
[image:]

JAVASCRIPT FOR BEGINNERS

A Complete Beginners Guide To Learn The Fundamentals Of JavaScript, Python, SQL & Java

[Mark Whistler]

Text Copyright © [Mark Whistler]

All rights reserved. No part of this guide may be reproduced in any form without permission in writing from the publisher except in the case of brief quotations embodied in critical articles or reviews.

Legal & Disclaimer

The information contained in this book and its contents is not designed to replace or take the place of any form of medical or professional advice; and is not meant to replace the need for independent medical, financial, legal or other professional advice or services, as may be required. The content and information in this book has been provided for educational and entertainment purposes only.

The content and information contained in this book has been compiled from sources deemed reliable, and it is accurate to the best of the Author's knowledge, information and belief. However, the Author cannot guarantee its accuracy and validity and cannot be held liable for any errors and/or omissions. Further, changes are periodically made to this book as and when needed. Where appropriate and/or necessary, you must consult a professional (including but not limited to your doctor, attorney, financial advisor or such other professional advisor) before using any of the suggested remedies, techniques, or information in this book.

Upon using the contents and information contained in this book, you agree to hold harmless the Author from and against any damages, costs, and expenses, including any legal fees potentially resulting from the application of any of the information provided by this book. This disclaimer applies to any loss, damages or injury caused by the use and application, whether directly or indirectly, of any advice or information presented, whether for breach of contract, tort, negligence, personal injury, criminal intent, or under any other cause of action.

You agree to accept all risks of using the information presented inside this book.

You agree that by continuing to read this book, where appropriate and/or necessary, you shall consult a professional (including but not limited to your doctor, attorney, or financial advisor or such other advisor as needed) before using any of the suggested remedies, techniques, or information in this book.

Table of Contents

Description

Introduction

Chapter 1: What is JavaScript?

Implementing JavaScript

Chapter 2: Fundamental JavaScript Concepts

Variable Types

User Variables

Mathematical Operators

Assignment Operators

Comparison Operators

Chapter 3: The History of JavaScript

Features of JavaScript

Chapter 4: Basics of CSS3

Chapter 5: Thinking Slowly and Staying Humble

Chapter 6: Basic Operators

What are operators?

Classification of operators

Arithmetic Operators

Conclusion

Introduction

HTML is not very smart. It mostly lets people look at text and images and allows them to move to other pages where they will do more of the same. What adds the intelligence to a web page is JavaScript. It makes the website more engaging, effective, and useful by letting pages respond to our visitors when they interact with the content.

This book assumes that we already know how to use HTML to specify web page structure and content. It will be additionally beneficial if we are familiar how pages are styled with CSS, separate from the web page structure. If this is the case then we are ready to add a little behavior to the page and make it more dynamic and interactive with JavaScript. Otherwise, without HTML and CSS, JavaScript will not do us much good. They are viewed as the three fundamental pillars of the web page: structure, presentation and behavior.

Chapter 1: What is JavaScript?

JavaScript is the scripting language of the web with the sole purpose of adding interactivity to our pages. In addition to interactivity, modern versions of JavaScript can also be used to load and parse information from external sources or even the website's users. JavaScript is essentially a piece of programming code embedded in the HTML structure of a web page. When the web browser reads this code it activates a built-in interpreter that understands how to decipher this language and process its commands.

Although programming is involved during coding, JavaScript is not a programming language. In conventional web programming languages, like Java or .NET, the code has to be compiled before it is executed. Compiling means that the code has to be first sent to a special program that is run on the server. This program, also known as application server software, translates the code, creates the requested page and/or functionality and serves this back as HTML. Scripting languages, like JavaScript, are note compiled, but rather are interpreted on-the-fly. This means that no special software is involved as the user's own browser runs and executes the code as it is encountered.

Note: JavaScript was created during a time when Java was a very popular language. Other than that, the languages are not related and have almost nothing in common except for basic programming logic.

Implementing JavaScript

Now that we have a general idea as to what JavaScript is, we can start working with this language. As JavaScript code is part of the HTML document, we need to know how to tell browsers to run our scripts. There are two common options available to us when we want to include JavaScript in a web document and in both cases we will use the <script> element. The <script> tag is used when we want to tell the browser where the JavaScript code begins and where it ends within an HTML document. As such, this tag can be included either in the head or the body section of the page.

The first option is to place the code inline within the document structure. To do this we will begin by opening a <script> tag, entering the JavaScript code, and then finish by closing with the </script> tag. We can theoretically leave the document like this as almost all browsers will assume that the scripting language between the <script> tags is JavaScript by default. Nevertheless, for maximum compatibility we will extend this tag with the type attribute and the text/javascript value in order to instruct the browser how to exactly interpret the code.

<script type="text/javascript">

//A JavaScript comment

</script>

The second option is to load the JavaScript code from an external file into our HTML document. For this purpose we can use the <script> element again, but this time in addition to the type attribute we will also include the URL to the external file in the src attribute of the <script> element. The external file must be a text-only file with the .js file extension that contains only pure JavaScript code without any HTML elements or CSS rules. For example, to call the external scripts.js file into our browser we would use the following code:

<script src="script.js" type="text/javascript">

</script>

We put JavaScript in an external file and include it in the web page when we like to share the functionalities across our entire web site. Otherwise, if we just need to add some local interactive behavior, we embed the code within the page.

Note: Script files are loaded in the order in which they are placed in the HTML code

Chapter 2: Fundamental JavaScript Concepts

Generally, when we hear the term programming we immediately think of other people typing an incomprehensible string of letters and numbers. Programming looks like magic beyond the realm of mere mortals. Nevertheless, the concepts in programming are not difficult to grasp as they always have real life applications. JavaScript, although it is not as simple as HTML or CSS, is not an overly complicated language. Unlike other languages, its "grammar" is more or less descriptive and intuitive making it a good fit for a first programming language. Basically, learning JavaScript is like learning a new language, but a new language that is similar to English. Once we learn the new words, and understand how to put them together to form "sentences" we'll be good to go.

