmode file 393

window, add to NetBeans Platform application 219

Windows2Local folder 363

WizardDescriptor 552, 558

AsynchronousInstantiatingIterator class 615

AsynchronousValidatingPanel class 609

BackgroundInstantiatingIterator class 619

FinishablePanel class 589

InstantiatingIterator class 614

InstantiatingIterator methods, Table 615

ProgressInstantiatingIterator class 616

sequence for step validation, Figure 570

ValidatingPanel class 610

WizardIterator class 600, 605

WizardPanel class

isFinishPanel() method 590

isValid() method 590

readSettings() method 553, 563

storeSettings() method 553, 563

wizards

ArrayList property 587

asynchronous validation 592–597

class structure, Figure 553

collecting input 561–565

coordinating input with other panels 572–574

DialogDisplayer 560

dynamic sequencing 598–613

Figure 599

EventListenerList 568

finishing early option 587–591

instantiating iterators 614–619

isValid() method 568

overview 552–554

properties 563

Simple Validation API 577–586

step initialization code 563

Step Sequence type 556

validation 565–576

visual panel updates 574–576

Worker interface 176

callback methods 181

read-only JavaFX properties, Table 177

thread-safe Task update methods, Table 178

Worker.State values, Table 176

wrapped libraries 502

writeProperties() method, TopComponent 361

wsgrp file 384

wsmode file 393

wstcgrp file 384

X

XML file type 721–740

create new 725

MIME resolver 673

XML Text Editor

add to application 731

modules, Table 731

XMLUtil parse() method 727

Y

YES_NO_CANCEL_OPTION, Dialog 532

YES_NO_OPTION, Dialog 532

YES_OPTION, Dialog 530

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

OEBPS/image9605.jpg
Property
clockuise

data

LabelLineLength

labelsvisible

startangle

Type
BooleanProperty

ObjectProperty<Observa-
blaList<PiaChart.Data>>

DoubleProperty

EoaleanProperty
DoubleProperty

Description

It true, start placing wedges clock-
wise from the stert angle.

PicChart’s data.

The length of the line from the
outside of the pie to the wedge
labels.

T true, dravw the pie wedge labels.

The starting angle of the first wedge.

OEBPS/image2984.jpg
—

andthe HE Enuionment
Ind.atr exzers Faul Ancersen and Sai

w acaled
norher San Cieas County Lown of Encinls.
Trey heve braught togetazr nszuctors wih
many vearsof expeience 1 . ce spectrum of
#ageering G nes a7 pecalie 1 teaching
il “eehrien. materiln 8 e 2

THFO [org. nstoeans. core. sTartup.NOEveNts]: Turning on modul

org.spentoe.url loskup 12.22.% 2013331522011
org.apenise L .31 2015092622011

arg.nnenine nodules 1,101 20 waths 1]
or3.nettesns.ap:.annotatisns. comen/1 11.21.1 2013031522011
or3.openide. “ilesystens 18.8.1 201303152201

OEBPS/image16521.jpg
private void appendTobisplay(String msq, Calor ¢} {
display.setFditable(true);
StyleContext sc = StyleContext.getDefaultstyleContext();
Attributeset attrset = sc.addAttribute(SimpleAttributeSet.ENPTY,
StyleConstants.Foreground, c);

Gllisel = sc.oddALLribulefallrsel, SlyleConslants.FonlFonily,
*Lucida Console’);

sllsel = sc.addALlribule(allrsel, SlyleConslanls.Aligunent,
StyleConsLanLs. ALLEN_JUS | LFLED);

display.setCaretPosition(display.getDocunent () . getLength());
display,setCharacterattributes (attrset, false);

display. replaceselection(nsa) ;

display. setCditable(false] ;

privale void updaleDisplay() 4
il (ool = null || updateok) {
return;

i

updateOk = fals
display. setlext
displayFiles(root);
updatek = true;

OEBPS/image16246.jpg
public class MamherWizardPanel> implenents
Wizardbescriptor . FinishablePanel<Wizardbescriptor>,
PropertyChangeListener {

private NumberVisualPanel2 component
privale WicardDescriplor wizard = nall;
privale boolean isValid = lalse;
private boolean isFinishPanel = false;
privale Loteger firsNumber;

privale Lnteger secondumber;

private mynumbers

private static final int FINISH LINIT = 500;

. . . code omitted

Qoverrice
public void propertyChange (ProperLyChangekvent cvent)
i (ovenl .getProper LyNene() cquals(
Hunbo rYisual Panc] 2. PROE_SHCIND_NIMBFR)) {
updatepanel ();

OEBPS/image13345.jpg
20" alignment="CHNIFR" >
slowerButtan” anAction
startPauseButton” prefiidt
sLarlPauscaclion” />
fasterButtan” anAction

Sloweraction” />
0

rfasteriction” /»

OEBPS/image16424.jpg
@ctionID{
category = "Tools*",
1d = “com.asgteach. fsexploration.ExploreFileAction”
)
@AcLioiRegisLralion|
iconase = "comjasyleach/ Tsexploral ion/ExplorekS. png*
displayName = "#CTL CxplorerileAction”

)
@ictionReferences({

@Actionfeterence (path = "Menu/Tools", position = 0, separatorAfter = 50),
@Actionfeterence (path = "Toolbars/File", position = 300)

)

@iessanes ({
“CTL ExploreFilenction=Explore File Actions”,
“CTL_FileActionTab=Explore File Actions"

i)

public final class ExploreFileAction implements Actionlistener [
private final Inputoutput io:
private final Outputdriter writer;

OEBPS/image14734.jpg
77 treale vead enly properly supporl lor gender
Property<Person. Gender> genderProp = new PropertySupport
-Readonly<Person. Gender>(
“gender,
Person.Gender . class,
“gender,
“The person‘s gender”) {
@override
public Person.Gender getvalue() throws
TllegalAccessException, InvocationTargetException {
return person. getGender():

}

b7t

/7 use read-write property suppart for notes (unchanged)
Property<5tring- notesProp = new PropertySupport
-Reflection=string=(person, String.class, "notes");

uSeL.pul (gender Prop) ;
uSelpul(nolesProp) ;

71 wreate vead-only properly support for id (the seller is mill)
Propertysiong> idérop = new PropertySupport .eflectionsl ongs(
person, |ong.class, “gotid’, null);
readonlyset . put (idProp) ;
} catch iNoSuchMethodCxception ex) {
ErrorManager. getDetault():
]

return sheel;

OEBPS/image12963.jpg
myParent.getChildren().add(childNode) ;

OEBPS/image15035.jpg
nvertasproparties(dtd
aulosLore = falscl
@TopComponent Description(oreTerredIl — *AdmindutputTopomponent” ,
persislenceType = TopCompunent PERSTSTRNCE_A| WAYS)
@TopCompanent . Registration(
roles = (“Adnin"),
node — *output’,
apenaTSTartip = Trie)
@lopComponent . UpenAct ionkegistration|dispLayNane — *#C|L_AJMLNUUtpUTACtior
prefcr redD = *Adui il pul TapCompnent *)
@essages
“CTI Aduri il put At jan=Adnin0ut put
IL_Adminoutput |9pComoonent-AdninUutput Window"
“HINT AdninOuTpurTopComponent=This 15 a Adminutpu

//com asqteach. admnmedule//AdmnOutput//

window®
)

pubTTC final class AdminQutputTepConpanent extends TopCampanent {
... tude omilled .

}

OEBPS/image12722.jpg
// Create a JButton with text "Update®
JButton updateButton = new javax.swing.JButton("Update");

// we begin with the update button disabled
updateButton.setEnabled(false);

// later we enable the button
updateButton.setEnabled(true);

// define an action event handler that is invoked

// when the button is clicked

updateButton.addActionListener((ActionEvent e) -> {
// do something

}):

OEBPS/image17279.jpg
public class BarChartHorizontalController implements Tnitializable {

P

private StackPane stackpane;

L

private CategoryAxis catAxis:

cPmL

privale NumberAcis nmAxis;

anHL

private BarChart<Nunber, String> chart;

private Observablelist<BarChart. Series<Nunber, String=» bcbata;
private NyTablehataode] tableMadel ;

private Observablelist<XYChart.Series<Nunber, Strin
it (bcbata = nutl) {

beDala = FXCollecUions . observableArayLisL():

for (it row = 8; row < tableModel .getRouCount (15 rowt+) {
XYChart.Serdes<Munber, String> series = new XYChart.Series<>();
series. setNane(tableModeL. getCateqorylane (row))i
for (int column = 0

columi € tabledodat. setColuRnComt(l: Coluemess {

getBarChartdata() {

OEBPS/image6801.jpg
806 Information

/ Your order is complete.

3

OEBPS/image17457.jpg
private void resetTextField() {
FedeTransition Tt = new FadeTransition(Duration.millis(1000),
textField):
1. setTovalue(0.0:
1L playFronSLarL(
ft.setonFinished((event) > {
textField.sefTranslatex(3) ;
textrield.setTranslateY(0);

n
i
private void setupEventhandlers() (

final DropStadow dropSharo = new DropShao

/1 add @ MOIISE_C1ICKHD hand]r o the background chart
17 to turn off any dropshadow effects
77 and make the Label/TextField fade out
chart..addEventkand Ler (HouseEvent MOUSE_CLICKED, (MouseEvent t} -> [
resetTextFicld();
Fadelransition Tt = new Fadelransition(luration.mil11s(1508),
wlly

OEBPS/image17376.jpg
/7 Return the data corresponding to the column number (year)
private ObservableList<PieChart.Data= getPieChartbata(int colum) {
if (pcbata = null) {
pebata = IXCollections. observableArrayList();
for {int row = 0; row < tableModel.getRowCount (}: row+) {
peDulu.addinew PieChart.Data(tableHodel .getCategoryNane row)
(Double) tablehodel.getValueAt(row, column)));

¥
else {
far (int row = B; row < tahlcModel . getRowtount () rowtt) {
Piathart.Data data = chart.qethata().qet (rou)
data.setPieValue((Double) tabletodel.getValueAt(row, column));

]
Il
return pebata;

OEBPS/image3125.jpg
800

New File

steps.

Choose Fite Type

1. Chanse File Type
P

Project. [49 Persantiews

catooras e Ty
G Ve Do B
£ ke =
3 swing L Forres. 2w i
9 Javtears Ubjects \&5 s‘:‘\;:;:mz
ek @ ndote Comer
L Unit Tests 2
Desaton

Syt o

25 a new singleton 77 dow Comgonent mtegrated nto the Windaw
il an action in main tmer which Spens Lhis airdow.

OEBPS/image7994.jpg
8006

New Action

steps

GUI Registraton

L. Choosz Filz Type

2. Action Type

3. GUIRegistration

4. Name, lcon, and
Location

caregory: [Tools

M Global Menu Item

Menu: [Tools

Pasition: | HERE

(] Separator Befora ¥ Serarator After

™ Global Toolbar Eutten
Toolbar: [File

Position: [HERE

ave All

(] Clobal Keyboard Shertcut
Key Strokes

Add.

Remove

] [[<Back | [ENexta)

Finish

Cancel

OEBPS/image16827.jpg
@ies sages ("I Rl _FanilyTree VISUAI=Visual ")
public final class FamilyTreevisualElenent extends Jpanel
inplements HultiVievElement |

privale final FamilyTreeDaluObjecl | LDulo0bject;
private final JTool0ar toolbar = new JTooloar():
private transient MaltiviewElementCallback callback:
private final Layeruidget Layer:
private EditorCookie editCookic
private StyledDocunent doc = null;
private final Scene scene = new Scene();
private final Border border = BorderFactory. createRoundedSorder(
10, 10, Color.yellow, Color.gray);

private static final Logger logger = Logger. getLogger(

TamilyTreeVisualllenent . class. gethane()) :

.

public Fami lyTreeVisuaLELemen | {Lookup Lkp) |
tDatadbject = Lkp. lookup(FamilyTreeDatadbject. class);
asser L MWatetbject '= nll;
ini tComponcnts ()
setLayout (new BarderLayout());
Layer = new Layerfidget(scene) ;
scene. addchild(layer);
add(new JscrollPane(scene. createView())):

OEBPS/image15623.jpg
Abstract| aokup.
"

private Person thererson = null:

private static Tinal Logger Logger = Logger.getLogger
PersonEditorTopConponent .c ass . getNane(11 :

privale baolean changedK = fals

private banlean nollpdate = truc;

private final InstanceContent instanceContent = new InstanceContent();

private FamilyTreeHanager fim;

public PersonEditorTopComponent() {

initComponents();

associateLookup(new AbstractLoskup(instanceContent) s
)

1 The Edilortanager musL invoke Lhe selPerson nelhod will Lhe Node
77 Uhal conlains Ui wrapped Person objecl in ils Lockup
public void setPerson(Node nade) {
‘thePerson = node.getLookup() -Laokup(Parson. class);
Node oldNode = getLookup() . lookup(Node. class)
if (aldNode t= null) {
nstanceCantent . remove (oldliade
¥

instancacontent.add(node) ;

OEBPS/image9846.jpg
‘SmartPhone Sales Data

OEBPS/image14137.jpg
private void buildnatal) {
ftn.addPerson(new Person(*ilomer, "Simpson", Person.Gender MALL)):
ftn.addPerson(new Person(*Harge*, "Sinpson", Person.Gender.'TNALT));
ttn.adcrerson(naw Person(*3art", "Simpson”, Person.Gender.MALE) |:
ttn.adclersoninaw Person(*Lisa", "Simpson’, Person.Gender.FEMALE]):
tn.adclerson(naw Person(*Maggie®, "Simpson”, Person.Gender.FENALE)
Logger. Log(Leve L. FINE, ftn.getALLPeople(). toString(]

¥

private void creatoodos () {
tm.qethl1Peapla() .strean() . forFach((p)
top.add(new Defaul tHut bl eTresade (p)) ;

{

i

17 Txpand the tree

it (top.getchitdcount(] 1= 0) [
Treeflode(] nodes = treeMlodel.getPathToRoot(top. getLastchild (1)
TreePath path = new TreePathinodes):
personTree. scrol lPathTaVisible(path) :

OEBPS/image7149.jpg
v & Sequence
v [Source Packages
» @ com.asgteach.sequence
» (@ mportant Files
» (g Uibraries
v & WizardExample
v (g Modules
&b Sequence
» (@ Important Files

OEBPS/image15535.jpg
@uppressWarnings (“unchecked")

@verride
public Action[] getActions (baolean cantext) {
Vistafctions persanictions = new Arreyl ist<{Arrays.asl ist(

super. getActions (context))) :
personActions. add(DeleteAction. get (DeleteAction. class)) :
return personActions. toArray(
new Actionlpersonactions.size(}1):
]

GOverride

public boolean canDestroy() {
return true;

}

@override
public void destroy() throws ToFxcaption {
final RemovablePersoncapability doRenove = getLookup() .lookup(
RemovablePersonCapability.class):
final Person person = getLookup () .Lookup (Person. class]:
if (doRemove != null & person != null) {
doRemove. remove person) :

3
1

code omitted

OEBPS/image12650.jpg
[Homer Simpson, Bart Simpson, Marge Simpson, Lisa Simpsan, Maggie

=/messages

</record=

<recoras
<Gate»2013-05-18T69:29: 36</date
<nilLis>1358894566117</mi L Lis>
<sequences2</sequence>
<Logyerspersonswingapp. ber son b rane</Logyer>
<TevelokNee/Tevel>
=class=personswingapp.PersondFraneyi=/class=
«method=valueChanged-/method:-
<thread=13</threac:
<message-Bart Simpson selectede/message=

</record=

<record>
<Ualeo2013-05-18160:29: 1</ dale>
<niLis>13685545/ 1564</mi 1 Lis>
<sequencesic/scquences
<Ingger=personswingapp. ersan kranes/ 1 aggers
<l evel sk INe/Tevel >
=class personswingapp. Persan]Frane§i</classs
<method=propertyChange=/method
<threag~13</thread>

<messagesNode updated: Bart Seymour Simpson</message>

</records
</log>

Simpson]

OEBPS/image14056.jpg
FamllyTreeManager tim =
Lookup . getDefault() .Lookup(FamilyTreeManager.class);
if (Ftm == null) {
Togger. log(Level . SEVERE, *Cannot get FamilyTreeManager object"):
LifecycleManager. getDefault().exit();

}
A & shietiins with

OEBPS/image13942.jpg
¥

resetVI();

i

processTask, setonCancelled(t - {
Logger. Log(Leve.FINE, "Process ALL task cancelled. "
resetU1():

n:
/¢ start the task in a background thread
new Thread{processTask) .start();

17 resel U UL
privale void resetUI() (

FadeTransition Ft = new FadeTransition(Duration.nillis(1500),
nameDisplay) :
*t.setTovalue(8) ;
ft.setDelay(Duration.millis(2000));
ft.setonFinished(a > {
processALlButton. setbisable(false);
Wi
toplay();
progresskar. praqresseroperty ()
progreasskar. setPrograss (6 ;

nbind();

OEBPS/image14412.jpg
J linally
Tatch. countDown{) ;
1
i

try {
Tatch.await(): // wait for createscene() to finish
71 get the InstanceContent from the controller
associatelookup(new AbstractLookup(
controller. getInstanceContent (})) ;
} calth (Interrupledexceplion ex) {
Togger, Log(Level . SIVIRL, *JavarX initialization interrupted");
LifecycleManager. getbefault() .exit();

]

private void createScene() {
try {
URL Tocation = qetClass().qetResource(‘PersonFXViewer. fxml")
XLLoader fxmlLoader = new MXMLLoader();
+xmlLoader.setLocation(location) ;
+xmlLoader. setOuilderTactory(new JavarXbuilderfactory()):

Parenl rool = (Parenl) Tl Loader Load(location. openSLrcan()) ;.
Scene scene = new Seene(root) ;
#xbanc] . sefSiccne(scenc) ;
controller = (PersonFXViewerCantroller) fxnlloader.getController(
T catch (I0Cxception ex) {
Cxceptions.printstackTrace(ex ;
¥
i

.+ code onitled

OEBPS/image13667.jpg
<IreeView Tx:1d="personireeView" pretHeight="289.0" pretWidth="225.0"
AnchorPane.bottomAnchor="23.0" AnchorPane. lettAnchor="23.0"
AnchorPone. rightAncho="23.0* AnchorPans. topfnchor="14.0" 75

OEBPS/image13658.jpg
<Button Tx:10=
onActiol

pdateButton” layoutX="14.0" LayoutY="280.0"
#updateButtonAction" text="Update" />

OEBPS/image12731.jpg
// Deline Lhe Lup node
Defanl tHutabl eTreeNode top =
new Detaul tMutableTreeNode("People"

// Create the Jiree with node top
JTree personTree = new JTree(lop);

// Set the selection model to single (that is, not multi-select)
persunTree. geLSelec LionModel () .selSelecLionHode(
TreeselectionMadel . STNGI F_TRFF_SFI FCTTON) 3

/7 Build the JTrec model using FamilyTrecManager getAllPeople()
Fim_aetAl TBeonlea () - Farkachip o> Fop.add (ne DefaittstahTeT reaNode (n))).

OEBPS/image17876.jpg
300 nameMyl ami Ly I raeApp
0. Li LLe= [a0p. niam)
app. version=3.2
] =
Sfproject con asqreach familyrree model}:\
S[Projoct .com_asgreach. Tamt Ty ro.porsonvicwer) s\
${project . con. asqreach. faniltres. personeditor}:\
{project .con_asqreach. famt 1y ree_manager. inp }
aroject. con.asgteach, fam: Ltree. personeditor—Personditor
project con.asqteach. fanzLytree nanager.npl-TanilyT reeHanagerInpl
oroject.com.asgLeach. fan TyLree model—Fan y Treekudel
arofect. con.asqteach. fams ytree personviewer—Personviener

OEBPS/image15999.jpg
// Bad Togin, Try again
dd.getNoti ficationl ineSuppert (). sethrrarMessage(
Kundle.l aginkrror());

3
s
7/ Allow Cancel Lo close Lhe dialog, bul 0K should nol
dd.selClus ingOpLions (new Object] | {DialogDescriplor . CANCEL_OPTION));
dd.createNoLilicationl ineSupporL();

DialogDisplayer.getDefault() .notify(dd): 7/ display and block

OEBPS/image5500.jpg
Projects €

v & FamilyTreeActions
v [source Packages

= Action...
> 18] Java Interface...
> @ Cut Java Class.
> &% Copy #C | Hava Packag:
> & Paste [Window...

Delete [lJpanel Form.
Refactor [Empty File

& Installer / Activator...
Compile Package FS | @ JavaHelp Help Set...
TestPackage %F6 | [l Frame Form...
Export Package
History »

Other...

Tools >

OEBPS/image17385.jpg
public class PieChartController implements Initializable {

private void createPisChart() |

tableHodel . addTableModelListener { (TableHodelEvent &) -> |
il {e.gelType() == TableMoge Evenl UPDATE] {
final Inf row = e.gethirsthow(};
final int column = e.qetColumn();
if (colum != yearChoice.getselectiontodel()
.getSelectedIndex()) {

return;

T

Iinal Double value = [Double) ((MyTubleDalaModel)
c.gelSource ()] .geLValueAl(row, column);

Flalform. runkater(() > {

77 Updale Javabk scenc in Javabx Application thread

Picthart.llata data = chart.getbata().get(row);
data. setPieValue(value) ;

0

OEBPS/image15783.jpg
public final class Person implements Serializable {

private long id;
private String tirstname:
privale Slring middlenane;
private String astnane;
private String suffic;
private Person.Gender gender;
private String notes;

... code omitted .

1
Gondor. INKNOWN) ;

pubLic person(
this(ts, *
b

public Person(long id) {
‘this("", ", Gender.UNKNOWN
this.id = id

OEBPS/image16415.jpg
1
1 pisPickun))
Sb.append(“For Pickup);
Jetse't
<b.append(*For Delivery');
by

Dialogdisplayer.getDetault() .notity(
new NotifyDescriptor.Message sb.tostring(]1):

OEBPS/image5160.jpg
ano

New Layout of Windows

steps

Launch Your application

L Chouse File Trpe

2. Launch Your
Applearion?

3. Design Vancow Layout
anged Files

IThis activiy requires a restart of your 3pplication In a special mode..
¥our appiication miis he compilable, xe itable, and shots 1ot de anyihing strange

s scon 25 the application i launched, vou can customize the l3yout,
Create o miodes, anl e ar wxsting modes. Cluss the <pplication 1 save charges

o youwant 1o proceet

(o tgnone e ofprie

Hap | [weck | [Redn] B

OEBPS/image13190.jpg
Java. lang.RuntimekException: A bound value cannot be set.

OEBPS/image6517.jpg
806

File: [derbyclient jar

b
 Name . A| DawWodiid

derby jar Wednesday, July 11,2012 12:38 PM
derby.war Wednesday, July 11, 2012 12:38 PM

nesday,July 11, 2012 12:38 PM
derbyLocale_cs jar Wednesday, July 11, 2012 12:38 PM
derbylocale_de_DE.jar Wednesday, July 11, 2012 12:38 PM
derbyLocale_es.jar Wednesday, July 11, 2012 12:38 PM

File Format: [All Files B

[New Folder | [Cancel | [[Select |

OEBPS/image9515.jpg

OEBPS/image14743.jpg
public_GanderTopConponent () {
initconponents(
sethame (Bundle.CTL_GenderTopComponent ());
setToolTipText {8undle. HINT_GenderTopComponent {1):

OutlineView view = new OutlineView("Pesple”):
view. setPropertyColumns(
“notes,
)i
add(view, BorderLayout. CENTER)
associatel ookup(Fxplarcrl/ti1s. croatel ookup(cn, this.getActionMap()));
en. setRantContext (new Rootnde())
far (Node node : em.getRootContext() .qetChildran() .gethodes()) {
view. expandiode (node) ;
g

77 open the Properties window by detault
TopComponent tc = Windowanager. getDetault()
FincTopComponent (*properties*) :

It (tc 1= null) {
te.apen(

OEBPS/image17903.jpg
Installer(s) for [windows linux macosx] are available
at <full path>/FamilyTreeApp/dist

OEBPS/image13530.jpg
package personfxappbound;

import javafx.application.Application;
import javafx. fxnl.rMLLoader;

impor U javalx.stene. Parent;

impor U jevax, stene. Suene;

impor U jeva [x,s Lage. SLage;

public class PersankXApphound cxtends application {

Qoverride
public void start(Stage stage) throws Exception (

Parent root = FXMLLoader . Load(getClass ()

getResource “PersonPBound. fxal")) ;

Scene siene = new Scane(rooll;

SLage. selScene (scenc);

Slage.sellille("Person Bind Exanple”);

stage.show();

¥

public static void main(String[1 args} {
taunchiargs) ;
]

OEBPS/image15026.jpg
@LonvertAsFroperties(dtd — “-//com.asgteach.adminmeoule//AdminLditor//LN",
autosiure = fal50)
@TopComponent.Description{preterredIl - “AdminCditcrTopComponent™,
persistenceType — TopCompanent PARSTSTENCE AlWAYS)
@lopLomponent. Registration(
roles ‘Admin“},
mode — "editer",
opentstortup — true)
@TopCumponent, OpenAcLivnRey isLrallon(displayNom:
preferredID — “AcwinCditorTopCemponent™)
@ossages([
CT__AdninCdicton-AdninCditor™,
“CTL AdminEdTopComponer t-AdminEditor Windo
“HINI_AominkdIopLonponent=Ihis ic a Adwinkcitor window"

TL_AduinEd . Lor Actior

b

pubTic Final class AdminFdilorTopComonent ol ends TopCumponent [
... code omitted . .

}

OEBPS/image9853.jpg
o066 (Anitheuritey RTEESLAN. o

% 9 e (@t 51 O

Smart Prone Sales

[Err

OEBPS/image8209.jpg
Method
TileFolderCreal ed (FileFvent)

FileDalaCreal cd (FileFyvenl)
fileChanged(FileEvent)

fileDeleted(FileEvent)
fileRenamed(T'ileRenameLvent)
fileattributechanged (rileAttributeCvent)

Description

Tired when the supervised folder con-
tains a new folder

Tired when the supervised folder con-
fains a new file

Tired whena file changes (.2, edits are
saved)

Tired when a file or folder is deleted
Fired when a file or folder is renamed

Fired when @ file or folder's attribute
has been added, updated, or removed

OEBPS/image15774.jpg
list<Person> people = Collections.synchronizedl ist(
new irraylisto-());

em.getTransaction(] .begin();
Query q = en.createQuery(
“select p from Personintity p order by p.lastnane asc, p.firstname asc’);
ListePersonintity» results = (List<PersonCntity=) q.getResultList();
if (results != null & results.size() > 6) (
resulLs. strean() - Torach((pe) -> {
prople.add {buildberson(pe));
i
T
em.getransaction().connit();
return Collections. unmodi fiablel ist(penple];
} catch (Cxception ex) {
Togger. log[Level .SIVERE, null, ex);
return null;
) finally (
em.close():

)

OEBPS/image10435.jpg
simpson
% arge Simpson
s Smpson

5 wagaie Smpson

Simpsen

Bart likes to skateboard!

OEBPS/image17867.jpg
branding.token=myftamilytreeapp

OEBPS/image15044.jpg
package com asqteach.rolemsdsl.opi;
puplic interface UserRole {

public User TindUser(String username, String password);
PuRlic User starcliser (Usor user

public String| | getRoles(];
public boolean storeRcla(String role):

OEBPS/image14146.jpg
public final class PersonfditarTopComponent extends TopComponent {

private FamilyTreeManager ftm;

private Persan theParson = nul1;

private static final Logger logger = Logger. getLogger(
PersonEditorTopComponent. class.getName ()):

private boolean changedK = false:

private Lookup.Result<Person> LookupResult = null:

public_ PersonsditorTopComponent(] |
initComponents();
seiflame (Kundic. CI1_Personkditor lopCamponcnt (1)
setinal 11plext (Hundl o HIKI_Personkditor|apCanpanent ()) ;

OEBPS/image1167.jpg
Logging Level
SEVERE
WARNING

INFO

CONFIG

FINE

FINER

FINEST

Description
Highest

Default threshold level for console output

Lowest

OEBPS/image14421.jpg
package con.asgteach.familytree.personfxeditor;

import com.asgteach. fanilytreefx.nodel.FanilyTreeHanager:
import com.asgteach. fanilytreefx.model.Person:
- other import statements omitted

public class PersanFXEditorCantroller implements Initializable {
. code omitted . .

¥

OEBPS/image14482.jpg
public class PersonchildFactory extends ChildFactory<Parsons {

private final FamilyTreeHanager ftm;
private static final Logger Logger = Logger.getLogger(
Personchi(dFactory. class . gethane]

public PersonchildFactory() (
Unis. flm = Lookup. gelbelaul L() . Lookup (Family |1 cotenager . Class) ;
i (fm == 1) ©
Togger.Tag(l cvel .SFVFRE, "Cannot get Familyl rechanager abject™);
LifecycleHanager. getDefault().exit():

¥
Ftm. addPropertyChangeL istener (familyTreelistener) ;
1

@override
proecled boulean crealeKeys(Lislepersons List) {
s addaT] ([, gelal1PeopTe());
Togger.Tag(l evel .FINFR, “creatokeys called: {6}, frm.gorallbeaple());
return true;

OEBPS/image1604.jpg
ana MNen Java sl Applicalon

sens Name snd Locarion
5 roosenonc e Peiscioms [ecungistor
PrejctLocation: | mietdearsPatencjects ava basics javatasies | o
et Pl B o P e i A oA

111 Crats Castom brsosder

1) se Destesee Feldarfo Saring Lbrarts
e Bl o

O ferent s el e can st e oo e (s0e

hack) (b | (AR (G

OEBPS/image3472.jpg

OEBPS/image3634.jpg
ece FXDemoApp 201403101705

S 5
Swing JButtor

[Pxvema o

OEBPS/image2912.jpg
FamilyTreeApp 201308162201

5 reove
Dorsrngsen

OEBPS/image17788.jpg
@verride
public void initialize(final URL url, final ResourceBundle resources) {

17 Define the Comparator for Sorting
comparatorSalesdata = (Salesdata ol, Salesdata 02) -> |

/1 First compere Ui company name, Lien compere e year

inl resull = ol.geLConpanyid() .gelCompanyname () . conpare o LgnoreCase

o2.getCompanyid() .getCompanyname ()
if (result = 0) {
return ol.getSalesyear() .conpareTo(02. getsalesyzar()) ;
3

return result:

7/ When the underlying data change, reset the filtering and sarting
Share. theDataProperty() -addListener(

(1'istChangel { stener. Change<? extends Salesdatas change) -» {

filteredbata = new FilteredListe>(
share. theDataProperty().get(). salesdata -> (

7/ Reapply Tilter when cata changes

String newVulue = [illerTexl gelTexL(};

77 T liller Lext is enply, display all dala

i (newvalue == null || newvelue. isenply (1) {

R Lras

OEBPS/image1266.jpg
JTree collapsed

¥ 5 People
L Horer Simpsen
[gart smozon
[Warge Sirpson
) sz simpsen
[vaggic Simpzon

JTree expanded

V@ Peope
", Herrer Simpson

(5 Werge Sipson
[sz mpsen
(X Magaie Simpson

Node Bart Simpson
eclectad

OEBPS/image16987.jpg
<roat mln
<front>

fanilytrea's

OEBPS/image6695.jpg
All People... |

Progress Indicator —J

OEBPS/image12713.jpg
if (thePerson.getGender ().equals(Gender.MALE]) {
maleButton.setSelected(true);

} else if (thePerson.getGender().equals(Gender.FEMALE)) {
temaleButton. setSelected(true);

} else if (thePerson.getGender().equals(Gender.UNKNOWN)) |
unknownButton. setSelected (true);

1

OEBPS/image3688.jpg
Module
FamilyTrecFXMadel

Module

PersonFXViewer

Module
FamilyTreeManagerFXIml

Module ‘

OEBPS/image16030.jpg
1t (DialogDisplayer.getDetault().notitylwiz)
WizardDescriptor.FINISH_OPTION) {
// do sonething after the wizard has successfully finished

OEBPS/image3767.jpg
v & FamilyTreeManagerFXimpl
v (i Source Packages

» B com.asgteach.familytree. managerf.impl
» [mportant Files
v (g Ubraries
») JDK 1.8 (Defauly
& FamilyTreeFXModel

» B Lookup API - org.openide.util.lookup

OEBPS/image14074.jpg
public PersonViewerTopComponent() {

associateLookup(new AbstractLookup(instanceContent));

OEBPS/image17561.jpg
public void selUnilsiomillions(BigDecimal unilsinnillions) [
unitsinmillionsProperty. set(unitsinmillions):

b

public ObjectProperty<Bighecinal> unitsinnillionsProperty() {
return unitsinnillionsProperty;
¥

GJoinColunn(name = "COHPANYID", referencedColumnhame = "COMPANYID")
@HanyToOne
public Company getCompanyid() {
return companyidProperty.get();
¥

public void setConpanyid(Company companyid) {
conpanyidProperty. set(companyid);

¥

public ObjectProperty<Company> companyidProperty() {
return conpanyidProperty;

b

Qoverride
public int hashcode() {
int hash = 0;
hash += (getsalesid() !
return hash:

nuLL 7 getsalesid().hashCode() : 0);

OEBPS/image8000.jpg
808

New Action

sieps Name. lcon, and Location

1. Choose il Typa e e

5. Acifon Type (o ExplarckieAct

3. Gl Reaitration

3 Qiiabrany Display Name: [Explre Fle Accons
Icon: stfermProjects lcons ExplereFS.png | Browse.
Frojec FSEaploration
bckige: [comasgeacpeplntion +

Created Files

Modified Files:

srcfcomjasgteach/fsexploration/ExplorefS.ong
<r¢/com/asgteach/fsexploration/ExplorcFS2i.png
<r¢/com/asgeaachfsaxploration/ExploraflieAction java

nbproject;project.xm

OEBPS/image10507.jpg
ano Phuging

[Updates | Availabie Plugins | Dewnloaded

Configurarian of lipdare Coners

nstalled €]

W Ty e et

A |
Automatically Chck for Upgatzs
Chick ntenval: | Every Wesk. [Prowy setings |
Acuanced
i Install Location: | Baraulc
Cose | [Heip

OEBPS/image15880.jpg
Noti fyDescriptar nd = new Hotifyhescriptar.Confirmation(
“Do you RTALLY want to delete all those files777");

it (DialogDisplayer.getDetault().notity(nd) == NotityDescriptor.YES_OPTION) [
77 Yes, reully delete all Uhose liles
)

OEBPS/image8376.jpg
e i * =1 taolbars.

il v e
et e
P oo
G & Gy

o b
e o
S UndoRedo_hidden & e

3 St

» (& Tniteso
P T A
) St

I Undafeda,_hidden

OEBPS/image17939.jpg
public tinal class ladleViswloptomponent extends |oplompenent {

private static JFXPanel fxPansl;
private TebleViewControUler contiollen
private final ResourceBundle resources;

public TableViewTopComponent() §
in' | Component ()
resources = ResourceBundle. getBundle(
“can. asgteach. coretablevieu. Bundle”
sethiame (Bundle. CTL_TablevizaToponpanent () :
setToolTipText (Bundle. HINT_TableViewTopCompanent () ;

Locale. getDefanlt()) ;

sellayoul inew Borderlayoul()
init();

¥

public void lnit() {
txPanel — new JIXbznell);
add{ [Pancl, BorderLayoul . CENTER);
Patforn. setInplicitExit(false);
Platforn. runlater () -> createScene());

OEBPS/image17448.jpg
public class PiachartController implenents Tnitializable {

ePa
private Label label;

N

privale SlackPane slackpane;

L

privale Pietharl charl;

G

private Conholox<string> yearChoice;

enL

private TextField textField:

private HyTableDatakodel tableModel:

private ObservableList<PieChart.Cota> pcdata:
private Node lasthode = null:

OEBPS/image2977.jpg
& familyrreeapp Fle Fdic View Navigete Tools

Menu Bar

FamilTreeAp 201300162201

sincon Help

Search Window

OEBPS/image16922.jpg
String docString = doc.getText(e, doc.getlength()
final CountDownlatch latch = new CountbownLatch(1)
Platform. runLater(() =» {
Uy 1
controller. refresh(docstring) ;
T finally {
Tatch.countiioun (};

¥
i
try {
latch.await();
11 wait for refresn() to complete before calling the fode-in
Platforn. runLater(() -> controlLer.doFadeIn()):
J cotcn (InterruptedExcetion ex) (
Logger LogLeveL VARNING, nuLl, ex);

} catch (Hadl ocationkxception ex) {
Fxceptions . printStackTraca(ex) ;
»

b

@0verride
public void componenthidden() |

Platforn. runLater(() -> controller.clear());
:

@verride
public void propertyChange(PrapertyChangeEvent evt) {
7/ the controller made changes; we have to update
77 the underlying document and refresh the Javarx scene
iF (evt.qetPropartybane() . equals(
Ftevi troller.PROP DOCFI FMENT REMOVED) ||

OEBPS/image13203.jpg
/{ circlel radius no longer bound to circle2 radius

circlel.radiusProperty().unbind():

if (1circlel. radiusProperty(). isBound()) {
system.out.println(*Circlel radiusProperty is unbound®):

4

1/ Radius properties ara now no longer the same
circlez. setRadius(30.5!

System.out.println{*Circlel: * + circlel.qetRadius());
System.out.println{*Circlez: * + circle2.qetRadius());

¥
b
output:
Circlel: 18.5
Circlez: 15.5
Circlel radiusbroperty is baund
Circlel: 1h.
Circlez: 15.5
Circlel: 78.5
Circlez: 78.5
Circlel radiusbroperty is unhound
Circlel: 20,
Circlez: 39.5

OEBPS/image10043.jpg
1AR File

eglib-2.1.88 jar
edlipselink jar
genson-1.0jar
guava14.0.1 jor
hk2-api-2.1.88 jar
Tk2-locator-2.1 88 jar
‘hk2-utils-2.1.88 jar

javax.inject-2.1 88 jar

javax.persistence-2.10.vxxjar
javax.ws.rs-api.2.0,jar
jersey-client jar
jorsey-commaon.jar

osgi-resource-locator-1.0.1jar

Location
HetBeans/enterprise/modules/ext/jersey2/ext
NetBeans/java/modules/ext/eclipselink
Download http://owlike.github.io/genson/
HetBeans/enterprise/modules/ext/jersey2/ext
NetBeans/enterprise/modules/ext/jersey2/ext
HetBeans/enterprise/modules/ext/jersey2/ext
NetBeans/enterprise/modules/ext/jarsey2/ext
NetBeans/enterprise/modules/ext/jersey2/ext
HetBeans/java/modules/ext/eclipselink
NetBeans/enterprise/modules/ext/jaxrs-2.0
NetBeans/enterprise/modules/ext/jersey2
NetBeans/enterprise/modules/ext/jarsey?

NetBeans/anterprise/mocules/ext/jarsay2/ext

OEBPS/image639.jpg
D
First
Middle
Last

Suffix

Abraham
14
Lincoln
® Male Female Unknow

Notes

Abraham Lincoln wias the 16th president of the United States.
He preserved the Union during the U.S. Civil War
and braught about the emanc pation of slaves

OEBPS/image12981.jpg
Rectangle rectangle = new Rectangle(200, 1060, Color.CORNSILK]:
ractangle.setArcWidth(30);

reclangle, selArcheighl (30) ;

rectangle. setEffectinew DropShadowl18,. 5, 5, Colar.GRAY)):

OEBPS/image6560.jpg
8006

Create Java DB Database

Database Name

User Name

Password.

Confirm Password:

Database Location: /Users/gail.netbeans-derby

personftm

personftm

[Cancel | ROk

OEBPS/image15688.jpg
EditorManager edmanager = Lookup.getDefault(].lookup(
Editoranager..class)
if (ednanager 1= null) {
ednanager . openEditor (Persontlode. this) ;
¥

b
77'Ald 4 SavablePersonCopabilily Lo Lhis Node
instanceContent.add(new SavablePersonCapability() {

Qoverride
public void save(final Person p) throws I0Exception {
if (ftm 1= nall) {
ftn.updatePerson(p) ;
}

»:

OEBPS/image817.jpg
a0Aa

New Proect
steps Choose Project
L. Choose praject a
7
caregories Projecs:
7] © Java Applcation
3 Javerx S Java Cass Ubrary
3 Java Wb S Java Pojec wh Fxisting Surces
G Jave EE 2 Java tre-korm Project
Descrption:

Creates a new Jave SE application in a standard IDE project
Nou can also generate a main clazs in the project. Standard

OEBPS/image13327.jpg
<children>
<Slackpane >
<childrens
<Group-
<children=
(see Listing 3.18)
</childrens
</Group>
<Texl fx:ids"text” >
<lonl><Fonl nanes"Verdana® siz
<effactaReflaction fa/efferts
</Text>
</children=
~/stackPane>
“iDox spacin

16 f></lonl>

20" glignment='CINTER"
(see Listing 3.19)
</HBox>

</chiTdn
<k

OEBPS/image17439.jpg
<stackPene id="StackPane' fx:id="stackpane"
xmns:tx="http: //javatx.con/txnl/1"
tx:control Ler="org. snartphone. chart. pie. PieChartControl Ler"s
<childrens
<PieCharl Ix:id="charl’ />
<Combubux fx: id="yearChoice’ />
<TextField fx:id="textField"
maxuidth="75"
opacity="9.0" />
<Label fx:id="label"
textFill="RoyalBlue"
opacity="0.0"
style="-fx font-size: 20 ; -fx-font-weight: bold.

s
</ehit
<yStackpancs

OEBPS/image16066.jpg
@verride
public void actionPerformed(ActionEvent €) {

. code 1s unchanged . . .
WicardDescriplor wie = new WizordDescriplorl
tew WicordDescriplor ArrayTLeralor<Wlizar dDescr iplor> (panels));
47 19} will be replaced by
7 Wicardbesriptor. Pancl.ge Component (). ge WNane()
wiz,setTitlerormat (new Hessageormat (*{0}"));
wiz, setTitle(Dundle,CTL KunberbialogTitle());
if (Dialogbisplayer. getbetault() .notify(wiz)
WizaraDescriptor. FINISH_OTTION) {
StatusDisplayer.getDefault() .setStatusText("Wizard Finished"):
/1 retrieve and display the numbers
StringBuilder message = new StringBuilder(“Number Sequence = \n
mes sage.append (wiz.getProperty(
NumberVisualPanel1.PROP_FIRST_NUMBER)). append (",
message.append (wiz. getProperty(
NunberVisualPanel2. PROP_SECOND_NUMBER)) .append (", ")
message.append (wiz. getProperty(
Number Vi sual Pane13. PROP_THIRD_NUMBER)). append (")"
DialogDisplayer.getDefault() .notify(
new Noti fyescriptor . essage(message. toString())) ;

OEBPS/image13854.jpg
updateTask.setOnSucceeded(t -- {
backgroundActive. set (hackgroundActive.get() - 1);
Tugger. Tog(Level FINE, “Updale Lask [inished: {637,
t.getSource() .getvalue());
Togger.Tog(level .+ INF, *tasks stillinkackground = {0}
backgroundic tive.get());

s
updateTask.setOnFailed(t -> [
backgroundActive. set (backgroundactive.get() - 11:
7/ t.getSource() .getException() could be null
Logger . Lug (Leve LWARNING, "Updale Lusk lailed {0}",
+.gatSource() . getFxeeption() t= null
? t.getsource() .getException()
“Unknown failure");
Togger.log(Level .TNL, "tasks stilllnbackground = {0}",
backgroundhctive.get()):

i
new Thread (updateTask) .start();

OEBPS/image5074.jpg
Coeneon o

WinduwSpotemAep 201204101705 2

@ seren

Goen

o o |
ase Top Person Hiraow |

|| Chenge nese |

VoueName Horman PersonProperty

Feeroup o 7]

PersonOutput Window

OEBPS/image13088.jpg
package myrectanglefxapp;

inport
inport
inpart
inpart
inpart
inpart
inport
inport

pubLic

private RotateTransition

Java.net.UnL;
Java.util.NesourceBundle;
Javafx. fxml FXM §
Javafx.fxml . Initializahle;
javafx.scane. inpit Mausekvant ;
javafx.scane.paint .Calor;
javafx.scene. shape.Rectangle;
javafx.util.Duration;

class MyRecLangleFXConLroLler inplemenls Inilivlicable

e
private Rectangle rectangle;
P

private StackPane stackpane:

OEBPS/image5171.jpg
2 ~—— NewMode lcon

OEBPS/image3301.jpg
806

maleButton [JRadioButton] - Properties.

[Properti | | Binding | [Events |[Code |

v Properties

ction <none> s
ackground O [238,238,238] i

odel <default> 2 [
buttonGroup genderButtonGroup - H
ont Lucida Grande 13 Plain |
oreground W (0,00 el
buttonGroup ?

Group of buttons in which this button belongs

(ep) (G

OEBPS/image3283.jpg
800 New Wiridaaw
steps Nameicon and Location
L heoserie e Clsce Name s parsaniaion

Prjec:

Fac

Mocifed s

Fercomissgesch famssipeorsatarpean g [Bovie

Perentor

comasqtaach famyree personedic’

srtcorasgtaachifa s arsencditr Fersor 6 orTapCen orart for.

manessnt
Fhorec st

[[t

OEBPS/image5058.jpg
18 PersanTopC=mzonsnt jaua |

[

e B 4
i izbel 5 vt

ETeggenmor - Chaceox

tour Name - Rt o o G

1 Corbo box e

Topeamzonen - =mpimi(o

yTHT\

© Popenies
Joackareuna ot 5
ooncer T
A il E

OEBPS/image12740.jpg
// Get the selected node
DefaultMutableTreeNode node = (DefaultMutableTreeNode)
personTree.getLastSelectedPathComponent () :

OEBPS/image17617.jpg
@verride
protected ObservableList<salesdata> call() throws Cxception {
Logger. Log(LeveL. INFO, "GetsmartrhonesalesTask called."):
Response response = clientl.findALL_XML(Response.class
GenericType<List<Salesdata>> genericType =
new GenericType<List<Salesdata=>() {};
int status = respanse.qetstatus();
if (status != Response.Status.0K.getstatusCode()) {
Togger . Log(Level WARNING, "Dad status {0}*,
response. getStatusInto() . getReasonrhrase()]:

Unrow new Exceplion("Bad stulus: * + slalus
+ 7 lor web service call”)
1
77 Betums an Arvayl il of Salesbala fron the weh service

List<Salesdata> data = (respanse.readEntity(genericType));
salesdata = FXCollections.observableArrayList (data):
return salesdata;

OEBPS/image17394.jpg
Chart myChart;

myChart . addEventHandler (MouscEvent . MOUSE_CLICKED, (MouscEvent t) -> {
.« o . evenl handler code here . . .

1)

OEBPS/image12454.jpg
t

public vaid addPropartyChanqel istener(PropertyChangel istener 1istenar) {
this.propChangesupport. addPropertychangeListener(listener)
¥

public void removePropertyChungeLis ener (Proper lyChangeLislener Lislener] {
Unis.propChangeSuppor L. removeProper LyChangel islener (Uis Lener) ;

T

public vaid addbersan(berson p) {
Persan person = nes Parson(p)
persanttap. pirt (persan.qetTd(), person);
this. propChangeSupport. tiref ropertychang(
PROP_PERSON_ADDED, nuLL, person):
J

public void updaleberson (Person p) {
Person person = new Person(p);
personttap. put (person.qetld(), person);
this. propChangeSupport. FirePropertychange(
PROP_PERSON_UPDATED, null, person):
]

public vaid deletcbarsan(porson p) {
bersan person = personhap. remove (p.qet 1d()) ;
if (person t= null) {
this. propChangesupport . firePropertyChange(
PROP_PCRSON_DCSTROYCD, null, person):

OEBPS/image14047.jpg
Copied or 1inserted - not placed in layout yet.
Move the component via mouse to place it.

OEBPS/image14004.jpg
<txml version="1.0" encoding="UTr-0"7>
<project xnlns="http://w.netbeans. org/ns/project/1%

<lypesorg.nelbeans . nodules. apisuppor L. projecl</ Lype>
<conliguralions>
<dala xntns="hULp: / /st Ubeans . org/ns /nb-odule-projec /3>

<code-name -basesom. ssgLeach. FamilyLree. nanager . inpl

</Cude -nane-base>

<suile-conponent/s
<nodule-dependencies>

<dependency>

~<code-nane-base=con.asgteach. fanilytree.nodel

Code-nane-base>
<build-prerequisite/-
~campile-dependency/>
<run-dependency>

BB T ————

OEBPS/image12402.jpg
- constructors unchanged .

77 Convenience method to make sure object is fully constructed
77 belore pussing Lo ProperLlyChangeSupport consLruclor
77 (see “Leaking *Uhis’" on page 32).

private PropertyChangeSupport getPropertyChangeSupport () {
if (this.propChangeSupport == mull) {
this.propChangeSupport = new PropertyChangeSupport (this) ;
*

return th:

propChangeSupport;

}

public void addPropertyChangeListener (PropertyChangeListener Listener) {
getPropertychangesupport() . addPropertyChangeListener (Listener) :

3

public void removePropertyChangeListener (PropertyChangeListener Listener) {
getPropertyChangeSupport () . removeP roper tyChangeListener (Listener) ;
3

. getters unchanged . . .

public void setNotes(String notes) {
String oldNotes = this.note
this.notes = note:

7/ olduotes is oldValue and notes is newvalue
getPropertychangesupport() . firePropertyChange(
PROP_NOTES, oldlotes, notes)

OEBPS/image4424.jpg
b o Mac
> Q reraie
> Unknoan

g @ ¢

Male Female Unknown

-3
“

Varge Simpson Lisa Simpson

OEBPS/image8750.jpg
806

New Action

Steps

1. Chooss File Type.
Action Type

Ul Registration

Narme, lcor, and

GUI Registration
Category: [File =3

A Glokal Menu tem
Menu: [File

Posidon: | <separators - HERE - Save &

) separator sefore ¥ Separor After

) Clotal Toolkar utton
Toolbar; _file

HERE Save All

Pasition T Cpen— ATRE - <teps

@ Separtor ufore

Separatar Atrer

o Context Men tem

Content Type: |_<empty.
Psitian sempry>

Sepsrator Before [Separatar Arer

[Hep [zmac | [Newsd) | fnich | [Cancal |

OEBPS/image13030.jpg
package myractanglefxanp;

import javafx.application.Application;
inport jevafx.fxml.N0MLLoader:

inport jevafx.scene.Parent;

impor U jevalx.scenc. Sc

impor U jevalx, scenc, pais
impart javafx.stage.Stage;

Color;

public class MyRactangleFXApp extends Application {

@override
public void start(Stage stage) throws Exception |
Parent root = FYMLLoader . Load(getClass() .getResource(
“MyRectangleFX. fxnl")
Scone scene = new Scene(rool, Color . LIGHBLUE) ;
sfage.setScena(scena) ;
stage. show();

+

public static void main(stringll args) {
Launch{args):
¥

OEBPS/image15544.jpg
@iessages ({
“HINT_RootNode=Show all people’.
“LBL_TiootNode=reople”

)

public «lass RoolNode exLends AbsLra Uode {

.. . code omitted
private final PersonType personType = new PersonType():

@override
public Aclionl | geUicLions (boolean context) {
Vistections actions = new Arrayl istes(
Arrays.as ist(super.getActions(context)));
actions.addAl1(Utilities.actionsTorPath(*Actions/Roothode®)) ;
1 This puts the Newaction in the context menu
actions. add(SystemAction. get (MlewAction. class)) :
refurn actions. toArray (new Actionlactions.size()]);

1

Goverride
public NewTypel] getNewTypes() {

return new NewTypel] { personType };
}

OEBPS/image14128.jpg
@verride
public void componentopened() {
tn = Lookup.getDefault() . lookup(FanilyTreeHanager.class);

if (ftn = null) {
Logger. Log(Leve L. SEVERE, *Camnol gol Fami lyTrecManager objecl”)
LifocycTemanager . gelbefaulL() .exil();

3

buildiata();

tm. addP roper tyChangel istener (familyTreeListener) ;
personTree.getselectiontiodel () . setselectionMode (
TreeselectionMode . SINGLE_TREE_SELECTION) ;
crealetodes() ;
personTree.addTreeSelectionL istener (treeSelect ionListener);

i

@override
public void componentClosed() {
personTree. removeTreeSelectionListener(treeselectionListener) :
tm. removePropertyChangeListener(fanilyTreeListener):

OEBPS/image4300.jpg
© O O FarilyTreeApp 201310111528 ¢

L]

Cenderwnden =
3 reopiz
[+ D vai:
& | Homer simpsan
3 [Bartsimpson

[YT

v o Female
& > Marge Simp

3 Tunnae e Properies |
© Uk —

BT A liss Simpsan - Properties
[e

= Names

Frana

Ircsiename
fosename Simpson
buttn

« Agsidoralinformacan

lender Fewaie

Lsa

Liss Simpson

[bte.

793

@

OEBPS/image13863.jpg
Dec 84, 26013 10:05:35 AM persontxmlapp.PersonFXMLController lambda36
FINE: selecled person = Barl Simpson

Doc 04, 2013 10:06:08 AM personfxmlapp.PersonFXMLController lamadasd
FINE: Is BACKGROUND Thread

Dec B4, 7013 10:06:08 AM personfxmlapp.PersonFXMI Controller updateTree
FINE: changed valuc = Bart Scymour Simpson

Dec B4, 7013 10:06:08 AM personfxmlapp.PersonFXMI Controller Tambdagl
ViNt: Opdate task: Firished: Bort Seymour:Simpsors

OEBPS/image16744.jpg
Fx
@ActionReterence(
pall = "Loaders/ Lexl/x- [ami Ly Lree/Ac Uions®,
= QAclionID(culegory = "EGIL",
id = "ory.openide scUions . CopyAction
posiLion = 409,
separatorifter = 500

),
@ActionReference(
path = "Loaders/text/x-fanilytree/actions®,

id = @ctionID(category = "Ecit"

ws DeleteAction),

id = "org.openide.sct
position = 6o
)
@Acionkelerence(
path = "Toaders/|ext /x- (amilylree/Actions”,
id = @ctionID(catogory = "Systen”,
id = "rq.openide.actions RenaneAction”),

position = 700,
separatorAfter

200
e
@AcLionRelerence(

palh = “Loaders/Lext /- lamilyLree/Actions®,

0= @acLiontb {category = "Syst
e i i S R SR

OEBPS/image9022.jpg
800 i FamilyTreeApp 201403101706

T e]

e e R
S [
i e

Lastnzne “scapson’ §

u “irstnancs
Lsstranesriiapson >

<persons

ErrET
0 cnecking starsed.
Shacing foies bsers qasl/pantlyTreeat
A cnecking “nished:

OEBPS/image17912.jpg
@ilessages({
"HINT_TableViewTopComponent=This is a TableView window",
"CTL_TableViewAction=TableView",

“CTL_TableViewTopComponent=TableView Window"
H

setName (Bundle.CTL_TableViewTopComponent ());
setToolTipText (Bundle.HINT TableViewTopComponent())

OEBPS/image671.jpg
. Rotate Me

OEBPS/image10523.jpg
800 Plugin Installer

Welcome to the Plugin Installer
The selected plugins will be uninstalled. The selected plugins will be removed from
the disk.

‘The following plugins will be uninstalled

SelectionHistory [1.0]

<ack | () (Cancel]

OEBPS/image6675.jpg
Connecticn: | jdkc-derhy) /localhost: 1577/ personftm [personfimon iR 2| & [§ 2 @
1 select « from PERSONFTH.PERSON;

[(AEEE @ @K € > ol ragesine 20| ToraiRows:6 Paga: Lot 1
0 1D FIRSTNANE CENDZR LASTHAME MODLENAME oIS SuRRX
L iiemer osmpson oo

FR Lsipn e Warce s the o,

: S o ampeen et Seammnarder

Frm— Lsimpson Pays sascphone

S smaese Lsimpeen gl s e baby.

e e s [AbE 15 Hones o

OEBPS/image12949.jpg
private void doProcess(Parsen p) {
p-setFirstnane(p.getFirstnane() . topperCase())
p.setiiddlenane (p. getitidolename() . ToUgperCase) ;
pseLLas Uanc (o.ge Las Uname). Lopper Case()) ;
P_saTSUFFixX{(p.qeTSUTfix(). tolppercase()] ;

)

@overrtde
protected void done() {
Ty {
1t (tistancelles(l] {
logger . log(Lavel FTHE, “Done! processing all {0}",
getin);
3 catch (InterruptecException | ExecutionException ex) {
Tagger.get! ngger (PersonTFrane. c1ass gerNane ()
~log(Level . SEVERE, null, #x);
T
/4 resel any GUI clemnly
progressbar. setvalus (0] ;
progressRar sctStingPaintad(felse
statusTextAres. seTText(*");
processal1BUTTon sctFaahl o (Tric);

OEBPS/image8714.jpg
8086

New

rd

Steps Choose Template

1. Choose Template Select a Template

& [Templates

v [other
RV amilyTreeTemplate. fir
[fie

(3 Folder

Template Description

No description

Help

<Back | (ENENGSM [Finish

Cancel

OEBPS/image12695.jpg
JTextArea notesTextArea = new javax.swlng.JTextArea();

// set the text in the text area
notesTextArea. setText (thePerson.getNotes());

// get the text from the text area
thePerson.setNotes (notesTextArea.getText()):

OEBPS/image17626.jpg
public class UseService {

private tinal ListProperty<alesdata> underlyingdata = new
SimpleLis Properly<Sulesdalo> (FXCoLlec Lions . ubservableArruyLisL ()]

private final GetSmartPhoneSalesService salesService = new
GetSnartPhoneSalesService() ;

public void refreshData(ProgressIndicator progressndicator) [
getbataInBackground(progressIndicator

1

@suppressharnings (*unchecked")
private void getDatalnBackground(Frogressindicator progressIndicator) {
77 This service can be invoked multiple times
salesservice. setonsucceeded((WorkerStateLvent t) - {
Logger. Log(Level . INFO, *sales data Done. "
if [pragrossindicator 1= mil1) {
progressindicator. setVisible(false);
4

underlyingData. set ((ObservableList<Salesdata>)
t.getsource().getvalue());
s
i

salesService. setOnFailed { (WorkerStatobvent t) >
i (pragressindicator '= m11) {
proqressTndicator. setVisible(false);

OEBPS/image16996.jpg
<root xmlns="familytree"s
<person
firstnane="lioner "

</person>
<person
Fivstuane
Tastnan:
</person>
<persan
Firstnanc:
Tastnane="3
</person>
<person
firstnane="Lisa"
Lastnane="sinpson” >
</person>
<person
Firstiane="Hayy i
Tastnanc="5inpsor
</persan>
<roat>

OEBPS/image13613.jpg
other <HRox~ elements for the rest of the text fields .

<jchildrens
</ VRox>

=l ahel Tayout;
<TextArea f;

11,07 Tayout:
id="notesTextArea

178,67 text="liotes” /»
Layoutx="11.0" layouty='201.6"

‘onkeyReleased="#hand\eKeyAction" prefHeight="62.0"
prefiidth="303.0" wrapTaxt="true’ />
<Button tx:id="updoteButton® layoutX="14.9" ayouty="280.0"

mnemonicrarsing="talse" onAction="#updateButtonAction”
text="Update" />

</chitdren~

</Ancharbanc>
</itens>

</Splitbancs

</ehildrons
</Anchorbane>

OEBPS/image5146.jpg

OEBPS/image6540.jpg
Wi Deroyclier: v G sk
e © i e rackas
» @ oot s b i P
[s v i brares

8 e 18 et

o 1.5 et

B et 730 g e
B acipsenkpa-meseken-£3.0,3 Wapped Lorary
* B e sersance-2.0)a1 rasped b
M ke e

» B cernchentyar tvapoes ubram

OEBPS/image14628.jpg
public class PersonFilterliode extends Filterdode {

public Personrilterfiode(Node original, String searchstring) {
super(original, new Personrilterchildren(original, searchstring)):
T

wovernide
public Node getOriginal() {

return super.getoriginal ();
1

Qoverride
public Slring gelHimlDisplayName() |
Porson person = gelOriginal().gollookup() . Lookup (Person.c Lass);
i (person == mll) {
return null;
3

Stringbuilder sb = new StringDuilder():
switch (person.getGender()) [
case MALE

OEBPS/image15008.jpg
pockage com.asqteach.modesz
tmport org.openide modules 0nSTart;

@nStart

public class Installer implements Runnable {

@override
public void 1un()

Systen.setProperty(“netbeans.winsys. hideEnptyDocArea”, “true")
]

OEBPS/image16237.jpg
@override

public vaid actionParformed(ActionFvent) {
. code omitted

it (Dialogbisplayer.getDetault().notity(wiz)

Wizardbescriptor. FIKISH_OPTION) {

SlalusDisplayer.gelDefaul L().selSlalusTexL("Wizard Finished");

/1 retrieve and display the numbers

Stringkuilder message = new Stringduilder("Kumber Sequence = \n(*);

List<Integer> numbers = (List<Integer>) wiz.getProperty(
MunberiizardPanel1.PROP_NUNBER_LTST) ;

for (int 1= 0; i < nunbers.size()-1; i++) {

N message. append (nunbers.get(i)) . append(",

message. append(nunbers .get (nunbers .size()-1)) .append(")") :
Dialogdisplayer. gethetault() .notity(
new NotifyDescriptor Message(message. tostring(1)) ;

)i

OEBPS/image15938.jpg
override
public void insertUpdate(DocunentEvent de) {
if (firstTextField.getDocunent() == de.getbocument()) {
firePropertyChange (PROP_FIRST NAME, 0, 1);
} else if (lastTextField.getDocurent() = de.getDocunent()) {
FirePropertychange (PROP_LAST_NAKE, 0, 1)
}

}

override
public void removeUpdate(DocunentEvent de) {
if (firstTextField.getDocunent() == de.getbocument()) {
FirePropertyChange (PROP_FIRST_NAME, 6, 1);
} else if (lastTextField.getDocunent() == de.getDocument()) {
FirePropertyChange (PROP_LAST_NAKE, 0, 1);
}

}

coverride
public void changedUpdate(DocunentEvent de) {
if (firstTextField.getDocunent() == de.getDocument()) {
FirePropertyChange (PROP_FIRST_NAME, 6, 1);
3 else if (lastTextField.getDocument() == de.getbocunent(]] {
firePropertyChange (PROP_LAST_NAHE, 0. 1):

3

OEBPS/image1683.jpg
LXaX:) New J2vafX Apalicat on

Staps Name and Location

Choose Project
2. Name and Locaton

Project Name: MyRectangleFkAge

Pojct location ParearigectsfmaPRascs s

Project Folder: 2vaFXBasics /javatxbas cs) MyRectangleFXApe|

JasaPK Platerr. (10K L& @efauld

Mansge Plaiorms.

PLnama: PyRectangiex

ez bedic

Foldr for Soring Libraries

Lierares Folcer:

fferent users and projects can share the sams compl atian
Hbraies ses Helg for Setlls)

re Application Class myrectang|efeapn Nykecangle XATT

o (<bck | | news | [Cimsnd) Gancel

OEBPS/image15871.jpg
NotifyDescriptor nd = new NotifyDescriptor.Hessage(
“Your order i not complete.", HokifyDescriptor.ERROR_MESSAGE);
Dialoghisplayer. qethefaul t() .aotity(nd) ; 17 display and black

OEBPS/image16079.jpg
private void FireChange(DocunentEvent de) {
if (firstNunber.getDocunent ()

irePropertyChange (PROP_FIRST_NUMBER, 0, 1);
¥

bi

// Create localized text for the panel
@MbBundLe. Messages {

“CTL_Panel1Nane=Provide Sequence Initial Value"
N
@override
public String getiame() {
return Bundle.CTL_PaneliNane ();
}

public String gelFirsiNuber() {
relurn | LvsUurber. getText]

private void initComponents() {

jLabell = new javax. swing.JLabel ()
Firsthurber = new javax.swing.JTextTield():

. . . coce omitted .

de.getbocunent()) {

OEBPS/image14083.jpg
// Put person 1n this TopComponent's Lookup
instanceContent.set(Collections.singleton(person), null):

OEBPS/image15278.jpg
public class PersonchildFactory extends ChildFactory.Detachable<Person>
inplenents Changelistener

private fingl PevsanModel parsarbade];

public PersonChildFactory(final PersonModel personMadel) {
this_oersonodel — personModel;
1

@verride
protacted boolean createkeys(List<Person= 1ist) {
UsL. AL (per sorfodel . geLPersons ()
return true;

1

@uerride
Drotactes Node createNodeForkey(erson key) {

corode node: = now PersonNode (key, persontiudel | ;
return node;

OEBPS/image15443.jpg
public class Trashiiode extends AbstractNode implements NodeListener [

“goverride
public PasteType getDropType(Transferable t, int action, int index) {

if [L.isDalaFlavar SupporLed (PersonFLavor . PERSON_FLAVOR)) {
return new PasteType() {

@verride

public Transferabls pasta(] Throws T0Fxception {
final Node node ~ NodeTransfer.node(
T, NodeTransfar DD NOVF + HodeTransfer_Cl TPROARD
it'incge - null s !lrashiNode.this.equals(

nade.getParantiada(])) {

il

final Person persan = ((Person) T.getTransferdata(
Personl Lavor . PLRSON_I LAVDR]) ;
Node neutlade = new RemovePersonNode (persan) ;
newllode. addNodeListener (TrashNode. this) ;
getchildren() .add(new Node[] [newlode}) ;
77 we have at least one RemavePersonNode
enableEnptyAction();
if ((action & DnDConstants. ACTION_ MOVC) !
‘ode. destrogl

OEBPS/image651.jpg
CXaN:) Create New Event for Abraham Lincaln

steps Event Type (1 of 3

L EventType
2. Date and Place _
3. SetRelationships and Event Type

Review ‘Abraham Lincoln
B4

Marrisge Adoption

Marriage

Divorce
Daath

Mzrriage: Abraham Lincolr,

OEBPS/image15715.jpg
Too Peh 38 TRGXAF BST- S04 @ Apciie: Doy Notuods: Scrver = 18.8.1,¢8 =
(1805877} “tariced and rossts 1o sovonl conelinis o porl 1597

OEBPS/image15758.jpg
privale PropertyChngeSuppor U gelProperlyChangeSuppor L) |
L1 (Lhis.propChangeSupporl == null) {
this.prapchangesupport = new SwinqPrapertyChanqesupport (this, true);
b
return this.propChangesupport

¥

@verride
public vuid sddgroperlyChangeLislener(ProperlyChangelis ener Listener) {
getrapertythangesupport () .addPropertyChangel istener(1istencr) ;

-

@override
public void removePropertyChangeListener (PropertychangeListener listener) {
getPropertyChangesupport() . retovePropertyChangeL istener (listener) ;

private berson buildeerson(persenentily pe) {
Person persan = new Person(pe.getId()
person.sethirstnanc(pe. gettirstaanc()
persan. setGender (pe. qetGender ()
person. setLastnane pe.getLastnane()):
person. setiiddlename (pe.getiddlename())
person. setNotes pe. getotes ()1
person. e (Sul Lix(pe. gelSul Lix(1);
relurn person;

OEBPS/image12704.jpg
// Detine the ButtonGroup
ButtonGroup genderButtonGroup = new javax.swing.ButtonGroup();

// Define the three JRadioButtons

JRadioButton maleButton = new javax.swing.JRadioButton();
JRadioButton femaleButton = new javax.swing.JRadioButton();
JRadivBullon unknownBullon = new javax.swing.JRadioBullon();

// Add the radiobuttons to the ButtonGroup
genderButtonGroup. add(maleButton) ;
maleButton.setText("Male");

genderButtonGroup. add(femaleButton) ;
femaleButton. setText("Female");

genderButtonGroup. add (unknownButton) ;
unknownButton.setText("Unknown") :

OEBPS/image17151.jpg
public final class TableDataEditorTopConponent extends TopComponent {

public void init() {
table. setutoCraateRouSorter true}
table. setGridColor(Color . DARK_CRAY) :

tablchatarditorloptomponent . Dec inal Formatkenderer renderer =
new TableDataEditorTapConponent . Decinal FornatRenderer () ;
rendarer. setorizontal Al ignment {1 ahe’ .RTGHT) ;
for (int i =0; i< table,getColumCount(); i++) {
table, getColumniodel () . getColunn(i) . setCellRende
}

r(renderer) ;

1

privale slalic class DecinalFornatRenderer cxlinds
DefaultiableCellkenderer {

private static final DecimalFormat formatter = new Decinalbormat ("4

@verride
public Component getTablecellRendererComponent (
ITable table, Object value,
boolean isselected,
boolean hasFocus,
int row,
int column) {
value = formatter. format ((Kutber) value) ;
return super .qetTableCel1RendererComponent(
table, value, isSelacted, hasFocus, row, column);

OEBPS/image16021.jpg
Componenl ¢ = panels.gel(l).gelComponenl(];

77 Deloull slep name Lo conponent name ol panel.

Slepsli] = cogelName();

i (c instanceol JConponenL) { /7 assune Swing componenls
Jonponent je = (JComponent) o
je.putClientProperty(

Wizardescriptor.PROP CONTENT SCLLCTCD INDLX, 1);
je.putClientProperty(

Wizardescriptor.PROP_CONTCNT_DATA, steps):
je.putClientProperty(

WizardDescriptor.PROR_AUTO_WIZARD_STYLE, true):
je.putClientProperty(

Wi7ardiicsc i par. PRU_CONIFNI_DISPLAYD, truc);
je.putClicntProperty(

Wizardilescriptar PROP CONTENI NUMHFRFD, Fruc);

¥
i
wizarddescriptor wiz = new Wizardbescriptor(

new Wizardbescriptor. ArroyIteratordiizardbescriptors(panelsl):
77 10) will be replaced by
77 WizardDesr iplor Panel . gelConponent 1. ge Name ()
wie.selTilleFormal (new MessageFormal (*(8)")):
wiz.setTitle(Bundle. CTL NumberDialogTitle())
iF (Dialoghisplayer. qethefaul () .ot fy(wi

Wizardlescriptor, FINISH OPTION) {
/7 do something after the wizard has successfully finished

OEBPS/image17403.jpg
myChart.setEttect(new DropShadow());

OEBPS/image16888.jpg
public final class FamilyTreevisualFlement extends Panel
implements MultiViewElement {

private final lamilyTrecData0bject ftbataObject:
privale Iinal JToolBar Luolbar = new JToolBar(
privale Uransiont MulliViewslencnlCallback callback;
private Proxylookup proxyLookup = null;

private final InstanceContent instanceContent = new InstanceContent();

public FamilyTreevisualClenent (Lookup lkp) {

proxyLookup = new ProxyLookup(
kp. new AbstractLookup(instanceContent)):
110aLa0bject = L. Lookup (FaniLyTr eeDalabjec L. Luss) ;
asserl [1DataObject '= null;
ini (Components ()
setlayout (new BorderLayout (
Tayer = new LayerWidget(scene)
scene. addChild{layer) ;
addlnew J5crollPane(scene. createview())):
instancecontent. add(new Droppable() {
S0verride

OEBPS/image13676.jpg
Treeltem<Person> rootNode = new Treeltem<>(new Person(
“People”, "", Person.Gender.UNKNOWN));

// Populate the TreeView control

ftm.getAllPeople().stream().forEach((p) -> {
root.getChildren().add(new TreeItem<>(p));

D

personTreeView.setRoot (rootNode) ;

personTreeView.getRoot () . setExpanded(true);

OEBPS/image13649.jpg
<RadioButton Tx:1d="maleRadioButton™
onAction="#genderSelectionAction" text="Male">
<toggleGroup>
<ToggleGroup fx:i
</toggleGroup>
</RadioButton>
<RadioButton fx:id="femaleRadioButton"
onAction="#genderSelectionAction” text="Female"
toggleGroup="$genderToggleGroup” />
<RadioButton fx:id="unknownRadioButton"
onAction="#genderSelectionAction" text="Unknown"
toggleGroup="$genderToggleGroup” />

genderToggleGroup” />

OEBPS/image15208.jpg
“com-asgteach-fami lytree-sctions-NodetalendarAction. shadow™
<I--com_asqreach familytres actions KedsCalendarAction-->
<allr mame="oriyinal File’ stringvaluc="Actiuns/Nodes/
com-esgteach-fami lytree-actions-NodeCalendarAction. instanca" />
<attr intvaluc="1200" nanc="position”/>

“/tiles
<f1ile nane="con-asgteach-fanilytree-actions-RefrashAction. shadow">
<1--com.asgteach. tamiLytree. actions .Ret reshAct ion. KEFRESK_AC| LON- >
<attr name="originalFile” stringvalu
*Actions/FzLe/con-asgteach-Tami lytree-actions-Retreshiction. instance" /=
<atTr intualue="1300" name="position”/>
</Tile>
</Tolders>
</Tulder>
<folder name="Toolbars">
<lolder name="File">
<file nane-
“com-asgreach-fam 1yTree-act ions-NodeCal endarActian . shadow>
com.esgteach. tami lytree .actions NodeCalendarAction.
riginal File” sUringalue="Act fs/Node:
com-zsgteach-ami Lytree-actions-NodeCalendarAction. instance:
<attr intvalur="300" namc="positinn"/>

OEBPS/image16818.jpg
/4 skip hlank lines
far (String line : fileDbject.astines()) {
if (1line.isEmpty()) {
List.add(line) ;
]
3

) caleh {T0Exceplion ex) |

ExceplLions .prinlSLackTrate(ex,
3
return true;

3

@verride

protected Node createNodeForKeyi(String key) |
Abstractliode childNode = new AbstractHode(Children.LEAF):
childlinde . setDisplayNane (key) ;
childNiade., setTconBaseNi thExtension
“con/asqteach/familyt reasupport /personTcan.png") ;
return childNade;

OEBPS/image5574.jpg
FarrilyTreeAps 20131

11528

[Foripens
Calencar Adion

a06
e rogenice

T his i the Calendar action

2 [Bansimpson
v o Femle

& *Mnge Simpsan
& *Lica Simpson
&~ Mag Smpsan
- Urknoum.