Syntax

Every language has its own set of characters and words that go along with a set of rules as to how to arrange these characters and words together into a well-formed sentence. These rules are also known as the language syntax and it is the syntax that holds the language together and gives it meaning.

Before start with some examples of JavaScript syntax, let us first set up the environment for JavaScript. As discussed previously, JavaScript code is always a part of the HTML code. Therefore, in order to work with JavaScript we will first need to create a basic HTML document. So to start, let us open a text editor (like Notepad) and type in the HTML code for the most basic web page. In addition to the basic HTML tags, we will include a <script> element in the <head> section where we will start placing the JavaScript code.

<!doctype html>

<head>

<title>First Steps in JavaScript</title>

<script type="text/javascript">

</script>

</head>

<body>

</body>

</html>

Let us save this document as firststeps.html. If we are using Notepad, we have to remember to change the Save as Type field to ‘All files’.

Statements

To express ourselves in everyday common language we use sentences as the basic form of communication. Similarly, in JavaScript we also form sentences to express our intentions which are more formally called statements. A JavaScript sentence is the basic unit of communication, usually representing a single step in the program. And just like we put sentences together to express an opinion, we combine statements together to create a program.

Let us look at a simple JavaScript statement and see what it does. Between the opening and closing <script> tag of the html document places the following text:

alert("JavaScript is starting to make a little sense.");

In further examples we will not show the complete HTML code unless it is necessary, but for initial reference your document should look like the following:

<!doctype html>

<head>

<title>First Steps in JavaScript</title>

<script type="text/javascript">

alert("JavaScript is starting to make a little sense.");

</script>

</head>

<body>

</body>

</html>

We can save the firsteps.html document and open it in a web browser. Once the page opens, we will get an alert window with the message "JavaScript is starting to make a little sense".

Now that we know what the effect is, let us go back to the JavaScript statement and interpret it into common language so it makes more sense.

alert("JavaScript is starting to make a little sense.");

JavaScript statements are instructions which are executed by the web browser. The statement starts with a command, presented by keyword. The keyword identifies the action that needs to be performed. In this case the keyword alert makes the web browser open a dialog box and display a message. If we just had the statement alert(); the dialog box would have been empty, however in our case the statement consists of a specific input, the actual message text, also known as an argument. Finally, just like every sentence ends with a period, a JavaScript sentence ends with a semicolon. The semicolon makes it clear that the statement is over and once the interpreter executes it, it should move on to the next item.

Now we are ready to translate the JavaScript statement. Its plain English interpretation would be, "Open a dialog box and display the text JavaScript is starting to make a little sense' in that box."

Note: When passing text arguments, we can use either double quote marks ("sense") or single quote marks ('sense') present the text.

Before we move on, let us look at another JavaScript statement. In the <script> element replace the previous code with the following and preview it in a web browser to see the results:

document.write("<p>JavaScript is starting to make a little sense.</p>");

What we can see from the results is that the previously empty document, now has one paragraph of text. Following the previous interpretation of how JavaScript works and from the web browser results we can correctly assume that the document.write keyword commands the browser to write directly onto the web page. Similar to alert(), it writes whatever is placed between the opening and closing brackets.

Variables

One of the fundamental aspect of JavaScript, and any programming language in general, is the concept of variables. A variable is a way to declare and store information which can later be used. This information can vary with the circumstances and hence the name variable.

Let us look at the following statement.

var name = "Martin";

In plain language this is the same as saying "My name is Martin". The keyword var is JavaScript speak for "create a variable", or in a programming dialect, "declare a variable". What follows is the name of the variable which can be anything we choose with certain limits. Assigning a value to the variable is done with the = sign, which is not immediately necessary, as this can happen later. We can declare an undefined variable in one statement and assign it a value in a later statement. For example:

var name;

name = "Martin";

As mentioned previously, variable names can be anything, like name, abc, R2D2, with a few rules. Variable names can contain letters, numbers, dollar sign ($), or lower line (_), other special characters are not allowed. Furthermore, a variable name cannot begin with a number, any other allowed value is acceptable. Finally, variable names are case-sensitive, meaning that the interpreter in the web browser makes a distinction between uppercase and lowercase letters, making 'score' different from 'Score'.

Note: Although we can use almost anything for a variable name, it is wise to use names which are meaningful as this will help us and other programmers to better understand the written code.

Variable Types

Based on the type of data, variables come in different flavors. The three most basic types are number, string, and boolean.

A number variable is represented by a numeric character. This variable can accept whole integers, negative integers and fractional integers. Numbers are frequently used in calculations, hence our number variables are often included in mathematical operations. The following statement declares a variable named age and assigns it a value of 35.

var age = 35;

A string variable is used to represent any series of letters like words or sentences. Strings are represented as a series of characters enclosed within quotation marks, with the quotation marks signaling to the interpreter that what follows is a string variable. JavaScript allows us to use both the double quotes (") or the single quote (') marks, but we have to be mindful to use the same type of quotation mark.

var location = "California";

A boolean variable is rather simple as it can accept only one of two values: true or false. This variable is used when we create JavaScript programs that we want to intelligently react to user actions.

User Variables

JavaScript would not be fun if it didn't allow us to share our thoughts and create or alter the variables directly. One of the simplest ways to "give" our input is to use the prompt() command.

var name = prompt ("What is your name?", "")

document.write(name);

The result of the prompt() command is a dialog box. Instead of just displaying a message like the alert dialog box, the prompt dialog box can also receive an answer. Hence, in the syntax for a prompt dialog box it is necessary to provide two arguments between the parentheses separated with a coma. The first argument is the prompt text that is displayed in the box, while the second argument is the default value for the text box, and consequently, the variable.