OEBPS/image17230.jpg
XYChart.Data<String, Number> myData;

myData.setXValue("2009");
myData.setYValue(25.5):

OEBPS/image12380.jpg
@iverride
public String fostring() {
Stringhuilder sb = new Stringiuilder();
if (Ifirstname.ismpty()) {
sb.append (firstname) ;

3
if (middlenane.istmpty()) {
sb.append (" *).append (middlename);

i (! lastname. isEaply ()] |
sb.append (" *) .append (Lastnane) ;

)

I (sullix.dsEnply ()] {
sb.append (" *)append(sul 1ix);

Il

return shotastring();

OEBPS/image13181.jpg
circlel.setRadius(someValue); J/ can't do this

OEBPS/image13354.jpg
package racetrackfxapp;

inport java.net.UnL;

inport java.util.ResourceBundle;

inport javatx.animation.Anination:

inpart javafx.animation. Interpolato)

inpart javafx.animation.Pathl ransition;

inpart javafx.beans.hinding.vhen;

impart javafx.beans .property. TnteqerPraparty;

inport javafx.beans .property.SimpleIntegerProperty;

import javafx.beans .value.ObservableveLue;

inport javatx.event .ActionEvent:
Jovabx. L. FXML;

Jovabx. L Initializable;

Javabx.scene. conlrul.BuLLon

Javabx.scene. shape path;

Javalc.scene. shape. Heclangle;

javafx.scene. text, Text:

javafx.util.Duration;

public class RaceTrackController implements Initializable {

OEBPS/image14155.jpg
private void configurelisteners() {
// add action listener to Update button
upcateButton.addActionListener (updateListener]:
/1 add docunent Listeners to texttields, textarea
tirstTextField.getDocunent() .oddDocurentListener docListener) ;
it LeTex (FLeld e lDocunent () addDocumen LLis Lener (docLis Lener) ;
Tast lexthicld. getiacument () .addbocumentl istener (docl istener) ;
suffixTextField.getbocunent (). addbocumentl 1stener(docl istener) ;
notesTextAren. qetfocument () .addDocumentl istener (docl istener);
/7 add action listeners to radiobuttons
waleButton . addActionL1stenerradioButtonl stener| :
‘temaLeButton.addActionL istener(radioButtonl istenar) :
unknownBuL Lon . ddAc LionL is Lene i (rodioBul LonLis (ener) ;

OEBPS/image2234.jpg
800 Person Bind Exampls x B 00 Person Bind Example

"

|
Marge simpson " ~o._ Mg Louise Simpson
Change Marge' Change Varge
\

——— "

OEBPS/image17367.jpg
/1 position the combobox within the stackpane
SluckPane. se (ALignmenl (year Choice, Pos. TOP_RIGHT):
StackPanc selMsrgin{yoarChoice, now Tnsels(30, 15, 8, 8));

17 set up the combobox
Vearchoice, setTtems (TXCollections, observablenrraylist(
tablettodel . getColumntianes () ;

yearchoice,getSelectiontodel () .selectFirst();
yearchoice. setTooltip(new Tooltip("select the sales date year®)):
yearchoice. getselectionModel (). selectedIndexProperty () .addListener (o=

getpisChartbata(yearChoice. getSelectionodel (). getselectedIndex()):
M

17 configure the pie chart
chart . scthata(getPieChartbata(yearChoice. getSelectianHodel ()
~getSelectedIndex()));
chart. tit1eProperty() . bind(
Bindings. concat (tablHode] .qetTitle() + " *,
Bindings . stringValueat(yearchoice. itensProperty().get(],
yearchoice. getSelectiontiodeL () . selectedIncexProperty()111:

OEBPS/image16350.jpg
Gverride
public void preparevalidation() {

customerName = getComponent () ,getCustomerNane() ;
}

Qoverride
public void validate() throws WizardvalidationCxception {
CustomerStore custstore = Lookup.getbefault (). lookup(
Custamerstore. class):
if (eustStore 1= ull) {
customer = custStore. indCus Lomer (cus LoerNee) ;
wizard. puLbroperLy (PHOB_CUS IOMER, cuslonen);
el IshewCus tomer (s oner == nall)

OEBPS/image16100.jpg
} catch (NumberFormatException e) {
sethessage (Bundle. CTL_PanellBadNunber());
return false;

}

protected final void fireChangeEvent (Object source, boolean oldState,
boolean newState) {
if (oldstate '= newState) {
ChangeEvent ev = new ChangeEvent (source) ;
for (Changelistener listener
Tisteners.getListeners (ChangeListener.class)) {
Uistener. statechanged(ev):

OEBPS/image6168.jpg
eoce Eioistes MIANI1S105T

w2 e [EZEme (oo

[reene
2 Thomersimpaon
& o simpon
2 [singan
3
H

Upuae

OEBPS/image17117.jpg
private final Dhject[1[] orig = clone(data);

17 provide deep copy semantics

private static object[I[] clone(objectl]l] g} {
Object! 111 newArray = new Objectlg. lengthill:
for (int1=0: 1< g.length; i+ |

newArraylil = new Objectiglil. tenglhl;
Syslen.arraycopylglil, 0, newArraylil, €, glil.lenglh);
¥
return newArray;
3
@override

public Final Object[]l] getOriginalbata() {
relurn orig:
'

@verride

public double gellickUnil() {
relurn 1009;

1

@override

public Listestring= getColumnhames () {
return Arrays.osListinames) :
¥

OEBPS/image2410.jpg
Projects € | Files | Services

& PersonFXMLAppEnhancedUl
v (i Source Packages
v [com.asgteach.familytree.model
[&] FamiyTreeManager java
(& Pperson.java
v [personfxmiapp
[&) PersonXMLfxml
[& PersonFXMLApp.java
€] PersonFXMLController.java
» (& Libraries

OEBPS/image12467.jpg
public class PersonippCoarse {

public static void main(string[1 args) {
#7 Detine a property change Listener
tinal PropertyChangeListener pcl = new PropertyChangelistener(] [
@overide
public void propertyChange(PropertyChangebvent evt) {
System.out.println(cvt. getbropertytame ()
+ 0 for + ovtLgetiewialuct));
T
i

FamilyTreeManager ftn = FamilyTreeManager.getInstance():

‘ttn. adoPropartyChangeL istener (pcl)

Person homer = new Person("Homer", "Simpson®, Person.Gender.HALE) :
Person marge = new Person('Harge", "Simpson®, Person.Gender.FENALE) ;
1. addPerson(honer)

1. addPerson(marge] ;

System.out .printin(ftm.getAl1Paople()

homer . setttiddlenana(Chester") ;
homer. setSuffix("Junior*);
ftm. updatePerson (homer

marge. selMiddlenane("Louise");

rge. selLastiome ("Bouvier-Sinpson”) ;

OEBPS/image16122.jpg
public final class NurberVisualPaneld extends JPanel {

public static final String PROP_TIIRD_NUMDIR = *thirdNunber";

. code omitted . . .
public void setCurrentSequence(String text) {
currentSequence. setText(text) ;
7
. code omitted . . .
71 Variables declaration - do not modify
private javax.swing.JLabel currentSequence:
private javax.swing.JLabel jLobell:
private javax.swing.JTextFielo thircumber:
7/ End of variables declaration

... code omittod .

OEBPS/image2666.jpg
Method

Description

protected void updateProgress(
Tong worknone, Tong max)

Updates the workbone, totalWork, and
progress properties

prolecled void updalcProgress(
double workbone, double max)

Updates the workilone, totalwork, and
progress properlies

protected void updateMessage(
string message)

Updates the message property

protected void updateTitle(
string title)

Updates the title property

prolecled void updaleValue(
V value)

Updates the val ue property

OEBPS/image4712.jpg
CXaX<}

New Windcw.

stens Name lcon and Location
L Chose FlaTipe Class Name Prtis: Persar
3 e <ortinge
5. Name, icon and e
Hamer lean rogerts) xample jectspersonizonpr | Browse,
project Personkditor
Package: comasqresch.parsonsditor g

CrmatectFile sec/cam(asgteach/persaneditar PerscnTopCarmpanent o
sre/com(asgteach/personcditor PerscnTopComponert,ava
srefeorn/asateach/persaneditor pers orlcor g

VodifledFlles: manifest.m?
nbprojsct rsject xml

OEBPS/image13043.jpg
Llinear-gradient (#ffef04, #f2badd),
Linear-gradient (#ffeata, #efaa2d),
Linear-gradient (#77e657 0%, #f0c203 50%, #eealob 100%),
Linear-gradient from 6% 0% to 1% 5%, rgba(255,255,255,0.9),
1yba(255,25,255,6)); " >
<efiocts,
<tropShiadaw (olo
<feffocts
</Hectangl e
<lext text="Hy Hectangle's
<effects
<Reflection /=
</effect-
<tont>
<Font name="vVerdana Bold" size='18.0" /»
</tont>
<Slexts
</childrens
</Stackbancs

GRAY" 0 (sel

.67 0l fsely:

o7 >

OEBPS/image14092.jpg
// Search tor a person object 1n this TopComponent's Lookup
// and remove if it’s present
Person person = getLookup().lookup(Person.class);
if (person != null) {
instanceContent. remove(person) ;

1

OEBPS/image17221.jpg
ObservablelList<XYChart.Series<String, Number>>

OEBPS/image14513.jpg
public final class GenderTopCompanent extends TopCompanent
inplements Exploreritanager.Provider {

private final ExplorerHanager em = new ExplorerManager(:

public GenderTopComponent () {
initComponents () ;
e UName [Bund Le. CTL_GenderTopComponent () ;
sef laol 11plcoxt (Bundle. HINI_Gonder |apCompanent ());

BeanTreeView view = new BeanTreetien(
add(view, BorderLayout.CENTER)

assaciatelookup(ExplorerUtils. createlookup(em, this.getActiontap()));
en.setRootContext(new RaotHode()

)

.. . unchanged code omitted . .

Qoverride
public void componenLOpened(] |

ExplorerUtils .activateActions(em, true):
i

@verride
public void componentclosed() {
ExplorerUtils.activateActions(em, false);

]

override
public ExplorerManager getExplorertanager() {
return en:

3

OEBPS/image657.jpg
[a¥aY:) Select Imaye for Hume: Simosor

<) [z B] | 8 -] 0 SimpronChurscwima-. 4] (&

e — e

T okta | S png Fes 23,2013 81 P e
] enrova e £ 2013 53 0 e

@ sl B lomasimsenat EETIEEErIT)

At |3 pcauincounorsng g s

5 Bocamerts [ngheoirong e 5,200 87 i

F | Mt 013 gok Tk
[vasgesmonslf 12013 655 e

bovcss T Vamsar ot 2013 658 e

LU GALCA.. ||| 1 varasmosor ona 2013 s i

5 scagat.. & |+ £ Newiacess mpsen 01201 125

ot 2 | rvouneror 201t sna
B a ks

 Hide extansion [Cancel | [pens]

OEBPS/image15787.jpg
public Person(string first, String last, Person.Gender gender)
Unis. Lirstione = irst;
Unis widdLenane
Uhis. lastiane = last;
Uhis.suffix = "
this.gender = gender;
this.nates

¥

public Person(Person person) {
Uhis. Lirstiane = person.gelFirstiane();
Lhi's middLenane = person. gelMiddlenane();
Uhis Tastiame = porson.gelLostname();
this.suffix = person.getsuffix()
this.gender = person.getGender()
this.notes = person.getNotes();
this.id = person.getTd();

]
. code omitted

OEBPS/image3087.jpg
<) Personjava 1 [|5) “em hTrechamageriava (- |6 FamilyTrecMaragedmpljava
S v B E-E-UBSEG PLER

Backsge cor

[ZRTE———

Smport com.asgtench. fani 1yt ree. vodel. Fani 1y Tresbanagers

public class FanilyTresmanagerip ivplensnts Fon:lylreeHanager |

OEBPS/image4654.jpg
806

WindowSystemApp - Branding

[Basic

Splash Screen Resource Bundles |

Enabled Features: (¥ Window Drag and Drop

@ Drag and Drop of Non-document Window Groups
@ Drag and Drop of Document Groups

™ Floating Windows

™ Floating Non-document Window Groups.

™ Floating Document Groups

™ sliding Windows

™ sliding Window Groups

@ Auto-slide Windows in Minimized Window Groups
™ Maximized Windows

™ Closing of Non-document Windows

™ Closing of Document Windows

™ Closing of Window Groups.

™ Window Resizing

@ Respect Minimum Size When Resizing Windows

(cancel | (0K

OEBPS/image12668.jpg
javax.swing.JlLabel jlabell = new javax.swing.JlLabel();
iLabell.setText("First");

OEBPS/image14495.jpg
)ity . addPrope sloener(Weakl

sloeners.properlyChange(node, key)) ;

OEBPS/image5439.jpg
RoleExample - Branding

Splash Screen | Window System [JNaa

Search: [Winsys.Show

[Resource Bundles
v [8 org/netbeans/ core/windows /Bundle.properties
& Winsys.Show.Hide.MainWindow.While.Switching.Role = false

OEBPS/image13841.jpg
new Thread(upaatelask).start();

OEBPS/image17678.jpg
Eoverride
public ListProperty<Salesdata> thedataProperty() {
raturn underlyinghar:

@ uppressWarnings {"unchecked")
privale vaid getCompanyDataInBackground() [
/7 Inis service is only invoked once
companyService. setUnsucceeded((Workerstatetvent
companyDatatames. set{
(Observablelist<tonpany>) T.getSource() getValue());

Bt

n;

CompanyService setnFailed((WorkerStateEvent 1) > {
Logger. log(Level WARNING, "Failed: Read Company data

n;

companyService.start ()

'

private void updateSalesDataInBackground{final Salesdata newSalesdata,
ProgressIndicator progress) {
/7 This service can be invoked multiple tines
Update _setOnSucceeded (WorkerStateEvent t} -> {
1f (progress 1= nuil} {
progress setVisibleifalse);
1

/7 This will cause 2 separate change events: a remove and then an ada
underly:ngbata. remove (newSalesdata)
underlyingData.add(newSalesdata);

OEBPS/image13872.jpg
<HRox id="HRox" aligament="CFNTFR" 1ayoutX="7.6" layoutV="176.8" spacing:
=childrens
<Button fx:id="pracessAllButtan"
onAction="#processAllButtonAction” text="Process AlL" /
<ProgressBar rogressBar” prefWicth="161.0" progress="0.0" />
</children>
</HBOX>

<TextArea fx:id="statusTextArea" editable="false" LuyoulX="7.8"
208.8" prefHeighl="105.0" prelWidLh="257.6" wrupTexl="Liue' />
tatusMessage” layouts=' /0% layoutV="147.0" />

OEBPS/image12749.jpg
1T (node == null) {
// no node is selected
} else if (node.isleaf()) {
// it’s a child node, so we know it’s a Person object
// get the node’s user object
Person person = (Person) node.getUserObject();
// do something with person
}else {
// it's not a leaf node, so it must be the top node

1

OEBPS/image17775.jpg
@overrice
public void initialize(tinal URL url, final ResourceBundle resources} |
share = Lookup.getDefault() .lookup(PhoneDatashare..class) :
il (share = null) (
Logger . log(Level . SEVERE, "Cannol geL Phoncbatashare bject®);
LifecycleNanager. getDefault() exit(};

b

1/ Configure the Colunns
colCompany . setCellValueFactory((TableCoLumn.Cel DataFeaturas
<Salesdala, String> p) >
p.getvaluc() .getCompanyid() .companynameProperty () ;

colear. setCellValueFactory(new PropertyValuelactory=Salesdata,
String=(*salesyear"));

colUnitssold. setCellValueFactory((TableCoLumn. Cel LDataFeatures
Salesdata, Bighdimal> cell) >
cell.getvaluc() .unitsinni Nl ionsPraperty());
colunitsSold. setCellFactory(TextFirldTahl atel
<Sglesdata, BigDecinal~forTableColumn(
new DecimalConverter()));

7/ Configure editing for the UnitsSold column
coluni tsSold. setDnEdi tCommit (
(1abl ool umn. (el Tk thvent<Salesdata, Highecimals 1) >
77 1% the new value is mill, use the old value
it bl

OEBPS/image14390.jpg
7/ WapChangel istener when undarlying FanilyTreeManager changes
private final HapChangel istenar<long, Persons fomilyTreel istener =
(change) -= {
if (change.getvaluendded() t= null) {
Logger Lug(Leve L.FINE, "changed value = (0)",
Change. geValueAdded()) ;
7# Find the Lreeilen Uial Uhis malches and replece il
for (IrecLlencberson> node
person ey iow.gel ool (). gel thildren()) {
if (change.getKey() .equals (node.getValue() .getTd(})) {
7/ an update returns the new value in getvaluendded()
node. setValue(change. getvalueAdded ()} ;
return;

OEBPS/image1599.jpg
CXaK:) New Project

seps Choose project
L. Choos Preject T
Categories Projects
& v @
& e (S JaaP Psioader
@ Java wen & JavaFx FXML Applicaton
et (& Jaab n S npicatan
=
e
Creates a new ava application wih enabled JavarX

|features in a standard IDE project. You can also ge

Help | | <Back [EMeXesS] | Finish | [Cancal |

OEBPS/image16428.jpg
public ExploreFileAction() {
io = T0Provider. getDefaul t() .get10(Bundle. CTL_FileActionTah(), false);
uriter = io.getout();

}

private void displayNessage(String msg) {
writer.println(nsg);
}

@override
public void acLion
271000 Lmplen

Tormed (AcLionevent) {
sclion body

OEBPS/image13543.jpg
public void removelistener (
HepthangeListencr<s super Long, ¢ super bersons mil) {
observahleNap. removeL istener (nl) ;

i

public void addListener(Invalidationlistener il) {
observableNsp. addListener(il);
S

public void removelistener (InvelidationListener il) {
observableHap. removel istener (il):
)

public void addPerson(Person p) |
Porson person = new Person(p);
| SheeebLeRp. put(persun-getLd(), person);

public void updatePerson(Person p) {
Person person = new Person(p)
observableNap.put (person.getid(), person);

3

public void delelePersoniPerson p) |
ohservableHap. remove (p.getTd()):
]

OEBPS/image626.jpg
Who IsIn Yaur Famny Tree’

a omer sirpson

=

naaze

OEBPS/image4953.jpg
[E3™ OpenTopComponentjava €3 [[C]] PersonTopComponentjava £3

[Open Person Window |

Close Top Person

OEBPS/image16757.jpg
public class FamilyTresbatadbject extends Multibatadbject (

public FamilyTreeDalaObjecL{FileObjecl pl, MulliFileloader Loader)
Unrowes DaluObjec [Exis LsExceplion, I0Exceplion |
supar(pf, Toadar)
istereditor("text/x- fanilytres", true);

: 2

@override
protected int associatelookup() |
et 1;

1

@1 +iViewFlement . Registration(
displayNane = "#LDL TamilyTree CDITOR®,
iconBase = "con/asgteach/fami lytreesupport/check.png* ,
mineType = *LexU/x- lanilylise®,
persislenceType = TopComponenl . PERSISTENCE_ONLY_OPENED,
preforredll = "Familylrees,
position = 1600

)

@lessages ("LBL_FanilyTree EDITOR=Text")

public static AultiViewCditorClement createCditor(Lookup 1kp) {
return new MultiViewEditorELement (Lkp

OEBPS/image16057.jpg
public class MamherWizardPanell implenents
Wizardbescriptor. Panel<WizardDescriptors {

private NumbervisualPanell component:

@override

public MumberVisualPanell getComponent() {
it (component == null) |

Component = new KunberVisualPansl1();
¥
return camponent;

1
. coda omitred

@override

public void storesettings (WizardDescriptor wiz) [

11 use wiz.putProperty to remember current panel state

wiz.putProperty(NunberVisualPanell. PROP_FIRST_NUMBER,
getComponent () .getFirsthunher ()):

OEBPS/image15531.jpg
indi e Messages ({
HINT Persontiode=Person”

1
public class PersonNode extends AbstractNode |

private final InstanceContent instanceContent:
private static tinal Logger Logger = Logger.getlogger(
Personode. ¢ Lass. geNane (1) ;

public PersonNode (Parson person) {
this(person, new InstanceContent()];
)

private PersonNode(Person person, InstanceContent ic) {
super (Children.LEAF, new AbstractLookup(ic));
instanceContent = ic;
instanceContent.add(person) ;

olher capabililies added Lo Lovkup

1/ Add a RemovablePersonCapahility to this Nede
instanceContent. add(new RemovablePersonCapability() {
override
public void remove(final Person p) throws I0Exception {
if (ftm 1= null) {
tn.deletePerson(p);
¥

h:

OEBPS/image4413.jpg
FamilyTreeApp 201310111523 <
CETTEAD)

TTrm———

it o) frstneme Hamer
- NI — A
5 T sumpion e T —

amer simpzan

OEBPS/image1656.jpg
806

My Rectangle App.

OEBPS/image12936.jpg
privale javex.swing.JProgressBar progressBar;
progressBar = new javax.swing.JProgressBar):

/1 reset progress to 0
progressliar. setProgress (0) ;

7/ currentProgress is currenl velue, maxProgress is finished value
/7 convert currentProgress to percentage for progressBar range O to 100
S EARPASA T SR BRINARERLIEE ¥ COrERIFeAPaRY F BB RRE SRS

OEBPS/image6015.jpg
& | sart simpson

2 * marge simpson
@ s
@ uncecises

& Maggle Simpsor

OEBPS/image14320.jpg
}

privaLe void createScenet) |

Ly L
URL Localion = gelClass().gelResource("HyFX. fxal")
FXMLLoader [xulLoader = new FXMLLoader();

fxmll oader. sctl ocation(location];
foxmll aader. scthuilderkactary (now JavakXHui Tderkartary()) ;
Parent root = (Parent) fxmlLoader. load(location.openstrean());
Scene scene = new Scene(root
FxPanel . setScene(scene) :
controller = (HyFXController) fxmlLoader.getController();

) calch (T0Exceplion ex) {
Exceplions. printSlackTrace (ex);

)

Il
.. . olher TopComponenl code onilled .

J

OEBPS/image17639.jpg
public class GetCompanyNataService extends Service<Ohservablel ist=Company=s {
privata static final logger logger =
| agger .qetl aqqer (GetCompanyDataservice. ¢1ass .qethane () ;

override
protected Task<ObservableList<Company>> createTask() |
relurn new Task<ObservableLis L<Conpany>>() |

private final ConpanylerseyClient clientl
new CompanyJerseyClient();

@wverride
protected ObservableList=Company~ call() throws Exception {
Response response = clientl.findALL XL (Response. class)
GenericType<List<Conpany>> genericType =
new GenericType<List<Company>>() {}:
int status = response.getStatus():
i1 (slulus '= Response.Slalus.0K.ge(SlalusCade ()] {
Logger. Log(Leve L WARNING, "Bad slalus (0]",
response. gelStalusLafo() . geleasonbhrase ()]
Unrow new Exceplion("Bad slatus: * + slalus
B P b SR CalTT

OEBPS/image10591.jpg
Pro,ect Proparties - FamilyTraeApo

Fe Gensrare retlersfor:) Windows

@ Apoleation — Linux

o maler

i & M 05
s

Avplication icense! 4 o Licence |

€nni Lo
Use pack200 6 GrLv2

Note: Pack200¢ CDBL L0 + GPLv2 with ClassPath Exception
Cescrcases inst, Apache license Versian 2.0

s>] (e)

OEBPS/image13832.jpg
@Pmn
private
ePmL
private
private

privale
privale
privale
privale
private
private

An

ton updateRuttan;

ProgressIndicator updateProgressIndicator;

static tinal Logger logger = Logger.getLogger!
PersonFXHLCOnLroL Ler . c Luss . ge (Name ()} ;

Tinul FunilyTreeManoger | Ln = Fumi LyTreeManuger. gel.

Person thePerson = null;

Objec LBinding<Per son. Gonders genderBinding:

buolean chiangedk = fo1s

RoaleanProparty enablelpdateProperty;

IntegarProperty backgroundactive = new SimpleIntegerProperty(8);

stance();

@Override
public void initialize(URL url, ResourceBundle rh) {

updateProgressIndicator.visibleProperty()

-bind(backgraundActive .greaterThan(0));

OEBPS/image14522.jpg
public class Personfinde extends AbstractNode implements

PropertyChangeListener {
.. . unchanged code omitted . . .

@override
public String gelHUnLDisplayName () {
Porson person = getl aokip() - laokup(Parson. class);
Stringhuilder sh = new Stringduilder();
iF (person == aull) {
return null

]
Suitch (person.getGender(1] {
case MAL
sb.append (*<font colo
break;
case FEMALE:
sb.append(*<font colo
break:
case UNKNOHMN:
sb.append {"? *
break;

#55BBFF " ><h>|

#FFBB55 ><h>t

3
sb.append(person. tostring()) .append("") ;
return sb.tostring():

]

unchanged code omitted . . .

OEBPS/image17849.jpg
4/ replace
currentDatum. setYValue(
sales.getUnitsinnillions());
]

break;
}
)
// meed new data point
it (Iprocessed] {
X¥Chart.Data<String, Mumber> datum = new XYChart.Data<>(

sales.getSalesyear(), sales.getunitsimillions()):
series.getbata(). add(datun);

¥
hreak

OEBPS/image13212.jpg
package asgteach. bindings;
import javafx.scene. shape.Circle:

public class MyBindBidirectional {
public static void main(String| | args} |

Circle circlel = new Circ(e(10.5);
Circle circle? = new Cirela(ih.b);

/7 circlel takes on value of circle2 radius
circlel.radiusProperty() .bindBidirectional (circle2. radiusProperty()) ;
System.out.printin(“Circlel: * + circlel.qetRadius(}

System,out.println(“Circlez; * + circlez.getRadius(}

circle2.setRadius(20.5
/1 Both circles are now 20.5
System.oul.println("Circlel: * + circlel.ye(Radius()]:
System.oul.println(*Circle2: * + circle2.gelRadivs ()

OEBPS/image9657.jpg
Smart Phone Sales: 2008

2008

16.6% HIC

Nadia

@Nokiz @RM @Al @HTC @ samisung @ Others

OEBPS/image2497.jpg
Notes

Maggie is the
Undo

Cut
te

ullpdate, oy

Paste

Delete

Select All

OEBPS/image17565.jpg
¥

@override
public boolean equals(Object object) [
il (1(object inslanceol Salesdatal) (
return false:
Il

Salesdata ather = (Salesdata) object,
return (getSalesid() != null || other.getsalesid()
86 (getSalesid() == mll
|| getsalesid().equals(other.getSalesid()))

1)

b

aoverride
public String tostring() |
return "com.server. snartphonedata. entitias.Solesdatal salesids!
+ getSalesid() + * 1"

OEBPS/image12990.jpg
Text text = new Text("My Rectangle");
text.setFont (new Font("Verdana Bold", 18));
Lext welbffocttome Ootisctionl i)z

OEBPS/image13172.jpg
circlel.radiusProperty().bind(circle2.radiusProperty());

OEBPS/image14164.jpg
private void updateForm() {
See Listing 2.24 on page 65.
}

private void clearform() {
See Listing 2.23 on page 65.
]

private void updateModel() {

See Listing 2.26 on page 66.
i
private void medify() {

See Listing 2.25 on page 6.
i

OEBPS/image680.jpg
CXaX:) Plugins.

pcates IR nownionied | irca

%) | Seriings |

Search

v T

1] wantsrearion ot di ' |NetBeans API Documentation
1 Navonco oo VR 8 i
| Sabia Samo e Database Datanaze | O Cerniied Plugin

[keeaceizs vew Uevekan. Version: 226

O Tk mewap B b | Daws3i0/14

| Clare e of e, Eliina il | Source:Certitied Plugins

) Changs U Endvgs . Eding § | Homepage by s etbeans

] K R fing G

) et ror 1anng

B i, g | Do

() Aucsove Vo EANND | ncludes accmpless copy ofthe NetBeans AR

L pugin selected, 158

Cose | [kelo

OEBPS/image16944.jpg
-ftr-rectangle {
- U
Uinear-gradient (#17d55b, #e68400) .
Uinear-gradienL (#1 1184, #120udd) |
Uincar-gradicnl (#] | caba, #eles22),
Lincar-gradienl (# by / 0%, #8262 5%, #eealoh 160%),
Tinear-gradient(from 6% 0% to 15% 50%, roba(255,255,255,0.9),
rgba(255,255,255,0));
-fx-effect: dropshadow(three-pass-box . gray . 10, 0 , 5.0 , 5.0);
- fx-stroke-width:3.0:
~tx-stroke: goldenrod:

)

Sftrotext {
-fx-fant: Verdana;
-fx-font-weight: bold;
-fx-font-size: 11;

I Lrepane §
~x-batkground-color: incar-gradient (1ightblue, #c9dous, #ldeoeb);

'

OEBPS/image1045.jpg
anAa
srepe

L. ChoosePraject
2. Name and Location

New Java Application

Name and Location

Prcject Nama:

oncvinator

Project Locarlon: NetBeansPlarform Projects,ackgrounct

Project Folder: Projccts) Backgroundiasics PersonSvanghop

1 tse Desieated fole for Storing | hrariss

Lisrares Felder

Differurt users and projects can sfare the
<ame earpiation | oreres (see Helz 1ar
deraily)

) Creste Main Clsss pessansvinasos.

(Coop | (mer | o> | (e [canent

OEBPS/image16926.jpg
evt.qetPropertyName().equals(
rtrvisuallXController.PROP DOCUMINT UFDATCD)) {
/1 update tne document
il fdoc 1= atl) {
uy [
doc.remove (0, doc.getlength());
doc.insertString(e, (String) evt.getNewvalue(), mull);
Platforn. runtater(() ->
controller. refresh((String) evt.getiewvalue()));
} catch (DadLocationCxception ex) {
Cxceptions.printstackTrace(ex);
¥

OEBPS/image13012.jpg
StackPane
stackpane
stackPane
stackPane

stackPane = new StackPane();
SetPrafHeight (200);

SetPrafuidth(160);
qetchildren().addill (rectangle, text);

final Scene scene = new Scene(stackPane, Color.LIGITBLUL);
primaryStage.setTitle("My Rectangle App*):

primaryStage. setScens(scene} ;
primaryStage. show()

I

77 main() 15 invoked when running th JavakX application from Methieans
/7 but 15 ignored when Launched through JavaFX deploynent (packaging}?

public stalic

void wain{String| | args} {

Taunch{args) ;

OEBPS/image8148.jpg
anp Mew Windvar

sens el

p—

& grooren s Mare P, [Charnsin

2 ameimiesa) 0 i e] | [
pains Chrgheesi
Package: \com asgteach.chan gecatectar -
Croesiues e s e

Com/ssgtsachchangadetectariCrang Detact
reicomiasgteachchangadetecter/check png

Mociiedies: waniestnt
Aeprject/prject |

eoComporentjag.

OEBPS/image6202.jpg
familytreeapp Fle Edit View Navigate Tools Window Help
eo0o FarnlyTeeeApp 201401141047

o Search D ©

aEatatat:

OEBPS/image10462.jpg
ece MyFarilyTreeApo - Brand ng

(o INCTECEN o sien)|

Progress Ear:

© Enabled Goior w2 o Pesnsung 02943976
St
Size: [1C Color. EGay '~ Positioning: |2.278,329.8
Crfen
| Broase.
E n g
L
% =
=

[| e

OEBPS/image14110.jpg
/7 PropertyChangel istener for FamilyTreeManager
private final Propertychangel istener familyTreel istener =
(PropertychangeCvent evt] == {
1t (evt.getPropertylame() .equals(Fami LyTreeNanager . PROP_PERSON_UPDATED)
& evi.gethewalue(] = null) (
Person person = (Person] evt.getNewValue():
DetaultTreeNodel model = (DefaultTrashodel]) personTree.getModel():
lor (inl i = 0; i < model.gelChildConl{Lop): i++) |
lefau tHutabl ol recade node =
(Defaul thtablel rectiode) model.getthild(ton, i);
if (person.equal s (nade.getliserbject (1)) {
nade. sefliser0bject (person) ;
47 let the medel knou we made o change
nodel. nodechanged (node)
Logger. Log(Level.FINE, ‘Node updated: (0)", node):
break:

OEBPS/image13631.jpg
firstnameTextField.textProperty()
.bindBidirectional (person.firstnameProperty()):

OEBPS/image16525.jpg
private void disployFiles(FileObject fo) {
Color displayColor = (Color) fo.getAttribute(FO_MODIFICATION_COLOR) :
it (displayColor = nutl) {
displayCalor = Calor.DARK_GRAY;
t

appendToDisplay (FileUtil .getFileDisplayName(fo) + “\n", displayColor);
iF (FileUtil.isArchiveFile(fo)) {
Filedbject arcRoat = FileUtil.getArchiveRaat (fo);
displayFiles(arcRaot);
J else if {fo.isFolder()) {
for (Filedbject childFileObject : fo.getChildren()) {
displayFiles(childFileobject):

3

OEBPS/image4156.jpg
L) FamilyTreeApp 201310111528, -

(& s O)
=

L
e
I

OEBPS/image16039.jpg
1T (DialogDisplayer.getDetault().notity(wiz)
WizardDescriptor.FINISH_OPTION) {
// do something

OEBPS/image9051.jpg
Projects €| Files | Services | Favorites
v € FamilyTreeApp

v (g Modules

@& PersonfileType

» [mportant Files
v & PersonFileType

v (i Source Packages

» B3 com.asgteach.familytree.personfiletype
» (i mportant Files
» [Ubraries

OEBPS/image12677.jpg
JTextField TirstTextField = new javax.swing.JTextField();
firstTextField.setText(thePerson.getFirstname()):

OEBPS/image7379.jpg
606 Create New Number Sequence

Steps Provide Sequence Second Value

1. Provide Sequence Initial

Value Provide the second sequence number:
2. Provide Sequence

Second Value
3. Provide Sequence Third

Value

@ Number must be greater than 25.

elp < Back Cancel

OEBPS/image13685.jpg
public class PersonFXMi Controller implements Tnitializahle {

@
private Textrield firstnameTextrield:
L

privale lextricld middlenane|exUkield;
G

private lextricld lastnancloxthicld;
@

private Textrield suffixTextField;
P

privale RudioBul Lon maleladioBul Lon;
aPmL

privale Rediosullon fenalekadioBul Lon;
G

private Kadiodutton unknownkadiokutton;
anuL

private TextArea notesTextArea;

P

private TreeVieu<Parson> personTreeView:
aPmL

privale Bullon updaleBullon;

private static final logger laqqer = | ogger.getl agger(
FersonXM_Controller.class. getNane)

private final FanilyTresManager ftm = FamilyTreeHanager . getInstance()

private Person theperson = null;

private ObjectBinding<Person.Genders genderBinding:

privale boolean changedk = false;

private BooleanProperty enablelipdateProperty;

OEBPS/image15434.jpg
/7 invoked tfrom the Kedelistener nodeDestroyed() method
private vold clearEnptyAction() {
LmptyCapability ec — getLookup(). LookupiLmptyCapeoility.class);
1 ec 1= 1) {
instanceContent. remove(ec);
setTconBasol L Extens ion{
“con/asgteach/ tani Lytree/trashcan/ resources/Luoty| reshicon. png*

OEBPS/image13960.jpg
private class ProcessillTask extends Task<Void> {

private final ObservableList<Person processList;

public ProcessAllTask(tinol ObservableL ist<Person processList) |
Uiis.procussList = processList;
+

@erride
protected Vnid call() throus bxception {
Togger.logiLevel . TNL, *Begin processing®

final int taskMexCount = processList.size():
logger. Log(Leve . FINE, "processing list: (9)", processList):
int taskProgress
for (final Person person : processList) (
F (istancelled()) 1
break;

1

77 do samething to each person

updateMessage("Processing " + person);

Toqger.Toq(l evel .FTUF, *processing: {3}, person);

doProcess (person) ;

final Text t = makeText(person):

FadeTransition ft = new FadeTransition(
Duration.millis(1500), t

OEBPS/image2898.jpg

OEBPS/image12807.jpg
private void updateForm() {

changeok = false;

updateButton. setEnabled(false) ;

firstTextrield. setText (thePerson.getrirstnane()):

middleTextrield. setText(thePerson. getHiddlenane());

TesLiextField. sellext(Uieberson. gelas Lnamc());

sullixiexthield. sellexU(theperson. geLSur fix());

il (UhePerson.getGender() . equals{Gender. BALE)) {
wa l£Bul Lo selSe Lecled(Lrue) ;

}oelse il (UePerson. getGender (). cquals (Gender . FEUALE)) {
fenal ot ton. setSelectod (fruc) ;

} else if (thePerson.getGender().equals(Gender UNKNOWN)) {
unknownDutton. setSelected(true):

}

notesTextArea.setText (thePerson . gethotes(]):
changeok = true:

OEBPS/image17164.jpg
public final class TableDataEditarTopCamponent extends TopCompanent {
private void reloadButtonictionPerformed(
ActionCvent evt) {

1 Gel the original data

Object[1[] orig = tableHodel .getOriginalDatal();

Tor (inl row = 8; row < orig.loengll; rowss) {

for (inl col = 0 ol < orighrou . Tenglh; col+) {

Double current = (Doublc)eriglrow] [col];
table.setValueAt(current, raw, col);

OEBPS/image17894.jpg
arp.i1con=branding/corc/corec.jar/org/nctbecans/core/startup/Tramc4s. git

OEBPS/image14381.jpg
]

privale void buildireeview{|reel Len<bersom rool) {
7/ Uisten Tor chenges Lo Une lamilylrecnenager s mep
Ftm.addl istencr(family lreel i stener) ;
7/ Populate the Ireclicw control
Ftm.getallPeople() . strean() . forCach((p) -= {

root.getchiloren() . add(new Treelteme=(p)):

m

)

. coce onitted . .

OEBPS/image16329.jpg
@override
public boolean hasNexL() {
return index < gelPancls().size() - 1;

¥

@werride

public boolean hasPrevious() {
return index > 0;

)

@verride
pubTic vaid nextbancl () {
if (thastext()) {
throw new NoSuchClementCxception(

Il

ndexts;

)

@override
public void previousPanel() {
if (thasPrevious()) {
throw new NosuchClementCxception(

i}

Index.

}
private final EventListenerList listeners = new EventListenerList();
@override

public void addChangelListener(changeListener 1) [
Uisteners. add(ChangeListener.class, U);
¥

OEBPS/image16113.jpg
@NlbBundle. Hessages ({
"% {0} - previous sequence nurber”,
"CTL_Panel2Badsequence= Number must be greater than {0}."

n
private bodlean checkvalidity() {
iF (getConponent () .qetSecondtumber (] iskapry()) {
settiessage (Hundle. (11 _banel 1nputiequired()) ;
return false;
}
try {

secondiumber = Integer.parselnt (getComponent (] .getSecondNumber{}):
it (secondNumber < 0) [

selMessage (Bund e, CTL_Pane L1NegaliveNunber ()) ;

relurn fatse;

H

if (secondhunber <= FirstNumber) {
setMessage (Bundle.CTL_Panel2BadSequence(firsthunber));
return false;

¥

settlessage (null);

relurn Lrue;

J calch (NamberFormalExceplion e) |
sethessage (Bundle. CTL_Panel1BadNumber (1) :
return talse:

OEBPS/image17766.jpg
public class TableViewController implements Initializable {

ePmL

private TableViev<salesdata> tableview:

7/ Cotums

oPmL

privale TableColum<Salesdala, SLrings colCompany:
P

private TableColum<Salesdata, Strings colYear;
anmL

private TableColum-salesdata, Diglecimal:
@D

private ProgressIndicator progress:
oPmL

privale Label displayHessage;

[

privale lextbield (illeriext;

colunitsSold;

private static final logger Togger

= Logger.getLogger (TebleviewController. class.getane () :
private PhoneDatashare share = null;
TilteredList<salesdata~ filtereddate = null:
SortedList<Salesdata> sortedbata = null:
Comparator<? super Salesdata comparatorsalesdata = null:

OEBPS/image15017.jpg
run.args.extra=-J-Unetbeans.winsys.hlidecmptylDocArea=true

OEBPS/image10361.jpg
Fdit_Virv,_Nevigaie Tools Window Felp

i s
5 o o
i
1 Vaggie Simpson

FarilyTreeApp 201403101705 o
(Q- Search (+) O
=

g
I

Marge s the Mem

OEBPS/image8117.jpg
Projis: Progeriies FlsSystempy.

Apicston

Jova Platorm: DK 18 (hefauty [Wansae jova Facierms.._

Netbesns Hatform: _Develepment I0F [Warage avorms.

Plattorm Mordulss

o 3P s
Srane 1 o ®
4

. I

[(AdiCmte] Renove | Bl

AJJJ_LIJ_E

ey

el |

OEBPS/image16140.jpg
public class NutberWizardFansld implements
Wizardoescriptor . Panel MizardDescriptor=,
PropertyCnangeListener [

privale NnberVisualPanel3 conponent
privale WizardDescriplor wizard = null;
private hoolean isvalid = false;
private Integer firsthunber;

private Integer secondunber
private Integer thirdvunbers

. code omitted . . .

@verride
public void readscrtings(Wizardbescriptar wiz) {
this.wizard = wiz;
firsthunber = (Integer) wiz.getProperty(
MumberVisualPanell.PROP_FIRST_NUMBER) ;
secondhumber = (Integer) wiz.getProperty(
Numbervisuallane 2. PROR_SECOND_NUNBER) :
updateranel();

OEBPS/image7593.jpg
6006 Create New Number Sequence

steps Provide Sequence Second Value
1. Provide Sequence Initial

Valne Provide the second sequence number.
2. Provide Sequence

Second Value
3. Provide Sequence Third 714

Value

Current Sequence: 8, 714.

OEBPS/image12450.jpg
public cless FamilyTreeManager {

private tinal Map<Long, Person> personap = new HashMap<>():
private PropertyChangeSupport propchangeSupport = null:

7/ FomilyTreeanager property change names
public static final String PROP PFESON DFSTROVFD = “remavePerson’;
public static final String PROP PLRSON ADDLD = “addperson’ ;
public static final String PROP_PLRSON_UPDATCD = “updatePerson’;

private static FamilyTresManager instance = null;

protected ranilylreotanager() {
77 Fxists only to defeat instantiation
}

public static FamilyTreeManager getInstance() {
if (instance == null) |

instance = new FamilyTreeHanager(

insLance. propChungeSepporL = new ProperLyChangeSuppor U ins Lance) ;

B

T

OEBPS/image10388.jpg
Fil_EdU_View Navigate Tools Window FHelp
MyFamilyTrachop 201403101708 Fa

&9 e (Q-Search (8+)_O)
2

* Margz Sirpson
B
[Lisa Simpson
1 Maggie Simpain

OEBPS/image2250.jpg
ecea New JaualX Application
steps Name and Locadon
13 Sehbose Prajece Project Name.[PersonFXAppBound

2. Name and Location

Project Location: [MatfornmPrejects avaPXWerk na/avalxwerking

Project Folder: PRWorking javafeuork ng/FersonbNappiaind
JavaP Plartorm: DK 1,8 Defaul) || Vanage Platorms.
e [Fersaniining

2] ise Deicated Falder for Searing |

Libraries £ ”

Bifferent users and prejects can
braries {sce Help for dzcals

share the same compllarion

4 Creste Application Class [personf«appbound. Pers onFXAppBouny

o] [cbuk | [News | [HHS | Concel]

OEBPS/image10619.jpg
8006 FamilyTreeApp Installer

Setup Complete
Click Finish to finish FamilyTraeAp setup.

Installation Complete

FamilyTreeApp has been installed on your computer.

Click Finish to clese this wizard.

[Launch FamilyTreeApp after the installer closes.

OEBPS/image5506.jpg
606 New Action

steps Action Type
1. Choose File Type
2. Action Type (%) Always Enabled
3. GUI Registration
4. Name, Icon, and

Location Conditionally Enabled
Cookie Class: | DataObject

*) User Selects One Node

User May Select Multiple Nod

(rep) (<tack | [[Finsh) (

Cancel

OEBPS/image14752.jpg
public final class SelactionHistaryTopComponent extends TopComponent
inplements LookupListener {

private Lookup.Result<liode> result:

L. unchanged code omilled . . .

@overnide

public void c pened () {
result ctionsGlobalContext () . LookupResult(Hode. class) ;
result.addLookupListener (this);

+

@override

public void componentClosed()
result. removeLaokupListener(this);
7

OEBPS/image12406.jpg
+

public void selFirstnone(String Lirstname)
String oldFirst = this.firstname;
Unis. Tirstnane = Lirsnome;
getPropertyChangeSupport () . FirePropertyChange(
BROP_FIRST, oldFirst, firstname);

E

public void setGender(Person.Gender gender) {
Person.Gender oldGender = this.gender;
this .gender = gender;
getPropertyChangesupport() . firePropertyChange(
PROP_GENDER, oldGender, gender]:
)

public void setlostnane(String Lastnane) |
String oldLasL = Lhis. LasLname
Fhis.lastnanc = lastnane;
getPropertyChangeSupport () . FirePrapertyChange(
PROP_LAST, oldLast, lastnane);

OEBPS/image16325.jpg
private void updateSteps() {
string[] steps = new Stringlpanels.size()]:
for (int i i < panels.size(): i++] {
Component ¢ = panels.get(i) .getConponent () ;
7/ Default step name ta companent name of panel.
steps[i] = c.getliame();
if (c instanceof JComponent) { // assume Swing components
Jcomponent jc = (Component) c:
je.putClientProperty(
Wizardbescriptor . PROP_CONTENT_SELECTED_INDEX, i);
je.putClientProperty(
Wizardbescriptor.PROP_CONTENT_DATA, steps);
je.putClientProperty(
Wizardbescrigtor.PROP_AUTO_WIZARD_STYLE, true);
je.putClientProperty(
Wizardbescriptor.PROP_CONTENT_DISPLAYED, true);
je.putClientProperty(
WizardDescriptor .PROP_CONTENT_WUMBERED, true);

¥

@override
public WizardDescriplor. PoneldicardDescriplor> currenti) {
velurn gelPanels (). gel {index);

i

@override
public String neme() {

return index + 1 + * out of * + getPanels().size();
i}

OEBPS/image15947.jpg
/7 Create the inner panel
private CustomPersonPanel2 panel2 = new CustomPersonPanel2():

/¢ Create the Dialog and specity title
tinal DiulogDescriplor dd = new DialogDescriplor{panel2,
“Person Tnfomalion’);

/1 Configure a notification Tine
dd. createotificationLinesupport ()
/1 Specify the notification line; use Crror-style
dd.getNotificationLineSupport() . setErrortiessage (

“Fields First Name and Last Name are required."):
#4 Specily Uil Ui dialog is nol valid; Lhis dissbles Lhe OK bullon
dd.setvalid(false) ;
/1 Create a property change Tistoner anonymous class
panel2.addProper tyChangeL istener(new PropertyChangeListener() {

17 Specify the class’ propertychange method
77 Look for PROP_FIRST_NAME and PROP_LAST_WANE property change
7/ events and update valid status and error message
@override
public void propertyChange(PropertyChangeEvent pee) {
if (pce.getPropertyNane() .cquals(
Cus tanPersanPanel 2. PROP_FIRST_NAHE)
11 pce.getPropertyNane() . equals(
CustomPersonPanel2,PROP_LAST_NAME)) {
if (panel2.getFirstiame() . isEnpty() | |
panel2.getLastNane () . isEnpty()) {
dd. setvalid(false) :
dd.gethioti ficationl ineSupport() . setErrartiessage(
2 BT g Y e SRR ot I

OEBPS/image16740.jpg
@essages ({
I8l FamilyTree |0ANFR=Filas of FamilyTree"
b

@IMCResolver . CxtensionRegistration(
displayNane = *#L0L_TanilyTree LOADIR',
mineType = "text/x-Familytree",
extension = {"ftr", "FTR"}

)
@ala0bjec L. Heyis Lrationt
minclype = “text/x-familytree’,
iconBase = “con/asgteach/fanilytreesupport/check.png”,
displayNane = *#L0L_TanilyTree_LOADIR',
position = 300

)
@ctionReterences| |
@Actionfeterence(
path = “Loaders/text/x-fanilytree/Actions",
id = @ActionlD(catogory = “System’,
id = "orq.openide.actions. Openction

position = 109,
separatorifter = 200

@ActionReterence(
pall = "Loaders/LexU/x-lani Ly Lree/AcLions®,
id = @AclionTd(calegory = "EGIL"

id = "org.openide sclions . CutAction®)
T

OEBPS/image17363.jpg
public class PiaChartController implements Tnitializable {

enmL
private StackPane stackpane
enaL

privale PicCharl chart;
G

private ConboBox<String= yearChaice;

private MyTableDataNodel tableMadel;

private ObservableList<PieChart.Datax pcData;

private static tinal Logger Logger = Logger.getLogger(
PieChartController.class.getName(]]:

Qoverride
public void inilialics(URL url, Resourcebundle 1b) {
LreatepinCharl();

private void createpiechart() {
17 set up the tabletiodel data
tabLefodel = Lookup. getDefault() . Lookup (MyTabLeDatatodel. . class) :
it (tableModel == null) [
Logger . Log (Leve L. SEVERE, "Cannol gel TableNodel object’);
| ifecycleManager . qetliefaul t ().exit ()3

OEBPS/image7694.jpg
Projects) | Files | Services

v & Customer
v [Source Packages.
» B com.asgteach.customer
> @ com.asgteach.customer.api
» (@ Important Files
» (g Ubraries
v G Newpizza
v [Source Packages
> B com.asgteach.newpizza
» (@ Important Files
» (g Ubraries
v & PizzaWizard
v (@ Modules
& Customer
&b NewPizza
» [Important Files

OEBPS/image15173.jpg
/ Add a Calendar Capability to this Node
instanceContent..add(new CalendarCapability() {

coverride
public veid doCalendar{) {
CalendarPanel panel = new CalendarPanel();
panel.setText("<htwl>Calendar Action applied to<p/>'
« person + "</htnl>");
DialogDescriptor dd = new DialogDescriptor (panel,
Bundle.(TL CalendarTitle());
DialogDisplayer .getDefault().notify(dd); // display & block
t
s
¥

@suppressharnings (“unchecked")
Goverride
public Actioni] getActions (boolean context) {
List<Action> persanActions = new Arraylist<(
Arrays.asList(super.getActions(context))):
/7 add a separatar
personActions.add(null) ;
persanActions.addALL (Utilities. actionsForPath(Actions/Nodes"));
return personActions.toArray(
new Action[persanActions.size()1);

OEBPS/image16228.jpg
firstiumber = (Tnteqer) wiz.getProperty(
NurbervisualPanel1.PROP_IRST_HUMDLR)
secondiunber = (Integer) wiz.getProperty(
NumbervisualPanal2. PROP_SECOND_NUNBER) ;
mynunbers = (List<Integer>) wizard.getProperty(
NunberhizardPanel1. PROP_WUMBER_LIST)
updatebane ()

1

@verride
public void storeSettings(WizardDescriptor wiz) {
wiz.putProperty (NunbervisuslPaneld, PROP TIIRD NUMOCR, thirdNumber);
mynunbers .clear ()
mynumbers .add (firsthunber
mynunbers add (secondiunher)
mynunbers . add{ thirdiunber:
wiz. putProperty(NunbertlizardPanell. PROP_NUMBER_LIST, mynunbers):

. code onilled

OEBPS/image13487.jpg
);

public final ReadonlyStringProperty fullnameProperty() [
relurn [l Tname. ge | Read0nl yProperty () ;
+

public final String yelFullnanc() 4
return tullname.get();

:

public String getNotes() {
return notes.get(];

¥

public void setNotes(String notes) {
this.notes.set (notes);

i g

public final StringProperty notesProperty() [
return notes;

1

public String getFirstname() [
return firstnane.get();
T

public void setFirstaame(String firstname) {
Uhis, irstnanc, seUULrs Liane) 3

+

OEBPS/image16368.jpg
public class Fuildpizzacontroller implements
WizardDescriptor. Panel-aWizardbescriptors, PropertyChangelistener {

privale BuildPizeaVisual component;
privale Pizzadrder piesadrder;

privale Customer cusloner;

public static final String PROP_I//A_DAOFK
public static final String PROP IS PICKUB
private boolean isPickup:

private PropertyChangesupport propCnangesupport:

. code onilled . .
Goverride
public DuildPizzavisual getComponent() {

if (component = null) {
component = new Buildrizzavisual():
this. conponent addPropertyChangeL istener(this):

]

Feturn component;

OEBPS/image16381.jpg
@ctionID(category = *Tools*,
id = "con.asgteach.newpizza.Orderrizza*)

@\ctionRegistration{displayame = "#CTL_OrderPizza")
@ctionkoFerences({

@\ctinnkeferance(path

Menu/l0ols", pasition = 140}

i

@iossages ("CIL_OvderbLesasbider bizza®)

public [inal (Tass Ordorizzaaction implomenls Ackiont istener {
@override

public void actionPerformed(ActionCvent e) {
Wizardbescriptor wiz = new WizardDescriptor(new PizzaWizardIterator(]
Viz.setTitleFormat (new MessageFormat(* (0] ((1})"1):
wic.selTile(Bund e, CTL OrderPiczal));
il (DialogDisplayer.ge(Belaull() nolily(wie)
Wizardhescriptor. FTNTSH OPTTON) {
1/ Store the customer with module Customerstore
CustomerStore custStore = Lookup.getbefault().lookup(
Customerstore.class):
it (custstore = null) {
Custoner customer = (Castoner) wie.gelProperLy(
Idont fyCustomerCont rol Ler . PROP_UISIONFR) ;
custstare. storelustoner (cusomer) ;
Pizzadrder p = (Pirzabrder) wiz.qetProparty(
DuildpizzaController,PROP PIZZA URDIR);
7/ Access the PizzaOrder and build an Information Dialog
SUringBuilder sb = new StringBuilder():
sbo.app

(“Thank you, *).append (cuslomer. gelName ()). append(
T AN

OEBPS/image17509.jpg
@verride
public void actionPerformed(ActionEvent ev) {
1/ use a Filethoaser to get a uscr-supplicd filcname
String title = "Save * + context.getChartName() + * to Mile";
Tile f = new FileChooserBuilder(
ChartsaveAction. class) . setTitle(title) . showsaveDialog():
if (F 1= null) {
if (1F.getabsolutepath() .endsWith(*.png"}) {
+ = new File(T.getAbsoluteratn() + *.png*):
;

try {
i (Fexists)) {
74 the file docsn't cxist; croate it
3t (1f.createNewFile()) {
Dialogbisplayer. getdefault() .notify(
new NotifyDescriptor.Message(
Bundle.MSG_SaveFailed (t.gethame())11:

return;
)

J etse (
74 the file exists; asks if it's okay to overwrite
Ubject userthose = Dialaghisplayer.getbefault() . natifyl

new Mot fyDescriptor. Confimation(
Aundle. MSG Ovarwri te(f.gethane(1]));
if (NotifyDescriptor.CANCCL OFTIO.equals(userchose)) {
return;

N

OEBPS/image2653.jpg
State

Description

READY The only beginning valid state for a task.

SCHEDULED After RFADY and heore RUNNTNG (running = T rue).

RUNNTNG During normal execution (running == true).

SUCCEEDED The task completed normally. ReadOnlyObjectPraperty<V>
value is accessible.

FAILED An exception occurred during execution. ReadOnlyObject
Property<Exceplion> exception conlains the exceplion.

CANCELLED The task was cancelled.

OEBPS/image2997.jpg
/- N

Module
FamilyTrecModel

‘ Modile

PersonViewer

Module
FamilyTroeManagerlmpl

Module
PersonEdior

OEBPS/image17479.jpg
private void setupeventhandlers() {

/7 Still inside the chart.getbatal) for loop
for (Final PieChart.Data data : chart.getbata()) {

dalagelNode] addEventHondLer(
MauseEvert . HOUSE_CLTCKED, (MouseEvent £) -> [
i1 (LastRode 1= null) |
T (Node. seLE Frect (il ;

¥
Tastinde = data.getNode();
if (t.isMetalown()) { 7/ Tn-Place Editor

77 Wove the textfield to uhere the mouse click is
FextField. setTranslatex(
t.getSceneX() - textTield.qetlayoutk(});
textField. setTranslatey(
t.getsceneY(] - textField.getlayouty()}:
Lex(Fie d.se Text (dala.gelPisValue() + **]
Lex Fied. se Opacily(1.0);
textField. setOnAction((event) -> { // User edit complete
ty f
Tinal touble num

Double, valucor(
textField,getText());
data. setPievalue(nun);
resetTextField();
final int currentColumn = yearchoice
-getselectionttodel () .getSelectedIndex() ;

Swingutilities. invokeLater(() -> {

tablcHodel . setValueAt (num,

currentRow,

vt Catakie

OEBPS/image10047.jpg
80
Caregories:
o]
< o
< i vernring
v
© Compiing
© prckagng
S roraneg

Proect Proderties - PheneDataWebService.

Java Pt 0K 1.8 @stauit :

Netbeans Plasform: ess o (07

Mol Dupeniencies |

Weapped AR Fles
5 raeaseymosies
] raeasemacesjswcachosatme
5 raeasemocuesjswnoenson- Lo ot

n

Reguies ok

a3 Jva Patrarms,

Nansge plrfarms

o apersstence 2 L3201 33424121]

Canc

[Casdzan
i

Exgun

]

OEBPS/image16411.jpg
public void actionPerforned (ActionEvent e} {
Wizardbescriptor wiz = new Wizardbescriptor (new PizzaWizardIterator());
Wiz.setTitleFormat (new MessageFormat(*(0) ({1])"))
wic.selTille{Bundle.CTL OrderPicea()):
il (Dialogbisplayer.gelbelaul L() .nolily(wie)
Wizardueseriplor. FINLSH_OP1LON) {
/4 User Clitked Finish and nothod instantiale() hes Cinished
Set<pizzalrder> pizzaSet = wiz.getInstantiatedObjects();
if (pizzaset.iterator().hasNext()) {
PizzaOrder p = pizzaSet.iterator().next(};
Custorer customer = p.getCustomer():
StringBuilder sb = new StringBuilder(}:
sv.append("Thank you, ") .append (cus Lomer ge Wane ()] .append
", lor your orderfn);
sb.append(p.qethizzasize());
sh.append(* Pizzavn®);
if (1p.getTopoings(). istmpty()) {
sb.append("With *)
for (String topping : p.getToppings(}) {
sb.append topping) .append (", *):

S et

0

OEBPS/image15862.jpg
Noti fyeseriptor nd = new Hoti fyllesc riptor.Hessage(
“Your order is not complete.”, Notifylescriptor.WARNING_MESSAGE) ;
Dielogbisplayer. getbelaulL() nolily(nd) ; 17 display and block

OEBPS/image16268.jpg
package com.asqteach. sequencestore;

import com.asqteach. sequencastare. aj
import java.util.HashSet:

import java.util.Set:

inport org.openide.util.lookup.ServiceProvider:

Numberstare;

@ServiceProvider(service = HumberSlore. cluss)
public class SimpleNunberSlore inplemenls NunberSlore |

private Set-Tnteqars numberSet = new HashSat<Tntagers();
@verride
public boolean isUmique(integer num) {
return InumberSet.contains (num);
¥

@override

public boolean store(Integer num) {
¢/ add returns true it the collection changed
7 (it num was not already present)
relurn nunberSel. add (nun

OEBPS/image5590.jpg
Hame simpsy esh action

3 Bansimpo
v 0 Ferale
2 Marge Sim
3 - maggie Smpean |

Em B

o mknun

OEBPS/image15907.jpg
Noti fyNescriptar nd = new Notifyhescriptor.Confirmation(
“Do you MEALLY want to delete all those files?7?",
“Important Question’,

NoUilyDescriplor. YES_NO_OPTION,
NoUilyDescriplor WARNING_MESSAGE) ;

nd . createtoti Ficationl incSupport ();
nd.getNotificationLinesupport() . setWarningessage ("Flease pay attention!®

if (Dialogdisplayer.getbefault().notify(nd) == NotifyDescriptor.YES_OPTION) [
7/ Yes, really delete all those Tiles.

)

OEBPS/image7352.jpg
6006 Create New Number Sequence

Steps Provide Sequence Initial Value

1. Provide Sequence
Initial Value Provide the first sequence number.
2. Provide Sequence

Second Value
3. provide Sequence Third
Value

@ Number must be non-negative

s Cancel

OEBPS/image6873.jpg
0 7 O Please provide your email address @ () O Plesse provide your email address

v s (RN et s
[[[0k

OEBPS/image17421.jpg
LineCharl<Slring, Number> charl;
XYChart.Series series = chart.gethata().get(A); // get First series
SEFies aetiodal) et FFact{ney Daphadogil] s

OEBPS/image2265.jpg
808 New Java Class

steps Name and Location
L Choose File Type Class Name: [parson
2. Name and Location
Project: ParsonfXAppound
Location: | SeurcePackages %]
Package: |com.asgteach familytrez.model

Created File: s1c/com/asgtezch/ familytree mocel/Person java

Help [<Back | [nNex ([Ehnish] [cancel |

OEBPS/image15706.jpg
eclipselink-xx.jar
javax.persistence_xx.jar
org.eclipse.persistence.jpa.jpql_xx.jar
org.eclipse. persistence,jpa, nodelgen. soc.3ar

OEBPS/image1201.jpg
~ ™

\/ "’*j" v)

(compone:)
. /

{ Comairer)

/';L\
{ JComponent
Jcemponent)
anct) (roccomponenr) (et) (aperracrguon) (paner)

[1
N o~ ~
{_ JrextFicid) Tnm.m:j {_ JBureon) { jTagg\L-B«!mrD

/ ~
(JRadioBution

OEBPS/image3704.jpg
Projects £ | Files | Services
v

» (g Modules

v [d Important Files

&) Build Script

» [E] Project Properties

» [E] NetBeans Platform Config

» [&] Per-user NetBeans Platform Config

v

OEBPS/image8806.jpg
__ FlleTypeApp 201403101706 o

75 e o
+ & womeramiy e
v SmasorEamiyTise o
Spsan Farly Tree
Homer Lrester

warge touse
sant

Lo el
Vazais tay

OEBPS/image1586.jpg

OEBPS/image17979.jpg
36 name=3{branding. token}

4 Vi 11e=Snart PhoncDalaApp

10 Test a new locale, uncoment the following Line

and spoctfy your Targer lacale

run.args .extra=run.args. extra=-1-Duser. language=pt -1-Duser. region=BR

modi e
${project.con.asgteach. coretableview}:\
3{project. con asgteach_phonecata webservicel:\
s{project.con.asgteach. linechart}:\
[project.con_asgreach phoncaatashareinpl)

project.con.asgteach. corezsdlevien-Core lableView

Project .com.asqreach_1inecnart=l inaChart

project . con. asgteach. phonesata webservice-PhaneDataWebSe rvice

praject con.asgteach. phonecatashoraimpl=PhoneDataSharelnpl

OEBPS/image16512.jpg
@override
protected void
if {root
ty {
root.getParent() .getFilesysten() . refresh(true):
displayMessage ("Conponenl AcLivaled: Relresh on parenl.);
updateDisplay(
} catch (FileStaleluvalidexcepLion ex) {
Excoplions. printSiackivace (ex) ;

ponentactivated() {
nll) {

}

@verride
public void componentclosed() {
i (root = null) {
root. removeF ileChangeListener (fcl);
i}

i

privole void displayMessuge(SLring message) |
wriler.printin(nessage): }

OEBPS/image17261.jpg
public class |inachartController implements Tnitializahle {

privale Observablelis <XYChar L Series<SLring, Number>>
getLineChartbata() |
if (Lebata = m1l) {
Lcbata = FXCollections. observableArrayList ();
for (int row = 0; row < tabloHodel .qorRowCount (); row+] {
XYChart.Serias<String, Number> series = new XYChart.Series<>();
series. setflame (tableHodel.getCategoryNane row)):
for {int column = 0
colum < LableMode . gelColumiCounl(); colunm+) (
series.getbatal) .add(new XVChart.Data<>(
‘tableNode . getCoLumnliane column)
(Nunber) tableodel.getValueAt(row, column))};

e
cData.add(series):
Il
2}

Feturn Tchata;

OEBPS/image15204.jpg
<folder name="File">

<file name—
“cum asgleach fanilylroe ol ions RelreshAchion. inslance

<1--con.asqreach. Tamilytree. actions. RefreshActzon. ALTRISII_ACTION- -
<artr

bunc Leva Lus—
com_asglcach TamiTy e
name="displayNan="/:
<&TTr meThodvalue="nrg opentde. At Actions_callhac
name-"instanceCreate"/>
<attr name="key" stringualue="HyCoolRefreshAction"/>
<aLUi" niame="iconBase” sLringvalue=

con/asqteacn/Tamilytree/actions/ refresh-icon. png* />

<allr boolvalue="Talse® nam="nuTconTnMonn” />
</Tile

</Tulder>
</Tolder>
<folder nane="Nenu">

ations

a1 G£CTI_ResfueshiAct fon”

OEBPS/image16814.jpg
public class FamilyTreeDatadhject extends MultibataOhjact {
eoverride
protected Node createNodedelegate() {
return new DataNode(this, Children.createl
new FamilyTreeChildFactory(this), truel. getLookup(l):
privale slalic class FanilyTreeChildFactory extends ChildFactory<Strings

privale 1inal FileObjecl 1ileObject;

public FamilyTreechildFactory (FanilyTreehatatbject datadbject] {
fileObject = datadbject.getPrimaryFile();
fileObject . addFileChangeListener (new FileChangeAdapter() {
override
public void fileChanged(FileEvent fe) {
refresh(true);
i

;

i

Wover ride

pratected boolcan createkeys(list<strings list) {
/7 create a String for each Line in the file
try {

OEBPS/image15247.jpg
public void reorder(int[l indexdrder) {
Person(] ranrderad = new Ferson[parsons.aize()]:
Tor (int i - 0; i indextirder. length; i++) {
int § = indexdrder(d
versan p ~ persons.qetlil;
reorderadij] = p;
persons.clear():
parsons aUdhlL (Arrays. asLisU(recrdared));
ca.fireChonge();

1

public void audChangolis Lo
cs_addchangaListanar (1

(ChangeListener 1) {

¥

public void removeChangelistoner (Changslistener 1) {
cs.ramovethangeListenzr(L);

b

OEBPS/image2367.jpg
.08 New Java Application

steps Name and Location

1 Chouse Project

L e P o PrOleccName: [FersonixappCoarse
Project Location: |>ck/BookExemples jevafxworking| | _Browsc.
Projact Folder: avafuwerking, ParsonFappCoarsa

] Use Gedicated Folder for Stenng Libraries

Libraries Foldar. Browse.

Different users and projects can
share the same compilation
Hibraries (see Help for detais).

M Create Meir Class |personfxappcoarse PersonfXAppCearse

OEBPS/image15934.jpg
public class CustonPersanPanal? extends javax.swing.lPanel implements
Documentlistener {

public static String PROP_FIRST_MAME = "firsthame":
public static String PROP_LAST_NAME = "lastName:
public CuslonPersonPanel2() |
iniLCompunen s (1;
firstTextField.getbocunent () .addbocunentListener (this) ;
lastTextField.getDocunent() .addDocumentListener (this);

X

public String getrirstiame() {
return firstTextrield.getText();
¥

public String gellastNanc() {
return Tastextkicld. getiext();
1

private void initComponents() {
generated code omitted .
Il

/7 Yariables declaration - do nat moci fy
private javax.swing.llextHicld firstloxthicld;
private javax.swing.Jlahel imagel ahel;
private javax.swing.Jlahel jlahell;

private javax.swing.Jlahel jlahel?;

private javax.swing.JTextrield lastTextrield;
7/ End of variables declaration

OEBPS/image17921.jpg
package com.asgteach.coretableview;
/= Localizable strings for {@Link com.asgteach.coretableview}. =/
@javax.annotation.Generated(value—
“org.netbeans.modules .openide. util.NbBundleProcessor”)

class Bundle {

JHe

* @return <i>Tableviews/i>

* @sce TableViewTopComponent

*

static String CTL TableViewAction() {

return org.openide.util.NbEundle. getMessage (Bundle. class,
“CTL_TableviewAction®);

3

JHe

+ @return <i>Tableview Window</1i>

* @sce TabloViewTopComponent

*/

static String CTL TableViewTopComponent() {

return org.openide.util.NbEundle. getMessage (Bundle. class,
“CTL_TablaViewTopConponent™) ;

OEBPS/image3548.jpg
LXaY-) New Window

steps Name,icon and Locatlon
1. Choose File Type 5 b Do —
PRl s Kame e [FDeme

ke tcom [rerstmatintearnon imats._ige_clorie. | |_brovee

Prjecr Pxdemova

Packeas com asateach frdememodule

512/ comsas teach; fademoradule FXDeme TapCcmporent form
o1/ sinas teach Txdemort dule FXDemeTopCormpone L java
<)< tenchfudemar adule Jati. Ingn color 13

Modfied les: manfestmt
Bt

o] (Zhr o> | N Gwed)

OEBPS/image15474.jpg
@ctionID{
category = *Roothode" ,
id = "com.asgteach. taniLytree.actions.RetreshAction®
)
@AcLiontegisLration(
displayName = "#CTL Refreshiction®
)

@tessages ("CTL_Refreshaction=Refresh)
public final class RefreshAction implements ActionListener
t

private Final RefreshCapability context:

public Refreshiction(RefreshCapability context) {
this.context = context;
b

@override
public void actionderformed (Actiontvent o) {
try {
context.refresh();
} catch (I0Cxception ex) {
Cxceptions.printstackTrace(ex) ;
)

OEBPS/image5491.jpg
© 0 O Calendar Action

This is the Calendar Action!

(e) oe)

OEBPS/image8775.jpg
= ey
o smpreriany e

L FileTypeApp 201403101706

Simgter Fariy Tree

waroe
£t

OEBPS/image14038.jpg
@verrvide
pubLic void componentDpencd() {

77 W00 add custon code an campanent pening
T

@override
public void componentclosed()

77 TODO add custon code on conponent closing
1

void writebropertios (java.util.propertics p) {
/7 better ta varsion settings since initial version as advacated at
77 bttp: /jwiki opidesian. arq/viki /PropertyFiles
p.setProperty(*version’, "L.0%);
7/ TODO store your settings

void readProperLies(juva.ulil.ProperLies p) (
SLring version = p.gelProperLy(*version”);
77 1000 read your sellings accordivg Lo Lheir version

OEBPS/image7165.jpg
Steps. Wizard Type

1. Choose File Type Registration Type
2. Wizard Type
3. Name and Location

Custom
 NewFile

Number of Wizard Fanels: |3

S o B i I i i

OEBPS/image4327.jpg
:
& | Bart simpsan
o i

& * Marge Simpsan

& * Liza Simpsen

& * maggia simpson
o Unkinoan

FamilyTreeAop 201310111528

Homer

Simpsan

Homer simpson
Person

OEBPS/image9740.jpg
© 00 C _SavelineCharttofile D

Save As: [sdalineChart.png

(& Charts

[Name AT Date Modified

File Format: |_All F

| New Folder | [Cancel | [Csave

OEBPS/image13358.jpg
/7 Objects detined in the FXHL

o
privata Rectangle rectangle;
@Pun

private Path path;

@

private Text text;

P

privale Bullon sLarlPauschullon;
o

privata Kutton slowerHutton;
@Pun

private Dutton fasterDutton;
private PathTransition pathTransitior

woverride
public void initialize(URL url, ResourceBundle rb) {

7/ Create the PathTransition

pathTransition = new PathTransition(Duration.seconds(s).
poth, rectanglel:

pathTransition. setOrientation(

PuliTrans Uion, OrienLalionType. ONTHOGONAL_TO_TANGENT) ;
paliTransi Lion. se [CycleCounl (Animal ion. INDEFINITE) ;
pathTransition.setTnterpalator(Tnterpolatar.| THEAR);

additional code from method initialize() shown in Listing 3.21,
Listing 3.22, and Listing 3.23

]

OEBPS/image14065.jpg
dl TnslanceConlenl inslantceConlenl = new Tnslanc

OEBPS/image16197.jpg
@override

public void changedupdate(DocumentEvent de}
checkvalidation():

1

private void checkvalidation() {
updatevalidatian() ;
FirePropertyChange (PROP SECOND NUMBER, 9, 1);
¥
0
Il

public void setMinRange(Integer minNumber) {
customrange. setMinval (ninunber) ;
3

public void updatevalidation() {
Problem validateAll = group.validatell():
isvalid = !validateAll.isFatal():

3

.. . code omitted . .

OEBPS/image15675.jpg
ictionTn(
catagory = "OpenNodas™,
id = "con.asgteach. fanilytree.actions.Openiction”

)

@ActionRegistration(
iconBase = "con/asgleach/ lanilyLree/ucLions fopen.png ",
displayNone = *#CTL_OpendcLion”

)
@A Lionke ferences (
GACTionReference (path = “Memu/File®, position = 1166,
separatorifter = 1150,
@\ctionReference(path = *Toolbars/Tile", position = 260)

B
@lessages (*CTL_OpenAction=0pen")
public final class Openaction implements ActionListener {

private final Openable conlext;

public OpenAction(Dpcnable context) {
this.context = confext;
}

override

pubLiC void actionPerformed(ActionEvent ev |
context.open();

J

OEBPS/image16455.jpg
@override
public void actianPerformed(ActionFent &) {

i {myfolder 1= null) {
displayMessage (*Using folder * + myfolder.getPath());
/7 s there o tile called myfile.txt in this tolder?
FileObject myfile = myfolder.getFileObject("nyfile.txt"):
it (ayfite == nutl)
1 Mo, create the tile
displayessage("Crealing 1ile * + nylolder.gelPalh()
+ o fuylile. Lel®) s

try f
/f Create file
myfile = myfalder.createata(*myfile.txt");
} catch {I0Cxception ex) {
displayMessage("Can't create file "
+ myfolder.getPath(} + "/myfile.txt");
Exceptions .printStackTrace(ex]:

OEBPS/image13070.jpg
<vinport java.lang. 7~
<tinport java.net.*?>
<7import java.util.¥7:
Zimport javafx.scene.™
<tinport javafx.scene.control. ‘7=
<Timporl javalx.scene. Layoul. ¥7>
<timporl javalx.sconc.shape.<7>
<timporl javalx.scene, LexL.+7>
<timpor! javafx.scenc.effect . +>

<Stackbanc id="Stackbanc® fx:id="stackpane” prefHeigh
xmlns : fx="http://javafx. com/Fxnl
Fx: control ler="myrectanglefxapp.HyRectanglerxControl ler "
<stylesheets>
<URL value="GHyCSS.css” />
</stylesheets>
<children>
<Reclangle

06" profuidt)

20"

myrectangle” |x:id="reclangle® widlh
ArcWidth="30" arcHeight="30"
onHouseClicked="¢handletouseClick" />
<loxt Lext="My Reclangle™s
<elloct>
<Refloction />
<jeffocts

<Tont name="verdana Bold" size
</tont>
</Text>
</ehildren>
</SlackPane>

200" heighl="160"

"10.0° />

OEBPS/image9269.jpg
asenceprovierfor
yTableDatabtodel

TableDataEditor

OEBPS/image14439.jpg
public class PersonrXCditorController inplements Initializable {
. unchanged code omitted . . .

private FamilyTreeHanager fim = mull:
privele Person Uheberson = noll;
privale objecU8inding<Per son.Gender> ge
private boolean changedk = false;
private DooleanProperty enableUpdateProperty:

iersinding;

. unchanged code omitted . . .

17 This is invoked from the Lookuplistener in the TopCompanent
public void dolpdate(Collection? extends Person> people) {
ensblelipdateProperty. sef (false) ;

changedk = false;
if (people.isEmpty()) {
Togger.log{Level .TTNL, "o selection"):
clearrom();
return;

OEBPS/image15447.jpg
} catch (UnsupportedFlavorException ex) {
Togyer . Lo (LeveL WARNING, null, cx);
t
)

return null

3
3
return null

'

@override
public void childrenAdoed (NodsNenberEvent nne) {}
@override

public vuidd childrenRomecd (NodeMember Fucent) ()

@override
public void childrenReordered(liodeReorderCvent nre) {}

@override
public void nodeDestroyed (NodeEvent ne) {
ne.getNode() . removeNiodeL istener(this) ;
if {gelChildren() .getNocesCounl () — 8) {
clearEnptyAction();

de
public vuid propertyClianye(Proper LyChangeEvent evl) {}

OEBPS/image1070.jpg
Versonrame i

[source | PRSI | Hotory

Lle & =

AL
@ To change lavout manager of a container use Set Layout submenu from its context menu. x
—
e irsd]
» Tl colors —
» [soons Niddle —
» Efood }

Update

OEBPS/image5779.jpg
‘Gender Window)
€3 people
v O Male
& | Homer Simpson
& | Bart Simpson
v O+ Female
3 * Marge simpsan
& * Lisa Simpson.