In the example above, the prompt text displayed in the box will be 'What is your name?' and the default value presented in the box will be empty, as there is obviously no content between the quotation marks. Once we type in something in the box and either click OK or press the Enter key, the variable receives the value that was entered in the field. Consequently, the name will be displayed on the web page. Otherwise, if we click on Cancel, press the Esc key or close the prompt box, the returned value would be empty and there would be no text on the screen.

Note: Instead of prompt() we can also use the more formal window.prompt command.

Operators

Storing information in a variable is a first step, the beauty of programming is the ability to manipulate this information in many creative ways. For this, JavaScript provides different operators that allow us to modify data. An operator, represented by a symbol or a word, is something that can change one or more values into something else. The type of operators available are different based on the data type.

Mathematical Operators

The basic mathematical operators like addition (+), substraction (-), multiplication (*) and division (/) are readily available in JavaScript. They can be used in independent statements or used when declaring variables. For example, by "operating" with the variables currentYear and yearofBirth, we can determine the value of the variable age.

var currentYear = 2015;

var yearofBirth = 1979;

var age = currentYear - yearofBirth;

document.write(age);

Note: "Calling" a variable to be presented on a web page is easy. Simply use the document.write() command.

Mathematical operators, specifically the addition operator, can be used to combine two or more strings. This process of combining strings is called concatenation. In the following example:

var firstName = "Martwan";

var lastName = "Jenkins";

var fullName = firstName+lastName;

document.write(fullName);

The value for fullName will end up being MartwanJenkins. To make sure that everything is in its proper form we need to include the empty space as a string in quotation marks. For example, we can use the following declaration:

var fullName = firstName+" "+lastName;

We can see that operators are also useful when we want to join text and/or combine variables. As a matter of fact, we can use this to construct more logical sentences. For example, we can combine the "My name is" text with a value from a calculated variable.

var firstName = "Martwan";

var lastName = "Jenkins";

var fullName = firstName+" "+lastName;

document.write("My name is " +fullName);

Note: When performing several mathematical operations in one statement, the rules of precedence apply.

Assignment Operators

Just like things change in real life, so do variables within a JavaScript program. And to change variables within JavaScript we will use assignment operators. We are already familiar with the fundamental assignment operator, the equal sign (=), which is used to give an initial or a new value to a variable. There are other assignment operators that also change the value of a variable, but they do this in a slightly different way.

For example, as the year passes we grow older and our age incrementally changes by one. To make this change in JavaScript there are several different approaches we can take, all with the same results. To play around with the possibilities of changing variables, we can try the following code where after the age variable changes its value is displayed in the browser:

var age = 35;

document.write("<p>My age is "+age+"</p>");

age = age + 1;

document.write("<p>A year has passed, so now I am " +age+"</p>");

age += 10;

document.write("<p>What? Are you telling me that I am a grandad now? But I am only " +age+"</p>");

While at first these operations might appear slightly confusing, they are still logical if viewed from the programming angle. For example, if we read the statement age=age+1 backwards what happens is that the value of 1 is added to the current age of 35 which would make 36 the new value of age. Additionally, we can use a complex assign operator such as (+=) in the statement age+=10, to increase the value of the variable by 10. We can also use the same logic to other operations like subtraction, division and multiplication.

age-=5;is the same asage = age - 5;

age*= 5;is the same asage = age * 5;

age/=5;is the same asage = age / 5;

Additionally, when we want to increase/decrease the value of the variable by 1, we can also use the following assignment operators:

age++;is the same asage = age + 1;

age--;is the same asage = age - 1;

Comparison Operators

Like the name suggests comparison operators are used to compare two values. After the comparison is made a value of either true or false is returned depending on whether the comparison was exact or not.

Chapter 3: The History of JavaScript

JavaScript is a language that was created by Netscape in 1995 to develop products and applications to run in the browser. JavaScript has nothing to do with the Java language itself. It was just a ploy to name the language after the more popular Java language that was present at that point in time. Microsoft also tried to create its own scripting technologies such as VBScript and JScript.

In November 1996, JavaScript was made a standard specification. ECMAScript is the name of the official standard, with JavaScript being the most well-known of the implementations. Since then, the language has undergone modifications and changes to ensure it remained one of the most popular client side scripting languages. Since JavaScript was adopted as an ECMA standard in 1997, it followed the release cycle of the ECMA standard.

Below are the versions of the ECMAScript Language.

	
Year

	
Name

	
Changes

	
1997

	
ECMAScript 1

	
First Edition

	
1998

	
ECMAScript 2

	
Editorial changes only

	
1999

	
ECMAScript 3

	
Added regular expressions and try/catch

	
2009

	
ECMAScript 5

	
Added "strict mode" and JSON support

	
2011

	
ECMAScript 5.1

	
Editorial changes

	
2015

	
ECMAScript 6

	
Added classes and modules

	
2016

	
ECMAScript 7

	
Added exponential operator (**) and array.prototype.includes

There are also numerous popular frameworks that have been developed based on the JavaScript language. Some of the most popular ones are given below with a short example of how the code looks for each.

2.1 AngularJS

AngularJS is a structural framework for creating dynamic web applications. HTML can be used as the template language and AngularJS lets you then extend HTML's syntax to express the application's components clearly. AngularJS has support for data binding and dependency injection, which eliminates the needs to write this code yourself to carry out these tasks.

Example 5: The following program is used to showcase a simple AngularJS program.

	
<!DOCTYPE html>

<html>

<script src="https://ajax.googleapis.com/ajax/libs/angularjs/1.6.4/angular.min.js"></script>

<body>

<div ng-app="">

<p>Hello World</p>

</div>

</body>

</html>

2.2 Node.JS

Node.JS is an open-source, cross-platform JavaScript run-time environment for executing JavaScript code server-side. Normally JavaScript is used as a client side language, but Node.JS changed this by implementing JavaScript that could be used on a server side framework.

Example 6: The following program is used to showcase a simple Node JS program.

	
var http = require('http');

http.createServer(function (req, res) {

res.writeHead(200, {'Content-Type': 'text/plain'});

res.end('Hello World!');

}).listen(8080);

2.3 ReactJS

ReactJS is an open-source JavaScript library for building user interfaces. It is maintained by Facebook, Instagram and a community of individual developers and corporations.

Example 7: The following program is used to showcase a simple React JS program.

	
var App = React.createClass({

render: function() {

return <div>Hello World</div>

}

});

React.render(<App />, document.body);

2.4 JQuery

JQuery is a fast, small, and feature-rich JavaScript library. It makes things like HTML document traversal and manipulation, event handling, animation, and Ajax much simpler with an easy-to-use API that works across a multitude of browsers.

Example 8: The following program is used to showcase a simple JQuery program.

	
<!DOCTYPE html>

<html>

<script>

$(document).ready(function(){

$("p").click(function(){

$(this).hide();

});

});

</script>

<body>

</body>

</html>

Features of JavaScript

JavaScript has an assortment of features. I will go over a few of them below:

3.1 Working with Objects

Data in JavaScript is expressed as objects, which makes it easier and more extensible to work with various forms of data in JavaScript. Below is a simple example of a JavaScript program that uses an object defined as a variable.

Example 9: The following program is used to showcase a simple JavaScript object.

	
<!DOCTYPE html>

<html>

<body>

<h1>javascript Example</h1>

<p id="demo"></p>

<script>

var value="Hello World";

document.getElementById("demo").innerHTML = value;

</script>

</body>

</html>

3.2 Data Types

JavaScript works on the fact that it is a dynamically typed language. A variable can be set to a number and later to a string. Below is a simple example of a JavaScript program which works with data types.

Example 10: The following program is used to showcase a simple JavaScript program on data types.

	
<!DOCTYPE html>

<html>

<body>

<h1>javascript Example</h1>

<p id="demo"></p>

<script>

var value=1;

value="Hello World";

document.getElementById("demo").innerHTML = value;

</script>

</body>

</html>

3.3 Structured Language

JavaScript follows a structured programming syntax wherein you can use the normal loop statements like “while loops” and “if statements”. Below is a simple example of a JavaScript program which works with decision making and loops.

Example 11: The following program is used to showcase a simple JavaScript program on loop statements.

	
<!DOCTYPE html>

<html>

<body>

<h1>javascript Example</h1>

<p id="demo"></p>

<script>

var txt="";

var i = 0;

do {

txt += "
The value is " + i;

i++;

}

while (i < 10);

document.getElementById("demo").innerHTML = txt;

</script>

</body>

</html>

3.4 Object Oriented

JavaScript is almost an entirely object oriented language with the ability to define properties for variable objects. Below is a simple example of a JavaScript program which works with objects.

Example 12: The following program is used to showcase a simple JavaScript program with objects.

	
<!DOCTYPE html>

<html>

<body>

<h1>javascript Example</h1>

<p id="Name"></p>

<p id="chapter"></p>

<script>

var Tutorial={Name:"Javacript",chapter:"Features"}

document.getElementById("Name").innerHTML = Tutorial.Name;

document.getElementById("chapter").innerHTML = Tutorial.chapter;

</script>

</body>

</html>

3.5 Defining Functions

JavaScript has the ability to split code into modules with the help of functions. The logic of a program can be split by defining functions across a JavaScript program. Below is a simple example of a JavaScript program which works with functions.

Example 13: The following program is used to showcase a simple JavaScript program on classes.

	
<!DOCTYPE html>

<html>

<body>

<h1>javascript Example</h1>

<p id="Name"></p>

<p id="chapter"></p>

<script>

function myFunction() {

return "Hello World";

}

document.getElementById("Name").innerHTML = myFunction();

</script>

</body>

</html>

3.6 Event Handling

Events can also be handled in JavaScript. So if you wanted code to run at the click of a button, it can be done. Functions can be used to define code that can be run when an event is triggered. Below is a simple example of a JavaScript program which works with event handling.

Example 14: The following program is used to showcase a simple JavaScript program that works with event handling.

	
<!DOCTYPE html>

<html>

<body>

<h1>javascript Example</h1>

<p id="Name"></p>

<p id="chapter"></p>

<script>

function myFunction() {

document.getElementById("Name").innerHTML = "Hello World";

}

</script>

<button onclick="myFunction()">Click Me</button>

</body>

</html>

3.7 Working with HTML DOM

Probably the most important feature to have is the ability to modify the elements of an HTML page via its DOM structure. This is what makes JavaScript such a popular scripting language. Below is a simple example of a JavaScript program which works with HTML DOM.

Example 15: The following program is used to showcase a simple JavaScript program that works with HTML DOM.

	
<!DOCTYPE html>

<html>

<body>

<h1>javascript Example</h1>

<p1 id="Name"></p1>

<script>

document.getElementById("Name").innerHTML = "Hello World";

</script>

</body>

</html>

3.8 Working with the Browser

JavaScript is also deigned to work with many different browsers and has the capability of getting information from the browser window it is running in.

Example 16: The following program showcases a simple JavaScript program that can be used to work with the browser window.

	
<!DOCTYPE html>

<html>

<body>

<h1>Javascript Example</h1>

<p1 id="demo"></p1>

<script>

document.getElementById("demo").innerHTML = screen.width;

</script>

</body>

</html>

3.9 Scope of Variables

Variables in JavaScript also work with the concept of global vs local scope. The scope of the variable is in the block it is defined in. The example below shows a variable that is scoped locally.

Example 17: The following program showcases a simple JavaScript program that uses a variable with local scope.