& * Maggie Simps|
O Unknown

Properties

Calendar 3E

OEBPS/image7451.jpg
8nn

New Library Wrapper Madule Project

steps

Name and Location

L. Select Library

2. Name and Location

3. Basic todule
canfiguration

Project Name: |ValicationAPl
Project Location: idationlibrary/wizarcExample

froject older: Viizardexample;Val detionAP]

‘Add to Module Sute:

OEBPS/image17779.jpg
if (t.getNewValue() != mill} { // good value
bd = t.getNewValue();
t.getRowValue() . setUnitsinnillions (bd) ;
displayMessage. setText("");
displaytessage. setStyle(-fx-text-fill: blac
share. updateSales (. getRowValue(). progress)
Jetse [7/ bad conversion
Inl = Lgel OvaTue()
.getRowlalue() . setUnitsinnillions (bd) ;
77 force o refresh
*.qetTahlecalumn(). setvisible(false)
+.getTablecolunn () . setVisihle(t rue
displaytessage, setstyle("-fx-text-fill: redi*);
displayMessage. setText (Bundle. salesAmountBadFormat ()):

55

OEBPS/image482.jpg
Element Font Example
ava/JavaFX class ChildFactory, AbstractNode, Shape, Circle

code Rectangle rectangle =
new Rectangle (206, 106, Color.BLUE);
rectangle. setEffect (new Dropshadow()):

RI http://netbeans.org
file name Person java, PersonEditor. fxml
ey combinalions Ctrl+Space
NetBeans menu selections New | Window
cade within Lext Ihe animation affiecls the opacity property .
code highlighting Rectangle rectangle =

new Rectangle(2€6, 186, Color.BLUE);
rectangle.setArcWidth(30);
rectangle.setArcHeight(30) ;
reclangle. selEfTecl (new DropShadow()) ;

(to show moditiedt or relevant
portions)

OEBPS/image9974.jpg
CXaX:) MNew REST“ul Java Client

Steps Name and Locatian

& [ChaGE RIETYE Jass Name: ComparvierseyCliert

2. Nameandtocaion 4 Neme: ComparvierserCl
Pojest. smartphoneClicnt
Location: [Sourcs Packages
Package. smartphonechent

Crsated il SrantPhons Clients < /s mantshene i Companylersey lsr L jave.

st the REST resaviree:

wserersmartphunedats entites. compary]

Authenrication: [NONE %] s

e | [<k

Newt> | [Fmishe] [Cancel

OEBPS/image14025.jpg
@override
public List<person> getAllPecple() {
ListeFerson» copyList - new Arrayliste»(};
porsonap values () st rcam() TorFach(() > (
copyList.add(new Person(p));
i
return copyl 1a7;
5

OEBPS/image2437.jpg
licrarchy

v [2] Anchorpane
v [splitPane (Horizontal Flow)

TreeView
¥ [2] AnchorPane
» [HBox
v [vBox
¥ & HBox
aex Label First
L Textfield
» [HRox
» & HBox
» I HBox
wex Label Notes
[£] Textarea
[Button Update

Inspector
» Properties Toxtficld

¥ Layout fextrield

HBox Constraints

Harow &

Margin

ref Coumn Co.. | T_PRES_COLUMN_COUY
Min Wicth | USE_COMPUTED SIZE
Min Height | USE_COMPUTED SIZE
Pret widh | 245
Pref Heioht | USE COMPUTED SIZE
Max Widtn | USE_COMPUTED_SIZE

Viax Height | USE_CoMPUTED, sizE

Resizable
Layautx [48
Lavaut v [0

width [248

Height [22
ayour Reunds | 0.0 748x22
foundsin toal 0,0 248x22

Baselin: Offset [155

OEBPS/image12432.jpg
System.aut.println{homer)
System.out.println(marge}
77 0ld and new value same, no property change event generated
homer. setMidd enane " Chester”) ;

homer. removePropertyChangeListener(pcl) ;
marge. removeProper LyChangeLis Lener(pel) ;

Onrtput:
Property middlename changed for llomer Chester Simpson
Property middlename changed for Marge Louise Simpson
Property suftix changed tor Homer Chester Simpson Junior
Property (astname changed Tor Homer Chester Jones Junior
Homer Chiester Jones Junior

Harge Louise Sinpson

OEBPS/image16866.jpg
public intorface Droppable {
public void drop{(String text);
)

OEBPS/image13716.jpg
personTreeView.getSelectionModel().selectedItemProperty()
N A N U S A

OEBPS/image5338.jpg
LIGIC) RoleExample 201204101705
@ 9¢

Troerenion

Usemare [loe

Paccwnrd [eee

OEBPS/image15309.jpg
public class PersonNode extends Abstractode {

@Override

public Action[] getActions(boolean context) {
Tt new At ionl 30

Cuthction.get(CutAction. class),
CopyAct ion_gel (CopyAc L ionclass),
DeleteAction get(DeleteAction class),
HovelpAction.get (Hovelphction. class)
MoveDoumAction. get (NoveDownAction. class)

OEBPS/image7471.jpg
Validator
REQUIRE_NON_EMPTY_STRING
NO_WHITESPACE
REQUIRE_VALID_INTEGER
REQUIRE_NON_NEGATIVE_NUMBER
numberRange (minValue, maxValue)
EMATIL_ADDRESS
FILE_MUST_EXIST
URL_MUST_BE_VALID
REQUIRE_JAVA_IDENTIFIER
REQUIRE_VALID_FILENAME

OEBPS/image5605.jpg
CXaK:) Mew Aciion

steps Name. tcon, and Locadon

L ChosssFile Type
2. Acton Type

3. CUlkegistration
. Name, lcon. and

Class Name:[Refreshaction

Display Name: [Refresh

Location
con: PlttormProjects Icons, refresh-icon.pn]
Projact FamilyTrecctions
Package o greach familyuree actions »

Crrated Files: sre/com/asgteach familytiee/actians /Refreshictian java
srecom/esgteach/familtres) actions frelres
£rc/com/asqtcach/familytree/actions/refresh- i

Mosified Files. nbproject project soml

[CHep | [<hack | | Nex

Finish_|

OEBPS/image14846.jpg
private void closeTopPersonButtonActionPerformed(
Java. auL . evenL. Ac Lo
Windowhanager wm = WindowManager. getlefau();
Mode editor¥ode = wn. TindMadel "editor”);
for (TopComponent tc : wn.getOpenadTopConpanents (editortiode]) {
Systen.out.printin{*found * + tc.getiane()|;
1f (tc 1sShoutng()) {
17 (tc instanceot PersonlopComponent) {
te.clasa();
+

break;

Levi) {

OEBPS/image5676.jpg
® familytreeapp File Edit View Navigate Tools Window
FamilyTreeApp 201401141042 "

g2 HE Q- Search (

3 People
o
ST © 00 Calendar Action]
g — B e ction appieato
| Bartgy Homer Simpson
v O Female |
2 * Margl

OEBPS/image7730.jpg
806

Order Pizza

Steps

Identify Customer (1 out of 5)

. Identify Customer
New Customer

Size and Toppings
Delivery Information
Order Confirmation

< Back

[ECER

Cancel

OEBPS/image14765.jpg
import org.netbeans api_ssTtings. ConvartAsProperties;

impor L urg.openide.awl Actiondd;
import org_cpenide awt Actionfieference;

wpor | ony upenide_al i1.NbBund1 e Messages ;
import org.cpenide windows TopCompenant;
@Conver tASPrope Lics[di = * //con_ssgleatipersonedi Lon//Porsons /FN

autostore — false)
@TopCamponent .Descrprinn(preferredid = “SorsonTopComponent”
iconbase - "con/asqteach/personeditor/personTcen.png”,
persistenceType ~ TopComponent . PERSISTENCE_ALWAYS)
@lopCemponent .Registration(noge — "editer”, openAtStertup — true)
@AcLiunID{calegory ndow”,
1d - "com.asgteach.perscnaditor. Person|cpComponent™)

@Actionieference(path = "Menu/Window', position = 333)
@TopComponent .OpenicionRey isLralion (displayNane ~ "#CTL_PersomicLion
praferredID = "PersonTopConponent”)
@Hossayes (

“CTL_PersonAction=rerson”,

“CTL_Per sunTopCunponenL=Person Window”,

“HINT_PersonTopComponent=This 15 a Person window

12
public final class PersonTopComponent extends TopComponent {

class code, see Listing 0.2

OEBPS/image15430.jpg
publte rlass Trashlode extonds AbstractNode fmplements Kool 1stener [

@SuppressWarnings (“uncnacked*)

@override

public Action[] getActions(boolean comtext) {
ListeActions actions — new ArrayList<s();
acions . addMU(ULELi Lies . acLionsFor Path{*Ac Lions /Trashiude™)) ;
return actions.ToArray(new Action[actions.size()]);

}

private void enableEmptyAction() {
EnptyCapabtlity ec = getLookup() . lookup{EnptyCapantiity class);
il fec — nly) {
setTconBaseuiTnExtenson
“cum/asyleach/ family Lree/ Lrashean/resourtes/FullTrashicon. png™};
1nstanceContent.add(new EmptyCapabilizy() {

@verride
public void emptyTrash() [
for (Node noge - getChildren() gethoces()) {
Ty 4
node_destroy(];
} catch (L0kxception ex) {
Togoer . log(Level WARNING, null, ex);

I

N

OEBPS/image14927.jpg
@override
protected void componentiiiddent] {

Super_componentHidoen() ;

WindovManager vm ~ WindowManager . getletault();

TopComponentiroup prrsonGroup

un. findTopComponentGroup (*persongraun") ;
for (TopComponent Tc - wm_geTReqtsTry() geTapened()) {
if (tc.isShowing() & tc instanceof PersonTopComponent) {

return;
}

¥

if (personGroup 1= null) {
personGroup.closa();

¥

OEBPS/image15728.jpg
public synchronized String gollastname() {
roturn Tastnanc
3

public synchronized void setlastname(string lastnane) {
this.lastnane = lastnane;
1

public synchronized String gotMiddlcname() {
roturn middloname;

3

pubLic synchronized void setMiddlename(String middlename) {
Unis.middlenane = niddlen:

i

public synchranized String gotintes() {
return notes;
b

public synchronized void selNoles{String noles) {
Uhis.noles = noles;

1

public synchronized Person.Gender getGender() {
return gender;
|

pubLic synchronized vuid selGender{Person.Gender gender) |
this.qendar = gender;
¥

OEBPS/image17248.jpg
pubLic class LineChartController implements Initializable {

@rn
private
oL
private
[
private
XL
private
private
private
private

StockPane stackpane;

Categoryhxis xAxis;
Numberfxis yAxis;

LineChart<String, lumber> chart;

ObservableList<XVChart.Series<String, Number-= LeDat:

MyTabil Dt abodc] Labl Mode ;

tic tinal Logger logger - Logger.getLogger
Linechartcontroller class getame());

eoverride
public volc initialize(UNL url, ResourceBundle rb} {
createLinethart();

t

OEBPS/image16215.jpg
public class Mumberwizardeanel] inplements
Wizardbescriptor . Panel Wi zardbescriptors,
PropertyChangeL istener (

private NumbervisualPanell conponent:
privale WicardDescriplor wicard = null;
privale boolean isValid = lalse;
private Integer firsthumber;

private List<Integer> mynunbers = new ArrayList<Integer();
public final static String PROP_NUMBER_LIST = "mynumbers

@override
public void storeSettings(WizardDescriptor wiz) {
wic.pulProperLy (NumberVisus Pane |1, PROP_FINST_NUMBER, 1irs(Nunber
mynumbers .clear ()
mynunbers. add (firsthunber) :
wiz.putProperty(PROP_NUMBER_LIST, mynumbers):

. code onilled

OEBPS/image3761.jpg
- T = R—

Filter: |(try class or package names; JAR paths; display or code names) |

() Show Non-API Modules (] Show Excl. Modules (] Match Case

Module:

File System API
(General Queries API
1/0 APl

JavaHelp Integration

Keyring API

Look & Feel Customization Libras

Description:

| Show Javadoc |

(e] [coneel) (R

OEBPS/image4384.jpg
FamilyTreeApp 201310111326 P
(@ search i%-)_©)

Coraar g

v carenple
Ol

_ Marge =
& | Homer Simpsen =
& | gt Simpsan Simpsan =

Lo
& Lisa simpson FUAIE

Lo

& * Maggie Simpson
¥ o Lnknown

Marge Simpson
persar

OEBPS/image7849.jpg
806 Information

Thank you, Joe, for your order!

MEDIUM Pizza
J// With Sausage, Onions, Pepperoni,

For Delivery

(==

OEBPS/image14355.jpg
package can.asgteach. familytree.personfxviewer;

inport com,asqteach, fanilytreefx.nodel.FanilyTreeHanage
inport con.asgteach. fanilytreefx.model.Person;
.. . other import statements omitted .

public class PersonFXViewerController inplemcnls Lnilislizsble {
- cudes omi Hod
]

OEBPS/image17496.jpg
package org.smartphone. chart.utilities;
inport java.awt . inage.DufferedInage;
public interface ChartsaveCapability [

public String gelChartNenz();
public Bufferedinage getimage();

OEBPS/image2929.jpg
New Project

Stepe Choose Project
1. Choose praject Categeres Projects:
2T = v weo @ Mooule
3 Jova £ % Nocle st
& Wi s 69 Lbray raper Moduiz
& Java ME ®
Waven
[
& Groovy
@ oss
(1 NedBeans Modes
> £ samoles
Description:
Creates 2 new ampty NetBeans Platform Applicatior. This s an
application skelcton, without any modules. It is the stating point
far your own rich-client applications.

[Heip | | ciscx | [me@nd | fmen | [carca

OEBPS/image13225.jpg
// Suppose you had a "temperature” object
Temperature myTemperature = new Temperature(8) ;

/7 Create two labels
Label labell = new Label()
Label labelC = new Label{

7/ Bind the labelC textProperty ta the lemperature celsiusProperty
labelC. textProperty().bind (myTemperature.celsiusProperty().asstring()
.concat (" C")
// Bind the labelF textProperty to the Temperature celsiusProperty
// using F = 9/5 C + 32
LabeF. textProperty() .bind (myTenperature. celsiusProperty() .multiply(9)
divide(b) .add(32)
asstring().concat(" 1"});

OEBPS/image15809.jpg
@b

b
public class PersonchildFactory extends ChildFactory<Persons {

le.Messages ({
LBLPersonRead=A11 People . . . *

© code omilled

fverride
protected boolean createKeys(List<person> list) {
Refreshcapability refreshcapability =

personCapability.getLookup() . Lookup(RefreshCapability. class):
it (refreshcapability '= null) [

ProgressHandle handle = ProgressHandleFactory.createHandle(
Bundle. LBLPersonfead ()
try {

handle.start();
7/ testing only 11!
Thread. sLeep(1000);
retreshCapability. refresh(]:
LisL.addALL (per sunCapabi Lily..gelPersonLisL());
Logger. Log(Leve L FINER, “crealekeys called: 181",
) caleh (T0Exception | InterruptedException ex)
Togyer . Tog (Level WARNIKG, null, cx);
} finally {

handle. finish();
3
¥

return true;

List);

. code omitted

OEBPS/image16277.jpg
public final class NumberVisualPanell extends JPanel {
.. . code omitted . . .

publlic JTextField gethunberConponent() {
return firsthiunber;

¥

public void setStatus(String text) {
status.setText(text);
}

. code onilled

71 Veriables declaration - do nat modify
private javax.swing.llextFicld firstimber;
private javax.swing.Jlabel jLabell:
private javax.swing.JLabel status:

7/ End of variables declaration

OEBPS/image10501.jpg
806

Update Center Customizer

Name:

URL:

FamilyTreeApp Update Center

@ Check for updates automatically

[file:/ /Users / gail /Family TreeUpdateCenter/ updates /update.xmi|

[T

ancel

OEBPS/image7679.jpg
806 Create New Number Sequence

Steps Provide Sequence Initial Value

1. Provide Sequence
Initial Value Provide the first sequence number.
2. Provide Sequence

Second Value
3. Provide Sequence Third
Value

Checking for 5 uniqueness . . .

@5 i not unique.

| Cancel |

OEBPS/image10412.jpg
Tle T4 View Navigate Toos Window Tiep
NgFamiTresipp 201403101766 |

1B (@ s G)
<

ok

s

e

e

£ soplcaton dosen esperd for whle,
slec 2 v end ¢k orce Qi

5 e Pt S
@ Nrefox
o

G
Crmm—

@ s

I s (s ous

OEBPS/image13314.jpg
OhjectRinding=Colars colarBinding = new OhjectRinding<colors() {

1{
!

super.bind(rectangle. fillProperty(});

@verride
protected Color computeveluc() {
iF (rectangle.qetFill() instanceof Color) {
return ((Color) rectangle.qetk11()) . darker() ;
}else {
return Color.GRAY:

1

OEBPS/image14346.jpg
@verride
public ListePerson> getAllPeople() {
List<Person> copyList = new ArrayListe();
abservableMap.values (). strean() . forEach((p) -»
copyList.add{new Persan(p)));
return copyl 41

OEBPS/image6824.jpg
806

Error

Your order is not complete.

e

OEBPS/image3478.jpg
Fx FXDemo Window &3

OEBPS/image13385.jpg
// Constants to contral
final double maxRate
tinal doudle minfate
tinal double rateDelta = .3;
P
private void sloweriction(ActionFvent event) {
couble currentRate = pathTransition.getRate(};
if (currentRate -= minRate) {
relurn;
7}

patiTransition. selRale(currentRale - ratebella);
System.oul.printl(*slower rale = %.20\0", pathlrsnsilion.yelkale());

@ transition’s rate changes
7.0

¥

enaL
private void fasterAction(ActionCvent event) {

Gouble currentRate = pathTransition.getRate();

it (currentRate >= maxtate) |

return:

Il

pathiransition. sethate(curronthate + ratelel fa);

System.aut.printf(*faster rate = %.7f\n", pathTransition.qetRate());

fasterDutton. disableProperty() .bind(pathTransition. statusProperty()
5o LEqua (To(Aninalion. StaLus .RUNNING)) ;

> LowerBulLon . disableProperty() .bind (poUTransiLion. sLalusProper Ly()
isNo LEquar To(Aninalion. StaLus .RUNNING)) ;

Fasterbul lonsetlext (7 >> =

STowerbutton. sotlext (" <<

OEBPS/image15969.jpg
@onstart
public class LoginInstaller inplements Runnable {

private final LoginPanel panel = new LoginPanel():
private Dialogbescriptor dd = null:

77 stub method el says if Lhe username and password

77 are tie sane Uen Uie login is good!

private hoolean login (String username, String password) {
return usorname . equal s (password) & tuscrnanc. iskrpty();

¥
@essages(|
"LoginTitLe=Please Login",
“LoginErvor=Incorrecl user name or password”
1
eoverride

public vaid run() {
77 @nstart runs in a background thread by default
77 llere we use notifyLater to safely display the dialog.
77 Create a dialog using the LoginPanel and LoginTitle, make it modal,
77 and specify action listener
dd = new Dialoglescriptor(panel, Bundle.LoginTitle(), true,
(ActionEvent ae) -> {
/1 We need to Tisten for hutton prossed bocause we are using
/7 motifylater ta display the dialag
if (am.qetSaurce() == Dialoghescriptar.CANCFI OPTTON) {
17 Mdios

OEBPS/image9129.jpg
8°8 Profect Prosertles - TamiTreeApn

BT L afor: | K8 (et
- appicaion Netseans i | Devizpment i6E
e
o Do Mocuies
o awn R
» @ ramass |
- Bue

PRI r—
e r—

8 Abstac L ntance ot Wace GAHOWY
s et

P nT—r—
P,

0 apacie Comens 0 ande

| T

[Addproct.. | Addcuster | | tenore | | e

e (e |

OEBPS/image5942.jpg
FamilyTreeApp 201402180001

[| &

& Group Window &

€3 People

&_* Maggie Sithpson

® 8

v @ Undecided
ol Marge Simpson

| Bart simpson

Lisa Simpson

pson

(S5

OEBPS/image6841.jpg
6006 Question

-
/ Do you REALLY want to delete all those files77?

(Comee) [no) e

OEBPS/image16206.jpg
@override
public void readsettings (WizardDescriptor wiz) {
this.wizard = wiz:
LinstNurber = (Tnleger) wicard.gelProperly(
NumberVisua (Pare (1, PROP_FIRST_NUMBER) ;
il (s Uanber == null) {
firs Wmber
¥

getComponent () . setMinRange(firsthumber + 1);
updatePanel ()

.. . code omitted .

private void updatevanel() {
boolean vldState = isvalid;
getComponent () . updatevalidation();
isvalid = checkal idity();
iF (isvalid) {
getComponent() . setCurrentsequence (
Dundle.CTL_Panel2CurrentSequence
Firsthurber + *, * + secondhumber)):
3 else {
getComponent() .setcurrentSequence(
Bundle.CTL_Pane(2Currentsequence(tirs thumber)) :
i
fircChangervent (this, eldstate, isvalid);

OEBPS/image13814.jpg
Progressindicalor myProgressindicalor = new ProgressIndicalor(.0);

/7 Regin a Rackground Task

lask<Void= mylask = new lask<Void=() { .

nyProgressIndicalor.progressProperly(} . bind(myTask. progressroperty())
new Thread (myTask) .start();

7 End a Background $ask:

OEBPS/image1055.jpg
Preiects
v & PersonswirgApp

+ i T

[H <defautt
» (g Libraries

Find.
Faste
History
Tools

Froperties

v
>

& Java Class

(HJava Package...

[Java Interface.

Wi Cascading Style Sheet.

Jw JUnit Test.

LCl1Panel Form.

8 Entity Class..

8] Entity Classes from Databas
@ Web Service Client.

Other.

OEBPS/image13547.jpg
public List<Person> getAllPeople() {
List<Persons copylist = new ArrayListe{):
observabletap.values) .strean() .forEach{(p) ->
copyList.add(new Persen(p})):
return copyList:

OEBPS/image12326.jpg
public Person(Slring Iirsl, Slring Lasl, Person.Gender gender) |
this. Firstnane = first.
this.middlenane =
this.lastnane = last;
this.suffix
this.gonder = gender;
this.id = count++;

3

public Person(Person person) {
this. firstnane = person.getrirstname():
Uhis niddLenane = person. gelHiddLenane() ;
Uhis. Lastnane = person.gelLastnane();
Uhis.sul lix = person.ge(Sul lix()
Uhis. gender = person.ge (Gender();
Uhis . noles = person.geltoles();
Uhis.id = person.gelTd();

OEBPS/image2444.jpg
Library
Containers
= Accordion

Anchor Pane
[ZJ BorderPane
[Flow Pane

[Grid Pane 2x3
3 HBox

[Pane

Scroll Pane

(L] Split Pane (Horizontal Flow)
[split Pane (Vertical Flow)
b Stack Pane

[] Tab Pane

o Tab

[Tile Pane

[Titled Pane

OEBPS/image17336.jpg
<7inport java.lang. 7>
<rinport java.util.<7a
<zinport javafx. scene. v
<7import javafx. scene.control.?7»
<Zinporl javalx. scen. Layoul, 47>
<tinporl javalx. scene. charl. +2>

<SlackPent id="Stackpane’ fx: id="stackpane"
xwlns: fxs’http: //javatx. coms fxn /1°
fx:controller="org. suartphone. chart.pie. PieChartController"s

<children-
<Piechart fx:id="chart" />
<ComboBox fx:id="yearChoice" />

</children>
</SlackPane>

OEBPS/image10636.jpg
Smartphone Datos de Ventas

T ——
SmariPhone Dados de Vendas

OEBPS/image13725.jpg
/7 TreeView selected item event handler
private final ChangeListener<Treeltem<Person>> treeselectionListener =
{ov, oldvalue, nenValue) -> {
Treelten-Person- treelten = newvalue;
Togger. log(Level.ITNC, "selected item = {0}", treeltem):
enablelpdaleProperly. Sel{lalse);
changuOK = false;
if (treeTtem == null || treeTtem.equals(personTreeView.getRoot ())) {
clearrorn()
return;

b]
77 set thePerson to the selected treeltem value
thePerson = new Person(treeIten. getValue()
Logger. Log(Level.FINE, “selectad person = (0", thePerson):
configureEditPanelBindings| thePerson);
77 sel U gender [vom Person, Uien conligure Lhe genderBinding
3% (thePerson. qetGender() .equal s (Person.Gender MAIF)) {
mal eRadioRutton. setSelected (frie);
} else if (thererson.getGender() .equals(Person.Gender.(CMALL)) {
femaleRadiobutton. setselected(true);
} else {
unknownRadioButton. setselected(true) ;
b

thePerson. genderProperty() . bind (genderBinding) ;
changetk = true;

OEBPS/image16464.jpg
@override
public void actionParforned (ActionFvent e} {

if (nyfile t= null) {
77 write some text to tile
iF (myFile.canhirite()) {
displayMessage("can wrile * + my(ile gelpath));
Ury (PrintWriles oulpul = new Printhriler(
myfilo.getOutputstrean())) {
output.printin(*ihis is some toxt);
for (inf 1= 6; 1= 93 iH)
output.println(“Line nutber * + (i + 2)):

displayMessage(*Text written to tile '
+ myfile.getNamesxt ()}
} catch (TOException ex) |
displayMessage("Warning: problems wiiling lile
+ nyfile.gethancrxt ()
Fxeeptions.printStackirace(ex);

OEBPS/image7124.jpg
Method

Description

public boolean isvalid()

public vaid readSel Lings
(Wizardbescriptor wiz)

Retuen fhe valid statc of this pancl, 1f valid state.
can change, implement the add/remove change
listeners and fire state change events

Retrieve pane! state from WizardDescriptor.
Use wiz.getProperty property_name).

public void storeSettings
(Wizardbescriptor wiz)

Store panel slale o WizardDescriplor. Use
wiz.putbroperty(property name, value)

public void addChangeListener
(changeListener c1)
pubTic vaid removeChangel s enen
(thangeListener cl)

Add fistoner inferested in changes to 5Val id-

Remove listener interested in changes to
isValid.

public Component getComponent()

Get component displayed by this panel.

public HelpCtx getHelp()

Provide hlp.

OEBPS/image16875.jpg
@ictionn(
cateqory = "Fdit®,
id = "com.asqteach . fami 1yt reesuppart . AddNamencton®

@ctionRegistration{
iconBase = "con/esgteach fanilytreesupport/personIcon.png .
displayNane = "#CTL_AdoNameAction"

)

@ctionheterences |

A Uionke lerence(path =
suparalorAlLer
@A tionke ference(pal b

enu/rile”, position = 1300,
1350),
olbars/kiler, posilion = 300)

H
@essages ("C11 _adduameActionsadd Nanc)
public final class AddNameAction imploments Actionlistencr {

private final Droppable context;

OEBPS/image12834.jpg
/7 DocumentListener for text fields and text area
private DocumentListener docListener = new DocumentListener() {
Qoverride
public voic insertUpdate(DocunentEvent evt) |
il (chunge0K)
modily():
¥

3

Qoverride
public void removeUpdate(DocunentCvent evt) {
if (changeok) {
modily();
b

1

diverride
public void changediipdate(BocunentFvent ev) {
if (changeok) {
modify():
)

OEBPS/image5264.jpg
————

OEBPS/image13964.jpg
St SRtTovalaeyll
7/ Update scene graph on JavaFX Application Thread
Platform. runLater(() > {
naneDisplay.getChildren() .add(t);
ft.play();
R
updateProgress(160 * (++taskProgress) / taskMaxCaunt,
Thread. sleep(500);
)
return nulls // because of <Void>
i}
77 Called on e batkground Unread
privale void dorocess(berson p)
pustLries name (p.gelkirstuenc() . LolipperCase ()
p.setHidd]cnamc (p. getiddlcnanc(). follpperCase (115
p.setLastname(p.getLastname () . tolpperCase());
p.setsuffix(p.getsuffix() . toUppercase()):
3

private Text makeText(Person p) |
tinal Text t = new Text(p.toString(1):
EoserHiTl (Calor NAVY) ;
t.sotront (Fant . fant (" Iahona", FantWeight. IHIN, 14));
FosetOpacity(6) ;
return t;

100);

OEBPS/image15745.jpg
<zxnl versior

1.8" encadin

<persistence version="2,6" xmlns="http://java.sun.com/xnl/ns/persistence*

xmLns:xsi="http: //wni.u3.0rg/2001/XMLSchena-instance’
xsi:schemalocalions

“hLLp: // javar. sun. comfxnl /s /per sislence

hULp:// Java . sun. con/xn

<persislince-unil nam

s fpersis Lente/per sisLence_2_0.xsd*>

bersonk HPU® LransacUion- Lypes"RESUUKCE_LOCAL®>
ovidersarg.eelipse. persistence. jpa.Persistoncebraviders/providers
ass=com.asgteach, fanilytree.manager. jpa.FersonCntity=/class=
<properties=

<property nane="driverclass’ val

org.apache. derby. jdbe. Clientriver® /-
<property name="eclipselink.logging.level" Value="FINE"/>-->
<property name="javax.persistence. jdbc.url*
vaLue=" jdbc e by: // Loca hos|
<properly name=* javex.persislence. jdbe, user® values"person| i />
<property name="javax.persistence. jdbe. driver"
velue="org.apache.derby. jdoc.ClientDriver" /=
~property name="javax.persistence. jdbc.password" value="personftn"
<property name="eclipselink.ddl-generation”

value="drop-and-create-tables"/>

+1527/personl n' />

</properLiess
</persistence-unils
</persistences

OEBPS/image8908.jpg
L= MeTyreApp 201403101706

T Smprorramiiyirecti |

[FamiyTreedaa | s /g2 o T i | vsou [T &

[Abcrempiateabe

7 WomerFanivs
o SmpsonFamivres i
2 Simpson Famiy Tree

Warge Ludse
e seymore
Liss Amela
Wagg e uay

Bamatatatan:

OEBPS/image13885.jpg
MoPracass | perenn) |
buildList . oppend{person. toString()) .append(“\n") ;

7/ Update value property with new build ist
updateValue(buildList. taString());

updateProgress (100 * (++taskProgress) / taskHaxCount, 100):
Thread. sleep(500) :

)
77 veturn Ui Tinal buill String resull
return buildList. toString();

1

7/ Called on the background thread

private void doProcess(Ferson p) {
p.setrirstame(p.getrirstnane() . topperCase(}):
p.sethiddlename p. getiiddlename() . toUppercase (}):
p.setLastnane (p.getLastnane() . tolpperCase()):
prselSulTix(p.getSul Tix() . Lollpper Case()

OEBPS/image5523.jpg
Created Files:

Medifies Files.

[el

808 New Action
s T
— T —
2. Action Tyge Gaslams Clendardct
5. Chlveasimien
> Wt Disstay Name: [Calendar
e rsPormpralsctsficon eaerdarprl]| [sBmmsaer]
ot Famiyrochctions
it TSR -

sre/comjasgieach familytres/actions, CalerdarAction java
src/comyasateach familytree/actans) calendar pna
Stc/comjasgteact familytree/acticns) celendar24.png

nbprojact/profectxmi

| [<back | | Next> | [rinished [Cancel |

OEBPS/image9457.jpg
125

ons.

100

75

Sold in

50

2

O Nokia

2008

ORM

Smart Phone Sales

2009

O Apple

Year

O HTC

2010 2011

0 Samsung O Others

OEBPS/image3165.jpg
e
» [colors
» [sports
> (& food

OEBPS/image12852.jpg
private void configurel isteners() {
17 Listeners are registered after constructor returns
77 for thread safety
‘ttn. addPropertyChangeL istener (tami lyTreeListener)
personTree.addTreese LectionListener (tresselectionl 1stener]:
updateButton.addActionl istener(updatel istener)

/7 add document Listeners ta text ficlds, text area
FirstTextField.getDocunent() .addlocunentListener (this.docl istener) ;
middleTextField.getbacument () .addDocunentListener (this.daclistener) ;
lastTextField.getDocunent() .addDacument Listener (this.docl istener) ;
suffixTextField.getDacument() .addDacunentlistener (this.daclistener);
notesTextArea.getDocument() . addDacument Listener (this.docl istener)

/7 add action Listeners to radiohuttons
maleButton. addActionListener (this. radioButtonListener);
fenaleButton.addActionListener (this. radioButtonListener
unknownButton .addActionListener (this.radioButtonListener);

OEBPS/image3530.jpg
8080

New Moculc Project

Staps

Name and Location

1. Name and Location
2] asic pedule
Configuration

Project Name: [’XDzmoModule

Projec

o [ievaPiniegration PXwmninn]| |

Project Folder: on FXDemoApp FXDemoWodule

Module Suite: | /Uscrs gail PC_Files Net... 4 C

OEBPS/image4971.jpg
8anoe WindowSystemApp 201204101705 o

Yourkame [amy

‘Close Top Perscn Window

OEBPS/image13234.jpg
// Bind button's disablcProperty to myTransition running or not
slariRul Lon. disableProperty () .bind(myTransilion.slalusProperly()
.isEqualTo(Animation.Status.RUNNING)):

OEBPS/image14801.jpg
public final class LimitsdTopComponent extends TopComoonent {

public Lim:tesTopComponent() {
“nitConponents();
setName (Dundle . CTL_LimitedTooConponent () ;
seToul TipTexL (Bundle. HINT_Lini LedTopCamponent (31 ;
puTClientFroperty(TopComponent. FROP_CLOSTNG_CTSABLED, Doolean.TRUL);
pUTCTanTProperty (TopComponent PROP DRAGGTNG NTSABI FD, Boolean. TRUF);
putClisntProperty (TopComponent .PROP_MAXTHIZATION DISASLED,
Boolean TRUE) ;
pulClisntProper Ly (TopCumponeriL.PROP_SLIDING DISABLED, Boulean.TRUE};
pUTCl1=ntProperty (TopCamponent .PROT_UNDOCKING_DISABLED, Ecolean.TRUE) :
puLCLicntProper Ly (TopComponcen U PROP_KEEP_PREFERRED_STZE_WHEN_SLIDED_IN,
Boolean TRUE} ;

. onilted code

OEBPS/image13779.jpg
/7 MapChangel istener when underlying FamilyTreeManager changes
private final MapChangel istener<Long, Person» fanilyTreeliste

(change) -> {

it [change. getvalueadded() '= null) {
Logger. Log(Level.FINE, "changed value
7/ Find the treeiten that this matches and replace it
Far_(TreeTtem<Person~ nore : personTreaView.qetRoat () .getChildren()) {
if (change. getKey() equals (nade.getValue().getTd())) {
7/ an update returns the new value in getValuendded()
node. setvalue(change. getValueddded()):

return;

= (0}". change.getValuehdded()

OEBPS/image6663.jpg
& familytreeapp JGIH B4 View Navigele [oos Wincow Help

Ty

& Abahar sipss
3 carsimpsan
2 Homersimpsan

3 - uagpesmpson
Harg Lowise impson

OEBPS/image10808.jpg
smartphonedataapp Archivo Editer U7 Navegar Herramentas Ventana Ayuda

CEE) Log dz IDE
Bin @

Smartphone Datos de Ventas

Smartphone Datc

OEBPS/image4786.jpg
/’

Busy Toggle
Animated s zocian)

Notification

OEBPS/image8344.jpg
Projects
v & AppConfigFile
v (@ Source Packages
» 85 com.asgteach.appconfigfile
v £ Important Files
XML Layer
v [<this layer>
v [Actions
v &3 Todls
<z Config File
v [Menu
v [Tools
<z Config File
[<separator>
v [Toolbars
v & Fie
<z Config File
» [<this layer in context>

~}— Actions/Tools/Config File

~— Menu/Tools/Config File

~— Toolbars/File/Config File

OEBPS/image6172.jpg
avigate Tonls Wincow Help
FamiTrashop 201401141052

3 - arge sinpsan.
2 mansimason
g

2 - uagale smpson

Poae e
Prine.

sa plys saxephen I

i
D)

OEBPS/image17121.jpg
7/ Add support for Category Kemes

Qoverride

public Listestring> getCategoryNames(}
return Arrays.asList|categories) :

1

Qoverride

public int gettategaryCount () {
return getHowtount ();

}

@override

public String getcateqaryNane(int row) {
return categories|roul;

i

QOverride

public Slring gelDalaDescriplion() |
relurn dulaDescripLion

1

@verride

public String getkemeDescription() {
return nameDescription;

}

QOverride
public Slring gelTille() |
return Litle;

1

OEBPS/image14855.jpg
package com asqteach.persenaditer;
impor 15 o1l
@onshowing
public tinal class ShouMeTheHoney implenents Rumnable [
private final Meney monsy — new Money(l;

@verride
public vaid run() (
Dialogbescriptor dd - new Dialogbescripior(money, “Here is the Money");
Do 0ghisplayar getdaTanl () natt Ty () ;

OEBPS/image5079.jpg
aon Windawsy: ermiAgp 201204101705 o
S92 CmeI

) S T

[oper person vancow_|

(eise e rrson v |

[Chonge vite |

OEBPS/image16792.jpg
@enplateRegistration(folder = “Other®, content = *TamilyTreeTemplate.ftr")
package com.asqteach. familytreesupport;

inpart org.netheans .api . tenplates. Tenpl ateReqi stration;

OEBPS/image12762.jpg
c:

private void pdateForm() {

firstlext FieTd. sel lexd (Uheborson. gelFivstisne());

middle exthicld. sef lext (thoberson. gettti ddlenane()) ;

Tastlextticld. sctlext (fhePorson.getl astname()

suffixlextricld.setloxt (thoperson . getsuffix(]

i {thePerson.qetGendar) .equal s Gender . N F)) {
maleRutton. setsel ected(frue) ;

} else if (thePerson.getGender() . equals(Gender. THALD)) {
fenaleDutton. setSelectedi true}

J else 1t (thePerson.getGender() .equals (Gender . URKNOWN)) |
unknownButton. setSelected(true):

)

nolesTexUArea. selTexL(LiePerson. gelloles()) ;
updatekutton. setknabled(truc) ;

OEBPS/image1832.jpg
CXaX:) New Java Applicat on

steps Name and Locatlon

L. Croseprjert oject Narme validat anistenie

2 Nameandtocaon TORCN: O TR
Project Lacation: | (Usars call fauaFk

Project Folder: Usars gail/Jauaf /Nylnal dationListener

Use Desicated Folder for Storing Librries

Libranes Folder

can share the
s e Hell

Differen ussrs and pro
same copilaticn lib
dals),

M Create Main Class ryinvalldauionl stenzr MylvalidaticnLstenct

(ep | [<tok | [meo | (uimmisns (cances

OEBPS/image9070.jpg
New Pl Type

2 Mile Recogr tien
5 Name keon and.

Name,ian and Location

[E——

Pt
Crestac e

FamiyTies

o use vaimvien

Ferso g

erccomasgtesfamirsepersonfletyo FamilyTesDit Okt v
Sl 53tcae il rsa personfles v Pl TiceTemp e st
Srtccreasgteacfamiree ersonflen o FamilyTreev sualeant for
Sretcm|aseach familvrse/personf e ackade.- e Jeia

OEBPS/image16538.jpg
Dxceptions.printStackTrace(ex);

1

@werride
public void Filedeloted(klorvont fe) {
di<playMessage("File/Falder Neleted: * + fa.qetFile().getPath());
updateDisplay();
il

@ver ride
public void 1ileRenaned(FileRenaneEvent fre)
displagMessage("File Konamed: © + (1e.getFile().gelbath());
v {
fre.getFile(). setAttribute(FO_NODIFICATION COLOR,
Color MAGENTAT;

updateDisplay();
} catch (10xceplion ex) {

Fxceptians . printStacklrace(ex)
¥

¥

@verride
public void tileAttributeChanged|FileAttributeEvent tae) { }

OEBPS/image16953.jpg
public class FrrvisualFXcontraller implements Tnitializable {

er
private FlouPane nypan
private SwingPropertyChangeSupport propChangeSupport = null
private final Sequentiallransition seqTran = new Sequentiallransition();

public static final String PROP_DOCUHENT_UPDATED = “DocumentUpdated”:
public static final String PROP_DOCELENENT_REMOVED = "DocElementRemoved"

privale double orgSceneX;
privale double orgSceneY;
private double arglranslateX;
privata doubla ergTranslateY;

privata static final logger legger = lagger.qetl oger(
FrvisualFxCant rallar.class.getNane()) ;

@verride

public void initiolize(URL url, ResourceBundle rb) |
propchangesupport = new SwingPropertyChangeSupport (this, true):
mypane .gatstyLeClass() .ada(*Ftr-pane”

)

EventHandler<HouseEvent> nadeOnfausePressedEventHandler = (({cvent) - {
TF (event.qethutton() . cquel s (MouscHutton . PRIBARY)) {
orgSceneX = event.qetSceneX();
orgSceneY = event.qetScenaY();
orqTranslateX = ((Node) (event.gatSource())).qetTranslatex()
egTranalater = [{Noded (ot . gotsourcal))) . qatTransT At ()

OEBPS/image17203.jpg
fxmlLoader.setLocation(location):

faml Loader setDuilderTactory(new Javarxouilderractory());
Parent root = {Parent) Pl aader.load(1ncation.openStream(]);
chartFxPanel . setScene (new Scene(raat));

controller = (LineChartController) fxmlLoader.getController();

) catch (IOException ex) [
Exceptions.printStackTrace(ex]

OEBPS/image17505.jpg
@ctionn(
categary = “File",
id = "org.smartphone. chart.utilities ChartSaveliction"

)

@ctionRegistration{
iconBase = "ory/smarlphone/chor UuLi LiLies/saveClar Ucon. g,
displaylame = "#CTL_Char SaveAc Uion "

)

@AcUioniRe Terences (1
@Actionkeferonce(path
@Actionkeference(path

e/l
oalhars/rile”, position =

position = T30},
i0)

)

aHessages ({
“CTL_ChartSaveActiar
“# (6] - windownane'
“MSG_SAVE_DIALOG=Save (0}*,
"# (6] - Filename",
*MSG_SaveFui led=Could nol wrile Lo lile (0)%,
1 {6} - +ilename”
MSG Overwrite=File (3} exists. Overwrite?"

we Chart®,

h
public final class ChartSaveiction implements ActionListener {

private final ChartSaveCapahility context:
privale slalic linal Logger logger = Logger . gelLogger(
ChartSaveAcLion. cLass. gellane () ;

public Char(SaveacLion(ChartSaveCapability context) {
this. confext = cantext;
5

OEBPS/image12345.jpg
private int age;

// getter for age

public int getAge() {
return age;

}

public boolean isTeenager() {
return (age >= 13 & age <= 19) ? true : false;
}

OEBPS/image15513.jpg
refreshCapability.refresh():

Uist.addALL (personCapability.getPersonlist()

Logger . Log(Level .FINER, "createKeys called: {6}, list);
} catch (I0Exception ex) {

Logger . Log(Level .WARNING, null, ex);

b
}

Feturn trus;

QOvernide
prolected Node crealeNodeForkey(Person key) {
Logger. Log(Leve LFINER, "crcaletodeForKey: {01, key);
Personiude node = new Persontlode (key) ;
return node;

}
77 Propertythangel istener for Familylreellanager
private final Propertychangel istener fomilytreelistener =
(FropertyChangeCvent evt) = {
if (evt.getPropertyName() .equals (FamilyTreeManager. PROP_PERSON_ADDED)
|1 evt.getPropertyName() .equals(
FamilyT recHanager . PROP_PERSON_DESTROVED)) {
this. refresh(true);

OEBPS/image13734.jpg
private void configureEditPanelBindings (Person p) {

firstnaneTextrield, textProperty()

-bindbidirectional (p. firstnameProperty());
niddlenaneTextrield. textProperty()

-bindbidi rectional {p. middlenaneProperty()):
TasLnane | ex Field. LextProper y()

_bindKidi rectional (p. Tastamckraperty());
suffixlexthield. textProperty() . bindiidirectional (p.suffixbroperty());
notesTexthrea. textProperty() .bindhidi rect ional (p. notesraperty ());

3

private void clearforn()
i naneTex Field . selTexl ("]
middlenanclexthield sellexU (") ;
Tastuane el kLol sellexL (") ;
SuFfixiexthiold. set ot (*
notesTextarea. setText("");
naleRadioDutton. setselected(false) ;
FenaleRadioButton. setselected false
unknownnadicButton. setse Lected! false]:

OEBPS/image16619.jpg
@ictionTn(
category = "Tanls",
id = "com,asqteach. filesysten.viewer Viewsyssiction”

1

@ActionRegistration(
iconBase = ™
disp LayName:

om/asyleach/1ilesysten/viewer/ | ileSysTeon.png’
"#CTL_ViewSysFSAuLion®

)
@Ac LionReferences (1
@ActionReference(path = "Menu/Tools", position
separatorAfter = -50),
@ActionReference(path = "Toolbars/Tile", position = 375)

-100,

B
@fessages ("CTL_ViewSysrsaction=View System ilesystem')
public final class ViewsysrSaction implements Actionlistener {
private final InputOutput io;
private final DutputWriter writer;
public ViewsysFsction() {
io = I0Provider.getDefault().getIo(
Bundle . CTL_ViewsysFsAction(). falsel:
writer = io.getbut();

OEBPS/image5344.jpg
RoleCxample 201204101705

Username

Password o

Log

OEBPS/image16686.jpg
private final Inputoutput io;
private final OutputWriter writer;
private static tinal String FILENAME = ‘mytile.txt";

public FileManipulations() {
ia = 10Provider.getiofault (). get 1D(Bundle. (11 _FiToMar
false);

wlations(),

writer = fn.getOit();
b

private void displayHessage(String msg) {
wriler.prinlin(msg)
i

/7 Exanple code manipulating biLeObject, Datadbjuct, and Node
try

[See Listing 14.2, Listing 14.3, Listing 14.4,
Listing 14.5, and Listing 14.6]

} catch (TOException ex) {
Fxeeptions. printStacklrace(cx)

1

OEBPS/image15584.jpg
public class RootNode extends Abstractfiode {

private tinal InstanceContent instanceContent;
private tinal PersonType personType = new PersonType():
pubLic RoolNode() {

Unis{new Tns LanceContent () ;
5

private RootMode(InstanceContent ic) {
super(Children. create(new Personchildractory(), false).
new AbstractLookup(ic));

instanceContent = ic;
sellconbaseni UikxLensiont

“com/asgteach/ familytree/personviewer/ rsaurces/personlcon.png") ;
setiisplayNenc(Bundlc.1 Hi_Rootllode () ;
setShorthescription(Hundle.HINI KootNode ()
/ Required o enable New Person in context menu and Toolbar and Menus
instanceContent. add{personType) :

]

@Suppr essWarnings (“unchecked=)
@hrride

OEBPS/image8257.jpg
Projects Services | Favorites

M=) :onConfigile

> B build.xml
5] manifest.mf
» (i ChangeDetector
» [FilesystemApp
» [FsExploration

OEBPS/image14783.jpg
punlic final class FersonTopComponent extends TopComponent {
omitted code

void wr i LePropert ies

avaLul il Prapert ios p)

/7 better <o version settings since initial version as advocated at
77 WU/ apides gnarg/wiki Proper | yF iles
p.setProperty(version®, 1.0

p.setProperty(“name”, namcTextField.getText());
'

void readbroperties|jeva.util.Properties p) {
SUriny version = p.getProper Ly('version”)
naneTextField.setText(p.getProperty(“nane”)) ;
]

OEBPS/image17487.jpg
Fadelransition ft = new Fadelransition(
Duration.millis(1500), label);

ft.setTovalue(1.0);

ParallelTransition pt = new ParallelTransition(

tt, 1)
pt.play();
3
Coconsune();
n;
e

77 end of for loap
77 end of setupbventHandlors() methad

OEBPS/image14909.jpg
Ul
/N1 Reans/ /DT Filesystion 1.2//N" "hitp://

<ixnl version-"1.t" enccding.

<IDDCTYPF Tilasyslon PURITC
Wi _netbeans org/ctds/filesystan-1_2 dd">

<lilesysions
<folder name-"Windcws2">
rsongroup.wsarp’ url-"persongroup.wsarp® />

persongroup™>
<tile neme="Fersonuutputioplomoonent .ustcarp’
uUrl="Ferson0utputTapComponentstcqro. " />
‘ersonroperty |opLonponent . wstcgrp®
“PersanfropertyTopConponentésteqrp. xnl"/>

=rolders
</folder>
~/folder>
</Tilesystems

OEBPS/image616.jpg
Retzzer

Sarphone Dados 357 S SRR A
oo s
— .
e T |
A 2008 e
i = - L

OEBPS/image16402.jpg
GOverride
public void uninitialize(dizardDescriptor wd) [
Ui pancls = mil1;
this.wizard - null}

OEBPS/image12780.jpg
private final PropertyChangelistener fanilyTrealistener =
(PropertyChangeEvent evt) -> {
if (evt.gethewvalue() != null && evt.getPropertyName().equals(
FanilyTreelanager PROP PCRSON UPDATCD)) {
Person person = (Person) evt.getNewValue():
DelaulTreehodel model = (DelaulLTreeModel) personTree.gelModel();
Tor (inl L= 0; i < nodel.gelChildCounl(Lop): i++)
De el Uty Lable | rechode. node = (De faul (MuLable rectode)
mogel.yeLChild(Lop, 1)
i (person. cqua stuode. gelUserObject (1)) §
node. setUserObject (person) ;
7/ Let the model know we made a change
model..nodeChanged (node) ;
Logger. log{Level.FINC, *Node updated: {0}*, node):
break;

OEBPS/image16321.jpg
public final class PizzaWizardIterator implements
WizarcDescriptor. Tterator<Wizardbescriptors,
PropertyChangelistener [

privale inl index;
privata |ist-Mizardbescriptar.Panel izardnescriptarss panels;

7/ give panels variable names so we can add/remove then as needed
IdentifyCustomerController icc = new IdentifyCustonercontroller():
NewCustomerController ncc = new NewCustomerController(
BuildPizzacontroller bpc = new BuildPizzaController():
DeliveryInfaController delic = new DeliveryInfoController();
ConfirnOrderController confoc = new Confirmdrdercontroller();

private List-#izardbescriptor.Panel-#tizardoescriptor= getPanels() {

if (panels = null) {
panels = new ArrayList<WizardDescriptor.Panel<WizardDescriptors>():
pancls.add(icc);
panels.add(nce) ;
paneLs. add(bpc) ;
panels.add(delic) ;
panels.add(confoc) ;

7/ Becone a ChangeListener for IdentifyCustomerController and
/¢ Buildpizzatontroller
icc.addPrapertyChangeL istener(this) ;
bpc.addPropertyChangel istener (this) ;
updatesteps();

3

return panels:

OEBPS/image9537.jpg
Smart Phone Sales

Units Sold in M

2008 2009 2010 2011
Year

ONokia ORM OApple OHTC O Samsung O Others

OEBPS/image13560.jpg
i

homer. sethiddlename " Chester") ;
homer. setsuffix(*Junior") ;

1/ Update homer
tn.updatePerson(honer
marge. setHidd] cname ("1 o se") ;
marge.set astnanc ("Houvicr-Sinpson”) ;
7/ Update marge
tm.updatePersan(marge) ;
+tn.deletepersan(arge) ;

1/ delete marge again, no change event
‘*tm.de etererson(marge) :

mopChangelisLener shown in Lisling £.14 .

OEBPS/image13412.jpg
public enum Gender {
MALE, FEMALE, UNKNOWN
1

privale linal ObjeclProperly<Person. Gender> gender
v Simple0bjec LProper Lye>(Lhis, "yender”, Gender . UNKNOWN) ;

public Persan.Gendar getGendar() {
return qender.qet ()
b

public void setGender(Person.Gender gender) {
this.gender. set(gender

]

public final ObjectProperty<person.
return gender;

wer> genderProperty() {

1

OEBPS/image15243.jpg
public class PersonModel {

private final List<Persons persens;
private final ChangeSupporl cs — néw ChangeSupport(this);

public Persontlodel [List<Persom persons) [
this.persons - new ArrayList<(persons);
1

PUBlic 1151<? extends Persan> getPersans() {
return persons;

i;

public vold acd(Person p) (
parsons aud (p)
cs.firachangal);

3

public void removs (Persen o) {
parsons . remova (5
cs. MireChiengal):

OEBPS/image6741.jpg
i
& | Homer Simpsan.
% Licasimpson
& m

& *Marge Simpson

FamilyTreeAgp 201402130001

i@ sch) ©)

OEBPS/image6289.jpg
& familytreeapp Ile lcit View Navigate [nols Window llelp
eo0e6 FamilyTreeApp 201401141042

Firstrame: [Abraarn

&

| Cancel

OEBPS/image14329.jpg
package com.asqteach. familytreefx.model ;
inport java.util.List;

impor L javalx.beans . Tovalidationl isleners
impor L javafx. collections . MapthangeLis Loner;

public interface FamilylrocManager {

public void addListener(
MapChangelistener<? super Long, 7 super Persons ml):

pubLic void removelislensr(
MapChangeLis Lener<¢ super Long, ¢ super Persons ml);

public void addListener(InvalidationListener 11):
public void removelistener(Invalidationlistener il):
public void addPerson{Person p):

public void updateperson(Person p);

public void deletePerson(Person p);

public ListePerson> getALlPeople(:

OEBPS/image15986.jpg
¥
ni;
71 specify an empty array to prevent any option from closing the dialog
dd.seTClosingOptions (new Objectl1{}1;
0. createNotLficationLinesupport();
7/ Detine a property listener in case the dialog is closed
dd.addPropertyChangeListener ((PropertyChangeEvent pce) -> {
77 ook for CLOSED_GPTION
it (pce.getPropertyName). equals(DialogDescriotor. PROP_VALUC)

& pee.getliewValue() — Dialogescriptor.CLOSCE_OPTION) {
Systen.out_println(“Closad!®);

LifecycleMenager. getliefault(}.exit();
3
b

/7 notifylater will display the dialog on The
DialogDisplayer.getDefault().notifyLater(dd) ;

OEBPS/image15200.jpg
<2xml. versior

<IDUCIYPE tilesystem PUBLIC

~filesystem=

<folder name="Action
<folder name="Hodes"

UTF-8"2>
/Metszans/ /01D Hilesysten 1.2//EN
NTtp:/ /i netbeans . org/dtds/ filesysten-1 2 dic">

1.6° encoding:

<file name:

“com

“cum asgleach familylree sctions NodeCalendarAction, inslance™>
<1--cam.asqieach. Temilytrae. actions.NodeCalendarAction
<atlr

bunclevalue—

sgreach. TamilyTron.acTions. BundlesCTl NodaCalendarAct fon”

name-"displayNane" />

<aTTr mEThodvATie="org opantde. T AcTions_conText*
name="1nstanceL reate"/>

<l et lyon e ingualuc=

“com.asgteach.familytree.capabilities.lalendarCapability" />

<atir meThdvalio="arg. pentde. auT AcTions.injort”

name—"deLegate" />

<attr name—*infectanle® STringual

"com.asgteach. familytree.actions.NodeCalendarAction" />

<attr name="selectionType" stringvalue="EXACTLY ONE"/>

<attr neme="iconbase” stringvelue=

“con/asqteach; fanilytree/actions/calendar pra*/>

=attr boolvaluz—felse® nane-"rolconinienu’

</files

<Fatders:

OEBPS/image2935.jpg
CXaY:) New NetBeans Plat urm Apslication

steps. Name and Loeation

1. Choase Project

1 e et o PrOjectName: FariiyTreerpp

uies (mowee)

Project Folder 5 Lokup) nbrnodules FamilyTrseagn

Project Location: "rojects/Mocules_Lockup/neme

Netéeans Matform: | Development IDE

OEBPS/image8106.jpg
LX) FieSyemApp 261404101708

Cvter e

T e
= w1 JUsars aed 1 a1 YTT seaata/ CaoTFo dar

+ Pl sarosersamiv s

Filerrelosr Deleted: fUsers;3ailyrantlyTreesats,yneirotasrast
FLLE Changeds AUsers /o UFSnilyTreebs Lty TextFits, s

Companens Sctivates: Sefresh on parens.

File Renanas /Users fga U FanilyTrosb Lot CeotFutder

File Data (file1 Craoteds /Users;3a:l/rentlyTreesstamycestrolder

OEBPS/image9065.jpg
800

New File Type
Steps File Recognition
1. Choose File Type MIVE Typs.

L et tex/famlywee -xmi
3. Name, lccn and (e6. "text/x-myformat” or "text/myformat bxil..
Location

by Filename Extansion
Extension(s)

@ by XML Reot Element
Namespace

] [<k ([@Nowsi] Finis Cancel |

OEBPS/image14837.jpg
Override
public vuid comvoncitdpencd ()
System.out.printin(nameTextFisld.gatText() +

opened";

@0uer ide
public void comoonentClosed(} {

System.oulprint Un{naneTox Fisld geiText () 1 * clased®);
@Override

public Luolean canCluse() {
return {namsTextrield.getText(}.tolowerCase().endshith(quru®);

QOver ide
protected void componentActivated(} {
super . componien LA Uvated () ;
System.out.printininamelextl isld.getlext (]

+

activated');

@0uer e
protected void componentleactivated() {
super . conponen Deac fvaled ()
System.out.println{nameTextrisld.getText() + * deactivated”
@override

protected void comporentHidden() {
super_componantHiaden();

System.out.println(nameTextFisld.getText() ~ * hidden');
b
@override
protacted void componentShowing() {
super. componantsheuing();
SysTem.out.printin(namel sxtrield.getlext() « * showing"};

OEBPS/image13483.jpg
¢ 3
1;

private tinal ReadUnlyStringhirapper tullname —

new ReacOnlyStringWrepper (this,
privale stalic Tong counl = 6;

public =num Gender {
MALE, FEMALE, UNKNOWN

'

public Personi) {
this(**, **, Gender.UNKNOAN) ;
T

public Person(String first, String last,
This.TirsTnane. sof (F1rsT);
this. Lastnane. set (Last];
this gender. set(aender)
this. i = comi i
this. Tultname. bind fuNaneBinding);

1

public Person(Person person) {

“fullnane”);

Person.Gender gender) {

this firstname set(person_getFirstname(]);

this

Udlenane. sel(persun. getiddlensme());

this. lastname. set(person.getlastnane()) ;

Ths SUTFTX_seT (persnn. getsuttix());
this.gender. set[person. getGender()];
This_notss set(person_getNotes(]);
This.1d = person_gerta();
this. fullname.bind (fullNeneBinding) ;

¥

public final long getld(} {
ot id.

OEBPS/image17318.jpg
i

i

data.setYvalue(value) ;
/7 update extra value for the entire coluwn
For (int r = 6; r < tabloode] .getCategaryCount(); r#) T
XYChart . Seriasiiumher, Humbers 55 =
chart.qesnata() .qet (r
Bubblechart .Data<hunber, Hunber> data:
ss.gatbata) .get(column) ;
datal.setlxtravalue(((double) tebleModel.getvalueti
r. colum) / newTotal) * XTACTOR);

OEBPS/image844.jpg
Projects €3 | Files | Services
ve

v (i Source Packages
v (5 com.asgieach.familytree.model
[&] personjava
v [personappbasic
[PersonappBasicjava
» [Libraries

OEBPS/image15522.jpg
Is.aclhronDelel

map..pul (*delole”,
', lrue)); 27 or lalse

OEBPS/image1081.jpg
Palette © |

[ool Bar

£ imernal rame
+ Swing Controls
s Label

@0 Togale sutton
- Radio Button
[I=] Combo Box
et el

i seroll ar

= Progress Bar

Password Field

- separator
(2] edior pane

[Table

£ Deskiop Pane

] ayered Pane

58 Burton
- CheckBox
8= Button Group

List

5] Text Area
b Slider

2] Formatted Field
1] Spinner

[T] extpane

Tree

OEBPS/image17087.jpg
public class FamilyTreeFxController implements Tnitializable {

R

private FlovPane mypane:

private tinal SequentialTransition seqTran = new SequentialTransition():

privale slalic linal Logger Lugger = Lugger.gelLogger (

FanilyTreePXConlrol ler . class. gelNane())

private final Inage image = new Inage(

FanilyTreeFXController.class.getResourceAsStrean(“personIcon32.png"));

@override
public void initialize(URL url, ResourceBundle rb) {
mypane, getstyleClass (], add(* Ftr-pane"
mypane. setOnMouseCLicked((event) -> {
if (event.getclickcount() = 2) {
doFadeln():

b
n;
i
/7 Lnvoked by Swing visusl clement on Lhe Javabx Applicalion Ihread
public void doFadeIn() {
seqTran.playrronstart ()5
¥

77 Tnvoked by Swing visual element on the JavarX Application Thread
public void clear() {

seqTran.getChildren().clear();

mypone . ge LChiLdren().C Lear () ;

OEBPS/image5853.jpg
LXaX:)
1402130001

B2 D il

Chanse Order

A | vesew

OEBPS/image12419.jpg
private PropertyChangeSupport propChangeSupport =
new PropertyChangeSupport (this):

OEBPS/image16766.jpg
@l tiviewC Lement Registration(

)

displaylame = "#LDL_ramilyTree VISUAL",

iconBase = “can/asgteach/familytreesupport/check.png’,
mineType = “text/x-fanilytree",

persistenceType = TopComponent.PERSISTENCE_NEVER,
prelerredId = "FanilyTreeVisual,

pusilion = 2000

@essages ("B FamilyTrea VISUN =Visual")
public final class FamilyTreevisualFlement extends IPanel

implenents MultiViewElement {

private FamilyTreeDataObject ftDatadbject;
privale JToolBar Loolbar = new JToolBar():
privale Uansienl MulliViewElenentCal back callback

public FamilylveeVisuslelensnl (Lookup kp) {
ftbatatbject = Lkp. Lookup(FanilyTreeDatabhject . class);
assort obj 1= nul
initComponents () ;

3
@override

public String getNane() {
return "FanilyTreeVisualELement :
i

**Gionerated Matisse losign Cader==

OEBPS/image1075.jpg
[SestTexibinid TaniFloid] Navipstor) I}

E orm rercon ame
- 2 Ot Componens
v Ul
¥ i polvaned iscrlivans]
[persortree UTrer)
[jparelt prasel]
n JLabell labe
e Jiabel iabe
e jLabe Labe
e Labud [Labe
e JLabels (abe
| BesiTextreid Testfield]
= mddieTexsFiekd PTeaField]
 bsTouricn romrelz)

e vt i
ke R ceor
o femdebton Radichuonl
urnwng o Ladiouon
+ B pemtanes renttare)
2 romTurtee [Textral
= wodeesuon 5 e

frsCextld [Mexcrleld] - opertias

o

ackyrouny 0 (255,255,255
olumns o
crument <detnuits
ot Lcida o
resround m 000
crizontadignment LEADING
oolTipText 7
~ Cllar Properis
1 <derzutt
Not Sut
05
g s
hext @

JGavatany Suing text

OEBPS/image13119.jpg
DoubleProperty lhean: CirclelcenterX=A.0, center¥=0.0, radius=20.

fill=0x000000Fff1. name: radius. value: 20.51

OEBPS/image13640.jpg

OEBPS/image17674.jpg
@verride

public ListProperty<String> categorylistProperty() {
return calegoryDa s ;

'

@override

public String getbatabescription() {
return databescription;

.

coverride

pubLic String getameDescription() {
return nameDescription;

'

everrii:
pubLic String getTitle() {
return title;

'

coverride

pubLic couble getTickUnit() {
return 1080;

]

Quverride

pubLic void refreshDataiProgressindicator progressindicator} {
gethatalnbackgroundprogressIndicator);

3

@verrie
public unii updateSales(S4lesdata salosdala
Progressindicator progressindicator) 4
UpdateSalesbatalnbackground(salesdata, progressindicator);

OEBPS/image7599.jpg
806 Information

Number Sequence =
/ ®,714)

OEBPS/image14535.jpg
r
b
Togger. Log(Level FINER, “createkeys called: {0}, list):
return trus;

Everride

protectad Node createNodeFarkey(Persan key) {
. code unchanged . . .

}

7/ PropertyChangeListener for FamilyTreeHanager
private tinal PropertyChangeListener familyTreelistener =
(PropertychangeEvent evt) -> {
... code unchanged . . .

OEBPS/image8090.jpg
Action Method

File > FilcObjoct rileUtil.torileobject(file):

FileObject -> File FileUtil.torile(fo)

Copy streams FileUtil.copy(inputstream, outputstream)

Copy flle to folder Filelil.copyFile(lo, destFolder, newNane)
Filelltil.copyFila(fa, destbolder, newName, newkxt)

Creale fleif non-existenl | FileUtil.createData(file)

Filelitil.createbata(folder, name)
tent | FileULil.crealeFolder(lite)
Filallti1.craateralder (folder, name)

ive (AP | TileUtil.isArchiverile(fo)

Create folder if non-exi

s FileObject an ar
or JAR file)?

Return archive’s [leObject
rool (folder)

Create a FileSystem in TileUtil.createMemoryrilesysten()
memory

Finds "brother” file with

samebase name bul
different extension

_gelArchiveRooL (1o}

~findBrother)

Get System FileSystem root | Filclll i 1.gel Conl i gRao! ()
Geta TileObject in the FileUtil.getconfigFile(path)
Sysiem FileSysten if il exists,

Geta fuss extension Filellti1.getkxtension(fo)

Get a fo's name FileULiL.gelFileDisp LayName(lo}
Geta fu's MIME type FilelIti1.getiime | ype(fo)

Get relative resource path | FileULiL.getRelalivePath(lolder, (o)
between folder and fo

OEBPS/image15500.jpg
@override
public void refresh() throws I0Exception {
if (ftm 1= null) {
personList.clear();
personList.addALL(ftm.getAULPeople()
} etse
logger . Log(Level .SEVERE, "Cannot get FamilyTreeManager”);
+

}
i
« . . other capabilities can be added . . .

¥

public Lisl<Persun> getPersonlist() {
return personList;

T

G@verride

public Lookup getLookup() {
return lookup;

1

OEBPS/image16286.jpg
public class NumbarWizardpanel 1 implements
wizardbescriptor. AsynchronousValidatingPanel<HizardDescriptor>,
PropertyChangeL istener {

private NunberVisualPanell component;
private Wizardbescriptor wizard = nuil
private boolean isvalid = false
private Integer firsthuber:
private JConponent numberComponent = null:

. Code unchanged .
@verride
public void prepareValidation() {
getComponent () . setStatus (Bundle. CTL_Panell_CheckUnique(firstNunber));
nunberConponent = getConponent () . gethumberCampanent () ;
¥

@bBundle. Hessages ({
“# (8} - current sequence number

1_Duplicateluntrr= {0} is not unique.",

“Panel1_Badloakup=Can't get NumberStor

“# (0} - current sequence number",

“CTL_Panell_CheckUnique= Checking for (0} uniqueness . . .*

n
@override
public void validate() throws WizardValidstionException {

OEBPS/image37.jpg
vy Addison-Wesley

OEBPS/image17574.jpg
import com. server. swartphonedata.ent ities.Company;
import com. server . smartphanedata.ent ities . Salesdata;
import java.util.Lis
import javax.us.rs.core.GenericType:
import javax.us.rs.core.Response:

public cluss SmarlPhoneClient {

public static void main(stringl] args) {
CompanyerseyC fent c1ient = new Companylarseyclient ();
Conpany company = c1ient. find X1 (Company . class,
Systen.out.println(*Conpany = * + conpany.getCompanyname ()15

Response response = client.find XML(Response.class, "1');
conpany = response. readEnLily(Conpany .c Lass) ;
SysLem.oul.printlnf*Conpany = * + company. e LCompanyname ()

= clienL. [ind_JSON(Conpany. class, "2");
+ Conpany . gelConpanynanz()) ;

compans
SysLom. ouL.prinLln(*Company.

Genericlypest ist<tompany>> glypel =
new tenericlypest 1 st<Company=» () {1
response = client,findAlL_XHL(Response.class);
List<Company- companies = response. readCntity(gTypel):
Systen.out.printin(*Conpanies = * + companies) :

SalesdatalerseyClient client? = new SalesdatalerseyClient():
Salesdata data = client2.tind_X¥L(Salesdata.class, '1");
SysLem.oul.prinlTn(Salesdala = * + tala.qeiSalesyear() +
+ data.gerCompanyid() + ",
+ data.getlnitsinmillions());

OEBPS/image17531.jpg
public final class | ineChartTopComponent extends TopComponent {

private static JFXPanel chartFxPanel:
private LineChartControl ler controller:

private BufferedInage image = null:

private final InstanceContent content = new InstanceContent():

public 1inechartTopCamponent () {
ini tComponents();
sethame(Bundle. CTL LineChartTopComponent());
setToolTipText (Bundle. IIINT LineChartTopComponent());
/7 Connect our lookup to the rest of the system, so that
/1 save Chart action can access the image
‘associateLookup(new AbstractLookup(content)):
selLayoul {new BorderLayoul ()
/fEnable the Print action for’ U TopConponent
puLClientbroperty(“print.printable”, Lruc);
inir(
content.add(new ChartSaveCapabilityImpl());

ate class ChartSaveCapabilitylnpl inplements ChartSavecapability

Qoverride
public String getCharthane() {

relurn Bundle.CTL_LineChar (Action();
Il

OEBPS/image4617.jpg
868 iR AN RS

Drag and Drop o new location

OEBPS/image13698.jpg
super.bind (maleRadioButton. selectedProperty(),
fenaleRadioButton. selectedPraperty (),
unknownRadioButton. selectedProperty()):
:;

@verride
protacted Person.Gender computevalue() {
if (naleRadioRutton.isselected()) {
return Person.Gender MLL;
} else if (femeleRadioButton.isSelected()) {
return Person. Gender .FTHALE:
}oelse {
Foturn Person. onder UNKNORY;

T
}
i
builddata(
Troel lensPersan> roiNode = new Treel lenss(

new Person(*Peopl

buildTreeVieu(roothode) ;

personTreeView. setRoot (roothode) ;

personTreeView. getRoot (] . setCxpanded (true) :

personTreeView.getSelect ionHodel{) . selectedT temProperty ()
.addListener (treeSelectionl istener) ;

, Person.Gonder UNKNOWN)) ¢

OEBPS/image17753.jpg
<CridPane ulignmenl="cenler” hgap="10" vgap="15">
<patdding>

<Tnsets top="
</padding~
<TableView fx:i

107 hotton="16" Tefr="19"/»

0" righ

cidpane. colum Lnde
GridPane, rowindex="b" >
column:
<TableColunn fx:id="colCompany" text="%company"
sorteble="false" minWidth="150" />
<Tablecolunn fx:id="colYear" text="iyear"
sortable="false* minWidth="150" />
<TableColumn fx:id="colUnitsSold" text="unitssold"
editable="true" sortahle="falsc"
minWidth="170" />

</columns
</TableViews

~/GridPane
“/centers
<bolLom
<GridPane uligimenl="cenler’ hgap="10" vgap="15">
<padding>
<Insels Lops"10" righl="10" bollon="16" Llefl="10%/>
</padding>

“VDox spacing="10" slignnent="COTTOM CINTLR"
GridPane. colunnIndex="9"
GridPane. rowIndex="0">
*10" alignment="CENTER" >
Filter Data" /s

OEBPS/image2027.jpg

OEBPS/image16017.jpg
@ActionID(category = "Tools",
id = "org.asgteach. sequence. NumberuizardAction”)

@ActionRegistration(

displayName = "#CTL_MunberiizardAction")
@ActionReferences ({

@ActionReference (path = “Henu/Tool:

position = 6, separatorafter = 58)
H
@ibBundLe. Mes sages ({
"CTL_MumbertizardAction=New Number Sequence",
"CTL MunberDialogTitle=Create New Number Sequence"

n

public linal cluss NomberWizardAcLion imlen

nls AclionlisLener |

e ride
public void aclionberfomed{actiontvent o) {
st aui7ardieac riptor. Panclswizardicscriftors> pancls =
new Arraylist-WizardDescriptor.Panel-WizardDescriptors=();
panels.add(new NumberWizardPanell());
panels.add(new NumberWizardPanel2()):
panels.add(new NumberWizardPanel3()):
Stringi | steps = new Stringlpanels.size()l:
Tor (inli o me ile panlssieO: (o8¢

OEBPS/image665.jpg

OEBPS/image15724.jpg
@ntity
@Table(name="rerson"
publLic class PersonEntity implements Serializable {

privete slatic linal long serialversionld = 10
ld

@oeneratedvalue(strategy = GenerationType,AUTO)
private Long id:

@version
privale inl version;

private String firstnare =
private 5tring niddlenane
private String lastnane = "Unknown®:
private String suffix = **
private Person.Gender gender = Person.Gender . UNKNOWN:
private String notes

public Personfrtity() {

¥

public synchronized String getFirstnume() {
relurn Cirs o

public synchronized void setrirstname(string firstname)
his.firstname = firstnane;
]

cover.jpeg
<]

Foreword by Geertjan Wielenga, NetBeans Product Manager

o " B EE EE EE

Eo

JAVAFX

' Rich Client Programming on the\

NetBeans Platform

@

GAIL ANDERSON PAUL ANDERSON

OEBPS/image3524.jpg
@ 0 0
3

v € FXDemoApp

Add Ne
» Bl Buil - Add New Library.

> B Proj Add Existing...

» [Netbeansrravorm conmg
» [8 Per-user NetBeans Platform Config

OEBPS/image14963.jpg
<7xml version="1.0" encoding="UTF-8"?><mode version="2.4">

<nom: unique="rightsio
<kind type='editor’/>

<stale type=" joincd” />

<constraints>

<palti oriental fon="hari /onial" numben="1" weighl="0.7"/>

</constraznts>
<bounds x="8" y="8" width="0" height="0"/>
<frame state_"0"/>
<emply-beliav_or permanent="Lrue" />
</mode>

OEBPS/image15256.jpg
public class GroupChildi sctory extends Childl actory<bersonGroups {

private static tinal Logger logger - Loqger.gstlogaar(
GroupehildFactary. class. gatiane ()]
private tinal kamilylrecManager ftm;
private final |isr<Person> people = new Arraylist<();
GroupChildFactory() {
Ttn - Lookup. getDetault(} . ookup(FanilyTreetanager.class) ;
T — nll) {
Togger. log(Level .SIVIRL, "Cennot get FamilyTreeManager object”);

ccycletanager . gelDelaul L) .oxil0);

+
people. addAll (ftn. getAl People());
+

GOverride

protected baalean createkeys il 1st<PersonGroup> 11s1) {
List.addALU(Arrays . asList{GroupKede. PersonGroup. values()));
return true;

'

Guverride
protected Nade createNodeFarkey(Personcrain key) {
7/ Put all people in group UNDECIDED to start
17 (xey equals(ParsonCroup. INDECIDED)) {
return new Groupode(key, new Persontiodel(people)) ;
3

return new GraupNode (key, new PersonModel (new ArrayList<>()));

OEBPS/image4808.jpg
eo0e WindowSystemApp 201204101705

Your Name [Joe Smith

OEBPS/image6909.jpg
806

Person Information

First Name

Last Name

Lisa

Simpson|

© Please provide your first and last names.