	
<!DOCTYPE html>

<html>

<body>

<h1>Javascript Example</h1>

<p1 id="demo"></p1>

<script>

function demo() {

var val=1;

// The variable val an only used here

}

</script>

</body>

</html>

3.10 Built-in Functions

JavaScript has the ability to work with some built-in functions that can be used in your code. The example below shows the use of a built-in math function.

Example 18: The following program showcases a simple JavaScript program that uses built-in functions.

	
<!DOCTYPE html>

<html>

<body>

<h1>Javascript Example</h1>

<p1 id="demo"></p1>

<script>

document.getElementById("demo").innerHTML = Math.PI;

</script>

</body>

</html>

3.11 Working with Arrays

JavaScript has the ability to work with elements as arrays. This helps programmers to work with a continuous set of elements as shown below.

Example 19: The following program is used to showcase a simple JavaScript program that uses arrays.

	
<!DOCTYPE html>

<html>

<body>

<h1>Javascript Example</h1>

<p1 id="demo"></p1>

<script>

var val = ["1", "2", "3"];

document.getElementById("demo").innerHTML = val[0];

</script>

</body>

</html>

3.12 Working with Errors

JavaScript also has the ability to work with errors generated in the program by using try, catch blocks. The below example shows a simple program working with try, catch blocks.

Example 20: The following program showcases a simple JavaScript program that uses error handling.

	
<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

try {

funcA("Hello World");

}

catch(err) {

document.getElementById("demo").innerHTML = err.message;

}

</script>

</body>

</html>

3.13 Ability to Work with JSON

JSON is known as JavaScript Object Notation and is used as an intermediate language like XML. JavaScript can also work with JSON objects as shown in the example below.

Example 21: The following program showcases a simple JavaScript program that works with JSON.

	
<!DOCTYPE html>

<html>

<body>

<h2>JavaScript Example</h2>

<p id="demo"></p>

<script>

var text = '{"Names":[' +

'{"firstName":"John","lastName":"Doe" },' +

'{"firstName":"Peter","lastName":"Smith" }]}';

obj = JSON.parse(text);

document.getElementById("demo").innerHTML =

obj.Names[1].firstName + " " + obj.Names[1].lastName;

</script>

</body>

</html>

Chapter 4: Basics of CSS3

Cascading Style Sheets or CSS provide the presentation that webpages are known for. Although, HTML is capable of providing a basic structure to the webpage, CSS offers developers host of design options. Besides this, it is fast and efficient, which makes it an all more popular design tool.

CSS is known to have evolved from SGML (Standardized Generalized Markup

Language). The goal of efforts made in this direction was to standardize the manner in which web pages looked. The latest version of this technology is CSS3, which is a collection of 50 modules.

The most powerful characteristic of CSS is its cascading ability. Simply, it allows a webpage to take its styles from multiple sheets in such a manner that changes to the style in subsequently read sheets overwrite the style already implemented from one or more of the previous sheets.

How to Define and Apply Style

The definition and application of a style involves two facets or parts, selector and declaration. While the selector determines the area of the webpage that needs to be styled, the declaration block describes the style specifications that have to be implemented. In order to illustrate how it works, let us consider the following example,

body {

color: white;

}

In this example, the selector selects the body of the webpage and the declaration block defines that the font color should be changed to white. This is a simple example and declarations and selectors can be much more complex than this.

How to Add Comments

Comments can be added to the style sheet using the following format:

/*write the comment here*/

How to Create an Inline Style

Every element has an associated global attribute, style. This global attribute can be manipulated within the tag for that element to modify the appearance of that element. This type of styling does not require you to specify the selector. Only the declaration block is required. An example of how this is done is given below:

<body style='color: white;'>

</body>

This HTML tag performs the same functionality as the CSS code specified in the previous section. The advantage of using this approach is that the style information given in this manner overwrites any other styling information. Therefore, if you need to use different style for one element while the rest of the document needs to follow a different style, then you can use a stylesheet for the document and specify the style for this element in its tag.

How to Use Embedded Style

Another approach for accomplishing the same outcome as inline styles is to use the <style> element within the element concerned, for defining its style specification. Here is how this can be done:

<!DOCTYPE html>

<html xmlns='http://www.w3.org/1999/xhtml'>

<head>

<title></title>

<style>

body {

color: white;

}

</style>

</head>

<body>

</body>

</html>

How to Create External Style Sheet

For usages where you wish to use the same style for the complete webpage or a number of webpages, the best approach is to use an external style sheet.

This external style sheet can be linked to the HTML page in the following manner:

<!DOCTYPE html>

<html xmlns='http://www.w3.org/1999/xhtml'>

<head>

<title></title>

<link rel='stylesheet' type='text/css' href='Content/mainstyle.css' />

</head>

<body>

</body>

</html>

You must create a file mainstyle.css, in the Content folder, and put the style rule specified below into the file.

body {

color: white;

}

Defining Media

It is important to note that a style sheet can contain as many style rules as you want. Besides this, you can also link different CSS files for different media. The different media types are as follows:

●
 all

●
embossed

●

●
braille

●
print

●
handheld

●
 speech

●
screen

●
 tv

●
 tty

The media used can be defined in the following manner:

<link rel='stylesheet' type='text/css' href='Content/all.css' media=’all’ />

Defining Character Encoding

You can also define the character encoding used, using the following format:

Style sheet:

Place the following line above the style rule in the style sheet.

@charset 'UTF-8';

HTML page:

You must place this line above the link element.

<meta http-equiv='Content-Type' content='text/html;charset=UTF-8' >

Importing style Sheets

As your web pages becomes complex, the style sheets used shall also grow in complexity. Therefore, you may need to use many style sheets. You can import the style rules present in one style sheet to another by using:

@import url('/Content/header.css');

Here, header.css is imported and the url gives the relative address of the style sheet to be imported.