[cancel | [0k

OEBPS/image14231.jpg
package can.asgteach . familytrae.model .data;
.. . imports omitted . .
gonstart
public final class DataInstaller implements Runnable [
private static tinal Logger Logger = Logger.getLogger(
DaluTus LulLer ¢ Lass. gelNane (1) ;

override
public void run() {
FamilyTreshanager ftn = Lookup.getbefault() Lookup(
FemilyTreetanager . class) i
if (ftn = null) {
Logger . LogLeve L SEVERE, “Cannol gel FanilyTreeManager object’);
LiTecyc LeManager. gelDe [aul L} .exil(};
1
populaLetan(tn);
i

private void populateMap (ramilyTreeManager Ftm) {
ftm.addPerson(new Person(*ilomer*, "Simpson”, Person,Gender MALL));
ftn.addPerson(new Person(*Harge*, "Sinpson", Person.Gender. TMALT));
ftn.addPerson(new Person(*Dart", "Simpson”, Ferson.Gender .MALL));
ftn.addrerson{naw Person(*Lisa", "Simpson, Person.Gender.FEMALE]):
TLn. addber son (new Person("Maggic®, “Sinpson”, Person. Gender. EMALE)) ;
Togger. Log(Level. INFD, "Hep populated: {9}, (im.gelAUTPeople());

OEBPS/image7056.jpg
Projects Favorites
A Y dminviodule

v (i@ Source Packages

v B3 com.asgteach.adminmodule

AdminditorTopComponent java
AdminOutputTopComponent java
Bundle properties
ChangeRole java
LoginPanel java
RoleLogin.java
personicon100.png

» [Important Files

» (g Ubraries
> €3 RoleExample
» & RoleModel
» & UserModule

DEDERDD

OEBPS/image13694.jpg
Qoverride
public void initialize(URL url, Resourcebundle rb) {
7/ Change level to Level .INMO to reduce console messages
Togger. setlevel (Leval.FINE) :
Handler handler = naw ConsoleHandler():
handler.set evel (1 evel .FINF) ;
Togger. addHandler (handler
try {
FileHandler fileHandler = new FileHandler();
/1 records sent to file java.log in user's home directary
filellandler. setLevel (Level.[TNC.
Logger . addHand Ler (11 LeHand Ler)
Logger. Log(Leve L FINE, "Crealed File Hendler®);
} cateh (0kxception | Securi tykxceplion ex) 1
Togger.lag(l evel .SFVHRF, “Couldn't create FiloHandler
¥

enablelpdateProperty = new SimpleBooleanProperty(
this, "enablelpdate”, false);
updateButton. disableProperty() .bind (enableUpdateProperty.not () ;

o)

/1 the radie button custam binding
genderBinding = new objectBinding<Person.Gender>() {
n

OEBPS/image17155.jpg

OEBPS/image3137.jpg
806 New Windzu
LI s s ot RS
ot restenar

€32 s Earsor e e e aPCEESRATE 13
Modines Fles: manfesunt

Regtonctoreiectaml

OEBPS/image15191.jpg
bulld/cluster/moaulecs/moduc.c name.jar/MeElA LNF/generated Layer.xml

OEBPS/image15399.jpg
@ConvertAsProperties(
dLd = //com.asyLeach. FanilyLree. Urashcan/ /Trash/ /EN
autostore - false

)
@TopComponent Descriprion(
preferredId - "TrashTopComponent”,
“conRase = "com/asgrench/fami 1yt rée /T rashcan/resources/delete_pg*
persistenceType ~ TopComponent PERSISTENCE_ALWAYS

)
@TopCumponent RegisLiaLion
@ctionT! ndow”,
“com.asgLeadd. fanily e, Urashan, TrashTopConpurient”)
@ctioneterence (path = “Nenu/Window" /+, position = 333 ¥/)
@TopCumonent Opec | iuRegisleal jon(
displayliame — "5CTL TrashAction
preferredld — *TrashTopConponent

wie = "edil

opentSLartup = Liue)

)

@essayes
“CTL_TrashAction-Trash”
“CTL_TrashTopConponci
“ILINT_I rash opCompanent-Inis is a | resh window",
T _TrashTi Te=Trash

n
pubT i final class TrashTopComponent exlends TopConponen! iuplenenls
Cxplorertianager. Frovider {
private final FxplarcrManager om = new Fxplarerianager();

OEBPS/image8236.jpg
Tools

Templares

Jusers/sail/FaniTyTreed.
ittt il llowons
Jisera/ie 1/rami 1) Treuna e/ casTFotd

o/ /eomi 1T+ eeba ariyTent e cxt

Plugins

File SimpsonFanilyTree.xnl foun
“rost smins-" fandlytres"s
<prrsan
tirstranc:
Taserane_*
<gender>
fnale
</gender>

OEBPS/image14544.jpg
@iessaqes ({
“HINT GanderNode=Gender Nade”
i)

public class GenderNode extends Abstractiode {

public Genderflode (Gender gender) {
Super (Children.Crealelnew PersonChildFaclory (gender], lTulse),
Lookups . sy LeLon(gender)) ;
setGenderStuf f(gender) ;
setShorthescription (Bundla.HINT GenderNode(});

b

private void setGenderStutt(Gender gencer) [
StringBuilder sb = new StringBuilder(]:
StringBuilder iconSlring = new SLringBuilder(
“com/usgleach/ lami Ly Lree/yenderviewer /resources/") ;
swilch (gender) |
Case HALE:
sh.append ("Male”);
SermSEE tna cappond U Rata con Bag 1S

OEBPS/image12428.jpg
public class FersonAppBound {

public static void main(String|| args) {
Person homer = new Person('Homer", "Simpson', Gender.MALE):
Person marge = new Person('Marge", "Simpson’, Gender.FEMALE) ;

77 create a property chanqe listencr
Final Propertychangel istener ncl = new Prapertychangel istenar() {
@varride
public void propertyChange PropertyChangeCvent evt) {
System.out.println(“Property ' + evt.getPropertyName()
+ % chenged for * + evt.getSource()];

b

homer . addProperLyChangeLis Lener(pel) ;
marge. addbropertyChangel istener(pel) §

homer . sethiddlenane(Chester®) ;
narge. setHiddlenane("Louise");
homer. setSuttix(*Junior") :
homer se LLus tname { *Jones™

OEBPS/image8123.jpg
& filesystemapp _bile kol View Nawgate e ST Help

e00 T
1 & ® o

vieh
0 o 151 1k Toos

Corfigure W o

Favorites. Reset Windows

window Close Wirdow
Clese All Decument
Close Other Dacament:
Document Groups

OEBPS/image10553.jpg
e ————————— 5 Mo 124

5 dosses Tuesday. lanary 21,2014 357 I
53 casses-generated Taesday, aniary 21, 2014 357
(53 aucter Wedncsday aruary 22,2011 1022 A
B conogeach iy E

5 70141027
{5 dapcacre 1esday, January 21, 2014 $:59 PN

File Formar: [Pugin distribution files

|_cancel | [open |

OEBPS/image2472.jpg
(0 Node)
L (P)
T (" hegon)
(control)T
+ [
/ \ o
{TextnpinControl) (" aboked) (Propressindicaror |
D 3 I
1 ——
(Cromtrin) Cromtaren) L Bwonbse) (el)
q g) 7 e =
) T S T o (progpscta)
(Paswordrcid) (pumon) (Toggteduon) {_Checkox)

OEBPS/image16966.jpg
public class rtr¥isuallXController implements Initializable {

/7 Trvoked by Swing visual element on the JavaFX Application Thread
public void doFadeIn() {

seqTran. playFronSlarl();
¥

/7 Trvoked by Swing visual element on the JavaFX Application Thread
public void clear() {

seqTran.getchildren(). clear();

mypane.getchildren().clear();

77 Livoked by Swing visual elenenl on U JavakX Application lhread
public void refresh(String docstring) {
clear();
for (String Tine : dacstring.split("\n]) {
if (tline.istmpty() {
77 Build the StackPane
StackPane stack = new StackPane():

7/ Build the Text
Final lext frriext = new laxt(line);
frrText .getstylaciass () .add("Trr-text);
frText. setEffect (new Reflection());

77 Build the Rectangle

Rectangle ftrRectangle = new Rectangle(
| UrTexL, gelBoundsTnParen L].geUdidUh() + 40, 55);

fLrkec Langle. sclArcHeighL30) ;

fLrkec Langle, sclArcHidLh(30);

FrrHectangle.getstyloClass() add("fr-rectangle

OEBPS/image15465.jpg
public interface RefreshCapability {
public void refresh() throws IoCxception;
H

public interface nemovablePersonCapability [
public void 1emove(Person person) Lhrows L0kxceplion;
'

public interface CreatableParsonCapability {
public void create(Person person) throws IoCxception;
)

public inlerlace SevablePersonCapabilily {
public void save(Person person) Lhows 10excepUion;

'

OEBPS/image4879.jpg
Projects) | Files | Services

v & personditor
v (8 Source Packages
v @3 com.asgteach.personeditor
» [E] Bundle.properties
[B%0penTopComponent java
[PersonTopComponent java
Bl raemremms
> [Important Files
» (g Libraries
v & WindowsystemApp
v (g Modules
b personEditor
> [Important Files

|

OpenTopComponentjava

PersonTopComponent,java

OEBPS/image17470.jpg
private void setupEventHandlers() {

1/ set up bindings and event handlers for piechart nodes
int row
for (final PieChart.Data data
Final int currenthow = row:
final StringBinding percentBinding = new StringBinding() [
L

chart.getbata()) {

pebala.streant) . lorEach({dala) ->
super.bind(data. picvalucProperty ());
Hi
}

@verride
protected string computeValue() (
double total
for (final Piechart.Data thisdata : pcdata) {
total += thisdata.getPievalue();

1
return String. format(". 1%, data.getPievalue()
/ total * 100);
i

. method sctupbventHandlers() cantinues in 1isting 15.26 . . .

OEBPS/image1592.jpg
(Paer)
kL

T
{_ Region)
N S

I N
(Pae)

{ smckPane)
i)

OEBPS/image16547.jpg
@ctionIb(
category = *Tools",
1d = "com.asgteach. appusertile. ContigFileAction”
)
@AcLiviegistration
fconhase
displayllame

com/asqteach/appeanfigfile/Favarites. prg” ,
ICTI ConfigFile”

)
@ctionkeferencos({

@ctionReference(path = "Menu/Tools", position = 75, separatorAfter = 37),
@\ctionReference (path = "Toolbars/File", position = 356)

1)

@essages |
“CTL_ConligFile=Conl iy File"
CTL_configFileTab=Config File Contents"

h

public final class Confighilcaction inploments Actionl istencr {

private final Inputoutput io:
private final Outputniriter writer:
private static final String filename = "configFile/SimpsonFamilyTree.xm

public ConfigFileAction() {
io = T0Provider.getDefault() .getT0(Bundle. CTL_configFileTah(), false);
uriter = io.getout();

b

private void displayHessage(String msg) {
writer.println(msg);
1

OEBPS/image7347.jpg
6006 Create New Number Sequence

Steps

Provide Sequence Initial Value

1. Provide Sequence
Initial Value

2. Provide Sequence
Second Value

3. Provide Sequence Third
Value

Provide the first sequence number.

|

@ Number field input s required

s Cancel

OEBPS/image15182.jpg
@Suppressiiaraings(“unchacked")
@verride
pubLic Action getfreterrdaction() {
IHst<Action> porsonfeTians = (1 1st<AcTian>) UriliTies actionsFarPath(
"Actions/Nodes") ;
1f (ipersonActions. 1sEmpty(}) {
return personAcions.gel (8);
Telse {
raturn super.getPraferradaction();
¥

OEBPS/image12628.jpg
public class PersonlFrame extends {avax.swing.JFrane {

other class variables . .
privale PersonlFrame() (

77 Configure Logger: sel its level Lo FINE

77 (efanll threshold Tevel is CONFIG)

Tagger st cvel (1 evel FINK);

1/ Define o handler to display messages on the console

77 set level to FINE

Handler handler = naw ConsoleHandler():

handLer. seLevel (Level .FINE) ;

Logger addHand Ler (hand Ler

7/ Define a second handlor to write sossages to a file
ry {
Tilellandler filellandler = new Filellandler();
/¢ records sent to tile jovaN.log in user's home directory
t1leHandLer. setLevel (Level . FINE):
Logyer .addHand Ler (1 LeHand Ler) 5
Togger . Log(Level. FINE, "Created File Handler");
3 catch (10kxception | Socuri lybxcept ion ox) {
Togger.log(Level. SEVERE, "Couldn't create FileHandler”, ex);
¥

. code omitted . . .

OEBPS/image6835.jpg
Type
INFORMATLON_MESSAGE

WARNING_MESSAGE
ERROR_MESSAGE
PLAIN_MESSAGE
QUESTION_MESSAGE

Descriptianficon
Information Tcon, default for
NoLilyDescriplor. Hessage
Warning Symbol

Error Symbol

No leon

Question Leon, default for
Nol i lyDescriplor. Conl i mal ion

Default

Information

Warning
krror
Message

Question

OEBPS/image14972.jpg
<kind type="
<state type-"joined />
<constratnTs>
<path orientation.
<path orientatior
constraints>
<bounds x-

vertical' nurber-"0' weight—"./" />
herizontal number="0" weight="0.5"/>

<emoty-behavior permenent="true"/>
</mode>

OEBPS/image4436.jpg
L)
v e curant ot

Femal
& Unknawn »

3 | Homa simpson

2 | sart smpson san smmpson

OEBPS/image1568.jpg
Stage: Toj-lowel window frams
Crviaiad by JavaFX Platformy

Has a scenc
(" swme) Sesne: Contains a scene graph
(. / Hasaroot node

Root Node: Top node in scene

 RootParont)
RogParent) 700 S e ot node

Node /7
T LT earenode s v onrat
o ; . Cortans e nades (enden)
{ Parent Node) Parent Node |
" N S

i)
I T
[1

¢ N
Crewniose) roamose) (rearmoce Lestode)

Leaf Node: Shapes
Doss not contain other nodes

OEBPS/image17301.jpg
public class BubblechartController implements Initializable {

@R

private StackPane stackpane;

@FxL

private NumberAxis xAxis;

ERL

private Numberaxis yAxis:

@RI

private Bubblechart<Nunber, Numbers chart;

private DbservableList<BubbleChart.Series<Number, Number>>
getmubblachartbata() {

if (bedata == null) {
beData = FXCollections.cbservebleArrayList();
// Find totals for each column
dountel] totals = new double[tableHodel . getColunnCount ()1
for (int column column < tableModel . getColunnCount) ;
columnt+) {
row < tableModel.getRowCount(); rowe+) {

for (int row
totals[colunn]
(double) tableModel .getValueAt(row, column

OEBPS/image14672.jpg
public GanderTopConponent () {

ini Components (
sethlame {Bund e CTL_GenderTopComponent (}}:
setToo (T1pText (Bund e HINT_GenderTopComponent (1)
OullineVicw view = now OullineView(People") ;
view.setProper tyColunns(

“gender”, “Gender",

“notes”, “Notes"

)
add(view, DorderLayout.CINTER) ;
associateLookup(CxplorerUtils. createLookup(en, this.getActionMap())):
en. setRootContext(new RoctNode()):

. unchunged code omilled . . .

OEBPS/image15265.jpg
@NoBundl2 Messages {
“HINT_Gr uuptlode=G1oup Node™
n

public cTass Grouphode extonds Abs! ractNode (

Ale static final [ogger Togger
GroupNode. class. cethame (]) ;

private final PersonMadcl personMadc! ;

private final InstanceContent instanceContent;

p ngger gt agger {

public enun PersonGroup {
HAPPY, SAD, UNDFCTDFD
'

public Grouptiode(PersonGroup group, *inal Fersontiodel personficdel) {
this(groun, porsonModel, now TastanceCantont());

+

private GroupNndet

ersonGraip group,
Tinal Personfodel personfodel, Lnstancetontent ic) {

super(Children. create(new PersonChildFactory(persanbodel), false),

new Abstractlookup(ic));

This_AnstanceCantant = ic;

this.persanodel = personfodel;

this nstancecontant add(groupl;

seGroupSLulT (group) ;

setshortDescription(Bundle HINT_Crouphesa(}) ;

OEBPS/image15456.jpg
public class RemoveFersonkode extands Abstractioce {

“dverride

QubLic boulean canCut() {
return true;

)

@verride
oublic boolean canbestroy() {
return tru

3

@verride
public vold destroy() throws IOExcapticn {
getParentliode(] .getChiloran{) . remova(new Node| | { This });

tirehodeDestroyed ()
E
@Override
public Transferable clipboardCut() throws I0Excepiion |
FxTrans foralle exirans = FxTronsferable creale(super < iphoardCat {));
exLrans pul(new ExTransfersble. Single(PersunFlavur . PERSON_FLAVOR) {
@verride
proalected Person getData() (
return getlLockup!). Lookup(Person.class);
|
H;
return extrans;
+

OEBPS/image5014.jpg
MyModeTopComponentjava < [N

OEBPS/image10083.jpg
PhoneDataWebService

OEBPS/image15995.jpg
@ActionTncategory 5
id = "con. asgteach.adninnodule. ChangeRole")

@ActionRegistration (displaylame = "#CTL_ChangeRole")
@ActionReferences ({

@ictionReferenceipath = "Henu/Tools", position = 0, separatorAfter = 50)

1
Wessages (*CIL_ChangeRolesChange Role)
public final class ChangeRole implemenis AclionLislencr {

private Dialoglesc

iptor dd = ull;

@orride
public void actionPerformed (ActionCvent e} {
final LoginPanel panel = new LoginPanel();
dd = new Dialogbescriptor(panel, Bundle.CTL ChangeRole(), true,
(ActionEvent ae) -> {

if (ae.getSource() == Dialogdescriptor.OK_OPTION) {

/7 Check Login
UserRole userfole = Lookup.gelDelaulL(). Lookup(UserfioLe. c Luss) ;
il (userRole '= nutl) {

User Lhistser = useriole. [induser (

panel.getUscrtanc(), pancl.gelPassword());
WindowManager wm = Windowtanager . gelbe faulL();
SF (thisser = null)

7/ switch to new role
m. setRole(thisUser . getRole());
7/ Using null enables all options to close dialog

dd. setClosingOptions (null);
1 else {

OEBPS/image13596.jpg
toggleGrouj

$genderTloggleGroup”

OEBPS/image17125.jpg
@override
public il getRowCount() |
data. LengU;

Gve:
public int getColunnCount() {
return names. length;

¥

@override
public Object getValueAt(int raw, int cluma) {
return data[row] [column] ;

¥

@override

public String gelColumNane(inl colum) {
return nanes o tumn] ;

1

Qoverride
public Class<?» getColumnClass (it columnIndex) {
return getValueAt(e, columnIndex).getClass():

OEBPS/image12354.jpg
public String gethotes() {
return notes:
)

pubLic void setNotes(String notes) [
Lhis.noles = noles:

'

public String getrirstname() {
return firstname;
)

public void selrirstnane(String firstname) {
this.firstnane = firstname;
}

public Person.Gender gatGender() {
relum gender;

i

public void setGender(Person.Gender gender) {
this.gender = gender:
Il

public String getlastname() {
return Lastname;
}

public void sellasiname(SUring Laslnamc) {
this.lastnane = 1astname

OEBPS/image12999.jpg
StackPane
stackPane
stackPane
stackPane

stackPane = new StackPanel();
.setPrefHeight (200) ;
.setPrefWidth(460);
.getChildren().addAll(rectangle, text);

OEBPS/image14342.jpg
@verride

public void addListener(Invalidationlistener il) {
abservahl ciap.addl 15tencr (117;

1

@override

public void remvvelisiener (Tnvalidationlistener i) {
abservableMap. renovsListener(il);

¥

@verride

public void addFerson(Person o) {
Person persun = new Persun(pl;
abservah ean . pur (parson..geTTd(), persan);

¥

@Override
PuBlic vald updatePerson(Persan p) {
Person person — new Person(pl;
abservah elap . pur (parson.geTTd(), persan);

1

QOverride

PuRTic vaid deletePerson(Persan p) {
abservableMap. rerov(p.getldi));

T

OEBPS/image8227.jpg
LK) FileSystem Apo 201403101706 ks

o e O]

g 50211 FamiTyT eedata/simosaneani TyTres. sl
20 AR <ozt oot Folde
e e

" 3 ineole:
[et
= e
Enrearie ca

T smasenramiyTressnl

File g3ta (oilel Lrested: rusers/oaiLnanilyl reexcay exctite. i
FINE Crangec: Asers/gadl/ anilyTreesia iy et e, trt

Compencr Acsziatas: Tetresn on parent

Compener Ac-iiateo: netrasn on arent.

Fle oldar Creates: fusers/aii/ran:iy reeata Mot alier Meusuktoloe
VEAG bata (4iler Lreated: rusera/getiianiiy| resntayLootsolaeresist

OEBPS/image9663.jpg
Smart Phone Sales: 2008

HrC

W

Nasia

@Nokiz @RM @Al @HTC @ Samsung @ Others

OEBPS/image7871.jpg
Method Description
void initialize(Called from WizardDescriptor constructor
Wizardoescriptor wizard) to initialize any needed objects.
Called from WizardDescriptor aiter user
Set instantiate() throws I0Cxception | clicks Finish Returns a setof instantiated
objects. I0Exception returns user to wiz-
ard to make changes,
void uninitialize(Called after wizard finishes, even if user
WizardDescriptor wizard)

OEBPS/image1610.jpg
Projects) | Files | Services
v &

v (i@ Source Packages
v [myrectangleapp
[€®MyRectangleApp java
» [Libraries

OEBPS/image4308.jpg
eoe FamilTreedop 2013101113528

[Fpari] | is |
rcvide ascarch s7ing 51 1ames and i RETURK |
D e aschsThg s s Marge

Imicaisname Leues
Jsconame Simpsan
bt

v Addtionsl nforstar
lencer

rrvar

Mrge Louise simpson
person

OEBPS/image16704.jpg
4/ Find the Datadhject associated with the file
77 lise static Datadhject methad find()
Datadbject dob = Datadbject. find(myFile);
iF (dob 1= nl1) {
displayMessage(Tound DateObject * + dob.getName() + * for *
+ mytile.gethameExt (]
7/ Show that the DataObject also has a Lookup
open_inplL = dob. getLookup() . Lookup(Openable .class) :
it (open_impl t= null) [
displayHessage("Openable found in dataobject”)
77 1F alroady opened, facuses on the Fditor Window
open_impl.open();

1
T

Ontput Windo
Feund Datallhject myfile.txt for myfile. txt
Openable found in datanbjort

OEBPS/image10383.jpg
608

Project

roperties - My amiyTreeAop

Caregores:
° Sourcas
Ubrariss
Agplicaion,
rstaller

o My

(. Create Collection of Add on Modulss
@ Create Standalone Agplication

Branding Name: [myfamiytreeapp.

OEBPS/image16162.jpg
public final class NumberVisualPanell extends 1Panel {

public static tinal String PROP_FIRST_NUMBER = "Tirsthumber
public static final Integer MAX_SEQUENCE_NUMBER = 10000: // arbitrary
private ValidationGroup group = null;

private boolean isValid = false

public. HumberVisualpanel1() {
initconponents();
firsthurber. setName (undle. CTL PanelirieldNane());
group = validationPanell.getvalidationGroup();
group.add(Firsthunber,
Validators .REQUIRE_HON_ENPTY_STRING,
Validators .HO_WHITESPACE,
Validatars REQUIRE_VALTD INTEGER,
Validators ,REQUIRE_NON_NEGATIVE NUMBER,
Validators .nunberRange (0, MAX_SEQUENCE NUNBER-2));

firsthunber.getDocunent () . addDocumentListener {new DocumentListener(}

@overnide

public void inser WpdsteDocumentEvent o) {
checkvalidation();

¥

OEBPS/image16508.jpg
public final class ChangeNetectorTopComponent extends TopCamponent {
@override
pubilic vaid conponentopened () {
Inputdutput io = I0Provider.getDefault().getT0(
Bundle.CTL_ChangeLabel (), falsel:
10.select(): /¢ tab is selected
writer = o.getOut(]:
String home = System.getProperty(“user.home"):
File tile = new File[home + */FamilyTreedata"):
rool = FileULil. LoFileObject(lile);
il (rool == null) {
displayHessage("Warning: File Ohject = + file.getbath()
+ " docs nat exist.”);
displayMessage("Create = + file.getPath()
+ ", close & reopen Window *
+ Bundle.CTI ChangeNetectarTapCamponant ()) ;

return;

3

root. addRecursiveListener(fcl);

cisplayessage|"Mecursive File listener installed for *
+ root.getratn() + "1°);

updateDisplay() :

OEBPS/image7219.jpg
. . xam Window Help
806 Wizavd[xzmme 2012030 ’ZW
——)

OEBPS/image3724.jpg
Projects) | Files | Services

v & FamiyTreePXApp

v g S

& FamilyTreeFXModel
& FamilyTreeManagerPimp
@ PersonFXEditor
& PersonFXViewer

» (g Important Files

& FamilyTreeFXModel

& FamilyTreeManagerPimp

& PersonFXEditor

& PersonFXViewer

ey

OEBPS/image15684.jpg
public class PersonNode extends Abstractliode {
. code omitted . . .

privale Persomlode (Person person, TnslanceConlent ic) (
super(Children. | FAF, new Ahstract] ookup(ic)) ;

instanceContent = ic;
instanceCantent . add (person) ;
v . code omitted . . .

£/ Add an Openable object to this Node
instanceContent.add{new Openable() {

@override
ANEE v e £

OEBPS/image16290.jpg
MunberStore numStare = Laokup.getDefault().laokup (NunberStare.class) ;
if (mmStore = null) {
throw new WizardValidationException(nunberConpanent
Bundle.CTL_Panel1_BadLookup(),
Bundle. CTL_Panel1_BadLookup()) :
¥
7/ ve don't store the first sequence number
77 until after the vizard finishes (so Back button doesn't bite us)
if (!nunStore. isUnique(firsthunber)) {
throw new WizardValidationException(nunberConponent,
Bundle. CTL_Panel1_DuplicateNumErr (firsthumber) ,
Bundle. CTL_Panel1_DupUicateNumErr firsthusber)):

OEBPS/image17544.jpg

OEBPS/image3065.jpg
¥ 9 T ienig gl
e s P
Fae i ke

B o

T e

b L o i
© s

L0 Adkd Muaiule g ety

Fiter: e lass orpackage ames AR pats: s s rawes)

Cenilouris a1
b

[—

Shan fvados

[|

o

e

OEBPS/image16088.jpg
public class Nutherizardpanall inplements
Wizardiescriptor. Panel -Mizardiescriptors, PropertyChangeListaner {

private NumberVisuglPanell component;
private WizardDescriptor wizard = null;
private boolean isValid = false:
private Integer firstNunbe:

@verride

public boolean isvalid() {
return isvalid;

¥

Qoverride
public HumberVisualPanell getComponent() {
iF (component == null) {
companent = new NumberVi sualbancll ()5
this. conponent . addProper tyChangeListener (this);

3
return component;
]

private final Eventlistenerlist listeners = new Eventlistenerlist():

OEBPS/image3699.jpg
New hetBezns Platform Arplication

steps
4 L roject Name: iy Tresixa
2. Name and Location ProISeEName e
Project Lecation: [BeanslatformProjects JavaFinteration| [_rmwae
Project Fulder. scts avaPiintearation/Farnly TreeF XAy

Netheans iarfomm | Development IDE

o) (] (s |

Manage

OEBPS/image5655.jpg
& familytreeapp RN avigate Tools Window Help
600 Phvp 201310111528

s

Page Setun.
e e NuFr
e e
v O tarae

& arge simpson

8 - Lisa Sirpson

& - Maggie Simpsan
 unkroun

OEBPS/image2659.jpg
JavaFX Property

Description

Teadonlyobjectrroperty<Throwables
exception

The Exception thal caused the (ask (o fail. This
is set when status is FATLLD.

Read0nlyS1ringProperly message
ReadonlyDoubleFroperty progress

KeadUnlybooleanproperty running

A string message updated by the task

Curtent progrese. Either -1 (indeterminate) or a
value between 0 and 1, inclusive where 1 is 100
percent complete.

I'he fask i cither SCHEDULFD or RUNNTNG

ReadOnlyObjectProperty
<worker. State= state

The sfafe of the task (one of WorkerState
enums).

Read0nlySringProperly Lille

A string representing the title {which can
chonge os the fask procceds).

ReadOnlyDoubleFroperty totalWork

A double representing the lolal work Lo be
completed by the task (between -1 and
1 ong MAX VA UF)

ReadOnlyObjectProperty<V- value

The value relurned by the lask wilh a SUCCESS-
TUL state.

Read0nlyDoub | cProper |y warkDone

Either -1 (indeterminate) or a value between 0
ind LolaWork, inclusive.

OEBPS/image13881.jpg
private class ProcessnliTask extends Task<String» {

private final ObservableList<Person> processList:
private final StringBuilder buildList = new StringBuilder():

public ProcessAllTusk(linal ObservubleLisl<Person> processLisl) |
Uhis. processList = processList;

1

Qoverride
protected String call() throws Exception {
Togger. log(Level . TNC, "Degin processing’):
tinal int taskMaxCount = processList.size(}:
Logger. Log(Leve L.FINE, 'processing List: (0}*, processList):
int taskProgross = 6;
for (final Porsan person : procossi ist) {
iF (isCancellad()) {
break;
4

7/ do something to each person
updateHessage("Pracessing " + person):
Logger. Log(Leve . FINE, "processing: [0)"

person);

OEBPS/image17483.jpg
1
§ calclh (NunberFormalExceplion e) |

7/ Just use Uhe original nunber il Uhe lormal is bad

textField.setText (data.getPicValue() +

3

bkl

}else { 7/ Do the Pie Vedge anination
resetTextField();
Bounds bl = data.gethode() .getDoundsInLocal () ;
double nevX = (bl.gethidth()) / 2 + bl.getHinX(}:
touble mew¥ = (bLgelHeighl()) / 2 + b1.gelHinY();
Label . s2L0pacily(@) ;
Lahel_textProperty() .bind{percentBinding]
data.getNode() . setEFfect (dropShadou) ;
Iranslalel ransilion LU= now dranslalelransilion(

Duration.nillis(1560), data.gethode());

. setByX(new)
. 5etDyY (newr) i
tt.sethutoReverse(true);
tt.setCycleCount(2);

OEBPS/image13521.jpg
;A

&R

private void resetButtonAction(AcLionEvenl evenl)
marqe. setHidd] cname

}

Qoverride
public void initialize(URL url, ResourceBundle rb] {
41 wargeLabel uses binding Lo keep Lhe Lexllield synchroniced
77 wilh berson marge
margeLabel. textProperty() .bind(narge. fullnaneProperty());

OEBPS/image3267.jpg
FamilyTreeApy 201309162201

EnmmmmE 9

Homer Smazan

" Mare Spson

- O

= Lia smpson

- meage smpsor,

OEBPS/image17270.jpg
public class |inachartController implements Tnitializable {
private void createlineChart() {
. code omitted . . . (see Listing 15.10) . .

77 sel up Uhe evenl handler Lo respond Lo changes in Lhe Luble dala
77 Wis Ls o Swing event, so we musL use Plalfom. runLater ()
77 1o updale JavakX components
‘tableHadel .addTabl eModel Listener((1ablcHodel buent e} > {
if (e.qetlype() == labletodel Fvent.UPDAIF) {
final int row = e.getrirstRou()
final int column = e.getcolumn();
Final Number value = (Number)((MyTableDatakodel)
e.getsource(]].getValusAt(row, column):
Platform. runlater(() -> {
XVCharL.Series<SLring, Nunber> s = charl.ge(Data().gel (row);
1ineChart.Data<String, Numbers data
s.getbata() . get (colum) ;
data. set¥Value(value)

s
i

OEBPS/image12945.jpg
7/ Actionlisterer for Process ALL button
private fingl Actionlislencr processAUListener = (ActionEvent e} > (

// get 1ist of people fron ftm

Final CollectionsPerson> processlist = fin.geltAllPeoplel);

processALLBuTton. setEnabled(false):

progressBar. selValuc(8) ;

prograssBar setStringrainted(true);

Togger . Tog (1 evel .FTHE, "Pracess AT requested for (8)7, process| is!

SwingWorker<Collection<Person>, Person> worker =

new Swingiorker=Collection<Person>, Persan>() {
final int count - processist.size();

@verrice
public Collection=Person> doInBackground() {
-6

for (Person person
Ty {
/7 do someLhing with each person
coProcessperson);
ogyer. Log(Level.FINE, "Processing person {03", person);
pubLish(person); // make available to process()
setProgress(100 * (++i) / count);
7/ simulate a long-running Task
Thread. sleep(500!
} coteh (InterruptedException &) {
Togger. Log (Level WARNING, null, e);

: processList) {

S

return processlist;

OEBPS/image13092.jpg
@RHL

private void handleHouseClick(MouseEvent evt) {
rt.play();

;

@override
public void initialize(URL url, Resourceundle rb) {
rectangle. setstrokeWidth(s.0):
rectangle. setStroke(Color. GOLDINROD) ;
17 Create and configure RotateTransition rt
rt = new RotateTransition(Duration.millis(3000), stackpane):
rt.setToAngle(180) ;
rt.setFromangle(8) ;
rt. setAutoReverse(true) ;
rt.setCycleCaunt(4);

OEBPS/image16175.jpg
private boolean checkValidity() {
if (getComponent().isvalid()) {
try {
firsthurber = Integer. parselntgetComponent() .getrirstiumber());
sethessage (null) ;
return true:
} catch (NumberformstCxception e) {
selMessage (Bundle. CTL_PaneU1BadNumber (1) ;
relurn lalse;
)
i}

return lalse;

OEBPS/image13823.jpg
<children=

<Dutton fx:id="updateButton’ layoutx="14.6" layout
onAction='supdateButtonAction” text="Update" />
<ProgressIndicator fx:id="updateProgressIndicator" layoutX="117.0"
Layouty="272.0" />
</ehildrens

OEBPS/image14531.jpg
public class PersonchildFactory extends ChildFactory=Persans {

private tinal FamilyTreeManager tt
private static tinal Logger Logger = Logger.getLogger(

PersonChildFac Lory .« Lass . ge WName (1);
private final Person.Gender gender;

public. PersonChildkacLory (Person. Gender gender) |
this.gender = gender;
this.ftn = Lookup.getDefault() . lookup (FamilyTreeManager. class)
§F (Ftm == nul1) {
Tngger.log(l evel .SFUFRF, "Cannot gat FamilyTreeManager ohject);
LiTecycletanager. getbefault () exit();

3
TUn.addPropertyChungeLislener {TanilyTreelis ener);

)

Coverr ide
protected boalean createkeys (1 ist<bersons Tist) {
tn.getALlPeople() .strean() . forEach((Person p) - {
if (p.getGender().equals(gender)) {
list.add(p):

OEBPS/image16892.jpg
public void drop(Slring Lexl) {
7 add Lext Lo end ol document and call relreshLines()
i1 (doc 1= nutl) ¢
Uy L
iF (!(doc.getText(doc.getlength(), 1)).endshith("\n")) {
dac. insertstring(dac.getiength(), “\m
13

doc.insertstring(doc.getLength(), text + "\n", null);
refreshLines();

} catch (DadLocationCxception ex) {
Cxceptions . printStackTrace(ex) ;

¥

]
i)
T

Qoverride
public Lookup getLookup() {
return proxyLookup:

]

OEBPS/image17327.jpg
public class FubbleChartController implements Tnitializable {

xAxis. setAutoRanging(talse):
xAxis. setLowerBound (InLeger.valued| (
tahlcMade] . getCal umnianc(8)) - 1) * XFACIOR);
xNxis . setUpperBound ((Intager . value0f (tabl eMadel . get Colunnhiame(
tableMadel .getCalumntount () = 1)) + 1) * XFACTOR) + 1);

XAxis . setTickLabelFormatter(new StringConverter<Humber>() {
@verride
public S0

return

toString(Nunber 1) {
ving.valued] (L inlVatue() / XFACTOR) ;

'

@verride
public Humoer fromString(String string) {
return Integer.value0f (string) * XTACTO:
¥
3

XAxis. setTickUnit [XFACTOR):
xaxis. setMinor 1ickCoun L (0]
xAxis.setl abel (tabl chode] .getNanchescription());

OEBPS/image8366.jpg
. AlnaysEnabledActertrull
- Config file

¥ [UndoRedo
+ [Performance.
[santard

\ 8

OEBPS/image15282.jpg
/7 Called imeciately before the first call to createKeys()
@Override
protected void addotify() {

persontodel .addChangel istener (this);

t

7/ Called when this child factory is no longer in use,
77 Vo dispose of resources, detach 1isteners, ol
@Override

protected void removeNotify() {
personModel .renoveChangeListener (this);
b

@0verride

public void stateChanged(ChangeEvent e) {
refresh(false);

i

OEBPS/image16477.jpg
/7 vead Fila
i (myFile.canRead()) {
displeyNessage(“can read * + myfile.getPath()):
try (DufferedReader input = new DufferedReader(
new InputStreanReader(nyfile.getInputstrean(}})) {
string Line:
while ((line = input.readiine()) '= null) {
displeyhessage(line) ;

J calch (TOExceplion ex) (
Exceplions. prinSlackTrace(ex);
)

OEBPS/image4862.jpg
findowSystemAop 201204101705 g

0 rersonwindow (1] & Ferson winaaw o | Ly Persan wndew

YourName [Beatrice

OEBPS/image17412.jpg
PleChart chart;

chart.getData().get(0) .getNode() .addEventHandler(
MouseEvent .MOUSE_CLICKED, (MouseEvent t) -> {
. event handler code .

1)

OEBPS/image17757.jpg
<TextField fx:id="filt
promptText

Text" prefColumnCount="
filterPronpt" />

‘20"

</HBox>
<Button text="srefreshbata" onAction="#refreshbata” />
<Label fx:id="displayessage” />
<ProgressIndicator fx:id="progress*

visible="fals,

</VOox>

</GridPane>
</bottom>
</Bor derPane>

OEBPS/image13951.jpg
<HRox id="HRox" aliqnment:
childrens

CENTFR" layout¥="7.0" 1ayout

6.0 spacing="5.0"

false”
Frocess AUL" /=
161.0" progress="0.e" />

‘brocessallButton” mnenonicParsin
"#processAllDuttoniction” tex
<ProgressBar fx:id="progressBar" prefhidt]
</children=
</HBux>
<Label fx:id="statusMessage” layoulX="/.8" LayoulY="19/.0" />
<TilePane fx:id="nameDisplay” aligumen|=" I0P_CFNIFR" higap='56.0° Tayoul %
TayontY="J0. 0" prefHeight="109.0" prefWidth="7/.0" vgap="3.0%
<effect>
<Dropshadaw colos
</effect>
<padeing>
<Insets top="5.0" />
</patding
</Tilelane>

#666666" offset:

307 />

OEBPS/image17142.jpg
public lablcliatakditoriopComponent () {
77 initialize tableModel bofore invaking initComponents ()
‘tableModel = Loakup.getDefault() . Lookup(NyTableDataodel . class:
if (tableModel == null) {
ogger. Log(Level .SEVERE, "Cannot get TableNodel object"):
LifecycleHanager . getefault (). exit():

b
initComponents (1:
seeUame (Bund Le. CTL_
sctlool iplexL (Bundl.
7/ setup the ITable
init();

“abLeDaluEdi Loy TopComponen L()) ;
HINI_lableDatakdi LorlopComponent ()15

/7 Generated code to initislize the components
private void initcomponents() {

reloadbullon = new javax. swing. JEullon();
JScrallbancl = new javax.swing.JScrallPanc();
table = new javax.swing.JTable();

table. setModel tableNodel) ; 71 custom code

OEBPS/image6893.jpg
806

Important Question

4

Do you REALLY want to delete all those files?7?

& Please pay attention!

OEBPS/image7430.jpg
6006 Create New Number Sequence

Steps Provide Sequence Third Value

1. Provide Sequence Initial
Value Provide the third sequence number.
2. Provide Sequence

Second Value
3. Provide Sequence
Third Value
Current Sequence: 5, 45, 70.

Cancel

< Back Nex

OEBPS/image12686.jpg
thePerson.setFirstname(ftirstlTextField.getText());

OEBPS/image5155.jpg
CXGK:] New Fie

s e
1. Choose Fie Type Project: | @ ModssL s
Categories: File Types:
(1 Modue Geveloomen: Cod Ganer3
@ Java XML Laver
=i E mttimrrm—|
s e

Velp | [sitick] [N _fwsh] (Ceesl

OEBPS/image13394.jpg
public class Person implements Serializahle {

private final Stringeroperty firstname =
new SimplestringProperty(this,

i rstnane”,

public String getFirstnane() [
return tirstnane.get(};
)

public void selFirstname(Slring |irslnan
Unis. L irs Uname . seU(Tirstiane) ;

t

Il

public final Stringeroperty firstnanchroperty()
return firstnanc;

1

. . . code omitted far ather properties

OEBPS/image15169.jpg
@essages (
“HINT Persontindo=Porson®
“CTL_CalendarTitl

alendar Action

n
public class Personode extends AbstractNode implements
PropertyChangeListener {
private static inal Logger logger — Logger.getLogger(
PersonNode. c1ass_gethane());
private final InstanceContent instanceContent;

public Porsonbode (Person persan) [
this(person, new InstanceContent());

]

private Persontiode(Person person, InstanceContent ic) {
super(Children.LEAF, new Abstractlookup(ic));
instanceContent = i
instanceContent. add(person) ;

setTconRasewThFxTensian(
con/asgteach/tami Lyt ree/genderviewer/resources/personicon. pg);

setName(String_valueDt (person_gatld()))

setbisplaylame (person. tostring() ;

setshortbescription(Bundle.IIINT_PersonNode(]1;

OEBPS/image12543.jpg
public List<Person> getAllPeople() 1
List<Person> copylist = new Arraylist<>();
personMap. values () . forEach(new Consumer<Person>() {
public void accept(Person p) {
copyList.add(new Person(p));
}

b

return copylist;

OEBPS/image13323.jpg
<txml. version="1.0" encoding="UTr-0"7>

<inport java.lang.+7-
<?inport java,util. 7~

<tinport javafx.scene. 7>
<inport javatx.scene.control.+7>
<?inport javatx.scene. Layout.+7>
<tinporl Javalx.scene.shape. <>
<tinporl javalx.scene. Lext . 7>
<tinporl javalx.scene effecl. 7>

<VHox i

VHox" profHeight="30" profWidrh="300" spacing="78"
alignnent="CFNIFR® style="-fx-hackground-calor: 13ghth
xmlns; Fx="http: //javafx.con/funl®

Fi: poatrel Ier="racatiadExme . RassT rickConfrelle:

OEBPS/image1953.jpg

OEBPS/image15269.jpg
private vold setGroupStutt(Personiroup group) {
StringRuiTder sb = new SEringAuilder();
Stringbuilder iconString - new Stringkuilder(
“con/asqreach/fant 1ytres/groupyiewer/ resaurces/") ;
switch igroup) {
case HAPPY
b append (“Hapoy”)
iconString.append| “happy.png
break;
case SAD:
b appernd (*Say”
iconString.append! “sad.png" };
break;
case UNDECLUED:
sh_appond(“Undecidea”) ;
iconString.append| "undeciced. png” ;
hreak;

'

SetName{sb.toString());

setbisplayNane(sb. toString());
setIconBasevThCxtension (iconString. tostring());

OEBPS/image16836.jpg
public final class FamilyTreeVisualElement extends IPanel
inplements HultiViewF] ament {
@override
public void componentshowing() |
editCookie = fthatadbject. getLookup!) . Lookup(EditorCookie. class):

il (edilCookie 1= mull] [
doc = editCookie. getDocument();
if (doc == null) {
editCookie.open() ; 11 open
try {
doc = editCookie. openDocunent() ; 77 get document

} catch (I0Cxception ex) {
Cxceptions. printstackTrace (ex):
return;

¥

¥
refreshLines();

1

private void refreshLines() {
Tayer. removechildren():
try {
String docstring = doc.getText(o, doc.getlength(}):
int i
for (String text : docString.split("\n")) {
if (text.isEapty()) {
LobelHidget widget = makeMidget (text,
new Point(28. 48 * i++)):

OEBPS/image16879.jpg
public AddNameAction(Droppable context) {
‘this. context = context:
Il

Woverride
public void actionPerformed (Actiontvent cv) {
NoLilybescriptor. tnpulline inpulline =
now NoL FybescripLor, LupuLLine (*TexL:®, “Add Name*);
Object result = Dialogbisplayer .getDefault().notify(inputLine);
if (result == NotifyDescriptor.OK OPTION) {
String text = inputLine.getInputText();
L0 ext . isEmply()) [
context. drop{text) ;

1

OEBPS/image1996.jpg

OEBPS/image4706.jpg
806

New Window

Steps Basic Settings

L Chouse File Type

2. Basic Settings

3. Name, lcon and
Location

Window Positicn : [editor

“Redetine
@ Open on Application start

Keep prefarred size when slided-in

stiding nut allow

J

7] Closing not allowed
] Undocking not allowed
) Dragging not allowed

) Maximization not allowed

[Hep | [<back | [Nexesd | finish Cancal

OEBPS/image4475.jpg
806 FamilyTreeAop 201310111528

i Voo ©
-« avemn
v D
21 omersim Homartsthe ded
Dk S Rt ke e
- Ooremaie
Dousasmpson Usa plays saxophane s
5 Mg o i ety Home s the ad

o niroon

Harge smpson]
W S,

oo Selection History Window

B ST T —

Ctatuc | ina

OEBPS/image14918.jpg
@verride
protecied void conponent Showing()

super .conponentshowing() ;

TopCumponen LGroup per sunGroup —

uindouManzger .getleteult () . tindl pLomponentGroup| "persangroup”);
i1 (personGroup 1= mil1) [
personGroup.cpeni);
]

OEBPS/image13421.jpg
mylLabel.setText(myPerson.getld());

OEBPS/image15354.jpg
public class MersonNode extands Abstractiode {

overrade
bTic Transteranle clipboardCopy() thraws TOFxcoprion [
Exlransterable extrans - txl ransterable. create(suger . cLipboaroCopyl));
£XTrans . puT (now FYTransforabl o.1ngla(PersanFlavr PRRSON. FI AVIR) [
@verride
pratected Person gethata() (
return getLookup() . Lookup (berson class);
)
M;

return exrrans;

i

@override
public buulean canCopy() {

return true; /7 OK to copy this node
}

OEBPS/image17129.jpg
¥

@override
ean isCellEditablelinl row, inl colum) {

Lrue;

verride
public void setValueAt(uhjcect value, int row, int column) {
if (value instanceof Double) {
datalrow] [colunn] = (Double) value;

1
TireTableCellUpdated(row, column):

OEBPS/image5859.jpg
806

<3 People

& 2

& Group Window &

v @ Happy

FamilyTreeApp 201402180001

€

Marge Simpson
| Bart Simpson
Lisa SimpsoR

e

Cut
Copy

Move Down

Q- Search (¥

OEBPS/image13479.jpg
public class Person implements Serializable {

private final long ic;
private final StringProperty firstname -
D SimpleStringProperty(this,
private inal StringProper Ly middlen
ned SimpleStringProperty(this,
private final StringProper Ly lastnanc
u SimpleStringProperty(this,
private Tinal SUringProperly
new SimpleStringProperty(thi:
private Tinal 0bjeciPropor 1y<Person. Gende
new SimpleObjectProperty<>(this, "gender”, Gender.UNKNDUM) ;
private final STringProperty notes
ned SimpleStringProperty(this,

private tinal Stringlinding fullNamelinding — new Stringlinding(} {

{

super.bind(tirstname, middlename, Lastname, sutfixl;
¥
@verrtde

protected String computeValue(} {
StringDuilder sb — new StringDuilder();
I (st name_get () isFunty() [
sb.append(Tirstname.gati));

1

i1 (i enane. gt (- sFaply ()
sb.append(® *).append(niddlename.gsti));

1

Lf (Mastname.get (). isEnply () (

sb.eppend(* *).append (lastname.get(};

3

if (suffix.gel().isEmly () {
sb.cppend(* *).append (suffix.get());

4

Faturn sb teString ()

OEBPS/image6009.jpg
Bartsimpson
Marge Simpson

Homer Simpson
& * Lisa Simpson
v @ indecded

&~ Maggle simpson

OEBPS/image10598.jpg
Projects | Files © | Services

v @ dist
[F familytreeapp-linux.sh
[familytreeapp-macosx.tgz
[familywreeapp-windows.exe
» [familytreeapp.zip

OEBPS/image7747.jpg
806

Order Pizza

Steps. Delivery Information (4 out of 5)
L. Identify Customer

2. New Customer

3. Sizeand Toppings

4. Delivery Information Customer: Joe

5. Order Confirmation

Address: 123 Mai Street

Phone: |555-1212

CreditCard (5432 9876

[<Rack | [CNewi>]

[Cancel

OEBPS/image6350.jpg
| Fdit View Navigate Tool: Window Help
3 New Persor 21141042

First nnine: b

[o | [0k

OEBPS/image9735.jpg
SmanPhoneDataApp 201

sarcharorize

Smart Ph

Bubb eCharcwindaw 0

Smart Phc
Page Setup... 150
Print... ~G%P
20 i

Inirs Sole: in Mil

o -
® ©

OEBPS/image3367.jpg
FamilyTreeApp 201309162201

& Persontitor Window &

First [Bart

PersonViewer Wndon R

i Pecple Last [simpson
Homer Smpson

Marge Simpson Suffix
Bart simpsor

Lisa Simpson . Female
Maggie Simpson

OEBPS/image12441.jpg
public void addPropertyChangal istenar(String propertyNane,
PropertyChangel istener listener) {
getPropertychangesupport () .addPropertychangeListener(
propertyNane, listener):
1

public void removePropertyChangeListener(String propertyName,
Bropert yChangel isLener 1istener) {
getpropertyChangesuppart () . renavePrapertyChangel i stener (
propertyNanc, 1istener);

OEBPS/image17970.jpg
@verride
public void initialize{tinal URL url, ftinal Kescurcckundlc resources) |

colCompany. setText (Bundle. company()) ;
colYear . se(Text (Bundle year(});
collinitsSald. setText (Rundle.unitsSald()) ;

OEBPS/image16849.jpg
private final Widgetiction editarAction
ActionFactory. createInplaceEditoraction(new LabelTextFieldeditor());

private class LabelTextFieldEditor inplements TextrieldInplacefditor {

@verride

public buolean istnabled (Widgel widgel) {
return Lrue;

i

Qoverride

public String getText(widget widget) {
return ({LabelWidget) widget).getlabel():

Il

Qverride
public vaid setText(Widget widget, String text) {
| abeTWidget Tu = (1abelWidget) widget;
String oldText = lw.getlabel();
Tw.setlabel (text) ;
updateDocunent (L, oldText.length());

¥

private void updateDocument LabelWidget labelWidget, int oldTextsize) {
if (editcookie '= null) {
doc = editCookie.getDocunent():
it ldoc = natl) |

OEBPS/image12458.jpg
public | ist=Parsans qetAllPenpla() {
IistaPerson copyl ist = new Arrayl ist<s();
for (Person p : personMap.values(}) {
/7 Make a copy of Person
copyList.add(new Persen(p)):
Il
return opyList;

OEBPS/image13008.jpg
package myrectangleapp;

import javafx.application.Application;
import javatx.scene.Scene

import javatx.scene.eftect.Dropshadow
imporL juvalx. scene. Layoul, S LutkPane ;
import Javalx, scene.puint. Color s
import Javafx. scenc.shape. Ree tangle;
import javafx. scene, text. Font;

impart javafx. scene, text Text;

impart javafx. stage.Stage;

public class MyRectangleApp extends Application {

@verride
public void slarl(Stage primarySlage) {

Heclangle reclangle = now Kovlangle(200, 108, Color CORNSILK) ;
recLangle. selArcuidUn (39) ¢

rectangle.setirclleight (30) ;

rectangle. setCffect (new DropShadow(19, 5, 5, Color.GRAY));
Text text = new Text('My Rectangle"
text. setlont (new Font("Verdana Dold
text. setCFfect (new Reflection()};

.18

OEBPS/image13938.jpg
arx
private vaid processil1Ruttondction(ActionFvent event) {
Togger. Toq{l evel .FTNF, "Process ATl Rutton®);
/1 only onc task to run at a time so disable the button
processallHut ton. sctisahle(frue);
/4 ereate the task with a Tist
final ProcessAllTask processTask = new ProcessAllTask(
FXCollections. observableArrayList (ftm.getAllPeople()));
/1 configure the UT
progressBar. progressProperty () .bind (processTask.progressProperty());
personColunn. setCellvalueFactory(
new PropertyValueFactory<>("fullnane”));
naneDisplay. setopacity (1):
naneDisplay. setItens (processTask.getPartialResults()):
7/ set up handlers for success and failure
processTask, setonsucceeded (t - {
Togger. log(Level.[THL, "Process All task Finished: {9},
L.yeSour ce () .gelValus());

resetur(
"
provessTask. seLOnFailed(L > [
77 LgelSource (].yelExceplion(] could be null
Logyer. Log(Leve L WARNING, *Updale Lusk luiled (8]7,
LoyelSour ce() .gelExceplion() = null
¢ togetsaurce() . getreception()
Tinknawn failune');

OEBPS/image17670.jpg
@ServiceProvider(service = PhoneDataShare. class)
public class PhoneDatasharempl inplements PhoneCateshere {

private
private
private
private
private
private
private
private
private

private

final ListProparty<Salesdota> underlyingata = new
SimpleListProperty< (FXCollections_observableArrayList(}):

Cinal | istProper|y<Congany> conpanyDat akancs = new
Siwplel s 1Proper |y (FXCoTTect ions.observalTeArayl is1());
tinal Listbroperty-string~ categorybstahanes ~ new

SimpleListProperty==(FXUol lections.observableArrayList(});
static final String dataescription — "Units Sold in Millions®;
final String nameDescription — "Year';

final String Title - "Smart Phone Sales”;

final GetSmartPhoneSalesService salesService
new GetSmartPhoneSalesServi ()

Final Gl CompanyDataSeryi e conpanyService =
new GetCompanyVataService(;

inal UpdateSalesTtenservice update — new UpdateSalesTtenServicei);

static final Logger logger
= Logger_getLonger PronsDatashareTnpl . class getane(

public PhonebataShareImpl() {
‘getDataTnBackgr ound (nul1) ;
gl CompanyDat aTrBackground () ;

'

@override
public ListProperty<Conpany> coupanyNamesProperty() {
return comanyDataNames;

]

OEBPS/image8381.jpg
FileSystemApp 201409101706 -

{ ac seecn 0001 ©)

Fusurssgai /o yTresoata
UL 331 E ST GiDa drvmenrolder sC
UL/ 3a1 LES T Dt AfCh01 ol

A R T e (e e e

b Forme bl

Searer warh tuerory

Recursive File Lslener insLolle [0r /Users/gail/FaniiyTrsedata
Camponent Activsted: Refrezh on parent.

OEBPS/image15697.jpg
@upprassWarnings (
@override
public Actionl] getictions(boolean context) {
List<action= personActions = new ArrayLists(
Arrays.asList{super.getActions (context)));
personActions . addALL(Utilities . actionsForPath(*Actions/Opentiodes™)) ;
personAc Lions add {Dele eAcUion . gel (DeleLeAction. class));
retum personActions. foArray(
new Actionlpersonactions.size()1);

chacked")

 ;

@suppressWarnings (“unchecked*]
@override
public Aclion gelPreleriedAcLion() |
71 Make OpenAction Lie preferred aclion
List<aclion aclions = new ArrayLisL<>(
Utilities.actionsForPath(*Actions/Opentiodes")) ;
if (tactions.istapty()) {
return actions.get(6);
Y else {
return nutls

J

OEBPS/image17212.jpg
ObjectProperty<ObservablelList<XYChart.Series<X, Y>>>

OEBPS/image13336.jpg
<ellecl>

<DropShadow | 10"
ol selx= GRAY" />
<sellect>
<clements>
HoveTo x=

<hreTo rac usX="10
A ineTa x="270" y="50"
<AreTo radiusk="100" radiusy:
<Closepath />
</elenents>
</Patth>
<Line startx="-25" start
Stroke="BLUE" strokeLin
“Rectangle fx:id="rectangle”
LLLL="YELLOW® arcHidL
Stroke="Hl ACK" rofate
</childron>
<ftiraup>

50" sweepFlag="true" x="770"

true’ x:

56 sweepFlan- 50 /a

0" endx="10" endv="
ROUND" et fect
-15" y="0" widt
6" urcHeighl="10"
99" />

* strokewidtl
Sdropshadow”
*35" neigh

20

OEBPS/image4004.jpg

OEBPS/image4462.jpg
L] TamilyTreeApp 201310111528

e o
1 eapie
- 0w

Homer simpson

sar Simpion varge
Simpscr [
cutfc =i
+ Aditensi Ifermatin
FewaLe

e

Hrge is the mom

Marge Simpson
Persnn

OEBPS/image605.jpg

OEBPS/image17814.jpg
<7xml version="1.8" encadin
<zinport java.lang. 7>
<7import java.util, 7~
<tinporl javalx. geonelry.+7>
<tinport javalx. scene. 1>
<rimpart javafx.scenc.control .47
<rimport javafx.scenc. layout . +7>
<rinpart javafx.scena.chart. 2

UTF-8" 75

<StackPane id="StackPane" tx:id="stackpane"
st Ix=*hUlp: 2/ javal x. con/ L *
fx:controller="com. asgLeach. Uinecharl . LineCharLeontroller ">
<paddding>
<Insets fop="18" right="18" bottem="10" loft="10"/>
=fpaddings

<xhwis>
<CategoryAxis Ix.
</xtxis>
<yhxis
<NumberAxis fx:id="yaxis"/»
</yAxis=
</LineChart>
</SLackPane>

OEBPS/image15982.jpg
@nstart
public class Rolelogin implements Runnable {

private final LoginPanel panel = new LoginPanel();
privale Digloghascriplar dd = mll;
@verrice
public void run(} {
7/ Creste a dialog using The Login®ansl and LoginTitle, make it modal,
77 and specify action listener
dd = new Dialogbescriptor(panel, Bundle.LoginTitle(), true,
((ActionEvent ae) - {
7/ We neec To listen Tor button pressed because we are using
/7 notifylater to display the dialen
17 (2= getsaurce() == Dialogdescriptor CANCEL_OPTION) {
77 adios
System.out.printin(*Canceled!®);
LifecycleNanager. getDetault() . exit();

) s
77 Theck Tugin
UserRiTe ol = 1ok getDeFant10). ook (s Ro e T s)
i1 GuserRale 1= 1) [

User thisUser = userRole. findUser (panel.getliserName (),
panel.getPassword()) ;
Windowbanager wn ~ WindowManager .getbetault);
it (thisUser 1= null) {
/7 switch to new role
. setRole(thisUser.getRole())
/7 Using null enables all options to close dialeg
/7 {this is retroactive, so the dialog will closs
// and the app will eppear]
dd.setClosingdptions (ulL);
se {
// Bad login, try again
dd.getoti ficaTion. 1neSupport(). settrrorMessagel
Bundle.LoginError(});

}else |
7/ Wo UserRole instance, baill
Systen.out printin(*No Useriolel”);
LifecycleManager. getdefaulz() exit():

OEBPS/image7688.jpg
Identify

Customer

Provide New
Customer
Details

start

[rewcustomer]

/
/

/

p—

Iretwrring customer]

dalivery? T

[detivery) Delivery
Detsils

Saa pzza
‘ rder

OEBPS/image8396.jpg
FilaSystemApp 201403101706 o
(o sconnie) 03

S fesiisrt ressost
SR T s erase
e T

FUSerS a1 o T eaD3tA T e

Actians/HeLp/aro-nithenns ~<ora-actizns-Abousaction. nstance in befauls Systen
Beians,/ Tasts /uom-sug e ach-appuser - Le-Con 13 ileheL con. ineLance _n DeFaull Systen
Bitrinate dicpiaune

Actians Teots con-3sgreach-fiexploratian-Explorersietction. nstance 1n Defaut systen
Aeritse setegare

OEBPS/image17885.jpg
<7xm version="16" encoding="UTF-8"?>
<1-- You may freely edit this file, --=
- Se= harness/READNE in the NetBeans platform -
- tor some intormation on what you could do (=.g. targets to override]
<1-- If you celete This file and recpen the preject it will be recreated. -
<groject name-"FamilyTreefpp" basedir-"
Sdescription-Iuilds the module suite TamilyTreeAps. </descriptions
override build to add update branding -->
<target name="build" depends="build-brand, suite.build"/>
<target name="build-brand" depends="-init"
<propertyfile
Tile="4{basedir}/branding/care/core. jar/org/netbeans/core/startup/
Bundle.properties™
connent="Updated by build script
<entry key="currentVersion” value="${app.title} ${app.version} " />
</propertyfiles

<propertyfile
‘file="${basedir}/branding/medules/org-netbeans-core-windows. jar/
org/netbeans/ core/windons /view/ ui/Bundle.properties”
connent="Updated by build script”>

<entry key="CTL Mainindow Title'
value="${app. title} ${app.version}” />

<entry key="CTL Mainindow Title Ho_Project
tie} ${app.version}” />

</propertyfile>
</target>
<impor L [ile="nbproject/build-imlxl" />
</projects

OEBPS/image2403.jpg
806 Person FX Application

¥ people
Homer Simpscn
Marge Simpson
Bart Simpson

Lisa Simpson
Maggie 5impson

first 12
Midde Amdlia

Last Simpson
Suffix

o Male (® female o Unknown

Notes

Lisa s smart

OEBPS/image12771.jpg
/7 Actionlistener for Update button

private final Actionlistener updotelistener = (ActionEvent e} -> [
updateModel () ;
tm.updatePerson(thePersan] ;

I

// Get all the data from the components
private void updateHodel() {
‘thePerson.setlirstname(firstTextrield.getText()):
‘thePerson.setMiddlename (middleTextrield.getText(});
thePerson. setLastnane(LastTextField. getText()):
thePerson. setSuttix(suftixTextField. getText()):
i (malchntton. isselecred() {
thePerson. setGender (Gender . MALF) ;
} slse if (femaleutton.isselected(}) {
‘thePerson. setGender (Gender. TCMALL
} else if (unknownButton.isSelected()) {
‘thePerson. setGender (Gender. UNKNOWN) ;
+

Uneperson.seUloles (noLes extArea.geUiext (]);

OEBPS/image16534.jpg
private final FileChangel istener el = new Filechangel istener() {
@verride
public void filerolderCreated(rilecvent fe) {
displayMessage("rile Folder Created: ' + fe.getrile().getPath());
try {
7 fe.getFilel) . sethttribute(Fo_HODIFICATION_COLOR, Color .GREEH):
updateDisplay(
}ealch (T0Exceplion ex) {
ExcepLions.pr intStacklrace(ex) ;

¥
¥

@override
public void fileDataCreated(rileCvent fe) {
displayMessage("rile Data (file) Created: "
+ fe.getFile().getrath(}):
uy {
fe.getFile() . setAttribute(FO_MODIFICATION COLOR, Color.ORANGE);
updateDisplay(
¥ catch (I0Fxception ex) {
Fxceptions.printStacklracetex) ;
¥

¥

@verride
public void tilechanged(FileEvent te) [
displayHessage ("File Changed: * + le.gelFile().gelPalh());
Uy
¥ fe.getFile() . setattribute(FO_MDIFICATION_COLOR, Color
updateDisplay();
¥ enrch {T0Rsraption @8 L

OEBPS/image9405.jpg
PieChart

Nl

OEBPS/image10798.jpg
ene

[«

Window Systes

Locale: [=s

gl B T —

vE

[Resource Buncles

org/netbans cor
3 CTL ShowOniyEe

actons Eundle
or = estar un carente Ed tor

[(o

OEBPS/image15754.jpg
@ervicepravider
(service = com.asgteach. fanilytree.model . FamilyTreeManager . class,
supersedes
“con.asgteach. fanilytres. manager. impl.FanilyTreeHanagerInpl"})
public cluss FanilyTresHanager A inplenents FamilyTrecHanager

77 Swingroper LyChangusupport s Lhread-safe
77 truc means fire property change cvents an the HDI
private SwingPropertyChangesuppart propChangeSupport = aull;

private static final CntityMenagerfactory CNT:
private static tinal Logger Logger = Logger.getLogger(
Fami lyTreeHanagerJPA. c Lass. gethame ()] ¢
static {
try {
EMF = Persistence.createEntityanagerFactory("PersonFTHPU") ;
Togger. log(Level .INFO, "Entity Manager Factory Created."):
77 Creale/Ulose cnlily menager Lo make sure Javal Server is running
77 1his will fail if the Javabk Server is not running
FntityManager om = M. croatebnti tyManager ();
en.close();
} carch (Throwsbla ex) {
Togger. Log(Level .SCVERE,
"Hake sure that the JavalD Database Server has been started.", ex};
Unrow new ExceplionInTnilialicerError{ex) ;

OEBPS/image17283.jpg
series.getData().add(new BarChart.Data<>(
(Nunber) tableHodel.getValueAt(row, column),
tableModel.getColunnNane (column)));
1
bcbata.add(series):
¥
i

return bebata;

OEBPS/image12843.jpg
/1 Actionl istener far Radio Huttons
private final Actionl istoner radiofutton istoner = (Actionkvent e) = {
1% (changotk)
modi fy ()
3

OEBPS/image9448.jpg
O
LineChart Window £

Smart Phone Sales

150

100

50

3
S|

2008 2009 2010 2011

Year

OEBPS/image13021.jpg
rectangle.setStyle("-Tx-1all: %
+ "linear-gradient (#ffd65b, #e68100),"
“lincar-gradicnt (#ffcfed, #f2badd),"
“linear-gradient (#ffea6a, #efaa22),"
'linear-gradient (#ffe657 0%, #fBc202 50%, #eealob 100%),'
'linear-gradient (from €% 0% to 15% 50%, "
"rgba(255,255,255,0.9), rgba(255,255,255,0));"

R

OEBPS/image14101.jpg
public final class PersonViewerTapCompanent extends TopComponent {

private FanilyTreeanager ftn;
private final DefaultutableTreshode top =
new Defaul thutableTreeNode ("People”) ;
private Final DefaultTrecHodel treeModel = new Defaul tTrecHodel (top):
private static final Logger Logger = Logger.getLogger(
PersonViewer TopConpanent . class . getfiane () ;
private final InstanceContent instanceCantent = new InstanceCantent();

public PersonViewerTopComponent() {
initcomponents():
setNane (Bundle.CTL_PersonviewerTopComponent () :
setToo TipText(BundLe. HINT_PersonViewerTopComponent () }:
associateLookup(new AbstractLookup(instanceContent)):

OEBPS/image4662.jpg
B it
3 vaiosdsemen)
+ 58 g
- 3 thrares

B e

5 S o, ||| it e setose i Wi TogCompnnet s e

L

Tt

(=g [A——.

B aperas fliume 8 lomeifin

e w—

e T

S mA [G|

[Topcampaneait

Window Switching

il

OEBPS/image10755.jpg
9 Destaze
Ratszar

e

e

Todew ma|

P

SmartPhone Dados de Vendas

OEBPS/image4449.jpg
TamilyTreeAnn 201310111528 "

(& sewr %1 ©)

[P

Simpson

Al :
Lisa plays the sawophore ||

OEBPS/image14774.jpg
. annotetions omitred, see Listing 8.1
public final class PersonTapComponant extends TepComponent {

public Person!spComponent() {
initComonents();
ame (Bundle. CTL_rersonTopCompanent (
setTool TipText (Bundle. HINT_PersonTopConponent 1);

¥
private void inilCompanent s0) (
© code omilled . .

]

@verride

pubTiC void componentOpened() {

77 T sd custom code oncomponent openin

)

@verridz

public void componentClosed() {
77 1000 add custom code on component closing
i

void writebroperties(java.util.Froperties p) {
/7 haTTer Ta version settings since initial version as advacated at
77 WPz ik snides | gn.org/a ki /ProperlyFiles
p.setProperty(“version®, "1.9"
£/ TODO store yeur settings

]

void readPrepertiss(fava.util Properties p) {
STring vorsion = p.gerProperty(“vorston);
77 1000 read your settings according to their version

OEBPS/image12758.jpg
7/ TreeselectionListener for JTree
private final TreeSelectionListener troeSelectionListener =
(TreeselectionEvent e] -> {
Delaa M Lab LeTreeliods node = (De aul (Malab LeTr ceNode)
personTree. geLos (Se e LedPalhComonenL ()
i {node == nily)
updat it ton. set Fnabled (false) ;
return;

}

if (node.isLeat()) {
Person person = (Person) node.getUserobject():
Logger. Log(Level .FINE, *(0) selected", person):
editporsoniperson);

} else {
updateRitton. setFnabled(false) ;

)

¥

privale void editPerson(Person person] |
WhePerson = person;

e

OEBPS/image16677.jpg
<xml version="1.8" encoding="UTF-8"7~
OCTYFL filesystem PUDLIC "-//NetDesns//DTD Tilesystem 1.2//CH* *http://
. netbeans .org/dtds/filesysten-1 2.gtd"s

<filesystem
<folder name="PersistenceType">
<attr name="pTypeName” stringvalue="JPA + JavaDB" />
</folder>

</Filesystoms

OEBPS/image17557.jpg
public void setSalesid(Integer salesid) {
salesidProperty. set(salesid

b

public IntegerProperty salesidProperty() {
return salesidProperty;
¥

@size (rax = 10)

Colunn(name = "SALESYEAR")

public String getsalesyear() {
return salesyearProperty.get():

i

public void setSalesycar(String salesyear) {
salesyearProperty.set(salesyear) ;
¢

public StringProperty salesyearProperty() {
return salesyearProperty:
¥

@Colunn(nane = "UNITSTNHTLLTONS"}
public BigDecimal getUnitsinmillions() |
return unitsinnillionsProperty.get();

¥

OEBPS/image13079.jpg
myractangle {
-fxe U
Tinear-gradient(#f7dosh, re60400),
Tinear-gradient(#ffefo1, #f2bat1),
linear-gradient(#ffeata, #efaa22),
Tinear-gradient(#ffes57 0% #70c202 50%, #eealth 100%),
Tincar-gradienl(fron % % Lo 15% 50%, roba(2s,25,255,0.9),
rgba(255, 255, 255, 0)
STx-elTects diopshadow(Uirec-pass-box , gray , 10, 0, 5.8 , 5.8);

'

OEBPS/image4634.jpg
eoe - andchysmvrAcp 201204101705 e Restore Window
& 5 @) Group Button

Treoren € &

g Explorer
Exple dor I P
ROMRE e Window Tat

Froperties
- Window Tat

mopu saado

OEBPS/image16075.jpg
public final class NumbervisualPanel1 extends 1Panel {

17 Create property names for each piece of data that
17 v want to collect
public static final String PROP_TTRST_NUMDLR =

“firsthutber";

public NumberVisualpancl1() {
initComponeats ();
/¢ add a document listener ta the textfield conponent
firsthunber. getDacument() .addDocunentListener (new DocumentListener() {

coverride

public void insertUpdate(DocumentEvent de) {
FireChange(de) ;

3

@override

public void removellpdate(DocunentEvent de) {
firechange (de) ;

}

@overrid

public void changedUpdate(DocumentEvent de) {
fireChange (de);

}

OEBPS/image13894.jpg
@
private void processAllButtonAction (ActionEvent event)
Logger. Log(Leve . FINE, "Process ALL Button®}:
7/ only one Lusk Lo ran al a Line so disable’ Lhe bullon
processAllButton. setDisable(true) ;
74 Create the sk with a list
Final ProcessAllTask processTask = new ProcessallTask(
FXCollections. observableArrayList(ftn.getAllPeople())) ;
/4 configure the UT
progressBar. progressProperty() .bind(processTask.progressProperty()):
statushessage. textProperty() .bind(processTask.messageProperty ()
statusTextArea, textProperty() .hind(processTask.valueProperty()

/¢ set up handlers for success and failure
processTask. set0nSucceeded(L -> 1
Togger.Tog(level FINE, “Process AT Lask Tinished: {67
+.getsaurce() . getvalue());
resetlil();
b3

OEBPS/image9561.jpg
Bubslecharcwindow &

Units Sold in V.

150

125

100

7

. T

007 2008
ONokina ORI

BuboleChart Window — Eci

Smart Phone Sales

L2
- =1
<
=
L4 =
-

-
2069 2010 2011 2012

Year

@Al OHIC @ Samsung @ Others

OEBPS/image9907.jpg
808 MNew RESTHul Wab Services from Datakase
steps Generated Classes

1. Choose File Type . AN
2. Datebase Tables bick SR
ity Clasres ocation ource Packages

4. Generated Classes tergt T

Resource Packege: com erversmartphoncdata.service

OEBPS/image13292.jpg
rectangle.opacityProperty().bind(opacityBinding);

OEBPS/image17805.jpg
private class Decinal Converter extends StringConverter<gighecimals {
Nurberrornat nf = NunberFornat.getInstance (Locale.getDefault());
public DecimalConverter() {

nlseMaxinunFrac LionDigils (2);
nlselMininnFrac LionDigils(1);

)
@werride
public String toString(Righecinal t) {
try {
return nf . format (t);
J caten (Exception €) {
return nulL:
i
]
@overnide
pulTic Bigheeimal FromString(iving siring) {
try
Nurber newvalue = nf.parse(string);
Digbecimal result = new Digbecimal (newValue.doublevaluei)}:
return result.setScale(2, Digbecimal.ROUND_IIALT_CVCN):
} catch (ParseCxception) {
return nul:
t
.7

OEBPS/image14289.jpg
Platform. runLater(() -> {
// Change JavaFX UI
}):

OEBPS/image14726.jpg
@override
protected Sheet createsheet() {
Sheet sheet = Sheet.createDerault(]:
Person person = getLookup() . Lookup(Person. class

7/ create a property set far the names (first, middlc, last, suffix)
Sheet.Set sotliamcs = Sheot.croateProperticsSet ();
setfianes . sethispl ayNane "Nanes”

1/ create a property set read-only id
Sheet.Set readnlySet = new Sheet.Set():
readon LySet . setDisplayName "Identitication*):
77 pul il under ils omn Lab
reudOnlySeL . selVa Lue (" LabName®, * Td Tnlo *);

7/ create s properly sel Tor gender and noles
Sheet. Set infoset = new Sheet.set(};

infoset. setNane(*Additional Information*);
sheet. put (sethiames) ;

sheet. put (infoset)

sheet . put (readonlySet) ;

OEBPS/image8305.jpg
com-asgteach-changedetector.nbm Tuesday, April 8, 2014 3:20 PM
[com-asgteach-fsexploration.nbm Tuesday, April 8, 2014 3:20 PM

(3 licenses Tuesday, April 8, 2014 3:20 PM

File Format:

OEBPS/image16092.jpg
@override
PUDLLC void addChangeListenerChangeListensr L) |
Listeners.add(Changelistener . class, L

1

@override

public void removechangelistener|ChangeListener 1) {
Uisteners.remove(ChangeListener.class, 1);

[

@override

public void readSettings (WizardDescriptor wiz) {
this.wizard = wiz;

¥

@over ride
public void storeselLings (Wizardbescriplor wie) {
/1 use wiz.putPraperty fo romember current panel state
/1 Method storeScttings() is called whon the step finishes
wiz.putProperty (NumberVisualPanel1.PROP_FIRST_NUMBER, firsthumber);

¥

@override
public void propertyChange (PropertyChangeEvent event] {
if (event.getPropertyllane() .equals(
NumberVisualPancl1.PROP_FIRST_NUMBER)) {
boolean oldstate = isValid;
isvalid = checkvalidity();
fireChangeEvent(this, oldState, isvalid);

OEBPS/image13256.jpg
Rectangle rectangle = new Rectanqle(108, 58, Color.| FHONCHTFFON);
rectanqle.sethrcidth(30) ;
rectanqle.sethrcheight (30);

stackPane.getChildren().add(rectangle) ;

Scene scene = new Scene[stackPane, 400, 200, Color.LIGHTSKYBLUE):
stage.setTitle("Fluent Binding"):

rectangle widthProperty () . bind(scene .widthProperty() .divide(2)):
rectangle. heightProperty(] .bind(scene. heightProperty() .divide(2}1:

rectangle. opacityProperty() .bind(
scene.uidthProperty() .add (scene. heightProperty())
-divide(1008));

stage. setScene(scene) ;
stage. showl(];
Il

public static void main(Stringl| args) [
Launch();

Il

OEBPS/image13159.jpg
package mychangelistener;

inport javafx.beans.value. Changel istener;
inport javafx.beans.value.Observablevelue;
inport javafx.scene, shape, Circle;
public class MychangeListener {

public static void mein(Stringll args) {
/¢ Detine some circles

tinal Circle circlel = new Circle(16.5):
tinal Circle circle? = new Circle(15.5):

/1 Use change Uistener to trock changes to circle2's radius property
circle2. radiusProperty() .addListener(new Changelistener<Humber>() {

@verride
public vaid changed (ObservabloValucs? cxteads Numbers ov,
Nunbor oldvalue, Numher newaluc) {
Systen.out.println(“Change detected for + av);
circlel..setRadius (newalue. doublevalue()) ;

OEBPS/image3293.jpg
PersonEditorTopComponer

oo

IR]

]

@ To select multiple components in an area hold Shift and drag m¢

Female () Unknown

Update

OEBPS/image14548.jpg
break;

case FEMALE:
sb.append (*Female"] ;
Tcanstring.append(*fenalclcon. pag”) ;
break;

case INKNOWN:
sh.append (*lnknnawn”) ;
icanString.append (*unknawnTean.prg”) ;
break;

1

sethame (sb. toString(]):

setDisplayName(sb. toString()):
selTconBasedli UhEx Lension { iconSLring. LoSLring());

OEBPS/image16610.jpg
<xnl version="1.0" encading="1TF-8" 7>

OCTYPL filesystem PUDLIC *-//NetDeans//DTD lilesystem 1.2//K* "htt,

. netbeans .org/dtds/filesystem-1 2.dtd"

<filesystem
<falder name='

<folder name:

</folder>

</Filesystoms

Toolbars">
“UndoRedo_hiden"/>

OEBPS/image15124.jpg
puslic final class GenderTooComponant extends TopComponent
inplements txplorerhanager. Provider {
private final ExplorerManager 2n = new ExplorerManager();

public GenderToptomponent () {
inttComponents();
st Heame (BurdT :.CTI_Gende TopComponent ()} ;
set 00U 1p lext (BundLe. HINI_Genger [opConponent (1) ;

Sean| resView view = new bean! resView();

ald{vivw, Rorderd ayout CNTFR) ;

associateLookup(ExplorerUtils. createLookup(en, this.getActionMap())):

mselRuoLConLex L {new ReoNode())

for (Node node : em.getKcotContexti).getChildren().gethodes()) {
wiew. cxpandiode (node) ;.

}
getActionMap() .put(MyCoolRefreshAction”, new AbstractAction() {

GOverride
public void actionPerformed(ActionEvent e) {

en.setRoutContext(new Rootliode());// Rebuild Mode hierarchy
+
n:

OEBPS/image15221.jpg
Annotations Unchanges .
public final class NodeCalendarAction implerents Actionlistaner {
private final List<CalendarCapability> context;

public ModeCalendarAction(List<CalendarCapability> context) {
his.context = cantext;
1

@verride
pubTic void aclinPer Tormed (At ionFuenl cv) [
for (CalendarCapability calendarCapability : context) {

calendarCapability.doCalendar() ;

OEBPS/image6356.jpg
@ familytreeapp File Ed: View havigaz Tools Window Help
ece FamilyTresApp 201401111042 F

(@ wrnxor)

ot seen
orer sirson |
Laa impsn —
& | fart simpson Magge smason |
L o) arae smsson

& * Maagle simpson

e plays saxophon I

OEBPS/image3536.jpg
aonn New Module Project

steps Basic Mogule Configurati
L. Name and Location R S ———
il peedini Code Name ase: <o exgeach Exdemomoniulo]

Configuration

019 yourorg.moculename

Madule Display Name | FDemMoniule

Localizing Bu miasqteach/txdemorogule/Burdie.properti

7] Generate OSGI Bundl

Voo | (RN Cancel

OEBPS/image10452.jpg
st N Y~ i NN & Ao v - © | SRR
Feva [| B RE 2B

3] e s
¥ e i PR i v Y
o H
e
e
)
gt

OEBPS/image14307.jpg
public class MyRectanglerXController implements Initializable {

P
privale Reclangle reclangle;
@

private Stackbane stackpane;
enL

private SwingNode swingtiode:
private RotateTransition ri:
private JButton clickButton:

@override
public void initialize(URL url, ResourceBundle rb) {
.. . unchanged code omitted
createandSetSwingContent (swingtiode) ;
3
private void createAndSetSwingContent(final SuingNode swingNode) {
SuingUtilities. invokelater(() -> {
swingode . setContent (clickButton = new JButton("Click me!™));
clickButtan.addActionListener ((ActionEvent e) -» {
Platform. runLater(() -> rt.play());
b
bl

OEBPS/image3811.jpg
ano e Window

stons Name con and Location

o ol Ty Clss e . [FeorFRASE

2 i gy

et amtaom o o e R T P s

Vodfed fles: mandestart
Hopesectpreece x|

OEBPS/image9989.jpg
fax:) __ Add JARFolder

s e
@ relaive pan
[SmarreneDatasanricist:
fath from varibie
o e
) Avsote Ptk

IUsers/gais PC_I les) Netgeans

File Format. [Classparh Fatry (oider,

OEBPS/image16592.jpg
OCTYPL filesystem FUDLIC *-//NetDeans//DTD Tilesystem 1.2//TK"
"htED: //ww natheans. org/dtds/filesystem-1 7. dtd"

<filasystems

</Filasystems

OEBPS/image3714.jpg
CXaY:)

MNew Module Froject

Steps

Basic Module Configuration

L. Name and Locaticr
2. Basic Module
Configuration

Code Name Base comasgtezch.familytrecfx.model
9. "or.yourorg.modulerame’)

Modula Display Name: [FamilyTreeFXiodal

Lozalizing Bundie:

miuser/moceeurctepropeds]

|| Generate OSGi Bundle

OEBPS/image16398.jpg
)]
ph.progress ("Building " + p.getPizzasize() -

Inread. s Leep (2006] ;
ph.progress(*Place toppings " + p.getToopings(}.toString(), 31;
Thread sleep(2000) ;

ph.progress (*Cooking pizza”, £);

Thicad. «Teep(7808) ;

ph.progress(“Keacy! ", 4);

Inread . sleep(200¢];

pizza", 2);

¥ catch (InterruptedException e} {

Fxcent ioms.priniSta kT race (e);
ph.tinzsh();
return pizzaset;
¥
aOverride

public Set instantiate() throws I0Exception {
Tse : “This method cannct be called if the closs implemen

assert
WizardDescriptor.ProgressInstantiatingiizardlterator.”;
return nulL
}
QOverride

public void initialize(WizardDescriptor wi) [
this.wizerd — ud;
i

OEBPS/image16770.jpg
wover ride

public JComponent getVisualRepresentation() {
return this;

3

@verride

public JComponent getToolbarfepresentation() [
return Loolbar;

i

Qoverride
public Action(] getActions() {
return new fiction[0];

)

@0verride
public Luokup getLoskup()
relurn fibatadbject.getlookup();
1
Qoverride
public void componentopened() {
E:
@Qoverride

pubLic void companentclosed() |

Goverride
public void componentShowing() {
}

OEBPS/image16495.jpg
@ConvertAsProperties(
dtd = "-//com.asgteach. changedetector//ChangeDetector//TN"
autostore = false

)

@TopConponent. Descriplion(
preferdld = *Changebetec Lot lopConponenl”,
iconRase = "con/asqteach/changedetector/chack. png ",
persistenceType = TopComponent. PLRSISTENCE. ALWAYS

)
@TopConponent . Registration(mode = “editor*, openatstartup = true)
@ctionID(category = “Window",

id = "con.asgLeach. LhangedeLec Lo . Cliangebe et Lor TopComponenL)

@ACLianReleronce (path = “Menu/Mindow® /+, posilion = 333 /)
@l optanponent . UpenActionRagistration(
displ ayNanc Chanqelietectoraction
prefarredTn = "ChanqelietectorTaptomponen
)
@essages (|

“CTL_ChangeDetectorAction=ChangeDetector” ,
“CTL_ChangeDe Lec LorTopConponen =ChungeDelec Lor Window”,
“HINT_ChangeDeLec LorTopComporen =This is o ChangeDelec Lo window',
“CTL_ChangeLabel=Hatch Directory™

OEBPS/image15597.jpg
public intorface FditorManager {
public void openCditor(Node node);
public vaid unRegisterFditor(Person parsen);

OEBPS/image823.jpg
CXaX:) MNew Java Apolication

staps Name and Location

I Chaoss project

e on | FOeCtName PerscnappBasic

Project Location: PlatformProjects; avaFXeas cs/Javafxbasics |

Project Folder: avaPiBas s fjavalbasics ParsomAppBasic

21 Use Dedicated Folder for Stering Libraries

Vibranes Falder

Offorent users and projects can share the
sarme comilation libtaries e Help for
detite)

4 Create Main Class | personazpbasic ferscnappbas ic

Felp.

Carcal

OEBPS/image2244.jpg
800

New Project

Steps Choose Project

1. Choose Project

R e Q
Gopt Projects:
& java & Javarx Application
= & JivaFx prebosder
5 Jvawe &
e & Javark m Swing Aopicaior

OEBPS/image15381.jpg
punlic class MersonNodeContainer extends Index.ArroyChildren {
private final Listdlode~ persanlist ~ new Arraylist=Node=();

@Override

protected ListeNode initCollection(] {
rorurn porsan 1s7;

8

OEBPS/image13569.jpg
7/ Mapthange! istenar< ong, Persons for FamilyTreeManager
private static final MapChangelistener<Long, Person> mepChangelistener =
(change) - {
1t (change.washdded(] & change.wasfemoved () |
System.out.print(n("\tUPDATED") :
} else if (change.wasAdded()) {
System.out.printin("\rADDED") ;
} else if (change.wasRenaved()) {
System.out.printin("\tREHOVED") ;
3

Systen.out.printin(*\tnap = " + change.gethap()1:
Systen.out.println("\\t* + change.getValuehdded)
+ " was added |" + change.getkey() + *1."):
System.oul.pr inlln (" I\ L® + change. ge Vol ueRemoved ()
+ % was cenoved 17+ change . gelKey() + 7 1.");

OEBPS/image5733.jpg
anAa New Actlon
srepe Mame, ican, and Lacation

Choase Fle Tyae

3 Gomerte Clrs Name:[FdeClidhoion
3 QR o e [Cainin

amssatesch, Familytre act nscalenzar.png

Project FarnilyTresAc

Package

o asgieach e setions

secjcom asgresch;farilytres/actions NodeCalendarketion av.

Nadifled Files:nbproject/grelect.xm!

Hen | Nexr

OEBPS/image13925.jpg
private class ProcessAllTask extends Task<Gbservablelist<Person> {
private final Ohservablel ist<persons processl ist;
private final ReadOnlyobjecthirapper<ObservableList<person>>

partialResults = new ReadOnlyObjectiirapper<>(this, "partialResults”,
FXCollections .ohservableArrayListnew ArrayListe>()))

public Final Observablelist getPartialResults() {
return partialfesults.get();
b

public Final ReadonlyobjectProperty<dhservableList<Person=>
partialResultsProperty() {
return partislResults.getReadonlyProperty();

¥

public ProcessAllTask(tinal Observablelist<Person> processList) {
this.processList = processList:
1

@override
protected ObservableList<persons call() throws Fxcoption {
Tagger.Tag(l evel .HIRE, “Hogin procossing®);

OEBPS/image15640.jpg
¢/ PropertyChanqel istener for FamilyTraeManager
private final PropertychangeListener familylistener =
(PropertychangeEvent pce) -> {
il (pee.gelProperiyNane() equals(
FamilyTrecHanager . PROP_PERSON_DESTROYED) &&
pee. gethiewvalue() = nall) {
AT (pre.gelNewvalue() . equals (Licberson)) {
47 0ur person has been removed from the kami Tyl rectanager, so we
74 need to clnse:
clearsavecapability();
EditorManager ecHanager = Lookup.getbefault(}.lookup(
EditorHanager.class) :
if (edManager '= null) {
‘edManager . unRegi sterEditor (thePersan)
PersonditorTopComponent . shutdown (this) ;

}

private static void shutdown(tinal Topomponent tc] [
Windowdtanager . geWefaul L) invokewhent 1Ready () -> Le.close());

OEBPS/image15631.jpg
private void ClearSaveCapability() {
SavableViewCapability savable = getLookup(). Lookup(
SavableVieuCapability .class) ;
while (savable = null) {
savable. removeSavable() ;
instanceCantent. remove (savable|
savable = getLookup() . Lookup (SavalileVieuCapability.class);

)

@verrice
public void conponentOpened() |
sethane(thePerson. toString()) ;
setToolTipText(Bundle.HINT_PersonEditorTopComponent(
thePerson.tostring()));
conligurcComponentLis Leners ();
updaterorn();
Fm = | ookup.getiofanl £() . Tookup (Fami Ty | rechanager . lass) ;
i (Ftmo== 1) {
Togger. log(Level .SIVERL, "Cannot get FamilyTreeHanager object’);
LifecycleHanager. getbefault() . exit():
) etse [
ftm.acdPropertychangeListener(fami LyListener) ;

)

OEBPS/image12471.jpg
ftm.updateberson (marge) ;
Systom.out.printin(fm.getallboople());

ftn. deletePerson(narge!
System.out .printin(ftn.getallPeople()):
/1 delete marge again
ttn.deletePerson(narge) ;

tn, removePropertyChangeL istener(pe)

it purt
addPerson for Homer Simpson

addPerson for Marge Simpson

Tllomer Simpson, Marge Simpsonl

updatererson for Homer Chester Simpson Junior

updatererson for Marge Louise Bouvier-simpson

IHomer Chester Sinpson Junior, Marge Louise Bouvier-Simpson|
removelerson lor Marge Louise Bouvier-Simpson

IHomer ChesLer Simpson Junior|

OEBPS/image10517.jpg
CXaX:) Plugins
[Updinesfwliatle g | awnicadsa TSN Sexinas
search: |

TesthG. Ubraries " SelectionHistary

Iamiyreevenagerkpl Unceizgorized
FamiyTreeviodel saerized Version: 1.0
ConerVinver 4 © | source: CamilyTreeApn 01310111578

°
°
°
o

Persorgor

Acieare | [Deactae | [~ Oninsal

[Close | _eip |

OEBPS/image12358.jpg
2

kT i SEring getniddlename () {
return middlenane;
¥

public void setiiddlenene(string midclename) {
Unis mice Lenane = nidd Lename ;
¥

public String qetsuffix() {
return suffix;
'}

bl i vaid
this.su
¥

public Long gelTdli |
relurn ic;

cIsulix(sin
ix = suffix;

sffin) {

¥

OEBPS/image645.jpg
806 Birth: Abraham Lincoln - Editor

| Birth: Abraham Lincoln 3.
D 49
Birth

Person Abraham Lincoln

Date | Feb 12, 1809 N

Town Hodgenville

State/Province | Kentucky
Country | USA
Parent

Parent

OEBPS/image2476.jpg
. Nl 5 ooyl 6 N
(cencm)| |(TableView<T=) ((Lisiewe> ((ComboBoxgese=T>)
< Nl . A
= -
p————=x -
(crvieanet>) (_ ComboBox<T>)
K ~ Gl S e
Accordion) P
e (Treeviewr)
2 i

~ %

(SplitPane.) (saolPue) (sider)

OEBPS/image6669.jpg
Projects | Files | Services |

jdbederby:/localhost:1527 personftm
v) PERSONFTM
v 1 Tables
v [persoN
D
FIRSTNAME
GENDER
LASTNAME
MIDDLENAME
NOTES
SUFFIX
VERSION
» 1 indexes
» 1 Foreign Keys
» [sEQuence
» L1 Views

&
&l
&l
&
&l
&
&
&

OEBPS/image17039.jpg
in.getOut (). reset (
try (Inpirstream s = (
(arg.aponide. text. Cloncablcrdi torsuppert) cditarConkic)
getInputstrean()) {
Document doc = XMLUEiL. parse(
new InputSource(is), true, true, null, null);
parseboc(doc, "root*
parseDocidoc, "person”. io):

|

} caleh (SAXExceplion | TOExceplion ex) |
Fxceptions . printStackl race (mx) ;

1

¥

private void parseboc(Docunent doc, String element, InputOutput o) {
NodeList nodeList = doc.getELenentsByTaghane (element
10.9et0ut(}.printin(“Child Nodes, Size = * + nodeList.getlengtn()):
for (int 1= 0: 1 < nodeList.getlengtn(): ++) (
ory.w3c.don.Node persorlode = nodeLis . ilen(i];
SLring nodeNane = personliode. ge WodeRane ()
74 Print Ui elencnl and ils alliibules Lo U Oulpul window
Lo.gulout().printin("Elenent: * + nodchame) ;
74 Create s wap for ElemenU's alribules
NamedtodeHtap nap = personfiode. getAttributes();
if (nep 1= null) {
Stringbuilder attrbuilder = new Stringbuilder();
/7 Tterate through nap and display attribute name and value

for (int § = 0; j < map.getlength(); j++) {
org.ulc.don.Hode attriiode = map. iten(]):
Siring allName = alLriode. geUNodeRane () ;

aCLrsuilder . append ("\y VL) . appund (aLLrRenc) ;
L Lk ilor uppemd YA L7) . append G LL et g NGoesT e {51

OEBPS/image12552.jpg
public List<Person> getAllPeoplel) {
List<Person> copyList = new ArrayList<>();
// Use lambda expression
personMap. values() . forEach(p -> copyList.add(new Person(p)));
return copylist;

OEBPS/image17314.jpg
public class DubblechartController implements Initializable {

7/ set up the event handler to respond to changes in the table data
77 This is u swing evenl, so we musl use Plollomm. runCaler()
/1 to update lavarX components
tab] eMaciel . addTabl eMadell istener (({TableMadel Fyent @) - {
if (e.getType() == TableModelEvent,UPDATE} {

inal int row = e.getrirstRow();

final int colum = e.getColumn():

inal Number value = (Nurber) ((MyTebleDateModel)

e.gelSource()) .gelValueAl (row, coLum)

7/ Get new total for colum

Gouble fotal = 6;

for (inf r = 8; < fablcMadel .getCatogoryCount (); rH+)

total += (double] tableHodel .qetValueit (r, calumn);

3
Final doudle newTotal = total;

Plationn. runtater(] > {
XYChurL. Series<Hunber, Number> s = charl.gelDalal) .gellroal:
Bublslechiar L. DaLs<unber , Nunbers dala
G ISR C) el ca iy

OEBPS/image14316.jpg
public final class MyFXTopCompanent extends TopCamponent {

private static JFXPanel fxPanel
private MyFXController controller;

public PersonrXCditorTopComponent() {
initComponents ()
setMame[BundLe. CTL_PersonFXEditorTopComponent()):
selTool TipTexL {Bund e, HINT_Per sunFXEdiLorTopConponent (1):
sellayoul (new BorderLuyoulT)):

init();

}

private void init() {
fxPanel = new JFXPanel(};
2dd{fxPanel, DorderLayout.CINTCR);
Platforn. setInplicitExit false!
Makforn:raatartl) =% crastatcenal)

OEBPS/image16486.jpg
@verride

public void actionPerfarned (ActionFvent a) {

7/ rename, requires a lock

FileLock lock = nulL:

try |
Tock = myfile.lock(]:
myfile.renane(lock, "mynewnane”, myfile.getExt()):
displaytessage ("Renamed [ile Lo * + nylile. gelNaneExL());

} cateh (10kxception ox) {
displaytessage("Warning: * + ex.qetl acalizedvessage());
Fxceptions.printStackTrace(ex)

} finally {

it (lock '= nutl) {
Tock. reteaseLock() :

]

i

by L
11 detele lile
myfile.delete()
displayiiessage("eleted file * + myfile.qetiameFxt());

J caten (TOException ex} {
displaylessage("Warning: " + ex.getlocalizediessage()]:
Exceptions.printstackTrace(ex)

OEBPS/image8731.jpg
_ FleTyoeApp 201403101706

(@ o 0)

[¥ & ramiyi reevata /usess 31/ | RS [~

SepaonaryTree.
i i Simpson Family Tree

OEBPS/image9257.jpg
AOA

Smart Phone Sales: 2010

Wedge e
percantage
abel

o

Smart Phone Sales: 2010

TextField
for editing

OEBPS/image17643.jpg
¥

77 Relurns un ArrayLisl ol Conpanies [rom Lhe web servite
List<Conpany> data = (response. readEntity(genericType)):
ObservableList<Conpany> companyList

FXCollections. observableArrayList(datal :
return companyList:

OEBPS/image2967.jpg
Caregorics

brarcs
Spoicston

nenler
s

Project Propeties - TamilTreeApp.
Jeapitorm: | IOK L& @uuaty 3] [nsge avs atomez. |
NetBeans Platform. | Development DE % |]
Pt Modilen
ot [T |
v @piarorr] 5
bt 200 o [
s — @ =
8 s o OS] [
8 o tnnicon v @

Ao Usdte Sevices ‘
Ao Upsste Ul 0

| add Project.

[e) [Cuet] (k]

OEBPS/image8312.jpg
e
B Cmesesin
5 o
5 e

tea-tarin om0 [S

Fiie 7ot
Caat i s lytrze
L
[

<rgender

i 15 vargers

= Confc Pl

e
Immaordiaion

s Ptorme
Nebeans Ptforrs—+
Aot st

Chraries

sorrs

Clostrocers

Cemplaes

702 ane XL Schems

Pugins

OEBPS/image14717.jpg
public GanderTopConponent () {
initConponents
sethlame [Bund Le..CTL_GenderTopComponent (]
selToo (TipTexL (BundLe. HINT_GenderTopConponent (1) ;

BeanTreeVien view = new BeanTreeView();

PropertySheetView propView = new PropertySheetvien();

add(view, BorderLayout.WEST);

add(propView, BarderLayout.CENTER) ;

associateLookup(CxplorerUtils. createLookup(en, this.getActionMap())):

en. setRootContext(new RoctNode()):

for (Node node : em.getRootContext() .getchildren() . gethodes()) {
view. expandNode (node) ;

)

OEBPS/image16166.jpg
@override

public void removelpdste (Documenlbvent o) {
checkyalidation();

3

@verride

public void changedupdate (DocumentCvent e} {
checkvalidation();

¥

private void checkValidation() {
Problen validateAll = group.validateALL();
isvalid = 'validatell.isFatal ();
tirePropertyChange (PROP_FIRST_NUMBER, 8, 1);
¥
bl
}

coverride

public boolean isValid() {
return isvalid;

¥

. cade omitred

OEBPS/image14654.jpg
private void filterTextActionPerformed(java.awt.event.ActionEvent evt)
Node root = em.getRootContext();
Nade newRaot;
if (root instanceof PersonFiltertiode) {
root = ((PersonFilterliode) root).getOriginal();

}
if (filterText.getText().isEmpty()) {
/1 use the original root
newRoot = root:
} etse {
/1 make case insensitive
newRaat = new PersonFilterliode(root,
FilterText.getText (). tolawerCase());

en. setRootContext (newRoot) ;
for (Node node : en.getRootContext().getcChildren().getliodes()) {
view. expandNode (node) :

3

OEBPS/image15212.jpg
</l
<file name="con-asgteach-fanilytree-actions-NefrashAction. shadow"
<! com.asgLeadh. fanilylrce. aclions Ref reshAc Lion, REFRESK_ACTION >
<attr name="origqinalFile" stringvalue="AcTions/Fila/
com-asgteach-Tami Lytree-actions-RefreshAction. instance* /=
<attr intvalue="500" position />
</tiles
</folders
<folder>
<folder name="Shortcuts">
e nane-"N-E. shadow">
-con_asqteach familytree actions NodeCalendarAction-->
<attr name~"originalFile" stringvalue-"Actions/Nodes/
com-asgTeach-fant1ytree-act?ons -NodeCalendarAcT1on instance” />
</Filex
& nam
1--com. asgLeach. Tamilylree, acLions. Re 1 eshAc Liun REFRESH_ACTION-
<attr nane="originalFile’ stringvalue="Actions/File/
cum-asgLeach- fanilyLree-acUons -Re reshAcLion. Instance />
</files
</older>
</f1lesystem>

M-R. shadow"

OEBPS/image6462.jpg
® familytreeapp 0 Edit View Navigate Tools Wirdow Help

8006 N erson 101402141042 7
g5 L&

ve Al

Page Setup..

OEBPS/image15115.jpg
Action annotations unchanges
@Msssayes ({

CTL MefreshAction-Refrash”,
CTL_RefreshTitle=Refresh Action”

N

public Final class RefreshAction inplements ActionListener {

private RefreshPanel panel
private Dialogbescriptor dd

null;
nt;

@override
public void actionPerformed{Actiontvent €) {
1t (panel == null) {
Banel = new RefreshPanel():

1
if (a
dd

iy {
new Dialogbescriptor (panel, Bundle.CTL RefreshTitle());

3

/7 display & block

if (DialogDisplayer.getDefault().notify(dd)
NotifyDescriptor.0K_OPTION) [

17 User clicked OK . .

OEBPS/image14990.jpg
<txnl version—

uniqu

<kind type=

<stale Lype="joined*/>

<constraints>
<pallh oricntal fon="ver [ical® numer="6"
<path orientation—"horizontal® number-
<pall onicental fon="ver | ical® numer="1"

</constraznts»

<bounas x="14¢" 576" holgn

<frame state—
<enpLy-belavior permanenl="Liue" />
</mode

OEBPS/image9442.jpg
Property
Xalue
YVaue
extravalue

node

Type
b jeclProperly<X>
ObjectProperty<Ys
ObjectProperty<gbject>
ObjectProperty<Node~

Description
Data value for the X axis
Dala value for the Y axis
Dhala corresponding 10 an extra value

Node represented by plot point

OEBPS/image12311.jpg
REGISTER

THIS PRODUCT

Rogister tho Acdison-Wesloy. Exam
Cram, Prentice Hall, Que, and
‘Sams products you own o unlack
areatioensiits

To begin the ragistration process,
simply goto informit.com/register
0 sign i or create an accourt

You willtren be prompted to enter
the 10- or 13-cigit ISBN that sppears
on the back cover of your prodiuet.

Registaring your products can unlock
the following benefits
* Access to supplemental content,
inclucing bonus chapters,
source code, or project files.
* Acoupon to be used on your
next purchase.

Registration benefits vary by praduct,
Benefits wil be listect on your Account
page under Registered Praducts.

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE
INFORMIT I£ HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS

Adcison Wosioy Professicral, Gise Prese, Exa Crarn, IBM Pross, Preice Hall

et S Hers you il g acnses to qualy arl sted cont
recouroos from the authors,erozars, inaaters, ane lesds of teennalogy. Whethar you'rs
looking for s baok on = s echrcloqy, & helofal sice, imely s siers, cr sccess (o
the Safar Boekes Onlie diglal Fvary InfomnlT has solution ko yeu

Profassianl, G and

informiT.com

OEBPS/image2888.jpg
Dependency

public
packages

OEBPS/image3027.jpg
ez
& FaniyTreenanaorimnl
@ FniyTrecodel
8 personzoror
G Parsaniwer

» 1§ Inpartrt Fles

8 PamiyTreenangeing

& FamiyTreeNodel

> & persorediior

b @ personviewer

Modules added to Family TreeApp

; shown under Modules node

Select Project name outside of
FamilyTreeApp to work with module

OEBPS/image6953.jpg
806

Person Information

First Name

Last Name

Homer

Simpson

Cancel

OEBPS/image7342.jpg
o

NumberVisualPanell | .

NN
Fires property Listens for property.

change events \ change events and
- | valdates changed input
changes e]
1O} ~{ NumberWizrdanell Y a
L T)
A < Listens for state
Gy e \ Saneo ovomseand
(3) change events | calls isValid{). Updates
b sVl vl panel.
changes .
)]
WaardDescripror |

OEBPS/image10445.jpg
ece MyFamilyTreeApo - Brand ng

Basic Splash Screen Window System

Search.

MairWindow_Titls

[Resource Runtles
¥[8 org/netbeans/core windows view, ui/Bundie.properties
5 CTL MainWindow, Title = 1FariyTrecspp (0}
B C1L_MamWindow_ i tle_No_Project = uyi<ril

ep (0}

Cancel |

OEBPS/image13508.jpg
<xnl version="1.0" encadin

2import java.lang.¥7:
<7import java.util.A7>

<timporl juvalx.stene.=7>
<timporl juvalx.scene.conlrol, x>
<timporl juvalx.scene, Layoul. ¥7>

prefHeight="200" proiWidUhe320
xmins: fx="http: // javafx.con/funl*
#x: controller="personfxapphound. PersonFXBoundController*
alignment="CINTER' spacing="20"
style="-Tx-background-color

Linear-gradient(aliceblue, lightblue): ">
margeLabel” />

<Label fx:
<BuLlon Lext="Change Marge

onctior
hosel Hary
onctior

“#changeBut tonAction’

<Bullon Lex

</VKox>

OEBPS/image10614.jpg
606 FamilyTreeApg Installer

Welcome to FamilyTreeApp Installer
Wizard

‘This program will install FamilyTreeApp application on your
computer.

Click Next to continue.

e [

OEBPS/image10684.jpg
et I 5111 1 #< 15. Sour-{hare pavee e Srares i aine 55
AINT_TaptevtesTopcs. . N < 1: 3 7206116, E516 &3 na 1151 5. £56 & n ar3ric

1 T et T . i e Tt Ftn c3 i Tahala
Cermacaesiure S c ¢ 5 (6] 151 (... L5% G505 50 \entss. .. 33605 30 Hersss (31

1 bt seteuropcon. .. N 1 ¥1nds-Arn 4 Tabs Vont i ne1 4 PeRICE
Searpronetivie I v orone 53105 05t Soarophare Batss Ge. . Srartinne Jacet se
fo— B anien

OEBPS/image13578.jpg
Outpu
ADDED
map = (o=Homer Simpson)
Honer: Sinpson was udded 101
Ll was removed (0]
ADDED
map = {iHoner Simpson, T=Harge Sinpsont
Marge Simpson was added [11.
null was removed (1]
UPDATED
map = (o=Homer Chester Simpson Junior, 1=Marge Simpson)
Honer Chester Simpson Junior was added 19].
Honer: Sinpson was removed 101,
UPDATED
map = {o=Homer Chester Simpson Junior, 1=Marge |ouise Rouvier-Simpson}
Marge Louise Douvier-Simpson was added [11.
Marge sinpson was removed [11.
RENOVED
map = [o=Homer Chester Simpson Junior)
null vas added I11.
Marge Louise Bovie

Simpson was removed [1].

OEBPS/image17305.jpg
¥

b3

}

For (int row = @: row < tableModel.getRonCount(}; rows+) {
XYChart. Series<humber, Nunber>

ies = new XYChart. Series<>();
series. setNane tabletiodel .getCategoryNane(row) | ;

for (int colunn = 8; column < tableModel.getColumnCount():

column++) {
Tnteger year = Integer.valusof(
‘tablehodel.getColumnhiane (column));

Nunber units = (Number) tableModsl.getvalueAt(row, colum);
series.getData().add(new XYChart.Data<lumber, Humher>(
year * XFACTOR,
units,
(units . doublevalue() / totals[column]) * XFACTOR));
)
beData. add(series);

return bebata;

OEBPS/image12561.jpg
7/ invaked from the constructar
private void initComponents() {

genderButtonGroup = new javax.swing.ButtonGroup():
JScrollPanel = new javax. swing. JScrollPane();
personTres = new JTree(lop)s

iPanell = new javax.swing.JPanal();

jLabeld = new javax.swing.JLabel();
jLabels = new javax.swing.JLabel()
FirstTextrield = new javax. swing.JTextrield();
middleTextrield = new jevax.swing.JTextrield();
LaslTex Field = new juvox. swing. JTexlFie ()
suffixiextbicld = new jevax.swing.d loxtkicld();
maleBullon = new jevax. swing. JRadiodullon() ;
fomalckutton = new javax. swing. MHadiokutton();
unknownKutton = new javex. swing..JKadiokutfon) ;
iScrollPanes = new javax.swing.1scrollPanei);
notesTextArea = new javex. swing. JTextAreal):
updateButton = new javax.swing.JButton():

. more code to instantiate components and contigure layout . .

OEBPS/image7157.jpg
Steps Choose File Tyae

1. Choose ile Type

et (8 Seauence
i et [$95ea
cegories FlaTypes
e
] [wndow
5 et 3 waard
= i £ oo e
e Tile Tyoe
B psereonscs | § Dysae Garer

£ AT Ul Forms @ nstaler] Actvator
2

@ Quck Search Provider
Description

[Creates 3 rew wizard thot may be e trer reastered 3¢ o Now Flc wizard or
|called 1131 a custom code (2.9. rom an acton i main mens, popup e,
I

<hack | | Finish

Cancel

OEBPS/image8449.jpg
5 reook
& | Barcsimpson
2 | Komer simpson
B <2 5impse

3 Macgiesimman

O © °

OEBPS/image15588.jpg
public Aclionl| gelAclions{boolean conlexl) [
List<Aclions aclions = new Arraylisle(A

super.gelact ions (context
actions.addALL(Utilities. actionsForPath("Actions/RootNode
actions.addALL(Utilities. actionsForPath("Actions/Neuflode™))
return actions.toArray(new Action[actions.size()]);

ays.asLisL{
)i

¥

b

7/ No longer necessary to override public NewType|l getNeuTypes(]

OEBPS/image12376.jpg
/f Class Parson

wverride

public int hashCode() {
int hash = 3;
hash = 97 4 hash + Objects.hashCode(this.id]
return hash;

Il
@0ver ride
public buolean equals(Object obj)

if {obj

if (getClass()
return talse:
)

tinal Person other = (Person) obj:
return Ohjects.cquals(this.id, thor.id)

OEBPS/image832.jpg
806 G Pe

PP D @ (o) T D B

Projects €
v & personappBasic

Ml souce Packages |

v [personapy

6 person 5 Java Interface... 1o
» (& Lbraries Fifidzz [Java Package...
Paste %V T Cascading Style Sheet...
[ElJFrame Form...
History > | Ju)Unit Test..)2
[lJpanel Form...
Tools > | Entity Class... 1’
Properties [&) Entity Classes from Database...

—‘ @ Web Service Client... In
Other... i

T o

OEBPS/image15133.jpg
@essages (1
"CTL_Refreshic LivnReTrash”,
“CTL RefreshTitle-nefresh ACtion®
)
.);ubuc tinal class RefreshAction {
@\cLionTd(
category = “Fle",
id ~ "com.asyleach. fanilyLree. scLions Relreshiclion”

@A LionReyisLiation
1canRase = “cam/asgreach/fami 1yTree/actions/refresh-1con.png®,
displayName — "£CIL_KefreshAction”

@ctionketerences ({
@AcTinneterence(pth = “Menu/File", posirion
@actionReterence{path — “loolbars/lile’, pesition — S0),

@AcTiometerenca(path = "Shortcuts®, nane = "N-R")
B
public static final String REFRESH ACTION = “MyCoolRefreshAction”

OEBPS/image13495.jpg
public String getMiddlename() {
return middiename.get();

b

public vold selMiddlenanc(String niddlensme)
this.miodlenzme. set(middlename);
i3

public final StringProperty mid¢lenameProperty() {
return middicnane;
T

public String getsuttix() {
return suffix.get();
i

public vold selSulfix(Stiing suffix) (
this.suttix.set(suftix);

b4

public final StringProperty suffixProverty() {
clurn suffix;

QUverrise

public int hashCode() {
ot hash = 3;
hash = 7 < hash + Objects.hashCode (this.id)
+ Ohjects hashCode(hs. (a0 v gel ()
+ Ubjects. hashode this.notes.get()]
+ Objects. hashCode (this.qander.get()) ;
return hash;

OEBPS/image15097.jpg
@essages ({
T _CalendarAct ion=Calendar®,
“CTL_CalendarTitle=Calendar Action”

1
public *inal clsss Calendarfction inplements Actionlistener {

private CalendarPanel panel = null;

private Dialogbescriptor dd = null;

QOverride

PUBLC void actionFerformed(ActionCvent e) {
if (panel = mull) [

panel = new CalendarPanel():

) ¢
new Dialoghescriptor (panel, Bundle.CTL CalendarTitle());

77 display & block
if (DialogDisplayer.getDefault().notify(dd)
NotityDescriptor.OK_OPTION) {

/4 User clicked OK . . .

OEBPS/image17740.jpg
tableview.getColumns () .setAll(colCompany, colYear, collUnitsSold);

OEBPS/image13770.jpg
e
private void updateDuttoniction(ActionCvent event) {
enablalipdatePraperty. sat (false) ;
+tn. updatePerson (theParson) ;

OEBPS/image15372.jpg
punlic class TrashNode e

nds Abstractiode {

private final InstanceContent instanceContent;
private static final Logger logger = Logger.getLogger(
Trasitiode. Classs. getNan()) ;

pubTic Trasshilode(String 1110) (
this(title, new InstanceContent(}]
|

private TrashNode(SLring Lille, InstanceContent ic) [
super(new PersonliodeContainer(), new AbstractLookup(ic)):
InsLanceContent = iv;
setDisplaylame (titla];
selconBaschi LhEx Lens o (
“con/asgreach/familytree/trashcan/ resources/EmptyTrashicon pn

OEBPS/image15300.jpg
public class Grouphode extends AbstractNode {

private GraupNode(PersonGroun group, final PersonMadal persontiodel
InstanceContent 1c) ¢
super(Children creote(n=y lersonCnildFactory (persontiodel) , false),
niow AbSUracLookup(1)};

74 A support Class Thal il enenl s melhods of Todex. Suppart
/7 This class nust be in the Node's Lookup to support the Reorder Action
/7 and Move Up and Move Down 1n 1ts children
instanceContent.add(new Index.Support() {

@Override

publLic Model] getfodes(] {

roturn gerchildren().getioacs(Trua) ;
’

@verride
public int gethodesCount() {

return gethodes().length;
1

// Rearder by permutation

@verride

public void reorder(int[] orderIndex) {
persanModel..reorder (arderIndex) ;

3
7
+
Overtlde
public Actionf] getActions (boalean context) {
returm now Action(1(

ReorderAction.get (ReorderAction.class),
PasTeACTIaN.geT (PasTeACTIon. cass)) ;

OEBPS/image5003.jpg
WindowModes 201204102

s top Siding Side)
eV E T © s i D
explorer editor properties

output

hN

leftSlidingSide bottomSlidingSide rightSlidingSide

OEBPS/image14708.jpg
public GenderTopConponent () {
ini rCompanents (
sethame(Dundle. CTL_GenderTopComponent ()] ;
setToolTipText (Dundle. IINT_GenderTopComponent)

ContextTreeView view = new ContextTreeView():
ChoiceView choice = new ChoiceView():
add(view, BorderLayout. CENTER)
add(choice, BorderLayout.EAST)
associalelookup(ExplorerULiLs. crealeLookup(en, Lhis.gelAclionMap()));
em. se lRou LConLext (new RoolNode())

OEBPS/image15106.jpg
@actionIn(

category
id

File’,
om_asgreach familytree actions RefreshAction”

)
@Actioniegistra
iconBase = “confasyleach/ TamilyLrce/acLions/refresh icon.png®,
displaylare = "#CTL RefreshAction,
key = "MyCoolRefreshAction

n(

)

@ctionReferences({
@ActionReference path — "Menu/Tile”,
@\ctionReference(path ~ *Toolbars/Fil
@ActionRefarence (path — "Shortcuts

)
M2ssages (*CTL RefreshAction-Refresn*)
public final class RefreshAction implements ActionListener {

@Override
public void actionPerformed(ActionCvent e} {
7/ Put fallback code here

OEBPS/image17661.jpg
public interface PhoneDatashare {
/7 Salesdata
public abstract ListProperty<salesdatas thebatarroperty(
7/ Conpany
public abslracl ListProperly<Company> companyNamesProperiy();
74 year us a Slring
public abslracl LislProperly<SLrings calegorylistProperly();
public abstract String getbatabescription();
public abstract String gethemeDescription();
public abstract String getTitle():
public abstract double getTickunit():
public abstract void refreshbata(FrogressIndicator progressIndicator):
public abstract void updatesales(salesdata salesdata,
Pragress imdicalor progressindicator) ;

OEBPS/image8161.jpg
Form ChangeDetectorTopComponent - Navigator £
=l
&1 Other Components.
v [(TopComponent]
v A jscrollPanel [jScrollPane]
display [TextPane]

OEBPS/image7984.jpg
Projects
v (g Modules
& FsExploration
> (i Important Files
v % FsExploration
v (i Source Packages
» 85 com.asgteach.fsexploration
» [Important Files
» (g Libraries

OEBPS/image10035.jpg
v 67 PhoneDataWebService
v @ Source Packages
v @ com.asgteach.phonedata.webservice
» [E] Bundle.properties
&/®CompanyjerseyClient java
PR salesdataserseyClentja
» [Important Files
v &3 Ubraries
») JDK 1.8 (Default)

OEBPS/image16574.jpg
Sel<File> sel = lacalecATTH("dos

J/ or lalsc

OEBPS/image12619.jpg
private static tinal Logger logger =
Logger.getLogger(Person]Frame.class.getName())

OEBPS/image16337.jpg
b

protected final void fireChangeEvent(Object saurce, int aldState,
int newstate) {
if (oldstate = neustate) {
ChangeEvent ev = new Changet:
for (ChangeListener Listener

t(source) ;

Listeners . getListeners(
changeListener. class)) {

Uistener.statechanged(ev):

OEBPS/image4668.jpg
Options.

“E e Binet & o

Gewn e fedCos Ko HE Cices Aerlasni

(4 Files | Groowy | MobliePimiorms | Oumpur _ Taske Terminal | versianing [ROT

Lrag window image. { Snapping flcating windows
© Transparent drag wincew image (4 5rap to screen edges

@ Transparent floating wirdows

Docurment Tabs

) New docun, L0 sutiv document b,

opens
1 Close actvares most recent document

T placement: @ Top

Otefe 3
) gaxtom 0ne row per proje
O Right
_ Show parent folder name Intab tide) Same background color for files from tha same project
~ Sho Fll e path 71 Sort operied dacuments st by project

Vook and e

2

erred ook and e

71 Masimizs use o naive look and fes!

[iapor

impar

[Hetp [Cancel | [apply | [SONSS

OEBPS/image4587.jpg
AEdS D

e
e

Frn e
e

- B
TR e
» i

T e

B e
RIS

i

OEBPS/image15142.jpg
public interface CalendarCapability {

public void doCalendar(];

OEBPS/image15363.jpg
punlic class Grouphode extends AbstractNode {

@override

public Action| | getActions{boolean comtext] {
return new Action[1(

ReorderAction.gat (ReorderAction. class),
PasteAction.get(PasteAction.class),] ;
¥

7 Ihis is required for cut and copy actions
77 TU is nol tequired for Drag and Diop
@verride
prolecied void createPasteTypes(Transferable t, List<PasteType> s) (
super.createlasteTypes(t, s)
PasteType p = getDropType(t, 8, 0);
if (p 1= n1l) |
5.audip);

¥

OEBPS/image15951.jpg
}else {
dd. setvalid(true);
dd.getNotificationLineSupport (). clearMessages():

}
i

/7 Display the dialog and wait for response
Objecl slalus = DiulogDisplayer.gelDelaul L().nolily(dd);
il (slulus = NolilyDescriplor.0K_OPTION) |
7/ Supply @ greeling using Uhe person’s name
SystemonlprintTnCWelcom: * + panel .qel Firs | Neme() +
+ pancl et asthamc () + 1");
NotifyDescriptor. CANCCL_OPTION) {

} else if (status
7/ cancel

) else it (status
7/ Closed

)

NotityDescriptor.CLOSED_OPTION) {

OEBPS/image9437.jpg
Property

dala
chart

node
name

Type
0bjec | Properly<Ohs ervabl e
List=XYChart .Data<X, Y-

ReadontyObject
Property<XYChart<x, Y=

ObjactProperty<Node>
stringProperty

Description

The data contained in this series
Chast this series belongs to

Node represented by this series
‘The name of this series

OEBPS/image1283.jpg
800, Persor Appication

Peaple Fist Ban

Hormur Simzson

Middle Seymour

I Mg Sinpaar
15 o Simpson
5 e S,

tast smpson

Suffn

©uae Ormak O ko

Notes

v

OEBPS/image5976.jpg
MR aroityt e pp kil ap S0 Aie Naviaat eglTool SERlVindow)

8086 FamilyTr &5 Undo

- & Red (Q- earch (+)
& 2 pa ‘ @ Redo Q- Search (3+1
Group Window £ ¥ Cut
<2 people
v @ Happy [Paste

BN vagsie simpson IRAENNN

& | Bart Simpson

& * LisaSimpson Find...

v @ sad Replace.
& | Homer Simpson

& * Marge simpson

v @ Undecided

& * Maggie Simpson

& * Marge Simpson

®a

OEBPS/image1112.jpg
Projects 3 | Files | Services

v & personswingapp
v (i Source Packages
v [com.asgteach.familytree.model
[8 FamiyTreeManager.java
(& Pperson.java
v [personswingapp
(& personyframe java
» [Libraries

OEBPS/image9944.jpg
6006 Configure REST Test Client

() Locally Generated Test Client (suitable for Internet Explorer)

(®) Web Test Client in Project | Browse.

Target Folder: /BusinessApps /BuildExamples/SmartPhoneDataServer/web

Notice:

The security restrictions of some browsers might block access to remote
(REST) resources from the local filesystem. To access REST resources in
such cases, deploy a project that contains the test client to the same
domain as the resource. If your browser permits access to remote
resources, you can choose your local filesystem as the target and you do
not need to deploy the test client to a server.

[Cancel | ok

OEBPS/image15800.jpg
@override
public void refresh(] throws I0Exception
// create children asynchronously
setChildren(Children. create(new PersonChildFactory(). truel):
)
s

. code onilled . .

OEBPS/image16853.jpg
L)
Jmormalize the file--get rid of cxtra nolines
String docString = doc.getText(s, dac.getlength());
Stringhiilder sb = new StringRuilder();
for (String text : docstring,split("\n")) {
if (text.istapty()) {
sb.append text) ;
sbappend(\n*1;

¥
¥

7/ replace with normalized fext
doc.remove(8, doc.getlength());

doc. insertString(o, sb.tostring(), mull);

7/ ind the storting position in the document for the
17 new string
inl slartPosilion = 6;
lor (Widgel witgel : Layer.gelChitdren()) |
AF (widgel Instanceof LabelWidgel) {
VabelWidger 1w = ({1 abelWidget) widget);
if (lw.equals(labelwidget)) {
doc. remove (startPosition, oldTextsize + 1);
if (labelWidget.getlabel() istmpty()) {
77 get rid of the widget if it's empty
refreshLines():
YUy

6

OEBPS/image7909.jpg
800

Order Pizza

stops Order Confirmarion (3 our of 3)
L tcenufy Customer

2. Size and Teppings et Nuwben 107

3. Order Confirmation e amber ol

Time: 07:13

Total: § 15.

Medium Pi77a with Sausage, For Pckip

2 Order Is Confirmed

OEBPS/image15079.jpg
aHessages ({
CIL_LoginAction=Login”,
CTL LogLnTopComponen
“HINI_LoginlopConponen
ERROR Incorrectlogin=Incorrect Login for user

ogin Window",
Ihis is a Login window",

»
code omitted
private void LoginButtonActionPertormed(
Jjava.awt.event ActionEvent evt) {
errorLabel.setlext(""];
UserRole userfole = Lookup. getDefault().lookup(UserRole.class);
if {userRole 1= null} {
User thisser = userfiole findUser(usernameTextField getText(],
new String(passwordrield.getPassword()]];

WindouManager wn = WindowbanagergeiDefan ()
it (thisUser 1= null) {

77 Wit 1o now role

wn. setRole(thisUser.getRole()):
) else {

errorlabel.setlext(bundle. LAROR_LncorrectLogzn()
+ usernancTex LField.getTex)
if (wm.getRole() != mull) {
/7 put it back to the default role
wn. setRole(null);

OEBPS/image7175.jpg
New Wizard

Name and Loeation

1 Choose File Ty
2. e Type
5. Mame and Location

Class Name refis:

Project

Fackag:

Created Files:

Modifsd Files:

Number

Secuence

ach secuence

fcorr asateschisequenc o Nurmberbis
fcorm asgteach/sequence; NumberVis.

bpraject prejectaml

| (] o> | . [Grel

OEBPS/image6455.jpg
[Gne] [nep | [sawe | [saeAl | [Discawan |

OEBPS/image16646.jpg
Actions 1n Default System
Actions/Window in Default System

OEBPS/image12302.jpg
informiT.com .-

InformlIT is a brand of Pearsan and the online presence
for the world's lsading technology publisers. It's your source
for reliable and qualified content and knowledge, providing
086 10 the top brands, authors, and contributors from

the tech community.

CiscoPress DovwicmAM 1M DUET BN SAMS | Sefar

LearniT at InformIT

Looking for a book, eBook, or iraining video on a new teshniology? Seek-
ing timely and relevant information and tutorials? Laoking for expert opin-
fons, advice, and lips? InformiT has the solution.

* Loarn about now roloases and spacial promotions by
subseribing to a wide variety of nawslattors
Visit informit.com/newsletters.

* Access FREE pod

st from experts at informit.com/podcasts.

* Read tha latest author articles and sampla chaptars al
informit.com/articles.

* Access thousands of books and videos in the Safari Books
Onlin digital library at safari.informit.com.

* Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can coess the
hottest technolagy cortent

Are You Part of the IT Crowd?

Comnect with Poarson aulhors and oditors via RSS foeds. Fagebook,
Twitter, YouTube, and mare! Visit informit.com/socialconnect.

6

INTOrMIT.COM v rosrmn rosaiz e

ey Cheafress cdiomas @

P

OEBPS/image13274.jpg
hle myConpuledValue = (soen

LelWidihl) + sc

OEBPS/image16659.jpg
/4 display ullribules (magenla}
writehsg("Attribute * + attriancs.next-lencat(), Color.MAGHNIA);

t
S
¥
private void writensq(string str, color color) {
try {

if (10colorLines. isSupported(io)) {
T0ColorLines. printlntio, str, color):
Jetse (
writer.printin(str):
I
} catch {10kxeeption cx) {
Fxeeptions. printstackirace(cx) ;

i

OEBPS/image10585.jpg
800

Project Properties - Far

IyTreeApD

Categories

°

°
°

Sources
Ubrares
Application
nstaller
Hints

Generate Installers for: ¥ Windows
o Linux
¥ Mac 05 X

) Solaris,

Application license: | No License

] Use pack200 compression

Note: Pack2(0 compressior signi
Cestreases installer size.

cantly (up to 70%)

OEBPS/image5244.jpg
8086 New

dow.
steps Basic Settings
L Type

2. Basic settings Window Position : | topbanrer :| Hedefin:

3 Name, lcon and

leftsice
Location & Openon ApBlics gniside
[Keep preferred
output
 Sliding not alloy _ hartomslidingSide
= leftslidingSide
 Closing notallo exoplorer

[Undocking nots _ "19ntSlidingSide

 Dragging not allowed

Finish | |

OEBPS/image12953.jpg
@verride
profected viid process(l isi<Porson> chunks) [
chunks .stream() . fortach{ (] - {
statusTexthrea.append(p + "\

h:
¥

L
worker . addPropertyChangeListener ((PropertyChangeEvent evt)
1t ("progress” .equals|evt.getaropertylare(11) {
progressBar. setValue((Integer) evt.getNeuValue());
¥

M
worker execute();

>

OEBPS/image3070.jpg
Projects € | Files | Services

v & FamilyTreeManagerimpl
v (i Source Packages
» B3 com.asgteach.familytree.manager.impl
» [mportant Files
v (g Ubraries
») JDK 1.8 (Defauly
& FamilyTreeModel
» B Lookup API - org.openide.util.lookup

OEBPS/image9417.jpg
Property
animal ed
Tegend

TegendSide

Tegendvisible
title

titleside

Type
RoolcanProperly
objectProperty<Node-
ObjectProperl y<Side>
booleanbroperty
stringProperty
UbjectProperty=side~

Description
Animate data changes

Node that conlains te legend
Chart side location of the legend
Display legend

Chart title

Chart side location of title

OEBPS/image15766.jpg
em.getTransaction().begin(};
PersonCntity target = en.find(PersonCntity.class, p.getTd());
il (largel 1= nall) |

LargeLseLbirs Uname (. geL-irstiane());

LargeLseLGender (p.gelGender());

Larget st s name(p. gel as! name ()

target - sotiiddl cname (p. geti ddlenanc()) ;

targetscthotes (p-getiiotes (115

target.setsuffix(p.getsuffix());

en.merge(target):

en.getTransaction() .comit();

Togger.log(Level.FINE, "Person [0) successfully updated.”, p):

getPropertyChangeSupport () . tirePropertychange(

Fam (yTresManager. PROP_PERSON_UPDATED, nulL,

GuildPerson(Largel));

3

Togger.Toq(l cvel WARNING, “Na cntity far Porson {8}.", pl;
} catch (Fxception ex) {

Togger.Toq(l evel .SFVFRE, null, ex);

} finally {
em.close();
1
)
@verride

public void deletePersan(Person p) {
LiLybanager o = EMF. crealcknti yManeger () ;

ty {

OEBPS/image6854.jpg
Return Value Constant
YES_OPTION

NO_0P1LON

OK_UP1LON

CANCEL OPTION

C1OSFD OPTTON

Description
User pressed button YES.

User pressed button NO.

User pressed bulton OK.

User pressed button Cancel.

User closed the dialog without pressing any buttons.

OEBPS/image7049.jpg
806

Change Role

= hed

Password

Cancel | [0k]

OEBPS/image15390.jpg
@bBuncLe. Messages! {
“HINT_Removeodu=Per sen”
n
public class RemovePersonhode exlends AbstactNode [

public RemovePersontiude(Person person)
Super(Children LLAT, Lookups.singleton(person)];
setTconBaseh thExtension(
“con/asgteach, fanilytree/trashcan/resources/delete. png") ;
St (S ing.val 0o (person. g1 Td0)) ¢
sethisplayNan2(person. oSTring()):
setShortDescription(Buncle. HINT_RemoveNode()) ;

i

@verrade
public String geldlnlbisplayName() {
Person perscn — qetLookup(] .Lockup{Ferson class) ;
StringBullder sb — new SiringBuilder();
1f (person — null) {
returm null
i
sb.append ("") ;
suitch (person getGender()) {
tase MALE
sb.append ("
break;
cose TTMALL:
sb.spoend (+) ;
bresk;
case UNKNOWN.
sb.append ("7
break;

}
sb.append (person. LoSUring ()) append("</bs");
return sb.toString()

OEBPS/image16601.jpg
<filasystens
<folder name="Actions">
<tolder name="Tools">
<file name="com-asgteach-appuserfile-ConfigFileAction. instance">
<1--con.usgleach.appeon | iglile. Conl igFileAc Lion-->
<allr
bundlevelues
*com. asqtoach.appconfigfile. Kundl c4CIl_Canfighile® names"di splayanc”/»
<attr
methodvalue=
*org. openide.awt . Actions, aluaysCnabled” name="instancecreate’ /=
<attr name="delegate" newvalue=
*con. asgteach.appcontigtile. ContigFileAction” />
<allr name="iconBuse" sLringvalues
“com/asgteach/appeonfiqfile/Favarites. png*/>
=attr baolvalue="false" name="noTconTnMenu®/>
<ffiles
~/folder=
</folder>
<folder name="Toolbars"s>
<lolder name="File'>
<file name="com-asgteach-appuserfile-ConfigFileAction. shadou">
=1--com.asqreach.appcont igfile. ConfigFilenction
<attr name="originalrile* stringvalue=
“Actions/Teols/con-asqteach-appuserfile-ConfigrileAction.
<attr intvalue='350" name="position" /=

nstance" /s

</lite>
</folders
</folder>

</Filesystoms

OEBPS/image17652.jpg
public class UpdateSalesTtemservice extends Servicessalesdatas {
private Salesdata salesdata;

public Salesdala gelSalesdala() |
relurn salesdata;

1

public void setsalesdata(salesdata salesdata) {
this.salesdata = salesdata;
]

@verride
protected Iask<Salosdatas createlask() {
final Salesdata _salesdata = getSalesdata(
return new Task<Salasdatas() {
private final SalesdatalerseyClient clientl =
new SalesdatalerseyClient();

@override

protected Salesdata call() Uirows excoplion {
clientl.edit XML(_salesdata,

salesdata. getSalesid() . taString()) ;

return salasdata;

OEBPS/image14298.jpg
<StackPane id="StackPane' fx:id="stackpane'
xmlns : fx="http://javafx. com/Fxml"
fx: controller="can. asgteach. fxdemonodule MyRectanglerxController®s
<stylesheets=
<URL value="@UyCss.css” /=
</stylesheets=
<chiildren>
unchanged code omilled .
<Suingllode fx:id="swinglode" translatey="-30" />

</ch
</SlackPane>

OEBPS/image14891.jpg
<7xml version-"1.0" encoding_"UTF-3" 7
<1DOCTYPE Le-group PUBLIC *-//NetBeans//DTD Top Cumponenl in Gruup
Properties 2.8//LN" "http://wa. netbeans .org/dtds/tc-group2_0.dtd"=

fan="5.0">
“module neme=com.asgzeach. personeditor” spec—
<Tc-1d 1d="Person°ropertyTopCamponent® />
open-close-behavior open="true" close"true® /=
</te-group>

orrs

OEBPS/image16008.jpg
ilogs APT - Handles Llhe dialoy and wizard infrastruclure
UI Utilities AP - Helper methods for various UI related tasks
Utilities APT - Various helper methods and basic concept detinitions

OEBPS/image14557.jpg
public class GenderchildFactory extends ChildFactory=Genders {

private static final Logger Logger =
Logger. getLogger (GenderchildFactory. class . gethame (1)

aoverride

prolecled buolean creslekeys [LisL<Genders LisL) [
Tist.addAl1 (Arrays. asl 1t (Gendor.values()));
Togger. 1ol cvel bINFR, "creatokeys callod: (6}, 1is);
return true;

)

@override

protected Node createNodelorKey(Gender key) {
Logger. Log(Level. FINER, *cresteNodeForKey: (0}", key):
return new Gendertoda(key):

OEBPS/image7736.jpg
Order Pizza

steps New Customer (2 out of 5)

Identify Customer
New Customer
Size and Toppings Your Name: Joe
Delivery Information
Order Confirmation

Your Phone Number: [555-1212

[<Back | [Next> | nish | [Cancel

OEBPS/image7004.jpg
800 Please Login

Name |maggie

Password |eeese

@ Incorrect user name or password

[Cancel | [0k)

OEBPS/image4594.jpg
bl S0 B ic
EN A Window Sclection

T

0 Cowee | FBS W] | | m x @ 3 [

p
MultiView Design View
Buttons Controls

GUI Design View

OEBPS/image16565.jpg
docs/mydocs_cs.eip // inslalled in release dircclory of module HyModule

Eile Fili e lacatol dacsmdors Fin®, “conanomie”, Emie)s

OEBPS/image13761.jpg
enmL

private void handlekeyAction (KeyCvent ke) {
if (changeok) {
enableUpdateProperty. set(true);
+

¥

P

privale void genderSelec LionAc Lion{AcLionEvent event) {
il (changeoK) (

enablelpdaeProper Ly sel{ Lrve) ;
Il

OEBPS/image1677.jpg
8006 New Praject

Steps Choose Project

pT——
= J %
S Pty
& 5 Jrart Ao
5 jaa
5 st
5 e

Description:
[Creates a new Javarx FXmL-enabled zpplicaton ina
standard IDE project. FXML s a scriptable, XML-based

Crop) [[fnen] [Gioa)

OEBPS/image17138.jpg
@onvertispPropert ies
G5 = -/ farg. smartphane. data.edi tary/TablelataFditar/ /FH",
autostore = false

)
@opComponent . DescripLion(
preferred = *labledalabdiLor lopComponent
iconBase = "org/smarLphone/ Labledatazedilor/Line.
persistencelype = IopComponcnt . PERSISIFNCE_ALWAYS

chart.png”,

)
@TopConponent . Registration(node
@actionIb(category = "Window",

id = "org.smartphone. tabledata. editor. TableDataLditorTopComponent '}
@ictionheference(path = "Menu/Mindow" /+, position = 333 +/)
@TopComponent . OpenActicniegistration(

displaykane = "#C1L_|ablebalabdi LorAc Lion”

preferredii) = *1ahlehatakd forlopComponcat

‘output”, openatstartup = true)

)
@essages ({

“CTI TableataFdi torAction=TahleDataFditar®,
CTI_TableDataFditorToptanponent=Tah eataFditor®,
“HINT_TableDataEditorTopComponent=This is a TableDataEgitor window®

1
public tinal class TableDataEditorTopConponent extends TopCompanent [

private static MyTahleDataModel tableModel;
privale static finel Logger logger = Logger. gellogger(
TableDataFdi tarTopCampanent .c1ass . qetlame ()] ;

OEBPS/image12367.jpg
com.asgteach.tamilytree.model.Person@l23

OEBPS/image17731.jpg
TableColumn<Salesdata, BigDecimal> colUnitsSold
= ncw TableColumn<>(*Units sold*
colUnitsSold. setCel1ValueFactory((TableColumn. CellDataFeatures
<salesdata, BigDecimal> cell) ->
el Lenebbatnel ot ba L onsfranerinl s

OEBPS/image17553.jpg
@ntity
@abl a(nane = "SAl
@ RootCLement
@ienedoueries([. . . })

public class Salesdata implements Serializable |

SDATA")

privale slalic linal long serialVersionID = 1L;

private final IntegerProperty salesidProperty =
new SimpleIntegerProperty();
private final StringProperty salesyearproperty =
new SimplestringProperty()
private final ObjectProperty<BigDecinal> unitsinnillionsProperty =
new SimpleobjectProperty<>():
private final ObjectProperty<Company> conpanyidProperty =
new SimpleObjectProperty<>();

public Salesdata() {
¥

public Salesdata(Inteqer salesid) {
salesidProperty. set(salesid.
}

e
@GeneratedValue(strategy = GenerationType. IDENTITY]
@Basic(optional = false)
Column(nane = “SALESID")
public Tnteqer getSalesid() {

return salesidProperty.get();
¥

OEBPS/image13605.jpg
<7import
<7import java.util.s7s
<7import javafx.scene.*:
Zimport javafx. scene.control.t?
<7import javafx.scene.layout. %

<AnchorPane iu="AnchorPane® prelHeighl="328.6" prelWidlh="630.0"
x="hLLp:// javalx. confLxnl”

personfamlapp.PersonFXHLCont raller™>

<children
<SplitPane dividcrPosilions="0, 436305/32684 /645" focus | raversables" Lrue®
preflleight="320.0" prefWicth='630.0"
style="-fx-background-color: Linear-gradient(aliceblue, Lightblue);"
AnchorPane. bot tonanchor="0.0*
Anchorpane. leftanchor="0.6"
AnchorPene. rightAnchor="0.0"
AnchorPanc. LupAnchur="0.6">
<ilw
<Anchiorbane ninHeight="6.0" m
prefHeights
<childrons
<TreeView fx:id="personTreeView" prefHeight="283.0"
prefuidth="225.0" AnchorPane.bottonAnchor="23.0"
Anchorpane. Leftanchor="23.0" AnchorPane.rightAnchor="23.0"

Anchorpane . topAnchor="14.0" />
</chiLdren~
</AnchorPane
<Anchorbane ninHeighi="h.0% minidih="0.0° profHeighl="376.0°
ProfMIdth=" 31, 9008/ /70t /1
<childron>
<HBox ir="Hiox" aTignment- RIGHI™ Tayoutx="11.6"

TayoutY="117.6" spacing="70.0"
i ldians

OEBPS/image3221.jpg
parsonTires [TTsashProperes € S
[Properti... | [Binding | | Events | [F"Code™
B

Type Parameters
Use Local Variable

Custom Creation Code new JTree(treeModel)

pre-Creation Code
post-Creation Code
pre-Init Code
Post-Init Code
Post-Listeners Code
pre-Adding Code

o 0 X

personTree [jTree]

€

OEBPS/image13461.jpg
public class Person implements Serializable {

... code omitted

@override
pubLic inl hashCode() [
int hush = 3;

hash

47 % hash + ObjecLs. hashCode (Lhis. 1d)
+ Objects,hashCode(this, ful lname. get ()}
+ Objects.hashCode (this.notes.get())

+ Objects. hashCode(this. gender.get()):
return hash;

¥

woveride
public boalcan equals(Uhject abj) {
1 (ahj = null || getClass()
return false;
s

inal Person other = (Person) obi
return Objects.equals(this.id, other.id)
& Objects. equals(Uhis. lullname.geU(), olher. lullnane.geL())
& ObjecLs. equals(Lhis.noles.gel(), olher.noles.gel())
54 ObjecLs. equals(Lhis. gender.yeL (), olher.gender.geL());

OEBPS/image12410.jpg
public void setMiddlenane(String micdlenane] (
String oldMiddle = this.niddlenanc;
Unis niddlensne = middlenanc;
getPropertyChangeSupport (). firePropertyChange(
PROP_MIDDLE, oldNiddle, middlename);

¥

public void setSuffix(string suffix) {
String oldsuffix = this.suffix;
this.suffix = suffix;
getPropertyChangesupport() . firePropertyChange(
PROP_SUFFTX, oldSuffix, suffix):

unchanged code emitted .

OEBPS/image14699.jpg
public GanderTopConponent () {
initanpanants();
sethlame (Bundle.CTL GenderTopComponent ()] ;
setToolTipTex: (Dundle.IINT GenderTopComponent ()

HenuView menu = new MenuView()
ListView list = new ListView()
add(menu, BorderLayout. CENTER) ;
add(Uist, BorderLayout.SOUTH) ;
associatiLookup(ExplorerULils. croateLookup(en, Lhis.gelAcLiomMap()));
em. setkantContext (new Rootade())

OEBPS/image17695.jpg
TableView<Salesdata> tableview = new TableView<>();
ObservableList<Salesdat> theList = getTheListSomeHow();
tableview.setItems(thelList):

OEBPS/image13898.jpg
PrecessTask. satinkailudit <= {
/7 %.getsource(] .getException() could be nuLl
Logger - Lug (Leve L WARNING, "Updale Lusk lailed (0)",
UgelSour ce() . ge [Exceplion() 1= null
? LygelSource() -gelExceplion()
“nkaroun failure®)

resetun

i

processTask, setnCancelled(t - {
Togger.log{Level .TNL, "Process ALl task cancelled."):
resetUI0);

N
/¢ start the task in a background thread
new Thread(processTask) .start();

OEBPS/image15509.jpg
public class PersonchildFactory extends ChildFactory=Persons {

private static tinal Logger Logger = Logger.getLogger(
PersonChildFactory. class. gethane()) :

privale linal PersonCapubilily personCapubilily = new PersonCapubilily():

privale FanilyTreeManager (ln = null;

public PersanchildFactory() {
tm = Lookup.getbefault() . Lookup(TamilyTreeManager. class);
if (ftn = null) {
Togger.log{Level .SIVIRL, "Cannot get TamilyTreeManager object');
Lifecycletlanager. gethefault (). exiti);
) etse |
tn. addPropertyChangeL istener (
WeakListeners .propertyChange (familytreelistener, ftn));

}

@override
protected boolean createKeys (List<Person> List) (
RefreshCapability refreshCapability
personCapability.getlookup() . Lookup(RefreshCapability .class):
if (refreshCapability '= null) {
try {

OEBPS/image10772.jpg
Projects | Files)| Services | Favorites

v [Locale ES
> [build
» [nbproject
v [release
v [core
v [locale
2] e
» [org-openide-filesystems_es.jar
v @ b
[locale
¥ [modules
v [locale
» [org-jdesktop-layout_es.jar
org-netbeans-api-annotations~common_es.jar
org-netbeans-api-progress_es jar
org-netbeans-core-lo-ul_es jar
org-netbeans-core-nativeaccess_esjar
org-netbeans-core-netigso_es.jar
org-netbeans-core-output2_es.jar
org-netbeans-core-ul_es.jar
org-netbeans-core-windows_es.jar

vYvvvvvy
EDEDEDEDEDEDEDEDED

OEBPS/image2814.jpg
8086 Person FX Application

~ People First | garc

Homer Simpson

Marge Simpson Micdle | Seymore

Bart Seymore Simpson It Simpson
Lisa simpson
Maggie Simpson s
@ wale Female | Unknown
Notes

Processing Maggle Simpson

HOMER SIMPSON
MARGE SIMPSON
BART SIMPSON
LISA SIMPSON

Text controls fading in as completed

OEBPS/image13110.jpg
System.out.printin(circlel.radiusProperty());

OEBPS/image12525.jpg
/* Create and display the Torm */
SwingUtilities.invokeLater(() -> {
PersonJFrame.newInstance().setVisible(true);

)

OEBPS/image13977.jpg
i
74 start the task in a background thread
new Thread(processTask) .start(]:

Il

17 reset the U
private void resetur() {
FadeTransition ft = new FadeTransition(
Duration.millis(1500), nameDisplayl:
t.5etTolalue(0]:
#t.setbelay (Duration.millis(2000)) ;
ft.setonFinished(a -> {
naneDisplay.getChildren() . clear()
processallButton. setDisable false) ;
naneDisplay. setopacity(1):
i
t.playl);
progressfar. progressproperty().unbind();
progressar. setProgress(0);
statushessage, textProperty() .unbind();
statushessage setText(""):

OEBPS/image12480.jpg
// Define a property change listener
final PropertyChangeListener pcl = new PropertyChangeListener()
@override
pubilic void propertyChange (PropertyChangeEvent evt) {
System.out.printin(evt. getPropartyName ()
+ " for * + evt.getNewvalue());

OEBPS/image15291.jpg
@ibBundLe_Messages({
{TNT 2 sorNode=Pes son®

n
public class PersonNode extends Abstracthode {
/7 1his is the Uist that this bersonhode is part ot!
private final PersonModel personiodel;
public Personfiode(Person person, Personadel personodel) (
super(Children.LLAT, Lookups.singleton(personl;
this.personblodel = personNodel ;
setlconbasei thextension(
*com/asqTzach/ fami Lytree/qroupviever/ resources/personlcan pna”) ;
s Name (S ring vall uc0T (personge 1 T4(1)) ;
setDisplaylans(person, 1o5Tring());
setshortDescription(Bundle. FINT ParsonNode());
+

QOverride
puUSlic String getlitmlUisplayName(] {
nchinged code

+

OEBPS/image5546.jpg
Male

| Hamer Simpson
& | Bart simpsan
v O Female
& * Marge simpson
& * Lisa Simpson
& - Maggie Simpson
O Urknown

OEBPS/image13907.jpg
/1 resst the UL

private void resetuI() {
statusTextarea, textProperty().unbind(}:
statusTextArea, setText("
progressBar. progressProperty(].unbind():
progressgar. setProgress (0] :
SLatushessage. LexBropery () .unbind ();
statustessage. setlext ("]
processalThuttan. sethisable(fal se);

OEBPS/image16918.jpg
public final class FamilyTresVisual FXFlenent extends 1Panel
inplenents MultiViewClement, FropertyChangeListener {

@override
public void componentOpened()
177 requires o combdomn lalth Lo make sure
77 conlroller is properly inilialiced
controller.addPropertyChangeL istener (this);

@override
public void componentClosed() {

controller. removePropertyChangeListener (this);
T

@overide
pulilic void componentShowing() {
cdiLCookie = M eObjec. gelLookup() . Lookup(kdilor Cockic. class);

i (editCookic t= null) £
doc = edi tookic. gethacment ()3
if (doc 11) {
editcookie. open(); 17 open
oy {
doc = editCookie.openDocurent(); // get document

) catch (I0Exception ex] {
Exceptions.printStackTrace (ex) ;
retur

OEBPS/image14456.jpg
controller = (PersanFXEditorController) fxmllLoader.getController();

3 catch (1hxception cx) {
Cxceptions. printStackTrace(ex);
1

]

/7 LookupListener to detect changes in Global Selection Lookup
LookupListener laokupListener = (LookupEvent le) -> checkLookup();

private void checkLookup() {
TopComponent tc = TopComponent.getRegistry () .getActivated():
if (te 1= null & tc.equals(this)) {
‘ogger.Log(LeveL.NFO, "PersonFXEditorTopCamponent has focus."):
return;

}

Collection<? extends Person> allPeople = lookupResult.allInstances();
if (Platform. isFxapplicationThread()) {
System.out .println(“Already in JavaFX Application Thread");
controller.doUpdate (allPeople):

} else {
System.out.println("NOT in JavaFX Application Thread"
Platform. runLater(() -> controller.dolpdate(allPeople])

¥

@override

OEBPS/image14663.jpg
public final class GenderTopComponent extends TopComponent
inplements Cxplorertanager. Provider {
private final CxplorerManager em = new Cxplorertanager():

public GenderTopComponent() {
initcomponents(]:
SctName (RundTe. C11_Gender LopConponent ()) 5
sctlonl Liplext (Bundl . HINI_Gender lop omponcat ());
OutlineView view = new OutlineView("People
add(view, BorderLayout.CENTER) ;
associateLookup(ExplorerUtils. createLookup(em, this.getActionMap(l]):
en. setRootContext (new RootHode (1)

1

.. . unchanged code omitted .

OEBPS/image17832.jpg
@Uverr:de
public void initialize(URL url, ResourccBundle rb) [
data — Lookup.gelefault() . Lookup{PhoneDatasnare class);
i (data == n1) (
Togger 1og(Level SIVIRC, "Cannot get FhoneDateShare obiect');
11 fecycl Hanagor . gethefaul t().oxit(];

i
¥hxi 5. SerCategortcs (dara. catogoryl 15tProporty (]
xhxas.setLabel(data. gethenebescription) ;
yAxis.selTickUnil (dala.getTickUniLi));
yAxzs. setlabel (date. getUatabescription()
Zagger Tog(l ovel “THFQ, yx s Tabel = (01, data. gotDatadescript ion());
Logger. Log(Level.INF, "xAxis label = {0}", data.getNamelescription());
comparatorSalesdata = (Salesdata ol, Salesdata a2) > [

74 First comers the company name, then compare the year

At resilT = o1 gerCamanyia() .getCampanynanc() comparaToTgnoretas

02.getComanyid() .cetCopanyname(1);
1 (resitt =) {
return ol.getSalesyear().compare |o(02.getsalesyear(});
¥

return resu

i
Chart. set it le(data.getlitlei));
chart sorhara(lchata);

OEBPS/image12869.jpg
public void deletePerson(Person p) |
Person person:
synchronized (this) {
person = personiap. renoval(p.getId()):
L0 (person == null) {
relum;
i

}
this.proprhangeSupport . fi rePrapertyChange (
PROP PFRSON DFSTROYFD, null, person;

3

pubLic synchronized List<Person> getaL(People() [
ListePerson> copylist = new ArrayListe>(]:
personkop.values (). forEach(p -> copyList.add{new Person(pi)]:
relurn copylist;

OEBPS/image14240.jpg
package com.asqteach . familytree.nadel .data;
- . . imports omitted . . .

@onstop

public final class DataRemover inplements Runnable {

private static tinal Logger Logger = Logger.getlogger(
DalaRemover. ¢ Luss.geName (1];

Goverride
public void run() {
FamilyTreeHanager ftm = Lookup. getDefault() .lookup(
TemilyTreetanager.class) i
if (Ftm 1= null) {
ftm.getalleople() .strean() . forCach((p) - {
Togger. log{Level .TNT0, *Removing {0}.", p):
ftm.deletePersonip) :
b

OEBPS/image14377.jpg
3

Ftm = Lookup.getDefault().lookup(FanilyTreeHanager . class);

if (ftm = null) {
Togger . Lag(Level .SEVERE, “Cannot get FamilyTreeManager object”);
LifecycleNanager. getdefault() .exit();

}

buildoata();
Ftm.addListener {fanilyTreeListener)
7/ Creale u rool node and populale Uhe TreeView conlrol
Il lencberson> ruotNode =

now 1 ree | fems> (new Person(*Propl e
buildi reevicu(raotiode)
7/ Confiqure the TreeView control
personTreeview. setioot (rootNode) :
personTreeview.gethoot () . setExpanded(true) :
personTreeyiew.gelSelecl ionHodeL() , se Lec LedT LenProper Ly ()

addUisener{ LreeSelec LionLis Lener) ;

, Porson.Gonder. INKNOWN)) ;

¥

private vaid buildatal) {
Ftm.addPerson(new Person(“lloner”, "Simpson*, Person.Gender MALL));
Ftm.addrerson(new Person*Harge" , "Simpson’, Person.Gender. FEUALE)) ;
tm.addPerson(new Person(*Bart”, "Simpson*, Person.Gender.MALE) | :
I m.addPerson(new Person(*Lisa®, *Simpson*, Person.Gender, FEMALE]);
I Ln_addPerson{new Person(*Heggie’, *Simpson”, Persen. Gender. FENALE)) ;
Toguer: LUl RN Tim, GO EPsopg). St AL

OEBPS/image4058.jpg
[TopComponent] - Navigator €3
S/ Form GenderTopComponent

» L3 Other Components

Preview Design
Bind
Events

Customize Layout.
Add From Palette

Set to Default Size
Edit Layout Space.