Importing Fonts

Fonts can be imported using the following format:

@font-face {

font-family: newFont;

src: url('New_Font.ttf'),

url('New_Font.eot'); /* IE9 */

Selectors, Specificity and Cascading

Selectors can be of three types, class selectors, ID selectors and element selectors. The element selector type is the simplest and requires you to simply name the element that needs to be used. For instance, if you wish to change the background color of the body, then the element selector used is body.

While declaring any element, you can assign an ID to it using the id attribute. You can use this ID prefixed with a # as a selector. For example, if you have created a button with ID btnID, then the ID selector for this will be #btnID. Similarly, you can assign a class name to an element using the class attribute. Class name can be used prefixed by a dot(.) in the following manner, .className.

However, if you wish to select all the elements of the webpage, then asterisk (*) to it.

Using Descendent and Child Selectors

You may wish to apply a particular style to a descendant of a selector. This can be done by specifying the complete selector change. It can be done in the following manner:

li a {

text-color: black;

}

On the other hand, you may want to apply to an element only if it is a direct child of the selector. This can be implemented by specifying the parent and child separated by a greater than (>) sign, in the following manner:

li > a {

color: white;

}

Pseudo-element and Pseudo-class Selectors

Now that you know how to apply styles to specific elements, let us move on to implementing styles to more specific sections like the first line of the second paragraph. In order to style elements that cannot be classified on the basis of name, content or is not a part of the DOM tree can be styled using pseudo-classes. The available pseudo-classes include:

●
:visited

●
:link

●
:hover

●
:active

●
:checked

●
:focus

●
:nth-last-child(n)

●
 :not

●
:only-child

●
 :nth-child(formula)

●
 :lang(language)

●
:first-of-type

●
:only-of-type

If you want to access information of the DOM tree that is not accessible otherwise, you can use pseudo-elements. Pseudo-elements include:

●
::first-letter

●
 ::first-line

●
::after

●
 ::before

Grouping Selectors

Multiple selectors can be used for a style rule. These selectors must be separated by commas. Sample implementation:

body, button {

color: white;

}

Using Adjacent Selectors

If you want to style the first heading in a div or any similar adjacent elements, the selector is constructed using a plus sign (+) between the two selectors. Sample implementation:

div + h1 {

color: white;

}

Sibling Selectors

Sibling selectors are similar to adjacent selectors except for the fact that all the matching elements are styled as against adjacent selectors, which only style the first matching element. The selector is constructed using a ~ sign between the two selectors. Sample implementation:

div ~ h1 {

color: white;

}

Using Attribute Selector

This selector selects all the elements for which the specified attribute exists. The selector is written in this form:

a[title]

This selector will select all the links for which the title attribute has been specified. Moreover, this selector type can be modified into attribute-value selector by specifying the attribute value in the following manner:

a[title = value]

In-Built Styles of Browsers

Every browser has a built-in stylesheet, which is applied to all the webpages opened using this browser. In fact, this stylesheet is applied before any other style sheet. You can define your own style sheet for the browser using the Accessibility option in Tools. However, user style sheets are browser specific. Therefore, if you open a different browser, the style sheet you defined may not be accessible.

In case, you want your user-defined stylesheet to override any other style specified in the HTML page, then you can use the ‘!important’ modifier. This modifier sets highest priority for the specified style statement. Sample implementation:

body {

color: white !important;

}

Cascading of Styles

The precedence and priority of the styles are decided on the basis of the following parameters.

●
 Importance

●
Specificity

●
Textual Order

Working with CSS Properties

Now that you are thorough with the use of selectors, the next step is to look at CSS properties.

Color

One of the most crucial properties that are used in a web page is color, which can be defined using ARGB, RGB and color names.

RGB value are typically defined using a decimal number, which lies between 0-255.

●
white #ffffff

●
red #ff0000

●
black #000000

●
green #008000

Color values can also be used instead of the color name. An example of how this can be used is given below.

body {

color: #ffffff;

}

Another way to specify the color is using the RGB function, which specifies the values of parameters using a number between 0-255 or percentage. Example of this type of declaration is given below:

h1 { color: rgb(255,0,0); }

Other ways to specify color are RGBA, which accepts 4 values and HSL, which defines values for hue, saturation and lightness.

Transparency

The transparency or opacity are defined by a value between 0.0 (invisible) and 1.0 (opaque).

Text

As far as text is concerned, font-face and font-size can be specified. These properties can be defined in the following manner:

h1 { font-family: arial, verdana, sans-serif; }

h1 { font-size: 12px; }

The CSS Box Model

The CSS Box Model assumes that a webpage can be considered to be made up of boxes. The spacing between these boxes are given by margins and padding settings. These properties can be given values in the following manner:

margin: 15px;

padding: 25px;

border: 10px;

Positioning <div> elements

The element used for creating page layouts is <div>. Although, HTML5 recommends the use of semantic markup instead of div elements, there are still used for content that cannot be styled using semantic markup. A div element can be imagined as a rectangular block and is declared in the following manner:

<div>

<!—other elements are enclosed within this area-->

</div>

Properties used to define the position of a div element include:

●
 The position of the div element can be defined using the properties, top, bottom, left and right, in pixels.

●
A property, position, is used to define if the position specified is static or relative.

●
 The float property can be used to allow elements to float to the right or left and is defined as float: left or float: right.

●
The clear property places a clear element right after the floating element.

●
 You can also change the manner in which the browser calculates width with the help of the box-sizing property. This property can take three values: content-box (default setting), border-box and padding-box.

Centering Content

If you are using a fixed width, the div element can be centered using the properties, margin-left and margin-right. If you fix the width and set the margins to auto
, the extra space on the margins is equally divided. It can be done in the following manner:

#container {

width: 850px;

margin-left: auto;

margin-right: auto;

}

Chapter 5: Thinking Slowly and Staying Humble

Writing code can go quickly especially when you know what you are doing and when you have a lot of experience with the codes that you are writing in your JavaScript strings. You may go quickly, and that can cause you to make mistakes. This is especially true if you are becoming very experienced with JavaScript and if you feel like you are going to be able to do more with it. You may also find that, when you get better at writing code, you get very confident with everything that you are doing. It is not a terrible thing to have confidence, but it can lead to you missing out on some of the things that you could have created errors with. To make sure that you are doing the best job with your code, even when you’re practicing, you should make sure that you think as slowly as possible and that you don’t get overly confident in your abilities.