Change Order...

Copy
Paste

Customize Code.

Properties

Set Layout

Design This Container

vvv

v

Free Design

» __Absolute Layout
Box Layout
Card Layout

Flow Layout

Grid Bag Layout
Grid Layout

Null Layout (Default)

%V Overlay Layout

OEBPS/image17796.jpg
i

M

+
7/ tanpare. company name and yoar with filter fext.
String lowerCaseFilter = newlalue. toLauerCase();

if (selesdata.getCompanyid() .getConpanyname) . toLowercase()
~contains (Lowercaserilter)) {
return true:
) else if (salesdata.getsalesyear() . contains(lowercaseFilter) (
retumn true:
5

veturn false;

OEBPS/image10191.jpg
TableView Window £

SmartPhone Sales Data
Company Year Units Sold (M)
Apple 2008 11.40
Apple 2009 25.00
Apple 2010 47.50
Apple 2011 93.20
HTC 2008 5.90
HTC 2009 9.00
HTC 2010 21.70
HTC 2011 43.50
Nokia 2008 61.00
Nokia 2009 68.00
<]
ter Data | Provide Year or Company Filter

| Refresh Data |

OEBPS/image13929.jpg
final inl askMaxCounl = processLisl.size();
Togger. Tog(Level . FINE, “processing Lisl: {01, processtist);
int tackProgress
for (final Person person i processList) {
if (iscancelled()) {
break;
3

/1 do something to each person

Logger . Log (Leve L FINE, "processing: (0)", person);

doProcess (person) ;

7/ Update the property on the rX thread

Platform. runLater(() -> {
partialResults.get().add(person);

n:
updateProgress (108 * (++taskProgress) / taskMaxCount, 100);

thread. sTeep (500

R B
return partialRosults.get();
1

7/ called on the background thread

private void doProcess (Person p) {
p.setFirstnane(p.getFirstnane() . tollpperCase(}):
p.setHiddlenane(p.getiiddlenane() . toppercase }1:
p.setLastnane(p.getLastnane(] . toUpperCase(]):
P.setsufrix(p.getsuttix() . tolpperCase()):

OEBPS/image12637.jpg
Logger. log(Level.FINE, "Node updated: {0;", node);

OEBPS/image14408.jpg
package com.asgteach. familytree. personfxviever;
+ - inport stalenents s TopComonent anmolal ions omil ted .
public Final class PersonFXViewarTapComponent extends TopComponent {

private static JFXPanel fxPanel;

private PersonFXViewerController controller:

private static final Logger logger = Logger.getlogger(
PersonFXViewerTopComponent .class .getiane()) ;

public PersonkxViawerlapCanponent () {
initCamponents ()
sethame(Bund Le.CTL_PersonFXViewerTopComponent |
setToo(TipText (Bundle . HINT_PersonFXViewerTopComponent () :
setlayout(new BorderLayout()):
init();

¥

private void init() {
xPanel = new JFXPanel():
add(xPane, Border Layoul .CENTER) ;
Platiom.selTmp lici LExiL(Talse) ;

/1 we need to wait for createScene() to finish
final CountDownLatch latch = new CountDownLatch(l);

Platform. runLater(() -> {
try L
createscene () ;

OEBPS/image14882.jpg
<7xm version="10" encoding="UTF-8"7>
O0CTYPE groun PUELTC
-/{NetDeans//DTD Group Properties 2.0//IN'
I Lp:/ /. e beans . org/dds/group properUies2_8.dud">
<group version="2
<narc un’ qe="per<or
<state opened-*Tals:
</group>

roup” />

OEBPS/image8720.jpg
806

New Wizard

Steps

New Object Name

1. Choose Template
2. New Object Name

[Help.

] [(<Back] [Next> | (LFimishe) [Cancel |

OEBPS/image16556.jpg
Qoverride
public void actionPerforned(Actionvent e) {
try {
writer. reset(]: 77 clear the window each time
) caleh (T0Exceplion ex) [
Exceplions . prinlSlackTrace(ex);
return;
1
i0.salect () 7/ select this tah
File configFile = InstalledFilsLocator.getDefault().Locate(filename,
“com.asgteach. appconfigfile”. false):
riledbject fo = nall
iF (configrile t= null) {
fo = FileUtil.toFileObject (canfigFile);
i (fo 1= 1)
displayessage(“Tile * + fo.getNameCxt() + * found!
try |
for (String lines : fo.aslines()) {
displayHessage(lines) ;

3
T calch (10kxceplion ex) {
Fxcoplions. print$tackl race(ex);

null || configrile == null) {
displayMessage("Waming: File * + tilename + " is missing!

OEBPS/image17035.jpg
@ctionTn(
cateqory = *File",
id = "com.asyteach. familytree,personfiletype. ShowXMLStructureAction”
)
@ActionRegistratior
iconBase = *Lom/osgleach/umi LyLree/person i Lelype/inlo. png”
displayhme = "#CTL_ShowkMLAC Lion”

)
@AcLionReferences ({

@Act ionke ference(palh = “Honu/kile™, posilion = 1365,
separatorhfter = 1162),
“Loaders/text/fanilytreesxml/Actions®,

position = 150, separatorbefore

@ictionReference path

125)
1
@essages ({
"CTL_ShowXMLACtion=show XHL Structure",
"C1L_SHOWKNLS Lruc LureAc LionLsLener=Show XHL SLructure®})
public final class ShowMLStructureAction inploments Action istencr {

private final FanilyTreeDatalbject context;

public ShowiMI StructureAction(FamilyTreeata0hject context) {
this. context = context:
)
@iverride
public void actionPerformed (ActionFvent ev) {
ToputOutput io = T0Provider. getDefaul t().qetTo(
Bundle,CTL SIIOMXMLStructurenctionlistener(), false);
io.select(); 7/ L Structure® tab is selected
try |
EdiltorCookie edilorCoukie = conlext.gelLookup(] . Lookup(
EdilorCookie. Lass) ;

OEBPS/image3516.jpg
Projects Files | Services
v

(g Modules
v [mportant Files
&) Build Script
» [Project Properties
» [E] NetBeans Platform Config
» [&] Per-user NetBeans Platform Config

v

OEBPS/image15619.jpg
@opComponent .Nesc ript ion{
preferredi = *Personfdi torTopCompanent
iconbase =
"com/asgteach/ fami Lyt ree/personeditor/personTcon.png®,
persistenceType = TopComponent. PERSISTENCE_NEVER

)

@TopConponent . NeyisLralion(mode = "edilor”, upenAlSlarlup = lalse)
@essayes ({

“CIL_pursontdilorAc LionspersuntdiLon ™,

“¢11 _persankdi Lor Loptonponent =personedi Lor Windoa® ,

"GTL PersonCditorsavelialogTitle=Unsaved Data",
"CTL PersonCditorsave Option=save®,
"CTL_PersonCditorDiscard_0ption=Discard",
"CTL PersonCditorCANCEL_Option=Cancel’,
“# {0} - person®,
"HINT_PersonEditorTopConponent=This is an Editor for (0)",
“# {6} - person®,
“C11_Personkditorsavelialoghsg=berson {0} has Unsaved Data. \nSave?"
)
puslic final class PersonkditorlopCompancnt cxtends loptemponent {
”
TopComponents implement | okup. Provider.
In order to add objects to a TopComponents Lookup, instantiate
InstanceContent and associate it with its Lookup using
Fhie ‘acsociatelooimt) methed: ond create: 2 Lookup with

OEBPS/image16668.jpg
@onstart
public tinal class Installer implements Runnable
@override
public void run() {
TamilyTreeManager ftm =
Lookup. getDefault() . Lookup (FamilyTreetanager. class

11 Read configuration information from the system filesystem
Fileobject root = FileUtil.getConfigRoot():
FileObject persistencetype = root.getFileObject ("PersistenceType"
if (persistencetype != null) {
final String persistenceTypeNane
= persistencetype . getAttribute ("pTypeNane") . toString();
if (persistenceTypeName != null) {
WindowManager . getDefault() . invokeWhenUIReady(() -> {
WindowHanager .getDefault(] . getHainkindow() .setTitle(
MindauManager .getDefault () . gethainWindau() .getTitle()
+ Using
+ persistenceTypeNant

i

OEBPS/image16096.jpg
private void setHessage(String message) {
wizard. getllatificationl ineSupport() . setErrortes sage(message) ;
:

@HbBundle Hessages ({
"CTL_PaneliNegativeNunber= Number must be non-negative",
“CTL_PanellInputRequired= Nurber field input is required”,
“CTL Panel1Badlunber= Bad number format™
h
private boolean checkvalidity() {
if (getComponent().getFirstiunber() . isEnpty()) {
setMessage (Bundle. CTL_Panel1InputRequired());
return false;
}
try {
firsthunber = Integer.parseInt(getConponent() .getFirstiunber()):
if (firsthunber < 0) {
setMessage (Bundle. CTL_Panel1NegativeNumher()):
return false:
)
Sethessage (null) ;
et Truei

OEBPS/image15345.jpg
public final class GroupTopComponent extends TopComponent
fmlonents FaplorerManager_Provider (
private final CxplorerManager er — new CxplorerManager();

public GroupTopComponent() {
iniLComponents () ;
setileme (Bunde. CIL_Grouplopomponent (| ;
seTeoUTipText {BundLe. HINT_GroupTopConponent());

ActionMap map = geTACTTonan() ;

ap. ouL (De Faul EJ1LurKiL.copyAcLion, ExplorerULiTs.actionCopy(en))
map_put (DefaultEd1torkit cutAction, ExplorerUtils actionCutiem));
map. puL {DcFaul EdLurKiL pas LeACLion, ExplorerUULs.actionPaste(on)
map put{"celete”, Explorerltils octionlielete(em, Truel);

associalol aokupaplorertl s createl okup (o, ap));

OEBPS/image8801.jpg
oz

&) @ Sencn st)

oot o =
0 FamiyrrzeDam | sy e
» o mxenamye
+ & Smsoramiyree i
& Spaon iy T
2 domer crester
verge e

OEBPS/image9552.jpg
dow - Ed

8006 StackedBarChart
StackedBarChart Window)

Smart Phone Sales
500

300
200
b - .

2008 2009

=
3
5

Year

M Nokia MRM M Acple EHTC Il samsung [l Others

OEBPS/image13430.jpg
@verride
public String tostring() (
StringBuilder sb = new StringBuilder():
i Odrstiane. isEmly ()] (
b append (11rs Uname:);
1

I (middenane. istply () {
sb.append{" ") .append(middlenane) ;
3

i (1lastnane. isFapty()) {
sb.append{" ").append(lastname) ;

3

I (sullix. isEmply())
sbappend (") - append(sul 11x);

1

return sb. Lostring();

OEBPS/image15732.jpg
public synchronized String getsuttix() |
retum sullix;

1

public synchronized void setSuffix(string suffix) {
this.suffix = suffix;
T

public synchronized Long getId() |
return id;
T

@override

public buolean equals{Object o) [
il (o == null) |
return Talse;

S

if (getClass()
return false

)

return this.getTd{}.equals(((PersonEntity) o).getTd()):

Lqettlass()) {

1

@override
public int hashCode() {
int hash = 7;
hash = 97 *+ hash + (this.id != null 7 this.id.hashCode()
return hash;

0

OEBPS/image9897.jpg
806

New REST'ul Web Services frum Database

steps.

Databise Tables

1 Choase File Type
2. Dawbase Tables
3 Fotiny Classes

4. Generated Classs

Pate Source- [b Phanede

Avilable Tubles. Selectes Tables.
VALIBATIONONLY 1 pria RS A
SAFDATA
< Remoue
Add Al
Ramove All_|
[y o # include Related Tates

(P) [(=bak) @) [fsh | |

OEBPS/image10803.jpg
nle_es prareries

e | @ BB %R P S

1] CTL showaatyeteormsssar lnisia

S——

= e
T e
L
2 s
Ep T
5 vew

OEBPS/image3806.jpg
606

New Window

Steps

Basic Settings

1. Choose File Type

2. BasicSettings

3. Name, lcon and
Lacation

Window Pasition : |

@ Openon Application Start

(] Keep preferred ciza when slidsd-in
(] Sliding not allowed

() Closing not allowed

() Undacking not allowed

] Dragging not allowed

] Maximization not allowed

nish | [_Cancel |

OEBPS/image3644.jpg
NetBeans Platform

JavaFx
Controller
TopComponent
public
methods

FXMLLoader

OEBPS/image6813.jpg
8006 Warning

Your order is not complete.

e

OEBPS/image3563.jpg
Projects | Files [Services |

v & PxDemoApp

» (g Modules

» (i Important Files
v b FXDemoModule

v (@ Source Packages

v B com.asgteach.fxdemomodule E. 1
» [E] Bundle.properties
[& FxDemoTopComponentjava
(&) Javafx_logo_color16.png
» (& Important Files
» [Ubraries
v & MyRectangleCssApp
v (@ Source Packages
v {8 myrectangiefiapp
T
B

[& MyRectangleFXApp.java

{5l VyRectangleFX Controller.java

» (@ Libraries

OEBPS/image16153.jpg
private boolean checkvalidity() {
if (getComponent() . getsecondNunber() . isEnpty())
setMessage (Bunde.CTL_Pane 1Inputhequired()}:
relurn lalse:
]
try {
secondNurber = Integer.parselnt (qetConponent () .getSecondhunber()) ;
if (secondiumber = 6] {
sethessage (Dundle. CTL_PanellNegat iveNutber()):
return false:

If (secondiumber <= TirsUNumber) {
setMossage (Hund] e, C11_Panel ZHadSequenca(firsthumber))3
return false;

3
setMessage(null);
return true;

J calch (NunberFormalExceplion =) |
seMessage (Bund e CTL_Pane L1BauNumber (1) ;
return fals

OEBPS/image13101.jpg
Circle circlel = new Circle(10.5);
System.out.println(*Circlel radius = * + circlel.getRadius()):
circlel.setRadius (20.5) ;

Suiktein. B HRI AL PErE 1o Thdtak @ St R Y 5

OEBPS/image14021.jpg
}

@verride
PubLLC void acdPerson(verson p) {
Parson person = new Porson(p)
personMap. pul (ver son.gelId() , person) ;
getPropertyChangeSupport () . £ rePropsrtyChanas(
Fami1yTreeManager PROP PFRSON ADDFD, mill, parson);

]
ewerride
public void updatePerson(Person p) {
Person person - naw Parson(p);
personbap. put (person.getTa(), personi;
getPropertyChangssupport (). Tirsbropertythangel
FanilyTreaMenager .PROP_PLRSON_UPDATED, null, person);

}

Goverride
public void deletePerson(Person p) {
Person person — persontap. remove(p.getld(});
I (person 1= i)
getPropertyChangeSupport (). [LreP1upet LyChiange(
FamilyTresManager PROP_PLRSON_DCSTROYCD, null, person):

OEBPS/image10278.jpg
800 L neCart Window - Editor
% UneChartWadow

Smart Phone Sales

Vear

ONokiz ©ORM ©OAppls OHIC OSamsung OOthers

OEBPS/image15403.jpg
public TrashTuoConpunent () {
“nitcomponants();
seNawe {Bundle, CTL TrashTopConponent();
seTToolTipTaxt (Bundle HINT_TrashTapComponent ()] :
BeanTreeVien view = new BeanTreeVieu();
add(view, BorderLayout. CENTER) ;
&n.setRootContext(new TrashNode(Bundle.CTL TrashTitle())):
associateLookup(ExplorerUtils. createLookup(en, getActionMap()));

'

QOverride

public Cxplorerbanager getCxplorarManager() |
return em;

+

OEBPS/image15070.jpg
@tverride
public User storeUser (User user) {
1f (User_gethole() =— null || user.gethole().isEmpty()) {
user.setRule("User);

1

starcRale (user gelRale())

return userap put{user.getUsername(), user);
}

Qoverride
public String| | getfoles() {

Tetuen vales. Ladrray (new SUeing[roles_size()1);
+
Qverride

public boolean storelole(String role) {
it [troles.contains{rolel} {
return roles.add(role);

'
2lse return false;

OEBPS/image16193.jpg
public final class NurberVisualPanel2 extends JPanel {

public static tinal String PROP_SECOND_NUMEER = "secondhumber’
private boolean isvalid = false:

private CustonRangeValidator custonrange = new CustonRangeValidator ():
privale ValidalionGroup group = null;

public Mumbervisus] Pane1 7() {
ini tConponents();
secondNumber ., setName (Dundle.CTL PanellfieldName());

17 setup validation
Group = validulionPunelL.gelValidalionGroup();
customrange. setHaxVal (NumberVisualPancl1.HAX_SEQUENCE_NUMBER - 1);
customrange. setMinVal (0) ;
group. add{ secondhumber,
Validalor's.REQUIRE_NON_EMPTY_STRING,
Validalor's.NO_WHITESPACE,
VaLidaLors. REQUIRE_VALID_INTEGER,
Val idators RFQUTRF NON NFGATTVF NIMRFR,
custonrange) ;
secondNutber.getdocunent () . addDocunentListener (new DocumentListener ()

@override

public void insertUpdate(DocumentCvent de) {
checkVaLidaLion();

T

@verride

public void_removelipdate (Dacumonthvent de) {
chackvalidation();

b

OEBPS/image13801.jpg
+

public synchronized void removelistener(
MapChangeListener<? super Lang, 7 super Persons ml) {
ahservabetap. removel {stener(m);

¥

public synchronized void addListener(InvalidationListener il) |
observab Lebap . uddUis Lener (1) ;

'

publLic synchronized void removeListener(InvalidationListener il) {
observablelap. removel istener (il);
2

public synchronized void addPerson(Person p) [
Final Person person = new Person(p)
ahscrvabletap. put (person.getld(}, person);

public void updatePerson(Person p) {
/1 both addperson and updatePerson use observableMap. put ()
addpersonip):

OEBPS/image15973.jpg
System.aut .printin("Cancelod!
13 feeycleanager.gothefault (). oxit();
}else {
7/ Check Tagin
if (Login(panel.getUserNane(), panel.getPassword())) {
/1 Using null enables all options to close dialog
71 {this 1s retroactive, so the dialog will close
71 and Lhe app will oppear)
dd. setClosingOptions (mull
}oetse
41 Bad Tagin, ry sgain
dd. gethoti ficationLineSupport() . setErrortiessage(
Bundle. LoginError());

4
e
7/ 'Specify an enpty array to prevent any option from closing the dialog
. setCTosingUptions (new Object (1{1);
dd . createtioti T cationl incSupport ()3
17 Detine a property listener in case the dialog is closed
dd. addPropertyChangeListener ((PropertyChangeEvent pce) ->
/1 ook Tor CLOSED_OPTION
il {pce.gelProper yNane() . equals (DialogDese riplar. PROR_VALUE]
&6 pre.getlievalue() = Dialoghescriptor.cl0SFD OFTTON) {
/¢ adios
System.out .println(*Closed!");
LifecycleManager.getbefault() exit();
¥
3
77 molilylater will displey U dialog in Lhe EDT
Dialogbisplayer.getDefault() . notifyLater(dd);

OEBPS/image14222.jpg
@verride
public vaid componentOpencd() {
ftm = 1 ookup.getiicfaul t() . Tookup(Fami Tyl rechanager . class) ;
iF (Ftm == nul1) {
Togoer. log(Level.SIVCRT, "Cannot get FamilyTreeManager object");
LifecycleHanager.getDefault() .exit();
)

confi

rel {steners();

/¢ Listen for Persan objects in the Global Selection Lookup

TookupResult = Utilities.actionsGlobalcontext()
~LookupResult (Person.class);

TookupResul t.addLaokupL istener (LookupListener) ;

checkLookup() ;

OEBPS/image5722.jpg
806

New Action

Steps GUI Registration

L. Choose file Type - _
2. ction Type Cateyery. Noses)
3. GUlKeaistration

4 Name, leon, and

Location

o Globel Menu lem
Memr File

Position: HFRF - arg openide awt GererslAcrioniDlega

) Separator Bafore] Separator After

 Globel Tuolbar Button

Toahar: (FlE

Pocition HERF - Saue &ll

7] Fil Type Context Menu ltem

Comtent Type. [applicaionx-nbseuings
Position HERE - Opan
Separstor Befors At
1 Editor Context Menu feem
Comart Type, <empiy>
Suparator Befors [Separatar afrer

(Fep | [<mack | [News

sh

Cancal

OEBPS/image14681.jpg
public_GenderTopComponent () {
initComponents() :
setNane(Dundle. CTL_GenderTopComponent)) ;
setToolTipText (Dundle.ITNT_GenderTopComponent () :
ContextTreeView view = new CantextTreeView();
Listview Uist = new Listview();
add(view, BorderLayout.CENTER)
add(List, BorderLayout.SOUTH)
associateLookup(ExplorerUtils. createLookup(em, this.getActiontap())):
en. setRootContext(new RootNode()):
17 open the Properties window by cetault
TopComponent tc = WindowManager.getDetouLt()
~{indTopComponrent (“properLiss");
il AL =t
tc.opent

OEBPS/image6948.jpg
806

Person Information

First Name

Last Name

Homer

@ Fields First Name and Last Name are required.

Cancel

oK

OEBPS/image9599.jpg
Title includes
selected Year

e

s ot b

\

ComboBox
selects Year

am

Notia

Snuis @R @ik @HIT @ Semuns @ S

OEBPS/image16499.jpg
11

public linal closs ClungeDelecLorToy

ponenl exlends TopConponent |

private Filedbject root;
private Outputhriter write
private boolean updateO = true;
public static final String FO_WODIFICATION COLOR = “FOMadificationColor”;
public ChangeDetectorTopComponent () |
initconponentsi
sethame [Bund e CTL_ChangeDetectorTopConponent (1
selTou (TipTex L {Bund L= HINT_ChangeDeLec Lor TupComporent ());
display.sethargin(new Insets(5, 5, 5, 5));

OEBPS/image17961.jpg
SEVERE [org.openlde.utll.Exceptions]
javafx.fxml.LoadException: Resource "blahblah® not found.

OEBPS/image16394.jpg
public final cless PizzaWizardIterator implements

Wi rardDescr i plar-ProgressTustant il ingTleralor < sardDeser iplor,
Proper LyChangeListener
wivale il index;

private List<iizarddescriptor.Fanel-iizardbescriptor:
private WizardDescriptor wizard = nul

panels;

- Unchanged Code Omitted

0verride
public Set-Pizzabrder> instantiate(ProgressHandle ph) throws IOException {
Set<Pizzabrder- pizzeset — new llashset=(};
Pizzadrder p - (Pizzedroer) wizard.qetProperty(
BuilaPizzaController.PROP_PIZZA_ORDER) ;
piaSel adi(p);
Cuslomer customer ~ (Customer) Unis.wizerd.gelProperty(
LdentityCustomertantrolLer . PRUP_CUSIONER) ;

// Sinulate a long-running multi-ste task:
ph.start(s);
ty L
ph.progress (*Storing custamer
Inread. sleep (15061 ;
if {customer. gathame(] . contains *Joe<
throu new I0Exception(* Cannot
3

CustomerSiore custStare
Customerstore. class);

it {custStore 1= null} {
custStore.storeCustomer(customer)

+ custorer.getNane(), 1);

iminal")) {
1 to JoeCriminal®

Loakupget e faul 1) Tookupi

OEBPS/image13470.jpg

OEBPS/image10778.jpg
[y

75

Unicsdes venditas an

Fits o s
Ao

oMok ORM Ol OHIC OSamurg

OEBPS/image16468.jpg
/f read lile
if (myFile.canRead()) {
displaytessage("can read * + myfile.getath()

try {
for (String line : myfile.astines()) {
displayhessage(line)
}

} catch (ToFxception ax) {
displayessage("Warning; problems reading file *
+ nytile.getNameExt(]]
Exceptions. printstackTrace(ex) :

OEBPS/image13743.jpg
<TextField Tx:1d="TirstnamelTextField"
onkevReleased="Fhand LelevAction" pretWidt

248.0" /=

OEBPS/image14611.jpg
public class PersanNode extends Abstractliode implements
PropertyChangeL istener {
private static final Logger logger = Logger. getLogger
Personiiode, class. getNane()) ;

public Personflode (Person person) |
super (Children. LEAF, Lookups. singleton(person)):
selLconbascri thextension(
con/asyLeachy Tanily Lree/genderviewer/ resources/personLcon. p
setNome (ST ring. valuedf (persan.gel 100));
setDisplayNane person. tostring())
setshortDescription(Oundle. IIINT Persontiode(});

.. . unchanged code omitted . . .

override
protected Sheet createsheet() {

Sheot sheet = Sheet . croatelefanl £();

Person person = qetl aakup() . leckup(Person.class);

1/ create a property set for the names (first, middle, last, suffix)
Sheet.Set setiames = Sheet.createPropertiesset():

sethames . setDisplayName("Nares”) :

// create a property set for read-only id

Sheet Set readonlyset = new Sheet.Set():

readonlySet . setDisplayNane (*Identification®);

77 pul L under ils owm Lab

readinlySel selValue(” LabName®, * 1 Lnfu

OEBPS/image17091.jpg
7/ Invoked by Swing visual element on the JavalX Application Thread
7/ Docunent is a parsed XHL orq.wic.don.Cocument
public void refresh(Docunent doc) {
clear():
HodeList nodelist = doc.getElenentsByTaghane (“person”);
Tor (inl i = 8; i < nodelisl.gellenglhi); i++) |
J1For each vode in e Uisl, creale o org.wdc. dom.Node
org.vac.dom.Node personNode = nodeLis L. iLom(i);
NamedNodeNap map = personNode.qet ATt ributes ();
Person person;
if (map 1= null) {
person = new Person();
person. setLastnane("Unknown") ;
for (int § = 0: J < map.getlength(): J++) {
org.w3c.dom. Node attriNoce = mop. item(jl:
L1 (al UrMode . geUNodeMome (). equaLs (' irstiane")) [
person . seLFirs Lname (ol Liode. ge WNodeVaLue ()

L1 (alLiNode. gellodetune () equoLs(" LasUane®)}
Person. sefl astname(at friode. gethodaValus(}) ;
¥
3

StackPane stack = makeELement (person. tostring());
7/ Add the StackPane to the top-level Node (mypane]
mypane.getCnildren() .a0d(stock :

FadeTransition Tt = new FadeTransition(
Duration.millis(650), stack):
IL.selFronValue(0)
1L setToVa Lue (1) ;
seqTran.getthildren() .add(ft);

OEBPS/image16184.jpg
public class CustonRangeValidator implements Validator<String= {
private Integer minVal = new Integer(0):
private Integer maxVal= new Integer(0}:

public void setMaxVal(Integer maxVal) {
this.maxval = naxval:
1

public void sctMinval (Integer minval) {
this.minval = minval;
}

@override
public boolean validate(Problems prbins, String string, String t) {
ValidatoreString> rangeDelegate =
Validators . nunberfange (minVal, maxvall:
relurn rangeDe Legale. validale(prblms, slring, U);

OEBPS/image13141.jpg
1
i

System.out.println{"Circlel: * + circlel.getRadius()
System.out.println{"Circle2: * + circle.getRadius(}
circle2.setRadius(20.5
System.out.printin("Circlel: * + circlel.getRadius(]
System,oul.printtn{"Circle2: * + circle2.ge(Radius (11}

10.5
Circle2: 15.5

Invalidalion delecled o DoubleProperly [bean: CirclelcenlerX=6.0,
cenlorY=6.0, radius=26.5, [ill=x000080((], nane: radius, value: 20.5]
Circlets 20,5

Circleps 20,5

OEBPS/image4396.jpg
FamilyTreeApn 201310111528

3 7 Baby Simpson

astname Simpsan

& | Homer simpson
&1 Bt Simpsan

O remale

& * Marge Simpson
& Lisa Simpsun

OEBPS/image13499.jpg
Quverrice
public boolean equals(Object obj) {
T (obj == w1 || gelClass(O)
return false;

abj _gelClass ()

i

Final Person ather = (Persan) ohj;

return Objects.equals(Lhis.id, ulher.id)
& Objects equals(inis Tullname.get(), other. fullnane.get(})
& Objec s cquals{ s noles.get (), oihernoles.get ()
&& Dbjects equals(this.gender.get(], other.gender_get());

Qv e
public String toStringi) {
FeTurn fullnanc. got {

OEBPS/image13283.jpg
CoubleBinding opacityBincing
{

new DoubleBinding() 1

1/ Specity the dependencies with super.bind()
super .bind(scene.widthProperty(), scene.heightProperty()):
1
@verride
protected double computeValue() [
// Return the computed value
return (scene.getWidth() + scene.getHeight()) / 1900;

OEBPS/image16385.jpg
sboappendip.gelPiccuSice()):
sb.oppend{* Pizzatn');
£ (ip.qetioppings (). israpty()) {
sh.append ("With *);
for (String topping : p.getToppings()) {
sb. append(topping) .append (", "};

¥

SbLappend (") ;
|
I (p.ispickup()) |

sb.append ("For Pickup®);
1else {

sb.append(“For Delivery");
T

Dielogbisplayer. getbefault() .notify(
new NotifyDescriptor.Hessage (sb.tostring(})):

OEBPS/image17461.jpg
ft.setlovalue(6.0);

. playkronstart ()}

i (Tastiode = mill) §
lastlode. setEffact (null);
Lasthode. setTransLatex (0
Lasthode. setTransLateY (o

)
t.consumel)
n:

. method setuphvontHandlers() continues in |isting 1575 . . .

OEBPS/image17952.jpg
<TableView Tx:1d="Tobleview"
editable="Liue
GridPane. calumnIndex
GridPane. ruulndex="0" >
<calums>’
<lableColumn txi1d="collompany" text:

<lableColumn tx:1d-"colUnitsSold" text="sunitsSold"
adiTahle="True® sortable="false”
minWidth-"1/5" />

</eolums>
</ lableview-

OEBPS/image5350.jpg
CICIC) RoleExample 201204101705 i

S 9¢

 Login Wincow ©: | Ad

Username

Password oo

o o D

OEBPS/image14593.jpg
@ibbundle.Messages ({
“IITHT_Personfiode=Person”
n
public class PersonNode extends BeanNode<Person implements
ProperlyChungeLisLener

public Personiode(Person person) throws TntraspectionFxception {
superiperson, Children.|FAF, | ookups.singleton(persan));
setIconbaseithCxtension(
“con/asgteach/ fani lytree/qenderviewer/ resources/personIcon.png");
setNane(string. valueOf (person.getTd()));
setDisplaylame person. toString()
selShortDeseriplion(Bundle. HINT_Per sontiode()) ;

i
wnchanged code omitied . .
private final PropertyChangel istoner propl istener =
(PropertyChengervent cvt) -> {
Person person = (Person) evi.qetSource();
FanilyTreeNanager ftn = Lookup.getefault().lookup(
FanilyTreeNanager . class) :

i (ftm == nll) {
Togger. log(Level ,SEVERE, "Cannot get FarilyTreeManager object);
Lifecycleanager . getbefault (). exit();

} else {

‘tn. updatePerson(person
FireDisplayNameChange(null, getdisplayName());

OEBPS/image17292.jpg
public class BarChartHorizontalController implements Tnitializable {

77 set up the event handler to respond to changes in the table data
77 Tnis 15 a swing event, so we must use Platform.runLater()
77 Lo updale JovaFX comonenls
LabLeMode L. addTabletode L LisLener{ (Tab eHode LEven(&) ->
il {z.gelType() == TebloHode Event . UPDATE) {
final inl row = c.getkirstiow();
final inl colum = c.gelColumn();
final Number value = (Nutber) ({MyTableDataModel}
e.getSource()) .getvalueit (row, column);
Flatform. runLater(() - {
XVchart. Series<hunber, String> s = chart.getData() .get (row:
Xchart.Data<hunber, String> data = s.getData() .get(column!
data. setXvalue(value) :

i
i

OEBPS/image15160.jpg
Public class CalendarPanel extends javax.swing.J?anel {

public void setText(String text) {
myLabel . setText (text);
¥

OEBPS/image12534.jpg
public List<Person> getAllPeople() 1
List<Person> copylList = new ArrayList<>();
for (Person p : personMap.values()) {

// Wake a copy of Person
copyList.add(new Person(p));
}

return copylist;

OEBPS/image4686.jpg
v && PersonEditor

v (8 Source Packages

» @5 com.asgteach.personeditor
» [Important Files
» (g Libraries
v & WindowsystemApp
v £ Modules

& personEditor

> [Important Files

OEBPS/image12878.jpg
7/ thread safe
inslance = new FamilyTreeManager ();
instance. propchangeSupport = new PropertyChangesupport (instance)

OEBPS/image3016.jpg
[XaX:) New Modulz Project

Steps Basic Module Configuration

L. Name and Location
T e Code Name Buse. o asgreah fam yirsemasel

Configuration

(e9. "org.yourorg.mozulename’y
Module Display Name: | Family TraeVcdel
acslizing fundie o mgtenchy Frmibyres el Fandl properies

2] Senerate 0561 bundle

e | [| | Neo> |) [Cone

OEBPS/image8873.jpg
T leTypeApp 201603101706

OEBPS/image4581.jpg
g Component

~a Palette ~~._

it oo tse_icor_wesen_bop 1460 D 1N 015 @

w540 Y

s Editor
S Design View

B R ——

Navigtor £
Window |BEEzempmmm e,

Output

. \ Staus Line Properties
Window Ly

Windowr

OEBPS/image6529.jpg
8080

New Library Wrapper Module roject

Steps

Easic Module Configuration

L Select Library

2. Name and Locarion

3. Basic Module
configuration

Ceda Nam Base:

Module Display Narne

I acallzing hundie:

=

[org.apache.derby

e "org.yourorg.modulename’

erbyClient

[org/anachecerny mardie properios

k] [New> | ([@fimished (Cancel |

OEBPS/image14469.jpg
@ibRundle. Messages({
HINT Parsonfiode=Person®
i)
public class PersonNode extends Abstractiode
implements PropertyChangelistener {

public. Persontlode (Person person] |
Super (Children. LEAF, Lookups. singleLon(person]);
selTconBuse UhExLension
con/asyleachy family Lyec/gendervicwer/ resources/persontcon. puy®)
setllame(String. value0f (person.qetTd()});
sethispl ayName (person. tastring());
setshortbescription (Dundle.IITNT Fersontode();

}

eoverride
public SUring gelHUnlDisplayane() {
Person person = e lLookup(] Lockup(Person. cLass);
Steingbuilder sb = new SLringbuilder();
il (persun = nall)
reLurn null;

1
sb.append{*<font color="#55081T '~
switch (person.qetGender()) {
case MALL:
sb.append(*| "
break:

OEBPS/image14650.jpg
@ies sages ({
CTI Genderfc Hion=Gender*
“CTL GenderTopComponent=Gender window",
“IIINT GenderTopConponent=This is & Gender window",
"HINT_FilterTextField=Provide a search string to filter names and hit
<RETURN"
)
public linal class GenderTopComponenl exLends TopComponent
inplements Explorerfanager. Provider {
privele inal Explorerfianager an = now Explorerifanager();
private final BeanTreeView view;

public GenderTopCanponent() {
initconponents():
filterText. setToolTipText(Bundle. HINT_FilterTextField()):
sethame {Bund e CTL_CenderTopComponentT}}:
setToo (T1pText (Bund e, HINT_GenderTopComponent (1)

view = new BeanTreeView();

add(view, Horderl ayout. CHIFR) ;

associatel aokup(Fxplarerl/t 1. createl ookup(em, this.getActiontap()));

em. setRantContext (new Rootiade())

17 expand the second level of nodes

for (Node node : em.getRootContext() .qetchildren() . gethodes()) {
view. expandNode (node) ;

)

OEBPS/image13986.jpg
branding. toker
cluster.path=y
${nbplatforn.active.dir}/platforn
disabled.modules=\
org. jdesktop. Layout.\
org.netbeans. api.visual,\
orgonelbeans. ore. execul ion,\
orgonetbcans. Libs. jsi223,\
org.netbeans nodules. auloupdate. Ui\

FanilyTreefpp

rg.net beans. anloupdate, services,\
org.netheans. antaupdate.ui,\
org.netheans. corc.kit,\

favorites,\
templates,\

org.netbeans.
org.netbeans.
org.openide. compat, \
org.openide. execution,\
org.openide. options.\
org.openide ulil.enumeralions

abplatform.activesdefaul t

OEBPS/image8645.jpg
ece New e Type.

steps Name, icon and Location

L. ChooseFile Type
3 Fie necogniinn
5. Name, lon and

Class Name Pl FarilyTrss

Icom; ‘o NetBeansPlaticm Projects lcors/<heck.pna| | browse.

M Use Matvian,

Proset FarnyTrsesuppart
Fackae comasatsachamivcesuspet
Cremea fless srefcom/asgreach familgeeesuppor iy TreeDaAChiect i

st om/sgteadh il ot Famil TeeeTcmpl el
< <om(ascieach fami =25 pErt FamilTree s uallement fom

a1 £om(aegreach Tl irec o pp ot il T lFlement s

seclcomaseteach amiyirses pEort<heck ong

src/<om asgueachfamiyurses ppore ackag- o sve

Modries Fles: nprolect/projectami

OEBPS/image9969.jpg
8006 New Fils

Steps. Choose File Type
1 Shoos s Tye Project. | & SmartPhoneClient :
Q
Catsguries File Types.
4 Gronr & Resrallaa ciene
i Hinernate & Jax-RS 2.0 Fiter

& 1x-5 2.0 marcapeor
Weh Serice Clisne
Losjea Hendies

Descrption:

Creates RFST client from selected RFST resairce. The client coe i baced an
Jersey clionc 41

Fap | [(<Eak) N (i

OEBPS/image7225.jpg
6006 Create New Number Sequence

Steps. Step #1

1. Step #1
2. Step#2
3. Step#3

s Cancel

OEBPS/image6915.jpg

OEBPS/image17823.jpg
public class LineChartController implements Initializable {

@RI
private SlackPan: slackpanc;
@RI
private Categorylxis xxis;
@nai
private NumberAxis yAxis;
@naiL
private LineChart<String, Numbers chart;
private Observablelist<XYChart.Series<String, Numbers» lcbata
- FXCollections.observableArrayList(;
private static final Logger logger
= Lugger.gelLugger{LineChar (ConLroller . class. getNane()) ;
private PhoneDatashare data = null;
Sor ledlisl<Salesdala> sorledDala — null;
Comparator<? super Salesdata> comparatorSalesdata = null;

OEBPS/image15831.jpg
Qoverride
protected Void doInBackground() throws Exception {
Progressandle handle = ProgressHandleFactory
-createHandle (Bundle. TITLE_NewPerson_dialog()};
ty
handle. start();
cnc.create(person) ;
Tagqer.Tog(l evel . 14k,
Creating person {A}
} catch (10Exception €) {
Logger. Log(Leve L. WARNING,
e.getLocalizedMessage (], el:
) tinatly {
handle. Finish();

person) ;

¥
return null;
¥
i
worker . execute();

OEBPS/image16299.jpg
@\ctionTh(catagory
id = "orq.asqteac

ools”,
-sequence. NumberWizardictian®)

. .. code omitted . .
public final class Nurberwizardaction inplements Actionlistener

ooverride
public void uclionPerformed(Ac LionEvenl &) |
11st<Mizardloscriptor. Pane] Mizardlescriptors> panels =
new Arrayl istai zardiesc riptor. Panali zardiescriptarss()

.. . code omitted . . .

wizardbescriptor wiz = new Wizarddescriptor(
new WicardDescriplor . ArrayILeraLor<iicardDescriplor>(pansls));
wic.selTilleFormal [new HessageFormal (*10)")):
wiz, sell iUl (Bundle. CIL_Nunberbialoglitle());
i (Dielogbisplayer.getDeraul L) nolify(wie)
Wi sardiescriplor FINISH_OPTION) {

/7 Stare the nunher
Tikbe i ters Rk tere:

OEBPS/image9410.jpg
8,
Smart Phone Sales
0 DA Tide
X i
s i 0 s 4/
LB oNede OmY OAsl ONTC OfamsinChes

OEBPS/image9883.jpg
8re Mew Web Ao caticn

steps Server ana settings

Chonse frrject

! 44 o EimprseApplction: [ors
5. Server and Sevings
:

Context Path: FSmartPhone Dataserver

Cancel |

OEBPS/image16655.jpg
goverride
public void actionPerforned(ictionEvent e) {
Fileohject root = FileUtil.getConfigRoot();
ysten FileSysten tab 15 Created in oUtput window
iv.select{); 71 select Syslen FileSyslem Lub
Ly L
wriler. resel(); 74 Clear Lhe vulput vindow
displayChildren(root) ;
} catch (I0Exception ex) {
Cxceptions printStackTrace(ex);
} finally {
writer. flush();
writer.closa(

]

privale void displayChildren(FileObject fo) Unrows T0Exteplion {
if (fo.isFolder()) { 71 display Tolder (orange)
writesg(FileUtil.getFileDisplayNane(fo), Color.ORANGE);
for (Filetbject childrilebjoct : fo.getChildren()) {
displayChildren(childFileobject);
H

} else { /7 cisplay file (blue)
writeNsg(Fileutil.getFileDisplayNane(fo), Color.BLUE):
Enumeration<String> attranes = fo.getAttributes():
whiils {ottriomes hasMoreELEaants)] 1

OEBPS/image7425.jpg
6006 Create New Number Sequence

Steps Provide Sequence Third Value

1. Provide Sequence Initial
Value Provide the third sequence number.
2. Provide Sequence

Second Value
3. Provide Sequence
Third Value

Current Sequence: 5, 45.

@ Number must be greater than 45.

< Back Next > rish Cancel

OEBPS/image15088.jpg
@nctionld
categery - "Tools",
id = "com asgteach. fanilytree actions

flandarAc:

)

@ ionRegisrat ion]
iconBase — "con/esqreac/ Temilytres/cctions/calendar . png”,
displayllame — "#CTL_Calenderaction”

)

@Actionkererences({
@\ctiorketerence(path —
@ActionReference(path —
@Actionneference(path

Menu/1o0Ls", position - U, separatorAtter - b9),
‘oolbers/Tile’, position - 10),
Shortcuts”, nane = “N-E'}

) !
@Messages ("CTL_CalendarAction—Calendar")
public final class CelencarActicn implements ActionListener {

@uerride

public void acticnbertormed(Actiontvent) {
/47 1000 imolement action bedy

¥

OEBPS/image4900.jpg
L) WindawsystemApp 201204101705

ETT) e BT

OEBPS/image5836.jpg
eo00 TamTreenps 201001141082 z
~g 2 . e
B2 BE;

2 e
|

T
o |

BOA ke Addian

e

OEBPS/image16957.jpg
¥
n:

EventHandler<HouseEvent> nadeOnfouseDraggedEventhandler = ((evenl) ->
L1 tevenLge (Bul Lon() . equa s (MouseBul Lon . PRIARY)) {

double ol IselX = cvenl.golScensX() - orgScencX;
double uffselY = cvenl.gotSceneY() - orgSce
doubla newTranslateX = arqTranslateX = affserX;
doubla newTranslateY = nrqTranslateY = affsety;
((Node) (event.getSource())). setTranslateX (newTrans LateX)
((hode) (event e Source()) 1. seLTrans LaLeY (nenTrans LoLY)

OEBPS/image16783.jpg
FAMILY bamily Iree

OEBPS/image14195.jpg
/7 Vonkupl istener to detect changes in Personviewer's onkip
LookupListener lookupListener = (LookupCvent le) - checkLookup();

private void checkLookup() {
Collection<? extends Person> allPeople = lookupResult.allInstances() ;
i (taTTBeoplesiskupty()) {
theberson = al1Peoplc. iterator().next ()3
Togger.Tog(l evel .FTNF, *{0} selected, thePerson);
updateForn();

3 else {
Logger . Log(Leve L.FINE, "No seleclion®);
clearForn();

1

OEBPS/image14280.jpg
SwingUtilities.invokelater(() -> {
// Change Swing UT
}):

OEBPS/image1700.jpg
Main Program FXML Loader

JavaFX
Controller Class

FXML Dacument

Scene Graph]

1. Main Program
invokes FXML Loader.

2 FXML Loader parses
FXML Docurnent and
huilds scene graph

3. FXML Loador
instantistes Controller
and invokes
Controller’s
initialize{) method

OEBPS/image15762.jpg
@verride
public void addPerson(final Person newPerson) {
CntityManager em = [HT . createCntityManager();
try {
en.getTransaction() .begin() ;
PersonEntity person = new PersonEntity(]:
prrson . scLFLes Lnane (newberson. ge Lrirs Uname () ;
person. selLas Liame (newPer son. geLLas iane()) ;
person. sctcnder (newPerson. get bonder ()
person. sctHidd] cnanc(newborson . getHidd] enanc()) ;
person. setSuf Fix(newberson. qetsuffix());
person. setNotes(newPerson. qetNates (1) ;
en.persist(person) ;
en.getTransaction() .commit():
Logger. Log(Leval. INFO,
“New Person: (0} successtully added.".newPerson) :
geLProper LyChangeSupporl (). 1ireProper LyChange(
Fami LyTreeManager . PROP_MERSON_ADDED, nul L, buildPerson(person));
b caleh (Exceplion ex) {
Togger.Toq(1 evel .SFVFRE, null, ex);

} finally {
em.close();
3
3
@verride

public void updatePerson(Final Person p) |
EnlilyManager on = EHE. crealeenUiLyManager ()5
uy {

OEBPS/image10747.jpg
Projects | Files | Services | Favorites

v (1] Locale_PT_BR
» [buid
» [nbproject
v [release
v [core
v [locale
» [core_ptBRjar
» [org-openide-filesystems_pt_BR jar

<D

YYVYYYYRavvYVYYR

EIEIEIEIEIED 5

locale
 boot_pt_BRjar

& org-openide-modules_pt_BR.jar

& org-openide-util-lookup_pt_BR.jar

& org-openide-util_pt_BR.jar

odules

cale

org-jdesktop-layout_pt_BR jar
org-netbeans-api-annotations~common_pt_BR jar
org-netbeans-api-progress_pt_BR jar
org-netbeans-api-search_pt_BR jar
org-netbeans-core-execution_pt_BR.jar
org-netbeans-core-io-ui_pt_BR jar

<

OEBPS/image15649.jpg
/7 Check to see if we have unsaved changes
/1 Tf 50, ask the user if the changes should be saved or discarded
Qoverride
public boolean canclose() |
SavableviewCapavility savable = getLookup(). Lookup(
SavableviewCapability.class):
if (savable == aull) {
/1 No modified data, sa just closc
return trie;

)
14 Detected modified data, so ask user what to do
String saveAnswer = Bundle.CTL PersonCditorSave Option();
String discardAnswer = Dundle.CTL PersonCditorDiscard Option(};
String cancelAnsver = Bundle. CTL_PersonEditorCANCEL_Option():
Stringl| options = [cancelAnsver, discardnswer, soveAnswer) i
SLring msg = Bundle.CTL_PersonEdiLurSaveDia loghsg(
LhePerson. LoSLiiny ()15
NolilyDescriplor nd = new NolilyDescriplor(isg, // Lhe guestion
Bundle. C1L_per sonkdiLorSavebialoglitle(), // U Litle
Notifyllascriptor. YFS N0 CANCFI 0PTTON, // the hutfons provided
NotifyDescriptor, QUESTION MESSAGT, // the type of message
aptions, // the button text
saveAnsver // the default selection

)
Object result = Dialogdisplayer.getbefault().notifyind):
il (resull = cancelAnswer ||
resull == NoLi lyDescriplor. CLOSED_OPILON) {
/1 tancel the close
il i

OEBPS/image13916.jpg
<HRox id="HRox" aligament="CFNTFR" layout¥="7.0" 1ayout Lav
<children>
~Button x:id="processAllButton” mnemonicParsing="false"
ion="#processAl1DuttonACtion’ text="Process ALL" /=
progressBar® pre(Widll="161.0" progress="0.8" />

53.0" spacing:

<ProgressBar
</chi

</HEux>

<Tableview fx:i

‘nameDisplay” 1ayaut prefiidth:

mexHeight="- Infinity" mexitidtl ~Infinity"
minwidth="-Ininity" preflleight="132.39996000606253"
<colunns=
<TableColumn pretWidtn='240.0" text="Perscn® fx:id="personColumn” />
</columns>

</TableViews

OEBPS/image7723.jpg
Step Order
1

2 (optional)

4 (optional)

Activity

Identify customer

Frovide new customer detoils
if custorer is new]

Build pizza order

(Size and ‘Toppings)

Provide delivery details

i pizza s for delivery)
Confirm order

Visual and Contraller Names
Tden Uil yCus LomerVisual.
Identifycustomercontroller
NewCustomerVisual
HewCursomer Canl v e
BuildPiecaVisual
Buildrizzacontroller
DeliveryInfovisual
BeliveryTnlofont rol tes
Contirmdrdervisual
ConfirmorderController

OEBPS/image1317.jpg
frst [man frt v

Widdlz Mdde 5
tast Simpsan Last Sirpson
Sl | suffc
©Male C Famale O Urknoun @ Mle) Female () Unknoun
Notas nores

LS

Updare

OEBPS/image13517.jpg
package personfxapphound;

inport
inport
inport
inport
inport
inport
impor U

com. asqteach. fanilytres.modal . Person;
java.net URL;

jova. util.ResourceBundle;
javafx.event ActionCvent;

Javatx. txnl. L
Javatx. txnl Initializable:
Javalx.scens. conLrolLabe

public cluss PersonFXBoundConlroller inplements Inilializuble [

e
private Label margelabel;

final Parsan marge = new Persen("Harge’,

e
private void changeButtonAction(ActionEvent event) (

marge. setMidd Lename("Louise”}

Simpsan®, Person.Gender. FFMAIF) ;

OEBPS/image17005.jpg
@ies sages ({
“LBL_TanilyTres LOADIR=Tiles of ramilyTree®

)

@IINEReso Lver . Nanespacefegistration(
displaylame = "#LBL_Fami lyTree_LOADER" ,
miveType = *lexl/lanilylrestaml ",
elemenths = {*familyfrea"),
pasition = 6

)
@ataobject Registration(
mineType = ‘text/fanilytressxnl”,
iconBase = "com/asgteach, familytree/persontiletype/TanilyTreeIcon.png".
displaylame = “#LBL_Fami lyTrce_LOADER"
posilion = &

)
@ctionkeforences(f
code omitted . . .
H
public class FamilyTreeDataOhject extends MultiDatadbject {

public FamilyTreeData0bject (FileObject pr, MultiFileLoader loader)

Unrows DalaOb jec ExisUsExceplion, T0Exceplion (

super (pl, Loader):

reqisterfditor (" text/familytreetsnl*, true);

TnputSource inputSource = Nata0bjectidapters. inputSaurce (this);

CheckXiLCookie checkCookie = new CheckXMLSupport (inputsource) ;

getCookieset () add(checkCookie) ;

ValidatextLCookie validateXfLCookie = new ValidateXMLSupport(
inputSource) ;

gelCoukieSel (). add{validaleXfLCockie) ;

OEBPS/image15606.jpg
@ervicePravider (service = FditorManager. class)
public class FditorManagerTnpl implements FditarManager {

private static tinal Logger Logger = Logger.getLogger(
EdiLorManager Tap . cLass. getane()) ;
PersonEdilorTopConponent> LeMap = new HoshMape{):

Map<Person

@overnide
public void openkdiLor(Node node) {
Person person = node. getLookup(} . Lookup(Person.class);
i (person = null) {
return;
3

PersonEditorTopcompanent tc = tciap.get(person) :
it (e 1= null) (
if (e
te.open();
3
te.setPerson(node) ;

te.requestactivel);
return:

OEBPS/image4369.jpg
Explorer View
BeanTreeView

OutlineView
ContextTreeView
ListView
ChoiceView
MenuView

TeonView

ProperlySheelView

Description

Displays a tree view of the node hierarchy

Displays a table view with the option of crcating columns
cortesponding lo a node’s properties

Displays the top hierarchy of a node hierarchy; useful for the
master view of a master detail window

Displays child nodes in a list; useful for the detail view of a
master-detail window

Displays nodes in a Combobox

Proy

ides a JMenu view of anode and its children

Displays nodes in a grid-like layout using a node’s icon and
display name

Provides a property sheet for ediling a node's properties

OEBPS/image12507.jpg
// method reterence
ftm.addPropertyChangelListener(System.out

OEBPS/image17722.jpg
colCompany .setCellValueFactory((TableColumn.CellDataFeatures
<Salesdata, String> p) ->
p.getvalue().getCompanyid().companynameProperty()):

OEBPS/image17060.jpg
+
T catch (10xceplion | SAXE
Exceplions.printStackls

1
¥

@override
public void componentHidden() {

Platforn. runtater(() -> controller.clear());
!

OEBPS/image15960.jpg
package com.asgteach.dialogs;
public class LoginPanel extends jovax.swing.JPanel [
public LoginPanel() {

iniLCompunen s ()7
}

public String getUserNane() {
return nameTextField.getText():
}

public String getPassword() {
return new String(passwordTextFicld.getPassword());
&

private void initComponents() {

. . . generated code omittes .

)

77 Veriables declaration - do nol modify

private javax.swing..Ilabel imagol abel ;

private javax.swing.Jlabcl jlabell;

private javax.swing.Jlabel jLabel2:

private javax.swing.JTextrield nameTextrield;
private javax.swing.JPassworcField passwordTextField:
7/ End of variables declaration

OEBPS/image14566.jpg
@ibRundl e Messages({
“IIINT_RootNode=Show all people”,
“LBL_Rootode=People"

)

public cluss Moollode exlends AbslraclNode |

pubilic Roolode() {
super (Children. create(new GenderChildFactory(), false));
setTconDasenti thixtension(
*con/asgteach/fanilytree/genderviever/resources/personlcon. png"
setDisplayNane Dundle. LDL_RootNode()):
setshortDescription(3undle. HINT_RootNode()):

OEBPS/image4885.jpg
|53 OpenTopComponentjava € [[]] PersonTopComponent,java £ |
@

> Open Person Window

OEBPS/image14267.jpg
- . . topcomponent annotations and import statements omitted . . .

public final class MXDemoTopComponent extends TopComponent {
private static JFXPanel fxPanel:

pubilic P opConponent () §
initConponents{
settiame (Eundi . C11_bxbemo opComponent (1) ;
setlna1 11plext (Hundl o HINI_FXDena | optonpanent ()
Layout (new BarderLayout());
init();

}

private void init() {
xPanel = new JFXPanel():
add(fxPanel, BorderLayout . CENTER)
Platform. setInplicitExit(false) ;
Platforn. runlater(() -> createScene());

OEBPS/image3960.jpg
800 P

onFXEd e Wodaw _Fdi

enrrvirae i & [

< Pacole

Homer Sinon

Magaie simoso

B e

Pt [t
Wil [seymo

St

@Nde Rmae Unkoown
Mo

Barelea s

OEBPS/image14954.jpg
<7xm version="1.0" encoding=
unigue="lefLside" />
<kind type="view"/>
<stale lype="joined" />
<constraintss
<palii orientativr
</constrazs
<bounds x-
<frame state="0"/>
empty-behavior permanent="true"/=
</mode>

UTF-8*?><node version="2

as

horicontel” nusber

widy "0°/>

0" Iights

OEBPS/image15318.jpg
public class PersonFlavor extends DataFlavor {
public stetic 7inal Datarlavor PLRSOM_TLAVOR — new Personflevor();
public Persontiavori) {

super(Porsan_class, "Persan®);
+

OEBPS/image16970.jpg
// Build a TextField for editing
TextField tf = new TextField();
tf.prefuidthProperty().bind(ftrRectangle.widthProperty()):
t1.setvisible(false:
tf.setOnAction(event -> {
String otdText = ftrText.getText():
IUrTexL.selTexL U gelTexl (1)
+f.set¥isible(false)
updateDocunent (ftrText, oldText.length(), docString):
trRectangle. setHidth(
FriText . qetRoundsTnParent () .qetidth() + 30);

m

77 Add the Rectangle, Text. TextField to StackPane
stack.getChildren().adcALL(ttriiectangle, TtrText, tf):
stack. setOnMouseClicked (event -> {
77 enable ediling on o double-click evenl
L1 fevent.gelClickCounl () == 2 &&
vent .qetRutton () .equal s (MauseRut fon. PRTNARY)) {
tf . setText(FrrText . gatText ());
tf.setvisible(rie);

¥
s
71 ndd the drag handlers
stack. setOnMouseP ressed (nodedntousePressedrventilandler) ;
sLack. se (OnMouseD rugyed nodeOnbiouseD ruggedEventHand Ler) ;

OEBPS/image12865.jpg
public void removePropertyChangelisiener (ProperlyChangeListener istener)
Uhis.propChangesuppor L. renoveproper Lychangel istencr {Lis Lener) ;
1

public void addbersan(berson p)
Person person;
synchronized (this) {
person = new Person(p);
persanMap.put(person.getid(}, person);
3
this. propchangesupport. tirePropertyChange(
PROP_PEKSON_ADDED, e, person);
¥

public void updatcbersan(Person p) {
Persan persor
synchronized (this) {
person = new Person(p);
personiap . put(person.getId(}, person):

b
Uhiis. propChangeSuppor. FireproperLyChange (
PHROP_PFRSON_UPDAIFD, null, person) ;

OEBPS/image7639.jpg
NumberVisualPanel Ljav; 0_
e il

> Provide the first sequence number:

—— status JLabel component

. rd
Sstatus bl 4

OEBPS/image1772.jpg

OEBPS/image13301.jpg
public class MycustonRind extends Application {

Qoverride
public void start(stage stage) {

. code omilled Lo build Uk Reclungle, SlackPune
and DropShadow .

Text Lext = new Texl();
Lextsetont (Fon . Font (* Lahoma

FonlMeight .KOID, 18));
stackPane.getChildren() .2ddAl1 (rectangle, text);

Final Scene scene = new Scene(stackPane, 400, 260, Color.LT6ITSKYDLUL);
stage. setTitle("custon Dinding")

rectangle widthProperty () .bind(scene.widthProperty() . divide(2)) ;
rectangle. heightProperty () .bind (scene.heightPraperty() .divide(2));
DoubleBinding opacityBinding = new DoubleBinding() {
[
77 List the dependencies wilh super.bind()
‘pnr. b s ot widthPropariy (), sceas. MesghiPraperis(ids

OEBPS/image12336.jpg
private boolean manager = true;

// getter for manager

public boolean isManager() {
return manager;

}

OEBPS/image16628.jpg
. Local Tile system path .

L1/T1leSystemfApp/bulld/testuserdir/contig

OEBPS/image15230.jpg
public class GenderNode extends Abstractliode {
private final InstanceContent instanceContent;

public GenderNode(Gender gender) {
‘this(gender, new Instancecantent());
}

private GenderNode(Gender gender, InstanceContent ic) {
super (Children. create(new PersonChildFactory(gender), false),
new AbstractLookup(ic));
instanceContent = ic;
instanceContent.add (gender) ;
setGenderStutT gender) ;
setShorDes cripLion (Bunidle. KINT_GenderNude (1) ;

7/ Add a Calendar capability to this llode
instanceContent.add(new CalendarCapability() {

eoverride
public void doCalendar() {
CalendarPanel panel = new CalendarPanel();
panel. setText ("<htwl>Calendar Action applied to<p/>Gender
+ gethisplayNane() + “</html>"
Dialogbescriptor dd = new DialagDescriptor (panel,
Bundle.CTL_CalendarTitle());
Dialogbisplayer.gethetault() .natify(dd); // display & block

OEBPS/image16840.jpg
Llayer.addChild(widget);
¥

}

scene.validate();

} calch (BadlocalionExceplion ex) §
Exceplions . printslackl race(en);
T

]

private IabelWidget nakeWidget(String taxt, Faint point) {
Labeliidget widget = new Labeluidget(scene, text):
widget . getActions (). addAction(editorAction] :
widget . getActions() .addAction(ActionFactory.createoveAction()) i
widget . setPreferredLocation(point) ;
widget . setBorder (border) ;
return widget:

OEBPS/image16857.jpg
insertString|(startPosition,
abelvidget.getLabel() + "\n", mull);

}else {
startPosition += lu.getlabel().length() + 1;

¥
i

} carch (Hadl ocationkxcoption ex) {
Fxceptions .printStackTrace(ex) ;

¥

OEBPS/image4227.jpg
FamilyTreeApp 201310111528,

*Lia simpren <t o s
~ Maggis Simpson

{a

s G

T
)

sart seymore simpson
perscn

OEBPS/image2037.jpg
s =~
L Retambe)

——stwrPune Buton)

P
{_ Faster Button

OEBPS/image9841.jpg
Smart Prone Sales

s sk 0

OEBPS/image13788.jpg
7/ MepChangel istener when underlying FamilyTreeanager changes
7/ Check to see if on IXT, if not call Platform.runLater()
private tinal MapChangeListener<Long, Mersons fanilyTresListener =
change -> {
if (Platform.isFxApplicationThread()) |
Logger . Log (Leve L. FINE, "Ts JavaFX Applicalion Thread®
updated rec{change) ;
} else {
Togger.Tog(l evel .FTNF, "Ts FACKGROUND Thread");
Platform.runLater(()-> updateTres(change));

}

privale void updateTree(MapChungeLis ener . Change<? exlends Long,
7 extends Person> change) (
i (change.ge Valueadded(] 1= null) {
/4 Find e Urecitom Lhal Lhis malches and replace it
for (Irecl temcbersons node
personTreeView,getRoot () .qetChildren()) {
if (change.getkey() .equals(node., getValue() . getTd())) {
7/ an update returns the new value in getValueAdded()
node. setValue (change. getvalueadded()) :
return:

OEBPS/image14338.jpg
package con.asqteach. familytree.managerfx.impl;

imporT com.asateach. familytreetx.model.lanilyTreeManager;
Impor L com. asyLeach. FanilyUreelx. modelPer su;

1mport java.util Arraylist;

impor L java.ulil.List;

1mport javarx.beans.Invalizationlistener;

impor L javalx.collecUions. FXCollecLions;

import javarx_collections MapChangeListener;

impor L javalx. collecUions. Obser vibleMap;

1mport org.openide . UT1L. Lookup. ServiceProvider;

@serviceProvider(service = FanilyTreeHanager.class)
public class FamilyTreeMancyer FXIml inplenents FamilyTreeNanager {

private tinal UbservableMapsLong, Person- observableMap —
FXCol1acT10ns . ohservahl edashbian) ;

@override
public void addListener(Mapthangelistener<{ super Long,
2 super Person> m) {
observableMap.addListener(nl;
¥
@Override
public void removelistener(MapChangelistener<? super Long,
? super Persens L) {
observableMap . removsListener(ml);

OEBPS/image17792.jpg
I

7/ Compare company name and vear with filter text
String LowerCaseFilter = newlalue.tolowerCase();
if (salesdata.getCompanyid() .getCompanynare!) . toLowerCase()
.contains(lowercaserilter)) {
relum Ui 77 Filler malties conpany
J else il [sulesdula.gelSalesyear() . conluins(Lower CaseFiller)) |
7/ Filler malches sales year

relurn Liue;

return fatse; 4 o match
"
sortedData = new Sortedlist<>(filteredbatal:
sortedData. setConparator (conparatorSalesdata) :
tableview.setTtens(sortedbata)

W

7/ Reapply the filter when the user supplies a new filter text
TilterText. textProperty().addListener(
(ohservable, oldvalue, newValus) -» {
filteredData. setPredicate(salesdata > [
7/ Tt Tilter text is empty, cisplay oLl data.
it (newvalue == null || newValue.isEmpty())
;-

OEBPS/image4698.jpg
808

New File

steps Choose Ale Type

1. Choose File Type

2, Project: | @ PersenEditor
Categoriss: File Types
(3 Modude Development | 5 Acton
& Java ? L
& Javarx izarc
Eoiaurm | |8 o
oscun

Creates a naw singleton window companant integrated intc the
Window Systern along with en ection i main e which ogens

Halp <k (@@ [Foeh | [Cancol)

OEBPS/image3504.jpg
806 New Project

stops Choose project
1. Choose Project
- a
Categaries

e

£ crony

et

1 HetBeans Madies

Description:

(Creates a new empty NetReans Plarform Anplicatinn_This is
an application skeleton, withcut any modules. It Is the

[Help] [<Back | ([ENestza) | Fnish | [Cancel |

OEBPS/image10375.jpg
I3

@ Tdt_View Navigaie Tools Wirndow

MyFamilyTrcoApp 201403101706

L —
7 warge smpson

 sartsipson

IR e i irapcon]

[Maggis Simpson

OEBPS/image13587.jpg
package personfxmlapp;

import jevafx.apolication.Application;
inport jevafx.fxnl.N0MLLoader:

impor U juvalx. scene. Parent;

impor U juvalx. scene Scene;

impor U jevalx.stage . Stage;

public class PorsonkXMlApp cxtends Application {

@override
public void start(Stage stage) throws Cxception {
Parent root = FXHLLoader . load(getclass() .getResource(
"PersonFXHL. fxnl")) :

Scone scene = new Scene(rant) ;
stage.setTitla(Person FX Application®);
stage. setScene(scene) ;

stage.show();

2

public slulic void main{Stringl] wigs) |
Taunchargs);

T

OEBPS/image17578.jpg
GenericTypeLisl<Solesdula>> gType2 =
new GenericTypecLisl<Salesdulas>())3

response = LienL2. | ndALL XML (Response. c Lass) ;

|ist=Salasdatas datal ist = response. readFntity(qTyne?);

System.out.printin("hata |ist = * + datal ist);

// print out all the data
For(Company ¢ : companies) {
System.out.println(“Data for Company: " + c.getCompanyname()):
Tor (Salesdalu dataTlem : dalalisl) {
i (datal ten. e Companyid() . geLconpany o () . cquals(
<.gutCompanyid(})) {
Systen.oul.println(*Years" + dalallen.gelSelesyeer ()
+ + "linits Sold in Millions = °
+ datalfom.gotinitsionillions ());

}

1/ test 350N
System.out.printin{*Testing JSON"):

response = ¢lienl2. | indALL ISON(Response. c Lass)
|15t<Salnsdatas datal 1517 = response. readbntity(glypes)
System.out.printin(Data |ist = * + datal ist2);

/7 print out all the data
For(Company ¢ companies) {
System.out.println(*Data for Company: " + c.getCompanyname());
tor (salesdata dataltem : datalist2) [
il (daluTLen. e (Companyid() . geLConpanyid () .equals(
«.geLConpanyid())) [

OEBPS/image17836.jpg
data.theDataProperty() .addListener
(1151Changol 1sTonor . Chango<? extonds Salcsdata> o) > (
wiile (c.next()] {
11 (c.wnshdded()) {
Logger. Log(LeveL INFU, "was aoded”);
getLineChartdata();

3
1;
data. conpanyNanesProperty () .addListener{
(ListihangeListenar Change=? extends Conpany> change)
getlineChartData();

B

OEBPS/image17535.jpg
@override
public BufferedInage getInage() (
il {conlrolter LUy L
return null;
3

final CountDownLatch latch = new CountDownLatch(1);
Platform. runLater(() == {

7/ get the JavarX image from the controller

7/ must be in Javarx Application Thread

Uy {
inage = contraller.getInage();
T finally {
Latch. countDown() ;
¥
0
try L

Tatch.await():
return image;

} catch (Interruptedexceplion ex) {
Fxceptions, printStacklrace(ex)
return null;

OEBPS/image14810.jpg
ConvertAsProperties (drd
autostone = false)
@TopCamponent DescripTian(prefarredld = “ParsonTopCompanent”
“conBase ~ *con/asgteach/personeditor persantcon.prg",

persistenceType = TopComponent . PERSISTENCE ONLY OPENED)

@TopCumponenL.Regis LiaLion(nude = "cdilor”, openAtStartup = false)

@ctionId{category ~ “Windou",
d = "com. syl cach personed Lo PersanTopCangane

£/com asqteach_personeditor//Ferson//EN",

@ctionReference (path — "Menu/Window, position — 333)
@TopCumponent .Openfic LionRegistration(displayNane — "#CTL_Persomiction
//.preferredID = “PersonTopComponent”
)
@Uessages (1
“CT1_PersonAct ion=Person

“LIL_Person| gplonponent=Ferson Window",
“HINT PersonTopComponent=Tnis 15 a Person window”

]
pubTic final class PersonTopComponent extends TopComponent {
.. . code omitted . . .

}

OEBPS/image3131.jpg
CYaN:) New Window
Steps Basic Settings

L. Choose File Type

2. Basic Settings Window Positicn . [_explorer
3. Nare, lon and =
tacarion

[Open an Application Start

Keep preferred sice when slided-in

Sikcing nor allowed

~ Closing rot allowed

[Undocking net allowed

Dragging not allcwed

[Maximiz

1 not allowed

Help | [<park | (ENmEsa | Finish [cancel |

OEBPS/image13243.jpg
LabelF.textProperty().bind(
Bindings.format (" %1.1f F",
Bindings.add(
Bindings.divide(
Bindings.multiply(9, myTemperature.celsiusProperty()),
5). 32))):

OEBPS/image17591.jpg
Company = RTM

Company = Nokia
Company = RTM
Companies = [com.sarver. smartphonedata. entities. Company[companyid=1 1,

con. server snartphonedata.entities. Conpany[companyi
Con. server. smartphonedata. ent1ties.Conpany| companyi
con. server. smartphonedata. entities Conpany| companyid=:
.. . truncated

Salesdato = 2008,

con. server. smartphonedata. entities. Conpany| companyic=1 |, 61.09
Dats |5t = [com.scrver. smartphanedata. ont fics. Salcadatal salcsidsl 1,
com. sorver. smartphoncdata.cntities Salesdatal saleside? 1,

com. scrver smartphonedata.ents ties Salesdatal salosided 1,

com_sorver. smartphoncdata.cntities Salesdatal salosided 1,

... trncated

Data for Company: Hokia

Year=2000, Units Sold in Millions = 61.08
Year=2009, Units Sold in Nillions = 50.08
Year=2010, Units Sold in Millions = 100.10

Year=2011, Units Sold in Millions
Data for Company: RIM

Year=2008, Units Sold in Millions
Year=2000, Unils Sold in Millions = 3/.08
Year=2010, Unils Sold in Millions = 48.80
Your=3011; Umils Sold in Millions = 51,18

77.30

23.16

OEBPS/image12320.jpg
package com.asqteach. fanilytrea.model ;

inport java.io.Serializable;
inport java.util.Objects;
public final class Person inplemenls Serializable [

private final long id;
private String firstnane;
private String middlenane;
private String lastnane;
private String suffix;
private Person.Gender gender;
private String notes:

privale slalic long counl = 8;

public onm Gender {
MALE, FEHLE, (BKNOWY
i

public Person() {
this(**, ", Gender.UNKHOWN)

OEBPS/image16583.jpg

OEBPS/image14981.jpg
<2xml version="1.0" encoding="UTF-8"?><moce version="

e unigue="n2" />

<kind type="visu"/>

estate type="joined"/>

<constraints>
<path orientatior
<path orientatior
<path orientation

</constrainTs>

<bounds x-*0

<frane slale

2.4">

ertical” number="6" weigh
horizontal” numbe:
vertical® numoer—"0" weight—"0.5" /=

0" width-"0" heignt-"
7>

e

<cuply behavior permancnl="Liue' />

</mode

OEBPS/image15575.jpg
@ctionTn(
categary = "Newhiode”,
id = "arq.openide. actions. Newnctian®)
@ActionRegistration(
iconBase = *com/asgteach/tami lytree/actions/personIcon.png’,
displayName = "#CTL_NewPersonAction®)
@AcLionRelerences |
@AcLionRe | erence(pulh
@AcLionRelerence(palh

"Henu/File", posilion = 75),
"Toolburs/File", posilion

50)
il

@essages ("CTI_NewPersonction=tew &Person”)

public final class NewPersanictinn implements Actionl istenar {

private final HewType context;

public Newrersonfction (NewType context) |
Uiis. conlext = conlext;

)
woverride
public void actionberfomed (Actiontvent ev) {

try {
context.create();

J cateh {T0Exception ex) [
Exceptions . printstackTrace(ex);

J

OEBPS/image16713.jpg
/£ Get the Filedhject from the Databbject
Filatbject myfob = dob.getPrimaryFila();
if (myFob 1= null) {
displayMessage *Got Tiledbject " + myfob. getNamelxt()
+* from DataGbject");

displayblessage ("Displuy Conlenls
77 Use FileObject Lo read e conlenls
for (String Une : myfob.asLines()) {
displaytlessage Line) ;
3
0

Output Window
Got rilebject myfile.txt from DataObject
Display Contents:

Lesting

fwo

OEBPS/image13973.jpg
arxiL
private void processAllButtonActian(Actionkvent cvent) {
Togger.Taq(l evel .FINF, “Process A1 Rutton’);
/1 only one task to run at o time so disable the button
processaLButton. setbisable(true) :
7/ create e Lask wilh a Uist
Tinal ProcessAlllask processlask = new Processalllask(
FXCollections. obscrvabl cArrayl 15t (Frm. gerAl Ibcople())) 3
/¢ configure the UT
progressBar. progressProperty() . bind (processTask.progressProperty()) :
statushessage . textProperty() .bind(processTask.messageProperty()):

74 el up hendlers for success and Failu
processlask. setinsucceeded(t > {
Togger.Tag(level .Mk, “Process All task Finished: (8)",
©.getsource().getvalue(]);
resetur():

s
processTask, setOnFailed(t -> |
/7 t.getSource () .getException() could be null
Logger Loy (Leve L WATNING, "UpdaLe Lask (ailed 0]",
UyelSuurce () .gelxeeption() 1= mill
? t.getSource().getCxception()
“Unknown failure');
resetuI():
e
processTask, seLonCanceLLed(L -> |
Togger. Log(Level FINs, "Process ALL Lask cancelled
resetUI();

OEBPS/image12579.jpg
public class Porsonkranc extends javax. swing. Ikramc {

7/ Class variables
private final DefaulthutableTreeNode top
new Defoul tiutah] eTreeNode ("Peopl a*) ;
private final FamilyTreeManager fim = FonilyTreeManager.getTnstance();
private Person thePerson = null:
private static final Logger logger =
Logger . getLogger (PersonJrrame. class. gethane())

/7 private constructor
private Persondrrane() { . .

Jf factory method
public static Persondframe newlnstance() { . . . }

7 initialize components (generated)
privale void inilComponents(] {

)
public static void main(String args(1) {
7+ Creale and display Uhe form */
SwingUtilities. invokeLater((]->
PersonJFrame. newInstance() . setvisible(true)):

OEBPS/image5420.jpg
LoginTopComponentjava &

[— :
Usemnamer] usernameTextField
>
Passwod | passwordField
[Login loginButton
L4 4 |errorLabel

OEBPS/image4628.jpg
© 00 WindowSystemApp 201204101705

(X

2 Person Window

(]

operrvindow & [LC)

:
£

OEBPS/image7968.jpg
® filesystemapp File Edit View Navigzte
FileSystemApp 201403101/

Templates

Plugins

Exploring NetBeans Platforn FileObjects:
Uszng folder /Users/gail/FamilyTreeData
Creating file /Users/gail/FamilyTrecdata/myfile. txt
can wrile /Users/ga_l/FanilyTreeData/my file. xU
Text written to file myfile.txt

can read /liserc/gail/Fam yTreedata/nyfile. txt
This is some text

Line nunber

Line nunber 3

Renaned file to mynewname. txt

Deleted file mynewname.txt

OEBPS/image7752.jpg
808

2 dcuene vt b 10
& Dobeyuomin

Total: §10.75

Mecium Pizza with Sausage. Onions, Pepreroni, For Deliv.

@ Order s Confimesd

@ Check Confirm and Finis o place your order.

Help

OEBPS/image10548.jpg
Pluging.

[pdates | vaiable lugirs nstlies 51 _settngs |

[add prugms... | Search: |

Tt

Close | [Help

OEBPS/image14017.jpg
package com.asgteach. fanilytree.manager.umpl;

import
1mport
tmpart
import
Lmport
impart
1mport
tmpert
impart

com.asyleach. TamilyLree.model . FanilyTreehanager ;
com_asqteach familytree model Ferson
Java.heans_PropertyChangol 1stencr;
java.beans . PropercyChangsSuppor
java util_Arraylist:

Java_ul i1 Hashilap
Java.util.LisT;

java uril Map;

aryg.openide_u! i1 sk ServiceProviden;

@serviceProvider(service = FanilyTreeNanager. class)

pubLic

class ramilylresManagerimp. inplenents FamilyTresManager {

private Tinal Map<Long, Person- personap — new llashHap<();

private Propert yChanges

wpport propthangsSuppart = mill

private PropertyChangeSupport getPropertyChangeSupport() |

3

= wll) [
new PropertyChangeSupport (this);

4f {Lhis. propChangeSuppor L
<his.propLhangesupport
¥

return Uhis. propCliangeSuppor L;

@iverride
pubLic void addProper LyChangeListenst (Proper tyChangslistener Lislener) {

il

‘getPropertyChangesupport (). addPropertyChangeListaner (Listener) ;

@Override

Prpe yChangel §51ener (PropertyChange! istencr 1islener) |
getPropertyChangeSupport (). removePropertyChangeListener (listener);

OEBPS/image12610.jpg
/7 hdd Persan objects to FamilyTreeManager

private void buildoata() {
ftm.addPersoninew Ferson(*lioner”, "Simpson”, Person,Gender MALL));
+tm.addPersoninew Person("Harge", "Simpson", Ferson.Gender,'THALT)) :
I Ln-addPerson(new Person("Barl*, "Sinpson®, "Persou.Gender MALE)) ;
{UnaddPerson (new Person{*Lisa®, "Sinpsen®, Person.Gender. FEMALE));
Tl addperson{new Person(“Heggie, *Simpson®, berson, Gender. FEHALE));
Tagger.Tog(lovel . INE, [gel AT People() 108 ring());

OEBPS/image6887.jpg
Option
DEFAULT OPTTON
OK_CANCEL_OPTION
YES_NO_OPTION
YES_NO_CANCEL_OPTTON

Meaning
The default buttons according to the dialog type
Display OK and Cancel buttons

Display Yes and No buttons

Display Yes, No, and Cancel buttons

OEBPS/image7285.jpg
806 Information

Number Sequence =
/ (15,25, 44)

o

OEBPS/image13805.jpg
public synchronized void deletePerson(Person p) {
final Person person = new Person(p) ;
ohservabetap. remove (persan.get 1d()) 5

¥

public synchranized List<Persan> getAllPeople() {
List<Person= copyList = new Arraylist<=():
observableap.values().stream() . forEach({p)
-> copyList.add(new Person(p)i):
return copyList:

OEBPS/image17078.jpg
<FlowPane

alignnent="T0P CCKTCR"
TowPane®
Fxzdd="mypane"
xmlus: 1x="hLp: // jevalx. com/ [nl*
fxzcontroller
“com.asgteach. fanilytree. personfiletype. FanilyTreeFXController'>
<padding>
<Insets bottom
</pacding>
<stylesheets=
<UNL value="QFamilyTree.css" />
</stylesheets>
<children> </chi lren>
</Flowlave>

0,67 Tof

00" oy

0.0

0,07 right

OEBPS/image13376.jpg
@
private void startPauseAction(ActionFvent event) {
iF (pathTransition.getStatus () == Animation.Status.RUNTNG) {
pathTransition.pause(
Y else {
pathTransition.play():

J

startPauschuttan. textProperty (). bind(
new When (path ransitian. statusProperty()
~iskqual I (Animation. Status. RUNNING))

then(*bausc") .otherwise("Start"));

OEBPS/image17345.jpg
Bindings.concat(tableModel.getTitle() +

OEBPS/image14177.jpg
@override
public void changedupdate (CocumentCvent evt) {
it (changedk) {
wdily();

3
h

71 Actionlistener for Radio Duttons
private final ActionListener rodicButtonlistener = (ActionEvent e} -» [
i (changeok) {
modify();
¥

H

71 Actionlistener for Update button
privale linal Aclionlislener updalelislener = [AcLionEvent e) -> [
updaleMode L
Lm. updal P son{ Lieber son) ;

H

OEBPS/image6260.jpg
[Mane. . commonansmen

D) s

oo | e

o3 veopie Cony
i llune ey Eeate
3 - margesimpson T Deie_xa@

S 1 san Simpson
2 L sinpaon

Tind.
Repace.. %R

OEBPS/image15566.jpg
public final class PersonCapability implements Lookup.Provider {
.. . code omitted . . .

public PersonCapabi lity() {
Tookup = new AbstractLookup(instanceContent);
fLn = Lookup.getbefaulL() - Lookup (Family | rechanager . cLass) ;
if (frmo== ul1) {

Togger. Togli cvel .SFVFRE, “Cannat get Familyl recManager abject™);
Lifecycletanager . getbefault (). exit():

RetresnCapability implementation omitted . . .

instanceContent .add(new CreatablePersonCapability() {
@verride
public void create(Persan persan) throws I0Exception {
if (ftm 1= nall) {
+tn. addPerson (person) ;
¥
¥
b

L code omitted .. .

OEBPS/image12592.jpg
public static void main(String args(]) {

/#+ Create and display the form +/
SwingUtilities. invokeLater(()->
PersonIFrame. newInstance() .setVisible(true));

OEBPS/image16722.jpg
/f Get the Node that represents the Databhject
lode nade = dob. gethodeDelagate();
if (node 1= null) {
displaytlessage(*Node is: * + node.getDisplayNare());

/7 See il Ue Node has an Tcon (Tnage)
Inage image = node.getTcon{BeanInfo. ICON_COLOR_16x16);
il limage 1= wull) [
displayMessage(6ol Uhe Node's Leon * + image. Lostring());

// Get the Node's Context-Menu Actions

displaytessage(” -Node Context Menu Actions-
for (Action action : node.getActions(true)) {
if (action == null) {
71 separalor
displayhessage(
3 else |

displayhessage("AcLion * + atlion. LSlring());
1

i)

output Window

Node is: myfile txt

Got the Node's Tcon BuferedImaged8a3odsh: type

e k=f (6030 166 meska 1 anasks | TO06600

witlh = 16 height = 1b #ands = 4 x07(= 0 Yo f
Hode Context Menu Actions-

... (output truncated)

3 DirectColortiodel
Leger LnLer LeavedRas Ler
& dale0ffseL[8] ©

OEBPS/image14258.jpg
StackPana® fx.

stackpane”

xmlns: Frx="http: //avatx. com/xml "
fx:controller="con. asgteach. fxdemonodule.MyRectangleFXControllar">
<stylesheets>
<UNL value="@MyCSS. css" />
</stylesheets>
<children>

. unchanged code omilled . . .
</childrens
<#Stackpancs

OEBPS/image14452.jpg
public final class PersonFXEditorTopConponent extends TopComponent {

private static JrxPanel fxPanel:
private Lookup.Result<Person> LookupResult = null:
private PersonfXEditorController controller:
private static final | ogger logger =
Logger. getLogger (PersonrXCditorTopConponent . class. getName ()

public PersonFXEditorTopComponent()
iniComponents ()
sellane(Bundle. CTL_PersonFXEdi Lor TopCompon:
setToolTipText (Bundle. HINT PersonFXEditorTopComponent());
setLayout (new DorderLayout ()
init():

)

private void init() {
fxPanel = new JrXPanel();
add(fxPanel, DorderLayout . CCNTCR:
Platform.setInp LicItEXit{false):
Platform. runlater(() -> createScene()]:

¥

private void createscene() {
try
URL Location = getClass() .getResource("PersonFXEditor. fxml*):
FXMLLoader [mlLoader = new PYXMLLouder ();
[xlloader . set Locat ion(Tacal ion) ;
#xmlLoader ., setbuilderractory(new Javarxbuilderfactory());

Parent root
Scene stene
i gpmeie

(Parent) txmiLoader. oad(Location.openstream()):
wew Scene(rool);
e et

OEBPS/image17604.jpg
package com.asqteach.phonedata.wehservi ce;

inport con.asgteach. phonedata.entities. Conpany:
mpor L con, sy Leach, phonedala.enUilies . Salesdalo;
inport jova.util.Lis
inport javax.ws. rs.core.GenericType:
impor L javax.ws. 15, core, Response;

impart org.opent de.nodules. OnStart ;

@onstart
public final class ClientTest inplements Runnable {

@override
public void run() {
Company.JerseyClicnt clicnt = new Companylersey(lient ();
Company company = client.find XM (Company.class, "2%);
System.out.println{*Conpany = * + company.qetCompanyname ()} ;

. . . remaining test code omitted, see Listing 16.2 on page 814 .

OEBPS/image12398.jpg
package com

inport java
inport java

asgteach. familytree.model;

beans . PropertyChangeListener:
beans . PropertyChangesupport:

inport java.io.Serializable:
inport java.util.objects:

public Cival class Persan implonenls Serializable {

private final Tong id;
private String firstname;
private String nidd]cnane;
private String Lastname;
private String suffix:
private Person.Gender gender;
private String notes;

private PropertyChangeSupport propChangeSupport = nul

17 Property nan

publlic static final String PROP_FIRST
public static final String PROP_MIDOLE
public static final String PROP_LAST =
public static final String PROP_SUFFIX
public static final String PROP GENDER
public static final String PROP_NOTES

private static long count

pubLic enum Gender [
BALE, FEMALE, URKNOWN
¥

OEBPS/image16312.jpg
@verride
public void readSettings(WizardDescriptor wiz) {

// Reset the confirmCheckBox component each time
getComponent () .getConfirmCheckBox () . setSelected(false):

OEBPS/image13039.jpg
<t version="1.0" encoding="UTF-&" 2~

<rimport
<7import
<?import
<?import
<7import
<7import

<7import
<timport

<StackPane id="SLackpang

java.lang. <7

java.util
javafx.
Javafx.
Javatx.
Javatx.
Javatx.
Jevalx.

scene. t7>
scene.control. 7=
scene. Layout. 47>
scene.shape. A7>
scene.text . 47>
Scenael el s>

prefHeighl="200" prefidih="see"
77javatx. con/ Pl
‘myrectanglefxapp.MyRectangleFXContraller>

rectangle” width="200" height="100"
130" arclleight="30"
style="-fx-fill: linear-gradient(#ffdssb, #e60100),

OEBPS/image13216.jpg
circlel.setRadius(30.5!
7/ Both circles are now 30.5

System.out.println(“Circlel: ' + circlel.getRadius(})
Systom.out.printin("Circles: * + circle?.gethadius ()

circlel. radiusProperty() .unbindidirectional (circle2. radiusProperty());

5
Circle2: 15.5
Le; 5
Circlev: 28
Circlel: 30
Circlev: 30

OEBPS/image8522.jpg

OEBPS/image10788.jpg
CXSKE] SmartPhoneDataAop - Branding

(4 Window System Resource Bundies Inteinationization Resotrce Bundles

Locate: | o5 g Scarch: [Cnty Eator

0 Resource Buniles
v [erg/netbzans

OEBPS/image15066.jpg
@ServiceP rovider (service = Userfiole. class)
public class SimpleUserRole implements UserRole {

orivele MapsSLiing, Users userMap — new dasliMap=();
orivate List<strings roles — new Arrayliste();

oublic SimpleserRolel) {
initiatisel);

i

orivete void initialize(} {
User userl = naw Lsar();
userl.setUsernane("Joe
usarl setPassword(*Ioe
userl.setRole("User" |
storelser(userl] :
storeRole{"Agmin‘);
User user2 — new User(
user2. setlsenane ("Hog
usar2.sztPassword ("Neg
e setRole("Adwin®};
storellser(user2);

)

@verride
public User tindUser|String usernsme, String password) {

U user = usPan. gel (userans) ;

it (user I~ null & user.getbassword(}.equals(oassword)) {
return user;

}

return nut

OEBPS/image16731.jpg
7/ Get the DataObject from the DataNode (cumbersome)
if (node instanceof DataNode) {

/1 cast to DataNode

Dataliode dataNode = (DataNode) nod

displayblessage ("Node is a Dulabode: * + dalaNode. ge Disp LayName (1]:

Datalbject mydob = dataNode.getDatadbject():

i (ydob 1= null) £

displayMessage(‘ot the NataOhject from the Datalinde: *
+ mydob.getNane () ;

¥
}

77 Detter to use Lookup (type-safe)
Datadbject dob2 = node.getLookup() . Lookup(Datadbject.class) ;
i (dob2 1= null) {
displayticssage ("ot the Datadbject from the Node's ©ookup: ™
+ doby .gettiame ()}
)

Output Window
Node is o DataNode: myfile.txt

Gol Lhe Duladbjecl Irom Lhe Dalubode: mylile. LxL

Gol Lhe Dulabject Irom Lhe Node's Lookup: mylile.Lxl

OEBPS/image7446.jpg
CYaYE) New Library Wrapper Module Project

steps Select Library
1. Select Library it =

2. Name and Locaticn 4y - [modules/ext; ValidationAPl jar| |_Browse.
3. Basic Vodule

configuration License

Rrowse.

Cancel

OEBPS/image5193.jpg
8.0.8, New Define Your Modes -
Steps Design Window Layout
L Choose File Type
2. Launch Your Founc modes
Application?) D explorer
. Design Window o [l
Layout

4. Changed Files

=) L rightldingsda
) [botomsidingside
) D copsidngside
1 D cpoarner

= [efoianasde

) [outpur

| [propertis

Hep | _<Back | [Nesd) | fmsh | [Cancel |

OEBPS/image12923.jpg
7/ ActionListerer for Update button
Private final Actionl islencr updalel istoner = (ActionFuent) > [
irst update the model Trom the UT
updal Mo () ;
77 copy Ferson tor backaround thread
tinal Person person = new Person(thePerson);
Suingrorker<Person, Void~ worker = new SwingWorker<Person, Void=() {
@verride
oublic Person doInBackground() {
7/ Simvlate @ long running process

iy {
Thread sleep(3600);

} catch (InterruptedException e) {
Tagger. Tog (1 evel WARNTNG, mil, c);

1

£/ savein background o

‘ogger.log{Leval .[INL, "calling ftm for person {8}", person);
tm.updatePerson (person) ;

7/ only 1t interestsd in accessing person atter

7/ backgroung thiced fnishes; otherwise, return null

return person;

OEBPS/image10491.jpg
Projects | Files € | Services

v [updates
» 3 licenses

& com-asgteach-familtree-personeditor.nbm
[com-asgreach-familytree-genderviewer.nom
& com-asgteach-familytree-manager-impl.nbm

o

v

com-asgteach-familytree-model.nbm
com-asgteach-familytree-selectionhistory.nbm
updates.xml

OEBPS/image15736.jpg
@override
public String Lostring() {
Stringhuilder sh = now StringBuilder();
sb.append(*[*) .append(getId()) . append (‘1
if (1this.getTirstname() . isCnpty()) {
sb.appendithis. getrirstnane()) :

if

tthis.getMiddlename () .isEnpty ()} (
sb.append(" ") .append(this.getitiddlename()):

1 (tthis.getl astranc() . stapty()) {
sh.append (") .append(this . getl astnanc());

:
FF (tthis.gersuffix().isFapty()) {
sh.append ("). append(this.qetSuffix());

return sb.tostring():

OEBPS/image17182.jpg
public class | ineChartController implements Tnitializable {

[
private
OFXHC
privale
enmL
private
enuL
private

privale
private
private

StackPane stackpane:
Caleguryhnis xhxis;
Nunberixis yidis;
Linechartestring, Number> chart:

Observablel isL<X¥Char L Series<SLring, Nurber>> Lcbata;
HyTableDataNodel tableMode

static final lagger Togger = | agger.get! agger(
IincChartlantrol ler.class. gotNanc()];

OEBPS/image8328.jpg
XaY:) New XMI Layer

steps Layer Location

L. Choose File Type

2 (LAVEPLOtation Project AppConfigeile

Created Files: ~src/com/asgteach/appcor

ile/layzr.xml

Nodiflec Files manifest.mf

[Hep | |

== N

OEBPS/image3672.jpg
a0e FamilyTreeFXApp 201310111528 "
& in e I
g

v People
Homer Sirpson

Marge Simpson
Bart Simpson
Lisa Simpsen
Maggle Simpscn

OEBPS/image14008.jpg
</run-dependency>
</dependency>
<dependency>
<code-nanc -hascsorg. apenide. util . Laokups/corc-name -hases.
<build-prerequisite/=
<compile-dependency/=
<run-dependency=
<specification-version=8.22.1</specification-version=
</run-dependency>
</dependency~
</module-dependenc s>
<public-pac kages/>
</datas
</conFigurations
<fprojects

OEBPS/image9868.jpg
6006 Select Database Connection
Database Connection:
{ jdbc:derby://localhost:1527/phonedata [phonedata on PHONEDATA] |

Cancel

OEBPS/image12601.jpg
private PersondFrane() { 11 constructor
11 Configure Logger
. code omitted . .

buildbaLa();
iniLComponents (); 7/ generated by U fom builder
persontree.gelSeluc Lionodel () seLSelec Lionode(
I recSel ectionMode] . SINGEF_IRFE_SFFCTION) 5
createNodes(top);
}

private void configureListeners(}
41 Listeners are registered after constructor returns
77 Tor thread salely
. addbrapertythangel i stener (fanilylrol istener) ;
personTrea. addTreeSelactionl i stener (freesel ectionl istener);
updateRutton. addictionl istener(updatel i stener) ;

¥

public static Persondrrame neuInstance() {
PersondFrane pjl = new PersonlFrane();
pjf.configurelisteners();
retar pjf;

OEBPS/image14204.jpg
private Lookup.Result<Person> lookupResult = null;

/7 Visten far Persan abjects in the Glohal Selectinn I ookip

TookupResult = Utilities.actionsGloballontext()
.lookupResult (Person. class)

Tirlaionesilt sddlokubListeneri] oukupLisEERErYi

OEBPS/image15662.jpg
private class SavableViewCapability extends fbstractSavahle {

SavableViewCapahility() {
register();
]

public void removeSavable() [
unregister();
|

@verride
protected String findDisplaylanea() {
raturn thepersan.tostring();

}

@override
protected void handlesave() throws T0Exception [
Iinal Node wode = gelLookup() . Lookup(Node . Luss]
i1 (node 1= nutl)
linal SavablePersonCopabilily savable
= node..geLLookup() . Lookup (SavabLePe rsonCapubi LiLy. ¢ Luss);
if {savable 1= null) {
updatetlodel () ;
Tl Wareon g i Parean [thapuises);

OEBPS/image17069.jpg
-ftr-rectangle {
-Fe-Fill: linear-gradient (1c9dSeR, se7f7Ff);
-fx-effect: dropshadow(three-pass-box . gray , 10, 0 , 5.0 , 5.0);
-fxestroke-width:1.0;
-fx-stroke: darkblue:

)

Lttr-text {
-tx-font-size: 14

'

~ftr-pane {
~fx-hackground-calar: Tincar-gradient (lightblue, 4ctidics, #ddecch);
'

OEBPS/image3004.jpg
Prorce © (M
v & FamiyTreeApp
> g
TS Add New.
» & personswing Add New Library...
Add Existing.

OEBPS/image4029.jpg
(Note)
5
=
"3 ~ e ™
| AbstractNode | { FilterNode
e >4 L /)

OEBPS/image17522.jpg
BuTteredlmage 1mage = context.getlmage();

ImageI0.write(image, "png", f.getAbsoluteFile()):

OEBPS/image4207.jpg
8606
<3 People

> O Male

» Q Female
» ¢ Unknown

8606

63 People

v O Male
& | Homer Simpson
& | Bart Simpson

v O+ Female
& Marge Simpson
& * Lisa Simpson
& * Maggie Simpson

O Unknown

OEBPS/image13539.jpg
package con.asqteach. fanilytree.nodel ;

inport javafx.cal lactions. FXcallaction
inport javafx.cal lections. Observabl etap;

public class ramilyTreeManager {

private final ObservableMap<Long. Person> observableMap =
FXCollections. observableHashhap():
private static TamilyTreeManager instance = nui

protected FunilyTresManager(} {
7/ Singlelon cluss: prevenl direct inslanlialion

¥

public stalic FamilylieoManager gellnstance() {
if (inslance = null) {
inslance = new Fanilyl rectanager();
3

turn instance

}

public void addi istenar(
NapChangel istener<? super lang, 7 super Persons ml) {
observabletap. addListener(ml);

OEBPS/image10539.jpg
Projects | Files | Services

» [GenderViewer
» [personEditor
v
v [build
» [dasses
dlasses-generated
dluster

=]
-
[depcache
Q
8

3]

vvvy

public-package-|
SHuserdir
com-asgteach-familytree-selectionhistory.nbm
o-license. txt

OEBPS/image7118.jpg
9 NumberWizardPanel| ““, v
v Number\WizardPane2
NumberVisualPanc2

!

NumberWizardPanel3

Nurnber VisualPanel3

=4

OEBPS/image17095.jpg
Il

private StackPane mokeElement (String displaylane) {
7/ Build the StackPane
Stackbane stack = now Stackvane();

7/ Build the Text

Final Text FriText = new Text (displ ayllame) ;
ftrText.getstyleclass ().add("Ftr-text®):
FtrText.setEttect (new Ref lection()):

/7 Build the TmageView, put TnageView & Text in VBox
TnageView iv = new ImageView(inage);

VBox vbux = new VBox(3, iv, fLriext);

vbox. scLATignment (Pos. 108_CENIER) ;

vhox. setPadding(new Tnsets(16, 0, 6, 0));

/7 Build the Rectangle
Rectangle ftrRectangle = new Rectangle(
FtrText. getBoundsInParent () .getwidth() + 40, 90
ftrRectangle. setarclieight (20);
TURecLang e se (ArcWid (h(20) ;
IUReclangle.ge (SlyleClass() add(" | Li-reclangle’);

/7 Add the Rectangle, VBox to StackPane

sLack. geLChildren() . SddALL([LrRec Langle, vbox);
return stack;

OEBPS/image14999.jpg
ncoding-"Ull -B*7<node version—"2.4">

<king type="view"/>
stale Lype=" joined"/>
<constraints>
<pelii o1 ientalivn
</constraints>
<bounds x="8" y:
<frame state="0"/>
<cmply behiavior permsnents
</mode>

vertical” nunber="1" weight="0.3"/>

wid '0°/>

0" lizights

Lrue"/>

OEBPS/image9251.jpg

OEBPS/image16901.jpg
@i t1ViewF] ement . Reqistration(

displaylane

WAL FamiTyTressX VISUA *,

iconDase = "con/asgteach/femilytreesupport/check.png",
mimeType = "text/x-femilytree,

persistenceType

fopComponent . PLRSTSTENCE_NCVER,

prelerredID = "FanilyTreeFXVisual®,
posilion = 2000

)

@os sages ("LBL_Fanily | reckX_ViSUAI

isualFx")

public final class bamilylrecVisualFXHloment extends Pancl

private
private
private
private
private
private
private
private
private
private

implements HultiViewklonent, PropertyChangelistener {

final ramilyTreeDatadbject ftDatadbjec

final JToolbar toolbar = new JToolbar()

transient MultiViewElenentCallback callback:

ProxyLookup proxyLookup = null:

final InstanceContent instanceContent = new InstanceContent():

EditorCookie editCookie = null;

StyledDocunent doc = null;

static JFXPanel fxPanel;

FtrvisualFxCantroller controller;

static final Logger logger = Logger.getLogger (
TamilyTreevisualrXClenent class.gethane());

public Fami lyTreeVisualFXE Lemen((Lookup Ukp) (
proxyLookup = new ProxyLookup(Lkp.

new AbstractLookup(instanceContent));

[LDatavbject = lkp. lookup(Fanilyl reebalavbjecl.class) ;

smagit CUatiiioct.

s

OEBPS/image13199.jpg
package asgteach.hindings;
impart javafx.scena.shape.Circle;
public class Mybind {

public static void moin{Stringl] args) (

Cirele rirclel = new Cirele(18.5);

Circle circle? = new Circle(1s.5);
oul.println(*Circlel: * + circlelgelHedius()
oul.printin(*Circle2: * + circled,gelRadius(]):
7/ Bind circlel radius to circle? radius
circlel.radiusProperty() .bind(circle2. radiusProperty()):
it (circlel.radiusProperty().isBound(}) {

SysLen.oul.prinUln("Cire Le] radiusPioperly s bound");
1

// Radius properties are now the same
System.out.println{*Circlel: * + circlel.qetRadius());
System.out printTn{*Circles: * + circle?.getRadius());

7/ Both radius properties will now update
circle2. setRadius(20.5.

System.out.p
System.out.p

relel: "+ circlel.qetRadius());
Circlez: * + cirele?.getRadius());

OEBPS/image9138.jpg
Editor Indentation
Tditor Library

Fditor Tibrary 2

Editor Oplions

Editor Sellings

Editor Settings Storage

Editor Uilitics

Extensible Abstract Model (XAM)
JSON Simple Library

Tump To

XML Document Model (XDM)
XML Lexer

XMT. Mul
XML Productiyity Tools
XML Relriever

XML Schema APT

XMI Suppart
XML Text Editor
XML Tools

OEBPS/image17682.jpg
1
updal ¢ st DnFai Ted { (WorkerStateFuent 1) > (
Tagyer Tog(l cvel WABNTNG, “Failed: Solesdale USDATED fur (0)°,
1omSalcstala_gel Company i () el Campenynene ());

it (progrens 1= nal) (
progress . seiVisiblefalse) ;

B!

77 anly start the service 10§15 ready

(uptale.gel Siste(] = WorkerStalo. SUTCFFDED) [
updste vesel ()

)
i1 (updatle.gelState() = WorkerStale.READY) (
it (progress) (
progress_setvisible(true);
i
update. setsalesdata(newsalesdatal ;
update.start();

1

@Suppressiarnings (“unchecked" |
privete voic getDatalnBackground(?rogressIndicetor progressIndicator) {
7/ This service can be invoked multiple times
salesService. setOnSucceeded| (WorkerstateCvent t) -» {
if (orogressIndicetor !— null) {
progressIndicetor. setvisiole(false);

3

OEBPS/image16224.jpg
public class MumberWizardPane]3 inplements
Wizardbescriptor. Panel <Wizardbescriptors,
PropertyChangel istener {

private NumbervisualPanel3 component:
private WizardDescriptor wizard = nul
privale boolean isValid = [alse;
private Integer firstumber;

private Integer sccondbumbor,
private Integer thirdNumber;
private List<Integer> mynunbers;

. . code omitted . .

@verride
public void readSettings (WizardDescriptor wiz) (
ik isand & i

OEBPS/image13403.jpg
private StringProperty firstnane;
private String _firstname = "' 17 shadow field

public String getFirstname() [
return (lirstuane 1= null) 2 Lirstname.gel() © _lirsUmme;

)

public vaid setirstname(String newFirstnane) {
i (Firstname 1= anll) {
firstname. set(newrirstnane) ;
}else {
_firstnane = newTirstnane;

]
|
public final StringProperly |ivstnaneProperly() |
il (Tirstname == null)
Firstname = now SimpleStringproperly(Uiis, *Fivstuam, _firstnane);
3

return firstname;

OEBPS/image5300.jpg
MedeApp2 201204101705

[

OEBPS/image13128.jpg
system.out.println(‘circlel radiu
+ circlel.radiusProperty() .getvalue());

System.out.printin("circlel radius property nam
+ circlel.radiusProperty() .getNane () :

System.out.printin("circlel radius property bean: *
+ circlel.radiusProperty|) .getBean()) :

System.out.printin(*circlel radivs property value
+ circlel. radiusProperty() .get(]);

property valua:

circlel radius property value: 26.5

circlel rudius properly mume: radius
circlel rudius properly bean: Circle@243:0062
circlel radius property value: 26,

OEBPS/image15818.jpg
public class PersonNode extends Abstractiode {
.. . code omitted .

Qoverride
public void destroy() throws I0Exception |
Final RemovablePersonCapability doRemove
RemovablePersonCapability.class)
final Porson person = qett onkup(). Tokup(Person.class) ;
iF (doRemave 1= null & parson 1= mill) {
Swinguorker<Void, Void» orker = new Swinglorker<Void, Void>() {

etLookup!() . Lookup(

@verride
protected Void doInBackground() {
try L
doRenove. remove person) ;
J caleh (TOExceplion =) [
Logger . Log(Leve L WARNING, null, e);
1

return nall;

63
¥
worker.execute();

OEBPS/image16446.jpg
@verride
public void actionPerformed(ActionCvent &) {

17 Look in the User's home directory
String home = System.getProperty(*user.home'):
File dir = nev File(home + */FamilyTreeData’):
FileObject myfolder = FileUtil.toFiledbject(dir):
i (myfolder == null) {
displayMessage("Creating folder * + dir.getbath());
ey L
14 Create folder
myfolder = FileUtil.createFolder(dir):
J cateh (ToException ex) |
ExcepLions . printStack race(ex) ;
¥

OEBPS/image15889.jpg
Not fyDescriptar nd = new Noti fyfescriptar.Confirmation(
"Do you BFAIY want o deleta all those files?777);

Ohject status = Nialognisplayer.qetefaul t().notify(nd);
if (status = NotifyDescriptor.YLS OPTION) {

/1 Yes

) else it (status == NotityDescriptor.NO_OPTION} {
/1 o

) else it (status == NotifyDescriptor.CANCEL_OPTION) {
/1 Cancel

) else il (slulus == NoLilyDescriplor.CLOSED_OPTION) (
4/ Window oxplicitly elased
'

OEBPS/image14443.jpg
thePerson = people.iterator().next();
Togger, Log(Level.[TNC, "{0} selected”, theperson);
configureCditPanelBindings(theperson) ;
11 set the gender from Person, then configure the genderbinding
1t (thePerson.getGender() .equals(Person.Gender MALE)) |
T cRed i 0Bl Lo s Selecled (L) 5
} el i (theberson.gettonder() . cqual s(Person. Gonder FHAALF))
Femal okadioBut fon. sefSelec ted (frue) ;
) etse (
unknov RadioBul Lon . seLSe et Led (Lyue)

)
Uneperson. gendeProperty () bind (gende Binding)
changeOK = true;

b

@override
public void initialize(URL url, ResourceBundle rb) [

.. . unchanged code emitted . . .

tn = Lookup.getDefault() . lookup(FanilyTreeHanager-class);
if (ftn = null) {
Togger.Loa(Level.SEVERE, “Cannot get FamilyTreeanager obiect");
LifecycleManager. getDefault() .exit():

... unchenged code onitled . . .

OEBPS/image3889.jpg
310111528

v Pevple

Homer Simps

Marge Simpsor

OEBPS/image8756.jpg
ann New Action

Steps Name, lcon. and Location

Choose File Tyre
Action Tyee

GUI Registration
Name, icon, and
Location

fodction

o Narmw: |G

Py

Display Name: [Getinfo

oo ReansPlatformPrajectslcans info prg | Browse

Project FamilyTreesupport

Package [—

Created Files: srecom/asgteach/ familytreesupport/ CetlnfoAction java
srecom/asgteach familytreesupport/into.png

Medified Files: nbproject/project xm!

[<Back] [New

(A

OEBPS/image12583.jpg
/7 Define listeners
77 ActionListener for Update button

private final Actionlistener updatelistener = (ActionCvent

7/ PropertyChangeListener Tor FamilyTreeManager
private tinal PropertyChangelistensr familyTreeListener
(Propertychangesvent evt] -> [.

/¢ TresSelectionListener for JTree
private tinal TreeSelectionlistener treeselectionListener
(rreeseloctionsvent o) -> { . . . }

44 Varisbles declaration - do not modify
7 generated)

private javax. swing. JRadictutton
private javex.swing Jlexthiold firstlextriold;

smaleBuLLon;

OEBPS/image17845.jpg
private void getLineChartData() {
/7 create all the series if necessary
it (deta. companyliamesProperty() .getsize() !
for (it i=€; i <lcdala.sice(); L) (
Tebata.clear(};
)l

for (ant row

Lcbata.size(1] {

row < data. companylamesProperty () .oetsize(];
o
XYChart.Series<string, Number> series = new XYChart.Seriese();
(N (daLa . companyNamesP 1 oper Ly (). geL (rou)
getCompanynane());

series. s

Lcbata.add(series);

¥

/7 Sort the data so that the Chart Looks nice
sortechata = new Sortedlist<>(data. theDataProperty(}.get(}];
sortecData. setConparator (conparatorSalesdata) ;

// install cach datun in the correct series if necessary
for (salesdata sales : sorfedbata) {
boolean processed — false;
for (XYCharT Serfes<STring, Mumher> series : 1chata) {
if (sales.getCompany:d() .getConpanynane() .2quals(
serfes.gatane(})) {
4/ correct series
for (XYChart Nata<String, Number> currenthatum
series.getlata(]) {
11 correct year
1t (currentbatun. getivalue() .equals(
sales.getsalesyear())) {
processed — true,
1T (Lcurrentdatum. geryvaty

OEBPS/image8602.jpg
eo8 L1 FileTyweApp 201403101706

7
|

OEBPS/image14460.jpg
PUILICNOIE COMpruaniipaneny). ¢
1/ Listen for Person objects in the Glohal Selection Lookup
TookupResult = Utilities.actions6lobal Context (]
LookupResult (Person.class);
TLookupResult. addLookupListener (lookupListener
checkLookup():

3

@verride
public void componenClosed() {

‘ookupResult . renoveLookupListener (LookupListener) ;
¥

. . . code omitted .

OEBPS/image13367.jpg
/4 Wa count 1aps by noticing when the currentTimeProperty changes and the
/7 oldValue is greater than the newValue, which is only true once per lap
/7 Me then increment the lapCounterPraperty
{inal TnlegerProperly LapCounler Properly = new SimpleTnlegerProperly (0);
palhTrans LLion . cur rentTimePr oper Ly) addListener {
(Ubserveblevaluos? extends Durstions ov,
Duration oldValuc, Dural ion newalue) - {
+f (oldValue.greaterThan(newalue)) {
apCounterProperty.set(lapCounterProperty.get() + 1);
3

n:
/1'Bind the text's textProperty to the lapCounterlroperty and format it
text. textProperty() .bind(lapCounterProperty .asString("Lap Counter: s"));

OEBPS/image17354.jpg
Bindings.stringValueAt(ycarChoicc.itemsProperty().get(),
vearChai oo: detbel ecGionModel {) s selectedIndexPronertyit) 1

OEBPS/image17104.jpg
public abstract class MyTableDataModel extends AbstractTablemodel {

public abstract Object|||| getOriginalDatail:
public abstract double getTickUnit():
public abslracl Lisl<SLring gelColunNames(]:

public abstract | ist<String> getCategoryNanes();
public abstract int getCategoryCount ()
public abstract String getCategoryName(int row);
public abstract String getDateDescription():
public abstract String gethlamedescription(}:
public apstract String getTitle(}:

OEBPS/image4320.jpg
[apComponsm) - Mo B.
=) rom secserropcompener:
- £1 Stvar o onerts
[~ [3 Iopcamsarend

Z sosertape

= Jranet Ursnen

% Gidlawut
[TextField

OEBPS/image9892.jpg
806

New File

steps.

Choose Fite Type

1. Chaose File Type
2

Prject. @ SmanPhoneDataServer

aQ
Caregaries File Typee
T e RESTIul et Serices from Eniy Classas
L Web Servias RESTHul Wes Senices rem Pactems
@ m
Ghsssh KeSiuljava Cient
M ceeet & RESTA Javsserpt Cient
Deseription

Cresces RESTRul wab sarvieas

ly From = detab:

Toiv] (<bek) N [

OEBPS/image16303.jpg
Lookup..getDefaul (] . lookup{NumberStore. class) ;
if (numStore 1= null) {
numStore. store (Integer) wiz.getProperty(
lumberVisualPanel1. PROP_FTRST_NUMBER)) :

b

/7 Retrieve and display the numhers
StringAuilder message = new StringAuilder("Number Sequence = \n(*);
|istaTnteqers nunhers = (1ist<Tnteqers) wiz.qetProperty(
Number#izardPanell,PROP NUNBER LIST);
for (int i = 0; i < numbers.size(}-1; i++) {
message .append (numbers .get(i)) . append(*, "1:
)

message.append [numbers . get (numbers . size{)-1)) .append(*]"):
Dialogdisplayer.gatDetault() .notity(
new HoLilyDescr iplor. Message (message. LoString(1));

OEBPS/image17749.jpg
<zxnl versior

1.8" encoding="UTF-&" 7>

<zinport java.lang. 7
zinport java,util.+7-

<tinporl javalx. geomeLry. Insels?>
<tinporl javalx. scens. 7>
<rinporL javafx, scne. control 47>
<tinporl javalx. scone. layoul. 6>
<timport javafx.colloctions. 2>

<Dorderfane fx; controller="con. asqteach. coretableview. TableviewController®

amins: fx="http: //javafx. con/fuml "
<top>
<Gridrane alignment="center’ hgap="10" vgap="15">
<padding>
<Insets top="10" right="10" hotton="10" Tefr="10"/>
</padding>
<Label text="smartphanetitle"

Gridpane., columInde
GridPane, rowlnde:
Gridpane, halignnent="center"
slyle="-ix-lonl: NORMAL 20 Tohoma; " />
</GridPane>
</top>
i

OEBPS/image14364.jpg
<xnl versior

1.0" encading="IITF-8" 7

<7inport java. lang. 7>
<7inport java.util.A7>

<timporl javalx.scene.=7>
<timporl javalx.scenc.conlrol, x>
<timporl javafx.scenc, layoul. +7>

<nchorPane id="AnchorPane’ xmlns: fx="http:// avafx, con/Fxnl"
fx:controller=
“com.asgteach. fanilytree.personfxviewer.PersonFXViewercontroller's
<chitdren~
<Treeview personTreeView" AnchorPane. bottomnchor="25.0"
Anchorlane. Le | Unchor
Anchorkanc. Fightancho
Ancharpane. topfncho
</childron>
</anchorbanc>

OEBPS/image7240.jpg
. Proudsth it sequence rumber

.

|

+ Code Generaton

Jeeen ciess 55 e swng 1

o Name i Number LI
= Modire

e g
(]
=

lose Lo varatie o
Pre Creatiun Cude

|variablc Name.

[The name o the glebal variae generted fo this
e o

OEBPS/image13556.jpg
package personfxapp;

inport com.asgteach. fami Lyt ree.mode. . Fami lyTreeManager;
inporl com.usgleach. ami LyLree.node L. Person;

inporl javalx.collecLions . MapChangel isLener ;

public class PorsonkXApp {

public static void main(stringl] args) {

final FanilyTreeManager | ln = FamilyTresManager . gelTnstance ()

7/ Allach o change Listener Lo Familyl recManager
tm.addListener (mapChangel istener) ;

final Person homer
final Person marge

new Person("Homer”, "Simpson”
new Person|*Marge", *Simpson”
Person. Gender . FEMALE) ;

Person. Gender .ALE) ;

7/ Add Person objecls
tm.addPerson (homer) ;
+tm.addPerson (marge) ;
1/ add marge again, no change cvent
*tm.addPerson(marge) ;

OEBPS/image8737.jpg
FisTyoeapp 201403101796

Spor oy T

Propurties

Add o Tavortes

| E— —
[y -
acgic O ooment
=0 MMETee ey
Delers we =1 ricsieas s
Renarne A
onls L Fulpatn

e s oDt Sanpsnfariy T A

OEBPS/image8745.jpg
6006 New Action

steps Action Type

1. Chouse File Type

. Action Type ©) Always Enabled
Ul Registration

2. Name, lcon, and
Location

®) Cenditionally Enabled

Cookie Class

(®) User Selects One Node
O User May Select Multiple Nodes

OEBPS/image17017.jpg
for (int j = @: j < map.getlengthi); j++) {
org.w3c.don. Node attrode = map.iten(j):

if (attrNode. gethodeNane() .equals (" Firstnane")) {
person. setFirstnane (attrilode. getNodeValue () ;

}

if (attrhode.getNodeliane() .equals (“lastnanc")) |
person. sctLastnane (attrilade. gethodeValue())

}
}
List.add(person) :
¥
g
} catch (SAXCxception | I0Cxception ex) {
Exceplions . prinlSlackTrace(ex);
)

return Lrue;

¥

@werride
protected Node createNodeForKey(Person key) {
Abstracthiode childNode = new AbstractNode(Children.LLAT):
childhiode setDisplayNane (key. tostring()):
childhode . setTconDaseW: thrxtension (
“com/asgteach/ fami Lyt ree/personfiletype/personIcan. png"
return childode:

OEBPS/image17173.jpg
<txml version="1.0" encoding="UTr-3"7=

<7import java.lang.A7s
<7import java.util.A?>

<timporl javalx.geomelry.+7>
<timporl javalx.scene. +7>
<7import javafx.scene.contral. 7
<rimport javafx.scene.layout.*7s
<rimport javafx.scene.chart. 7

<StackPane id="StackPane' fx:id="stackpane"
smlns: fx="http://javafx. con/Fml"
Fx:control Ler="org. smar tphone. chart. Line.

<LineChart fx:id="chart” >
<xhxise
<Catogoryhxis fx.
</xfxisn
<yAxis=
<NutberAxis fx:id="yAxis"/>
</yAxis>
</LineChart>
</SLackPane>

xAxis"/>

_LineChartCantroller>

OEBPS/image8915.jpg
TlleTypeApp 20140310170€ -

Smprontan yTrecte O

[E FamiyTreedra | s g ramivie
[Abcrempizteabc
7 WomerFanivs
o SmpsonFamivree fir
2 Simpson Famiy Tree
Warge Ludse
e seymore
Liss Amela
Wagg e uay

Bapatataans

OEBPS/image14213.jpg
/7 Vookupl istener to detect changes in ParsonViewer's lookip
LookupListener lookupListener = (LookupCvent le) - checkLookup();

private void checkLookup() {
Collections? extends Person> allPeople = LookupnesuLt.al Instances(

7/ Make sure that the TopComponent with facus isn't this ane
TopCompanent tc = TopConpanent .getRegistry () .getActivated();
if (tc 1= null & te.equals(this)) {
Togger. Log(LeveL.FINER, “PersonEditorTopConponent has focus."
return;

3
1 (rallbeople.istmpty () {
theparsen = allbeople. iterator().next ()
Toqger.Toq(1 evel .HINF, {6} selected®, theberson);
updateForn();
3 else {
Logger . Log(Leve LFINE, "Ho seleclion®):
clearForn();

OEBPS/image7542.jpg
6.0.6, Create New Number Sequence

Steps Provide Sequence Second Value

1. Provide Sequence Initial

Value Provide the second sequence number:
2. Provide Sequence

Second Value °
3. Provide Sequence Third |
Value

Current Sequence: 55.

@ Number must be between 56 and 9,999: 44

rish Cancel

OEBPS/image13061.jpg
package myractanglefxapn;

import javatx.application.Application;
inport javatx.txnl.FXiLLoader:
impor U javalx. scene. Parent ;
impor U jovalx. scene. Scene;
Impor U javalx. scene. painl . Color;
U Javalx.slage.Stage;

public class MyRectangleriapp extends Application {

eoverride

publiC void start(Stage stage) throws Exception (
Parent root = FXMLLoader. Load (getClass () .getResource(

“HykectangloFX. fuml %))

Seone scene = new Seene(roat, Golor. IGHIRI UF);
scena.getStylesheets() . add(myractanglefxapp/MyCss . css")
stage. setscene (scene) ;
stage. show();

}

public slalic void main(Stringl| ares) |
Taunch{args);

¥

OEBPS/image17009.jpg
@override

protected int associateLookup() {
return 1;

¥

@UTHiViewtlement Kogistration(
displayName = "41 Bl FamilyTree FOTTOR",
icanRase =

“com/asgteachfamilytree/personfiletype/TanilyTreelcon.png',

mineType = "text/familytreetxml”,
persislenceType = TopConponenl. PERSISTENCE_ONLY_OPEKED,
prelerredId = "FanilyTree",
pusilion = 1080

)

@Messages ("1 HI_tamilylree_H)1 10R=Source”)

public static MultiViewlditorClement createCditor(Lookup kp} {
return new MultiViewCditorClement (Ukp);

¥

@override
protected Node createNodeDelegate() {
return new Datallode(this. Children.create(new
FamilyTreeChildFactory(this), true), getlookup());

}
private static class FamilyTreechildFactory extends ChildFactory<Person> {

private final Tiledbject filedbject;
private final FanilyTreeatalbject dataCbject:

OEBPS/image551.jpg
806 Mew Module Project

steps Basic Module Configuration

Name and lacatiar
el wodute Cods Narme Base com asquech myosal.bundie

Configuration

[——

Module Bisplay Name: [MyOSClBndie

com asateach (myoscl; bundi 5und e procerties

Help <ack] [Mex (Chmish) [Cancel

OEBPS/image1295.jpg
800, Persor Appication

* i Pesple Fist Ban
Homur Simzson

Middle Seyrour
L Marge Simpar
5 o Simpson.

[Magyie irpsce Suffn

st smpson

@me Orerak O nknown

OEBPS/image2943.jpg
v & FamiyTreeApp
» (g Modules
v [mportant Files
&) Build Script
» [&] Project Properties
» [#] NetBeans Platform Config
»

v

[#] Per-user NetBeans Platform Config

OEBPS/image15487.jpg
@override
public void refresh() throus T0Exception {
setChildren(Children. create(new PersonchildFactory(), false));
]
i
)/

@Suppressiarnings (“unchecked*)
@override
public Aclion[] geUicLions (boolean context) {
1ist<Actions actions = now Arrayl i5t<(Arrays.asl ist(
super. getActions(context))) ;
actions. addALL(Utilities. actionsForPath("Actions/Rootlode")):
return actions. toArray(new Action[actions.size(}1):

OEBPS/image14864.jpg
@Override
protected void conponenthctivated() {
super. conponentActivated();
WindowManager wm = WindowManager.getDefault();
title.setText(um. findMode(this).gethane())

OEBPS/image10558.jpg
8086 Pugins.

Updates | _Avaiatle piugins IR instalied (5) | Setungs |

| add plugins..._| Search: |
e e N
©seecint Selectiontistory | Remove |
Community Contributed
L% pilgin
version: 1.0

Date: 1,22/14

1 plugin salected

Cose | [Help

OEBPS/image12798.jpg
private void clearfarni) {
updateRutton. setFnabled(false) ;
changeak = false;
FirstTextrield. setText("
middleTextField. setText("");
LastTextFie d. setText(""}:
SuftixTextField.setText("");
maleButton. setselected(false);
temaleButton. setSelacted! false] :
unknownBuL Lon. selSe Lec Led(Lulse);
gonderkuttontroup. clcarselection() ;
noteslexthrea. set ot (")

OEBPS/image12861.jpg
public class FamilyTreeManager {

private final ConcurrentMap<Long, Person> personMap =
new ConcurrentHashhap<>(1

77 ProperlyChungeSuppor U and SwingProperLyChangeSuppor L are Unread sale

private SwingPropertyChangeSupport propChangeSupport = null;

7/ FamilyTreeManager proparty change names

public static final String PROP PLRSON DLSTROYLD = *removePerson’;

public static final String PROP PLRSON ADDLD = "addperson’ ;

public static final String PROP_PLRSON_UPDATCD = “updatePerson”:

private static ranilyTresManager instance = null:

proLected Fanilylrechansger() {
77 Fxists only to defeat instantiation
¥

/7 Thread-safe lazy initialization
public synchronized static ranilyTreeManager getInstance() {
1t (instance == null) {
inslance = new FanilyTreeHonager();
insLance. propChiangeSuppor L .
new SwingPropertyChangeSupport (instance, true);

1
return instance;
¥

public void addPropertyChangeListener (PropertyChangeListener listener) [
this.propChangeSupport . addPropertyChangel istener(Listener]:
i

OEBPS/image7457.jpg
Projects ©) | Files | Services

v & Sequence
v (@ Source Packages
o s e
» [mportant Files
» [Ubraries
v & validationaPl
» (i Source Packages
> (g Important Files
» (g Ubraries
&)
v (i@ Modules
& Sequence
@ ValidationAP!
» [mportant Files

OEBPS/image14828.jpg
privete void openPersonduttonfctionPerformed(
Java.aut.event.ActionCvent evt) {
TopComponent tc = new PersonTopComponent ():
tc.open(}:
L. requestacLive():

OEBPS/image16144.jpg
private void updatePanel() {
boolean oldstate = 1sValid:
isValid = checkValidily():
if (isValid) {
getComponent() . setCurrentSequence(
Bundle..CTL_Panel2CurrentSequence(
firsthunber + ", " + secondNunber + ", " + thirdNumber));

3} else {
getComponent() . setCurrentSequence (
Bundle. CTL_Panel2Currentsequence(
firsthunber + ", " + secondNutber)):

3
*ireChangeEvent(this, oldState, isValid):

OEBPS/image2777.jpg
Person FX Application

 People
Homer Simpson
Marge Simpson
Bart Simpson
Lisa Simpson

Person
HOMER SIMPSON
MARGE SIMPSON
BART SIMPSON

LISA SIMPSON

First | Bare

Middle

Last

Suffix
®Male Female

Notes

Bartis a brat.

Update

Unknown

\ TableView

OEBPS/image14756.jpg
@0verride
public void resultChanged(LookupEvent le) {
Collection<? extends Node> nodes = result.allInstances();
77 only get the selection if there is ane
77 otheruise leave the selectian unchanged!
if (inodes.isEwpty()) {
StringBuilder status = new StringBuilder();
StringBuilder sb = new StringBuilder("\n");
For (Node node : nodes] {
sh.append(* [*) .append (node. getDispLayNane())
status. append(

ppend ("1 *)
[") . append (node. getDisplayNane()) . append (1) ;

]

Statusbisplayer .gethefault() .setStatusText(status. toString());

displayTextarea. setText(sh. insert(o,
displayTextarea.getText()) . tostring()):

OEBPS/image15057.jpg
@verride
public String <oString() {
StringBuilder sb = new StringBullder(this.getUsernane()).append(®
Sb_apnend (Th1s.getPassuord ()} .append(” -} ;
<b.append (this.getole());
return sb.%oString();

OEBPS/image16801.jpg
@ctionID(
category = "Tile',
1d = “con.asgteach. famiLytreesupport .GetInfoAction”
)
@AcLioiegistruliont
iconBuse = "con/usgLeach/|ani Ly Lrsesuppor L/ nlo.pry®
displayliama = “ICI1 Gatinfofction”

)
@ictionReferences({
@ActionReference (path = "Henu/File", position = 1450,
separatorafter = 1475),
@ActionReference(path = “Loaders/text/x-fanilytree/Actions",
position = 150, separatorBefore = 125)
]
@essages (*CIL_GeLn oA Lior
pubTic 1

oL tnfor)
1 Class Gelinfoaction inplencnls Actio

1 istener

private final FamilyTreelatabbject cantext;
private static final Logger logger = Logger . getLogger !
GetInfoaction. class.gethane());

public GetInfoAction(FamilyTreeDataObject context) {
Lhis.conlext = conlext;

i

OEBPS/image4793.jpg
Your Name

OEBPS/image14615.jpg
// create a property set for gender and notes
Sheet Set infoset = new Sheet.Set();
intoset., sethane(*Additional Intormation”);

sheet . put (scthame:
sheet . put (infaset) ;
sheat .put (readanlySet) ;

try {

1/ create property support for the Hames

ProperlysString> [irstnameProp = new ProperlySupport
Mel LeclLion<SLring> (person, Sring.class, *Lirsiname

Properly<Strings middlenanciiop = new ProperlySuppor U
_RelleclionsSLring> (person, Sring.Class, "middlenan

Propertysstrings lastnamcProp = now PropertySupport
-Reflectior person, String.class, *lastname);

Property<string= suffixProp = new PropertySupport
_Reflectionsstring=(person, String.class, "suffix');

setflames . put (tirstnameProp) ;
seUMames . pul (niddLenaneProp] ;
settiames . put (lastnancProp) ;
settiames. put (suffixPrap);

OEBPS/image16437.jpg
@verride
public void actionPerformed (ActionFvent o) {
try {
writer.reset(); 47 Clear the window each time
} catch {I0Cxception ex) {
Exceptions.printstackTrace(ex) ;
return;
]
do.select(): /1 setect Wiis Lab
GisplayVessage(“Exploring NelBeans Plallorm Filedbjecls:");

OEBPS/image12896.jpg
public static void invokelLater(Runnable doRun)

OEBPS/image15234.jpg
@Suppressharnings “unchecked")
@override
public Action[] getActions(boolean context) {

List<Action> nodeActions = new Arraylist<={

Arrays.aslist (super.gethctions (context)));

/7 add a separator

nodeActians.add(null);

nodeActions. addALL (Utilities. actionsForPath("Actions/Nodes")) ;

return nodeActions. toArray (

new Action|nodeActions. size(}1):

}

unchanged code omitted . .

OEBPS/image12825.jpg
private void updateodel () {
i (1changeok) {
return;
)
updateButton.setEnabled(false) :
thePerson. setFirstnane tirstTextField. getText(]):
- code unchanged .

OEBPS/image10058.jpg
Source Packages

Important Files

Libraries

5] JOK 1.8 (Defaul)

cglib-2.1.88.jar (Wrapped Library)
eclipselink.jar (Wrapped Library)
genson-1.0.jar (Wrapped Library)

=]
=
B guava-14.0.1.jar Wrapped Library)
=]
=
=]

v & PhoneDataWebService
>
>
v

hk2-api-2.1.88.jar (Wrapped Library)
hk2-locator-2.1.88 jar (Wrapped Library)
hkz-utils-2.1.88.jar (Wrapped Library)
B javax.inject-2.1.88.jar Wrapped Library)
B javax.persistence_2.1.0.v201304241213 jar (Wrapped Library)
B javax.ws.rs-api-2.0.jar (Wrapped Library)
B jersey-client jar Wrapped Library)
B jersey-common.jar Wrapped Library)
& osgi-resource-locator-1.0.1 jar (Wrapped Library)

@
=]
s
>
S
IS
IS
>
S
S
IS
>
>
S
>
>
=

OEBPS/image3751.jpg
orsply
versining
sui

o comiing

Tormatrg
s

Project Properties FamiTrechXMadel —

Code Name Hce e axgreach Famiytreets. model

o Release Uersinn |
Specificston versizn: 10

Append [mplementation Versians Autamatically

Implementation Version

Module Type. @ Resular () Autoload) Eager

P pckages:
T T
Gescieersi
Exprt Puckages Only o el
“a |

Proviced Takens.

OEBPS/image14792.jpg
<ixnl version-"1.0% encoding_"Ull-3" v
OCTYPE properties PUBLIC “-//com.asyleach. personedilor//Persun//EN
“NTTp://www.netbeans org/dros/properties-1 0 ded">

<proper Lies>
<proparty nane="versien”
<property name="name" value="loe Smith"
</properties>

OEBPS/image9545.jpg
StackedAreaChart Window - Edi

StackedAreaChart Window &1

550
500
450
£ 400

350
300
250
200
150
100

=
5
=

50
0

O Nokia

|

2008 2009 2010 2011
Year

ORM OApple OHTC O Samsung O Others

OEBPS/image15770.jpg
em.getTransaction().beqgin(};
PersonCntity target = en.find(PersonCntity.class, p.getTd());
T (target ‘= null) {
en. remove(Largel) ;
em.getIransaction() . commit();
Togger.Taq(level .FINF, “Porson {8} succossfully remaved.”, p);
getPropertychangesupport () . FirePropertychange(
FamilyTreehanager . PROP_PCRSON_DLSTROYLD, null, p):
J etse (
Logger. Log(Leval .WARNING, "Ho entity for Person [0).", p):

J
1 caleh (Exceplion ex] |

Toqger. Toq(l avel .SFYFRE, nill, ex) ;
} finally

en.close();
3

3

USuppresswarnings:

verride

public List<Person> getAllPeople() {
Frtityanager en = FUF.creataFntityanager();
oy

unchecked")

OEBPS/image13797.jpg
package com. asqteach. familytree.nodel ;

inport
inport
inport
inport
impart
impart
impart

public

java.util.Arraylis
Java.util.List:
Java.util.concurrent .Concurrentiiashhap;
Javalx.becns. ivalival ionListence;
Javafx.collactions. FxCol loct inns;
javafx. colloctions Hapthange! istener;
javafx. collactions.Observahl ebap;

class FamiLyTreeManager |

private final ObservableNap<long, Person> observableNap =

FXCollections .observableNapinew ConcurrentHashMap<long, Persons()):

privale slalic FanilylrecMansger instance = null;

pratected Fanilylrecanager() { ¥

17 Thread-safe lazy initialization
public synchronized static FamilyTreeHanager getInstance() {

)3

it (instance

null) {
new Fami LyTreeanager (

'

return instance;

public synchronized void addListener(

MapchangeListener< super Long. 7 super Person> nl) [
obssrealleMac:addi istenerintis

OEBPS/image16695.jpg
7715 there o file called myfile.txt in this folder?
Filebject nyfile = nyfolder.getFileobject (FILENANE);

7¢ Show that the Filedbject has a MIME Type
GisployMessage(mytile.getNomeExt(] + * MIME Type: " + myfile.getHINEType():

47 Show that the Filetbjoct has & Tooki
Dpenable open_impl = myfile.getLaokup() - lookup (Openable. class);
3% (apen impl 1= m1) {
displ aytiessage (“Dpenabla found in Filecbject*);
77 Gpen the fiTe (this apens the #ila in a plain text editar)
open_impl.open();
)

OuLpul Window
mylile. LxL MIME Type: conlenl/unknown
Openable lound in Iileobjecl

OEBPS/image17630.jpg
I
Togger. log(Level WARNING, "Tailed: Read Salesdata"};
i
2/ only starl Use service il il's ready
Il (salusServive.gelSlalel) == Worker.Slale.SUCCEEDED) {
salesService.reset();

1
$F (salesService.getStata() == Workor.State REANY) {
if (progressIndicator = null) {
progressIndicator. setvisible(true) ;

salesService.start();

OEBPS/image1778.jpg
Transition
RotateTransition
FadeTransition
TranslateTransition
ScaleTransition
TathTransition

Fill Transition
StrokeTransition

Affected Property(ies)

rotate (0 to 36U)

opacity (0to1)

translateX, translatey, translate/
scaleX, scaley, scaleZ

translateX, translatey, rotate
[il1 (color)

stroke (color)

Applies to
Node
Node
Node
Node
Node
Shape
Shape

OEBPS/image5711.jpg
606 New Action

Steps Action Type

L. Choose File Type
2. Action Type () Always Enabled
3. GUI Registration
4. Name, Icon, and

Location @ Conditionally Enabled

Cookie Class: | CalendarCapability

(®) User Selects One Node
) User May Select Multiple Nodes

Finish | [Cancel _

OEBPS/image4401.jpg
eoa FamilyTreeAnn 201310111528 "

Carasr iz 0

v ek
v oMl
& | Homer simpsen MALE 3
B imnsimpsanMAIE : B
» O remle
G Wamesimason FEVALE : |
BotiaSmpn FRMAIE = e 3

7 Baby Simpson UNKNOWN

OEBPS/image14034.jpg
package can.asgteach . familytree. personyiswer;

. import statements omitted . .

@ConvertAsProperties|
dud = *-//com.asgleach. fanilyLree. personviewer //PersonViewer/ /EN",
aulostore = Talse)

@loptomponent .Descriptiont
preferred = "PersonVieerToptorponent ™,
713 conRiase="SFT/PATH/T0/TCON/HFRE" ,
persistenceType = TopComponent PERSISTENCE ALWAYS)
@opComponent .Registration(mode = "explorer”, openitStartup = true)
@actionIb{category = "Window",
id = com.usgleach. lanilyLree. personviewer . PersonViewe TopCom
@c LionRe erence (palh = "Henu/Mindow’ /%, posilion = 333 +/]
@opComponent. OpenAc Lionltegistralion(
displaylane = “#CIL_persenViewerAclion”,
preferredID = “PersonViewerTopConponent ")
@iessages ({
“CTL Personvieweriction=PersonViewer®,
“CTL PersonviswerTopComponent=FersonViewer Window",
“IIINT_PersonviewerTopComponent=This is a Personviewer window®

el)

)
public final class PersonViewerTopComponent extends TopComponent {

public Sersonvicwerioptonponent () {
ini Compunen (50 ;
scthame (Hundle. C11_PorsonVicuer | opCompancnt ()] ;
sotlanT 11plext (Hundl o HINI_PersonViewer loptanpanent ());

.. . form designer code omitted .

OEBPS/image15336.jpg
public class GroupNode extends Abstractliode {

77 5ethropType is required to support drop targets for orag end drop
77 a5 wll as poste for ol fcopy aclions
@verride
PUBlic PastaType getbropTypa(Transferable 7, 1nT action, 1nT index) {
1T (T.1sDatal LavorSupported(Perscnr lavor . PIRSON_FLAVOR]) {
rétum new PasteType() (

GUverride
pubilic Transferable pasie() throws T0Fxceplion [
try {

s sonMore]_add { (Peersan) 1 get Traans (1Dala(
Fersont Lavor. PERSUN_FLAVUR) | ;

final Node node = NadeTranstor.node(t,
NodTransfer.DND_MOVE ~+ NodeTranster . CLIPEOARD_CUT) ;
74 only destroy The original node for DR move or cit
if fnode = nall) {

nodz.destroy();
I

1 catch (UnsupportedFlavorException ex) {
Logger. Log{Level WARNIKG, null, ex);

T
return null;

I

return nu;

OEBPS/image12646.jpg
<7xmil version="1.9" encoding="UTF-8" standalone=!

<IDOCTYPE log SYSTEM “logger. dtd"

<log=

<record=
<dale>2013-05-18T69:29: 16</dale>
<niLLis>1368894556261</mi L Lis>
<scquencesie/sequenie>
<Logyerspersonswingap. ber son b rane</Logger>
<TevelsHit</Tevel»
<classpersonswingapp. Personrancssclass>
<method-&1t: ini tégt ;</method
<thread=13</thread~
<message-Created File Handler</messages

</records

<recort>
<dates7073- 0= 18169 70: o</ dates
i 114521 30A691556367/mi 115
=sequencesl</sequences
<logger-personswingapp. Persondr rane-/Loggers-
<Tevel-IINC</level=
<class=personswingapp. Persondr rane~/class=
<weUoubui LdDalu</me Uiod>
<Unreau>13</ L cad>

OEBPS/image13707.jpg
private void buildoata() {
Fm.addpersan(new Person(*Homer”, "Simpson*, Person.Gender.MAIF));
+tm.addPersoninew Person(*Harge", "Simpson*, Ferson.Gender.rTALT)) ;
+tm.addPersoninew Person(*Dart*, "Simpson*, Person.Gender MALL));
tm.addPersoninew Person(*Lisa", "Simpson*, Person.Gender.CHALL)):
{UnaddPerson (new Person{"Huggis’, *Simpson’, Person. Gender . FEMALE]) ;
Logger Log(Leve L FINE, | Ln.gelAUPeople() . LoSLr ing()

i

private void buildTreeView(Treelten<persan> raot) {
77 Usten for changes to the familytreenanager's map
tm.addListener (fanilyTreeListener) ;
77 Populate the TresView control
Ttm.getaLlreople() . strean() . forgach((p) - {
root. getchildren() .add(new TreeTteme=ip)):
I

OEBPS/image13052.jpg
package myractanglefxapn;

import java. net IRl ;
inport jeva.util ResourceDundle:
inport javatx. txnl.FXAL:

inport javatx.txnl.Initializable;
import javafx.scenc.paint.Colar;
import javafx.scenc. shape. Hectangl o;

Tic class MyRectangleFXController implements Tnitializable {

e
private Rectangle rectangle:

Qoverride
public void initialize(UAL url, ResourceBundle rb} {
rectangle. setStrokenidth(s.8) ;
rectangle. setStroke(Calor . GOLDENROD) ;

OEBPS/image15557.jpg
¥
msg = new Notifybescriptor. InputLine(Dundle.LOL_Newlast_dialog(},
Bundle. TITLE_NewPerson_dialog()):
result = DialogDisplayer.getDetault().notity(msg):
String lastname = msg.got Inputlext ()5
iF (Notifybascriptor.YES_OTION. cquals (rosult)) {
77 Create a new Person object
Final Person person = new Persan();
person. setFirstnane(firstnane)
person, setLastnane(lastnane)
final CreatablePersonCapability cpe = personCapability
~getLookup() . Lookup| CreatablePersanCapability. class):
if (epe t= null) {
try {
cpe. create(person) ;
Togger . Log(Level .FINER, “Creating person {8}", person);
} catch (I0Exception e) {
Togger. Log(Level .VARNING, e.getLoce

izedMessage(),):

OEBPS/image8622.jpg
Projects © | Files | Services [Favorites
v & FamilyTreesupport
v (i Source Packages
» B3 com.asgteach.filetype.familytreesupport
» [mportant Files
» (g Ubraries
v & FileTypeApp
v (g Modules
& FamilyTreeSupport
» [Important Files

OEBPS/image5030.jpg
PosE rsony ||y G

 Open Person Window

> [Close Top Person Window

OEBPS/image2256.jpg
Projects £ | Files | Services
AgR--YPersonFXAppBound

v (i Source Packages
v [personfxappbound
(&) PersonFXAppBound java
[& PersonPxBound. fxmi
& PersonPXBoundController java
» (& Libraries

OEBPS/image4150.jpg
Y

£ Gy

(cnramners)
M

Children LEAF

F

OEBPS/image838.jpg
800 New Java Class

Steps Name and Location

1. Choose Fila Typa Class Name: [peryon
2. Name and Location

Project PersonAppBasit

Location: [Source Packages |

Package: [ram.asgteach tamilytres. model

Created File: src/com/asgteach/familytree/model Person java,

vep | (<Bak) [New> [Smsha) [Cance

OEBPS/image4065.jpg
| Homer Simpson
* Marge Simpson
| Bart Simpson
* Lisa Simpson
* Maggie Simpson

OEBPS/image4939.jpg
8ano WindowSystemApp 201204101705 o

YourName Amy.

OEBPS/image16974.jpg
// Add the StackPane to the top-level Node (mypane)

mypane.getChiLdren() .add(stack|

FudeTransiLion |U = new FodeTrans iLion(
Duralion.millis(650), slack);

. setkronValue (o
. setTovalue(1];
seqTran. getChildren() .add (F1);

)

private void updateDocument (Text theText, int oldTextSize,
String docString) {
Jfwornalize Ui Tile--gel rid of extra newlines
StringHuilder sh = new Stringduilder();
for (String text i docstring,split("\n")] {
if (text.istmoty()) {
sb. append text) ;
sb.append(*\n") ;
J
T
7/ Find the starting pesition in the document for the new String
int startbosition = #;
for (Node node : mypanc.qetChildren()) {
iF (node instanceof StackPane) {
Stackpane sp = [StackPane) nade;
tor (Node childNode @ sp.getChilaren())
it {childNode instanceot Text) {
Text texthode = (Text] childNode:
il (LextNode. equals (LheTexU) |
il {UeTextgelTexL (). isEmply() |
sb.delete(startPosition,
sturthouitian & aldicyisioe & 1)s

OEBPS/image14690.jpg
public GanderTopConponent () {
ini Components (
sethlame {Bund e CTL_GenderTopComponent (}}:
setToo (T1pText Bund e HINT_GenderTopComponent (1)
ContextTreeView view = new ContextTreeView():
IconView icon = new IconView():
add(view, BorderLayout. CENTER) ;
add(icon, BorderLayout.SOUTH) :
associateLookup(ExplorerUtils. createLookup(en, this.getActionMap())
em. setRantContext (new Rootade())

OEBPS/image16372.jpg
public void setTsPickup({boolean isPickup) {
banlean oldValue = this.isPickup;
this.isPickup = isPickup;
this.propChangeSupport .t irePropertyChange
PROP_IS_PTCKUP, oldValue, isPickup):
1

@override
public void propertyChange(ErapertyChangekvent pec) {
if (pce.getPropertyName (] .equals(DuildPizzaVisual .FROP_IS_PICKUF)) {
pizzadrder = getComponent() .getPizzarder():
setTsickup(pizza0rder. isPickup()):

OEBPS/image5819.jpg
S
-

B wartsimpson
- O ruma

Lsicpion

Bon

Properies

Clercar

B

Calendar Ation

OEBPS/image16259.jpg
package com.asqteach. sequencestare.api;
public interface Numberstore {
public boolean isUnique(Tnteger nun);

public buslean store(lnteger num) ;

OEBPS/image12489.jpg
Tinal PropertyChangelListener pcl = (PropertyChangetvent evt) -> {
System.out.println(evt.getPropertyName)
+ " fur " + evi.gelNewValue());

OEBPS/image15916.jpg
public class CustomPersonPanel extends javax.swing.IPanel {

public custonPersonPanel() {
initConponents ()
]

public String getFirsthane() {
return firstTextField.getText();
¥

public String getLastNane() {
return lastTextField.getText();
}

/1 Generated Code
. code onilled . . .

/7 Variables declaration - do nat modify
private javax.swing.TTextField firstTextField;
private javax.swing.Jl abel imagel abel ;
private javax.swing.Jlabel jLabell:

private javax.swing.Jlabel jLobel2:

private javax.swing.JTextField lastTextField:
7/ End ol variables declaralion

OEBPS/image13305.jpg
)

@nerride

protacted double computevalue() {
77 Return the conputed value
double opacity = (scene.getHidth() + scene.getheight()) / 1800;
return (opacity > 1.0) 7 1.0 : opacity;

¥

T

rectangle. opacityProperty () . bind(opacityBinding) :
text. textProperty() .hind((Bindings. format
“opacity = %.2f", opacityBinding)));

stage.setSeenc(scenc) ;
stage.show();

public static void main(string|| args] |
Launch();

OEBPS/image8084.jpg
Action
Cet Nome

el Fxtension

Get Name + Ixtension
CotPath

Gt Children

Rename File

Create File
Creale Folder
Delete kile

Move File

Read File
Wiite File

Method

fo.qetName ()

fo.getExt()

lo.gelNomeExL{)

To.qetPath()

Tolder. getchildren()

fo.rename(lock, new name, new extension)
folder. rename (lock, new name, new extension)
folder.createata(newl'ilelame)
folder.createrolder(newrolderiiame)
fu.delete()

folder.delote() 7/ recursive

Fo.meve(lock, dest Flder, new namc,
new_extension)

fo.asDytes(), fo.asText(), fo.asLines()
lo.gelOulpulSirean(), use OulpulSiream

OEBPS/image14399.jpg
1/ Treeview selacted iten avent handler
Private final Changel istenar<TreeTtem<Parsons» freeSelectionl istener =
fov, oldValue, newValue) -» {
TreeItem<Person> treeltem = newValue:
Logger. LogiLevel . FINE, "selected item = {0)", treeItem):

il {LreeTlem = aull || LreeTlem. equls (personTreeView. gelRool (1) [
instanceContent. renove(selectedPerson) :
roturn;

)
17 set selectedderson to the sclocted troelten value
Selectedberson = new Serson(trecitom.gotvalue());
Tagger. 1q(l evel .FTNF, “selacted parson = {A}*, selectedParson);
instanceContent. set(Collections. singleton(selectedPersan), null);
h
7/ called trom TopComponent constructor
public InstanceContent getInstanceContent() {
return instanceContent;

¥

OEBPS/image16250.jpg
private void updatePanel() {
boolean oldstate = isval i
isvalid = checkvalidity();
if (isvalid) {
gelComponent (1. seCur renlSequence |
Bundle, CIL_Pancl2CurrenSequence(
firsNumber + *, * + secondiunber)) ;

} else {
gettanponcnt (). set(urrentSequenca(
Rundlc.Cl1_bancl7CurrentScquence(£i rsthiumhor)

3
FireChangelvent (this, cldState, isvelid):
oldstate = isFinishPanel;
if (secondMunber != null) {
isFinishPanel = secondNuber > FINISH_LINIT:
FireChangeEvent(this, oluState, isFinishPanel);
¥
1
@verride

public hoolean isFinishPanel() {
return isFinishPanel;
¥

OEBPS/image9902.jpg
8.0
stops
Chouse il Type
Batabres Tohies

L
B

3. Entiy Classes
T Conerorea O

New RESTful Web Services “ro Dazabase.
Enthy Classes

Sty the names nd the ocarinn of the iy s,

Clsss Names: [DuceneTabe Clas o Serwaion e
oy company New,
SAESDATA Seesdats Hew

P Smanthanensmaserver

Locstion: | Seures Packager.

Pt T

o Generare Named Cpery Anneratiens for Frsstont i

o Gansra

] Generate MappedsSupercassss nsteac of Enties
v

ey) [(<ma | @GSE i |

OEBPS/image14641.jpg
public class PersonFilterchildren extends FilterNode.Children {
private final String searchstring;

public PersonFilterchildren(Node original, String searchString)
super(original);
Unis.searchSL

= searchSlring;

1

Gverride
protected Node[] createNodes (Node key) {
List<Node~ result = new ArrayList<=();
for (Node node : super.createNodes (key)) {
it (acceptinodel) [
result.acd(node):
)
1
retum result. toArray(new Node[0]);

T

@override
prolecled Node copyNode(Node original) (
relurn new PersonFillerNode(original, Uhis.searchSlring);

B

private hoolean accept (Node node)
Person p = nade.get! okup() - lookup (Persan. class);
77 make case insensitive
return (p = null || p.tostring().tolowercase(}
.contains(searchstring)):

OEBPS/image17704.jpg
TableColimn<ialesdata, String> colYear
calYear. setCel 1ValueFactory (
haw ProperlyVelueFuclorvaSalasditu. S s silosvuer)}

new TahleColumn<>("Yenr®);

OEBPS/image17595.jpg
Dala lor Company: Apple
008, Unils Sold in Millions

r=2000, lnils Sold in Millions
A16, Units Sold in Millions

@11, Units Sold in Nillions

... truncated . . .

Testing JSON

Date List = [com.server. smartphonedata.entities.Salesdatal salesit

com.server. smartphonedata. entities.Salesdatal salesid=2 1,

com_server smar phonedaLa. en i Lies Salestalal salesi

S Uruncated

Data for Conpany: Nokia

Year=2008, Units Sold in Millions = 61.0

Year=2009, Units Sold in Millions = 68.0

910, Units Sold in Millions = 100.1

911, Units Sold in Millions = /7.3

. truncated .