Slowing Down

As you write the codes that you are thinking about, make sure that you go as slow as possible. It may take more time this way initially, but it will save you a lot of time when it comes to going back and looking at the different things that you may have to do with the errors that you have made. By going slowly, you will be less likely to create errors.

Even as you are looking back at your code and going through each of the lines of JavaScript, look at it slowly. Read each and every letter and symbol so that you will know what you are talking about and so you will be able to see if you missed anything. This is like proofreading it the way that you might have done in high school or college when you wrote a paper. Slow down to proofread the work that you wrote and the codes that you did line by line. This slow pace will help you catch any mistakes that you may have made.

It is also worth noting that going slower will help you avoid any major errors in the work. If you are moving at a slower pace, you will be more aware of each keystroke and each thing that you put into all of your lines of code. The slow pace will not only help you when you are looking back at what you wrote down but also at what you were doing when you were writing it. Make sure that you are prepared to go as slow as possible and that you don’t rush your work.

Taking a Break

It is always beneficial for you to take a break from the work that you are doing. After looking at lines of code for hours on end, your eyes will not only be tired, but your mind will begin to get weary, too. A break will help you to refresh what you are doing and allow you the chance to come back and start over with a blank canvas in your mind. There are many benefits to having a fresh mind when you are writing code and breaks will give you the perfect refresher.

In general, for every hour that you work on code, you should take 5-10 minutes to look away from the computer, get up and walk around and do something that does not involve anything with JavaScript. It is a good idea to take this time to step outside and get some fresh air or to simply just walk around getting a bit of exercise. Doing both of these activities will help get the blood flowing and will give you the oxygen that you need in your brain to help it work more efficiently when you decide to go sit back down and start working on the code again.

A word of caution: try to stay off of your cell phone during the time that you are taking a break from your computer screen. While much smaller, the screen on your cell phone emits the same blue light that can be detrimental from your computer screen. Set aside specific time for using your cell phone while you are working so that you don’t have to use up your screen break time to chat with your friends or check your non-business emails. It is a good idea to just keep the cell phone out of reach when you are taking a break.

Working Through It

Once you have written the code that you want to write, you need to make sure that you are working your way through it. Do this as slowly as what you did the writing process so that you will be able to catch any mistakes that you have made. You should do this after you have written your final line of code and before you take the chance to check it out by testing it for different things. It is always a good idea to make sure that you are going slowly and looking at each line of code.

One way that you can be sure that you are looking at every character of code that you have written is to read it out loud. Say each of the letters, numbers and characters to yourself so that you will be able to make sure that they are written the right way. It is always a good idea to read it out loud because reading it out loud will show you what you have actually written. It will take more time for you to read it out loud than it would to just read it in your head. There are many things that you may miss if you are reading it in your head.

While it may seem complicated to have to read each and every line of code that you have written out loud, you should still try to do so. Doing this will give you the chance to see what you may have missed. If you are good at reading and you make sure that you are not making any mistakes, you will be able to do this efficiently, and it will not waste a lot of time. It will actually take less time than needing to go back to fix all of your errors.

Leveling Confidence

While you may not come across this problem when you are first getting started or while you are learning code, confidence can be a big problem for those who write JavaScript. You think that you know enough about it and you, essentially, let your guard down when you are writing it. This is a problem because you will not be as quick to catch mistakes when you are writing the code, and you may think that you have not done anything wrong with the code that you wrote.

It is important to make sure that you keep your confidence in check. Even if you feel that you are very good at writing code and that you will never make a mistake, the chances of you making a mistake are still very high. It can happen to anyone at any time while they are writing any type of line of code. Make sure that you know what you are doing and that you do not get narcissistic about the skills that you have. There is always something more that you can learn when it comes to coding, and nobody knows all of it.

Your confidence can even trick you into forgetting things that you have learned about code. Confidence tells you that you know what you are doing and that you know the best way to be able to write code. It tells you that there is nothing wrong with writing the same things over and over for each line of code but it also tells you that you don’t need to try harder with different options for codes that you write. Make sure that you are confident with your skills but that you don’t let that confidence get too high to where it obstructs your view of success.

Distrusting Yourself

Don’t trust yourself. Your mind will try to tell you that you are not making mistakes and that you have not missed anything when you are looking over the code that you wrote but the chances are that you have actually missed some different lines and that you have made some mistakes. Be sure that you always question whether or not you are doing the best coding job possible so that you will be able to write the exact code that you are hoping for. Don’t trust yourself to do it but always check whether or not you are doing the right thing.

A good way to do this is to take a break in between writing and checking the code. Make sure that the break is long enough that you will be able to truly refresh your mind. Make it like one of your refresher breaks but take an even longer amount of time so that you will truly be able to come back with a clean slate when you start to test it and look at the code. If you are staring at the same 100 lines of code for 5 hours and then try to edit them, you will have a difficult time picking out the mistakes that you have made.

All of the tips that were in the chapters of the first part of this book involve practicing and learning what you can do while you are practicing. They are essentially minding tricks that you can use to make your coding practice go better. For the rest of the book, you will learn how to apply each of these when you start to code. The real fun comes when you learn the best codes to be able to use right here in the second part of this book.

Chapter 6: Basic Operators

What are operators?

Operators are basically symbols which act as a function, though they differ from functions syntax-wise. They take input(operands) and produce a certain output based on the operands. For example in “5+2”, “5” and “2” are operands(the input), and the “+” symbol is the operator, which results to “7”.