OEBPS/image4724.jpg
e0e WindowSystemApp 201204101705

OEBPS/image5847.jpg
© O © FamilyTreeApp 201402180001
g2 ¢ (@ searchxe) ©

<3 people

» © Happy

> @ sad

v @ Undecided

| Homer Simpson
* Marge Simpson
| Bart Simpson

* Lisa Simpson

* Maggie Simpson

Earatatats

OEBPS/image15844.jpg
@very ide
ted Void doInBackground() thraws Exception {
ProgressHandle handle = ProgresshandleFactory
.createHandle (Bundle. CTL_PersonUpdating(p));
try {
handle.start();
savable.save (p):
} calch (I0Exceplion ex) {
Togger. Tog(Level MARNING, *handleSave”, ox);
} finally {
handle. finish(};
¥

Feturn anll;

¥

worker .execute():

b

OEBPS/image13448.jpg
private final ReadonlyStringirapper fullnane
new ReadonlyStringirapper (this, 'fullname”};

public final ReadonlyStringProperty lullnanerroperty() |
reLum fullnane. getReaddnlyProperty ();
3

public final String getrullnane() {
return fullname.get():
¥

public borson() {
Fhis(", ", Gonder. INKNON] ;
2

public Person(string first, String last, Person.Gender gender) {
this. firstnane. set(first);
this.lastnane . set(last);
Lhis gender. st (gender);
Lhis.id = counl+;
this. fullnane. bind ful Naneinding) ;

OEBPS/image12389.jpg
public class PersonppRasic {

public static void main(string(] args) {

Person homer
Person marge

Toner . seUHidd Lename ("Ches Ler) ;
marge. st UMLddLename (*Louise
honer . setSuffix("Juniar");

System,out.println(homer) ;
System.out.printin(narge) ;

if (homer.equals(marge}) {

new Person| *Homer"
new Parson{*Marge",

'Simpson", Gender .MALE)
"Simpson", Gender. FEMALE) :

System.out.printin(honer + * is equal to * + marge):

belse {

Systom.out.printinhoner + * 15 nat cqual o " + marge);

T
3

Output:
Homer Chester Simpson Junior
Marge Louise Sinpson

Homer ChiesLer Sinpson Junior is ol equal Lo Marge Louise Simpson

OEBPS/image15421.jpg
@actionId(
category - “Irashliods" ,
id = “com asqteach_familytree trashcan EnpryTrashAction”
)
@ActionRegistration(
displayNane ~ "/CTL_EmptyTrashiction”
)
@Msssages ("CTL_EnplyTrashAc LionEmoly Trash”)
pubLic final class EmptyTrashAction implements Actionlistener {

private final EmptyCapability context;
public EmptyTrashAction(EmptyCapability context) {

Unks. cunLext = context
1

@verride

public void actionPerformed(ActionEvent ev) {
context.enptyTrash();

¥

OEBPS/image16359.jpg
public class RuildpizzaController implements
WizardDescriptor.validetingPanel-Wizardbescriptor= {

private DuildPizzaVisual conponent;
private Pizza0rder pizza0rder:

private boolean isrickup:

private PropertyChangesupport: propChangesupport:

- code omilied .
public void setTsPickup(bnalean isPickup) {
bonlean aldvalue = this.isPickip;
this.isPickup = §sPickun,
this. propChangesupport . firePropertychange(
PROP_TS_PICKUP, oldValue, isPickup):

)

@override

public void valicate() throws WizardvalidationException
piecaOrder = gelComponent (). gelPiccaOrden (1
sefIsPickup(pizzairder. 1sPickup()];

OEBPS/image17239.jpg
-chart-serias-lina {
-fx-stroke-width: 10px:
-fx-effect: null:

}

-default-color0.chart-series-line { -fx-stroke: #ff3300; }
.default-colorl.chart-series-line { -fx-stroke: #007700; }
“defaull-Color2.charl-series-Uine [-Ix-stroke: #003301;)

_delaulL-color®
“delaul L-color]
“delaull-color2

{ - Ix-background-coLol
{ - Ix-background - coLol
{ - Ix-background - co Lol

#113360, while;)
#001160, while:)
+ #003311, while: |

OEBPS/image14936.jpg
<7 version="1.0"
<IDOCTYPE filesysten PUBLIC '-//NetBeans//DTD Filesystem 1.2//EN" ‘http://
Wi netbeans .org/dtds/ Tilesysten-1_2.dtd"»
<filesysion
<folder name="windows2">
<Falder_nane="Marics">
<File name-"leftside.wsnode’ url-"leftsidesnode. xnl"/>

<file ighLs ide .wsmode” url:
<tile opbenner .wsmode" ur L=
</Toldors
</tolders

</filesystems

OEBPS/image16109.jpg
public class Numberwizardpanels inplements
Wizardbescriptor. Panel Wi zardiescriptars,
PrapertyChangel istaner {

private Integer firsthunber:
private Integer secondhumber;
- code omitted . .

@override
public void readSettings (Wizarcbescriptor wiz} {
77 use wiz.gelProperly Lo relricve previous pencl slale
this.wizard = wir;
Firsthunber = (Integer) wizard.getProperty(
WumberVisualPancll.PROP_FIRST_NUMER) ;
updatepanel();
b ;

@override
public void propertyChange (PropertychangeCvent event) {
it (event.getPropertyNane() .equals{
Numbe rVisuatPana(2. PROP_SECOND_NUMBER))
updatePanel():

T

private void updatcpancl () {
haalcan oldstate = isvalid;
isvalid = checkvalidity();
fireChangeCvent (this, oldState, isvalid):

OEBPS/image14584.jpg
@TopComponent .Registration(mode = “"editor”, apenAtStartup = true)
-+ . unchanged code omitted . . .

public final class GenderTopComponent extends TopComponent
lnplements Exploreitanager . Provider |

private final Fxplorerianager em = new FxplorcrHanager();

public GendarTaptonponent() {
initcomponents();
setNane (Bundle.CTL_GenderTopCamponent)):
setToo TipText(Bund e HINT_GenderTopConponent()):
Heanlrooview view = new Heanl rooVieu() ;
add(vicw, Harderl ayout .CFNIFR] ;
assnciatal cokup(Fxploreritils. craatel ookup(em, this.qatictionkap()));
en. setRaotContext (new Rothode();
11 expand the second leval ot nodes
“or (Node node : em.getRootContext(}.getChildren().getNodes(1) {

wiew. expundNode (nude] 5

]

7/ open the Properties window by default

TopComponent tc = WindowManager. getDefault ()
+findTopComponent ("propertie:

if (tc != null) {
tc.open();
b

OEBPS/image12905.jpg
public static void invokeAndwait(Runnable doRun)
throws InterruptedException,
InvocationTargetException

OEBPS/image14249.jpg
package can.asgteach. fxdemonadule;
.. . import statements omitted . . .
public class HyRectangleFXController implements Initializable [

... unchunged code onilled . . .

OEBPS/image15627.jpg
private void updateHodel() |
it (noUpdate} (
retumn:
1
UnePerson. seLFirs Lname (1 irsUTexUField, gelTexU());
thePersan. setflidd] cname (niddlc i oxtField.get lext()) ;
theborsan. setl astname(last lexticld. gt lext (1);
theperson. serSuffix(suffixlextield.gotlext
iF (malokurton. isselected()) {
thePersan. setGender (Gender . MA F);
} else if (femaleRutton. isselected()) {
thePerson. setGender (Gender. [CHALL);
T else if (unknownDutton.isselected(}} {
thePerson. setGender (Gender . UNKNOWN) ;

)
thererson. setotes (notesTextArea. getText()):
7/ Update the TopComponent's nane and tooltip
sethane(thePerson. toString());
setTool TipText (Bundle. KINT_PersonEditorTopComponent(
thePersan. Tostring()));
i

private vaid madify()
7/ Add Abstractsavable to Lookup

if (getLookup() .lookup(savableViewcapability. class) = null) {
instanceContent. add(new SavableViewCapability()

OEBPS/image16637.jpg
JAppiications/Neriome Natheans §.0-sppstontants/Resour ces/Nethome/pratrore)
confia/Modilles

OEBPS/image1737.jpg
806

OEBPS/image1826.jpg
New: Project

Choose Project

L. Choose Project a
Categaries Prgecre
£ | & ave Apaication
B Jaab & g clas ey
5 i vien S Juia Projectwit, Existing Souress
B e 58 Jaa Free Fomn Pojeet

Description

ICreates a new Java SE application in 2 stancard IDE project
NVou can also gonerate main ciacs i the project. Standa

(Crep) [<moc | [Ememss) (ensh [canes]

OEBPS/image17043.jpg
4
if (tattrduilder.toString().isEmpty()) [
10.getOut{).printin(* \tAttributes:*
+ allrbuilder. LoString());

OEBPS/image14602.jpg
public class PersonchildFactory extends ChildFactary=persans {
- . . unchanqed code omitted . . .

@override
prolected Node crealeNodeForkey(Person key)
Logger. Log(Leve LFINER, “crealeNodeForkey: (01", key):
Personliode node = null;
try {
node = new Personode (key) 5
key. addPropertyt hanqel i stener(
WeakListeners.propertychange(node, key))i
} catch (IntrospectionException ex) {
Togger. log(Level .VARNING, "IntrospectionException: {0}, ex):

3
return node:

OEBPS/image17582.jpg
Syslem.cul.prinlln(*Year=" + dulullem.gelSalesyear(]
4, 4 "Unils Suld in Millions = *
+ dalaTlem. gelUnilsiomil Lions (]

OEBPS/image12927.jpg
/7 invoked atter oackground thread tinishes
@verride
orotectad void done() {

1t (tistencelled(}] {
Togger dog(Tevel FINF, "Dona! Saving person [0)”, get());
+
] careh (TnterruptedFxceprion | FxecurionFxcoprion ex) [
Logger.getLogger (PersonJt rame. class . getNane())
Tog (| ovel SEVFRF, mill, ox);

}

7/ tnvoke background threas
worker .execute():

OEBPS/image14900.jpg
7
//NetBeans//DTD Top Component in Group
VTP //uaw. netbeans . org/dtds, te-group2_0.ctd"

<2xnl version="10* encodin

<1DOCTYPE tc-group PUBLIC *

Properties 2.0/
<Lc group version="2.9">
com.asgteach. personeditor spec:
PersanduTpuTTapComnonent” />
<open-close-behavior coen-"true” close-"true” /
</te-group>

U

OEBPS/image13252.jpg
package asqteach.hindings;

inport
inport
inport
inport
inport
import
import
import

publ ic

javafx.application. Application;
javafx.geanetry.Po:
javatx.scene.
javatx.scene. Dropshadou:
javatx.scene. layout. StackPane:
Jevatx.scone. paint.Colar;
Jevatx.scone. shape. Koctangle;
javafx.stage.Stage;

class HyFluentRind extends Application {

@override
public void start(Stage stage) [

DropShadow dropShadow = new DropShadow(10.9,

Color.rgb(156, 5, 50,
drapShadow. set0fFsetx(1)

drapShadou. set0fFsety(
StackPane stackPane = new StackPane();
stackPane set/lignment (Pos .CCNTCR) ;
stackPane setCffect(dropshadow) ;

.6881);

OEBPS/image17252.jpg
private void createl ineChart(} {

LableHudel = Lovkup.geldeTaul () Tookup (MyTsbleDatabudel . class) ;

if (tableMadel — null) {

Togger. log(Level .SEVERE, *Cannct get TableModel object’);

Vifecyclfanager getbelaul L) -oxil();
:
xAxis. setCategories (FXCollections. ohservableArrayList(
tableHodel. getColunntlanes ())) ;
-setLabel (tablaModel . getheneDescriotion(l};
setTickUnit(tablelodel .getTockinit(]);
-setlabel(tablaMods L. getDatabescriotion(i);

chart_setTitle(tablaModel getTitle());
chart.setData(getLineChartData());

Add TablcHodell 1stoncr T tableModel, sco 11sTing 15.12 on page 767

}

OEBPS/image17430.jpg
XYChart.Nata<String, Number> dataTtem =
charl.gelDala().gel(0).gelDalal).gel(0); // gel lirsL dala ilen
dataItem. gethode!) .addEventHandler (
MouscEvenl MOUSE_CLICKED, {MouscEvenl U} -> {
. event handler code . . .
Ty

page-map.xml

OEBPS/image10528.jpg
8006 Plugin Installer

Restart application to complete deactivation
Restart application to finish plugin deactivation.

‘The Plugin Installer has successfully uninstalled the following plugins:
SelectionHistory

(®) Restart Now

() Restart Later

Cancel

OEBPS/image4607.jpg
WindowModes 201204101705

pSldingSide

outpur

N bottomShidingSide

I 9 1) [|

g oy

OEBPS/image17195.jpg
@ConvertAsProperties(
dtd = "-//org, snartphone.chart. line//LineChart//IN",
autostore = Talse)

@TopComponent .Description(
preferredID = *LineChartTopComponent,
77iconbase="SCT/PATII/TO/ICON/NCRC*
persisloncelype = lopComponent . PERSLSIENCE_ALKAYS)

@loptompuncnt Registralion(mode = "propertics’, openAlStarlup = Lrue)

@c Lionlb(ategory = "Window

id = "org.swariphone. char L Line. LineCharL | spComponenL”)
@cUionReTerence(path = *Nenu/Window” /#, posilion = 333 /)
@lopLomponcnL . UpenAc LionRegds Lration [

displayNene
preferredIn
@es sages ({
“CTL LineChartAction=LineChart",
“CTL LineChartTopConponent=LineChart Window" ,
“IIINT LineChartTopConponent=This is a LineChart window"

'#CTL LineChartAction®,
"LineChartTopComponent*)

)
public linal cluss LineChartTopComponent exlends TopCorponent |

private static JFXPanel chartFxPancl;
private LineChartController controller:
private final InstanceContent content

new InstanceCantent();

OEBPS/image15666.jpg
clearSavetapability();
changelK = truc;
try {
savable.save(p)
} catch (I0Cxception ex) {
Togger. Tog(Level WARNING, null, ex):

"
¥
@0verride
public buolean equals{Object other) {
Lf (uther inslanceol SavableViewCapsbilily) {
SavableViowCapabilily sv = (SavabloViewCapabilily) olher;

return te() == sv.tc()
¥
return false;

3

@verride

public in hoshCodel) |
relurn Le{) . hashCode();

i

PersonkditoriopConponent Le() {
Feturn Persontitorloptonponent . this ;
¥

OEBPS/image10480.jpg
8°0
Cateporics
> s
© L
= Appleation
o e
> Hins

Froject Properties - Fami yTreeApp

Jaabattom: (D€ e Marage Java Patforms.

Nerheans Masorm: [Parto

Plartonm Modulex

* @otatorm
8 Acton 491
Ao 5P Expe .

L]
o
o
0 Apache's Felix GSG) Implerentaton o
o
]
]

B e sereoe
3 e 1)

E[E[DDD[H

add]

Remove | [

(omen | [0

OEBPS/image12789.jpg
public class Personlframe extends javex.swing.Jrrame {

private final DefaultMutableTreekode top =
new Defaul thutableTresode ("People’);
private tinal FamilyTresHanager ttm = FamilyTreeHanager . getInstance ()
Person thePerson = null:
privele slatic (inal Logger Logyer =
Togger.gotl ogger(Personlkrame. class .getana())
private boalean changelK = false;
.. . code omitted .

OEBPS/image9504.jpg
150

125

100
75
50

25

Units Sold in

® Nokia

ScatterChart Window &

2008

HRIM

Smart Phone Sales

o
e .
L]

L2 o
. 2

u x

x

200 2010 2011

Year

#Apple XHTC A Samsung O Others

OEBPS/image15853.jpg
NotifyDescriptor nd = new NotifyDescriptor.Hessage("Your order is complete.
Dialaghisplayer. qathefault () .notify(nd) ; 11 display and block

OEBPS/image7742.jpg
6006 Order Pizza

steps Size and Toppings (3 out of 5)

1. identify Customer

2 Now Customer catpiaas e

o i elect Pizza Size elect Toppings

2 Delivary Infarmation -

5. Order Confirmation Sl © pepperani
@ iciion Sausage
Oltarge o onions

Pickup or Delivery
Cipickun @ Delivery

Total: $19.75

OEBPS/image14730.jpg
uy {
1/ create read-only property support far the Names
Praperty<String> firstnancProp = new PropertySuppart
-Readnly<St ring>(

“Firstname”, 7 Neme of the property
String, class 77 Type of property value
“First nane", 77 pisplay name
"The person's first name") { // Description

@verride
public String getValue() throws TllegalAccessException,
TnvocationTargetException {
return person.getFirstnane();

}
b

7/ make sinilar changes to property support for
71 middienaneProp

71 lastnaneProp

/1 suffixProp

Setancs . put (firstnamcbrop);
Setliames .put (middlenaneProp);
setianes put (lastnaneProp) ;
sethanes put (suffixProp);

OEBPS/image5599.jpg
808 New Action
Steps GUI Registration

1. Chaoss File Type e e
2. Action Type Categery: |[File =
3. GUIRegistration

4. Name, lcon, and

Location

 Global Meru ftem

Mo [File
Position: | HERE <ssparators =
() Separston Before () Separaion Aller

o clobal Toolbar utton

Toolhar File gl

Position: | Save All HERE g

 Giobal Keyboard shortcut
Key Strakas: T

[Remous |

[vep | [<back | [wests] | rmen | | Cance

OEBPS/image16048.jpg
public final class NumberVisualPanell extends JPanel {

1/ Create property names tor each piece of data tnat

77 e want to col lect

public static Final String PROP_FIRST_NUMBER

public HumberVisualPanell() [
initconponents(1:

“firsthunber”

)

@override
public String getkame() {
return "step #1";

}

public String getFirsthunber() {
return firstunber.getText(};
¥

17 Generated code

71 Variables declaration - do not modify
private javax.swing.JTextTield firstiumber:
private javax.swing.JLabel jLobell:

7/ End of variables declaration

OEBPS/image3555.jpg
eoe FXDemoApp 201310111528
Fx FXDemo Window EEES €3 (=

This is a FXDemo window

OEBPS/image5052.jpg
LN

Meshenp ek XYL,

e 5 o]

|| o Parsen vingow.

vouriane [Gearse

TR o

@ s e O

I

OEBPS/image13163.jpg
n:

Syslem.oul.printin(“Circlel: * + circlel.gelNadius()):
Syslem.oul,println(Circle2: * + circled.gelNadius ()]}
circle2. setRadius(20.5
Systom.out.printin("Circlel: * + circlel.gotRadius());
Systom.out.println(‘Circles: * + cireley.gotkadius());

Outpul:

Circlel: 10.5

Circle: 15.5

e delecled or DoubleProperly [bean: CirclelcenlerX=d., cenlerY=0.0,
5, fil1=x6H0000TF], namc: radius, value: 20.5]

Circlel: 70,4

Circlez: 20,

OEBPS/image13752.jpg
<RadioButton Tx: TemaleRadioButton®
onAction="#genderSelectionAction" text="Female"
4genderTogaleGroup® />

OEBPS/image16774.jpg
@override
public void componentHidden() {
¥

Everride
public void componentictivated() {

}

@override
public’ void componentDeaclivaled() |
3
Gverride
public Undoicdo getlindokedo()
return UndoRedo. NOKL:
}
@override
public void selHulliViewCallbock(MyLiViewELemenlCal (back callback) {

Lhis.callback = callback;
¥

@override
public CloseOperationstate canCloseClement() {
return CloseOperationState. STATE_OK:

OEBPS/image5528.jpg
Filename Pattern
icon.png (or .gif)
icon24.png.

icon pressed.png
icon24_pressed.png
icon_disabled prg
icon24_disabled png

Description
Base 16 x 16 icon file, used inmenus
Larger icon 24 x 24, used in toolbar
Base icon pressed condition

Larger icon pressed condition

Base icont disabled condition

Larger icon disabled condition

OEBPS/image15151.jpg
@ctionId(
category - *Modes”,
2d - *com_asqreach ‘amilytres actions KodeCalendarAction”

)
@ctionRegistration(
LeonBase ~ *con/asglesch/ fanilyLres/ac Lions/calendar . pny”,
drsplayhame — “#CTL_KodeCalendarAction”
)
@ctiomererences({
@At ionRelerencelpath = Hom/File”, posilion = 180),
@ctionReferencaipath — "Toolbars/[ile", position - 300),
GActionReference(path = "Shortcuts”, nane = "H-E")
)

@iessages (*(Tl Nadecal endarAction=Calandar”)
public final class Nodetalendaraction implements Actionlistener {

private final CalendarCapability context:

public NodeCalendariction(CalendarCapability context] {
This_conText = cantext;

¥

@ovorride

public void actionPerformed(ActionEvent ev) {
context.daCalendar();

}

OEBPS/image5513.jpg
800 New A

Steps GUI Registration

1. Choose File Typs
7 Action Type Category: [reols]
5. SulResistaton

ameeeniand o Clobal Men tam

Menu: Teols

Position: _ HERE.

oals.

[Separator Before (¥ Separator After

™ Clobal Toolbar Butcon

Toolbar. [File o
Position: ave Al

S Clobal Keyboard Shorteut
Key Strokes:

Help | [<Buk | @NewSS | finsh [Cancel |

OEBPS/image17686.jpg
underTy inghala. sel ¢
(Obsvrvablol isi<Salesdala») | gelSource() geiValuc());
for (Salesdata sales : underlyingbata.get(}) |
BT (eategaryDa atiancs . cont s s (sales gl Sal asy
cateqoryDataNames.add(sales getSalesyear());

O [

¥
i

salesService.set0nlazled((WorkerStatslvent t) -» {
if (progressIndicetor - null) {
progressIndicetor. setvisiole(false);

¥
Logger . Log(Leve L WAKNING, *Failed: Reao Salesdata®);

i

¢7'only start the service it it's ready

it (salesservice.getState() — Worker.State.SUCCEEDED) |
salesSory oo resel ()

)

1f (salesService.getstate() —— Worker.5tate.RIADY) {
1% (progressIndicator != null) {
progressIndicator. setVisible(trus];

¥
salesservice.start();

OEBPS/image14173.jpg
/7 Define Tisteners
/7 DocumentListener for text fields and text area
private final DocumentListener docListener = new DocumentListener() {

@verride
public void inserlUpdale(DocumenLbvent evl) {
if (changelk) {
modi fy();
¥

1

@Override
public void removelpdale(Documen LEvent evl) {
il (changeok) |
modi fy();

OEBPS/image6523.jpg
New |invary Wrapper Module Project

steps

Name and Location

L. Select Library

2. Name and Location

3. Basic Module
configuration

Project Name: [DerbyClient
Project Location: ~ [CRUDActions /FamilyTreeApp

Project Folder: ./FamilyTreeArg/DeroyClient

Add tc Module Suite:

Browse.

Browse.

[Cancel |

OEBPS/image3010.jpg
800

New Module Project

steps

Name and Locs

1. Name and Location
2. Basic Module
Cenfiguration

Project Name: [FamilyTreeModcl

Project Lecation:

JUsers gailPC. etBeans Platform /Nett

Project Folder /llsers /qail/PC_Filas /NeteansPlattorm /Netf

Module Suite: | /Users

PC_File< /NetheansPlattarm /Nel

Help | | <Back | [ubextsssd | Finsh | Cancel |

OEBPS/image14271.jpg
private void createscene() {

try {

Parent root = FXMLLoader. Load (getClass () .getResource(
“HyRectangleFX. fxnl")) ;

Scene scene = new Scene(root, Color.LIGHTBLUE):
fxPanel.setScene(scene) :

} cateh (IOException ex) {
Exceptions.printstackTrace(ex):

]

¥

unchanged code amitted . . .

OEBPS/image4020.jpg
eo0eo FamilyTreeApp 201403101706 o
ST

B
[
L

agaie impson Smpon

OEBPS/image9134.jpg
Cluster ide

Abstract XML Tnstance Object Model
(AXION)

Apache Resolver @ibrary 12
Classpath APIs

Common Seripting Language API (new)
Dif

dilor
Tditor Actions
Editor Braces Matching

Kditor Kreadcrumbs
Edilor Code Completion

Editor Code Folding

Tditor Code Tolding UT

Editor Code Templates

Edilor Error Stripe

Tditor Trror Stripe Impl

Editor Formatting Prior 6.5 Separation
Kditor Cuarded Sections

Edilor Hinls

Cluster ide

Lexer

Lexer to Neteans Bridge
Lucene Integration

Navigator API

Parsing APT

Passing Lucere Support

Projects ATI

Projects Indexing Bridge

Projects UL API

Refacloring APl

Schema Aware Code Completion

Schema-to-Beans Library
Tags Based Editors Library
Task List APT

TAX Library

User Utilities

Xerees Infogration
XML Core

OEBPS/image14504.jpg
@ibRundle. Messages ({
“HINT RootNode=show all people’,
“LDL RootNode=People”
i)
pubLic cluss RoolNode exlends AbsLraclNode |

public Routade() £

super(Children. create(new Persanchildractary(), false));

sotlconkasei thixtension(
“canfasgteach/familyFree/gendervi ever/ resources/personTcon. pag

setDisplayNane(Bundle. LDL_RootNode()}:

setshortbescription(sundLe. HINT_leothode ()

OEBPS/image3055.jpg
LX=X:0

et brcpestion - Caoih Jimublnel — -

Catugories.

lrsis
asaisy

At versering
i
 Compiing
 Pacagng
furnating

Code Name Base com sagtesch tamilyrea.medsl

Vo Release Version

Specieation Vensi

Appen mplesmentation ¥ars ons Autoratcally

Implementstion Version

Votule Type: @ Regutar) Autcload () Eager

Punlc Paricages

Fm_

Fpors Parkages oy o Frenos

Ao |

Provded Tokene

s

OEBPS/image14873.jpg
private void changeModeButtonActionferformed(
Java.awt.event.Actiontvent evt) {

WindowManzger wn ~ Windowlanager . getDefault();
TopComponent ¢ — wm. findTopComponent (“MyModeTopComponent”) ;
if (tc - my {
Wote curreniods = wa. TindNode(rc) ;
Set<? extends Mode- modes — wr. getModes)
10t nexthodeTndex = A;
Wode| | modeArray = modes. toArray(new Modelmodes. sizel)1);
for (10t 1= €; 1 < nodeArray.length; 1)
J¢ t1nd current mode
iF (currentdode == modArray[11) (
nextiodelnoex = 1 + 1;
17 (nextMoneTndex
nextMocelndex - 0;
¥

break;

dcArray.Tength) (

}

Mode nextMode = moceArrayl nextHodeLndex| ;
String nextiioceName = nexthode. gethame () :
String currentModeName — currentMode. getiame(i ;

nextMoce. docklnto(tc) ;

Tc.open() ;

tc.requesthctive();

StatusDisplayer. getDefault () .setStatusText("Docking
currentModeNane + Ity * + nextModetlame) ;

OEBPS/image16131.jpg
public class NumherWizardPanel? implements
WizardDescriptor. Panel Wi zardNescriptors, PropertyChangel istener {

... code omitted . . .

@ibBundle. Messages ({
"4 {0} - current sequence string"
"CTL_Panel2CurrentSequence= Current Sequence: {0)."
n

OEBPS/image17026.jpg
public class Person {

private String firstname = **
private String lastnane

public String getrirstnane() {
relurn Cirstname;
i

public void sothirstname(String firstnanc) |
this.firstname = Firstnane;
3

public String getlastname(} {
return astname;
J

public void sellastnane(String lastuanc) {
this. lastname = lastname;
3

@override
public String tostring() {
return new StringBuilder(firstname).oppend(® *)
~append(Lostname) . tostring():

OEBPS/image1480.jpg
806 Ferson Apolication

first
| Homer smpson

[sartsimason N
) Marge Smpson e
) isa simpson

[Maggie Smpson Suffx

O Male @ Ferrale () tnknown

Process All | [Notas

L

Indars

OEBPS/image8639.jpg
.08

New File Type

steps

File Recognition

1. Choose File Type

2. Tile Recognition

50 Name, tcon and
Locaticn

MIME TYES: [(ov/x-familytrea

(&9, "text/x-myformat” or text/myformat-xmi® for XML

@ by Filename Extension

eccensionisy [P

1) by XML Root Element
Names pace

[Chap | | Finish_|

OEBPS/image4622.jpg
ene WindowSystemAop 201204101705

T Ferontindon |

Explorer window in

OEBPS/image1061.jpg
CXSXC) New JFrame Form

Steps Name and Location

1 Chuase File Type Class Name: [persaniFrame
2. Name and Location

P [Personsrangfpe
i T ——
Feckige: [ussniwingepp

Crested File: rsonSwingaRp;stc /personswingapp, PersonFrame javz

Help [(<Bak | Nex> | [SFimishi] [Cencel |

OEBPS/image14575.jpg
public GenderTopConponent () {

/7 expand the second level of nodes

for (Node node : em.getRootContext().getChildren().gethotes()) {
view. expandNode node) ;

}

OEBPS/image17052.jpg
@it iVi ekl enent . Regi stration(
displaylame = “#1Kl_Familylrec_VISUALFX
iconkase = "com/asgfeach/fanilytrec/personfiletype/ranily reelcon.png”,
mimelype = "toxt/familytreetxnl”,
persistencelype = lopComponent . PERS 151FNCE_NEVER,
preferredID = *lamilyTreevisualrX,
position = 2009

)

@lessages("LOL TamilyTree VISUALTX=Visualrx)

public final class FamilyTreevisualrXClenent extends Jrancl
implenents MuLtiviewE lenent |

private final FamilyTreebota0bject rtbatadbject:

private final JToolBar toolbar = new JToolBar():

private transient MultiViewlementCallback callback:

private [ditorCookie editCookie = null:

private Document doc = nulL

private stalic JFXPanel [xPanel;

private FanilyTreefXConlroller conlroller;

private static final Logger logger = Logger.getLogger(
TamilyTresVisuglrXClement. class. getHane ()

public ranilyTreevisualrXCLement (Lookup Tkp) {

1atatbject = Ukp. lookup(Fani LyTreeDaludbjec L. class] ;
assert [Dulutbject 1= null;
inilComponents ();

selLayoul (new BorderLayoul());
Ry

OEBPS/image9030.jpg
1] FamilyTresApp 201403101706

S e T 0

o
g Lo s
e

2 i [
Magyie Simpsun e ror ” iz

Tools

Firdper: perean
Actricutes:
Hirernane
Lostiame Sisuson
Florenr: persan
A ritotes:

OEBPS/image12516.jpg
/* Create and display the Torm */
SwingUtilities.invokeLater(new Runnable() {
public void run() {
PersonJFrame.newInstance().setVisible(true);
¥

)

OEBPS/image17713.jpg
TableColumn<Salesdala, Siring> colCompany = new TablcColumn<>{"Company™);
colCompany . setCellValustactory(new Callback<CellDataFeatures<Salesdata
string>, Observablevaluesstrings>() {
@verride
pubLic ObservableValue<String> call(CellDalaFealures<Salesdala,
string> p) {
7 p.qetvaluc() returns the Salesdata instance for a row
return p.getValue() .getCompanyid() . conpanynameProperty();

Ty

OEBPS/image16748.jpg
position = 986,
separatorafter = 1086
)
@hctionReference(
path = "Loaders/text/x-familytree/Actions*,
i = @ActionIDlcategory = "System",
id = *ory.openide.atLions. FileSys LenAction®],
pusilion = 1160,
separatorAller = 1206
)
GActianReferonce(
path = "Loaders/text/x-familytree/Actions*,

id = @actionID(category = "System",
id = *org.openide.actions. ToclsAction®),
position = 1380
¥

@AcLionRelerence|
path = “loaders/text/x-familytree/Nctions®,

id = @ActionTh (cateqory = "System,
id = "orq.openide.actions. PropertiesAction®),
position = 1180

)
)
pubilic class FanilylreeDalabbjecl oxlends MulliDalabbject {

'

OEBPS/image7185.jpg
Projects
MR sequence

v [Source Packages

v B com.asgteach.sequence
» [5 Bundle.properties

E] NumberVisualPanell java
NumberVisualPanel2.java
NumberVisualPanel3 java
NumberWizardAction java
NumberWizardPanell java
NumberWizardPanel2 java
NumberWizardPanel3 java

» (@ Important Files

» (g Ubraries
» & Wizardexample

EBEEED DO

OEBPS/image17186.jpg
@override

pubTic void inilialize(UR url, Reso
createlineChart();

1

private void createl ineChart () {
tabLettodel = Lookup. getDefault() . Lookun (MyTakLeDatatodel . class) ;
if (tableModel = null) {
Logger. Log(Leve . SEVERE, "Cannot get TableNodel object’):
LilecycteManager . gelDe aul L().exil(};

.. code Lo selup and configure JavabX Charl using Lablemodel dale . . .

¥

public BufferedInage getInage() {
77 must be in JavarX Application Thread
SnapshotParaneters params = new SnapshotParansters();
Tnage jtximage = stackpane. snapshot (params, null):
return SuingFXUtils . fronFxInage|j fxinage, null):

OEBPS/image14119.jpg
/7 Treeselectionl istener for TTree
private final Treeselectionlistener treeselectionListener =
(TreeselectionCvent e}
Defaul thutableTreetode node = (DefeultMutableTreeNode)
personTree. getLastselectedPathConponent ()
il (uode = nall) {
return;

1
iF (node. isleaf()) {
Person person = (Person) node.getUserObject(};
Togger. log(Level. INTO, '{0} selected", person);
1/ Tut person in this Topcompanent's Lookup
instanceContent. set(Collections .singleton(person), null):
1 else {
Togger. Tog(Level. INFD, *{0} selocled, node, gelUserObject());
Person person = getLackup() . lookup(Person.class);
iF (persan 1= nall) {
instancecontent. remove (person) ;
)

OEBPS/image5254.jpg
ModeAop2 201204101705

o &

OEBPS/image6996.jpg
806

Please Login

Name

Password

maggie

Cancel | [0k]

OEBPS/image15925.jpg
/7 Create the Jpanel Form
CustonPersenPanel panel = new CustomPersonPanel ();

/7 Create the dialog with CustomPersonaPanel panel
Dialogbescriptor dd = new DialogDescriptor(panel, “Ferson Information®):
/1 Configure a notification line
dd.createNoti ficationLinesupport ();
/7 Specify the notification line: use Information-style
dd.getNoti ficationLineSupport () . setInformationtessage(

"Please provide your lirsl and Lasl names®);

/4 Displey Une dialog and wail for Lhe response
Object slatus = Dialoghisplayer .gelbefaulL(}.noLify(dd);
if (stalus == NoLilybescriplor.OK_OP1LON) {
7/ 15 there any input?
if (penel.getTirsthane().isCnpty(] && panel.getiastNane() . istmpty()) {
77 o, say hello_to *Anonymous’
Systen.out,printin(*Welcome, Anonymous!");
}else {
/77 Supply & greeting using the person’s name
System.out.printin{*Welcome " + panel.getrirstheme() + * *
+ pancLge LastNenc(] + *1%)

1
} else if (slalus == Nolifybuscr iplor . CANCEL_OP11ON) {
/7 cancel

} else if (status == Notifyboscriptor.ClUSHI_ORTION) {
7/ Vser clased the dialog
¥

OEBPS/image9262.jpg

OEBPS/image15412.jpg
public interface EmptyCapanility {

public void emptyTrash();

OEBPS/image10641.jpg
e

smartphone Datos de Ventas

808,

il baen sl sk gt

Smartphone Dados de Venas

OEBPS/image12498.jpg
ftm.addPropertyChangelListener(evt ->
System.out.println(evt.getPropertyName()
+ " for " + evt.getNewvalue())):

OEBPS/image2432.jpg
L female) Unknown

OEBPS/image14486.jpg
@override
proLecled Node crealeNoderorkey (Person key) {
Togyer. Tog(Level. FINER, “cresLoNodurorkey: {0}, key);
oz node = new Persontode(key) ;
key.addPropertyChangel i stener (Weakl i steners. propartyChange(nade, key));
return node;

3

/7 PropertyChangeListener for FanilyTreeManager
private final PropertyChangeListener familyTreelistener =
(PropertyChangeEvent evt] -> |
it (evt.getPropertyliame() .equals (FamilyTreeHanager. PRO®_PERSON_UPDATED)
88 evl.gethewValuel) '= null) {
Utis.refreshiLrue);

OEBPS/image16905.jpg
AnilComponenls();
Sett ayout (now Bordert ayaut (1)
init();
instanceContent. add(new Droppable() {
@overrice
pubLic void drop(String text) (
77 aid Une Lexl Lo Uk end ol Uhe documenl, Uen vel reshLines ()
i1 tdow 1= nall)
try {
€ (1(doc.getText (doc.qatl ength(), 1)) -endsith
doc..insertString(dac.qeti ength(), “\n",
)

doc.insertstring(doc.getiength(), text + "\n", null
String docString = doc.getText(o, doc.getLength()
Platforn. runLater(() -> controller. refresh(docstring)
J taleh (BudLocalionExceplion ex) |
Exceplions. prinlSlackTrave(ex]:

"))

]

¥
badl
-

private void init() {
fxPanel = new JFXPanel():
add(fxPanel, BorderLayout.CENTER):
Platforn. setInplicitExit(false):
77 need Lo weil for this Lo complele so Uil we can
7/ salely add ourselves e a properly change lisle
Sinml CaminiBimmintih Takck = et Sountioumbatitils

OEBPS/image17930.jpg
private class DecimalConverter extands StringConverter<BigDecimals {
HNunberFormat nf = NumberFormat.getInstance(Locale.getDetault());

public Uecime LConverter() {

N s2MaxAMNFracTicndigts (2) ;
Rt setMinimunt raction)igits(1);
+
overrice
public String toString(BlDecinal 1) [
Ty f
return nf . format(t) ;
} cateh (Cxception €) {
raturn ot
'
+
@override
public Bigdecimal fronstring(String string) {
try
Number newValue = nf.parse(string);
Bigdetinal resull — new 3iglecinal (nowlue. duubleValue));
return result.setscale(2, UigiecinalRUND_IALI_LVIN];
) calch {ParsoRxception @) (
return nutl;
)
¥

OEBPS/image13452.jpg
}

public Person(Person person) |
this. firstnanc. set (person. getkirstnanc())
this.midd] cname. et (person . qetiddlename()) ;
this.Tastnane. set (person.get! astnane());
this.sufix.set(person.qetSuffix());
this.qender. set (persan. getGender ()) ;
this.notes. set {person. qethiates ());
this.id = person.getTd():
this. fullnane . bind{ fullNaneBinding) :

]

@override
public String testring() {
return fullnane.get();

1

OEBPS/image1495.jpg
806 Ferson Apolication

firt
. Horer simpson
5 sartsimason Nidde

[Marge Simpson o

) isa simpson,
[Maggie Smpson it

O Male () Ferrale () Unknawn

Process Al (- Notzs

HOMER SIMPSON
BART SIMPSON
MARGE SIMFSON

Indars

OEBPS/image16346.jpg
public class TdentifyCustonerContraller implements
Wizardnescriptor. AsynchronausVal idat ingPane] <Wizardhescriptors,
PropertyChangel istener (

private TdentityCustomerVisual component:
. code onilled

private String customerkam
private Customer custoner;
public static final String PROP CUSTOMR = *customer®;

private boolean isNewCustomer = true;

private Propertychangesupport propChangesupport;

public static final String PROP_IS_NCW_CUSTONLR = *isNewCustomer” ;

. code onilled

public void seUlskewCus Loner (boolesn isNewCustoner) |
hanlean oldvaluc = this. isiowCustomer;
this.ishewcustomer = isNewCustoners
this.propChangeSupport. firePropertychange(
PROP_TS_NCW_CUSTONIR, oldValue, isNewCustomer):

OEBPS/image15483.jpg
@iessages ({
*IIINT_Rootode=Show all people’,
“LBL_footNode=People"

1

public class RantNode extends Abstractiode {

private final InstanceContent instanceContent;
public RootNode() {

‘this(new InstanceContent()):
]

privale Roolode(InstanceContent ic) {
super(Children. creste(ue Personchildraclory(), falsc),
new Abstractlaokup(ic)) ;
instanceContent = ic:
setIconDasewi thixtension{
" con/asgteach/familytree/personviewer/ resources/personIcon. png) ;
setDisplayNane (Dundle. LbL_RootNode()):
setshortDescription(sundle, HINT Rootiode()) :
instanceContent. add(new RefreshCapability(){

OEBPS/image4907.jpg
Method

public voig componentogencd ()
public void componentClosed()

public boolcan

protected void
protected void
protected void

protected void

canClosci)

componentActivatzd()
conponentDeactivated()
conpanent! idden()
companentshowing (1

Called When
Window is opened.
Window is closed

Windaw is about ta clase. Retum
true if window is allowed to close.

Window is activated (nas focus),
Window is deactivated (loses focus)
Window is hidden.

Window is showing (visible)

OEBPS/image15653.jpg
t

iF (result = discardanswer) {
7/ Don't save, just close!
clearsavecapability();
return true:

iy L
71 Yes, save U dala, Lhen close
Savabl e handlesave () ;
Statusbisplayer.getDefault(),setStatusText (theFerson + * saved.
return true;

} catch (ToCxception ex) {
Togger. log{Level WARNING, null, ex):
return false:

OEBPS/image15610.jpg
1/ Creale @ new loptomponent and open L.

Togger . Log(Level. INKD, "Crealing now Edilor for {017, person);
L = new Persondi Lo TopComonen | ();

tcMap.putiperson, tc);

tc. setPerson(node)

te.open();

te.requestactivel);

:

@override

public void unRegisterEditor(Person person) |
Logger. LogiLeve . INFO, "Unregistering editor for ()", person):
LeMap. remove (person) ;

OEBPS/image14945.jpg
<2xml version="1.0" encoding="UTF-8"?><mode version="2.4">
<name unigue"tcpbanner”
<kind type='view"/>
=state type="joined"/>
<constraints>
<path orientation-"vertical® number—"
</constraints>
<bounds x="8" y="8" width="0" height="0"/»
<frame state="0"/>
<emply-beliav_or permanent="Lrue"/>
</mode>

weight="9.25"/>

OEBPS/image632.jpg
s

3 Homes Simpron

Scale
Animatior

2 2

= narrnge
et i i en
B

P

e Child
EEET sepis, 1590

Meggle Simpson

OEBPS/image17513.jpg
l

7/ Need getAbsoluteFile(),

7/ or X.png and x.png are ditferent on windows
BufferedInage image = context.getInage():

i1 Gimage 1= null) {
Inage10.write(inage, *png’, f.getAbsolutcile()];
Tagger.Tag(l evel . N, *Image saved ta file {0)*,

f.qetlana());
3 alse
Tonger.Taq (1 evel VARNTHG, "Could not qet Tmage from {0},
context. qatChartName());
)
} catch (IOException ice) {
Exceptions. printStackTrace(ioe):
'

OEBPS/image16805.jpg
Qoverride
public void actionPertormed(ActionEvent ev) {
Filedbject f = context.getPrimaryFile():
String displayhame = FileUtil.getFileisplaylame(f):
Slring mane = f.gethane();
StringhinTder sh = now Stringhuilder(*Name: =) .append(nanc) ;
sh.append(":\nxtension: ") .appead (FiTelIti1. getkxtension(displayNane)) ;
sb.append ("\nMIBE Iype:). append (FileUtil. getNIMEType(f));
try {
<h.append ("\nFile Size: ").append(f.getsize());
<h.append (*\nl ines: ").appen (f.asLines().size()
sb.append ("\nLast Modified: *).append(f.lastModified()):
sb.append(*\nFuLL Path:\n"}.append f.getPath())
NotifyDescriptor nd = new NotifyDescriptor.Message(sh. tostring()):
Dialogbisplayer.getDefault() .notify(nd):
J catch (ToException e
Logger. Log(Leve l WARNING, null, e);

OEBPS/image14619.jpg
/4 creale properly supporl lor gender and noles
Properly<Person. Gender> genderProp = new Proper LySupporl
-Raflection<Person . Genders(person, Person.Gender.class, "gender
Proparty-Strings notesProp = new FrapertySuppart

\Reflectiol person, String.class, "notes");

infoset. put(genderprop) :
infoset. put(notesProp) :

17 create read-only properly supporl for id (Uhe selter s null)
Propertyslong> idbrop = new Proper LySuppor L. He Mlec Uion<Long>
porson, long.class, "getld®, null);
readinlySet . put (idbran) ;
} cateh (NoSuchMethodFxcention ax) {
CrrorHanager . getbefault();
]

return sheet:

OEBPS/image15327.jpg
public class PersciNode extends Abstra

ode {

@verride
public Transterable cliphoardcut() Throus T0Fxception (
LxIransteradle extrans - Lxlransferable.create super. clipboardCut();
2XTrons put(new ExTransferable. Single(PersonFlavor PERSON FLAVOR) {
evverride
protocted Person gothata() [
return getlookup() . lookup(Person. class) ;
¥
1;

return extrans;
)

Qoverride
public boolean canCut() {
et e 270K Tu ol this uods
i
Override
bl fc boolean canDestroy()
return true; #/ 0K to destroy this node
]
@Override
public void destroy() throws LUException {

personMadel . remove(g2tloakup(

Tookup(Person_class));

}

OEBPS/image12914.jpg
public static boolean isEventDispatchThread()

OEBPS/image13622.jpg
| abel mylabel = new Label("First

OEBPS/image13491.jpg
public final Stringbroperty firstnameProperty() {
return Firstnam
:

public Person.Gender getGender() {
return gender.get{):

T

public void setGender(Person.Gender qender) [
this.gender.set(gender) ;
1

public linal ObjectProperLy<Person. G
relurn gendier;

wer> genderProperly () {
i

public String getlastname() {
retum lastname. gL () ;
T

public void setlsstname(String lastname) {
this.lastnane.sez(lastnane) ;
b

pubilic final S1ringProperly TastnancProperty() (

return Lastname;

OEBPS/image13439.jpg
public class Person implements Serializable {

private tinal StringBinding fullNameBinding = new StringBinding() [
t

J

super.bind(1irsLnome, migdLenane, LosUname, sul lix);

Qoverride
protected String computeValue() {
stringbuilder sb = new StringDuilder();
if (firstname,get().isCnpty()) {
sb.append{firstnane.get()):

It (tmidy
sb.app

e goL (). LEmLy L) §
Cappend (niddLename goL ()5

1
PF (Nastname.got (). iskapty ()
sb.append(* ") .append(lastnane.get ());

if (1suffix.get().ismpty()) {
sb.append(* ").append(suffix.get());

return sb.toString():

OEBPS/image16909.jpg
Platlomm. runLater(() -> [

s

Ly L

createScene();
} finally {

Tatch. counthaun() ;
¥

try {

Tatch.await():

} calch (TnlerrupledExceplion ex) |

T
3

Logger. Log(Leve L WARNING, wull, ex);

private void createscene() {
try {

} catch (I0Dxcept:

¥

URL Tocation = getClass).getResource("FrvisualFX. fxml"):
IXMLLoader fxmlLoader = new MXMLLoader():

txn(Loader . setLocation(Location) :
txmLLoader . setBuilderFactory(new JavaFXBuilderFactory(l}:

Parenl rool = (Parent) Danll nader load(Tocal ion . apens | ream()];
javafx.scene.Seene scene = now javafx. scene.Seene(ront);
FxPanel . setScene(scene) ;

controller = (FtrVisualFXController) fxnlloader.getController();
on ex) {

Exceptions. printstackTrace (ex):

OEBPS/image5700.jpg
roject Proy

o s e eom acgreach e capabi
> phly MarRelease vansten: |
v s
= Lompng N
- racsons P ——
< romitag t
< s |

Medul Type, @ Ragalar) Aucloat) Eager

Pablc Packagas:
B o oot Suectal

Export Packages Orly 1o Frcnds

Provided Tekens O

" [t)

OEBPS/image12887.jpg
public class Personirreme extends javax.swing.Jrrame {

private PersonJFrane() | 7/ constructor
11 contigure Logger
... coce omitted .
buildbara();
ini tComponcnts ()
PersonTree. getSelectionbods] () .setSelect ionMada(
Treesel actionNodel .STHG F TRFF 571 FCTTON) ;
createfiodes (top);
}

private void configureListeners(} |
17 Lisleners ure regislered aller consliuclor relurns
77 Tor thread salely
TUn. addbroper yChangeL is Lener Fenilyl reeLis Lener) ;
person ree.edd | recselectionLis Lener (LreeSelec Lionlis Lener
updateDutton . addictionListener (updateL istener);

¥

public static PersonJFrame neuInstance() {
PersonJrrame pjf = new Persondframe(); // call the constructor

pjf.configurelisteners(); 77 salely conligure isleners

retarn pif;

... cedo omitted .

OEBPS/image12659.jpg
May 18, 7013 9:28:16 AW personswingapp.PersoniFrame =inits

FINF: Created File Handler

May 18, 2013 9:29:16 AM personswingapp.PersonJFrame buildoata

FINE: [Homer Simpson, Bart Simpson, Marge Simpson, Lisa Simpson, Maggie Sinp-
son]

May 18, 2013 9:29:26 AM personswingapp.PersonJFramesd valuechanged

FINE: Bart Simpson selected

Hay 18, 2013 9:28:31 AM personswingapp.PersonJFrames3 proper LyChange

FINK: Node updated: Bart Seynaur Simpson

OEBPS/image17056.jpg
}

private void init() {
. see Uhe init() method in Listing 14.20 on page /11 .
¥

private void createscene() {
see the createScene() method in | isting 14.78 on page 711 .
¥

. cade omitted

Goverride
public void componentShowing() {
editCookie = TtDataObject.qetLookup() . lookup(CditorCookie.class);
if (editCookie t= null) {
try (InputStream is = ((org.openide, text.CloneableEditorSupport)
editCookie) .getInputstream()) {
doc = XHLUEiL.parse(new InputSource(is),
true, true, null, null);
tinal CountbownLatch Latch = new CountDownlatch(l
Platform. runLater(() -> {
Ty L
controller.refresh(doc):
3 finally {
atch. countDown) ;

)
s
Ly L
Laleh.wil():
77 wail fon relresh() Lo complele belore inilioling lade-in
Platforn. runlater(() -> controller.doFadeln()|:
} cateh (Interruptedkxcoption ox) {
Toager.Tog(l Gvel WARNING . Tl s

OEBPS/image13137.jpg
package myinvalidation!istener;

inport javafx.beans. InvalidationListener;
inport javafx.beans.Observable;
inport jevafx.scene. shape.circle:
public class HyInvalidationL istener {

public static void main(stringl1 args)

27 Deline some vircles
Final Gircle circlel
final Circle circle?

ew Cirelo(10.5)
ew Cirele(15.5)

7 Mdd an invalidation listener to circle2's radius property
circle2.radiusProperty() .addListener(new InvalidationListener()
@override
public void invalidated(Observable o) {
System.out .println(“Invalidation detected for * + o);
0 T L At Ry B S I

OEBPS/image17013.jpg
public FamilyTresChildFaclory (FamilyTreeDalu0bject daladbject) [

Lnis.dala0bjecl = dalaObject;
fileObject = dataObject.getPrinaryFile();
fileObject . addFileChangeL istener (new FileChangeAdapter() {
@override
public void fileChanged(Filecvent fe) {
refreshtrue);

n
+

@verr ide
protecled boolean createKeys(List<Persons Uist) {
uy {
EditorCoakie editorCookic = dataDbject.getloakup(). Lookup(
EditorCookie. class);
7 Get the InputStream fron the CditorCookie
try (InputStream is = ({org.openide. text.CloneableCditorsupport)
editorcookie).getInputstrean()) {
7/ use XMLUt to create a org.wdc.dom.Cocument
Docunent doc = XHLUELL.parse(
new InputSource(is), true, true, mull, mull
NodeList nadeList = doc.getElementsByTagliane(*person
(int 3 = 8; 1 < nadel ist.qotiongth(); 1+ 1
J7vor cach node in the 135t, oot a org.wsc.domNode
arg.wic. dom. Node personkode = nadel ist.iten(i)
NamediodeHap map = personflode. getAttributes ();
Person person;
if (map t= null) [
person = new Ferson(]:
DaTEon. SetLastname(SUniaoai®]

for

OEBPS/image14632.jpg
HBGRRFF aain)

case FEMALE:
sb.append(*<lonl colors'#FFBESS ><is* ")
break;

cast: UNKNOWN:
<h.append ("=in? =
break;

3
sb.append(person. tostring()) .append "</ ix</font=");
return sb.tostring():

OEBPS/image9979.jpg
N NGN - PR 1117, 23 AL E T S —

Select REST Resource:

v @ smartPhoneDataserver

» & SalesdataFacadeREST [com.server.smartphonedata.entities.salesdata)

o

OEBPS/image13150.jpg
System.out.println(“new value = " +
((DbservableVvalue<Numbers>) o).getValue().doublevalue());

OEBPS/image13609.jpg
<RadioButton fx:id="maleRadioButton"

onAction="#genderSelectionAction” text="Male">
<toggleGroup>

<ToggleGroup fx: id="genderToggleGroup™ />
</toggleGroup>

emal el ot ron

sgenderselactionaction” texi
toggleGroup="sgenderToggleGroup” />

<Radiobutton fx:id="unknownRadiobutton"
onAction="sgenderselectionAction” text="Unknoun'

Temale

toggleGroup="sgenderToggleGroup" />
</children=

</HBox>

<VBox it="VBux" elignmeni=® 10P_CENIER" TayoulXs"14.0%

LayoulY="16.0% spacing="10.6">

<children>

<HHox_ id="HEux" aligunenl="CENIER_RLGHI® Spacing="s.o">
<children
Label text="rirst"
TextField fx:id="firstnaneTextField"

onkeyRelease
</children:
“/1iBos-

handleKeyAction" prefilidth="21.0"

OEBPS/image4676.jpg
Method

Description

Fode Find mode name
findMode(SLring name)
¥ode Find mode that contrins TopCompanent

FindMode (TopConponent tc)
TopCumponent
FindTopComponent (String id)

Find TopComponent with id

TopCompanantGroup
findTopComponentGroup (String name)

Find TopComponentGroup with name

string
findTopConponentD(TopCompanent tc)

Refumn specified TopComponents 1D

TopComponnt RegisUry ysReyisliy()

Retumn global component registry

static VindowManager getDefault(]

Return singlelon WindowManager
instance

Franc getMainéindow()

Get NetDeans Main Window

Set<7 extsnds Modes getModes()

Cet set of modes added to window system

TopComponent(]
gelOpenedTopComponen s Mude mode)

Returm opened TopComponents for given
mode

String getRole()

Refurm name of curvent role or null if
default window system layout is being
used

vold selRule(String roleNan

Switch window system to new role

OEBPS/image13850.jpg
@an
private void updateButtanictian(ActionFvent event) {
7 update the family trea manager on a hackqround thread
inal Person person = new Person(thePerson) ;
enableUpdateProperty. set (false) :

backgroundActive. set(backgroundActive. get () + 1):
Task<Person> updateTask = new Task<Person>() |

@verride
protected person call() Lhrows excoplion {
Thread.sleep(1080); 77 for test only
ftn.updatePerson(person) ;
return person;

OEBPS/image15053.jpg
package com asgteach.rolemsdsl.opi;

public class User |
private String username,
private String passuorc:
private String role;

public String getPassword() {
rerurn password;
¥

public void selPassword(Siring password) {
this.passuord = passuorc;
¥

public SLring getRole() {
return role;
1

public void setRole(String rote) {
this.role - role;
¥

public String getUsername() {
return username;
1

public void selUsername(SLring usernane) {
this.usernane = username;
1

OEBPS/image5558.jpg
This is the Calendar Action!

OEBPS/image1035.jpg
800 Persor Appication

4 Homee Simzson

(5 Bar: Simason xil

5 Lisa Simpson
B —

People Fist Marae

st smpson

@ remae O nknown

OEBPS/image14186.jpg
@override
public void componentopenad() {
tn = Lookup.getDefault() . Lookup(FamilyTreeNanager. class):
if (ftm = null) (
Logger. Log(Level .SEVERE, "Cannot get FamilyTreeManager object'):
LiTecycleManager. getherault() . exit(}:

)
conligurelisteners();
77 1isten for Parsen shjects in the Porsonyicucriaptomponcnt | aokup
TopComponent tc = WindowHanager .getDefault() . FindTopCompanent(
“PersonViewerTopConpanent™) ;
i (te 1= mill) {
LookupResult = tc.getLoakup() -LookupResult(Person.class);
checkLookup();
LookupResul t. addLaokupListener (lookupListener) ;

3

Qoverride
public void componenlClosed() |
TookupResult . removeLaokupl istener (LookupListener) ;

1

OEBPS/image17613.jpg
public class GetsmartPhonesalesService extends
Service-Observablel ist=salesdatas {
private static final Lagger logger
| ogger. getl oqger (Get Smart Phonesal esservice. class. getNane());
private ObservableList<salesdata- salesdata
TXCollections. observablenr rayList();

@overnide
protected Task<ObservableList<Salesdatas> createTask() {

return new Task<bservablaList<Salasdatas>() {
private final SalesdatalerseyClient clientl =
new SalesdatolerseyClient(}:

OEBPS/image15796.jpg
@essages ({

)

"HINT_RootNode=Show all people’,
“LBL_footNode=People"

pubLic cluss RoolNode exLends AbsLraclNode

private final InstanceContent instanceContent;
private final PersonType personType = new PersonType();
public Roothode() {

this(new InstanceContent()):
]

private Kooffiode(Instancetontent 1c) {
1/ create children asynchronously
Super(Children.create(
new PersonChildFactory(), true), new AbstractLookup(ic));
instanceContent = ic;
SetlconBaseMi tExtension(
“comfasgleach/ Lani Ly Lree/personyiewsr/ resources/personleon. prg*)
selispLayNane (Bundle. LBL_Roolode());
setShorWeser Lotion {Sondle. HIN_RooWode()) 3
7/ Hequired to cnable New Person in contoxt menu and lonThar and Nenus
instanceContent. add{personType) ;
instancecontent. addinew RefreshCapability(){

OEBPS/image2730.jpg
800 Person FX Application

VPeaple
Homer Simpson
Rart Simpsan

Marge Simpscn

Lisa Simpson
Maggie Smpson

Processing Bart Simpson

HOMER 5IMPSON ‘\

RART SIMPEON

First | Marge
Middle |Loise
Last Simpson
suffix
Nale (s Female

Notes.

Marge Is the mom

o

Unknown

| Brozress Bar

OEBPS/image9949.jpg
IR N

Response:

TabularVew | RawView | SubResource

Headers

Hitp Monitor

i version="1.0" encoding="UTF 87>
sl
<salosdats>
<companyid>
<comanyid>1</companyid>
<comaanyname>NoKia</companynamie>
<lcompanyid>
<salosic>1<Isalesic>
<salosyear2008</salesyear>
<unisinmilons>61.00<unisiAnlions>
<isalesdatz>
<salosdata>
<companyid>
‘<comaanyid>1</companyid>
~comssnynamaNokia</companynama~
<lcompenyic>
<salesicb2salesic>
<salesyearzuuscisalesyear>
<unitsinmilions>68.00<unitsinnillons>
PR iy

OEBPS/image4835.jpg
Behavior
CLDSING DISABLED

DRAGGTNG_DTSARI FD

KEEP_PREFERRED_STZE_WHEN_SLTDED_IN

MAXIMLZAILUN_DLSABLLD

SITNTNG DTSARI FD

UNDOCKING DISABLED

“print.printeble’

Description
Prevents the user from closing the
TopCamponent

Prevents the user from dragging and drop-
ping he TopCompunent o = new location.
The TopComponent is displayed in its origi
nal size instead of a moditied size for the
slided-in modc. (Only applics to nen-cditor
TopComponents.)

Prevents the user from maximizing the
TopComponent

Prevents the user from minimizing the
TopComponent. (Only applics tonon cditor
IopComponents.)

Prevents the user from floating the
TopComponent

If true, enables Print for TopComponent
content

OEBPS/image5541.jpg
* O Make

& Homer Simpson
& BartSimpson

v O Female
& * Marge Simpson

& * LisaSimpson

& - Maggie Simpson

o Unknown

OEBPS/image2673.jpg
CXeX:) Persor X Auplication

S First Homar
Homer Simpson Migdle | Chester
Sart Sirpsun
Tt Last Simpson
Lisa Smpson suff

Masgie Sinpon

. Femsle Unknown
Notes
Homer s the dad /
4
//
o -

OEBPS/image15840.jpg
private class SavableViewCapahility extends AbstractSavable {
.. . code omitted . . .

D0ver ride
protecled void handleSave () Unrows TOExceplion {
final Node node = gelLookup(). Lookup(Node. class) ;
it (nade 1= m1) §
Final SavahlcPersontapability savahlc
= node . getLookup () . lockup(SavablePersonCapability. class);
if (sevable = null) {
updatetiode() ;
/1 make a copy of Person for the background thread
*inal Person p = new Parson(thePerson):
clearSaveCapabilily();
changetK =
77 perforn th a background thread
Swingtorker<Void, Void> worker =
new Swingorker<void, Void>() {

OEBPS/image4276.jpg
Home Simpson
2 sarsimpson
- o Fomaie
& - warge simpson
3 taa Simpsen
v o ko

2 rwaaaie simpson

FamilyTreedop 201310111528

Imedienarre
—

hutix

v Additarsl informstion
Jncrr

Jotes

Nagsie

Simpan

IneNowN
Nayiies the by

OEBPS/image12972.jpg
myParent.getChildren().addAll(childNodel, childNode2);

OEBPS/image577.jpg

OEBPS/image10626.jpg
Directory under nbi

stubjextlengine/szc/org/mycempany!
installer/wizard

ibjoxtfengine/arclorg/mycompany!
installer/wizard/companents/panels/

File name
wizasd-desciption-background-left pag

wizard-description-hackgrond-right png
wizard-icon pry
aclcome-left-boftom prg,

welowe-lelllop prg

OEBPS/image15553.jpg
@iessaqes ({
IRl NewFirst dialog=First name:
“LDL NewLast dialog=Last name:*,
“TITLE_NewPerson_d1alog=New Ferson"

n
public cluss PersonType exlends NewType {

private Final PersonCapability personCapability = new PersonCapability();
private static final loqqer lagjer = | aqqer.qet! agner(
ParsonType.class. gethane());
@override
public String gethame()
return Bundle, TITLE Newperson dialog();
¥

override
public void create() throws T0Exception {
NoLifybescriplor. InpulLine msg = new NoLi fydescriplor. InpulLine(
Bundle. LBL NowrirsU_dialog(), Bundle. ILILE Newber son_dialog());
Uhject result = Dialaghisplayer.getbefault () .noti fy (msg) ;
if (NotifyDescriptor.CANCCL OPTION.equals(result}) {
return;

String firstnane = msg.getTnputText();
17 check for a zero-length firstname
it (tirstname.equals("")) (

i Al my

OEBPS/image1650.jpg
Stage: Top-lovel window
Crested by JavaPX Platformn

[E—

" Scene: Contains a scene graph
\ Has 2 root node.
% StackPane: Layout contsiner
(_stacPane) Hos chldren

s the root sade (in this sxample)

P 5 .

(Roctange) (e)
Rectangle: Is a Shape Text: Is a Shape
Added to StackPane Added to StackPane
Is anode Is 2 node

. %

OEBPS/image13265.jpg
rectangle.opacityProperty().bind(
scene.widthProperty().add(scene. heightProperty())
Hivide(1868)):

OEBPS/image13995.jpg
package com.asqteach. familytree.mdel ;

inport java.beans.PropertyChangelistener:
inport java.util.List:

public dnterface FumilyTreetanager

7/ FamilyTreeNanager praperty change names

public
public
public
public

public
public

public
public

public

static final String PROP PFRSON DFSTROYFD = “removePerson’;
static final String FROP FLRSON ADDCD = "addPerson”;
static final String PROP PLRSON UPDATLD = "updatePerson®;

void addPropertyChangeListener (PropertychangeListener listener):

void removeproper LychangeLisLener {9roper LychangeListener 1istener);
void addPerson(Ferson p);

void updatePerson(Person pl;
void deleteverson(berson p);

list<porsans gotAllPeaple();

OEBPS/image7359.jpg
6006 Create New Number Sequence

Steps

Provide Sequence Initial Value

1. Provide Sequence
Initial Value

2. Provide Sequence
Second Value

3. Provide Sequence Third
Value

Provide the first sequence number.

s Cancel

OEBPS/image10369.jpg
8086 Far

TreeApp? - Bran

Splesh Screen | Window System | Resource Bundles |

Aplication Title: FamilyTrecApp2

Aplication lcon (16x16):

Apelication lcon (32532 O [Browse...

Cancel

OEBPS/image17199.jpg
public 1 inechartTopCompanent() {
initComponents();
setllame(Fundle.CTI 1 inaChartTopConpanent ()] ;
setToal TipText (Fundl e HINT | ineChartTopComponent () ;
associateLookup(new AbstractLookupcontent)):

setLayout (new BorderLayout()):
// Enable the Print oction for the TopComponent:
putClientProperty("print.printable”, true):
initi);

1

public void init() {
chartbxbanel = new IFXPanel ()
add(chartFxPane] , Rorderl ayout
Platform. satTnpl icitFxit(false) ;
Platforn.runLater(() -> createscene());

TFR) ;

}

private void createscene(] |
try L
URL location = getClass(}.getResource("Linechart. fxml");
FXMLLoader [xmlLoader now BXMLLoador()

OEBPS/image12816.jpg
private void modify() {
updatebutton. sctknablod(truc) ;
+

OEBPS/image15898.jpg
Noti fyDescriptor. Toputl ine nd = new NotifyDescriptor. Tnputl ine(
"[nail Address®, "Plesse provide your email address®

nd. setTnputText (" @ yyy DOT org*):

il (DialogDispLayer.gelDeloulli) nolily(nd) =
44 UK, read U loput

dosoncUhingWi LhenailAddress (nd. get Lapul [exU())

NoLilyDescriplor.0K_OPTION) {

OEBPS/image17113.jpg
@ServiceProvider(service = HyTahleDataHodel.class)
public cless SmartPhoneDataInpl extends HyTableDataHodel {

private tinal String|| names = ["2008", '2009*, "2010", *2011%):
private tinal String|| categorie
["Nokiu®, "RIM", “Apple’, "HTC', "Sumsung’, "Olhers®
private final String dataliascription = "lnits Seld in Millions®
private final String nameDescription 5
private final String title = "Smart Phone Salas”;
private final Object[][] data = {
71 Sources:
/¢ 2008: Cartner (Warch 2069)
7 2000: Tomi Ahonen (April 2010)
7¢ 2010, 2011: I0C (February 2012)
77 Wokia
f61.0, 58.0, 100.1, //.3},

// ResearchInNotion
{23.1, 37.0, 188, 51.1},

/7 apple
{114, 25.0, 47.5, 93.2),
77 WTT

5.9, 0.0, 71,4, 430},

7/ sansung
1.8, 7.0, 7.9, o1.0},

/1 others
133.9, 30.0, 53.7, 132.3)

OEBPS/image3510.jpg
6080 New NetBeans Patterm Appiication

Stops Name and Location
1. Choose Project N s
2. Name and Location fiolecth XDEmoApe.
Project Lecatien: [ommprojects JavePximegraricn| Bromse |
Project Felder aaFXintegration /FXDemoAED
Nexgeans Plactorm. Declopment 10 5 [Manage |

[Chep | (B [teows | ([Gmmss) (Concel)

OEBPS/image4261.jpg
‘Cender andon @
3 people
MR
& | Homer Chester Simpson
& | Bart Simpson
v O remale
& * Marge Simpson
& * Lisa Simpan
~ "o Unknowr.
& 7Baby Simpson

e 5
e .
sy
i

OEBPS/image15827.jpg
public class PersonType extends NewType {
. cada omitted

@override
public void create() throws T0Exception |

. code onilled

il (NoLilyDescriplor.YES_OPTION. cquals (resull)) {
/1 Treate o new Parson abject
final Person persan = new Person();
person. setFirstname(firstnane) ;
person, setLastnane (lastnane) ;
final CreatableFersonCapability cpc = personCapability.getLookup(}
~lookup (CreatablePersonCapability.class):
il fepe 1= nutl) {
SuingWorker<Void, Void> worker = new Swinghorker<Void, Void>() {

OEBPS/image14373.jpg
public class PersonFXViewerController implements Taitializahle {

P
private TreeView<Person> personTreeview:
privale slalic linal Logger Logyer

Logger . gelLogger (PersonFXViewer ConLrolLer. ¢ Luss. ge (Name ()} ;
private FamilyTreeHanager ftm = null;
private final InstanceCantent instanceContent
private Person selectedPerson = null;

new InstanceContent();

@override
public void initialize(URL url, ResourceBundle rb) {
7/ Chiange Level Lo Level . THFO Lo reduce console messsges
Togger.sellevel (Level . HINE) ;
Handler handler = new ConsolcHandler ()3
handTer. setl ovel (1 ovel . FINF);
Taqqer. addHandler (handl or) ;
try {
Filetandler fileflandler = new Filetandler(};
7/ records sent to file javaN.log in user's home directory
*iteHangler. setLevel (Level. FINE)
Logger .oddHandler (i LeHandLer) ;
Lugger. Log(Leve . FINE, *Crealed File Handler");
} caleh (Lkxceplion | Securilysxceplion ex) {
T e TogULIVE L SENEE, ~Clin® § reali: FEUeSEIeE

oy

OEBPS/image5199.jpg
LXK

Steps

L. Choose File Type

2. Launch Your
Application?

3. Design Window Lavout

3. Changed Files

New Changed Files.

Changed Files

Created Files: src/com/asgteach/modes1/layer.xml
src/com/asqteach;moces1/leftsideWsmode. xmi
sic/com/ asuteach moves 1 rightsidesmode.xirl
sre/com/asgreach; maces 1 /rphannerismode xmi

Macified Files:

Help | [(<mark | [[nish_| |

OEBPS/image14819.jpg
@ConvertAsProperties(dtd =
aulcslone = false)
@TopComponent _Description(oraterredIh — "PersonTopComponent”
fconRase = 'com/asgreach/personcdiTor/persanTcan.png” ,
persistenceType — TopCcmponent.PLRSISTCNCE_ONLY_OPLNCE)
@TapCompnnent _NegisTratian(mode = "editor®, npenATStartup = falsa)
@essages
“CTL PersonActicn=rerson” ,
“CIL_Personioplomponent=persan Window",
“HINT PersonTopComponcnt=This 1s a Persan window’
»
public final class PersonTopComponent extends TopCnmponent {
.. . code omitted .
¥

//com.asqreach. personeditor//Person//EN",

OEBPS/image10569.jpg
P,

spn [T oot 1 _ sttt 5 | s |

Setectiant

tory

Py —————

[l | 1 i ettt 48

e |

OEBPS/image17943.jpg
private void createScens() {
Ty {
URL location — gelClass () .gelResuurce("TableView. ")
IMLLoader TxmlLoader — new MXMLLoader();

fxnlLoader . setResources (resources)
FanlLoader- seiLocaLion(location)
fxmlLoaderse<Builde rFactory(new JavaFXBuilderFactory());

Parent root — (Parent) fxmlloader.load(location.openstrean()];
FxPanel _setScene(new Scone(rool)
controller — (TableViewController) fxmlloader gstController(};

} calch (T0Fxceplion ex)

Cxcaptions printstackTrace(sx) ;

OEBPS/image12570.jpg
/7 Variables declaration - do not modify
private javax.swing.IRadioRutton femaleRutton;
private javax.swing.ITextField firstTextFiald;
private javax.swing.ButtonGroup genderButtonGroup;
private javax.swing.JLebel jlabell;
private javax.swing.Jlabel jlabel2:

code omitted .
private javax.swing.ITextField suffixTextField:
privale juvax.swing.JRadioBullon unknownBul Lon;
privale juvax.swing.JBullon updaleBul lon;
77 ¥nd of variabics declaration

OEBPS/image14430.jpg
<l versior UTF-6" 7

1.0 encadin

<zimport java.lang.*7>
<zinport java.util.A7>

<7import javatx.scene.~7>
<7import javatx.scene.control. +7>
<7import javatx.scene. Layout. +7>

<nchorPune_id="AnchorPane’
style="-fx-background-color: lincar-gradient (aliceblue, Tighthluc);*
xmlns: fx="http: //javatx. com/ faml *
+x:controller
“con.asgteach. fanilytree. persanfxeditor . PersonFXEditorContraller”>
=childrens

. tuml for Person Editor form unchanged trom
project PersonFXHLAppENhancedUT
(See Listing 4.17 on page 159 .

</childrens
</Anchorbancs

OEBPS/image14473.jpg
case FEMAIF:
sb.append(*+ *
break:

case UNKOWN:
sb.append('? "
breal

¥
sh.append {person. tostring (1) . append(“</bac/ fant"
return sb.toString();

}

eoverride
public void propertychange (PropertyChangeEvent evt) [
TirebisplayNancChionge(mill, gelDisplaylane());

OEBPS/image17858.jpg
app.name=${branding.tokenj
app.title=MyFamilyTreeApp

OEBPS/image4978.jpg
VindowSysiarrApp 201403101,
5o @ 00,0 ereis e vosey e

~Gipen Fersan wingow |

(. Cluse Top Pursur Vind |

(o)

OEBPS/image4920.jpg
806

Generate Override Methods

Select methods to override

]

& TopComponent

[© addNotify0

(] © availableModes(List<Mode> modes) : List<Mo:
™ © canClose(: boolean

[© canClosa(Workspace workspace, boolean last)
() % closeNotify)

% componentActivated

% componentDeactivated)

% componentHidden()

U ' componentshowing()

| O getAccessibleContext() : AccessibleContext

OEBPS/image8811.jpg
®0a L TileTypeapp 201403101706 #

G in @ (@ e 0)

5 s
+ & et e
7 Smasonbamres -
B
3 smer chese

B Vs ay

OEBPS/image4376.jpg
Quick Search
Feature

FamihTreeAps 201310111528

& tomersimpson
2 cansimpson
[+ o Tamse
& e simpson
S
v & i
3 7Bty Simpan

= Names

e S
O

= Adaenslinermesian

fericn

OEBPS/image16333.jpg
@verride

public void removeChangeListener(Changelistener 1) {
Listeners. remove (ChangeListener.class, 1);

1

@override
public void propertyChange (PropertyChangeEvent pce) {
if (pce.getPropertyllame() .equals(
TdentifyCustonerController.PROP_IS_NEW_CUSTOMER)) {
if (icc.isTsNewCustoner()) {
panels.add(L, ncel:
3 etse {
panels. remove(ncel ;
1
updatesteps();
fireChangeEvent(this, 8, 1);
3 else if (pce.getPropertyNane() .equals(
BuildPizzaController. PROP_IS_PICKUP)) {
if (bpe.isIsPickup()) {
panels. remove(delic) :
3 etse {
panels.add(panels. size()-1, delic);
1

updatesteps();
fireChangeEvent (this, 8, 1);

OEBPS/image15496.jpg
public final class PersonCapahility implements I onkup.Provider {

private final Lookup Lookup;

private final InstanceContent instanceContent = new InstanceContent():

private static final Logger Logger = Logger.getLogger(
PersonCapability.class. gettiame()):

private final List<Persan> personList = new Arraylist<-();

private kamilylrocHanager fim = mull;

public PersonCapability() {
ookup = new AbstractLookup(instanceContent) ;
Ftm = Lookup.getDetault (] . lockup(TanilyTreeHanager. class)
il (i == null) |
Tugger. Tog(Level SEVERE, *Cannol gl FamilylrecHanager object®) ;
ViTooycTeManager el efanl | O .exil ()

)
instanceContent. add(new RefreshCapability() {

OEBPS/image16935.jpg
<zxml versior

1.8 encadin

<timport java.lang."?>
<import java.net.+7-

<Tinporl java.ulil.<?>

<tinport javalx.scine, 1>
<rinpart javafx.qeemctry. Insctsts
<#inport Javafx.scene. control .7
<vinpart javafx.scens layout. ¥ix
<zinport javafx. scene. shape. ¥2
<rinport Javatx.scene. text.~7>
<timporl javalx. scens.ellecl 47>

TOP_CENTER"
id="T LowPane*
fx: dd="mypane”

xmins: x="http: //javatx. com/ bxm"

UTF-5" 7

_FtrVisualFXController”>

fx:controller="con.asgteach. fanilytreesupport

<padding
<Insets bottom
padding
ylesheets=
<URL value="GFErcss.css" />
</stylesheets>
<childrens </childrens
</¥l owbanc>

.0" left="10.0" right

OEBPS/image16978.jpg
this . propChangeSupport. firePropertyChange(
PROP_DOCELEMENT_REHOVED, docString, sb.toString()):
) else [
sh.replace(startPosition,
startPasition + oldTextSize, theText.getText());
this . propChangeSupport . firePropertyChange(
PROP_DOCUNENT_UPDATED, docString, sb.toString());
Il
break:
Jetse U
7/ not aur_lext node, keep Taoking
StartPosition 4= textNode.getText().length() + 1;

Il

pubilic void addPropertyChangeListener (
PropertyChangel istoner Tistener) {
this. propthangeSupport . addbropertythange istencr (14stoner)

¥

public void removePropertyChangeListener(
PropertyChangeListener Listener]
this.propChangeSupport . removePropertyChangeListener Listener) :

OEBPS/image8726.jpg
_ FileTypeApp 201403101705 -
(@ sewen i ©)

e

BT amitreeti s oo ool SR
o Smasriamb eatr