Classification of operators

Operators are generally classified on the basis of the type of operation they do. Operators like typeof, instanceof, etc. are unique and thus cannot be classified under the categories about which you will read below.

Arithmetic Operators

As the name hints, these are the operators which perform arithmetic tasks on the operand(s). Listed below are the arithmetic operators.

Addition[+]: This operator performs an addition operation on two operands if both of them are numerical, if anyone or both of the two operands are of string type then this operator concatenates / joins the two operands.

Example:

4 + 2//evaluates to 6

‘example’ + 5//evaluates to “example5”

‘thisIs’ + ’Example’ //evaluates to “thisIsExample”.

Subtraction[-]: This operator performs a subtraction operation on two operands. Example: “4-2” produces the result “2”.

Division[/]: This operator performs division operation on two operands, where the operand on left side(dividend) is divided by the operand on the right side(divisor). Example: “15/3” produces the result “3”.

Multiplication[*]: This operator performs multiplication operation on two operands. Example: “4*2” produces the result “8”.

Modulus[%]: Also known as a Remainder operator, this operator results in the remainder of the two operands when they are divided. Example: “5%2” produces the result “1”, “5%3” produces the result “2”.

Increment[++]: Increases the value of its numerical operand by one. The position of this operator matters, i.e., whether it is placed before operand or after it. If placed before operand, then this situation is called prefix(example ++x), and the value is returned after the incrementing operation, and if placed after the operand then this situation is called postfix(example x++), and value is returned before the incrementing operation.

Example:

//say x value is 5

console.log(++x); //prints 6

//value of x at this point is 6

//say y value is 5 too

console.log(y++); //prints 5 NOT 6

//but value of y at this point is 6 so incrementation was done but after the expression returned value

Decrement[--]: Decreases the value of its numerical operand by one. Similar to increment operator, the postfix and prefix rule applies here too.

Example:

//say x value is 5

console.log(--x); //prints 4

// value of x at this point is 4

//say y value is 5 too

console.log(y--); //prints 5

//value of y at this point is 4

Exponential[**]: This operator produces the result obtained by increasing the first operand power by the second operand, i.e., FirstOperandSecondOperand
. Example: “2**3” produces the result “8”.

Assignment Operators

These operators are used to assign values to variables. Value is assigned to the left operand which is based on the right operand value. Listed below are the assignment operators.

Equal[=]: This operator simply assigns the value of its right operand to the left operand. Example: “x=5” this assigns 5 to x, so now the value of x is 5.

Addition assignment[+=]: This operator adds the value of the left and the right operand and then assigns the result to the left operand. Example: say x = 2 then “x += 3” will make x’s value 5.

Subtraction assignment[-=]: This operator subtracts the value of the right operand from the left operand and then assigns the result to the left operand. Example: say x = 8 then “x -= 3” will make x’s value 5.

Multiplication assignment[*=]: This operator multiplies the left and the right operand and assigns the result to the left operand. Example: say x = 5 then “x *= 2” will make x’s value 10.

Division Assignment[/=]: This operator divides the left operand(dividend) by the right operand(divisor) and then assigns the result to the left operand. Example: say x = 10 then “x /= 2” will make x’s value 5.

Modulus Assignment[%=]: This operator divides the left operand(dividend) by the right operand(divisor) and then assigns the REMAINDER to the left operand. Example: say x = 5 then “x %= 2” will make x’s value 1.

Exponentiation assignment: This operator increases the value of left operand by the power of right operand and then assigns the result produced to the left operand. Example: say x = 2 then “x **= 3” will make x’s value 8.

Other Operators

These are the type of operators which cannot be categorized under the above-mentioned categories. Listed below are such operators.

typeof operator: This operator returns the type of operand in string format. Examples:

typeof 2//evaluates to “number”

typeof 1.23//evaluates to “number”

typeof “2”//evaluates to “string”

typeof ‘hi’//evaluates to “string”

typeof true//evaluates to “boolean”

typeof false//evaluates to “boolean”

typeof {ob:1}//evaluates to “object”

typeof new Date()//evaluates to “object”

tyepof Math.cos//evaluates to “function”

typeof function(){}//evaluates to “function”

instanceof operator: This operator checks if the first operand, which should be an object, is of a specific type, where the type to be checked is specified as the second operand. It returns true or false based on whether the object type is matched or not.

Examples:

new String(“Astring”) instanceof String//evaluates to true

[“this”, “is”, “array”] instanceof Array//evaluates to true.

new String(“Astring”) instance of Array //evaluates to false

[“this”, “is”, “array”] instanceof String//evaluates to false

delete operator: This operator removes a property from an object. Example:

var myObject = {

prop1: “test”,

prop2: “test2”

};

delete myObject.prop1;//deletes the prop1 property of object myObject

in operator: This operator checks whether a specified property(first operand) is in the specified object(second operand). It returns true or false based on whether the property is in the object or not.

Examples:

var myObject = {

prop1: “test”,

prop2: “test2”

};

“prop1” in myObject;//evaluates to true

“prop45” in myObject;//evaluates to false

This chapter explained operators in JavaScript. I hope you found it useful.

Conclusion

That should give you a basic idea of how events are used in JavaScript and why is it necessary to use them in the first place. The things to note are that events are anything that happens in the application, and we can attach event-listeners to make sure we get to know when that event occurs so that we can execute some code at that time.

Thank you very much for downloading JavaScript: Beginner JavaScript Coding From The Ground Up! Please be on the lookout for the next book in this series, JavaScript: Intermediate JavaScript Coding From The Ground Up. There is more yet left to learn to further your coding knowledge base. The journey does not stop at beginner for us.

If you have enjoyed this book, please leave a positive review on Amazon to show your support. Your feedback is greatly appreciated!

OEBPS/rsrcYN.jpg
AVASCR(FT
OR BEGINNERS

